
gn
5 a. II
CD:::I

ca
C
II
ca
CD

The Complete Graphical Operating System

sea UNIX® System V/386

Development System

C Language Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983,1984,1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -­
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)

(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR! MANUFACTURER" IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.
UNIX is a registered trademark of AT&T.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.

SCO Document Number: 6-26-89-6.0/3.2.0

seQ UNIX® System V/386

Development System

C User's Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983,1984,1985,1986,1987,1988,1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -­
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR! MANUFACTURER" IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
Intel is a registered trademark of Intel Corporation.
UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

1 Introduction

Overview 1-1
About This Guide 1-2
New Features 1-4
Notational Conventions 1-6
Books about C 1-9

2 Compiling with the cc Command

Introduction 2-1
The Basics: Compiling and Linking C Programs 2-2
Using cc Options 2-6

3 Linking with the cc Command

Introduction 3-1
The Default Linking Process 3-2
Passing Linker Information: The -link Option 3-3

4 Running C Programs on System V

Introduction 4-1
Passing Command-Line Data to a Program 4-2

5 Working with Memory Models

Introduction 5-1
Near, Far, and Huge Addressing 5-4
Using the Standard Memory Models 5-6
Using the near, far, and huge Keywords 5-14
Creating Customized Memory Models 5-25
Setting the Data Threshold 5-30
Naming Modules and Segments 5-31
Specifying Text and Data Segments 5-34

6 Improving Program Speed

Introduction 6-1
Using R~gister Variables 6-2
Optimization Options and Pragrnas 6-4
Choosing the Function-Calling Convention 6-7

-1-

Efficiency in Large Data Models 6-8
Efficiency in Large Code Models 6-10

7 Object and Executable File Formats

Introduction 7-1
iAPX286and386System Architecture 7-2
The Intel Object Module Format 7-4
Definition of Terms 7-6
Module Identification and Attributes 7-9
Segment Definition 7-10
Segment Addressing 7-11
SymbolDefinition 7-12
Indices 7-13
Conceptual Framework for Fixups 7 -14
Self-Relative Fixups 7-19
Segment-Relative Fixups 7-20
Record Order 7-22
Introduction to the Record Formats 7-24
Numeric List of Record Types 7-50
Type Representations for Communal Variables 7-51
The Segmented x.outFormat 7-54

8 C Language Compatibility with Assembly Language

Introduction 8-1
C Calling Sequence for 8086/80286 8-2
Entering an 8086/80286 Assembly Routine 8-3
8086/80286 Return Values 8-4
Exiting an 8086/80286 Routine 8-5
8086/80286 Program Example 8-6
80386 C-Language Calling Sequence 8-7
Entering an 80386 Assembly-Language Routine 8-8
80386 Return Values 8-9
Exiting an 80386 Routine 8-11
80386 Program Example 8-12

9 Error Processing

Introduction 9-1
Using the Standard Error File 9-2
UsingtheerrnoVariable 9-3
Printing Error Messages 9-4
Using Error Signals 9-5
Encountering System Errors 9-6

- ii-

10 Common Object File Format (COFF)

The Common Object File Format (COFF) 10-1
Definitions and Conventions 10-3
File Header 10-5
Optional Header Information 10-7
Section Headers 10-9
Sections 10-12
Relocation Information 10-13
Line Numbers 10-15
Symbol Table 10-17
String Table 10-41
Access Routines 10-42

A Converting from Previous Versions of the Compiler

Introduction A-I
Differences between Versions 5.1 and 5.0 A-2
Differences between Versions 5.0 and 4.0 A-4
Differences between Versions 4.0 and 3.0 A-8

B Writing Portable Programs

Introduction B-1
Program Portability B-3
Machine Hardware B-4
Compiler Differences B-11
Environment Differences B-16
Portability of Data B-17
Type-Size Suminary B-18
Byte-Ordering Summary B-20

C Writing Programs for Read-Only Memory

Introduction C-1
System V Dependent Library Routines C-2

D C Error Messages and Exit Codes

Introduction D-l
Command-Line Error Messages D-2
Compiler Error Messages D-7

-iii -

Chapter 1

Introduction

Overview 1-1

About This Guide 1-2

New Features 1-4

Notational Conventions 1-6

Books about C 1-9

Overview

Overview
The C language is a powetful general-purpose programming language
that can generate efficient, compact, and portable code. The Microsoft® C
Optimizing Compiler (cc) for the Ul'HX System V® operating system is a
full implementation of the C language as defined by its authors, Brian W.
Kernighan and Dennis M. Ritchie, in The C Programming Language.
Microsoft is actively involved in the development of the ANSI (American
National Standards Institute) standard for the C language; this version of
Microsoft C for UNIX System V anticipates and conforms to the forth­
coming standard in many areas.

The Microsoft C Compiler offers several important features to help you
increase the efficiency of your C programs. You can choose among five
standard memory models (small, medium, compact, large, and huge) to
set up the combination of data and code storage that best suits your pro­
gram. For flexibility and even greater efficiency, the C Compiler allows
you to "mix" memory models by using special declarations in your pro­
gram.

The C language itself does not provide such standard features as input and
output capabilities and string-manipulation features. These capabilities
are provided as part of the run-time library of functions that accompanies
the C Compiler.

Compared with other programming languages, Microsoft C is extremely
flexible concerning data conversions and nonstandard constructions. The
C Compiler offers several levels of warnings to help you control this
flexibility; programs in an early stage of development can be processed
using the full warning capabilities of the compiler to catch mistakes and
unintentional data conversions. An experienced C programmer can use a
lower warning level for programs that contain intentionally nonstandard
constructions. For more information about this feature, see the "Compil­
ing with the cc Command" chapter in this guide.

Introduction 1-1

About This Guide

About This Guide
This guide explains how to use the C Compiler to compile, link, and run C
programs on UNIX System V. The guide assumes that you are familiar
with the C language and with UNIX System V, and that you know how to
create and edit a C-Ianguage source file on your system.

If you have questions about the C language, tum to the C Language Refer­
ence included in this package. The C Library Guide documents the run­
time library routines you can use in your C programs.

The remaining chapters of the C User's Guide are described below:

Chapter 2, "Compiling with the cc Command," describes how to compile
a program using the cc compiler driver. This chapter describes the options
most commonly used to control preprocessing, compiling, and output of
files.

Chapter 3, "Linking with the cc Command," describes how to link object
files using the cc command. This chapter explains how the linker searches
for libraries, shows how to specify libraries for linking, and describes the
linker options that can be used for C programs.

Chapter 4, "Running C Programs on UNIX System V," explains how to
run your executable program file and discusses features specific to the
UNIX System V implementation of C. This chapter tells how to pass data
from UNIX System V to a program at execution time and how to return an
exit code from your program to UNIX System V.

Chapter 5, "Working with Memory Models," describes methods of
managing memory models. These methods are useful for writing pro­
grams that use more than 64K (kilobytes) of code or data. This chapter
also discusses "mixed-model" programming (combining features from
the five standard memory models).

Chapter 6, "hnproving Program Speed," gives suggestions and hints for
maximizing program speed.

Chapter 7, "Object and Executable File Formats," describes the system
architecture of the 80x86 microprocessor family, the object module for­
mat that the C compiler follows, and the format of the x.out file in a seg­
mented environment.

1-2 C User's Guide

About This Guide

Chapter 8, "c Language Compatibility with Assembly Language,"
describes how you can embed assembly-language subroutines within C­
language programs.

Chapter 9, "Error Processing," describes how to process errors detected
in calls to the C library routines and explains the functions and variables a
program may use to respond to these errors.

Chapter 10, "The Common Object File Format (COFF)," describes the
features and contents of COFF files.

Appendix A, "Converting from Previous Versions of the Compiler,"
summarizes the differences between Version 5.1 of the C Compiler and
previous versions. This appendix gives instructions for converting pro­
grams written for versions prior to 5.1 to the format accepted by Version
5.1.

Appendix B, "Writing Portable Programs," lists some of the C-Ianguage
features that are implementation-dependent, and offers suggestions for
increasing program portability.

Appendix C, "Writing Programs for Read-Only Memory," gives informa­
tion about modifying start-up code and initializing floating-point support
for programs that will be put in read-only memory.

Appendix D, "Error Messages and Exit Codes," lists and describes the
error messages and exit codes generated by the C Compiler and by the cc
command. It also lists and explains run-time error messages produced by
executable programs written in C.

Introduction 1-3

New Features

New Features
Several useful features have been added to Version 5.1 of the C Compiler.
This section summarizes features added since Version 5.0. For informa­
tion about differences between Version 5.1 and versions prior to 5.0, see
the "Converting from Previous Versions of the Compiler" appendix in
this guide.

New features include the following:

Feature Description

New cc options Option

-8

-xenix

-x2.3

Newpragmas Pragma

comment

Iinesize

1-4

Action

Generates an assembly-language
source file for the Macro Assembler,
masm(CP).

Produces object and/or executable
files using the Intel Object Module
Format (aMP).

Produces object and/or executable
files using the Intel Object Module
Format (aMP) and the XENIX Sys­
tem V/Release 2.3 run-time library.

Action

Places a comment record in the
object file.

Specifies the data-segment name
used by functions that load their own
data segments. The named segment
also contains all data that would
normally be allocated in the DATA
segment.

Sets the number of characters per
line in the source listing.

C User's Guide

message

page

pagesize

skip

subtitle

title

Introduction

New Features

Sends a message to the standard out­
put without tenninating the compila­
tion.

Places a fonnfeed character(s) in the
source listing.

Sets the number of lines per page in
the source listing.

Skips the specified number of lines
in the source listing. Places a com­
ment record in the object file.

Specifies a subtitle for the source
listing.

Specifies a title for the source list­
ing.

1-5

Notational Conventions

Notational Conventions
The following notational conventions are used throughout this guide:

Example
of Convention

Examples

Description
of Convention

The typeface shown in the left column is used
to simulate the appearance of infonnation that
would be printed on the screen or by a printer.
For example, the following command line is
printed in this special typeface:

cc -Foout.o -DTRUE=l file.c

When this command line is discussed in text,
items appearing on the command line, such as
out.o, also appear in the special typeface.

Language elements Bold type indicates elements of the C language
that must appear in source programs as shown.
Text that is nonnally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor direc­
tives.

ENVIRONMENT,
VARIABLES,
and MACROS

placeholders

1-6

Examples are shown below:

+= #if defined()
if -Fa
main sizeof

int
fopen

Bold capital letters are used for environment
variables, symbolic constants, and macros.

Words in italics are placeholders, representing
a variable that you must supply in command­
line examples, option specifications, and in the
text. Consider the following option:

·H number

C Us~r's Guide

.1issing code

optional items]

ntroduction

Notational Conventions

Note that number is italicized to indicate that it
represents a general form for the -H option. In
an actual command, you would supply a partic­
ular number for the placeholder number.

Occasionally, italics are also used to emphasize
particular words in the text.

Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following excerpt,
the ellipses between the statements indicate
that intervening program lines occur but are not
shown:

count = 0;

*pc++;

Brackets enclose optional fields in command­
line and option specifications. Consider the fol­
lowing option specification:

-Didentifier[=[string]]

The placeholder identifier indicates that you
must supply an identifier when you use the ·D
option. The outer brackets indicate that you are
not required to supply an equal sign (=) and a
string following the identifier. The inner brack­
ets indicate that you are not required to enter a
string following the equal sign, but if you do
supply a string, you must also supply the equal
sign.

Single brackets are used in C-language array
declarations and subscript expressions. For
instance, a[10] is an example of brackets in a C
subscript expression.

1-7

Notational Conventions

Repeating
elements ...

{choice1lchoice2 }

"Defined terms"

KEY+KEY

1-8

Horizontal ellipses are used in syntax examples
to indicate that more items having the same
form may be entered. For example, in the
Bourne shell, several paths can be specified in
the PATH command, as shown in the following
syntax:

PATH[=]path[;path] ...

Braces and a vertical bar indicate that you have
a choice of two or more items. Braces enclose
the choices, and vertical bars separate them.
You must choose one of these items unless all
of them are also enclosed in square brackets.

For example, the -W (warning-level) compiler
option has the following syntax:

-W {O I I I 2 I 3}

You can use -WI, -W2, or -W3 to display
different levels of warning messages or -WO to
suppress all warning messages.

Quotation marks set off terms defined in the
text. For example, the term "far" appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language have
the form " "rather than " ". For example, a
C string used in an example would be shown in
the following form:

l1abcn

Small capital letters are used for the names of
keys and key sequences, such as ENTER and
CTRL+C. Key sequences to be pressed simul­
taneously are indicated by the key names in
small caps separated by a plus sign (CTRL+C).

C User's Guidi

Books about C

Books about C
The manuals in this documentation package provide a complete
programmer's reference for C. They do not, however, teach you how to
program in C. If you are new to C or to programming, you may want to
familiarize yourself with the language by reading one or more of the fol­
lowing books:

Hancock, Les, and Morris Krieger. The C Primer. New York:
McGraw-Hill Book Co., Inc., 1982.

Hansen, Augie. Proficient C. Bellevue, Washington: Microsoft
Press, 1986.

Harbison, Samuel P., and Greg L. Steele. C: A Reference Manu­
al. Englewood Cliffs, New Jersey: Prentice-Hall Software
Series, 1987.

Kernighan, Brian W., and Dennis M. Ritchie. The C Program­
ming Language. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New
Jersey: Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey:
Plum Hall, Inc., 1983.

Schildt, Herbert. C Made Easy. Berkeley, California: Osborne
McGraw Hill, 1985.

Schustack, Steve. Variations in C. Bellevue, Washington: Micro­
soft Press, 1985.

These books are listed for your convenience only.

Introduction 1-9

~hapter 2

~ompiling with the
c Command

troduction 2-1

le Basics: Compiling and Linking C Programs 2-2
The cc Command 2-2

>ing cc Options 2-6
Setting Processor and Memory Model (-M) 2-6
Specifying Source Files (-Tc) 2-8
Compiling without Linking (-c) 2-9
Naming the Object File (-Fo) 2-9
Naming the Executable File (-Fe) (-0) 2-10
Creating Listings 2-11
Controlling the Preprocessor 2-28
Checking for Program Errors 2-35
Preparing for Debugging (-Zi, -Od) 2-40
Optimizing 2-41
Enabling/Disabling Language Extensions (-Ze, -Za) 2-53
Packing Structure Members (-Zp) 2-54
Setting the Stack Size (-F) 2-56
Restricting the Length of Extemal Names (-nl) 2-57
Labeling the Object File (-V) 2-57
Changing the Default char Type (-J) 2-58
Controlling the Calling Convention (-Gc) 2-58
Compiling Programs for DOS Environment (-dos, -FP) 2-60
Displaying Compiler Passes (-d, -z) 2-61
Producing OMF Object and Executable Files (-xenix) 2-62
Miscellaneous Pragmas 2-62
Predefined Macro Names 2-65

(

Introduction

lntroduction
fhis chapter explains how to compile and link using the cc command and
iiscusses commonly used cc options. The cc command is the only com­
nand you need to compile and link your C source files. The cc command
~xecutes the three compiler passes, then automatically invokes the linker,
d, to link your files.

Jsing the cc options described in this chapter, you can control and modify
he tasks performed by the command. For example, you can direct cc to
:reate an object-listing file or a preprocessed listing. Options also let you
~ive information that applies to the compilation process; you can specify
he definitions for manifest (symbolic) constants and macros, and the
dnds of warning messages you want to see.

fhe cc command automatically optimizes your program. You never have
o give an optimizing instruction unless you want to change the way cc
)ptimizes, request more sophisticated optimizations, or disable optimiza­
ion altogether. For more information on these choices, see the "Optimiz­
ng" section in this chapter.

'The Basics: Compiling and Linking C Programs" explains the basic use
)f the cc command to produce an executable program.

'Using cc Options," describes the cc options.

~r information about linking object files and libraries using the cc com­
nand, see the "Linking with the cc Command" chapter of this guide.

:;'or a discussion of the cc options that control memory models, see the
'Working with Memory Models" chapter in this guide.

:;'or a summary of the cc command and its options, see the C Language
?eference.

~ompiling with the cc Command 2-1

The Basics: Compiling and Linking C Programs

The Basics: Compiling and Linking C
Programs
This section explains how to use cc to compile and link C programs an
discusses the rules and conventions that apply to file names and option
used with cc.

The cc Command

The cc command has the following form:

cc [option] ... file ... [option ... file ...] ... [-link[link-libinfoJ]

Each option is one of the command-line options described in the "Usin
cc Options" section, the "Working with Memory Models" chapter, or th
"Improving Program Speed" chapter of this guide.

Each file names a source or object file to be processed or a library to b
searched at link time. See the description on "Specifying Source an
Object Files" later in this section for information about specifying sourc
and object files.

The cc command automatically specifies the appropriate library to b
used during linking. You can use the -link option with the optional linA
libinfo field to specify additional or different libraries, library searc
paths, and options to be used during linking. You can also specify linkf
options in the linkoptions field. For information about specifying differer
libraries and linker options, see the "Linking with the cc Command
chapter of this guide.

You can give any number of options, file names, and library names on th
command line, provided that the command line does not exceed 128 chal
acters.

COFFandOMF

This version of the C Compiler can produce object and/or executable fil{
that use either of two different binary file formats: COFF (Comme
Object File Format) and OMF (Intel Object Module Format). COFF is tl:
most widely used binary file format. OMF files are produced using tt

2-2 C User's Ouie

The Basics: Compiling and Linking C Programs

-xenix option with the compiler. SCO UNIX System V can execute either
file format by reading the file header and acting accordingly. Certain sys­
tem calls behave differently in OMF files because they follow UNIX Sys­
tem V rather than XENIX system conventions. The COFF and OMF for­
mats are described by their corresponding header files:
/usr/include/ a.out.h and /usr/include/ sys/x.out.h respectively.

Note

The default file name produced by the linker is a.out regardless of
the actual file format used. Any mention of x.out in this guide is
referring only to the format of OMF executable files.

Table 2.1 shows the tools used with various options to the Microsoft C
Compiler, and the type of object/executable file that results.

Table 2.1

Options, Tools, and Resulting Files

>ption MSCCompiler Assembler Link Editor obj form:

none MS masm ld
-c Creates linkable x.out object file masm nla
-s Creates assembly source listing masm nla
-Fa Creates assembly source listing masm ld

·xenix Creates XENIX programs in OMF format masm ld
, -xenix Creates XENIX assembly source listing masm nla
l-xenix Creates XENIX assembly source listing masm ld

Specifying Source and Object Files

The cc command can process source files, object files, library files, or any
combination of these. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs,
as shown in the following list:

• If the file has a .c extension, cc compiles the file.

Compiling with the cc Command 2-3

COFF
COFF
COFF
COFF
OMP
OMF
OMP

The Basics: Compiling and Linking C Programs

• If the file has a .0 extension, cc processes the file by invoking the
linker.

• If the file has a .a extension, cc assumes the file is a library and
passes it to the linker to be searched, unless the -c option is given
to suppress linking. For a description of the -c option, see the sec­
tion on "Compiling without Linking" under the section "Using cc
Options."

• If the file has the .asm extension, it is passed to masm.

• If the extension is omitted,
cc assumes an extension of .0. If the extension is anything other
than .c , .0 , or .a , cc assumes the file is an object file unless the file
name is specified in association with the -Tc option. If the file
name is specified with the -Tc option, cc assumes the file is a C
source file. For a description of the -Tc option, see the section on
"Specifying Source Files" under the section "Using cc Options."

Examples

cc a.c b.c C.O doo

This command line compiles the files a.c and b.c, creating object files
named a.o and b.o. These object files are then linked with the object files
c.o and d.o to form an executable file named a.out.

cc a.c b.c Coo -Tcdosrc

This command performs the same operations as the preceding command
line, except that the -Tc option indicates that d.src is a source file, not an
object file. Thus, the files a.c, b.c, and d.src are compiled, creating object
files named a.o, b.o, and d.o. These object files are then linked with C.o to
form an executable file named a.out.

Creating Executable Files

When cc compiles source files, it creates object files. By default, these
object files use the COFF format and have the same base names as the
corresponding source files, but with the extension .0 instead of .c. (The
base name of a file extension is the portion of the name preceding the pe­
riod, but excluding the path specification, if any.) After compilation, cc
runs a conversion program, cvtomf, over the object file to convert it into
COFF format. For more information about the cvtomf conversion pro­
gram, refer to the manual page cvtomf (C). The converted object file can

2-4 C User's Guide

The Basics: Compiling and Linking C Programs

now be linked using the AT&T link editor, Id. The -xenix option
suppresses the conversion.

Unless the -c option is given, cc links these object files, along with any .0

files you give on the command line, to form an executable file. If only .0

files are given on the command line, cc skips the compilation stage and
simply links the files.

Compiling with the cc Command 2-5

Using cc Options

Using cc Options
The cc command offers a large number of command options to control
and modify the compiler's operation. Options begin with a dash (-) and
contain one or more letters.

Options can appear anywhere on the cc command line. In general, an
option applies to all files that follow it on the command line, and it does
not affect files preceding it. However, not all options follow this rule; see
the discussion of a particular option for information on its behavior. Keep
in mind that cc options apply only to the compilation process. Unless spe­
cifically noted, options do not affect any object files given on the com­
mand line. The remainder of this section describes many of the options
applicable to cc. For a concise list of all possible options, refer to the
manual page, cc(CP).

Setting Processor and Memory Model (-M)

The -M option sets the program configuration. This configuration defines
the program's memory model, word order, and data threshold. It also
enables C-Ianguage enhancements such as the use of the full 286 instruc­
tion set and special keywords.

cc -Mstring special. c

The string contains the argument that defines the configuration. It may be
any combination of the following (though s, m, c, I, h, and 0, 1, 2, 3 are
mutually exclusive):

s Create a small model program. This is the default.

m Create a middle model program.

c Create a compact model program.

Create a large model program.

h Create a huge model program.

2-6 C User's Guide

Using cc Options

e Enable the keywords: far, near, huge, pascal and for­
tran. Also enables certain non-ANSI extensions neces­
sary to ensure compatibility with existing versions of the
C compiler.

o Use only 8086 instructions for code generation. This is
the default on 8086/80186/80286 systems.

I Use the extended 80186 instruction set.

2 Use the extended 80286 instruction set.

3 Use the extended 80386 instruction set. This is the
default on 80386 systems.

tnum Causes all static and global data items whose size is
greater than num bytes to be allocated to a new data seg­
ment. Num, the data "threshold," defaults to 32,767.
This option can only be used in large model programs
(-MI). Its main use is to move data out of the near data
segment to allow room for the stack.

cc -Ml -Mt12 recursive.c

d Do not assume (during compilation) that the registers SS
and DS will have the same contents at run time.
Warning: This option has no library or run-time support
on UNIX System V. It will not cause the stack to be put
in a separate segment. It may be of use for DOS cross­
development.

-M3 is the default on 80386 systems. Although it is usually advantageous
to enable the appropriate instruction set, you are not required to do so. If
you have an 80286 processor, for example, but you want your code to be
able to run on an 8086, you should not use the 80186/80188 or 80286
instruction set.

Note

The m, c, I, h, b, t, and d arguments are not compatible with the
-M3 option. The s and e arguments are compatible with -MO, -MI,
-M2,or-M3.

Compiling with the cc Command 2-7

Using cc Options

For a complete description of memory models and segment options, see
the "Working with Memory Models" chapter in this guide.

The memory-model option you choose determines the name of the stan­
dard libraries that cc places in the object file it creates. These libraries are
then considered the default libraries, since the linker searches for them by
default.

Table 2.2 shows each memory-model option and the corresponding library
name that cc embeds in the object file.

Table 2.2

cc Options and Default Libraries

Memory-Model Default
Option Libraries

-Ms Slibc.a
Slibcfp.a

-Mm Mlibc.a
Mlibcfp.a

-Mc Clibc.a
Clibcfp.a

-Mlor-Mh Llibc.a
L1ibfp.a

Specifying Source Files (-Tc)

Option

-Tc source file

The -Tc option tells the cc command that the given file is a C source file.
One or more spaces can appear between -Tc and the source-file name.

If this option does not appear, cc assumes that files with the extension .c
are C source files, files with the extension .a are libraries, and files with
any other extension or with no extension are object files. If you use the
-Tc option, cc treats the given file as a C source file, regardless of its
extension. A separate -Tc option must appear for each source file that has
an extension other than .c .

2-8 C User's Guide

Using cc Options

If you have to specify more than one source file with an extension other
than .c , you must specify each source file in a separate -Tc option.

Example

cc main.c -Tc test.prg -Tc collate.prg print.prg

In this example, the cc command compiles the three source files main.c,
testprg, and collate.prg. Since the file printprg is given without a -Tc
option, cc treats it as an object file. Thus, after compiling the three source
files, cc links the object files main.o, test.o, col/ate.o, and print.prg.

Compiling without Linking (-C)

Option

-c

The -c (for "compile-only") option suppresses linking. Source files given
on the command line are compiled, but the resulting object files are not
linked, no executable file is created, and any object files specified on the
command line are ignored. This option is useful when you are compiling
individual source files that do not make up a complete program.

The -c option applies to the entire cc command line, regardless of the
option's position in the command line.

Example

cc -c *.c

This command line compiles, but does not link, all files with the exten­
sion.c in the current working directory.

Naming the Object File (-Fo)

Option

-Foobjfile

By default, cc gives each object file it creates the base name of the corre­
sponding source file plus the extension .0. The -Fo option lets you give
different names to object files or create them in a different directory. If
you are compiling more than one source file, you can give the -Fo option
for each source file to rename the corresponding object file.

Compiling with the cc Command 2-9

Using cc Options

Keep the following rules in mind when using this option:

• The objfile argument must appear immediately after the option,
with no intervening spaces.

• Each -Fo option applies to the next source file that appears on the
command line after the option.

You are free to supply any name and any extension you like for the
objfile. However, it is recommended that you use the conventional .0

extension because the linker uses .0 as the default extension when pro­
cessing object files.

If you use the -Fo option (that is, if you do not give an object file name
with a base and an optional extension), cc names the object files accord­
ing to the following rule:

• If you give a directory specification following the -Fo option, cc
creates the object file in the given directory and uses the default
file name (the base name of the source file plus .0). Otherwise,
objfile is created in the current directory. A.o extension is added
if no extension is given.

To give a directory specification, it must end with a forward slash (/) so
that cc can distinguish between a directory specification and a file name.

Example

cc -Fo/dbjectl/ this.c that.c -Fo/src/newthose those.c

In this example, the first -Fo option tells the compiler to create, in the
/objectl directory, the object file this.o (created as a result of compiling
this.c). The compiler also creates, in the current directory, the object file
that.o (created as a result of compiling that.c). The second -Fo option tells
the compiler to create the object file named newthose.o (created as a
result of compiling those. c) in the /src directory.

Naming the Executable File (-Fe) (-0)

Option

-Feexefile
-0 exefile

2-10 C User's Guide

Using cc Options

By default, cc gives the name a.out to the executable file. In UNIX System
Y, -Fe and -0 are the same, except syntactically. The file name must
come immediately after -Fe, whereas blanks are permitted between -0

and the file name. Either option lets you give the executable file a
different name or create it in a different directory.

Since cc creates only one executable file, you can give the -Fe option
anywhere on the command line. If more than one -Fe option appears, cc
gives the executable file the name specified in the last -Fe option on the
command line.

The -Fe option applies only in the linking stage. If you specify the -c
option to suppress linking, -Fe has no effect.

Examples

cc -Fe/bin/process *.c
cc -0 /bin/process *.c

These examples compile and link all source files with the extension .c in
the current working directory. The resulting executable file is named pro­
cess.out and is created in the directory tbin.

Creating Listings

A number of options are available with the cc command for creating list­
ings. You can create a source listing, a map listing, or one of several kinds
of object listings. You can also set the title and subtitle of the source list­
ing from the command line and control the length of source-listing lines
and pages.

These options are described in the following sections.

Note

Listings produced by the cc command may contain names that begin
with more than one underscore (for example, chkstk) or that end
with the suffix QQ. Names that use these conventions are reserved
for internal use by the compiler, and should not be used in your pro­
grams, except for those documented in the C Library Guide. More­
over, you should avoid creating global names that begin with an
underscore. Since the compiler automatically adds another leading
underscore, these names will have two leading underscores and
might conflict with names reserved by the compiler.

Compiling with the cc Command 2-11

Using ee Options

Types of Listings (-Fs, -Fl, -Fa, -Fe, -Fm -S)

Options

-Fs[listfiles]
-Fl[listfile]
-Fa[listfile]
-Fe[listfile]
-Fm[mapfile]
-S

Source listing
Object listing
Assembly listing
Combined source and object listing
Map file that lists segments, in order
Assembly listing

This section describes how to use command-line options to create list­
ings. For an example of each type of listing and a description of the infor­
mation it contains, see the section on "Fonnats for Listings."

When using an option described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces.
The listfile may be a file specification or a path specification. It may also
be omitted.

Note

When you give just a path specification as the listfile argument, the
path specification must end with a forward slash (/) so that ee can
distinguish it from an ordinary file name.

When you give a path specification as the argument to a listing option, or
if you omit the argument altogether, ee uses the default file name for the
listing type. Table 2.3 gives the default names used for each type of list­
ing. The table also shows the default extensions, which are used when you
give a file-name argument that lacks an extension.

2-12 C User's Guide

Using ee Options

Table 2.3

Default File Names and Extensions

Default
Option Listing Type File Name!

Default
Extension2

-Fs Source Base name of source file .s
plus .S

-FI Object Base name of source file .L
plus .L

-Fa Assembly Base name of source file .asm
(masm) plus .asm

-Fe Combined Base name of source file .L
source-object plus .L

-Fm Map Prints to standard output.

-S Assembly Base name of source file .asm
(masm) plus .asm

Notes:

The default file name is used when the option is given with no argument or with a
path specification as the argument.

2 The default extension is used when a file name lacking an extension is given.

3 The assembly-language listing produced by the -Fa, -Fe, and -S options uses masm
directives.

4 The -Fa and -S options produce the same output, except that you cannot specify the
list file with the -S option.

Since you can process more than one file at a time with the ee command,
the order in which you give listing options and the kind of argument you
give for each option (file specification or path specification) affect the
result. Table 2.4 summarizes the effects of each option with each type of
argument.

Compiling with the cc Command 2-13

Using ee Options

Option

-Fa, -Fe,
-FI, -Fs

-Fm

-s

Notes:

Table 2.4

Arguments to Listing Options

File-Name Path
Argument Argument!

Creates a Creates listings
listing for the in the given
next source location for
file on the every source
command file listed after
line; uses the option on
default the command
extension if line; uses
no extension default names
is supplied

Uses given Creates map
file name for file in the given
the map file; directory; uses
uses default default name
extension if
no extension
is supplied

File name Path argument
argument is is not allowed
not allowed

No
Argument

Creates listings in
the current direc-
tory for every
source file listed
after the option on
the command line;
uses default names

Uses default name

Uses default name

When you give just a path specification as the argument, the path specification must
end with a forward slash (/) so that cc can distinguish it from an ordinary file name.

Only one type of object or assembly listing can be produced for each
source file. The -Fe option overrides the -Fa and -FI options and produces
a combined listing. If you apply both the -Fa and the -FI options to one
source file, only the last listing specified on the command line is pro­
duced. If you specify both the -Fa and the -Fs options to one source file, a
combined listing is produced. The -Fs option may be used with any other
option.

2-14 C User's Guide

Using ee Options

Note

The ee command optimizes by default, so listing files reflect the
optimized code. Since optimization may involve rearrangement of
code, the correspondence between your source file and the machine
instructions may not be clear, especially when you use the -Fe
option to mingle the source and assembly codes. To produce a list­
ing without optimizing, use the -Od option (discussed in "Preparing
for Debugging" later in this section) with the listing option.

The map file is produced during the linking stage. If linking is suppressed
with the -e option, the -Fm option has no effect.

Examples

cc -Fshello.src -Fchello.crnb hello.c

In this example, ee creates a source listing called hello.src and a com­
bined source and object listing called hello.cmb. The object file has the
default name hello.o. However, it is removed if the link was successfuL

cc -Fshello.src -Fshello.lst -Fchello.cod hello.c

This command produces a source listing called hello.lst rather than
hello.src, since the last name provided has precedence. This example also
produces a combined source and object listing file named hello. cod. The
object file in both of these examples has the default name hello.o.

Setting Titles (-St) and Subtitles (-Ss)

Options

-St "title"
-Ss "subtitle"

The -St and -Ss options set the title and subtitle, respectively, for source
listings. The quotation marks (" ") around the title or subtitle argument
can be omitted if the title or subtitle does not contain space or tab charac­
ters. The space between -St or -Ss and its argument is optionaL

The title appears in the upper left comer of each page of the source list­
ing. The subtitle appears below the title.

Compiling with the cc Command 2-15

Using cc Options

The -St or -Ss option applies to the remainder of the command line c
until the next occurrence of -St or -Ss on the command line. Thes
options do not cause source listings to be created. They take effect onl
when the -Fs option is also used to create a source listing.

Examples

cc -St "Income Tax" -Ss 4-14 -Fs tax*.c

This command compiles and links all source files beginning with tax an
ending with the default extension (.c) in the current working director)
Each page of the source listing contains the title Income Tax in the uppe
left comer. The subtitle 4-/4 appears below the title on each page.

cc -c -Fs -Fa -St"Calc Prog" -Ss"=mt" ct.c -Ss"sort" srt.c

In this command, cc compiles two source files and creates two source list
ings. Each source listing has a unique subtitle, but both listings have th,
title Calc Prog.

Formats for Listings

The rest of this section describes and shows examples of the five types a
listings available with the cc command. For information on how to creatl
these listings, see "Types of Listings" earlier in this section.

Source Listing

Source listings are helpful for debugging programs as they are being de
veloped. These listings are also useful for documenting the structure of
finished program.

The source listing contains the numbered source-code lines of each pro
cedure in the source file, along with any diagnostic messages that wer
generated. If the source file compiles with no errors more serious thai
warning errors, the source listing also includes tables of local symboh
global symbols, and parameter symbols for each function. If the compile
is unable to finish compilation, it does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in you
program. This summary is useful for analyzing the program's memor
requirements.

2-16 C User's Guid

Using cc Options

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

1 char hexvalue [10] ;
2

rrainO
{

long htoiO;
printf (''Please enter the hex value you want to <XJnVert: \n") ;
scant ("%s", hexvalue);

3
4
5
6
7
8
9

printf ("The integer value of the hex value is %ld\n", htoi (hexvalue)) ;

10
11 long htoi(hexvalue)
12 char *hexvalue;
13{

register char *ptr=hexvalue;
int i=O;
long n=O;
long exp16 ();
while (*ptr != '\0') {
if (*ptr>= 'a' && *ptr <= 'f')

*ptr -= 87;

14
15
16
17
18
19
20
21
22
23

else if (*ptr>= 'A' && *ptr <= 'F')
*ptr -= 55;

else
24 *ptr -= 48;
25 ptr+;
bornb.c(25) : error C2059: syntax error ';'

26 }

The line number given in the error message corresponds to the number of
the source line immedicttely above the message in the source listing.

Compiling with the cc Command 2-17

Using cc Options

The following example shows the source listing for a simple C program:

Hex to ASCII
2/25/87

PllGE 1
02-25-87
10:44:23

Line* Soi.lrce Line C cptimizing Corpiler Versicn 5.10
1 char hexva1ue [10] ;

rrainO
{

long htoi 0 ;

2
3
4
5
6
7
8
9
10
11
12
13
14
15

printf(''Please enter the hex value you want to CO!lIIert:O);
scant ("%S", hexva1ue);
printf(IITI1e integer value of the hex value is %1dO, htoi (hexva1ue»;

)

16
17
18
19
20
21
22
24
25
26
27
28
29
30
31
32
34

long htoi(hexvalue)
char *hexvalue;
{

register char *ptr=hexvalue;
int i=O;
long n=O;
long exp16 ();
while (*ptr != ' ') {
if (*ptr >= 'a' && *ptr <= 'f')

*ptr -= 87;
else if (*ptr >= 'A' && *ptr <=

*ptr -= 55;

ptr++;
)
ptr -= 1;

*ptr -= 48;

while (ptr>=hexvalue)
{

n+= (*ptr*exp16(i»;
i++;
ptr--; 33

return(n);
35)
htoi I=al Synbols

'F')

N3rre Class Type Size Offset Register
i . . • auto
ptr . • auto
n .• .••. auto
hexvalue.

36
• ••• param

37
38
39
40
41
42
43
44
45

2-18

long exp16 (exp)
int exp;
{

long result=l;
int j;
for (j=l; j<=exp; j++)

result *= 16;
return (result);

-0008

-0004

0004

si

C User's Guide

Hex to A
2/25/87

exp16 Local Symbols

Name Class

j auto
result. auto
exp param

Global Symbols

Name Class

exp16 global
hexvalue. common
htoi. global
maina global
printf. extern
scanf extern

Code size 00e8 (232)
Data size 005f (95)
Bss size 0000 (0)

No errors detected

Using cc Options

02-25-87
10:44:23

C Optimizing Compiler Version 5.10

Type

Type

near function
struct/array
near function
near function
near function
near function

Size Offset Register

-0006
-0004

0004

Size Offset

*** OOae
10 ***

*** 0038
*** 0000
*** ***
*** ***

At the end of each function, a table of local symbols is given, as shown in
the following example for the function htoi:

htoi Local Symbols

Name

i .
ptr
n .
hexvalue.

Class

auto
auto
auto
param

Compiling with the cc Command

Type Size Offset Register

-0008
*** si
-0004

0004

2-19

Using cc Options

The following list shows the contents of each column in the symbol table:

Column Contents

Name The name of each local symbol in the function.

Class Either auto if the symbol is a nonstatic local variable, or
param if the symbol is a formal parameter.

Offset The symbol's offset address relative to the frame pointer
(that is, the BP register). The Offset number is positive for
param symbols and negative for auto symbols with auto
storage class.

Register Blank unless the variable is stored in a register, in which
case, this column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as
shown in the following example:

Name Class Type Size Offset

exp16 global near function *** OOae
hexvalue. common struct/array 10 ***
htoi. global near function *** 0038
maina global near function *** 0000
printf. extern near function *** ***
scanf extern near function *** ***

The following list shows the contents of each column:

Column Contents

Name

Class

Type

2-20

Each global symbol, external symbol, and statically allo­
cated variable declared in the source file.

Either global, common, extern, or static, depending on how
the symbol was defined in the source file.

A simplified version of the symbol's type as declared in
the source file.

C User's Guide

Using cc Options

For functions, this entry is either near function or far func­
tion, depending on which memory model was used and
how the function was declared. For a pointer, this entry is
near pointer,far pointer, or huge pointer. For enumeration
variables, this entry is into For structures, unions, and
arrays, this entry is structlarray.

Size Used only for variables. Specifies the number of bytes of
storage allocated for the variable. Since the amount of
storage allocated for an external array may not be known,
its Size entry may be undefined.

Offset Used only for symbols with an entry of global or static in
the Class column.

For variables, this entry gives the relative offset of the
variable's storage in the logical data segment for the pro­
gram file being compiled. Since the linker usually com­
bines several logical data segments into a physical seg­
ment, this number is useful only for determining the rela­
tive position of storage of variables. For functions, this
entry gives the relative offset of the start of the function in
the logical code segment. For small-model programs, the
linker combines logical code into a single physical seg­
ment, so this entry is useful for determining the relative
positions of different functions defined in the same source
file. However, for medium-, large-, and huge-model pro­
grams, each logical code segment becomes a unique physi­
cal segment. In these cases, this entry gives the actual
offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as in the following example:

Code size ~ 0103 (259)
Data size ~ 005f (95)
Bss size ~ 0000 (0)

The number of bytes in each segment is given first in hexadecimal, and
then in decimal (in parentheses).

Object Listing

The -FI option produces an object listing. The object listing contains the
instruction encoding and assembly code for your program. The line num­
bers are shown in the listing as comments. The instruction encoding is on
the left and the assembly code on the right, as shown in the following
example:

Compiling with the cc Command 2-21

Using cc Options

; Line 4
PUBLIC main

main PROC NEAR
*** 000000
*** 000001
*** 000003
*** 000005

Line 6
*** 000008
*** OOOOOb
*** OOOOOc
*** OOOOOf

Assembly Listing

55
8b ec
33 cO
e8 00

b8 00
50
e8 00
83 c4

push bp
mov bp,sp
xor aX,ax

00 call chkstk

00 mov ax,OFFSET DGROUP:$S G12
push ax

00 call _printf
02 add sp,2

The -Fa and -S options produce an assembly listing using directives suit­
able for assembly using the Macro Assembler, masm. It contains the
assembly code corresponding to your C source file, as shown in the fol­
lowing example:

; Line 4
PUBLIC _main

main PROC NEAR
push bp
mov bp, sp
xor aX,ax
call chkstk

Line 6
mov aX,OFFSET DGROUP:$SG12
push ax
call yrintf
add sp,2

Note that the example shows the same code as in the object listing exam­
ple, except that the instruction encoding is omitted.

The listing generated by the -Fa option in Versions 5.0 and later of the C
Compiler can be used as input to masm.

Combined Source and Object Listing

The -Fc option produces a combined source and object listing. This shows
each line of your source program followed by the corresponding line (or
lines) of machine instructions, as shown in the following example:

2-22 C User's Guide

TEXT SEGMENT
; 1*** char hexvalue[lO];
; 1***
; 1 *** main ()
; 1 *** {
; Line 4

PUBLIC main
main PROC NEAR

*** 000000
*** 000001
*** 000003
*** 000005

55
8b ec
33 cO
e8 00 00

; 1*** long htoi();

mov
xor

push bp
bp,sp
aX,ax

Using cc Options

call chkstk

; 1*** printf("Please enter the hex value you want to convert:O);
Line 6

*** 000008 b8 00 00 mov aX,OFFSET DGROUP:$SG12
*** OOOOOb 50 push ax
*** OOOOOc e8 00 00 call yrintf
*** OOOOOf 83 c4 02 add sp,2

; 1*** scanf("%s", hexvalue);

Note that this sample is like the object-listing sample, except that the
source-program line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of glo­
bally visible functions and variables begin with an underscore, as shown
in the following example. This part of the listing is the same for all three
kinds of listings:

EXTRN printf:NEAR
EXTRN -scanf:NEAR
EXTRN chkstk:NEAR
EXTRN aNlmul:NEAR
EXTRN --aNNalshl:NEAR
EXTRN hexvalue:TBYTE

The C Compiler automatically prefixes an underscore to all global names.
If you write assembly-language routines to interface with your C pro­
gram, this naming convention is important; see the section on "Control­
ling the Preprocessor" for more information.

The listing may also contain names that begin with more than one under­
score (for example, chkstk). Identifiers with more than one leading
underscore are reserved for internal use by the compiler, and should not
be used in your programs, except for those documented in the C Library
Guide. Moreover, you should avoid creating global names that begin

Compiling with the cc Command 2-23

Using cc Options

with an underscore. Since the compiler automatically adds another lead­
ing underscore, these names will have two leading underscores and might
conflict with the names reserved by the compiler.

Listing Pragmas

There are several pragmas that allow you to control the page formatting
of the listings produced with the various list options. These pragmas are:

Pragma Action

Iinesize Sets the number of characters per line in the source list­
ing.

page Places a formfeed character(s) in the source listing.

pagesize Sets the number of lines per page in the source listing.

skip Skips the specified number of lines in the source listing.

subtitle Specifies a subtitle for the source listing.

title Specifies a title for the source listing.

The remainder of this section discusses each of the preceding pragmas.

The Iinesize Pragma

The Iinesize pragma sets the number of characters per line in the source
listing. The syntax of this pragma is:

Jlpragma linesize([charactersJ)

In this syntax, the optional parameter characters is an integer constant in
the range 79-132 that specifies the number of characters you wish each
line of the source listing to have. If characters is absent, the compiler
uses the value specified in the -Sl option or, if that option is absent, the
default value of 79 characters per line. Note that Iinesize takes effect in
the line after the line in which the pragma itself appears.

The following example uses the pragma to produce a source listing with a
132-character line length:

Jlpragma linesize(132)

2-24 C User's Guide

Using cc Options

The page Pragma

The page pragma generates a formfeed (page eject) character in the
source listing at the place where the pragma appears. The pragma has the
following syntax:

#pragma page(fpages])

The optional parameter pages is an integer constant in the range 1-127
that specifies the number of pages to eject. If pages is absent, the pragma
uses a default value of 1, in which case the next line in the source file
appears at the top of the next listing page.

The pagesize Pragma

The pagesize pragma sets the number of lines per page in the source list­
ing. The pragma has the following syntax:

#pragma pagesize([lines])

The optional parameter lines is an integer constant in the range 15-255
that specifies the number of lines that you wish each page of the source
listing to have. If this parameter is absent, the pragma sets the page size
to the number of lines specified in the -Sp command-line option or, if that
option is absent, to a default value of 63 lines.

The following example uses the pagesize pragma to set the number of
lines per page of the source listing to 66 lines:

#pragma pagesize(66)

The skip Pragma

The skip pragma generates a newline (carriage return/line feed) in the
source listing, at the point where the pragma appears. The pragma has the
following syntax:

#pragma skip([lines])

The optional parameter lines is an integer constant in the range 1-127 that
specifies the number of lines that you wish to skip. If this parameter is
absent, skip defaults to one line.

Compiling with the cc Command 2-25

Using cc Options

The subtitle Pragma

The subtitle pragma sets a subtitle in the source listing. The pragma has
the following syntax:

#pragma subtitle(subtitlename)

The required parameter subtitlename is a string literal containing the sub­
title for subsequent pages in the source listing. The subtitle appears below
the title on each page of the listing.

If you supply a null string ("") as the subtitlename parameter, subtitle
removes any subtitle that was previously set. The subtitlename parame­
ter can be a macro that expands to a string literal, and you can concaten­
ate such macros with string literals in any combination.

The following statement sets the subtitle to Error handler for subsequent
pages in the source listing:

#pragma subtitle ("Error handler")

The title Pragma

The title pragma sets a title for the source listing. The pragma has the
following syntax:

#pragma title(titlename)

The required parameter title name is a string literal containing the title for
the source listing. The title appears in the upper left comer of each page
of the listing.

If you supply a null string ("") as the titlename parameter, title removes
any title that was previously set. The titlename parameter can be a macro
that expands to a string literal, and you can concatenate such macros with
string literals in any combination.

The following statement sets the title to File I/O Module in the source
listing:

#pragma subtitle ("File I/O Module")

2-26 C User's Guide

Using cc Options

Map File

The -Fm option produces a map file. The map file contains a list of seg­
ments in order of their appearance within the load module. As an exam­
ple, consider the following:

Start Stop Length Name
OOOOOH OlE9FH OlEAOH TEXT
OlEAOH OlEAOH OOOOOH C ETEXT

Class
CODE
ENDCODE

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the begim1ing of the load
module. The load module begins at location zero. The Length column
gives the length of the segment in bytes, the Name column gives the name
of the segment, and the Class column gives information about the seg­
ment type.

The starting address and name of each group appear after the list of seg­
ments. An example of a group listing follows:

Origin Group
OlEA:O DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used for data segments by programs compiled with the C
Compiler, Version 5.1.

The following map file contains two lists of global symbols: the first list
is sorted in ASCII-character order by symbol name and the second is by
symbol address. A maximum of 2048 symbols can be sorted in each list.
(To increase the number of sorted symbols, you must specify the -MAP
linker option with the number argument to create the map file; see the
"Linking with the cc Command" chapter of this guide for details.) The
notation Abs appears next to the names of absolute symbols (symbols con­
taining 16-bit constant values that are not associated with program
addresses).

Many of the global symbols that appear in the map file are symbols used
internally by the C Compiler. These usually begin with one or more lead­
ing underscores or end with QQ.

Compiling with the cc Command 2-27

Using cc Options

Address Publics by Name

003F:0096 STKHQQ
0047:1086 brkctl
003F:04BO edata
0047:0910 end

0047:00EC _abrkp
0047:009C abrktb
0047:00EC abrktbe
003F:9876 Abs _acrtmsg
0000:9876 Abs acrtused

0047:0240 _argc
0047:0242 _argv

Address Publics by Value

003F:0010 main
003F:0047 -htoi
003F:00DA :=exp16
003F: 0113 chkstk
003F:0129 astart -
003F:01C5 cintOIV -

The addresses of the external symbols are in the "selector:offset" formal
showing the location of the symbol relative to zero (the beginning of th
load module).

Following the lists of symbols, the map file gives the program entry po in!
as shown in the following example:

Program entry point at 003F:0129

Controlling the Preprocessor

The cc command provides several options that control the operation c
the C preprocessor. You can define macros and manifest (symbolic) con
stants from the command line, change the search path for include file~
and stop compilation of a source file after the preprocessing stage to pre
duce a preprocessed source-file listing.

2-28 C User"s Guid

Using cc Options

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as
directed. The preprocessor can be run on a file at any stage of develop­
ment, whether or not the file is a complete C source file. In fact, the
preprocessor is not restricted to processing C files; it can be run on any
kind of file. However, input files to the preprocessor must follow the
preprocessor rules; therefore, not all arbitrary text files may be suitable
for use with the preprocessor. See the C Language Reference for a com­
plete discussion of C preprocessor directives and the format expected for
preprocessor input.

Defining Constants and Macros (-D)

Option

-D identifier[= [string]]

The -D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and string is its value
or meaning. Note that spaces are permitted (but not required) between -D
and the identifier.

If you leave out both the equal sign and string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
-DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined; its definition is the empty string. This
definition effectively removes all occurrences of the identifier from the
source file. For example, to remove all occurrences of register, use the
following option:

-Dregister=

Note that the identifier register is still considered to be defined.

The effect of using the -D option is the same as using a preprocessor
#define directive at the beginning of your source file. The identifier is
defined in the source file being compiled either until an #Undef directive
removes the definition or until the end of the file is reached.

You can supply a command-line definition for an identifier that is also
defined within the source file. However, you must use #Undef to remove
the source-file definition, unless the source-file definition is identical to
the command-line definition. The command-line definition remains in
effect until the identifier is removed with an #Undef directive.

Compiling with the cc Command 2-29

Using cc Options

The -D option is especially useful with the #if and #ifdef directives
because you can control conditional-compilation directives in the source
file from the command line.

Examples

cc -D NEED=2 main.c

This example defines the manifest constant NEED in the source file
main.c. This definition is equivalent to placing the directive at the top of
the source file as shown in the following example:

#define NEED 2

For the next example, suppose a source file named other.c contains the
following fragment:

#if defined (NEED)

#endif

Suppose further that other.c does not explicitly define NEED (that is, no
#define directive for NEED is present). Then all statements between the
#if and the #endif directives are compiled only if you supply a definition
of NEED by using -D. For instance, the following command is sufficient
to compile all statements following the #if directive:

cc -DNEED main.c

Note that NEED does not have to be set to a specific value to be con­
sidered defined. The following command, in contrast, causes the state­
ments in the #if block to be ignored (not compiled):

cc main.c

Predefined Identifiers (Manifest Defines)

The compiler defines several identifiers that are useful in writing portable
programs. These are known as "manifest defines." You can use these
identifiers to compile code sections conditionally, depending on the pro­
cessor and operating system being used. They begin with "M_" for
"manifest." The predefined identifiers and their functions are as follows:

2-30 C User's Guide

Using cc Options

Identifier Function

M 186 This is an Intel processor.

M SYS3 This is Unix System III compatible.

M SYS5 This is Unix System V compatible.

M BITFIELDS This compiler supports bit fields.

M WORDSWAP The word-within-a-longword order is
swapped with respect to the
DECPDP-ll.

M UNIX Always defined, this identifies the tar­
get operating system as an implemen­
tation of UNIX System V.

M In86 Depending on -MO, -MI, -M2, or
-M3, M 1386 is defined with 386
compiler unless -dos is used.

M _ 186mM Always defined, this identifies the
memory model, where m is either S
(small model), C (compact model), M
(medium model), L (large model), or
H (huge model). If huge model is
used, both M 186LM and M 186HM
are defined. - Small modeC is the
default. Memory models are dis­
cussed in the "Working with Memory
Models" chapter.

_CHAR_UNSIGNED This is defined only when the -J
option is given to make the char type
unsigned by default. For more infor­
mation, see the section on "Changing
the Default char Type."

M SDATA or M LDATA Depending on -MO, -MI, or -M2.
M-STEXT or M-LTEXT - -

Compiling with the cc Command 2-31

Using cc Options

Removing Definitions of Predefined Identifiers (-U, -u)

Options

-U identifier
-u

The -U (for "undefine") option turns off the definition of one of the
predefined identifiers discussed in the previous section. One or more
spaces may separate the -U and identifier. You can specify more than one
-U option on the same command line. The -u option turns off all
definitions.

Example

cc -UM UNIX -UM I86 work.c

This example removes the definitions of two predefined identifiers. Note
that the -U option must be given for each removal.

Producing a Preprocessed Listing (-P, -E, -EP)

Options

-P Writes preprocessed output to a file
-E Writes preprocessed output to standard

output; includes #line directives
-EP Writes preprocessed output to a file and standard output

The -P, -E, and -EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per­
formed, and comments are removed. All three options suppress compila­
tion. No object file or listing is produced, even if you specify the -Fo
option or a listing-file option on the cc command line.

The -P option writes the preprocessed listing to a file with the same base
name as the source file, but with a .i extension.

The -E option copies the preprocessed listing to the standard output (usu­
ally your terminal). It places a #Iine directive in the output at the

2-32 C User's Guide

Using cc Options

beginning and end of each included file and around lines removed by
preprocessor commands that specify conditional compilation.

The -E option is useful when you want to resubmit the preprocessed list­
ing for compilation. The #line directives renumber the lines of the prepro­
cessed file, so that errors generated in later stages of processing refer to
the original source file rather than to the preprocessed file.

The -EP option combines features of the -E and -P options; the file is
preprocessed and copied both to a new file and to the standard output, but
no #line directives are added.

Examples

cc -P main.c

This example creates the preprocessed file main.i from the source file
main.c.

cc -E add.c > preadd.c

This command creates a preprocessed file with inserted #line directives
from the source file add.c. The output is redirected to the file preadd.c.

cc -EP add.c

The command shown here produces the same preprocessed output as the
second example, but without the #line directives. The output appears on
the screen and is copied to a new file.

Preserving Comments (-C)

Option

-C

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling.
The -C (for "comment") option preserves comments during prepro­
cessing. The -C option is valid only when the -E, -P, or -EP option is also
used.

Example

cc -P -c sample.c

Compiling with the cc Command 2-33

Using cc Options

The example produces a listing named sample.i. The listing file contains
the original source file, including comments, with all preprocessor direc­
tives expanded or replaced.

Searching for Include Files (-I, -X)

Options

-I directory
-X

The -I and -X options temporarily override the default search paths for
include files. (The default path is lusrlinclude.)

You can add to the list of directories searched by using the -I (for
"include") option. This option causes the compiler to search the direc­
tory or directories you specify before searching the default path
lusrlinclude. The space between -I and directory is optional. You can add
more than one include directory by giving the -I option more than once in
the cc command. The directories are searched in order of their appearance
in the command line.

The directories are searched only until the specified include file is found.
If the file is not found in the given directories or the standard places, the
compiler prints an error message and stops processing. When this occurs,
you must restart compilation with a corrected directory specification.

You can prevent the C compiler from searching the default paths for
include files by using the -X (for "exclude") option. When cc sees the -X
option, it considers the list of standard places to be empty. This option is
often used with the -I option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions.

Examples

cc -I /include -1/alt/include main.c

In this example, cc looks for the include files requested by main.c in the
following order: first in the directory linclude, then in the directory
lalt/include, and finally in the default directory lusrlinclude.

cc -x -I /alt/include main.c

2-34 C User's Guide

Using cc Options

As shown in this example, the compiler looks for include files only in the
directory fait/include. First the -X option tells cc to consider the list of
standard places empty; then the -I option specifies one directory to be
searched.

Checking for Program Errors

You may encounter several different kinds of error messages when you
compile, link, and run a C program.

Several cc options are available to control the types of warnings gen­
erated at compile time, help with syntax checking, and verify compatibil­
ity between the actual arguments and formal parameters of a function
during the early stages of program development. This section describes
these options.

Understanding Error Messages

Error messages can appear at different stages of program development:

• In the compiling stage, the compiler generates a broad range of
error and warning messages to help you locate errors and potential
problems in your source files.

• During the linking stage, the linker is responsible for generating
error messages.

• During program execution, any error messages you see are run­
time error messages. This category includes messages about core
dumps, segmentation violations, and floating-point exceptions,
which are errors generated by an 8087, 80287, or 80387 copro­
cessor.

Other utilities included in this package, such as the UNIX System V Link
Editor (Id), and the make program-maintenance utility, generate their
own error messages.

When you are compiling and linking using the cc command, you may see
both compiler and linker messages. Compiler messages have numbers
preceded by the letter C, and linker messages have numbers preceded by
the letter L.

You can also distinguish the type of a message by its format. See the
"Error Messages and Exit Codes" appendix in this guide for a descrip­
tion of compiler error-message formats, a list of actual compiler error
messages, and explanations of the circumstances that cause them.

Compiling with the cc Command 2-35

Using cc Options

Compiler error messages are sent to the standard output, which is usually
your terminal. If you are using the C-shell, you can redirect the messages
to a file by using the standard redirection symbols at the end of your com­
mand line:

If you are using the Bourne shell, you can redirect the messages to a file
by using the standard redirection syntax:

cmd> outputfile 2>&1

Example

Assume the following source file is named rm.c:

#include <stdio.h>

main (argc, argv)
int argc;
char argv [] ;

register int i:
char *name;

for (i = 1; i < arg; ++i)
if (unlink(name = argv[i]))

printf("couldn't delete %s ", name);
perror("n);
)

The following C-shell command line redirects error messages to a file
named rm.err:

cc rm.c >& rm.err

In the previous command, only output that ordinarily goes to the console
screen is redirected. The error-message file rm.err contains the following
information:

rm.c (11): error C2065: 'arg' : undefilled
rm.c(12): warning C4047: '=' : different levels of indirection

2-36 C User's Guide

Using cc Options

Based on the errors generated, you can correct rm.e as shown below:

#include <stdio.h>

main (argc, argv)
int argc;
char *argv [] ;

register int i;
char *name;

/* corrects warning C4047 */

for (i = 1; i < argc; ++i) /* corrects error C2065 */
if (unlink(name = argv[i])) (

printf("couldn't delete %s : ", name);
perror ("n) ;
)

Setting the Warning Level (-W, -w)

Option

-W{OII1213}
-w

You can suppress warning messages produced by the compiler by using
the -W (for "warning") option. Compiler warning messages are any mes­
sages beginning with C4; see the "Error Messages and Exit Codes,"
appendix for a full listing. Warnings indicate potential problems (rather
than actual errors) with statements that may not be compiled as you
intend. The -W options affect only source files given on the command
line, they do not apply to object files.

The -WO option turns off warning messages. This option is useful when
you compile programs that deliberately include questionable statements.
The -WO option applies to the remainder of the command line or until the
next -W option on the command line. The -w option has the same effect
as the -WO option.

The -WI option (the default) causes the compiler to display most warning
messages.

Compiling with the cc Command 2-37

Using cc Options

The -W2 option causes the compiler to display an intermediate level of
warning messages. Level 2 warnings mayor may not indicate serious
problems. They include the following:

• Use of functions with no declared return type

• Failure to put return statements in functions with non-void return
types

• Data conversions that would cause loss of data or precision

The -W3 option displays the highest level of warning messages, including
warnings about the uses of non-ANSI features and extended keywords and
about function calls before the appearance of function prototypes in the
program.

Note that the warning messages in the "Error Messages and Exit Codes"
appendix indicate the warning level that must be set (that is, the number
for the appropriate -W option) for the message to appear.

Example

cc -W3 crunch.c print.c

This example enables all possible warning messages when the crunch.c
and print.c source files are compiled.

Checking Syntax (-Zs)

Option

-Zs

The -Zs option causes the compiler to perform only a syntax check on the
source files that follow the option on the command line. This option pro­
vides a quick way to find and correct syntax errors before you try to com­
pile and link a source file.

When you give the -Zs option, the compiler does not generate code or
produce object files, object listings, or executable files. However, the
compiler does display error messages if the source file has syntax errors.
You can specify the -Fs option on the same command line to generate a
source listing that shows these error messages. For more information
about the -Fs option, see the section on "Types of Listings."

2-38 C User's Guide

Using cc Options

Example

cc -Zs test*.c

This command causes the compiler to perform a syntax check on all
source files in the current working directory that begin with test and end
with the default extension (.c). The compiler displays messages for any
errors found.

Generating Function Declarations (-Zg)

Option

-Zg

The -Zg option generates a function declaration for each function defined
in the source file. You can use the -Zg option with multiple source files.
The function declaration includes the function return type and an argu­
ment type list created from the types of the formal parameters of the func­
tion. Any function declarations already encountered are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using shell redirection.

When the -Zg option is used, the source file is not compiled. As a result,
no object file or listing is produced.

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type­
checking. The presence of a declared argument-type list for a function
"turns on" the compiler's type-checking between actual arguments to a
function (given in the function call) and the formal parameters of a func­
tion.

This type-checking can be a helpful feature in writing and debugging C
programs, especially when working with older C programs. Argument
type-checking is a recent addition to the C language, so many existing C
programs will not have argument-type lists. See the C Language Refer­
ence for more information about function declarations and argument-type
lists.

Compiling with the cc Command 2-39

Using cc Options

You can use the -Zg option even if your source program already contain
some function declarations. The compiler accepts more than one OCCllI

rence of a function declaration, as long as the declarations do not conflicl
No conflict occurs when one declaration has an argument-type list ani
another declaration of the same function does not, as long as the retun
types are identical. .

Note

If you use the -Zg option and your program contains formal parame­
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each structure, enumeration, or
union type must have a tag. For example, use the following form:

struct tagA

} A;

Example

cc -Zg file.c > filedecls.h

This command causes the compiler to generate argument-type lists fc
functions defined in file.c. The list of declarations is redirected t
filedecls.h.

Preparing for Debugging (-Zi, -Od)
Options

-Zi Creates object file for use with the source-level
debugger, sdb and CodeView

-Od Disables code optimization to help with debugging

The -Zi option produces an object file containing full symbolic
debugging information for use with the source-level debugger. Thi
object file includes full symbol-table information and line numbers. If th
-Zi option is given with no explicit -0 options, all optimizations invoh
ing code motion and rearrangement are suppressed, although simpl
optimizations are still performed. If any explicit -0 options are given, a
requested optimizations are performed.

2-40 C User's Guid

Using cc Options

The -Od option tells the compiler not to perform most optimizations.
Some peephole optimizations and other simple optimizations are still per­
formed. (Without the -Od option, the default is to optimize.) You may
want to use this option when you plan to use a symbolic debugger with
your object file, since optimization can involve rearrangement of instruc­
tions that make it difficult for you to recognize and correct your code
when debugging. However, turning off optimizations may increase the
size of the code generated to the point where it might not be possible to
link your program.

Other optimization options are discussed in the section on "Optimizing."

Example

cc -zi -Od test.c

This command produces an object file named test.o that contains line
numbers corresponding to the line numbers of test.c. A source-listing file
test. 1st is also created. Limited optimization is performed.

Optimizing

The optimizing capabilities available with the C Compiler can reduce the
storage space or execution time required for a program. This is achieved
by eliminating unnecessary instructions and rearranging code. The com­
piler performs some optimizations by default. You can use the -0 options,
the loop_opt pragma (described in the section on "Loop Optimization "),
the intrinsic pragma, and the function pragma (described in the section
"Generating Intrinsic Functions") to exercise greater control over the
optimizations performed. In addition, you can use the -Gs option or
check_stack pragma to reduce program size and speed up execution.

Controlling Optimization (-0 Options)

Option

-Ostring
#pragma loop opt([onloft])
#pragma intrinsic(functionl [,function2] • ..)
#pragma function(functionl [,function2] . ..)

Compiling with the cc Command 2-41

Using cc Options

The -0 options give you control over the optimization procedures that the
compiler performs. One or more of the letters in string following the -0
let you choose how the compiler performs optimization:

Letter Optimizing Procedure

none Performs optimization equivalent to -Oct

a Relaxes alias-checking

c Eliminates common expressions

d Disables optimization

Expands certain intrinsic functions inline

Enables loop optimization

p Improves consistency of floating-point results

s Favors code size during optimization

t Favors execution speed during optimization

x Maximizes optimization (equivalent to -Oatcli)

The letters can appear in any order; for example, -Oat and -Ota have the
same effect. More than one -0 option can be given; the compiler uses the
last -0 option given if any conflict arises. Each option applies to all
source files following that option on the command line.

The following sections discuss the various optimization options and their
effects.

Relaxing Alias Checking (-Oa)

The a option letter can be used with the I, s, or t option letter to relax the
assumptions the compiler makes about the use of "aliases" in the pro­
gram. Aliases are multiple names (that is, symbolic references) for the
same memory location in a program. Most commonly, aliases occur as a
result of code similar to that shown in the following example:

2-42 C User's Guide

func ()
{

int x, *p;

p = &X; /* now "x" and "*p" refer to the same */
/* memory location */

Using cc Options

Use of the -Oa option can reduce the size of executable files and speed
program execution. Its use is especially recommended when you also
specify the -01 option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use aliases either directly or indirectly.

Note

Exercise caution when using the -Od option, because responsibility
for alias checking is trasferred to the programmer from the com­
piler.

The use of aliases is important only if both names are actually used to
reference the memory location. The following example illustrates the use
of aliases:

Compiling with the cc Command 2-43

Using cc Options

func ()
{

int x, *Pi

p = &x;

/* ... expressions involving only *p */

Since all access to the memory location labeled x is through the pointer p,
x has no significance in the function. To illustrate, fune could be rewritten
as the following pair of functions:

func1 ()
{

int Xi

func2(&x) ;

func2 (p)

int *p;
{

/* ... expressions involving *p */

In this equivalent form, the alias created in funcI is insignificant, since
the memory location is not referenced at all and fune2 does not use
aliases since x is not even in the scope of the function. The -Oa option
can be safely specified in compiling either of these equivalent forms.

In addition to the obvious cases discussed above, aliases can be created
through the use of pointers in other, more subtle ways. 1\vo such cases
involving the use of pointers as function arguments are illustrated in the
following example:

2-44 C User's Guide

int X;

func(p)

int *p;
{

/* ... expressions involving *p and x */

Using cc Options

In this example, x is a communal variable, so the function can be called
with Junc(&x). The -Oa option can be used safely only if it is known that
June is never invoked with the address of x as an argument.

func(pl, p2)

int *pl, *p2;
{

/* ... expressions involving *pl and *p2 */

In this example, the function may be invoked with the same value for
both arguments (that is,fune(p,p) or June(&x,&x). Thus, the -Oa option
can be safely specified only if it is known that the function is always
called with distinct values for the two arguments.

One use of aliases occurs so frequently that a special provision has been
made for it. When the compiler encounters a call to a function with
address-type arguments, it always assumes that all variables whose
addresses are passed to the function are modified. If such function calls
appear in a program, the -Oa option can be specified safely even though
the function call results in an alias for each variable whose address is
passed. The following example illustrates how the compiler handles this
case:

Compiling with the cc Command 2-45

Using cc Options

func1 ()
{

int x, y, a, bi

x = a + b;

func2(&a);

y = a + b;

As shown, when the compiler encounters the function call Junc2(&a), it
assumes that the function modifies a, even if the -Oa option has been
specified. The compiler generates code to evaluate each instance of the
expression a + b, rather than eliminating a common subexpression
incorrectly.

Although you should convert programs that use aliases if you plan to
compile them with the -Oa option, it is helpful to know the units of a pro­
gram where the optimizations affected by the use of -Oa are applied. This
information indicates where the uses of aliases are most likely to cause
incorrect optimizations if -Oa is specified. The following list describes
the program units where such optimizations are performed:

• All of the C optimizations, except for loop optimizations, that may
be affected by the incorrect use of -Oa are applied at the level of
basic blocks. In the C Compiler, the -Oa option can generally be
used even if aliases are employed, provided no memory location is
referenced by more than one name within any basic block. (A
"basic block" is a contiguous sequence of statements, with a
unique entry point and exit point and no branching in between. In
C programs, basic blocks most often appear as the clauses of if
statements, switch statements, loop bodies, or function bodies,
although they may also occur as sequences of statements delimited
by user labels.)

• Loop optimizations are applied at the level of whole loop bodies.
Thus, if loop optimization is enabled, -Oa can generally be used
even if aliases are employed, provided that no memory location is
referenced by more than one name within any basic block or loop
body.

2-46 C User's Guide

Using cc Options

Disabling Optimization (·Od)

The ·Od option turns off most optimizations. This is useful in the early
stages of program development to avoid optimizing code that will later be
changed. Because optimization may involve rearrangement of instruc­
tions, you may also want to specify the ·Od option when you use a
debugger with your program or when you want to examine an object-file
listing. If you optimize before debugging, it can be difficult to recognize
and correct your code. However, note that turning off or restricting optim­
ization of a program usually increases the size of the generated code. If
your program contains a module that is close to the 64K limit on com­
piled code, turning off optimization may cause the module to exceed the
limit.

Generating Intrinsic Functions (·Oi)

The -Oi option tells the compiler to generate intrinsic functions instead of
function calls for certain functions. Intrinsic functions may be in-line
functions, may use special argument-passing conventions, or (in some
cases) may do nothing. Programs that use intrinsic functions are faster
because they do not include the overhead associated with function calls.
However, they may be larger because of the additional code that is gen­
erated.

The following functions have intrinsic forms:

• memset, memcpy, and memcmp

• strset, strcpy, strcmp, and strcat

• outp

• Jotl, Jotr, _lrotl, and _lrotr

• min, max, and abs

Note

Intrinsic versions of the memset, memcpy, and memcmp functions
in compact- and large-model programs cannot handle huge arrays or
huge pointers. To use huge arrays or huge pointers with these func­
tions, you must compile your program with the huge memory model·
(that is, using the ·Mh option on the command line).

Compiling with the cc Command 2-47

Using cc Options

You can use the intrinsic pragma to generate intrinsic functions only for
selected functions. This pragma has the following format:

#pragma intrinsic (Junctionl [function2] •••)

The intrinsic pragma affects the specified functions from the point where
the pragma appears until either the end of the source file or the next func­
tion pragma specifying any of the same functions. The function pragma
has the following format:

#pragma function (Junctionl [function2] •••)

Note that you can also use the function pragma selectively to generate
function calls instead of intrinsic functions when you compile a program
with the -Oi option.

Loop Optimization (-01)

The -01 option tells the compiler to perform loop optimizations. For best
performance, the -01 option should be specified along with the a option
letter (-Oal), since the compiler can detect more loop optimizations when
it relaxes its assumptions about the use of aliases.

You can use the loop opt pragma to tum loop optimization on or off for
selected functions. when you want to tum off loop optimization, put the
following line before the code on which you don't want to perform loop
optimization:

#pragma loop_opt (off)

Note that the preceding line disables loop optimization for all code that
follows it in the source file, not just the routines on the same line. To rein­
state loop optimization, insert the following line:

#pragma loop_opt (on)

If no argument is given to the loop_opt pragma, loop optimization reverts
to the behavior specified on the command line: enabled if the -Ox or -01
option is in effect, and disabled otherwise. The interaction of the loop _opt
pragma with the -01 and -Ox options is explained in greater detail in
Table 2.5.

2-48 C User's Guide

Using cc Options

Table 2.S

Using the loop_opt Pragma

Compiled with
Syntax -Ox or -OI? Action

#pragma loop _ optO no Turns off optimiza-
tion for loops that
follow

#pragma loop _ optO yes Turns on optimiza-
tion for loops that
follow

#pragma loop_opt (on) yes or no Turns on optimiza-
tion for loops that
follow

#pragma loop_opt (oft) yes or no Turns off optimiza-
tion for loops that
follow

Achieving Consistent Floating-Point Results (-Op)

The -Op option is useful when floating-point results must be consistent
within a program. This option changes the way in which the program han­
dles floating-point values.

Ordinarily the compiler stores each floating-point value in an SO-bit regis­
ter. In subsequent references to that value, the compiler reads the value
from the register. When the final value is written to memory, it is trun­
cated, since floating-point types are allocated fewer than 80 bits of
storage (32 bits for the float type and 64 bits for the double type). Thus,
the value stored in the register may actually be more precise than the
same value stored in a floating-point variable. Since the value is truncated
each time it is written to memory, over the course of the program the
value stored in the machine register may become quite different from the
value that is written to memory.

If you use the -Op option, when floating-point values are referenced, the
compiler reloads them from floating-point variables rather than from
registers. Using -Op gives less precise results than using registers, and it
may increase the size of the generated code. However, it gives you more
control over the truncation (and hence the consistency) of floating-point
values.

Compiling with the cc Command 2-49

Using cc Options

Optimizing for Speed and Code Size (-Ot, -Os)

When you do not give a -0 option to the cc command, it automatically
uses -Ot, meaning that program-execution speed is favored in the optimi­
zation. Wherever the compiler has a choice between producing smaller
(but perhaps slower) and larger (but perhaps faster) code, the compiler
generates faster code. For example, when the -Ot option is in effect, the
compiler generates intrinsic functions to perform shift operations on long
operands.

To cause the compiler to favor smaller code size instead, use the -Os
option. For example, when the -Os option is in effect, the compiler uses
function calls to perform shift operations on long operands.

Producing Maximum Optimization (-Ox)

The -Ox option is a shorthand way to combine optimizing options to pro­
duce the fastest possible program. Its effect is the same as using the fol­
lowing options on the same command line:

-Oatcli

That is, the -Ox option relaxes alias checking, generates all intrinsics for
the functions listed in the section "Generating Intrinsic Functions," per­
forms loop optimizations, favors execution time over code size, and
removes stack probes. Note that the interactions between the -Ox option
and the loop_opt pragma are the same as those described in Table 2.5. For
more information about stack probes and ways of controlling their use,
see the following section, "Removing Stack Probes."

Examples

cc -Oal file.c

This command tells the compiler to perform loop optimizations and relax
alias-checking when it compiles file.c. The compiler favors program
speed over program size, since the -Ot option is also specified by default.

cc -c -Os file.c

2-50 C User's Guide

Using cc Options

This command favors code size over execution speed whenfile.c is com­
piled.

cc -Od *.c

This command compiles and links all C source files with the default
extension (.c) in the current directory and disables optimization. This
command is most useful during the early stages of program development,
since it improves compilation speed.

Removing Stack Probes (-Gs)

Options

-Gs
#pragma check _stack([onloft])

You can reduce the size of a program and speed up execution slightly by
removing stack probes. You can do this either with the -Gs option or with
the cheek_stack pragma.

A "stack probe" is a short routine called on entry to a function to verify
that there is enough room in the program stack to allocate local variables
required by the function. The stack probe routine is called at every func­
tion entry point. Ordinarily, the stack probe routine generates a stack
overflow message when it determines that the required stack space is not
available. When stack-checking is turned off, the stack probe routine is
not called, and stack overflow can occur without being diagnosed (that is,
no error message is printed).

Use the -Gs option when you want to tum off stack-checking for an entire
module if you know that the program does not exceed the available stack
space. For example, stack probes may not be needed for programs that
make very few function calls, or that have only modest local variable
requirements. In the absence of the -Gs option, stack-checking is on.

Use the check stack pragma when you want to tum stack-checking on or
off only for selected routines, leaving the default (as determined by the
presence or absence of the -Gs option) for the rest. When you want to tum
off stack-checking, put the following line before the definition of the
function you don't want to check:

#pragma check stack (off)

Compiling with the cc Command 2-51

Using cc Options

Note that the preceding line disables stack-checking for all routines that
follow it in the source file, not just the routines on the same line. To rein­
state stack-checking, insert the following line:

#pragma check_stack (on)

Note

For earlier versions of C, the check_stack pragma had a different
format: check stack+ to enable stack-checking and check stack­
to disable stack-checking. Although the C Compiler still accepts
this format, its use is discouraged, since it may not be supported in
future versions.

If no argument is given for the check_stack pragma, stack-checking
reverts to the behavior specified on the command line: disabled if the -Gs
option is given, or enabled otherwise. The interaction of the check_stack
pragma with the -Gs option is explained in greater detail in Table 2.6.

Table 2.6

Using the check_stack Pragma

Syntax

#pragma check_stackO

#pragma check_stackO

#pragma check_stack(on)

#pragma check_stack(oft)

2-52

Compiled with
-Gs Option?

yes

no

yes or no

yes or no

Action

Thrns off stack­
checking for rou­
tines that follow

Thrns on stack­
checking for rou­
tines that follow

Thrns on stack­
checking for rou­
tines that follow

Thrns off stack­
checking for rou­
tines that follow

C User's Guide

Using cc Options

Note

The -Gs option should be used with care. Although it can make pro­
grams smaller and faster, it may mean that the program will not be
able to detect certain execution errors.

Example

cc -Oals -Gs file.c

This example optimizes the file file.c by removing stack probes with the
-Gs option. The letters specified with the -0 option tell the compiler to
relax alias-checking (a), perform loop optimization (I), and favor code
size over program speed (s). If you want stack-checking for only a few
functions in file.c, you can use the check_stack pragma around the
definitions of functions you want to check. Similarly, if you want to per­
form loop optimization on only a few functions infile.c, you can use the
loop _opt pragma around the definitions of functions on which you want
to perform loop optimization.

EnablinglDisabling Language Extensions (-Ze,
-Za)

Option

-Ze Enables language extensions (default)
-Za Disables language extensions (strict ansi specifications)

The C Compiler is moving to support the ANSI C standard. In addition, it
offers a number of features beyond those specified in the ANSI C standard.
These additional features are enabled when the -Ze (default) option is in
effect and disabled when the -Za option is in effect. They include the fol­
lowing:

• The cdecl, far, fortran, huge, near, and pascal keywords

• Use of casts to produce values, as in this example:

int *p;
((long *)p) ++;

Compiling with the cc Command 2-53

Using cc Options

The preceding example could be rewritten to conform with ANSI C
as shown here:

p = lint *) ({char *)p + sizeof{long»;

• Redefinitions of extern items as static, as follows:

extern int fool);
static int foo ()
{}

• Use of trailing commas (,) without ellipses (, •••) in function
declarations to indicate variable-length argument lists, such as:

int printf{char *,);

• Benign typedef redefinitions within the same scope, like this:

typedef int INT;
typedef int INT;

• Use of mixed character and string constants in an initializer, for
instance:

chararr[5] = {'a', 'b', "cde"};

• Use of bit fields with base types other than unsigned int or signed
int

Use the -Za option if you will be porting your program to other environ­
ments. The -Za option tells the compiler to treat extended keywords as
simple identifiers and disable the other extensions listed previously.

Packing Structure Members (-Zp)

Option

-Zp[{11214}]
#pragma pack([{11214}])

When storage is allocated for structures, structure members are ordinarily
stored as follows:

• Items of type char or unsigned char, or arrays containing items of
these types, are byte-aligned.

2-54 C User's Guide

Using cc Options

• Structures are word-aligned; structures of odd size are padded to
an even number of bytes.

• All other types of structure members are word-aligned.

To conserve space, or to conform to existing data structures, you may
want to store structures more or less compactly. The -Zp option and the
pack pragma control how structure data are "packed" into memory.

Use the -Zp option when you want to specify the same packing for all
structures in a module. When you give the -Zp[n] option, where n is 1,2,
or 4, each structure member after the first is stored on n-byte boundaries,
depending on the option you choose. If you use the -Zp option without an
argument, structure members are packed on I-byte boundaries.

On some processors, the -Zp option may result in slower program execu­
tion because of the time required to unpack structure members when they
are accessed. For example, on an 8086 processor, this option can reduce
efficiency if members with int or long type are packed in such a way that
they begin on odd-byte boundaries.

Use the pack pragma when you want to specify packing other than that
specified on the command line for particular structures. Give the pack(n)
pragma, where n is 1, 2, or 4, before structures that you want to pack
differently. To reinstate the packing given on the command line, give the
packO pragma with no arguments.

Table 2.7 shows the interaction of the -Zp option with the pack pragma.

Table 2.7

Using the pack Pragma

Syntax

#pragma packO

#pragma packO

Compiled with
-Zp Option?

yes

no

Compiling with the cc Command

Action

Reverts to packing
specified on the
command line for
structures that fol­
low

Reverts to default
packing for struc­
tures that follow

2-55

Using cc Options

#pragma pack(n)

Example

cc -Zp prog.c

yes or no Packs the following
structures to the
given byte boundary
until changed or
disabled

This command causes all structures in the program prog.c to be stored
without extra space for alignment of members on int boundaries.

Setting the Stack Size (-F)

Option

-F hexnum

The -F option sets the size of the program stack. A space must separate
the -F and hexnum. (This option applies only to the 286 compiler.)

The hexnum is a hexadecimal value representing the stack size in bytes.
The value must be less than OxFFFF hexadecimal (65,535 decimal).

If you do not specify this option, the start-up routine in the standard C
library sets the default stack size to 2K.

If you get a stack-overflow message, you may need to increase the size of
the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

The -F option is a linking option that affects executable files only; it does
not have any effect on source or object files.

Example

cc -F coo *.0

This example sets the stack size to COO hexadecimal (3K decimal) for the
program created by linking all of the object files in the current working
directory.

2-56 C User's Guide

Using cc Options

Restricting the Length of External Names (-nl)

Option

-nl number

The cc command allows you to restrict the length of external (public)
names by using the -nl option. The number is an integer specifying the
maximum number of significant characters in external names. The space
between -nl and number is optional.

When you use the -nl option, the compiler considers only the first number
characters of external names used in the program. The program may con­
tain external names longer than number characters, but the extra charac­
ters are simply ignored.

The -nl option is typically used to conserve space or to aid in creating
portable programs. The C Compiler imposes no restrictions on the length
of external names (although it uses only the first 31 characters), but other
compilers or linkers may produce errors when they encounter names
longer than a predetermined limit.

Labeling the Object File (-V)

Option

-v string

Use the -V (for "version") option to embed a text string in an object file.
The string must be enclosed in double quotation marks (" ") if it contains
white-space characters or embedded double quotation marks. A backslash
(\) must precede any embedded double quotation marks.

A typical use of the -V option is to label an object file with a version
number or copyright notice.

Example

cc -v "C Compiler Version 5.1" main.c

This command places the following string in the object file main.a:

C Compiler Version 5.1

Compiling with the cc Command 2-57

Using cc Options

Changing the Default char Type (-J)

Option

-J

In C, the char type is signed by default, so if a char value is widened to
int type, the result is sign-extended. You can change this default to
unsigned with the -J option, causing the char type to be zero-extended
when widened to int type. However, if a char value is explicitly declared
signed, the -J option does not affect it, and the value is sign-extended
when widened to int type.

When you specify -J, the compiler automatically defines the identifier
_CHAR_UNSIGNED.

Controlling the Calling Convention (-GC)

Options

-Gc
fortran
pascal
cdecl

The -Gc option and the fortran, pascal, and cdecl keywords allow you to
control the function-calling and naming conventions so that your C pro­
grams can call and be called by functions that are written in FORTRAN
and Pascal.

Because C, unlike other languages such as Pascal and FORTRAN, allows
you to write functions that take variable numbers of arguments, it must
handle function calls differently. Languages such as Pascal and FOR­
TRAN normally push actual parameters to a function in left-to-right
order, with the last argument in the list being the last one pushed on the
stack. In contrast, C functions do not always know the number of actual
parameters, so they must push their arguments from right to left, with the
first argument in the list being the last one pushed.

Additionally, the calling function must remove the arguments from the
stack in C (rather than having the called function do it, as in Pascal and
FORTRAN). If the code for removing arguments is in the called function
(as in Pascal and FORTRAN), it appears only once; if it is in the calling

2-58 C User's Guide

Using cc Options

function (as in C), it appears every time there is a function call. Since
function calls are more numerous than individual functions, the
Pascal/FORTRAN method is slightly smaller and more efficient.

The C Compiler has the ability to generate the Pascal/FORTRAN calling
convention in one of several ways. The first is through the use of the pas­
cal and fortran keywords. When these keywords are applied to functions,
or to pointers to functions, they indicate a corresponding Pascal or FOR­
TRAN function. Therefore, the correct calling convention must be used.
In the following example, sort is declared as a function using the alterna­
tive calling convention:

short pascal sort (char *, char *);

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func­
tions only.

The second method for generating the Pascal/FORTRAN calling conven­
tion is to use the -Gc option. If you do this, the entire module is compiled
using the alternative calling convention. You might use this method to
make it possible to call all the functions in a C module from another lan­
guage, or to gain the performance and size improvement provided by this
calling convention. When you use -Gc to compile a module, the compiler
assumes that all functions called from that module use the
Pascal/FORTRAN calling convention, even if the functions are defined
outside that module. Thus, using -Gc would normally mean that you can­
not call or define functions that take variable numbers of parameters, and
that you cannot call functions such as the C library functions that use the
C calling sequence.

To overcome these restrictions, the cdecl keyword has been added to C.
This keyword is the "inverse" of the fortran and pascal keywords. When
applied to a function or function pointer, it indicates that the associated
function is to be called using the normal C calling convention. This
allows you to write C programs which take advantage of the more
efficient calling convention while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

If you compile with the ·Gc option, either you must declare the main
function in the source program with the cdecl keyword, or you must
change the start-up routine so that it uses the correct naming and calling
conventions when calling main.

Run-time library functions all use the C calling convention. Therefore,
care must be taken to declare them cdecl functions.

Compiling with the cc Command 2-59

Using cc Options

Use of the pascal and fortran keywords, and the -Gc option also affects
the naming convention for the associated item or items; the name is con­
verted to uppercase (capital letters), and the leading underscore that C
normally prefixes is not added. The pascal and fortran keywords can be
applied to data items and pointers, as well as functions. When applied to
data items or pointers, these keywords force the naming convention
described above for that item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge
keywords, are disabled by use of the -Za option. If this option is given,
these names are treated as ordinary identifiers rather than keywords.

Examples

int cdecl var_print(char*, ..•);

In this example, var yrint is allowed to have a variable number of argu­
ments by declaring it as a function using the normal right-to-Ieft C func­
tion calling convention and naming conventions. The cdecl keyword
overrides the left-to-right calling sequence set by use of the -Gc option
when compiling the source file in which this declaration appears. If this
file is compiled without the -Gc option, cdecl has no effect since it is the
same as the default C convention.

float *pascal nroot(nurnber, root)

This instruction declares nroot to be a function returning a pointer to a
value of type float. The function nroot uses the default calling sequence
(left-to-right) and naming conventions for FORTRAN and Pascal pro­
grams.

long pascal index

This example simply changes the naming convention for the data item
index: it is included in the object file in all capital letters and without a
leading underscore.

Compiling Programs for DOS Environment (-dos,
-FP)

The C compiler is capable of compiling programs that will execute in the
DOS environment.

2-60 C User's Guide

Using cc Options

The -dos option instructs the compiler to use the set of libraries in
fusrflibfdos and to use a different linker. Note that programs compiled
with -dos will not run in the UNIX System V environment. Also note that
many UNIX System V system calls are not supported in DOS.

There are a variety of -FP options that can be used along with -dos to
control floating-point operations. For more information on -FP and on
DOS cross-development in general, see "The DOS-OS/2 Development
Guide" in the Developer's Guide, and the chapter "C Language Portabil­
ity" in this guide.

Displaying Compiler Passes (-d, -z)

The cc command is actually a driver program which executes a series of
compiler passes, perhaps an assembler pass, and a linker. It collects the
various options and files on its command line and distributes them to the
proper pass or to the linker. The C compiler is conceptually a four-pass
compiler. The function of the various compiler passes is outlined below:

Pass 0
Pass zero of the compiler is comprised of the preprocessor and parser. The
preprocessor handles file inclusion, macro expansion, and text substitu­
tion, and allows you to define constructs for conditional compilation. The
parser performs two functions: (1) building a context-free grammar tree to
pass to Pass 1; and (2) constructing a symbol table.

Pass 1
Pass two generates code. It walks the grammar tree constructed by pass
0, applies semantic rules to each syntactic construct, and produces the
binary code indicated by the semantic rules.

Pass 2
The third pass provides post-generation optimization. It analyzes the
code generated by pass 1 and applies optimization rules to alter the code
for better performance (such as elimination of redundant code, rearrange­
ment, etc.). It creates the object code and outputs listing files (if
requested).

The -d option displays the various passes and their arguments before they
are executed. The -z option shows the passes but does not execute them.

Compiling with the cc Command 2-61

Using cc Options

Producing OMF Object and Executable Files
(-xenix)

By default, cc produces object and executable files using the COFF for­
mat, which is the same format used by the AT&T development system.
The -xenix option causes cc to produce object and executable files that
use the OMF format, which is compatible with the XENIX System V de­
velopment system tools. When the -xenix option is used with any of the
options that produce assembly-language output, the warning message nor­
mally issued (masm directives) is suppressed. Note that UNIX System V
can execute programs that use either COFF or OMF formats.

Miscellaneous Pragmas

The following pragmas allow you to embed comments in the object or
executable file or to send a string to the standard output:

Pragma

comment

Message

Action

Places a comment record in the object file.

Sends a message string to the standard output.

The comment pragma

The comment pragma allows you to place a comment record in an object
file or executable file. The pragma has the following syntax:

*pragma comment (commenttype [, commentstring])

The required parameter commenttype specifies the type of comment
record. The optional commentstring parameter is a string literal that pro­
vides additional information for some comment types. The following
table lists and describes the types of comment records accepted by the
comment pragma.

2-62 C User's Guide

Using cc Options

Record

compiler

exestr

lib

user

Description

Places the name and version number of the com­
piler into the object file. This comment record is
ignored by the linker. If you supply a comment­
string parameter for this record type, the compiler
generates a warning message.

Places the string specified in commentstring into
the object file. At link time, this string is placed
into the executable file. The string is not loaded
into memory when the executable file is loaded;
however, it can be found with a program that finds
printable strings in files. One use for this
comment-record type is to embed a version
number or similar information in an executable
file.

Places a library-search record into the object file.
This comment type must be accompanied by a
commentstring containing the name (possibly
including the path) of the library that you want the
linker to search for. Since the library name pre­
cedes the default library-search records in the
object file, the linker searches for this library just
as if you had named it on the command line. You
can place multiple library-search records in the
same source file. Each record appears in the
object file in the same order it is encountered in
the source file.

Places a general comment into the object file. The
commentstring parameter contains the text of the
comment. This comment record is ignored by the
linker.

The following examples illustrate some of the uses of the comment
pragma. The following pragma causes the linker to search for the library
mylibry.a. The linker searches first in the current working directory and
then in the path specified in the Lm environment variable:

*pragma comment (lib,mylibry)

The following pragma causes the compiler to place the name and version
number of the compiler in the object file:

Compiling with the cc Command 2-63

Using cc Options

#pragma comment (compiler)

For comments that take a commentstring parameter, you can use a macro
in any place where you would use a string literal, provided that the macro
expands to a string literal. You can also concatenate any combination of
string literals and macros that expand to string literals. For example, the
following statement is acceptable:

#pragma comment(user, "Corrpiled on " DATE "at 11

The message Pragma

The message pragma sends a string to the standard output. The pragma
has the following syntax:

#pragma message (messagestring)

The messagestring parameter is a string literal that contains the message
that you wish to send to the standard output. This pragma does not cause
termination of the compilation. A typical use of message is to display in­
formational messages at compile time.

The following code fragment uses message to display a message during
compilation:

#if M 186MM
-#pragma message ("Medium memory model")

#endif

The messagestring parameter can be a macro that expands to a string
literal, and you can concatenate such macros with string literals in any
combination. For example, the following statement displays the name of
the file being compiled and the date and time when the file was last
modified:

#pragma message ("Carpiling " _ ylLE __ ". Last modified:" TIMESTAMP __)

2-64 C User's Guide

Using cc Options

Predefined Macro Names

The C Compiler supports all of the predefined macro names found in the
ANSI proposed standard for the C language. These provide a convenient
means for obtaining the date and time of the compilation and for indicat­
ing whether the compiler purports to conform fully to the proposed ANSI
standard. The __ TIMESTAMP __ identifier offers a capability not
found in the proposed ANSI standard. The following list explains each of
these names:

Macro Name Description

DATE The date of compilation, expressed as a
string literal in the form: Mmm [d]d yyyy.

FILE The file name, expressed as a string literal.

__ LINE _ _ The program line number where the
__ LINE_ _ macro was used.

__ STDC_ _ The integer constant O. If equal to 1, this
macro indicates full conformity with the
ANSI proposed standard for the C program­
ming language.

__ TIME _ _ The time of compilation, expressed as a
string literal in the form: hh:mm:ss.

TIMESTAMP The date and time of the last modification of -- --
the source file, expressed as a string literal
in the form:

Ddd Mmm [d]d hh:mm:ss yyyy

The TIMESTAMP macro name is not ANSI standard. Note that
its time and date indicate 'the last modification of the source file, whereas

DATE and TIME indicate the time of compilation. You
can-find additional iriformation- about the ANSI-compatible predefined
identifiers __ DATE __ and __ TIME_ _ in the C Language Refer­
ence.

Compiling with the cc Command 2-65

Using cc Options

The following code fragment uses three predefined macros with the
#message pragma to display informational messages at the time of com­
pilation.

4fpragma message ("Compilation date:" DATE __)
4fpragma message ("Compiling:" FILE)
4fpragma message ("Last modification: "=_TIMESTAMP __)

Here is the output you might see from the preceding code fragment:

2-66

Compilation date: Dec 2 1987
Compiling: sample.c.
Last modification: Mon Dec 1 12:02:51 1987

C User's Guide

Chapter 3

Linking with
the cc Command

Introduction 3-1

The Default Linking Process 3-2

Passing Linker Infonnation: The -link Option 3-3
Specifying Libraries 3-3
Specifying Linker Options 3-5

Introduction

Introduction
Since the cc command controls linking as well as compiling, you can
specify linker options and libraries other than the default combined
library to be linked with your object files on the cc command line.

Linking with the cc Command 3-1

The Default Linking Process

The Default Linking Process
When the cc command compiles a source file, it encodes the name of the
appropriate library in the object file. The library name embedded in the
library file is determined by the memory-model (-M) option you give on
the cc command line.

If you use the default memory-model option (-Ms), cc encodes the name
of the standard library that corresponds to the defaults.

When an object file is linked, the linker looks for libraries matching the
names encoded in the object file.

The result is that you do not ordinarily need to give library names on the
cc command line. For descriptions of the situations that require you to
specify libraries on the cc command line, see the "Specifying Libraries"
section in this chapter.

The linker used is /bin/ld, which by default produces object files in the
COFF format. If the object file uses the OMF format, you have two
choices:

1. Use cvtomf to convert the object file to COFF format. This occurs
automatically if you do not use the -xenix option.

2. Direct the linker, /bin/ld, to link the file and produce an executable
file using the x.out format. This occurs automatically if you use the
-xenix option.

The remainder of this section applies only to the XENIX System V linker,
Id(CP). The AT&T linker is also described on the manual page, Id(CP).

3-2 C User's Guide

Passing Linker Information: The -link Option

Passing Linker Information: The
-link Option
To pass linker options or nondefault library names to the linker, give the
following options on the cc command line after any source- and object­
file names and cc options:

-link

Use the rest of the command line to specify linker options, libraries, and
library search paths. Note that library names can also be specified with
source- and object-file names before the -link option on the command
line, as long as the library names have the .a extension. These library
names are searched before library names specified after the -link option.
Refer to the following sections for more information:

• "Specifying Libraries," to learn about specifying libraries and
library search paths

• "Specifying Linker Options,' , for descriptions of the linker
options that apply to C.

If you use the -link option with the cc command, it must be the last option
on the command line.

Specifying Libraries

To link object files with libraries other than the default library, give the
names of the nondefault libraries on the cc command line. Library names
appearing before -link must have the .a extension; library names appear­
ing after -link may have blank extensions or no extensions.

Since the object file already contains the names of the correct combined
library, you do not need to specify libraries unless you want to do any of
the following:

Linking with the cc Command 3-3

Passing Linker Information: The -link Option

• Link with additional libraries

• Look for libraries in different locations

• Override the use of the default library

Linking with Additional Libraries

If you specify additional libraries to cc, the linker searches the libraries
you specify before it searches the default library to resolve external refer­
ences in the object files. It searches the libraries you specify in their order
of appearance on the command line.

If a library name includes a path specification, the linker searches only
that path for the library.

If you specify only a library name (without a path specification), the
linker searches in the following locations to find the given library file:

• The current working directory

• Any path specifications that you give, in their order of appearance
on the command line

• The default location !lib or !lib/386

If a library name without an extension appears after the -link option, the
linker automatically supplies the .a extension. If you want to link a library
file with an extension other than .a, you must specify the complete library
name.

Looking in Different Locations for Libraries

You can tell the linker to look in different locations for libraries by giving
a path specification on the cc command line.

The linker looks for the default libraries in the same order as it looks for
libraries given on the command line.

3-4 C User's Guide

Passing Linker Information: The -link Option

Specifying Linker Options

When you use the cc command to invoke the linker, any linker options
you specify (other than those supported by cc options such as -F and -Fm)
must appear after the -link option on the command line. All options begin
with the dash (-).

The following sections outline the rules for specifying linker options on
the cc command line.

Abbreviations

Since linker options are named according to their functions, some of these
options are quite long. You can abbreviate the options to save space and
effort. Be sure that your abbreviation is unique, so that the linker can
determine which option you want. The minimum legal abbreviation for
each option is indicated in the syntax of the option.

Abbreviations must begin with the first letter of the option and must be
continuous through the last letter typed. No gaps or transpositions are
allowed.

Numerical Arguments

Some linker options take numerical arguments. A numerical argument
can be any of the following:

• A decimal number from 0 to 65,535

• An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with O. For example, the number 10 is a decimal
number, but the number 010 is an octal number, equivalent to 8 in
decimal

• A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox or ox. For example, Ox10 is a
hexadecimal number, equivalent to 16 in decimal

Linker Options

This section summarizes some of the linker options that can be used with
C programs. Note that this section does not describe all available linker
options. For a complete list, refer to the Id(CP) manual page in the
Programmer's Reference.

Linking with the cc Command 3-5

Passing Linker Information: The -link Option

The following linker option is most commonly used with C programs:

-SE[GMENTS]:number
Controls the number of segments that the linker allows a program to
have. The default is 128, but you can set number to any value
(decimal, octal, or hexadecimal) in the range 1-1024 (decimal).

For each segment, the linker must allocate some space to keep track
of segment information. When you set the segment limit higher than
128, the linker allocates more space for segment information. For
programs with fewer than 128 segments, you can keep the storage
requirements of the linker at the lowest level possible by setting
number to reflect the actual number of segments in the program. The
linker displays an error message if the number of segments allocated
is too high for the amount of memory the linker has available.

The following linker options can be used with C programs, but they per­
form the same actions as cc options. Therefore, you do not need to use
them unless you are compiling and linking in separate steps.

-M[AP][:number]
Creates a map file. This option is equivalent to using the -Fm option
with the cc command, except that you can give a number argument
with the -M option. The number argument is any positive integer
(decimal, octal, or hexadecimal) up to 65,535 (decimal) specifying
how many symbols are sorted in the map listing. If no number argu­
ment is given, a maximum of 2048 symbols is sorted. (In practice,
the number of sorted symbols is limited by the amount of free heap
space.) If a number argument is given, the alphabetical list of sym­
bols does not appear in the map file.

-LI[NENUMBERS]
Creates a map file and includes the line numbers and associated
addresses of the source program. This option is equivalent to using
the -Zd option with the cc command. For more information about the
-Zd option, see the "Compiling with the cc Command" chapter of
this guide.

-ST[ACK]:number

3-6

Specifies the size of the stack for your program, where number is any
positive value (decimal, octal, or hexadecimal) up to 65,535
(decimal) representing the size, in bytes, of the stack. This option is
equivalent to using the -F option of the cc command. For more infor­
mation about the -F option, see the "Compiling with the cc Com­
mand" chapter of this guide.

C User's Guide

Chapter 4

Running C Programs
on System V

Introduction 4-1

Passing Command-Line Data to a Program 4-2

Introduction

Introduction
After compiling and linking a program with the C Compiler and linking
with the linker, you will have an executable file that can be run from the
shell prompt.

System V uses the PATH environment variable to find executable files.
You can execute your program from any directory, as long as the execut­
able program file is in one of the directories on the path set in the PATH
environment variable.

Your program can also be executed by other programs, and you can write
it so that it will be capable of executing other programs. The exec and
system routines provided in the run-time library allow your program to
execute other programs. See the C Library Guide for a description of
these routines.

System V has several other unique capabilities that your program can use
if you write the program to take advantage of them. Among these capabil­
ities are the following:

• Receiving arguments from the command line

• Reading information from the environment

• Sending a message to the shell by returning an exit code

This chapter explains how to write programs to take advantage of these
features, and how to use them once your program is completed.

Running C Programs on System V 4-1

Passing Command-Line Data to a Program

Passing Command-Line Data to a
Program
Your C program can access data from a command line or from the
environment. You can use the Bourne shell (or C-shell) commands to
place data in the environment table. Command-line data are arguments
that appear on the same line as the program name when you execute the
program.

To pass data to your program on the command line, give one or more
arguments after the program name when you execute the program. Each
argument must be separated from the arguments around it by one or more
spaces or tab characters, and may be enclosed in quotation marks (" "). If
you want to give a single argument that includes spaces or tab characters,
enclose the argument in quotation marks. For example, if your C program
is called try, you might give it the following command line:

try 42 "de f" 16

In this case, the program will be executed and three arguments will be
passed: 42, deJ, and 16.

For a C program to read the data from the command line, the program
should declare two variables as arguments to the main function. These
variables and their contents are as follows:

Variable Contents

argc Number of arguments passed

argv Array of strings containing arguments

By declaring these variables as arguments to main, you make them avail­
able as local variables in the main function. The following example illus­
trates how to declare these arguments:

main (argc, argYl
int argc;
char *argv[];

The number of arguments appearing on the command line is passed as the
integer variable argc, and the command line is passed to the program as
the array of strings indicated by argv.

4-2 C User's Guide

Passing Command-Line Data to a Program

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in argv, at
argv [0]. Since a program name must be given to run the program, the
integer value of argc is always at least 1. Therefore, if you pass two argu­
ments to your program, argc will have a value of 3 (two arguments and
the program name).

The first argument following the program name is stored at argv [1], the
second is stored at argv [2], and so on, to the last argument. There is a
third argument passed to the main function: envp, a pointer to the
environment table. This argument is an extension provided by the C Com­
piler to support code ported from UNIX System V and other UNIX-like
systems. When specified, it follows argv and is declared as follows:

char *envp [];

Although you can use this pointer to access the value of environment set­
tings, this usage is nonstandard and not recommended. The putenv and
getenv routines from the C run-time library accomplish the same task,
and are easier and safer to use. Using the putenv routine may change the
location of the environment table in memory, depending on memory
requirements. Therefore, the value given to envp at the beginning of the
program's execution may not be valid throughout. In contrast, the putenv
and getenv routines access the environment table properly, even when its
location changes. These routines use the global variable environ
(described in the C Library Guide), which always points to the correct
table location.

Example

myprog ABC "abc e" 3 8

This command line executes the program named myprog and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored in
argc. To access the last argument, for example, you would use an expres­
sion like the following:

argv[argc - 1]

Since the value of argc is 5 (counting the program name as an argument),
this expression is equivalent to argv [4 J, or the fifth string of the array.

Running C Programs on System V 4-3

Chapter 5

Working with Memory Models

Introduction 5-1
Memory Model Considerations 5-2

Near, Far, and Huge Addressing 5-4

Using the Standard Memory Models 5-6
Porting Considerations 5-7
Creating Small-Model Programs 5-7
Creating Medium-Model Programs 5-9
Creating Compact-Model Programs 5-9
Creating Large-Model Programs 5-10
Creating Huge-Model Programs 5-11
Segmentation Errors 5-12

Using the near, far, and huge Keywords 5-14
Library Support for near, far, and huge 5-16
Declaring Data with near, far, and huge 5-16
Declaring Functions with the near and far Keywords 5-20
Pointer Conversions 5-22

Creating Customized Memory Models 5-25
Code Pointers 5-26
Data Pointers 5-26
Setting Up Segments 5-27
Library Support for Customized Memory Models 5-29

Setting the Data Threshold 5-30

Naming Modules and Segments 5-31

Specifying Text and Data Segments 5-34

Introduction

Introduction
Expanding the computing power of microcomputers often means giving
the computer more "space" to work in. The Intel family of micropro­
cessors (8080, 8086, 80286, and 80386) is a good example of such growth.
Each new processor was capable of addressing more memory space than
its predecessor.

The 8080 processor could address 64 kilobytes (64K) of memory, using
16-bit-wide address registers. For the 8086 processor, the address space
was expanded to one-megabyte (1M). However, rather than expand the
size of the address registers, a second set of "segment" registers was
added. These registers select 64K blocks of memory, known as segments,
within the one-megabyte address space. The 16-bit address registers then
select an offset from the beginning of a segment through a hardware
operation equivalent to shifting the segment register 4 bits (multiplying
by 16) and adding that to the offset value. This allows the 8086 to have a
larger address space, yet retain the 16-bit registers of the 8080 for back­
ward compatibility.

The same architecture is used for the 80286 processor, except that in the
processor's "protected mode" the 16-bit segment base values are shifted
over 8 bits instead of 4 as in the 8086 or in the 80286's "real mode." The
80286 thus uses a 24-bit address, capable of addressing up to 16 mega­
bytes of memory.

This segmented architecture can complicate the development of large
programs under UNIX System V/86 and UNIX System V/286 Operating
Systems. The 80386 processor with its 32-bit registers is not restricted by
64K segments; its segment size is 4096 Mbytes. It is therefore much
more like non-segmented architectures such as the Motorola 68000.

However, a substantial amount of software development is done in the
UNIX System V/86 and UNIX System V/286 environments. Understand­
ing the potential stumbling blocks in the 80286 world is necessary to de­
velop large programs effectively. Error messages such as "DGROUP
allocation exceeds 64K," "Not enough core," and "Too big" can be
incomprehensible without an understanding of segment usage under
UNIX System V.

There are two types of segments under UNIX System V. Text segments
(also called code segments) contain the actual machine instructions for
the program. Data segments contain all of the program's data, such as

Working with Memory Models 5-1

Introduction

global variables and the stack. Under UNIX System Y, the program's
stack is included in the first data segment. A program's "memory
model" detennines how many text and data segments the program is
allowed to have.

Memory Model Considerations

If you do not specify a memory model for 286 programs, cc uses the small
memory model by default. This is sufficient for most programs.

You cannot use the small memory model if your program meets one or
more of the following three conditions:

1. Your program has more than 64K of code.

2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger than
64K.

If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models
(medium, compact, large, or huge) using one of the -M options.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
-Mstring option.

4. Method 2 can be combined with either method 1 or method 3.

5-2 C User's Guide

Introduction

Note

The only memory models supported for 80386 code are pure and
impure small model. It is important to note that all other memory
models apply to only 8086 and 80286 processors. Large and huge
model programs will not run on an 8086, and any program for the
8086 or 80286, of any model, will run on an 80386, although the
segment size is still limited to 64K.

When generating code specifically for the 80386 processor under
System V, the C compiler supports only "small" model programs,
but without the 64K limit, since 80386 registers are all 32 bits wide,
and its segments are over four billion bytes long. All models are
supported for 86/286 code.

Choosing a memory model for a program is a trade-off between size and
speed. Programs of all memory models have one "near" data segment
that is addressed through the processor's DS segment register. References
to data in this segment require only a 16-bit address calculation. Large
and huge model programs may have one or more additional segments.
However, addressing data in these "far" segments requires loading a seg­
ment register in addition to calculating the offset within the segment.

Working with Memory Models 5-3

Near, Far, and Huge Addressing

Near, Far, and Huge Addressing
Understanding the terms "near," "far," and "huge" is crucial to under­
standing the concept of memory models. These terms indicate how data
can be accessed in the pre-386 segmented architecture of the 80x86 fam­
ily of microprocessors (8086,80186,80286).

System V loads the code and data allocated by your program into "seg­
ments" of physical memory. Each segment is up to 64K long. With the
exception of impure small model programs, separate segments are always
allocated for the program code and data. Impure small model programs
fit all data and code into one segment. Except for this case, the minimum
number of segments allocated for a program is two; these two segments,
required for every program, are called "the default segments." The small
memory model uses only the two default segments. The other memory
models discussed in this chapter allow more than one code segment per
program, more than one data segment per program, or both.

In the 80x86 family of microprocessors, all memory addresses consist of
two parts:

1. A 16-bit number that represents the base address of a memory
segment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 80x86 microprocessor is such that code can be
accessed within the default code or data segment using just the 16-bit
offset value. This is possible because the segment addresses for the
default segments are always known. This 16-bit offset value is called a
"near" address, and can be accessed with a "near" pointer. Since only
16-bit arithmetic is required to access any near item, near references to
code or data are smaller and more efficient.

When data or code lies outside the default segments, the address must use
both the segment and offset values. Such addresses are called "far"
addresses, and can be accessed by using "far" pointers in a C program.
Accessing far data or code items is more expensive in terms of program
speed and size, but using them allows your programs to address all mem­
ory, rather than just a 64K piece.

There is a third type of address in Microsoft C: the "huge" address. A
huge address is similar to a far address in that each consists of a segment
value and an offset value; but the two differ in the way address arithmetic
is performed on pointers. Because items (both code and data) referenced

5-4 C User's Guide

Near, Far, and Huge Addressing

by far pointers are still assumed to lie completely within the segment in
which they start, pointer arithmetic is done only on the offset portion of
the address. This gain in pointer arithmetic efficiency is achieved, how­
ever, by limiting the size of any single item to 64K. Huge pointers over­
come this size limitation by performing pointer arithmetic on all 32 bits
of the data item's address, thus allowing data items referenced by huge
pointers to span more than one segment, provided they conform to the
rules outlined in the section on "Creating Huge-Model Programs."

The rest of this chapter deals with the various methods you can use to
control whether your program makes far, near, or huge calls to access
code or data.

Working with Memory Models 5-5

Using the Standard Memory Models

Using the Standard Memory Models
The standard libraries provided with the UNIX System V Development
System support five standard memory models. Using the standard mem­
ory models is the simplest way to control how your program accesses
code and data in memory.

When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you
specify is used automatically. Each memory model has its own library,
except for the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity.
In the standard models, memory management is specified by compiler
options; since the standard models do not require the use of extended key­
words, they are the best way to write code that can be ported to other sys­
tems (particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that
they may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small-model, it
may be to your advantage to declare the one array with the far keyword,
while keeping the rest of the program small model, as opposed to using
the standard compact-memory model for the entire program. For max­
imum flexibility and control over how your program uses memory, you
can combine the standard-memory-model method with the near, far, and
huge keywords described in the "Using the near, far, and huge Key­
words" section.

The -M option for cc is used to specify one of the five standard memory
models (small, medium, compact, large, or huge) at compile time. These
options are discussed in the next five sections.

5-6 C User's Guide

Using the Standard Memory Models

Note

In the following sections, which describe in detail the different
memory-model addressing conventions, it is important to keep in
mind two common features of all five models:

1. No single source module can generate 64K or more of code.

2. No single data item can exceed 64K, unless it appears in a
huge-model program or it has been declared with the huge
keyword.

Porting Considerations

When porting software to UNIX System V on Intel processors from other
operating systems or other processors, it is important to recognize the
differences that arise from the Intel-segmented architecture. One com­
mon assumption is that an integer occupies the same number of bytes as a
pointer. While this is true for small models, it is not true for middle and
large models, and can cause many problems. Another common practice is
to use the integer 0 to denote a null pointer. For large and huge model
programs, 0 must be typecast to an appropriate pointer (typically a pointer
to a char, such as (char *)0 to assure that operations with pointers work
correctly.

Creating Small-Model Programs

Option

-Ms

The small-model option tells the compiler to create a program that occu­
pies one segment for both code and data. (Impure Small Model)

Working with Memory Models 5-7

Using the Standard Memory Models

Impure small-model programs are typically C programs that are short or
have a limited purpose. Since code and data for these programs are lim­
ited to 64K, the total size of a small-model program can never exceed
64K. Most programs fit easily into this model. Using the -i flag, you can
create a pure small-model program. A pure small-model program has one
segment of code and one segment of data for a total of l28K.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keyword, and the default for code by using the far
keyword. The huge keyword is relevant only to data items-specifically
arrays and pointers to arrays.

The compiler creates small-model programs by default when you do not
specify a memory model. The -Ms option is provided for completeness;
you need never give it explicitly.

Impure Small Model

An "impure" program is one in which both text and data occupy the
same physical segment. Impure programs can be created for the 8086,
80186,80286, or 80386 processor. The maximum program size is 64K for
all except the 80386. The cc program creates impure small-model pro­
grams by default on 8086/80286 systems. They can also be created using
the -Ms option.

Pure Small Model

A "pure" program is one where text and data are in separate segments.
The text is read-only and may be shared by several processes at once. On
8086/80186/80286 processors, the maximum program size is 128K (64K
code + 64K data). On the 80386 processor, the maximum program size is
8 gigabytes (4G code plus 4G data). Pure small-model programs are cre­
ated using the -i option. In this context, -i stands for "instruction" rather
than "impure". This is the default on 80386 systems.

5-8 C User's Guide

Using the Standard Memory Models

Creating Medium-Model Programs

Option

-Mm

The medium-model option provides a single segment for program data,
and mUltiple segments for program code. Each source module is given its
own code segment.

Medium-model programs are typically C programs that have a large num­
ber of program statements (more than 64K of code), but a relatively small
amount of data (less than 64K). Program code can occupy any amount of
space and is given as many segments as needed; total program data can­
not be greater than 64K. The medium model provides a useful trade-off
between speed and space, since most programs refer more frequently to
data items than to code.

Creating Compact-Model Programs

Option

-Me

The compact-model option directs the compiler to allow multiple seg­
ments for program data but only one segment for the program code.

Compact-model programs are typically C programs that have large
amounts of data, but relatively small numbers of program statements. Pro­
gram data can occupy any amount of space and are given as many seg­
ments as needed.

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

Working with Memory Models 5-9

Using the Standard Memory Models

Note

Note that in medium and compact models, NULL must be used
carefully in certain situations. In memory models where code and
data pointers are the same size, it can be used with either. NULL
only represents a null data pointer in medium and compact models.
Consider the following example:

void funcl(char *dp)
{

void func2 (char (*fp) (void))
{

main()
{

funcl(NULL);
func2 (NULL) ;
}

This example passes a 16-bit pointer to both Junc1 and June2 if
compiled in medium model, and a 32-bit pointer to both Junc1 and
June2 if compiled in compact model, unless prototypes are added to
the beginning of the program to indicate the types, or an explicit
cast is used on the argument to Junc1 (compact model) or June2
(medium model).

Creating Large-Model Programs

Option

-MI

The large-model option allows the compiler to create multiple segments
as needed for both code and data.

5-10 C User's Guide

Using the Standard Memory Models

Large-model programs are typically very large C programs that use a
large amount of data storage during normal processing.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the
near and huge keywords for data, and the near keyword for code.

Creating Huge-Model Programs

Option

·Mh

The huge-model option is similar to the large-model option, except that
the restriction on the size of individual data items is removed for arrays.

However, some size restrictions apply to elements of huge arrays where
they are larger than 64K. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications:

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16
bytes, and so on). However, if the array is 128K or smaller, its ele­
ments may be any size, up to and including 64K.

In huge-model programs, care must be taken when using the sizeof opera­
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an unsigned int value, but the size in
bytes of a huge array is an unsigned long value. To solve this
discrepancy, the Microsoft C Compiler produces the correct size of a
huge array when a type cast like the following is used:

(unsigned long)sizeof(huge_item)

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result
may be a long int value. The Microsoft C Compiler gives the correct
result when a type cast like the following is used:

(long) (huge-ptrl - huge-ptr2)

Working with Memory Models 5-11

Using the Standard Memory Models

Segmentation Errors

When compiling a small- or medium-model program, the compiler places
all data in the data segment. However, the compiler cannot know how
much total data is allocated in the segment. This is not determined until
link time, when data from all the object modules are combined by the
linker. If the linker finds that more than 64K have been allocated by the
compiler, the linker will return the error message:

DGROUP allocation exceeds 64K

Errors with Small- and Medium-Model Programs

If this error occurs with a small- or medium-model program, there are
three alternatives:

• Reduce the amount of data used by the program.

• Switch to the large-memory model.

• Create a hybrid-model program.

Hybrid models are created by declaring data using the far keyword and
compiling with the -Me flag. The compiler then allocates additional seg­
ments for the far data. Care must be taken when referencing data
declared in this manner. Since all the library functions will be expecting
near data, far data must be transferred into a near data buffer before being
passed to any library function, such as printf(). The hybrid model is best
suited for programs with one or more large, seldom-used arrays or data
structures where the rest of the program uses less than 64K of data.

Errors with Large-Model Programs

For large-model programs, the compiler divides different kinds of data
into different segments. All initialized data is placed in DATA segments.
Uninitialized data is placed in BSS (Blank Storage Space) segments. A
large-model program may have as many DATA and BSS segments as
needed, but only one near DATA segment (the segment addressed by the
CPU DS register). For maximum efficiency, the compiler allocates as
much data as possible to the first DATA segment. However, since the
total amount of data is not known until all the object modules are linked
together, more than 64K of data might be allocated for the first DATA
segment. Thus, it is still possible to get the error DGROUP allocation
error from the linker even with a large-model program.

5-12 C User's Guide

Using the Standard Memory Models

One possible solution to this problem is to reduce the amount of initial­
ized data in the program by declaring it uninitialized, then initializing at
run time. Another possibility is to use the ·Mt flag to force the compiler
to move some data out of the DATA segment. Normally, the compiler
:Jlaces any initialized data item (single variable, array, or structure) in the
first data segment if its size is less than 32767 bytes. The ·Mt flag will
lower this limit. For example, ·Mtl024 tells the compiler to place any
lata item larger than 1024 bytes in its own segment. The drawback to
his solution is that, at run time, a segment register must be loaded for
~ach access to that data. This may affect performance of the program.
This method is most appropriate if the program contains a few large
mays or structures.

I\nother method of reducing the size of the first DATA segment is the use
)f the ·ND compiler flag. (See "Setting Up Segments" in the "Creating
:ustomized Memory Models" section in this chapter.) When a module is
~ompiled with this flag, all the data in the module will be placed in its
)wn data segment. Modules compiled using this flag should contain data
)nly, or data and functions that do not use any data items declared in
)ther modules.

~0286 programs allocate their maximum stack size at run time; the
iefault size is 4K. Since the stack must also fit in the first data segment, a
)roblem will arise if there is not enough space in the first data segment to
'it both the data and the stack. If the size of the data plus the size of the
!tack exceeds 64K, then, even if the linker will successfully link a pro­
~ram, the program's first data segment will be too large for the program to
lIn. This problem will be reported by the C shell with the message "Not
!nough core." The Bourne shell will report the error with the message
"too big." The two possible solutions to this problem are to reduce the
!tack size, or to reduce the amount of data in the first data segment. The
,atter method is recommended, since reducing the stack size may cause
he program to run out of stack space.

[)etermining Segment Size

fhere are three utilities that are useful for finding and correcting prob­
ems related to program segmentation. The size utility size(CP) takes one
)r more executable or object file names as arguments, and prints the size
n bytes of the text, DATA, and BSS segments. This information is helpful
n determining exactly how much data is used by a program, and how it is
iivided between the DATA and BSS segments. The hdr(CP) utility prints
)ther information about an executable file, such as its memory model and
!tack size. The fixhdr(CP) utility can be used (among other things) to
tIter the stack size of any executable. This is useful for experimenting
,vith different stack sizes without the need to relink, or for cases where the
!ource code is not available.

Working with Memory Models 5-13

Using the near, far, and huge Keywords

Using the near, far, and huge
Keywords
One limitation of the predefined memory-model structure is that, wh~
you change memory models, all data and code address sizes are subject 1
change. However, the Microsoft C Compiler lets you override the defau
addressing convention for a given memory model and access items with
near, far, or huge pointer. This is done with the near, far, and huge ke:
words. These special type modifiers can be used with a standard memOl
model to overcome addressing limitations for particular data or coc
items, or to optimize access to these items, without changing the addres:
ing conventions for the program as a whole. Table 5.1 explains how tl
use of these keywords affects the addressing of code or data, or pointers 1

code or data.

Note

The near, far, and huge keywords are not standard parts of the C
language; they are meaningful only for systems that use a seg­
mented architecture similar to that of the 80x86 microprocessors.
Keep this in mind if you want your code to be ported to other sys­
tems.

5-14 C User's Gui(

Using the near, far, and huge Keywords

Key­
word

near

far

huge

Table 5.1

Addressing of Code arid Data
Declared with near, far, and huge

Data

Reside in default
data segment; refer­
enced with l6-bit
addresses (Pointers
to data are 16 bits)

May be anywhere in
memory, not
assumed to reside in
current data segment;
referenced with 32-
bit addresses
(Pointers to data are
32 bits)

May be anywhere in
memory, not
assumed to reside in
current data segment;
individual data items
(arrays) can exceed
64K in size; refer­
enced with 32-bit
addresses (Pointers
to data are 32 bits)

Pointer or
Function

Assumed to be in
current code seg­
ment; referenced
with 16-bit addresses
(Pointers to functi ons
are 16 bits)

Not assumed to be in
current code seg­
ment; referenced
with 32-bit address
(Pointers to functions
are 32 bits)

Not applicable to
code

Arithmetic

Uses 16 bits

Uses 16 bits

Uses 32 bits for
data

In the Microsoft C Compiler, the near, far, and huge keywords are
enabled by default. To treat these keywords as ordinary identifiers, you
must give the -Za option at compile time. This option is useful if you are
concerned with porting C programs from environments in which these are
not keywords, especially if you are porting a program in which one of
these words is used as a label. For further information about the use and
effects of the -Za option, see the "Compiling with the cc Command"
chapter of this guide.

Working with Memory Models 5-15

Using the near, far, and huge Keywords

Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing con­
ventions for particular items, you can usually use one of the standard
libraries (small, compact, medium, or large) with your program. The
large-model libraries are also appropriate for use with huge-model pro­
grams. However, you must use care when calling library routines. In gen­
eral, you cannot pass far pointers, or the addresses of far data items, to a
small-model library routine. Of course, you can always pass the value of a
far item to a small-model library routine. For example:

long far time_val;

time(&time_val); /* Illegal */
printf ("%ld\O, time_val); /* Legal */

If you use the near, far, or huge keyword, it is strongly recommended
that you use function prototypes with argument-type lists to ensure that
all pointer arguments are passed to functions correctly. See the section on
"Pointer Conversions" for more information.

To learn more about library routines and memory models, see the C
Library Guide.

Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

• The keyword always modifies the object or pointer immediately to
its right. In complex declarations, think of the far keyword and the
item to its right as being a single unit. For example, in the case of
the declaration:

char far* *p;

p is a pointer (whose size depends on the specified memory model)
to a far pointer to char. See the C Language Reference for com­
plete rules governing the use of special keywords in complex
declarations.

• If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the
default data segment (near) or a separate data segment (far or
huge). For example:

5-16 C User's Guide

Using the near, far, and huge Keywords

char far a;

allocates Q as an item of type char with a far address.

• If the item immediately to the right of the keyword is a pointer, the
keyword determines whether the pointer will hold a near address
(16 bits), a far address (32 bits), or a huge address (also 32 bits).
For example,

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

Examples

The examples in this section show data declarations using the near, far,
and huge keywords.

char a[3000]; /* small-model program */
char far b[30000];

The first declaration in the example allocates the array Q in the default
data segment. By contrast, the array b in the second declaration may be
allocated in any far data segment. Since these declarations appear in a
small-model program, array Q probably represents frequently used data
that was deliberately placed in the default segment for fast access. Array
b probably represents seldom used data that might make the default data
segment exceed 64K and force the programmer to use a larger memory
model if the array were not declared with the far keyword. The second
declaration uses a large array, because it is more likely that a programmer
would want to specify the address allocation size for items of substantial
size.

char a[3000]; /* large-model program */
char near b[3000];

In this example, access speed would probably not be critical for array Q.

Even though it mayor may not be allocated within the default data seg­
ment, it is \always referenced with a 32-bit address. Array b is explicitly
allocated near to improve speed of access in this memory model (large).

char huge a[70000];
char huge *pa;

/* small-model program */

In this small-model program, Q must be declared as huge because it is
larger than 64K. Using the huge keyword instead of the standard huge
memory model means that the price for using huge data is only paid for
this one large item. Other data can be accessed quickly within the default

Working with Memory Models 5-17

Using the near, far, and huge Keywords

segment. The pointer pa could be used to point to a. Any pointer arith­
metic for pa (such as pa++) would be performed using 32-bit arithmetic.

char *pa;
char far *pb;

/* small-model program */

The pointer pa is declared as a near pointer to char in the example. The
pointer is near by default since the example appears in a small-model pro­
gram. By contrast, pb is allocated as a far pointer to char; pb could be
used to point to, and step through, an array of characters stored in a seg­
ment other than the default data segment. For example, pa might be used
to point to array a in the first example, while pb might be used to point to
array b.

char far * *pa;
char far * *pa;

/* small-model program */
/* large-model program */

The pointer declarations in the example illustrate the interaction between
the memory model chosen and the near and far keywords. Although the
declarations for pa are identical, in a small-model program, pa is declared
as a near pointer to an array of far pointers to type char, while in a large­
model program, pa is declared as a far pointer to an array of far pointers
to type char.

char far * near *pb;
char far * far *pb;

/* any model */

In the first declaration in the example, pb is declared as a near pointer to
an array of far pointers to type char; in the second declaration, pb is
declared as a far pointer to an array of far pointers to type char. Note
that, in this example, the far and near keywords override the model-spe­
cific addressing conventions shown in the preceding example. The
declarations for pb would have the same effect, regardless of the memory
model. The examples in the following table illustrate the far and near
keywords as used in declarations in a small-model program. It also gives
the size in bits of the address and the value and the type of the value.

5-18 C User's Guide

Using the near, far, and huge Keywords

Table 5.2

Uses of 8086/80186/80286 near and far Keywords

Size of Size of
Declaration Address Value Type of Value

char c; 16 8 data

char far d; 32 8 data

char *p; 16 16 near pointer

char far *q; 16 32 far pointer

char * far r; 32 16 near pointerl

char far * far s; 32 32 farpointe~

int foo(); 16 16 integer function

int far foo(); 32 16 integer function3

Notes

I This example of a near 16-bit pointer which may lie in a far data segment is unlikely
to be useful; it is shown for syntactic completeness only.

2 This is similar to accessing data in a large-model program.

3 This example leads to trouble in most environments. The far call changes the CS
register, and makes run time support unavailable.

The following example is from a middle-model compilation:

int near foo () ;

This allows a near call to the routine foo in a program where calls are nor­
mally far.

If you are using one of the keywords, it would be advisable to check the
type of item in separate source files as the compiler does not do this.

If the -M3e option is used, the near keyword can address items in the pro­
gram segment itself. The near keyword defines an item with a 32-bit
address (relative to DS).

These keywords override the normal address length generated by the
compiler for variables and functions. In pure small-model programs, far
lets you access data and functions in segments outside the TEXT and
DATA segments.

Working with Memory Models 5-19

Using the near, far, and huge Keywords

The examples in the table that follows show near and far keywords used
in declarations of pure small- and mixed-model programs configured with
the -M3e option:

Table 5.3

Uses of 80386 near and far Keywords

Declaration Address Size Allocation Size

char c; near (32 bits) 8 bits (data)

char fard; far (48 bits) 8 bits (data)

char *p; near (32 bits) 32 bits (near pointer)

char far *q; near (32 bits) 64 bits (far pointer)

char * farr; far (48 bits) 32 bits (near pointed

char far * far s; far (48 bits) 64 bits (far pointerl

int foo(); near (32 bits) function returning 32 bits

int far foo(); far (64/48 bits) function returning 32 bits j

Notes

I This example is shown for syntactic completeness only.

2 This resembles accessing data in a large-model program.

3 This example creates problems in most environments. The far call changes the CS
register. and makes run-time support unavailable.

Declaring Functions with the near and far
Keywords

The rules for using the near and far keywords for functions are similar to
those for using them with data, as specified in the following list:

• The keyword always modifies the function or pointer immediately
to its right. For more information about rules for evaluating com­
plex declarations, see the C Language Reference.

• If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allo­
cated as near or far. For example:

5-20 C User's Guide

Using the near, far, and huge Keywords

char far fun();

defines fun as a function called with a 32-bit address and returning
type char.

• If the item immediately to the right of the keyword is a pointer to a
function, then the keyword determines whether the function will be
called using a near (l6-bit) or far (32-bit) address. For example:

char (far * pfun) ();

defines pfun as a far pointer (32 bits) to a function returning type
char.

• Function declarations must match function definitions.

• The huge keyword cannot be applied to functions.

Examples

void char far fun(void);
void char far fun (void)

{

/* small model */

In this example, fun is declared as a function returning type char. The
far keyword in the declaration means that fun must be called with a 32-
bit call.

static char far * near fun();
static char far * near fun()

{

/* large model */

In the large-model example, fun is declared as a near function that returns
a far pointer to type char. Such a function might be seen in a large-model
program as a helper routine that is used frequently, but only by the rou­
tines in its own module. Since all routines in a given module share the
same code segment, the function could always be accessed with a near

Working with Memory Models 5-21

Using the near, far, and huge Keywords

call. However, you could not pass a pointer to fun as an argument to
another function outside the module in which fun was declared.

void far *fun(void); /* small model */
void (far * pfun) () = fun;

The small-model example declares pfun as a far pointer to a function that
has a void return type, and then assigns the address offun to pfun.1n fact,
pfun could be used to point to any function accessed with a far call. Note
that if the function indicated by pfun has not been declared with the far
keyword, or if it is not far by default, then calling that function through
pfun would cause the program to fail.

double far * (far fun) ();
double far * (far *pfun) () fun;

1* compact model */

In this final example, pfun is declared as a far pointer to a function that
returns a far pointer to type double, and then assigns the address of fun to
pfun. This might be used in a compact-model program for a function that
is not used frequently and thus does not need to be in the default code
segment. Both the function and the pointer to the function must be
declared with the far keyword.

Pointer Conversions

Passing pointers as arguments to functions may cause automatic conver­
sions in the size of the pointer argument, since passing a pointer to a func­
tion forces the pointer size to the larger of the following two sizes:

• The default pointer size for that type, as defined by the memory
model used during compilation

For example, in medium-model programs, data-pointer arguments
are near by default, and code-pointer arguments are far by default.

• The size of the type of the argument

If a function prototype with argument types is given, the compiler per­
forms type-checking and enforces the conversion of actual arguments to
the declared type of the corresponding formal argument. However, if no
declaration is present or the argument-type list is empty, the compiler
will convert pointer arguments automatically to the default type or the
type of the argument, whichever is larger. To avoid mismatched argu­
ments, you should always use a prototype with the argument types.

5-22 C User's Guide

Using the near, far, and huge Keywords

Examples

1* This program produces unexpected results in compact-,
** large-, or huge-model programs.
*1

main (

int near *x;
char far *y;
int z = 1;

test_fun (x, y, z); 1* x will be coerced to far
** pointer in compact, large,
** or huge model
*1

int test fun (ptrl, ptr2, a)
int near *ptrl;
char far *ptr2;
int a;

printf ("Value of a %d\n", a);}

If the preceding example is compiled as a small-model program (with no
memory-model options or the -Ms option on the ee command line) or
medium-model program (-Mm option), then the size of pointer argument
x is 16 bits, the size of pointer argument y is 32 bits, and the value printed
for a is 1. However, if the preceding example is compiled with the -Me,
-MI, or -Mh option, both x and y are automatically converted to far
pointers when they are passed to testJun. Since ptr1, the first parameter
of test Jun, is defined as a near-pointer argument, it takes only 16 bits of
the 32 bits passed to it. The next parameter, ptr2, takes the remaining 16
bits passed to ptr1, plus 16 bits of the 32 bits passed to it. Finally, the
third parameter, a, takes the leftover 16 bits from ptr2, instead of the
value of z in the main function. This shifting process does not generate an
error message, since both the function call and the function definition are
legal, but in this case the program does not work as intended, since the
value assigned to a is not the value intended.

To pass ptr1 as a near pointer, you should include a forward declaration
that specifically declares this argument for testJun as a near pointer, as
shown in the following example:

Working with Memory Models 5-23

Using the near, far, and huge Keywords

/* First, declare test fun so the compiler knows in advance
** about the near pointer argument:
*/
int test fun(int near*, char far *, int);

main (

int near *x;
char far *y;
int z = 1;

test_fun (x, y, z); /* now, x will not be coerced
** to a far pointer; it will be
** passed as a near pointer,
** no matter what memory
** model is used
*/

int test fun(ptr1, ptr2, a)
int near *ptrl;
char far *ptr2;
int ai

printf ("Value of a
)

%d\n", a)i

Note that it would not be sufficient to reverse the definition order for
test Jun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

5-24 C User's Guide

Creating Customized Memory Models

Creating Customized Memory
Models
A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
architecture of 8086 and 80286 processors before creating your own non­
standard memory models, since there is no library support--other than the
C start-up routines-for nonstandard memory models.

The -Mstring option lets you change the attributes of the standard mem­
ory models to create your own memory models. The three letters in string
correspond to the code-pointer size, the data-pointer size, and the stack­
and data-segment setups. Because the letter allowed in each field is
unique to that field, you can give the letters in any order after -M. All
three letters must be present.

The standard-memory-model options (-Ms, -Mm, -Me, -MI, and -Mh)
can be specified in the -Mstring form. As an example of how to construct
memory models, the standard-memory-model options are listed with their
standard equivalents:

Standard Custom Equivalent

-Ms -Msnd

-Mm -Mind

-Me -Msfd

-MI -Mlfd

-Mh -Mlhd

As an example of the use of customized models, you might want to create
a huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be -Mshd.

An even more common use of customized models is to set up segments.
(See the section on "Setting Up Segments," for more information.)

If you use a customized memory model for a program that includes both
far and near functions, be aware of the following issues:

Working with Memory Models 5-25

Creating Customized Memory Models

• The chkstk library function should be called only in functions that
are compiled in the same model as the library being used. (For
compatibility with UNIX System V, the chkstk function name can­
not be model-encoded.)

• The interfaces to floating-point function calls are not model
encoded, so functions containing floating-point calls must be com­
piled with the same model as the library being used.

Code Pointers

Options

Note

·Msxx
·MIxx

Near code pointers
Far code pointers

For the purposes of the descriptions that follow, the letters I (for
"long") and s (for "short") are used as code pointers to distinguish
them from the letters for data pointers in the memory-model string.

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact­
model programs.

The letter I means that far (32-bit) pointers and addresses are used to
address all code items. Far pointers are the default for medium-, large-,
and huge-model programs.

Data Pointers

Options

5-26

·Mnxx
·Mfxx
·Mhxx

Near data pointers
Far data pointers
Huge data pointers

C User's Guide

Creating Customized Memory Models

Three sizes are available for data pointers: near, far, and huge. The letter
n tells the compiler to use near (16-bit) pointers and addresses for all
data. This is the default for small- and medium-model programs.

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are huge
(32-bit). This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits
(the offset portion) of the address. When huge data pointers are used, indi­
vidual data items can be larger than a segment (64K) because address
arithmetic is performed on the entire 32 bits of the address.

Setting Up Segments

Options

·Mdxx
·Mu[xx]
·Mw[xx]

Sets SS::: DS
Sets SS I::: DS; DS reloaded on function entry
Sets SS != DS; DS not reloaded on function entry

The letter d tells the compiler that the segment addresses stored in the SS
and DS registers are equal; that is, the stack segment and the default data
segment are combined into a single segment. This is the default for all
programs. In small- and medium-model programs, the stack plus all data
must occupy less than 64K; thus, any data item is accessed with only a
16-bit offset from the segment address in the SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and
static data are placed in the default data segment. The address of this seg­
ment is stored in the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is impor­
tant to remember when passing pointers as arguments in large-model pro­
grams. Although you may have more than 64K of total data in these
models, there can be no more than 64K of data in the default segment.
The ·Gt and ·ND options can be used to control allocation of items in the
default data segment if a program exceeds this limit. (For more informa­
tion about these options, see the sections on "Setting the Data Thresh­
old," and "Naming Modules and Segments.")

The letter u allocates different segments for the stack and the data seg­
ments. Each object file (module) is allocated its own segment for global
and static data items. Note that the ·ND option, described in "Naming

Working with Memory Models 5-27

Creating Customized Memory Models

Modules and Segments," must be specified along with the letter u to allo­
cate data segments other than the default. When the letter u and -ND are
specified, the address in the DS register is saved upon entry to each func­
tion, and the new DS value for the module in which the function was
defined is loaded into the register. The previous DS value is restored on
exit from the function. Therefore, only one data segment is accessible at
any given time. The -ND option can be used to combine these segments
into a single segment.

If a standard memory-model option precedes it on the command line, the
-Mu option can be specified without any letters indicating data- or code­
pointer sizes. In this case, the program uses the specified memory model,
but different segments are set up for the stack and data segments.

A single segment must be allocated for the stack, and its address must be
stored in the SS register. The stack segment does not change during the
execution of the program.

The letter w, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating­
system level. The operating system or the program running under the op­
I:!fating system actually receives the data intended for the application pro­
gram and places that data in a segment. Then the operating system or
program must load the DS register with the segment address for the appli­
cation program.

As with the -Mu option, the -Mw option can be specified without data­
and code-pointer letters if a standard memory-model option precedes it on
the command line. In this case, the program uses the specified memory
model, but different segments are set up for the stack and data segments,
and the DS register is not reloaded at each module entry point.

Even though u and w set up a separate segment for the stack, the stack's
size is still fixed at the default unless this is overridden with the -F com­
piler option.

5-28 C User's Guide

Creating Customized Memory Models

Library Support for Customized Memory Models

Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries. (Huge and large models both use the large-model library.) When
you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that
the appropriate library is used.

Library support is provided for customized memory models where the
stack and default data segments are combined into a single segment
(-Mdxx), but not for customized memory models where these segments
are different (-Muxx, -Mwxx, -Mu, and -Mw). In the latter cases, you
probably need to create a customized library to be used with your custom­
ized memory model. Specify the library files and object files you want to
use when linking. Be sure to use the start-up routine from the appropriate
library for your memory model. Table 5.4 shows the libraries from which
to extract the start-up routine for each customized memory model.

Table 5.4

Start-Up Routines for
Customized Memory Models

Memory-Model Option Use Start-Up from Library

-Msnx; -MS plus _Mxl lusrlIib/286/Sseg.o

-Msfx; -Mshx; _MC I lusr/lib/286/Cseg.o
plus -Mx

-Minx; -MM plus _Mxl lusr/lib/286/Mseg.o

-Mlfx; -Mlhx; -ML plUS
-Mx; -MH plus -Mx

lusr/lib/286lLseg.o

"I" in the above table indicates a condition where x must be either u or
w.

In general, library functions do not support customized memory models,
since a particular run-time routine may in turn call another library routine
that conflicts with your customized model.

Working with Memory Models 5-29

Setting the Data Threshold

Setting the Data Threshold
Option

-Gt[number]

By default, the compiler allocates all static and global data items within
the default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only initialized static and
global data items are assigned to the default data segment. The -Gt option
causes all data items whose sizes are greater than or equal to number
bytes to be allocated to a new data segment. When number is specified, it
must follow the -Gt option immediately, with no intervening spaces.
When number is omitted, the default threshold value is 256. When the -Gt
option is omitted, the default threshold value is 32,767.

You can use the -Gt option only with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data
segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

5-30 C User's Guide

Naming Modules and Segments

Naming Modules and Segments
Options

-NM modulename
-NT textsegment
-ND datasegment

"Module" is another name for an object file created by the C compiler.
Every module has a name. The compiler uses this name in error messages
if problems are encountered during processing. The module name is usu­
ally the same as the source-file name. You can change this name using the
-NM (for "name module") option. The new modulename can be any
combination of letters and digits. The space between -NM and modu­
lename is optional.

A "segment" is a contiguous block of binary information (code or data)
produced by the C compiler. Every module except impure small has at
least two segments: a text segment containing the program instructions,
and a data segment containing the program data. Each segment in every
module has a name. The linker uses this name to define the order in which
the segments of the program appear in memory when loaded for execu­
tion. The segments in the group named DGROUP are an exception.

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the pro­
gram. For example, in small-model programs, the text segment is named
_TEXT and the data segment is named _DATA. These names are the
same for all small-model modules, so all text segments from all modules
are loaded as one contiguous block, and all data segments from all
modules form another contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix TEXT. The data segment is named DATA,
as in the small modeL - -

In compact-model programs, the data from each module are placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix _DATA. The exception to this is initialized
global and static data, which are put in the default data segment _DATA.
The code segment is named _TEXT, as in the small model.

In large- and huge-model programs, the text and data from each module
are loaded into separate segments with distinct names. Each text segment

Working with Memory Models 5-31

Naming Modules and Segments

is given the name of the module plus the suffix _TEXT. The data from
each segment is placed in a private segment with a unique name (except
for initialized global and static data placed in the default data segment).
The naming conventions for text and data segments are summarized in
Table 5.5.

Table 5.5
Segment.Naming Conventions

Model Text Data Module

Small TEXT DATA filename

Medium module TEXT DATA filename

Compact TEXT DATAl filename

Large module TEXT DATAl filename

Huge module TEXT DATAl filename

, 'I " in the above table indicates the name of default data segment; other
data segments have unique private names.

You can override the default names used by the C compiler (thus overrid­
ing the default loading order) by using the ·NT (for "name text") and
·ND (for "name data") options. These options set the names of the text
and data segments in each module being compiled to the given name. The
textsegment argument used with the ·NT option and the datasegment
argument used with the ·ND option can be any combination of letters and
digits. The space between ·NT and textsegment, like the space between
·ND and datasegment, is optional.

If you use the ·ND option to change the name of the default data segment,
your program can no longer assume that the address contained in the
stack segment register (SS) is the same as the address in the data segment
register (DS). You must therefore compile your program either with the
·Mstring form of the memory-model option and the u option for the
segment-setup letter, or with the -M option for a standard memory model
followed by the -Mu option, as in the following example:

cc -Ms -Mu -ND DATAl progl.c

Use of the ·Mu option forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See the section
on "Creating Customized Memory Models," for more information on the

5-32 C User's Guide

Naming Modules and Segments

options. All modules whose data segments have the same name have
these segments combined into a single segment named DnA] at link:
time.

Working with Memory Models 5-33

Specifying Text and Data Segments

Specifying Text and Data Segments
Pragmas

#pragma alloc_text (textsegment, functionl[, function2] ...)
#pragma same seg (variablel[, variable2] ...)
#pragma data seg ([[segmentname]])

The alloc_text pragma gives you source-level control over the segment to
which particular functions are allocated. The same_seg pragma provides
information the compiler can use to generate better code. The data_seg
pragma allows you to specify the name of the data segment that subse­
quent load-DS functions use.

If you use overlays or swapping techniques to handle large programs,
alloc _text allows you to tune the contents of their text segments for max­
imum efficiency. The alloc _text pragma must appear before the
definitions of any of the specified functions, but it may appear either
before or after the functions are declared or called. Any functions
specified in an alloc _text pragma must be either explicitly declared with
the far keyword or assumed to be far because of the memory model used
(medium, large, or huge).

The same_seg pragma tells the compiler to assume that the specified
external variables are allocated in the same data segment. You are respon­
sible for making sure that these variables are put in the same data seg­
ment; one way to do this is to specify the -ND option when you compile
the program. The same _seg pragma must appear before any of the
specified variables is used in executable code and after the variables are
declared. Variables specified in a same yeg pragma must be explicitly
declared with extern storage class, and they must either be explicitly
declared with the far keyword or assumed to be far because of the mem­
ory model used (compact, large, or huge).

The data _ seg pragma specifies the name of the data segment that subse­
quent load-ds functions should use. A "Ioad-ds" function loads its own
data segment upon entry. For more information about load-ds see Appen­
dix A of this manual. In addition, data _ seg causes the named segment to
contain all data that would otherwise be allocated in the DATA segment
(all subsequent initialized static and global data). If you omit the seg­
mentname parameter, the compiler uses the segment name specified in the
-ND option, or, if that option is absent, the default group DGROUP, since
DGROUP is not a segment.

5-34 C User's Guide

Chapter 6

Improving Program Speed

Introduction 6-1

Using Register Variables 6-2

Optimization Options and Pragmas 6-4
Default Optimization 6-4
Generating Intrinsic Functions 6-4
Relaxing Alias-Checking 6-5
Performing Loop Optimizations 6-5
Removing Stack Probes 6-6
Maximum Optimization 6-6

Choosing the Function-Calling Convention 6-7

Efficiency in Large Data Models 6-8
Changing Addressing with near, far, and huge Keywords 6-8
Setting the Data Threshold 6-9
Controlling Segments Used for Allocation 6-9

Efficiency in Large Code Models 6-10

Introduction

Introduction
This chapter describes a number of ways that you can improve the execu­
tion speed of programs compiled with the C Compiler. These techniques
include:

• Using register variables

• Using optimization options and pragmas

• Choosing function-calling conventions

• Choosing and adjusting memory models

Where applicable, this chapter discusses the interactions between these
techniques and the trade-offs involved in using them.

Improving Program Speed 6-1

Using Register Variables

Using Register Variables
One common way to write a program for maximum speed is to declare
selected local (auto) variables with register storage class. The declara­
tion of a register variable requests the compiler to use machine registers
when allocating space for the variable, if possible. The register storage
class can be specified for any variable, but some classes of variables, such
as structures, cannot be stored in registers.

Up to two register variables may be allocated per function. In lexical
order, the 8086 and 80286 compilers take the first two variables with
register storage class that meet the size criteria. The 80386 compiler
takes the first three variables. Any later requests for register storage class
are ignored, so be sure to declare the most important register variables
first. The compiler deallocates the register when the variable is no longer
being used. You may also want to declare register variables in parallel
scope to achieve the effect of having more than two register variables per
function.

The C Compiler automatically uses registers for variables within loops.
Using register declarations for such variables may interfere with optimal
loop code; you can experiment with various combinations of register and
nonregister declarations to determine which combinations give the best
results.

Register declarations can be used effectively for values, especially
pointers, that appear outside of loops. Since a certain amount of code is
required to save and restore registers, register declarations must be
applied to values that are accessed at least three times within a function
to cause any improvement in program speed.

6-2 C User's Guide

Using Register Variables

Example

find string(arr of chars, string)
char-*string; - -
char *arr of chars[);
{ - -

int ix = 0:
register char *q;
while (* {q = string»
{

register int i = ix;

/* string is not null */

/* search for entry whose first character
* matches first character of string, if any

*/

while (i < MAX_ARR_SIZE && *arr_of_chars[i) != *q)
i++:

if (i = MAX ARR SIZE)

ix = i;
)

return (1); /* no matching entry */

/* we've found an entry in arr of chars which
* might match string * / --

register char *p = arr of chars[ix);
while (*p && *q && *p++ -= *q++)

if ((*p - *q) = 0)
return (0) /* they match, return 0 */

/* otherwise continue checking for possible
* matches
*/

In this example, the function named find string actually has three register
variables: q, i, and p. The function calluse all three variables because i
is through being used by the time p is needed. Introducing the ix variable
to save the pointer from block-to-block speeds execution considerably
because most work is being done in register variables.

Improving Program Speed 6-3

Optimization Options and Pragmas

Optimization Options and Pragmas
The cc compiler/linker driver provides a number of optimization options
(-0, followed by one or more letters) that can improve program speed. In
addition, the C Compiler includes several pragmas that allow you to con­
trol some of these optimizations on a local basis within a source program.
The following sections outline these cc options and pragmas and their
effects.

Default Optimization

If no ·0 option is given, the compiler uses the -Ot option, which opti­
mizes programs for execution speed. However, this option does not
enable loop optimizations or intrinsics. Some optimizations, such as long
shifts, may be performed in line rather than using helper functions.

Generating Intrinsic Functions

The -Oi option generates intrinsic forms of the following functions:

• memset, merncpy, memcrnp

• strset, strcpy, strcmp, strcat

• inp,outp

• _rotl, _rotr,)rotJ,)rotr,

• min, max, abs

Intrinsics may be generated as in-line code or with different calling
sequences. In general, using intrinsics increases program size but
improves program speed. Note that the intrinsic forms of some functions
may have slightly different semantics: for example, the intrinsic form of
the rnerncpy function in compact- and large-model programs cannot han­
dle huge arrays, but the function form can.

As with -Ot, this option may increase program size due to the additional
code generated in line for each function. However, program execution is
faster because no instructions for calling and returning from functions
need to be performed.

6-4 C User's Guide

Optimization Options and Pragmas

The intrinsic pragma can be used to specify intrinsic functions on a local
basis for any of the functions listed above. For information about the use
of the intrinsic pragma, see the "Compiling with the cc Command"
chapter of this guide.

Relaxing Alias-Checking

The a option letter can be used with the I, s, or t option letter to relax the
assumptions the compiler makes about the use of "aliases" in the pro­
gram. Use of the -Oa option can reduce the size of executable files and
speed program execution. This is especially recommended when you also
specify the -01 option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use multiple aliases to refer to the same
memory location either directly or indirectly. For example, a program
might do this indirectly in functions that operate on a communal variable
and a pointer argument, or on multiple pointer arguments.

The -Oa option can be specified safely for programs that include calls to
functions with address-type arguments. In this case, the compiler assumes
that all variables whose addresses are passed to the function are modified,
even if -Oa is specified.

In the cases noted above, the use of -Oa is most likely to cause incorrect
optimizations within basic blocks (where most optimizations are applied)
and within whole loop bodies (where loop optimizations are applied). In
these cases, -Oa can still be specified safely even if aliases are used in the
program, provided that no memory location is referenced by more than
one name within any basic block or (if loop optimization is enabled) any
loop body.

For more information and specific examples, see the "Compiling with the
cc Command" chapter of this guide.

Performing Loop Optimizations

The -01 option tells the compiler to perform loop optimizations. For best
performance, use -01 in conjunction with the a option letter (-Oal), which
relaxes the assumptions the compiler makes about the use of aliases in the
program. Using -Oal instead of just -01 allows the compiler to detect
many loop optimizations that it could not otherwise detect. For informa­
tion about possible restrictions on the uses of the -Oa option, see the
"Compiling with the cc Command" chapter of this guide.

Improving Program Speed 6-5

Optimization Options and Pragmas

You can control loop optimization on a local basis by specifying the
loop _opt pragma. Loop optimization is turned off for any functions fol­
lowing #pragma loop _ opt(oft) and turned on for any functions following
#pragma loop_opt(on) in a source program. This pragma overrides any
loop optimization specified on the cc command line.

Removing Stack Probes

The -Gs option, described in the "Compiling with the cc Command"
chapter of this guide, speeds program execution slightly by removing
calls to stack-checking routines known as "stack probes." Stack probes
verify that a program has enough stack space to allocate required local
variables. The potential disadvantage in removing stack probes is that
stack-overflow errors may occur without generating a diagnostic message.
However, this technique can be useful for programs that are known not to
exceed the available stack space.

You can also control stack checking on a local basis by specifying the
check_stack pragma. Stack checking is turned off for any functions fol­
lowing a #pragma check stack(oft) pragma and turned on for any func­
tions following a #pragma check_stack(on) pragma in the source pro­
gram. This pragma overrides the removal of stack checking specified on
the cc command line.

Maximum Optimization

The -Ox option combines the -Ot, -Oi, -Oa and -01 optimization options
described in this section. Provided that the restrictions outlined for each
optimization option do not apply, you can use the -Ox option to create the
fastest possible program.

6-6 C User's Guide

Choosing the Function-Calling Convention

Choosing the Function -Calling
Convention
Because C functions can accept variable numbers of arguments, argu­
ments passed to these functions must be pushed on the stack from right to
left, with the first argument in the list being the last one pushed. In addi­
tion, the calling function, rather than the called function, is responsible
for removing arguments from the stack.

This convention results in somewhat slower programs than the alternative
convention used by FORTRAN and Pascal. In the FORTRAN/Pascal con­
vention, arguments are pushed on the stack from left to right, in the order
in which they are passed to the function, and the called function removes
arguments from the stack. Since the code for removing arguments appears
only once (in the called function) for the FORTRAN/pascal convention,
rather than multiple times (every time a function is called) as in the C
convention, and since most programs have fewer functions than function
calls in a program, the FORTRAN/pascal calling convention usually
results in smaller, faster programs.

You can specify the FORTRAN/pascal calling convention for all func­
tions in a module by compiling with the -Gc option. The trade-off for
improved program speed is that you cannot call functions that use the C
calling convention or take variable numbers of arguments unless you
declare these functions, or pointers to these functions, with the cdecl key­
word, which specifies the normal C calling conventions for these func­
tions.

If you do not want to specify the FORTRAN/Pascal convention for a
whole module, you can declare individual functions or pointers to func­
tions with the pascal or fortran keyword. Either of these keywords tells
the compiler that the function uses the FORTRAN/pascal calling conven­
tions.

Improving Program Speed 6-7

Efficiency in Large Data Models

Efficiency in Large Data Models
Programs are most efficient when their data reside in the default data seg­
ment, that is, when the data can be accessed with 16-bit (near) addresses.
The C Compiler provides two standard memory models in which all data
reside in the default data segment: the small (default) model and the
medium model. The customized memory models that use near data
pointers (-Mnxx) also restrict program data to the default data segment.
Programs compiled with these models are restricted to 64K of total data.

For programs compiled with the compact, large, and huge memory
models, the compiler creates a default data segment containing all initial­
ized global and static data and creates an additional data segment for
each program module. Since accessing data outside the default data seg­
ment is slower than accessing data within the default data segment, pro­
grams will run faster if as many of their variables as possible are declared
in such a way that they are allocated in the default data segment. One
way to accomplish this is to initialize variables at the time you declare
them. This section discusses other ways of controlling the allocation of
data for large data models.

Changing Addressing with near, far, and huge
Keywords

The near, far, and huge keywords allow you to specify explicitly the
addressing used for particular data items and functions. These keywords
override the default addressing conventions specified by the program's
memory model. Thus, you can use them to improve the speed of access to
program data. For example, you can tell the compiler to allocate data
items in the default data segment for a compact-, large-, or huge-model
program by declaring the items (or pointers to the items) with the near
keyword. Alternatively, if a program has a small amount of code and data
except for one particularly large array, you could compile the program
with the small or medium memory model and declare the array with the
far or huge keyword.

The disadvantage of using these keywords is that they are specific to the
MS-DOS/UNIX implementation of C and, thus, are not portable to other
operating environments.

For more information about near, far, and huge and for examples of their
use, see the "Working with Memory Models" chapter in this guide.

6-8 C User's Guide

Efficiency in Large Data Models

Setting the Data Threshold

Another way to control allocation in large data models is to set a data
threshold by compiling with the -Gt option. This option is especially use­
ful if your program uses more than 64K of initialized static and global
data and does not fit in the default data segment. Any data items larger
than the value you specify are allocated to their own data segments.

Controlling Segments Used for Allocation

If programs compiled with large data models use external far data items,
you can tell the compiler which items reside in the same far data segment
by using the same _ seg pragma. The variables you specify in this pragma
help the optimizer recognize common subexpressions involving data
loads. Note that you must also compile your program with the -ND option
to ensure that the variables you specify are allocated in the same segment.

For a description of the -ND option and the same_seg pragma, see the
"Working with Memory Models" chapter of this guide.

Improving Program Speed 6-9

Efficiency in Large Code Models

Efficiency in Large Code Models
One linker option, -T, can result in smaller and faster executable files and
improved program-load times for programs that explicitly or implicitly
use far function calls.

The -T option tells the linker to optimize far calls to procedures that lie in
the same segment as the caller. When you specify the -T option, the
linker optimizes 32-bit calls to procedures in the same segment as the cal­
ling procedure. Since the segment addresses of the calling and called pro­
cedures are the same, only a 16-bit call is required. If the -T option is
given, the linker removes the far call and replaces it with code that first
places CS on the stack, then makes a near call. The called procedure still
returns with a far (32-bit) return instruction. However, because both the
code segment (stored in CS) and the near address are on the stack, the far
return is done correctly. The linker also adds a NOP instruction so that
the five-byte far call is replaced by exactly five bytes of instructions.

Note

You may not want to use the -T option if your program includes
system-level assembly language routines or if you are linking object
files that were compiled with a different C compiler.

6-10 C User's Guide

Chapter 7

Object and Executable
File Formats

Introduction 7-1

iAPX-286 and -386 System Architecture 7-2
Memory Management 7-2
Logical Address Space 7-2
Logical-to-Physical Address Translation 7-2

The Intel Object Module Format 7-4

Definition of Terms 7-6

Module Identification and Attributes 7-9

Segment Definition 7-10

Segment Addressing 7-11

Symbol Definition 7-12

Indices 7-13

Conceptual Framework for Fixups 7-14
LOCATION Types 7-15

Self-Relative Fixups 7-19

Segment-Relative Fixups 7-20

Record Order 7 -22

Introduction to the Record Formats 7-24
Title and Official Abbreviation 7-24
The Boxes 7-24
Rectyp 7-24
Record Length 7-25
Name 7-25

Number 7-25
Repeated or Conditional Fields 7-25
Chksum 7-25
Bit Fields 7-26
T-Module Name 7-26
Name 7-27
Seg Attr 7-27
Segment Length 7-29
Segment Name Index 7-30
Class Name Index 7-30
Overlay Name Index 7-30
Group Name Index 7-31
Group Component Descriptor 7-31
Name 7-32
Eight-Leaf Descriptor 7-32
Public Base 7-34
Public Name 7-35
Public Offset 7-35
Type Index 7-36
External Name 7-36
Type Index 7-37
Line-Number Base 7-38
Line-Number 7-38
Line Number Offset 7-38
Segment Index 7-39
Enumerated Data Offset 7-39
Data 7-39
Segment Index 7-39
Iterated Data Offset 7-40
Iterated Data Block 7-40
Repeat Count 7-40
Block Count 7-40
Content 7-41
Thread 7-42
Fixup 7-43
Mod Type 7-46
Comment 'lYpe 7 -48
Comment 7 -49

Numeric List of Record 'lYpes 7-50

'lYpe Representations for Communal Variables 7-51

The Segmented x.out Format 7-54
General Description ofx.out 7-54
Example of File Layout 7-56

Iterated Segments 7-56
Non-Iterated Segments and Implicit bss 7-57
Large Model 7-58
Special Header Fields 7-58
Symbol Table 7-58
UNIX System V Executable Format 7-59
Selected Portions of Include Files 7-60

Introduction

ntroduction
his chapter describes the object and executable file fonnats used by
NIX System V/386 release 3.2.

/hen the -xenix option is used with CC, the file fonnat used is the Intel
bject Module Fonnat, or OMF. When cc is used without the -xenix
ption, the file fonnat used is the AT&T Common Object File Fonnat, or
OFF.

his chapter is divided into four sections. The first provides you with a
lief introduction to the architecture of the iAPX-286 and -386 pro­
!ssors.

he second section discusses OMF which is used by all Microsoft lan­
lage tools. The implementation of this fonnat makes it possible to com­
lIe programs that run in the UNIX System V, XENIX and MS-DOS
Ivironments.

he third section provides a brief description of our implementation of
Ie x.out fonnat in a segmented environment. For detailed infonnation,
~e the x.out header file (/usr/include/x.out.h).

he fourth section describes the Common Object Module Fonnat (COFF)
,ed by the AT&T development system. You can find additional infonna­
~n in the a.out header file (lusr/include/a.out.h).

iAPX-286 and -386 System Architecture

iAPX-286 and -386 System
Architecture
UNIX System V runs on the 80386 processor in protected mode. This SI

tion provides a general introduction to the architecture of protected-mo
operation. It does not discuss the various 80386 paging mechanisms.]
an in-depth discussion of the iAPX-286 and iAPX-386, refer to the app
priate programmer's reference manual published by Intel.

Memory Management

Memory management provides a mapping from the logical addresses w
within a program to physical machine addresses. This serves two p
poses:

• Programs are not tied to any particular physical address.

• Access permissions to particular areas of memory can be c(
trolled.

Logical Address Space

The mapping of virtual addresses to physical addresses is achieved
means of descriptor tables which are themselves resident in memory.
any given moment, there are two alternate descriptor tables available: 1

Global Descriptor Table (GDT) and the Local Descriptor Table (LDT).

The UNIX System V kernel uses the GDT to map the kernel's vim
address space. Each user process has its own LDT as part of its per-p
cess data which maps the logical address space of the process.

Each entry in a descriptor table specifies the base address, length, 2

access permissions of a particular segment of physical memory.

Logical-to-Physical Address Translation

Logical addresses consist of two parts: a segment selector used to selec
particular descriptor table entry, and an offset added to the base addrl
found in the descriptor table to give a physical memory address.

7-2 C User's Gu

iAPX-286 and -386 System Architecture

The segment selector is a 16-bit number containing three pieces of infor­
mation:

1. The Request Privilege Level (RPL) is encoded as the low-order
two bits of the selector. The RPL is a feature of the system archi­
tecture protection scheme. Segment selectors in user processes
always have both of these bits set to indicate RPL 3, the lowest
privilege level.

2. The Table Indicator (TI) is encoded as the next most significant bit
(bit 2). The TI indicates whether address translation will use the
GDT (TI = 0) or the LDT (TI = 1). User processes can only access
the LDT; therefore the TI for a segment selector in a user process
is always 1.

3. The Index field is encoded as the high-order 13 bits of the selector.
This is used to index into the appropriate descriptor table and
select a particular entry.

When a descriptor table entry has been selected, the offset is added to the
base address in physical memory to form a physical address.

Depending on the characteristics of the segment, as defined in the
descriptor table, the offset may be a 16- or 32-bit number. The offset will
be 16 bits on an 80286 processor or in a 16-bit segment on an 80386 pro­
cessor. The 32-bit offsets apply only to the 80386.

Object and Executable File Formats 7-3

The Intel Object Module Format

The Intel Object Module Format
This section presents the object record fonnats that define the relocatable
object language for the iAPX-86 family of microprocessors. The 8086
object language is the output of all language translators that have the
8086 as their target processor and are linked by the link editor. The 8086
object language is input and output for object language processors such as
linkers and librarians.

Note

Except where otherwise noted, references to the 8086 in this docu­
ment refer to the 8086/80286/80386 processors. In general, the
8086/80286 references are made to 16-bit offsets and 64K segment
offsets, which do not apply to the 80386.

The 8086 object module fonnats pennit you to specify relocatable
memory images that may be linked together. The fonnats allow efficient
use of the memory-mapping facilities of the 8086 microprocessor.

The following record fonnats, as described in this chapter, are supported.
Those fonnats preceded by an asterisk (*) deviate from the Intel
specification.

7-4 C User's Guide

The Intel Object Module Format

Object Module Record Formats

T-Module Header Record
List of Names Record
*Segment Definition Record
*Group Definition Record
*Type Definition Record
*Public Names Definition Record
*Extemal Names Definition Record
*Line Numbers Record
Logical Enumerated Data Record
Logical Iterated Data Record
Fixup Record
*Module End Record
Comment Record

Object and Executable File Formats 7-5

Definition of Terms

Definition of Terms
The following tenns are fundamental to the 8086 relocation and linkage.

OMF

MAS

Object Module Fonnats

Memory Address Space. Note that the MAS is distinguished from
actual memory, which may occupy only a portion of the MAS.

MODULE
An "inseparable" collection of object code and other infonnation.

T·MODULE
A module created by a translator, such as C, Pascal, or FORTRAN.

The following restrictions apply to object modules:

• Every module needs a name. Translators provide names for
T-Modules, giving a default name (possibly the filename or
a null name) if neither source code nor user specifies other­
wise.

• Every T -Module in a collection of linked modules must
have a different name so that symbolic debugging systems
can distinguish the various line numbers and local symbols.
This restriction is not required by Id.

FRAME

LSEG

7-6

A contiguous region of MAS that can be addressed using a single
segment register. This concept is useful because the content of the
four 8086 segment registers defines four (possibly overlapping)
FRAMEs. No 16-bit address in the 8086 code can access a
memory location outside of the current four FRAMEs. On an
8086, a FRAME must begin on a paragraph boundary (that is, a
multiple of 16 bytes). On 80286 and 80386 processors, this
restriction does not apply. On an 80386, a FRAME is a region of
up to (2**32) bytes addressed by a single segment register.

Logical Segment. A contiguous region of memory whose contents
are detennined at translation time (except for address-binding).
Neither size nor location in MAS is necessarily detennined at
translation time. Size, although partially fixed, may not be final
because the LSEG may be combined at LINK time with other

C User's Guide

PSEG

Definition of Terms

LSEGs, forming a single LSEG. On 8086/80286 processors, an
LSEG must not be larger than 64K, so that it can fit in a FRAME.
This means that any byte in an LSEG may be addressed by a 16-bit
offset from the base of a FRAME covering the LSEG. An 80386
LSEG may be as much as (2**32) bytes in size and any byte in it
may be addressed by a 32-bit offset from the base of the FRAME
containing the LSEG.

Physical Segment. This term is equivalent to FRAME. Some peo­
ple prefer PSEG to FRAME because the terms PSEG and LSEG
reflect the physical and logical nature of the underlying segments.

FRAME NUMBER
This term is only used in reference to 8086 processors, or
80286/80386 processors operating in real address mode. Every
FRA~AE begins on a paragraph boundary. The paragraphs in MAS
can be numbered from 0 through 65535. These numbers, each of
which defines a FRAME, are called FRAME NUMBERS.

PARAGRAPH NUMBER
This term is equivalent to FRAME NUMBER.

PSEGNUMBER
This term is equivalent to FRAME NUMBER.

GROUP
A collection of LSEGs defined at translation time, whose final
locations in MAS are constrained such that there is at least one
FRAME that covers (contains) every LSEG in the collection.

The notation Gr A(X,Y,Z) means that LSEGs X, Y, and Z form a
group whose name is A. The fact that X, Y, and Z are all LSEGs in
the same group does not imply any ordering of X, Y, and Z in
MAS, nor does it imply any contiguity between X, Y, and Z.

The link editor does not currently allow an LSEG to be a member
of more than one group. The link editor ignores all attempts to
place an LSEG in more than one group.

CANONIC
Any location in the 8086 MAS is contained in exactly 4096 dis­
tinct FRAMEs, but one of these FRAMEs can be distinguished
because it has a higher FRAME NUMBER. This distinguished
FRAME is called "the canonic FRAME" of the location. The
canonic FRAME of a given byte is the FRAME so chosen that the
byte's offset from that FRAME lies in the range 0 to 15 (decimal).
Thus, if FOO is a symbol defining a memory location, one may
speak of the "canonic FRAME of FOO," or of "FOO's canonic

Object and Executable File Formats 7-7

Definition of Terms

FRAME." By extension, if S is any set of memory locations, then
there exists a unique FRAME that has the lowest FRAME
NUMBER in the set of canonic FRAMEs of the locations in S.
This unique FRAME is called the canonic FRAME of the set S.
Thus, we may speak of the canonic FRAME of an LSEG, or of a
group of LSEGs.

SEGMENT NAME
LSEGs are assigned segment names at translation time. These
names serve two purposes:

• They playa role at LINK time in determining which LSEGs
are combined with other LSEGs.

• They are used in assembly source code to specify groups.

CLASS NAME
LSEGs may optionally be assigned class names at translation time.
Classes define a partition on LSEGs: two LSEGs are in the same
class if they have the same class name.

The link editor applies the following semantics to class names.
The class name "CODE" or any class name whose suffix is
"CODE" implies that all segments of that class contain only code
and may be considered read-only. Such segments may be overlaid
if the user specifies the module containing the segment as part of
an overlay.

OVERLAY NAME
LSEGs may optionally be assigned overlay names. The overlay
name of an LSEG is ignored by Id (version 2.40 and later ver­
sions), but it is used by Intel relocation and linkage products.

COMPLETE NAME

7-8

The complete name of an LSEG consists of the segment name,
class name, and overlay name. LSEGs from different modules are
combined if their complete names are identical.

C User's Guide

Module Identification and Attributes

Module Identification and Attributes
A module header record is always the first record in a module and pro­
vides the module name.

In addition to a name, a module may have the attribute of being a main
program and may have a specified starting address. When you are linking
multiple modules together, only one module with the main attribute
should be given.

In summary, modules mayor may not be main and mayor may not have a
starting address.

Object and Executable File Formats 7-9

Segment Definition

Segment Definition
A module is a collection of object code defined by a sequence of records
produced by a translator. The object code represents contiguous regions
of memory whose contents are determined at translation time. These
regions are called LOGICAL SEGMENTS (LSEGs). A module defines
the attributes of each LSEG. The SEGMENT DEFINmON RECORD
(SEGDEF) is the vehicle by which all LSEG information (name, length,
memory alignment, and so on) is maintained. The LSEG information is
required when multiple LSEGs are combined and when segment addres­
sability is established. (See "Segment Addressing".) The SEGDEF
records must follow the first header record.

7-10 C User's Guide

Segment Addressing

Segment Addressing
The 8086/80286 addressing mechanism provides segment base registers
from which a 64-Kbyte region of memory, called a FRAME, may be
addressed. There are one code-segment base register (CS), two data­
segment base registers (DS, ES), and one stack-segment base register
(SS). The 80386 has two additional segment registers: FS and GS, and
can address up to (2**32) bytes of memory from each segment register.

The greatest possible number of LSEGs that may make up a memory
image far exceeds the number of available base registers. Thus, base
registers may require frequent loading. This would occur in a modular
program with many small data and/or code LSEGs.

Since such frequent loading of base registers is undesirable, it is a good
strategy to collect many small LSEGs together into a single unit that fits
in one memory frame so that all the LSEGs may be addressed using the
same base register value. This addressable unit is a GROUP. See the sec­
tion "Definition of Terms" in this chapter.

To have addressability of objects within a GROUP, each GROUP must be
explicitly defined in the module. The GROUP DEFINITION RECORD
(GRPDEF) provides a list of constituent segments either by segment
name or by segment attribute such as "the segment defining symbol
FOO" or "the segments with class name ROM."

The GRPDEF records within a module must follow all SEGDEF records
because GRPDEF records can reference SEGDEF records when defining
a GROUP. The GRPDEF records must also precede all other records
except header records, as the linker must process them first.

Object and Executable File Formats 7-11

Symbol Definition

Symbol Definition
The Id command supports three different types of records that fall into the
class of symbol definition records. The two most important types are
PUBLIC NAMES DEFINITION RECORDs (PUBDEFs) and EXTER­
NAL NAMES DEFINITION RECORDS (EXTDEFs). These types are
used to define globally visible procedures and data items and to resolve
external references. In addition, TYPDEF records are used by Id for the
allocation of communal variables. (See the section "Type Representa­
tions for Communal Variables" later in this chapter.)

7-12 C User's Guide

Indices

Indices
"Index" fields appear throughout this document. An index is an integer
that selects some particular item from a collection of such items. Some
examples are NAME INDEX, SEGMENT INDEX, GROUP INDEX,
EXTERNAL INDEX, and TYPE INDEX.

In general, indices must assume values quite large (that is, much larger
than 255). Nevertheless, a great number of object files will contain no
indices with values greater than 50 or 100. Therefore, indices will be
encoded in one or two bytes, as required.

The high-order (left-most) bit of the first, and possibly the only, byte
determines whether the index occupies one byte or two. If the bit is 0,
then the index is a number between 0 and 127, occupying one byte. If the
bit is 1, then the index is a number between 0 and 32K-l, occupying two
bytes, and is determined as follows: the low-order 8 bits are in the second
byte, and the high-order 7 bits are in the first byte.

Object and Executable File Formats 7-13

Conceptual Framework for Fixups

Conceptual Framework for Fixups
A "fixup" is some modification to object code, requested by a translator,
performed by Id, achieving address-binding.

Note

This definition of "fixup" accurately represents the viewpoint
maintained by Id. Nevertheless, the link editor can be used to
achieve modifications of object code (that is, "fixups") that do not
conform to this definition. For example, the binding of code to
either hardware floating-point or software floating-point subroutines
is a modification to an operation code, where the operation code is
treated as if it were an address. The previous definition of "fixup"
is not intended to disallow or disparage object code modifications.

8086 translators specify a fixup with four data items:

• The place and type of a LOCATION to be fixed up.

• One of two possible fixup MODES.

• A TARGET, which is a memory address to which LOCATION
must refer.

• A BRAME defining a context within which the reference takes
place.

There are 5 types of LOCATION: a POINTER, a BASE, an OFFSET, a
HIBYTE, and a LOBYTE.

The vertical alignment of the following figure illustrates four points.
(Remember that the high-order byte of a word in 8086 memory is the byte
with the higher address.) The Id command does not require the presence
of the high- or low-order complement of these items. (For instance, in the
case of HIBYTE, a high-order word, it doesn't matter if the low-order
word is present.)

• A BASE is the high-order word of a pointer.

• An OFFSET is the low-order word of a pointer.

7 -14 C User's Guide

Conceptual Framework for Fixups

• A HIBYTE is the high-order half of an OFFSET.

• A LOBYTE is the low-order half of an OFFSET.

I HIBYTE I LOBYTE I
I OFFSET I BASE

POINTER

LOCATION Types

A LOCATION is specified by two data: (1) the LOCATION type, and (2)
where the LOCATION is. The first is specified by the LOC subfield of the
LOCAT field of the FIXUP record; the second is specified by the DATA
RECORD OFFSET subfield of the LOCAT field of the FIXUP record.

The link editor supports two fixup MODEs: "self-relative" and
"segment-relative. "

Self-Relative fixups support the 8- and l6-bit oflSets that are used in the
CALL, JUMP and SHORT-JUMP instructions. Segment-Relative fixups
support all other addressing modes of the 8086.

The TARGET is the location in MAS being referenced. (More explicitly,
the TARGET may be considered the lowest byte in the object being refer­
enced.) A TARGET is specified in one of eight ways. There are four
"primary" ways, and four "secondary" ways. Each primary way of speci­
fying a TARGET uses two kinds of data: an INDEX-or-FRAME­
NUMBER 'X', and a displacement 'D'.

• (TO) X is a SEGMENT INDEX. The TARGET is the Dth byte in
the LSEG identified by the INDEX.

• (Tl) X is a GROUP INDEX. The TARGET is the Dth byte in the
LSEG identified by the INDEX.

• (T2) X is an EXTERNAL INDEX. The TARGET is the Dth byte
following the byte whose address is (eventually) given by the
External Name identified by the INDEX.

• (T3) X is a FRAME NUMBER. The TARGET is the Dth byte in
the FRAME identified by the FRAME NUMBER (that is, the
address of TARGET is (X* l6)+D).

Object and Executable File Formats 7-15

Conceptual Framework for Fixups

Each secondary way of specifying a TARGET uses only one data item:
the INDEX-or-FRAME-NUMBER X. An implicit displacement equal to
zero is assumed.

• (T4) X is a SEGMENT INDEX. The TARGET is the Oth (first)
byte in the LSEG identified by the INDEX.

• (TS) X is a GROUP INDEX. The TARGET is the Oth (first) byte in
the LSEG in the specified group that is eventually LOCATEd
lowest in MAS.

• (T6) X is an EXTERNAL INDEX. The TARGET is the byte
whose address is the External Name identified by the INDEX.

• (T7) X is a FRAME NUMBER. The TARGET is the byte whose
20-bit address is (X*16).

Note

The link editor does not support methods T3 and T7.

The following nomenclature is used to describe a TARGET:

TARGET:

TARGET:

TARGET:

TARGET:

TARGET:

TARGET:

SI «segment name», <displacement>

GI (<group name», <displacement>

EI «symbol name», <displacement>

SI «segment name»

GI «group name»

EI «symbol name»

[TO]

[TI]

[TI]

[T4]

[TS]

[T6]

The following examples illustrate how this notation is used:

TARGET: SI(CODE), 1024

TARGET: GI(DATAAREA)

TARGET: EI(SIN)

7-16

The 102Sth byte in the segment
"CODE".

The location in MAS of a group
called "DATAAREA".

The address of the external subrou­
tine "SIN".

C User's Guide

Conceptual Framework for Fixups

TARGET: EI(PAYSCHEDULE),24 The 24th byte following the location
of an EXTERNAL data structure
called "PAYSCHEDULE".

Every 8086 memory reference is to a location contained within some
FRAME, where the FRAME is designated by the content of some seg­
ment register. For Id to form a correct, usable memory reference, it must
know what the TARGET is, and to which FRAME the reference is being
made. Thus, every fixup specifies such a FRAME in one of six ways.
Some use data X, which is in INDEX-or-FRAME-NUMBER, as above.
Others require no data.

The six methods of specifying frames are:

1. (FO) X is a SEGMENT INDEX. The FRAME is the canonic
FRAME of the LSEG defined by the INDEX.

2. (FI) X is a GROUP INDEX. The FRAME is the canonic
FRAME defined by the group (that is, the canonic FRAME
defined by the LSEG in the group that is eventually LOCATEd
lowest in MAS).

3. (F2) X is an EXTERNAL INDEX. The FRAME is determined
when the External Name's public definition is found. There are
three cases:

• (F2a) The symbol is defined relative to some LSEG, and
there is no associated GROUP. The LSEGs canonic
FRAME is specified.

• (F2b) The symbol is defined absolutely, without reference
to an LSEG, and there is no associated GROUP. The
FRAME is specified by the FRAME NUMBER subfield of
the PUBDEF record that gives the symbol's definition.

• (F2c) Regardless of how the symbol is defined, there is an
associated GROUP. The canonic FRAME of the GROUP
is specified. (The group is specified by the GROUP
INDEX subfield of the PUBDEF Record.)

4. (F3) X is a FRAME NUMBER (specifying the obvious FRAME).

5. (F4) No X. The FRAME is the canonic FRAME of the LSEG
containing LOCATION.

6. (F5) No X. The FRAME is determined by the TARGET. There
are four cases:

Object and Executable File Formats 7-17

Conceptual Framework for Fixups

Note

• (F5a) The TARGET specifies a SEGMENT INDEX: in
this case, the FRAME is determined as in (FO).

• (F5b) The TARGET specifies a GROUP INDEX: in this
case, the FRAME is determined as in (FI).

• (F5c) The TARGET specifies an EXTERNAL INDEX: in
this case, the FRAME is determined as in (F2).

• (F5d) The TARGET is specified with an explicit FRAME
NUMBER: in this case the FRAME is determined as in
(F3).

The link editor does not support frame methods F2b, F3, or F5d.

Nomenclature describing FRAMEs is similar to the above nomenclature
for TARGETs.

FRAME: SI «segment name» [FO]

FRAME: GI «group name» [FI]

FRAME: EI «symbol name» [F2]

FRAME: LOCATION [F4]

FRAME: TARGET [F5]

FRAME: NONE [F6]

For an 8086 memory reference, the FRAME specified by a self-relative
reference is usually the canonic FRAME of the LSEG containing the
LOCATION, and the FRAME specified by a segment relative reference is
the canonic FRAME of the LSEG containing the TARGET.

7-18 C User's Guide

(

Self-Relative Fixups

Self-Relative Fixups
Self-relative fixups can be applied to LOCATIONS which are either 16-
or 32-bit OFFSETS or they are LOBYTES. The result of applying a self­
relative fixup to any other type of LOCATION is undefined.

Both the LOCATION and the TARGET must lie within the FRAME
specified for the fixup.

The value to be used in the fixup is defined as the displacement from the
byte in memory following the LOCATION to the TARGET.

If the LOCATION to be fixed-up is a LOBYTE, the fixup value must lie
in the range -128 to 127.

If the LOCATION to be fixed up is a 16-bit OFFSET, the fixup value must
lie in the range -32768 to 32767.

The fixup value is added to the existing contents of the LOCATION,
ignoring any overflow.

Self-relative fixups are typically applied to the relative displacement
values used in instructions such as conditional jumps.

Object and Executable File Formats 7-19

Segment-Relative Fixups

Segment-Relative Fixups
Segment-relative fixups can be applied to any type of LOCATION.

The way in which a LOCATION containing a BASE component (that is, a
BASE or a POINTER) is fixed up depends on whether the code is to run
in real or virtual address mode. The contents of the BASE portion of a
LOCATION must ultimately be capable of being loaded into a segment
register; therefore, in real address mode this will be a paragraph number
and in virtual address mode this will be a selector value.

Fixup values for the BASE and OFFSET components of a LOCATION
are calculated as follows:

1. In real address mode:

The base fixup value (FBVAL) is defined as the FRAME
NUMBER of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the TAR­
GET from the start of the FRAME specified in the fixup. This
offset must be;::: 0 and:::; FFFF.

2. In protected mode:

The base fixup value (FBVAL) is defined as the segment selector
of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the TAR­
GET from the start of the FRAME specified in the fixup. This
offset must be ;::: 0 and :::; the maximum segment size implied by the
segment selector for the FRAME; that is, (2**16)-1 for 80286 seg­
ments and 16-bit 80386 segments, or (2**32)-1 for 32-bit 80386
segments.

The fixup values for BASE and OFFSET are applied to the LOCATION
as follows:

1. If the LOCATION is a BASE or a POINTER, then FBVAL is
stored in the BASE component of the LOCATION.

2. If the LOCATION is a POINTER, or a 16- or 32-bit OFFSET, or a
LOBYTE, then the offset fixup value (FOVAL) is added to the
existing contents of the OFFSET component of the LOCATION
ignoring any overflow.

7-20 C User's Guide

Segment-Relative Fixups

3. If the LOCATION is a HIBYTE, then FOVAL is divided by 256
and the result is added to the LOCATION, ignoring overflow.

Object and Executable File F armats 7-21

I

I

Record Order

Record Order
An object code file must contain a sequence of one or more modules or a
library containing zero or more modules. A module is defined as a collec­
tion of object code defined by a sequence of object records. The follow­
ing syntax shows the valid orderings of records to form a module. In
addition, the given semantic rules provide information about how to inter­
pret the record sequence.

Note

The syntactic description language used below is defined in
WIRTH: CACM, November 1977, vol.#20, no.#11, pp.#822-823.
The character strings represented by capital letters above are not
literals, but are identifiers that are further defined in the section
describing the record formats.

=tmodule
= THEADR seg-grp {component} modtail

object file
tmodule
seurP
component
data

= {LNAMES} {SEGDEF} {TYPDEFIEXTDEFIGRPDEF}
= data I debu!Lrecord
= contenCdef I thread_def I TYPDEF I PUBDEF I EXTDEF

debu!Lrecord = LINNUM
contenCdef = data_record {FIXUPP}
thread_def = FlXUPP (containing only thread fields)
data_record = LIDATA I LEDATA
modtail = MODEND

7-22 C User's Guide

(

(

\"

Record Order

The following rules apply:

• A FIXUPP record always refers to the previous DATA record.

• All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF records
must precede all records that refer to them.

• COMENT records may appear anywhere in a file, except as the first or
last record in a file or module, or within a contenCdef.

Object and Executable File F onnats 7-23

Introduction to the Record Formats

Introduction to the Record Formats
The following pages present diagrams of record formats in schematic
form. Here is a sample record format, to illustrate the various conven­
tions.

SAMPLE RECORD FORMAT

(SAMREC)

,..-------,------r- - - - - - - - - - - - -,---------,.-----,

I~I REC
TYP
xxH

RECORD
LENGTH NAME NUMBER

'--_-----' _____ --'- ___________ -L _______ .L. __ ---'.

I ¢=: repeated => I

Title and Official Abbreviation

At the top is the name of the record format described, with an official
abbreviation. To promote uniformity among various programs, including
translators and debuggers, the abbreviation should be used in both code
and documentation. The record format abbreviation is always six letters.

The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes
represent single bytes. The wide boxes represent two bytes each. The
wide dashed boxes represent a variable number of bytes, one or more,
depending upon content. The wide solid boxes represent 4-byte fields.

Rectyp

The first byte in each record contains a value between 0 and 255, indicat­
ing the record type. For records that have both 16- and 32-bit versions,
the low-order bit of the record type indicates the type: O=16-bit, 1=32 bit.

7-24 C User's Guide

Introduction to the Record Formats

Record Length

The second field in each record contains the number of bytes in the
record, exclusive of the first two fields.

Name

Any field that indicates a "NAME" has the following internal structure:
the first byte contains a number between 0 and 127, inclusive, that indi­
cates the number of remaining bytes in the field. The remaining bytes are
interpreted as a byte string.

Most translators constrain the character set to be a subset of the ASCII
character set.

Number

A 4-byte NUMBER field represents a 32-bit unsigned integer, where the
first 8 bits (least-significant) are stored in the first byte (lowest address),
the next 8 bits are stored in the second byte, and so on.

Repeated or Conditional Fields

Some portions of a record format contain a field or a series of fields that
may be repeated one or more times. Such portions are indicated by the
"repeated' , or "rpt" brackets below the boxes.

Similarly, some portions of a record format are present only if some given
condition is true; these fields are indicated by similar "conditional" or
"cond" brackets below the boxes.

Chksum

The last field in each record is a check sum, which contains the 2's com­
plement of the sum (modulo 256) of all other bytes in the record. There­
fore, the sum (modulo 256) of all bytes in the record equals o.

Object and Executable File Formats 7-25

Introduction to the Record Formats

Bit Fields

Descriptions of contents of fields will sometimes be at the bit level.
Boxes with complete vertical lines drawn through them represent bytes or
words; the partial vertical lines indicate bit boundaries; thus the byte
represented below, has three bit-fields of 3-,1-, and 4-bits.

3 bits 1 bit 4 bits

T-MODULE HEADER RECORD

(THEADR)

Every module output from a translator must have aT-MODULE
HEADER RECORD.

T-Module Name

The T-MODULE NAME provides a name for the T-MODULE.

LIST OF NAMES RECORD

(LNAMES)

I ¢=: repeated ~ I

This record provides a list of names that may be used in following SEG­
DEF and GRPDEF records as the names of Segments, Classes, and/or
Groups.

7-26 C User's Guide

Introduction to the Record Formats

The ordering of LNAMES records within a module, together with the ord­
ering of names within each LNAMES Record, induces an ordering on the
names. Thus, these names are considered to be numbered: 1, 2, 3,4, ...
These numbers are used as "Name Indices" in the Segment Name Index,
Class Name Index, and Group Name Index fields of the SEGDEF and
GRPDEF Records.

Name

NAME is a repeatable field which provides a name and which may have
zero length.

REC
TYP RECORD
98H LENGTH
99H

SEGMENT DEFINITION RECORD
(SEGDEF)

SEG
ATTR

SEGMENT s~~~~J-~~~s~;iil"KI
LENGTH NAME NAME NAME SUM

INDEX INDEX INDEX
--'------"------- ----- ----

SEGMENT INDEX values 1 through 32767, which are used in other
record types to refer to specific LSEGs, are defined implicitly by the
sequence in which SEGDEF Records appear in the object file.

In the REC TYP field, 98H and 99H describe 16- and 32-bit segments,
respectively.

Seg Attr

The SEG ATIR field provides information on various attributes of a seg­
ment, and has the following format:

FRAME
NUMBER

OFFSET

¢= conditional =>
repeat

Object and Executable File Formats 7-27

Introduction to the Record Formats

The ACBP byte contains four numbers which are the A, C, B, and P attri­
bute specifications. This byte has the following fonnat:

A C B p

"A" (Alignment) is a 3-bit subfield that specifies the alignment attribute of
the LSEG. The semantics are defined as follows:

A=O SEGDEF describes an absolute LSEG.

A= 1 SEGDEF describes a relocatable, byte-aligned LSEG.

A=2 SEGDEF describes a relocatable, word-aligned LSEG.

A=3 SEGDEF describes a relocatable, paragraph-aligned LSEG.

A=4 SEGDEF describes a relocatable, page-aligned LSEG.

A=5 SEGDEF describes a relocatable, double-word-aligned LSEG.
(386 OMF only)

If A=O, the FRAME NUMBER and OFFSET fields will be present. Using
Id, absolute segments may be used for addressing purposes only. For
example, the starting address of a ROM and the symbolic names for
addresses within the ROM may be defined in this way. Id will ignore any
data specified as belonging to an absolute LSEG.

"C" (Combination) is a 3-bit subfie1d that specifies the combination attri­
bute of the LSEG. Absolute segments (A=O) must have combination zero
(C=O). For relocatable segments, the C field encodes a number (0,1,2,4,5,6
or 7) that indicates how the segment can be combined. The interpretation
of this attribute is best given by considering how two LSEGs are com­
bined:

• Let X,Y be LSEGs, and let Z be the LSEG resulting from the com­
bination of X,Y.

• Let LX and LY be the lengths of X and Y, and let MXY denote the
maximum of LX, LY.

• Let G be the length of any gap required between the X- and Y­
components of Z to accommodate the alignment attribute of Y.

• Let LZ denote the length of the (combined) LSEG Z; let dx
(O<=dx<LX) be the offset in X of the (combined) LSEG Z; let dx
(O<=dx<LX) be the offset in X of a byte, and let dy similarly be the
offset in Y of a byte.

7-28 C User's Guide

Introduction to the Record Formats

The following table gives the length LZ of the combined LSEG Z, and the
offsets dx' and dy' in Z for the bytes corresponding to dx in X and dy in Y.
Intel additionally defines alignment types 5 and 6 and also processes code
and data placed in segment with align-type.

Combination Attribute Example

C LZ dx' dy'

2 LX+LY+G dx dy+LX+G Public

5 LX+LY+G dx dy+LX+G Stack

6 MXY dx dy Common

The table has no lines for C=O, C=I, C=3, C=4, and C=7. c=o indicates
that the relocatable LSEG may not be combined; C=1 and C=3 are
undefined. C=4 and C=7 are treated like C=2. Cl, C4, and C7 all have
different meanings according to the Intel standard.

"B" (Big) is a I-bit subfield which, if 1, indicates that the Segment
Length is exactly 2**16 (2**32 in the case of 32-bit segments). In this
case the SEGMENT LENGTH field must contain zero.

The "P" field must always be zero. The "P" field is the "Page
resident" field according to the Intel standard.

The FRAME NUMBER and OFFSET fields (present only for absolute
segments, A=O) specify the placement in MAS of the absolute segment.
The range of OFFSET is constrained to be between 0 and 15 inclusive. If
a value larger than 15 is desired for OFFSET, then an adjustment of the
FRAME NUMBER should be done.

Segment Length

The SEGMENT LENGTH field gives the length of the segment in bytes.
The length may be zero; if so, Id will not delete the segment from the
module. The SEGMENT LENGTH field is two bytes for a 16-bit segment
(Rectyp 98) and four bytes for a 32-bit segment (Rectyp 99). This is large
enough for numbers up to (2**16)-1 and (2**32)-1, respectively. The B
attribute bit in the ACBP field (see SEG ATTR section) must be used to
indicate a length of (2**16) or (2**32).

Object and Executable File F onnats 7-29

Introduction to the Record Formats

Segment Name Index

The Segment Name is a name the programmer or translator assigns to the
segment. Examples: CODE, DATA, STACK, TAXDATA,
MODULENAME_CODE. This field provides the Segment Name, by
indexing into the list of names provided by the LNAMES Record(s).

Class Name Index

The Class Name is a name the programmer or translator can assign to a
segment. If none is assigned, the name is null, and has length o. The pur­
pose of Class Names is to allow the programmer to define a "handle"
used in the ordering of the LSEGs in MAS. Examples: RED, WHITE,
BLUE; ROM FASTRAM, DISPLAYRAM. This field provides the Class
Name, by indexing into the list of names provided by the LNAMES
Record(s).

Overlay Name Index

Note

This is ignored in Id versions 2.40 and later, but supported in all ear­
lier versions. However, semantics differ from Intel semantics.

The Overlay Name is a name the translator and/or Id, at the programmer's
request, applies to a segment. The Overlay Name, like the Class Name,
may be null. This field provides the Overlay Name, by indexing into the
list of names provided by the LNAMES Record(s).

Note

The "Complete Name" of a segment is a 3-component entity
comprising a Segment Name, a Class Name, and an Overlay Name.
(The latter two components may be null.)

7-30 C User's Guide

Introduction to the Record Formats

GROUP DEFINITION RECORD

(GRPDEF)

REC
TYP
9AH

RECORD
LENGTH

INDEX DESCRIPfOR
---i~~--I~~~ I ~ I

'--------'-------'-- - - - -- -- - - - - ---- ------
I ¢= repeated ~ I

Group Name Index

The Group Name is a name by which a collection of LSEGs may be refer­
enced. The important property of such a group is that, when the LSEGs
are eventually fixed in MAS, there must exist some FRAME which "cov­
ers" every LSEG of the group.

The GROUP NAME INDEX field provides the Group Name, by indexing
into the list of names provided by the LNAMES Record(s).

Group Component Descriptor

Each GROUP COMPONENT DESCRIPTOR has the following format:

~-----------J S1 SEGMENT
(FFH) INDEX

The first byte of the DESCRIPTOR contains OFFH; the DESCRIPTOR
contains one field, which is a SEGMENT INDEX that selects the LSEG
described by a preceding SEGDEF record.

Intel defines 4 other group descriptor types, each with its own meaning.
They are OFEH, OFDH, OfBH, and OfAR. The link: editor will treat all of
these values the same as OFFH (i.e., it always expects OFFH followed by
a segment index, and it does not check to see if the value is actually OFF).

Object and Executable File Formats 7-31

Introduction to the Record Formats

TYPE DEFINITION RECORD

(TYPDEF)

REC
TYP
8EH

RECORD
LENGTH (~:~~~~~~)I~ I ~ !

'-----------''--------'-- --- ------- -- ----- ----
I ¢::: repeated => I

The link editor uses TYPDEF records only for communal variable alloca­
tion. This is not Intel's intended purpose. See "Type Representations for
Communal Variables."

As many "EIGHT LEAF DESCRIPTOR" fields as necessary are used to
describe a branch. (Every such field except the last in the record
describes eight leaves; the last such field describes from one to eight
leaves.)

TYPE INDEX values I through 32767, which are contained in other
record types to associate object types with object names, are defined
implicitly by the sequence in which TYPDEF records appear in the object
file.

Name

Use of this field is reserved. Translators should place a single byte con­
taining 0 in it (the representation of a name of length zero).

Eight-Leaf Descriptor

This field can describe up to eight Leaves.

B -----------] EN LEAF
DESCRIPTOR

I ¢::: repeated => I

The EN field is a byte: the 8 bits, left to right, indicate if the following 8
Leaves (left to right) are Easy (bit=O) or Nice (bit=l).

7-32 C User's Guide

Introduction to the Record Formats

The LEAF DESCRIPTOR field, which occurs between 1 and 8 times, has
one of the following fonnats:

129 Ot064K-l

132 0 to 16M-l

136 -2G-l to 2G-l

The first fonnat (single byte), containing a value between 0 and 127,
represents a Numeric Leaf whose value is the number given.

The second fonnat, with a leading byte containing 129, represents a
Numeric Leaf. The number is contained in the following two bytes.

The third fonnat, with a leading byte containing 132, represents a
Numeric Leaf. The number is contained in the following three bytes.

The fourth fonnat, with a leading byte containing 136, represents a
Signed Numeric Leaf. The number is contained in the following four
bytes, sign extended if necessary.

PUBLIC NAMES DEFINITION RECORD

(PUBDEF)

~~~ RECORD ~~~~~l:~~ WBUC -=-ICHKI 
L~_?_~-,-L_E_N_G_T_H----, __ ~~~~_ ~= -,--_O_FF_SE_T--,-_ ~~~~ SUM 

I {::: ......... repeated ......... => I 

This record provides a list of one or more PUBLIC NAMEs; for each one, 
three data are provided: (1) a base value for the name, (2) the offset value 
Dfthe name, and (3) the type of entity represented by the name. 

Object and Executable File F onnats 7-33 



Introduction to the Record Formats 

In the RECORD TYPE field, 90H and 91H describe 16- and 32-bit publi 
definition records, respectively. 

Public Base 

The PUBLIC BASE has the following format: 

[::~~~~:I:~~~~: I ~~ 
I¢= conditional::::}1 

The GROUP INDEX field has a format given earlier, and provides 
number between 0 and 32767 inclusive. A non-zero GROUP INDE: 
associates a group with the public symbol, and is used as described in th 
section of this chapter titled "Conceptual Framework for Fixups," cas 
(F2c). A zero GROUP INDEX indicates that there is no associated grouI 

The SEGMENT INDEX field has a format given earlier, and provides 
number between 0 and 32767, inclusive. 

A non-zero SEGMENT INDEX selects an LSEG. In this case, the loea 
tion of each public symbol defined in the record is taken as a not 
negative displacement (given by a PUBLIC OFFSET field) from the fin 
byte of the selected LSEG, and the FRAME NUMBER field must b 
absent. 

A SEGMENT INDEX of 0 (legal only if GROUP INDEX is also 0) mean 
that the location of each public symbol defined in the record is taken as 
displacement from the base of the FRAME defined by the value in th 
FRAME NUMBER field. 

The FRAME NUMBER is present if both the SEGMENT INDEX an 
GROUP INDEX are zero. 

A non-zero GROUP INDEX selects some group; this group is taken as th 
"frame of reference" for references to all public symbols defined in thi 
record; that is, Id will perform the following: 

1. Any fixup of the form: 

TARGET: EI(P) 
FRAME: TARGET 

7-34 C User's Guid 



Introduction to the Record Formats 

(where "P" is a public symbol in this PUBDEF record) will be 
converted by Id to a fixup of the fonn: 

TARGET: SI(L),d 
FRAME: GI(G) 

where "SI(L)" and "d" are provided by the SEGMENT INDEX 
and PUBLIC OFFSET fields. (The "nonnal" action would have 
the frame specifier in the new fixup be the same as in the old fixup: 
FRAME: TARGET.) 

2. When the value of a public symbol, as defined by the SEGMENT 
INDEX, PUBLIC OFFSET, and (optional) FRAME NUMBER 
fields, is converted to a {base,offset} pair, the base part will be 
taken as the base of the indicated group. If a non-negative 16-bit 
offset cannot then complete the definition of the public symbol's 
value, an error occurs. 

~ GROUP INDEX of zero selects no group. Id will not alter the FRAME 
pecification of fixups referencing the symbol, and will take, as the base 
lart of the absolute value of the public symbol, the canonic frame of the 
egment (either LSEG or PSEG) detennined by the SEGMENT INDEX 
leld. 

lublic Name 

'he PUBLIC NAME field gives the name of the object whose location in 
lIAS is made available to other modules. The name must contain one or 
lore characters. 

lublic Offset 

'he PUBLIC OFFSET field is a 16-bit value (Rectyp=90H), or a 32-bit 
alue (Rectyp=91H), which is either the offset of the Public Symbol with 
~spect to an LSEG (if SEGMENT INDEX> 0), or the offset of the Public 
ymbol with respect to the specified FRAME (if SEGMENT INDEX = 0). 

)bject and Executable File F onnats 7-35 



Introduction to the Record Formats 

Type Index 

The TYPE INDEX field identifies a single preceding TYPDEF (Ty 
Definition) Record containing a descriptor for the type of enti 
represented by the Public Symbol. This field is ignored by Id. 

EXTERNAL NAMES DEFINITION RECORD 

(EXTDEF) 

L-F_C_~---l __ ~_~_~_g_~_D_-,-:~~:I:_~i::_1 ~ I 
<= ........... repeated ........... => I 

This record provides a list of external names, and for each name, the tYJ 
of object it represents. Id will assign to each External Name the Vall 
provided by an identical Public Name (if such a name is found). 

External Name 

This field provides the name, which must have non-zero length, of ; 
external object. 

Inclusion of a Name in an External Names Record is an implicit reqm 
that the object file be linked to a module containing the same naIl 
declared as a Public Symbol. This request obtains whether or not t! 
External Name is referenced within some FIXUPP Record in the modul< 

The ordering of EXTDEF Records within a module, together with the or 
ering of External Names within each EXTDEF Record, induces an ordf 
ing on the set of all External Names requested by the module. Thl 
External Names are considered to be numbered 1, 2, 3, 4, .... The 
numbers are used as "External Indices" in the TARGET DATUM and) 
FRAME DATUM fields of FIXUPP Records to refer to a particular Extf 
nal Name. 

7-36 C User's Gui 



Introduction to the Record Formats 

Note 

8086 External Names are numbered positively: 1,2,3,... This is a 
change from 8080 External Names, which were numbered starting 
from zero: 0,1,2, ... This conforms with other 8086 Indices (Seg­
ment Index, Type Index, etc.) which use 0 as a default value with 
special meaning. 

External indices may not reference forward. For example, an external 
definition record defining the kth object must precede any record referring 
to that object with index k. 

Type Index 

This field identifies a single preceding TYPDEF (Type Definition) record 
containing a descriptor for the type of object named by the External Sym­
bol. 

The TYPE INDEX is used only in communal variable allocation by the 
link editor. 

LINE NUMBERS RECORD 

(LINNUM) 

,-----,---------,----------
REC 
TYP 
94H 
95H 

RECORD 
LENGTH 

LINE 
NUMBER 

BASE 
'------'--------------"-- - - -- - - - --

LINE 
NUMBER 

LINE 
NUMBER 
OFFSET 

I ¢:=........... repeated ........... => I 

CHK 
SUM 

This record provides the means by which a translator may pass the 
correspondence between a line number in source code and the 
corresponding translated code. 

In the RECORD TYPE field, 94H and 95H describe 16- and 32-bit line 
number records, respectively. 

Object and Executable File Formats 7-37 



Introduction to the Record Formats 

Line-Number Base 

The LINE-NUMBER BASE has the following format: 

The SEGMENT INDEX determines the location of the first byte of code 
corresponding to some source line number. 

Line-Number 

A line number between 0 and 32767, inclusive, is provided in binary by 
this field. The high-order bit is reserved for future use and must be zero. 

Line Number Offset 

The LINE-NUMBER OFFSET field is either a 16-bit value (Rectyp=94H) 
or a 32-bit value (Rectyp=95H) that is the offset of the line number with 
respect to an LSEG (if SEGMENT INDEX> 0). 

LOGICAL ENUMERATED DKI'A RECORD 

(LEDATA) 

,-------,,-------,-- ------- - -
REC 
TYP 
AOH 
AIH 

RECORD 
LENGTH 

SEGMENT 
INDEX 

'---------''--------'-- --- - - -- - -

ENUMERATED DATA 
DATA 

OFFSET 

CHK 
SUM 

This record provides contiguous data from which a portion of an 8086 
memory image may be constructed. 

In the RECORD TYPE field, AOH and AIH describe 16- and 32-bit 
LEDATA records, respectively. 

7-38 C User's Guide 



Introduction to the Record Formats 

Segment Index 

This field must be non-zero and specifies an index relative to the SEG­
MENT DEFINITION RECORDS found previous to the LEDATA 
RECORD. 

Enumerated Data Offset 

This field specifies either a 16-bit offset (Rectype=AOH) or a 32-bit offset 
(Rectyp=AIH) that is relative to the base of the LSEG specified by the 
SEGMENT INDEX and defines the relative location of the first byte of 
the DAT field. Successive data bytes in the DAT field occupy succes­
sively higher locations of memory. 

Data 

This field provides up to 1024 consecutive bytes of relocatable or abso­
lute data. 

LOGICAL ITERIITED DATA RECORD 

(LIDATA) 

'--r-r-~----r-~-~-~-g-~-D---" ~~;~;; --'--ITE-D-~-T-~-D-r-~; I ~ I 
A3H OFFSET BLOCK 

'--_----'-____ ---L- _________ -'---____ 1- ________ _ 

1<= repeated =>1 

This record provides contiguous data from which a portion of an 8086 
memory image may be constructed. 

In the RECORD TYPE field, A2H and A3H describe 16- and 32-bit 
LIDATA records, respectively. 

Segment Index 

This field must be non-zero and specifies an index relative to the SEG­
DEF records found previous to the LIDATA RECORD. 

Object and Executable File Formats 7-39 



Introduction to the Record Formats 

Iterated Data Offset 

This field specifies either a 16-bit offset (Rectype=A2H) or a 32-bit offset 
(Rectyp=A3H) that is relative to the base of the LSEG specified by the 
SEGMENT INDEX and defines the relative location of the first byte in 
the ITERATED DATA BLOCK. Successive data bytes in the ITERATED 
DATA BLOCK occupy successively higher locations of memory. 

Iterated Data Block 

This repeated field is a structure specifying the repeated data bytes. The 
structure has the following format: 

Note 

The link editor cannot handle LIDATA records whose ITERATED 
DATA BLOCK is larger than 512 bytes. 

Repeat ~ount 

This field specifies the number of times that the CONTENT portion of 
this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT 
must be non-zero. 

Block Count 

This field specifies the number of ITERATED DATA BLOCKS that are to 
be found in the CONTENT portion of this ITERATED DATA BLOCK. If 
this field has value zero, then the CONTENT portion of this ITERATED 
DATA BLOCK is interpreted as data bytes. If non-zero, then the CON­
TENT portion is interpreted as that number of ITERATED DATA 
BLOCKs. 

7-40 C User's Guide 



Introduction to the Record Formats 

Content 

This field may be interpreted in one of two ways, depending on the value 
of the previous BLOCK COUNT field. 

If BLOCK COUNT is zero, then this field is a I-byte count followed by 
the indicated number of data bytes. 

If BLOCK COUNT is non-zero, then this field is interpreted as the first 
byte of another ITERATED DATA BLOCK. 

Note 

From the outermost level, the number of nested ITERATED DATA 
BLOCKS is limited to 17, i.e., the number of levels of recursion is 
limited to 17. 

FlXUP RECORD 

(FIXUPP) 

I ¢:= repeated ::} I 

This record specifies 0 or more fixups. Each fixup requests a modification 
(fixup) to a LOCATION within the previous DATA record. A data record 
may be followed by more than one fixup record that refers back to it. 
Each fixup is specified by a FIXUP field that specifies four data: a loca­
tion, a mode, a target, and a frame. The frame and the target may be 
specified totally within the FIXUP field, or may be specified by reference 
to a preceding THREAD field. 

A THREAD field specifies a default target or frame that may subse­
quently be referred to in identifying a target or a frame. Eight threads are 
provided: four for frame specification and four for target specification. 
Once a target or frame has been specified by a THREAD, it may be 
referred to by following FIXUP fields (in the same or following FIXUPP 
records), until another THREAD field with the same type (TARGET or 
FRAME) and Thread Number (0 - 3) appears (in the same or another FIX­
UPP record). 

Object and Executable File Formats 7-41 



Introduction to the Record Formats 

In the RECORD TYPE field, 9CH and 9DH describe 16- and 32-bit FIX­
UPP records, respectively. 

Thread 

THREAD is a field with the following fonnat: 

TRD I ~ ~ ~ ~ ~~~~~ ~ ~ ~ ~ ~ ] 
I ~ conditional ==> I 

The TRD DAT (ThReaD DATa) subfield is a byte with this internal struc­
ture: 

o D Z METHOD THRED 

The "Z" is a I-bit subfield, currently without any defined function, that is 
required to contain 0. 

The "D" subfield is one bit that identifies what type of thread is being 
specified. If D=O, then a target thread is being defined; if D=I, then a 
frame thread is being defined. 

METHOD is a 3-bit subfield containing a number between ° and 3 (D=O) 
or a number between ° and 6 (D=I). 

If D=O, then METHOD = (0, 1, 2, 3,4, 5, 6, 7) mod 4, where the 0, ... , 7 
indicate methods TO, ... , T7 of specifying a target. Thus, METHOD indi­
cates what kind of INDEX or FRAME NUMBER is required to specify 
the target, without indicating if the target will be specified in a primary or 
secondary way. Note that methods 2b, 3, and 7 are not supported by Id. 

lfD=I, then METHOD = 0,1,2,4,5, corresponding to methods FO, ... , of 
specifying a frame. Here, METHOD indicates what kind (if any) of Index 
is required to specify the frame. Note that methods 3 and 5d are not sup­
ported by Id. 

THRED is a number between ° and 3, and associates a Thread Number to 
the frame or target defined by the THREAD field. 

7-42 C User's Guide 



Introduction to the Record Formats 

INDEX contains a Segment Index, Group Index, or External Index 
depending on the specification in the METHOD subfield of the TRD field. 
This subfield will not be present if F4 or F5 are specified by METHOD. 

Fixup 

FIXUP is a field with the following format: 

~_L_O_C_I\._T_-,-_6_~_T----,I_:: ~~:: I:: ~~~~:: 1;~~~~~~~ 
I ¢= conditional => I ¢= conditional => I ¢= conditional => I 

LOCAT is a byte pair with the following format: 

¢::=......... 10 byte ......... ~ I ¢::=......... hi byte ......... ~ 

LOC DATA RECORD OFFSET 

M is a I-bit subfield that specifies the mode of the fixups: self-relative 
(M=O) or segment-relative (M=1). 

Note 

Self-Relative fixups may not be applied to LIDATA records. 

LOC is a four-bit subfield indicating the type of location that is to be 
fixed up: 

Object and Executable File Formats 7-43 



Introduction to the Record Formats 

0 8 bit lobyte 
1 16 bit offset 
2 16 bit base 
3 32 bit pointer 
4 8 bit hibyte 
5 16 bit offset (linker resolved) 
9 32 bit offset 
11 48 bit pointer 
13 32 bit offset (linker resolved) 

LOC values 9, 11, and 13 are only valid in 32-bit FIXUPP records (record 
type 9D). All values not mentioned are invalid. 

The DATA RECORD OFFSET is a number between 0 and 1023, 
inclusive, that gives the relative position of the lowest order byte of 
LOCATION (the actual bytes being fixed up) within the preceding DATA 
record. The DATA RECORD OFFSET is relative to the first byte in the 
data fields in the DATA RECORDs. 

Note 

It is possible for the value of DATA RECORD OFFSET to designate 
a "location" within a REPEAT COUNT subfield or a BLOCK 
COUNT subfield of the ITERATED DATA field. Such a reference 
is an error. The action of Id on such a malformed record is 
undefined. 

FIX DAT is a byte with the following format: 

FRAME 

Note 

Frame method 2b, F3, and F5d are not supported. Target method T3 
and T7 are not supported. 

7-44 C User's Guide 



Introduction to the Record Formats 

F is a I-bit subfield that specifies whether the frame for this FIXUP is 
specified by a thread (F=I) or explicitly (F=O). 

FRAME is a number interpreted in one of two ways as indicated by the F 
bit. If F is zero, FRAME is a number between 0 and 5 and corresponds to 
methods FO, ... , F5 of specifying a FRAME. If F=l, then FRAME is a 
thread number (0-3). It specifies the frame most recently defined by a 
THREAD field that defined a frame thread with the same thread number. 
(Note that the THREAD field may appear in the same, or in an earlier 
FIXUPP record.) 

"T" is a I-bit subfield that specifies whether the target specified for 
this fixup is defined by reference to a thread (T=l), or is given explicitly 
in the FIXUP field (T=O). 

"P" is a I-bit subfield that indicates whether the target is specified in a 
primary way (requires a TARGET DISPLACEMENT, P=O) or specified in 
a secondary way (requires no TARGET DISPLACEMENT, P=l). Since a 
target thread does not have a primary/secondary attribute, the P bit is the 
only field that specifies the primary/secondary attribute of the target 
specification. 

TARGT is interpreted as a 2-bit subfield. When T=O, it provides a 
number between 0 and 3, corresponding to methods TO, ... , T3 or T4, ... , 
T7, depending on the value of P (P can be interpreted as the high-order bit 
of TO, ... , T7). When the target is specified by a thread (T= 1), then 
TARGT specifies a thread number (0-3). 

FRAME DATUM is the "referent" portion of a frame specification, and 
is a Segment Index, a Group Index, or an External Index. The FRAME 
DATUM subfield is present only when the frame is specified neither by a 
thread (F=O) nor explicitly by methods F4 or F5 or F6. 

TARGET DATUM is the "referent" portion of a target specification, and 
is a Segment Index, a Group Index, an External Index, or a Frame 
Number. The TARGET DATUM subfield is present only when the target 
is not specified by a thread (T=O). 

TARGET DISPLACEMENT is the displacement required by "primary" 
methods of specifying TARGETs. This field is 2 bytes long in 16-bit FIX­
UPP records (Rectyp=9CH) and 4 bytes long in 32-bit FIXUPP records 
(Rectyp=9DH). This subfield is present if P=O. 

Object and Executable File Formats 7-45 



Introduction to the Record Formats 

Note 

All these methods are described in the section of this chapter titled 
"Conceptual Framework for Fixups." 

REC 
TYP 
8AH 
8BH 

MODULE END RECORD 

(MODEND) 

RECORD MOD 
LENGTH TYP 

-----------§ START CHK 
ADDRS SUM 

-----------
I ¢::: conditional => I 

This record serves two purposes. It denotes the end of a module and indi­
cates whether the module just terminated has a specified entry point for 
initiation of execution. If the latter is true, the execution address is 
specified. 

In the RECORD TYPE field, 8AH and 8BH describe 16- and 32-bit 
MODEND records, respectively. 

Mod Type 

This field specifies the attributes of the module. The bit allocation and 
associated meanings are as follows: 

7 -46 C User's Guide 



Introduction to the Record Formats 

MATTR is a 2-bit subfield that specifies the following module attributes: 

MATTR MODULE ATTRIBUTE 

o Non-main module with no START ADDRS 

1 Non-main module with START ADDRS 

2 Main module with no START ADDRS 

3 Main module with START ADDRS 

"L" indicates whether the START ADDRS field is interpreted as a logi­
cal address that requires fixing up by Id (L=l). Note that with Id, L 
must always equal 1. 

"z" indicates that this bit has not currently been assigned a function. 
These bits are required to be zero. 

Physical start addresses (L=O) are not supported. 

The START ADDRS field (present only if MATTR is 1 or 3) has the fol­
lowing format: 

STARTADDRS 

I ~~~ I ::~~~::I::~~~:: DIsl~&~NT 
I ¢::: conditional => I ¢::: conditional => I ¢::: conditional => I 

The starting address of a module has all the attributes of any other logical 
reference found in a module. The mapping of a logical starting address to 
a physical starting address is done in exactly the same manner as mapping 
any other logical address to a physical address as specified in the discus­
sion of fixups and the FIXUPP record. The above subfields of the START 
ADDRS field have the same semantics as the FIX DAT, FRAME 
DATUM, TARGET DATUM, and TARGET DISPLACEMENT fields in 
the FlXUPP record. Only' 'primary" fixups are allowed. Frame method 
F4 is not allowed. 

The TARGET DISPLACEMENT field is 2 bytes in a 16-bit MODEND 
record (Rectyp=8AH) and 4 bytes in a 32-bit MODEND record 
(Rectyp=8BH). 

Object and Executable File Formats 7-47 



Introduction to the Record Formats 

COMMENT RECORD 

(COMENT) 

REC RECORD COMMENT 
TYP LENGTH TYPE 
88H 

-----------E] CHK 
COMMENT SUM 

- ... -.-.-.---

This record allows translators to include comments in object text. 

Comment Type 

This field indicates the type of comment carried by this record. This 
allows comments to be structured for those processes that wish to selec­
tively act on comments. The format of this field is as follows: 

NP NL Z Z Z Z ~ 
COMMENT 

CLASS 

The NP (NOPURGE) bit, if 1, indicates that it is not able to be purged by 
object file utility programs which implement the capability of deleting 
COMENT record. 

The NL (NOLIST) bit, if 1, indicates that the text in the COMMENT field 
is not to be listed in the listing file of object file utility programs which 
implement the capability of listing object COMMENT records. In the 
above diagram, "Z" indicates no value and must equal zero. 

The COMMENT CLASS field is defined as follows: 

o Language translator comment. 

1 Intel copyright comment. The NP bit must be set. 

2-155 Reserved for Intel use. (See Note 1 below.) 

156-255 Reserved for users. Intel products will apply no 
semantics to these values. (See Note 2 below.) 

7 -48 C User's Guide 



Introduction to the Record Formats 

NOTES: 

1. Class value 159 is used to specify a library to add to the link 
editor's library search list. The comment field will contain the 
name of the library. Note that unlike all other name specifications, 
the library name is not prefixed with its length. Its length is deter­
mined by the record length. 

2. Class value 156 is used to specify a DOS level number. When the 
class value is 156, the comment field will contain a two-byte 
integer specifying a DOS level number. 

3. Class value 161 is used to indicate that the module contains UNIX 
System V extensions to OMF, such as the various 32-bit record 
types. 

Comment 

This field provides the commentary information. 

Object and Executable File Formats 7-49 



Numeric List of Record Types 

Numeric List of Record Types 

*6E RHEADR *92 LOCSYM 

*70 REGINT *93 MLOC386 

*72 REDATA 94 LINNUM 

*74 RIDATA 95 MLIN386 

*76 OVLDEF 96 LNAMES 

*78 ENDREC 98 SEGDEF 

*7A BLKDEF 99 MSEG386 

*7C BLKEND 9A GRPDEF 

*7E DEBSYM 9C FIXUPP 

80 THEADR 9D MFIX386 

*82 LHEADR *9E (none) 

*84 PEDATA AO LEDATA 

*86 PIDATA Al MLED386 

88 COMENT A2 LIDATA 

8A MODEND A3 MLID386 

8B H386END *A4 LIBHED 

8C EXTDEF *A6 LIBNAM 

8E TYPDEF *A8 LIBLOC 

90 PUBDEF *AA LIBDIC 

91 MPUB386 

Note 

The record types marked with an asterisk are not supported by the 
link editor. They will be ignored if they are found in an object 
module. 

7-50 C User's Guide 



Type Representations for Communal Variables 

Type Representations for Communal 
Variables 
This section defines the UNIX System V standard for communal variable 
allocation on the 8086 and 80286. 

A communal variable is an uninitialized public variable whose final size 
and location are not fixed at compile time. Communal variables are simi­
lar to FORTRAN common blocks in that if a communal variable is 
declared in more than one object module being linked together, then its 
actual size will be the largest size specified in the several declarations. In 
the C language, all uninitialized public variables are communal. The fol­
lowing example shows three different declarations of the same C commu­
nal variable: 

char foo [4]; 
char foo [1]; 
char foo [1024] ; 

/* In file a.c */ 
/* In file h.c */ 
/* In file c.c */ 

If the objects produced from a.c, b.c, and c.c are linked together, then the 
linker will allocate 1024 bytes for the char array "foo." 

A communal variable is defined in the object text by an external 
definition record (EXTDEF) and the type definition record (TYPDEF) to 
which it refers. 

The TYPDEF for a communal variable has the following format: 

REC RECORD 
TYP LENGTH 0 
8EH 

-----------f:] EIGHT LEAF CHK 
DESCRIPTOR SUM 

-----------

The EIGHT LEAF DESCRIPTOR field has the following format: 

[3---------------J EN LEAF 
DESCRIPTOR 

---------------

Object and Executable File Formats 7-51 



Type Representations for Communal Variables 

The EN field specifies whether the next 8 leaves in the LEAF DESCRIP­
TOR field are EASY (bit = 0) or NICE (bit = 1). This byte is always zero 
for TYPDEFS for communal variables. 

The LEAF DESCRIPTOR field has one of the following two formats. 
The format for communal variables in the default data segment (near 
variables) is as follows: 

~ __ L-_---''-:: ~~~~:: I:: ;~~:: ] 
I <= optional => I 

The VAR TYP field may be either SCALAR (7BH), STRUCT (79H), or 
ARRAY (77H). The VAR SUBTYP field (if any) is ignored by Id.The 
format for communal variables not in the default data segment (far vari­
ables) is as follows: 

FAR 
6tH 

VAR 
TYP 
77H INDEX 

~i~~~i I -;;L~;;;-] 
~ __ L-_---''-_ _ _ _ _ _ _ _ _ _ _ _ _________ _ 

The VARiable TYPe field must be ARRAY (77H). The length field 
specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE 
INDEX is an index to a previously defined TYPDEF whose format is that 
of a near communal variable. 

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS 
fields is the same as the format for the LEAF DESCRIPTOR field, 
described in the TYPDEF record format section of this chapter. 

Link Time Semantics 

All EXTDEFs referencing a TYPDEF of the previously described formats 
are treated as communal variables. All others are treated as externally 
defined symbols for which a matching public symbol definition (PUB­
DEF) is expected. A PUBDEF matching a communal variable definition 
will override the communal variable definition. 1\vo communal variable 
definitions are said to match if the names given in the definitions match. 
If two matching definitions disagree as to whether a communal variable is 
near or far, the linker will assume the variable is near. 

7-52 C User's Guide 



Type Representations for Communal Variables 

If the variable is near, then its size is the largest specified for it. If the 
variable is far, then the link editor issues a warning if there are conflicting 
array element size specifications; if there are no such conflicts, then the 
variable's size is the element size times the largest number of elements 
specified. The sum of the sizes of all near variables must not exceed 64K 
bytes. The sum of the sizes of all far variables must not exceed the size 
of the machine's addressable memory space. 

"Huge" Communal Variables 

A far communal variable whose size is larger than 64K bytes will reside 
in segments that are contiguous (8086) or have consecutive selectors 
(80286). No other data items will reside in the segments occupied by a 
huge communal variable. 

If the linker finds matching huge and near communal variable definitions, 
it issues a warning message, since it is impossible for a near variable to 
be larger than 64K bytes. 

Object and Executable File Formats 7-53 



The Segmented x.out Format 

The Segmented x.out Format 
This section describes the executable object file fonnat used in XENIX 
System V and in UNIX System V when the -xenix option is used. The for­
mat used is an extension to the existing x.out fonnat, specifically 
enhanced for the segmented architecture of the 286 CPU. Note that x.out 
is a name for the fonnat of the file, the actual executable file will be 
called a.out by default. 

The UNIX System V linker (lbin/ld, see the "Linking with the cc Com­
mand" chapter) will link the Intel 86 Relocatable Object Module Fonnat 
into the executable fonnat described in this section. 

The UNIX System V product supports a subset of segmented OMF. Other 
parts are specified here for use by other vendors, and to reserve their 
meaning for possible future use. Those parts supported in this release of 
UNIX System V are: 

• The x.out header 

• The x.out extended header 

• The file segment table 

• Multiple non-iterated text segments 

• Multiple non-iterated data segments 

• Symbol table segments in the fonnat described herein 

Note specifically that the machine-dependent table is not supported. The 
iterated text/data feature is supported by the kernel, but the UNIX System 
V linker will expand iterated records. 

General Description of x.out 

The following is a general description of the x.out object file fonnat, 
extended to handle segmentation. It implements iterated text and data 
segments, huge, large, middle, and small model, as well as block align­
ment to improve the efficiency of loading executable files. 

7-54 C User's Guide 



The Segmented x.out Format 

Note 

The default file name produced by the linker is a.out regardless of 
the actual file format used. Any mention of x.out in this guide is 
referring only to the format of OMP executable files. 

The extensions to the existing format consist of adding a file segment 
table that describes and points to various (possibly block-aligned) file 
segments. A file segment may contain a memory image, may indicate 
how to construct a memory image (iterated text or data), or may contain 
symbols or other non-executable information. In addition to the file seg­
ment table, there is an optional machine-dependent table. 

The header must be first item in the object file, and the extended header 
must immediately follow the header. The extended header indicates the 
segment and (optional) machine-dependent tables' sizes and positions. 
Although the segment table is not block aligned, individual entries will 
line up on a multiple of 32 bytes (the size of a segment table entry). The 
segment table indicates the sizes and positions of the remaining file seg­
ments. The file segments may be aligned on a boundary that is a multiple 
of 512 bytes, with that multiple stored in the extended header, or at loca­
tion zero if the file segments are not block aligned. 

The segment table is an array of records describing the file segments, 
each containing: 

• A segment type: text, data, symbols, etc. 

• Segment attributes, specific to the type of segment. 

• A file pointer to the (possibly iterated) text/data for this segment. 

• A physical size, the size of the segment in the file. 

• A virtual size, the size the segment will occupy in memory. 

• A location counter, this segment's current base address, usually O. 

A sample of a segment table entry is shown below. The xs fields in this 
data structure are referred to throughout the remaining discussion in this 
section. 

Object and Executable File Formats 7-55 



The Segmented x.out Format 

Segment table entry 

struct xseg { 

}; 

unsigned shortxs_type; 
unsigned short xs_attr; 
unsigned short xs_seg; 
unsigned short xs_sres; 
long xs_filpos; 
long xs-psize; 
long xs_ vsize; 
long xSJbase; 
long xs_Ires; 
long xs_Ires2; 

/* x.out segment table entry * / 
/* segment type */ 
/* segment attributes * / 
1* segment number */ 
1* unused */ 

/* file position * / 
1* physical size (in file) */ 
1* virtual size (in core) */ 
/* relocation base address * / 
/* unused */ 
/* unused */ 

The segment table is a contiguous array of the above structures. Each file 
segment has a corresponding segment table entry that describes the 
segment's position xs ylpos and physical size xs ysize in the file. If there 
is no associated file segment, both fields must be set to zero. 

The kernel's local descriptor table (LDT) can be built from the virtual 
size, the segment type, and segment attribute fields. 

Example of File Layout 

This section provides an example of the layout of an x.out file where: 

• The segment table has two entries (segments). 

• The file page size is 512 bytes. 

• Both file segments are smaller than 512 bytes. 

• The second file segment contains iterated data. 

Accessing the machine-dependent table and the file segment table must 
always be done through the absolute file pointers in the extended header. 
The ordering of the two tables and file segments shown above is not 
required to be consistent with the x.out UNIX System V specification. 

Iterated Segments 

The data structure for an iterated segment is shown below: 

7-56 C User's Guide 



The Segmented x.out Format 

struct xiter { 
long 
long 
long 

}; 

xi size; /* byte count */ 
xi-rep;/* replication count */ 
xi=offset; /* destination offset in segment */ 

If the segment contains iterated text/data (indicated by a bit in the xs _ aftr 
field), the xs Jt,lpos field is the file position of some number of iteration 
records mixed with the text/data to be iterated. If any part of a segment is 
iterated, then all of that segment is represented as iterated; non-iterated 
portions may be represented by an iteration record with a replication 
count of one. 

The format of the text/data to be iterated is: 

<iteration record> <text/data> <iteration record> <text/data> ... 

where each <iteration record> is of the above "struct xiter" data struc­
ture. Each iteration record is followed by xi size bytes of text/data that 
are to be placed in the current segment at fue specified offset xi_offset 
xi Jep times. When xs ysize bytes of iteration records and text/data have 
been expanded, the iteration is complete. 

Under UNIX System V, areas of memory that are initialized by more than 
one iteration record will have the contents of those memory areas 
undefined. Areas of memory that are not initialized by any iteration 
records will be zeroed out. An iteration byte count xi_size of zero will 
not result in any iteration. Portions of a segment that are to be bss sec­
tions should use an iteration record with a non-zero byte count and repli­
cate one or more zeroed data bytes. For more information on bss sec­
tions, see the chapter on the Common Object File Format in this book. 

This representation of iterated text/data will handle iterations that contain 
very large replication counts and/or very large non-iterated sizes. 

Non-Iterated Segments and Implicit bss 

If the iteration bit in xs aUr is not set, no iterations are required to initial­
ize the segment. If the implicit bss bit in the xs _ attr field is set and the 
virtual size is greater than the physical size, then the rest of the segment 
(up to xs vsize bytes) is filled with zeros by the kernel loader. This impli­
cit bss definition means that small and middle model executables' single 
data segments may still contain unexpanded bss without the use of 
explicit iteration records. 

Object and Executable File Formats 7-57 



The Segmented x.out Format 

Segments made up entirely of implicit "c" bss need only set the physical 
size to zero, and set the implicit bss bit. This eliminates the need for any 
file segment containing data or iteration records. If there are no iterations 
and no implicit bss, the virtual size of the segment xs vsize must be the 
same as the physical size xs ysize, and a single copy of the text/data 
located at xs Jtlpos is all that is required to initialize the segment. 

Large Model 

With x.out format, large model is supported by allowing multiple logical 
text and/or data segments. Middle and small models are simpler cases, 
with perhaps single logical segments for data (or both text and data). 
Iterated segments are independent of memory model. 

Special Header Fields 

The model bits in the x renv field of the main header, XE_LDATA and 
XE_LTEXT, usually indicate the default size of data and text pointers used 
in the executable code. The kernel depends on these two bits to indicate 
the size of data and text pointers passed in system calls. However, since 
multiple segments are allowed in small and middle model, there can be 
little other meaning attached to these bits. Passing near data and/or text 
pointers implies use of the first data and text segments, respectively. 

Also in the x renv field, the absolute bit, XE_ABS, identifies a standalone 
executable file. When this bit is set, the extended header stack size field 
is used as the default physical load address. The UNIX System V kernel 
loader will not load a binary if the XE_ABS bit is set. The UNIX System 
V boot loader will not load a binary unless the XE_ABS bit is set. See the 
manual page on Id(CP) for information about how to set the XE_ABS bit 
and the physical load address. 

Symbol Table 

The data structure for the x.out symbol table is shown below: 

7-58 C User's Guide 



The Segmented x.out Format 

struct sym { /* x.out symbol table entry */ 
unsigned short s type; 
unsigned shorts-seg; 
long - s_value; 

}; 

The symbol table differs from the previous x.out format only in that the 
s _seg field now holds the selector of the segment that defines the symbol. 
If the symbol is absolute, the value field holds the symbol's value; other­
wise, it holds the offset in the indicated segment to which the symbol 
refers. 

The symbol name trails the above "struct sym" data structure in the form 
of a null terminated string. The type field values are defined in 
lusrlinclude/ sys/re/sym.h. 

The use of the xs seg field in the segment table is undefined for symbol 
table segments. Its use may be defined by the particular symbol table for­
mat used. 

UNIX System V Executable Format 

UNIX System V does not execute binaries that make use of selectors 
below Ox3f or selectors that do not have the low 3 bits set (LDT, ring 3). 
UNIX System V also requires that the first data selector be after the last 
text selector. Binaries are allowed to have zero length segments or 
"holes" (unused selectors) in text or data, but holes in text may not con­
tain data selectors, and holes in data may not contain text selectors. 

The fields, xext.xe eseg :xexec.x entry, must contain the initial cs:ip 
addresses of the user process. cs:ip are the addresses of the starting seg­
ments of the program to be run. 

Small-model impure binaries (text and data combined into a single seg­
ment) must have a single file segment, of type data, with a selector of at 
least Ox47. It must contain all text, followed by all data, followed by bss. 
The sizes of each must be stored in the x text, x data, and x bss fields of 
the main header. UNIX System V uses the value stored in the 
xext.xe eseg field as the text selector, which must be at least Ox3f and 
less than the data selector. All text/data/bss binaries are executable 
through the text selector, and all text/data/bss binaries are readable and 
writable through the data selector. UNIX System V maps the text selector 
to the same memory as the data selector. 

Object and Executable File Formats 7-59 



The Segmented x.out Format 

In addition to the above, the linker, Id, generates binaries that confonn to 
the following: 

• Text selectors start at Ox3f. 

• Data selectors start at the first free selector past text. 

• All text selectors are contiguous. 

• All data selectors are contiguous. 

• Small-model impure binaries confonn to the above specification, 
with Ox47 as the data selector. In the symbol table, the selector 
Ox47 is associated with data symbols, and the selector Ox3fis asso­
ciated with text symbols, to allow adb and nm to present con­
sistent data to the user. 

Selected Portions of Include Files 

The following are selected portions of the usrlincludelsyslx.out.h and 
usrlincludel syslrelsym.h include files: 

struct xexec { 

}; 

7-60 

1* x.out header *1 
unsigned shortx magic; 

1* magic-number *1 
unsigned short x ext; 

long 

long 

long 

long 

long 

long 

1* size of header extension *1 
x text; 

1* size of text segment *1 
x data; 

1* size of initialized data *1 
x bss; 

1* size of uninitialized data *1 
x syms; 

1* size of symbol table *1 
x reloc; 

1* relocation table length *1 
x entry; 

1* entry-offset, see xe_eseg *1 
char x cpu; 

1* cpu tYPe & bytelword order *1 
char x relsym; 

1* relocation & symbol format *1 
unsigned short x renv; 

/* run-dine environment */ 

C User's Guide 



The Segmented x.out Format 

struct xext { 

} ; 

/* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/ 

/* x.out header extension */ 
long xe trsize; 

long 

long 

long 

long 

long 

long 

long 

long 

char 

/* size of text relocation */ 
xe drsize; 

/* size of data relocation */ 
xe drsize; 
/*-size of data relocation */ 
xe dbase; 

/* data relocation base */ 
xe stksize; 

/* stack size (if XEJS set) */ 
xe segpos; 

/* segment table position */ 
xe segsize; 

/* segment table size */ 
xe mdtpos; 

/* machine dependent table position */ 
xe mdtsize; 

/* machine dependent table size */ 
xe mdttype; 

/* machine dependent table type */ 
char xe-F6gesize; 

/* file pagesize, in multiples of 512 */ 
char xe ostype; 

/* operatIng system type */ 
char xe oSllers; 

/* operatIng system version */ 
unsigned shortxe eseg; 

/* entry segment (hardware dependent) */ 
unsigned shortxe sres; 

/ * reserved * / 

Definitions for xexec.x_renv (short). 

vv version compiled for 
xx extra (zero) 
s set if segmented x.out 
a set if absolute (set up for physical address) 
i set if segment table contains iterated text/data 
h set if huge model data 
f set if floating point hardware required 
t set if large model text 
d set if large model data 
0 set if text overlay 
f set if fixed stack 
p set if text pure 
s set if separate I & D 
e set if executable 

Object and Executable File F orrnats 7-61 



The Segmented x.out Format 

#define XE V2 Ox4000 
/* up to and including 2.3 */ 

#define XE V3 Ox8000 
/* after version 2.3 */ 

#define XE VERS OxcOOO 
/* version mask */ 

#define XE SEGOx0800 
/* Segment table present * / 

#define XE ABSOx0400 
/* ~solute memory image (standalone) */ 

#define XE ITER Ox0200 
/* Iterated text/data present */ 

#define XE HDATA OxOlOO 
/* huge model data */ 

#define XE FPHOx0080 
/* floating point hardware required */ 

#define XE LTEXT Ox0040 
/* large model text */ 

#define XE illATA Ox0020 
/* large model data */ 

#define XE OVER OxOOIO 
/* text overlay * / 

#define XE FS Ox0008 
/* fixed stack */ 

#define XE PURE Ox0004 
/* pure text */ 

#define XE SEPOx0002 
/* separate I & 0 */ 

#define XE EXEC OxOOOl 
/* executable */ 

struct xseg { 

}; 

7-62 

/* x.out segment table entry */ 
unsigned short xs type; 

/* segment type */ 
unsigned shortxs attr; 

/* segment attributes */ 
unsigned shortxs seg; 

/* segment number */ 
unsigned shortxs sres; 

/* unused-*/ 
long xs filpos; 

/* file pOsition */ 
long xs psize: 

/* physical size (in file) 
long xs vsize: 

/* virtual size (in cere) 
long xs rbase; 

/* relocation base address 
long xs Ires; 

/* unused-*/ 
long xs lres2; 

/* unused-*/ 

*/ 

*/ 

*/ 

C User's Guide 



The Segmented x.out Format 

struct xiter { 

} ; 

/* x.out iteration record */ 
long xi size; 

long 

long 

/* byte count */ 
xi rep; 

/* * of repetitions */ 
xi offset; 

/* destination offset in segment */ 

struct sym { 
/* x.out symbol table ent:ry */ 
unsigned short s type; 
unsigned short s - seg; 
long s=value; 

}; 

/* 
* Definitions for xe_mdttype 
*/ 

*defineXE MDTNONE 0 
/*-no machine dependent table */ 

*defineXE MDT286 1 
/*-iAPX286 LDT */ 

/* 
* Definitions for xe_ostype 
*/ 

*defineXE OSNONE 0 
*defineXE-OSUNIX System V 1 

/*-UNIX System V */ 
*defineXE OSRMX 2 

/*-iRMX */ 

/* 
* Definitions for xe osvers 
*/ 

#defineXE OSXV3 1 
/*-UNIX System V */ 

/* 
* 
* 

Definitions for xs type: 
Values from 64 to 127 are reserved. 

*/ 
*defineXS TNULL 
#defineXS-TTElIT 
*defineXS-TDATA 
*defineXS-TSYMS 
#defineXS-TREL4 

o 
1 
2 
3 

/* unused segment */ 
/* text segment * / 
/* data segment */ 
/* symbol table segment */ 
/* relocation segment */ 

Object and Executable File F onnats 7-63 



The Segmented x.out Format 

/* 
* Definitions for xs attr: 

* 
* 
* 

The top bit is-set if the file segment represents 
a memory image. The other 15 bits' definitions 
depend on the type of file segment. 

*/ 
#define XS AMEM Ox8000 

/* segment represents a memory image */ 
#define XS AMASK Ox7fff 

/* type specific field mask */ 

/* 
* 
* 
* 

Definitions for xs attr, built by or'ing the following 
bit patterns: these values are valid for XS TIEXT and 
XS_TD~ file segments only. -

*/ 
#define XS AlTER OxOOOl 

/* Contains iteration records */ 
#define XS AHUGE Ox0002 

/* Contains huge element */ 
#define XS ABSS Ox0004 

/* contains implicit bss */ 
#define XS AFORE Ox0008 

/* is read-only, may be shared */ 
#define XS AEIlOWN OxOOlO 

/* segment expands downward * / 

/* 
* Definitions for xs attr. 
* These values are valid for XS_TSYMS file segments only. 
*/ 

#define XS SXSEG OxOOOl 
/* x.out segmented format */ 

When using the xs seg field, note that if the XS_AMEM bit is set in the 
xs _ attr field, the fife segment represents a memory image, and the value 
placed in this field should be the segment number as used by the hardware 
to reference the segment. This is the actual value placed in the segment 
register. For the 286, it is simply an LDT selector (under UNIX System V, 
if the privilege level is not 3, the file will not be executed). Otherwise the 
segment is not a memory image, and the contents of the field are not 
defined. File segments other than memory images may define and use 
this field as needed. 

There are two bits in the xexec.x cpu field that are used to indicate the 
CURRENT byte and word ordering of the non-character data fields of the 
header, extended header, segment table, and symbol table. These bits, 
XC_BSW AP and XC_WSW AP, do not indicate the byte and word ordering 
of the target CPU, XCCPU. 

The segment table is not block aligned. No individual segment table 
entry may straddle a block boundary. 

7-64 C User's Guide 



Chapter 8 

C Language Compatibility 
with Assembly Language 

Introduction 8-1 

C Calling Sequence for 8086/80286 8-2 

Entering an 8086/80286 Assembly Routine 8-3 

8086/80286 Return Values 8-4 

Exiting an 8086/80286 Routine 8-5 

8086/80286 Program Example 8-6 

80386 C-Language Calling Sequence 8-7 

Entering an 80386 Assembly-Language Routine 8-8 

80386 Return Values 8-9 

Exiting an 80386 Routine 8-11 

80386 Program Example 8-12 





Introduction 

Introduction 
This chapter explains how to use 8086/286/386 assembly-language rou­
tines with C-Ianguage programs and functions. In particular, it explains 
how to call assembly-language routines from C-Ianguage programs and 
how to call C-Ianguage functions from an assembly-language routine. 

This assembly-language interface is especially useful for those 
assembly-language programmers who wish to use the functions of the 
standard C library and other C libraries. 

Note 

Two different calling conventions are available. The 8086/80286 
calling convention is established by configuring C-Ianguage pro­
grams with the -MO, -Mi, or -M2 option. The 80386 calling con­
vention is established by configuring C-Ianguage programs with the 
-M3 option. 

C Language Compatibility with Assembly Language 8-1 



C Calling Sequence for 8086/80286 

C Calling Sequence for 8086/80286 
To receive values from C-Ianguage function calls or to pass values to C 
functions, assembly-language routines must follow the C argument pass­
ing conventions. C-language function calls pass their arguments to the 
given functions by pushing the value of each argument onto the stack. 
The call pushes the value of the last argument first and the first argument 
last. If an argument is an expression, the call computes the expression's 
value before pushing it onto the stack. 

Arguments with char, int, or unsigned type occupy a single word (16 
bits) on the stack. Arguments with long type occupy a double word (32 
bits) with the value's high-order word occupying the first word pushed 
onto the stack. Arguments with float type are converted to double type 
(64 bits). Note that char type arguments are zero-extended to int type 
before being pushed on the stack. 

If an argument is a structure, the function call pushes the last word of the 
structure first and each successive word in tum until the first word is 
pushed. 

After a function returns control to a routine, the calling routine is respon­
sible for removing arguments from the stack. 

8-2 C User's Guide 



Entering an 8086/80286 Assembly Routine 

Entering an 8086/80286 Assembly 
Routine 
Assembly-language routines that receive control from C function calls 
should preserve the contents of the BP, SI, and DI registers and set the 
BP register to the current SP register value before proceeding with their 
tasks. The following example illustrates the recommended instruction 
sequence for entry to an assembly-language routine: 

entry: 
push 
mov 
push 
push 

bp 
bp,sp 
di 
si 

This is the same sequence used by the C compiler. 

If this sequence is used, the last argument passed by the function call 
(which is also the first argument given in the call's argument list) is at 
address "[bp+4]". Subsequent arguments begin at address "[bp+6]" or 
"[bp+8]" depending on the size of the first argument. 

This sequence is strongly recommended even if the SI and DI registers 
are not modified, since it allows backtracing with the adb program during 
program debugging. 

C Language Compatibility with Assembly Language 8-3 



8086/80286 Return Values 

8086/80286 Return Values 
Assembly-language routines that wish to return values to a C-Ianguage 
program or receive return values from C functions must follow the C 
return value conventions. C functions place return values that have int, 
char, or unsigned type in the AX register. They place values with long 
type in the AX and DX registers, with the high order word in DX. 

To return a structure or a floating point value, C functions place the 
address of the given value in the AX register. The structure or floating 
point value must be in a static area in memory. Long addresses are 
returned in the AX and DX registers with the segment selector in DX. 

8-4 C User's Guide 



Exiting an 8086/80286 Routine 

Exiting an 8086/80286 Routine 
Assembly-language routines that return control to C programs should 
restore the values of the BP, SI, and DI registers before returning control. 
The following example illustrates the recommended instruction sequence 
for exiting a routine: 

pop si 
pop di 
mov sp, bp 
pop bp 
ret 

This sequence does not change the AX, BX, ex, or DX registers or any of 
the segment registers. It also does not remove arguments from the stack. 
This is the responsibility of the calling routine. 

C Language Compatibility with Assembly Language 8-5 



8086/80286 Program Example 

8086/80286 Program Example 
To illustrate the assembly-language interface, consider the following 
example of a C function: 

add(i, j) 
int i,j; 

return(i+j) ; 

If written as an assembly-language routine, this function must save the 
proper registers, retrieve the arguments from the stack, add the argu­
ments, place the return value in the AX register, then restore registers and 
return control. The following is a example of how the routine can be 
written: 

add: 
push bp 
mov bp,sp 
push di 
push si 

mov ax, [bp+4] 
add ax, [bp+6] 

pop si 
pop di 
mov sp, bp 
pop bp 
ret 

If, on the other hand, the C function is to be called by an assembly-lan­
guage routine, the routine must contain instructions that push the argu­
ments on the stack in the proper order, call the function, and clear the 
stack. It may then use the return value in the AX register. The following 
is an example of the instructions that can do this: 

push <j value> 
push <i value> 
call add 
add sp, *4 

Note that the C compiler does not preserve ES over calls. Assembly-lan­
guage routines need not preserve ES and should not assume that it will be 
preserved if they make calls to routines written in C. 

8-6 C User's Guide 



80386 C-Language Calling Sequence 

80386 C-Language Calling Sequence 
To receive values from 80386 C-language function calls, or to pass values 
to 80386 C-language functions, assembly-language routines must follow 
the 80386 C-language argument-passing conventions. 

C-language function calls pass arguments to the function by pushing each 
argument onto the stack. The call pushes the last function argument first 
and the first function argument last onto the stack. If an argument is an 
expression, the call computes the expression's value before pushing it 
onto the stack. 

Arguments with char, int, unsigned, short, or long type occupy a dou­
bleword (32 bits or 4 bytes) on the stack. Arguments with float type are 
converted to double type (64 bits or 8 bytes). Note that char, unsigned 
char, short, and unsigned short type arguments are sign extended or 
zero extended, respectively, to int type before being pushed onto the 
stack. 

If an argument is a structure, the function call pushes the last word of the 
structure first and each successive word in tum until the first word of the 
structure is pushed onto the stack. 

After a function returns control to the calling routine, the calling routine 
is responsible for removing all function arguments from the stack. 

C Language Compatibility with Assembly Language 8-7 



Entering an 80386 Assembly-Language Routine 

Entering an 80386 Assembly­
Language Routine 
Assembly-language routines that receive control from 80386 C function 
calls should preserve the contents of the EBP, ESI, EDI, and EBX regis­
ters. In addition, the routines should set the EBP register to the current 
ESP register value before proceeding with their tasks. The following 
example illustrates a recommended instruction sequence for entry to an 
assembly-language routine: 

entry: 
push ebp 
mov ebp, esp 
push edi 
push esi 
push ebx 

Note that this is the same routine that the compiler uses after pushing the 
function arguments onto the stack. 

If this sequence is used, the last function argument pushed by the function 
call (which is also the first argument in the function's argument list) is at 
address "[ebp+8]". Subsequent arguments are at address "[ebp+12]" or 
"[ebp+16]", depending on the size of the argument pushed onto the stack 
at "8[ebp]". 

8-8 C User's Guide 



80386 Return Values 

80386 Return Values 
Assembly-language routines that return values to an 80386 C-Ianguage 
program or receive return values from 80386 C-Ianguage functions must 
follow the 80386 C-Ianguage return-value conventions. C-Ianguage func­
tions place return values that have int, char, unsigned, short, and long 
types in the EAX register. 

Floating-point values are returned to the top of the ndp 80287 stack. The 
following example shows the recommended instruction sequence for 
passing floating-point values: 

float func() ,f; 
f = func (f) 

fld DWORD PTR f 
sub esp,S 
fstp QWORD PTR [esp] 
call func result 
add esp,S 
fstp DWORD PTR f 

in ST (0) 

The following example shows the recommended instruction sequence for 
returning floating-point values: 

float fvalue; 
return (fvalue); 

fld fvalue 
pop edx 
pop esi 
pop edi 
leave 
ret 

result in ST(O) 

C-Ianguage structure returns are returned to a buffer whose address is 
passed as a hidden first parameter. 

The following example shows the recommended instruction: 

C Language Compatibility with Assembly Language 8-9 



80386 Return Values 

struct shape 
{ 

int stuff, to, fill, it, with; 
in, out, them(); 

out = them (in) ; 

sub esp,20 
mov edi,esp 
lea edi,in structure copy input 
mov ecx,S struct onto stack 
rep mavsd 
lea eax,out pass address of 
push eax assignment as extra 
call them ;parameter 
add esp,24 

"hidden" 

The following example shows the recommended instruction sequence for 
returning C-Ianguage structure returns: 

8-10 

struct shape source; 
return shape; 

mov 
mov 
mav 
rep 
pop 
pcp 
pop 
leave 
ret 

em, [ebp+8] 
esi,source 
ecx,S 
movsd 
ebx 
esi 
edi 

C User's Guide 



Exiting an 80386 Routine 

Exiting an 80386 Routine 
Before returning control from an assembly-language routine to an 80386 
C-Ianguage program, restore the EBP, ESI, EDI, and EBX registers. The 
following example illustrates the recommended instruction sequence for 
exiting a routine: 

pop ebx 
pop esi 
pop edi 
leave 
ret 

This sequence does not save the EAX, ECX, or EDX register. These 
registers are scratch registers for use by the compiler. If the routine 
modifies segment register ES, SS, or DS, the routine must preserve the 
modified segment registers. The sequence does not remove arguments 
from the stack. This is the responsibility of the calling routine. 

C Language Compatibility with Assembly Language 8-11 



80386 Program Example 

80386 Program Example 
'The following example illustrates an 80386 C-language function that can 
be written as an assembly-language routine. 'The function takes two 
integer arguments and adds them together, returning the resultant value. 

int add(i, j) 
int i, j; 
{ 
return (i + j); 
} 

If written as an assembly-language routine, this function must save the 
proper registers, retrieve the arguments from the stack, add the argu­
ments, place the return value in the EAX register, then restore the proper 
registers and return control to the calling routine. 'The following is an 
example of how the routine can be written: 

_add: 
push ebp 
mov ebp,esp 
push edi 
push esi 
push ebx 

mov eax, [ebp+8) 
add eax, [ebp+12) 

pop ebx 
pop esi 
pop edi 
mov esp, ebp 
pop ebp 
ret 

Note 

In the above assembly-language routine, it is not necessary to save 
the contents of the ESI, EDI, and EBX registers because the routine 
does not modify their contents. If the ESI, EDI, or EBX register 
was modified by the routine, its contents must be saved. 

8-12 C User's Guide 



80386 Program Example 

If the C-Ianguage function is to be called by an assembly-language rou­
tine, the routine must contain instructions that push the arguments onto 
the stack in the proper order, call the function, and clear the stack. It can 
then use the return value in the EAX register. The following is an exam­
ple of the instructions that perform this task: 

push <j value> 
push <i value> 
call add 
add esp,8 

C Language Compatibility with Assembly Language 8-13 





~hapter 9 

~rror Processing 

ttroduction 9-1 

sing the Standard Error File 9-2 

sing the ermo Variable 9-3 

rinting Error Messages 9-4 

sing Error Signals 9-5 

ncountering System Errors 9-6 





Introduction 

Introduction 
System V automatically detects and reports errors that occur when using 
standard C library functions. Errors range from problems with accessing 
files to allocating memory. In most cases, the system simply reports the 
error and lets the program decide how to respond. System V terminates a 
program only if a serious error has occurred, such as a violation of mem­
ory space. 

This chapter explains how to process errors, and describes the functions 
and variables a program may use to respond to errors. 

Error Processing 9-1 



Using the Standard Error File 

Using the Standard Error File 
The standard error file is a special output file that can be used by a pro 
gram to display error messages. The standard error file is one of thre~ 
standard files (standard input, output, and error) automatically created fo: 
the program when it is invoked. Note that this feature is only available 
under the Bourne shell (/binlsh). 

The standard error file, like the standard output, is normally assigned tc 
the user's terminal screen. Thus, error messages written to the file are dis· 
played on the screen. The file can also be redirected by using the shell' l 
redirection symbol (». For example, the following command redirect1 
the standard error file to the file errorlist under Bourne shell: 

de 2>errorlist 

The standard error file, like the standard input and standard output, hal 
predefined file pointer and file descriptor values. The file pointer stderl 
may be used in stream functions to copy data to the error file. The filt 
descriptor 2 may be used in low-level functions to copy data to the file 
For example, in the following program fragment, stderr is used to writt 
the message "Unexpected end of file." to the standard error file. 

if ( (e=getchar(» == EOF) 
fprintf (stderr, "Unexpected end of file. \n") ; 

The standard error file is not affected by the shell's pipe symbol (I). Thh 
means that even if the standard output of a program is piped to anothe] 
program, errors generated by the original program will still appear at tht 
terminal screen (or in the appropriate file if the standard error il 
redirected). 

9-2 C User's GuidI 



Using the errno Variable 

Using the errno Variable 
The errno variable is a predefined external variable which contains the 
error number of the most recent System V system function error. Errors 
detected by system functions, such as access permission errors and lack of 
space, cause the system to set the errno variable to a number and return 
control to the program. The error number identifies the error condition. 
The variable may be used in subsequent statements to process the error. 

The file errno.h contains manifest constant definitions for each error num­
ber, and the external declaration of errno. These constants may be used 
in any program in which the line: 

#include <errno.h> 

is placed at the beginning of the program. The meaning of each manifest 
constant is described in the manual page, intro(S). 

The errno variable is typically used immediately after a system function 
has returned an error. In the following program fragment, errno is used to 
determine the course of action after an unsuccessful call to the open nmc­
tion: 

if ( (fd=open ("accounts", 0 RDONLY» == -1 ) 
switch (errno) { -

case (EACCES) : 
fd = open("!usr!tmp!accounts",O_RDONLY); 
break; 

default: 
exit(errno); 

In this example, if errno is equal to EACCES (a manifest constant), per­
mission to open the file accounts in the current directory is denied, so the 
file is opened in the directory lusrltmp instead. If the variable is any other 
value, the program terminates. 

Error Processing 9-3 



Printing Error Messages 

Printing Error Messages 
The perror function copies a short error message describing the most 
recent system function error to the standard error file. The function call 
has the form: 

perror (s); 

where s is a pointer to a string containing additional information about 
the error. 

The perror function places the given string before the error message and 
separates the two with a colon (:). Each error message corresponds to the 
current value of the errno variable. For example, in the following pro­
gram fragment, perror displays the message: 

accounts: Permission denied. 

if errno is equal to the constant EACCES: 

if errno == EACCES ) { 
perror("accounts"); 
fd = open ("/usr/tmp/accounts", O_RDONLY); 

All error messages displayed by perror are stored in an array named 
sys _ errno, an external array of character strings. The perror function 
uses the variable errno as the index to the array element containing the 
desired message. For more information on the perror function, see the 
perror(S) manual page. 

9-4 C User's Guide 



Using Error Signals 

U sing Error Signals 
Some program errors cause System V to generate error signals. These sig­
nals are passed back to the program that caused the error and normally 
terminate the program. The most common error signals are SIGBUS, the 
bus error signal; SIGFPE, the floating point exception signal; SIGSEGV, 
the segment violation signal; SIGSYS, the system call error signal; and 
SIGPIPE, the pipe error signal. Other signals are described in the 
signal(S) manual page. 

A program can, if necessary, catch an error signal and perform its own 
error processing by using the signal function. This function, as described 
in the "Using Signals" chapter of the Programmer's Guide, can set the 
action of a signal to a user-defined action. For example, the function call: 

signal (SIGBUS, fixbus); 

sets the action of the bus error signal to the action defined by the user­
supplied functionjixbus. Such a function usually attempts to remedy the 
problem, or at least display detailed information about the problem before 
terminating the program. 

For details about how to catch, redefine, and restore these signals, see 
"Signals and Interrupts" in the Programmer's Guide. 

Error Processing 9-5 



Encountering System Errors 

Encountering System Errors 
Programs that encounter serious errors, such as hardware failures or inter­
nal errors, generally do not receive detailed reports on the cause of the 
errors. Instead, UNIX operating systems treat these errors as "system 
errors," and report them by displaying a system error message on the sys­
tem console. This section briefly describes some aspects of System V 
system errors and how they relate to user programs. 

Most system errors occur during calls to system functions. If the system 
error is recoverable, the system will return an error value to the program 
and set the errno variable to an appropriate value. No other information 
about the error is available. 

Although the system lets two or more programs share a given resource, it 
does not keep close track of which program is using the resource at any 
given time. When an error occurs, the system returns an error value to all 
programs regardless of which caused the error. No information about 
which program caused the error is available. 

System errors that occur during routine I/O operations initiated by the 
System V system itself generally do not affect user programs. Such errors 
cause the system to display appropriate system error messages on the sys­
tem console. 

Some system errors are not detected by the system until after the corre­
sponding function has returned successfully. Such errors occur when data 
written to a file by a program has been queued for writing to disk at a 
more convenient time, or when a portion of data to be read from disk is 
found to already be in memory and the remaining portion is not read until 
later. In such cases, the system assumes that the subsequent read or write 
operation will be carried out successfully and passes control back to the 
program along with a successful return value. If operation is not carried 
out successfully, it causes a delayed error. 

When a delayed error occurs, the system usually attempts to return an 
error on the next call to a system function that accesses the same file or 
resource. If the program has already terminated or does not make a suit­
able call, then the error is not reported. 

9-6 C User's Guide 



Chapter 10 

Common Object File Format (COFF) 

The Common Object File Format (COFF) 10-1 

Definitions and Conventions 10-3 
Sections 10-3 
Physical and Virtual Addresses 10-3 
Target Machine 10-4 

File Header 10-5 
Magic Numbers 10-5 
Flags 10-6 
File Header Declaration 10-6 

Optional Header Information 10-7 
Standard UNIX System a.out Header 10-7 
Optional Header Declaration 10-8 

Section Headers 10-9 
Flags 10-10 
Section Header Declaration 10-11 
.bss Section Header 10-11 

Sections 10-12 

Relocation Information 10-13 
Relocation Entry Declaration 10-14 

Line Numbers 10-15 
Line Number Declaration 10-16 

Symbol Table 10-17 
Special Symbols 10-18 
Inner Blocks 10-19 
Symbols and Functions 10-21 
Symbol Table Entries 10-21 

Symbol Names 10-22 
Storage Classes 10-24 
Storage Classes for Special Symbols 10-25 
Symbol Value Field 10-26 



Section Number Field 10-27 
Section Numbers and Storage Classes 10-28 
Type Entry 10-28 
Type Entries and Storage Classes 10-30 
Structure fOT Symbol Table Entries 10-32 

Auxiliary Table Entries 10-33 
File Names 10-34 
Sections 10-34 
Tag Names 10-35 
End of Structures 10-35 
Functions 10-36 
Arrays 10-37 
End of Blocks and Functions 10-37 
Beginning of Blocks and Functions 10-38 
Names Related to Structures, Unions, and 

Enumerations 10-38 
Auxiliary Entry Declaration 10-39 

String Table 10-41 

Access Routines 10-42 



The Common Object File Format (COFF) 

The Common Object File Format 
(COFF) 
This chapter describes the Common Object File Format (COFF) used on 
your computer with UNIX System V COFF is the format of the output file 
produced by the UNIX System assembler, as, and link editor, ld. This is 
the default format used by cc without the -xenix option. 

The following list describes key features of COFF: 

• Applications can add system-dependent information to the object 
file without causing access utilities to become obsolete. 

• Space is provided for symbolic information used by debuggers and 
other applications. 

• Programmers can modify the way the object file is constructed by 
providing directives at compile time. 

The object file supports user-defined sections and contains extensive in­
formation for symbolic software testing. An object file contains 

• a file header 

• optional header information 

• a table of section headers 

.. data corresponding to the section headers 

• relocation information 

• line numbers 

• a symbol table 

• a string table 

Common Object File Format (COFF) 10-1 



The Common Object File Format (COFF) 

Figure 10-1 shows the overall structure of a COFF object file. 

Figure 10-1 Object File Fonnat 

FILE HEADER 
Optional Infonnation 

Section 1 Header 
... 

Section n Header 
Raw Data for Section 1 

... 
Raw Data for Section n 

Relocation Info for Sect. 1 
... 

Relocation Info for Sect. n 
Line Numbers for Sect. 1 

... 
Line Numbers for Sect. n 

SYMBOL TABLE 
STRING TABLE 

The last four sections (relocation, line numbers, symbol table, and the 
string table) may be missing if the program is linked with the -s option of 
the Id command, or if the line number infonnation, symbol table, and 
string table are removed by the strip command. The line number infor­
mation does not appear unless the program is compiled with the -g option 
of the cc command. Also, if there are no unresolved external references 
after linking, the relocation infonnation is no longer needed and is absent. 
The string table is also absent if the source file does not contain any sym­
bols with names longer than eight characters. 

An object file that contains no errors or unresolved references is con­
sidered executable. 

10-2 C User's Guide 



Definitions and Conventions 

Definitions and Conventions 
Before proceeding further, you should become familiar with the following 
terms and conventions. 

Sections 

A section is the smallest portion of an object file that is relocated and 
treated as one separate and distinct entity. In the most common case, 
there are three sections named .text, .data, and .bss. Additional sections 
accommodate comments, multiple text or data segments, shared data seg­
ments, or user-specified sections. However, the operating system loads 
only .text, .data, and .bss into memory when the file is executed. 

Note 

It a mistake to assume that every COFF file will have a certain num­
ber of sections, or to assume characteristics of sections such as their 
order, their location in the object file, or the address at which they 
are to be loaded. This information is available only after the object 
file has been created. Programs manipulating COFF files should 
obtain it from file and section headers in the file. 

Physical and Virtual Addresses 

The physical address of a section or symbol is the offset of that section or 
symbol from address zero of the address space. The term physical 
address as used in COFF does not correspond to general usage. The phy­
sical address of an object is not necessarily the address at which the 
object is placed when the process is executed. For example, on a system 
with paging, the address is located with respect to address zero of virtual 
memory and the system performs another address translation. The section 
header contains two address fields, a physical address, and a virtual 
address; but in all versions of COFF on UNIX Systems, the physical 
address is equivalent to the virtual address. 

Common Object File Format (COFF) 10-3 



Definitions and Conventions 

Target Machine 

Compilers and link editors produce executable object files that are 
intended to be run on a particular computer. In the case of cross­
compilers, the compilation and link editing are done on one computer, 
with the intent of creating an object file that can be executed on another 
computer. The term, target machine, refers to the computer on which the 
object file is destined to run. In the majority of cases, the target machine 
is the same computer on which the object file is being created. 

10-4 C User's Guide 



File Header 

File Header 
The file header contains the 20 bytes of information shown in Table 1O.l. 
The last 2 bytes are flags that are used by Id and object file utilities. 

Table 10.1 

File Header Contents 

Bytes Declaration Name Description 

0-1 unsigned short f magic Magic number 
2-3 unsigned short f nscns Number of sections 
4-7 long int f timdat Time and date stamp 

indicating when the 
file was created, 
expressed as the 
number of elapsed 
seconds since 
00:00:00 GMT, Janu-
ary 1, 1970 

8-11 long int f_symptr File pointer contain-
ing the starting 
address of the symbol 
table 

12-15 long int f_nsyms Number of entries in 
the symbol table 

16-17 unsigned short f_opthdr Number of bytes in 
the optional header 

18-19 unsigned short f)lags Flags (see Table 
10.2.) 

Magic Numbers 

The magic number specifies the target machine on which the object file is 
executable. 

Common Object File Format (COFF) 10-5 



File Header 

Flags 

The last 2 bytes of the file header are flags that describe the type of the 
object file. Currently defined flags are found in the header file filehdr.h 
and are shown in Table 10.2. 

Mnemonic 

F_RELFLG 

F_EXEC 

F_LNNO 

F_LSYMS 

F_AR16WR 
F_AR32WR 

Table 10.2 

File Header Flags 

Flag Meaning 

00001 Relocation information 
stripped from the file 

00002 File is executable (Le., no 
unresolved external refer-
ences) 

00004 Line numbers stripped 
from the file 

00010 Local symbols stripped 
from the file 

0000200 16-bit byte reversed word 
0000400 32-bit byte reversed word 

File Header Declaration 

The C structure declaration for the file header is given in Figure 10-2. 
This declaration may be found in the header file filehdr .h. 

Figure 10-2 File Header Declaration 

struct filehdr 
{ 

unsigned short 
unsigned short 
long 
long 

f_magic; /* 
f nscns; /* 
f-timdat; /* 
(~syrnptr; /* 

magic number */ 
number of section */ 
time and date stamp */ 
file ptr to symbol table 

long f_nsyms; /* number entries in the syrr 
unsigned short f_opthdr; 
unsigned short f_flags; 

} ; 

#define FILHDR struct filehdr 
#define FILHSZ sizeof(FILHDR) 

10-6 

/* 
/* 

size of optional header * 
flags */ 

C User's Guide 



Optional Header Information 

Optional Header Information 
The template for optional information varies among different systems that 
use COFF. Applications place all system-dependent information into this 
record. This allows different operating systems access to information that 
only that operating system uses without forcing all COFF files to save 
space for that information. General utility programs (for example, the 
symbol table access library functions, the disassembler, etc.) are made to 
work properly on any common object file. This is done by seeking past 
this record using the size of optional header information in the file header 
field f_opthdr. 

Standard UNIX System a.out Header 

By default, files produced by the link editor for a UNIX System always 
have a standard UNIX System a.out header in the optional header field. 
The UNIX System a.out header is 28 bytes. The fields of the optional 
header are described in Table 10.3. 

Bytes 

0-1 
2-3 
4-7 

8-11 

12-15 

16-19 
20-23 
24-27 

Table 10.3 

Optional Header Contents 

Declaration Name Description 

short magic Magic number 
short vstamp Version stamp 
long int tsize Size of text in bytes 
long int dsize Size of initialized 

data in bytes 
long int bsize Size of uninitialized 

data in bytes 
long int entry Entry point 
long int text start Base address of text 
long int data start Base address of data 

Whereas the magic number in the file header specifies the machine on 
which the object file runs, the magic number in the optional header sup­
plies information telling the operating system on that machine how that 
file should be executed. The magic numbers recognized by UNIX System 
V are given in Table lOA. 

Common Object File Format (COFF) 10-7 



Optional Header Information 

Table 10.4 

UNIX System V Magic Numbers 

Value Meaning 

0407 Text segment is not write-protected or 
sharable; data segment is contiguous 
with the text segment. 

0410 Data segment starts at the next segment 
following the text segment and the text 
segment is write-protected. 

0413 Text and data segments are aligned 
within a.out so it can be directly paged. 

0443 Defines a.out to be a target shared 
library. 

Optional Header Declaration 

The C language structure declaration currently used for UNIX System's 
a.out file headers is given in Figure 10-3. This declaration may be found 
in the header file aouthdr.h. 

Figure 10-3 aouthdr Declaration 
typedef struct aouthdr 
{ 

short 
short 
long 

long 
long 
long 
long 
long 

} AOUTHDR; 

10-8 

magic; 
vstaup; 
tsize; 

dsize; 
bsize; 
entry; 
text start; 
data-start 

/* magic number * / 
/* version staup */ 
/* text size in bytes, padded 
* to full word boundary 
*/ 

/* initialized data size */ 
/* uninitialized data size */ 
/* entry point * / 
/* base of text for this file */ 
/* base of data for this file */ 

C User's Guide 



Section Headers 

Section Headers 
Every object file has a table of section headers to specify the layout of 
data within the file. The section header table consists of one entry for 
every section in the file. The information in the section header is 
described in Table 10.5. 

Bytes 

0-7 

8-11 

12-15 

16-19 
20-23 

24-27 

28-31 

32-33 

34-35 

36-39 

Table 10.5 

Section Header Contents 

Declaration Name Description 

char s name 8-character null pad-
ded section name 

long int syaddr Physical address of 
section 

long int s vaddr Virtual address of 
section 

long int s size Section size in bytes 
long int s_scnptr File pointer to raw 

data 
long int sJelptr File pointer to reloca-

tion entries 
long int sJnnoptr File pointer to line 

number entries 
unsigned s nreloc Number of relocation 

entries 
short 
unsigned s nlnno Number of line 

number entries 
short 
long int s_ftags Flags (see Table 

10.6) 

The size of a section is padded to a multiple of 4 bytes. File pointers are 
byte ofThets that can be used to locate the start of data, relocation, or line 
number entries for the section. They can be readily used with the 
fseek(S) system call. 

Common Object File Format (COFF) 10-9 



Section Headers 

Flags 

The lower 2 bytes of the flag field indicate a section type. The flags are 
described in Table 10.6. 

Mnemonic 

STYP_REG 

STYP_DSECT 

STYP _NOLOAD 

STYP_GROUP 

STYP_PAD 

STYP_COPY 

STYP_TEXT 
STYP_DATA 
STYP_BSS 

STYP_INFO 

STYP_OVER 

STYP_LIB 

10-10 

Table 10.6 

Section Header Flags 

Flag Meaning 

OxOO Regular section (allocated, relo-
cated, loaded) 

OxOI Dummy section (not allocated, relo-
cated, not loaded) 

Ox02 Noload section (allocated, relocated, 
not loaded) 

Ox04 Grouped section (formed from input 
sections) 

Ox08 Padding section (not allocated, not 
relocated, loaded) 

Ox 10 Copy section (for a decision function 
used in updating fields; not allocated, 
not relocated, loaded, relocation and 
line number entries processed nor-
mally) 

Ox20 Section contains executable text 
Ox40 Section contains initialized data 
Ox80 Section contains only uninitialized 

data 
Ox200 Comment section (not allocated, not 

relocated, not loaded) 
Ox400 Overlay section (relocated, not allo-

cated, not loaded) 
Ox800 For .lib section (treated like 

STYP_INFO) 

C User's Guide 



Section Headers 

Section Header Declaration 

The C structure declaration for the section headers is described in Figure 
10-4. This declaration may be found in the header file scnhdr.h. 

Figure 10-4 Section Header Declaration 
stIUct scnhdr 
{ 

) ; 

char s_name[8]; 
long s_paddr; 
long s_vaddr; 
long s_size; 
long s_scnptr; 
long s_relptr; 
long s lnnoptr; 
unsigned short s nreloc; 
unsigned short s:=nlnno; 
long s_flags; 

#define SCNHDR stIUct scnhdr 
#define SCNHSZ sizeof(SCNHDR) 

.bss Section Header 

/* section name */ 
/* physical address */ 
/* virtual address */ 
/* section size */ 
/* file ptr to section raw data */ 
/* file ptr to relocation */ 
/* file ptr to line number */ 
/* number of relocation entries */ 
/* number of line number entries */ 
/* flags */ 

The one deviation from the normal rule in the section header table is the 
entry for uninitialized data in a .bss section. A .bss section has a size and 
symbols that refer to it, and symbols that are defined in it. At the same 
time, a .bss section has no relocation entries, no line number entries, and 
no data. Therefore, a .bss section has an entry in the section header table 
but occupies no space elsewhere in the file. In this case, the number of 
relocation and line number entries, as well as all file pointers in a .bss 
section header, are O. The same is true of the STYP _NOLOAD and 
STYP _DSECT sections. 

Common Object File Format (COFF) 10-11 



Sections 

Sections 
Figure 10-1 shows that section headers are followed by the appropriate 
number of bytes of text or data. The raw data for each section begins on a 
4-byte boundary in the file. 

Link editor SECTIONS directives allow users to do the following, among 
other things: 

• describe how input sections are to be combined 

• direct the placement of output sections 

• rename output sections. 

If no SECTIONS directives are given, each input section appears in an 
output section of the same name. For example, if a number of object files, 
each with a .text section, are linked together, the output object file con­
tains a single .text section made up of the combined input .text sections. 

10-12 C User's Guide 



Relocation Information 

Relocation Information 
Object files have one relocation entry for each relocatable reference in 
the text or data. The relocation information consists of entries with the 
format described in Table 10.7. 

Bytes 

0-3 

4-7 
8-9 

Table 10.7 

Relocation Section Contents 

Declaration Name Description 

long int r vaddr (Virtual) address 
reference 

long int r symndx Symbol table index 
unsigned short r_type Relocation type 

of 

The first 4 bytes of the entry are the virtual address of the text or data to 
which this entry applies. The next field is the index, counted from 0, of 
the symbol table entry that is being referenced. The type field indicates 
the type of relocation to be applied. 

As the link editor reads each input section and performs relocation, the 
relocation entries are read. They direct how references found within the 
input section are treated. The currently recognized relocation types are 
given in Table 10.8. 

Common Object File Format (COFF) 10-13 



Relocation Information 

Table 10.8 

Relocation Types 

Mnemonic Flag 

R_ABS 0 

R_DIR16 * 01 

R_REL16* 02 

R_DIR32 06 

R_SEGI2 * 011 

R_PCRLONGt 024 

* 80286 Computer only. 
t 80386 Computer only. 

Meaning 

Reference is absolute; no reloca-
tion is necessary. The entry will 
be ignored. 
Direct, 16-bit reference to a 
symbol's virtual address. 
"PC-relative", 16-bit reference to 
a symbol's virtual address. Rela-
tive references occur in instruc-
tions such as jumps and calls. 
Direct 32-bit reference to the 
symbol's virtual address. 
Direct, 16-bit reference to the 
segment-selector bits of a 32-bit 
virtual address. 
"PC_relative", 32-bit reference to 
a symbol's virtual address. 

Relocation Entry Declaration 

The structure declaration for relocation entries is given in Figure 10-5. 
This declaration may be found in the header file reloc.h. 

Figure 10-5 Relocation Entry Declaration 

stIUct reloc 
{ 

long r_vaddr; 
long r_symndx; 
unsigned short r_type; 

} ; 

#define RELOC 
#define RELSZ 

10-14 

stIUct reloc 
10 

/* virtual address of reference */ 
/* index into symbol table */ 
/* relocation type */ 

C User's Guide 



Line Numbers 

Line Numbers 
When invoked with the -g option, the cc and f77 commands cause an 
entry in the object file for every source line where a breakpoint can be 
inserted. You can then reference line numbers when using a software 
debugger like sdb. All line numbers in a section are grouped by function 
as shown in Table 10.9. 

Table 10.9 

Line Number Grouping 

symbol index o 
physical address line number 
physical address line number 

symbol index o 
physical address line number 
physical address line number 

The first entry in a function grouping has line number 0 and has, in place 
of the physical address, an index into the symbol table for the entry con­
taining the function name. Subsequent entries have actual line numbers 
and addresses of the text corresponding to the line numbers. The line 
number entries are relative to the beginning of the function and appear in 
increasing order of address. 

Common Object File Format (COFF) 10-15 



Line Numbers 

Line Number Declaration 

The structure declaration currently used for line number entries is given 
in Figure 10-6. 

Figure 10-6 Line Number Entry Declaration 

struct lineno 
{ 

}; 

union 

long 
long 

} 1 addr; 
unsigned short 

l_syrnncix; 
l_paddr; 

#define LlNENO 
#define LINESZ 

struct lineno 
6 

10-16 

/* symtbl index of func name */ 
/* paddr of line number */ 

/* line number */ 

C User's Guide 



Symbol Table 

Symbol Table 
Because of symbolic debugging requirements, the order of symbols in the 
symbol table is very important. Symbols appear in the sequence shown in 
Figure 10-7. 

Figure 10-7 COFF Symbol Table 

filename 1 
function 1 

local symbols 
for function 1 

function 2 
local symbols 
for function 2 

... 
statics 
... 

filename 2 
function 1 

local symbols 
for function 1 

... 
statics 
... 

defined global 
symbols 

undefined global 
symbols 

The word statics in Figure 10-7 means symbols defined with the C lan­
guage storage class static outside any function. The symbol table consists 
of at least one fixed-length entry per symbol with some symbols followed 
by auxiliary entries of the same size. The entry for each symbol is a 
structure that holds the value, the type, and other information. 

Common Object File Format (COFF) 10-17 



Symbol Table 

Special Symbols 

The symbol table contains some special symbols that are generated by as 
and other tools. These symbols are given in Table lD.lD. 

Table 10.10 

Special Symbols in the Symbol Table 

Symbol Meaning 

.file filename 

.text address of .text section 

.data address of .data section 

.bss address of .bss section 

.bb address of start of inner block 

.eb address of end of inner block 

.bf address of start of function 

.ef address of end of function 

.target pointer to the structure or union 
returned by a function 

.xfake dummy tag name for structure, 
union, or enumeration 

.eos end of members of structure, 
union, or enumeration 

etext next available address after the 
end of the output section .text 

edata next available address after the 
end of the output section .data 

end next available address after the 
end of the output section .bss 

Six of these special symbols occur in pairs. The .bb and .eb symbols indi­
cate the boundaries of inner blocks; a .bf and .ef pair brackets each func­
tion. An .xfake and .eos pair names and defines the limit of structures, 
unions, and enumerations that were not named. The .eos symbol also 
appears after named structures, unions, and enumerations. 

When a structure, union, or enumeration has no tag name, the compiler 
invents a name to be used in the symbol table. The name chosen for the 
symbol table is .xfake, where x is an integer. If there are three unnamed 
structures, unions, or enumerations in the source, their tag names are 
.Ofake, .1fake, and .2fake. Each of the special symbols has different in­
formation stored in the symbol table entry as well as the auxiliary entries. 

lD-18 C User's Guide 



Symbol Table 

Inner Blocks 

The C language defines a block as a compound statement that begins and 
ends with braces, { and}. An inner block is a block that occurs within a 
function (which is also a block). 

For each inner block that has local symbols defined, a special symbol .bb 
is put in the symbol table immediately before the first local symbol of that 
block. Also a special symbol .eb is put in the symbol table immediately 
after the last local symbol of that block. The sequence is shown in Figure 
10-8. 

Figure 10-8 Special Symbols (.bb and .eb) 

.bb 
local symbols 
for that block 
.eb 

Common Object File Format (COFF) 10-19 



Symbol Table 

Because inner blocks can be nested by several levels, the .bb-.eb pairs 
and associated symbols may also be nested (see Figure 10-9). 

inti; 
charc; 

longa; 

Figure 10-9 Nested blocks 

/*block 1*/ 

/*block 2*/ 

/*block 3*/ 
intx; 

longi; 

/*block 3*/ 

/*block 2*/ 

/*block 4*/ 

/*block 4*/ 
/*block 1*/ 

The symbol table would look like Figure 10-10. 

Figure 10-10 Example of the Symbol Table 

.bb for block 1 
i 
c 

.bb for block 2 
a 

.bb for block 3 
x 

.eb for block 3 

.eb for block 2 

.bb for block 4 
i 

.eb for block 4 

.eb for block 1 

10-20 C User's Guide 



Symbol Table 

Symbols and Functions 

For each function, a special symbol .bf is put between the function name 
and the first local symbol of the function in the symbol table. Also, a spe­
cial symbol .ef is put immediately after the last local symbol of the func­
tion in the symbol table. The sequence is shown in Figure 10-11. 

Figure 10-11 Symbols for Functions 

function name 
.bf 

local symbol 
.ef 

Symbol Table Entries 

All symbols, regardless of storage class and type, have the same fonnat 
for their entries in the symbol table. The symbol table entries each con­
tain 18 bytes of infonnation. The meaning of each of the fields in the 
symbol table entry is described in Table 10.11. It should be noted that 
indices for symbol table entries begin at 0 and count upward. Each auxi­
liary entry also counts as one symbol. 

Common Object File Fonnat (COFF) 10-21 



Symbol Table 

Table 10.11 

Symbol Table Entry Format 

Bytes Declaration Name Description 

0-7 (see text below) n These 8 bytes contain 
either a symbol name 
or an index to a sym-
bol 

8-11 long int n value Symbol value; 
storage class depen-
dent 

12-13 short n scnum Section number of 
symbol 

14-15 unsigned short n_type Basic and derived 
type specification 

16 char n sclass Storage class of sym-
bol 

17 char n numaux Number of auxiliary 
entries 

Symbol Names 

The first 8 bytes in the symbol table entry are a union of a character array 
and two longs. If the symbol name is eight characters or less, the (null­
padded) symbol name is stored there. If the symbol name is longer than 
eight characters, then the entire symbol name is stored in the string table. 
In this case, the 8 bytes contain two long integers, the first is zero, and the 
second is the offset (relative to the beginning of the string table) of the 
name in the string table. Since there can be no symbols with a null name, 
the zeroes on the first 4 bytes serve to distinguish a symbol table entry 
with an offset from one with a name in the first 8 bytes as shown in Table 
10.12. 

10-22 C User's Guide 



Bytes Declaration 

0-7 char 

0-3 long 

4-7 long 

Table 10.12 

Name Field 

Name 

n name 

n zeroes 

n offset 

Symbol Table 

Description 

8-character null-
padded symbol name 
Zero in this field indi-
cates the name is in 
the string table 
Offset of the name in 
the string table 

Special symbols generated by the C Compilation System are discussed 
earlier in the section "Special Symbols" in this chapter. 

Common Object File Format (COFF) 10-23 



Symbol Table 

Storage Classes 

The storage class field has one of the values described in Table 10.13. 
These #define's may be found in the header file storclass.h. 

Mnemonic 

C EFCN 
C_NULL 
C AUTO 
C EXT 
C STAT 
C REG 
C EXTDEF 
C LABEL 
C_ULABEL 
CMOS 
C_ARG 
C STRTAG 
C_MOU 
C UNTAG 
C_TPDEF 
C USTATIC 
C ENTAG 
C MOE 
C REGPARM 
C FIELD 
C BLOCK 
C FCN 
C_EOS 
C FILE 
CLINE 
CALlAS 
C_HIDDEN 

Table 10.13 

Storage Classes 

Value Storage Class 

-1 physical end of a function 
0 -
1 automatic variable 
2 external symbol 
3 static 
4 register variable 
5 external definition 
6 label 
7 undefined label 
8 member of structure 
9 function argument 

10 structure tag 
11 member of union 
12 union tag 
13 type definition 
14 uninitialized static 
15 enumeration tag 
16 member of enumeration 
17 register parameter 
18 bit field 

100 beginning and end of block 
101 beginning and end of function 
102 end of structure 
103 file name 
104 used only by utility programs 
105 duplicated tag 
106 like static, 

used to avoid name conflicts 

All of these storage classes except for C_ALIAS and C_HIDDEN are 
generated by the cc or as commands. The compress utility, cprs, gen­
erates the C_ALIAS mnemonic. This utility (described in the 
Programmer's Reference Manual) removes duplicated structure, union, 
and enumeration definitions and puts alias entries in their places. The 
storage class C_HIDDEN is not used by any UNIX System V tools. 

10-24 C User's Guide 



Symbol Table 

Some of these storage classes are used only internally by the C Compila­
tion Systems. These storage classes are C_EFCN, C_EXTDEF, 
C_ULABEL, C_USTATIC, and C_LINE. 

Storage Classes for Special Symbols 

Some special symbols are restricted to certain storage classes. They are 
given in Table 10.14. 

Table 10.14 

Storage Class by Special Symbols 

Special Symbol Storage Class 

.fiIe C FILE 

.bb C BLOCK 

.eb C BLOCK 

.bf C FCN 

.ef C FCN 

.target C AUTO 

.xfake C STRTAG, C UNTAG, C ENTAG 

.eos C EOS 

.text C STAT 

.data C STAT 

.bss C_STAT 

Also some storage classes are used only for certain special symbols. 
They are summarized in Table 10.15. 

Table 10.15 

Restricted Storage Classes 

Storage Class Special Symbol 

C BLOCK .bb,.eb 
C FCN .bf, .ef 
C EOS .eos 

.fiIe 

Common Object File Format (COFF) 10-25 



Symbol Table 

Symbol Value Field 

The meaning of the value of a symbol depends on its storage class. This 
relationship is summarized in Table 10.16. 

Table 10.16 

Storage Class and Value 

Storage Class Meaning of Value 

C AUTO stack offset in bytes 
C EXT relocatable address 
C STAT relocatable address 
C REG register number 
C LABEL relocatable address 
CMOS offset in bytes 
C ARG stack offset in bytes 
C STRTAG 0 
C_MOU 0 
C UNTAG 0 
C TPDEF 0 
C ENTAG 0 
C MOE enumeration value 
C REGPARM register number 
C FIELD bit displacement 
C BLOCK relocatable address 
C FCN relocatable address 
C EOS size 
C_FILE (see text below) 
CALlAS tag index 
C_HIDDEN relocatable address 

If a symbol has storage class C_FILE, the value of that symbol equals the 
symbol table entry index of the next .fiIe symbol. That is, the .file entries 
form a one-way linked list in the symbol table. If there are no more .fiIe 
entries in the symbol table, the value of the symbol is the index of the first 
global symbol. 

Relocatable symbols have a value equal to the virtual address of that 
symbol. When the section is relocated by the link editor, the value of 
these symbols changes. 

10-26 C User's Guide 



Symbol Table 

Section Number Field 

Section numbers are listed in Table 10.17 

Table 10.17 

Section Number 

Mnemonic Section Number Meaning 

N_DEBUG -2 Special symbolic debug-
ging symbol 

NABS -1 Absolute symbol 
N_UNDEF 0 Undefined external symbol 
N_SCNUM 1-077777 Section number where 

symbol is defined 

A special section number (-2) marks symbolic debugging symbols, 
including structure/union/enumeration tag names, typedefs, and the name 
of the file. A section number of -1 indicates that the symbol has a value 
but is not relocatable. Examples of absolute-valued symbols include 
automatic and register variables, function arguments, and .eos symbols. 

With one exception, a section number of 0 indicates a relocatable exter­
nal symbol that is not defined in the current file. The one exception is a 
multiply-defined external symbol (Le., FORTRAN common or an unini­
tialized variable-de fined external to a function in C). In the symbol table 
of each file where the symbol is defined, the section number of the symbol 
is 0, and the value of the symbol is a positive number giving the size of 
the symbol. When the files are combined to form an executable object 
file, the link editor combines all the input symbols of the same name into 
one symbol with the section number of the .bss section. The maximum 
size of all the input symbols with the same name is used to allocate space 
for the symbol and the value becomes the address of the symbol. This is 
the only case where a symbol has a section number of 0 and a non-zero 
value. 

Common Object File Format (COFF) 10-27 



Symbol Table 

Section Numbers and Storage Classes 

Symbols having certain storage classes are also restricted to certain sec­
tion numbers. They are summarized in Table 10.18. 

Table 10.18 

Section Number and Storage Class 

Storage Class Section Number 

C AUTO NABS 
C_EXT N_ABS, N UNDEF, N_SCNUM 
C STAT N SCNUM 
C REG NABS 
C LABEL N UNDEF, N SCNUM 
CMOS NABS 
C ARG NABS 
C STRTAG N DEBUG 
C_MOU N_ABS 
C UNTAG N DEBUG 
C TPDEF N DEBUG 
C ENTAG N DEBUG 
C MOE NABS 
C REGPARM NABS 
C FIELD NABS 
C_BLOCK N_SCNUM 
C FCN N SCNUM 
C EOS NABS 
C FILE N DEBUG 
C_ALIAS N_DEBUG 

Type Entry 

The type field in the symbol table entry contains information about the 
basic and derived type for the symbol. This information is generated by 
the C Compilation System only if the -g option is used. Each symbol has 
exactly one basic or fundamental type but can have more than one 
derived type. The format of the 16-bit type entry is: 

10-28 C User's Guide 



Symbol Table 

1.61 dSl .41.3 1 d21 .11 ~I 
Bits 0 through 3, called typ, indicate one of the fundamental types given 
in Table 10.19. 

Mnemonic 

T NULL 
LARG 

T CHAR 
T_SHORT 
TINT 
T LONG 
T FLOAT 
T DOUBLE 
T STRUCT 
T UNION 
T_ENUM 
T MOE 
T UCHAR 
T USHORT 
T UINT 
T_ULONG 

Table 10.19 

Fundamental Types 

Value Type 

0 type not assigned 
1 Function argument 

(used only by compiler) 
2 character 
3 short integer 
4 integer 
5 long integer 
6 floating point 
7 double word 
8 structure 
9 union 
10 enumeration 
11 member of enumeration 
12 unsigned character 
13 unsigned short 
14 unsigned integer 
15 unsigned long 

Common Object File Format (COFF) 10-29 



Symbol Table 

Bits 4 through 15 are arranged as six 2-bit fields marked d1 through d6. 
These d fields represent levels of the derived types given in Table 10.20. 

Mnemonic 

DT NON 
DT_PTR 
DT FCN 
DT_ARY 

Table 10.20 

Derived Types 

Value Type 

0 no derived type 
1 pointer 
2 function 
3 array 

The following examples demonstrate the interpretation of the symbol 
table entry representing type. 

char *func(); 

Here fune is the name of a function that returns a pointer to a character. 
The fundamental type of fune is 2 (character), the d1 field is 2 (function), 
and the d2 field is 1 (pointer). Therefore, the type word in the symbol 
table for fune contains the hexadecimal number Ox62, which is inter­
preted to mean a function that returns a pointer to a character. 

short *tabptr [10] [25] [3]; 

Here tabptr is a three-dimensional array of pointers to short integers. 
The fundamental type of tabptr is 3 (short integer); the d1, d2, and d3 
fields each contains a 3 (array), and the d4 field is 1 (pointer). Therefore, 
the type entry in the symbol table contains the hexadecimal number Ox7f3 
indicating a three-dimensional array of pointers to short integers. 

Type Entries and Storage Classes 

Table 10.21 shows the type entries that are legal for each storage class. 

10-30 C User's Guide 



Symbol Table 

Table 10.21 

Type Entries by Storage Class 

d Entry 
Storage typ Entry 

Class Function? Array? Pointer? Basic Type 

C_AUTO no yes yes Any except 
T_MOE 

C_EXT yes yes yes Any except 
T_MOE 

C_STAT yes yes yes Any except 
T_MOE 

C_REG no no yes Any except 
T_MOE 

C LABEL no no no TNULL 
C_MOS no yes yes Any except 

T_MOE 
C_ARG yes no yes Any except 

T_MOE 
C STRTAG no no no T STRUCT 
C_MOU no yes yes Any except 

T_MOE 
C UNTAG no no no T UNION 
C_TPDEF no yes yes Any except 

T_MOE 
C ENTAG no no no T ENUM 
C MOE no no no T MOE 
C_REGPARM no no yes Any except 

T_MOE 
C_FIELD no no no T_ENUM, 

T_UCHAR, 
T_USHORT, 
T_UNIT, 
T_ULONG 

C BLOCK no no no TNULL 
C FCN no no no T NULL 
C EOS no no no T NULL 
C FILE no no no T NULL 
C_ALIAS no no no T_STRUCT, 

T_UNION, 
T_ENUM 

Conditions for the d entries apply to dl through d6, except that it is 
impossible to have two consecutive derived types of function. 

Common Object File Format (COFF) 10-31 



Symbol Table 

Although function arguments can be declared as arrays, they are changed 
to pointers by default. Therefore, no function argument can have array as 
its first derived type. 

Structure for Symbol Table Entries 

The C language structure declaration for the symbol table entry is given 
in Figure 10-12. This declaration may be found in the header file syms.h. 

Figure 10-12 Symbol Table Entry Declaration 
struct syrrent 
{ 

tmion 
{ 

char _n _ narre [SYM:MEN] ; 
struct 

{ 

/* syrrbol narre* / 

/* syrrbol narre * / lcng _n _zeroes; 
long _n_offset; /* location in string table */ 

} n n; 
c:tm *_n_nptr[2J; 

n; 
unSigned lang n_value; 
shmt n scnum; 
unsigOO:l short. ~type; 
char n sclass; 

/* allows overlaying */ 

/* value of symbol */ 
/* section Illllli:Jer * / 
/* type and derived */ 
/* stoIage class */ 

char rC nurraux; /* Illllli:Jer of aux entries */ 
} ; 

#define n _ narre _no _ n _ narre 
#define n zeroes n. n n. n zeroes 
#define n-offset -n.-n-n.-n-offset 

#define n::::nptr _n-:-_n::::nPtrTIJ 

#define smMEN 8 
#define SYM!:SZ 18 /* size of a syrrbol table errt:ry */ 

10-32 C User's Guide 



Symbol Table 

Auxiliary Table Entries 

An auxiliary table entry of a symbol contains the same number of bytes as 
the symbol table entry. However, unlike symbol table entries, the format 
of an auxiliary table entry of a symbol depends on its type and storage 
class. They are summarized in Table 10.22. 

Table 10.22 

Auxiliary Symbol Table Entries 

Type Entry 
Storage Auxiliary 

Name Class dl typ Entry Format 

.fiIe C FILE DT NON T NULL file name 

.text,.data, C_STAT DT_NON T_NULL section 

.bss 
tagname C_STRTAG DT_NON T_NULL tag name 

C_UNTAG 
C ENTAG 

.eos C_EOS DT_NON T_NULL end of struc-
ture 

fcname C_EXT DT_FCN (Note 1) function 
C STAT 

arrname (Note 2) DT ARY (Note 1) array 
.bb,.eb C_BLOCK DT_NON T_NULL beginning and 

end of block 
.bf,.ef C_FCN DT_NON T_NULL beginning and 

end of func-
tion 

name related (Note 2) DT]1R, T_STRUCT, name related 
to structure, DT_ARR, T_UNION, to structure, 
union, DT_NON T_ENUM union, 
enumeration enumeration 

Notes to Table 10.22: 

1. Any except T_MOE. 

Common Object File Format (COFF) 10-33 



Symbol Table 

In Table 10.22, tagname means any symbol name including the special 
symbol .xfake, andfcname and arrname represent any symbol name for a 
function or an array respectively. Any symbol that satisfies more than 
one condition in Table 10.22 should have a union format in its auxiliary 
entry. It is a mistake to assume how many auxiliary entries are associated 
with any given symbol table entry. This information is available and 
should be obtained from the n _ numaux field in the symbol table. 

File Names 

Each of the auxiliary table entries for a file name contains a 14-character 
file name in bytes 0 through 13. The remaining bytes are O. 

Sections 

The auxiliary table entries for sections have the format as shown in Table 
10.23. 

Table 10.23 

Format for Auxiliary Table Entries for Sections 

Bytes Declaration Name Description 

0-3 long int x scnlen section length 
4-5 unsigned short x nreloc number of relocation entries 
6-7 unsigned short x nUnno number of line numbers 
8-17 - - unused (filled with zeroes) 

10-34 C User's Guide 



Symbol Table 

Tag Names 

The auxiliary table entries for tag names have the format shown in Table 
10.24. 

Table 10.24 

Tag Names Table Entries 

Bytes Declaration Name Description 

0-5 · · unused (filled with 
zeroes) 

6-7 unsigned short x size size of structure, 
union, and enumera-
tion 

8-11 · · unused (filled with 
zeroes) 

12-15 long int x endndx index of next entry 
beyond this structure, 
union, or enumera-
tion 

16-17 · · unused (filled with 
zeroes) 

End of Structures 

The auxiliary table entries for the end of structures have the format shown 
in Table 10.25. 

Common Object File Format (COFF) 10-35 



Symbol Table 

Table 10.25 

Table Entries for End of Structures 

Bytes Declaration Name Description 

0-3 long int x tagndx tag index 
4-5 - - unused (filled with 

zeroes) 
6-7 unsigned short x size size of structure, 

union, or enumera-
tion 

8-17 - - unused (filled with 
zeroes) 

Functions 

The auxiliary table entries for functions have the format shown in Table 
10.26. 

Table 10.26 

Table Entries for Functions 

Bytes Declaration Name Description 

0-3 long int x tagndx tag index 
4-7 long int x fsize size of function (in 

bytes) 
8-11 long int x)nnoptr file pointer to line 

number 
12-15 long int x endndx index of next entry 

beyond this point 
16-17 unsigned short x tvndx index of function's 

address in the 
transfer vector table 
(not used in UNIX 
System V.) 

10-36 C User's Guide 



Symbol Table 

Arrays 

The auxiliary table entries for arrays have the format shown in Table 
10.27. Defining arrays with more than four dimensions produces a warn­
ing message. 

Table 10.27 

Table Entries for Arrays 

Bytes Declaration Name Description 

0-3 long int x tagndx tag index 
4-5 unsigned short x Inno line number of 

declaration 
6-7 unsigned short x size size of array 
8-9 unsigned short x_dimen[O] first dimension 
10-11 unsigned short x dimen[1] second dimension 
12-13 unsigned short x_dimen[2] third dimension 
14-15 unsigned short x_dimen[3] fourth dimension 
16-17 - - unused (filled with 

zeroes) 

End of Blocks and Functions 

The auxiliary table entries for the end of blocks and functions have the 
format shown in Table 10.28. 

Table 10.28 

End of Block and Function Entries 

Bytes Declaration Name Description 

0-3 - - unused (filled with 
zeroes) 

4-5 unsigned short x Inno C-source line number 
6-17 - - unused (filled with 

zeroes) 

Common Object File Format (COFF) 10-37 



Symbol Table 

Beginning of Blocks and Functions 

The auxiliary table entries for the beginning of blocks and functions have 
the format shown in Table 10.29. 

Table 10.29 

Format for Beginning of Block and Function 

Bytes Declaration Name Description 

0-3 - - unused (filled with 
zeroes) 

4-5 unsigned short x Inno C-source line number 
6-11 - - unused (filled with 

zeroes) 
12-15 long int x endndx index of next entry 

past this block 
16-17 - - unused (filled with 

zeroes) 

Names Related to Structures, Unions, and Enumerations 

The auxiliary table entries for structure, union, and enumeration symbols 
have the format shown in Table 10.30. 

Table 10.30 

Entries for Structures, Unions, and Enumerations 

Bytes Declaration Name Description 

0-3 long int x tagndx tag index 
4-5 - - unused (filled with 

zeroes) 
6-7 unsigned short xyize size of the structure, 

union, or enumera-
tion 

8-17 - - unused (filled with 
zeroes) 

10-38 C User's Guide 



Symbol Table 

Aggregates defined by typedef mayor may not have auxiliary table 
entries. For example, 

typedef struct people STUDENT; 

struct people 

} ; 

char narne[20]; 
long id; 

typedef struct people EMPLOYEE; 

The symbol EMPLOYEE has an auxiliary table entry in the symbol table, 
but the symbol STUDENT will not because it is a forward reference to a 
structure. 

Auxiliary Entry Declaration 

The C language structure declaration for an auxiliary symbol table entry 
is given in Figure 10-13. This declaration may be found in the header file 
syms.h. 

Figure 10-13 Auxiliary Symbol Table Entry (1 of 2) 

union auxent 

struct 

long x_tagndx; 
union 

struct 
{ 

unsigned short x_Inno; 
unsigned short x_size; 

} x_Insz; 
long x_fsize; 

x_mise; 
union 

struct 

long x_Innoptr; 
long x _ endndx; 

} x_fcn; 
struct 

Common Object File Format (COFF) 10-39 



Symbol Table 

Figure 10-13 Auxiliary Symbol Table Entry (Sheet 2 of 2) 

#define 
#define 
#define 
#define 

10-40 

unsigned short x_dimen[DIMNUMl; 
x_ary; 

} x fcnary; 
unsIgned short x_tvndx; 

struct 
( 

char x fname[FILNMLENl; 
x_file; -

struct 
( 

long x scnlen; 
unsigned short x_nreloc; 
unsigned short x_nlinno; 

struct 
( 

long x_tvfill; 
unsigned short x tvlen; 
unsigned short x=tvran[2l; 

) x_tv; 

FILNMLEN 14 
DIMNUM 4 
AUXENT union auxent 
AUXESZ 18 

C User's Guide 



String Table 

String Table 
Symbol table names longer than eight characters are stored contiguously 
in the string table with each symbol name delimited by a null byte. The 
first four bytes of the string table are the size of the string table in bytes; 
offsets into the string table, therefore, are greater than or equal to 4. For 
example, given a file containing two symbols (with names longer then 
eight characters, long_name and another_one) the string table has the 
format as shown in Figure 10-14: 

Figure 10-14 String Table 

'1' '0' 'n' 'g' 

, , 'n' 'a' 'm' -

'e' '\0' 'a' 'n' 

'0' 't' 'h' 'e' 

'r' , , 
'0' 'n' -

'e' '\0' 
, , , , ... ... 

The index of long name in the string table is 4 and the index of 
another one is 14. -

Common Object File Format (COFF) 10-41 



Access Routines 

Access Routines 
UNIX System V contains a set of access routines that are used for reading 
the various parts of a common object file. Although the calling program 
must know the detailed structure of the parts of the object file it pro­
cesses, the routines effectively insulate the calling program from the 
knowledge of the overall structure of the object file. 

The access routines can be divided into four categories: 

1. functions that open or close an object file 

2. functions that read header or symbol table information 

3. functions that position an object file at the start of a particular sec­
tion of the object file 

4. a function that returns the symbol table index for a particular sym­
bol 

These routines can be found in the library Iibld.a and are listed in the 
System Services section of the Programmer's Reference Manual. 

10-42 C User's Guide 



Appendix A 

Converting from Previous 
Versions of the Compiler 

Introduction A-I 

Differences between Versions 5.1 and 5.0 A-2 
New Features for the System V Release of C A-2 
New Pragmas A-3 

Differences between Versions 5.0 and 4.0 A-4 
Enhancements and Additions A-4 
Changes to the Language Syntax A-4 
New Features for the Microsoft Implementation of C A-6 

Differences between Versions 4.0 and 3.0 A-8 
Enhancements and Additions A-8 
Changes in the Language Syntax A-8 
New Features for This Implementation of C A-II 





Introduction 

Introduction 
This appendix describes differences between Version 5.1 and Version 5.0, 
between Version 5.0 and Version 4.0, and between Version 4.0 and Ver­
sion 3.0, of the System V Microsoft C Compiler. If you have an earlier 
version of the compiler, or if you have written programs for an earlier ver­
sion, this chapter can help you convert your previous source code. The 
actions necessary to convert source code depend on which of the earlier 
versions you have used. 

Version 5.1 is an update of Version 5.0. Code written for Version 5.0 
should compile without change on the Version 5.1 compiler. The primary 
changes are new pragmas, new keywords, and new command-line 
changes. Version 5.0 is an update of Version 4.0. Generally, the two ver­
sions are compatible: most C source code written for Version 4.0 should 
compile without change on Version 5.0, although there are erroneous C 
constructs allowed in Version 4.0 that are not allowed in Version 5.0, and 
changes in the emerging ANSI C standard may force changes in source 
programs. For more information, see the C Language Reference. In some 
cases you may be able to enhance your programs by revising them to take 
advantage of new library functions and other features available with Ver­
sion 5.0. 

Converting from Previous Versions of the Compiler A-I 



Differences between Versions 5.1 and 5.0 

Differences between Versions 5.1 and 
5.0 
Changes in Version 5.1 since Version 5.0 fall into the following 
categories: 

• New compiler options 

• New pragmas 

• New keywords 

New Features for the System V Release of C 

The following new options have been added to the System V implementa­
tion of the Microsoft C Compiler: 

Option 

-s 

-xenix 

A-2 

Effect 

Generates assembly-language output. The resulting file 
is intended for the Macro Assembler, masm(CP). 

Produces OMF-formatted object files using the language 
development tools and (if applicable) an x.out format 
executable file. It also suppresses warning messages 
about masm directives in any assembly language output 
files. 

C User's Guide 



Differences between Versions 5.1 and 5.0 

New Pragmas 

The following new pragmas have been added to Version 5.1 of the C com­
piler: 

Pragma Effect 

comment Places a comment record in the object file. 

linesize Sets the number of characters per line in the source list­
ing. 

message Sends a message to the standard output without ter­
minating the compilation. 

page Skips the specified number of pages in the source listing. 

pagesize Sets the number of lines per page in the source listing. 

skip Skips the specified number of lines in the source listing. 

subtitle Specifies a subtitle for the source listing. 

title Specifies a title for the source listing. 

The pragmas are described in Chapter 2. 

Converting from Previous Versions of the Compiler A-3 



Differences between Versions 5.0 and 4.0 

Differences between Versions 5.0 and 
4.0 
Changes in Version 5.0 since Version 4.0 fall into the following 
categories: 

• Enhancements and additions to the compiler software to allow for 
more flexible programming, improved code generation, and 
increased support for the developing ANSI standard 

• Changes in the language syntax 

• Changes in function operations, primarily to conform to the specif­
ications for these functions in the ANSI standard 

These features and the changes required to take advantage of them are 
discussed in the following sections. 

Enhancements and Additions 

Enhancements for Version 5.0 include the following: 

• Improved code generation, including loop optimization; improved 
large-model code generation; and intrinsic functions 

• Faster compilation speed 

• Support for code that will be loaded into read-only memory (ROM) 

• New error-message numbering 

Changes to the Language Syntax 

Some Version 5.0 changes were made to the C-Ianguage syntax to make it 
conform more closely to the new ANSI standard. Most of these changes do 
not affect source code written for the Version 4.0 compiler. The changes 
are summarized as follows: 

• Full function prototyping is supported in Version 5.0. A function 
prototype is a forward declaration containing the types and, option­
ally, names of the parameters (if any) expected in the function call. 

A-4 C User's Guide 



Differences between Versions 5.0 and 4.0 

It can also include identifiers for the arguments, though they go out 
of scope at the end of the prototype. Prototypes allow the compiler 
to perform type checking on the actual arguments passed when the 
function is called. If the compiler does not find a prototype, the 
first occurrence of the function (definition or call) is used as the 
basis of a prototype for that function. That prototype is used to per­
form type checking against subsequent calls, subsequent declara­
tions, or the definition. For more information about function proto­
typing, see the C Language Reference. 

• The const and volatile type specifiers have been implemented for 
Version 5.0. The const type specifier declares an object as an 
unmodifiable value. It can be used for objects of any fundamental 
or aggregate type or for pointers to objects of any type. The vola­
tile type specifier is implemented syntactically, but not semanti­
cally. For more information, see the C Language Reference. 

Note 

Programs that currently use const or volatile as identifiers must be 
recoded to use other names. 

• In Version 5.0, variables of enum type are treated as if they are of 
int type in all cases. Therefore, enum variables can be used in 
indexing expressions and as operands of all relational and arith­
metic operators. 

• String concatenation is supported in Version 5.0. This feature 
causes adjacent string literals to be concatenated into a single 
string literal. This means, for example, that instead of using a 
backslash before a new-line character to indicate continuation of a 
long string literal, the literal can simply be broken into two or 
more quoted string literals on separate lines. For more information, 
see the C Language Reference. 

• New preprocessor features in Version 5.0 include the stringizing 
operator (#), which allows arguments in macro expansions to be 
expanded into a string literal containing the expanded argument; 
and the concatenation operator (##), which concatenates the 
tokens on either side of the operator into a new token in macro 
expansions. For more information, see the C Language Reference. 

Converting from Previous Versions of the Compiler A-5 



Differences between Versions 5.0 and 4.0 

Note 

Previous versions of C allowed expansion of macro formal argu­
ments appearing in string literals and character constants. Programs 
that rely on this feature must be recoded to use the stringizing 
operator. For information, see the discussion of string literals in the 
C Language Reference. 

• The long double data type is now supported; the long float data 
type is no longer supported. 

• The three-digit forms of hex escape sequences (\xddd) and octal 
escape sequences (\ddd) are now supported. 

• The unary plus (+) operator is allowed, but ignored semantically. 

New Features for the Microsoft Implementation of 
C 

The following new cc command options have been added to the Microsoft 
C Compiler for Version 5.0: 

Option 

-Oi 

-01 

-Op 

-SI 

-Sp 

-Ss 

-St 

A-6 

Effect 

Enables intrinsic code generation for all available 
functions 

Enables loop optimizations for an entire program 

Forces consistent precision in floating-point math opera­
tions 

Specifies the line width for source listings 

Specifies the number of lines per page for source listings 

Specifies subtitles for source listings 

Specifies titles for source listings 

C User's Guide 



Differences between Versions 5.0 and 4.0 

-Tc Tells the compiler that the following file is a C source 
file 

-Zp Packs structures on one-, two-, or four-byte boundaries 

The following new pragmas have been added to the Microsoft C Com­
piler for Version 5.0 to control the specified features on a local basis: 

Pragma Effect 

loop _opt Turns loop optimizations on and off 

pack Specifies packing alignment for structures 

intrinsic Specifies which functions are compiled as intrinsic func­
tions 

function Specifies which functions are compiled as standard 
function calls 

same_seg Tells the compiler to assume that specified variables are 
allocated in the same far data segment 

alloc text Specifies modules to be grouped into a specified far text 
segment 

Note that the existing check_stack pragma uses the following new format 
for specifying arguments: 

#pragma check _stack([ {onloff}]) 

Converting from Previous Versions of the Compiler A-7 



Differences between Versions 4.0 and 3.0 

Differences between Versions 4.0 and 
3.0 
Changes between Versions 4.0 and 3.0 fall into the same categories as 
those between Versions 5.0 and 4.0. 

• Enhancements and additions to the compiler software to allow for 
more flexible programming, improved code generation, and 
increased support for the developing ANSI standard 

• Changes in the language syntax 

These features and the changes required to take advantage of them are 
discussed in the following sections. 

Enhancements and Additions 

Enhancements for Version 4.0 include the following: 

• New options for cc and xld 

• Improved code optimization 

• New memory models (compact and huge) 

• Source listings 

• Numbered error messages 

• Huge arrays, allowing a single array to be larger than 64K 

These changes should have no effect on Version 3.0 source code. 

For infonnation on changes to the syntax of the cc command line, see the 
"Compiling with the cc Command" chapter of this guide. 

Changes in the Language Syntax 

Some Version 4.0 changes were made to the C-language syntax to make it 
confonn more closely to the developing ANSI standard. Most of these 
changes do not affect source code written for the Version 3.0 compiler. 
The changes are summarized as follows: 

A-8 C User's Guide 



Differences between Versions 4.0 and 3.0 

• The \a escape sequence represents the bell (or alert) character in 
Version 4.0. 

You can make your source code more portable by using \a instead 
of \x7. For more information, see the C Language Reference. 

• The signed keyword was added to improve portability. 

The signed keyword can be used to specify signed items. This key­
word is particularly useful for declaring signed char types in pro­
grams compiled with the -J option. (-J changes the default mode 
for the char type to unsigned.) For more information on signed 
types, see the C Language Reference. 

• The syntax was changed for making function calls with a variable 
number of arguments. 

The following two declarations contrast the Version 3.0 form and 
the Version 4.0 form: 

int func (int,) ; /* Forward declaration in 
** Version 3.0 syntax 
*/ 

int func (int, ... ); /* Forward declaration in 
** Version 4.0 syntax 
*/ 

This change was made to conform to changes in the ANSI standard 
for the C language. Both forms are supported in Version 4.0 of the 
C Compiler. Microsoft recommends the use of the Version 4.0 
form in all programs. 

• Prior to Version 4.0, the compiler allowed arbitrary strings of char­
acters after a syntactically correct preprocessor command. To con­
form to the developing ANSI standard, this was disallowed in Ver­
sion 4.0. 

Beginning with Version 4.0, the following usage, for example, 
causes the compiler to generate a warning message: 

#endif Block ends here 

In Versions 4.0 and later, such strings must be enclosed in com­
ment delimiters, as in the following example: 

#endif /* Block ends here */ 

Converting from Previous Versions of the Compiler A-9 



Differences between Versions 4.0 and 3.0 

• Names of types defined with typedef are not keywords in Version 
4.0, as they were in Version 3.0. In Version 4.0, these names are in 
the same naming class as names of functions and variables, and 
can be redefined in a nested block. 

For more infonnation, see the C Language Reference. 

• Beginning with Version 4.0, the #pragma directive is supported. 

A "pragma" is an instruction to the compiler. Its syntax is similar 
to the syntax of preprocessor directives, but its purpose is different. 
The syntax is as follows: 

#pragma charstring 

The only pragma instruction supported in the C Compiler, Version 
4.0, is the check stack pragma. This pragma is specific to System 
V, and is discussed in greater detail in the "Compiling with the cc 
Command" chapter of this guide. 

• Hexadecimal and octal integer constants are handled differently in 
Version 4.0 than they are in Version 3.0. 

For more infonnation, see the C Language Reference. 

• The extended keywords fortran, pascal, cdecl, near, and huge are 
enabled by default in Version 4.0. They can be disabled by giving 
the -Za option on the command line. 

• Two new reserved words, const and volatile, were added but not 
implemented for Version 4.0. 

• In Version 3.0, when a near pointer is converted to type long int, it 
is first converted to type short int, then to long int; as a result, in 
Version 3.0 the expression in the if statement evaluates as true in 
the following fragment: 

A-IO 

char *ptr = NULL; 
long i; 

i = (long) ptr; 
if (i == OL) { 

In Version 4.0, the conversion order of near pointers to long 
integers was changed so that it confonns to the order in which the 

C User's Guide 



Differences between Versions 4.0 and 3.0 

compiler does all other conversions that increase the length of a 
variable: first the size, then the mode. (For example, the compiler 
converts a variable with type char to type unsigned long by first 
converting it to signed long, then to unsigned long.) Because of 
this change, the preceding code now converts ptr to a far pointer 
by loading the appropriate segment register value, then changing 
that to a long integer. The expression following the if statement 
would most likely be false in Version 4.0, since the segment regis­
ters do not usually contain O. 

New Features for This Implementation of C 

The following features were added to the C compiler for Version 4.0: 

• Two new memory models: huge and compact 

• The huge, signed, and cdecl keywords 

• A pragma (check_stack) to control stack checking 

• The -J option to change the default mode for the char type to 
unsigned 

• The -Gc option to specify the alternative calling sequence and 
naming conventions used in Pascal and FORTRAN 

These features are discussed in the "Working with Memory Models" 
chapter. In most cases, they will not affect existing Version 3.0 source 
code. However, you may be able to improve your existing programs by 
modifying them to take advantage of the new memory models or the huge 
keyword. 

Converting from Previous Versions of the Compiler A-ll 





AppendixB 

Writing Portable Programs 

Introduction B-1 

Program Portability B-3 

Machine Hardware B-4 
Byte Length B-4 
Word Length B-4 
Storage Alignment B-5 
Byte Order in a Word B-6 
Bit Fields B-7 
Pointers B-7 
Address Space B-9 
Character Set B-9 

Compiler Differences B-11 
Signed/Unsigned char and Sign Extension B-11 
Shift Operations B-11 
Identifier Length B-12 
Register Variables B-12 
Type Conversion B-12 
Functions with a Variable Number of Arguments B-14 
Side Effects and Evaluation Order B-14 

Environment Differences B-16 

Portability of Data B-17 

Type-Size Summary B-18 

Byte-Ordering Summary B-20 





Introduction 

Introduction 
The standard definition of the C programming language leaves many 
details to be decided in specific implementations of the language. These 
unspecified features of the language detract from its portability and must 
be studied when attempting to write portable C code. 

Most of the issues affecting C portability arise from differences either in 
target-machine hardware or in compilers. C was designed to compile 
efficient code for the target machine (initially a Digital Equipment Cor­
poration PDP-ll®), so many of the language features not precisely 
defined are those that reflect a particular machine's hardware characteris­
tics. 

This appendix highlights the various aspects of C that may not be portable 
across different machines and compilers. It also briefly discusses the por­
tability of a C program in terms of its environment. The environment is 
determined by the system calls and library routines a program uses during 
execution, file path names it requires, and other items not guaranteed to 
be constant across different systems. 

The C language has been implemented on many different computers with 
widely different hardware characteristics, from small eight-bit micropro­
cessors to large mainframes. This appendix is concerned with the porta­
bility of C code in the MS-DOS, XENIX, and System V programming 
environments. This is a more restricted problem to consider, since all 
MS-DOS, System V, and XENIX operating systems to date run on hard­
ware with the following basic characteristics: 

• ASCII character set 

• Eight-bit bytes 

• Two-byte or four-byte integers 

• Two's-complement arithmetic 

These features are not formally defined for the language and may not be 
found in all implementations of C. However, the remainder of this appen­
dix is devoted to those systems where these basic assumptions hold. 

The C-Ianguage definition contains no specification of how input and out­
put are performed. These specifications are left to system calls and 
library routines on individual systems. Within the System V and XENIX 
systems there are system calls and library routines that can be considered 

Writing Portable Programs B-1 



Introduction 

portable. This version of the C Compiler includes system calls and 
library routines that can be considered portable across System V, XENIX, 
and MS-DOS systems. The run-time library for the System V C Compiler 
for MS-DOS is composed primarily of System V and XENIX compatible 
routines. By restricting the use of XENIX and System V routines to those 
included in the MS-DOS library, the System V programmer can develop 
MS-DOS programs in the System V environment; C programs written on 
MS-DOS are easily portable to XENIX or System V. 

B-2 C User's Guide 



Program Portability 

Program Portability 
A program is "portable" if it can be compiled and run successfully on 
different machines without alteration. There are many ways to write port­
able programs. One way is to avoid using inherently nonportable lan­
guage features. Another is to isolate any nonportable interactions with 
the environment, such as I/O to nonstandard devices. For example, pro­
grams should avoid hard-coded path names unless a path name is com­
mon to all systems. 

Files required at compile time (such as include files) may also introduce 
nonportability if the path names used are not the same on all machines. 
In some cases, include files containing machine-specific definitions can 
be used to make the source code itself portable. 

Writing Portable Programs B-3 



Machine Hardware 

Machine Hardware 
Differences in the hardware of the various target machines and differences 
in the corresponding C compilers cause the greatest number of portability 
problems. This section lists problems commonly encountered. 

Byte Length 

By definition, the char data type in C must be large enough to hold as 
positive integers all members of a machine's character set. For the ma­
chines described in this appendix, the char size is an eight-bit byte. 

Word Length 

The size of the basic data types for a given implementation are not for­
mally defined in the C language. Therefore, they often follow the most 
natural size for the underlying machine. It is safe to assume that short is 
no longer than long. Beyond that, no assumptions are portable. For 
example, on some machines short is the same length as int, whereas on 
others long is the same length as int. 

Two areas where different int sizes affect program portability are the fol­
lowing: 

1. Array indexing. For very large arrays, a variable of type int may 
not be long enough to store the indices of the highest-numbered 
array elements. 

2. Pointer subtraction. On some machines, an int variable may not be 
long enough to store the results of pointer subtraction. See the sec­
tion on "Pointers" in this appendix for more information about 
this problem. 

Programs that need to assume the size of a particular data type should 
avoid hard-coded constants where possible. Such information can usually 
be written in a fairly portable way. For example, the maximum positive 
integer (on a two's-complement machine) can be obtained with the fol­
lowing directive: 

#define MAXPOS ( (int) ( ( (unsigned) -1) » 1» 

B-4 C User's Guide 



This is preferable to the following code: 

#ifdef PDPll 
#define MAXPOS 32767 
#else 

#endif 

Machine Hardware 

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or 
some other nonportable constant. 

Storage Alignment 

The C language defines no particular layout for storage of data items rela­
tive to each other. The layout for storage of structure elements, or unions 
within the structure or union, is also left undefined by the language. 

Some processors require that data types longer than one byte be aligned 
on even-byte address boundaries. Others, such as the 8086/8088, have no 
such hardware restriction. However, even with these machines, most 
compilers generate code that aligns words, structures, arrays, and long 
words on even addresses or on even long-word addresses. Therefore, the 
following code sequence may give different results, depending on specific 
alignment requirements on different machines: 

struct s_tag ( 
char c; 
int i; 
) ; 

printf("%d\n",sizeof(struct s_tag»; 

This variation in data storage has two major implications: data accessed 
as nonprimitive data types are not portable, and code that makes assump­
tions about the layout on a particular machine is not portable. 

Therefore, unions containing structures are nonportable if the union is 
used to access the same data in different ways. Unions are only likely to 
be portable if they are used exclusively to store different data in the same 
space at different times. For example, if the following union were used to 
obtain four bytes from a long word, the code would not be portable to 
some machines: 

Writing Portable Programs B-5 



Machine Hardware 

union 
char c[4); 
long lw; 
} u; 

The sizeof operator should always be used when reading and writing 
structures, as follows: 

struct s_tag st; 

write (fd, &st, sizeof (st) ) ; 

Using the sizeof operator ensures portability of the source code, but does 
not produce a portable data file. Portability of data is discussed in the 
"Portability of Data" section in this appendix. 

Byte Order in a Word 

The variation in byte order in a word affects the portability of data more 
than the portability of source code. However, any program that makes 
use of knowledge of the internal byte order in a word is not portable. For 
example, on some XENIX or System V systems there is an include file, 
misc.h, that contains the following structure declaration: 

1* 
* structure to access an 
* integer in bytes 
*1 
struct { 

char lobyte; 
char hibyte; 
}; 

With certain less-restrictive compilers, this declaration could be used to 
access the high- and low-order bytes of an integer separately and in a 
completely nonportable way. The correct way to do this is to use mask 
and shift operations to extract the required byte, as shown in the follow­
ing example: 

#define LOBYTE (i) (i & Oxff) 
#define HIBYTE (i) ({i» 8) & Oxff) 

These definitions provide a portable way to extract the least-significant 
and the next-least-significant bytes of an integer. Since the int type can 
be either two or four bytes, depending on the machine, even these 
definitions do not provide a completely portable way to access the bytes 
of an int. 

B-6 C User's Guide 



Machine Hardware 

One result of the byte-ordering problem is that the following code 
sequence will not always perform as intended: 

int c = 0; 

read(fd, &c, 1); 

On machines where the low-order byte is stored first, the value of c is the 
byte value read. On other machines, the byte is read into some byte other 
than the low-order one, so the value of c is different. 

Bit Fields 

Bit fields are not implemented in all C compilers. The C Compiler imple­
ments bit fields and allows them to have any length up to the size of a 
long. However, in many implementations no bit field may be larger than 
an int, and no bit field can overlap an int boundary. If necessary, the com­
piler will leave gaps and move to the next int boundary. To ensure porta­
bility no individual field should exceed 16 bits. 

The C language makes no guarantees about whether bit fields are 
assigned left to right or right to left. Therefore, although bit fields may be 
useful for storing flags and other small data items, their use in unions to 
dissect bits from other data is definitely nonportable. 

Pointers 

The C language is fairly generous in allowing manipulation of pointers, to 
the extent that most compilers do not generate warnings for nonportable 
pointer operations. A common nonportable use of pointers is the use of 
casts to assign one pointer to another pointer of a different data type. This 
practice usually makes some assumption about the internal byte ordering 
and layout of the data type, and is therefore nonportable. In the following 
code, the byte order in the array c is not portable: 

char c [4]; 
long *lp; 

1p = (long *)&c[O]; 
*lp = Ox12345678L; 

Code like this is usually unnecessary or invalid. It is acceptable, however, 
when the malloc function is used to allocate space for variables that do 
not have char type. The routine is declared as type char *, and the return 
value is cast to the type to be stored in the allocated memory. If this type 
is not char *, then a compiler may issue a warning concerning illegal 

Writing Portable Programs B-7 



Machine Hardware 

type conversion. In addition, the malloc function is designed always to 
return a starting address suitable for storing all types of data. A compiler 
may not know this, so it may give an additional warning about possible 
data-alignment problems. In the following example, malloc is used to 
obtain memory for an array of 50 integers: 

extern void *malloc( ); 
int *ip; 

ip = (int *)malloc(50 * sizeof(int)); 

This example will elicit a warning message from some compilers. 

The C Language Reference states that a pointer can be assigned (or cast) 
to an integer large enough to hold it. Note that the size of the int type 
depends on the given machine and implementation. This type is long on 
some machines and short on others. The size may also be modified by 
near and far declarations. In general, do not assume that the following 
statement is always true: 

sizeof(char *) == sizeof(int) 

For example, the following construction is nonportable, assuming that the 
function identifier fune is not previously declared: 

int p; 
p = (char *)func( ); 

This example assumes that a char pointer has the same length as an int. 

Another consequence of different-sized int types on different machines is 
that pointer subtraction may not give the expected results. As an example 
of this case, subtracting pointers to the beginning and end of a very large 
array may give a result that is too large to store in an int variable, as 
shown in the following example: 

int arr[20000], *b = arr, *e = &arr[20000]; 
int diff; 
diff = e - b; 1* result too large to store in 

int variable diff *1 

To correct this problem, coerce the result of the pointer subtraction long 
type, then assign the result to a variable of unsigned int type, as shown in 
the following example: 

unsigned int udiff; 
udiff = (long) ((int huge *)e - (int huge *)b); 

B-8 C User's Guide 



Machine Hardware 

In most implementations, the null pointer value NULL is defined to be 
the int value O. The length of the 0 value can lead to problems for func­
tions that expect pointer arguments longer than an into For portable code, 
always use the following form to pass a NULL value of the correct size: 

func ( (char *)NULL ); 

Address Space 

The address space available to a program varies considerably from sys­
tem to system. Some small processors allow only 64K for program text 
and data combined. Others allow up to 64K of data and 64K of program 
text. Larger machines may allow considerably more text and possibly 
more data as well. 

Large programs, or programs that require large data areas, may have por­
tability problems on small machines. 

Character Set 

The C language does not require the use of the ASCII character set. In fact, 
the only character-set requirements are that all characters must fit in the 
char data type, and all characters must have positive values. 

In the ASCII character set, all characters have values between 0 and 127 
and therefore can be represented in seven bits. On an eight-bits-per-byte 
machine they are all positive, regardless of whether char is treated as 
signed or unsigned. 

A set of character-classi fication macros is included as part of the run-time 
library for the C Compiler. These macros should be used for most tests on 
character quantities. The macros are defined in the include file ctype.h, 
and are described in the C Library Guide. 

The character-classi fication macros provide insulation from the internal 
structure of the character set. In addition, the names of the macros are 
often more meaningful than the equivalent line of code. Compare the fol­
lowing two lines: 

if (isupper (c) ) 

if «c >= 'A') && (c <= ' Z' ) ) 

Writing Portable Programs B-9 



Machine Hardware 

With some of the other macros, such as isxdigit to test for a hexadecimal 
digit, the advantage is even greater. Also, the internal implementation of 
the macros makes them more efficient than an explicit test with an if 
statement. 

B-lO C User's Guide 



Compiler Differences 

Compiler Differences 
There are a number of C compilers running under various operating sys­
tems. The main areas of differences between compilers are outlined in 
this section. 

Signed/Unsigned char and Sign Extension 

The current state of the signed versus unsigned char problem is best 
described as unsatisfactory. The sign-extension problem is a serious bar­
rier to writing portable C, and the best solution at present is to write 
defensive code that does not rely on particular implementation features. 

Shift Operations 

The left-shift operator «<) shifts its operand a number of bits left, filling 
vacated bits with zeros. This is called a logical shift. When the right-shift 
operator (») is applied to an unsigned quantity, it performs a logical­
shift operation; when it is applied to a signed quantity, the vacated bits 
may be filled with zeros (logical shift) or with sign bits (arithmetic shift). 
The decision is implementation dependent, and code that assumes a par­
ticular implementation is nonportable. 

With compilers that use arithmetic right shift, it is necessary to shift and 
mask the appropriate number of high-order bits to avoid sign extension, as 
follows: 

char c; 

c = (c » 3) & Oxif; 

You can also avoid sign extension by using the divide operator (/) as fol­
lows: 

char c; 

c = c I 8; 

Writing Portable Programs B-ll 



Compiler Differences 

Identifier Length 

The use of long symbols and identifier names will cause portability prob­
lems with some compilers. To avoid these problems, a program should 
keep the following symbols as short as possible: 

• C preprocessor symbols 

• C local symbols 

• C external symbols 

Some loaders also place restrictions on the number of unique characters 
in C external symbols. Symbols unique in the first six characters are 
unique to most C-Ianguage processors. 

In some C implementations, the case of letters in identifiers is not signifi­
cant. 

Register Variables 

The number and type of register variables in a function depend on the ma­
chine hardware and the compiler. Excess and invalid register declarations 
are treated as nonregister declarations and should not cause a portability 
problem. On an 8086, 8088 or 80286 processor, up to two register declara­
tions are significant, and they must be applied to types of size int or 
smaller. On the 80386 processor, three register declarations are signifi­
cant. 

Since the compiler ignores excess variables of register type, the most 
important register-type variables should be declared first. In this way, 
register variables that the compiler ignores will be those that are the least 
important. 

Type Conversion 

The C language has some rules for implicit type conversion; it also allows 
explicit type conversions by type casting. The most common portability 
problem in implicit type conversion is unexpected sign extension. This is 
a potential problem whenever something of type char is compared with 
an int. 

B-12 C User's Guide 



Compiler Differences 

The following example will never evaluate true on a machine that sign­
extends char types but treats hexadecimal numbers as unsigned: 

char c; 

if (c Ox80) { 

The following construction is also nonportable: 

char c; 
unsigned int u; 

if (u (unsigned) c) 

Two problems can arise in the preceding example: 

1. The char type may be considered either signed or unsigned, 
depending on the implementation. 

2. For implementations that consider the char type to be signed, two 
different methods of carrying out the conversion are possible: the 
char value may be sign extended to int type first, then converted to 
unsigned type; or the char type may be converted to an unsigned 
type of the same size, then zero extended to int length. 

The only safe comparison between char type and int is the following: 

int c; 

if (c 'x') { 

This comparison is reliable because C guarantees all character constants 
to be positive. 

Writing Portable Programs B-13 



Compiler Differences 

Type conversion also occurs when arguments are passed to functions. 
Types char and short become int. Extending the char type can produce 
unexpected results. For example, the following program yields a result of 
-128 on some machines: 

char c = 128; 
printf("%d\n",c); 

The unexpected negative value is produced because c is converted to int 
when it is passed to the printf function. The function itself has no 
knowledge of the original type of the argument and is expecting an int. 
The correct way to handle this situation is to code defensively and allow 
for the possibility of sign extension, as in the following example: 

char c = 128; 
printf("%d\n", c & Oxff); 

Functions with a Variable Number of Arguments 

Functions with a variable number of arguments present a particular porta­
bility problem if the type of the arguments is also variable. In such cases 
the code is dependent on the size of various data types. For portability, 
these cases should be avoided. 

Side Effects and Evaluation Order 

The C language makes few guarantees about the order of evaluation of 
operands in an expression or arguments to a function call. Therefore, the 
following statement is not portable: 

func(i++, i++); 

Even the following statement is unwise if func is ever likely to be 
replaced by a macro, since the macro may use i more than once: 

func (i++); 

Certain System V- and XENIX-compatible macros commonly appear in 
user programs; some of these use their argument only once, and therefore 
can safely be called with a side-effect argument. To determine whether a 
macro handles side effects correctly, examine the code for that macro to 
see whether or not the argument is evaluated more than once. 

Operands to the following operators are guaranteed to be evaluated left to 
right: 

&& ?: 

B-14 C User's Guide 



Compiler Differences 

Note that the comma operator here is a separator for two C statements. A 
list of items separated by commas in a declaration list is not guaranteed to 
be processed left to right. Therefore, the following declaration on an 8086 
or 8088 processor, where only two register variables may be declared, 
could give any two of the four variables register type, depending on the 
compiler: 

register int a, b, c, di 

To give register storage to the most important variables, use separate 
declaration statements and declare the most important variables first. The 
order of processing of individual declaration statements is guaranteed to 
be sequential in the following statements: 

register int ai 
register int b; 
register int Ci 
register int di 

Writing Portable Programs B-15 



Environment Differences 

Environment Differences 
Most programs make system calls and use library routines for various ser­
vices. This section indicates some of those routines that are not always 
portable and those that particularly aid portability. 

System calls specific to an operating system are not portable if they are 
not present on all other operating-system implementations of C. Most of 
the system calls defined in the UNIX System V run-time library are com­
patible with DOS system calls and are therefore portable to a DOS 
environment. 

Any program is nonportable that contains hard-coded path names to files 
or directories, or that contains user identifier numbers, log-in names, ter­
minal lines, or other system-dependent parameters. These types of con­
stants should be in header files, passed as command-line arguments, or 
obtained from the environment. 

Note that the members of the printf and scanf families of functions, 
including fprintf, fscanf, printf, sprintf, scanf, vfprintf, vprintf, 
vsprintf, and sscanf, have evolved in several ways, and some features are 
not completely portable. Some of the format-conversion characters have 
changed their meanings, in particular those relating to uppercase and 
lowercase in the output of hexadecimal numbers and the specification of 
long integers on 16-bit word machines. The C specifications for these 
routines are given in the C Library Guide. 

Users should be wary of porting object files that reference the setjmp or 
longjmp functions from System V or XENIX to MS-DOS, unless these 
object files were compiled with the -dos option. The MS-DOS versions of 
these functions use a larger buffer size and may cause memory to be 
overwritten. Such object files can be ported from MS-DOS to System V 
without problems, and the corresponding source files can be ported in 
either direction. 

B-16 C User's Guide 



Portability of Data 

Portability of Data 
Data files are almost always nonportable across different central-pro­
cessing-unit (CPU) architectures. As mentioned above, structures, unions, 
and arrays have varying internal layout and padding requirements on 
different machines. In addition, byte ordering within words and actual 
word length may differ. 

The only way to achieve data- file portability is to write and read data files 
as one-dimensional character arrays. This procedure prevents alignment 
and padding problems if the data are written and read as characters, and 
interpreted that way. Thus ASCII text files can usually be moved between 
different machine types without significant problems. 

Writing Portable Programs B-17 



Type-Size Summary 

Type-Size Summary 

Table B.1 summarizes the sizes of the various data types as defined in the 
C Compiler, Version 5.1. 

Type Name 
(Alternate Names) 

char 
(signed char) 

int 
(signed) 
(signed int) 

short 
(short int) 
(signed short) 
(signed short int) 

long 
(long int) 
(signed long) 
(signed long int) 

unsigned! char 

unsigned 
(unsigned int) 

unsigned short 
(unsigned short int) 

B-18 

TableB.l 

C Type Sizes 

Storage 

1 byte 

Implementation 
dependent (2 bytes 
in UNIX C 5.1) 

2 bytes 

4 bytes 

1 byte 

Implementation 
dependent (2 bytes 
in C 5.1) 

2 bytes 

Range of Values 

-128 to 127 

(-32,768 to 32,767 for 
UNIX C Version 5.1) 
(-2,147,483,648 to 
2,147,483,647 for 386) 

-32,768 to 32,767 

-2,147,483,648 to 
2,147,483,647 

Oto 255 

(0 to 65,535 
forC 5.1) 
(0 to 4,294,967,295 for 
386) 

Oto 65,535 

C User's Guide 



Type Name 
(Alternate Names) 

unsigned long 
(unsigned long int) 

enum 

float 

double 

long double 

Table B.1 

C Type Sizes 

Storage 

4 bytes 

Implementation 
dependent (2 bytes 
in C 5.1) 

4 bytes 

8 bytes 

Implementation 
dependent (8 bytes 
in C 5.1) 

Type-Size Summary 

Range of Values 

o to 4,294,967,295 

(0 to 65,535 for 
C5.1) 
(0 to 4,294,967,295 for 
386) 

Approximately 
3.4E-38 to 3.4E+38 
(7-digit precision) 

Approximately 
1.7E-308 to 1.7E+308 
(15-digit precision) 

Approximately 
1.7E-308 to 1.7E+308 
(15-digit precision) 

Any type size modified by the unsigned keyword can be modified by the signed key­
word instead. The signed keyword is useful if the .J option has been used to change 
the default sign of the char type. 

Writing Portable Programs B-19 



Byte-Ordering Summary 

Byte-Ordering Summary 
Tables B.2 and B.3 summarize byte ordering for short and long types, 
respectively. The following conventions are used in these tables: 

1. The lowest physically addressed byte of the data item is aO; al has 
the byte address aO + 1, and so on. 

2. The least-significant byte of the data item is bO; bl is the next 
least significant, and so on. 

Since byte ordering is machine specific, any program that actually makes 
use of the following information is guaranteed to be nonportable: 

Table B.2 

Byte Ordering for Short Types 

CPU Byte Order 

8086 bO bl 

80286 bO bl 

PDP-ll® bO bl 

VAX-ll® bO bl 

M68000 bl bO 

Z8000® bl bO 

B-20 C User's Guide 



Byte-Ordering Summary 

Table B.3 

Byte Ordering for Long Types 

CPU Byte Order 

8086 bO bi b2 b3 

80286 bO bi b2 b3 

PDP-ll® b2 b3 bO bi 

VAX-ll® bO bi b2 b3 

M68000 b3 b2 bi bO 

Z8000® b3 b2 bi bO 

Writing Portable Programs B-21 





AppendixC 

Writing Programs 
for Read-Only Memory 

Introduction C-l 

System V Dependent Library Routines C-2 





Introduction 

Introduction 
This appendix presents information for developers who will be download­
ing code written with the C Compiler into read-only memory (ROM). 
Code of this type is more commonly known as "ROMable" code. Infor­
mation is given about the run-time library routines that directly interface 
with System V. 

Writing Programs for Read-Only Memory C-l 



System V Dependent Library Routines 

System V Dependent Library 
Routines 
Because ROMabie programs are often run outside a System Venviron­
ment, they cannot include calls to run-time library routines that perform 
their operations through calls to System V functions. Table C.l lists the 
library routines that call System V functions. 

Table C.I 

System V Dependent Library Routines 

abort exit fwrite read 
access ffclose getch rmdir 
chdir fgetc getcwd scanf 
chmod fgetchar getpid sopen 
chsize fgets gets sprintf 
close flush getw sscanf 
creat fopen labs stat 
dup fprintf localtime system 
dup2 fputc locking tell 
eof fputchar Iseek time 
execl fputs mkdir tmpfile 
execle fread mktemp unlink 
execlp freopen open utime 
execlpe fscanf perror vfprintf 
execv fseek printf vprintf 
execve fstat putch vsprintf 
execvp ftell puts write 
execvpe ftime putw 

A program containing calls to any of these routines cannot run in a non­
System V environment unless you do one of the following: 

• Write replacements for these System V-dependent routines as 
needed. 

• Edit the program to remove the calls to the listed routines. 

• Obtain the library source files from System V and edit them so that 
they do not include System V function calls, and write functional 
equivalents of the System V functions that can be called from your 
program. 

C-2 C User's Guide 



System V Dependent Library Routines 

Note that certain functions that are not listed above may call System V 
functions indirectly: that is, they may be part of a series of nested calls 
that call routines in the list. 

Writing Programs for Read-Only Memory C-3 





AppendixD 

C Error Messages and Exit Codes 

Introduction D-I 

Command-Line Error Messages D-2 
Command-Line Fatal-Error Messages D-2 
Command-Line Error Messages D-2 
Command-Line Warning Messages D-4 

, Compiler Error Messages D-7 
Fatal-Error Messages D-8 
Compilation-Error Messages D-14 
Warning Messages D-29 
Compiler Limits D-39 

Compiler Exit Codes D-41 





Introduction 

Introduction 
This appendix lists error messages you may encounter as you develop a 
program, and gives a brief description of actions you can take to correct 
the errors. It also describes the exit codes returned by the compiler. 

C Error Messages and Exit Codes D-l 



Command-Line Error Messages 

Command-Line Error Messages 
Messages that indicate errors on the command line used to invoke the 
compiler have one of the following formats: 

command line fatal error D 1 xxx: messagetext 
command line error D2xxx: messagetext 
command line warning D4xxx: messagetext 

(fatal error) 
(error) 
(warning error) 

If possible, the compiler continues operation, printing a warning message. 
In some cases, command-line errors are fatal and the compiler terminates 
processing. 

Command-Line Fatal-Error Messages 

The following messages identify fatal errors. The compiler driver cannot 
recover from a fatal error; it terminates after printing the error message. 

01000 UNKNOWN COMMANO LINE FATAL ERROR 
The compiler detected an unknown fatal-error condition. 

01001 could not execute 'filename' 
The compiler could not find the given file in the current working 
directory or any of the other directories named in the PATH vari­
able. 

01002 too many open files, cannot redirect 'filename' 
No more file descriptors were available to redirect the output of the 
-p option. to a file. 

Command-Line Error Messages 

When the compiler driver encounters any of the errors listed in this sec­
tion, it continues compiling the program (if possible) and outputs addi­
tional error messages. However, no object file is produced. 

02000 UNKNOWN COMMAND LINE ERROR 
The compiler detected an unknown error condition. 

D-2 C User's Guide 



Command-Line Error Messages 

02001 too many symbols predefined with -0 
Too many symbolic constants were defined using the -D option on 
the command line. 

The limit on command-line definitions is normally 16; you can use 
the -U or -u option to increase the limit to 200. 

02002 a previously defined model specification has 
been overridden 
Two different memory models were specified; the model specified 
later on the command line was used. 

02003 missing source file name 
You did not give the name of the source file to be compiled. 

02007 bad option flag, would overwrite 'string}' with 
'string2' 
The specified option was given more than once, with conflicting 
arguments string1 and string2. 

02008 too many option flags, 'string' 
Too many letters were given with the specified option (for example, 
with the -0 option). 

02009 unknown option character in 'optionstring' 
One of the letters in the given option was not recognized. 

02012 too many linker flags on command line 
You tried to pass more than 128 separate options and object files to 
the linker. 

02013 incomplete model specification 
Not enough characters were given for the -Astring option. The 
option requires all three letters (to specify the data-pointer size, 
code-pointer size, and segment setup). 

02014 -NO not allowed with -Ad 
You cannot rename the default data segment unless you give the 
-Auxx option (SS != DS, load DS) on the command line. 

02016 -Gw and -NO name are incompatible 
You tried to rename the default data segment to the given name 
when you specified the -Gw option. 

Renaming the default data segment is illegal in this case because the 
-Gw option requires the -Awxx option. 

C Error Messages and Exit Codes D-3 



Command·Line Error Messages 

D2017 -Gw and -Au flags are incompatible 
You tried to specify the ·Auxx option (SS != DS, load DS) with the 
.Gwoption. 

Specifying ·Auxx with ·Gw is illegal because the ·Gw option 
requires the ·Awxx option. 

D2019 cannot overwrite the source file, 'name' 
You specified the source file as an output-file name. 

The compiler does not allow the source file to be overwritten by one 
of the compiler output files. 

D2020 -Gc option requires extended keywords to be 
enabled (-Ze) 
The ·Gc option and the ·Za option were specified on the same com­
mand line. 

The ·Gc option requires the extended keyword cdecl to be enabled if 
library functions are to be accessible. 

D2021 invalid numerical argument 'string' 
A non-numerical string was specified following an option that 
required a numerical argument. 

D2023 invalid model specification - small model 
only 

D2024 : -Gm and -ND are incompatible options 
You compiled with both the ·Gm and ·ND compiler options. These 
options are incompatible because -Gm indicates that string literals 
and near canst data items should be allocated in the CONST seg­
ment, while the ·ND option attempts to allocate the same items in a 
different, named segment. 

Command-Line Warning Messages 

The messages listed in this section indicate potential problems but do not 
hinder compilation and linking. 

D-4 

D4000 UNKNOWN COMMAND LINE WARNING 
An unknown fatal condition has been detected by the compiler. 

D4001 listing has precedence over assembly output 
Two different listing options were chosen; the assembly listing is not 
created. 

C User's Guide 



Command-Line Error Messages 

D4002 ignoring unknown flag 'string' 
One of the options given on the command line was not recognized 
and is ignored. 

D4003 80186/286 selected over 8086 for code 
generation 
Both the -GO option and either the -GI or -G2 option were given; 
-GI or -G2 takes precedence. 

D4004 optimizing for time over space 
This message confirms that the -Ot option is used for optimizing. 

D4006 only one of -P/-E/-EP allowed, -P selected 
Only one preprocessor output option can be specified at one time. 

D4007 -C ignored (must also specify -P or -E 
or -EP) 
The -C option must be used in conjunction with one of the prepro­
cessor output flags, -E, -EP, or -Po 

D4008 non-standard model -- defaulting to small 
model libraries 
A nonstandard memory model was specified with the option. The 
library search records in the object model were set to use the small­
model libraries. 

D4009 threshold only for far/huge data, ignored 
The -Gt option cannot be used in memory models that have near 
data pointers. It can be used only in compact, large, and huge 
models. 

D4011 preprocessing overrides source 
listing 
Only a preprocessor listing was generated, since the compiler cannot 
generate both a source listing and a preprocessor listing at the same 
time. 

D4012 function declarations override source 
listing 
The compiler cannot generate both a source-listing file and the func­
tion prototype declarations at the same time. 

D4013 combined listing has precedence over object 
listing 
When -Fe is specified along with either -Ft or -Fa, the combined list­
ing (-Fe) is created. 

C Error Messages and Exit Codes D-5 



Command-Line Error Messages 

D-6 

D40l4 invalid value number for 'string'. Default number 
is used 
An invalid value was given in a context where a particular numerical 
value was expected. 

D40l7 conflicting stack checking options - stack 
checking disabled 
Both the -Ge and the -Gs flags are given in one compile command 
(-Ge enables stack checking, -Gs disables it). 

C User's Guide 



Compiler Error Messages 

Compiler Error Messages 
The error messages produced by the C compiler fall into three categories: 

1. Fatal-error messages 

2. Compilation-error messages 

3. Warning messages 

The messages for each category are listed below in numerical order, with 
a brief explanation of each error. To look up an error message, first deter­
mine the message category, then find the error number. All messages give 
the file name and line number where the error occurs. 

Fatal-Error Messages 

Fatal-error messages indicate a severe problem, one that prevents the 
compiler from processing your program any further. These messages have 
the following format: 

filename(line) :fatal error Clxxx: messagetext 

After the compiler displays a fatal-error message, it terminates without 
producing an object file or checking for further errors. 

Compilation-Error Messages 

Compilation-error messages identify actual program errors. These mes­
sages appear in the following format: 

filename(line) : error C2xxx: messagetext 

The compiler does not produce an object file for a source file that has 
compilation errors in the program. When the compiler encounters such 
errors, it attempts to recover from the error. If possible, it continues to 
process the source file and produce error messages. If errors are too 
numerous or too severe, the compiler stops processing. 

C Error Messages and Exit Codes D-7 



Compiler Error Messages 

Warning Messages 

Warning messages are informational only; they do not prevent compila­
tion and linking. These messages appear in the following format: 

filename(line) " warning C4xxx,' messagetext 

You can use the -W option to control the level of warnings that the com­
piler generates. This option is described in the "Compiling with the cc 
Command" chapter of this guide. 

Fatal-Error Messages 

The following messages identify fatal errors. The compiler cannot 
recover from a fatal error; it terminates after printing the error message. 

D-8 

ClOOO UNKNOWN FATAL ERROR 
An unknown error condition has been detected by the compiler. 

ClOOl Internal Compiler Error 
The compiler detected an internal inconsistency. 

Note that the file name refers to an internal compiler file, not your 
source file. 

Cl002 out of heap space 
The compiler has run out of dynamic memory space. This usually 
means that your program has many symbols and/or complex expres­
sions. 

To correct the problem, divide the file into several smaller source 
files, or break expressions into subexpressions. 

Cl003 error count exceedsn; stopping compilation 
Errors in the program were too numerous or too severe to allow 
recovery, and the compiler must terminate. 

C User's Guide 



Compiler Error Messages 

CI004 unexpected EOF 
This message appears when you have insufficient disk space for the 
compiler to create the temporary files it needs. The space required is 
approximately two times the size of the source file. This message 
can also occur when a comment does not have a closing delimiter 
(*/), or when an #if directive occurs without a corresponding closing 
#endif directive. 

CIOOS string too big for buffer 
A string in a compiler intermediate file overflowed a buffer. 

CI006 write error on compiler intermediate file 
The compiler was unable to create the intermediate files used in the 
compilation process. 

The following conditions commonly cause this error: 

1. A system file or the inode table is full at time of compilation 

2. Not enough space on a device containing a compiler inter­
mediate file 

CI007 unrecognized flag 'string' in 'option' 
The string in the command-line option was not a valid option. 

CI009 compiler limit possibly a recursively 
defined macro 
The expansion of a macro exceeds the available space. 

Check to see if the macro is recursively defined, or if the expanded 
text is too large. 

CIOIO compiler limit : macro expansion too big 
The expansion of a macro exceeds the available space. 

CI012 bad parenthesis nesting - missing 'character' 
The parentheses in a preprocessor directive were not matched; char­
acter is either a left or right parenthesis. 

CI013 cannot open source file 'filename' 
The given file either did not exist, could not be opened, or was not 
found. Make sure your environment settings are valid and that you 
have given the correct path name for the file. 

C Error Messages and Exit Codes D-9 



Compiler Error Messages 

CI014 too many include files 
Nesting of #include directives exceeds 10 levels. 

CI016 #if[nJdef expected an identifier 
You must specify an identifier with the #ifdef and #ifndef directives. 

CI017 invalid integer constant expression 
The expression in an #if directive must evaluate to a constant. 

CI018 unexpected ~eli~ 
The #elif directive is legal only when it appears within an #if, #ifdef, 
or #ifndef directive. 

CI019 unexpected '#else' 
The #else directive is legal only when it appears within an #if, 
#ifdef, or #ifndef directive. 

CI020 unexpected '#endif' 
An #endif directive appears without a matching #if, #ifdef, or 
#ifndef directive. 

CI021 bad preprocessor command 'string' 
The characters following the number sign (#) do not form a valid 
preprocessor directive. 

CI022 expected '#endif' 
An #if, #ifdef, or #ifndef directive was not terminated with an 
#endif directive. 

CI026 parser stack overflow, please simplify your prc 
Your program cannot be processed because the space required to 
parse the program causes a stack overflow in the compiler. 

To solve this problem, try to simplify your program. 

CI027 DGROUP data allocation exceeds 64K 
More than 64K of variables was allocated to the default data seg­
ment. 

For compact-, medium-, large-, or huge-model programs, use the -Gt 
option to move items into separate segments. 

D-IO C User's Guide 



Compiler Error Messages 

CI032 cannot open object listing file 'filename' 
One of the following statements about the file name or path name 
given (filename) is true: 

1. The given name is not valid. 

2. The file with the given name cannot be opened for 
lack of space. 

3. A read-only file with the given name already exists. 

CI033 cannot open assembly-language output file 
'filename' 
One of the conditions listed under error message C1032 prevents the 
given file from being opened. 

CI034 cannot open source file 'filename' 
One of the conditions listed under error message C1032 prevents the 
given file from being opened. 

CI035 expression too complex, please simplify 
The compiler cannot generate the code for a complex expression. 
Break the expression into simpler subexpressions and recompile. 

CI036 cannot open source listing file 'filename' 
One of the conditions listed under error message C1032 prevents the 
given file from being opened. 

CI037 cannot open object file 'filename' 
One of the conditions listed under error message C1032 prevents the 
given file from being opened. 

CI039 unrecoverable heap overflow in Pass 3 
The post-optimizer compiler pass overflowed the heap and could not 
continue. 

Try recompiling with the -Dd option (see "Compiling with the cc 
Command" ) or try rewriting the function containing the line that 
caused the error. 

CI040 unexpected EOF in source file 'filename' 
The compiler detected an unexpected end-of-file condition while 
creating a source listing or mingled source/object listing. 

This error probably occurred because the source file was edited dur­
ing compilation. 

C Error Messages and Exit Codes D-ll 



Compiler Error Messages 

Cl04l cannot open compiler intermediate file - no 
more files 
The compiler could not create intermediate files used in the compila­
tion process because no more file descriptors were available. 

Cl042 cannot open compiler intermediate file - no 
such file or directory 
The compiler could not create intermediate files used in the compila­
tion process because the Itmp directory did not exist. 

Cl043 cannot open compiler intermediate file 
The compiler could not create intermediate files used in the compila­
tion process. The exact reason is unknown. 

Cl044 out of disk space for compiler intermediate 
file 
The compiler could not create intermediate files used in the compila­
tion process because no more space was available. 

To correct the problem, make more space available on the disk and 
recompile. 

Cl045 floating point overflow 
The compiler generated a floating-point exception while doing con­
stant arithmetic on floating-point items at compile time, as in the fol­
lowing example: 

float fp_val = 1.0e100; 

In this example, the double-precision constant 1.OelOO exceeds the 
maximum allowable value for a floating-point data item. 

Cl047 too many option flags, 'string' 
The option appeared too many times. The string contains the occur­
rence of the option that caused the error. 

Cl048 Unknown option 'character' in 'optionstring' 
The character was not a valid letter for optionstring. 

Cl049 invalid numerical argument 'string' 
A numerical argument was expected instead of string. 

ClOSO code segment 'segmentname' too large 
A code segment grew to within 36 bytes of 64K during compilation. 

A 36-byte pad is used because of a bug in some 80286 chips that can 
cause programs to exhibit strange behavior when, among other con­
ditions, the size of a code segment is within 36 bytes of 64K. 

D-12 C User's Guide 



Compiler Error Messages 

Cl052 too many #if/#ifde~s 
You have exceeded the maximum nesting level for #if/#ifdef direc­
tives. 

Cl053 compiler limit : struct/union nesting 
Structure and union definitions were nested to more than 10 levels. 

Cl054 compiler limit : initializers too deeply 
nested 
The compiler limit on nesting of initializers was exceeded. The limit 
ranges from 10 to 15 levels, depending on the combination of types 
being initialized. 

To correct this problem, simplify the data type being initialized to 
reduce the levels of nesting, or assign initial values in separate state­
ments after the declaration. 

Cl056 compiler limit : out of macro expansion space 
The compiler has overflowed an internal buffer during the expansion 
of a macro; reduce the complexity of the macro. 

Cl057 unexpected EOF in macro expansion; 
(missing ') '?) 
The compiler has encountered the end of the source file while gath­
ering the arguments of a macro invocation. Usually this is the result 
of a missing closing parenthesis ()) on the macro invocation. 

Cl059 out of near heap space 
The compiler has run out of storage for items that it stores in the 
"near" (default data segment) heap. This usually means that your 
program has too many symbols or complex expressions. To correct 
the problem, divide the file into several smaller source files, or break 
expressions into smaller subexpressions. 

Cl060 out of far heap space 
The compiler has run out of storage for items that it stores in the 
"far" heap. Usually this is the result of too many symbols in the 
symbol table. 

Cl064 : too many text segments 
You defined more than 10 distinct text segments with the aIloc_text 
pragma. 

C Error Messages and Exit Codes D-13 



Compiler Error Messages 

Compilation-Error Messages 

The messages listed below indicate that your program has errors. When 
the compiler encounters any of the errors listed in this section, it contin­
ues parsing the program (if possible) and outputs additional error mes­
sages. However, no object file is produced. 

C2000 UNKNOWN ERROR 
The compiler detected an unknown error condition. 

C200l newline in constant 
A new-line character in a character or string constant was not in the 
correct escape-sequence format (\n). 

C2002 out of macro actual parameter space 
Arguments to preprocessor macros exceeded 256 bytes. 

C2003 expected 'defined id' 
The identifier to be checked in an #if directive was not enclosed in 
parentheses. 

C2004 expected 'defined (id)' 
An #if directive caused a syntax error. 

C2005 #line expected a line number, found 'token' 
A #Iine directive lacked the required line-number specification. 

C2006 #include expected a file name, found 'token' 
An #include directive lacked the required file-name specification. 

C2007 #define syntax 
A #define directive caused a syntax error. 

C2008 'character' : unexpected in macro definition 
The given character was used incorrectly in a macro definition. 

C2009 reuse of macro formal 'identifier' 
The given identifier was used twice in the formal-parameter list of a 
macro definition. 

C20l0 'character' : unexpected in formal list 
The given character was used incorrectly in the formal-parameter 
list of a macro definition. 

C20ll 'identifier' : definition too big 
The given macro definitions exceeded 256 bytes. 

D-14 C User's Guide 



Compiler Error Messages 

C2012 missing name following ~' 
An #include directive lacked the required file-name specification. 

C2013 missing '>' 
The closing angle bracket (» was missing from an #include direc­
tive. 

C2014 preprocessor command must start as first 
non whitespace 
Non-white-space characters appear before the number sign (#) of a 
preprocessor directive on the same line. 

C2015 too many chars in constant 
A character constant containing more than one character or escape 
sequence was used. 

C2016 no closing single quote 
A character constant was not enclosed in single quotation marks. 

C2017 illegal escape sequence 
The character or characters after the escape character (\) did not 
fonn a valid escape sequence. 

C2 0 18 unknown character 'Oxcharacter' 
The given hexadecimal number does not correspond to a character. 

C2019 expected preprocessor command, found 'character' 
The given character followed a number sign (#), but it was not the 
first letter of a preprocessor directive. 

C2020 bad octal number 'character' 
The.given character was not a valid octal digit. 

C2021 expected exponent value, not 'character' 
The given character was used as the exponent of a floating-point 
constant but was not a valid number. 

C2022 'number' : too big for char 
The number was too large to be represented as a character. 

C2023 divide by 0 
The second operand in a division operation (I) evaluated to zero, giv­
ing undefined results. 

C2024 mod by 0 
The second operand in a remainder operation (%) evaluated to zero, 
giving undefined results. 

C Error Messages and Exit Codes D-15 



Compiler Error Messages 

C2025 'identifier' : enum/struct/union type redefinition 
The given identifier had already been used for an enumeration, struc­
ture, or union tag. 

C2026 'identifier' : member of enum redefinition 
The given identifier had already been used for an enumeration con­
stant, either within the same enumeration type or within another 
enumeration type with the same visibility. 

C2028 struct/union member needs to be inside a stru( 
Structure and union members must be declared within the structure 
or union. 

This error may be caused by an enumeration declaration that con­
tains a declaration of a structure member, as in the following exam­
ple: 

enum a 
january, 
february, 
int march; /* structure declaration: 

** illegal 
*/ 

} ; 

C2029 'identifier' : bit-fields allowed only in structs 
Only structure types may contain bit fields. 

C2030 'identifier' : struct/union member redefinition 
The identifier was used for more than one member of the same struc­
ture or union. 

C203l 'identifier' function cannot be 
struct/union member 
The given function was declared to be a member of a structure. 

To correct this error, use a pointer to the function instead. 

C2032 'identifier': base type with near/far/huge 
not allowed 
The given structure or union member was declared with the near, 
far, or huge keyword. 

C2033 'identifier' : bit-field cannot have indirection 
The given bit field was declared as a pointer (*), which is not 
allowed. 

D-16 C User's Guide 



Compiler Error Messages 

C2034 'identifier' : bit-field type too small for num­
ber of bits 
The number of bits specified in the bit-field declaration exceeded the 
number of bits in the given base type. 

C2035 enum/struct/union 'identifier' : unknown size 
The given structure or union had an undefined size. 

C2036 left of 'member' must have struct/union type 
The expression before the member-selection operator (-» was not a 
pointer to a structure or union type, or the expression before the 
member-selection operator (.) did not evaluate to a structure or 
union. In this message, member is a member designator in one of the 
following forms: 

->identifier 
• identifier 

C2037 left of '->' or 
, , 

specifies undefined 
struct /union 'identifier' 
The expression before the member-selection operator (-> or .) 
identified a structure or union type that was not defined. 

C2038 'identifier' : not struct/union member 
The given identifier was used in a context that required a structure or 
union member. 

C2039 '->' requires struct/union pointer 
The expression before the member-selection operator (-» was a 
structure or union name, not a pointer to a structure or union as 
expected. 

C2040 '.' requires struct/union name 
The expression before the member-selection operator (.) was a 
pointer to a structure or union, not a structure or union name as 
expected. 

C2041 keyword 'enum' illegal 
The enum keyword appeared in a structure or union declaration, or 
an enum type definition was not formed correctly. 

C2042 signed/unsigned keywords mutually exclusive 
The signed and unsigned keywords may not appear in the same 
declaration. 

C2043 illegal break 
A break statement is legal only when it appears within a do, for, 
while, or switch statement. 

C Error Messages and Exit Codes D-17 



Compiler Error Messages 

C2044 illegal continue 
A continue statement is legal only when it appears within a do, for, 
or while statement. 

C2045 'identifier' : label redefined 
The given label appeared before more than one statement in the 
same function. 

C2046 illegal case 
The case keyword may appear only within a switch statement. 

C2047 illegal default 
The default keyword may appear only within a switch statement. 

C2048 more than one default 
A switch statement contained more than one default label. 

C2049 cast has illegal formal parameter list 
A formal parameter list was given in a type-cast expression. 

C2050 non-integral switch expression 
A switch expression was not integral. 

C205l case expression not constant 
Case expressions must be integral constants. 

C2052 case expression not integral 
Case expressions must be integral constants. 

C2053 case value number already used 
The given case value was already used in this switch statement. 

C2054 expected' (' to follow 'identifier' 
The context requires parentheses after the function identifier. 

C2055 expected formal parameter list, not a type list 
An argument-type list appeared in a function definition instead of a 
formal parameter list. 

C2056 illegal expression 
An expression was illegal because of a previous error. (The previous 
error may not have produced an error message.) 

C2057 expected constant expression 
The context requires a constant expression. 

C2058 constant expression is not integral 
The context requires an integral constant expression. 

D-18 C User's Guide 



Compiler Error Messages 

C2059 syntax error : 'token' 
The given token caused a syntax error. 

C2060 syntax error : EOF 
The end of the file was encountered unexpectedly, causing a syntax 
error. This error can be caused by a missing closing curly brace (}) at 
the end of your program. 

C206l syntax error : identifier 'identifier' 
The given identifier caused a syntax error. 

C2062 type 'type' unexpected 
The given type was misused. 

C2063 'identifier' : not a function 
The given identifier was not declared as a function, but an attempt 
was made to use it as a function. 

C2064 term does not evaluate to a function 
An attempt was made to call a function through an expression that 
did not evaluate to a function pointer. 

C2065 'identifier' : undefined 
The given identifier was not defined. 

C2066 cast to function returning 
An object was cast to a function type. 

is illegal 

C2067 cast to array type is illegal 
An object was cast to an array type. 

C2068 illegal cast 
A type used in a cast operation was not a legal type. 

C2069 cast of 'void' term to non-void 
The void type was cast to a different type. 

C2070 illegal sizeof operand 
The operand of a sizeof expression was not an identifier or a type 
name. 

C207l 'class' : bad storage class 
The given storage class cannot be used in this context. 

C2072 'identifier' ; initialization of a function 
An attempt was made to initialize a function. 

C Error Messages and Exit Codes D-19 

E 



Compiler Error Messages 

C2073 'identifier' : cannot initialize array in function 
An attempt was made to initialize the given array within a function. 
Arrays can be initialized only at the extemallevel. 

C2074 cannot initialize struct/union in function 
An attempt was made to initialize the given structure or union within 
a function. Structures and unions can be initialized only at the exter­
nallevel. 

C 207 5 'identifier' array initialization needs 
curly braces 
The braces ({ }) around the given array initializer were missing. 

C2076 'identifier' : struct/union initialization needs 
curly braces 
The braces ({}) around the given structure or union initializer were 
missing. 

C2077 non-integral field initializer 'identifier' 
An attempt was made to initialize a bit-field member of a structure 
with a nonintegral value. 

C2078 too many initializers 
The number of initializers exceeded the number of objects to be ini­
tialized. 

C2079 'expression' uses undefined struct/union 
The given identifier was declared as a structure or union type that 
had not been defined. 

C2082 redefinition of formal parameter 'identifier' 
A formal parameter to a function was redeclared within the function 
body. 

C2083 array 'identifier' already has a size 
The dimensions of the given array had already been declared. 

C2084 function 'identifier' already has a body 
The given function had already been defined. 

C2085 'identifier' : not in formal parameter list 
The given parameter was declared in a function definition for a 
nonexistent formal parameter. 

C2086 'identifier' : redefinition 
The given identifier was defined more than once. 

D-20 C User's Guide 



Compiler Error Messages 

C2087 'identifier' : missing subscript 
The definition of an array with multiple subscripts was missing a 
subscript value for a dimension other than the first dimension, as in 
the following example: 

int func (a) 
char a [ 10] [] ; 
{ 

int func (a) 
char a [] [5] ; 
{ 

1* Illegal *1 

1* Legal *1 

C2088 use of undefined enum/struct/union 'identifier' 
The given identifier referred to a structure or union type that was not 
defined. 

C2089 typedef specifies a near/far function 
The use of the near or far keyword in a typedef declaration 
conflicted with the use of near or far for the declared item, as in the 
following example: 

typedef int far FARFUNC( ); 
FARFUNC near *fp; 

C2090 function returns array 
A function cannot return an array. (It can return a pointer to an 
array.) 

C2091 function returns function 
A function cannot return a function. (It can return a pointer to a func­
tion.) 

C2092 array element type cannot be function 
Arrays of functions are not allowed; however, arrays of pointers to 
functions are allowed. 

C Error Messages and Exit Codes D-21 



Compiler Error Messages 

C2093 cannot initialize a static or struct with 
address of automatic vars 
You cannot use the address of an auto variable in the initializer of a 
static item. 

C2 0 94 label 'identifier' was undefined 
The function did not contain a statement labeled with the given 
identifier. 

C2095function: actual has type void: parameter numbei 
An attempt was made to pass a void argument to a function. Formal 
parameters and arguments to functions cannot have type void; they 
can, however, have type void * (pointer to void). 

C2096 struct/union comparison illegal 
You cannot compare two structures or unions. (You can, however, 
compare individual members within structures and unions.) 

C2097 illegal initialization 
An attempt was made to initialize a variable using a nonconstant 
value. 

C2098 non-address expression 
An attempt was made to initialize an item that was not an lvalue. 

C2099 non-constant offset 
An initializer used a nonconstant offset. 

C2100 illegal indirection 
The indirection operator (*) was applied to a nonpointer value. 

C2101 '&' on constant 
The address-of operator (&) did not have an lvalue as its operand. 

C2102 '&' requires lvalue 
The address-of operator must be applied to an lvalue expression. 

C2103 '&' on register variable 
An attempt was made to take the address of a register variable. 

C2104 '&' on bit-field 
An attempt was made to take the address of a bit field. 

D-22 C User's Guide 



Compiler Error Messages 

C2105 'operator' needs Ivalue 
The given operator did not have an lvalue operand. 

C2106 'operator' : left operand must be lvalue 
The left operand of the given operator was not an lvalue. 

C2107 illegal index, indirection not allowed 
A subscript was applied to an expression that did not evaluate to a 
pointer. 

C2108 non-integral index 
A nonintegral expression was used in an array subscript. 

C2109 subscript on non-array 
A subscript was used on a variable that was not an array. 

C2110 '+' : 2 pointers 
An attempt was made to add one pointer to another. 

C2111 pointer + non-integral value 
An attempt was made to add a nonintegral value to a pointer. 

C2112 illegal pointer subtraction 
An attempt was made to subtract pointers that did not point to the 
same type. 

C2113 '-' : right operand pointer 
The right operand in a subtraction operation (-) was a pointer, but 
the left operand was not. 

C2114 'operator' : pointer on left; needs integral 
right 
The left operand of the given operator was a pointer; the right 
operand must be an integral value. 

C2115 'identifier' : incompatible types 
An expression contained incompatible types. 

C2116 'operator' : bad left (or right) operand 
The specified operand of the given operator was illegal for that 
operator. 

C2117 'operator' : illegal for struct/union 
Structure and union type values are not allowed with the given 
operator. 

C2118 negative subscript 
A value defining an array size was negative. 

C Error Messages and Exit Codes D-23 



Compiler Error Messages 

C2119 'typedefs' both define indirection 
Two typedef types were used to declare an item and both typedef 
types had indirection. For example, the declaration of p in the fol­
lowing example is illegal: 

typedef int *p INTi 
typedef short *p SHORTi 
1* this declaration is illegal *1 
P SHORT P_INT Pi 

C2l20 'void' illegal with all types 
The void type was used in a declaration with another type. 

C2l21 typedef specifies different enum 
An attempt was made to use a type declared in a typedef statement 
to specify both an enumeration type and another type. 

C2l22 typedef specifies different struct 
An attempt was made to use a type declared in a typedef statement 
to specify both a structure type and another type. 

C2123 typedef specifies different union 
An attempt was made to use a type declared in a typedef statement 
to specify both a union type and another type. 

C2125 identifier : allocation exceeds 64K 
The given item exceeds the size limit of 64K. 

The only items that are allowed to exceed 64K are huge arrays. 

C2126 identifier : automatic allocation exceeds 32K 
The space allocated for the local variables of a function exceeded 
the limit of 32K. 

C2127 parameter allocation exceeds 32K 
The storage space required for the parameters to a function exceeded 
the limit of 32K. 

C2l28 identifier : huge array cannot be aligned to seg­
ment boundary 
The given array violated one of the restrictions imposed on huge 
arrays; see the "Working with Memory Models" chapter for more 
information on these restrictions. 

D-24 C User's Guide 



Compiler Error Messages 

C2129 static function 'identifier' not found 
A forward reference was made to a static function that was never 
defined. 

C2130 #line expected a string containing the file 
name, found 'token 
A file name was missing from a #line directive. 

C2131 attributes specify more than one 
near/far/huge 
More than one near, far, or huge attribute was applied to an item, as 
in the following example: 

typedef int near NINT; 
NINT far a; /* Illegal * / 

C2132 syntax error unexpected identifier 
An identifier appeared in a syntactically illegal context. 

C2133 array 'identifier' : unknown size 
An attempt was made to declare an unsized array as local variable, 
as in the following example: 

int mat add(arrayl) 
int arrayl[]; 
{ 
int array2 [] ; 

/* Legal */ 

/* Illegal */ 

C2134 identifier : struct/union too large 
The size of a structure or union exceeded the compiler limit (232 

bytes). This limit is 64K on 80286 systems. 

C2135 missing ')' in macro expansion 
A macro reference with arguments was missing a closing parenthesis 
()). 

C2l37 empty character constant 
The illegal character constant " was used. 

C2138 unmatched close comment '/*' 
The compiler detected an open-comment delimiter (/*) without a 
matching close-comment delimiter (*/). 

This error usually indicates an attempt to use illegal nested com­
ments. 

C Error Messages and Exit Codes D-25 



Compiler Error Messages 

C2l39 type following 'type' is illegal 
An illegal type combination such as the following was used: 

long char a; 

C2l40 argument type cannot be function 
returning ... 
A function was declared as a fonnal parameter of another function, 
as in the following example: 

int funcl (al 
int a ( l; /* Illegal */ 

C2l4l value out of range for enum constant 
An enumeration constant had a value outside the range of values 
allowed for type into 

I C2l42 ellipsis requires three periods 
The compiler detected the token " .. " and assumed that " ... " was 
intended. 

C2l43 syntax error : missing 'token]' before 'token2' 
The compiler expected token} to appear before token2. This message 
may appear if a required closing curly brace (}), right parenthesis 0), 
or semicolon (;) is missing. 

C2l44 syntax error : missing 'token' before type 'type' 
The compiler expected the given token to appear before the given 
type name. This message may appear if a required closing curly 
brace (}), right parenthesis 0), or semicolon (;) is missing. 

C2l45 syntax error : missing 'token' before 
identifier 
The compiler expected the given token to appear before an identifier. 
This message may appear if a semicolon (;) does not appear after the 
last declaration of a block. 

C2l46 syntax error : missing 'token' before identif­
ier 'identifier' 
The compiler expected the given token to appear before the given 
identifier. 

C2l47 array : unknown size 
An attempt was made to increment an index or pointer to an array 
whose base type has not yet been declared. 

D-26 C User's Guide 



Compiler Error Messages 

C2l48 array too large 
An array exceeded the maximum legal size (232 bytes). 

C2l49 identifier : named bit-field cannot have 0 width 
The given named bit field had a zero width. Only unnamed bit fields 
are allowed to have zero width. 

C2150 identifier : bit-field must have type int, signed 
int, or unsigned int 
The ANSI C standard requires bit fields to have types of int, signed 
int, or unsigned int. This message appears only if you compiled 
your program with the -Za option. 

C2l51 more than one cdecl/fortran/pascal 
attribute specified 
More than one keyword specifying a function-calling convention 
was given. 

C2l52 identifier : pointers to functions with different 
attributes 
An attempt was made to assign a pointer to a function declared with 
one calling convention (cdecl, fortran, or pascal) to a pointer to a 
function declared with a different calling convention. 

C2153 hex constants must have at least 1 hex digit 
At least one hexadecimal digit must follow the "x". The hexadeci­
mal constants Ox and OX are illegal. 

C2154 'name' : does not refer to a segment 
The name was the first identifier given in an alloc_text pragma argu­
ment list and it is already defined as something other than a segment 
name. 

C2l55 'name' : already in a segment 
The function name appears in more than one alloc _text pragma. 

C2l56 pragma must be at outer level 
Certain pragmas must be specified at a global level, outside a func­
tion body, and there is an occurrence of one of these pragmas within 
a function. 

C2157 'name' must be declared before use in 
pragma list 
The function name in the list of functions for an alloc _text pragma 
has not been declared prior to being referenced in the list. 

C Error Messages and Exit Codes D-27 



Compiler Error Messages 

C2158 'name' : is a function 
Name was specified in the list of variables in a same_segment 
pragma, but was previously declared as a function. 

C2159 more than one storage class specified 
Illegal declaration-only one storage class is allowed. 

C2160 ## cannot occur at the beginning of a 
macro definition 
A macro definition cannot begin with a token-pasting (##) operator. 

C2161 ## cannot occur at the end of a 
macro definition 
A macro definition cannot end with a token-pasting (##) operator. 

2162 expected macro formal parameter 
The token following a stringizing operator (#) must be a formal 
parameter name. 

2163 'string' : not available as an intrinsic 
A function specified in the list of functions for an intrinsic or func­
tion pragma is not one of the functions available in intrinsic form. 

C2165 'keyword' : cannot modify pointers to data 
Bad use of fortran, pascal or cdecl keyword to modify pointer to 
data. 

C2167 'name' : too many actual parameters for 
intrinsic 
A reference to the intrinsic function name contains too many actual 
parameters. 

C21Ei8 'name' : too few actual parameters for 
intrinsic 
A reference to the intrinsic function name contains too few actual 
parameters. 

C2169 'name' is an intrinsic, it cannot be defined 
An attempt was made to provide a function definition for a function 
already declared as an intrinsic. 

C2170 identifier : intrinsic not declared as a function 
You tried to use the intrinsic pragma for an item other than a func­
tion, or for a function that does not have an intrinsic form. 

C2177 constant too big 
Information was lost because a constant value was too large to be 
represented in the type to which it was assigned. (1) 

D-28 C User's Guide 



Compiler Error Messages 

C2171 'operator' : bad operand 
Illegal operand type for the specified unary operator. 

C2187 : cast of near function pointer to far func­
tion pointer 
You attempted to cast a near function pointer as a far function 
pointer. 

C2189 : constant item, -Gm and data seg pragma are incompatible 
You compiled with the -Gm option and allocated a string literal or 
near const data item within the scope of a data_seg pragma. The 
-Gm option indicates that the data item should be allocated in the 
CONST data segment, while the data_seg pragma indicates that the 
same item should be allocated in a different, named segment. 

Warning Messages 

The messages listed in this section indicate potential problems but do not 
hinder compilation and linking. The number in parentheses at the end of 
each warning-message description (if any) gives the minimum warning 
level that must be set for the message to appear. 

C4000 UNKNOWN WARNING 
The compiler detected an unknown error condition. 

C4001 macro 'identifier' requires parameters 
The given identifier was defined as a macro taking one or more argu­
ments, but it was used in the program without arguments. (1) 

C4002 too many actual parameters for macro 'identifier' 
The number of actual arguments specified with the given identifier 
was greater than the number of fomial parameters given in the macro 
definition of the identifier. (1) 

C4003 not enough actual parameters for macro 
'identifier' 
The number of actual arguments specified with the given identifier 
was less than the number of formal parameters given in the macro 
definition of the identifier. (l) 

C Error Messages and Exit Codes D-29 



Compiler Error Messages 

C4004 missing close parenthesis after 'defined' 
The closing parenthesis was missing from an #if defined phrase. (1) 

C4005 'identifier' : redefinition 
The given identifier was redefined. (1) 

C4006 #undef expected an identifier 
The name of the identifier whose definition was to be removed was 
not given with the #Undef directive. (1) 

C4009 string too big, trailing chars truncated 
A string exceeded the compiler limit on string size. To correct this 
problem, break the string into two or more strings. (1) 

C4011 identifier truncated to 'identifier' 
Only the identifier's first 31 characters are significant. (1) 

C4014 'identifier' : bit-field type must be unsigned 
The given bit field was not declared as an unsigned type. 

Bit fields must be declared as unsigned integral types. A conversion 
has been supplied. (1) 

C4015 'identifier' : bit-field type must be integral 
The given bit field was not declared as an integral type. 

Bit fields must be declared as unsigned integral types. A conversion 
has been supplied. (1) 

C4016 'identifier' : no function return type 
The given function had not yet been declm"ed or defined, so the 
return type was unknown. 

The default return type (int) is assumed. (2) 

C4017 cast of int expression to far pointer 
A far pointer represents a full segmented address. On an 8086/8088 
processor, casting an int value to a far pointer may produce an 
address with a meaningless segment value. (1) 

C4020 too many actual parameters 
The number of arguments specified in a function call was greater 
than the number of parameters specified in the argument-type list or 
function definition. (1) 

D-30 C User's Guide 



Compiler Error Messages 

C402l too few actual parameters 
The number of arguments specified in a function call was less than 
the number of parameters specified in the argument-type list or func­
tion definition. (1) 

C4022 pointer mismatch: parametern 
The pointer type of the given parameter was diffurent from the 
pointer type specified in the argument-type list or function 
definition. (1) 

C4024 different types: parametern 
The type of the given parameter in a function call did not agree with 
the type given in the argument-type list or function definition. (1) 

C4025 function declaration specified variable 
argument list 
The argument-type list in a function declaration ended with a 
comma or a comma followed by ellipsis dots (, ••• ), indicating that the 
function could take a variable number of arguments, but no formal 
parameters were declared for the function. (1) 

C4026 function was declared with formal argu­
ment list 
The function was declared to take arguments, but the function 
definition did not declare formal parameters. (1) 

C4027 function was declared without formal argu­
ment list 
The function was declared to take no arguments (the argument-type 
list consisted of the word void), but formal parameters were declared 
in the function definition or arguments were given in a call to the 
function. (1) 

C4028 parametern declaration different 
The type of the given parameter did not agree with the correspond­
ing type in the argument-type list or with the corresponding formal 
parameter. (1) 

C4029 declared parameter list different from 
definition 
The argument-type list given in a function declaration did not agree 
with the types of the formal parameters given in the function 
definition. (1) 

C Error Messages and Exit Codes D-31 



Compiler Error Messages 

C4030 first parameter list is longer than 
the second 
A function was declared more than once with di:trerent argument­
type lists in the declarations. (1) 

C403l second parameter list is longer than 
the first 
A function was declared more than once with di:trerent argument­
type lists. (1) 

C4032 unnamed struct/union as parameter 
The structure or union type being passed as an argument was not 
named, so the declaration of the formal parameter cannot use the 
name and must declare the type. (1) 

C4033 function must return a value 
A function is expected to return a value unless it is declared as void. 
(2) 

C4034 sizeof returns 0 
The sizeof operator was applied to an operand that yielded a size of 
zero. (1) 

C4035 identifier : no return value 
A function declared to return a value did not do so. (2) 

C4036 unexpected formal parameter list 
A formal parameter list was given in a function declaration. The for­
mal parameter list is ignored. (1) 

C4037 'identifier' : formal parameters ignored 
No storage class or type name appeared before the declarators of for­
mal parameters in a function declaration, as in the following exam­
ple: 

int *f (a,b, c) ; 

The formal parameters are ignored. (1) 

C4038 'identifier' formal parameter has bad 
storage class 
The given formal parameter was declared with a storage class other 
than auto or register. (1) 

C4039 'identifier' : function used as an argument 
A formal parameter to a function was declared to be a function, 
which is illegal. The formal parameter is converted to a function 
pointer. (1) 

D-32 C User's Guide 



Compiler Error Messages 

C4040 near/far/huge on 'identifier' ignored 
The near or far keyword has no effect in the declaration of the given 
identifier and is ignored. (1) 

C4041 formal parameter 'identifier' is redefined 
The given formal parameter was redefined in the function body, 
making the corresponding actual argument unavailable in the func­
tion. (1) 

C4042 'identifier' : has bad storage class 
The specified storage class cannot be used in this context (for exam­
ple, function parameters cannot be given extern class). The default 
storage class for that context was used in place of the illegal class. 
(1) 

C4043 'identifier' : void type changed to int 
An item other than a function was declared to have void type. (1) 

C4044 huge on 'identifier' ignored, must be an array 
The huge keyword was used to declare the given nonarray item. (1) 

C4045 'identifier' : array bounds overflow 
Too many initializers were present for the given array. The excess 
initializers are ignored. (1) 

C4046 '&' on function/array, ignored 
An attempt was made to apply the address-of operator (&) to a func­
tion or array identifier. (1) 

C4047 'operator' : different levels of indirection 
An expression involving the specified operator had inconsistent lev­
els of indirection. (I) 

The following example illustrates this condition: 

char **p; 
char *q; 

p q; 

C Error Messages and Exit Codes D-33 



Compiler Error Messages 

C4048 array's declared subscripts different 
An array was declared twice with different sizes. The larger size is 
used. (1) 

C4049 'operator' : indirection to different types 
The indirection operator (*) was used in an expression to access 
values of different types. (1) 

C405l data conversion 
Two data items in an expression had different types, causing the type 
of one item to be converted. (2) 

C4052 different enum types 
Two different enum types were used in an expression. (1) 

C4053 at least one void operand 
An expression with type void was used as an operand. (1) 

C4056 overflow in constant arithmetic 
The result of an operation exceeded Ox7FFFFFFF. (1) 

C4057 overflow in constant mUltiplication 
The result of an operation exceeded Ox7FFFFFFF. (1) 

C4058 address of frame variable taken, DS != 55 
The program was compiled with the default data segment (nS) not 
equal to the stack segment (SS), and the program tried to point to a 
frame variable with a near pointer. (1) 

C4059 segment lost in conversion 
The conversion of a far pointer (a full segmented address) to a near 
pointer (a segment offset) resulted in the loss of the segment address. 
(1) 

C4060 conversion of long address to short address 
The conversion of a long address (a 32-bit pointer) to a short address 
(a 16-bit pointer) resulted in the loss of the segment address. (1) 

C406l long/short mismatch in argument: 
conversion supplied 
The base types of the actual and formal arguments of a function were 
different. The actual argument is converted to the type of the formal 
parameter. (1) 

D-34 C User's Guide 



Compiler Error Messages 

C4062 near/far mismatch in argument: conver­
sion supplied 
The pointer sizes of the actual and fonnal arguments of a function 
were different. The actual argument is converted to the type of the 
fonnal parameter. (I) 

C4063 'identifier' : function too large for 
post-optimizer 
The given function was not optimized because not enough space was 
available. To correct this problem, reduce the size of the function by 
dividing it into two or more smaller functions. (0) 

C4064 procedure too large, skipping description optim­
ization and continuing 
Some optimizations for a function were skipped because not enough 
space was available for optimization. (0) 

To correct this problem, reduce the size of the function by dividing it 
into two or more smaller functions. 

The description in this message may appear as any of the following: 

loop inversion 
branch sequence 
cross jump 

C4065 recoverable heap overflow in post-optimizer 
- some optimizations may be missed 
Some optimizations were skipped because not enough space was 
available for optimization. To correct this problem, reduce the size 
of the function by dividing it into two or more smaller functions. (0) 

C4066 local symbol table overflow - some local 
symbols may be missing in listings 
The listing generator ran out of heap space for local variables, so the 
source listing may not contain symbol-table infonnation for all local 
variables. 

C Error Messages and Exit Codes D-35 



Compiler Error Messages 

C4067 unexpected characters following 'directive' 
directive - newline expected 
Extra characters followed a preprocessor directive, as in the follow­
ing example (1): 

4tendif NO EXT KEYS 

This is accepted in Version 3.0, but not in Versions 4.0 and 5.0. Ver­
sions 4.0 and 5.0 require comment delimiters, such as the following: 

4tendif 

C4068 unknown pragma 
The compiler did not recognize a pragma and ignored it. (1) 

C4069 conversion of near pointer to long integer 
A near pointer was converted to a long integer, which involves first 
extending the high-order word with the current data-segment value, 
not 0 as in Version 3.0. (1) 

C4071 'identifier' : no function prototype given 
The given function was called before the compiler found the corre­
sponding function prototype. (3) 

C4072 Insufficient memory to process debug­
ging information 
You compiled the program with the -Zi option, but not enough mem­
ory was available to create the required debugging information. (1) 

C4073 scoping too deep, deepest scoping merged 
when debugging 
Declarations appeared at a static nesting level greater than 13. As a 
result, all declarations will seem to appear at the same level. (1) 

C4 0 7 4 non standard extension used - 'extension' 
The given nonstandard language extension was used when the -Ze 
option was in effect. These extensions are given in the "Compiling 
with the cc Command" chapter of this guide. (If the -Za option is in 
effect, this condition generates an error.) (3) 

D-36 C User's Guide 



Compiler Error Messages 

C4075 size of switch expression or case constant 
too large - converted to int 
A value appearing in a switch or case statement was larger than an 
int. The compiler converts the illegal value to an int. (1) 

C4076 'type' : may be used on integral types only 
The type modifiers signed and unsigned can be combined only with 
other integral types. 

C4077 unknown check stack option 
Unknown option given when using the old form of the check_stack 
pragma. The option must be empty, +, or-. 

C4079 unexpected char 'character' 
Unexpected separator character found in argument list of a pragma. 

C4080 missing segment name 
The first argument in the argument list for the alloc_text pragma is 
missing a segment name. This happens if the first token in the argu­
ment list is not an identifier. 

C4081 expected a comma 
There is a missing comma (,) between two arguments of a pragma. 

C4082 expected an identifier 
There is a missing identifier in list of arguments to a pragma. 

C4083 missing' (' 
There is a missing opening parenthesis « ) in the argument list for a 
pragma. 

C4084 expected a pragma keyword 
The token following the pragma keyword is not an identifier. 

C4085 expected [on~ffl 

Bad argument given for new form of check_stack pragma. 

C4086 expected [11214] 
Bad argument given for pack pragma. 

C4087 'name' : declared with void parameter list 
The function name was declared as taking no parameters, but a call 
to the function specifies actual parameters. 

C4090 different 'const attributes 
The program passed a pointer to a const item to a function where the 
corresponding formal parameter is a pointer to a non-const item, 
which means the item could be modified by the function undetected. 

C Error Messages and Exit Codes D-37 



Compiler Error Messages 

C4091 no symbols were declared 
An empty declaration was detected. (2) 

C4092 untagged enum/struct/union declared no symbol 
An empty declaration was detected that used an untagged 
enum/struct/union. (2) 

C4093 unescaped newline in character constant in 
non-active code 
The constant expression of an #if, #elif, #ifdef, or #ifndef prepro­
cessor directive evaluated to 0, making the following code inactive, 
and a new-line character appeared between a single or double quota­
tion mark and the matching single or double quotation mark in that 
inactive code. 

C4094 unexpected newline 
A new-line character appeared in a pragma where a comma, right 
parenthesis, or identifier was expected, as in the following examples: 

#pragma intrinsic (memset 
#pragma intrinsic (memset, 

C4095 too many arguments for pragma 
More than one argument was given for a pragma that can take only 
one argument. 

C4106 : pragma requires integer between 1 and 127 
You must supply an integer constant in the range 1-127, inclusive, 
for the given pragma. 

C4107 : pragma requires integer between 15 and 255 
You must supply an integer constant in the range 15-255, inclusive, 
for the given pragma. 

C4108 : pragma requires integer between 79 and 132 
You must supply an integer constant in the range 79-132, inclusive, 
for the given pragma. 

C4109 : unexpected identifier 'token' 
The designated line contains an unexpected token. 

C4110 : unexpected token 'int constant' 
The designated line contains an unexpected integer constant. 

C4111 : unexpected token string 
The designated line contains an unexpected string. 

D-38 C User's Guide 



Compiler Error Messages 

C4112 : macro name 'name' is reserved, 'command' ignored 
You attempted to define a predefined macro name or the prepro­
cessor operator defined. This warning error also occurs if you 
attempt to undefine a predefined macro name. If you attempt to 
define or undefine a predefined macro name using command-line 
options, 'command' will still be either #define or #Undef. 

Compiler Limits 

To operate the C Compiler, you must have sufficient disk space available 
for the compiler to create temporary files used in processing. The space 
required is approximately two times the size of the source file. 

Table D.l summarizes the limits imposed by the C compiler. If your pro­
gram exceeds one of these limits, an error message will inform you of the 
problem. 

Table D.l 

Limits Imposed by the C Compiler 

Program Item 

String literals 

Constants 

Identifiers 

Declarations 

Description 

Maximum length of a 
string, including the ter­
minating null character 
(\0) 

Maximum size of a con­
stant is determined by its 
type; see the C 
Language Reference for 
a discussion of constants 

Maximum length of an 
identifier 

Maximum level of nest­
ing for structure/union 
definitions 

C Error Messages and Exit Codes 

Limit 

4kbytes 

31 bytes (addi­
tional characters 
are discarded) 

10 levels 

D-39 



Compiler Error Messages 

Preprocessor 
directives 

Maximum size of a 
macro definition 

Maximum number of 
actual arguments to a 
macro definition 

Maximum length of an 
actual preprocessor 
argument 

Maximum level of nest­
ing for #if, #ifdef, and 
#ifndef directives 

Maximum level of nest­
ing for include files 

512 bytes 

8 arguments 

256 bytes 

32 levels 

10 levels 

The compiler does not set explicit limits on the number and complexity of 
declarations, definitions, and statements in an individual function or in a 
program. If the compiler encounters a function or program that is too 
large or too complex to be processed, it produces an error message to that 
effect. 

D-40 C User's Guide 



Compiler Exit Codes 

Compiler Exit Codes 
All the programs in the C Compiler package return an exit code (some­
times called an "errorlevel" code) that can be used by other programs 
such as make. If the program finishes without errors, it returns a code of 
O. The code returned varies depending on the error encountered. 

Code Meaning 

o No fatal error 

2 Program error (such as compiler error) 

4 System level error (such as out of disk space or compiler 
internal error) 

C Error Messages and Exit Codes 0-41 





Index 

Special Characters 

{ } (braces) 1-6 
[ ] (brackets) 1-6 
1 (bar) 1-6 
- (dash) option character 

linker 3-5 
- (hyphen) option character, cc 2-6 
_ (underscore), in names 2-12,2-23 

A 

Address space B-9 
Addresses 

components 5-4 
far 5-4 
huge 5-4 
near 5-4 

Alignment See Storage alignment 
alloc_text pragma 5-33 
argc variable 4-2 
Argument type list 2-39 
Arguments 

linker options 3-5 
listing options 2-13 
main function See main function 
variable number of 6-6, B-14 

argv variable 4-2 
Assembly language 

interface 8-12 
return values 8-9 
routines 

entry 8-8 
exit 8-11 

Assembly-language interface, described 8-1 
Assembly-listing files 

creating 2-11, 2-12 
extensions 2-13 
format 2-22 

B 

Bar (I) 1-6 
BASE 7-14 
Bibliography 1-9 
Bit fields B-7 
Bold font 1-6 
Braces ({ }) 1-6 
Brackets ([ ]) 1-6 
Byte length B-4 
Byte order B-20, B-6 

C 

C calling conventions 
described 8-1 

Ccompiler 
impure small model 5-8 
Moption2-6 
manifest defines 2-30 
model and segment options 2-6 
pure small model 5-8 

Clanguage 
calling sequence 8-7 
interface with assembly language 8-12 
return values 8-9 

-c option 2-9 
-C option 2-33 
Call sequence 8-2 
Calling conventions 

C6-6 
FORTRAN/Pascal 6-6 

Calling sequence 
assembly language 8-7 
C language 8-7 

Canonic Frame 7-8 
Capital letters 

sma111-6 
use of 1-6 

cccommand 
file processing 2-3 
format 2-2 

cc options 
assembly listing 2-11, 2-12 
-c 2-9 
-C 2-33 
command line, order 2-6 
comments, preserving 2-33 
constants and macros, defining 2-29 

I-I 



Index 

cc options (continued) 
-02-29 
data segments, naming 5-31, 5-34, 6-9 
data threshold, setting 5-30 
default libraries 2-8 
differences from linker options 3-5 
-E2-32 
-EP2-32 
-F3-6 
-Fa 2-12, 2-22 
-Fc 2-12 
-Fe 2-11 
-F12-12 
-Fm2-12 
-Fo 2-9 
format 2-6 
-Fs 2-12 
function declarations, generating 2-39 
-Gs 6-6 
-Gt 5-30 
-12-34 
include files, searching for 2-34 
line numbers 2-40 
-link 2-2, 3-2 
linker information, passing 3-2 
listing 2-6 
-M 5-25, 5-26, 5-27 
-Mc 5-9 
memory models 

code-pointer size 5-26 
compact 5-9 
data-pointer size 5-26 
default libraries 2-6 
huge 5-11 
large 5-10 
medium 5-9 
mixed 5-25, 5-26, 5-27 
segments, setting up 5-27 
small 5-7 

-Mh 5-11 
-MI5-10 
-Mm5-9 
-Ms 5-7 
naming 

executable files 2-11 
modules 5-31 
object files 2-9 

-NO 5-31, 5-34, 6-9 
-NM 5-31 
-NT 5-31 
-02-11 
-Oa 6-5 
object files 

naming 2-9 

1-2 

cc options (continued) 
object files (continued) 

specifying 2-3 
object listing 2-11,2-12 
-Od2-40 
-Oi 6-4 
-016-5 
optimization 

alias checking, relaxing 6-5 
disabling 2-40 
execution time 6-4 
intrinsic functions 6-4 
loops 6-5 
-Oi 6-4 
program speed 6-3 

option character 
hyphen (-) 2-6 

-Ot6-4 
-P2-32 
predefined identifiers, removing 

definitions of 2-32 
preprocessed listing 2-32 
preprocessor 

-c 2-33 
-02-28 
-U and -u 2-32 

-S 2-12, 2-22 
source files, specifying 2-3, 2-8 
source listing 2-12 
source/object listing 2-12 
special keywords, disabling 5-15 
-Ss 2-15 
-St 2-15 
stack probes, removing 6-6 
standard places, ignoring 2-34 
subtitle 2-15 
suppressing 

linking 2-9 
syntax checking 2-38 
-Tc 2-4, 2-8 
text segments, narning 5-31 
titles 2-15 
-U and -u 2-32 
Version 4.0, new for A-II 
Version 5.0, new for A-6 
-WO, -WI, -W2, and -W3 2-37 
warning level 2-37 
-x 2-34 
-Za 5-15 
-Zd3-6 
-Zg2-39 
-Zi2-40 
-Zs 2-38 

cdecl keyword 



cdecl keyword (continued) 
-Gc option, used with 6-7 

Character 
classification, macros B-9 
set B-9 
types 

signed B-ll 
unsigned B-ll 

check_stack pragma 6-6 
Class name, LSEG 7-8 
Code pointers, mixed memory models 5-26 
COFF2-2 
Combination Attribute 7-29 
Command line 

arguments 
executable file 4-2 

cc 2-2 
error messages D-2 
length, maximum 2-2 

Commands 
notational conventions 1-6 

COMMENT 7-48 
RECORD 7-48 

Comments, preserving 2-33 
Common Object File Format 2-2 
Compact memory models See Memory models 
Compilation 

error messages D-7 
Compiler 

differences, other compilers 
portability problems B-ll 

differences, Version 4.0 
cc options A-II 
enhancements and additions A-8 
language changes A-8 

differences, Version 5.0 
enhancements and additions A-4 
language changes A-4 
new cc options A-6 
pragmas, new A-7 

documentation 1-2 
error messages See Error messages, 

compiler 
naming conventions 2-23 
stopping 2-2 .. 

Compiler, converting from prevIous versIOns 
See Compiler differences 

Compiler guide, organization 1-2 
Compiler options See cc options 
Complete name, LSEG 7-8 
Conditional compilation 2-29 
Constants 

defining 2-29 . 
manifest See Constants, symbolIc 

Index 

Constants (continued) 
symbolic 2-29 

Controlling 
linker 3-5 
preprocessor 2-32 
segments 3-6 
stack size 3-6 

Conventions, notational 1-6 
Conversion 

near pointers to long integers A-tO 
pointer arguments 5-22 

Correctable error messages D-7 
ctype.h macros B-9 . 
Customized memory models See Mixed 

memory models 

D 

-D option 2-29 
Dash (-) 

linker option character 3-5 
Data 

passing to programs 4-2 
portability B-17 
segment 

data threshold, setting 5-30 
default, contents 5-30 
default name 5-31 
mixed memory models 5-27 
naming 5-31 

types, size of B-4 
Data pointers, mixed memory 

models 5-26 
_DATA segment 5-31 
Data Structures 

x.out symbol table 7-58 
Data threshold, setting 5-30 
data_seg pragma 5-33 
Debugging, preparing for 

-Zi and -Od options 2-40 
Default libraries 

object files, used in 3-3 
DGROUP group 5-31 
Differences from previous versions See 

Compiler differences 
Directory names, notational 

conventions 1-6 
Documentation, compiler 1-2 
DS register 5-27 

1-3 



Index 

E 

-E option 2-32 
EAX register 8-9, 8-11 
EBP register 8-8, 8-11 
EBX register 8-11 
ECX register 8-11 
EDI register 8-8, 8-11 
EDX register 8-9, 8-11 
EIGHT 

LEAF 
DESCRIPTOR 7-32 

EIGHT LEAF DESCRIPTOR 7-32 
Ellipses, use of 1-6 
environ variable 4-3 
Environment 

portability problems B-16 
table 

pointer to 4-3 
variable names, notational conventions 1-6 
variables 

INCLUDE 2-34 
LIB 3-4 
PATH 4-1 
SET 4-2 

envp variable 4-3 
-EP option 2-32 
ermo variable 

defined 9-3 
described 9-3 

Error messages 
compiler 

command line D-2 
compilation D-7 
correctable D-7 
fatal D-7, D-8 
identifying 2-35 
redirecting 2-35 
warning D-29, D-8 

format See Error messages, compiler 
source listings 2-16 
waming messages, setting level of 2-37 

Errors 
catching signals 9-5 
delayed 9-6 
ermo variable 9-3 
error constants 9-3 
error numbers 9-3 
printing error messages 9-4 
processing 9-1 
routine system I/O 9-6 
sharing resources 9-6 
signals 9-5 

1-4 

Errors (continued) 
standard error file 9-2 
system 9-6 

ESI register 8-8, 8-11 
ESP register 8-8 
Evaluation order B-14 
exec function 4-1 
Executable files 

cc command and 2-5 
command-line arguments 4-2 
extensions 2-11 
naming, default 2-11 
naming with cc 2-11 
passing data to 4-2 
running 4-1 

Executable Format 7-59 
Execution-time optimization 6-4 
Extensions 

executable files 2-11 
listing files, defaults for 2-12 
map files 2-13 
object files 2-10 
object-listing files 2-13 
source-listing files 2-13 
source/object-listing files 2-13 

F 

-F option 3-6 
-Fa option 2-12, 2-22 
Far keyword 5-20 
far keyword 

default addressing conventions 5-1· 
effects 

data declarations 5-16, 6-8 
function declarations 5-20 

library routines, used with 5-16 
small-model programs, used in 5-8 

Far pointers 5 -14 
Fatal-error messages D-7, D-8 
-Fc option 2-12 
-Fe option 2-11 
File names 

notational conventions 1-6 
Files 

assembly listing 2-12,2-22 
executable See Executable files 
listing, preprocessed 2-32 
map 

creating 2-12,2-15, 3-6 
default names 2-13 
listing formats 2-27 



Files (continued) 
map (continued) 

-MAP linker option 3-6 
object 

cc command, used with 2-3, 2-4 
listing 2-12, 2-13, 2-21 

source 2-3 
source listing See Source-listing files 
source/object listing See Source/object-listing 

files 
FIXUP 

RECORD 7-41 
FIXUPP7-41 
Fixups 

definition 7-14 
segment-relative 7-15,7-20 
self-relative 7-15,7-19 

-FJ option 2-12 
-Fm option 2-12 
-Fo option 2-9 
fortran keyword 6-7 
FRAME 

definition 7-6 
specifying 7-17 

FRAME NUMBER 7-7 
-Fs option 2-12 
Functions 

arguments, variable number of 6-6, B-14 
calling conventions 

C6-6 
FORTRAN/Pascal 6-6 

declarations 
generating 2-39 
near and far keywords 5-20 

G 

getenv function 4-3 
Global symbols See Public symbols 
GROUP 7-7 
Group Definition Record 7-31 
GRPDEF7-31 
-Gs option 6-6 
-Gt option 5-30 

Index 

H 

Hardware Reference Numbers 7-64 
HIBYTE 7-15 
Huge arrays 5-11 
huge keyword 

data declarations, effects in 5-16, 6-8 
default addressing conventions 5-14 
library routines, used with 5-16 
small-model programs, used in 5-8 

Huge memory model See Memory models 
Huge pointers 5-14 
Hyphen (-), cc option character 2-6 

I 

-I option 2-34 
iAPX-286, -386 

address translation 
logical to physical 7-2 

descriptor tables 7-2 
GDT7-2 
LDT7-2 

logical address space 7 -2 
memory management 7-2 
pointers 

to logical addresses 7 -2 
protected mode 7-2 
segment selector 7-2 

INDEX field 7-2 
RPL field 7-2 
TI field 7-2 

system architecture 7-2 
Identifier length See Names, length 
Identifiers 

predefined 
listed 2-30 
M_I862-30 
M_I86xM 2-30 
M_XENIX 2-30 
removing definitions of 2-32 

Implicit bss 7-57 
Include files 

directory specification 2-34 
portability problems B-3 
search path 2-34 

INCLUDE variable 
overriding 2-34 

Index fields 7-13 
Indices 7-13 
Intel Object Module Format 2-2 

1-5 



Index 

Italics 1-6 
Iterated Segments 7-56 

K 

Key sequences, notational conventions 1-6 
Keywords 

cdecl6-7 
far 5-20 
fortran 6-7 
near 5-20 
pascal 6-7 
Version 4.0, new for A-II 

L 

Large memory model See Memory models, 
large 

Large Model 7-58 
LIB variable 3-3, 3-4 
Libraries 

default 
-A options 2-8 
-M options 3-2 
overriding 3-4 

mixed-model programs 5-29 
names in object files 3-2 
search 

path 3-3, 3-4 
specifying 3-3 
standard places 3-4 

Library 
routines 

exec 4-1 
getenv 4-3 
putenv 4-3 
system 4-1 
system dependent C-2 

LIDATA 7-39 
LINE 

NUMBERS 
RECORD 7-37 

-LINENUMBERS (-LI) linker option 3-6 
linesize pragma 2-24 
-link option 2-2, 3-2 
Linker 

error messages 2-35 
Linker options 

abbreviations 3-5 

1-6 

Linker options (continued) 
cc options, diffurences from 3-5 
line numbers, displaying 3-6 
-LINENUMBERS (-LI) 3-6 
map file 3-6 
-MAP (-M) 3-6 
numerical arguments 3-5 
rules 3-5 
segments 

number of 3-6 
-SEGMENTS (-SE) 3-6 
stack size, setting 3-6 
-STACK (-ST) 3-6 
-T6-9 
translating far calls 6-9 

LINNUM7-37 
List of Names Record 7-26 
Listing files 

assembly 2-11, 2-12, 2-22 
map 2-12 
object 2-11, 2-12, 2-21 
preprocessed 2-32 
source 2-11, 2-12, 2-16 
source/object 2-12, 2-22 

listing pragmas 2-24 
LNAMES7-26 
LOBYTE7-15 
LOCATION, types 7-14 
LOGICAL 

ITERATED 
DATA 

RECORD 7-39 
Logical Segment 7-7 
Long pointers See Far pointers 
Loop optimization 6-5 
loop_opt pragma 2-41,6-5 
LSEG7-7 

M 

-M option 5-25, 5-26, 5-27 
Moption 

cc 2-6 
Macros 

character classification B-9 
defined 2-29 
notational conventions 1-6 

main function 
arguments to 4-2 

Manifest constants, notational 
conventions 1-6 

Manifest defines 



Manifest defines (continued) 
C compiler 2-30 

Map files 
creating 2-12, 2-15, 3-6 
extensions 2-13, 3-6 
-Fm option 2-15 
format 2-27 
-MAP linker option 3-6 
program entry point 2-28 
segment lists 2-27 
symbol tables 2-27 

-MAP linker option 3-6 
MAS 7-6 
-Me option 5-9 
Medium memory model See Memory models 
Memory Address Space 7-6 
Memory addresses See Addresses 
Memory models 

compact 5-9 
default 5-2, 5-8 
huge 5-11 
large 5-10 
medium 5-9 
mixed See Mixed memory models 
options 

code-pointer size 5-26 
compact model 5-9 
data-pointer size 5-26 
default libraries 2-8 
huge model 5-11 
large model 5-10 
medium model 5-9 
segment setup 5-27 
small model 5-7 

small 5-2, 5-7, 5-19 
standard 

advantages 5-6 
common features 5-6 
disadvantages 5-6 

Version 4.0, new for A-II 
Memory models, customized See Mixed mem-

ory models 
-Mh option 5-11 
M_I86 identifier 2-30 
M_I86xM identifier 2-30 
Mixed memory models 

code pointers 5-26 
creating 5-25 
data pointers 5-26 
library support 5-29 
near, far, huge keywords 5-14 
segment setup options 5-27 

-Ml option 5-10 
-Mm option 5-9 

MODE 7-15 
MODEN07-46 
MODULE 7-6 

END 
RECORD 7-46 

Module header record 7-9 
Modules, naming 5-31 
-Ms option 5-7 
M_XENIX identifier 2-30 

N 

Names 
executable files 2-11 
global 2-12, 2-23 
length B-12 
modules, changing 5-31 
object files 2-9 

Index 

segments, changing 5-31 
underscores U, using in 2-12, 2-23 

Naming conventions . 
compiler 2-23 
segments 5-32 

-NO option 5-31, 5-34, 6-9 
Near keyword 5-20 
near keyword 

data declarations, effects in 5-16, 6-8 
default addressing conventions 5-14 
function declarations, effects in 5-20 
library routines, used with 5-16 

Near pointer 5-14 
-NM option 5-31 
Non-Iterated Segments 7-57 
Notational conventions 1-6 
-NT option 5-31 
Numeric record types 7-50 

o 

-0 (optimization) options 2-41 
-0 option 2-11 
-Oa option, cc 6-5 
object file format 2-2 
Object File Format 

Executable 7-54 
Object files 

cc command 2-3, 2-4 
default extension 2-3, 2-8 
extensions 2-10 

1-7 



Index 

Object files (continued) 
library names in 3-2 
naming 2-9 
specifying to cc 2-3 

Object listing See Object-listing files 
Object Module Fonnat 2-2 
Object Module Fonnats 7-5, 7-6 
Object-listing files 

creating 2-12 
extensions 2-13 
fonnat 2-21 

-Od option 2-40 
OFFSET 7-14 
-Oi option 6-4 
-01 option 6-5 
OMF2-2,7-6 
omfSubset 7-54 
Optimization 

alias checking, relaxing 6-5 
default 2-1 
disabling 2-40 
execution time 6-4 
intrinsic pragmas 6-4 
listing files 2-14 
loops 6-5 
options 2-41 
stack probes, removing 6-6 

Optimizing See Optimization 
Optional fields, notational conventions 1-6 
Options, cc See cc options 
Options, linker See Linker options 
-Ot option 6-4 
Overlay Name, LSEG 7-8 
Overview 1-1 

p 

-Poption 2-32 
page pragma 2-25 
pagesize pragrna 2-25 
PARAGRAPH NUMBER 7-7 
pascal keyword 6-7 
Path names 

notational conventions 1-6 
portability problems B-3 

PATH variable 4-1,4-2 
perror function 9-4 
Physical Segment 7-7 
Placeholders 1-6 
Pointers 

arguments, size conversion 5-22 
code 5-26 

1-8 

Pointers (continued) 
far 5-14, 5-26 
huge 5-14 
manipulation B-7 
near 

conversion to long integers A-I0 
customized memory models 5-26 
near keywords, used with 5-14 

subtracting in huge-model 
programs 5-11 

Portability 
address space B-9 
bit fields B-7 
byte length B-4 
byte order B-20, B-6 
case distinctions B-12 
character set B-9 
data B-17 
data types, size of B-4 
environment diffurences B-16 
evaluation order B-14 
functions with variable number of 

arguments B-14 
guidelines B-2 
hardware B-4 
identifier length B-12 
include files B-3 
path names B-3 
pointer manipulation B-7 
register variables B-12 
shift operations B-ll 
side effects B-14 
sign extension B-ll 
signed and unsigned char types B-ll 
storage alignment B-5 
type conversion B-12 
word length B-4 

Pragmas 
alloc_text 5-33 
check_stack 6-6 
data_seg 5-33 

pragrnas 
linesize 2-24 
listing 2-24 

Pragrnas 
loop_opt 2-41, 6-5 

pragmas 
page 2-24 
pagesize 2-24 

Pragmas 
same_seg 5-33, 5-34, 6-9 

pragmas 
skip 2-24 
skip page 2-24 



pragmas (continued) 
subtitle 2-24 
title 2-24 

Pragmas 
Version 4.0, new for A-II 
Version 5.0, new for A-7 

Preprocessor 
options 

comments, preserving 2-33 
-D 2-29 
predefined identifiers, removing definitions 

of 2-32 
use 2-28 

Product names, notational conventions 1-6 
Prompts 1-6 
PSEG 

definition 7-7 
NUMBER 7-7 

PUBDEF7-33 
PUBLIC 

NAMES 
DEFINITION 

RECORD 7-33 
Public names See Public symbols 
Public symbols, listing 2-15, 3-6 
putenv function 4-3 

Q 

Quotation marks, use of 1-6 

R 

Record format, sample 7-24 
Record formats 7-4 
Record order 7-22 
Record types 7-51 

numeric 7-50 
Register variables 6-1, B-12 
Registers 

EAX 8-9, 8-11 
EBP 8-8, 8-11 
EBX 8-11 
ECX 8-11 
ED! 8-8, 8-11 
EDX8-9,8-11 
ESI 8-8,8-11 
ESP 8-8 

Relocatable memory images 7-4 

Index 

Return values 8-4 
assembly language 8-9 

Routine entry sequence 8-3 
Routine exit sequence 8-5 
Routines 

assembly language 
entry 8-8 
exit 8-11 

Run file See Executable file 

s 

-S option 2-12, 2-22 
same_seg pragma 5-33, 5-34, 6-9 
Sample x.out File 7-56 
Search paths 

changing 
include files 2-34 
libraries 3-4 

include files 2-34 
libraries 3-3, 3-4 

SEGDEF7-27 
Segment addressing 7-11 
Segment definition 7-10 
Segment definition record 7-27 
Segment lists 

map files 2-27 
source listings 2-21 

Segment Name, LSEG 7-8 
Segment Numbers 7-64 
Segment registers 8-11 
Segment-Relative fixups 7-15 
Segment-Relative Fixups 7-20 
Segments 

data 
default name 5-31 
mixed memory models 5-27 
names 5-31 
naming 5-31 
threshold, effect of 5-30 

default 5-4 
defined 5-4 
names, changing 5-31 
naming conventions 5-32 
number allowed 3-6 
setting up 5-27 
source listing 2-21 
stack 5-27 
text 

default name 5-31 
naming 5-31 

-SEGMENTS (-SE) linker option 3-6 

1-9 



Index 

Self-Relative fixups 7-15,7-19 
SET variable 4-2 
Shift operations B-ll 
Short pointers See Near pointers 
Side effects B-14 
Sign extension B-ll 
Signals 

catching 9-5 
on program errors 9-5 

Signed char type B-ll 
sizeof operator 5-11 
skip pragma 2-25 
Small capitals, use of 1-6 
Small memory model See Memory models 
Small model 5-19 

impure 5-8 
pure 5-8 

Source files 
default extension 2-3, 2-8 
specifying to cc 2-3 

Source listing See Source-listing files 
Source-listing files 

creating 2-12 
described 2-11 
error messages 2-16 
extensions 2-13 
format 2-16, 2-17 
segment lists 2-21 
subtitles 2-15 
symbol tables 2-19 
titles 2-15 

Source/object-listing files 
creating 2-12 
extensions 2-13 
format 2-22 

Special Header Fields 7-58 
Special keywords, disabling 5-15 
-Ss option 2-15 
SS register 5-27 
-St option 2-15 
Stack 

probes 6-6 
segments, mixed memory models 5-27 
size 

setting 3-6 
Stack order 8-2 
-STACK (-ST) linker option 3-6 
Standard files 

redirecting 9-2 
Standard places 

changing 2-34 
ignoring 2-34 
libraries 3-4 

stderr, the standard error file 9-2 

1-10 

Storage alignment B-5 
Strings 

notational conventions 1-6 
subtitle pragma 2-26 
Subtitles, source listings 2-15 
Switches See Options 
Symbol definition 7-12 
Symbol Table 7-58 
Symbol tables 

map files, used in 2-27 
object files, used in (-Zi option) 2-'1 
source listings, used in 2-19 

Syntax conventions See 
Notational conventions 

sys_ermo array, described 9-4 
System errors 

described 9-6 
reporting 9-6 

system function 4-1 

T 

-T linker option 6-9 
TARGET 7-15 
-Tc option 2-4. 2-8 
_TEXT segment 5-31 
Text segments 

default name 5-31 
naming 5-31 

THEADR 7-26 
title pragma 2-26 
Titles, source listings 2-15 
T-MODULE 7-6 
T-Module Header Record (THEADR 
TYPDEF7-32 
Types 

checking 2-39 
conversion B-12 

u 

-U and -u options 2-32 
Underscore U in names 2-12, 2-23 
Unsigned char type B-ll 
Uppercase letters. use of 1-6 



v 
Variables, register See Register variables 
Vertical bar (I) 1-6 

w 

-wo, -WI, -W2, and -W3 options 2-37 
Warning error messages 2-37, D-29, D-8 
Wildcard 

characters 2-9 

x 

-x option 2-34 
x.out 

file layout 7-56 
general description 7-54 
implicit bss 7-57 
iterated segments 7-56 
large model 7-58 
non-iterated segments 7-57 
special fields 7-58 
symbol table 7-58 

x.out Examples 7-60 
x.out Executable Format 7-59 
x.out Format 7-54 
X.Ollt Include Files 7-60 
x.out Segmented OMF Specification 7-54 

z 

-Za option 5-15 
-Zd option 3-6 
-Zg option 2-39 
-Zi option 2-40 
-Zs option 2-38 

Index 

I-II 





seQ UNIX® System V/386 

Development System 

C Language Reference 

The Santa Cruz Operation, Inc. 





Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft 
Corporation. 
All rights reserved. 
Portions © 1989 AT&T. 
All rights reserved. 
Portions © 1983,1984,1985,1986,1987,1988,1989 The Santa Cruz Operation, Inc. 
All rights reserved. 

No part of this publication may be reproduced, transmitted, stored in a retrieval system, 
nor translated into any human or computer language, in any form or by any means, 
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the 
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400 
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious 
matter under the United States and foreign Copyright Laws. 

The copyrighted software that accompanies this manual is licensed to the End User 
only for use in strict accordance with the End User License Agreement, which should 
be read carefully before commencing use of the software. Information in this document 
is subject to change without notice and does not represent a commitment on the part of 
The Santa Cruz Operation, Inc. 

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES 
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN 
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFrWARE -­
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1) 

(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFrWARE 
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR! MANUFACTURER" IS THE 
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA 
CRUZ, CALIFORNIA, 95061, U.S.A. 

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation. 
Intel is a registered trademark of Intel Corporation. 
UNIX is a registered trademark of AT&T. 

SCO Document Number: 6-26-89-6.0/3.2.0 





Contents 

1 Introduction 

Overview of the C Language 1-1 
AboutThisManual 1-3 
Notational Conventions 1-5 

2 Elements of C 

Introduction 2-1 
Character Sets 2-2 
Constants 2-10 
Identifiers 2-17 
Keywords 2-19 
Comments 2-20 
Tokens 2-22 

3 Program Structure 

Introduction 3-1 
Source Program 3-2 

4 Declarations 

Introduction 4-1 
Type Specifiers 4-2 
Declarators 4-9 
Variable Declarations 4-17 

5 Expressions and Assignments 

Introduction 5-1 
C Operators 5-14 
Assignment Operators 5-32 
Precedence and Order of Evaluation 5-37 
Type Conversions 5-41 

6 Statements 

Introduction 6-1 
The break Statement 6-3 
The Compound Statement 6-4 
The continue Statement 6-5 
The do Statement 6-6 

-i-



The Expression Statement 6-7 
The for Statement 6-9 
The goto and Labeled Statements 6-11 
The if Statement 6-13 
The Null Statement 6-15 
The return Statement 6-16 
The switch Statement 6-18 

7 Functions 

futroduction 7-1 
Function Definitions 7-3 

8 Preprocessor Directives and Pragmas 

futroduction 8-1 
Manifest Constants and Macros 8-3 
fucludeFiles 8-12 
Conditional Compilation 8-14 
Line Control 8-19 
Pragmas 8-21 

A Differences Between K&R C and Microsoft C 

Introduction A-I 

B Syntax Summary 

Tokens B-1 
Expressions B-7 
Declarations B-9 
Statements B-14 
Definitions B-15 
Preprocessor Directives B-16 
Pragmas B-17 

- ii-



Chapter 1 

Introduction 

Jverview of the C Language 1-1 

<\bout This Manual 1-3 

"lotational Conventions 1-5 





Overview of the C Language 

Overview of the C Language 
The C language is a general-purpose programming language known for its 
efficiency, economy, and portability. While these characteristics make it a 
good choice for almost any kind of programming, C has proven especially 
useful in systems programming because it facilitates writing fast, com­
pact programs that are readily adaptable to other systems. Well-written C 
programs are often as fast as assembly-language programs, and they are 
typically easier for programmers to read and maintain. 

C was designed to combine efficiency and power in a relatively small lan­
guage. C does not include built-in functions to perform tasks such as 
input and output, storage allocation, screen manipulation, and process 
control. To perform such tasks, C programmers rely on "run-time 
libraries, " a set of predefined functions and macros. The run-time library 
functions available for use in Microsoft® C programs are discussed in a 
separate manual, the UNIX System V C Library Guide. 

C's design makes it both flexible and compact. Because the language is 
relatively sparse, it neither assumes nor imposes a particular program­
ming model. You can use the run-time routines supplied, or tailor your 
own variations for special purposes. The design also helps to isolate lan­
guage features from processor-specific features in a particular C imple­
mentation, which makes it easier to write portable code. While the strict 
definition of the language makes it independent of any particular operat­
ing system or machine, you can easily add system-specific routines to 
take advantage of the most efficient features of a particular machine. 

Note 

Microsoft is committed to conformity with the developing standard 
for the C language as set forth in the Draft Proposed American 
National Standard - Programming Language C (hereinafter 
referred to as the ANSI C standard. Microsoft extensions to the 
ANSI C standard are noted in the text. Because the extensions are 
not a part of the ANSI C standard, their use may restrict portability 
of programs between systems. See your compiler guide for informa­
tion on enabling and disabling Microsoft extensions. 

Introduction 1-1 



Overview of the C Language 

The C language includes the following significant features: 

• A full set of loop, conditional, and transfer statements to control 
program flow logically and efficiently and to encourage structured 
programming. 

• A large set of operators. Many of these operators correspond to 
common machine instructions, allowing a direct translation into 
machine code. The variety of operators allows you to specify 
different kinds of operations clearly and with a minimum of code. 

• Several sizes of integers, as well as single- and double-precision 
floating-point types. You can also design more complex data types, 
such as arrays and data structures, to suit specific program needs. 

• Declarations of "pointers" to variables and functions. A pointer to 
an item corresponds to the item's machine address. Pointers can 
make programs more efficient, since they let you refer to items in 
the same way the machine does. C also supports pointer arithmetic, 
which lets you access and manipulate memory addresses directly. 

• A C preprocessor that acts on the text of files before they are com­
piled. You can use the C preprocessor to define program constants, 
substitute fast macro definitions for function calls, and compile 
parts of programs based on specified conditions. 

C is a flexible language that leaves many programming decisions up to 
you. In keeping with this philosophy, C imposes few restrictions in 
matters such as type conversion. Although this characteristic of the lan­
guage can make your programming job easier, you must know the lan­
guage well to understand how programs will behave. 

1-2 C Language Reference 



About This Manual 

About This Manual 
The C Language Reference defines the C language as implemented by 
Microsoft Corporation. It is intended as a reference for programmers 
experienced in C or other programming languages. Thorough knowledge 
of programming fundamentals is assumed. 

Consult your compiler guide for an explanation of how to compile and 
link C programs on your system; this manual also contains information 
specific to the implementation of C on your system. 

This manual is organized as follows: 

Chapter 1, "Introduction," introduces this guide and outlines the nota­
tional conventions used in this manual. 

Chapter 2, "Elements of C," describes the letters, numbers, and symbols 
that can be used in C programs and the combinations of characters that 
have special meanings to the C compiler. 

Chapter 3, "Program Structure," discusses the components and structure 
of C programs and explains how C source files are organized. 

Chapter 4, "Declarations," describes how to specify the attributes of C 
variables, functions, and user-defined types. C provides a number of 
predefined data types and lets the programmer declare "aggregate" types 
and pointers. Function prototypes, a relatively new feature of C, are dis­
cussed in this chapter, as well as in Chapter 7, "Functions." 

Chapter 5,"Expressions and Assignments," describes the operands and 
operators that form C expressions and assignments. The chapter also 
discusses the type conversions and side effects that may occur when 
expressions are evaluated. 

Chapter 6, "Statements," describes C statements, which control the flow 
of program execution. 

Chapter 7, "Functions," discusses C functions. In particular, this chapter 
explains function prototypes, formal parameters, and return values. It also 
describes how to define, declare, and call functions. 

Introduction 1-3 



About This Mauual 

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor, a text processor that is automati­
cally invoked before compilation. This chapter also introduces "prag­
mas," special instructions to the compiler that you can place in source 
files. 

Appendix A, "Differences," lists the differences between Microsoft C 
and the description of the C language found in Appendix A of The C Pro­
gramming Language by Brian W. Kernighan and Dennis M. Ritchie. 

Appendix B, "Syntax Summary," summarizes the syntax of the C lan­
guage as implemented by Microsoft. 

1-4 C Language Reference 



Notational Conventions 

Notational Conventions 
This manual uses the following notational conventions: 

keywords 

placeholders 

Examples 

Input: output 

Introduction 

Bold type indicates text that must be typed 
exactly as shown. Text that is shown in bold 
type includes C keywords, such as goto and 
char, and operators, such as the addition 
operator (+) and the multiplication operator 
(*). 

Terms in italics may appear in syntax 
descriptions or in the text. In these 
instances, the terms are being used as place­
holders that you would replace with specific 
terms or values in an actual C program. For 
example, in 

gotoname; 

name appears in italics to show that this is a 
general form for the goto statement. In an 
actual program statement, you must supply 
a particular identifier for the placeholder 
name. 

Occasionally, italics are used to emphasize 
particular words in the text. 

Examples of C programs and program ele­
ments appear in a special typeface to look 
similar to listings on the screen or the out­
put of commonly used computer printers: 

int x, y; 

swap (&x, &y); 

Some examples show both program output 
and user input; in these cases, input is 
shown in a darker font. 

1-5 



Notational Conventions 

1-6 

Repeating . . . elements Vertical ellipsis dots are used in program 
examples or syntax to indicate that a portion 
of the program is omitted. 

In the following example, the vertical 
ellipsis dots indicate that zero or more 
declarations, followed by one or more state­
ments, may appear between the braces: 

{ 
[declaration] 

statement 
[statement] 

In the following excerpt, two program lines 
are shown. The ellipsis dots between the 
lines indicate that additional program lines 
appear between these two lines but are not 
shown: 

int x, y; 

swap (&x, &y); 

Horizontal ellipsis dots following an item 
indicate that more items of the same form 
may appear. For instance, 

= {expression [, expression] ... } 

indicates that one or more expressions 
separated by commas may appear between 
the braces ({ }). 

C Language Reference 



[optional items] 

"Defined terms" 

KEY+NAMES 

Introduction 

Notational Conventions 

Brackets enclose optional items in syntax 
descriptions. For example, 

return [expression]; 

is a syntax description showing that expres­
sion is an optional item in the return state­
ment. 

Single brackets are used to indicate brackets 
used by C-language array declarations and 
subscript expressions. For instance, a[ 1 OJ is 
an example of brackets in a C subscript 
expression. 

Quotation marks set off terms defined in the 
text. For example, the term "token" 
appears in quotation marks when it is 
defined. 

Some C constructs, such as strings, require 
quotation marks. Quotation marks required 
by the language have the form " " rather 
than " ". The following example shows a C 
string: 

"abc" 

Quotation marks also occasionally indicate 
a term that is being used in a colloquial 
sense. 

Names of special key combinations, such as 
CTRL+Z, appear in small capital letters. 

1-7 





Chapter 2 

Elements of C 

Introduction 2-1 

Character Sets 2-2 
Letters, Digits, and Underscore 2-3 
White-Space Characters 2-3 
Punctuation and Special Characters 2-4 
Escape Sequences 2-5 
Operators 2-7 

Constants 2-10 
Integer Constants 2-10 
Floating-Point Constants 2-12 
Character Constants 2-13 
String Literals 2-14 

Identifiers 2-17 

Keywords 2-19 

Comments 2-20 

Tokens 2-22 





Introduction 

Introduction 
This chapter describes the elements of the C programming language, 
including the names, numbers, and characters used to construct a C pro­
gram. The following topics are discussed in this chapter: 

• Character sets 

• Constants 

• Identifiers 

• Keywords 

• Comments 

• Tokens 

Elements of C 2-1 



Character Sets 

Character Sets 
Two character sets are defined for use in C programs: the "C character 
set" and the "representable character set." 

The C character set consists of the letters, digits, and punctuation marks 
having specific meanings in the C language. You construct a C program 
by combining the characters of the C character set into meaningful state­
ments. 

The C character set is a subset of the representable character set. The 
representable character set includes each letter, digit, and symbol that can 
be represented graphically with a single character. The extent of the 
representable character set depends on the type of terminal, console, or 
character device being used. 

All characters in a C program must be part of the C character set. How­
ever, string literals, character constants, comments, and file names in 
#include directives can include any character from the representable 
character set. 

Since each character in the C character set has an explicit meaning in the 
language, the compiler generates error messages when it finds inappropri­
ate or inappropriately used characters in a program. 

The sections that follow describe the characters and symbols of the C 
character set and explain how and when to use them. 

2-2 C Language Reference 



Character Sets 

Letters, Digits, and Underscore 

The C character set includes the uppercase and lowercase letters of the 
English alphabet, the 10 decimal digits of the Arabic number system, and 
the underscore L) character. 

• Uppercase English letters 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

• Lowercase English letters 

a bc de fg hij kl mnopqrs tu v wxy z 

• Decimal digits 

0123456789 

• Underscore character L) 

These characters are used to form the constants, identifiers, and keywords 
described later in this chapter. 

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. For example, if a lowercase a is specified in an identifier, you cannot 
substitute an uppercase A; you must use the lowercase letter. 

White-Space Characters 

The space, tab, line-feed, carriage-return, form-feed, vertical-tab, and 
new-line characters are called "white-space characters" because they 
serve the same purpose as the spaces between words and lines on a 
printed page. These characters separate the items you define, such as con­
stants and identifiers, from other items in a program. 

The C compiler ignores white-space characters unless you use them as 
separators or as components of character constants or string literals. 
Therefore, you can use extra White-space characters to make a program 
more readable. The compiler also treats comments as white space. (Com­
ments are described in "Comments.") 

Elements of C 2-3 



Character Sets 

Punctuation and Special Characters 

The punctuation and special characters in the C character set have various 
uses, from organizing program text to defining the tasks that the compiler 
or compiled program will carry out. Table 2.1 lists the punctuation and 
special characters in the C character set. 

Table 2.1 

Punctuation and Special Characters 

Character Name Character Name 
Comma Exclamation mark 

Period Vertical bar 

Semicolon / Forward slash 

Colon \ Backslash 

? Question mark Tilde 

Single quotation mark + Plus sign 

Double quotation mark # Number sign 

( Left parenthesis % Percent sign 

) Right parenthesis & Ampersand 

Left bracket Caret 

Right bracket * Asterisk 

{ Left brace Minus sign 

} Right brace = Equal sign 

< Left angle bracket > Right angle bracket 

These characters have special meanings in C. Their uses are described 
throughout this manual. Any punctuation character from the representable 
character set that does not appear in Table 2.1 can be used only in string 
literals, character constants, comments, and file names in #include direc-
tives. 

2-4 C Language Reference 



Character Sets 

Escape Sequences 

Strings and character constants can contain "escape sequences." Escape 
sequences are character combinations representing White-space and non­
graphic characters. An escape sequence consists of a backslash (\) fol­
lowed by a letter or by a combination of digits. 

Escape sequences are typically used to specify actions such as carriage 
returns and tab movements on terminals and printers and to provide literal 
representations of nonprinting characters and characters that normally 
have special meanings, such as the double-quotation-mark character ("). 
Table 2.2 lists the C escape sequences. 

Escape 
Sequence 

\n 

\t 

\v 

\b 

\r 

\f 

\a 
\, 

\" 

\\ 

\ddd 

\xddd 

Name 

Table 2.2 

Escape Sequences 

New line 

Horizontal tab 

Vertical tab 

Backspace 

Carriage return 

Form feed 

Bell (alert) 

Single quotation mark 

Double quotation mark 

Backslash 

ASCII character in octal notation 

ASCII character in hexadecimal notation 

If a backslash precedes a character that does not appear in Table 2.2, the 
backslash is ignored and the character is represented literally. For exam­
ple, the pattern \c represents the character c in a string literal or character 
constant. However, the use of lowercase letters in escape sequences is 
reserved by ANSI for future standardization. Therefore, occurrences of 
undefined escape sequences, though currently innocuous, could pose 
future portability problems. 

Elements of C 2-5 



Character Sets 

The sequence \ddd lets you specify any character in the ASCII (American 
Standard Code for Information Interchange) character set as a three-digit 
octal character code. Similarly, the sequence \x.ddd lets you specify any 
ASCII character as a three-digit hexadecimal character code. For example, 
you can give the ASCII backspace character as the normal C escape 
sequence (\b), or you can code it as \010 (octal) or \x008 (hexadecimal). 

You can use only the digits 0 through 7 in an octal escape sequence. 
Though you do not need to use all three digits (as in the form shown in the 
previous paragraph), you must use at least one. For example, you can 
specify the ASCII backspace character in octal notation as \l0. Similarly, 
you must use at least one digit for a hexadecimal escape sequence, but 
you can omit the second and third digits. Therefore you could specify the 
hexadecimal escape sequence for the backspace character either as \X08 
or as \x8. 

Note 

When you use octal and hexadecimal escape sequences in strings, it 
is safest to give all three digits of the escape sequence. If you don't 
specify all digits of the escape sequence, and the character immedi­
ately following the escape sequence happens to be an octal or hexa­
decimal digit, the compiler interprets that character as part of the 
sequence. For example, if you printed the string ''\x07Bell'', the 
result would be {ell because \x07B is interpreted as the ASCII left­
brace character en. The string \x007Bell (note the two leading 
zeros) is the correct way to represent the bell character followed by 
the word Bell. The string \x7Bell would generate a compiler diag­
nostic message because 7BE hexadecimal is too big a number to fit 
in one byte. 

Escape sequences let you send nongraphic control characters to a display 
device. For example, the escape character \033 is often used as the first 
character of a control command for a terminal or printer. Some escape 
sequences are device specific. For instance, the vertical tab and form feed 
(\v and If) do not affect screen output, but they do perform appropriate 
operations for a printer. 

You should always represent nongraphic characters by escape sequences 
in C programs, since using the characters directly may generate compiler 
diagnostic messages. 

2-6 C Language Reference 



Character Sets 

You can also use the backslash character (\) as a continuation character. 
When a new-line character immediately follows the backslash, the com­
piler ignores the backs lash and the new line and treats the next line as 
part of the previous line. This is useful primarily for preprocessor 
definitions longer than a single line. In the past this feature was also used 
to create strings longer than one line. However, the string concatenation 
feature (see "String Literals") is now preferred for creating long string 
literals. 

Operators 

"Operators" are symbols (both single characters and character combina­
tions) that specify how values are to be manipulated. Each symbol is 
interpreted as a single unit, called a "token." (Tokens are defined in 
"Tokens.") 

Table 2.3 lists the symbols that make up the C unary operators and names 
each operator. Table 2.4 lists the C binary and ternary operators and 
names them. You must specify operators exactly as they appear in the 
tables, with no white space between the characters of multicharacter 
operators. Note that three operator symbols (asterisk, minus sign, and 
ampersand) appear in both tables. Their interpretation as unary or binary 
depends on the context in which they appear. The sizeof operator is not 
included in these tables. It consists of a keyword (sizeot) rather than a 
symbol, and is listed in "Keywords." 

Operator 

* 
& 

+ 

Table 2.3 

Unary Operators 

Name 

Logical NOT 

Bitwise complement 

Arithmetic negation 

Indirection 

Address of 

Unaryplusa 

a The unary plus operator is implemented syntactically, but not semanti­
cally. 

Elements of C 2-7 



Character Sets 

Table 2.4 

Binary and Ternary Operators 

Operator 

+ 

* 
I 

% 

« 

» 

< 

<= 

> 

>= 

!= 

& 

I 

1= 

2-8 

Name 
Addition 

Subtraction 

Multiplication 

Division 

Remainder 

Left shift 

Right shift 

Less than 

Less than or 
equal to 

Greater than 

Greater than 
or equal to 

Equality 

Inequality 

Bitwise AND 

Bitwise 
inclusive OR 

Bitwise 
exclusive OR 

Bitwise 
inclusive-OR 
assignment 

Operator 

&& 

II 

?: 

++ 

= 

+= 

-= 

*= 

1= 

%= 

»= 

«= 

&= 

Name 
Logical AND 

Logical OR 

Sequential 
evaluation 

Conditionala 

Increment 

Decrement 

Simple assign­
ment 

Addition 
assignment 

Subtraction 
assignment 

Multiplication 
assignment 

Division 
assignment 

Remainder 
assignment 

Right-shift 
assignment 

Left-shift 
assignment 

Bitwise­
AND­
assignment 

Bitwise 
exclusive-OR 
assignment 

C Language Reference 



Character Sets 

The conditional operator is a ternary operator, not a mul­
ticharacter operator. A conditional expression has the fol­
lowing fonn: expression? expression : expression. 

For a complete description of each operator, see the "Expressions and 
Assignments" chapter. 

Elements of C 2-9 



Constants 

Constants 
A constant is a number, character, or character string that can be used as a 
value in a program. A constant's value cannot be modified. 

The C language has four kinds of constants: integer constants, ftoating­
point constants, character constants, and string literals. 

Integer Constants 

Syntax 

digits 

Oodigits 

Oxhdigits 
OXhdigits 

An "integer constant" is a decimal, octal, or hexadecimal number that 
represents an integral value in one of the following forms: 

• A "decimal constant" has the form digits, where digits represents 
one or more decimal digits (0 through 9), the first of which is not a 
zero. 

• An "octal constant" has the form Oodigits, where odigits 
represents one or more octal digits (0 through 7). The leading zero 
is required. 

• A "hexadecimal constant" has the form Oxhdigits or OXhdigits, 
where hdigits represents one or more hexadecimal digits (0 
through 9 and either uppercase or lowercase a throughf. The lead­
ing Ox or OX is required. 

No white-space characters can separate the digits of an integer constant. 

Table 2.5 gives examples of the three forms of integer constants. 

2-10 C Language Reference 



Constants 

Table 2.5 

Examples of Integer Constants 

Decimal Constants 

10 
132 
32179 

Octal Constants 

012 
0204 
076663 

Hexadecimal Constants 

Oxa orOxA 
Ox84 
Ox7db3 or Ox7DB3 

Integer constants always specify positive values. If you need to use a 
negative value, place a minus sign (-) in front of a constant to form a con­
stant expression with a negative value. (In this case, the minus sign is 
interpreted as the unary arithmetic negation operator.) 

Every integer constant is given a type based on its value. A constant's 
type determines which conversions must be performed when the constant 
is used in an expression or when the minus sign (-) is applied, as summar­
ized in the following rules: 

• Decimal constants are considered signed quantities and are given 
int type, or long type if the size of the value requires it. 

• Octal and hexadecimal constants are given int, unsigned int, long, 
or unsigned long type, depending on the size of the constant. If the 
constant can be represented as an int, it is given int type. If it is 
larger than the maximum positive value that can be represented by 
an int, but small enough to be represented in the same number of 
bits as an int, it is given unsigned int type. Similarly, a constant 
that is too large to be represented as an unsigned int is given long 
or unsigned long type, if necessary. 

Table 2.6 shows the ranges of values and the corresponding types for octal 
and hexadecimal constants on a machine whose int type is 16 bits long. 

Table 2.6 

Types Assigned to Octal and Hexadecimal Constants 

Hexadecimal Range Octal Range Type 

OxO - Ox7FFF 0-077777 int 
Ox8000 . OxFFFF 0100000 - 0177777 unsigned int 
OxIOOOO·Ox7FFFFFFF 0200000 - 017777777777 long 
Ox80000000 - OxFFFFFFFF 020000000000 - 037777777777 unsigned long 

Elements of C 2-11 



Constants 

The consequence of the typing rules shown in Table 2.6 is that hexadeci­
mal and octal constants are always zero extended when converted to 
longer types. (For more information on type conversions, see the 
"Expressions and Assignments." chapter.) 

You can force any integer constant to be given long type by appending 
the letter lor L to the end ofthe constant. Table 2.7 illustrates some forms 
of long integer constants. 

Table 2.7 

Examples of Long Integer Constants 

Decimal Constants 

lOL 
791 

Octal Constants 

012L 
01151 

Hexadecimal Constants 

OxaLorOxAL 
Ox4fl or Ox4FI 

Types are described in the "Declarations" chapter and conversions are 
described in the "Expressions and Assignments" chapter. 

Floating-Point Constants 

Syntax 

[digits] [.digits] [E le[-I+]digits] 

A "floating-point constant" is a decimal number that represents a signed 
real number. The value of a signed real number includes an integer por­
tion, a fractional portion, and an exponent. The digits are zero or more 
decimal digits (0 through 9), and E (or e) is the exponent symbol. You can 
omit either the digits before the decimal point (the integer portion of the 
value) or the digits after the decimal point (the fractional portion), but not 
both. You can leave out the decimal point only if you include an 
exponent. 

The exponent consists of the exponent symbol (E or e) followed by a con­
stant integer value. The integer value may be negative. No white-space 
characters can separate the digits or characters of the constant. 

Floating-point constants always specify positive values. However, you 
can place a minus sign (-) in front of the constant to form a constant 
floating-point expression with a negative value. In this case, the minus 
sign is treated as an arithmetic operator. 

All floating-point constants have type double. 

2-12 C Language Reference 



Constants 

Examples 

The following examples illustrate some forms of floating-point constants 
and expressions: 

15.75 
1.575E1 
1575e-2 
-0.0025 
-2.5e-3 
25E-4 

You can omit the integer portion of the floating-point constant, as shown 
in the following examples: 

-.125 
-.175E-2 

Character Constants 

Syntax 

'char' 

A "character constant" is formed by enclosing a single character from 
the representable character set within single quotation marks (' '). An 
escape sequence is regarded as a single character and is therefore valid in 
a character constant. Note that escape characters must be represented by 
escape sequences or diagnostic messages will be generated. The value of 
a character constant is the numerical value of the character. 

In the syntax above, char can be any character from the representable 
character set (including any escape sequence) except a single quotation 
mark ('), backslash (\), or new-line character (\0). To use a single quota­
tion mark or backslash character as a character constant, precede it with a 
backslash, as shown in Table 2.8. 

Elements of C 2-13 



Constants 

Table 2.8 

Examples of Character Constants 

Constant Value 
, , Single blank: space 

'a' Lowercase a 

'?' Question mark 

'\b' Backspace 

'\x1B' ASCII escape character 

'\" Single quotation mark 
,\\, Backslash 

Character constants have type int, and are therefore sign extended in type 
conversions. (See "Type Conversions," for more information.) 

String Literals 

Syntax 

"characters" ["characters"] ... 

A "string literal" is a sequence of characters from the representable 
character set enclosed in double quotation marks (" "). This example 
demonstrates a simple string literal: 

"This is a string literal." 

In a string literal, characters is a placeholder for zero or more characters 
from the representable character set, including any escape sequence. The 
double quotation mark ("), backslash (\), or new line must be represented 
by their escape sequences (\11, \\, and \0). Non-printing characters should 
always be represented by a corresponding escape sequence. Each escape 
sequence is considered a single character. 

To force a new line within a string literal, enter the new-line (\n) escape 
sequence at the point in the string where you want the line broken, as fol­
lows: 

"Enter a number between 1 and lOO\nOr press Return" 

The traditional way to form string literals that take up more than one line 
is to type a backslash, then press RETURN. The backslash causes the 

2-14 C Language Reference 



Constants 

compiler to ignore the following new-line character. For example, the 
string literal 

"Long strings can be bro\ 
ken into two or more pieces." 

is identical to the string 

"Long strings can be broken into two or more pieces." 

Two or more string literals separated only by white space will be con­
catenated into a single string. For example, long strings passed as literals 
to the printf function can now be continued in any column of a succeed­
ing line without affecting their appearance when output, if entered as fol­
lows: 

printf ("This is the first half of the string," 
" this is the second half") 

As long as each part of the string is enclosed in double quotation marks, 
the parts will be concatenated and output as a single string: 

This is the first half of the string, this is the second ha: 

You can use string concatenation anywhere you might previously have 
used a backslash followed by a new-line character to enter strings longer 
than one line. Because ensuing strings can start in any column of the 
source code without affecting their on-screen representation, strings can 
be positioned to enhance source-code readability. For example, the fol­
lowing pointer, initialized as two distinct string literals separated only by 
white space, is stored as a single string. When properly referenced, as in 
the following example, it produces a result identical to the previous 
example: 

char *string = "This is the first half of the string," 
" this is the second half" ; 

printf ("%s" , string) ; 

To use a double quotation mark or backslash within a string literal, pre­
cede it with a backslash as shown in the following examples: 

"First\\Second" 

"\"Yes, I do, \" she said." 

Note that an escape sequence (such as \\ or \") within a string literal 
counts as a single character. 

Elements of C 2-15 



Constants 

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (represented by the \0 escape sequence) is auto­
matically appended to, and marks the end of, each string literal. Each 
string in a program is generally considered to be distinct; however, two 
identical strings are not guaranteed to receive separate storage. Therefore, 
programs should not be designed to allow modification of string literals 
during execution. 

String literals have type array of char (char []). This means that a string 
is an array with elements of type char. The number of elements in the 
array is equal to the number of characters in the string, plus one for the 
terminating null character. 

2-16 C Language Reference 



Identifiers 

Identifiers 
Syntax 

letter '_[letter 'digitU ... 

"Identifiers" are the names you supply for variables, types, functions, 
and labels in your program. An identifier is a sequence of one or more 
letters, digits, or underscores ( ) that begins with a letter or underscore. 
Identifiers can contain any ll1nnber of characters, but only the first 31 
characters are significant to the compiler. (Other programs that read the 
compiler output, such as the linker, may recognize even fewer charac­
ters.) 

You create an identifier by specifying it in the declaration of a variable, 
type, or function. You can then use the identifier in later program state­
ments to refer to the associated item. Although statement labels are a spe­
cial kind of identifier and have their own naming class, their creation is 
similar to that of variables and functions. (Declarations are described in 
the "Declarations" chapter. Statement labels are described in the 
"Statements" chapter.) 

Because the C compiler considers uppercase and lowercase letters dis­
tinct characters, you can create distinct identifiers that have the same 
spelling but different cases for one or more of the letters. 

An identifier cannot have the same spelling and case as a keyword of the 
language. Keywords are described in "Keywords." 

You should not use leading underscores in identifiers you create: 
identifiers beginning with an underscore can cause conflicts with the 
names of system routines or variables, and produce errors. Programs con­
taining names beginning with leading underscores are not guaranteed to 
be portable. 

Note 

Some linkers may further restrict the number and type of characters 
for globally visible symbols. (Visibility is defined in "Lifetime and 
Visibility.") Also the linker, unlike the compiler, may not distin­
guish between uppercase and lowercase letters. Consult your linker 
documentation for information about naming restrictions imposed 
by the linker. 

Elements of C 2-17 



Identifiers 

Examples 

The following are examples of identifiers: 

j 
cnt 
templ 
top_ofyage 
skip12 

Since uppercase and lowercase letters are considered distinct characters, 
each of the following identifiers is unique: 

2-18 

add 
ADD 
Add 
aDD 

C Language Reference 



Keywords 

Keywords 
"Keywords" are predefined identifiers that have special meanings to the 
C compiler. They can be used only as defined. The name of a program 
item cannot have the same spelling and case as a C keyword. 

The C language has the following keywords: 

auto 
break 
case 
char 
const 
continue 
default 
do 

double 
else 
enum 
extern 
float 
for 
goto 
if 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

struct 
switch 
typedef 
union 
unsigned 
void 
volatile 
while 

You cannot redefine keywords. However, you can specify text to be sub­
stituted for keywords before compilation by using C preprocessor direc­
tives (see the "Functions" chapter). 

The volatile keyword is implemented syntactically, but currently has no 
semantics associated with it. You cannot use volatile as a variable name 
in your programs. 

The following identifiers may be keywords in some implementations. See 
your compiler guide for more information. 

cded 
far 
fortran 
huge 
near 
pascal 

Elements of C 2-19 



Comments 

Comments 
Syntax 

/* characters */ 

A "comment" is a sequence of characters that is treated as a single 
white-space character by the compiler, but is otherwise ignored. In a com­
ment, characters can include any combination of characters from the 
representable character set, including new-line characters, but excluding 
the "end comment" delimiter (*/). Comments can occupy more than one 
line, but they cannot be nested. 

Comments can appear anywhere a White-space character is allowed. 
Since the compiler treats a comment as a single white-space character, 
you cannot include comments within tokens. However, since the com­
piler ignores the characters of the comment, you can include keywords in 
comments without producing errors. 

To suppress compilation of a large portion of a program or a program seg­
ment that contains comments, bracket the desired portion of code with the 
#if and #endif preprocessor directives, rather than "commenting out" the 
code (see "Conditional Compilation"). 

Examples 

The following examples illustrate ~ome comments: 

/* Comments can separate and document 
lines of a program. */ 

/* Comments can contain keywords such as for 
and while. * / 

1***************************************** 
Comments can occupy several lines. 

*****************************************/ 

2-20 C Language Reference 



Comments 

Since comments cannot contain nested comments, the following example 
causes an error: 

/* You cannot /* nest */ comments */ 

The error occurs because the compiler recognizes the first *1, after the 
word nest, as the end of the comment. It tries to process the remaining 
text and produces an error when it cannot do so. 

Elements of C 2-21 



Tokens 

Tokens 
In a C source program, the basic element recognized by the compiler is 
the character group known as a "token." A token is source-program text 
the compiler will not attempt to further analyze into component elements. 
For example, the following program fragment uses the word elsewhere as 
the name of a function. Although else is a keyword in C, there is no con­
fusion between the function name token and the C keyword token it con­
tains. 

main() 
{ 

int i = 0; 
if (i) 
elsewhere () 

However, if you were to type elsewhere as else where with a space 
between else and where, the preceding example would elicit a compiler 
diagnostic message noting the lack of a semicolon before the else key­
word. 

The operators, constants, identifiers, and keywords described in this 
chapter are examples of tokens. Punctuation characters such as brackets 
([ ]), braces ({ }), angle brackets « », parentheses, and commas are also 
tokens. 

Tokens are delimited by White-space characters and by other tokens, such 
as operators and punctuation characters. To prevent the compiler from 
breaking an item down into two or more tokens, white-space characters 
are not permitted within an identifier, multicharacter operator, or key­
word. 

When the compiler interprets tokens, it includes as many characters as 
possible in a single token before moving on to the next token. Because of 
this behavior, the compiler may not interpret tokens as you intended if 
they are not properly separated by white space. 

2-22 C Language Reference 



Tokens 

Example 

Consider the following expression: 

H++j 

In this example, the comr·'er first makes the longest possible operator 
(++) from the three plus signs, then processes the remaining plus sign as 
an addition operator (+). Thus, the expression is interpreted as (i++) + (j), 
not (i) + (++j). In this and similar cases, use white space and parentheses 
to avoid ambiguity and ensure proper expression evaluation. 

Elements of C 2-23 





Chapter 3 

Program Structure 

Introduction 3-1 

Source Program 3-2 

Source Files 3-4 

Functions and Program Execution 3-6 

Lifetime and Visibility 3-7 
Blocks 3-7 
Lifetime 3-7 
Visibility 3-8 
Summary 3-9 

Naming Classes 3-12 





Introduction 

Introduction 
This chapter defines tenus used later in this manual to describe the C lan­
guage, and discusses the structure of C source programs. It gives an over­
view of features of C that are described in detail in other chapters. The 
syntax and meaning of declarations and definitions are discussed in the 
"Declarations" chapter and the chapter on "Functions." The C prepro­
cessor and pragmas are described in "Preprocessor Directives and Prag­
mas." 

Program Structure 3-1 



Source Program 

Source Program 
A C "source program" is a collection of any number of directives, prag­
mas, declarations, definitions, and statements. These constructs are dis­
cussed briefly in the following paragraphs. To be valid constructs in 
Microsoft C, each must have the syntax described in this manual, though 
they can appear in any order in the program (subject to the rules outlined 
throughout this manual). However, order of appearance does affect how 
variables and functions can be used in a program. (See "Lifetime and 
Visibility," for more information.) 

Directives 

A "directive" instructs the C preprocessor to perform a specific action on 
the text of the program before compilation. 

Pragmas 

A "pragma" instructs the compiler to perform a particular action at com­
pile time. 

Declarations and Definitions 

A "declaration" establishes an association between the name and the 
attributes of a variable, function, or type. In C, all variables must be 
declared before being used. 

A "definition" of a variable establishes the same aSSOClallOnS as a 
declaration, but also causes storage to be allocated for the variable. 
Therefore, all definitions are implicitly declarations, but not all declara­
tions are definitions. For example, variable declarations that begin with 
the extern storage-class specifier are "referencing," rather than 
"defining," declarations. Referencing declarations do not cause storage 
to be allocated and cannot be initialized. (For more information on 
storage classes, see the "Declarations" chapter.) 

"Function declarations" (or "prototypes") establish the name of the 
function, its return type, and, optionally, its formal parameters. A function 
definition includes the same elements as the prototype, plus the function 
body. If you do not supply an explicit declaration for a function, the com­
piler constructs a prototype from whatever information is available in the 
first reference to the function, whether that is a definition or a call. 

3-2 C Language Reference 



Source Program 

Both function and variable declarations may appear inside or outside a 
function definition. Any declaration within a function definition is said to 
appear at the "internal" (local) level. A declaration outside all function 
definitions is said to appear at the "external" (global) level. 

Variable definitions, like declarations, can appear at the internal level or 
at the external level. Function definitions always occur at the external 
level. 

Note that declarations of types (for example, structure, union, and 
typedef declarations) that do not include the name of a variable of the 
type being declared do not cause storage allocation. 

Example 

The following example illustrates a simple C source program. This source 
program defines the function named main and declares the function 
named print! with a prototype. The program uses defining declarations to 
initialize the global variables x and y. The local variables z and w are 
declared, but not initialized. Storage is allocated for all these variables, 
but only x, y, U, and v contain meaningful values when declared because 
they are initialized either explicitly or implicitly. The values in z and w 
are not meaningful until values are assigned to them in the executable 
statements. 

int x = 1; /* Defining declarations */ 
int y = 2; /* of external variables */ 

extern int printf(char *, ... ); /* Function "prototype" 

main () 

int z; 
int W; 

static int v; 

extern int u; 

or declaration * / 

/* Function definition 
for main function */ 

/* Definitions for 
/* two uninitialized 

/* local variables 

*/ 
*/ 

*/ 

/* Definition of variable 
with global lifetime */ 

/* Referencing declaration 
of external variable 
defined elsewhere */ 

z = y + x; /* Executable statements */ 
w = y - x; 
printf ("z= %d w= %d", z, w); 

printf("v= %d u= %d", v, u); 

Program Structure 3-3 



Source Files 

Source Files 
A source program can be divided into one or more "source files." A C 
source file is a text file containing all or part of a C source program. (For 
example, a source file may contain just a few of the functions that the pro­
gram needs.) When you compile a program, you must separately compile, 
and then link., the individual source files composing the total program. 
You can also use the #include directive to combine separate source files 
into larger source files before you compile. (For information on 
"include" files, see the "Preprocessor Directives and Pragmas" chapter.) 

A source file can contain any combination of complete directives, prag­
mas, declarations, and definitions. You cannot split items such as function 
definitions or large data structures between source files. The last character 
in a source file must be a new-line character. 

A source file need not contain executable statements. For example, you 
may find it useful to place definitions of variables in one source file and 
then declare references to these variables in other source files that use 
them. This technique makes the definitions easy to find and change. For 
the same reason, manifest constants and macros are often organized into 
separate include files that may be referenced in source files as required. 

Directives in a source file apply only to that source file and its include 
files. Moreover, each directive applies only to the part of the file that fol­
lows the directive. To apply a common set of directives to a whole source 
program, you must include the directives in all source files that make up 
the program. 

Pragmas usually affect a specific region of a source file. The implementa­
tion determines the specific compiler action that a pragma defines. (Your 
compiler guide describes the effects of particular pragmas.) 

Example 

The following example illustrates a C source program contained in two 
source files. Once you have compiled these source files, you can link. and 
then execute them as a single program. 

The main and max functions are assumed to be in separate files, and exe­
cution of the program is assumed to begin with the main function. 

3-4 C Language Reference 



/************************************************************ 
Source file 1 - main function 

************************************************************/ 

#define ONE 1 
#define TWO 2 
#define THREE 3 

extern int max(int a, int b); /* Function prototype */ 

main () /* Function definition */ 

int w = ONE, x = TWO, Y = THREE; 
int z = 0; 
z = max (x,y) ; 
w = max (z,w) ; 

Source Files 

In Source file 1 (above), a prototype of the max function is declared. This 
kind of declaration is sometimes called a "forward declaration. " The 
definition for the main function includes calls to max. 

The lines beginning with a number sign (#) are preprocessor directives. 
These directives tell the preprocessor to replace the identifiers ONE, 
TWO, and THREE with the corresponding number throughout Source file 
1. However, the directives do not apply to Source file 2 (follows), which 
will be separately compiled and then linked with Source file 1. 

1************************************************************ 
Source file 2 - definition of max function 

************************************************************/ 

int max (int a, int b) 

if(a>b) 
return (a); 

else 
return (b); 

/* Note formal parameters are 
included in function header * / 

Source file 2 contains the function definition for max. This definition 
satisfies the calls to max in Source file 1. Note that the definition for max 
follows the form specified in the ANSI C standard. For more information 
on this new form and function prototyping, see the "Functions" chapter. 

Program Structure 3-5 



Functions and Program Execution 

Functions and Program Execution 
Every C program has a primary function that must be named main. The 
main function serves as the starting point for program execution. It usu­
ally controls program execution by directing the calls to other functions 
in the program. A program usually stops executing at the end of main, 
although it can terminate at other points in the program for a variety of 
reasons depending on the execution environment. 

The source program usually has more than one function, with each func­
tion designed to perform one or more specific tasks. The main function 
can call these functions to perform their respective tasks. When main 
calls another function, it passes execution control to the function so that 
execution begins at the first statement in the function. The function 
returns control when a return statement is executed or when the end of 
the function is reached. 

You can declare any function, including main, to have parameters. When 
one function calls another, the called function receives values for its 
parameters from the calling function. These values are called ' 'argu­
ments." You can declare formal parameters to main so that it can 
receive values from outside the program. (Most commonly, these argu­
ments are passed from the command line when the program is executed.) 

Traditionally, the first three parameters of the main function are declared 
to have the names argc, argv, and envp. The argc parameter is declared 
to hold the total number of arguments passed to main. The argv parame­
ter is declared as an array of pointers, each element of which points to a 
string representation of an argument passed to main. The envp parameter 
is a pointer to a table of string values that set up the environment in which 
the program executes. 

The operating system supplies values for the argc, argv, and envp param­
eters, and the user supplies the actual arguments to main. The operating 
system, not the C language, determines the argument-passing convention 
used on a particular system. For more information, see your compiler 
guide. 

If you declare formal parameters to a function, you must declare them 
when you define the function. Function declarations are described in the 
"Declarations, " and "Functions" chapters, including function 
definitions. 

3-6 C Language Reference 



Lifetime and Visibility 

Lifetime and Visibility 
To understand how a C program works, you must understand the rules that 
determine how variables and functions can be used in the program. Three 
concepts are crucial to understanding these rules: the "block" (or com­
pound statement), "lifetime" (sometimes called extent), and "visibility" 
(sometimes called scope). 

Blocks 

A block is a sequence of declarations, definitions, and statements 
enclosed within braces. There are two types of blocks in C. The "com­
pound statement' ' (discussed more fully in the "Statements" chapter) is 
one type of block. The other, the' 'function definition," consists of a com­
pound statement comprising the function body plus the function's associ­
ated "header" (the function name, return type, and formal parameters). A 
block may encompass other blocks, with the exception that no block can 
contain a function definition. A block within other blocks is said to be 
"nested" within the encompassing blocks. 

Note that, while all compound statements are enclosed within braces, not 
everything enclosed within braces constitutes a compound statement. For 
example, though the specifications of array, structure, or enumeration ele­
ments may appear within braces, they are not considered compound state­
ments. 

Lifetime 

"Lifetime" is the period, during execution of a program, in which a vari­
able or function exists. All functions in a program exist at all times during 
its execution. 

Lifetime of a variable may be internal (local) or external (global). An 
item with a local lifetime (a "local item") has storage and a defined 
value only within the block where the item is defined or declared. A local 
item is allocated new storage each time the program enters that block, 
and it loses its storage (and hence its value) when the program exits the 
block. If the lifetime of the variable is global (a "global item"), it has 
storage and a defined value for the entire duration of a program. 

Program Structure 3-7 



Lifetime and Visibility 

The following rules specify whether a variable has local or global life­
time: 

• Variables declared at the internal level (that is, within a block) 
usually have local lifetimes. You can ensure global lifetime for a 
variable within a block by including the static storage class 
specifier in its declaration. Once declared static, the variable will 
retain its value from one entry of the block to the next. However, it 
will still be "visible" only within its own block and blocks nested 
within its own block. (Visibility of objects is discussed in the next 
section. For information on storage-class specifiers, see the 
"Declarations" chapter.) 

• Variables declared at the external level (that is, outside all blocks 
in the program) always have global lifetimes. 

Visibility 

An item's "visibility" determines the portions of the program in which it 
can be referenced by name. An item is visible only in portions of a pro­
gram encompassed by its "scope," which may be limited (in order of 
increasing restrictiveness) to the file, function, block, or function proto­
type in which it appears. 

In C, only a label name is always confined to function scope. (For more 
information on labels and label names, see the chapter on "Statements.") 
The scope of any other item is determined by the level at which its 
declaration occurs. An item declared at the external level has file scope 
and is visible everywhere within the file. If its declaration occurs within a 
block (including the list of formal parameters in a function definition), the 
item's scope is limited to that block and blocks nested within that block. 
Formal parameter names declared in the parameter list of a function pro­
totype have scope only from the completion of the parameter declaration 
to the end of the function declarator. 

Note 

Although an item with a global lifetime exists throughout the execu­
tion of the source program (for example, an externally declared 
variable or a local variable declared with the static keyword), it 
may not be visible in all parts of the program. 

3-8 C Language Reference 



Lifetime and Visibility 

An item is said to be "globally visible" if it is visible, or if you can use 
appropriate declarations to make it visible, in all the source files making 
up the program. (For more information on visibility between source files, 
also known as "linkage," see the chapter on "Declarations.") 

The following rules govern the visibility of variables and functions within 
a program: 

• Variables declared or defined at the global level (that is, outside all 
blocks in the program) are visible from their point of definition or 
declaration to the end of the source file. You can use appropriate 
declarations to make such variables visible in other source files, as 
described in "Storage Classes." However, variables declared at 
the global level with the static storage-class specifier are visible 
only within the source file in which they are defined. 

• In general, variables declared or defined at the local level (that is, 
within a block) are visible only from their point of declaration or 
definition to the end of the block actually containing the definition 
or declaration. 

• Variables from outer blocks (including those declared at the global 
level) are visible in all inner blocks. However, the visibility of 
variables is said to "nest" within blocks. For instance, a block 
within another block can contain declarations for variables whose 
identifiers (names) are the same as variables in enclosing blocks. 
Such redefinitions prevail only within the inner block, however. 
Outer-block definitions are restored as the inner blocks are exited. 

• Functions with static storage class are visible only in the source 
file in which they are defined. All other functions are globally visi­
ble. (For more information on function declarations, see' 'Function 
Definitions (Prototypes)." 

Summary 

Table 3.1 summarizes the main factors determining lifetime and visibility 
of variables and functions. However, the table does not cover all possible 
cases. For more information, see the "Declarations" chapter. 

Program Structure 3-9 



Lifetime and Visibility 

Note 

A Microsoft extension to the ANSI C standard provides that func­
tions declared at an internal level may have global visibility. This 
feature should not be relied upon where portability of source code is 
a consideration. See your compiler guide for information on ena­
bling Microsoft extensions. 

Table 3.1 

Summary of Lifetime and Visibility 

Storage 
Class 

Level Item Specifier Lifetime Visibility 

External Variable static Global Restricted to 
definition source file in 

which it occurs 

Variable extern Global Remainder 
declaration of source file 

Function static Global Restricted 
prototype to single 
or definition source file 

Function extern Global Remainder 
prototype of source file 

Internal Variable extern Global Block 
declaration 

Variable static Global Block 
definition 

Variable auto or Local Block 
definition register 

Example 

The following program example illustrates blocks, nesting, and visibility 
of variables. In the example, there are four levels of visibility: the exter­
nal level and three block levels. Assuming that the function printj is 
defined elsewhere in the program, the values will be printed to the screen 
as noted in the comments preceding each statement. 

3-10 C Language Reference 



Lifetime and Visibility 

#include <stdio.h> 

/* i defined at external level: */ 
int i = 1; 

/* main function defined at external level: */ 
main () 

/* prints 1 (value of external level i): */ 
printf ("%d\n", i); 

/* begin first nested block: */ 
{ 

/* i and j defined at internal level: */ 
int i = 2, j = 3; 

/* prints 2, 3: */ 
printf ("%d\n%d\n", i, j); 

/* begin second nested block: */ 
{ 

/* i is redefined: */ 
int i = 0; 

/* prints 0, 3: */ 
printf ("%d\n%d\n", i, j); 

/* end of second nested block: */ 
) 

/* prints 2 (outer definition restored): */ 
printf("%d\n", i); 

/* end of first nested block: */ 
) 

/* prints 1 (external level definition restored): */ 
printf("%d\n", i); 

Program Structure 3-11 



Naming Classes 

Naming Classes 
In any C program, identifiers are used to refer to many different kinds of 
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the 
program uses. C lets you use the same identifier for more than one pro­
gram item, as long as you follow the rules outlined in this section. (For a 
definition of an identifier, see the "Elements of C" chapter.) 

The compiler sets up "naming classes" to distinguish between the 
identifiers used for different kinds of items. The names within each class 
must be unique to avoid conflict, but an identical name can appear in 
more than one naming class. This means that you can use the same 
identifier for two or more different items, provided that the items are in 
different naming classes. The compiler can resolve references based on 
the context of the identifier in the program. 

The following list describes the kinds of items you can name in C pro­
grams and the rules for naming them: 

3-12 

Variables and functions The names of variables and functions are in 
a naming class with formal parameters, 
typedef names and enumeration constants. 
Therefore, variable and function names 
must be distinct from other names in this 
class that have the same visibility. 

Formal parameters 

However, you can redefine variable and 
function names within program blocks, as 
described in "Lifetime and Visibility." 

The names of formal parameters to a func­
tion are grouped with the names of the func­
tion's variables, so the formal parameter 
names should be distinct from the variable 
names. You cannot redeclare the formal 
parameters at the top level of the function. 
However, the names of the formal parame­
ters may be redefined (that is, used to refer 
to different items) within subsequent blocks 
nested within the function body. 

C Language Reference 



Naming Classes 

Enumeration constants Enumeration constants are in the same nam­
ing class as variable and function names. 
This means that the names of enumeration 
constants must be distinct from all variable 
and function names with the same visibility, 
and distinct from the names of other 
enumeration constants with the same visi­
bility. However, like variable names, the 
names of enumeration constants have nested 
visibility, so you can redefine them within 
blocks. (Nested visibility is discussed in 
"Lifetime and Visibility.") 

typedef names The names of types defined with the typedef 
keyword are in a naming class with variable 
and function names. Therefore, typedef 
names must be distinct from all variable and 
function names with the same visibility, as 
well as from the names of formal parame­
ters and enumeration constants. Like vari­
able names, names used for typedef types 
can be redefined within program blocks. See 
"Lifetime and Visibility." 

Tags Enumeration, structure, and union tags are 
grouped in a single naming class. These tags 
must be distinct from other tags with the 
same visibility. Tags do not conflict with 
any other names. 

Members The members of each structure and union 
form a naming class. The name of a member 
must, therefore, be unique within the struc­
ture or union, but it does not have to be dis­
tinct from other names in the program, 
including the names of members of different 
structures and unions. 

Statement labels Statement labels form a separate naming 
class. Each statement label must be distinct 
from all other statement labels in the same 
function. Statement labels do not have to be 
distinct from other names or from label 
names in other functions. 

Program Structure 3-13 



Naming Classes 

Example 

Since structure tags, structure members, and variable names are in three 
different naming classes, the three items named student in the following 
example do not conflict. The context of each item allows correct interpre­
tation of each occurrence of student in the program. 

For example, when student appears after the struct keyword, the compiler 
recognizes it as a structure tag. When student appears after a member­
selection operator (-> or .), the name refers to the structure member. In 
other contexts, student refers to the structure variable. 

3-14 

struct student { 
char student[20]; 
int class; 
int id; 
} student; 

C Language Reference 



Chapter 4 

Declarations 

Introduction 4-1 

Type Specifiers 4-2 
Storage for Fundamental Types 4-5 
Range of Values 4-7 
Data-Type Categories 4-7 

Declarators 4-9 
Array, Pointer, and Function Declarators 4-9 
Complex Declarators 4-10 
Declarators with Special Keywords 4-14 

Variable Declarations 4-17 
Simple Variable Declarations 4-18 
Enumeration Declarations 4-19 
Structure Declarations 4-21 
Union Declarations 4-25 
Array Declarations 4-26 
Pointer Declarations 4-28 

Function Declarations (Prototypes) 4-33 
Formal Parameters 4-34 
Return Type 4-34 
The List of Formal Parameters 4-35 
Summary 4-36 

Storage Classes 4-40 
Variable Declarations at the Global Level 4-41 
Variable Declarations at the Local Level 4-44 
Function Declarations at the Global and Local Levels 4-46 

Initialization 4-48 
Fundamental and Pointer Types 4-49 
Aggregate Types 4-50 
String Initializers 4-54 



Type Declarations 4-55 
Structure, Union, and Enumeration Types 4-55 
Using typedef Declarations 4-56 

Type Names 4-58 



Introduction 

Introduction 
This chapter describes the form and constituents of C declarations for 
variables, functions, and types. C declarations have the form 

[sc-specijier] [type-specijier] declarator[=initializer] [,declarator[ =initializer]] ... 

where sc-specifier is a storage-class specifier; type-specifier is the name 
of a defined type; and initializer gives the value or sequence of values to 
be assigned to the variable being declared. The declarator is an identifier 
that can be modified with brackets ([ D, asterisks (*), or parentheses « ». 
You must explicitly declare all C variables before using them. You can 
declare a C function explicitly with a function prototype. If you do not 
provide a prototype, one is created automatically from whatever informa­
tion is included in the first reference to the function, whether that refer­
ence is a definition or a call. 

The C language includes a standard set of data types. You can add your 
own data types by declaring new ones based on types already defined. 
You can declare arrays, data structures, and pointers to both variables and 
functions. 

C declarations require one or more "declarators." A declarator is an 
identifier that can be modified with brackets ([ ]), asterisks (*), or 
parentheses « » to declare an array, pointer, or function type, respec­
tively. When you declare simple variables (such as character, integer, and 
floating-point items), or structures and unions of simple variables, the 
declarator is just an identifier. 

Four storage-class specifiers are defined in C: auto, extern, register, and 
static. The storage-class specifier of a declaration affects how the 
declared item is stored and initialized and which parts of a program can 
reference the item. Location of the declaration within the source program 
and the presence or absence of other declarations of the variable are also 
important factors in determining the visibility of variables. 

Function prototype declarations are presented in "Function Declarations 
(Prototypes)" in this chapter and in the "Functions" chapter of this 
guide. For information on function definitions, see the "Functions" 
chapter. 

Declarations 4-1 



Type Specifiers 

Type Specifiers 
The C language provides definitions for a set of basic data types, called 
"fundamental" types. Their names are listed in Table 4.1. 

Table 4.1 

Fundamental Types 

Integral Typesa 
Floating-Point 
Types Other 

char 

int 

short 

long 

signed 

unsigned 

enum 

a 

b 

C 

d 

float 

double 

long doubleb 

voidC 

const 

volatiled 

The optional keywords signed and unsigned can precede any 
of the integral types, except enum, and can also be used alone 
as type specifiers, in which case they are understood as signed 
int and unsigned int, respectively. When used alone, the key­
word int is assumed to be signed. When used alone, the key­
words long and short are understood as long int and short int. 

The long double type is semantically equivalent to double, 
but is syntactically distinct. 

The keyword void has three uses: as a function return type, as 
an argument-type list for a function that will take no argu­
ments, and to modify a pointer. 

The volatile keyword is implemented syntactically, but not 
semantically. 

Enumeration types are considered fundamental types. 

4-2 C Language Reference 



Type Specifiers 

Note 

The long float type is no longer supported, and occurrences of it in 
old code should be changed to double. 

The signed char, signed int, signed short int, and signed long int types, 
together with their unsigned counterparts and enum, are called 
"integral" types. The float, double, and long double type specifiers are 
referred to as "floating" or "floating-point" types. You can use any 
integral or floating-point type specifier in a variable or function declara­
tion. 

You can use the void type to declare functions that return no value or to 
declare a pointer to an unspecified type. When the keyword void occurs 
alone within the parentheses following a function name, it is not inter­
preted as a type specifier. In that context void indicates only that the 
function accepts no arguments. Function types are discussed in "Function 
Declarations (Prototypes)." 

The const type specifier declares an object as nonmodifiable. The const 
keyword can be a modifier for any fundamental or aggregate type, or to 
modify a pointer to an object of any type. A const type specifier can 
modify a typedef. A declaration that includes the keyword const as a 
modifier of an aggregate type declarator indicates that each element of 
the aggregate type is unmodifiable. If an item is declared with only the 
const type specifier, its type is taken to be const into A const object may 
be placed in a read-only region of storage. 

The volatile type specifier declares an item whose value may legitimately 
be changed by something beyond the control of the program in which it 
appears. The volatile keyword can be used in the same circumstances as 
const ( previously described). An item can be both const and volatile, in 
which case the item could not be legitimately modified by its own pro­
gram, but could be modified by some asynchronous process. The volatile 
keyword is implemented syntactically, but not semantically. 

You can create additional type specifiers with typedef declarations (see 
"Type Declarations "). When used in a declaration, such specifiers may 
only be modified by the const and volatile modifiers. 

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral 
types are signed by default. Thus, if you omit the unsigned keyword from 
the type specifier, the integral type is signed, even if you do not specify 
the signed keyword. 

Declarations 4-3 



Type Specifiers 

In some implementations, you can specify a compiler option that changes 
the default char type from signed to unsigned. When this option is in 
effect, the abbreviation char means the same as unsigned char, and you 
must use the signed keyword to declare a signed character value. Com­
piler options are described in your compiler guide. 

Note 

This manual generally uses the abbreviated forms of the type 
specifiers listed in Table 4.2 rather than the long forms, and it 
assumes that the char type is signed by default. Therefore, 
throughout this manual, char stands for signed char. 

Table 4.2 

Type Specifiers and Abbreviations 

Type Specifier Abbreviations 

signed chara char 

signed int signed, int 

signed short int short, signed short 

signed long int long, signed long 

unsigned charb 

unsigned int unsigned 

unsigned short int unsigned short 

unsigned long int unsigned long 

float 

const int const 

volatile int volatile 

const volatile int const volatile 

When you make the char type unsigned by default (by speci­
fying the appropriate compiler option), you cannot abbreviate 
signed char. 

b 

4-4 

When you make the char type unsigned by default (by speci­
fying the appropriate compiler option), you can abbreviate 
unsigned char as char. 

C Language Reference 



Type Specifiers 

Storage for Fundamental Types 

Table 4.3 summarizes the storage associated with each fundamental type 
and gives the range of values that can be stored in a variable of each type. 
Since the void type specifier is only used to denote a function with no 
return value or a pointer to an unspecified type, it is not included in the 
table. Similarly, the table does not include const or volatile because a 
variable type modified by const or volatile retains its storage size and can 
contain any value within range for its fundamental type. 

Table 4.3 

Storage and Range of Values for Fundamental Types 

Type 

char 

int 

short 

long 

unsigned char 

unsigned 

unsigned short 

unsigned long 

float 

double 

long double 

Storage 

1 byte 

implementation 
defined 

2 bytes 

4 bytes 

1 byte 

implementation 
defined 

2 bytes 

4 bytes 

4 bytes 

8 bytes 

8 bytes 

Range of Values (Internal) 

-128 to 127 

-32,768 to 32,767 

-2,147,483,648 to 2,147,483,647 

Oto 255 

o to 65,535 

o to 4,294,967,295 

IEEE-standard notation; 
discussed below 

IEEE-standard notation; 
discussed below 

IEEE-standard notation; 
discussed below 

The char type stores the integer value of a member of the representable 
character set. That integer value is the ASCII code corresponding to the 
specified character. Since the char type is interpreted as a signed, I-byte 
integer, a char variable can store values in the range -128 to 127, 
although only the values from 0 to 127 have character equivalents. Simi­
larly, an unsigned char variable can store values in the range 0-255. 

Note that the C language does not define the storage and range associated 
with the int and unsigned int types. Instead, the size of a signed or 
unsigned int item is the standard size of an integer on a particular ma-

Declarations 4-5 



Type Specifiers 

chine. For example, on a 16-bit machine the int type is usually 16 bits, or 
2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes. 
Thus, the int type is equivalent to either the short int or the long int type, 
and the unsigned int type is equivalent to either the unsigned short or 
the unsigned long type, depending on the implementation. 

The type specifiers int and unsigned int (or simply unsigned) define cer­
tain features of the C language (for instance, the enUID type discussed 
later in "Type Declarations' '). In these cases, the definitions of int and 
unsigned int for a particular implementation determine the actual 
storage. 

Note 

The int and unsigned int type specifiers are widely used in C pro­
grams because they let a particular machine handle integer values in 
the most efficient way for that machine. However, since the sizes of 
the int and unsigned int types vary, programs that depend on a spe­
cific int size may not be portable to other machines. To make pro­
grams more portable, you can use expressions with the sizeof opera­
tor instead of hard-coded data sizes. The actual sizes of int and 
unsigned int are discussed in your compiler guide. 

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consisting 
of a sign bit, an 8-bit excess-I27 binary exponent, and a 23-bit mantissa. 
The mantissa represents a number between 1.0 and 2.0. Since the high­
order bit of the mantissa is always 1, it is not stored in the number. This 
representation gives a range of approximately 3.4E-38 to 3.4E+38 for 
type float. 

Values with double type have 8 bytes. The format is similar to the float 
format except that it has an ll-bit excess-I023 exponent and a 52-bit 
mantissa, plus the implied high-order 1 bit. This format gives a range of 
approximately 1. 7E-308 to 1. 7E+ 308 for type double. 

4-6 C Language Reference 



Type Specifiers 

Range of Values 

The range of values for a variable is bounded by the minimum and max­
imum values that can be represented internally in a given number of bits. 
However, because of C's conversion rules (discussed in detail in the 
"Expressions and Assignments" chapter), you cannot always use the 
maximum or minimum value for a constant of a particular type in an 
expression. 

For example, the constant expression -32768 consists of the arithmetic 
negation operator (-) applied to the constant value 32,768. Since 32,768 is 
too large to represent as a short int, it is given the long type. Conse­
quently, the constant expression -32768 has long type. You can only 
represent -32,768 as a short int by type-casting it to the short type. No 
information is lost in the type cast, since -32,768 can be represented inter­
nally in 2 bytes. 

Similarly, a value such as 65,000 can only be represented as an unsigned 
short by type-casting the value to unsigned short type or by giving the 
value in octal or hexadecimal notation. The value 65,000 in decimal nota­
tion is considered a signed constant. It is given the long type because 
65,000 does not fit into a short. You can cast this long value to the 
unsigned short type without loss of information, since 65,000 can fit in 2 
bytes when it is stored as an unsigned number. 

Octal and hexadecimal constants may have either signed or unsigned 
type, depending on their size (see "Integer Constants," for more informa­
tion). However, the method used to assign types to octal and hexadecimal 
constants ensures that they always behave like unsigned integers in type 
conversions. 

Data-Type Categories 

The C data types fall into two general categories, called scalar and aggre­
gate. Scalar types include pointers and arithmetic types. Arithmetic types 
include all floating and integral types, as described in this section. Aggre­
gate types include arrays and structures. Table 4.4 illustrates the 
categories of C data types. 

Declarations 4-7 



Type Specifiers 

Table 4.4 

C Data-Type Categories 

Data Types 
char 

int 

short 

long 

signed 

unsigned 

enum 

float 

Categories 

Integral 

Types 

double Floating 

long double Types 

Pointers 

Arrays 

Structures 

4-8 

Arithmetic 

Types Scalar 
Types 

Aggregate 

Types 

C Language Reference 



Declarators 
Syntax 

identifier 
declarator[ [constant-expression]] 
*declarator 
(declarator) 

Declarators 

The C language lets you declare "arrays" of values, "pointers" to 
values, and "functions returning" values of specified types. You must use 
a "declarator" to declare these items. 

A "declarator" is an identifier that may be modified by brackets ([ D, 
asterisks (*), or parentheses « » to declare an array, pointer, or function 
type, respectively. Declarators appear in the array, pointer, and function 
declarations described later in this chapter. The following section 
discusses the rules for forming and interpreting declarators. 

Array, Pointer, and Function Declarators 

When a declarator consists of an unmodified identifier, the item being 
declared has a base type. If the identifier is followed by brackets ([ ]), the 
type is modified to an array type. If asterisks (*) appear to the left of an 
identifier, the type is modified to a pointer type. If the identifier is fol­
lowed by parentheses, the type is modified to a/unction returning type. 

A declarator must include a type specifier to be a complete declaration. 
The type specifier gives the type of the elements of an array type, the type 
of object addressed by a pointer type, or the return type of a function. 

The sections on array, pointer, and function declarations later in this 
chapter discuss each type of declaration in detail. 

The following examples illustrate the simplest forms of declarators: 

Example 1 

This example declares an array of int values named list: 

int list[20]; 

Declarations 4-9 



Declarators 

Example 2 

The following example declares a pointer named cp to a char value: 

char *cp; 

Example 3 

The following declares a function named June, with no arguments, that 
returns a double value: 

double func{void); 

Complex Declarators 

You can enclose any declarator in parentheses to specify a particular 
interpretation of a complex declarator. 

A "complex" declarator is an identifier qualified by more than one array, 
pointer, or function modifier. You can apply various combinations of 
array, pointer, and function modifiers to a single identifier. However, a 
declarator may not have the following illegal combinations: 

• An array cannot have functions as its elements. 

• A function cannot return an array or a function. 

In interpreting complex declarators, brackets and parentheses (that is, 
modifiers to the right of the identifier) take precedence over asterisks 
(that is, modifiers to the left of the identifier). Brackets and parentheses 
have the same precedence and associate from left to right. After the 
declarator has been fully interpreted, the type specifier is applied as the 
last step. By using parentheses you can override the default association 
order and force a particular interpretation. 

A simple way to interpret complex declarators is to read them from the 
inside out, using the following four steps: 

1. Start with the identifier and look to the right for brackets or 
parentheses (if any). 

2. Interpret these brackets or parentheses, then look to the left for 
asterisks. 

4-10 C Language Reference 



DecIarators 

3. For each right parenthesis you encounter, apply rules 1 and 2 to 
everything within the parentheses. 

4. Apply the type specifier. 

Example 1 

In the following example, the steps are labeled in order and can be inter­
preted as follows: 

l. The identifier var is declared as 

2. a pointer to 

3. a function returning 

4. a pointer to 

5. an array of 10 elements, which are 

6. pointers to 

7. char values. 

char * (* (*var) () ) [10]; 

7642135 

Examples 2 through 9 illustrate complex declarations further and show 
how parentheses can affect the meaning of a declaration. 

Example 2 

In the following example, the array modifier has higher priority than the 
pointer modifier, so var is declared to be an array. The pointer modifier 
applies to the type of the array elements; therefore, the array elements are 
pointers to int values. 

/* array of pointers to int values */ 

int *var[5]; 

Declarations 4-11 



Declarators 

Example 3 

In the following example, parentheses give the pointer modifier higher 
priority than the array modifier, and var is declared to be a pointer to an 
array of five int values. 

1* pointer to array of int values *1 

int (*var) [5]; 

Example 4 

Function modifiers also have higher priority than pointer modifiers, so 
this example declares var to be a function returning a pointer to a long 
value. The function is declared to take two long values as arguments. 

1* function returning pointer to a long *1 

long *var(long,long); 

Example 5 

This example is similar to Example 3. Parentheses give the pointer 
modifier higher priority than the function modifier, and var is declared to 
be a pointer to a function that returns a long value. Again, the function 
takes two long arguments. 

1* pointer to function returning long *1 

long (*var) (long, long); 

Example 6 

The elements of an array cannot be functions, but this example demon­
strates how to declare an array of pointers to functions instead. In this 
example, var is declared to be an array of five pointers to functions that 
return structures with two members. The arguments to the functions are 
declared to be two structures with the same structure type, both. Note 
that the parentheses surrounding *var[5] are required. Without them, the 
declaration is an illegal attempt to declare an array of functions, as shown 
here: 

4-12 C Language Reference 



1* ILLEGAL *1 
struct both *var[5] ( struct both, struct both); 

1* array of pointers to functions 
returning structures *1 

struct both { 
int a; 
char b; 
} ( *var[5] ) ( struct both, struct both); 

Example 7 

Declarators 

This example shows how to declare a function returning a pointer to an 
array, since functions returning arrays are illegal. Here var is declared to 
be a function returning a pointer to an array of three double values. The 
function var takes one argument. The argument, like the return value, is a 
pointer to an array of three double values. The argument type is given by 
a complex abstract declarator. The parentheses around the asterisk in the 
argument type are required; without them, the argument type would be an 
array of three pointers to double values. For a discussion and examples of 
abstract declarators, see "Type Names." 

/* function returning pointer 
to an array of 3 double values */ 

double ( *var ( double (*) [3] ) ) [3]; 

Example 8 

As this example shows, a pointer can point to another pointer, and an 
array can contain arrays as elements. Here var is an array of five ele­
ments. Each element is a five-element array of pointers that point to 
unions, each of which have two members. 

/* array of arrays of pointers 
to pointers to unions */ 

union sign ( 

Declarations 

int x; 
unsigned y; 
) **var [5] [5]; 

4-13 



Declarators 

Example 9 

This example shows how the placement of parentheses changes the mean­
ing of the declaration. In this example, var is a five-element array of 
pointers to five-element arrays of pointers to unions. 

/* array of pointers to arrays 
of pointers to unions */ 

union sign * (*var[ 5]) [5] ; 

Declarators with Special Keywords 

Your implementation of Microsoft C may include the following special 
keywords: 

1. cdecl 

2. far 

3. fortran 

4. huge 

5. near 

6. pascal 

These keywords modify the meaning of variable and function declara­
tions. See your compiler guide for a full discussion of the effects of these 
special keywords. 

When a special keyword appears in a declarator, it modifies the item 
immediately to the right of the keyword. You can apply more than one 
special keyword to the same item. For example, you might modify a 
function identifier with both the far keyword and the pascal keyword. In 
this case, the order of the keywords does not matter (that is, far pascal 
and pascal far have the same effect). Thus the "binding" characteristics 
of the special keywords are the same as those of the type specifiers const 
and volatile. (The section "Type Specifiers," contains descriptions of the 
const and volatile keywords.) 

4-14 C Language Reference 



Declarators 

You can also use two or more special keywords in different parts of a 
declaration to modify the meaning of the declaration. For example, the 
following declaration contains two occurrences of the far keyword: 

int far * pascal far func(void); 

In this example, the pascal and far keywords modify the function 
identifier June. The return value of June is declared to be a far pointer to 
an int value. 

As in any C declaration, you can use parentheses to override the default 
interpretation of the declaration. The rules governing complex declarators 
also apply to declarations that use the special keywords. 

The following examples show the use of special keywords in declara­
tions. 

Example 1 

This example declares a huge array named database with 65,000 int ele­
ments. The huge keyword modifies the array declarator. 

int huge database[65000]; 

Example 2 

In this example, the far keyword modifies the asterisk to its right, making 
x a far pointer to a pointer to char. 

char * far * x; 

This declaration is equivalent to the following declaration: 

char * (far *x); 

Example 3 

This example shows two equivalent declarations. Both declare calc as a 
function with the near and cdecl attributes. 

double near cdecl calc(double,double); 

double cdecl near calc(double,double); 

Declarations 4-15 



Declarators 

Example 4 

Example 4 also shows two declarations. The first declares a far fortran 
array of characters named initlist, and the second declares three far 
pointers named nextchar, prevchar, and currentchar. These pointers 
might be used to store the addresses of characters in the initlist array. 
Note that the far keyword must be repeated before each declarator. 

char far fortran initlist[INITSIZE]; 

char far *nextchar, far *prevchar, far *currentchar; 

Example 5 

Example 5 shows a more complex declaration with several occurrences of 
the far keyword. 

char far *(far *getint) (int far *); 

6 5 2 1 3 4 

The following procedure would be used to interpret this declaration: 

1. The identifier getint is declared as a 

2. far pointer to 

3. a function taking 

4. a single argument that is a far pointer to an int value 

5. and returning a far pointer to a 

6. char value. 

Note that the far keyword always modifies the item immediately to its 
right. 

4-16 C Language Reference 



Variable Declarations 

Variable Declarations 
Syntax 

[sc-specifier] type-specifier declarator [, declarator] ... 

This section describes the fonn and meaning of variable declarations. In 
particular, it explains how to declare the following: 

Simple variables Single-value variables with integral or 
floating-point type 

Enumeration variables Simple variables with integral type that 
hold one value from a set of named integer 
constants 

Structures 

Unions 

Arrays 

Pointers 

Variables composed of a collection of 
values that may have different types 

Variables composed of several values of 
different types, which occupy the same 
storage space 

Variables composed of a collection of ele­
ments with the same type 

Variables that point to other variables and 
contain variable locations (in the fonn of 
addresses) instead of values 

In the general fonn of a variable declaration, type-specifier gives the data 
type of the variable and declarator gives the name of the variable, possi­
bly modified to declare an array or a pointer type. The type-specifier can 
be a compound, as when the type is modified by const, volatile, or one of 
the special keywords described in "Declarators with Special Keywords." 
You can define more than one variable in a declaration by using multiple 
declarators, separated by commas. For example, int const far *fp declares 
a variable namedfp as a far pointer to a nonmodifiable iot value. 

The sc-specifier gives the storage class of the variable. In some contexts, 
you can initialize variables at the time you declare them. For infonnation 
about storage classes and initialization, see the sections on "Storage 
Classes" and "Initialization," respectively. 

Declarations 4-17 



Variable Declarations 

Simple Variable Declarations 

Syntax 

[sc-specifier] type-specifier identifier [, identifier] ... ; 

The declaration of a simple variable specifies the variable's name and 
type. It can also specify the variable's storage class, as described in 
"Storage Classes." The identifier in the declaration is the variable's 
name. The type-specifier is the name of a defined data type. 

You can use a list of identifiers separated by commas (,) to specify several 
variables in the same declaration. Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type. 

Example 1 

Example 1 declares a simple variable named x. This variable can hold 
any value in the set defined by the int type for a particular implementa­
tion. The simple object y is declared as a constant value of type int. It is 
initialized to the value 1, and is not modifiable. If the declaration of y was 
for an uninitialized external, it would receive an initial value of 0, and 
that value would be unmodifiable. 

int x; 
int canst y=l; 

Example 2 

This example declares two variables named reply and flag. Both vari­
ables have unsigned long type and hold unsigned integral values. 

unsigned long reply, flag; 

Example 3 

The following example declares a variable named order that has double 
type and can hold floating-point values. 

double order; 

4-18 C Language Reference 



Variable Declarations 

Enumeration Declarations 

Syntax 

enum [tag] {enum-list} [declarator [, declarator] ... ]; 

enum tag [identifier [, declarator] ... ]; 

An "enumeration declaration" gives the name of an enumeration vari­
able and defines a set of named integer constants (the "enumeration 
set' '). A variable with enumeration type stores one of the values of the 
enumeration set defined by that type. The integer constants of the 
enumeration set have int type; thus, the storage associated with an 
enumeration variable is the storage required for a single int value. 

Variables of enum type are treated as if they are of type int in all cases. 
They may be used in indexing expressions and as operands of all arith­
metic and relational operators. 

Enumeration declarations begin with the enum keyword and have the two 
forms shown at the beginning of this section and described below: 

• In the first form, enum-list specifies the values and names of the 
enumeration set. (The enum-list is described in detail below.) The 
optional tag is an identifier that names the enumeration type 
defined by enum-list. The declarator names the enumeration vari­
able. You can specify zero or more enumeration variables in a sin­
gle enumeration declaration. 

• The second form of the enumeration declaration uses a previously 
defined enumeration tag to refer to an enumeration type defined 
elsewhere. The tag must refer to a defined enumeration type, and 
that enumeration type must be currently visible. Since the 
enumeration type is defined elsewhere, enum-list does not appear 
in this type of declaration. Declarations of pointers to enumera­
tions and typedef declarations for enumeration types can use the 
enumeration tag before the enumeration type is defined. However, 
the enumeration definition must be encountered prior to any actual 
use of the typedef declaration or pointer. 

If a tag argument appears, but no declarator is given, the declaration con­
stitutes a declaration for an enumeration tag. 

Declarations 4-19 



Variable Declarations 

An enum-list has the following fonn: 

identifier [ = constant-expression] 
[, identifier [= constant-expression] ... ] 

Each identifier in an enumeration list names a value of the enumeration 
set. By default, the first identifier is associated with the value 0, the next 
identifier is associated with the value 1, and so on through the last 
identifier in the declaration. The name of an enumeration constant is 
equivalent to its value. 

The optional phrase = constant-expression overrides the default sequence 
of values. Thus, if identifier = constant-expression appears in enum-list, 
the identifier is associated with the value given by constant-expression. 
The constant-expression must have int type and can be negative. The next 
identifier in the list is associated with the value of constant-expression + 
1, unless you explicitly associate it with another value. 

The following rules apply to the members of an enumeration set: 

• An enumeration set can contain duplicate constant values. For 
example, you could associate the value 0 with two different 
identifiers named null and zero in the same set. 

• The identifiers in the enumeration list must be distinct from other 
identifiers with the same visibility, including ordinary variable 
names and identifiers in other enumeration lists. 

• Enumeration tags must be distinct from other enumeration, struc­
ture, and union tags with the same visibility. 

• A comma is allowed following the last item in the enumeration 
list. 

4-20 C Language Reference 



Variable Declarations 

Example 1 

This example defines an enumeration type named day and declares a vari­
able named workday with that enumeration type. The value 0 is associ­
ated with saturday by default. The identifier sunday is explicitly set to O. 
The remaining identifiers are given the values 1 through 5 by default. 

enum day { 
saturday, 
sunday = 0, 
monday, 
tuesday, 
wednesday, 
thursday, 
friday 
} workday; 

Example 2 

In this example, a value from the set defined in Example 1 is assigned to 
the variable today. Note that the name of the enumeration constant is 
used to assign the value. Since the day enumeration type was previously 
declared, only the enumeration tag is necessary. 

enum day today = wednesday; 

Structure Declarations 

Syntax 

struct [tag] {member-declaration-list} [declarator [, declarator] ... ]; 

struct tag [declarator [, declarator] ... ]; 

A "structure declaration" names a structure variable and specifies a 
sequence of variable values (called "members" of the structure) that can 
have different types. A variable of that structure type holds the entire 
sequence defined by that type. 

Structure declarations begin with the struct keyword and have two forms: 

• In the first form, a member-declaration-list specifies the types and 
names of the structure members. The optional tag is an identifier 
that names the structure type defined by member-declaration-list. 

Declarations 4-21 



Variable Declarations 

• The second form uses a previously defined structure tag to refer to 
a structure type defined elsewhere. Thus, member-declaration-list 
is not needed as long as the definition is visible. Declarations of 
pointers to structures and typedefs for structure types can use the 
structure tag before the structure type is defined. However, the 
structure definition must be encountered prior to any actual use of 
the typedef or pointer. 

In both forms, each declarator specifies a structure variable. A declarator 
can also modify the type of the variable to a pointer to the structure type, 
an array of structures, or a function returning a structure. If tag is given, 
but declarator does not appear, the declaration constitutes a type declara­
tion for a structure tag. 

Structure tags must be distinct from other structure, union, and enumera­
tion tags with the same visibility. 

A member-declaration-list argument contains one or more variable or 
bitfield declarations. 

Each variable declared in the member-declaration list is defined as a 
member of the structure type. Variable declarations within the member­
declaration list have the same form as other variable declarations dis­
cussed in this chapter, except that the declarations cannot contain 
storage-class specifiers or initializers. The structure members can have 
any variable type: fundamental, array, pointer, union, or structure. 

A member cannot be declared to have the type of the structure in which it 
appears. However, a member can be declared as a pointer to the structure 
type in which it appears as long as the structure type has a tag. This lets 
you create linked lists of structures. 

A bitfield declaration has the following form: 

type-specifier [identifier] : constant-expression; 

The constant-expression specifies the number of bits in the bitfield. The 
type-specifier has type int (signed or unsigned) and constant-expression 
must be a non-negative~· teger value. Arrays of bitfields, pointers to 
bitfields, and functions 11 rning bitfields are not allowed. The optional 
identifier names the bitfi ld. Unnamed bitfields can be used as "dummy" 
fields, for alignment purposes. An unnamed bitfield whose width is 
specified as 0 guarantees that storage for the member following it in the 
member-declaration list begins on an int boundary. 

4-22 C Language Reference 



Variable Declarations 

Each identifier in a member-declaration list must be unique within the 
list. However, they do not have to be distinct from ordinary variable 
names or from identifiers in other member-declaration lists. 

Note 

A Microsoft extension to the ANSI C standard allows char and long 
types (both signed and unsigned) for bitfields. Unnamed bitfields 
with base type long or char (signed or unsigned) force alignment 
to a boundary appropriate to the base type. 

Microsoft C does not implement signed bitfields. The syntax is 
allowed, but a bitfield specified as signed is treated as unsigned in 
all conversions. 

Storage 

Structure members are stored sequentially in the order in which they are 
declared: the first member has the lowest memory address and the last 
member the highest. Storage for each member begins on a memory 
boundary appropriate to its type. Therefore, unnamed spaces ("holes") 
may appear between structure members in memory. 

Bitfields are not stored across boundaries of their declared type. For 
example, a bitfield declared with unsigned int type is packed into the 
space remaining (if any) if the previous bitfield was of type unsigned int. 
Otherwise, it begins a new object on an int boundary. 

Example 1 

This example defines a structure variable named complex. This structure 
has two members with float type, x and y. The structure type has no tag 
and is therefore unnamed. 

struct { 
float x, y; 

) complex; 

Declarations 4-23 



Variable Declarations 

Example 2 

This example defines a structure variable named temp. The structure has 
three members: name, id, and class. The name member is a 20-element 
array, and id and class are simple members with int and long type, 
respectively. The identifier employee is the structure tag. 

struct employee { 

} temp; 

Example 3 

char name[20J; 
int id; 
long class; 

This example defines three structure variables: student,faculty, and staff. 
Each structure has the same list of three members. The members are 
declared to have the structure type employee, defined in Example 2. 

struct employee student, faculty, staff; 

Example 4 

This example defines a structure variable named x. The first two mem­
bers of the structure are a char variable and a pointer to a float value. The 
third member, next, is declared as a pointer to the structure type being 
defined (sample). 

struct sample 

x; 

Example 5 

char c; 
float *pf; 
struct sample *next; 

This example defines a two-dimensional array of structures named screen. 
The array contains 2000 elements. Each element is an individual structure 
containing four bitfield members: icon, color, underline, and blink. 

4-24 

struct { 
unsigned icon : 8; 
unsigned color : 4; 
unsigned underline : 1; 
unsigned blink : 1; 

screen[25J [80J; 

C Language Reference 



Variable Declarations 

Union Declarations 

Syntax 

union [tag] {member-declaration-list} [declarator [, declarator.] •. ]; 

union tag[declarator[, declarator] ... ]; 

A "union declaration" names a union variable and specifies a set of vari­
able values, called "members" of the union, that can have different types. 
A variable with union type stores one of the values defined by that type. 

Union declarations have the same form as structure declarations, except 
that they begin with the union keyword instead of the struct keyword. 
The same rules govern structure and union declarations, except that 
bit field members are not allowed in unions. 

Storage 

The storage associated with a union variable is the storage required for 
the largest member of the union. When a smaller member is stored, the 
union variable may contain unused memory space. All members are 
stored in the same memory space and start at the same address. The stored 
value is overwritten each time a value is assigned to a different member. 

Example 1 

This example defines a union variable with sign type and declares a vari­
able named number that has two members: svar, a signed integer, and 
uvar, an unsigned integer. This declaration allows the current value of 
number to be stored as either a signed or an unsigned value. The tag asso­
ciated with tbis union type is sign. 

union sign { 

Example 2 

int svar; 
unsigned uvar; 

number; 

This example defines a union variable named jack. The members of the 
union are, in order of their declaration, a pointer to a char value, a char 
value, and an array of float values. The storage allocated for jack is the 
storage required for the 20-element array f, since f is the longest member 

Declarations 4-25 



Variable Declarations 

of the union. Because there is no tag associated with the union, its type is 
unnamed. 

union 

Example 3 

char *a, b; 
float f[20); 

jack; 

This example defines a two-dimensional array of unions named screen. 
The array contains 2000 elements. Each element of the array is an indi­
vidual union with two members: windowl and screenval. The windowl 
member is a structure with two bitfield members, icon and color. The 
screenval member is an int. At any given time, each union element holds 
either the int represented by screenval or the structure represented by 
windowl. 

union 
struct { 

unsigned int icon : 8; 
unsigned color : 4; 

} windowl; 
int screenval; 

screen [25) [80); 

Array Declarations 

Syntax 

type-specifier declarator [constant-expression]; 
type-specifier declarator []; 

An "array declaration" names the array and specifies the type of its ele­
ments. It may also define the number of elements in the array. A variable 
with array type is considered a pointer to the type of the array elements, 
as described in the section on "Identifiers." 

Array declarations have the two forms shown at the beginning of this sec­
tion. Their syntax differs as follows: 

• In the first form, the constant-expression argument within the 
brackets specifies the number of elements in the array. Each ele­
ment has the type given by type-specifier, which can be any type 
except void. An array element cannot be a function type. 

4-26 C Language Reference 



Variable Declarations 

• The second fonn omits the constant-expression argument in brack­
ets. You can use this fonn only if you have initialized the array, 
declared it as a fonnal parameter, or declared it as a reference to 
an array explicitly defined elsewhere in the program. 

In both fonns, declarator names the variable and may modify the 
variable's type. The brackets ([]) following declarator modify the 
declarator to array type. You can declare an array of arrays (a "multidi­
mensional" array) by following the array declarator with a list of brack­
eted constant expressions, as shown: 

type-specifier declarator[constant-expression] [constant-expression] ... 

Each constant-expression in brackets defines the number of elements in a 
given dimension: two-dimensional arrays have two bracketed expres­
sions, three-dimensional arrays have three, and so on. When you declare a 
multidimensional array within a function, you can omit the first constant 
expression if you have initialized the array, declared it as a fonnal param­
eter, or declared it as a reference to an array explicitly defined elsewhere 
in the program. 

You can define arrays of pointers to various types of objects by using 
complex declarators, as described in "Complex Declarators. " 

Storage 

The storage associated with an array type is the storage required for all of 
its elements. The elements of an array are stored in contiguous and 
increasing memory locations, from the first element to the last. No blanks 
separate the array elements in storage. 

Arrays are stored by row. For example, the following array consists of 
two rows with three columns each: 

char A[2) [3); 

The three columns of the first row are stored first, followed by the three 
columns of the second row. This means that the last subscript varies most 
quickly. 

To refer to an individual element of an array, use a subscript expression, 
as described in "Subscript Expressions." 

Declarations 4-27 



Variable Declarations 

Example 1 

This example declares an array variable named scores with 10 elements, 
each of which has int type. The variable named game is declared as a 
simple variable with int type. 

int scores[10], game; 

Example 2 

This example declares a two-dimensional array named matrix. The array 
has 150 elements, each having float type. 

float matrix[10] [15]; 

Example 3 

This example declares an array of structures. This array has 100 ele­
ments; each element is a structure containing two members. 

struct { 
float x,y; 
} complex[100]; 

Example 4 

This example declares the type and name of an array of pointers to char. 
The actual definition of name occurs elsewhere. 

extern char *name[]; 

Pointer Declarations 

Syntax 

type-sped fier * [modification-spec] declarator; 
extern char *name []; 

A • 'pointer declaration" names a pointer variable and specifies the type 
of the object to which the variable points. A variable declared as a pointeI 
holds a memory address. 

4-28 C Language Reference 



Variable Declarations 

The type-specifier gives the type of the object, which can be any funda­
mental, structure, or union type. Pointer variables can also point to func­
tions, arrays, and other pointers. (For information on declaring more com­
plex pointer types, refer to the section on "Complex Declarators. ") 

By making type-specifier void, you can delay specification of the type to 
which the pointer refers. Such an item is referred to as a "pointer to 
void" (void *). A variable declared as a pointer to void can be used to 
point to an object of any type. However, in order to perform operations on 
the pointer or on the object to which it points, the type to which it points 
must be explicitly specified for each operation. Such conversion can be 
accomplished with a type cast. 

The modification-spec can be either const or volatile, or both. These 
specify, respectively, that the pointer will not be modified by the program 
itself (const), or that the pointer may legitimately be modified by some 
process beyond the control of the program (volatile). (For more informa­
tion on const and volatile, see' 'Type Specifiers.' ') 

The declarator names the variable and can include a type modifier. For 
example, if declarator represents an array, the type of the pointer is 
modified to pointer to array. 

You can declare a pointer to a structure, union, or enumeration type 
before you define the structure, union, or enumeration type. However, the 
definition must appear before the pointer can be used as an operand in an 
expression. You declare the pointer by using the structure or union tag 
(see Example 7 in this section). Such declarations are allowed because 
the compiler does not need to know the size of the structure or union to 
allocate space for the pointer variable. 

Storage 

The amount of storage required for an address and the meaning of the 
address depend on the implementation of the compiler. Pointers to 
different types are not guaranteed to have the same length. 

In some implementations, you can use the special keywords near, far, 
and huge to modify the size of a pointer. Declarations using special key­
words are described in "Declarators with Special Keywords." For more 
information on the meaning and use of these keywords, see your compiler 
guide. 

Declarations 4-29 



Variable Declarations 

Example 1 

This example declares a pointer variable named message. It points to a 
variable with char type. 

char *message; 

Example 2 

Example 2 declares an array of pointers named pointers. The array has 10 
elements; each element is a pointer to a variable with int type. 

int *pointers[10]; 

Example 3 

This example declares a pointer variable named pointer; it points to an 
array with 10 elements. Each element in this array has int type. 

int (*pointer) [10]; 

Example 4 

This example declares a pointer variable, x, to a constant value. The 
pointer may be modified to point to a different int value, but the value to 
which it points may not be modified. 

int const *X; 

Example 5 

The variable y in Example 5 is declared as a constant pointer to an int 
value. The value it points to may be modified, but the pointer itself must 
always point to the same location: the address offixed_object. Similarly, 
z is a constant pointer, but it is also declared to point to an int whose 
value will not be modified by the program. The additional specifier vola­
tile indicates that although the value of the const int pointed to by z can­
not be modified by the program, it could legitimately be modified by a 
process outside the program. The declaration of w specifies that the value 

4-30 C Language Reference 



Variable Declarations 

pointed to will not be changed and that the program itself will not modify 
the pointer. However, some outside process could legitimately modify the 
pointer. 

const int some object = 5 ; 
int other object = 37; 
int *const y = &fixed object; 
const volatile *const-z = &some object; 
*const volatile w = &some_object; 

Example 6 

This example declares two pointer variables that point to the structure 
type list. This declaration can appear before the definition of the list 
structure type (see Example 7), as long as the list type definition has the 
same visibility as the declaration. 

struct list *next, *previous; 

Example 7 

This example defines the variable line to have the structure type named 
list. The list structure type has three members: the first member is a 
pointer to a char value, the second is an int value, and the third is a 
pointer to another list structure. 

struct list 

} line; 

Example 8 

char *token; 
int count; 
struct list *next; 

This example declares the variable record to have the structure type id. 
Note that pname is declared as a pointer to another structure type named 
name. This declaration can appear before the name type is defined. 

struct id { 
unsigned int id_no; 
struct name *pname; 

} record; 

Declarations 4-31 



Variable Declarations 

Example 9 

In this example, the pointer variable p is declared, but the void * preced­
ing the identifier p in the declaration means that p can be used later to 
point to any type object. The address of an int value is assigned to p, but 
no operations on the pointer itself are permitted unless it is explicitly con­
verted to the type to which it points. Similarly, indirect operations on the 
object pointed to by p are not permitted unless p is converted to a specific 
type. Finally, a cast is used to convert p to a pointer to int, and p is then 
incremented. 

int i; 
void *p; 

p = &i; 

(int *)p++; 

4-32 

/* p declared as pointer to an object 
whose type is not specified */ 

/* address of integer i assigned to p 
but type of p itself is still not 
specified. An operation like p++ 
would not be permitted yet */ 

/* incrementing p permitted when the 
cast converts it to pointer to int * / 

C Language Reference 



Function Declarations (Prototypes) 

Function Declarations (Prototypes) 

Syntax 

[sc-spec] [type-spec] declarator<rJormal-parameter-list]) [, declarator-list] ... ; 

A "function declaration," also called a "function prototype," establishes 
the name and return type of a function and may specify the types, formal 
parameter names, and number of arguments to the function. A function 
declaration does not define the function body. It simply makes informa­
tion about the function known to the compiler. This information enables 
the compiler to check the types of the actual arguments in ensuing calls to 
the function. 

If you do not provide a function prototype, the compiler constructs one 
from the first reference to the function it encounters, whether a call or a 
function definition. Whether such a prototype reflects the correct parame­
ter types can only be assured if the function definition occurs in the same 
source file. If the definition occurs in a different module, argument 
mismatch errors may not be detected. Function definitions are described 
in detail in "Function Prototypes (Declarations)." 

The sc-spec represents a storage-class specifier; it can be either extern or 
static. Storage-class specifiers are discussed in "Storage Classes." 

The type-spec gives the function's return type, and declarator names the 
function. If you omit type-spec from a function declaration, the function 
is assumed to return a value of type int. 

The Jormal-parameter-list is described in the next section. 

The final declarator-list in the syntax line represents further declarations 
on the same line. These may be other functions returning values of the 
same type as the first function, or declarations of any variables whose 
type is the same as the first function's return type. Each such declaration 
must be separated from its predecessors and successors by a comma. 

Declarations 4-33 



Function Declarations (Prototypes) 

Formal Parameters 

"Formal parameters" describe the actual arguments that can be passed to 
a function. In a function declaration, the parameter declarations establish 
the number and types of the actual arguments. They may also include 
identifiers of the formal parameters. Though the parameters may be omit­
ted from a function declaration, their inclusion is recommended, and they 
are mandatory in a true prototype. The extent of the information in the 
declaration influences the argument checking done on function calls that 
appear before the compiler has processed the function definition. 

Note 

Identifiers used to name the formal parameters in the prototype 
declaration are descriptive only. They go out of scope at the end of 
the declaration. Therefore, they need not be identical to the 
identifiers used in the declaration portion of the function definition. 
Using the same names may enhance readability, but this use has no 
other significance. 

Return Type 

Functions can return values of any type except arrays and functions. 
Therefore, the type-specifier argument of a function declaration can 
specify any fundamental, structure, or union type. You can modify the 
function identifier with one or more asterisks (*) to declare a pointer 
return type. 

Although functions cannot return arrays and functions, they can return 
pointers to arrays and functions. You can declare a function that returns a 
pointer to an array or function type by modifying the function identifier 
with asterisks (*), brackets ([ ]), and parentheses « ». Such a function 
identifier is known as a "complex declarator." Rules for forming and 
interpreting complex declarators are discussed in "Complex Declara­
tors." 

4-34 C Language Reference 



Function Declarations (Prototypes) 

The List of Formal Parameters 

All elements of the Jormal-parameter-list argument appearing within the 
parentheses following the function declarator are optional. The two fol­
lowing syntax variations illustrate the possibilities: 

[void] 
[register] [type-spec] [declarator[[, ... ][, ••• )]] 

If formal parameters are omitted from the function declaration, the 
parentheses should contain the keyword void to specify that no arguments 
will ever be passed to the function. If the parentheses are left entirely 
empty, no information is conveyed about whether arguments will be 
passed to the function and no checking of argument types is performed. 

Note 

Empty parentheses in a function declaration or definition represent 
an obsolete form not recommended for new code. Functions accept­
ing no arguments should be declared with the void keyword replac­
ing the list of formal parameters. This use of void is interpreted by 
context, and is distinct from uses of void as a type specifier. 

A declaration in the list of formal parameters can contain the register 
storage-class specifier, either alone or combined with a type specifier and 
an identifier. If register is not specified, the storage class is auto. The 
only explicit storage-class specifier permitted is register. If the 
parentheses contain only the register keyword, the formal parameter is 
considered to represent an unnamed int for which register storage is 
being requested. 

If type-spec is included, it can specify the type name for any fundamental, 
structure, or union type (such as int). A declarator for a fundamental, 
structure, or union type is simply an identifier of a variable having that 
type. 

The declarator for a pointer, array, or function can be formed by combin­
ing a type specifier, plus the appropriate modifier, with an identifier. 
Alternatively, an "abstract declarator" (that is, a declarator without a 
specified identifier) can be used. The section "Type Names" explains 
how to form and interpret abstract declarators. 

Declarations 4-35 



Function Declarations (Prototypes) 

A full, partial, or empty list of formal parameters can be declared. If the 
list contains at least one declarator, a variable number of parameters can 
be specified by ending the list with a comma followed by three periods 
(, ••• ), referred to as the "ellipsis notation." A function is expected to 
have at least as many arguments as there are declarators or type specifiers 
preceding the last comma. 

Note 

To maintain compatibility with previous versions, the compiler 
accepts a comma without trailing periods at the end of a declarator 
list to indicate a variable number of arguments. However, this is a 
Microsoft extension to the ANSI C standard. New code should use 
the comma followed by three periods. For information on enabling 
and disabling extensions, see your compiler guide. 

One other special construction is permitted as a formal parameter: void * 
represents a pointer to an object of unspecified type. Thus, in a call, the 
pointer can refer to any type of object after you convert the pointer (for 
example, with a cast) to a pointer to the desired type. Note that before 
operations can be performed on the pointer or the object it addresses, the 
pointer must be explicitly converted. For more information on void *, see 
"Pointer Declarations." 

Summary 

Function prototypes are optional, but strongly recommended. If included, 
the only elements absolutely required are the name of the function, the 
opening and closing parentheses following the name, and the final semi­
colon. If no return type is included, as in the following example, the func­
tion is assumed to return an int: 

/***** Obsolete form of function declaration *****/ 

minimal_declaration(); /* mayor may not 
accept arguments */ 

A full function prototype is the same as a function definition, except that 
instead of having a function "body," it is terminated by a semicolon (;) 
immediately following the closing parenthesis. 

4-36 C Language Reference 



Function Declarations (Prototypes) 

Any appropriate combination of elements is permitted among the parame­
ter declarations, from no information (as in the obsolete form in the 
example above) to a full prototype of the function. If no prototype at all is 
given, a de Jacto prototype is constructed from information in the first 
reference to the function encountered in the source file. 

Example 1 

In this example, any information included in the formal parameter list is 
used to check actual arguments appearing in calls to the function that 
occur before the compiler has processed the function definition. 

double func (void) ; /* returns a double, but 
* accepts no arguments 

*/ 
fun (void *); /* takes a pointer to an 

* unspecified type; 
* returns an int 

*/ 
char *true(long, long); /* takes two longs; 

* returns pointer to char 
*/ 

new (register a, char *); /* takes an int with request 
* for register storage, and 
* a pointer to char; 
* returns an int 

*/ 
void go(int *[], char *b); /* takes an array of pointers 

* to int using an abstract 
* declarator, and a pointer 
* to char; there is no return 

*/ 
void *tu(double v, ..• ); /* takes at least one double; 

* other arguments may also be 
* given; returns a pointer 

* to an unspecified type 
*/ 

Example 2 

This example is a prototype for a function named add that takes two int 
arguments, represented by the identifiers numl and num2, and returns an 
int value. 

int add(int numl, int num2); 

Declarations 4-37 



Function Declarations (Prototypes) 

Example 3 

This example declares a function named calc that returns a double value. 
The obsolete empty parentheses leave the issue of possible arguments to 
the function undefined. 

double calc () ; 

Example 4 

This example is a prototype for a function named strfind that returns a 
pointer to char. The function accepts at least one argument, declared by 
the formal parameter char *ptr, to be a pointer to a char value. The for­
mal parameter list has one entry and ends with a comma followed by 
three periods, indicating that the function may take more arguments. 

char *strfind(char *ptr, ... ); 

Example 5 

This example declares a function with void return type (returning no 
value). The void keyword also replaces the list of formal parameters, so 
no arguments are expected for this function. 

void draw(void); 

Example 6 

In this example, sum is declared as a function returning a pointer to an 
array of three double values. The sum function takes two double values 
as arguments. 

double (*sum(double, double)) [3); 

Example 7 

In this example, the function named select is declared to take no argu­
ments and to return a pointer to a function. The pointer return value 
points to a function taking one int argument, represented by the identifier 
number, and returning an int value. 

int (*select(void)) (int number); 

4-38 C Language Reference 



Function Declarations (Prototypes) 

Example 8 

In this example, the function prt is declared to take a pointer argument of 
any type and return an int value. A pointer to any type could be passed as 
an argument to prt without producing a type-mismatch warning. 

int prt(void *); 

Example 9 

This example shows the declaration of an array, named rainbow, of an 
unspecified number of constant pointers to functions. Each of these takes 
at least one parameter of type int, as well as an unspecified number of 
other parameters. Each of the functions pointed to returns a long value. 

long (*const rainbow[]) (int, ... ) ; 

Declarations 4-39 



Storage Classes 

Storage Classes 
The "storage class" of a variable determines whether the item has a 
"local" or "global" lifetime. Variables with local lifetimes are allocated 
new storage each time execution control passes to the block in which they 
are defined. When execution control passes out of the block, the variables 
no longer have meaningful values. 

An item with a global lifetime exists and has a value throughout the exe­
cution of the program. All functions have global lifetimes. 

Although C defines only two types of storage classes, it provides the fol­
lowing four storage-class specifiers: 

Table 4.5 

Storage-Class Specifiers 

Items declared with 

auto 

register 

static 

extern 

Have a 

local lifetime 

local lifetime 

global lifetime 

global lifetime 

The four storage-class specifiers have distinct meanings because they 
affect the visibility of functions and variables, as well as their storage 
class. The term "visibility" refers to the portion of the source program in 
which the variable or function can be referenced by name. An item with a 
global lifetime exists throughout the execution of the source program, but 
it may not be "visible" in all parts of the program. (Visibility and the 
related concept of lifetime are discussed in the chapter on "Program 
Structure.' ') 

The placement of variable and function declarations within source files 
also affects storage class and visibility. Declarations outside all function 
definitions are said to appear at the "external level' '; declarations within 
function definitions appear at the "internallevel." 

4-40 C Language Reference 



Storage Classes 

The exact meaning of each storage-class specifier depends on two factors: 

• Whether the declaration appears at the external or internal level 

• Whether the item being declared is a variable or a function 

The sections that follow describe the meanings of storage-class specifiers 
in each kind of declaration and explain the default behavior when the 
storage-class specifier is omitted from a variable or function declaration. 

Variable Declarations at the Global Level 

In variable declarations at the global level (that is, outside all functions), 
you can use the static or extern storage-class specifier or omit the 
storage-class specifier entirely. You cannot use the auto and register 
storage-class specifiers at the global level. 

Variable declarations at the global level are either definitions of variables 
("defining declarations "), or references to variables defined elsewhere 
(' 'referencing declarations' '). 

A global variable declaration that also initializes the variable (implicitly 
or explicitly) is a defining declaration of the variable. A definition at the 
global level can take several forms: 

• A variable that you declare with the static storage-class specifier. 
You can explicitly initialize the static variable with a constant 
expression, as described in "Initialization. " If you omit the initial­
izer, the variable is initialized to 0 by default. For example, static 
int k = 16; and static int k; are both considered definitions of the 
variable k. 

• A variable that you explicitly initialize at the global level. For 
example, int j = 3; is a definition of the variable j. 

Once a variable is defined at the global level, it is visible throughout the 
rest of the source file in which it appears. The variable is not visible prior 
to its definition in the same source file. Also, it is not visible in other 
source files of the program, unless a referencing declaration makes it visi­
ble, as described later in this section. 

You can define a variable at the global level only once within a source 
file. If you give the static storage-class specifier, you can define another 
variable with the same name and the static storage-class specifier in a 
different source file. Since each static definition is visible only within its 
own source file, no conflict occurs. 

Declarations 4-41 



Storage Classes 

The extern storage-class specifier declares a reference to a variable 
defined elsewhere. You can use an extern declaration to make a definition 
in another source file visible, or to make a variable visible above its 
definition in the same source file. Once you have declared a reference to 
the variable at the global level, the variable is visible throughout the 
remainder of the source file in which the declared reference occurs. 

Declarations that use the extern storage-class specifier cannot contain 
initializers, since these declarations refer to variables whose values are 
defined elsewhere. 

For an extern reference to be valid, the variable it refers to must be 
defined once, and only once, at the global level. The definition can be in 
any of the source files that form the program. 

One special case is not covered by the rules outlined above. You can omit 
both the storage-class specifier and the initializer from a variable declara­
tion at the global level; for example, the declaration int n; is a valid glo­
bal declaration. This declaration can have one of two different meanings, 
depending on the context: 

1. If there is a global defining declaration of a variable with the same 
name elsewhere in the program, the current declaration is assumed 
to be a reference to the variable in the defining declaration, exactly 
as if the extern storage-class specifier had been used in the 
declaration. 

2. If there is no global declaration of a variable with the same name 
elsewhere in the program, the declared variable is allocated 
storage at link time and initialized to O. This kind of variable is 
known as a "communal" variable. If more than one such declara­
tion appears in the program, storage is allocated for the largest size 
declared for the variable. For example, if a program contains two 
uninitialized declarations of i at the global level, int i; and char i;, 
storage space for an int value is allocated for i at link time. 

Uninitialized variable declarations at the global level are not recom­
mended for any file that might be placed in a library. 

4-42 C ~anguage Reference 



Storage Classes 

Example 

The two source files in this example contain a total of three global 
declarations of i. Only one declaration contains an initialization; that 
declaration, int i = 3; , defines the global variable i with initial value 3. 
The extern declaration of i at the top of the first source file makes the glo­
bal variable visible above its definition in the file. Without the extern 
declaration, the main function could not reference the global variable i. 
The extern declaration of i in the second source file also makes the global 
variable visible in that source file. 

Assuming that the printf function is defined elsewhere in the program, all 
three functions perform the same task: they increase i and print it. The 
values 4, 5, and 6 are printed. 

If the variable i had not been initialized, it would have been set to 0 auto­
matically at link time. In this case, the values 1,2, and 3 would have been 
printed. 

Source File One 

extern int i; 1* reference to i, 
defined below *1 

main 0 
( 

i++; 
printf ("%d\n", i); 1* i equals 4 *1 
next 0; 

int i = 3; 1* definition of i *1 

next 0 
( 

i++; 
printf("%d\n", i); 1* i equals 5 *1 
other 0 ; 

Declarations 4-43 



Storage Classes 

Source File Two 

e"tern int i; 

other 0 
{ 

i++; 

/* reference to i in 
first source file */ 

printf ("%d\n", i); /* i equals 6 */ 

Variable Declarations at the Local Level 

You can use any of the four storage-class specifiers for variable declara­
tions at the local level. When you omit the storage-class specifier from 
such a declaration, the default storage class is auto. 

The auto storage-class specifier declares a variable with a local lifetime. 
An auto variable is visible only in the block in which it is declared. 
Declarations of auto variables can include initializers, as discussed in 
"Initialization." Since variables with auto storage class are not initial­
ized automatically, you should either explicitly initialize them when you 
declare them, or assign them initial values in statements within the block. 
The values of uninitialized auto variables are undefined. 

A static auto variable can be initialized with the address of any global or 
static item, but not with the address of another auto item, because the 
address of an auto item is not a constant. 

The register storage-class specifier tells the compiler to give the variable 
storage in a register, if possible. Register storage usually speeds access 
time and reduces code size. Variables declared with register storage class 
have the same visibility as auto variables. The number of registers that 
can be used for variable storage is machine-dependent. If no registers are 
available when the compiler encounters a register declaration, the vari­
able is given auto storage class and stored in memory. The compiler 
assigns register storage to variables in the order in which the declarations 
appear in the source file. Register storage, if available, is only guaranteed 
for int and pointer types that are the same size as an int. 

4-44 C Language Reference 



Storage Classes 

A variable declared at the local level with the static storage-class 
specifier has a global lifetime but is visible only within the block in 
which it is declared. Unlike auto variables, static variables keep their 
values when the block is exited. You can initialize a static variable with a 
constant expression. A static variable is initialized only once, when pro­
gram execution begins; it is not reinitialized each time the block is 
entered. If you do not explicitly initialize a static variable, it is initialized 
to 0 by default. 

A variable declared with the extern storage-class specifier is a reference 
to a variable with the same name defined at the global level in any of the 
source files of the program. The local extern declaration is used to make 
the global-level variable definition visible within the block. Unless other­
wise declared at the global level, a variable declared with the extern key­
word is visible only in the block in which it is declared. 

Example 

In the following example, the variable i is defined at the global level with 
initial value 1. An extern declaration in the main function is used to 
declare a reference to the global-level i. The static variable a is initial­
ized to 0 by default, since the initializer is omitted. The call to printf 
(assuming the printf function is defined elsewhere in the source program) 
prints the values 1,0,0, and 0. 

In the other function, the address of the global variable i is used to initial­
ize the static pointer variable externati. This works because the global 
variable has static lifetime, meaning its address will always be the same. 
Next, the variable i is redefined as a local variable with initial value 16. 
This redefinition does not affect the value of the global-level i, which is 
hidden by the use of its name for the local variable. The value of the glo­
bal i is now accessible only indirectly within this block, through the 
pointer external i. Attempting to assign the address of the auto variable i 
to a pointer woUld not work, since it may be different each time the block 
is entered. The variable a is declared as a static variable and initialized 
to 2. This a does not conflict with the a in main, since static variables at 
the local level are visible only within the block in which they are 
declared. 

The variable a is increased by 2, giving 4 as the result. If the other func­
tion were called again in the same program, the initial value of a would 
be 4, since local static variables keep their values when the program exits 
and then re-enters the block in which they are declared. 

Declarations 4-45 



Storage Classes 

int i = 1; 

main 0 
{ /* reference to i, defined above: */ 

extern int i; 

other 0 
{ 

/* initial value is zero; a is 
visible only within main: *1 

static int a; 

1* b is stored in a register, if possible: *1 
register int b = 0; 

1* default storage class is auto: *1 
int c = 0; 

1* values printed are 1, 0, 0, 0: *1 
printf("%d\n%d\n%d\n%d\n", i, a, b, c); 
other 0 ; 

1* address of global i assigned to pointer variable *1 
static int *external_i = &i; 

1* i is redefined; global i no longer visible: *1 
int i = 16; 

1* this a is visible only within other: *1 
static int a = 2; 

a += 2; 
1* values printed are 16, 4, and 1: *1 
printf("%d\n%d\n%d\n", i, a, *extemal_i); 

Function Declarations at the Global and Local 
Levels 

You can use either the static or the extern storage-class specifier in func­
tion declarations. Functions always have global lifetimes. 

The visibility rules for functions vary slightly from the rules for variables, 
as follows: 

• A function declared to be static is visible only within the source 
file in which it is defined. Functions in the same source file can call 
the static function, but functions in other source files cannot. You 
can declare another static function with the same name in a 
different source file without conflict. 

4-46 C Language Reference 



Storage Classes 

• Functions declared as extern are visible throughout all the source 
files that make up the program (unless you later redeclare such a 
function as static). Any function can call an extern function. 

• Function declarations that omit the storage-class specifier are 
extern by default. 

Note 

A Microsoft extension to the ANSI C standard provides that func­
tion declarations at the local level have the same meaning as func­
tion declarations at the global level. This means that a function is 
visible from its point of declaration through the rest of the source 
file. 

Declarations 4-47 



Initialization 

Initialization 
Syntax 

declarator = initializer 

You can set a variable to an initial value by applying an initializer to the 
declarator in the variable declaration. The value or values of the initial­
izer are assigned to the variable. An equal sign (=) precedes the initial­
izer. 

You can initialize variables of any type, provided that you obey the fol­
lowing rules: 

• Declarations that use the extern storage-class specifier cannot 
include initializers. 

• Variables declared at the global level can be initialized. If you do 
not explicitly initialize a variable at the global level, it is initial­
ized to 0 by default. 

• A constant expression can be used to initialize any variable 
declared with the static storage-class specifier. Variables declared 
to be static are initialized when program execution begins. If you 
do not explicitly initialize a static variable, it is initialized to 0 by 
default. 

• Variables declared with the auto and register storage-class 
specifiers are initialized each time execution control passes to the 
block in which they are declared. If you omit an initializer from 
the declaration of an auto or register variable, the initial value of 
the variable is undefined. 

• Aggregate types with auto storage class (arrays, structures, and 
unions) cannot be initialized. Only static aggregates and aggre­
gates declared at the global level can be initialized. 

• The initial values for global variable declarations and for all static 
variables, whether global or local, must be constant expressions. 
You can use either constant or variable values to initialize auto 
and register variables. 

The sections that follow describe how to initialize variables of fundamen­
tal, pointer, and aggregate types. 

4-48 C Language Reference 



Initialization 

Fundamental and Pointer Types 

Syntax 

declarator = expression 

The value of expression is assigned to the variable. The conversion rules 
for assignment apply. 

A locally declared static variable can only be initialized with a constant 
value. Since the address of any globally declared or static variable is con­
stant, it may be used to initialize an local declared static pointer variable. 
However, the address of an auto variable cannot be used as an initializer 
because it may be different for each execution of the block. 

Example 1 

In this example, x is initialized to the constant expression 10. 

int x = 10; 

Example 2 

In this example, the pointer px is initialized to 0, producing a "null" 
pointer. 

register int *px 0; 

Example 3 

This example uses a constant expression to initialize c to a constant value 
that cannot be modified. 

const int c = (3 * 1024); 

Example 4 

This example initializes the pointer b with the address of another vari­
able, x. The pointer a is initialized with the address of a variable named 
z. However, since it is specified to be a const, the variable a can only be 
initialized, never modified. It always points to the same location. 

int *b = &x; 
int *const a = &z; 

Declarations 4-49 



Initialization 

Example 5 

The global variable GLOBAL is declared in Example 5 at the global level, 
so it has global lifetime. The local variable LOCAL has auto storage class 
and only has an address during the execution of the function in which it is 
declared. Therefore, attempting to initialize the static pointer variable lp 
with the address of LOCAL is not permitted. The static pointer variable 
gp can be initialized to the address of GLOBAL because that address is 
always the same. Similarly, *rp can be initialized because rp is a local 
variable and can have a nonconstant initializer. Each time the block is 
entered, LOCAL will have a new address, which will then be assigned to 
rp. 

int GWBAL ; 

int function (void) 
( 

int u:x::AL ; 
static int *lp = &u:x::AL; /* Illegal declaration */ 
static int *gp = &GWBAL; /* Legal declaration */ 
register int *rp = &u:x::AL; /* Legal declaration */ 

Aggregate Types 

Syntax 

declarator = {initializer-list} 

The initializer-list is a list of initializers separated by commas. Each ini­
tializer in the list is either a constant expression or an initializer list. 
Therefore, an initializer list enclosed in braces can appear within another 
initializer list. This form is useful for initializing aggregate members of 
an aggregate type, as shown in the in this section. 

For each initializer-list, the values of the constant expressions are 
assigned, in order, to the corresponding members of the aggregate vari­
able. When a union is initialized, initializer-list must be a single constant 
expression. The value of the constant expression is assigned to the first 
member of the union. 

If initializer-list has fewer values than an aggregate type, the remaining 
members or elements of the aggregate type are initialized to O. If 
initializer-list has more values than an aggregate type, an error results. 

4-50 C Language Reference 



Initialization 

These rules apply to each embedded initializer list, as well as to the 
aggregate as a whole. 

The following example, declares P as a 4-by-3 array and initializes the 
elements of its first row to 1, the elements of its second row to 2, and so 
on through the fourth row: 

int P [4] [3] = { 
{ 1, 1, 1 }, 
{ 2, 2, 2 } , 
( 3, 3, 3,) , 
{ 4, 4, 4, }, 

}; 

Note that the initializer list for the third and fourth rows contains commas 
after the last constant expression. The last initializer list ({4, 4, 4,)) is also 
followed by a comma. These extra commas are permitted but not 
required; only commas that separate constant expressions from one 
another, and those that separate one initializer list from another, are 
required. 

If there is no embedded initializer list for an aggregate member, values 
are simply assigned, in order, to each member of the subaggregate. There­
fore, the initialization in the previous example is equivalent to the follow­
ing: 

int P [4] [3] = 

I, I, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4 
}; 

Braces can also appear around individual initializers in the list. 

When you initialize an aggregate variable, you must be careful to use 
braces and initializer lists properly. The following example illustrates the 
compiler's interpretation of braces in more detail: 

typedef struct { 
int nl, n2, n3; 

) triplet; 

triplet nlist[2] [3] = { 

}; 

{ { 1, 2, 3 ), { 4, 5, 6), 7, 8, 9 ), /* Line 1 */ 
{ { 10,11,12 ), { 13,14,15), 16,17,18 ) /* Line 2 */ 

In this example, nlist is declared as a 2-by-3 array of structures, each 
structure having three members. Line 1 of the initialization assigns values 
to the first row of nlist, as follows: 

Declarations 4-51 



Initialization 

1. The first left brace on Line 1 signals the compiler that the first 
aggregate member of niist (that is, nlist[O)) is initializing. 

2. The second left brace indicates that the first aggregate member of 
niist[Oj (that is, the structure at nlist[O][O)) is initializing. 

3. The first right brace ends initialization of the structure nlist[O][Oj; 
the next left brace starts initializing nlist[O][l]. 

4. The process continues until the end of the line, where the closing 
right brace ends initialization of nlist[Oj. 

Line 2 assigns values to the second row of nlist in a similar way. 

Note that the outer sets of braces enclosing the initializers on lines 1 and 
2 are required. The following construction, which omits the outer braces, 
would cause an error: 

triplet nlist[2) [3) = { 

}; 

{ 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }, / * Line 1 * / 
{ 10,11,12 },{ 13,14,15 },{ 16,17,18} /* Line 2 */ 

In this construction, the first left brace on line 1 initializes nlist[Oj, which 
is an array of three structures. The values 1, 2, and 3 are assigned to the 
three members of the first structure. When the next right brace is encoun­
tered (after the value 3), initialization of nlist[Oj is complete, and the two 
remaining structures in the three-structure array are automatically initial­
ized to O. Similarly, ( 4,5,6) initializes the first structure in the second 
row of nlist. The remaining two structures of nlist[1j are set to O. When 
the compiler encounters the next initializer list ({ 7,8,9 }), it tries to ini­
tialize nlist[2j. Since nlist has only two rows, this attempt causes an 
error. 

4-52 C Language Reference 



Initialization 

Example 1 

In this example, the three int members of x are initialized to 1,2, and 3, 
respectively. The three elements in the first row of m are initialized to 
4.0; the elements of the remaining row of m are initialized to 0.0 by 
default. 

struct list { 

Example 2 

int i, j, k; 
float m[2] [3]; 
} x = { 

} ; 

1, 
2, 
3, 
{4.0, 4.0, 4.0} 

In this example, the union variable y is initialized. The first element of 
the union is an array, so the initializer is an aggregate initializer. The 
initializer list {' I'} assigns values to the first row of the array. Since only 
one value appears in the list, the element in the first column is initialized 
to the character 1, and the remaining two elements in the row are initial­
ized to the value zero by default. Similarly, the first element of the 
second row of x is initialized to the character 4, and the remaining two 
elements in the row are initialized to the value O. 

union 

Declarations 

char x [2] [3] ; 
int i, j, k; 
} y = { { 

}; 

{'1'} , 
{'4'} } 

4-53 



Initialization 

String Initializers 

Syntax 

dec/orators = "characters" 

You can initialize an array of characters with a string literal. The follow­
ing example, initializes code as a four-element array of characters. The 
fourth element is the null character, which terminates all string literals. 

char code [ ] = "abc"; 

If you specify the array size and the string is longer than the specified 
array size, the extra characters are simply ignored. For example, the fol­
lowing declaration initializes code as a three-element character array: 

char code[3] = "abed"; 

Only the first three characters of the initializer are assigned to code. The 
character d and the string-terminating null character are discarded. 
Beware that this creates an unterminated string (that is, one without a 0 
value to mark its end) and generates a diagnostic message indicating the 
condition. 

If the string is shorter than the specified array size, the remaining ele­
ments of the array are initialized to 0 values. 

4-54 C Language Reference 



Type Declarations 

Type Declarations 
A type declaration defines the name and members of a structure or union 
type, or the name and enumeration set of an enumeration type. You can 
use the name of a declared type in variable or function declarations to 
refer to that type. This is useful if many variables and functions have the 
same type. 

A typedef declaration defines a type specifier for a type. You can use 
typedef declarations to construct shorter or more meaningful names for 
types already defined by C or for types that you have declared. 

Structure, Union, and Enumeration Types 

Declarations of structure, union, and enumeration types have the same 
general form as variable declarations of those types. However, type 
declarations and variable declarations differ in the following ways: 

• In type declarations the variable identifier is omitted, since no 
variable is declared. 

• In type declarations tag is required; it names the structure, union, 
or enumeration type. 

• The member-declaration-list or enum-list defining the type must 
appear in the type declaration; the abbreviated form of variable 
declarations, in which tag refers to a type defined elsewhere, is not 
legal for type declarations. 

Example 1 

This example declares an enumeration type named status. The name of 
the type can be used in declarations of enumeration variables. The 
identifier loss is explicitly set to -1. Both bye and tie are associated with 
the value 0, and win is given the value 1. 

enum status { 

Declarations 

loss = -1, 
bye, 
tie = 0, 
win 
} ; 

4-55 



Type Declarations 

Example 2 

This example declares a structure type named student. A declaration 
such as struct student employee; can be used to define a structure variable 
with student type. 

struct student 
char name[20]; 
int id, class; 
} ; 

Using typedef Declarations 

Syntax 

typedef type-specifier declarator [, declarator] ... ; 

A typedef declaration is analogous to a variable declaration except that 
the typedef keyword replaces a storage-class specifier. A typedef 
declaration is interpreted in the same way as a variable or function 
declaration, but the identifier, instead of assuming the type specified by 
the declaration, becomes a synonym for the type. 

Note that a typedef declaration does not create types. It creates synonyms 
for existing types, or names for types that could be specified in other 
ways. When a typedef name is used as a type specifier, it can be com­
bined with certain type specifiers, but not others. Acceptable modifiers 
include const and volatile. In some implementations there are additional 
special keywords that can be used to modify a typedef. 

You can declare any type with typedef, including pointer, function, and 
array types. You can declare a typedef name for a pointer to a structure or 
union type before you define the structure or union type, as long as the 
definition has the same visibility as the declaration. 

Example 1 

This example declares WHOLE to be a synonym for into Note that 
WHOLE could now be used in a variable declaration such as WHOLE i; 
or const WHOLE i;. However, the declaration long WHOLE i; would be 
illegal. 

typedef int WHOLE; 

4-56 C Language Reference 



Type Declarations 

Example 2 

This example declares GROUP as a structure type with three members. 
Since a structure tag, club, is also specified, either the typedef name 
(GROUP) or the structure tag can be used in declarations. 

typedef struct club { 
char name[30); 
int size, year; 
} GROUP ; 

Example 3 

This example uses the previous typedef name to declare a pointer type. 
The type PG is declared as a pointer to the GROUP type, which in tum is 
defined as a structure type. 

typedef GROUP *PG; 

Example 4 

Example 4 provides the type DRAWF for a function returning no value 
and taking two iot arguments. This means, for example, that the declara­
tion DRAWF box; is equivalent to the declaration void box(int, int);. 

typedef void DRAWF(int, int); 

Declarations 4-57 



Type Names 

Type Names 
A "type name" specifies a particular data type. In addition to ordinary 
variable declarations and defined-type declarations, type names are used 
in three other contexts: in the formal-parameter lists of function declara­
tions, in type casts, and in sizeof operations. Formal-parameter lists are 
discussed in "Function Declarations." Type casts and sizeof operations 
are discussed in Chapter 5 in the sections entitled "Type Conversions" 
and "C Operators", respectively. 

The type names for fundamental, enumeration, structure, and union types 
are simply the type specifiers for those types. 

A type name for a pointer, array, or function type has the following form: 

type-specifier abstract-declarator 

An abstract-declarator is a declarator without an identifier, consisting of 
one or more pointer, array, or function modifiers. The pointer modifier (*) 
always precedes the identifier in a declarator; array ([ ]) and function (()) 
modifiers follow the identifier. Knowing this, you can determine where 
the identifier would appear in an abstract declarator and interpret the 
declarator accordingly. 

Abstract declarators can be complex. Parentheses in a complex abstract 
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations. 

Note 

The abstract declarator consisting of a set of empty parentheses, (), 
is not allowed because it is ambiguous. It is impossible to determine 
whether the implied identifier belongs inside the parentheses (in 
which case it is an unmodified type) or before the parentheses (in 
which case it is a function type). 

4-58 C Language Reference 



Type Names 

The type specifiers established by typedef declarations also qualify as 
type names. 

Example 1 

This example gives the type name for "pointer to long" type. 

long * 

Example 2 

Examples 2 and 3 show how parentheses modify complex abstract 
declarators. Example 2 gives the type name for a pointer to an array of 
five int values. 

int (*) [5] 

Example 3 

Example 3 specifies a pointer to a function taking no arguments and 
returning an int value. 

int (*) (void) 

Declarations 4-59 





Chapter 5 

Expressions and Assignments 

Introduction 5-1 
Constants 5-2 
Identifiers 5-2 
Strings 5-3 
Function Calls 5-3 
Subscript Expressions 5-4 
Member-Selection Expressions 5-7 
Expressions with Operators 5-9 
Expressions in Parentheses 5-10 
Type-Cast Expressions 5-10 
Constant Expressions 5-11 
Side Effects 5-12 
Sequence Points 5-12 

C Operators 5-14 
Usual Arithmetic Conversions 5-15 
Complement and Unary Plus Operators 5-16 
Indirection and Address-of Operators 5-17 
The sizeof Operator 5-19 
Multiplicative Operators 5-20 
Additive Operators 5-22 
Shift Operators 5-24 
Relational Operators 5-25 
Bitwise Operators 5-27 
Logical Operators 5-28 
Sequential-Evaluation Operator 5-29 
Conditional Operator 5-30 

Assignment Operators 5-32 
Lvalue Expressions 5-33 
Unary Increment and Decrement 5-34 
Simple Assignment 5-35 
Compound Assignment 5-36 

Precedence and Order of Evaluation 5-37 

Type Conversions 5-41 
Assignment Conversions 5-41 



Type-Cast Conversions 5-50 
Operator Conversions 5-50 
Function-Call Conversions 5-50 



Introduction 

Introduction 
This chapter describes how to form expressions and make assignments in 
the C language. An "expression" is a combination of operands and 
operators that yields ("expresses") a single value. 

An "operand" is a constant or variable value that is manipulated in the 
expression. Each operand of an expression is also an expression, since it 
represents a single value. When an expression is evaluated, the resulting 
value depends on the relative precedence of operators in the expression 
and on "sequence points" and "side effects," if any. The precedence of 
operators determines how operands are grouped for evaluation. Side 
effects are changes caused by the evaluation of an expression. In an 
expression with side effects, the evaluation of one operand can affect the 
value of another. With some operators, the order in which operands are 
evaluated also affects the result of the expression. The section entitled "C 
Operands" describes the formats and evaluation rules for C operands, 
including discussions of side effects and sequence points. 

"Operators" specify how the operand or operands of the expression are 
manipulated. C operators are described later in this chapter in the section 
entitled "C Operators". 

In C, assignments are considered expressions because an assignment 
yields a value. Its value is the value being assigned. In addition to the 
simple-assignment operator (=), C offers complex-assignment operators 
that both transform and assign their operands. Assignment operators are 
described later in this chapter in the section entitled "Assignment Opera­
tors". 

The value represented by each operand in an expression has a type that 
may be converted to a different type in certain contexts. Type conversions 
occur in assignments, type casts, function calls, and operations. (The sec­
tion entitled "Precedence and Order of Evaluation" gives the precedence 
rules for C operators; side effects are discussed in the "Introduction" sec­
tion of this chapter under "Side Effects"; and type conversions are 
covered in the section entitled "Type Conversions" all elsewhere in this 
f}pqnm<)s in C include constants, identifiers, strings, function calls, sub­
script expressions, member-selection expressions, or more complex 
expressions formed by combining operands with operators or enclosing 
operands in parentheses. Any operand that yields a constant value is 
called a "constant expression." 

Every operand has a type. The following sections discuss the type of 
value each kind of operand represents. An operand can be "cast" (or 

Expressions and Assignments 5-1 



Introduction 

temporarily converted) from its original type to another type by means of 
a "type-cast" operation. A type-cast expression can also form an 
operand of an expression. 

Constants 

A constant operand has the value and type of the constant value it 
represents. A character constant has int type. An integer constant has int, 
long, unsigned int, or unsigned long type, depending on the integer's 
size and how the value is specified. Floating-point constants always have 
double type. String literals are considered arrays of characters and are 
discussed earlier in this section under the subheading "Strings". 

Identifiers 

An "identifier" names a variable or function. Every identifier has a type 
that is established when the identifier is declared. The value of an 
identifier depends on its type, as follows: 

• Identifiers of integral and floating types represent values of the cor­
responding type. 

• An identifier of enum type represents one constant value among a 
set of constant values. The value of the identifier is the constant 
value. Its type is int, by definition of the enum type. 

• An identifier of struct or union type represents a value of the 
specified struct or union type. 

• An identifier declared as a pointer represents a pointer to a value of 
the type specified in the pointer's declaration. 

• An identifier declared as an array represents a pointer whose value 
is the address of the first array element. The pointer addresses the 
type of the array elements. For if series is declared to be a 10-
element integer array, the identifier series represents the address of 
the array, and the subscript expression series[5] refers to an integer 
value which is the sixth element of series. Subscript expressions 
are discussed later in this section under the subheading "Subscript 
Expressions' '. The address of an array does not change during pro­
gram execution, although the values of the individual elements can 
change. The pointer value represented by an array identifier is not 
a variable, so an array identifier cannot form the left-hand operand 
of an assignment operation. 

5 -2 C Language Reference 



Introduction 

• An identifier declared as a function represents a pointer whose 
value is the address of the function. The pointer addresses a func­
tion returning a value of a specified type. The address of a function 
does not change during program execution; only the return value 
varies. Thus, function identifiers cannot be left-hand operands in 
assignment operations. 

Strings 

Syntax 

"string" ["string"] 

A "string literal" is a character or sequence of adjacent characters 
enclosed in double quotation marks. Two or more adjacent string literals 
separated only by white space are concatenated into a single string literal. 
A string literal is stored as an array of elements with char type and ini­
tialized with the quoted sequence of characters. The string literal is 
represented by a pointer whose value is the address of the first array ele­
ment. The address of the string's first element is a constant, so the value 
represented by a string expression is a constant. 

Since string literals are effectively pointers, they can be used in the same 
contexts as pointers, and have the same restrictions as pointers. However, 
since they are not variables, neither string literals nor any of their ele­
ments can be the left-hand operand in an assignment operation. 

The last character of a string is always the null character. Though the null 
character is not visible in the string expression, it is added automatically 
as the last element when the string is stored. For example, the string 
"abc" actually has four characters rather than three. 

Function Calls 

Syntax 

expression ([expression-list]) 

A "function call" consists of an expression followed by an optional 
expression-list in parentheses, where 

• expression must evaluate to a function address (for example, a 
function identifier), and 

Expressions and Assignments 5-3 



Introduction 

• expression-list is a list of expressions (separated by commas) 
whose values (the "actual arguments") are passed to the function. 
The expression-list argument can be empty. 

A function-call expression has the value and type of the function's return 
value. If the function's return type is void (that is, the function has been 
declared never to return a value), the function-call expression also has 
void type. If the called function returns control without executing a 
return statement, the value of the function-call expression is undefined. 
(See the chapter on "Functions," for more information about function 
calls.) 

Subscript Expressions 

Syntax 

expressionl [expression2 ] 

A subscript expression represents the value at the address that is expres­
sion2 positions beyond expressionl. Usually, the value represented by 
expressionl is a pointer value, such as an array identifier, and expression2 
is an integral value. However, all that is required syntactically is that one 
of the expressions be of pointer type and the other be of integral type. 
Thus the integral value could be in the expressionl position and the 
pointer value could be in the brackets in the expression2, or "subscript," 
position. Whatever the order of values, expression2 must be enclosed in 
brackets ([ D. 

Subscript expressions are generally used to refer to array elements, but 
you can apply a subscript to any pointer. 

5-4 C Language Reference 



Introduction 

Unidimensional-Array References 

The subscript expression is evaluated by adding the integral value to the 
pointer value, then applying the indirection operator (*) to the result. (For 
a discussion of the indirection operator see the "Indirection and 
Address-of Operators" subsection of the section entitled "C Operators" 
later in this chapter.) In effect, for a one-dimensional array, the following 
four expressions are equivalent, assuming that a is a pointer and b is an 
integer: 

a[b] 
* (a + b) 
* (b + a) 
b[a] 

According to the conversion rules for the addition operator (see "Addi­
tive Operators" in the "C Operators" section), the integral value is con­
verted to an address offset by multiplying it by the length of the type 
addressed by the pointer. 

For example, suppose the identifier line refers to an array of int values. 
The following procedure is used to evaluate the subscript expression 
line[zl: 

1. The integer value i is multiplied by the number of bytes defined as I 
the length of an int item. The converted value of i represents i int 
positions. 

2. This converted value is added to the original pointer value (line) to 
yield an address that is offset i int positions from line. 

3. The indirection operator is applied to the new address. The result 
is the value of the array element at that position (intuitively, 
line[zl). 

Note 

The following subscript expression represents the value of the first 
element of line, since the offset from the address represented by line 
is 0: 

line[O] 

Similarly, an expression such as the following refers to the element 
offset five positions from line or the sixth element of the array: 

line [5] 

Expressions and Assignments 5-5 



Introduction 

Multidimensional-Array Reference 

A subscript expression can be subscripted, as follows: 

expression1 [expression2] [expression3] ... 

Subscript expressions associate from left to right. The left-most subscript 
expression, expression1[expression2], is evaluated first. The address that 
results from adding expression1 and expression2 forms a pointer expres­
sion; then expression3 is added to this pointer expression to form a new 
pointer expression, and so on until the last subscript expression has been 
added. The indirection operator (*) is applied after the last subscripted 
expression is evaluated, unless the final pointer value addresses an array 
type (see Example 3). 

Expressions with multiple subscripts refer to elements of "multidimen­
sional arrays." A multidimensional array is an array whose elements are 
arrays. For example, the first element of a three-dimensional array is an 
array with two dimensions. 

For the following examples, an array named prop is declared with three 
elements, each of which is a 4-by-6 array of i~t values. 

int prop [3] [4] [6] ; 
int i, *ip, (*ipp) [6]; 

Example 1 

This example shows how to refer to the second individual int element of 
prop. Arrays are stored by row, so the last subscript varies the most 
quickly; the expression prop[O][O][2] refers to the next (third) element of 
the array, and so on. 

i = prop [0] [0] [1] ; 

Example 2 

This example shows a more complex reference to an individual element 
of prop. The expression is evaluated as follows: 

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array 
and added to the pointer value prop. The result points to the third 
4-by-6 array of prop. 

5 -6 C Language Reference 



Introduction 

2. The second subscript, 1, is multiplied by the size of the 6-element 
int array and added to the address represented by prop[2]. 

3. Each element of the 6-element array is an int value, so the final 
subscript, 3, is multiplied by the size of an int before it is added to 
prop[2][1]. The resulting pointer addresses the fourth element of 
the 6-element array. 

4. The indirection operator is applied to the pointer value. The result 
is the int element at that address. 

i = prop [2] [1] [3]; 

Example 3 

Examples 3 and 4 show cases where the indirection operator is not 
applied. 

In Example 3, the expression prop[2][1] is a valid reference to the three­
dimensional array prop; it refers to a 6-element array (declared above 
Example 1). Since the pointer value addresses an array, the indirection 
operator is not applied. 

ip = prop [2] [1]; 

Example 4 

As in example 3, the result of the expression prop[2] in Example 4 is a 
pointer value addressing a two-dimensional array. 

ipp = prop[2]; 

Member-Selection Expressions 

Syntax 

expression.identi fier 
expression->identifier 

A "member-selection expression" refers to members of structures and 
unions. Such an expression has the value and type of the selected mem­
ber. As shown in the syntax line, a member-selection expression can have 
one of the two following forms: 

Expressions and Assignments 5-7 



Introduction 

1. In the first fonn, expression.identifier, expression represents a 
value of struct or union type, and identifier names a member of 
the specified structure or union. 

2. In the second fonn, expression->identifier, expression represents a 
pointer to a structure or union, and identifier names a member of 
the specified structure or union. 

The two fonns of member-selection expressions have similar effects. In 
fact, an expression involving the pointer selection operator (-» is a 
shorthand version of an expression using the period (.) if the expression 
before the period consists of the indirection operator (*) applied to a 
pointer value. (See the "Indirection and Address-of Operators" section 
in the "C Operators" section.) Therefore, 

expression ->identifier 

is equivalent to 

(*expression).identifier 

when expression is a pointer value. 

Examples 1 through 3 refer to the following structure declaration: 

struct pair { 
int a; 
int b; 

Example 1 

struct pair *sp; 
} item, list[lO); 

In this example, the address of the item structure is assigned to the sp 
member of the structure. This means that item contains a pointer to itself. 

item.sp = &item; 

Example 2 

In this example, the pointer expression item.sp is used with the pointer 
selection operator (-» to assign a value to the member a. 

(item.sp)->a = 24; 

5-8 C Language Reference 



Introduction 

Example 3 

This example shows how to select an individual structure member from 
an array of structures. 

list [8].b = 12; 

Expressions with Operators 

Expressions with operators can be "unary," "binary," or "ternary" 
expressions. A unary expression consists of either a unary operator 
("unop") prepended to an operand, or the sizeof keyword followed by an 
expression. The expression can be either the name of a variable or a cast 
expression. If expression is a cast expression it must be enclosed in 
parentheses. 

unop operand 
sizeof expression 

A binary expression consists of two operands joined by a binary operator 
(' 'binop' '): 

operand binop operand 

A ternary expression consists of three operands joined by the ternary 
operator (? :): 

operand? operand: operand 

The section later in this chapter entitled "e Operators" describes the 
operators used in unary, binary, and ternary expressions. 

Expressions with operators also include assignment expressions that use 
unary or binary assignment operators. The unary assignment operators are 
the increment (++) and decrement (- -) operators; the binary assignment 
operators are the simple-assignm<!nt operator (=) and the compound­
assignment operators (referred to as "compound-assign-ops"). Each 
compound-assignment operator is a combination of another binary opera­
tor with the simple-assignment operator. Assignment expressions have 
the following forms: 

Expressions and Assignments 5-9 



Introduction 

operand++ 
operand- -
++operand 
- -operand 
operand = operand 
operand compound-assign-op operand 

The section later in this chapter entitled ' , Assignment Operators' , 
describes the assignment operators in detail. 

Expressions in Parentheses 

You can enclose any operand in parentheses without changing the type or 
value of the enclosed expression. For example, in the the following 
expression, the parentheses around 10 + 5 mean that the value of 10 + 5 is 
the left operand of the division (/) operator. 

(lO + 5) / 5 

The result of (10 + 5) / 5 is 3. Without the parentheses, 10 + 5/5 would 
evaluate to 11. 

Although parentheses affect the way operands are grouped in an expres­
sion, they cannot guarantee a particular order of evaluation in all cases. 
Exceptions resulting from "side effects" are discussed in the section enti­
tled "Precedence and Order of Evaluation" later in this chapter. 

Type-Cast Expressions 

A type cast provides a method for explicit conversion of the type of an 
object in a specific situation. Type-cast expressions have the following 
form: 

(type-name) operand 

Casts can be used to convert objects of any scalar type to or from any 
other scalar type. Explicit type casts are constrained by the same rules 
that determine the effects of implicit conversions, discussed in "Assign­
ment Conversions." Additional restraints on casts may result from the 
actual sizes or representation of specific types on specific implementa­
tions. Representation is discussed in the "Declarations" chapter. For in­
formation on actual sizes of integral types and pointers, see your compiler 
guide. 

Any object may be cast to void type. However, if the type-name in a 
type-cast expression is not void, then operand cannot be a void 

5-10 C Language Reference 



Introduction 

expression. Any expression can be cast to void, but an expression of type 
void cannot be cast to any other type. For example, a function with void 
return type cannot have its return cast to another type. Note that a void * 
expression has a type pointer to void, not type void. If an object is cast to 
void type, the resulting expression cannot be assigned to any item. Simi­
larly, a type-cast object is not an acceptable lvalue, so no assignment can 
be made to a type-cast object. See the section on "Lvalue Expressions" 
in the section entitled ' 'Assignment Operators" for a discussion of 
Lvalues, and the section on "Type-Cast Conversions" in the section enti­
tled "Type Conversions" for a discussion of type conversions later in this 
chapter. 

Constant Expressions 

A constant expression is any expression that evaluates to a constant. The 
operands of a constant expression can be integer constants, character con­
stants, floating type constants, enumeration constants, type casts, sizeof 
expressions, and other constant expressions. You can use operators to 
combine and modify operands as described in the section entitled 
"Expressions with Operators" with the following restrictions: 

• You cannot use assignment operators (see "Assignment Opera­
tors" later in this chapter) or the binary sequential-evaluation 
operator (,) in constant expressions. 

• You can use the unary address-of operator (&) only in certain ini­
tializations (as described in the last paragraph of this section). 

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions. Consequently, they are known as "restricted constant 
expressions. " A restricted constant expression cannot contain sizeof 
expressions, enumeration constants, type casts to any type, or floating­
type constants. It can, however, contain the special constant expression 
defined(identijier). 

Constant expressions involving floating constants, casts to nonarithmetic 
types, and address-of expressions can only appear in initializers. The 
unary address-of operator (&) can only be applied to variables with fun­
damental, structure, or union types that are declared at the global level, or 
to subscripted array references. In these expressions, a constant expres­
sion that does not include the address-of operator can be added to or sub­
tracted from the address expression. 

Expressions and Assignments 5-11 



Introduction 

Side Effects 

"Side effects" occur whenever the value of a variable is changed by 
expression evaluation. All assignment operations have side effects. Func­
tion calls may also have side effects if they change the value of an exter­
nally visible item, either by direct assignment or by indirect assignment 
through a pointer. 

The order of evaluation of expressions is defined by the specific imple­
mentation, except when the language guarantees a particular order of 
evaluation (as outlined in the section entitled "Precedence and Order of 
Evaluation" later in this chapter). 

For example, side effects occur in the following function call: 

add (i + 1, i = j + 2) 

The arguments of a function call can be evaluated in any order. The 
expression i + 1 can be evaluated before i = j + 2, or i = j + 2 can be 
evaluated before i + 1. The result is different in each case. 

Sequence Points 

Expressions involving assignment, unary "increment," unary "decre­
ment," or calling a function may have consequences incidental to their 
evaluation (side effects). When a "sequence point" is reached, every­
thing preceding the sequence point, including any side effects, is 
guaranteed to have been evaluated before evaluation begins on anything 
following the sequence point. 

Certain operators act as sequence points, including the following: 

• The logical-AND operator (&&) 

• The logical-OR operator (II) 

• The ternary operator (?:) 

• The sequential-evaluation operator (,) 

• The function-call operator (that is, the parentheses following a 
function name) 

5-12 C Language Reference 



Introduction 

Other sequence points include 

• the end of a full expression (that is, an expression that is not part of 
another expression) 

• any initializer 

• an expression in an expression statement 

• the control expressions in selection statements (if or switch) and 
iteration statements (do, while, orfor) 

• the expression in a return statement 

Expressions and Assignments 5-13 



C Operators 

C Operators 
C operators take one operand (unary operators), two operands (binary 
operators), or three operands (the ternary operator). Assignment operators 
include both unary or binary operators; the section entitled "Assignment 
Operators" describes the assignment operators. 

Unary operators appear before their operand and associate from right to 
left. C includes the following unary operators: 

- - ! Negation and complement operators 

* & Indirection and address-of operators 

sizeof Size operator 

+ Unary plus operator 

Binary operators associate from left to right. C provides the following 
binary operators: 

* / % 

+-

« » 

< > <= >= -- != 

& I A 

&& /I 

Multiplicative operators 

Additive operators 

Shift operators 

Relational operators 

Bitwise operators 

Logical operators 

Sequential-evaluation operator 

C has one ternary operator: the conditional operator (? :). It associates 
from right to left. 

5-14 C Language Reference 



C Operators 

Usual Arithmetic Conversions 

Most C operators perform type conversions to bring the operands of an 
expression to a common type or to extend short values to the integer size 
used in machine operations. The conversions performed by C operators 
depend on the specific operator and the type of the operand or operands. 
However, many operators perform similar conversions on operands of 
integral and floating types. These conversions are known as "arithmetic 
conversions" because they apply to the types of values ordinarily used in 
arithmetic. 

The arithmetic conversions summarized in this section are called "usual 
arithmetic conversions." The discussion of each operator in the follow­
ing sections specifies whether or not the operator performs the usual arith­
metic conversions. It also specifies the additional conversions, if any, the 
operator performs. This is not a precedence order. It is an outline of an 
algorithm that is applied to each binary operator in the expression. 

The section entitled "Type Conversions" outlines the specific path of 
each type of conversion. In determining which conversions will actually 
take place, the following algorithm is applied to each binary operation in 
the expression: 

1. Any operands of float type are converted to double type. 

2. If one operand has long double type, the other operand is con­
verted to long double type. 

3. If one operand has double type, the other operand is converted to 
double type. 

4. Any operands of char or short type are converted to int type. 

5. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type. 

6. If one operand is of unsigned long type, the other operand is con­
verted to unsigned long type. 

7. If one operand is of long type, the other operand is converted to 
long type. 

8. If one operand is of unsigned int type, the other operand is con­
verted to unsigned int type. 

Expressions and Assignments 5-15 



C Operators 

The following example illustrates the application of the preceding algo­
rithm: 

long 1; 
unsigned ehar ue; 
int i; 
f ( 1 + ue * i); 

The preceding example would be converted as follows: 

1. uc is converted to an unsigned int (step 5). 

2. i is converted to an unsigned int (step 8). The multiplication is 
performed and the result is an unsigned int. 

3. uc * i is converted to a long (step 7). 

The addition is performed and the result is type long. 

Complement and Unary Plus Operators 

The C complement operators are discussed in the following list: 

+ 

5-16 

The arithmetic-negation operator produces the negative 
(two's complement) of its operand. The operand must be an 
integral or floating value. This operator performs the usual 
arithmetic conversions. 

The bitwise-complement operator produces the bitwise 
complement of its operand. The operand must be of 
integral type. This operator performs usual arithmetic 
conversions; the result has the type of the operand after 
conversion. 

The logical-NOT operator produces the value 0 if its 
operand is true (nonzero) and the value 1 if its operand is 
false (0). The result has int type. The operand must be an 
integral, floating, or pointer value. 

The unary plus operator preceding a parenthesized expres­
sion forces the grouping of the enclosed operations. It is 
used with expressions involving more than one associative 
or commutative binary operator. 

C Language Reference 



C Operators 

Note 

The unary plus operator (+) is implemented syntactically in Micro­
soft C, but has no semantics of any type associated with it. 

Example 1 

In this example, the new value of x is the negative of 987, or -987. 

short x = 987; 
x = -Xi 

Example 2 

In this example, the new value assigned to y is the one's complement of 
the unsigned value Oxaaaa, or 0x5555. 

unsigned short y = Oxaaaa; 
y = -y; 

Example 3 

In this example, if x is greater than or equal to y, the result of the expres­
sion is 1 (true). If x is less than y, the result is 0 (false). 

if ( ! (x < y»; 

Indirection and Address-of Operators 

The C indirection and address-of operators are discussed in the following 
list: 

• The indirection operator accesses a value indirectly, through a 
pointer. The operand must be a pointer value. The result of the 
operation is the value addressed by the operand; that is, the value 
at the address specified by the operand. The type of the result is the 
type that the operand addresses. If the pointer value is invalid, the 
result is undefined. The specific conditions that invalidate a 
pointer value are implementation-de fined. The following list 
includes some of the most common: 

Expressions and Assignments 5-17 



C Operators 

The pointer is a null pointer. 

The pointer specifies the address of a local item that is not 
active at the time of the reference. 

The pointer specifies an address that is inappropriately 
aligned for the type of the object pointed to. 

The pointer specifies an address not used by the executing 
program. 

• The address-of operator gives the address of its operand. The 
operand can be any value that is a valid left-hand value of an 
assignment operation. A function designator or array name can 
also be the operand of the address-of operator, although in these 
cases the operator is superfluous since function designators and 
array names are addresses. (Assignment operations are discussed 
in the section entitled "Assignment Operators" later in this 
chapter.) The result of the address operation is a pointer to the 
operand. The type addressed by the pointer is the type of the 
operand. 

You cannot apply the address-of operator to a bitfield member of a struc­
ture (described in the section entitled "Structure Declarations' , in 
Chapter 4) or to an identifier declared with the register storage-class 
specifier. 

Examples 1 through 4 use the following declarations: 

int *pa, x; 
int a [20] ; 
double d; 

Example 1 

In this example, the address-of operator (&) takes the address of the sixth 
element of the array a. The result is stored in the pointer variable pa. 

pa = &a[5); 

Example 2 

In this example the indirection operator (*) is used to access the int value 
at the address stored in pa. The value is assigned to the integer variable x. 

x = *pa; 

5-18 C Language Reference 



C Operators 

Example 3 

In this example , the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address of 
x is the same as x. 

if (x == *&x) 
printf("True\n"); 

Example 4 

This example demonstrates an appropriate application of the rule shown 
in Example 3. First the address of x is converted by a type cast to a 
pointer to a double type; then the indirection operator is applied to give a 
result of type double. 

d = * (double *) (&x); 

Example 5 

In this example, the function roundup is declared, and then two pointers 
to roundup are declared and initialized. The first pointer proundup is ini­
tialized using only the name of the function, while the second, pround, 
uses the address-of operator in the initialization. The initializations are 
equal. 

int roundup() ; 

int (*proundup) = roundup; 
int (*pround) = & roundup; 

The sizeof Operator 

The sizeof operator gives the amount of storage, in bytes, associated with 
an identifier or a type. This operator lets you avoid specifying machine­
dependent data sizes in your programs. 

A sizeof expression has the form 

sizeof expression 

An expression is either an identifier or a type-cast expression (that is, a 
type specifier enclosed in parentheses). If expression is a type-cast 
expression, it cannot be void. If it is an identifier, it cannot represent a 
bitfield object or a function designator. 

Expressions and Assignments 5-19 



C Operators 

When you apply the sizeof operator to an array identifier, the result is the 
size of the entire array rather than the size of the pointer represented by 
the array identifier. 

When you apply the sizeof operator to a structure or union type name, or 
to an identifier of structure or union type, the result is the actual size of 
the structure or union. This size may include internal and trailing padding 
used to align the members of the structure or union on memory bound­
aries. Thus, the result may not correspond to the size calculated by add­
ing up the storage requirements of the individual members. 

Example 1 

This example uses the sizeof operator to pass the size of an int, which 
varies among machines, as an argument to a function named calloc. The 
buffer stores the value returned by the function. 

buffer = calloc (100, sizeof (int) ); 

Example 2 

In this example, strings is an array of pointers to char. The number of 
pointers is the number of elements in the array, but is not specified. It is 
easy to determine the number of pointers by using the sizeof operator to 
calculate the number of elements in the array. The const integer value 
string no is initialized to this number. Because it is a const value, 
string-no cannot be modified. 

static char *strings [] ={ 
"this is string one", 
"this is string two", 
"this is string three", 

); 
const int string_no = (sizeof strings)/(sizeof strings[O]); 

Multiplicative Operators 

The multiplicative operators perform multiplication (*), division (I), and 
remainder (%) operations. The operands of the remainder operator (%) 
must be integral. The multiplication (*) and division (/) operators can 
take integral- or floating-type operands; the types of the operands can be 
different. 

5-20 C Language Reference 



C Operators 

The multiplicative operators perform the usual arithmetic conversions on 
the operands. The type of the result is the type of the operands after 
conversion. 

Note 

Since the conversions performed by the multiplicative operators do 
not provide for overflow or underflow conditions, information may 
be lost if the result of a multiplicative operation cannot be 
represented in the type of the operands after conversion. 

The C multiplicative operators are described as follows: 

* The multiplication operator causes its two operands to be 
multiplied. 

The division operator causes the first operand to be divided 
by the second. If two integer operands are divided and the 
result is not an integer, it is truncated according to the fol­
lowing rules: 

• If both operands are positive or unsigned, the 
result is truncated toward O. 

• If either operand is negative, the direction of 
truncation of the result (either toward 0 or 
away from 0) is defined by the implementa­
tion. For more information, see your compiler 
guide. 

The result of division by 0 is undefined. 

% The result of the remainder operator is the remainder when 
the first operand is divided by the second. If either or both 
operands are positive or unsigned, the result is positive. If 
either operand is negative the sign of the result is defined 
by the implementation. (For more information, see your 
compiler guide.) If the right operand is zero, the result is 
undefined. 

Expressions and Assignments 5-21 



C Operators 

These declarations are used for all of the following examples: 

int i = 10 , j = 3, n; 
double x = 2.0, y; 

Example 1 

In this example, x is multiplied by i to give the value 20.0. The result has 
double type. 

y = x * i; 

Example 2 

In this example, 10 is divided by 3. The result is truncated toward 0, 
yielding the integer value 3. 

n = i / j; 

Example 3 

In this example, n is assigned the integer remainder, 1, when 10 is divided 
by3. 

n = i % j; 

Additive Operators 

The additive operators perform addition (+) and subtraction (-). The 
operands can be integral or floating values. Some additive operations can 
also be performed on pointer values, as outlined under the discussion of 
each operator. 

The additive operators perform the usual arithmetic conversions on 
integral and floating operands. The type of the result is the type of the 
operands after conversion. Since the conversions performed by the addi­
tive operators do not provide for overflow or underflow conditions, infor­
mation may be lost if the result of an additive operation cannot be 
represented in the type of the operands after conversion. 

Addition (+) 

The addition operator (+) causes its two operands to be added. Both 
operands can have integral or floating types, or one operand can be a 
pointer and the other an integer. 

5-22 C Language Reference 



C Operators 

When an integer is added to a pointer, the integer value (i) is converted 
by multiplying it by the size of the value that the pointer addresses. After 
conversion, the integer value represents i memory positions, where each 
position has the length specified by the pointer type. When the converted 
integer value is added to the pointer value, the result is a new pointer 
value representing the address i positions from the original address. The 
new pointer value addresses a value of the same type as the original 
pointer value. 

Subtraction (-) 

The subtraction operator (-) subtracts the second operand from the first. 
The following combinations of operands can be used with this operator: 

• Both operands integral or floating type values 

• Both operands pointer values to the same type 

• The first operand a pointer value and the second operand an integer 

When two pointers are subtracted, the difference is converted to a signed 
integral value by dividing the difference by the size of a value of the type 
that the pointers address. The result represents the number of memory 
positions of that type between the two addresses. The result is only 
guaranteed to be meaningful for two elements of the same array, as dis­
cussed in "Pointer Arithmetic, " later in this section. 

When an integer value is subtracted from a pointer value, the subtraction 
operator converts the integer value (i) by multiplying it by the size of the 
value that the pointer addresses. After conversion, the integer value 
represents i memory positions, where each position has the length 
specified by the pointer type. When the converted integer value is sub­
tracted from the pointer value, the result is the memory address i positions 
before the original address. The new pointer points to a value of the type 
addressed by the original pointer value. 

Pointer Arithmetic 

Additive operations involving a pointer and an integer give meaningful 
results only if the pointer operand addresses an array member and the 
integer value produces an offset within the bounds of the same array. 
When the integer value is converted to an address offset, the compiler 
assumes that only memory positions of the same size lie between the ori­
ginal address and the address plus the offset. 

This assumption is valid for array members. By definition, an array is a 
series of values of the same type; its elements reside in contiguous mem­
ory locations. However, storage for any types except array elements is not 

Expressions and Assignments 5-23 



C Operators 

guaranteed to be completely filled. That is, blanks may appear between 
memory positions, even positions of the same type. Therefore, the results 
of adding to or subtracting from the addresses of any values but array ele­
ments are undefined. 

Similarly, when two pointer values are subtracted, the conversion 
assumes that only values of the same type, with no blanks, lie between the 
addresses given by the operands. 

On machines with segmented architecture (such as the 8086/8088), addi­
tive operations between pointer and integer values may not be valid in 
some cases. For example, an operation may result in an address that is 
outside the bounds of an array. See your compiler guide for more informa­
tion on memory models. 

The following declarations are used for both examples: 

int i = 4, j; 
float x[lO]; 
float *px; 

Example 1 

In this example, the value of i is multiplied by the length of a ftoat and 
added to &x[ 4 J. The resulting pointer value is the address of x[8 J. 

px = &x[4] + i; /* equivalent to px = &x[4+i]; */ 

Example 2 

In this example, the address of the third element of x (given by x[i-2]) is 
subtracted from the address of the fifth element of x (given by xli]). The 
difference is divided by the length of a ftoat; the result is the integer value 
2. 

j = &x[i] - &x[i-2]; 

Shift Operators 

The shift operators shift their first operand left (<<) or right (») by the 
number of positions the second operand specifies. Both operands must be 
integral values. These operators perform the usual arithmetic conversions; 
the type of the result is the type of the left operand after conversion. 

For leftward shifts, the vacated right bits are set to O. For rightward shifts, 
the vacated left bits are filled based on the type of the first operand after 

5-24 C Language Reference 



C Operators 

conversion. If the type is unsigned, they are set to O. Otherwise, they are 
filled with copies of the sign bit. 

The result of a shift operation is undefined if the second operand is nega­
tive. 

Since the conversions perfonned by the shift operators do not provide for 
overflow or underflow conditions, infonnation may be lost if the result of 
a shift operation cannot be represented in the type of the first operand 
after conversion. 

Example 

unsigned int x, y, z; 

x = OxOOaa; 
y Ox5500; 

z = (x « 8) + (y » 8); 

In this example, x is shifted left eight positions and y is shifted right eight 
positions. The shifted values are added, giving Oxaa55, and assigned to z. 

Relational Operators 

The binary relational operators compare their first operand to their second 
operand to test the validity of the specified relationship. The result of a 
relational expression is 1 if the tested relationship is true and 0 if it is 
false. The type of the result is int. 

The relational operators test the following relationships: 

< First operand less than second operand 

> First operand greater than second operand 

<= First operand less than or equal to second operand 

>= First operand greater than or equal to second operand 

First operand equal to second operand 

!= First operand not equal to second operand 

The operands can have integral, floating, or pointer type. The types of the 
operands can be different. Relational operators perfonn the usual 

Expressions and Assignments 5-25 



C Operators 

arithmetic conversions on integral and floating type operands. In addition, 
you can use the following combinations of operand types with relational 
operators: 

• Both operands of any relational operator can be pointers to the 
same type. For the equality (==) and inequality (!=) operators, the 
result of the comparison indicates whether or not the two pointers 
address the same memory location. For the other relational opera­
tors «, >, <= , and >= ), the result of the comparison indicates the 
relative position of two memory addresses. 

Since the address of a given value is arbitrary, comparisons 
between the addresses of two unrelated values are generally mean­
ingless. However, comparisons between the addresses of different 
elements of the same array can be useful, since array elements are 
guaranteed to be stored in order from the first element to the last. 
The address of the first array element is "less than" the address of 
the last element. 

• A pointer value can be compared to the constant value 0 for equal­
ity (==) or inequality (!=). A pointer with a value of 0, called a 
"null" pointer, does not point to a memory location. 

Example 1 

Because x and y are equal, the expression in Example 1 yields the value o. 
int x = 0, y = 0; 
x < y 

Example 2 

The fragment in Example 2 initializes each element of array to a null 
character constant. 

char array[lO] 
char *p ; 

for (p = array; p < &array[lO]; p++) 
*p = ' \0' ; 

Example 3 

Example 3 declares an enumeration variable named col with the tag 
color. At any time, the variable may contain an integer value of 0, 1, or 2, 
which represents one of the elements of the enumeration set color: the 
color red, white, or green, respectively. If col contains 0 when the if state­
ment is executed, any statements depending on the if will be executed. 

5-26 C Language Reference 



C Operators 

enum color {red, white, green} col; 

if (col == red) 

Bitwise Operators 

The bitwise operators perfonn bitwise-AND (&), inclusive-OR (j), and 
exclusive-OR n operations. The operands of bitwise operators must have 
integral types, but their types can be different. These operators perfonn 
the usual arithmetic conversions; the type of the result is the type of the 
operands after conversion. 

The C bitwise operators are described as follows: 

& The bitwise-AND operator compares each bit of its first 
operand to the corresponding bit of its second operand. If 
both bits are 1, the corresponding result bit is set to 1. Oth­
erwise, the corresponding result bit is set to O. 

The bitwise-inclusive-OR operator compares each bit of its 
first operand to the corresponding bit of its second operand. 
If either bit is 1, the corresponding result bit is set to 1. 
Otherwise, the corresponding result bit is set to O. 

The bitwise-exclusive-OR operator compares each bit of 
its first operand to the corresponding bit of its second 
operand. If one bit is 0 and the other bit is 1, the corre­
sponding result bit is set to 1. Otherwise, the corresponding 
result bit is set to o. 

The following declarations are used for these examples: 

short i = OxabOO; 
short j = Oxabcd; 
short n; 

Example 1 

The result assigned to n in Example 1 is the same as i (OxabOO hexadeci­
mal). 

n = i & j; 

Expressions and Assignments 5-27 



C Operators 

Example 2 

The bitwise-inclusive OR in Example 2 results in the value Oxabcd (hexa­
decimal). 

n = i j; 

Example 3 

The bitwise-exclusive OR in Example 3 produces Oxcd (hexadecimal). 

n = i - j; 

Logical Operators 

The logical operators perform logical-AND (&&) and logical-OR (J /) 
operations. The operands of the logical operators must have integral, 
floating, or pointer type. The types of the operands can be different. 

The operands of logical-AND and logical-OR expressions are evaluated 
from left to right. If the value of the first operand is sufficient to determine 
the result of the operation, the second operand is not evaluated. There is a 
sequence point after the first operand. 

Logical operators do not perform the usual arithmetic conversions. 
Instead, they evaluate each operand in terms of its equivalence to O. 

The result of a logical operation is either 0 or 1. The result's type is iot. 

The C logical operators are described as follows: 

&& 

" 

5-28 

The logical-AND operator produces the value 1 if both 
operands have nonzero values. IT either operand is equal to 
0, the result is O. If the first operand of a logical-AND 
operation is equal to 0, the second operand is not 
evaluated. 

The logical-OR operator performs an inclusive-OR opera­
tion on its operands. The result is 0 if both operands have 0 
values. IT either operand has a nonzero value, the result is 
1. If the first operand of a logical-OR operation has a 
nonzero value, the second operand is not evaluated. 

C Language Reference 



C Operators 

The following examples use these declarations: 

int w, x, y, Zi 

Example 1 

In this example, the printf function is called to print a message if x is less 
than y and y is less than z. If x is greater than y, the second operand (y < 
z) is not evaluated and nothing is printed. Note that this could cause prob­
lems in cases where the second operand has side effects that are being 
relied on for some other reason. 

if (x < y && Y < z) 
printf ("x is less than z\n"); 

Example 2 

In this example, if x is equal to either w, y, or z, the second argument to 
the printf function evaluates to true and the value 1 is printed. Otherwise, 
it evaluates to false and the value 0 is printed. As soon as one of the con­
ditions evaluates to true, evaluation ceases. 

printf ("%d" , (x==w II x==y II x==z)); 

Sequential-Evaluation Operator 

The sequential-evaluation operator evaluates its two operands sequen­
tially from left to right. There is a sequence point after the first operand. 
The result of the operation has the same value and type as the right 
operand. Each operand can be of any type. The sequential-evaluation 
operator does not perform type conversions between its operands. 

The sequential-evaluation operator, also called the "comma operator," is 
typically used to evaluate two or more expressions in contexts where only 
one expression is allowed. 

Commas can be used as separators in some contexts. However, you must 
be careful not to confuse the use of the comma as a separator with its use 
as an operator; the two uses are completely different. 

Example 1 

In this example, each operand of the for statement's third expression is 
evaluated independently. The left operand, i += i, is evaluated first; then 
the right operand, j- -, is evaluated. 

for ( i = j = 1; i + j < 20; i += i, j--); 

Expressions and Assignments 5-29 



C Operators 

Example 2 

In the function call to June _one, three arguments, separated by commas, 
are passed: x, y + 2, and z. 

In the function call to June_two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function 
call passes two arguments to June_two. The first argument is the result oj 
the sequential-evaluation operation (x--, y + 2), which has the value and 
type of the expression y + 2; the second argument is z. 

func one(x, y + 2, z); 
func=two( (x--, y + 2), z); 

Conditional Operator 

C has one ternary operator: the conditional operator (? :)_ It has the fol­
lowing form: 

operandI? operand2 : operandJ 

The expression operandI must have integral, floating, or pointer type. It is 
evaluated in terms of its equivalence to O. A sequence point follows 
operandI. Evaluation proceeds as follows: 

• If operandI does not evaluate to 0, operand2 is evaluated, and the 
result of the expression is the value of operand2. 

• If operandI evaluates to 0, operand3 is evaluated, and the result oj 
the expression is the value of operand3. 

Note that either operand2 or operand3 is evaluated, but not both. 

The type of the result of a conditional operation depends on the type oj 
operand2 or operand3, as follows: 

• If operand2 or operand3 has integral or floating type (their types 
can be different), the operator performs the usual arithmetic 
conversions. The type of the result is the type of the operands after 
conversion. 

• If both operand2 and operandJ have the same structure, union, OJ 

pointer type, the type of the result is the same structure, union, OJ 

pointer type. 

5 -30 C Language Reference 



C Operators 

• If both operands have type void, the result has type void. 

• If either operand is a pointer to an object of any type, and the other 
operand is a pointer to void, the pointer to the object is converted 
to a pointer to void and the result is a pointer to void. 

• If either operand2 or operand3 is a pointer and the other operand is 
a constant expression with the value 0, the type of the result is the 
pointer type. 

Example 1 

This example assigns the absolute value of i to j. If i is less than 0, -i is 
assigned to j. If i is greater than or equal to 0, i is assigned to j. 

j = (i < 0) ? (-i) : (i); 

Example 2 

In this example, two functions, /1 and 12, and two variables, x and y, are 
declared. Later in the program, if the two variables have the same value, 
the function /1 is called. Otherwise,12 is called. 

void fl (void) 
void f2 (void) 
int x 
int y 

(x==y) (fl () (f2 () ) 

Expressions and Assignments 5-31 



Assignment Operators 

Assignment Operators 
The assignment operators in C can both transform and assign values in a 
single operation. Using a compound-assignment operator to replace two 
separate operations can make your programs smaller and more efficient. 

C provides the following assignment operators: 

++ Unary increment 

Unary decrement 

= Simple assignment 

*= Multiplication assignment 

1= Division assignment 

%= Remainder assignment 

+= Addition assignment 

Subtraction assignment 

«= Left-shift assignment 

»= Right-shift assignment 

&= Bitwise-AND assignment 

1= Bitwise-inclusive-OR assignment 

Bitwise-exclusive-OR assignment 

In assignment, the type of the right-hand value is converted to the type of 
the left-hand value. The specific conversion path, which depends on the 
two types, is outlined in detail in the section entitled " Assignment 
Conversions" to be found in the section entitled "Type Conversions" 
later in this chapter. 

5-32 C Language Reference 



Assignment Operators 

Lvalue Expressions 

An assignment operation assigns the value of the right-hand operand to 
the storage location named by the left-hand operand. Therefore, the left­
hand operand of an assignment operation (or the single operand of a unary 
assignment expression) must be an expression that refers to a modifiable 
memory location. 

Expressions that refer to memory locations are called "lvalue expres­
sions." Expressions referring to modifiable locations are "modifiable 
lvalues." One example of a modifiable lvalue expression is a variable 
name declared without the const specifier (non-const). The name of the 
variable denotes a storage location, while the value of the variable is the 
value stored at that location. 

The following C expressions may be lvalue expressions: 

• An identifier of integral, floating, pointer, structure, or union type 

• A subscript ([ ]) expression that does not evaluate to an array or a 
function 

• A member-selection expression (-> or .), if the selected member is 
one of the aforementioned expressions 

• A unary-indirection (*) expression that does not refer to an array or 
function 

• An lvalue expression in parentheses 

• A const object (a nonmodifiable lvalue) 

Expressions and Assignments 5-33 



Assignment Operators 

Note 

Microsoft C includes an extension to the ANSI C standard allowing 
a type cast to a pointer type as an lvalue expression, as long as the 
size of the object does not change. The following example illus­
trates this feature: 

char *p 
int i; 
long 1; 

(long *) p = &1 ; 
(long) i = 1 ; 

1* legal cast *1 
1* illegal cast *1 

See your compiler guide for information on enabling and disabling 
the Microsoft extensions. 

Unary Increment and Decrement 

The unary assignment operators (++ and --) increment and decrement 
their operand, respectively. The operand must have integral, floating, or 
pointer type and must be a modifiable (non-const) lvalue expression. 

An operand of integral or floating type is incremented or decremented by 
the integer value 1. The type of the result is the same as the operand type. 
An operand of pointer type is incremented or decremented by the size of 
the object it addresses. 
An incremented pointer points to the next object; a decremented pointer 
points to the previous object. 

An increment (++) or decrement (--) operator can appear either before or 
after its operand, with the following results: 

• When the operator appears before its operand, the operand is incre­
mented or decremented and its new value is the result of the 
expression. 

• When the operator appears after its operand, the immediate result 
of the expression is the value of the operand before it is incre­
mented or decremented. After that result is applied in context, the 
operand is incremented or decremented. 

5 -34 C Language Reference 



Assignment Operators 

Example 1 

In this example, the variable pos is compared to 0, then incremented. If 
pos was positive before being incremented, the next statement is exe­
cuted. First, the value of q is assigned to p. Then q and p are incremented. 

if (pos++ > 0) 
*p++ = *q++; 

Example 2 

In this example, the variable i is decremented before it is used as a sub­
script to line. 

if (line[--i] != '\n') 
return; 

Simple Assignment 

The simple-assignment operator assigns its right operand to its left 
operand. The conversion rules for assignment apply 

Example 

In this example, the value of y is converted to double type and assigned 
to x: 

double X; 
int y; 

X = y; 

Expressions and Assignments 5-35 



Assignment Operators 

Compound Assignment 

The compound-assignment operators combine the simple-assignment 
operator with another binary operator. Compound-assignment operators 
perform the operation specified by the additional operator, then assign the 
result to the left operand. For example, a compound-assignment expres­
sion such as 

expression} += expression2 

can be understood as 

expression} = expression} + expression2 

However, the compound-assignment expression is not equivalent to the 
expanded version because the compound-assignment expression evalu­
ates expression} only once, while the expanded version evaluates expres­
sion} twice: in the addition operation and in the assignment operation. 

The operands of a compound-assignment operator must be of integral or 
floating type. Each compound-assignment operator performs the conver­
sions that the corresponding binary operator performs and restricts the 
types of its operands accordingly. The addition-assignment (+=) and 
subtraction-assignment (-=) operators may also have a left operand of 
pointer type, in which case the right-hand operand must be of integral 
type. The result of a compound-assignment operation has the value and 
type of the left operand. 

Example 

In this example, a bitwise-inclusive-AND operation is performed on n and 
MASK, and the result is assigned to n. The manifest constant MASK is 
defined with a #define preprocessor directive (this directive is discussed 
in the section entitled "Manifest Constants and Macros" in Chapter 8). 

#define MASK OxffOO 

n &= MASK; 

5-36 C Language Reference 



Precedence and Order of Evaluation 

Precedence and Order of Evaluation 
The precedence and associativity of C operators affect the grouping and 
evaluation of operands in expressions. An operator's precedence is mean­
ingful only if other operators with higher or lower precedence are present. 
Expressions with higher-precedence operators are evaluated first. 

Table 5.1 summarizes the precedence and associativity of C operators, 
listing them in order of precedence from highest to lowest. Where several 
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity. 

Table 5.1 

Precedence and Associativity of C Operators 

Symbola Type of Operation Associativity 

() [] . -> Expression Left to right 

- - ! * & 
Unary b Right to left 

++ - - sizeof casts 

* I % Multiplicative Left to right 

+- Additive Left to right 

« » Shift Left to right 

< > <= >= Relational (inequality) Left to right 

-- != Relational (equality) Left to right 

& Bitwise AND Left to right 

Bitwise-exclusive OR Left to right 

Bitwise-inclusive OR Left to right 

&& Logical AND Left to right 

1/ Logical OR Left to right 

? : Conditional Right to left 

(Continued on next page) 

Expressions and Assignments 5-37 



Precedence and Order of Evaluation 

Table 5.1 

Precedence and Associativity ofC Operators (Continued) 

Symbola Type of Operation Associativity 

= *= 1= %= Simple and 
compound 
assignmentC 

Right to left 
+= -= «= »= 
&= 1= A= 

a 

b 

C 

Sequential evaluation Left to right 

Operators are listed in descending order of precedence. If 
several operators appear in the same line or in a large brace, 
they have equal precedence. 

All unary operators have equal precedence. 

All simple and compound-assignment operators have equal 
precedence. 

As Table 5.1 shows, operands consisting of a constant, an identifier, a 
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have the highest precedence and asso­
ciate from left to right. Type-cast conversions have the same precedence 
and associativity as the unary operators. 

An expression can contain several operators with equal precedence. 
When several such operators appear at the same level in an expression, 
evaluation proceeds according to the associativity of the operator, either 
from right to left or from left to right. The direction of evaluation does not 
affect the results of expressions that include more than one multiplication 
(*), addition (+), or binary-bitwise (& 1 A) operator at the same level. The 
compiler is free to evaluate such expressions in any order, even when 
parentheses in the expression appear to specify a particular order. Only 
the sequential-evaluation (,), logical-AND (&&), logical-OR (11), ternary 
(?:) and function-call operators constitute sequence points, and therefore 
guarantee a particular order of evaluation for their operands. The func­
tion-call operator is the set of parentheses following the function 
identifier. The sequential-evaluation operator (,) is guaranteed to evaluate 
its operands from left to right. (Note that the comma separating argu­
ments in a function call is not the same as the sequential-evaluation 
operator and does not provide any such guarantee.) Sequence points are 
discussed in the section entitled "Precedence and Order of Evaluation" 
later in this chapter. 

5-38 C Language Reference 



Precedence and Order of Evaluation 

The unary plus operator (+) is intended to force specific groupings in cer­
tain situations. It is implemented syntactically, but not semantically. For 
further information on unary operators, see the section earlier in this 
chapter entitled "Complement and Unary Plus Operators". 

Logical operators also guarantee evaluation of their operands from left to 
right. However, they evaluate the smallest number of operands needed to 
determine the result of the expression. Thus, some operands of the expres­
sion may not be evaluated. For example, in the expression x && y++, the 
second operand, y++, is evaluated only if x is true (nonzero). Thus, y is 
not incremented if x is false (0). 

The following list shows the default groupings for several sample expres­
sions: 

a&bllc (a&b)lIc 

a=bllc a=(bllc) 

q&&rlls-- (q&&r)lIs--

In the first expression, the bitwise-AND operator (&) has higher pre­
cedence than the logical-OR operator (11), so a & b forms the first operand 
of the logical-OR operation. 

In the second expression, the logical-OR operator (II) has higher pre­
cedence than the simple-assignment operator (=), so b II c is grouped as 
the right-hand operand in the assignment. Note that the value assigned to 
a is either 0 or 1. 

The third expression shows a correctly formed expression that may pro­
duce an unexpected result. The logical-AND operator (&&) has higher 
precedence than the logical-OR operator <II), so q && r is grouped as an 
operand. Since the logical operators guarantee evaluation of operands 
from left to right, q && r is evaluated before s--. However, if q && r 
evaluates to a nonzero value, s-- is not evaluated, and s is not decre­
mented. To correct this problem, s-- should appear as the first operand of 
the expression, or s should be decremented in a separate operation. 

The following expression is illegal and produces a diagnostic message at 
compile time: 

p = = 0 ? p += 1: p += 2 (p==0?p+=1 :p)+=2 

In this expression, the equality operator (==) has the highest precedence, 
so p == 0 is grouped as an operand. The ternary operator (? :) has the 
next-highest precedence. Its first operand is p == 0, and its second 
operand is p += 1. However, the last operand of the ternary operator is 

Expressions and Assignments 5-39 



Precedence and Order of Evaluation 

considered to be p rather than p += 2, since this occurrence of p bind~ 
more closely to the ternary operator than it does to the compound· 
assignment operator. A syntax error occurs because += 2 does not have I 

left-hand operand. You should use parentheses to prevent errors of thi~ 
kind and produce more readable code. For example, you could USt 
parentheses as shown to correct and clarify the preceding example: 

(p == 0) ? (p += 1) : (p += 2) 

5-40 C Language Referenct 



Type Conversions 

Type Conversions 
Type conversions are performed in the following cases: 

• When a value of one type is assigned to a variable of a different 
type 

• When a value of one type is explicitly cast to a different type 

• When an operator converts the type of its operand or operands 
before performing an operation 

• When a value is passed as an argument to a function 

The rules for each kind of conversion are outlined later in this section. 

Assignment Conversions 

In assignment operations, the type of the value being assigned is con­
verted to the type of the variable that receives the assignment. C allows 
conversions by assignment between integral and floating types, even if in­
formation is lost in the conversion. The conversion methods used depend 
on the types involved in the assignment, as described elsewhere in this 
section as well as in the section named "Usual Arithmetic Conversion" 
to be found in the section entitled "C Operators" earlier in this chapter. 

Conversions from Signed Integral Types 

A signed integer is converted to a shorter signed integer by truncating the 
high-order bits, and to a longer signed integer by sign extension. 

When a signed integer is converted to an unsigned integer, the signed 
integer is converted to the size of the unsigned integer, and the result is 
interpreted as an unsigned value. 

No information is lost when a signed integer is converted to a floating 
value, except that some precision may be lost when a long int or 
unsigned long int value is converted to a Ooat value. 

Expressions and Assignments 5-41 



Type Conversions 

Table 5.2 summarizes conversions from signed integral types. This table 
assumes that the char type is signed by default. If you use a compile-time 
option to change the default for the char type to unsigned, the conver­
sions given in Table 5.3 for the unsigned char type apply instead of the 
conversions in Table 5.2. 

Table 5.2 

Conversions from Signed Integral Types 

From To Method 

chara short Sign extend 

char long Sign extend 

char unsigned char Preserve pattern; high-order bit loses 
function as sign bit 

char unsigned short Sign extend to short; convert short to 
unsigned short 

char unsigned long Sign extend to long; convert long to 
unsigned long 

char float Sign extend to long; convert long to 
float 

char double Sign extend to long; convert long to 
double 

char long double Sign extend to long; convert long to 
double 

short char Preserve low-order byte 

short long Sign extend 

short unsigned char Preserve low-order byte 

short unsigned short Preserve bit pattern; high-order bit loses 
function as sign bit 

short unsigned long Sign extend to long; convert long to 
unsigned long 

short float Sign extend to long; convert long to 
float 

(Continued on next page) 

5-42 C Language Reference 



From 
short 

short 

long 

long 

long 

long 

long 

long 

long 

long 

Note 

Type Conversions 

Table 5.2 

Conversions from Signed Integral Types (Continued) 

To 
double 

long double 

char 

short 

unsigned char 

unsigned short 

unsigned long 

float 

double 

long double 

Method 
Sign extend to long; convert long to 
double 

Sign extend to long; convert long to 
double 

Preserve low-order byte 

Preserve low-order word 

Preserve low-order byte 

Preserve low-order word 

Preserve bit pattern; high-order bit loses 
function as sign bit 

Represent as float. If long cannot be 
represented exactly, some precision is 
lost. 

Represent as double. If long cannot be 
represented exactly as a double, some 
precision is lost. 

Represent as double. If long cannot be 
represented exactly as a double, some 
precision is lost. 

All char entries assume that the char type is signed by 
default. 

The int type is equivalent to either the short type or the long type, 
depending on the implementation. Conversion of an int value 
proceeds the same as for a short or a long, whichever is appropriate. 

Expressions and Assignments 5-43 



Type Conversions 

Conversions from Unsigned Integral Types 

An unsigned integer is converted to a shorter unsigned or signed integer 
by truncating the high-order bits, or to a longer unsigned or signed integer 
by zero extending. 

When an unsigned integer is converted to a signed integer of the same 
size, the bit pattern does not change. However, the value it represents 
changes if the sign bit is set. 

Unsigned integer values are converted to floating values by first convert­
ing the unsigned integer value to a signed long value, then converting that 
signed long value to a floating value. 

Table 5.3 summarizes conversions from unsigned integral types. 

Table 5.3 

Conversions from Unsigned Integral Types 

From To Method 

unsigned char char Preserve bit pattern; high-order bi 
becomes sign bit 

unsigned char short Zero extend 

unsigned char long Zero extend 

unsigned char unsigned short Zero extend 

unsigned char unsigned long Zero extend 

unsigned char float Convert to long; convert long t( 
float 

unsigned char double Convert to long; convert long t( 
double 

unsigned char long double Convert to long; convert long t( 
double 

unsigned short char Preserve low-order byte 

unsigned short short Preserve bit pattern; high-order bi 
becomes sign bit 

(Continued on next page 

5-44 C Language Reference 



Type Conversions 

Table 5.3 

Conversions from Unsigned Integral Types (Continued) 

From To Method 

unsigned short long Zero extend 

unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero extend 

unsigned short float Convert to long; convert long to 
float 

unsigned short double Convert to long; convert long to 
double 

unsigned short long double Convert to long; convert long to 
double 

unsigned long char Preserve low-order byte 

unsigned long short Preserve low-order word 

unsigned long long Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned long unsigned char Preserve low-order byte 

unsigned long unsigned short Preserve low-order word 

unsigned long float Convert to long; convert long to 
float 

unsigned long double Convert to long; convert long to 
double 

unsigned long long double Convert to long; convert long to 
double 

Expressions and Assignments 5-45 



Type Conversions 

Note 

The unsigned int type is equivalent either to the unsigned short 
type or to the unsigned long type, depending on the implementa­
tion. Conversion of an unsigned int value proceeds in the same 
way as conversion of an unsigned short or an unsigned long, 
whichever is appropriate. 

Conversions from unsigned long values to 80at, double, or long 
double are not accurate if the value being converted is larger than 
the maximum positive long value. 

Conversions from Floating-Point Types 

A 80at value converted to a double value undergoes no change in value 
A donble value converted to a 80at value is represented exactly, if possi­
ble. Precision may be lost if the value cannot be represented exactly. 

A floating value is converted to an integral value by first converting to 1 

long, then from the long value to the specific integral value, as describe, 
in Table 5.4. The decimal portion of the floating value is discarded in th( 
conversion to a long; if the result is still too large to fit into a long, th( 
result of the conversion is undefined. 

Table 5.4 summarizes conversions from floating types. 

From 

80at 

80at 

80at 

5-46 

Table 5.4 

Conversions from Floating-Point Types 

To 

char 

short 

long 

Method 

Convert to long; convert long to char 

Convert to long; convert long to short 

Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 

(Continued on next page) 

C Language Referenc( 



Type Conversions 

Table 5.4 

Conversions from Floating-Point Types (Continued) 

From To Method 
float unsigned short Convert to long; convert long to 

unsigned short 

float unsigned long Convert to long; convert long to 
unsigned long 

float double Change internal representation 

float long double Change internal representation 

double char Convert to float; convert float to char 

double short Convert to float; convert float to short 

double long Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 

dOUble unsigned short Convert to long; convert long to 
unsigned short 

double unsigned long Convert to long; convert long to 
unsigned long 

double float Represent as a float. If double value 
cannot be represented exactly as float, 
loss of precision occurs. If value is too 
large to be represented as float, the 
result is undefined. 

long double char Convert to float; convert float to char 

long double short Convert to float; convert float to short 

long double long Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 

long double unsigned short Convert to long; convert long to 
unsigned short 

(Continued on next page) 

Expressions and Assignments 5-47 



Type Conversions 

Table 5.4 

Conversions from Floating-Point Types (Continued) 

From To Method 

long double unsigned long Convert to long; convert long to 
unsigned long 

long double float Represent as a float. If double value 
cannot be represented exactly as 
float, loss of precision occurs. If 
value is too large to be represented as 
float, the result is undefined. 

long double double The long double value is treated as 
double. 

Note 

Conversions from float, double, or long double values to unsigned 
long are not accurate if the value being converted is larger than the 
maximum positive long value. 

Conversions to and from Pointer Types 

A pointer to one type of value can be converted to a pointer to a different 
type. However, the result may be undefined because of the alignment 
requirements and sizes of different types in storage. 

A pointer to void may be converted to or from a pointer to any type, 
without restriction. 

In some implementations, you can use the special keywords near, far, 
and huge to change the size of pointers within a program. The conversion 
path depends on your implementation. For example, on an 8086 pro­
cessor, the compiler might use a segment-register value to convert a 16-
bit pointer to a 32-bit pointer. For infonnation about pointer conversions, 
see your compiler guide. 

A pointer value can also be converted to an integral value. The conver­
sion path depends on the size of the pointer and the size of the integral 
type, according to the following rules: 

5-48 C Language Reference 



Type Conversions 

• If the size of the pointer is greater than or equal to the size of the 
integral type, the pointer behaves like an unsigned value in the 
conversion, except that it cannot be converted to a floating value. 

• If the pointer is smaller than the integral type, the pointer is first 
converted to a pointer with the same size as the integral type, then 
converted to the integral type. The implementation determines 
how a pointer is converted to a longer pointer, for information 
about pointer conversions, see your compiler guide. 

Conversely, an integral type can be converted to a pointer type according 
to the following rules: 

• If the integral type is the same size as the pointer type, the conver­
sion simply causes the integral value to be treated as a pointer (an 
unsigned integer). 

• If the size of the integral type is different from the size of the 
pointer type, the integral type is first converted to the size of the 
pointer, using the conversion paths given in Tables 5.2 and 5.3. It is 
then treated as a pointer value. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may be made on pointer values. In particular, the compiler 
may make assumptions about the default size of pointers and convert 
passed pointer values accordingly, unless a forward declaration is present 
to override the implicit conversion. For information about pointer conver­
sions, see your compiler guide. 

Conversions from Other Types 

Since an enum value is an int value by definition, conversions to and 
from an enum value are the same as those for the int type. An int is 
equivalent to either a short or a long, depending on the implementation. 

No conversions between structure or union types are allowed. 

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, and other types cannot be converted to void by 
assignment. However, you can explicitly cast a value to void type, as dis­
cussed in the next section, "Type-Cast Conversions". 

Expressions and Assignments 5-49 



Type Conversions 

Type-Cast Conversions 

You can use type casts to explicitly convert types. A type cast has the 
form 

(type-name )operand 

where type-name is a type and operand is a value to be converted to that 
type. 

The operand is converted as though it had been assigned to a variable of 
type-name type. The conversion rules for assignments (outlined in the 
section entitled "Assignment Conversions") apply to type casts as well. 

You can use the type name void in a cast operation, but you cannot assign 
the resulting expression to any item. 

Operator Conversions 

The conversions performed by C operators depend on the operator and on 
the type of the operand or operands. Many operators perform the usual 
arithmetic conversions, outlined in the section entitled "Usual Arithmetic 
Conversions" earlier in this chapter. 

C permits some arithmetic with pointers. In pointer arithmetic, integer 
values are converted to express memory positions. (For more information, 
see the discussion of additive operators in the section entitled "C Opera­
tors" and the discussion of subscript expressions in the section entitled 
"Introduction" earlier in this chapter.) 

Function-Call Conversions 

The type of conversion performed on the arguments in a function call 
depends on the presence of a function prototype (forward declaration) 
with declared argument types for the called function. 

If a function prototype is present and includes declared argument types, 
the compiler performs type checking. The type-checking process is out­
lined in detail in the chapter on "Functions." 

If no function prototype is present, or if an old-style forward declaration 
omits the argument-type list, only the usual arithmetic conversions are 
performed on the arguments in the function call. These conversions are 
performed independently on each argument in the call. This means that a 

5-50 C Language Reference 



Type Conversions 

float value is converted to a double; a char or short value is converted to 
an int; and an unsigned char or unsigned short is converted to an 
unsigned int. 

If the special keywords near, far, and huge are implemented, implicit 
conversions can also be made on pointer values passed to functions. You 
can override these implicit conversions by providing function prototypes 
to let the compiler perform type checking. For information about pointer 
conversions, see your compiler guide. 

Expressions and Assignments 5-51 





Chapter 6 

Statements 

Introduction 6-1 

The break Statement 6-3 

The Compound Statement 6-4 

The continue Statement 6-5 

The do Statement 6-6 

The Expression Statement 6-7 

The for Statement 6-9 

The goto and Labeled Statements 6-11 

The if Statement 6-13 

The Null Statement 6-15 

The return Statement 6-16 

The switch Statement 6-18 

The while Statement 6-21 





Introduction 

Introduction 
The statements of a C program control the flow of program execution. In 
C, as in other programming languages, several kinds of statements are 
available to perform loops, to select other statements to be executed, and 
to transfer control. This chapter describes C statements in alphabetical 
order, as follows: 

break statement 

compound statement 

continue statement 

do statement 

expression statement 

for statement 

goto and labeled statements 

if statement 

null statement 

return statement 

switch statement 

while statement 

C statements consist of keywords, expressions, and other statements. The 
following keywords appear in C statements: 

break 
case 
continue 

default 
do 
else 

for 
goto 
if 

return 
switch 
while 

The expressions in C statements are the expressions discussed in the 
"Expressions and Assignments" chapter. Statements appearing within C 
statements may be any of the statements discussed in this chapter. A 
statement that forms a component of another statement is called the 
"body" of the enclosing statement. Frequently the statement body is a 
"compound" statement: a single statement composed of one or more 
statements. 

The compound statement is delimited by braces ({ }); all other C state­
ments end with a semicolon(;). 

Any C statement may begin with an identifying label consisting of a 
name and a colon. Since only the goto statement recognizes statement 
labels, statement labels are described along with the goto statement in the 
section entitled "The goto and Labeled Statements". 

Statements 6-1 



Introduction 

When a C program is executed, its statements are executed in the order in 
which they appear in the program, except where a statement explicitly 
transfers control to another location. 

6-2 C Language Reference 



The break Statement 

The break Statement 
Syntax 

break; 

Execution 

The break statement terminates the execution of the smallest enclosing 
do, for, switch, or while statement in which it appears. Control passes to 
the statement that follows the terminated statement. A break statement 
can appear only within a do, for, switch, or while statement. 

Within nested statements, the break statement terminates only the do, 
for, switch, or while statement that immediately encloses it. You can use 
a return or goto statement to transfer control out of the nested structure. 

Example 

This example processes an array of variable-length strings stored in lines. 
The break statement causes an exit from the interior for loop after the 
terminating null character (,\0') of each string is found and its position is 
stored in lengths[iJ. Control then returns to the outer for loop. The vari­
able i is incremented and the process is repeated until i is greater than or 
equal to LENGTH. 

for (i = 0; i < LENGTH; i++) { 
for (j = 0; j < WIDTH; j++) { 

if (lines[i] [j] == '\0') 
lengths[i] = j; 
break; 

Statements 6-3 



The Compound Statement 

The Compound Statement 
Syntax 

{ 
[declaration] 

statement 
[statement] 

Execution 

A compound statement typically appears as the body of another state­
ment, such as the if statement. When a compound statement is executed, 
its statements are executed in the order in which they appear, except 
where a statement explicitly transfers control to another location. The 
"Declarations" chapter describes the form and meaning of the declara­
tions that can appear at the head of a compound statement. 

Like other C statements, any of the statements in a compound statement 
can carry a label. Labeled statements are discussed in the section entitled 
"The goto and Labeled Statements" later in this chapter. 

Example 

In this example, if i is greater than 0, all of the statements in the com­
pound statement are executed in order. 

if (i > 0) { 
line [iJ x; 
X++i 
i--; 

6-4 C Language Reference 



The continue Statement 

The continue Statement 
Syntax 

continue; 

Execution 

The continue statement passes control to the next iteration of the do, for, 
or while statement in which it appears, bypassing any remaining state­
ments in the do, for, or while statement body. The next iteration of a do, 
for, or while statement is determined as follows: 

• Within a do or a While statement, the next iteration starts by re­
evaluating the expression of the do or while statement. 

• Within a for statement, the next iteration starts by evaluating the 
loop expression of the for statement. Then it evaluates the condi­
tional expression and, depending on the result, either terminates or 
iterates the statement body. (The for statement is discussed in the 
section entitled "The for Statement" later in this chaper.) 

Example 

In this example, the statement body is executed if i is greater than O. First 
f(i) is assigned to x; then, if x is equal to 1, the continue statement is exe­
cuted. The rest of the statements in the body are ignored, and execution 
resumes at the top of the loop with the evaluation of i-- > O. 

while (i-- > 0) { 
x = f(i); 
if (x == 1) 

continue; 
y += x * x; 

Statements 6-5 



The do Statement 

The do Statement 
Syntax 

do 
statement 

while (expression); 

Execution 

The body of a do statement is executed one or more times until expres­
sion becomes false (0). Execution proceeds as follows: 

1. The statement body is executed. 

2. The expression is evaluated. If expression is false, the do state­
ment terminates and control passes to the next statement in the 
program. If expression is true (nonzero), the process is repeated, 
beginning with step 1. 

The do statement may also terminate when a break, goto, or return 
statement is executed within the statement body. 

Example 

In this do statement, the two statements y = f(x); and x-; are executed, 
regardless of the initial value of x. Then x > 0 is evaluated. If x is greater 
than 0, the statement body is executed again and x > 0 is reevaluated. The 
statement body is executed repeatedly as long as x remains greater than O. 
Execution of the do statement terminates when x becomes 0 or negative. 
The body of the loop is executed at least once. 

do { 
y = f(x); 
x--; 

) while (x > 0); 

6-6 C Language Reference 



The Expression Statement 

The Expression Statement 
Syntax 

expression; 

Execution 

When an expression statement is executed, the expression is evaluated 
according to the rules outlined in the "Expressions and Assignments" 
chapter. 

In C, assignments are expressions. The value of the expression is the 
value being assigned (sometimes called the "right-hand value"). 

Function calls are also considered expressions. The value of the expres­
sion is the value, if any, returned by the function. If a function returns a 
value, the expression statement usually includes an assignment to store 
the returned value when the function is called. The value returned by the 
function is usually used as an operand in another expression. If the value 
is to be used more than once, it can be assigned to another variable. If the 
value is neither used as an operand nor assigned, the function is called but 
the return value, if any, is not used. 

Example 1 

In this example, x is assigned the value of y + 3. 

x = (y + 3); 

Example 2 

In this example, x is incremented. 

x++; 

Statements 6-7 



The Expression Statement 

Example 3 

This example shows a function-call expression. The value of the expres· 
sion, which includes any value returned by the function, is assigned to the 
variable z. 

z = f (xl + 3; 

6-8 C Language Reference 



The for Statement 

The for Statement 
Syntax 

for ( [init-expression ]; [cond-expression ]; [loop-expression] ) 
statement 

Execution 

The body of a for statement is executed zero or more times until the 
optional cond-expression becomes false. You can use the optional init­
expression and loop-expression to initialize and change values during the 
for statement's execution. 

Execution of a for statement proceeds as follows: 

1. The init-expression, if any, is evaluated. 

2. The cond-expression, if any, is evaluated. Three results are possi­
ble: 

• If cond-expression is true (nonzero), statement is executed; 
then loop-expression, if any, is evaluated. The process then 
begins again with the evaluation of cond-expression. 

• If cond-expression is omitted, cond-expression is con­
sidered true, and execution proceeds exactly as described 
for case a. A for statement without a cond-expression argu­
ment terminates only when a break or return statement 
within the statement body is executed, or when a goto (to a 
labeled statement outside the for statement body) is exe­
cuted. 

• If cond-expression is false, execution of the for statement 
terminates and control passes to the next statement in the 
program. 

A for statement also terminates when a break, goto, or return statement 
within the statement body is executed. 

Statements 6-9 



The for Statement 

Example 

This example counts space ( '\x20' ) and tab ( '\t' ) characters in the array 
of characters named line and replaces each tab character with a space. 
First i, space, and tab are initialized to O. Then i is compared with the 
constant MAX; if i is less than MAX, the statement body is executed. 
Depending on the value of line [ i ], the body of one or neither of the if 
statements is executed. Then i is incremented and tested against MAX; the 
statement body is executed repeatedly as long as i is less than MAX. 

for (i = space = tab = 0; i < MAX; i++) { 
if (line[i] == , ') 

6-10 

space++; 
if (line[i] == '\t') 

tab++; 
line[il = ' '; 

C Language Reference 



The goto and Labeled Statements 

The go to and Labeled Statements 
Syntax 

gotoname; 

name: statement 

Execution 

The goto statement transfers control directly to the statement that has 
name as its label. The labeled statement is executed immediately after the 
goto statement is executed. A statement with the given label must reside 
in the same function, and the given label can appear before only one 
statement in the same function. 

A statement label is meaningful only to a goto statement; in any other 
context, a labeled statement is executed without regard to the label. 

A label name is simply an identifier. (The section entitled "Identifiers" in 
Chapter 2 describes the rules that govern the construction of identifiers.) 
Each statement label must be distinct from other statement labels in the 
same function. 

Like other C statements, any of the statements in a compound statement 
can carry a label. Thus, you can use a goto statement to transfer into a 
compound statement. However, transferring into a compound statement is 
dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable 
statement within the compound statement bypasses the initializations. 
The results are undefined. 

Statements 6-11 



The goto and Labeled Statements 

Example 

In this example, a goto statement transfers control to the point labeled 
exit if an error occurs. 

if (errorcode > 0) 
goto exit; 

exit: 
return (errorcode); 

6-12 C Language Reference 



The if Statement 
Syntax 

if (expression) 
statement} 

[ else 
statement2 ] 

Execution 

The if Statement 

The body of an if statement is executed selectively, depending on the 
value of expression, described as follows: 

1. The expression is evaluated. 

• If expression is true (nonzero), statement} is executed. 

• If expression is false, statement2 is executed. 

• If expression is false and the else clause is omitted, 
statementl is ignored. 

2. Control passes from the if statement to the next statement in 
the program. 

Example 1 

In this example, the statement y == xli; is executed if i is greater than O. If i 
is less than or equal to 0, i is assigned to x andf(x) is assigned to y. Note 
that the statement forming the if clause ends with a semicolon. 

if (i > 0) 
Y xli; 

else { 
x = i; 
y f(x) ; 

Statements 6-13 



The if Statement 

Note 

C does not offer an "else if" statement, but you can achieve the 
same effect by nesting if statements. An if statement can be nested 
within either the if clause or the else clause of another if statement. 

When nesting if statements and else clauses, use braces to group the 
statements and clauses into compound statements that clarify your 
intent. If no braces are present, the compiler resolves ambiguities by 
pairing each else with the most recent if lacking an else. 

Example 2 

In this example, the else clause is associated with the inner if statement. 
If i is less than or equal to 0, no value is assigned to x. 

if (i > 0) /* Without braces */ 
if (j > i) 

x = j; 
else 

x = i; 

Example 3 

In this example, the braces surrounding the inner if statement make the 
else clause part of the outer if statement. If i is less than or equal to 0, i is 
assigned to x. 

6-14 

if (i > 0) { 

else 

if (j > i) 
x = j; 

x = i; 

/* With braces */ 

C Language Reference 



The Null Statement 

The Null Statement 
Syntax 

Execution 

A "null statement" is a statement containing only a semicolon; it may 
appear wherever a statement is expected. Nothing happens when a null 
statement is executed. 

Statements such as do, for, if, and while require that an executable state­
ment appear as the statement body. The null statement satisfies the syntax 
requirement in cases that do not need a substantive statement body. 

As with any other C statement, you can include a label before a null state­
ment. To label an item that is not a statement, such as the closing brace of 
a compound statement, you can label a null statement and insert it 
immediately before the item to get the same effect. 

Example 

In this example, the loop expression of the for statement line[i++j=O ini­
tializes the first 10 elements of line to O. The statement body is a null 
statement, since no further statements are necessary. 

for (i = 0; i < 10; line[i++] = 0) 

Statements 6-15 



The return Statement 

The return Statement 
Syntax 

return [expression]; 

Execution 

The return statement tenninates the execution of the function in which it 
appears and returns control to the calling function. Execution resumes in 
the calling function at the point immediately following the call. The 
value of expression, if present, is returned to the calling function. If 
expression is omitted, the return value of the function is undefined. 

By convention, parentheses enclose the expression argument of the 
return statement. However, C does not require the parentheses. 

If no return statement appears in a function definition, control automati­
cally returns to the calling function after the last statement of the called 
function is executed. The return value of the called function is undefined. 
If a return value is not required, declare the function to have void return 
type. 

Example 

In this example, the main function calls two functions: sq and draw. The 
sq function returns the value of x * x to main, where the return value is 
assigned to y. The draw function is declared as a void function and does 
not return a value. An attempt to assign the return value of draw would 
cause a diagnostic message to be issued. 

6-16 C Language Reference 



main() 
( 

void draw(int,int); 
long sq(int); 

y = sq(x); 
draw(x, y); 

long sq(x) 
int x; 
{ 

return (x * x); 

void draw(x,y) 
int x, Yi 
{ 

return; 

Statements 

The return Statement 

6-17 



The switch Statement 

The switch Statement 
Syntax 

switch (expression) { 
[declaration] 

[case constant-expression :] 

[statement] 

[default : 
[statement] ] 

Execution 

The switch statement transfers control to a statement within its body. 
Control passes to the statement whose case constant-expression matches 
the value of switch expression. The switch statement may include any 
number of case instances. Execution of the statement body begins at the 
selected statement and proceeds until the end of the body or until a state­
ment transfers control out of the body. 

The default statement is executed if no case constant-expression is equal 
to the value of switch expression. If the default statement is omitted, and 
no case match is found, none of the statements in the switch body is exe­
cuted. The default statement need not come at the end; it can appear any­
where in the body of the switch statement. 

The type of switch expression must be integral, but the resulting value is 
converted to into Each case constant-expression is then converted using 
the usual arithmetic conversions. The value of each case constant­
expression must be unique within the statement body. If the type of 
switch expression is larger than int, a diagnostic message is issued. 

6-18 C Language Reference 



The switch Statement 

The case and default labels of the switch statement body are significant 
only in the initial test that detennines where execution starts in the state­
ment body. All statements between the statement where execution starts 
and the end of the body are executed regardless of their labels, unless a 
statement transfers control out of the body entirely. 

Note 

Declarations can appear at the head of the compound statement 
fonning the switch body, but initializations included in the declara­
tions are not perfonned. The switch statement transfers control 
directly to an executable statement within the body, bypassing the 
lines that contain initializations. 

Example 1 

In this example, all three statements of the switch body are executed if c 
is equal to 'A'. Execution control is transferred to the first statement 
(capa++;) and continues in order through the rest of the body. If c is 
equal to lettera and total are incremented. Only total is incremented if c 
is not equal to or 

switch (c) 

Statements 

case 'A': 
capa++; 

case 'a': 
lettera++; 

default : 
total++; 

6-19 



The switch Statement 

Example 2 

In this example, a break statement follows each statement of the switch 
body. The break statement forces an exit from the statement body after 
one statement is executed. If i is equal to -1, only n is incremented. The 
break following the statement n++; causes execution control to pass out 
of the statement body, bypassing the remaining statements. Similarly, if j 
is equal to 0, only z is incremented; if j is equal to 1, only p is incre­
mented. The final break statement is not strictly necessary, since control 
passes out of the body at the end of the compound statement, but it is 
included for consistency. 

switch (i) { 

Multiple Labels 

case -1: 
n++; 
break; 

case 0 : 
z++; 
break; 

case 1 : 
p++; 
break; 

A single statement can carry mUltiple case labels, as the following exam­
ple shows: 

case 'a' 
case 'b' 
case 'c' 
case 'd' 
case 'e' 
case 'f' hexcvt (c) ; 

Although you can label any statement within the body of the switch state­
ment, no statement is required to carry a label. You can freely intermingle 
statements with and without labels. Keep in mind, however, that once the 
switch statement passes control to a statement within the body, all fol­
lowing statements in the block are executed, regardless of their labels. 

6-20 C Language Reference 



The while Statement 
Syntax 

while (expression) 
statement 

Execution 

The while Statement 

The body of a while statement is executed zero or more times until 
expression becomes false (0). Execution proceeds as follows: 

1. The expression is evaluated. 

2. If expression is initially false, the body of the while statement is 
never executed, and control passes from the while statement to the 
next statement in the program. 

If expression is true (nonzero), the body of the statement is exe­
cuted and the process is repeated beginning at step 1. 

The while statement may also tenninate when a break, goto, or return 
within the statement body is executed. 

Example 

This example copies characters from string2 to stringl. If i is greater than 
or equal to 0, string2[iJ is assigned to stringl[i] and i is decremented. 
When i reaches or falls below 0, execution of the while statement ter­
minates. 

while (i >= 0) { 

Statements 

stringl[i] string2[i]; 
i--; 

6-21 





=:hapter 7 

[functions 

rrtroduction 7-1 

1unction Definitions 7-3 
Storage Class 7-4 
Return Type and Function Name 7-5 
Fonnal Parameters 7-7 
Function Body 7-11 

unction Prototypes (Declarations) 7-13 

unction Calls 7 -16 
Actual Arguments 7-19 
Calls with a Variable Number of Arguments 7-22 
Recursive Calls 7-23 





Introduction 

Introduction 
A function is an independent collection of declarations and statements, 
usually designed to perform a specific task. C programs have at least one 
function, the main function, and they may have other functions. This 
chapter describes how to define, declare, and call C functions. 

A function definition specifies the name of the function, the types and 
number of its formal parameters, and the declarations and statements that 
determine what it does. These declarations and statements are called the 
"function body." The function definition also gives the function's return 
type and its storage class. If the return type and storage class are not 
stated explicitly, they default to int and extern, respectively. 

A function prototype (or declaration) establishes the name, return type, 
and storage class of a function fully defined elsewhere in the program. It 
can also include declarations giving the types and number of the func­
tion's formal parameters. The formal parameter declarations can name the 
formal parameters, although such names go out of scope at the end of the 
declaration. The storage class register can also be specified for a formal 
parameter. 

Example 

This example contrasts the concise and clear prototype declaration and 
definition formats, and illustrates that the function prototype has the same 
form as the function definition except that the prototype ends with a semi­
colon instead of a function body. 

The compiler uses the prototype or declaration to compare the types of 
actual arguments in subsequent calls to the function with the function's 
formal parameters, even in the absence of an explicit definition of the 
function. Explicit prototypes and declarations are optional for functions 
whose return type is int. However, to ensure correct behavior, you must 
declare or define functions with other return types before calling them. 
(Function prototype declarations are discussed further in "Function 
Definitions (Prototypes)" later in this chapter and in the "Declarations" 
chapter.) 

If no prototype or declaration is provided, a default prototype is created 
from whatever information accompanies the first reference to the function 
name, whether that reference occurs in a call or a definition. However, 
such a default prototype may not adequately represent a subsequent 
definition of, or call to, the function. 

Functions 7-1 



Introduction 

A function "call" passes execution control from the calling function to 
the called function. The actual arguments, if any, are passed by value to 
the called function. Execution of a return statement in the called func­
tion returns control and possibly a value to the calling function. 

Note 

The use of function prototypes is strongly recommended. Some­
times they provide the only basis on which the compiler can enforce 
correct argument passing. Prototypes let the compiler either diag­
nose, or handle correctly, argument mismatches that would other­
wise be undetectable until program execution. 

The Microsoft C Compiler can generate function prototypes auto­
matically from program source files. These can then be stored in a 
file that can be included in the compilation of the program. See your 
compiler guide for more information. 

/** Prototype-Style Function Declarations and Definitions **/ 

double new_style(int a, double *x); /* Function 
Prototype * / 

double alt_style (int, double *); /* Alternative 
Prototype form */ 

double old_style (); /* Cbsolete 
* fonn of function 
* declaration 

*/ 
double new style(int a, double *real) /* Prototype-style */ 

{ - /* Function */ 
return (*real + a) /* Definition */ 

double alt style(a , real) 
d01lble *real ; 
int a ; 

return (*real + a) 

/* Old Form of */ 
/* Function * / 
/* Definition * / 

C Language Reference 



Function Definitions 

Function Definitions 

Syntax 

[sc-specifier][type-specifier] declarator (fformal-parameter-list]) 
Junction-body 

A "function definition" specifies the name, formal parameters, and body 
of a function. It can also stipulate the function's return type and storage 
class. 

The optional sc-specifier gives the function's storage class, which must be 
either static or extern. 

The optional type-specifier and mandatory declarator together specify the 
function's return type and name. The declarator is a combination of the 
identifier that names the function and the parentheses following the func­
tion name. 

The Jormal-parameter-list is a sequence of formal parameter declarations 
separated by commas. The following syntax illustrates the form of each 
formal parameter in a formal parameter list. 

[register] type-specifier [declarator] 
[, ... ] 

The formal parameter list contains declarations for the function's parame­
ters. If no arguments are to be passed to the function, the list should con­
tain the keyword void. The empty parentheses form «» can be used, but 
is obsolete and, if used, conveys no information about whether arguments 
will be passed. The formal parameter list can be full or partial. The 
second line of the syntax above shows the "ellipsis notation," a comma 
followed by three periods (, ... ). A partial formal parameter list can be ter­
minated by the ellipsis notation to indicate that there may be more argu­
ments passed to the function, but no more information is given about 
them. Type checking is not performed on such arguments. At least one 
formal parameter must precede the ellipsis notation and the ellipsis nota­
tion must be the last token in the formal parameter list. Without the 
ellipsis notation, the behavior of a function is undefined if it receives 
parameters in addition to those declared in the formal parameter list. 

Functions 7-3 



Function Definitions 

When a prototype is available, argument checking and conversion are au­
tomatically petiormed. If no information is given concerning the formal 
parameters, any undeclared arguments simply undergo the usual arith­
metic conversions. 

The type-specifier can be omitted only if register storage class is 
specified for a value of int type. 

The function-body is a compound statement containing local variable 
declarations, references to externally declared items, and statements. 

Note 

The old forms for function declaration and definition are still sup­
ported, but considered obsolete. Use of the prototype form is recom­
mended in new code. The old function-definition form is 
represented in the following syntax: 

[sc-specifier][ type-specifier] declarator ( [identifier-list] ) 
[parameter-declarations] 
function-body 

The identifier-list is an optional list of identifiers that the function 
will use as the names of formal parameters. The parameter­
declaration arguments establish the types of the formal parameters. 

The section entitled "Function Definitions" later in this chapter. 
describes the parts of a function definition in detail. 

Storage Class 

The storage-class specifier in a function definition gives the function 
either extern or static storage class. If a function definition does not 
include a storage-class specifier, the storage class defaults to extern. You 
can explicitly give the extern storage-class specifier in a function 
definition, but it is not required. 

A function with static storage class is visible only in the source file in 
which it is defined. All other functions, whether they are given extern 
storage class explicitly or implicitly, are visible throughout all the source 
files that make up the program. 

7-4 C Language Reference 



Function Definitions 

If static storage class is desired, it must be declared on the first occur­
rence of a declaration (if any) of the function, and on the definition of the 
function. 

Note 

A Microsoft extension to the ANSI C standard offers some latitude 
on functions declared without a storage-class specifier. When the 
extensions are enabled, a function originally declared without a 
storage class (or with extern storage class) is given static storage 
class if the function definition is in the same source file and explic­
itly specifies static storage class. For information on enabling and 
disabling extensions, see your compiler guide. 

Return Type and Function Name 

Syntax 

[sc-specifier ] [type-specifier] declarator <rtormal-parameter-!ist]) 

The return type of a function establishes the size and type of the value 
returned by the function and corresponds to type-specifier in the syntax 
above. The type-specifier can specify any fundamental, structure, or union 
type. If you do not include type-specifier, the return type int is assumed. 

The declarator is the function identifier, which may be modified to a 
pointer type. The parentheses following the identifier establish the item as 
a function. Functions cannot return arrays or functions, but they can 
return pointers to any type, including arrays and functions. 

The return type given in the function definition must match the return 
type in declarations of the function elsewhere in the program. You need 
not declare functions with int return type before you call them, although 
prototypes are recommended so that correct argument checking will be 
enabled. However, functions with other return types must be defined or 
declared before they are called. 

Functions 7-5 



Function Definitions 

A function's return type is used only when the function returns a value. A 
function returns a value when a return statement containing an expres­
sion is executed. The expression is evaluated, converted to the return 
value type if necessary, and returned to the point at which the function 
was called. If no return statement is executed, or if the return statement 
does not contain an expression, the return value is undefined. If the cal­
ling function expects a return value, the behavior of the program is also 
undefined. 

Example 1 

In this example, the return type of add is int by default. The function has 
static storage class, which means that only functions in the same source 
file can call it. The formal parameters declared in the header include one 
int value, x, for which register storage is requested, and a second int 
value, y. The second function, subtract, is defined in the old form. Its 
return type is int by default. The formal parameters are declared between 
the header and the opening brace. 

/* prototype-style definition: */ 

static add (register x, int y) 
{ 

return (x+y); 

/* old-style definition: */ 

subtract (x , y) 
int x, y; 

return (x-y); 
} 

Example 2 

This example defines the STUDENT type with a typedef declaration and 
defines the function sortstu to have STUDENT return type. The function 
selects and returns one of its two structure arguments. This prototype­
style definition has the formal parameters declared in the header. In sub­
sequent calls to the function, the compiler checks to make sure the argu­
ment types are STUDENT. Efficiency would be enhanced by passing 
pointers to the structure, rather than the entire structure. 

7-6 C Language Reference 



Function Definitions 

typedef struct 
char name[20]; 
int id; 
long class; 

STUDENT; 

/* return type is STUDENT: */ 

STUDENT sortstu (STUDENT a, STUDENT b) 
{ 

return ( (a.id < b.id) ? a : b ); 

Example 3 

This example uses the old form to define a function returning a pointer to 
an array of characters. The function takes two character arrays (strings) as 
arguments and returns a pointer to the shorter of the two strings. A pointer 
to an array points to the type of the array elements; thus, the return type of 
the function is pointer to char. 

/* return type is char pointer: */ 

char *smallstr(sl, s2) 
char sl [ ], 82 [ ] ; 
{ 

int i; 

i=O; 
while ( sl[iJ != '\0' && s2[iJ != '\0' ) 

i++; 
if ( sl(i] == '\0' ) 

return (sl); 
else 

return (s2); 

Formal Parameters 

"Formal parameters" are variables that receive values passed to a func­
tion by a function call. In a function prototype-style definition, the 
parentheses following the function name contain complete declarations of 
the function's formal parameters. 

Functions 7-7 



Function Definitions 

Note 

In the old fonn of a function definition, the fonnal parameters were 
declared following the closing parenthesis, immediately before the 
beginning of the compound statement constituting the function 
body. In that fonn, an identifier list within the parentheses specifies 
the name of each of the fonnal parameters and the order in which 
they take on values in the function call. The identifier list consists 
of zero or more identifiers, separated by commas. The list must be 
enclosed in parentheses, even if it is empty. This fonn is obsolete 
and should not be used in new code. 

If at least one fonnal parameter occurs in the fonnal parameter list, the 
list can end with a comma followed by three periods (, ••• ). This construc­
tion, called the "ellipsis notation," indicates a variable number of argu­
ments to the function. However, a call to the function is expected to have 
at least as many arguments as there are fonnal parameters before the last 
comma. In the obsolete definition fonn, the ellipsis notation can follow 
the last identifier in the identifier list. 

If no arguments are to be passed to the function, the list of fonnal parame­
ters is replaced by the keyword void. This use of void is distinct from its 
use as a type specifier. 

Note 

To maintain compatibility with previous versions, a Microsoft 
extension to the ANSI C standard allows a comma without trailing 
periods (,) at the end of the list of fonnal parameters to indicate a 
variable number of arguments. However, it is recommended that 
code be changed to incorporate the ellipsis notation. For infonna­
tion on enabling and disabling extensions, see your compiler guide. 

Fonnal parameter declarations specify the types, sizes, and identifiers of 
values stored in the fonnal parameters. In the obsolete function definition 
fonn, these declarations have the same fonn as other variable declara­
tions (see the "Declarations" chapter). However, in a function 
prototype-style definition, each identifier in the Jormal-parameter-list 
must be preceded by its appropriate type specifier. For example, in the 

7-8 C Language Reference 



Function Definitions 

following (obsolete form) definition of the function old, double x, y, z ; 
can be declared simply by separating identifiers with commas: 

void old (x, y, z) 
double z, y 
double x ; 

( 

void new (double x, double y, double z) 
{ 

The function called new is defined in prototype format, with a list of for­
mal parameters in the parentheses. In this form, the type specifier double 
must be repeated for each identifier. 

The order and type of formal parameters, including any use of the ellipsis 
notation, must be the same in all the function declarations (if any) and in 
the function definition. The types of the actual arguments in calls to a 
function must be assignment compatible with the types of the correspond­
ing formal parameters, up to the point of the ellipsis notation. Arguments 
following the ellipsis are not checked. A formal parameter can have any 
fundamental, structure, union, pointer, or array type. 

The only storage class you can specify for a formal parameter is register. 
Undeclared identifiers in the parentheses following the function name are 
assumed to have int type. In the old function-definition form, formal 
parameter declarations can be in any order. 

The identifiers of the formal parameters are used in the function body to 
refer to the values passed to the function. These identifiers cannot be 
redefined in the outermost block of the function body, but they can be 
redefined in inner, nested blocks. 

In the obsolete form, only identifiers appearing in the identifier list can be 
declared as formal parameters. Functions having variable-length argu­
ment lists should use the new prototype form. You are responsible for 
determining the number of arguments passed, and for retrieving addi­
tional arguments from the stack within the body of the function. (For in­
formation about macros that let you do this in a portable way, see your 
compiler guide.) 

Functions 7-9 



Function Definitions 

The compiler performs the usual arithmetic conversions independently on 
each formal parameter and on each actual argument, if necessary. After 
conversion, no formal parameter is shorter than an int, and no formal 
parameter has float type. This means, for example, that declaring a formal 
parameter as a char has the same effect as declaring it as an into 

If the near, far, and huge keywords are implemented, the compiler can 
also convert pointer arguments to the function. The conversions per­
formed depend on the default size of pointers in the program and the pres­
ence or absence of a list of argument types for the function. For specific 
information about pointer conversions, see your compiler guide. 

The converted type of each formal parameter determines the interpreta­
tion of the arguments that the function call places on the stack. A type 
mismatch between an actual argument and a formal parameter can cause 
the arguments on the stack to be misinterpreted. For example, if a 16-bit 
pointer is passed as an actual argument, then declared as a long formal 
parameter, the first 32 bits on the stack are interpreted as a long formal 
parameter. This error creates problems not only with the long formal 
parameter, but with any formal parameters that follow it. You can detect 
errors of this kind by declaring function prototypes for all functions. 

Example 

This example contains a structure-type declaration, a prototype of the 
function match, a call to match, and a prototype-style definition of match. 
Note that the same name, student, can be used without conflict both for 
the structure tag and for the structure variable name. 

The match function is declared to have two arguments: the first, 
represented by r, is a pointer to the struct student type; the second, 
represented by n, is a pointer to a value of type char. 

In the definition, the two formal parameters of the match function are 
declared in the formal parameter list in the parentheses following the 
function name, with the identifiers r and n. The parameter r is declared as 
a pointer to the struct student type; the parameter n is declared as a 
pointer to a char type value. 

The function is called with two arguments, both members of the student 
structure. Because there is a prototype of match, the compiler performs 
type checking between the actual arguments and the types specified in the 
prototype and between the actual arguments and the formal parameters in 
the definition. Since the types match, no warnings or conversions are 
necessary. 

7-10 C Language Reference 



Function Definitions 

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also 
declared as a char pointer and is used in subscripted expressions as 
though it were an array identifier. Since an array identifier evaluates to a 
pointer expression, the effect of declaring the formal parameter as char *n 
is the same as declaring it char n[]. 

Within the function, the local variable i is defined and used to monitor the 
current position in the array. The function returns the id structure member 
if the name member matches the array n; otherwise, it returns O. 

struct student { 
char name[20]; 
int id; 
long class; 
struct student *nextstu; 

student; 

main () 
{ 

/* declaration of function prototype: */ 

int match ( struct student *r, char *n ); 

if (match (student.nextstu, student.name) > 0) { 

/* prototype style function definition */ 

match struct student *r, char *n ) 
{ 

int i 0; 

while r->name[i] == n[i] ) 
if ( r->name[i++] == '\0' 

return (r->id); 
return (0); 

Function Body 

A "function body" is a compound statement containing the statements 
that define what the function does. It can also contain declarations ofvari­
abIes used by these statements. (The section entitled "The Compound 
Statement' , in Chapter 6 discusses compound statements.) 

Functions 7-11 



Function Definitions 

All variables declared in a function body have auto storage class unless 
otherwise specified. When the function is called, storage is created for the 
local variables and local initializations are perfonned. Execution control 
passes to the first statement in the compound statement and continues 
sequentially until a return statement is executed or the end of the func­
tion body is encountered. Control then returns to the point at which the 
function was called. 

A return statement containing an expression must be executed if the 
function is to return a value. The return value of a function is undefined if 
no return statement is executed or if the return statement does not 
include an expression. 

7-12 C Language Reference 



Function Prototypes (Declarations) 

Function Prototypes (Declarations) 
A "function prototype" declaration specifies the name, return type, and 
storage class of a function. It can also establish types and identifiers of 
some or all of the function's arguments. The prototype has the same for­
mat as the function definition, except that it is terminated by a semicolon 
immediately following the closing parenthesis and therefore has no body. 
(See the "Declarations" chapter for a detailed description of the syntax 
of function declarations.) 

You can declare a function implicitly, or you can use a "function proto­
type" (sometimes called a "forward declaration") to declare it explicitly. 
A prototype is a declaration that precedes the function definition. In either 
case, the return type must agree with the return type specified in the func­
tion definition. 

If a call to a function precedes its declaration or definition, a default pro­
totype of the function is constructed, giving it int return type. The types 
and number of the actual arguments are used as the basis for declaring the 
formal parameters. Thus a call to the function is an implicit declaration, 
but the prototype generated may not adequately represent a subsequent 
definition of, or call to, the function. 

A prototype establishes the attributes of a function so that calls to the 
function that precede its definition (or occur in other source files) can be 
checked for argument- and return-type mismatches. If you specify the 
static storage-class specifier in a prototype, you must also specify the 
static storage class in the function definition. 

If you specify the extern storage-class specifier or omit the storage-class 
specifier entirely, the function has extern class. (For an explanation of 
the Microsoft extension that offers some latitude in function storage-class 
specification, see the Note in the section entitled "Storage Classes") in 
Chapter 4. 

Function prototypes have the following important uses: 

• They establish the return type for functions that return any type 
other than int. If you call such a function before you declare or 
define it, the results are undefined. Although functions that return 
int values do not require prototypes, they are recommended. 

Functions 7-13 



Function Prototypes (Declarations) 

• If the prototype contains a full list of parameter types, the types of 
the arguments occurring in a function call or definition can be 
checked. The prototype can include both the type of, and an 
identifier for, each expression that will be passed as an actual argu­
ment. However, such identifiers have scope only until the end of 
the declaration. The prototype can also reflect the fact that the 
number of arguments will be variable, or that there will be no argu­
ments passed. 

The parameter list in a prototype is a list of type names, separated 
by commas, corresponding to the actual arguments in the function 
call. The list is used for checking the correspondence of actual 
arguments in the function call with the formal parameters in the 
function definition. Without such a list, mismatches may not be 
revealed, so the compiler cannot generate diagnostic messages 
concerning them. (Type checking is further discussed in the sub­
section "Actual Arguments" of the section entitled "Function 
Calls" later in this chapter.) 

• Prototypes are used to initialize pointers to functions before those 
functions are defined. 

Example 

In this example, the function intadd is implicitly declared to return an int 
value, since it is called before it is defined. The compiler creates a proto­
type using the information in the first call. Therefore, when the second 
call to intadd is encountered, the compiler sees the mismatch between 
vall, which is a float, and the int type of the first argument in its self-cre­
ated prototype. The float is converted to an int and passed. Note that if 
the calls to intadd were reversed, the prototype created would expect a 
float as the first argument to intadd. When the second call is made, the 
variable a would be converted at the call, but when the value is actually 
passed to intadd, a diagnostic message would be issued because the int 
type specified in the definition does not match the float type in the 
compiler-created prototype. 

The function realadd returns a double value instead of an int value. 
Therefore, the prototype of realadd in the main function is necessary 
because the realadd function is called before it is defined. Note that the 
definition of realadd matches the forward declaration by specifying the 
double return type. 

7-14 C Language Reference 



Function Prototypes (Declarations) 

The forward declaration of rea/add also establishes the types of its two 
arguments. The actual argument types match the types given in the 
declaration and also match the types of the formal parameters in the 
definition. 

main 0 
( 

int a = 0, b = 1; 
float vall= 2.0, val2 = 3.0; 

/* function prototype: */ 

double realadd{double x, double y); 

a = intadd (a, b); /* first call to intadd */ 
vall = realadd{vall, vaI2); 

a = intadd(vall,b); /* second call to intadd */ 

/* functions defined with formal parameters in header: */ 

intadd(int a, int b) 
{ 

return (a + b); 

double realadd (double x, double y) 
{ 

return (x + y); 

Functions 7-15 



Function Calls 

Function Calls 
Syntax 

expression([expression-listD 

A "function call" is an expression that passes control and actual argu­
ments (if any) to a function. In a function call, expression evaluates to a 
function address and expression-list is a list of expressions (separated by 
commas). The values of these latter expressions are the actual arguments 
passed to the function. If the function takes no arguments, expression-list 
can be empty. 

When the function call is executed: 

1. The expressions in expression-list are evaluated and converted 
using the usual arithmetic conversions. If a function prototype is 
available, the results of these conversions may be further con­
verted consistent with the formal parameter declarations. 

2. The expressions in expression-list are passed to the formal parame­
ters of the called function. The first expression in the list always 
corresponds to the first formal parameter of the function, the 
second expression corresponds to the second formal parameter, and 
so on through the list. Since the called function uses copies of the 
actual arguments, any changes it makes to the arguments do not 
affect the values of variables from which the copies may have been 
made. 

3. Execution control passes to the first statement in the function. 

4. The execution of a return statement in the body of the function 
returns control and possibly a value to the calling function. If no 
return statement is executed, control returns to the caller after the 
last statement of the called function is executed. In such cases, the 
return value is undefined. 

7 -16 C Language Reference 



Function Calls 

Note 

The expressions in the function argument list can be evaluated in 
any order, so arguments whose values may be changed by side 
effects from another argument have undefined values. The sequence 
point defined by the function-call operator guarantees only that all 
side effects in the argument list are evaluated before control passes 
to the called function. See the "Expressions and Assignments" 
chapter for more information on sequence points. 

The only requirement in a function call is that the expression before the 
parentheses must evaluate to a function address. This means that a func­
tion can be called through any function-pointer expression. 

A function is called in much the same way it is declared. For instance, 
when you declare a function, you specify the name of the function, fol­
lowed by a list of formal parameters in parentheses. Similarly, when a 
function is called, you need only specify the name of the function, fol­
lowed by an argument list in parentheses. The indirection operator (*) is 
not required to call the function because the name of the function evalu­
ates to the function address. 

The same principle applies when you call a function using a pointer. For 
example, suppose a function pointer has the following prototype: 

int (*fpointer) (int numl, int num2); 

The identifier /pointer is declared to point to a function taking two int 
arguments, represented by numl and num2, respectively, and returning an 
int value. A function call using/pointer might look like this: 

(*fpointer) (3,4) 

The indirection operator (*) is used to obtain the address of the function 
to which /pointer points. The function address is then used to call the 
function. If a prototype of the pointer to the function precedes the call, the 
same checking will be performed as with any other function. 

Functions 7-17 



Function Calls 

Example 1 

In this example, the realcomp function is called in the statement rp ::: 
realcomp(a, b);. Two double arguments are passed to the function. The 
return value, a pointer to a double value, is assigned to rp. 

double *realcomp(double valuel, double value2); 
double a, b, *rp; 

rp realcomp(a, b); 

Example 2 

In this example, the function call in main passes an integer variable and 
the address of the function lift to the function work: 

work (count, lift); 

Note that the function address is passed simply by giving the function 
identifier, since a function identifier evaluates to a pointer expression. To 
use a function identifier in this way, the function must be declared or 
defined before the identifier is used; otherwise, the identifier is not recog­
nized. In this case, a prototype for work is given at the beginning of the 
main function. 

The formal parameter function in work is declared to be a pointer to a 
function taking one int argument and returning a long value. The 
parentheses around the parameter name are required; without them, the 
declaration would specify a function returning a pointer to a long value. 

The function work calls the selected function by using the following func­
tion call: 

(*function) (i); 

7-18 C Language Reference 



One argument, i, is passed to the called function. 

main () 

/* function prototypes: */ 

long lift (int) , step(int), drop(int); 
void work (int number, long (*function) (int i)); 

int select, count; 

select = 1; 
switch ( select ) 

case 1: work(count, lift); 
break; 

case 2: work(count, step); 
break; 

case 3: work(count, drop); 

default: 
break; 

/* function definition with formal parameters in header: */ 

void work ( int number, long (*function) (int i) ) 
{ 

int i; 
long j; 

for (i = j = 0; i < number; i++) 
j += (*function) (i); 

Actual Arguments 

Function Calls 

An actual argument can be any value with fundamental, structure, union, 
or pointer type. Although you cannot pass arrays or functions as parame­
ters, you can pass pointers to these items. 

All actual arguments are passed by value. A copy of the actual argument 
is assigned to the corresponding formal parameter. The function uses this 
copy without affecting the variable from which it was originally derived. 

Functions 7-19 



Function Calls 

Pointers provide a way for a function to access a value by reference. 
Since a pointer to a variable holds the address of the variable, the func­
tion can use this address to access the value of the variable. Pointer argu­
ments allow a function to access arrays and functions, even though arrays 
and functions cannot be passed as arguments. 

The expressions in a function call are evaluated and converted as follows: 

• The usual arithmetic conversions are performed on each actual 
argument in the function call. If a prototype is available, the result­
ing argument type is compared to the prototype's corresponding 
formal parameter. If they do not match, either a conversion is per­
formed, or a diagnostic message is issued. The formal parameters 
also undergo the usual arithmetic conversions. 

• If no prototype is available, the usual arithmetic conversions are 
performed on each actual argument before it is passed to the func­
tion. A prototype is created whose formal parameter types corre­
spond to the types of the actual arguments after conversion. 

If the near, far, and huge keywords are implemented, implementation­
dependent conversions on pointer arguments can also be performed. For 
information about pointer conversions, see your compiler guide. 

The number of expressions in the expression list must match the number 
of formal parameters, unless the function's prototype or definition explic­
itly specifies a variable number of arguments. In this case, the compiler 
checks as many arguments as there are type names in the list of formal 
parameters and converts them, if necessary, as described above. 

If the prototype's formal parameter list contains only the keyword void, 
the compiler expects zero actual arguments in the function call and zero 
formal parameters in .the definition. A diagnostic message is issued if it 
finds otherwise. 

The type of each formal parameter also undergoes the usual arithmetic 
conversions. The converted type of each formal parameter determines 
how the arguments on the stack are interpreted; if the type of the formal 
parameter does not match the type of the actual argument, the data on the 
stack may be misinterpreted. 

7-20 C Language Reference 



Function Calls 

Note 

Type mismatches between actual arguments and formal parameters 
can produce serious errors, particularly when the sizes are different. 
The compiler may not be able to detect these errors unless you 
declare complete prototypes of functions prior to calling them. In 
the absence of explicit prototypes, the compiler constructs proto­
types from whatever information is available in the first reference to 
the function. 

As an example of a serious error, consider a call to a function with 
an int argument. If the function is defined to take a long, and the 
definition occurs in a different module, the compiler-generated pro­
totype will not match the definition, but the error will not be 
detected because the separate modules will compile without diag­
nostic messages. 

Example 

In this example, the swap function is declared in main to have two argu­
ments, represented respectively by identifiers numl and num2, both of 
which are pointers to int values. The formal parameters numl and num2 
in the prototype-style definition are also declared as pointers to int type 
values. In the following function call the address of x is stored in numl 
and the address of y is stored in num2. 

swap (&x, &y) 

Now two names, or "aliases," exist for the same location. References to 
*numl and *num2 in swap are effectively references to x and y in main. 
The assignments within swap actually exchange the contents of x and y. 
Therefore, no return statement is necessary. 

The compiler performs type checking on the arguments to swap because 
the prototype of swap includes argument types for each formal parameter. 
The identifiers within the parentheses of the prototype and definition can 
be the same or different. What is important is that the types of the actual 
arguments match those of the formal parameter lists in both the prototype 
and the eventual definition. 

Functions 7-21 



Function Calls 

main () 
{ 

/* function prototype: */ 

void swap (int *numl, int *num2); 
int X, y: 

swap (&x, &y); 

/* function definition: */ 

void swap (int *numl, int *num2) 
{ 

int t; 

t = *numl; 
*numl = *num2; 
*num2 = t; 

Calls with a Variable 
Number of Arguments 

To call a function with a variable number of arguments, simply specify 
any number of arguments in the function call. If there is a prototype 
declaration of the function, a variable number of arguments can be 
specified by placing a comma followed by three periods (, .•. ), the 
, 'ellipsis notation," at the end of the formal parameter list or list of argu­
ment types (see the section entitled "Function Prototypes (Declara­
tions)' '). The function call must include one argument for each type name 
declared in the formal parameter list or the list of argument type. 

Similarly, the formal parameter list (or identifier list, in the obsolete 
form) in the function definition can end with the ellipsis notation to indi­
cate a variable number of arguments. For more information about the 
form of the formal parameter list, see the section entitled "Function 
Definitions" earlier in this chapter. 

7-22 C Language Reference 



Function Calls 

Note 

To maintain compatibility with previous versions, a Microsoft 
extension to the ANSI C standard allows a comma without trailing 
periods (,) at the end of the list of formal parameters to indicate a 
variable number of arguments. For information on enabling and 
disabling extensions, see your compiler guide. 

All the arguments specified in the function call are placed on the stack. 
The number of formal parameters declared for the function determines 
how many of the arguments are taken from the stack and assigned to the 
formal parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are 
present. For information about macros that you can use to handle a vari­
able number of arguments in a portable way, see your compiler guide. 

Recursive Calls 

Any function in a C program can be called recursively; that is, it can call 
itself. The C compiler allows any number of recursive calls to a function. 
Each time the function is called, new storage is allocated for the formal 
parameters and for the auto and register variables so that their values in 
previous, unfinished calls are not overwritten. Parameters are only 
directly accessible to the instance of the function in which they are creat­
ed. Previous parameters are not directly accessible to ensuing instances of 
the function. 

Note that variables declared with static storage do not require new 
storage with each recursive call. Their storage exists for the lifetime of 
the program. Each reference to such a variable accesses the same storage 
area. 

Although the C compiler does not limit the number of times a function 
can be called recursively, the operating environment may impose a prac­
tical limit. Since each recursive call requires additional stack memory, 
too many recursive calls can cause a stack overflow. 

Functions 7-23 





Chapter 8 

Preprocessor Directives 
and Pragmas 

Introduction 8-1 

Manifest Constants and Macros 8-3 
Preprocessor Operators 8-3 
The #define Directive 8-4 
The #Undef Directive 8-11 

Include Files 8-12 

Conditional Compilation 8-14 
The #if, #elif, #else, and #endif Directives 8-14 
The #ifdef and #ifndef Directives 8-18 

Line Control 8-19 

Pragmas 8-21 





Introduction 

Introduction 
A "preprocessor directive" is an instruction to the C preprocessor. The C 
preprocessor is a text processor that manipulates the text of a source file 
as the first phase of compilation. Though the compiler ordinarily invokes 
the preprocessor in its first pass, the preprocessor can also be invoked 
separately to process text without compiling. 

Preprocessor directives are typically used to make source programs easy 
to change and easy to compile in different execution environments. Direc­
tives in the source file tell the preprocessor to perform specific actions. 
For example, the preprocessor can replace tokens in the text, insert the 
contents of other files into the source file, or suppress compilation of part 
of the file by removing sections of text. 

The C preprocessor recognizes the following directives: 

#define #if #line 

#elif #ifdef #Undef 

#else #ifndef 

#endif #include 

The number sign (#) must be the first non-white-space character on the 
line containing the directive; white-space characters can appear between 
the number sign and the first letter of the directive. Some directives 
include arguments or values. Any text that follows a directive (except an 
argument or value that is part of the directive) must be enclosed in com­
ment delimiters (/* */). 

Preprocessor directives can appear anywhere in a source file, but they 
apply only to the remainder of the source file in which they appear. 

A "preprocessor operator" is an operator that is only recognized as an 
operator within the context of preprocessor directives. There are only 
three preprocessor-specific operators: the "stringizing" operator (#), the 
"token-pasting" (##) operator, and the defined operator. The first two are 
discussed in the context of the #define directive, later in this chapter. The 
defined operator is also discussed later in this chapter. "The #if, #elif, 
#else, and #endif Directives. " 

Preprocessor Directives and Pragmas 8-1 



Introduction 

A "pragma" is a "pragmatic," or practical, instruction to the C compiler. 
Pragmas in C source files are typically used to control the actions of the 
compiler in a particular portion of a program without affecting the pro­
gram as a whole. (The "Pragmas" section later in this chapter describes 
the syntax for pragmas). However, the compiler implementation defines 
the particular pragmas that are available and their meanings. For informa­
tion about the use and effects of specific pragmas, see your compiler 
guide. 

8-2 C Language Reference 



Manifest Constants and Macros 

Manifest Constants and Macros 
The #define directive is typically used to associate meaningful identifiers 
with constants, keywords, and commonly used statements or expressions. 
Identifiers that represent constants are called "manifest constants." 
Identifiers that represent statements or expressions are called "macros." 

Once you have defined an identifier, you cannot redefine it to a different 
value without first removing the original definition. However, you can 
redefine the identifier with exactly the same definition. Thus, the same 
definition can appear more than once in a program. 

The #Undef directive removes the definition of an identifier. Once you 
have removed the definition, you can redefine the identifier to a different 
value. The section later in this chapter entitled "Manifest Constants and 
Macros" discusses the #define and #Undef directives. 

In practical terms there are two types of macros. "Object-like" macros 
take no arguments, while "function-like" macros can be defined to 
accept arguments so that they look and act like function calls. Because 
macros do not generate actual function calls, you can make programs fas­
ter by replacing function calls with macros. However, macros can create 
problems if you do not define and use them with care. You may have to 
use parentheses in macro definitions with arguments to preserve the 
proper precedence in an expression. Also, macros may not handle expres­
sions with side effects correctly. For more information, see the examples 
in the section entitled "The #define Directive. " 

Preprocessor Operators 

There are three preprocessor-specific operators, one of which is 
represented by the number sign (#), one by a double number sign (##), and 
the third by the word defined. The "stringizing" operator (#) preceding a 
macro formal-parameter name in the body of a preprocessor macro causes 
the corresponding actual argument to be enclosed in string quotation 
marks. The "token-pasting" operator (##) allows tokens used as actual 
arguments to be concatenated to form other tokens. These two operators 
are used in the context of the #define directive and are described under 
"The #define Directive" in the section entitled "Manifest Constants and 
Macros". 

Preprocessor Directives and Pragmas 8-3 



Manifest Constants and Macros 

Finally, the defined operator simplifies the writing of compound expres­
sions in certain macro directives. It is used in conditional compilation, 
and is therefore discussed in the section entitled "Conditional Compila­
tion' '. "The #if, #elif, #else, and #endif Directives. " 

The #define Directive 

Syntax 

#define identifier substitution-text 
#define identifier(parameter-list) substitution-text 

The #define directive substitutes substitution-text for all subsequent oc­
currences of identifier in the source file. The identifier is replaced only 
when it forms a token. (Tokens are described in the "Elements of C" 
chapter and in the "Syntax Summary.") For instance, identifier is not 
replaced if it appears within a string or as part of a longer identifier. 

If parameter-list appears after identifier, the #define directive replaces 
each occurrence of identifier(parameter-list) with a version of the 
substitution-text argument that has actual arguments substituted for for­
mal parameters. 

The substitution-text argument consists of a series of tokens, such as key­
words, constants, or complete statements. One or more white-space char­
acters must separate substitution-text from identifier (or from the closing 
parenthesis following parameter-list). This white space is not considered 
part of the substituted text, nor is any white space following the last token 
of the text. Text longer than one line can be continued onto the next line 
by placing a backslash (\) before the new-line character. 

The substitution-text argument can also be empty. Choosing this option 
removes occurrences of identifier from the source file. The identifier is 
still considered defined, however, and yields the value I when tested with 
the #if directive (discussed in the section entitled "The #if, #elif, #else, 
and #endif Directives' '). 

The optional parameter-list consists of one or more formal parameter 
names separated by commas. Each name in the list must be unique, and 
the list must be enclosed in parentheses. No spaces can separate identifier 
and the opening parenthesis. The scope of a formal parameter name 
extends to the new line that ends substitution-text. 

8-4 C Language Reference 



Manifest Constants and Macros 

Fonnal parameter names appear in substitution-text to mark the places 
where actual values will be substituted. Each parameter name can appear 
more than once in substitution-text, and the names can appear in any 
order. 

The actual arguments following an instance of identifier in the source file 
are matched to the corresponding fonnal parameters of parameter-list. 
Each fonnal parameter in substitution-text that is not preceded by a 
stringizing (#) or token-pasting (##) operator, or followed by a ## opera­
tor, is replaced by the corresponding actual argument. Any macros in the 
actual argument will be expanded before it replaces the fonnal parameter. 
(The # and ## operators are described in the section entitled "The #define 
Directive" later in this chapter.) The actual-argument list must have the 
same number of arguments as parameter-list. 

If the name of the macro being defined occurs in substitution-text (even as 
a result of another macro expansion), it is not expanded. 

Arguments with side effects sometimes cause macros to produce unex­
pected results. A given fonnal parameter may appear more than once in 
substitution-text. If that fonnal parameter is replaced by an expression 
witlJ side effects, the expression, with its side effects, may be evaluated 
more than once. 

Stringizing Operator (#) 

The number-sign or "stringizing" operator (#) is used only with macros 
that take arguments. If it precedes a fonnal parameter in the macro 
definition, the actual argument passed by the macro invocation is 
enclosed in quotation marks and treated as a string literal. The string 
literal then replaces each occurrence of a combination of the stringizing 
operator and fonnal parameter within the macro definition. White space 
preceding the first' token of the actual argument and following the last 
token of the actual argument is ignored. Any white space between the 
tokens in the actual argument is reduced to a single white space in the 
resulting string literal. Thus, if a comment occurs between two tokens in 
the actual argument, it is reduced to a single white space. The resulting 
string literal is automatically concatenated with any adjacent string 
literals from which it is separated only by white space. Furthennore, if a 
character contained in the argument nonnally requires an escape 
sequence when used in a string literal-for example, the quotation-mark 
(") or backslash (\) characters-the necessary escape backslash is auto­
matically inserted before the character. The following example shows a 
macro definition that includes the stringizing operator and a main func­
tion that invokes the macro: 

Preprocessor Directives and Pragmas 8-5 



Manifest Constants and Macros 

#define stringer (x) printf (#x "\n") 

main() 
{ 

stringer (I will be in quotes in the printf function call); 
stringer ("I will be in quotes when printed to the screen"); 
stringer (This: \" prints an escaped double quote mark); 

Such invocations would be expanded during preprocessing, producing the 
following code: 

printf ("I will be in quotes in the printf function call" "\n"); 
printf ("\"1 will be in quotes when printed to the screen\"" "\n"); 
printf ("This \ \ \" prints an escaped double quote mark"); 

When the program is run, screen output for each line would be as follows: 

I will be in quotes in the printf function call 

"I will be in quotes when printed to the screen" 

This: \" prints an escaped double quote mark 

Note 

The Microsoft extension to the ANSI C standard that previously 
enabled expansion of macro formal arguments appearing in string 
literals and character constants is no longer supported. Code that 
relied on this extension should be rewritten using the stringizing (#) 
operator. 

Token.Pasting Operator (##) 

The double-number-sign or "token-pasting" operator (##) is used in both 
object-like and function-like macros. It permits separate tokens to be 
joined into a single token, and therefore cannot be the first or last token in 
the macro definition. 

8-6 C Language Reference 



Manifest Constants and Macros 

If a fonnal parameter in a macro definition is preceded or followed by the 
token-pasting operator, the fonnal parameter is immediately replaced by 
the unexpanded actual argument. Macro expansion is not perfonned on 
the argument prior to replacement. Then, each occurrence of the token­
pasting operator in substitution-text is removed, and the tokens preceding 
and following it are concatenated. The resulting token must be a valid 
token. If it is, the token is rescanned for possible replacement if it 
represents a macro name. Example 7 shows how tokens can be pasted 
together using the token-pasting operator. 

Example 1 

This example defines the identifier WIDTH as the integer constant 80 and 
defines LENGTH in tenns of WIDTH and the integer constant 10. Each 
occurrence of LENGTH is replaced by (WIDTH + 10). In turn, each oc­
currence of WIDTH + 10 is replaced by the expression (80 + 10). 

#define WIDTH 
#define LENGTH 

80 
(WIDTH + 10) 

The parentheses around WIDTH + 10 are important because they control 
the interpretation in statements such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement becomes 

var = (80 + 10) * 20; 

which evaluates to 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280. 

Example 2 

This example defines the identifier The definition is extended FILEMES­
SAGE. to a second line by using the convention of a backslash followed 
by a new-line character. 

#define FILEMESSAGE "Attempt to create file \ 
failed because of insufficient space" 

Preprocessor Directives and Pragmas 8-7 



Manifest Constants and Macros 

Example 3 

This example defines three identifiers, REGl, REG2, and REG3. REG] 
and REG2 are defined as the keyword register. The definition of REG3 is 
empty, so each occurrence of REG3 is removed from the source file. 
These directives can be used to ensure that the program's most important 
variables (declared with REG] and REG2) are given register storage. 
(For an expanded version of this example, see the discussion of the #if 
directive in the section entitled "The #if, #elif, #else, and #endif Direc­
tives ") 

#define REG1 
#define REG2 
#define REG3 

Example 4 

register 
register 

This example defines a macro named MAX. Each occurrence of the 
identifier MAX after the definition in the source file is replaced by the 
expression 

((x) > (y» ? (x) : (y) 

where actual values replace the parameters x and y. For example, the oc­
currence 

MAX(l,2) 

is replaced by 

((1) > (2» ? (1) (2) 

and the occurrence 

MAX (i, s [i] ) 

is replaced by 

((i) > (s [i]» ? (i) : (s [i]) 

#define MAX(x,y) ((x) > (y» ? (x) (y) 

8-8 C Language Reference 



Manifest Constants and Macros 

Because this macro is easier to read than the corresponding expression, 
the source program is easier to understand. 

Note that arguments with side effects may cause this macro to produce 
unexpected results. For example, the occurrence MAX(i, s[i++J) is 
replaced by ((i) > (s[i++])) ? (i) " (s[i++J). The expression (s[i++J) may 
be evaluated twice, so by the time the ternary expression has been fully 
evaluated, i will have been incremented either once or twice, depending 
on the result of the comparison. 

Example 5 

This example defines the macro MULT. Once the macro is defined, an oc­
currence such as MULT(3, 5) is replaced by (3) * (5). The parentheses 
around the parameters are important because they control the interpreta­
tion when complex expressions form the arguments to the macro. For 
instance, the occurrence MULT(3 + 4, 5 + 6) is replaced by (3 + 4) * (5 + 
6), which evaluates to 77. Without the parentheses, the result would be 3 
+ 4 * 5 + 6. This result evaluates to 29 because the multiplication opera­
tor (*) has higher precedence than the addition operator (+). 

#define MULT(a,b) ((a) * (b» 

Example 6 

This example defines two macros, one an object-like macro that expands 
to the string literal Hello, World!, and the other a function-like macro 
called show, which takes one argument. However, the definition of the 
second macro includes the stringizing operator (#) immediately preceding 
the formal parameter x. When an argument is passed to the show macro, 
the formal parameter is replaced by the actual argument enclosed in dou­
ble quotation marks, thus "stringizing" it. 

#define GREETING Hello, World! 
#define show (x) printf(#x) 

main () 
{ 

show ( x + z ); 
printf(n\nn) ; 
show(n /* some comment */ + p); 
printf(n\nn); 
show(GREETING); /* GREETING is not expanded; */ 
printf(n\nn); /* it is stringized instead */ 
show('\x') ; 
printf(n\nn) ; 

Preprocessor Directives and P ragmas 8-9 



Manifest Constants and Macros 

As the preprocessor progresses through the source file, the references to 
show are expanded as follows: 

show( x + z); produces printf("x + zIt); 

show(n 1* comment *1 + p); produces printf("n + pIt); 

show(GREETING); produces printf("GREETING"); 

and finally, show('\x'); produces printf('" \ \X' If); 

When the program is run, the screen output would be: 

x + Z 

n + p 
GREETING 
, \x' 

Example 7 

This example illustrates use of both the "stringizing" and "token­
pasting" operators in specifying program output. 

#define paster (n) printf ("token" #n " = %d", token##n) 

If token9 is declared, and the macro is called with a numeric argument 
like: 

paster (9) 

the macro yields: 

printf("token" "9" " %d", token9) 

which becomes 

printf ("token9 %d", token9) 

8-10 C Language Reference 



Manifest Constants and Macros 

The #Undef Directive 

Syntax 

#Undef identifier 

The #Undef directive removes the current definition of identifier. Conse­
quently, subsequent occurrences of identifier are ignored by the prepro­
cessor. To remove a macro definition using #Undef, give only the macro 
identifier; do not give a parameter list. 

You can also apply the #Undef directive to an identifier that has no previ­
ous definition. This ensures that the identifier is undefined. 

The #Undef directive is typically paired with a #define directive to create 
a region in a source program in which an identifier has a special meaning. 
For example, a specific function of the source program can use manifest 
constants to define environment-specific values that do not affect the rest 
of the program. The #Undef directive also works with the #if directive 
(see the section entitled "The #if, #elif, #else, and #endif Directives" 
later in this chapter.) to control conditional compilation of the source pro­
gram. 

Example 

In this example, the #Undef directive removes definitions of a manifest 
constant and a macro. Note that only the identifier of the macro is given. 

jfdefine WIDTH 
jfdefine ADD (X, Y) 

jfundef WIDTH 
jfundef ADD 

Preprocessor Directives and Pragmas 

80 
(X) + (Y) 

8-11 

I 



Include Files 

Include Files 

Syntax 

#include ''path-spec'' 
#include <path-spec> 

The #include directive adds the contents of a given "include file" to 
another file. You can organize constant and macro definitions into include 
files and then use #include directives to add these definitions to any 
source file. Include files are also useful for incorporating declarations of 
external variables and complex data types. You only need to define and 
name the types once in an include file created for that purpose. 

The #include directive tells the preprocessor to treat the contents of the 
named file as if they appeared in the source program at the point where 
the directive appears. The new text can also contain preprocessor direc­
tives. The preprocessor carries out directives in the new text, then contin­
ues processing the original text of the source file. 

The path-spec is a file name optionally preceded by a directory specifica­
tion. It must name an existing file. The syntax of the file specification 
depends on the operating system the program is compiled on. 

The preprocessor uses the concept of a "standard" directory or direc­
tories to search for include files. The location of the standard directories 
for include files depends on the implementation and the operating system. 
For a definition of the standard directories, see your compiler guide. 

The preprocessor stops searching as soon as it finds a file with the given 
name. If you specify a complete, unambiguous path specification for the 
include file, between two sets of double quotation marks (" "), the 
preprocessor searches only that path specification and ignores the stan­
dard directories. 

If the path-spec enclosed in double quotation marks is an incomplete path 
specification, the preprocessor first searches the "parent" file's directory. 
A parent file is the file containing the #include directive. For example, if 
you include a file named file2 within a file named filel , filel is the parent 
file. 

8-12 C Language Reference 



Include Files 

Include files can be "nested," that is, an #include directive can appear in 
a file named by another #include directive. For example, file2, above, 
could include file3. In this case, filel would still be the parent of file2, but 
would be the "grandparent" of file3 . 

When include files are nested, directory searching begins with the direc­
tories of the parent file, then proceeds through the directories of any 
grandparent files. Thus, searching begins relative to the directory contain­
ing the source currently being processed. If the file is not found, the 
search moves to directories specified on the compiler command line. 
Finally, the standard directories are searched. 

If the file specification is enclosed in angle brackets, the preprocessor 
does not search the current working directory. It begins by searching for 
the file in the directories specified on the compiler command line, then in 
the standard directories. 

Nesting of include files can continue up to 10 levels. Once the nested 
#include is processed, the preprocessor continues to insert the enclosing 
include file into the original source file. 

Example 1 

This example adds the contents of the file named stdio.h to the source 
program. The angle brackets cause the preprocessor to search the standard 
directories for stdio.h, after searching directories specified on the com­
mand line. 

#include <stdio.h> 

Example 2 

This example adds the contents ofthe file specified by de/s.h to the source 
program. The double quotation marks mean that the preprocessor 
searches the directory containing the "parent" source file first. 

#include "defs.h" 

Preprocessor Directives and Pragmas 8-13 



Conditional Compilation 

Conditional Compilation 
This section describes the syntax and use of directives that control "con­
ditional compilation." These directives let you suppress compilation of 
parts of a source file by testing a constant expression or identifier to deter­
mine which text blocks will be passed on to the compiler and which text 
blocks will be removed from the source file during preprocessing. 

The #if, #elif, #else, and #endif Directives 

Syntax 

#if restricted-constant-expression 
[ text-block] 

[ #eIif restricted-constant-expression 
text-block] 

[ #elif restricted-constant-expression 
text-block] 

[ #else 
text-block] 

#endif 

The #if directive, together with the #elif, #else, and #endif directives, 
controls compilation of portions of a source file. Each #if directive in a 
source file must be matched by a closing #endif directive. Any number of 
#eIif directives can appear between the #if and #endif directives, but at 
most one #else directive is allowed. The #else directive, if present, must 
be the last directive before #endif. 

The preprocessor selects one of the given occurrences of text-block for 
further processing. A block specified in text-block can be any sequence of 
text. It can occupy more than one line. Usually text-block is program text 
that has meaning to the compiler or the preprocessor. 

The preprocessor processes the selected text-block and passes it to the 
compiler. If text-block contains preprocessor directives, the preprocessor 
carries out those directives. 

Any text blocks not selected by the preprocessor are removed from the 
file during preprocessing. Thus, these text blocks are not compiled. 

8-14 C Language Reference 



Conditional Compilation 

The preprocessor selects a single text-block by evaluating the restricted 
constant expression following each #if or #elif directive until it finds a 
true (nonzero) restricted constant expression. It selects all text (including 
other preprocessor directives beginning with #) up to its associated #elif, 
#else, or #endif. 

If all occurrences of restricted-constant-expression are false, or if no #elif 
directives appear, the preprocessor selects the text block after the #else 
clause. If the #else clause is omitted, and all instances of restricted­
constant-expression in the #if block are false, no text block is selected. 

Each restricted-constant-expression follows the rules for restricted con­
stant expressions discussed in the section entitled "Constant Expres­
sions" in Chapter 5. Such expressions cannot contain sizeof expressions, 
type casts, or enumeration constants. However, they can contain the 
preprocessor operator defined in special constant expressions, as shown 
by the following syntax: 

defined(identifier) 

This constant expression is considered true (nonzero) if the identifier is 
currently defined; otherwise, the condition is false (0). An identifier 
defined as empty text is considered defined. 

The #if, #elif, #else, and #endif directives can nest in the text portions of 
other #if directives. Each nested #else, #elif, or #endif directive belongs 
to the closest preceding #if directive. 

Example 1 

In this example, the #if and #endif directives control compilation of one 
of three function calls. The function call to credit is compiled if the 
identifier CREDIT is defined. If the identifier DEBIT is defined, the func­
tion call to debit is compiled. If neither identifier is defined, the call to 
printerror is compiled. Note that CREDIT and credit are distinct 
identifiers in C because their cases are different. 

#if defined (CREDIT) 
credit () ; 

#elif defined(DEBIT) 
debit () ; 

#else 
printerror(); 

#endif 

Preprocessor Directives and Pragmas 8-15 



Conditional Compilation 

Example 2 

Examples 2 and 3 assume a previously defined manifest constant named 
DLEVEL. 

Example 2 shows two sets of nested #if, #else, and #endif directives. The 
first set of directives is processed only if DLEVEL > 5 is true. Otherwise, 
the second set is processed. 

#if DLEVEL > 5 
#define SIGNAL 1 
#if STACKUSE == 1 

#e1se 

#endif 
#else 

#define STACK 200 

#define STACK 100 

#define SIGNAL a 
#if STACKUSE == 1 

#else 

#endif 
#endif 

Example 3 

#define STACK 100 

#define STACK 50 

In Example 3, #elif and #else directives are used to make one of four 
choices, based on the value of DLEVEL. The manifest constant STACK is 
set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL 
is greater than 5, display(debugptr); is compiled and STACK is not 
defined. 

8-16 

#if DLEVEL == a 
#define STACK a 

#elif DLEVEL == 1 
#define STACK 100 

#elif DLEVEL > 5 
display ( debugptr ); 

#else 
#define STACK 200 

#endif 

C Language Reference 



Conditional Compilation 

Example 4 

Example 4 uses preprocessor directives to control the meaning of register 
declarations in a portable source file. The compiler assigns register 
storage to variables in the order in which the register declarations appear 
in the source file. If a program contains more register declarations than 
the machine allows, the compiler honors earlier declarations over later 
ones. The program may be less efficient if the variables declared later are 
more heavily used. 

#define REGl 
#define REG2 

register 
register 

#if defined(M 86) 
#define REG3 
#define REG4 
#define REGS 

#else 
#define REG3 register 
#if defined(M 68000) 

#define REG4 register 
#define REGS register 

#else 
#define REG4 register 
#define REGS 

#endif 
#endif 

The definitions listed in Example 4 can be used to give priority to the 
most important register declarations. REG] and REG2 are defined as the 
register keyword to declare register storage for the two most important 
variables in the program. For example, in the following fragment, b and c 
have higher priority than a or d: 

func(a) 

REG3 int a; 

REGl int b; 
REG2 int c; 
REG4 int d; 

Preprocessor Directives and Pragmas 8-17 



Conditional Compilation 

When M_86 is defined, the preprocessor removes the REG3 identifier 
from the file by replacing it with empty text. This prevents a from receiv­
ing register storage at the expense of b and c. When M 68000 is defined, 
all four variables are declared to have register storage. When neither 
M _ 86 nor M _ 68000 is defined, a, b, and c are declared with register 
storage. 

The #ifdef and #ifndef Directives 

Syntax 

#ifdef identifier 
#ifndef identifier 

The #ifdef and #ifndef directives perform the same task as the #if direc­
tive used with defined(identifier). You can use the #ifdef and #ifndef 
directives anywhere #if can be used. These directives are provided only 
for compatibility with previous versions of the language. The 
defined(identifier) constant expression used with the #if directive is pre­
ferred. 

When the preprocessor encounters an #ifdef directive, it checks to see 
whether the identifier is currently defined. If so, the condition is true 
(nonzero); otherwise, the condition is false (0). 

The #ifndef directive checks for the opposite of the condition checked by 
#ifdef. If the identifier has not been defined (or its definition has been 
removed with #ondel) , the condition is true (nonzero). Otherwise, the 
condition is false (0). 

8-18 C Language Reference 



Line Control 

Line Control 

Syntax 

#line constant [ ''filename" ] 

The #line directive tells the preprocessor to change the compiler's inter­
nally stored line number and file name to a given line number and file 
name. The compiler uses the line number and file name to refer to errors 
that it finds during compilation. The line number normally refers to the 
current input line, and the file name refers to the current input file. The 
line number is incremented after each line is processed. 

If you change the line number and file name, the compiler ignores the pre­
vious values and continues processing with the new values. The #line 
directive is typically used by program generators to cause error messages 
to refer to the original source file instead of to the generated program. 

The constant value in the #line directive can be any integer constant. The 
filename can be any combination of characters and must be enclosed in 
double quotation marks (" "). If filename is omitted, the previous file 
name remains unchanged. 

The current line number and file name are always available through the 
predefined identifiers LINE and FILE . You can use the 
__ LINE __ and _1ILE __ identifiers to- inse£self-descriptive error 
messages into the program text. 

The __ FILE __ identifier expands to a string whose contents are the file 
name, surrounded by double quotation marks (" "). 

Preprocessor Directives and Pragmas 8-19 



Line Control 

Example 1 

In this example, the internally stored line number is set to 151 and the file 
name is changed to copy.c. 

'line 151 "copy.c" 

Example 2 

In this example code segment , the macro ASSERT uses the predefined 
identi fiers _ _ LINE __ and _ _ FILE __ to print an error message about the 
source file if a given "assertion" is not true. 

8-20 

'define ASSERT(cond) if(!cond)\ 
(printf("assertion error line %d, file(%s)\n", \ 

LINE , FILE );} else 
printf ("condition-true") ; 

C Language Reference 



Pragmas 

Pragmas 

Syntax 

#pragma character-sequence 

A #pragma is an implementation-de fined instruction to the compiler. The 
character-sequence is a series of characters that gives a specific compiler 
instruction and arguments, if any. The number sign (#) must be the first 
non-white-space character on the line containing the pragma; white-space 
characters can separate the number sign and the word pragma. 

See your compiler guide for information about the pragmas available in 
your compiler implementation. 

Preprocessor Directives and Pragmas 8-21 





Appendix A 

Differences Between K&R C 
and Microsoft C 

Introduction A-I 





Introduction 

Introduction 
This appendix summarizes differences between Microsoft C and the 
description of the C language found in Appendix A of The C Program­
ming Language by Brian W. Kernighan and Dennis M. Ritchie, published 
in 1978 by Prentice-Hall, Inc. The following is a list of the differences 
with cross-references to the corresponding section numbers in The C Pro­
gramming Language: 

Section Number 
in Kernighan 
and Ritchie Microsoft C 

2.2 Identifiers (including those used in preprocessor direc­
tives) are significant to 31 characters. External identifiers 
are also significant to 31 characters. 

2.3 The identifiers asm and entry are no longer keywords. 
New keywords are const, volatile, enum, signed, and 
void. (The volatile keyword is implemented syntacti­
cally, but not semantically.) The identifiers cdecl, far, 
fortran, huge, near, and pascal may be keywords, 
depending on whether the corresponding options are 
enabled when a program is compiled (see your system 
documentation). 

2.4.1 As a result of the method used to assign types to hexadec­
imal and octal constants, these constants always act like 
unsigned integers in type conversions. 

2.4.3 Hexadecimal bit patterns consisting of a backslash (\), the 
letter x, and up to three hexadecimal digits are permitted 
as character constants (for example, \x012). 

Microsoft C defines three additional escape sequences: 
\v represents a vertical tab (VT), \" represents the 
double-quotation-mark character, and \a represents the 
bell (also called alert). 

Character constants always have type int, with the result 
that they are sign extended in type conversions. 

Adjacent quoted string literals are concatenated and 
treated as a single null-terminated string. 

Differences Between K&R C and Microsoft C A-I 



Introduction 

A-2 

2.6 The short type is always 16 bits long, and the long type is 
32 bits long. The size of an int is machine dependent. On 
8086/8088,80186, and 80286 processors an int is 16 bits 
long, and on 80386 and 68000 processors it is 32 bits 
long. 

4 The char type is signed by default, with the result that a 
char value is sign extended in type conversions. (In some 
implementations, the default for the char type can be 
changed to unsigned at compile time.) 

6.4 

Two additional unsigned types are supported: unsigned 
char and unsigned long. 

The keyword unsigned or signed can be applied as an 
adjective to an integer type. When unsigned appears 
alone, it means unsigned int. Similarly, when signed 
appears alone, it means into The additional floating type 
long double is supported, but the long float type is no 
longer recognized. References to long float should be 
recoded to double. 

The type specifiers const and volatile can be used as 
modifiers for any fundamental, aggregate, or pointer type. 
The const keyword indicates that the object or pointer 
value will not be modified. The volatile keyword means 
the object may be changed by some process beyond the 
control of the currently running program. Both the syntax 
and semantics of const are implemented, but only the 
syntax of volatile is implemented. 

Microsoft C offers an additional fundamental type: the 
enum (enumeration) type. Variables of enum type are 
treated as integers in all cases. 

The keyword void has three different uses. As a function­
return-type specifier, it indicates that the function will not 
return a value. In an otherwise empty formal-parameter 
list, void means that no arguments will be passed. In the 
construction void *, it indicates a pointer to an object of 
unspecified type. 

If the near, far, and huge keywords are enabled, pointers 
of different sizes can be used in a program. Operations 
with pointers of different sizes can cause conversion of 
pointers; the path of the conversion is implementation 
defined. 

C Language Reference 



Introduction 

6.6 Arithmetic conversions carried out by the compiler are 
outlined in the "Expressions and Assignments" chapter. 
Although compatible with the Kernighan and Ritchie 
conversions, Microsoft C conversions are described in 
greater detail, including the specific path for each type of 
conversion. 

In addition to the usual arithmetic conversions, conver­
sions between pointers of different sizes can be routinely 
carried out when the near, far, and huge keywords are 
enabled. The path of the pointer conversions is imple­
mentation defined. 

7.2 In connection with the sizeof operator, a byte is defined 
as an 8-bit quantity. 

7.14 A structure can be assigned to another structure of the 
same type. 

8.2 The keywords enum, const, volatile, and void are addi­
tional type specifiers. The volatile keyword is imple­
mented syntactically, but not semantically. The keywords 
signed and unsigned can serve either as type specifiers or 
as adjectives modifying an integral type. 

Therefore, the following additional combinations are 
acceptable: 

signed char 
signed short 
signed short int 
signed long 
signed long int 
unsigned char 
unsigned short 
unsigned short int 
unsigned long 
unsigned long int 

The long float type is not recognized. The long double 
type is recognized and treated in all instances the same as 
double. 

Differences Between K&R C and Microsoft C A-3 



Introduction 

A-4 

8.4 The const and volatile keywords can be used to modify 
any fundamental, aggregate, or pointer object. The order 
of the type specifiers is not significant. 

Optional formal-parameter lists or argument-type lists 
can be included in function declarations to notify the 
compiler of the number and types of arguments expected 
in a function call. 

8.5 Bitfields can be declared to be any signed or unsigned 
integral type, except enum. However, in expressions, 
bitfields are always treated as unsigned. 

The names of structure and union members are not 
required to be distinct from structure and union tags or 
from the names of other variables. 

No relationship exists between the members of two 
different structure types. 

8.6 Unions can be initialized by giving a value for the first 
member of the union. 

9.7 The expression of a switch can be any integral expres­
sion, but the value of the expression is always converted 
to an int type. An enum type is permitted for expression. 
Each of the case constant expressions is cast to the type 
of expression. 

10.1 New styles for function declarations and definitions, as 
specified in the Draft Proposed American National Stan­
dard - Programming Language C, are completely sup­
ported. This includes the function prototype declaration, 
the prototype-style definition with formal parameters 
declared in the header, and the default creation of proto­
types from the first reference to a function (if no explicit 
prototype is provided). The old function declaration and 
definition forms are also supported. 

The formal parameter list in a function definition or 
declaration can end with a comma followed by three peri­
ods (, ..• ) or just a comma (,) to indicate that the number 
of parameters is variable. The latter is supported only for 
compatibility with older versions of the compiler and 
should not be used in new code. 

C Language Reference 



Introduction 

12 The number sign (#) introducing the preprocessor direc­
tive can be preceded by any combination of White-space 
characters. White space can also separate the number 
sign and the preprocessor keyword. 

In addition to preprocessor directives, the source file can 
contain pragmas. Pragmas, like directives, are introduced 
by a number sign as the first non-white-space character in 
a line. The action defined by a particular pragma is imple­
mentation dependent. 

Three preprocessor-only operators are supported: the 
"stringizing" operator (#), the concatenation or "token­
pasting" operator (##), and the defined operator. 

12.3 The new combination #if defined (identifier) is intended 
to supplant the #ifdef and #ifndef directives. Use of the 
latter directives is discouraged. 

The new directive #eUf (else if) is designed for use in #if 
and #if defined blocks. 

14.1 A structure or union can be assigned to another structure 
or union of the same type. Structures and unions can be 
passed by value to functions and returned by functions. 

In expressions involving the structure-pointer operator 
(-», the expression preceding the arrow must have the 
same type (or must be cast to the same type) as the struc­
ture to which the member on the right-hand side of the 
arrow belongs. 

17 The listed anachronisms are not recognized. 

Differences Between K&R C and Microsoft C A-5 





AppendixB 

Syntax Summary 

Tokens B-1 
Keywords B-1 
Identifiers B-2 
Constants B-2 
Strings B-5 
Operators B-6 
Separators B-6 

Expressions B-7 

Declarations B-9 

Statements B-14 

Definitions B-15 

Preprocessor Directives B-16 

Pragmas B-17 





fokens 

:eyword 
dentifier 
~onstant 

'tring 
'perator 
'eparator 

Keywords 

lUto 
lreak 
:ase 
:har 
:onst 
:ontinue 
lefault 
10 

double 
else 
enuID 
extern 
float 
for 
goto 
if 

t Semantics not yet implemented 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

Tokens 

struct 
switch 
typedef 
union 
unsigned 
void 
volatilet 
while 

['he following identifiers may be keywords in some implementations. For 
nformation, see your compiler guide. 

:decl 
ar 
ortran 
lUge 
lear 
lascal 

;yntax ~ummary B-1 



Tokens 

Identifiers 

identifier: 
letter 
underscore 
identifier letter 
identifier underscore 
identifier digit 

letter-one of the following: 
abcdefghijklm 
nopqrstuvwxyz 

ABCDEFGHIJKLM 
NOPQRSTUVWXYZ 

underscore: 

digit-one of the following: 
0123456789 

Constants 

constant: 

integer-constant 

long-constant 

jioating-point-constant 

char-constant 

enum-constant 

B-2 C Language Reference 



integer-constant: 

o 
decimal-constant 

octal-constant 

hexadecimal-constant 

decimal-constant: 

nonzero-digit 

decimal-constant digit 

nonzero-digit--one of the following: 
123456789 

octal-constant: 

Ooctal-digit 

octal-constant octal-digit 

octal-digit--one of the following: 
01234567 

hexadecimal-constant: 

Oxhexadecimal-digit 

OXhexadecimal-digit 

hexadecimal-constant hexadecimal-digit 

hexadecimal-digit -one of the following: 
0123456789 
abcdef 
ABCDEF 

long-constant: 

integer-constant I 
integer-constant L 

Syntax Summary 

Tokens 

B-3 



Tokens 

floating-point-constant: 

fractional-constant exponent 

fractional-constant 

digit-seq exponent 

fractional-constant: 

digit-seq. digit-seq 

cc+ 

+cc 
digit-seq. 

digit-seq: 

digit 

digit-seq digit 

exponent: 

e sign digit-seq 

E sign digit-seq 

e digit-seq 

E digit-seq 

sign: 

+ 

char-constant: 

'char' 

char: 

rep-char 

escape-sequence 

B-4 C Language Reference 



Tokens 

rep-char: 
Any single representable character except the single quotation-mark 
('), backslash (\), or new-line character. Note that the single­
quotation-mark character cannot be used alone in a character constant, 
and the double quotation-mark character cannot be used alone in a 
string literal. 

escape-sequence-one of the following: 

\' \" \\ \d \dd \ddd 

\xd \xdd \xddd \a \b \f 
\n \r \t \v 

enum-constant: 
identifier 

Strings 

string-literal: 

"char-seq" 

char-seq: 

char 

char-seq char 

Syntax Summary B-5 



Tokens 

Operators 

operator-one of the following: 

++ + 
* I % « 

» < <= > >= 
-- != & 
&& II = += -= 
= 1= %= »= «= 

&= A = 1= ?: 
[] () -> 

Separators 

separator-one of the following: 

( ) { } 

* = # 

B-6 C Language Reference 



Expressions 

expression: 
identifier 
constant 
string 
expression(expression-list) 
expression( void) 
expression[ expression] 
expression.identi fier 
expression->identifier 
unary-expression 
binary-expression 
ternary-expression 
assignment-expression 
(expression) 
(type-name)expression 
constant-expression 

expression-list: 
expression 
expression-list, expression 

unary-expression: 
unop expression 
sizeof( expression) 

unop-one of the following: 
- - ! * & 

lvalue: 
identifier 
expression[expression] 
expression.expression 
expression->expression 
*expression 
(type-name )expression 
(lvalue) 

Syntax Summary 

Expressions 

B-7 



Expressions 

type-name: 
See Section B.3, "Declarations." 

binary-expression: 
expression binop expression 

binop-one of the following: 

* I % + 

« 

>= 

» < 

!= 

&& II 

ternary-expression: 

> 

& 
<= 

expression ? expression : expression 

assignment-expression: 
lvalue++ 
lvalue--
++lvalue 
--lvalue 
lvalue assignment-op expression 

assignment-op-one of the following: 

= *= 1= %= += 

«= »= &= /= 

constant-expression: 
identifier 
constant 
(type-name)constant-expression 
unary-expression 
binary-expression 
ternary-expression 
(constant-expression) 

B-8 

-= 

C Language Reference 



Declarations 

declaration: 
sc-specifier type-specifier-list declarator-list; 
type-specifier-list declarator-list; 
sc-specifier declarator-list; 
typedef type-specifier-list declarator-list; 

sc-specifier: 
auto 
extern 
register 
static 

type-specifier: 
char 
double 
long double 
enum-specifier 
float 
int 
long 
short 
struct-specifier 
typedef-name 
union-specifier 
unsigned 
signed 
const 
volatile 
void 

type-specifier-list: 
type-specifier 
type-specifier-list type-specifier 

Syntax Summary 

Declarations 

B-9 



Declarations 

enum-specifier: 
enum tag {enum-list} 
enum {enum-list} 
enum tag 

tag: 
identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

struct-specifier: 
struct tag {member-declaration-list} 
struct {member-declaration-list} 
struct tag 

member-declaration-list: 
member-declaration 
member-declaration-list member-declaration 

member-declaration: 
type-specifier declarator-list; 
type-specifier identifier: constant-expression; 
type-specifier: constant-expression; 

declarator-list: 
declarator 
declarator = initializer 
declarator-list ,declarator 

B-lO C Language Reference 



declarator: 
identifier 
modifier-list identifier 
declarator[ ] 
declarator[constant-expression] 
*declarator 
declarator( void) 
declarator(fJormal-parameter-list]) 
(declarator) 

modifier-list 
modifier 
modifier-list modifier 

Jormal-parameter-list 
Jormal-parameter 
Jormal-parameter-list, Jormal-parameter 
Jormal-parameter-list, •.• 
Jormal-parameter-list, 

Jormal-parameter 
sc-spec type-spec declarator 
sc-spec type-spec abstract-declarator 

arg-type-list: 
type-name 
arg-type-list, type-name 
arg-type-list, ••• 
arg-type-list, 

type-name: 
type-specifier 
type-specifier abstract-declarator 

Syntax Summary 

Declarations 

B-ll 



Declarations 

abstract-declarator: 

* 
modifier* 
[ ] 
(arg-type-list) 
*abstract-declarator 
abstract-declarator* 
abstract-declarator[ ] 
abstract-declarator[constant-expression] 
[ ]abstract-declarator 
[constant-expression ]abstract-declarator 
abstract-declarator(void) 
abstract-declarator(formal-parameter-list) 
abstract-declarator(arg-type-list) 
(abstract-declarator) 

initializer: 
expression 
{initializer-list} 

initializer-list: 
initializer 
initializer-list, initializer 

typedef-name: 
identifier 

union-specifier: 
union tag {member-declaration-list} 
nnion {member-declaration-list} 
union tag 

modifier: 
cdecl 
far 
fortran 
huge 
near 
pascal 

B-12 C Language Reference 



modifier-list 
modifier 
modifier-list modifier 

Syntax Summary 

Declarations 

B-13 



Statements 

Statements 

statement: 
break; 
case constant-expression : statement 
compound-statement 
continue; 
default : statement 
do statement while(expression); 
expression; 
for ([expression]; [expression]; [expression]) statement; 
goto identifier; 
identifier: statement 
if (expression) statement [else statement]; 
return [expression]; 
switch (expression) statement 
while (expression) statement 

compound-statement: 

{[declaration-list] [statement-list] } 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

B-14 C Language Reference 



Definitions 

definition: 
function-definition 
data-definition 

function-definition: 

Definitions 

[sc-specifier] [type-specifier] declarator (fformal-parameter-listD 
compound-statement 

[sc-specifier] [type-specifier] declarator ([parameter-list]) 
[parameter-decs] compound-statement 

parameter-list: 
fixed-parameter-list 
variable-parameter-list 

fixed-parameter-list: 
identifier 
parameter-list, identifier 

variable-parameter-list: 
fixed-parameter-list, ••• 
fixed-parameter-list, 

parameter-decs: 
declaration 
declaration-list declaration 

data-definition: 
declaration 

Syntax Summary B-15 



Preprocessor Directives 

Preprocessor Directives 

directive: 
#define identifier [(fparameter-list])][token-seq] 
#elif restricted-constant-expression 
#else 
#endif 
#if restricted-constant-expression 
#ifdef identifier 
#ifndef identifier 
#include "string" 
#include <string> 
#line digit-seq 
#Iine digit-seq string 
#Undef identifier 

token-seq: 
token 
token-seq token 

restricted-constant-expression: 
defined (identifier) 
Any constant-expression except sizeof expressions, 
casts, and enumeration constants 

B-16 C Language Reference 



Pragmas 

Pragmas 

pragma: 
#pragma char-seq 

Syntax Summary B-17 





Index 

Special Characters 

» (right-shift operator) 5-24 
<> (angle brackets) 8-12 
-> (arrow), in member-selection expressions 5-7 
> (greater-than operator) 5-25 
>= (greater-than-or-equal-to operator) 5-25 
-> (member-selection operator) 5-7, A-5 
( ) (braces) 4-50, 6-1, 6-4 

[ ] (brackets) 1-7 
[ ] (brackets) 

array declarators, used in 4-9, 4-26 
? : (conditional operator) 5-30 
( ) (function modifier) 4-9 
? : (ternary operator) 5-14, 5-30 
# # (token-pasting operator) 

described 8-3,8-6 
differences from Kernighan and Ritchie 8-1 

+ (addition operator) 5-22 
& (address-of operator) 5-18 
- (arithmetic negation operator) 5-16 
\ (backslash character) 2-5,2-6 
& (bitwise-AND operator) 5-27 
- (bitwise-complement operator) 5-16 
• (bitwise-exclusive-OR operator) 5-27 
I (bitwise-inclusive-OR operator) 5-27 
[] (brackets) 

subscript expressions, used in 5-4, 5-6 
: (colon), with bitfield structure members 4-22 
, (comma) 

argument-type lists, used in 4-35 
declarations, used in 4-17,4-33 
function calls, used in 5-3, 7-16 
initialization, used in 4-50 
sequential-evaluation operator 5-29 

-- (decrement operator) 5-34 
/ (division operator) 5-21 
... (ellipsis notation) 4-35 
== (equality operator) 5-25 
++ (increment operator) 5-34 
* (indirection operator) 5-17 
!= (inequality operator) 5-25 
« (left-shift operator) 5-24 
< (less-than operator) 5-25 
<= (less-than-or-equal-to operator) 5-25 
&& (logical-AND operator) 5-28 
! (logical-NOT operator) 5-16 
II (logical-OR operator) 5-28 
. (member-selection operator) 5-7 

* (multiplication operator) 5-21 
# (number sign) 8-1 
- (one's complement operator) 5-16 
( ) (parentheses) 

complex declarators, used in 4-10 
expressions, used in 5-10 
function calls, used in 5-3 
function declarators, used in 4-9, 4-33 
macros, used in 8-9 

* (pointer modifier) 4-9, 4-28 
% (remainder operator) 5-21 
= (simple-assignment operator) 5-35 
# (stringizing preprocessor operator) 8-3 
- (subtraction operator) 5-23 
- (two's complement operator) 5-16 
+ (unary plus operator) 5-16 
_ (underscore character) 2-17 

A 

Abstract declarators 4-58 
Actual arguments See Arguments, actual 
Addition operator (+) 5-22 
Address-of operator (&) 5-18 
Aggregate data-type category 4-7 
Aggregate types 

array 4-26 
initialization 4-48,4-50 
structure 4-21 
union 4-25 

Anachronisms A-5 
AND operators 

bitwise (&) 5-27 
logical (&&) 5-28 

Angle brackets (0) 8-12 
ANSI standard 

enabling ANSI 1-1 
extensions 1-1 

Apostrophe (') See Escape sequences 
argc parameter 3-7 
Argument type checking 

conversions 7-20 
default prototypes 7-14 
formal parameters 7-9 
function calls 7-20 
variable-length parameter list 4-36 

1-1 



Index 

Arguments 
actual 

conversion 7-20 
evaluation, order of 7-17 
macros 8-5, 8-9 
passing 7 -19 
pointers 7-17, 7-20 
side effects 7-17 
type checking 7-20 
variable number 7-22 

command line 3-7 
formal See Formal parameters 
main function 3-7 
variable number 4-35,7-22 

Argument-type lists 
abstract declarator, used with 4-58 
default prototype 7-14 
described 4-34 
pointer arguments, used with 4-36 
variable length 4-35 
void *, used with 4-36 
void keyword, used with 4-36 

argv parameter 3-7 
Arithmetic conversions 5-15, A-3 
Arithmetic data-type category 4-7 
Arithmetic negation operator (-) 5-16 
Array declarators ([ ]) 4-9, 4-26 
Arrays 

declarations 4-9,4-26 
elements 5-4 
identifiers 5-2 
initialization 4-48, 4-50, 4-54 
multidimensional 4-27, 5-6 
references to 5-2, 5-4 
storage 4-27, 5-6 
subscripts 5-4 

asm keyword A-I 
Assigmnents 

conversions 5-41 
defined 5-1 
expressions 5-9 
operators 5-32 

Associativity 
modifiers 4-10 
operators 5-37 

auto storage class 4-40, 4-44, 4-48 

1-2 

B 

Backslash character (\) 2-5, 2-6 
Backspace escape sequence (\b) 2-5 
Bell character (\a) 2-5, A-I 
Binary expressions 5-9 
Binary operators, table 2-7,5-14 
Bitfields 4-22, 4-23, A-4 
Bitwise-AND operator (&) 5-27 
Bitwise-complement operator n 5-16 
Bitwise-exclusive-OR operator n 5-2 
Bitwise-inclusive-OR operator (I) 5-2' 
Blocks 3-8 
Braces ({ }) 

compound statement, used in 6-1, 6 
initialization, used in 4-50 

Brackets 
array declarators, used in 4-9, 4-26 
subscript expressions, used in 5-4, : 

Brackets ([]) 1-7 
Branch statements 6-13,6-18 
break statement 6-3 
Bytes, size of A-3 

c 

C character set 2-2 
Call by reference See Passing by refer 
Call by value See Passing by value 
Calls See Function calls 
Carriage-return escape sequence (\r) 2 
case keyword 6-18 
Case sensitivity 2-3, 2-17 
Casts See type casts 
cdecl keyword 2-19, 4-14, A-I 
char type 

conversion 5-42 
described 4-2 
diffurences from Kernighan and Rit 
range of values 4-4 
storage 4-4 

Character constants 
diffurences from Kernighan and Rit 
form 2-13 
sign extension 2-14 
type 2-14 

Character sets 2-2 
Characters 

backslash (\) 2-5, 2-6 
backspace escape sequence 2-5 
bell (\a) 2-5, A-I 



Characters (continued) 
carriage-return escape sequence (\r) 2-5 
case 2-3, 2-17 
continuation (\) 2-6 
differences from Kernighan and Ritchie A-I 
digits 2-3 
double-quotation-mark escape sequence 2-5 
escape sequences 2-5 
form-feed escape sequence (\f) 2-5 
hexadecimal escape sequences 2-5 
horizontal tab escape sequence (\1) 2-5 
letters 2-3 
new-line escape sequence (\0) 2-5 
octal escape sequences 2-5 
punctuation 2-4 
single-quotation-mark escape sequence (\') 

2-5 
special 2-4 
underscore U 2-3 
vertical-tab escape sequence (\v) 2-5 
white space 2-3, 2-5 

Colon (:), with bitfield structure members 4-22 
Comma(,) 

argument-type lists, used in 4-35 
declarations, used in 4-17, 4-33 
function calls, used in 5-3, 7-16 
initialization, used in 4-50 
sequential-evaluation operator (,) 5-29 

Command-line arguments 3-7 
Comments 2-20 
Compilation, conditional 8-14,8-18 
Complement operators 0 5-16 
Complex declarators 4-10,4-14 
Compound statements 6-4 
Compound-assignment operators 5-36 
Concatenation of string literals 2-15 
Concatenation operator, differences from 

Kernighan and Ritchie A-5 
Conditional compilation 8-14, 8-18 
Conditional operator (? :) 5-30 
Conditional statements 6-13,6-18 
const 

keyword A-I 
pointer modifier, used as 4-28 
type specifier 4-3 

Constant expressions 
case 6-18 
conversion 4-7 
defined (identifier) 8-15 
described 5-1 
directives, used in 5-11, 8-15 
form 5-11 
initializers 5-11 
restricted 5-11,8-15 

Index 

Constant expressions (continued) 
switch statement, used in 6-18 

Constants 
character See Character constants 
conversion 4-7 
decimal integer 2-10, 2-11 
described 2-10 
enumeration 4-20 
floating point 2-12, 4-6 
hexadecimal integer 

conversion 2-11,4-7 
form 2-10 
type 2-11 

integer 
differences from Kernighan and 

Ritchie A-I 
form 2-10 
long 2-12 
negative 2-11 
octal See Octal constants 
type 2-11 

manifest 8-3, 8-4, 8-11 
string See String literals 
summarized B-2 
type 5-2 

Continuation character (\) 2-6 
continue statement 6-5 
Control, returning 6-16 
Conventions, notational 1-5 
Conversions 

actual arguments 7-20 
assignment 5-41 
constant expressions 4-7 
constants 4-7 
enumeration types 5-49 
floating types 5-46 
formal parameters 7-9,7-20 
function call 5-50, 7-20 
function prototypes 5-50 
hexadecimal constants 4-7 
implicit 5-49 
octal constants 4-7 
operator 5-50 
pointer types 5-48 
range of values, effects on 4-7 
signed integral types 5-41, 5-49 
structure types 5-49 
type cast 5-50 
union types 5-49 
unsigned integral types 5-44, 5-49 
usual arithmetic 5-15, A-3 
void type 5-49 

1-3 



Index 

D 

Data type categories 4-7 
Data types See Types 
Decimal integer constants 2-10, 2-11 
Declaration modifiers 4-14 
Declarations 

defining 3-3 
form 4-1 
formal parameter names 4-33 
formal parameters 7-7, 7-8 
forward See Function declarations 

(prototypes) 
function See Function declarations 

(prototypes) 
pointer 4-9, 4-28, 7-14 
referencing 3-3 
storage allocation 3-3 
summarized B-9 
type 4-55 
typedef 4-55, 4-56 
variable 

array 4-26 
default storage class 4-42 
described 3-2 
enumeration 4-19 
external 4-40 
form 4-17 
global 4-41 
internal 4-40 
local 4-44 
multidimensional arrays 4-27 
pointer 4-28 
simple 4-18 
structure 4-21 
union 4-25 

Declarators 
abstract 4-58 
array 4-9 
complex 4-10, 4-14 
described 4-9 
function 4-9 
parentheses, enclosed in 4-10 
pointer 4-9 
special keywords, used with 4-14 

Decrement operator (--) 5-34 
default keyword 6-18 
Default return type 4-33 
Default storage class 

function declarations 4-47 
global variable declarations 4-42 
local variable declarations 4-44 

#define directive 8-4 

1-4 

defined (identifier) constant expression 8-15 
defined preprocessor operator 8-1, 8-3, A-5 
Defining declaration 4-41 
Definitions 

function 
described 3-3,7-1,7-3 
full prototype form 7-3 
obsolete form 7-4 
storage class 7-4 
summarized B-15 
visibility 7-4 

removing 8-11 
storage allocation 3-3 
variable 

described 3-3, 4-41 
storage class 4-41 
summarized B-15 
visibility 4-41, 4-44 

Digits 2-3 
Dimensions See Multidimensional arrays 
Directives 

constant expressions, used in 5-11, 8-15 
#define 8-4 
described 3-2, 8-1 
differences from Kernighan and Ritchie A-' 

A-5 
#elif 

described 8-14 
differences from Kernighan and 

Ritchie A-5 
nesting 8-15 

#else 8-14, 8-15 
#endif 8-14,8-15 
#if 8-14,8-15, A-5 
#ifdef 8-18, A-5 
#ifndef 8-18, A-5 
#include 8-12 
lifetime 3-5 
#line 8-19 
restricted constant expressions 5-11 
summarized B-16 
#Undef 8-11 

Division operator (/) 5-21 
do statement 

described 6-6 
execution 

continuation of 6-5 
termination of 6-3 

Double quotation mark ( ) See Quotation marl 
double type 

conversion 5-47 
described 4-2 
internal representation 4-6 
range of values 4-4 



double type (continued) 
range of values 4-4 
storage 4-4 

Double-quotation-mark escape sequence See 
Escape sequences 

E 

Elements 5-4, 5-6 
#elif directive 

described 8-14 
differences from Kernighan and Ritchie A-5 
nesting 8-15 

Ellipsis notation ( ... ) 1-6 
#else directive 8-14,8-15 
else keyword 6-13 
#endif directive 8-14,8-15 
entry keyword A-I 
enum type specifier 4-19, A-I 
Enumeration constants 3-14,4-20 
Enumeration expressions 5-2 
Enumeration set 4-19 
Enumeration types 

conversion 5-49 
declaration 4-19,4-55 
described 4-2 
differences from Kernighan and Ritchie A-2 
identifiers 5-2 
range of values 4-4 
storage 4-4, 4-19 
tags 

defined 3-14 
naming class 3-14 
type declarations 4-55 
variable declarations 4-19 

Enumeration variables 4-17 
envp 3-7 
Equality operator (==) 5-25 
Escape sequences 

described 2-5 
differences from Kernighan and Ritchie A-I 
double quotation mark 2-5 
\' (single quotation mark) 2-5 
\a (bell) 2-5 
\b (backspace) 2-5 
\\(backslash) 2-5 
\f (form feed) 2-5 
'In (new line) 2-5 
\r (carriage return) 2-5 
\t (horizontal tab) 2-5 
\v (vertical tab) 2-5 

Evaluation 

Index 

Evaluation (continued) 
order of 5-28, 5-38 
unary plus (+), forcing order with 5-16 

Execution See Program execution 
Exit from functions 6-16 
Exponents 2-12 
Expressions 

assignment 5-9 
binary 5-9 
case constant 6-18 
constant See constant expressions 
described 5-1 
enumeration 5-2 
floating type 5-2 
function call 5-4 
grouping 5-37 
integral 5-2 
list 5-3 
lvalue 5-33 
member selection 5-7, A-5 
operators, used in 5-9 
order of evaluation 5-38 
parentheses, enclosed in 5-10 
pointer 5-2 
side effects 5-12 
statements 6-7 
string literal 5-3 
structure 5-2 
subscript 5-4, 5-6 
summarized B-7 
switch 6-18, A-4 
ternary 5-9 
type cast 5-10 
unary 5-9 
union 5-2 

Extensions to ANSI C standard I-I 
extern storage class 

described 4-40 
function 

declarations 4-46 
definitions 7-4 

function declarations 7-13 
global variables 4-41 
local variables 4-44 

External declarations 
described 4-40 
function 4-46 

External level 3-3 

1-5 



Index 

F 

far keyword 
conversions 7-20 
described 4-14 
diffurences from Kemighan and Ritchie A-I 
listed 2-19 

Fields See Bitfields 
__ FTIlE __ identifier8-19 
Files 

inclusion 8-12 
name, changing 8-19 
nesting 8-13 

float type 
conversion 5-46 
described 4-2 
internal representation 4-6 
range of values 4-4 
storage 4-4 

Floating point 
constants 

form 2-12 
internal representation 4-6 
negative 2-12 

data-type category 4-7 
expressions 5-2 
identifiers 5-2 
types 

described 4-2 
internal representation 4-6 

types, conversion of 5-46 
for statement 

described 6-9 
execution continuation 6-5 
execution termination 6-3 

Forcing evaluation order 5-16 
Formal parameters 

conversion 7-9,7-20 
declaration 7-8 
described 4-34, 7-7 
following function header 7-4 
identi fiers 7-9 
list 7-3 
macro 8-4 
names 4-33 
naming class 3-13 
obsolete form 7-8 
storage class 7-9 
type checking 7-9, 7-20 

Form-feed escape sequence (\f) 2-5 
fortran keyword 2-19, 4-14, A-I 
Forward declarations See Function declarations 

(prototypes) 

1-6 

Function 
body 7-4, 7-11 
calls 

argument type checking 7-20 
arguments,variable number of 7-: 
conversions 5-50, 7-20 
described 7-1 
expressions 5-4 
form 5-3, 7-16 
indirect 7-17 
operator, used as sequence point. 
pointers, use of 7-17 
recursive 7-23 

declarations (prototypes) 
arguments, variable number of 4-
arguments, without 4-36 
default return type 4-33 
default storage class 4-47 
described 3-2, 7-1, 7-13 
diffurences from Kernighan and 

Ritchie A-4 
implicit 7-13 
parameter list 4-36 
pointer 4-33 
pointer arguments 4-36 
return type 4-34, 7-13 
return value 7-12 
storage class 4-46,4-47,7-13 
visibility 4-46, 7-13 

definition 
full prototype form 7-3 
obsolete form 7-4 

definitions See Definitions function 
modifier ( ) 4-9 
names See Identifiers 
pointers 7-14,7-17 
prototypes 

conversions 5-50 
defined 4-36, 7-1 

return type See Return type 
type See Return type 

Function-like macros 8-3 
Functions 

described 7-1 
exit from 6-16 
identifiers 5-3 
main 3-7 
naming class 3-13 
return value 6-16 



G 

Global 
level 3-3 
lifetime 3-8, 4-40 
variables 

described 3-10 
initialization 4-48 
references to 4-45 

visibility 3-9 
Global declarations 

variable 4-41 
goto statement 6-11 
Greater-than operator (» 5-25 
Greater-than-or-equal-to operator (>=) 5-25 

H 

Hexadecimal 
constants 

conversion 2-11, 4-7 
differences from Kernighan and 

Ritchie A-I 
form 2-10 
sign extension 2-11 
type 2-11 

escape sequences 2-5, A-I 
Horizontal-tab escape sequence (\1) 2-5 
huge keyword 

conversion 7-20 
described 4-14 
differences from Kernighan and Ritchie A-I 
listed 2-19 

I 

Identifier lists 7-8 
Identi fiers 

array 5-2 
characters allowed 2-17 
differences from Kernighan and Ritchie A-I 
enumeration 5-2 
_FILE_8-19 
floating type 5-2 
formal parameters 7-9 
function 5 -3 
integral 5-2 
length 2-17 

Index 

Identifiers (continued) 
_LINE_8-19 
modified 4-9 
naming classes 3-13 
pointer 5-2 
structure 5-2 
summarized B-2 
union 5-2 

#if directive 8-14, 8-15, A-5 
if statement 6-13 
#ifdef directive 8-18, A-5 
#ifndef directive 8-18, A-5 
#include directive 8-12 
Include files 8-12, 8-13 
Increment operator (++) 5-34 
Indirection operator (*) 5-17 
Inequality operator (!=) 5-25 
Initialization 

arrays 4-48, 4-50, 4-54 
auto storage class 4-48 
constant expressions 5-11 
differences from Kernighan and Ritchie A-4 
fundamental types 4-49 
global variables 4-48 
link time 4-42 
pointers 4-49 
register storage class 4-48 
restrictions 4-48 
static variables 4-48 
string literals 4-54 
structure variables 4-48, 4-50 
union variables 4-48,4-50 

Insertion of files 8-12 
int type 

conversion 5-43 
described 4-2 
differences from Kernighan and Ritchie A-2 
portability 4-6 
range of values 4-4,4-5 
storage 4-4 

Integer constants 
decimal 2-10, 2-11 
differences from Kernighan and Ritchie A-I 
hexadecirnal2-10,2-11 
long 2-12 
negative 2-11 
octaI2-1O,2-11 

Integral 
data-type category 4-7 
expressions 5-2 
identifiers 5-2 
types 

conversion 5-41, 5-44, 5-49 
described 4-2 

1-7 



Index 

Internal 
declarations 4-40 
representation 4-6, 4-7 

Internal level 3-3 
Italics 1-5 
Iterative statements 

do 6-6 
for 6-9 
while 6-21 

K 

Keywords 
differences from Kernighan and Ritchie A-I 

A-3 ' 
listed 2-19, B-1 
notational conventions 1-5 
special 4-14, 4-29 
statements, used in 6-1 
system dependent 2-19 

L 

Labeled statements 6-11 
Labels 

case 6-18 
default 6-18 
described 6-1 
form 6-11 
naming class 3-14 

Left-shift operator «<) 5-24 
Less-than operator «) See Relational operators 
Less-than-or-equal-to operator «=) See 

Relational operators 
Letters 2-3 
Lifetime 

described 3-8 
directives 3-5 
global 3-8, 4-40 
local 3-8, 4-40 

Line control 8-19 
#line directive 8-19 
_LINE_ identifier 8-19 
Lines, continuation 2-6 
Linked lists 4-22 
_loadds keyword 4-14 
Local 

declarations 4-44 
level 3-3 

1-8 

Local (continued) 
lifetime 3-8, 4-40 
variables 3-10,7-12 

Logical-AND operator (&&) 5-28 
Logical-NOT operator (!) 5-16 
Logical-OR operator (II) 5-28 
long type 

conversion 5-43 
described 4-2 
differences from Kernighan and Riter 
range of values 4-4 
storage 4-4 

long-double type, conversion 5-47 
long-float type 4-2 
Loops 

do statement 6-6 
for statement 6-9 
while statement 6-21 

Lvalue expressions 5-33 

M 

Macros 
actual arguments 8-5 
#define directive 8-4 
described 8-3 
empty definition 8-4 
example, with arguments 8-9 
example, with side effects 8-9 
function like 8-3 
object like 8-3 
side effects of arguments 8-5 
#undef, effect of 8-11 

Main function 3-7 
Manifest constants 8-3,8-4, 8-11 
Members 

bitfie1ds 4-22 
naming class 3-14 
referring to 5-7 
structure 4-21 
union 4-25 

Member-selection expressions 5-7, A-5 
Member-selection operators (-> and.) 5 
Modifiers 

array 4-9,4-26 
associativity 4-10 
declaration 4-14 
function 4-9 
pointer 4-9, 4-28 
precedence 4-10 

Multidimensional arrays 4-27, 5-6 
Multiplication operator (*) 5-21 



N 

Names See Identifiers 
Naming classes 3-13, A-4 
near keyword 

conversions 7-20 
described 4-14 
differences from Kernighan and Ritchie A-I 
listed 2-19 

Negation 5-16 
Nested visibility 3-10 
New-line escape sequence (\11) 2-5 
Nongraphic escape sequences 2-5 
NOT operator (!) See Logical-NOT operator 
Notational conventions 1-5 
Null statement 6-15 
Number sign (#) 8-1 

o 

Object-like macros 8-3 
Octal 

constants 
conversion 2-11,4-7 
differences from Kernighan and 

Ritchie A-I 
form 2-10 
sign extension 2-11 
type 2-11 

escape sequences 2-5 
One's complement operator n 5-16 
Operands 5-1 
Operators 

addition (+) 5-22 
address of (&) 5-18 
arithmetic negation (-) 5-16 
assignment 

compound 5-36 
listed 5-32 
simple (=) 5-35 

associativity 5-37 
binary 

described 5-14 
table 2-7 

bitwise AND (&) 5-27 
bitwise complement n 5-16 
bitwise-exclusive OR n 5-27 
bitwise-inclusive OR (I) 5-27 
complement 5-16 
compound assignment 5-36 
conditional (? :) 5-30 

Index 

Operators (continued) 
conversions 5-50 
decrement (--) 5-34 
differences from Kernighan and Ritchie A-5 
division (j) 5-21 
equality (=) 5-25 
expressions, used in 5-9 
increment (++) 5-34 
indirection (*) 5-17 
inequality (!=) 5-25 
left-shift (<<) 5-24 
listed 2-7, B-6 
logical 

described 5-28 
evaluation, order of 5-28 

logical AND (&&) 5-28 
logical NOT (!) 5-16 
logical OR (II) 5-28 
multiplication (*) 5-21 
one's complement n 5-16 
precedence 5-37 
preprocessor 

differences from Kernighan and 
Ritchie A-5 

stringizing A-5 
token pasting A-5 

preprocessor specific, listed 8-3 
relational (>,<,<=,>=) 5-25 
remainder (%) 5-21 
right shift (») 5-24 
sequence points, used as 5-12 
sequential evaluation (,) 5-29 
shift (<< and ») 5-24 
simple assignment (=) 5-35 
sizeof 5-19 
subtraction (-) 5-23 
ternary (?:) 5-14 
ternary (? :) 5-30 
two's complement (-) 5-16 
unary 2-7, 5-14 

OR operators 
bitwise exclusive n 5-27 
bitwise inclusive (I) 5-27 
logical (II ) 5-28 

Overview 1-1 

1-9 



Index 

p 

Parameter list 4-36 
Parameters 

argc 3-7 
argv 3-7 
envp 3-7 
formal See Formal parameters 
macro 8-4 
main function 3-7 

Parentheses 
complex declarators, used in 4-10 
expressions, used in 5-10 
function calls, used in 5-3 
function declarators, used in 4-9, 4-33 
macros, used in 8-9 

pascal keyword 2-19,4-14, A-I 
Passing by 

reference 7-19 
value 7-16,7-19 

Pointer 
modifier (*) 4-9, 4-28 

Preprocessor directives See Directives 
Preprocessor operators 

described 8-1 
listed 8-3 

Program execution 3-7 
Program structure 3-1, 3-2 
Prototypes, function 4-36, 7-1 
Punctuation characters 2-4 

Q 

Quotation marks 
#include directives, used in 8-12 
notational conventions 1-7 
representation 2-5, A-I 

R 

void (void *) 4-29 Recursion 7-23 
Pointer data-type category 4-7 Reference, passing by 7-19 
Pointers References to global variables 4-41,4-42,4-45 

adding 5-23 Referencing declarations 4-41 
arithmetic 5-23 register storage class 
comparisons 5-26 described 4-44 
const, modified by 4-28 initialization 4-48 
conversion 5-48 lifetime 4-40 
declarations 4-9,4-28,7-14 local variables 4-44 
diffurences from Kernighan and Ritchie A-2 Relational operators (>,<,<=,>=) 5-25 
expressions 5-2 Representable character set 2-2 
function calls through 7-17 Representation, internal 4-6, 4-7 
functions 7-14, 7-17 Reserved words See Keywords 
identifiers 5-2 Restricted constant expressions 5-11, 8-15 
implicit conversion 5-49 return statement 6-16 
initialization 4-49 Return type 
storage 4-29 declaration 7-13 
structure 4-28 default 4-33 
subtraction 5-23 described 4-34, 7-5 
union 4-29 implicit 7-13 
volatile, modified by 4-28 Retum value 6-16,7-12 

Portability 4-6 Right-shift operator (») 5-24 
Pound sign (#) See Number sign 
Pragmas 

described 3-2, 8-2 
differences from Kernighan and Ritchie A-5 
form 8-21 

Precedence 
modifiers 4-10 
operators 5-37 

Predefined identifiers 8-19 

1-10 



s 

_saveregs keyword 4-14 
Scalar data-type category 4-7 
Selection statements 6-13, 6-18 
Sensitivity, case 2-3 
Separators B-6 
Sequence points 

described 5-1, 5-12 
listed 5-12 
operators, other than 5-12 

Sequential-evaluation operator (,) 5-29 
Shift operators «< and ») 5-24 
short type 

conversion 5-42 
described 4-2 
diffurences from Kernighan and Ritchie A-2 
range of values 4-4 
storage 4-4 

Side effects 
expressions 5-1,5-12 
macros, used with 8-5, 8-9 
sequence points, used with 5-12 

Sign extension 2-11, 2-14 
signed 

char type 4-2, A-3 
inttype 4-2 
keyword 4-3, A-2 
long int type A-3 
long type 4-2, A-3 
short int type 4-2, A-3 
short type 4-2, A-3 
type 4-2, A-2 

Simple variable declarations 4-18 
Simple-assignment operator (=) 5-35 
Single-quotation-mark escape sequence (') See 

Escape sequences 
sizeof operator 5-19 
Source files 3-5 
Special characters 2-4 
Special keywords 

conversions 7-20 
declarators, used with 4-29 
diffurences from Kernighan and Ritchie A-I 

Standard directories 8-12 
Statement labels 

described 6-1 
form 6-11 
naming class 3-14 

Statements 
body 6-1 
break 6-3 
compound 6-4 

Statements (continued) 
continue 6-5 
do 6-6 
expression 6-7 
for 6-9 
form 6-1 
goto 6-11 
if 6-13 
keywords 6-1 
labeled 6-1, 6-11 
listed 6-1 
null 6-15 
return 6-16 
summarized B-14 
switch 6-18 
while 6-21 

static storage class 
described 4-40 
function 

declarations 4-46, 7-13 
definitions 7-4 

global variables 4-41 
initialization 4-48 
local variables 4-44 

Storage 
bitfields 4-23 
global 4-40 
local 4-40 
type 

char 4-4 
double 4-4 
float 4-4 
int4-4,4-5 
long 4-4 
unsigned char 4-4 
unsigned int 4-4, 4-5 
unsigned long 4-4 
void 4-4 

types 
array 4-27, 5-6 
enumeration 4-4, 4-19 
pointer 4-29 
structure 4-23 
union 4-25 

Index 

Storage allocation for variables 3-3 
Storage classes 

described 4-40 
formal parameters 7-9 
function 

declarations 7-13 
function declarations 4-47 
function definitions 7-4 
global variable declarations 4-42 
local variable declarations 4-44 

1-11 



Index 

Storage-class specifiers 
auto 4-40, 4-44 
extern See extern storage class 
listed 4-40 
register 4-40, 4-44 
static See static storage class 

String concatenation 2-15 
String literals 

concatenation 2-15 
form 2-14, 5-3 
initializers 4-54 
length 2-16,5-3 
storage 2-16 
type 2-16 

Stringizing preprocessor operator (#) 
described 8-3, 8-5 
differences from Kernighan and Ritchie A-5 

Strings See String literals 
struct type-specifier 4-21 
Structures 

conversion 5-49 
declaration 4-21,4-55 
differences from Kernighan and Ritchie A-3, 

A-4,A-5 
expressions 5-2 
identifiers 5-2 
initialization 4-48, 4-50 
members See Members 
pointers to 4-29 
storage 4-23 
tags 

naming class 3-14 
type declarations 4-55 
variable declarations 4-22 

Subscript expressions 5-4, 5-6 
Subtraction operator (-) 5-23 
switch statement 

constant expressions, used in 6-18 
described 6-18 
differences from Kernighan and Ritchie A-4 
termination of execution 6-3 

Symbolic constants See Manifest constants 
Syntax 

conventions See Notational conventions 
summary B-1 

System-dependent keywords 2-19 

1-12 

T 

Tab escape sequences 2-5 
Tags 

enumeration 4-19, 4-55 
naming class 3-14 
structure 4-22,4-55 
union 4-55 

Ternary expressions 5-9 
Ternary operator (1:) 5-14 
Ternary operator (1 :) 5-30 
Token-pasting preprocessor operator (## 

described 8-3, 8-6 
differences from Kernighan and Ritchi 

Tokens 2-7, 2-22, B-1 
Transfer statements 

break 6-3 
continue 6-5 
goto 6-11 
labeled statements 6-11 

Two's complement operator (-) 5-16 
Type 

checking See Arguments 
declarations 4-55 
modifiers 

differences from Kernighan and 
Ritchie A-3 

names 
argument-type lists, used in 4-36 
described 4-58 
sizeof, used with 5-19 
void 7-20 

specifiers 
abbreviations 4-3 
const 4-3 
differences from Kernighan and 

Ritchie A-2 
enum 4-2, 4-19 
fundamental types 4-2 
struct 4-21 
union 4-25 
volatile 4-3 

Type-cast conversions 5-50 
Type-cast expressions 

constraints 5-10 
defined 5-10 
void, to and from 5-10 

typedef 
declarations 4-55,4-56 
types 3-14.4-56 

Types 
array 

declaration 4-9, 4-26 



I'ypes (continued) 
array (continued) 

initialization 4-48,4-50,4-54 
multidimensional 4-27 
storage 4-27,5-6 

char See char type 
const 

described 4-3 
pointers, used with 4-29 

conversions See Conversions 
ditrerences from Kernighan and Ritchie A-2 
double 4-2, 4-4, 4-6 
enumeration See Enumeration types 
float See float type 
floating point 

described 4-2 
internal representation 4-6 

function See Return type 
fundamental 

declaration 4-18 
described 4-2 
ditrerences from Kernighan and 

Ritchie A-2 
initialization 4-49 
listed 4-2 
range of values 4-4 
storage 4-4 

int See int type 
integral 

conversion 5-41,5-44,5-49 
described 4-2 

long double, ditrerences from Kernighan and 
Ritchie A-2 

long float A-2 
long See long type 
pointer 

conversion 5-48 
declaration 4-9,4-28 
implicit conversion 5-49 
initialization 4-49 
storage 4-29 

short See short type 
signed 

char 4-2, A-3 
int 4-2 
long 4-2 
short 4-2 

structure 
conversion 5-49 
declaration 4-21,4-55 
initialization 4-48,4-50 
pointers to 4-29 
storage 4-23 

typedef 3-14, 4-56 

Types (continued) 
union 

conversion 5-49 
declaration 4-25,4-55 
initialization 4-48,4-50 
pointers to 4-29 
storage 4-25 

Index 

unsigned char See unsigned char type 
unsigned int See unsigned int type 
unsigned long See unsigned long type 
unsigned short See unsigned short type 
user defined 4-55, 4-56 
void 4-3, 4-4 
volatile 

described 4-3 
pointers, used with 4-29 

u 

Unary expressions 5-9 
Unary operators, table 2-7,5-14 
Unary plus operator (+) 5-16 
#undef directive 8-11 
Underscore character U 2-3, 2-17 
Union declarations 

types 4-55 
variables 4-25 

union type specifier 4-25 
Unions 

conversion 5-49 
declaration 4-25,4-55 
ditrerences from Kernighan and Ritchie A-4, 

A-5 
expressions 5-2 
identifiers 5-2 
initialization 4-48, 4-50 
members 

described 4-25 
naming class 3-14 
referring to 5-7 

pointers to 4-29 
storage 4-25 
tags 3-14,4-55 

unsigned 
char type 

conversion 5-44 
described 4-2 
ditrerences from Kernighan and Ritchie 

A-2,A-3 
range of values 4-4 
storage 4-4 

int type 

I-13 



Index 

unsigned (continued) 
int type (continued) 

conversion 5-46 
described 4-2 
portability 4-6 
range of values 4-4, 4-5 
storage 4-4 

keyword 4-3, A-2 
long int type See unsigned long type 
long type 

conversion 5-45 
described 4-2 
diffurences from Kernighan and Ritchie 

A-2,A-3 
range of values 4-4 
storage 4-4 

short int type See unsigned short type 
short type 

conversion 5-44 
described 4-2 
diffurences from Kernighan and 

Ritchie A-3 
range of values 4-4 
storage 4-4 

type 4-2, A-2 
Unspecified type, pointer to (void *) 4-29 
User-defined types See Types 
Usual arithmetic conversions 5-15, A-3 

v 

Values 
range of 4-4,4-5,4-7 

Values, passing by 7-16, 7-19 
Variable names See Identifiers 
Variables 

array 
declaration 4-26 
initialization 4-50,4-54 
storage 4-27 

auto 4-40, 4-44, 4-48 
communal 4-42 
declarations 

1-14 

array 4-9, 4-26, 4-27 
described 3-2 
enumeration 4-19 
external 4-40 
form 4-17 
fundamental types 4-18 
global 4-41, 4-42, 4-44 
internal 4-40 
local 4-44 

Variables (continued) 
declarations (continued) 

multidimensional arrays 4-27 
pointer 4-28 
simple 4-18 
structure 4-21 
summarized B-9 
union 4-25 
visibility 4-41 

definitions 
described 3-3,4-41 
summarized B-15 
visibility 4-41, 4-44 

enumeration 4-19 
extern 4-41, 4-45 
fundamental types 4-18, 4-49 
global 3-10, 4-41, 4-45 
lifetime 

global 3-8, 4-40, 4-48 
local 3-10, 7-12 

local 3-10, 7-12 
multidimensional arrays 4-27, 5-6 
naming class 3-13, A-4 
pointer 4-28, 4-29, 4-49 
register 4-44, 4-48 
simple 4-18 
static 4-41, 4-45. 4-48 
storage allocation 3-3 
structure 4-21,4-23,4-50 
union 4-25, 4-50 
visibility 4-41 

Vertical-tab escape sequence (\v) 2-5, J 

Visibility 
described 3-8 
function declarations 4-46, 7-13 
function definitions 7-4 
global 3-9 
nested 3-10 
variable declarations 4-41 
variable definitions 4-41, 4-44 

void 
argument-type list 4-34, 4-36 
formal parameter list, used in A-2 
function-return type 4-34 
keyword A-I 
pointer modifier, used as A-2 
pointer to 4-29 
type name 7-20 

void type 
conversion 5-49 
described 4-2,4-3 
range of values 4-4 
storage 4-4 
type specifier A-2 



volatile 
keyword A-I 
pointer modifier, used as 4-28 
type specifier 4-3 

w 

while statement 
described 6-21 
execution, continuation of 6-5 
execution, termination of 6-3 

White-space characters 2-3, 2-5 

Index 

1-15 




