|;|_| OPEN

.DESKTOP

Open Deskfbp’
Development
System I=

o
=
o
®

O
F
[+
=
L]
c
w
(=]
o

The Complete Graphical Operating System

SCO UNIX" System V/386

Development System

C Language Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.

All rights reserved.

Portions © 1989 AT&T.

All rights reserved.

Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE --
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii)) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. “CONTRACTOR/ MANUFACTURER’’ IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.

UNIX is a registered trademark of AT&T.

DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.

SCO Document Number: 6-26-89-6.0/3.2.0

SCO UNIX' System V/386

Development System

C User’s Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.

All rights reserved.

Portions © 1989 AT&T.

All rights reserved.

Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE --
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. ‘““CONTRACTOR/ MANUFACTURER’’ IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.

Intel is a registered trademark of Intel Corporation.

UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

1 Introduction

Overview 1-1
About This Guide 1-2

New Features 1-4
Notational Conventions 1-6
BooksaboutC 1-9

2 Compiling with the cc Command

Introduction 2-1
The Basics: Compiling and Linking C Programs 2-2
Usingcc Options 2-6

3 Linking with the cc Command

Introduction 3-1
The Default Linking Process 3-2
Passing Linker Information: The -link Option 3-3

4 Running C Programs on System V

Introduction 4-1
Passing Command-Line Data to a Program 4-2

5 Working with Memory Models

Introduction 5-1

Near, Far, and Huge Addressing 5-4

Using the Standard Memory Models 5-6
Using the near, far,and huge Keywords 5-14
Creating Customized Memory Models 5-25
Setting the Data Threshold 5-30

Naming Modules and Segments 5-31
Specifying Textand Data Segments 5-34

6 Improving Program Speed

Introduction 6-1

Using Register Variables 6-2

Optimization Options and Pragmas 6-4
Choosing the Function-Calling Convention 6-7

Efficiency in Large Data Models 6-8
Efficiency in Large Code Models 6-10

Object and Executable File Formats

Introduction 7-1

iAPX.....286and 386 System Architecture 7-2
The Intel Object Module Format 7-4

Definition of Terms 7-6

Module Identification and Attributes 7-9

Segment Definition 7-10

Segment Addressing 7-11

Symbol Definition 7-12

Indices 7-13

Conceptual Framework for Fixups 7-14
Self-Relative Fixups 7-19

Segment-Relative Fixups 7-20

Record Order 7-22

Introduction to the Record Formats 7-24

Numeric List of Record Types 7-50

Type Representations for Communal Variables 7-51
The Segmented x.outFormat 7-54

C Language Compatibility with Assembly Language

Introduction 8-1

CCalling Sequence for 8086/80286 8-2
Entering an 8086/80286 Assembly Routine 8-3
8086/80286 Return Values 8-4

Exiting an 8086/80286 Routine 8-5
8086/80286 Program Example 8-6

80386 C-Language Calling Sequence 8-7
Entering an 80386 Assembly-Language Routine 8-8
80386 Return Values 8-9

Exiting an 80386 Routine §-11

80386 Program Example 8-12

Error Processing

Introduction 9-1

Using the Standard ErrorFile 9-2
Using the errno Variable 9-3
Printing ErrorMessages 9-4
Using Error Signals 9-5
Encountering System Errors 9-6

-ii-

10 Common Object File Format (COFF)

The Common Object File Format (COFF) 10-1
Definitions and Conventions 10-3
File Header 10-5

Optional Header Information 10-7
Section Headers 10-9

Sections 10-12

Relocation Information 10-13
Line Numbers 10-15

Symbol Table 10-17

String Table 10-41

Access Routines 10-42

A Converting from Previous Versions of the Compiler

Introduction A-1

Differences between Versions 5.1and5.0 A-2
Differences between Versions 5.0and4.0 A-4
Differences between Versions 4.0and3.0 A-8

B Writing Portable Programs

Introduction B-1

Program Portability B-3
Machine Hardware B-4
Compiler Differences B-11
Environment Differences B-16
Portability of Data B-17
Type-Size Summary B-18
Byte-Ordering Summary B-20

C Writing Programs for Read-Only Memory

Introduction C-1
System V Dependent Library Routines C-2

D CError Messages and Exit Codes
Introduction D-1

Command-Line Error Messages D-2
Compiler ErrorMessages D-7

-1ii -

Chapter 1

Introduction

Overview 1-1

About This Guide 1-2

New Features 1-4
Notational Conventions 1-6

Books about C 1-9

Overview

Overview

The C language is a powerful general-purpose programming language
that can generate efficient, compact, and portable code. The Microsoft® C
Optimizing Compiler (cc) for the UNIX System V® operating system is a
full implementation of the C language as defined by its authors, Brian W.
Kernighan and Dennis M. Ritchie, in The C Programming Language.
Microsoft is actively involved in the development of the ANSI (American
National Standards Institute) standard for the C language; this version of
Microsoft C for UNIX System V anticipates and conforms to the forth-
coming standard in many areas.

The Microsoft C Compiler offers several important features to help you
increase the efficiency of your C programs. You can choose among five
standard memory models (small, medium, compact, large, and huge) to
set up the combination of data and code storage that best suits your pro-
gram. For flexibility and even greater efficiency, the C Compiler allows
you to ‘‘mix’’ memory models by using special declarations in your pro-
gram.

The C language itself does not provide such standard features as input and
output capabilities and string-manipulation features. These capabilities
are provided as part of the run-time library of functions that accompanies
the C Compiler.

Compared with other programming languages, Microsoft C is extremely
flexible concerning data conversions and nonstandard constructions. The
C Compiler offers several levels of warnings to help you control this
flexibility; programs in an early stage of development can be processed
using the full warning capabilities of the compiler to catch mistakes and
unintentional data conversions. An experienced C programmer can use a
lower warning level for programs that contain intentionally nonstandard
constructions. For more information about this feature, see the ‘‘Compil-
ing with the cc Command’’ chapter in this guide.

Introduction 1-1

About This Guide

About This Guide

This guide explains how to use the C Compiler to compile, link, and run C
programs on UNIX System V. The guide assumes that you are familiar
with the C language and with UNIX System V, and that you know how to
create and edit a C-language source file on your system.

If you have questions about the C language, turn to the C Language Refer-
ence included in this package. The C Library Guide documents the run-
time library routines you can use in your C programs.

The remaining chapters of the C User’s Guide are described below:

Chapter 2, ‘‘Compiling with the cc Command,’’ describes how to compile
a program using the cc compiler driver. This chapter describes the options
most commonly used to control preprocessing, compiling, and output of
files.

Chapter 3, ‘‘Linking with the cc Command,’’ describes how to link object
files using the cc command. This chapter explains how the linker searches
for libraries, shows how to specify libraries for linking, and describes the
linker options that can be used for C programs.

Chapter 4, ‘‘Running C Programs on UNIX System V,”” explains how to
run your executable program file and discusses features specific to the
UNIX System V implementation of C. This chapter tells how to pass data
from UNIX System V to a program at execution time and how to return an
exit code from your program to UNIX System V.

Chapter 5, ‘“Working with Memory Models,”” describes methods of
managing memory models. These methods are useful for writing pro-
grams that use more than 64K (kilobytes) of code or data. This chapter
also discusses ‘‘mixed-model’’ programming (combining features from
the five standard memory models).

Chapter 6, ‘‘Improving Program Speed,”” gives suggestions and hints for
maximizing program speed.

Chapter 7, ‘““‘Object and Executable File Formats,”” describes the system
architecture of the 80x86 microprocessor family, the object module for-
mat that the C compiler follows, and the format of the x.out file in a seg-
mented environment.

1-2 C User’s Guide

About This Guide

Chapter 8, ““C Language Compatibility with Assembly Language,”
describes how you can embed assembly-language subroutines within C-
language programs.

Chapter 9, ““‘Error Processing,”’ describes how to process errors detected
in calls to the C library routines and explains the functions and variables a
program may use to respond to these errors.

Chapter 10, ‘“The Common Object File Format (COFF),”” describes the
features and contents of COFF files.

Appendix A, ‘“‘Converting from Previous Versions of the Compiler,”
summarizes the differences between Version 5.1 of the C Compiler and
previous versions. This appendix gives instructions for converting pro-
grams written for versions prior to 5.1 to the format accepted by Version
5.1.

Appendix B, ‘“Writing Portable Programs,’’ lists some of the C-language
features that are implementation-dependent, and offers suggestions for
increasing program portability.

Appendix C, ‘“Writing Programs for Read-Only Memory,”” gives informa-
tion about modifying start-up code and initializing floating-point support
for programs that will be put in read-only memory.

Appendix D, ‘‘Error Messages and Exit Codes,”’ lists and describes the
error messages and exit codes generated by the C Compiler and by the cc
command. It also lists and explains run-time error messages produced by
executable programs written in C.

Introduction 1-3

New Features

New Features

Several useful features have been added to Version 5.1 of the C Compiler.
This section summarizes features added since Version 5.0. For informa-
tion about differences between Version 5.1 and versions prior to 5.0, see
the ‘‘Converting from Previous Versions of the Compiler’’ appendix in
this guide.

New features include the following:

Feature Description

New cc options Option Action

-S Generates an assembly-language
source file for the Macro Assembler,
masm(CP).

-Xenix Produces object andfor executable
files using the Intel Object Module
Format (OMF).

-x2.3 Produces object and/or executable
files using the Intel Object Module
Format (OMF) and the XENIX Sys-
tem V/Release 2.3 run-time library.

New pragmas Pragma Action

comment Places a comment record in the
object file.

Data_seg Specifies the data-segment name
used by functions that load their own
data segments. The named segment
also contains all data that would
normally be allocated in the DATA
segment.

linesize Sets the number of characters per
line in the source listing.

1-4 C User’s Guide

Introduction

message

page
pagesize

skip

subtitle

title

New Features

Sends a message to the standard out-
put without terminating the compila-
tion.

Places a formfeed character(s) in the
source listing.

Sets the number of lines per page in
the source listing.

Skips the specified number of lines
in the source listing. Places a com-
ment record in the object file.

Specifies a subtitle for the source
listing.

Specifies a title for the source list-
ing.

1-5

Notational Conventions

Notational Conventions

The following notational conventions are used throughout this guide:

Example Description
of Convention of Convention
Examples The typeface shown in the left column is used

to simulate the appearance of information that
would be printed on the screen or by a printer.
For example, the following command line is
printed in this special typeface:

cc -Foout.o -DTRUE=1 file.c

When this command line is discussed in text,
items appearing on the command line, such as
out.o, also appear in the special typeface.

Language elements Bold type indicates elements of the C language
that must appear in source programs as shown.
Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor direc-
tives.

Examples are shown below:

+= #if defined() int
if -Fa fopen
main sizeof

ENVIRONMENT, Bold capital letters are used for environment

VARIABLES, variables, symbolic constants, and macros.
and MACROS
placeholders Words in italics are placeholders, representing

a variable that you must supply in command-
line examples, option specifications, and in the
text. Consider the following option:

-H number

1-6 C User’s Guide

vlissing code

optional items]

ntroduction

Notational Conventions

Note that number is italicized to indicate that it
represents a general form for the -H option. In
an actual command, you would supply a partic-
ular number for the placeholder number.

Occasionally, italics are also used to emphasize
particular words in the text.

Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following excerpt,
the ellipses between the statements indicate
that intervening program lines occur but are not
shown:

count = 0;

*pct+;

Brackets enclose optional fields in command-
line and option specifications. Consider the fol-
lowing option specification:

-Didentifier[=[string]]

The placeholder identifier indicates that you
must supply an identifier when you use the -D
option. The outer brackets indicate that you are
not required to supply an equal sign (=) and a
string following the identifier. The inner brack-
ets indicate that you are not required to enter a
string following the equal sign, but if you do
supply a string, you must also supply the equal
sign.

Single brackets are used in C-language array
declarations and subscript expressions. For
instance, af10] is an example of brackets in a C
subscript expression.

1-7

Notational Conventions

Repeating
elements. ..

{choicellchoice2}

““‘Defined terms”’

KEY+KEY

1-8

Horizontal ellipses are used in syntax examples
to indicate that more items having the same
form may be entered. For example, in the
Bourne shell, several paths can be specified in
the PATH command, as shown in the following
syntax:

PATH([=lpath[;path]...

Braces and a vertical bar indicate that you have
a choice of two or more items. Braces enclose
the choices, and vertical bars separate them.
You must choose one of these items unless all
of them are also enclosed in square brackets.

For example, the -W (warning-level) compiler
option has the following syntax:

W 0111213}

You can use -W1, -W2, or -W3 to display
different levels of warning messages or -W0 to
suppress all warning messages.

Quotation marks set off terms defined in the
text. For example, the term ‘‘far’’ appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language have
the form " * rather than ‘‘ . For example, a
C string used in an example would be shown in
the following form:

"abe"

Small capital letters are used for the names of
keys and key sequences, such as ENTER and
CTRL+C. Key sequences to be pressed simul-
taneously are indicated by the key names in
small caps separated by a plus sign (CTRL+C).

C User’s Guid

Books about C

Books about C

The manuals in this documentation package provide a complete
programmer’s reference for C. They do not, however, teach you how to
program in C. If you are new to C or to programming, you may want to
familiarize yourself with the language by reading one or more of the fol-
lowing books:

Hancock, Les, and Morris Krieger. The C Primer. New York:
McGraw-Hill Book Co., Inc., 1982,

Hansen, Augie. Proficient C. Bellevue, Washington: Microsoft
Press, 1986.

Harbison, Samuel P., and Greg L. Steele. C: A Reference Manu-
al. Englewood Cliffs, New Jersey: Prentice-Hall Software
Series, 1987.

Kernighan, Brian W., and Dennis M. Ritchie. The C Program-
ming Language. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New
Jersey: Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey:
Plum Hall, Inc., 1983.

Schildt, Herbert. C Made Easy. Berkeley, California: Osborne
McGraw Hill, 1985.

Schustack, Steve. Variations in C. Bellevue, Washington: Micro-
soft Press, 1985.

These books are listed for your convenience only.

Introduction 1-9

‘hapter 2

‘ompiling with the
¢ Command

troduction 2-1

1e Basics: Compiling and Linking C Programs 2-2
The cc Command 2-2

sing cc Options 2-6
Setting Processor and Memory Model (-M) 2-6
Specifying Source Files (-Tc) 2-8
Compiling without Linking (-c) 2-9
Naming the Object File (-Fo) 2-9
Naming the Executable File (-Fe) (-o) 2-10
Creating Listings 2-11
Controlling the Preprocessor 2-28
Checking for Program Errors 2-35
Preparing for Debugging (-Zi, -Od) 2-40
Optimizing 2-41
Enabling/Disabling Language Extensions (-Ze, -Za) 2-53
Packing Structure Members (-Zp) 2-54
Setting the Stack Size (-F) 2-56
Restricting the Length of External Names (-nl) 2-57
Labeling the Object File (-V) 2-57
Changing the Default char Type (-J) 2-58
Controlling the Calling Convention (-Gc) 2-58
Compiling Programs for DOS Environment (-dos, -FP) 2-60
Displaying Compiler Passes (-d, -z) 2-61
Producing OMF Object and Executable Files (-xenix) 2-62
Miscellaneous Pragmas 2-62
Predefined Macro Names 2-65

N

Introduction

[ntroduction

This chapter explains how to compile and link using the cc command and
liscusses commonly used cc options. The cc command is the only com-
nand you need to compile and link your C source files. The cc command
sxecutes the three compiler passes, then automatically invokes the linker,
d, to link your files.

Jsing the cc options described in this chapter, you can control and modify
he tasks performed by the command. For example, you can direct cc to
‘reate an object-listing file or a preprocessed listing. Options also let you
rive information that applies to the compilation process; you can specify
he definitions for manifest (symbolic) constants and macros, and the
<inds of warning messages you want to see.

The cc command automatically optimizes your program. You never have
0 give an optimizing instruction unless you want to change the way cc
ptimizes, request more sophisticated optimizations, or disable optimiza-
ion altogether. For more information on these choices, see the ‘Optimiz-
ng’’ section in this chapter.

“The Basics: Compiling and Linking C Programs’’ explains the basic use
>f the cc command to produce an executable program.

‘Using cc Options,’” describes the ¢c options.

“or information about linking object files and libraries using the cc com-
nand, see the ‘‘Linking with the cc Command’’ chapter of this guide.

“or a discussion of the cc options that control memory models, see the
‘Working with Memory Models”’ chapter in this guide.

or a summary of the cc command and its options, see the C Language
Reference.

~ompiling with the cc Command 2-1

i
i
3
i

The Basics: Compiling and Linking C Programs

The Basics: Compiling and Linking C
Programs

This section explains how to use cc to compile and link C programs an
discusses the rules and conventions that apply to file names and option
used with cc.

The cc Command
The cc command has the following form:

cc [option]... file... [option... file...]...[-link[link-libinfo]]

Each option is one of the command-line options described in the ‘‘Usin
cc Options’’ section, the ‘“Working with Memory Models’’ chapter, or th
‘“‘Improving Program Speed’’ chapter of this guide.

Each file names a source or object file to be processed or a library to b
searched at link time. See the description on ‘‘Specifying Source an
Object Files’” later in this section for information about specifying sourc
and object files.

The cc command automatically specifies the appropriate library to b
used during linking. You can use the -link option with the optional link
libinfo field to specify additional or different libraries, library searc
paths, and options to be used during linking. You can also specify linke
options in the linkoptions field. For information about specifying differer
libraries and linker options, see the ‘‘Linking with the cc Command
chapter of this guide.

You can give any number of options, file names, and library names on th
command line, provided that the command line does not exceed 128 chai
acters.

COFF and OMF

This version of the C Compiler can produce object and/or executable file
that use either of two different binary file formats: COFF (Commc
Object File Format) and OMF (Intel Object Module Format). COFF is th
most widely used binary file format. OMF files are produced using tk

2-2 C User’s Guic

The Basics: Compiling and Linking C Programs

-xenix option with the compiler. SCO UNIX System V can execute either
file format by reading the file header and acting accordingly. Certain sys-
tem calls behave differently in OMF files because they follow UNIX Sys-
tem V rather than XENIX system conventions. The COFF and OMF for-
mats are described by their corresponding header files:
fusr/include/a.out.h and /usr/include/sys/x.out.h respectively.

Note

The default file name produced by the linker is a.out regardless of
the actual file format used. Any mention of x.out in this guide is
referring only to the format of OMF executable files.

Table 2.1 shows the tools used with various options to the Microsoft C
Compiler, and the type of object/executable file that results.

Table 2.1
Options, Tools, and Resulting Files

Jption MS C Compiler Assembler | Link Editor | obj form:

none MS masm Ild COFF
-C Creates linkable x.out object file masm n/a COFF
-S Creates assembly source listing masm n/a COFF
-Fa Creates assembly source listing masm id COFF

Xenix Creates XENIX programs in OMF format masm ld OMF

- -Xenix Creates XENIX assembly source listing masm n/a OMF

1 -xenix Creates XENIX assembly source listing masm ld OMF

Specifying Source and Object Files

The cc command can process source files, object files, library files, or any
combination of these. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs,
as shown in the following list:

o If the file has a .c extension, cc compiles the file.

Compiling with the cc Command 2-3

The Basics: Compiling and Linking C Programs

e If the file has a .0 extension, cc processes the file by invoking the
linker.

e If the file has a .a extension, cc assumes the file is a library and
passes it to the linker to be searched, unless the -c option is given
to suppress linking. For a description of the -c¢ option, see the sec-
tion on ‘‘Compiling without Linking’’ under the section ‘‘Using cc
Options.”’

e If the file has the .asm extension, it is passed to masm.

e If the extension is omitted,
cc assumes an extension of .0. If the extension is anything other
than .c, .0, or.a, cc assumes the file is an object file unless the file
name is specified in association with the -Tc option. If the file
name is specified with the -Tc option, cc assumes the file is a C
source file. For a description of the -Tc option, see the section on
““‘Specifying Source Files’” under the section ‘‘Using cc Options.”’

Examples

cc a.c b.c c.o d.o

This command line compiles the files a.c and b.c, creating object files
named a.o and b.o. These object files are then linked with the object files
c.o and d.o to form an executable file named a.out.

cc a.c b.c c.o -Ted.szxc

This command performs the same operations as the preceding command
line, except that the -Tc option indicates that d.src is a source file, not an
object file. Thus, the files a.c, b.c, and d.src are compiled, creating object
files named a.o, b.o, and d.o. These object files are then linked with c.o to
form an executable file named a.out.

Creating Executable Files

When ce compiles source files, it creates object files. By default, these
object files use the COFF format and have the same base names as the
corresponding source files, but with the extension .o instead of .c. (The
base name of a file extension is the portion of the name preceding the pe-
riod, but excluding the path specification, if any.) After compilation, cc
runs a conversion program, cvtomf, over the object file to convert it into
COFF format. For more information about the cvtomf conversion pro-
gram, refer to the manual page cvtomf (C). The converted object file can

2-4 C User’s Guide

The Basics: Compiling and Linking C Programs

now be linked using the AT&T link editor, ld. The -xenix option
suppresses the conversion.

Unless the -c option is given, cc links these object files, along with any .0
files you give on the command line, to form an executable file. If only .0
files are given on the command line, cc skips the compilation stage and
simply links the files.

Compiling with the cc Command 2-5

Using cc Options

Using cc Options

The cc command offers a large number of command options to control
and modify the compiler’s operation. Options begin with a dash (-) and
contain one or more letters.

Options can appear anywhere on the cc command line. In general, an
option applies to all files that follow it on the command line, and it does
not affect files preceding it. However, not all options follow this rule; see
the discussion of a particular option for information on its behavior. Keep
in mind that cc options apply only to the compilation process. Unless spe-
cifically noted, options do not affect any object files given on the com-
mand line. The remainder of this section describes many of the options
applicable to cc. For a concise list of all possible options, refer to the
manual page, cc(CP).

Setting Processor and Memory Model (-M)

The -M option sets the program configuration. This configuration defines
the program’s memory model, word order, and data threshold. It also
enables C-language enhancements such as the use of the full 286 instruc-
tion set and special keywords.

cc -Mstring special.c
The string contains the argument that defines the configuration. It may be

any combination of the following (though s, m, ¢, I, h, and 0, 1, 2, 3 are
mutually exclusive):

S Create a small model program. This is the default.
m Create a middle model program.

c Create a compact model program.

1 Create a large model program.

h Create a huge model program.

2-6 C User’s Guide

tnum

Using cc Options

Enable the keywords: far, near, huge, pascal and for-
tran. Also enables certain non-ANSI extensions neces-
sary to ensure compatibility with existing versions of the
C compiler.

Use only 8086 instructions for code generation. This is
the default on 8086/80186/80286 systems.

Use the extended 80186 instruction set.
Use the extended 80286 instruction set.

Use the extended 80386 instruction set. This is the
default on 80386 systems.

Causes all static and global data items whose size is
greater than num bytes to be allocated to a new data seg-
ment. Num, the data ‘‘threshold,”’ defaults to 32,767.
This option can only be used in large model programs
(-Ml). Its main use is to move data out of the near data
segment to allow room for the stack.

cc -M1 -Mtl2 recursive.c

Do not assume (during compilation) that the registers SS
and DS will have the same contents at run time.
Warning: This option has no library or run-time support
on UNIX System V. It will not cause the stack to be put
in a separate segment. It may be of use for DOS cross-
development.

-M3 is the default on 80386 systems. Although it is usually advantageous
to enable the appropriate instruction set, you are not required to do so. If
you have an 80286 processor, for example, but you want your code to be
able to run on an 8086, you should not use the 80186/80188 or 80286

instruction set.

Note

The m, ¢, L, h, b, t, and d arguments are not compatible with the
-M3 option. The s and e arguments are compatible with -M0, -M1,

-M2, or -M3.

Compiling with the cc Command 2-7

Using cc Options

For a complete description of memory models and segment options, see
the ‘“Working with Memory Models’’ chapter in this guide.

The memory-model option you choose determines the name of the stan-
dard libraries that cc places in the object file it creates. These libraries are
then considered the default libraries, since the linker searches for them by
default.

Table 2.2 shows each memory-model option and the corresponding library
name that cc embeds in the object file.

Table 2.2
cc Options and Default Libraries

Memory-Model Default
Option Libraries
-Ms Slibc.a
Slibcfp.a
-Mm Milibc.a
Mlibcfp.a
-Mc Clibc.a
Clibcfp.a
-Ml or -Mh Llibc.a
Llibfp.a

Specifying Source Files (-Tc)
Option

-Te sourcefile

The -Tc option tells the cc command that the given file is a C source file.
One or more spaces can appear between -Te and the source-file name.

If this option does not appear, cc assumes that files with the extension .c
are C source files, files with the extension .a are libraries, and files with
any other extension or with no extension are object files. If you use the
-Tc option, cc treats the given file as a C source file, regardless of its
extension. A separate -Tc option must appear for each source file that has
an extension other than .c .

2-8 C User’s Guide

Using cc Options

If you have to specify more than one source file with an extension other
than .c , you must specify each source file in a separate -Tc option.

Example

cc main.c -Tc test.prg -Tc collate.prg print.prg
In this example, the cc command compiles the three source files main.c,
test.prg, and collate.prg. Since the file print.prg is given without a -Te

option, cc treats it as an object file. Thus, after compiling the three source
files, cc links the object files main.o, test.o, collate.o, and print.prg.

Compiling without Linking (-c)
Option

-C
The -c¢ (for ‘‘compile-only’’) option suppresses linking. Source files given
on the command line are compiled, but the resulting object files are not
linked, no executable file is created, and any object files specified on the
command line are ignored. This option is useful when you are compiling

individual source files that do not make up a complete program.

The -c option applies to the entire cc command line, regardless of the
option’s position in the command line.

Example
cc —-c *.c

This command line compiles, but does not link, all files with the exten-
sion .c in the current working directory.

Naming the Object File (-Fo)
Option

-Foobjfile
By default, cc gives each object file it creates the base name of the corre-
sponding source file plus the extension .0. The -Fo option lets you give
different names to object files or create them in a different directory. If

you are compiling more than one source file, you can give the -Fo option
for each source file to rename the corresponding object file.

Compiling with the cc Command 2-9

Using cc Options

Keep the following rules in mind when using this option:

e The objfile argument must appear immediately after the option,
with no intervening spaces.

e Each -Fo option applies to the next source file that appears on the
command line after the option.

You are free to supply any name and any extension you like for the
objfile. However, it is recommended that you use the conventional .0
extension because the linker uses .0 as the default extension when pro-
cessing object files.

If you use the -Fo option (that is, if you do not give an object file name
with a base and an optional extension), cc names the object files accord-
ing to the following rule:

e If you give a directory specification following the -Fo option, cc
creates the object file in the given directory and uses the default
file name (the base name of the source file plus .0). Otherwise,
objfile is created in the current directory. A .o extension is added
if no extension is given.

To give a directory specification, it must end with a forward slash (/) so
that cc can distinguish between a directory specification and a file name.

Example

cc —Fo/dbjectl/ this.c that.c -Fo/src/newthose those.c
In this example, the first -Fo option tells the compiler to create, in the
lobjectl directory, the object file this.o (created as a result of compiling
this.c). The compiler also creates, in the current directory, the object file
that.o (created as a result of compiling that.c). The second -Fo option tells

the compiler to create the object file named newthose.o (created as a
result of compiling those.c) in the /src directory.

Naming the Executable File (-Fe) (-0)
Option

-Feexefile
-0 exefile

2-10 C User’s Guide

Using cc Options

By default, cc gives the name a.out to the executable file. In UNIX System
V, -Fe and -0 are the same, except syntactically. The file name must
come immediately after -Fe, whereas blanks are permitted between -o
and the file name. Either option lets you give the executable file a
different name or create it in a different directory.

Since cc creates only one executable file, you can give the -Fe option
anywhere on the command line. If more than one -Fe option appears, cc
gives the executable file the name specified in the last -Fe option on the
command line.

The -Fe option applies only in the linking stage. If you specify the -c
option to suppress linking, -Fe has no effect.

Examples

cc -Fe/bin/process *.c
cc -o /bin/process *.c

These examples compile and link all source files with the extension .c in
the current working directory. The resulting executable file is named pro-
cess.out and is created in the directory /bin.

Creating Listings

A number of options are available with the cc command for creating list-
ings. You can create a source listing, a map listing, or one of several kinds
of object listings. You can also set the title and subtitle of the source list-
ing from the command line and control the length of source-listing lines
and pages.

These options are described in the following sections.

Note

Listings produced by the cc command may contain names that begin
with more than one underscore (for example, chkstk) or that end
with the suffix 0Q. Names that use these conventions are reserved
for internal use by the compiler, and should not be used in your pro-
grams, except for those documented in the C Library Guide. More-
over, you should avoid creating global names that begin with an
underscore. Since the compiler automatically adds another leading
underscore, these names will have two leading underscores and
might conflict with names reserved by the compiler.

Compiling with the cc Command 2-11

Using cc Options

Types of Listings (-Fs, -Fl, -Fa, -Fc, -Fm -S)

Options
-Fs[listfiles] Source listing
-Fl[listfile] Object listing
-Fa[listfile] Assembly listing
-Fe[listfile] Combined source and object listing
-Fm[mapfile] Map file that lists segments, in order
-S Assembly listing

This section describes how to use command-line options to create list-
ings. For an example of each type of listing and a description of the infor-
mation it contains, see the section on ‘‘Formats for Listings.”’

When using an option described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces.
The listfile may be a file specification or a path specification. It may also
be omitted.

Note

When you give just a path specification as the listfile argument, the
path specification must end with a forward slash (/) so that ce can
distinguish it from an ordinary file name.

When you give a path specification as the argument to a listing option, or
if you omit the argument altogether, cc uses the default file name for the
listing type. Table 2.3 gives the default names used for each type of list-
ing. The table also shows the default extensions, which are used when you
give a file-name argument that lacks an extension.

2-12 C User’s Guide

Using cc Options

Table 2.3

Default File Names and Extensions

Default Default
Option Listing Type File Name Extension
-Fs Source Base name of source file S
plus .S
-Fl Object Base name of source file L
plus .L
-Fa Assembly Base name of source file .asm
(masm) plus .asm
-Fe Combined Base name of source file L
source-object plus .L
-Fm Map Prints to standard output.
-S Assembly Base name of source file .asm
(masm) plus .asm
Notes:
1 The default file name is used when the option is given with no argument or with a
path specification as the argument.
2 The default extension is used when a file name lacking an extension is given.
3 The assembly-language listing produced by the -Fa, -Fc, and -S options uses masm
directives.
4 The -Fa and -S options produce the same output, except that you cannot specify the

list file with the -S option.

Since you can process more than one file at a time with the cc command,
the order in which you give listing options and the kind of argument you
give for each option (file specification or path specification) affect the
result. Table 2.4 summarizes the effects of each option with each type of
argument.

Compiling with the cc Command

2-13

Using cc Options

Arguments to Listing Options

Table 2.4

File-Name Path No

Option Argument Argument1 Argument

-Fa, -Fc, Creates a Creates listings Creates listings in

-F1, -Fs listing for the in the given the current direc-
next source location for tory for every
file on the every source source file listed
command file listed after after the option on
line; uses the option on the command line;
default the command uses default names
extension if line; uses
no extension default names
is supplied

-Fm Uses given Creates map Uses default name
file name for file in the given
the map file; directory; uses
uses default default name
extension if
no extension
is supplied

-S File name Path argument Uses default name
argument is is not allowed
not allowed

Notes:

1 When you give just a path specification as the argument, the path specification must
end with a forward slash (/) so that cc can distinguish it from an ordinary file name.

Only one type of object or assembly listing can be produced for each
source file. The -Fe option overrides the -Fa and -FI options and produces
a combined listing. If you apply both the -Fa and the -FI options to one
source file, only the last listing specified on the command line is pro-
duced. If you specify both the -Fa and the -Fs options to one source file, a
combined listing is produced. The -Fs option may be used with any other
option.

C User’s Guide

Using cc Options

Note

The cc command optimizes by default, so listing files reflect the
optimized code. Since optimization may involve rearrangement of
code, the correspondence between your source file and the machine
instructions may not be clear, especially when you use the -Fe
option to mingle the source and assembly codes. To produce a list-
ing without optimizing, use the -Od option (discussed in ‘‘Preparing
for Debugging’’ later in this section) with the listing option.

The map file is produced during the linking stage. If linking is suppressed
with the -c option, the -Fm option has no effect.

Examples

cc ~Fshello.src -Fchello.cmb hello.c

In this example, cc creates a source listing called hello.src and a com-
bined source and object listing called hello.cmb. The object file has the
default name hello.o. However, it is removed if the link was successful.

cc -Fshello.src -Fshello.lst -Fchello.cod hello.c

This command produces a source listing called hello.Ist rather than
hello.src, since the last name provided has precedence. This example also
produces a combined source and object listing file named hello.cod. The
object file in both of these examples has the default name hello.o.

Setting Titles (-St) and Subtitles (-Ss)
Options

-St "title"
-Ss "subtitle"

The -St and -Ss options set the title and subtitle, respectively, for source
listings. The quotation marks (" ") around the firle or subtitle argument
can be omitted if the title or subtitle does not contain space or tab charac-

ters. The space between -St or -Ss and its argument is optional.

The title appears in the upper left corner of each page of the source list-
ing. The subtitle appears below the title.

Compiling with the cc Command 2-15

Using cc Options

The -St or -Ss option applies to the remainder of the command line ¢
until the next occurrence of -St or -Ss on the command line. Thes
options do not cause source listings to be created. They take effect onl
when the -Fs option is also used to create a source listing.

Examples
cc -St "Income Tax" -Ss 4-14 -Fs tax*.c

This command compiles and links all source files beginning with tax an
ending with the default extension (.c) in the current working directory
Each page of the source listing contains the title /ncome Tax in the uppe
left corner. The subtitle 4-14 appears below the title on each page.

cc —¢ -Fs -Fa -St"Calc Prog" -Ss"count" ct.c -Ss"sort" srt.c

In this command, cc compiles two source files and creates two source list
ings. Each source listing has a unique subtitle, but both listings have th
title Calc Prog.

Formats for Listings

The rest of this section describes and shows examples of the five types o
listings available with the cc command. For information on how to creat
these listings, see ‘‘Types of Listings’’ earlier in this section.

Source Listing

Source listings are helpful for debugging programs as they are being de
veloped. These listings are also useful for documenting the structure of
finished program.

The source listing contains the numbered source-code lines of each pro
cedure in the source file, along with any diagnostic messages that wer
generated. If the source file compiles with no errors more serious tha
warning errors, the source listing also includes tables of local symbols
global symbols, and parameter symbols for each function. If the compile
is unable to finish compilation, it does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in you

program. This summary is useful for analyzing the program’s memor
requirements.

2-16 C User’s Guid

Using cc Options

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

1 char hexvalue[10];

2

3 main()

4 {

5 long htoi () ;

6 printf ("Please enter the hex value you want to convert:\n");

7 scanf ("ss", hesxvalue) ;

8 printf ("The integer value of the hex value is %$1d\n", htoi (hexvalue));
9 1}
10

11 long htoi (hexvalue)
12 char *hexvalue;

13 {

14 register char *ptr=hexvalue;

15 int i=0;

16 long n=0;

17 long explé();

18 while (*ptr != "\0") {

19 if (*ptr >= ’a’ && *ptr <= 'f’)

20 *ptr -= 87;

21 else if (*ptr >= 'A’ && *ptr <= 'F’)
22 *ptr -= 55;

23 else

24 *ptr —= 48;

25 ptr+;

bomb.c(25) : error C2059: syntax error : ';'
26 }

The line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.

Compiling with the cc Command 2-17

Using cc Options

The following example shows the source listing for a simple C program:

Hex to ASCII PAGE 1
2/25/87 02-25-87
10:44:23

Line# Source Line C Optimizing Campiler Version 5.10
1 char hexvalue[10];

2

3 main()

4

5 long htoi();

6 printf ("Please enter the hex value you want to convert:0);
7 scanf ("$s", hexvalue) ;

8 printf ("The integer value of the hex value is %1d0, htoi (hexvalue));
9

10

11 long htoi (hexvalue)

12 char *hexvalue;

13 {

14 register char *ptr=hexvalue;

15 int i=0;

16 long n=0;

17 long expl6();

18 while (*ptr !="' ")

19 if (*ptr >= ’a’ && *ptr <= 'f’)

20 *ptr -= 87;

21 else if (*ptr >= 'A’ && *ptr <= 'F’)

22 *ptr —-= 55;

24 *ptr —-= 48;

25 ptr++;

26 }

27 ptr —= 1;

28 while (ptr>=hexvalue)

29

30 nt+= (*ptr*expl6(i));

31 i++;

32 ptr-—; 33 }

34 return(n) ;

35 1}

htoi ILocal Symbols
Name Class Type Size Offset Register
100000 auto -0008
ptr . . .o 0. auto kil si
o auto -0004
hexvalve. param 0004

36

37 long expl6 (exp)

38 int exp;

39 {

40 long result=l;

41 int Jj;

42 for (j=1; j<=exp; j++)

43 result *= 16;

44 return (result) ;

45

2-18 C User’s Guide

Using cc Options

Hex to A
2/25/87

explé Local Symbols

Name
result.
eXP .+ .+

Global Symbols

Name

explé
hexvalue.
htoi.
main.
printf.
scanf

Code size = 00e8 (23
Data size = 005f (95
Bss size = 0000 (0)

No errors detected

Class
. auto

. auto
. param

Class

. global

common
global
global

. extern

extern

2)
)

02-25-87
10:44:23

C Optimizing Compiler Version 5.10

Type Size Offset Register

-0006

-0004

0004
Type Size Offset
near function b 00ae
struct/array 10 xRk
near function Hkok 0038
near function KA K 0000
near function k& Fh*
near function Fokek *AK

At the end of each function, a table of local symbols is given, as shown in
the following example for the function Atoi:

htoi Local Symbols

Name

i o000 0.
ptr 0L
o
hexvalue.

Class

. auto
auto
. auto
. param

Type Size Offset Register
~0008
* Kk Kk Si
-0004
0004

Compiling with the cc Command 2-19

Using c¢c Options

The following list shows the contents of each column in the symbol table:
Column Contents
Name The name of each local symbol in the function.

Class Either auto if the symbol is a nonstatic local variable, or
param if the symbol is a formal parameter.

Offset The symbol’s offset address relative to the frame pointer
(that is, the BP register). The Offset number is positive for
param symbols and negative for auto symbols with auto
storage class.

Register Blank unless the variable is stored in a register, in which
case, this column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as
shown in the following example:

Name Class Type Size Offset
expl6 global near function *kx 00ae
hexvalue. common struct/array 10 XKk
htoi. global near function il 0038
main. global near function FAKk 0000
printf. extern near function *hk *hK
scanf extern near function Fohx *xk

The following list shows the contents of each column:
Column Contents

Name Each global symbol, external symbol, and statically allo-
cated variable declared in the source file.

Class Either global, common, extern, or static, depending on how
the symbol was defined in the source file.

Type A simplified version of the symbol’s type as declared in
the source file.

2-20 C User’s Guide

Using cc Options

For functions, this entry is either near function or far func-
tion, depending on which memory model was used and
how the function was declared. For a pointer, this entry is
near pointer, far pointer, or huge pointer. For enumeration
variables, this entry is int. For structures, unions, and
arrays, this entry is struct/array.

Size Used only for variables. Specifies the number of bytes of
storage allocated for the variable. Since the amount of
storage allocated for an external array may not be known,
its Size entry may be undefined.

Offset Used only for symbols with an entry of global or static in
the Class column.

For variables, this entry gives the relative offset of the
variable’s storage in the logical data segment for the pro-
gram file being compiled. Since the linker usually com-
bines several logical data segments into a physical seg-
ment, this number is useful only for determining the rela-
tive position of storage of variables. For functions, this
entry gives the relative offset of the start of the function in
the logical code segment. For small-model programs, the
linker combines logical code into a single physical seg-
ment, so this entry is useful for determining the relative
positions of different functions defined in the same source
file. However, for medium-, large-, and huge-model pro-
grams, each logical code segment becomes a unique physi-
cal segment. In these cases, this entry gives the actual
offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as in the following example:

Code size = 0103 (259)
Data size = 005f (95)
Bss size = 0000 (0)

The number of bytes in each segment is given first in hexadecimal, and
then in decimal (in parentheses).

Object Listing

The -FI option produces an object listing. The object listing contains the
instruction encoding and assembly code for your program. The line num-
bers are shown in the listing as comments. The instruction encoding is on
the left and the assembly code on the right, as shown in the following
example:

Compiling with the cc Command 2-21

Using cc Options

; Line 4
PUBLIC main
_main PROC NEAR

% 000000 55 push bp
**% 000001 8b ec mov bp, sp
**%% 000003 33 c0 XOr ax,ax
*** 000005 e8 00 00 call _ chkstk
; Line 6
**% 000008 b8 00 00 mov ax,OFFSET DGROUP:$S G12
**%* 00000b 50 push ax
*** 00000c e8 00 00 call _printf
*%% 00000f 83 c4 02 add sp,2

Assembly Listing

The -Fa and -S options produce an assembly listing using directives suit-
able for assembly using the Macro Assembler, masm. It contains the
assembly code corresponding to your C source file, as shown in the fol-
lowing example:

; Line 4
PUBLIC_main
_main PROC NEAR
push bp
mov bp, sp
xor ax,ax
call _ chkstk

; Line 6
mov ax, OFFSET DGROUP:$SG12
push ax
call _printf
add sp,2

Note that the example shows the same code as in the object listing exam-
ple, except that the instruction encoding is omitted.

The listing generated by the -Fa option in Versions 5.0 and later of the C
Compiler can be used as input to masm.
Combined Source and Object Listing
The -Fc option produces a combined source and object listing. This shows

each line of your source program followed by the corresponding line (or
lines) of machine instructions, as shown in the following example:

2-22 C User’s Guide

Using cc Options

_TEXT SEGMENT

; | *** char hexvalue[10];
H , KKK

7 1*** main ()

FlFEx |

; Line 4

PUBLIC main
_main PROC NEAR

**%% 000000 55 push bp

*** 000001 8b ec mov bp, sp

*** 000003 33 c0 XOr ax,ax

**% 000005 e8 00 00 call _ chkstk

;| xKxx long htoi();

R printf ("Please enter the hex value you want to convert:0);
; Line 6
**% 000008 b8 00 00 mov ax,OFFSET DGROUP:$SG12
*** 00000b 50 push ax
*** 00000c e8 00 00 call _printf
*%% 00000f 83 c4 02 add sp,2

FR K scanf ("%s", hexvalue);

Note that this sample is like the object-listing sample, except that the
source-program line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of glo-
bally visible functions and variables begin with an underscore, as shown
in the following example. This part of the listing is the same for all three
kinds of listings:

EXTRN _printf:NEAR
EXTRN _scanf :NEAR
EXTRN _ chkstk:NEAR
EXTRN _ aNlmul:NEAR
EXTRN _ aNNalshl:NEAR
EXTRN _hexvalue:TBYTE

The C Compiler automatically prefixes an underscore to all global names.
If you write assembly-language routines to interface with your C pro-
gram, this naming convention is important; see the section on ‘‘Control-
ling the Preprocessor’” for more information.

The listing may also contain names that begin with more than one under-
score (for example, chkstk). Identifiers with more than one leading
underscore are reserved for internal use by the compiler, and should not
be used in your programs, except for those documented in the C Library
Guide. Moreover, you should avoid creating global names that begin

Compiling with the cc Command 2-23

Using cc Options

with an underscore. Since the compiler automatically adds another lead-
ing underscore, these names will have two leading underscores and might
conflict with the names reserved by the compiler.

Listing Pragmas

There are several pragmas that allow you to control the page formatting
of the listings produced with the various list options. These pragmas are:

Pragma Action

linesize Sets the number of characters per line in the source list-
ing.

page Places a formfeed character(s) in the source listing.
pagesize Sets the number of lines per page in the source listing.
skip Skips the specified number of lines in the source listing.
subtitle Specifies a subtitle for the source listing.

title Specifies a title for the source listing.

The remainder of this section discusses each of the preceding pragmas.

The linesize Pragma

The linesize pragma sets the number of characters per line in the source
listing. The syntax of this pragma is:

#pragma linesize([characters])

In this syntax, the optional parameter characters is an integer constant in
the range 79-132 that specifies the number of characters you wish each
line of the source listing to have. If characters is absent, the compiler
uses the value specified in the -SI option or, if that option is absent, the
default value of 79 characters per line. Note that linesize takes effect in
the line after the line in which the pragma itself appears.

The following example uses the pragma to produce a source listing with a
132-character line length:

#pragma linesize (132)

2-24 C User’s Guide

Using cc Options

The page Pragma

The page pragma generates a formfeed (page eject) character in the
source listing at the place where the pragma appears. The pragma has the
following syntax:

#pragma page([pages])
The optional parameter pages is an integer constant in the range 1-127
that specifies the number of pages to eject. If pages is absent, the pragma

uses a default value of 1, in which case the next line in the source file
appears at the top of the next listing page.

The pagesize Pragma

The pagesize pragma sets the number of lines per page in the source list-
ing. The pragma has the following syntax:

#pragma pagesize([lines])
The optional parameter lines is an integer constant in the range 15-255
that specifies the number of lines that you wish each page of the source
listing to have. If this parameter is absent, the pragma sets the page size

to the number of lines specified in the -Sp command-line option or, if that
option is absent, to a default value of 63 lines.

The following example uses the pagesize pragma to set the number of
lines per page of the source listing to 66 lines:

#pragma pagesize (66)

The skip Pragma
The skip pragma generates a newline (carriage return/line feed) in the
source listing, at the point where the pragma appears. The pragma has the
following syntax:

#pragma skip([lines])
The optional parameter /ines is an integer constant in the range 1-127 that

specifies the number of lines that you wish to skip. If this parameter is
absent, skip defaults to one line.

Compiling with the cc Command 2-25

Using cc Options

The subtitle Pragma

The subtitle pragma sets a subtitle in the source listing. The pragma has
the following syntax:

#pragma subtitle(subtitlename)

The required parameter subtitlename is a string literal containing the sub-
title for subsequent pages in the source listing. The subtitle appears below
the title on each page of the listing.

If you supply a null string ("") as the subtitlename parameter, subtitle
removes any subtitle that was previously set. The subtitlename parame-
ter can be a macro that expands to a string literal, and you can concaten-
ate such macros with string literals in any combination.

The following statement sets the subtitle to Error handler for subsequent
pages in the source listing:

#pragma subtitle ("Error handler")

The title Pragma

The title pragma sets a title for the source listing. The pragma has the
following syntax:

#pragma title(titlename)

The required parameter titlename is a string literal containing the title for
the source listing. The title appears in the upper left corner of each page
of the listing.

If you supply a null string ("") as the titlename parameter, title removes
any title that was previously set. The titlename parameter can be a macro
that expands to a string literal, and you can concatenate such macros with
string literals in any combination.

The following statement sets the title to File I/O Module in the source
listing:

#pragma subtitle("File I/O Module")

2-26 C User’s Guide

Using cc Options

Map File

The -Fm option produces a map file. The map file contains a list of seg-
ments in order of their appearance within the load module. As an exam-
ple, consider the following:

Start Stop Length Name Class
00000H O1lE9FH O1EAOH TEXT CODE

O01EAQOH O01EAOH 00000H E“ETEXT ENDCODE

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load
module. The load module begins at location zero. The Length column
gives the length of the segment in bytes, the Name column gives the name
of the segment, and the Class column gives information about the seg-
ment type.

The starting address and name of each group appear after the list of seg-
ments. An example of a group listing follows:

Origin Group
01EA: 0 DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used for data segments by programs compiled with the C
Compiler, Version 5.1.

The following map file contains two lists of global symbols: the first list
is sorted in ASCII-character order by symbol name and the second is by
symbol address. A maximum of 2048 symbols can be sorted in each list.
(To increase the number of sorted symbols, you must specify the -MAP
linker option with the number argument to create the map file; see the
““Linking with the cc Command’’ chapter of this guide for details.) The
notation Abs appears next to the names of absolute symbols (symbols con-
taining 16-bit constant values that are not associated with program
addresses).

Many of the global symbols that appear in the map file are symbols used

internally by the C Compiler. These usually begin with one or more lead-
ing underscores or end with QQ.

Compiling with the cc Command 2-27

Using cc Options

Address Publics by Name
003F:0096 STKHQQ
0047:1D86 _brkctl
003F:04B0 _edata
0047:0910 _end

0047:00EC __abrkp
0047:009C __abrktb
0047:00EC __abrktbe

003F:9876 Abs acrtmsg

0000:9876 Abs _ acrtused

0047:0240 argc
0047:0242 argv

Address Publics by Value
003F:0010 _main

003F:0047 _htoi

003F:00DA _explé6

003F:0113 __chkstk
003F:0129 __astart

003F:01C5 __cintDIV

The addresses of the external symbols are in the ‘‘selector:offset’” formal
showing the location of the symbol relative to zero (the beginning of th
load module).

Following the lists of symbols, the map file gives the program entry poin
as shown in the following example:

Program entry point at 003F:0129

Controlling the Preprocessor

The cc command provides several options that control the operation ¢
the C preprocessor. You can define macros and manifest (symbolic) con
stants from the command line, change the search path for include files
and stop compilation of a source file after the preprocessing stage to prc
duce a preprocessed source-file listing.

2-28 C User’s Guid

Using cc Options

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as
directed. The preprocessor can be run on a file at any stage of develop-
ment, whether or not the file is a complete C source file. In fact, the
preprocessor is not restricted to processing C files; it can be run on any
kind of file. However, input files to the preprocessor must follow the
preprocessor rules; therefore, not all arbitrary text files may be suitable
for use with the preprocessor. See the C Language Reference for a com-
plete discussion of C preprocessor directives and the format expected for
preprocessor input.

Defining Constants and Macros (-D)

Option
-D identifier[=[string]]

The -D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and string is its value
or meaning. Note that spaces are permitted (but not required) between -D
and the identifier.

If you leave out both the equal sign and string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
-DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined; its definition is the empty string. This
definition effectively removes all occurrences of the identifier from the
source file. For example, to remove all occurrences of register, use the
following option:

-Dregister=
Note that the identifier register is still considered to be defined.

The effect of using the -D option is the same as using a preprocessor
#define directive at the beginning of your source file. The identifier is
defined in the source file being compiled either until an #undef directive
removes the definition or until the end of the file is reached.

You can supply a command-line definition for an identifier that is also
defined within the source file. However, you must use #undef to remove
the source-file definition, unless the source-file definition is identical to
the command-line definition. The command-line definition remains in
effect until the identifier is removed with an #undef directive.

Compiling with the cc Command 2-29

Using cc Options

The -D option is especially useful with the #if and #ifdef directives
because you can control conditional-compilation directives in the source
file from the command line.

Examples
cc -D NEED=2 main.c

This example defines the manifest constant NEED in the source file
main.c. This definition is equivalent to placing the directive at the top of
the source file as shown in the following example:

#define NEED 2

For the next example, suppose a source file named other.c contain