
w ,

Open Desktop3

The Complete Graphical Operating System

c GDT-DATA
Report Writer
Reference

:(

i

t ./

ODT-DATA is based on technology developed by INGRES CORPORATION, and includes
the following INGRES components:

INGRES/DBMS and SQL Terminal Monitor

INGRES/User Interfaces
Query-by-Forms
Report-by-Forms
Report Writer
Menu
Forms Runtime Systems and VIFRED

INGRES/NET with TCP/IP Support
INGRES/WindowView
INGRES/ESQL Preprocessor for C

Document version: 1.0.0C
Date: 15 June 1990

Table of Contents

Preface: v
Audience vi
Conventions Used in This Guide
Associated Publications vii

vi

Chapter 1 :Overview of the Report-Writer 1
Types of ODT-DATA Reports 2
Creating the Report Specification 2
About Queries, Sorts, and Breaks 4
Sample Report 6

Chapter 2:Report Specification Statements 9
Types of Report Specification Statements 10
Format for Specification Statements 15

Chapter 3:Using Report-Writer 17
Creating Reports Parameters 18
Creating Reports Using Several Tables 19
Specifying Sorts and Breaks 19
Pagination in Reports 21
Setting Report Margins 22
Positioning, Formatting, and Printing Data 22
Using Conditional and Assignment Statements 26
Calculating and Printing Summary Data 27
Automatic Determination of Default Settings 27

Chapter 4:Expressions and Formats 31
Reserved Words 32
Types of Data in Expressions 33
Operations 46
Format Specifications 50

Table of Contents Report-Writer Reference Manual

Chapter 5:Report Setup Statements 71
.name 72
comments 73
.shortremark 74
.Iongremark and .endremark 75
.data 77
.declare 78
.output 80
.query 81
.sort 85
.break 87

Chapter 6:Page Layout and Control Statements 89
.leftmargin 90
.rightmargin 91
.pagelength 93
.formfeeds and .noformfeeds 94
.newpage 95
.need 97

\"--/;

Chapter 7:Report Structure Statements 99
.header 100
.footer 101
.detail 102

Chapter 8:Column and Block Statements 103
.format 104
.tformat 106
.position 108
.width 111
.block; and .endblock 113
.top 115
.bottom 116
.within and .endwithin 117

ii Table of Contents DDT-DATA

Chapter 9:Text Positioning Statements 121
.tab 122 (-- .Iinestart 124
.Iineend 125
.newline 126
.left 128
.center 130
.right 133

Chapter 10:Print Statements 135
.print and .println 136
.underline and .nounderline 138

., .ulcharacter 139
.nullstring 141

Chapter 11:Conditional and Assignment Statements 143
.if 144
.let 146

Chapter 12:The sreport, report, and copyrep Commands 149
sreport 150
report 153
copyrep 162

Appendix A:Report Examples 165
Population Example 166
Pop2 Example 171
Account Example 174
Dictionary Example 180
Dict2 Example 186
label Example 188
Joining Tables for a Report 190

Appendix B:Report-Writer Error Messages 201

Index: 219

Table of Contents Report-Writer Reference Manual iii

iv Table of Contents DDT-DATA

(~,

(-'
,': ,,/

Preface

This guide describes the ODT-DATA Report-Writer language. It provides an overview of the
Report-Writer, documents the Report-Writer statements, and gives examples to help you
create your own reports.

In addition to the Report-Writer language described here, ODT-DATA provides other tools for
writing reports, such as Report-By-Forms (RBF). For information about RBF, see Using
DDT-DATA Through Forms and Menus.

This guide can be broken into two sections. Chapters 1 through 4 serve as an overview, while
Chapters 5 through 12 provide reference information. The information is presented as follows:

•

•
•

•

•

Chapter 1 introduces ODT-DATA Report-Writer. It discusses the process of creating
reports, along with the concepts necessary to understand the ODT-DATA Report­
Writer.

Chapter 2 is ~n overview of the report-specification statements.

Chapter 3 covers report parameters, pagination, margins and columns, calculations
and summary data.

Chapter 4 explains print-format statements. This includes the use of aggregates,
operations, and template formats for functions, character data, and numeric data.

Chapters 5 through 12 provide reference material for the Report-Writer statements.
For each Report-Writer statement, there are syntax, the parameters associated with
the syntax, a description of the functions of the statements, and examples showing
how to use the statement.

• Appendix A shows six sample reports. Included with the sample reports are the
report format statements for the reports.

• Appendix B list the various error messages available in Report-Writer.

Preface Report-Writer Reference Manual v

Audience

Audience
In a multiuser installation, various database tasks are assigned to various individuals with ("
differing privileges:

• The system administrator manages the ODT-DATA installation

• The database administrator (DBA) creates and manages the database

• The user manipulates data in the database

This guide is for individuals in both types of installations, though at times only the multiuser
installation is explicitly addressed. If you are using ODT-DATA in a single-user installation,
assume that you are the system administrator, the database administrator and the user.

Conventions Used in This Guide
This guide uses the following conventions:

• Words in bold are keywords and must be typed as shown or in its abbreviated form.
Keywords preceded by a period (.) are report-formatting statements and must be
typed as shown or in its abbreviated form.

• Words in italic are variables, the values of which are supplied by the user or the
program.

• Clauses in square brackets ([]) are optional.

• Clauses in curly braces ({ }) are optional and can be specified zero or more times.

• Vertical bars (I) separate multiple items from which you choose one.

System Notes

In a command line to the UNIX system, a set of parentheses must be preceded and followed ('
by single quotes, for instance: '(...)'.

vi Report-Writer Reference Manual ODT-DATA

if

Associated Publications

Associated Pu bl ications
The ODT-DATA Report -Writer Reference Manual is one of several publications provided for
your use of ODT-DATA. The table below lists all the ODT-DATA books available with each
Open Desktop product:

• ODT-DATA Embedded SQL User's Guide

• ODT-DATA Embedded Open SQLForms Reference Manual

• ODT-DATA Open SQLReference Manual

• ODT-DATA Embedded SQL Companion Guide for C

• GCA Application Program Interface

• Using ODT-DATA Through Forms and Menus

• ODT-DATA Report-Writer Reference Manual

• ODT-DATA SQL Reference Manual

Preface Report-Writer Reference Manual vii

viii Report-Writer Reference Manual ODT-DATA

Chapter 1

I(Overview of the Report-Writer

(/

The ODT-DATA Report-Writer provides a language to help you create sophisticated reports
without having to write an applications program. The Report-Writer can create regular
production reports as well as reports for ad hoc applications.

Features of the Report-Writer

The Report-Writer contains the following features:

• Tools to extract the data you want to print. For simple reports, you can specify a
single table and indicate how you want the information sorted. For a complex report,
you can use a query to retrieve selected rows from a database.

• Support for nulls. You can include logical operators, null variables, dynamic
definition of null strings, and null expressions for specifying how null data should
be represented.

• Control of report appearance. You can control titles, headings, and the placement
of the data on a page. Formatting commands let you specify how numbers and text
should be presented. Text formatting includes centering, justification, and automatic
pagination.

• Arithmetic capabilities. Arithmetic functions make almost any kind of computation
possible, including totals and averages over ranges of data.

• Variables. Variables are used to assign values in the report specification. You can
assign values directly in the report specification, or you can interactively prompt the
user to enter the value for a variable.

• Reports can be run from a file or stored permanently. You can run reports directly
from a file. This lets you test the report interactively. Once the report has been
tested, it can be stored in the database.

• Dynamic report parameters. Report parameters such as range of data, table names,
or any other information can be specified at report time; thus, you can use the same
formatting commands for different reports.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual

Types of ODT·DATA Reports

Types of ODT-DATA Reports
While the Report-Writer facility permits you to create sophisticated reports, you should also (--­
be aware of the alternative report writing fadlities available to you. These include: ~."

• Default reporting facility. The simplest way to create a report is to access the
default report-writing facility through ODT-DATNMENU. With this facility, ODT­
DATA chooses a report format based on the particular table you select.

• Report-By-Forms. For more flexibility, you can modify the default report using
Report-By-Forms (RBF). This lets you change many of the formatting features of a
report.

• Report-Writer. The Report-Writer lets you create a custom report specification.
You create a text file of Report-Writer statements. The report can be run directly
using the report command, or it can be stored in a database using the sreport
command.

This guide describes the Report-Writer facility. For information about the default report or
Report-By-Forms, see Using ODT-DATA or Using ODT-DATA Through Forms and Menus.

Creating the Report Specification
To create a report with the Report-Writer, you follow these steps:

1. Create a report specification.

2. Collect the data.

3. Test the report.

4. Run the report.

5. Store the report specification.

These steps are described in detail next.

2 Report-Writer Reference Manual DDT-DATA

(

(

Creating the Report Specification

Create a Report Specification
To create the report specification, use your text editor to create a file that contains the
appropriate Report-Writer statements. This guide documents all the statements that can be
included in the report specification file.

Collect the Data

The tables you intend to use for your report must exist on the computer. They must also contain
valid data if you want accurate reports. Make sure the tables exist and that you know the
names of all the columns.

You may also want to consider queries. Will your report include an entire table or selected
rows from a table? If a report is for an entire table, you simply reference the table name. If a
report requires a query to extract data, make sure that the query and the tables needed by the
query are configured to produce the desired data for the report. For a complex query, you may
wish to run the query before you run the report to make sure the query works.

If your report includes a large amount of data, you should use a subset of the data for testing
the report. Once you are satisfied with the report, you can use the specified data.

Test the Report

Use a subset of the data to test your report specification. During this phase, you may run the
report a number of times on a small segment of data to make adjustments to the specification.

To test the report, use the report command with the optional ·i parameter. This reads the
report specifications from the text file and produces the report.

Run the Report

Once the report specification has been tested, you are ready to print reports on the desired
tables. Use the report command to print the report.

The report command reads in the report specifications created by RBF or stored by an sreport
command, performs additional error checking, runs the database query to extract the data (if
specified), and writes the formatted report either to a file or to your terminal screen.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual 3

About Queries, Sorts, and Breaks

Store the Report Specification

When the report has been tested, can store it in the database. Report specifications that are
stored in the database are accessible to other users who have access to the database. Reports (..
that are not stored in the database are not accessible to other users. "'--./

Use the sreport command to store the report specification in the database. sreport reads the
text file containing report specifications. sreport performs rudimentary syntax checking.

If no errors are found, the report specification is added to the database. If the report already
exists in the database, sreport replaces the old report specification with the new one. If the
report does not exist, sreport adds the specification into the database and the Report Catalog.

About Queries, Sorts, and Breaks
When you create the report specification, consider how you want the information organized.
This includes querying for a subset of data, sorting the data in a logical order, and organizing
the printed data by defining breaks. You may want to include summary information such as
subtotals. These features are discussed in the following sections.

Queries

Your report can include all the data in a table, or it can include a subset of data that meets a
query. The query can contain parameters or variables that are specified when you run the
report. The use of parameters in reports is discussed in Chapter 3.

Using Sorted Data

Most reports display sorted data. This makes the report more usable. If you have a report of
employees listed by job title within each department, you may need to sort the data in the
table. Reports with subtotals require sorting. Sorting is discussed in "Specifying Sorts and
Breaks" in Chapter 3.

About Breaks

Breaks are divisions between parts of a report (such as page breaks) or between groups of data
in your report (for instance, between data for Employee 1 and Employee 2). You specify breaks
between groups of data by designating certain columns in a report as break columns. A break
occurs when Report-Writer encounters a change of value in a break column while reading the
data.

4 Report-Writer Reference Manual ODT-DATA

(
\ '" .. ~

(

About Queries, Sorts, and Breaks

You can instruct Report-Writer to perform an action after a break has occurred by placing
instructions, called break actions, in a header or footer section associated with the break
column. For example, you can instruct Report-Writer to print heading information for the
next group of data rows, print summary information for the data rows associated with the last
break column value, or skip to a new page and printa page header.

Some breaks occur automatically. These include:

• Start of report. This break is a change from no data to some data. You can use this
break to specify titles and other heading information that appears once at the top of
the report.

• End of report. This break is a change from some data to no data. You can use this
break to specify information that is only printed once, at the end of the report, such
as grand totals and footnotes.

• Detail break. This break occurs between data rows in a table. This is called a detail
break.

You can specify break actions at the tops and bottoms of pages. A page break occurs when
the report comes within a specified number of lines of the end of the page. You can define
the page size to fit your needs. When a page break occurs, a page footer may be printed,
followed by a page header at the top of the next page. You can also print page numbers, the
current date or time, values of data items currently being processed by the report, or any
number of other items.

Headers and Footers

Headers and footers indicate in your report specification what actions to perform during a
break. Headers and footers can be specified at the start and end of the report, at the top and
bottom of the page, and at the start and end of a column of data specified as a break column,
such as all employees in a department. The footer section can contain instructions for
calculating and printing subtotals or other summary information. To calculate this informa­
tion, you use set functions or aggregates. These are specified in print statements. A header
action. if specified. may occur at the start of the report, at the start of a new page, or before
the next group of data is processed.

You may specify both footer and header actions for a break column. The footer actions are
performed on the previous group of data rows, and the header actions are performed for the
group yet to come. At the end of the report, only footer actions are performed, because there
is no more data. Similarly, at the start of the report, a break in each of the break columns
occurs, and header actions may be performed for each of the major-to-minor break columns.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual 5

Sample Report

Detail Section

Report-Writer instructions containing statements used to format, position, and print the data
retrieved from the data table are called detail instructions. The detail instructions are grouped
together in a detail section. ~/

Summary of a Report Specification

A report specification is a collection of distinct groups of related statements. Some of these
statements relate to the overall composition of the report and some relate to action groups.
These groups include:

• The report header. At the start of the report, you can print text and set up many of
the report layout specifications, such as page size and margins.

• Page headers and footers. At the top of each page, you can print a page header, and
at the bottom, a page footer. These may include titles, page numbers, and the date
and time the report was printed.

• A break header. Break headers appear at the start of a group of data related to a
break column. When a change is detected in a break column, a break: occurs. Before
a new group of data rows is processed, the break header actions are performed.
Break headers can be used to title information in a break.

• Detail section. This contains the instructions on how to format and print the report
data. The detail break: is the only break: that does not include a header and a footer.

• A break footer. Break: footers appear at the end of a group of data related to a break:
column. Break footers can print subtotals and related information associated with
the data rows just processed.

• The report footer. The report footer can include text, footnotes, or summary
information for the whole report.

Sample Report
The following is a listing for a simple report specification using the DDT-DATA Report-Writer.
The Report-Writer specification was created with a text editor, processed with the sreport
utility, and run with the report command.

6 Report-Writer Reference Manual DDT-DATA

\~

Sample Report

The report shows a titled listing of data from an existing view in a database. The "jobcat"
column is displayed only once for each job category value.

/*

.NAME sample

.DATA edat

Sample report

.SORT jobcat, name

.HEADER report
.NEWLINE2
. CENTER
.PRINT 'Sample Report'
.NL2

.HEADER jobcat
.TFORMAT jobcat(tI zzzz tI)

. DETAIL

*/

.PRINT jobcat(b8), name(clS), dept,
code, age, sales(f12.3)

.NL

f The statements in this specification work as follows:
\

• The .name statement gives a name to the report. This name is placed in the Reports
Catalog by the sreport facility, and it is used by the report command to locate the
report specifications.

• The .data statement identifies an existing table or view in the database that contains
the data to report.

• The .sort statement indicates the order the data is displayed in the report.

• The .header report statement indicates that the following Report-Writer statements
are part of the report header.

• The .newline, .center, and .print statements position and print a title.

• The .header jobcat statement indicates that the following statements are part of a
break header associated with the "jobcat" break column. This header is printed any
time the value in the "jobcat" column changes.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual 7

Sample Report

• The .tformat statement temporarily changes the normal print format of the "jobcat"
column, but only on the next printing of "jobcat." This occurs in the .detail section.
Normally, "jobcat" is not printed. Its format is (b8), which means "print 8 blank
spaces." The .tformat statement makes a "one printing" change to the format so the (c-~
actual value of the "jobcat" column is printed. .~

• The .detail statement indicates that the following statements are the start of the detail
section. The .print statement prints out the values of the columns in the formats
given after the column names, or the default format for that type of data item, if no
format is specified. The format specifications, which appear in the parentheses
following the column names, are described in Chapter 7.

The table below shows the data on which the report was run.

Data for the Sample Report

Column Name Type Length Nulls Defaults

jobcat integer 4 yes no
name c 15 yes no
dept c 6 yes no
code integer 1 yes no
age integer 2 yes no
sales money yes no

jobcat name dept code age sales

10 Adams)oe toy 0 22 $ 10,500.00
10 Green)ames toy 0 34 $ 43,645.00
10 Smith,Tony acct 0 48 $ 8,690.00
20 Davis ,Miles music 0 56 $234,987.00
20 Tanhaus,KarI music 0 20 $ 18,765.00
30 Jones,Mary acct 1 34 $ 34,599.00
30 Maney,Sikkim none 1 51 $ 15,333.00
30 Mellon ,Tim toy 0 44 $ 67,876.00
30 Mellon ,Tim any 0 24 $ 45,098.00
30 Norris,Bill acct 0 26 $ 23,988.00

8 Report-Writer Reference Manual DDT-DATA

Chapter 2

(Report Specification Statements

'~

l

To specify a report, you create a text file that contains Report-Writer statements. These
statements define the data, the sort order, the page layout, the position and format of titles and
text to be inserted in the report, and the position and format of the data.

Before you begin a report specification file, consider the following:

•

•

•

•

What data do you need for the report? If you need to run a database query, design
the query and run it independently to make sure it retrieves the correct data.

Will the report be reproduced with different values each time it is run? If so, you
need to assign variables and report parameters.

Will the data be sorted? If you want headers or footers for subgroups of your data,
the data must be sorted on the columns that define the subgroups.

What will the headers and footers to look like? Do you want titles, subtotals or other
aggregates, and extra blank lines? Sketch the report layout on a piece of paper to see
how it will look.

• What will be printed for each data row? In what format should the information
appear? For numbers, think about the number of significant digits to print, and the
number of decimal places.

• What kind of page headers and footers do you want?

Once you have identified these elements, you are ready to begin creating a report specification
file.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 9

Types of Report Specification Statements

Types of Report Specification Statements
Report specification statements fall into several groups: report setup statements, page layout
and control statements, report structure statements, column and block statements, text­
positioning statements, print statements, and conditional and assignment statements. These
statements are introduced by group in the following sections.

Report Setup Statements

Statements for setting up the report environment include:

. name Names the report .

.shortremark Provides a short description of the report. This is in­
cluded in the Reports Catalog.

.Iongremark

.endremark

omments

• output

.data

.query

Mark the beginning and end of a long description
about the report. This description is included in the
Reports Catalog.

Comments may be placed in the report specifications
file if preceded by /* and followed by */. Comments
are ignored in report processing.

Sets up an external file to receive the report .

Define the data for the report.

.sort Defines the order in which to sort the data for the
report.

.break

• declare

Specifies the break columns for the report and the
order in which to process breaks.

The .declare statement declares variables .

10 Report-Writer Reference Manual GOT-DATA

/

(

~ .. /

(..

Types of Report Specification Statements

Page Layout and Control Statements

You can specify the page layout of the report with the following statements:

.pagelength Defines the page length, in lines .

• formfeeds Inserts formfeed characters to force a page break at
the start of the report and at the end of each page .

• noformfeeds Suppresses form feeds within the report.

.leftmargin Sets up a left margin for the report lines that follow
the statement. If the left margin is not specified,
Report-Writer determines this default automatically.
(See "Automatic Determination of Default Settings"
in Chapter 3 for details.)

.rightmargin Sets the right margin of the report for use with the
.right and the .center statements. If the right margin
is not specified, Report-Writer determines this default
automatically. (See "Automatic Determination of
Default Settings" in Chapter 3 for details.)

.need

.newpage

Tests for a given number of lines on a page to see if a
page break is appropriate.

Skips to a new page, and optionally sets a page num­
ber.

Report Structure Statements

The statements used to set up the structure of the report include:

.header

.footer

.detail

Designates a group of formatting statements as a
header. This can be a report header, a page header, or
a break header.

Designates a group of formatting statements for the
footer.

Designates a group of formatting statements for each
data row.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 11

Types of Report Specification Statements

Column and Block Statements

The following statements specify the print position, column width, and format for the specified i-~.
database column or for a report block (as defined by a .block statement).

~-_/

.format

.tformat

.position

.width

.block

.endblock

.top

.bottom

• within
.endwithin

Specifies a print format for a column, such as a charac­
ter string or a decimal notation.

Temporarily changes the print format for a column,
only for the next value to be printed. This statement
has several uses; for example, it can be used to print a
value of a column on the first line of a page, or to print
a currency symbol at the top of a column of currency
values.

Defines the starting position for a column, which can
be used with the .tab, .right, .Ieft, or .center statement.

Defines the width for a column, to be used with the
.right or .center statements.

Treat sections of the report as blocks, so that you can
refer to positions on previous as well as on subsequent
lines in the report. These statements can be used with
the .top and .bottom statements to align blocks of data
adjacent to each other, rather than in vertical sequence.

Moves the current position to the top line of the cur­
rent block, used while in block mode.

Moves the current position to the bottom line of the
current block, used while in block mode .

Allow you to set the report margins temporarily to the
confines of a specific column, using the column posi­
tion and width.

You should also read the following discussion on "Text Positioning Statements," and "Auto­
matic Determination of Default Settings" in Chapter 3, for additional information.

12 Report-Writer Reference Manual DDT-DATA

Types of Report Specification Statements

Text Positioning Statements

The following statements are used to position text. The positioning can be absolute or relative
(to other positions on the page. See the preceding section "Column and Block Statements."

.tab

.newline

.center

.right

.left

.Iineend

.linestart

Tabs to a specified position before printing. The tab
can be in reference to a column name or the default
print position for a column.

Prints the current line and skips to the start of a new
line.

Centers text. The position may be the center of the
page or the center of a column. For a column, the mar­
gins may be either specified or default.

Right justifies text to the right margin or to a specified
position, for either the report or a column in the report.

Left justifies text to the left margin or to a specified
position, for either the report or a column in the report.

Tabs to the end of the text on the current line before
continuing to print.

Tabs to the left margin before continuing to print.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 13

Types of Report Specification Statements

Print Statements
You use these statements to print text or data values in a report.

.print

.nullstring

• underline
.nounderline

Prints text or values at a default position, or at a posi­
tion that was previously specified with the column and
block or text-positioning statements. The text or value
to print is specified in an expression in the .print state­
ment syntax. Expressions may include any column
names from the data retrieval statement, program vari­
ables, constants, functions, aggregates, report variables
(time, date, day of week, or page number) or run-time
parameters. You can optionally indicate the print for­
mat within the syntax of the .print statement, or you
can specify it in a separate .format or .tformat state­
ment for column values. (See the previous section
"Column and Block Statements.")

Specifies a string of characters you want to print in the
report, whenever a null value is encountered in the
data .

Control underlining for sections of text.

.ulcharacter Sets up a different underline character from the
default, for use with the Report-Writer underlining
statements.

Conditional and Assignment Statements
.if Specify blocks of statements to execute under
.then specified conditions .
• else

.let Assigns a value to a variable, which can be used in sub­
sequent computations.

14 Report-Writer Reference Manual ODT-DATA

(

-f

Format for Specification Statements

Format for Specification Statements
Every formatting statement is specified with a keyword, preceded by a period (.). The keyword
may be followed by parameters. The format for a report specification statement is:

where

.statement {parameters}

statement One of the text formatting statements, such as .data
or .tab. The statements can be upper- or lowercase
letters.

parameters Parameters may be optional. Their form is depend­
ent on the specific statement. The space between the
statement name and parameters is optional if the
parameter does not start with a letter. For example,
".nI2" is the same as ... nI2".

l Here are some examples of report-formatting statements; they include a tab example, a
.newline statement, a heading, a print line, and a .sort statement:

.tab 10

.newline

.heading report

.pr "This is the value of:",abe(f10.2),
" Sum:", sum(def)

.sort a,b,e

Report-formatting statements within the text file end with the start of a new statement.
Statements can span any number of lines. Except where noted, spaces are used as separators
of statements, and commas separate multiple entries for a parameter within statements such
as .sort or .print. The example reports in Appendix A demonstrate the correct specification
of statements.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 15

(

16 Report-Writer Reference Manual ODT-DATA

Chapter 3

it Using Report-Writer

{

The initial setup statements must appear at the beginning of your report specification file. The
setup statements perform the following tasks:

• Name the report

• Set up a report results file

• Specify the table, view, or query from which data is to be obtained

• Define the order in which the data is to be sorted

• Define the break columns for the report

• Declare any variables used in the report specification

• Enter optional remarks and comments

You use the .name statement to name the report, the .output statement to set up the output
file, and the .declare statement to declare variables. These statements are discussed in Chapter
5, "Report Setup Statements."

To obtain the data for your report, you use either the .data or the .query statement. You cannot
use both. The .data statement names a table or view from which data is obtained. The .query
statement retrieves a subset of the available data, based on the results of the query. You can
include parameters or variables in the query. This lets the user specify the criteria for the report
at runtime. For more information on queries and data retrieval, see "Creating Reports
Parameters" and "Creating Reports Using Several Tables" later in this chapter.

To sort the data for your report, you include a .sort statement in your report specification. The
.sort statement lists the columns, in sort order, on which the data is sorted. You also specify
the break columns, using the .break statement, if you want breaks to occur between data items
in columns other than those specified in the .sort statement. For more information on sorts
and breaks, see "Specifying Sorts and Breaks" later in this chapter.

(Your report-specification file can also include descriptive text about your report. The
.shortremark and .Iongremark statements may be used to include text that appears in the
Reports Catalog. Comments may be placed anywhere in the report specification by enclosing
them with the comment delimiters /* and */. These are discussed in Chapter 5, "Report Setup
Statements."

Chapter 3: Using Report-Writer Report-Writer Reference Manual 17

Creating Reports Parameters

Creating Reports Parameters
For flexibility, you can design one report specification to be run with different parameters or
variables that are specified by the user at runtime. Declared variables can also be assigned a "'­
value in the report-specification file.

Using parameters or declared variables in the query lets the user retrieve data that meets
particular needs. For instance, the user could obtain a report on a single employee or on all
employees in a specified department by entering the employee name(s) or the department
name(s) at runtime. The parameters may be entered on the command line when the report is
invoked, or they may be entered in response to a prompt.

To create a report parameter, you specify the parameter or declared variable in the query,
preceded by a dollar sign ($). This tells the Report-Writer to accept a value entered on the
command line, or to prompt the user interactively if a value is not specified on the command
line.

For example, suppose you have a banking database in which you keep a table of customer
accounts. In this table, you have fields for customer names ("custname"), customer account
numbers ("custno"), checking account balances ("checking"), and savings account balances /
("savings"). You want to create two reports. They should be identically formatted, but must '"
present different information; one report should provide checking account balances, and the
other should give savings account balances. To accomplish this task, you might write a query
like this:

.query select custno, custname,
val=$Account_type
from account

As the Report-Writer generates your report, it prompts you to enter an account type (savings
or checking). Your response tells Report-Writer which kind of information it should retrieve
with the query. If you responded to the prompt with "checking," the completed query would
look like this:

18

select custno, custname, val=checking
from account

Report-Writer Reference Manual DDT-DATA

(

Creating Reports Using Several Tables

If you use a parameter in your query, Report-Writer uses a default prompt string when
prompting for its value. If you use a declared variable in the query, Report· Writer uses a
customized prompt instead. To create the customized prompt, you must use a declared variable
rather than a parameter in the query, and use the with prompt option in the .declare statement
to specify the prompt string.

You can use parameters and declared variables in titles and other places within the report.
When used outside of the query, declared variables need not be preceded by the dollar sign
($). Parameters, however, must always be preceded by a dollar sign ($).

For more detailed information on using parameters and declared variables in reports, refer to
sections on the .query and .declare statements in Chapter 5.

Creating Reports Using Several Tables
There may be times when you want to use the Report-Writer to produce a report from related
information scattered across several tables that share one or more column definitions. The
Report-Writer cannot by itself construct such a report, because it does not recognize multiple

"(queries. It can, however, construct a report from a view you define for one or more tables, or
l(from a join of several tables that you specify in an SQL select statement.

An example of joining tables for a report is given in Appendix A, "Joining Tables Example."

Specifying Sorts and Breaks
To produce an easy-to-read report, you may want to sort the data on the basis of one or more
of the columns. You must sort the data if you want to include subtotals or other summary
information in your report. You also specify the break columns to signal Report-Writer to
look for sub totaling or other special statements. For example, the first POPULATION sample
report in Appendix A is a 1970 U.S. population report by region and state. To generate the
regional population subtotals, the states must first be grouped by the value of the "region"
column in the database, and breaks must occur at each change of value in the "region" column.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 19

Specifying Sorts and Breaks

The easiest way to group rows is to sort them on the column that is used as the grouping
column, such as "region" in the POPULATION example report. Often, a report is sorted on
more than one column. In such cases, the rows are grouped on the basis of the first sort column
(called the major sort column) and; within those groups, on the basis of the next sort column (-
(called a minor sort column), and so forth. The sort order is specified by naming the columns 1"---_
in the .sort statement in a section containing report setup statements (as discussed in Chapter
5). The .sort statement can be used whether or not there is a database query, and provides an
alternative to sorting via an order by clause in a .query statement.

By default, Report-Writer assumes the break columns are the same as the sort columns. In
the above example, for instance, no other breaks need be specified. However, the default
breaks can be overridden by specifying break columns with the .break statement. (See Chapter
5 for details.) The currently active list of break columns (specified by either the .sort or the
.break statement) is known as the break list. The first column in the break list indicates a
major break column, while those which follow are considered minor break columns. A break
on one break column automatically produces a break on all subsequent break columns in the
currently active break list.

In the ACCOUNT example report in Appendix A, break columns are not explicitly specified,
so breaks occur on the sort columns. The data is sorted on "acctnum" (the major sort column)
and, within "acctnum," on "date." When a change occurs in the value of "date," the "date"
break occurs and the system looks for formatting instructions. When a value changes in the
"acctnum" column, breaks occur in both "acctnum" and "date."

You do not need to specify actions for every break in your report. You may wish to specify
sort columns (which produce breaks) for appearance. In the POPULATION example in
Appendix A, breaks in "region" invoke a number of summary and heading actions, whereas
breaks in "state" do not.

Under certain conditions, such as with rounded numbers in break columns, the breaks occur
when the formatted values change, not when the actual values change. For example, assume
a column is rounded to the first decimal place. There is no break between the values of"35.87"
and "35.92", since each rounds to "35.9." You have control over how numeric values are
rounded through the format specification. (See "Format Specifications" in Chapter 4.) To force
breaks to occur on the actual values rather than on the formatted values, use the -t flag on the
report command line, as described in Chapter 12.

20 Report-Writer Reference Manual ODT-DATA

\,-

Pagination in Reports

Pagination in Reports
Pagination in the report is controlled by a number of statements. The .pagelength statement
specifies the vertical size of pages, in lines. The statements placed in the page header and
footer sections are used to define actions taken at the start and end of pages. The .newpage
and .need statements force page breaks, and the .formfeeds statement sends a formfeed
character to the printer after printing all lines that fit on the defined page. Line numbering
begins at 1 (top line).

Before the Report-Writer begins to print a report, it calculates the number of lines in the page
header and footer. After each line is printed, Report-Writer compares the page length with
the number of lines printed. If there are only enough blank lines left to write the page footer,
the Report-Writer prints the page footer, issues a formfeed (if specified) for a page break,
updates the page number, and prints the page header for the next page.

If the .formfeeds statement is in effect, the formfeed character is inserted at the start of the
report and at the end of each page. In some cases, the .formfeeds statement is not needed. For
instance, the .print statement automatically inserts form feeds appropriate fOf II-inch paper
if the default page length (61 lines) is used.

The following shows the commands to create and print a report file. This example assumes
the default value of 61 lines per page. It does not require the .formfeeds statement.

% report -frepfile.lis mydb myreport
% lpr repfile.lis

For a format that uses 66 lines per page, you can add a flag of -v66 at the end of the report
command line, or you can use the .pagelength statement in the report specification.

For special forms and other printers, you can use the .formfeeds statement to instruct the
Report-Writer to insert formfeeds, or the .noformfeeds statement to prevent them.

The .newpage statement forces a page break at any point in the report. This statement causes
Report-Writer to skip to the bottom of the page and print a page footer, if one is specified, and
then skip to the top of the next page.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 21

Setting Report Margins

The .need statement forces a page break to occur if the remaining available lines on the page
are fewer than the number of lines specified in the .need statement. It is used to keep lines of
text together on the same page. For instance, this statement may be used prior to a break
header to insure that enough lines remain on the current page to print the entire break header. (

~-
For detailed information on page control statements, see Chapter 6.

Setting Report Margins
Report-Writer can determine report margins by analyzing your report code. In most cases,
the default settings generated by Report-Writer are adequate. In some cases you may want to
define these settings explicitly, using the .Ieftmargin and .rightmargin page-layout state­
ments. Horizontal character positions start at the left margin (position 0).

In some reports, the right and left margins change dynamically. (See the DICTIONARY
example in Appendix A.) In these cases, the margins for the page header and footer are
independent of the margins for the rest of the report. These margins may be determined
automatically, or they may be specified with the margin-setting statements .Ieftmargin and
.rightmargin wi thing the page header statements.

For information on margin setting statements, see Chapter 6.

Positioning, Formatting, and Printing Data
The Report-Writer relies on three different groups of statements to print data in the correct
place and format. These are:

• Column and block default setting statements

• Text-positioning statements

• Pilnt statements

These statements are used to:

• Set default print positions and widths for columns

• Position text explicitly, or left justify, right justify or center column values within
the margins defined by the column defaults

22 Report-Writer Reference Manual ODT-DATA

,f ... -
~

(

Positioning, Formatting, and Printing Data

• Define the print format (character string, decimal, and so on) for the value to be
printed

• Print an explicit value or print the next value in a column at the previously defined
position, in the designated format

The process of positioning, formatting, and printing data is described below.

Setting Default Print Positions for Columns

Before you can print a value, you must indicate where it should be printed. Report-Writer can
automatically determine default column print positions. To set your own defaults, use the
following column and block statements:

• .position

• .width

The .position statement lets you set up margins for each column, setting the starting print
position for a column and, optionally, the width of the printed column in number of characters.
You can also set the width of a column with the .width statement. All horizontal print positions
start at the left margin (position 0).

To print columns adjacent to each other, you reference the column names within the same
.print statement, separated by commas. If possible, Report-Writer prints the columns next to
each other, at the positions specified in the .position statements or at default print positions.

In some cases, you may want to use the following block statements for more control over the
printing of adjacent text:

• .block and .endblock

• .top

• .bottom

• .within and .endwithin

Chapter 3: Using Report·Writer Report-Writer Reference Manual 23

Positioning, Formatting, and Printing Data

The .block and .endblock statements define a block of fonnatting and print statements as a
unit. You use the .top or .bottom statement to reset the current line to the top or bottom of
the defined block before processing the next statement. The .within and .endwithin statements
temporarily set the report margins to the margins for a referenced column. This enables you
to print text (such as the caption "Total") within the column margins without having to
calculate the exact print position.

Column and block statements are discussed in Chapter 8.

Positioning Text

In addition to the column and block statements, you can use text-positioning statements to
position the text or data. The text positioning statements are:

• .tab

• .newline

• .Ieft

• .center

• .right

• .Iineend

• .Iinestart

You may use the .tab statement with a column name to tab to the assigned print position for
that column before issuing a .print statement. In addition to tabbing, text-positioning
statements allow you to center or justify text within the column margins, or to position text at
the beginning or end of a line, or on another line.

You may use the text-positioning statements with values instead of column names. Explicitly
set positions override column defaults. Text-positioning statements are summarized in Chap­
ter 2 and discussed in Chapter 9.

24 Report-Writer Reference Manual COT-DATA

Positioning, Formatting, and Printing Data

Specifying the Print Format

The appearance of the text or data in your report is controlled by the format specification. For
(instance, the c format indicates a character string format and the e format causes a value print
~ in scientific notation. You specify the format with a template such as "$zz,zzz.nn," containing

characters that define how a value prints.

The print format may be specified in the .print statement, or it may be used in a .format
statement to set a default print format for a column, as in the following:

.format emp (c12), sal ("$zz,zzz,zzn.nn")

.print emp,sal

The results look like this:

Jones
Smith

$
$

109,224.00
32,575.00

You can temporarily override a default column format with the .tformat statement to print the
next value only in a different format. After the value is printed, the format returns to the

, original default type. This is useful for printing a dollar sign at the start of a page.

(

You can also override a default format by specifying the format as a parameter in the .print
statement, such as:

.print salary ("zz,zzz,zzn.nn")

This prints the "salary" values in the specified format, without the dollar sign, until it
encounters another format or print statement for this column. For more information on print
formats, see "Format Specifications" in Chapter 4.

You may indicate underlining of text or values using the .underline and .nounderline
statements. Any .print statements located between the .underline and .nounderline state­
ments produce underlined text. By default, the underline character is the hyphen (-) for reports
written to a terminal, or the underscore U for reports written to a file. You can change the

, default to any character, using the .u1character statement. All underline characters are printed
on the line below the text, except for the underscore U character, which appears on the same
line as the text. For more information on underlining, see Chapter 10.

Chapter 3: Using Report-Writer Report·Writer Reference Manual 25

Using Conditional and Assignment Statements

Specifying What to Print

The actual text or value to print is specified as an expression in the .print statement syntax.
The expression can be a column name, a constant, a function or an aggregate, a runtime report
parameter such as the current date and time, or a variable whose value is specified on the
command line with a prompt or a .let statement. The use of expressions is discussed in Chapter
4.

By default, Report-Writer prints an empty string when a null value is encountered. If you
wish, you may change this default to any string of characters, using the .nullstring statement.
For instance, you can tell Report-Writer to print the string "none" wherever it finds a null
value in the data.

For more information on the .print and .nullstring statements, see Chapter 10.

Using Conditional and Assignment
Statements
You may use the conditional .if, .then, and .else statements to tell Report-Writer to execute
blocks of statements, under specific conditions. For example, you could execute alternative
.print statements to suppress confidential data, based on a user's ID number.

The condition in an .if statement is a Boolean expression that returns the value true or false.
Each of the following is a condition:

• a clause

• a Boolean function

• not condition

• condition or condition

• condition and condition

• (condition)

26 Report-Writer Reference Manual ODT-DATA

Calculating and Printing Summary Data

Examples of conditions in .if statements are:

age <= 50
not (age <= 50)
(age <= 50) and (salary >= 40000) and

(job = "programming")
age > avage

The .Iet statement assigns a value to a declared variable. For instance, you could calculate
the number of years that have elapsed since an employee was hired, and assign the result to a
variable for a report on employee longevity. The .Iet statement can be used with the .if, .then,
and .else statements.

For a detailed description of conditional and assignment statements, see Chapter 11.

Calculating and Printing Summary Data
You may use set functions or aggregates such as sum or count, as well as arithmetic and other
built-in functions to calculate subtotals and other summary values to print in a report. An
aggregate, arithmetic operation, or function can be specified in the .print statement, or an
expression containing the operation can be used in a .let statement to assign the calculated
value to a variable prior to printing.

For a detailed discussion of aggregates, operations, and functions, see Chapter 4.

Automatic Determination of Default
Settings
Report-Writer can automatically calculate default settings for the right and left margins of the
report, for the starting position and width of each column (for use with the .tab, .right
statements, and so on), and for the formats to use when printing columns. These are only
calculated when they have not been specified. The default settings are determined by
analyzing the other report-formatting statements. This takes place after the report setup and

(• _-. ' page layout statements (such as .Ieftmargin) are processed, and before the first printing of
.. the report.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 27

Automatic Determination of Default Settings

Analysis of Report-Formatting Statements

To determine default values, Report-Writer analyzes the formatting statements in reverse
hierarchical order, from the innermost (detail level) statements to the outermost (report level)
statements, as shown below: ~ .

1. .detail section statements

2. .footer statements for innermost sort column

3. .header section for innermost sort column

4. .footer and .header sections for next to last sort column, and so on

5. footer and header text for the report

In analyzing the report code, the Report-Writer determines the innermost references to
columns in the report, and the leftmost and rightmost print positions indicated by the specified
report-formatting statements.

Determining Default Margins

If the margins for the report are specified with the .Ieftmargin and .rightmargin statements,
these values are used. If not, the minimum and maximum print positions for a line in the report
are determined in the scan of the report-formatting statements. If only one of the margins is
specified, the other is determined in the scan. The margins are used to determine line positions
for the .center, .right, and .left statements, when these statements are used without specified
parameters.

Determining Default Column Positions

Ifno .position statement is given for a column, its default position for use with the .tab, .right,
.Ieft, or .center statement is determined from the analysis of report-formatting statements.
Default column positions are determined by the first print position Report-Writer encounters
that has been specified for the printing of a value in that column or for an aggregate of that
column.

28 Report-Writer Reference Manual DDT-DATA

\.,-

f·

Automatic Determination of Default Settings

Reports are set up so that the innermost printing of column values occurs in the .detail
statements of the report. Column headers and aggregates, which print in header or footer text
for a break, can then use the .tab or another positioning statement in relation to the default
position established for the innermost position of a column. If changes are desired in the
position of a column and its associated heading or aggregates, only the innermost print position
for the column need be changed. Because all references to header, are given in relative terms,
their positions are changed automatically.

As an example, see the ACCOUNT example in Appendix A. The default position for the "am t"
column is determined by the cumulative aggregate for "amt."

Determining Default Column Formats

If no .format statement is given for a column, the default format is determined in a manner
similar to that used for determining the default column position. The innermost reference to
a format for a column, or to an aggregate for a column, is used as the default format for the
column. If no formats are given for a column, the Report-Writer determines defaults from the
data type of the column, as described in the discussion entitled "Default Formats" in Chapter
4.

The default format for a column is best used in situations where the format is specified in the
reference to a column in the .detail formatting statements. Aggregates of that column are then
specified in the footers for some of the breaks. The Report-Writer then correctly uses the
format specified in the .detail section for the aggregates.

However, the .format statement is often useful for specifying a series of columns with the
same format. See the POPULATION example in Appendix A for a good illustration of the use
of the .format statement for this purpose.

Determining Default Column Widths

If no .width statement or width parameter to the .position statement is specified for a given
column, the default column width is determined by the default format for that column, as
specified by the .format statement or as determined from the analysis of report-formatting
statements. The default width of a column is the width required by the column format to print
a value. Report-Writer uses the column width to determine the print positions for the .right
or .center statements.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 29

30 Report-Writer Reference Manual ODT-DATA

Chapter 4

f Expressions and Formats

(

Report-Writer accepts a variety of expressions. These may be used in queries. in conditional
and assignment statements. and in .print statements. Expressions are data elements that may
be combined with operators and functions. They may include the following:

• constants

• column names

• parameters

• variables

• aggregates

• arithmetic operators

• comparison operators

• logical operators

• functions

Expressions may be used in the .query statement to retrieve a subset of the data. (See Chapter
5 for information on queries.) They may be compared to other expressions with the .if
statement, or used in the .let statement to assign a value to a variable. (See Chapter 11 for
conditional and assignment statements.)

Expressions may be printed using the .print statement. (See Chapter 10 for details on the
.print statement.) The format specification determines how the data is printed. It may be as
a character string, in decimal or scientific notation, and so forth. Report-Writer uses a default
format if you do not specify one in the .print statement or with a .format or .tformat
statement. Formats are discussed in "Format Specifications" later in this chapter.

Chapter 4: Expressions and Formats Report·Writer Reference Manual 31

Reserved Words

The following example shows several expressions. The example uses a database that has a
table of shipments featuring part number, number of defective parts in a shipment, and the
total number of parts in a particular shipment. Suppose you want a report of the shipments
grouped by part number, with the calculated percentage of defective parts for all the shipments
of that part. The following accomplishes this:

.sort partno

.footer partno
.print partno, " IS "
.print (sum (defective)/sum (total» * 100, " %

DEFECTIVE "
.newline

In this example, the following are expressions:

partno
"IS"
(sum(defective)/sum(total» * 100
"% DEFECTIVE"

Because no print formats are specified in this report code, Report-Writer automatically
determines them.

Reserved Words
The following table lists reserved words. They should not be used in any other way. Using
reserved words in other ways, particularly as column names, produce unexpected or incorrect
results when the Report-Writer prints the report.

32 Report-Writer Reference Manual ODT-DATA

~

1.

Types of Data in Expressions

abs current date line number page_length
and current_day locate page_number
ascii current time log position number
atan date lowercase report
average detail max right
averageu dow maximum right_margin
avg exp maximumu run
avgu float4 maxu shift
break float8 min sin
cnt int4 minimum smallint
cntu integer minimumu sqrt
concat integer! minu squeeze
cos integer4 mod sum
count interval not sumu
countu left null trim
cum left_margin or uppercase
cumulative length page w column

w name

If you use one of the reserved words in the preceding table as a column name, the Report­
Writer does not issue an error message. It supersedes the definition of the built-in function
with the column name you specify. All further references to the reserved word is to the column,
not to the Report-Writer function. This can produce unexpected results. For example, if you
had a column in your retrieval named "page," the built-in definition for the name "page" would
be replaced by your definition. After that, when you used a .page statement, you would
actually get the column name "page."

Types of Data in Expressions
Expressions may contain any of the data elements described below.

String Constants

Many reports have lines of text, or strings that appear in the body of the report. You can
specify these string constants by enclosing them in single or double quotation marks. For
example: '

, string'

Chapter 4: Expressions and Formats Report-Writer Reference Manual 33

Types of Data in Expressions

or

"string"

where

string

is any character string.

If you use single quotes as the string delimiter and you wish to include a single quotation mark
within the text of the string, you must enter it as two single quotes so that the Report -Writer
does not assume it has found the end of a string. Such a pair of single quotes must be placed
together on a single line. A backslash (\) within a single-quoted string is automatically
interpreted as a literal backslash, unless it precedes a wild card character. (See the following
explanation.)

If double quotes are used as the string delimiter, a double quotation mark (") or a backslash
(\) within the string must be preceded by a backslash to be interpreted literally.

Examples of valid strings delimited by single quotes are:

'This is a string'

'This has extra blanks'

'This has a "quoted" string in it'

'This has one \ backslash in it'

Examples of valid strings delimited by double quotes are:

"This is a string"

"This has extra blanks"

"This has a \"quoted\" string in it"

"This has one \\ backslash in it"

In most cases, you can choose single or double quotes for the string delimiter; you must use
single quotes within an SQL .query statement. As a convention, this manual uses double
quotes to delimit string constants, except within SQL .query statements.

34 Report-Writer Reference Manual ODT-DATA

(

Types of Data in Expressions

Numeric Constants

Numeric constants consist of an integer, a decimal point, and a fraction or scientific notation.
Numeric constants may be specified with the following format:

[+1-] (d) [.(d) [eIE[+I-]d[d]]]

where d is a digit

Examples of valid numeric constants are:

23
8.97327
4.7 e-2

Numeric constants may range from -10**38 to +10**38 ("**" being interpreted as "to the
power of') with precision to 17 decimal places.

Date Constants

Dates are referenced as single- or double-quoted character strings. (Just as with string
constants, however, within a .query statement, you must use the quotation marks appropriate
to your query language.) The Report-Writer accepts formats described below.

Absolute dates. Legal formats for input of the date November IS, 1988, are shown in the
following table:

Absolute Date Formats

Format Example

"mmlddlyy" "11/1S/88"

"dd-mmm-yy" " lS-nov-88"

"dd-mmm-yyyy" "IS-nov-1988"

"mm-dd-yy" "11-1S-88"

"yy.mm.dd" "88.11.1S"

Chapter 4: Expressions and Formats Report-Writer Reference Manual 35

Types of Data in Expressions

Format

"mmddyy"

"mm/dcf'

"mm-dd"

"today"

"now"

Example

"111588"

"11/15"

"11-15"

The string today is a legal absolute date with
today's date as its value.

The string now is a legal absolute date and time
with today's date and the current time as its
value.

Absolute times. Legal formats for input of the time 10:30:00 are shown in the following table:

Absolute Time Formats

Format Example

"hh:mm:ss" "10:30:00"

"hh:mm:ss xu" "10:30:00 pst"

"hh:mm" "10:30"

Note: DDT-DATA supplies the appropriate time zone designation. Time formats are
assumed to be on a 24-hour clock. Times entered with designations of "am" or "pm"
are automatically converted to 24-hour internal representation. Any such designa­
tion must follow the absolute time and precede the time zone, if included. If you do
not specify a date with an absolute time, today's (that is, the current day's) date is
supplied.

Absolute date and time. Legal input fonnats for November 15, 1988, 10:30:00, are shown (
in the following table: "-.. "

36 Report-Writer Reference Manual DDT-DATA

(

Types of Data in Expressions

Absolute Date and TIme Formats

Format

"mm/dd/yy hh:mm:ss"

"dd-mmm-yy hh:mm:ss"

"mmlddlyy hh:mm:ss xxx"

"dd-mmm-yy hh:mm:ss xxx"

"mm/ddlyy hh:mm"

"dd-mmm-yy hh:mm"

"mmlddlyy hh:mm xxx"

"dd-mmm-yy hh:mm xxx"

Example

"11/15/88 10: 30: 00"

"15-nov-8810:30:00"

"11/15/8810:30:00pst"

"15-nov-88 10: 30: 00 pst"

"11/15/88 10: 30"

"15-nov-88 10: 30"

"11/15/8810:30pst"

"15-nov-88 10:30 pst"

Date intervals. Examples of valid formats for date intervals include the following:

"5 years"
"8 months"
"14 days"
"5 yrs 8 mos 14 days"
"5 years 8 months"
"5 years 14 days"
"8 months 14 days"

Time intervals. Examples of valid time intervals are:

"23 hours"
"38 minutes"
"53 seconds"
"23 hrs 38 mins 53 secs"
"23 hrs 53 seconds"
"28 hrs 38 mins"
"38 mins 53 sees"
"23:38 hours"
"23:38:53 hours"

Chapter 4: Expressions and Formats Report-Writer Reference Manual 37

Types of Data in Expressions

Columns
To reference a column value in a data row currently being processed, specify the column name.
Columns for SQLdata types: in teger1, smallint (integer2), integer (integer4), float4, and float ('
(float8) are numeric expressions. Columns for the SQL data types c, char, text, and varchar \..
are character expressions. Columns for the SQL data types date and money are abstract
expressions.

Parameters
You may specify parameters for runtime substitution in expressions. To indicate parameters,
you must precede an alphanumeric name with a dollar sign ($). Examples of parameters are:

$myvar
$your_name
$salary
$start_date

You can use parameters as substitutes for any part of a query: field names, table names, or
even where clauses. For example, you may specify a report with the following query:

select *
from emp
where dept = '$dname'

When the report runs, you enter the parameter value on the command line. If you do not enter
a value on the command line, the Report-Writer prompts you to enter the value.

Parameters used in a query may be used in other parts of the report specification. Wherever
a parameter is used, it must be preceded by the dollar sign ($).

If the parameter is used as a number, its value must be a real number. If the parameter is used
as a date, its value must be a legal date. Otherwise the parameter is treated as a character string.

38 Report-Writer Reference Manual DDT-DATA

f

Types of Data in Expressions

Declared Variables
You may use declared variables in place of, or in addition to, parameters for the runtime
substitution of values in an expression. The value must be specified in one of these ways:

• On the command line

• In response to a prompt string you specify with the .declare statement

• In a .Iet statement

The advantage of a declared variable over a parameter is that you can create your own prompt.
Parameters use a standard Report-Writer prompt. You can specify the data type and null for
a declared variable. (See the .declare statement in Chapter 5.)

As with parameters, you can use declared variables as substitutes for any part of a query. When
used in a query, the declared variable must be preceded by a dollar sign ($). (For more
information on the .query statement, refer to Chapter 5.)

Declared variables can also be assigned values by means of the .let statement for use within
f the body of the report. When used outside of the query, declared variables should not be

<t preceded by a dollar sign ($). See the .Iet statement in Chapter 11.

(

Special Report Variables

The following report variables may be used to generate and print such items as page numbers
and the date and time a report is run, or to control the report layout.

Special Report Variables

Name

line number

position_number

Chapter 4: Expressions and Formats

Description

Current page number in the report. Pages
number from 1.

Current line number on the page. Starts at 1.

Current column position on the page. Starts
atO.

Report-Writer Reference Manual 39

Types of Data in Expressions

Name

current date

current time

w name

w column

Aggregates

Description

Current length of the page.

Current left margin column position.

Current right margin column position.

Date when report is run.

Day of the week when report is run. This is a
three-character string (for example, "Mon" or
"Fri").

Time of day when report is run. This is a
date.

Name of the column currently being used in a
block. This is a string.

Value of the w name column in the data row
currently being processed.

An aggregate, such as sum or count, is used to perform a calculation on data read in from one
column, up to the occurrence of a break in another column. For instance, in the POPULATION
example report shown in Appendix A, the regional population subtotals represent use of the
sum aggregate on each of the columns "tot," "totwhite," "totblack," and "totother," up to a
break in "region." Additionally, the population totals at the end of the report represent use of
the sum aggregate for the same columns up to a break in "report."

You specify which data should be used in the calculation by naming the column containing
that data as a parameter of the aggregate function. In the POPULATION example, the columns
containing the relevant data are "tot," "totwhite," "totblack," and "totother.") You indicate the (
cut-off point for the data to be included in each calculation by placing the aggregate function ~
within the footer section for a particular column or section of the report. The aggregate value
is calculated each time a break occurs in the specified footer. SQL users should note that
aggregates correspond to the set functions of SQL.

40 Report-Writer Reference Manual ODT-DATA

(

(

Types of Data in Expressions

Aggregates may be non-unique or unique, simple, or cumulative. A non-unique aggregate
performs a calculation based on every value read in from the aggregate column up to a break
in the specified footer. A unique aggregate performs a calculation on each break value in the
aggregate column, up to a break in the specified footer. Depending on how the data is sorted
and where the aggregate is specified, the break values mayor may not be the actual unique
values in a column. A simple aggregate produces a single value, calculated on all the values
in the aggregate column up to a break in the specified footer. A cumulative aggregate
calculates a running total for each value in the aggregate column up to the break containing
the aggregate instruction. Simple and cumulative aggregates may be either non-unique or
unique. Aggregate types are discussed in more detail later in this section.

The following aggregates are allowed:

sum

sumu

count

countu

min

max

avg

Sum value of a numeric column up to a break in the
specified footer. If the specified footer is a date
column, it must have time intervals as values to sum
over it.

Sum unique or break values in a numeric column up
to a break in the specified footer. You can specify
sumu only for break columns. (See additional details
in "Unique Aggregates" later in this chapter.)

Count the number of rows up to a break in the
specified footer.

Count the number of unique or break values up to a
break in the specified footer. You can specify couo­
lu only for break columns. (See additional details in
"Unique Aggregates" later in this chapter.)

Find the minimum value of a numeric or date
column up to a break in the specified footer.

Find the maximum value of a numeric or date
column up to a break in the specified footer.

Find the average value of a numeric column up to a
break in the specified footer.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 41

Types of Data In Expressions

avgu Find the average value of the unique or break: values
for a numeric column up to a break: in the specified
footer. You can specify agvu only for a break:
column. (See additional details in "Unique Ag­
gregates" later in this chapter.)

Syntax of Aggregates

The syntax for an aggregate specification is:

[cum [(breakname)]] aggname (columnname [, preset])

breakname

aggname

columnname

The name of a break: in the report (either a sort
column name, or report or page). It is optionally
used as a parameter to the cumulative function to in­
dicate when to reset the cumulative. The value of a
cumulative then represents the aggregate since the
last break: in breakname. The default value for
breakname is report (that is, it represents the
cumulative value of an aggregate since the start of
the report).

The name of the aggregate to be executed. Valid ag­
gnames and synonyms are sum, minimum (min),
maximum (max), average (avg) and count (cnt).

A column name in the data being reported. Values of
this column are aggregated. Therefore, the column
must be of the correct type (for example, numeric or
date columns only, for all aggregates except count).
Note that a column name must be specified for the
count aggregate, even though all columns result in
the same value.

42 Report-Writer Reference Manual ODT-DATA

/ "

(

Types of Data in Expressions

preset Either a constant value or the name of a column that
is used for presetting the aggregate before calcula­
tions begins. This is used primarily with the cumula­
tive function to set an aggregate to a non-zero value
before starting. .

For example, if you want to print an account balance
next to each transaction in an account, you can use
the cumulative sum aggregate with a preset to the
starting balance of the account. See the ACCOUNT
example report at the end of the guide for an ex­
ample of this. If preset is a constant, the aggregate is
set to that value. It may be a numeric or date con­
stant. If preset is a valid numeric or date column
name, the aggregate is set to the value in that column
at the start of the break over which the aggregate is
defined. Also, preset is not allowed with the
average aggregate.

(Simple Non-Unique Aggregates

The scope of a simple non-unique aggregate is determined by the context in which it is
specified. For example. if "sum (salary)" is specified in the footer for the report, it refers to
the sum of "salary" for all rows read in the report. If "sum(salary)" is specified in the page
footer, it refers to the sum of "salary" for all rows that were processed during the printing of
each page. If specified in the footer for a break in "department," "sum(salary)" refers to the
sum of "salary" for all rows in each department.

Simple aggregates can only be specified in the footer action for breaks, because these
calculations are intended to provide summary information.

Unique Aggregates

You specify a unique aggregate by following the aggregate name with the letter "u," as in
sumu, countu, or avgu, respectively. The difference between a unique and a non-unique
aggregate is that a unique aggregate performs an operation only when the value in the
aggregate column changes, while a non-unique aggregate performs the operation for every
value in the aggregate column. Therefore, a unique aggregate performs its calculation only
on the break values in the specified column, up to the break containing the aggregate
instruction.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 43

Types of Data In Expressions

For example, if the aggregate "count(region)" were specified in the report footer for the
POPULATION example report in Appendix A, the result would be 51 (including the District
of Columbia), because there are 51 rows in the report. However, if "countu(region)" were
specified instead, the result would be 9, because nine breaks would occur on region.

The number of breaks is not necessarily the same as the actual unique values in the column.
This result depends on· the break in which the aggregate instruction is placed, and on whether
the data in the aggregate column has been sorted or not. For instance, couotu would produce
a result of 3 on the following unsorted data in column 1, even though the data contains only
two unique values, because three breaks would occur:

Column 1

AAA

BBB
AAA

Cumulative Aggregates

Preceding an aggregate name with the keyword cumulative or cum indicates that the
cumulative value of an aggregate is calculated and printed. As such, cumulatives can be
specified in any context (for instance, in detail sections) because they are used to provide
running totals. A cumulative can be applied to any of the other aggregates. It is particularly
useful for applications that need to use running totals, such as account balance applications.

If no breakname is specified after the cumulative keyword, or if a breakname of "report" is
specified, the cumulative aggregate is assumed to refer to all data rows processed since the
start of the report. If a breakname of "page" is specified, the cumulative aggregate refers to
all data rows processed since the last page break. If a specified breakname is one of the break
columns, the cumulative aggregate refers to all data rows processed since the last break in that
column.

The preset parameter may be specified to set the cumulative function to a constant value or
to the value of a column when it is initialized (that is, at the start of the break in breakname).
For example, in the ACCOUNT example in Appendix A, the "cum(acctnum)
sum(amt,balance)" aggregate in the detail block indicates a common use of the preset
Parameter. When a break occurs in "acctnum," the cumulative function is set to the value of
"balance." As each new transaction is processed, the value of "amt" is added to the cumulative C·.· ..
aggregate. Because "deposits" are positive and "withdrawals" are negative, the cumulative .
aggregate reflects the running balance.

44 Report-Writer Reference Manual DDT-DATA

(

Types of Data in Expressions

Rounded Versus Actual Values

By default, aggregates utilize the rounded values for any floating-point column whose fonnat
has been specified in a .format or .print statement with a template or as numeric F. For
additional information about these formats, see "Format Specifications" later in this chapter.
That is, the value of the aggregate for such a column is derived from the rounded values for
the individual column rows. To force the aggregate to use the actual, rather than the rounded,
values, the -t flag must be specified on the report statement line, as described in Chapter 12.

Exam pies of Aggregates

Here are some examples of aggregates, with explanations:

min (salary)

Specified in the footer for "dept," this element gives the minimum value of salary for all data
rows in a "dept."

average (age)

Specified in the footer for "class," this element gives the average age for all data rows in a
"class."

count (name, 200)

Specified in the footer for the report, this element gives the count of the number of data rows
in the report + 200.

sum(transact,oldbal)

Specified in the footer for "acct," this element gives the sum of "transact," initialized by the
value of "oldbal" at the start of each "acct."

cumulative avg(height)

Specified in the detail text, this element gives the cumulative average of height since the start
of the report.

cum(acctnum) sum(amt,balance)

Specified in the detail text, this element gives the cumulative sum of "amt" since the last
change in "acctnum" and initialized by the value of "balance" at the last change of value in
"acctnum."

Chapter 4: Expressions and Formats Report-Writer Reference Manual 45

Operations

Operations
Expressions can include arithmetic. comparison. and logical operators. Boolean and built-in
functions. as well as pattern matching with wild cards.The following operators may be used
in expressions. These are described in the following sections.

Arithmetic Operators

Numeric expressions may be combined arithmetically to produce other (compound) expres­
sions. The following arithmetic operators are supported (in descending order of precedence):

+,- plus. minus (unary)

** exponentiation

*,1 multiplication. division

+,- addition, subtraction (binary)

Unary operators group from right to left, while binary operators group from left to right. You
may force the order of precedence of operations using parentheses. This. for example, is an
expression with no ambiguity as to precedence of operations:

(salary + 1000) * 12

Arithmetic Operations on Dates

The following arithmetic operations are available for date expressions:

Addition:

interval + interval -+ interval
interval + absolute -+ absolute

Subtraction:

interval - interval -+ interval
absolute - absolute -+ interval
absolute - interval -+ absolute

46 Report-Writer Reference Manual DDT-DATA

(

.{

t

(.

Operations

An example of the correct use of arithmetic operators in date expressions is:

current date + date("l days")

Another example is:

current date - birthdate

The first example returns tomorrow's date. The second example gives a person's age.

Comparison Operators

A comparison operator has two expressions as operands, and returns the result of true or false.
Both expressions must have the same type: numeric, string, or date. The following operators
are recognized:

=
!=
>
>=
<
<=

equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to

All comparisons have equal precedence. When character strings are compared, blanks are
ignored.

Conditional Clauses

A conditional clause has the form:

expr comp_op expr

The expr is an expression, and comp _ op is a comparison operator.

A clause may be enclosed in parentheses without affecting its interpretation, as in the following
examples:

(age < 50)
((salary * 12) >= 20000)

A clause returns the value true or false. It may contain comparison operators and partial match
specification characters.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 47

Operations

Pattern Matching with Wild Cards

You may indicate partial matches of character strings in a conditional clause, in an .if
statement, and in the where clause of a query by using wild card characters with the
comparison operators. The character string must have single or double quotes as delimiters.

Wild Cards In an .If Clause

When used in a string within an .if condition, wild card characters can be disabled by preceding
them with a backs lash (\) character. In this case, the character is interpreted literally. Thus,
",*tt refers to the asterisk character. When used outside of an .if condition, wild card characters
have no special meaning and are always interpreted literally.

The following wild card characters may be used in an .if statement for comparing character
strings:

*
?

[..]

matches any string of zero or more characters

matches any single character

matches any of the characters in the brackets

Examples of the use of wild card characters are:

ename = "*"

enarne = "E*"

ename = "*ein"

enarne = "*[aeiou]*"

ename= "Br"

ename = ''[A-J]*''

ename = "[N-ZJ???"

matches any value in "ename"

matches any value beginning with "E"

matches any value ending with "ein"

matches any value with at least one
vowel

matches any five-character value begin­
ning with "Br"

matches any value beginning with A, B,
"C, ... ,J."

"matches any four-character value begin­
ning with N, 0, P, ...• Z.

Blanks must be eliminated in bracketed expressions such as "[A-J]*" or "[N-Z]???"

48 Report-Writer Reference Manual DDT-DATA

-, ;;/

(

Operations

Wild Cards in Queries

When a string appears in the where clause of a .query statement, the wild card conventions
follow those of the SQL database language used to retrieve the data.

Logical Operators

The following logical operators are recognized:

(Boolean operator)

not
and
or
is null
is not null

(logical not - negation)
(logical and - conjunction)
(logical or - disjunction)
(test to see if value is null)
(test to see if value is null)

These operators evaluate clauses or Boolean functions as operands, and return the value of
true or false. The Not operator has the highest precedence. The and and or operators have

'" equal precedence. You may use parentheses for arbitrary grouping. Logical operators group
'\ from left to right.

Built-in Functions

Functions are denoted by a function name, followed by one or two operands in parentheses.
When expressions are substituted for the operands, the function is evaluated and the result is
a number, a string, or a date. Functions can be nested to any level.

All of the ODT-DATA conversion, numeric, string, and date functions such as char(expression),
log(n), concat(stringl,string2), and date_trunc are available to the Report-Writer user. For
descriptions of the functions, see the ODT-DATA SQL Reference Manual or the ODT-DATA
Open SQL Reference Manual.

Boolean Functions

A Boolean function returns a value of true or false. The result of a Boolean function cannot
be printed; it can only be used as a condition. A Boolean function is compo~ed of a function
name followed by an operand in parentheses.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 49

Format Specifications

The break function is the only Boolean function found in the Report-Writer. (See "The
Concept of Breaks" in Chapter 1.) The syntax is:

break (columnname)

where columnname must either be a break column (that is, in the sort list) or the value report.

When a break column is specified, the value true is returned if the current value for that column
changes from the previous value or if the current value in any column of higher precedence
than column changed. If neither the current value for column nor the current value of any
column of higher precedence in the sort list changed, the value of false is returned. When
report is specified, true is returned if the end of the report is reached; otherwise, false is
returned.

Example of Boolean functions include:

.sort dept, empno
/* Other Report-Writer statements */

.footer empno
.if not break(dept) .then

. newpage
.endif

This generates a new page when the employee number breaks, but only if the department has
not changed.

Format Specifications
Expressions in the report may be given special format specifications in the .print statement
or in a .format or .tformat statement. The format determines whether the data is printed as
a character string, decimal value, date, and so on. Be sure to use the right type of format,
depending on the type of expression. As discussed in Chapter 3, if no format is specified,
Report-Writer determines a default format from an analysis of your other statements. The
following formats are allowed:

• C format specifies character strings.

• T format specifies character strings like the C format, except that it displays certain
unprintable characters in a visible format.

50 Report-Writer Reference Manual DDT-DATA

f

Format Specifications

• F format specifies numeric expressions. In the F format, you can control the
placement of the decimal point or suppress it entirely.

• E format specifies numeric expressions printed in scientific notation.

• G format specifies numeric expressions. This format chooses either F or E format,
depending on what fits in the field width. This format also guarantees that decimal
points align, whether printed in F or E format.

• N format specifies numeric expressions like G format, but decimal points do not
necessarily align.

• B format specifies that the value be blanked out. It is a special format used for
blanking out a field, for use with temporary formats in conjunction with the .tformat
statement

• Numeric templates are complex formats for numeric data that allow you to control
placement of dollar signs, commas, or other punctuation within the number.

• Date templates are formats that allow you very detailed control over the appearance
of dates and times in your reports.

A sign character can precede the format specifications to indicate that the print value is right
justified, left justified, or centered. The following are valid sign characters:

*

+

A minus sign indicates tht the data is to be left justified
in the specified field width.

An asterisk indicates that the data is to be centered in the
specified field width.

A plus sign indicates that the data is to be right justified
in the specified field width.

Examples of each sign character can be seen in the discussions below for each format type.
If no sign is given, justification defaults to left for character fields and right for numeric fields.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 51

Format Specifications

Character String Format C

Use the C fonnat to print string expressions.

The syntax of is:

[.1*1+] c[flj]n[.w]

Parameter

f

j

n

w

C Format Parameters

Description

If specified, this tells the Report-Writer to break
the text at words when the text spans lines.

If specified, this tells the Report-Writer to right
justify text.

Specifies the maximum number of characters to
print. If there are more than n characters in the
string, the string is truncated. If there are fewer,
it pads with blanks until n characters have been
printed. Use 0 for n to print the entire string,
regardless of its length.

Specifies the number of characters to print on
each line. If n is greater than w, then more than
one line is written in a newspaper column for­
mat. By default, w is set to n.

When specifying these options, you may use upper- or lower-case letters. The field width n is
optional and may be used to specify an exact width. If n is specified and the string is fewer
than n characters long, blanks are added to make up the n characters. If the string is longer
than n characters, only the leftmost n characters are printed.

If you specify a value for wand n, you can print text in newspaper column fonnat. The f and I
j modifiers cause breaks at words for wrapping and right justification of text. If neither is ~./
specified, simple wraparound of text occurs, with breaks occurring regardless of words.

52 Report-Writer Reference Manual .OOT-OATA

(

Format Specifications

To print a visual representation of unprintable characters, use the T format statement,
discussed below. Tab characters and carriage returns cause tabs and carriage return actions if
you are using the cf or cj format.

Example 1

The following six .print statements are for a report that contains a character column called
"name" that you want to print, and a value for name is "Jones, J.":

.print "First : , name (c15),":First" .nl

.print "Second: , name (c4) , ":Second" .nl

.print "Third : , name (cO) , ":Third" .nl

.print "Fourth: , name (-c15) , ":Fourth" .nl

.print "Fifth : , name (+c15) , ":Fifth"

.print "Sixth : , name (*c15) , ":Sixth"

It produces, respectively, the following six lines of output:

First :Jones, J.
Second:Jone:Second
Third :Jones, J. :Third

:First

Fourth:Jones, J.
Fifth Jones,
Sixth Jones, J.

Example 2

:Fourth
J.:Fifth

:Sixth

.nl

.nl

If your data includes the character string "Now is the time for all good people to come to the
aid of their country," the following shows the effect of three different format specifications:

cO.15 cflOO .15 cjO.15

Now is the time for Now is the time for Now is the time for
all good people to all good people to all good people to
come to the aid of come to the aid of come to the aid of
their country. their country. their country.

Because the second format specification, "cnOO.IS," specifies an actual number of character
positions to print, Report-Writer prints out two blank lines after the text, to pad to the full
I OO-character column width.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 53

Format Specifications

After a string prints in column format, the current position moves to the top line of the column,
at the end of the line. In the example, this is to the right of "time".

Character String Format T

The T format is similar to the C format. The T format translates characters outside the normal
character set into visible representations.

This format is useful when you want the output to look like that of the ODT-DATA Terminal
Monitor, which expands unprintable characters into visible representations.

The syntax of a T format specification is:

[-1*1+] t[t1j]n[.w]

The f and j options work the same as they do for the C format.

Note that n is the width of the field that the expanded output occupies on the page. It does
not refer to the number of characters of data that are translated.

Examples

For the character string "John?Smith,\Esq.", where the "?" character stands for a non-printing
formfeed character:

.print "Output:", :Output" .n1

This print statement produces:

Output:John\fSmith,\\Esq.:Output

The following lists the character representation of the T format:

• Newline becomes \n.

• Horizontal Tab becomes \t.

• Backspace becomes \b.

• Carriage Return becomes \r.

• Form Feed becomes \f.

54 Report-Writer Reference Manual OOT-OATA

e,

Format Specifications

• Backslash becomes \\.

• Null becomes \0.
~ -

:i • Any other unprintable character becomes the character string "\lInn", where nnn is
the three-digit octal equivalent for character.

Numeric Format F

The F format prints numeric expressions in standard decimal notation, with or without a
decimal point. Numbers are right justified in the field, unless preceded by a .left statement
or by the "-" sign in the format designation.

The syntax is:

[-1*1+] fw[.d] .

Parameter

w

d

F Format Parameters

Description

The maximum field width.

The precision, or the number of digits to print
after the decimal point.

The "+"and "-" prefixes specify how the text should appear in the field; as either right or
left-justified. They do not have any bearing on the sign of the data.

You may specify this format with upper- or lower-case letters. The field width w must be
specified, and refers to the maximum number of printing positions in the field. If the value
can be printed in fewer than w spaces, it is right justified in the field. If the value cannot be
printed in w or more spaces, the field is filled with asterisks (*).

If d is specified, a decimal point is printed, with d digits to the right of the decimal point. The
number of digits to the left of the decimal point cannot exceed w - (d + 1), because you must
account for the fractional part in the field width specification.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 55

Format Specifications

If d is not specified, or if the value "0" is specified for d, for example "F20.0", then no decimal
place is printed.

The following table illustrates the F format specification:

Format Value Output

flO .2 22.3 22.30"
FlO.2 -.123 -0.12"
flO 123.789 124"
f4.2 22.34 ****"
+flO.2 22.6 22.60"
-flO .2 22.6 22.60

Numeric Format E
The E format prints numeric expressions in scientific notation. Numbers print with the form
[-]"m.nnnnnnE[+I-]pp". An example is "1O.456e+03", which means 10.456 times 10 raised
to the 3rd power. Numbers output in E format are right justified in the field (unless preceded
by a .left statement or the "- " sign on the format designation).

The syntax is:

[-1*1+] ew[.d]

Parameter

w

d

E Format Parameters

Description

The maximum field width.

The precision, or the number of digits to print
after the decimal point.

The "e" may be upper- or lower-case. The case specifies the case of the "e" in the output.
The field width w must be specified, and refers to the maximum number of spaces in the field. (.
Be sure to include four extra spaces for the exponent part of the printout. If the value can fit .
in fewer than w spaces, it is right justified. If the field width is too small for the value, the
field is filled with asterisks (*).

56 Report-Writer Reference Manual ODT-DATA

(

Format Specifications

If d is specified, a decimal point is printed, and d digits are printed to the right of the decimal
point. If d is not specified, or if a value of "0" is specified for d, such as "E20.0", then no
decimal decimal place prints, although the exponential part prints.

The following shows examples of the E format:

Format Value Output

e10.3 22.3 "22.300e+OO"
E10.2 -.123 "-12.30E-02"
e10 123.789 " 1238e-Ol"
E4.2 22.34 "****"
+E10.2 22.34 " 22.34E+OO"
-e10.2 22.34 "22.34e+OO "

Numeric Format G

The G format uses an F format specification if there is enough room in the field, or E format
if there is not enough room.

The syntax is:

[-1*1+] gw[.d]

Parameter

w

d

G Format Parameters

Description

The maximum field width.

The precision or number of digits to print after
the decimal point.

An upper- or lower-case "g" may be specified. The case determines the case of the "e" if the
value is printed in scientific notation. See the F and E formats for the use of wand d.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 57

Format Specifications

Numbers are right justified if the decimal points are aligned. Numbers that are too long for
an F format print with E format and are right justified. To align F format numbers with E
format numbers, Report-Writer right justifies F format numbers four spaces in from the right
edge of the field to match up with the exponential designator, ("E+I-pp"). If you specify the (.
optional justification sign ("+" or "-"), the values are forced right or left, according to the sign. \

The following are examples of the G format:

Format Value

glO.2 123.456
G1O.2 123456
g8.2 -134.65
g8 -123
+g10.2 123.45
-g10.2 123.45

Numeric Format N

Output

"123.46 "
" 12.35E+04"
"-.13e+03"
"-123 "
" 123.45"
"123.45 "

The N format is similar to the G format specification except that the field is right justified,
whether printed with E or F format. If you specify the optional "-" sign, the value is left
justified.

The syntax is:

[-1*1+] nw[.d]

Parameter

w

d

N Format Parameters

Description

The maximum field width.

The precision, or number of spaces to print after
the decimal.

58 Report-Writer Reference Manual ODT-DATA

c

f ,

Format Specifications

The "n" may be upper- or lower-case. The case determines the case of the "e" for scientific
notation. See the F and E formats for the use of wand d.

Numbers printed with N format are right justified in the output field. Unlike G format, the
decimal points are not always aligned.

The following are examples of the N format:

Format Value

n10.2 123.456
N10.2 123456
n8.2 -134.65
n8 -123
+n10.2 123.79
-n10.2 123.79

Blanking Format B

Output

" 123.46"
" 12.35E+04"
"-.13e+03"
" -123"
" 123.79"
"123.79 "

The B format. which may be used with any type of data, functions in a special way when used
in conjunction with the .tformat statement, which temporarily changes a column format. The
value of a variable printed with B format is not printed but is replaced with blanks.

The syntax of the B format is:

bw

B Format Parameters

Parameter Description

w The desired field width.

The "b" may be upper- or lowercase. This format ignores the value of an expression and
inserts w spaces in the output.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 59

Format Specifications

Numeric Templates

If you need complex numeric formats, you can use a template. A template specifies what the
output should look like. You use template characters to indicate what should be printed in the (
template. For instance, a "Z" prints a digit of a number. A comma (,) in the template prints a \,
comma in the specified position. The template "Z,zZZ" prints the value "1000" as "1,000".
In addition to the template characters listed below, you may include any other character
directly in the numeric template by preceding it with a backslash.

The syntax of for a numeric template is:

[-1*1+] "{c}"

Parameter

c

Numeric Template Parameters

Description

One of several special characters that may be
repeated any number of times

The numeric template is right justified by default. By specifying the optional "-" sign, you
can left justify the template. You must surroundit with double quotes; single quotes-are not
allowed.

The following special characters are defined:

norN

zorZ

Prints a digit if unprinted digits remain in the num­
ber. If none remain, prints a zero.

Prints a digit if unprinted digits remain in the num­
ber. If none remain, prints a space. This is used for
standard blank-padded numeric fields.

60 Report-Writer Reference Manual DDT-DATA

$

+

*

space

Format Specifications

(Dollar sign) Prints a digit if unprinted digits remain
in the number. If none remain, prints a floating dol­
lar sign (at its right-most position only, within a
repeated sequence of dollar signs). If a dollar sign
has already been printed, prints a space. This can be
used to print a dollar sign directly to the left of the
number, or to place a dollar sign in a fixed position
in the field.

(Minus sign-Preceding or Trailing) For preceding:
Prints a digit if unprinted digits remain in the num­
ber. If none remains and if the number is negative,
prints a floating minus sign (at its rightmost position
only, within a repeated sequence of minus signs). If a
minus sign has already been printed, or if the number
is positive, prints a space. For trailing: Prints a
minus sign in the position if the number is negative;
or if the number is positive, prints a space.

(plus sign-Preceding or Trailing) For preceding:
Prints a digit if a digit remains in the number. If
none remains, prints a floating sign (+ or -). If one
has already been printed, prints a space. For trailing:
Prints a plus sign in the position if the number is
positive, or a minus sign if the number is negative.

(Comma) If followed by a digit, prints a comma in
this position. If no digits remain, prints a space.

(Decimal point) Prints the decimal point in this posi­
tion. The template may contain only one decimal
point.

Prints a digit if unprinted digits remain in the num­
ber. If no digits remain, prints an asterisk. This is
useful to fill a number on the left with asterisks (such
as, for checks).

Prints a blank space in this position.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 61

Format Specifications

\

CR

DB

() or
[] or
< >

(Backslash) Indicates that the character immediately
following the backslash is to be printed in that posi­
tion. This allows dashes, slashes, or other characters
to be inserted into the number at runtime. (The back­
slash itself is not printed.)

(Two characters) Inserts the characters "CR" (for
credit) if the number is negative, or two blanks if
positive. The letters "CR" appear exactly as
specified, in upper- and/or lowercase letters.

(Two characters) Inserts the characters "DB" (for
debit) if the number is negative, or two blanks if posi­
tive. The letters "DB" will appear exactly as
specified, in upper- and/or lowercase letters.

(parentheses, square brackets or angle brackets) If
the number is negative, prints it within the specified
symbols.

If a field is specified without any "n"s in the numeric positions, and a value of zero is /
encountered, nothing is printed in the output field. Also note that where the floating symbols
("$", "-" or "+") are repeated more than once in a template to specify a floating character, the
floating character is printed only once in the output field, in its right-most position within the
sequence.

The following examples illustrate numeric templates:

62 Report-Writer Reference Manual. DDT-DATA

(~

~ ...

Format Specifications

Format

"zzzzz"
"zZzZz.Zz"
"zzzzz.nn"
"+++,+++,+++"
"---,---,---.NN
"---,---,---.zz"
"zzz,zzz,zzz.zz-"
"$$$,$$$,$$$.nncr"
"$$$,$$$,$$$.nnDb"
"$zz,zzz,zzn.nn"
"$**,***,***.nn"
"+$$, $$$, $$$. "
" nnn\-nn\-nnnn "
-"zzzzz"
"(zzzzz)"
"[[[[[z]"

Date Format D

Value

123
o
o
23456
23456.789
-3142.666
-3142.666
235122.21
-235122.21
1234.56
12345
54321
023243567
123
-123
-123

Output

" 123"
If "

"

.00"
+23,456"
23,456.79"

" -3,142.67"
" 3,142.67-"
" $235,122.21 "
" $235,122. 21Db"
"$ 1,234.56"
"$****12,345.00"
" +$54,321.00"
" 023-24-3567 "
"123 "
"(123)"
" [123]"

The date format specification is a D, followed by a double quoted string template indicating
how to print a date. The date is left justified by default. By specifying the optional "+" sign,
you can right justify the date. You must surround the template with double quotes; single
quotes are not allowed.

The syntax for a date template is:

[-1*1+] d "template"

Date Format Parameters

Parameter Description

template A string of characters representing a sample ab-
solute date and time. '

Chapter 4: Expressions and Formats Report-Writer Reference Manual 63

Format Specifications

Specifying Absolute Date and Time Templates

The absolute date and time fonnat is specified by a string containing one of many possible
representations of a sample date and time, such as "SUN Feb 3 04:05:06 p.m." or "FEB 03
16:05". The selection and arrangement of the sample date and time elements within the
template indicate the way you want all dates and times to be displayed or printed. You must
use the following date and time as the basis for your template:

Sunday, 1901 February 3 at 4:05:06 p.m.

Note: This specific date and time was chosen as the sample for the template because Sunday
is the first day of the week, and arguments 1,2, 3,4,5, and 6 are the year, month.
day, hour, minute, and second, respectively. This makes it easy to interpret the
elements of the template correctly. For instance, in the template d"2/3/0 1" the "2"
indicates the month (February), the "3" indicates the day (3), and "01" indicates the
year (1901).

You may use all or only some of the arguments in your template, and you may arrange the
arguments in any order. The following examples demonstrate the use of absolute date and
time templates:

64 Report-Writer Reference Manual DDT-DATA

Format

d" 2/ 3/01"

d" 2/ 3/01"

d"03-02-01"

d"2/3/l"

D"2/3/1"

d"010203"

d"I\12\13"

d"FEBRUARY. 1901"

d"FEBRUARY.1901"

d"February •• 11901"

d"February •• I 1901"

d"Sunday"

d"SUN Feb 316:051901"

d"FEB 034: 05: 06 p.m."

d"04:05:06PM"

d"04:05:06PM"

d"16: 05 pst"

d"Sunday. February I"

+d" Sunday. February I "
+d"Sunday. February I "

d"3/01"

d"February 3rd"

d"3rd day of 1901".

Value

25-oct-1982

5-jun-1909

5-oct-1982 07:24:12

25-oct-1982

5-jun-1909

5-oct-1982

5-oct-1982

I-sep-2134 09:13:02

7-may-196213:08:42

12-sep-1982

3-may-1982

5-oct-1983

13-oct-1983 07:24:03

12-dec-[198322:13:03

5-oct-198314:08:45

5-oct-1983 07:29:12

5-oct-198314:08:45

27-jun-1983

27-jun-1983

5-oct- 1983

5-oct-1983

29-jul-1954

II-may-1999

Format Specifications

Output

"10/25/82"

"6/ 5/09"

"05-10-82"

"10/25/82"

"6/5/9"

"821005"

"8211015"

"SEPTEMBER. 2134"

"MAY. 1962"

"September. 1982"

IIMay, 1982"

"Wednesday"

"THU Oct 1307:241983"

"DEC 1210:13:03 p.m."

"02:08:45 PM"

"07 : 2 9 : 12 AM"

"14:08 pst"

"Monday. June

Monday. June"

" Wednesday. October"

"278/83"

"July 29th"

"131st day of 1999"

You cannot use month names other than February, days other than Sunday, or the time
designations "a" or "am" in the date template. Any other word is printed as it appears.

You can specify 24-hour "military" time by using "16" instead of "4." You cannot use "p" or
"pm" with 24-hour time.

The day of the year is printed by specifying the day and year, but leaving out the month (such
as, "3/1901").

You can create ordinal numbers from numbers by suffixing them with the appropriate "sC',
"nd", "rd"or "th" (such as, "3rd day of the 2nd month of 1901 ").

Chapter 4: Expressions and Formats Report-Writer Reference Manual 65

Format Specifications

Numbers requiring more than one digit replace preceding blanks or zeroes in the template. If
there are no preceding blanks or zeros left, the number expands to the right. A blank that
follows a letter, word, or number in the template is retained in the output; it is not replaced by
a succeeding number. Columns of numbers may be aligned by preceding them with an (
appropriate number of blanks or zeroes (note the fIrst three examples above). \

Since full month and weekday names (as well as numbers without preceding blanks or zeros)
are of differing lengths, date columns using either of these components in the format will
rarely line up. Following "February" or "Sunday" with a vertical bar (I) specifies that for
shorter month names or weekdays, an appropriate number of blanks are substituted for the
vertical bar to line up the components. Similarly, if you place a vertical bar after a single digit
number in your template, Report-Writer prints a blank before each single-digit number it
encounters (unless the digit is already preceded by a blank or zero).

Any character preceded by a backslash is printed as it appears.

Specifying Time Interval Templates

The time interval is specifted by a string containing one of many possible representations of
a sample time interval such as "1 year" or "1 yr 3 day", and so on. The selection and
arrangement of the time interval elements within the template indicate the way you want time
intervals to be displayed or printed. You must use the following time interval as the basis for
your template:

1 year 2 months 3 days 4 hours 5 minutes 6 seconds

You may use one or more of these units in your template and you may arrange the units in any
order. The following examples demonstrate the use of the time interval templates:

Format

D"1 year"

d"2 MONTHS, 3 DAYS"

d"3"

d"1 yr 3 day"

D"4 hours 6 seconds"

d"04:05 \hours"

d"3 days 4 hours"

d" 1 yr 2 mos 3 days"

d" 1 yr 2 mos 3 days"

Value

3 yrs 5 mos 16 days

3 yrs 5 mos 1 days

3 yrs 5 mos 16 days

1 yrs 5 mos 16 days

23 hrs 8 mins 53 sees

23 hrs 0 mins 53 sees

23 hrs 8 mins 53 sees

200 yrs 11 mos 28 days

5 yrs 1 mos 3 days

66 Report-Writer Reference Manual

Output

"3 years"

"4: MONTHS, 1 DAY"

"1264 "

"1 yr 168 days"

"23 hours 533 seeo:1ds"

"23:01 hours"

"0 days 23 hou:-s"

"2C8 yr 11 mos 28 days"

" .5 yr 1 mos :3 days"

DDT-DATA

(
~.

Format Specifications

There are 30.4375 days in a month and 365.25 days in a year. The smallest unit specified is
rounded up. .

Numbers requiring more than one digit replace preceding blanks or zeroes in the template. If
there are no preceding blanks or zeroes left, the number expands to the right. A blank
following a letter, word, or number in the template is retained in the output. Columns of
numbers may be aligned by preceding them with an appropriate number of blanks or zeros
(note the last two examples above).

The word following a number is singular if the number is one; it is made plural if not equal
to one. ODT-DATA makes this change only for English-language versions, and only when the
on-line word is spelled out For example, "5 month" would become plural, while "5 mo"
would not.

Any character preceded by a backslash is printed as it appears.

Default Formats

If there is no format specified after an expression, the Report-Writer uses a default format.

Default Format for Strings

Any string expression without a specified format is printed in its entirety. That is, the defaul t
format for strings is "cO."

Default Format for Columns

If you do not specify a column format with the .format statement, the Report-Writer uses the
default format for the column. The default format is based on the data type of the column.
See "Determining Default Column Formats" in Chapter 3.

The following lists default formats for SQL data types.

Default Column Formats

SQL Data Type Default Column Format

cl - c35 cl - c35

c36 - c2000 cjO.35

Chapter 4: Expressions and Formats Report-Writer Reference Manual 67

Format Specifications

SQL Data Type Default Column Format

char(l) - char(35) cl - c35

char(36) - char(2000) • cjO.35

text(l) - text(35) cl - c35

text(36) - text(2000) • cjO.35

varchar(l) - varchar(35) cl - c35

varchar(36) - varchar(2000) • cjO.35

integerl f6

smallint (integer2) f6

integer (integer4) fl3

float4 nlO.3

float (floatS) nl0.3

date c25

money U$ _____________ .. _.nn"

• All character data types are fully supported in non-ODT-DATA
databases accessed via gateways, in which case the column size limit
may be greater than 2000 bytes.

Default Format for Special Report Variables

The following non-string report variables have the corresponding default formats:

68 Report-Writer Reference Manual GOT-DATA

(
I

\. .

(

(

Format Specifications

Default Formats for Report Variables

Report Variable

page_number

line_number

position_number

lefcmargin

righcmargin

page_length

currencdate

currenctime

w_column

Default Format for Aggregates

Derault Format

f6

f6

f6

f6

f6

f6

d"3-feb-1901 "

d"16:05:06"

The default format for the
column currently being used in a
within block (see the default
column formats in the previous
table).

The default format for all the aggregates except count(u) is the format of the column being
aggregated. For count(u), the default format Nw is used, where w is the width of the column
being counted.

Default Format for Numbers

Any other numeric expressions such as numeric constants, numeric functions, numeric
parameters, and arithmetic operations have a default format of n 12.2.

Default Format for Dates

Any other date expressions such as the date function, date parameters and date arithmetic
operations have a default format of cO, which appears in the report as d" 3 -feb-190 1 " for an
absolute date, d"3-feb-190116:05:06" for an absolute date and time, or the Portion needed of
the template d"l yrs 2 mos 3 days 4 hrs 5 mins 6 sees" for a time interval.

Chapter 4: ExpreSsions and Formats Report-Writer Reference Manual 69

~-

l

70 Report-Writer Reference Manual DDT-DATA

:{

Chapter 5

Report Setup Statements

This chapter documents the report setup commands. These commands are used at the
beginning of a report specifications file to identify report parameters.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 71

.name

.name
The .namestatement names a report.

Syntax

.name I.nam reportname

Description

The .name statement is required and must be the first statement specified for a report. The
report specification program sreport stores the report in the database under the report name.

You may store specifications for several reports in one text file by using several .name
statements. Each occurrence of a .name statement signals the end of the previous report's
specification statements and the beginning of a new report.

Parameter

reportname

Examples

Parameters for .name

Description

The name of a report to which the next set of for­
matting statements apply. The reportname is a
standard ODT-DATA object.

The following denotes the start of report "abc":

.name abc

The following denotes the start of report "my_rep":

.name my_rep

72 Report-Writer ReferenceManual

comments

comments
The comment delimiters include documentation in the report specification file.

Syntax

Description

You can include comments in the report specification file by bracketing between the "/*" and
"*f' characters. All text between these characters is ignored in report processing and can be
used as your own documentation.

Comments may be nested (that is, you can have a set of comments within another set of
comments). Comments may be placed anywhere within your file.

Parameter

any_text

Example

Parameters for comments

Description

Any text, except the characters "*1", which close
the comment.

/* this is an example
of a comment ...

*/

Chapter 5: Report Setup Statements Report-Writer Reference Manual 73

.shortremark

.shortremark
The .shortremark identifies a one-line remark describing the report.

Syntax

.shortremarkl.srem remark-text

Description

The .shortremark statement is an optional statement that specifies a one-line description of
the report. You can use this short description to help document your report specifications if
you wish, but its primary purpose is to provide information that appears on the Catalog and
Save frames of the RBF application.

Use only one .sremark statement in a program. A second .sremark statement is flagged as
a syntax error. Only the first 60 characters of the descriptive text are stored in the database.

Parameter

remark-text

Examples

Parameters for .shortremark

Description

A string of characters on the same line as the
statement keyword.

.shortremark Monthly Accounts Receivables

.srem customized emp & dept report tables

74 Report-Writer Reference Manual

.long remark and .endremark

.longremark and .endremark
The .Iongremark statements mark the begining and the end of a block of text that describes
the report.

Syntax

.Iongremarkl.lrem
remark text
.endremarkl.endrem

Description

The .Iongremark and .endremark statements are an optional pair that specify a lengthy
description of the report. The start of the block of descriptive text is denoted with the
.Iongremark statement, and the end is denoted by the .endremark statement. This long
description appears in the Catalog and Save frames of the Report-by-Forms utility.

The descriptive text is stored in the database and is available to other ODT-DATA application
development tools.

Use only one .longremark statement in a report specification. A second statement produces
a syntax error.

Parameters for .Iongremark

Parameter Description

remark-text Any number of characters or lines of text.

You may enter as much remark text as you like. Only the first 600 characters are saved in the
database. Leading spaces that separate the .longremark statement from the first character of
text are ignored. Tab characters are converted to blank characters.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 75

.long remark and .endremark

Examples

.longremark
This report correlates information from the sales (
order header, the sales order detail, and the ~.
inventory files, to produce the customer backlog by
part number report .
. endremark

.lrem
Stock Analysis Report
8 1/2" x 11" output
10 minutes runtime
Input: Begin/End date
. end rem

76 Report-Writer Reference Manual

.data

.data
The .data statement specifies the table or view in the database that is the source of the data
for the report.

Syntax

.datal.dat I .tablel.view tablename

Description

The .data statement identifies a table in the database that is used in its entirety in the report.
The four synonyms above can be used interchangeably. All of the data in the table are available
for use in the report specification.

Either the .data or the .query statement is required. The .data and .query statements are
mutually exclusive. Only one may appear in a report specification.

Parameter

tablename

Examples

Parameters for .data

Description

The name of a table or view in the database. All
rows and columns in the table are read each time
the report is run. Tablename, because it is the
name of a table in your database, follows the
same rules for table names as the rest of ODT­
DATA.

Use table "repdat" for the report .

. data repdat

(" Use view "myview" for the report .

. table myview

Chapter 5: Report Setup Statements Report-Writer Reference Manual 77

.declare

.declare
The .declare statement declares variables that can be assigned values and used in expressions. ('

Syntax

.declare variablename = datatype

[with nuilinot null]
[with prompt tt]
{, variablename = datatype ... }

Description

The .declare statement declares variables that may be assigned runtime values on the
command line or through a prompt, or that may be assigned values in .let assignment
statements, for later use in expressions. Only one .declare statement may be specified.
Declared variables may also be used in a query block to specify runtime substitution of text
in the query.

Parameter

variable name

datatype

promptstring

Parameters for .declare

Description

A valid name up to 32 characters long. It must
begin with an alphabetic or underscore U char­
acter. Following characters must be al­
phanumeric or underscore.

A legal DDT· DATA data type.

A string constant up to lOO characters in length.
See String Constants in Chapter 4, "Expressions
and Formats."

~

Note:
(­

When declared variables are referenced within a query block, they must be preceded ~
by a dollar sign ($). The dollar sign ($) is not be used in the .declare statement, it is
used in a query.

78 Report-Writer Reference Manual

.declare

The .declare statement declares each variable to be the given data type. You may include the
with null or not null option.

• If the variable is declared with the with null option, it is initialized to the null value.

• If the variable is declared with the not null option, it is initialized to the default value
for the data type.

If neither option is specified, the variable data type defaults to null or not null, depending on
the query language (SQL or QUEL) used in the .query statement. If a .data statement is
specified instead of the .query statement, the installation default language detennines default
nullability.

A declared variable may be assigned a value in any of these ways:

• With the .Iet statement, placed anywhere in the Report-Writer code.

• Alternatively, the initial value of any declared variable may be specified on the
command line with the runtime parameters.

• You may use the with prompt option to instruct Report-Writer to prompt for the
initial value of the variable, using the specified prompt string.

If no initial value or prompt is specified and the variable is referenced outside of a query block,
the initial value is null (or the default value for that data type if not null was used). When a
declared variable is referenced within a query block, its initial value must be entered either
on the command line or in response to a prompt string, which was specified in the .declare
statement.

Example
. declare

counter = integer,
salary = money with prompt

"Please enter the salary:",
spouse = c30 with null,
dept = i4 not null with prompt

"What department?"

Chapter 5: Report Setup Statements Report-Writer Reference Manual 79

.output

.output
The .output statement specifies the filename to which the report is written.

Syntax

.outputl.outfilename

Description

The .output statement is an optional statement that specifies the name of a file where the
report will be written. If you do not use the .output statement in your report specification, the
Report-Writer either directs the output to the terminal or to a filename specified on the
command line for the report command with the -f flag. If the .output statement is not
specified, and no file is specified with the -f flag, the report is written to your terminal.

Parameter

filename

Parameters for .output

Description

A file to which the formatted report is written
each time the report is run. Filename must fol­
low all conventions for valid filenames in the
operating system.

Write to file in current directory .

• output myreport.lis

Write to file with full pathname .

. out /direct/subdirect/otherrep.out

80 Report-Writer Reference Manual

(

~.

f

.query
The .query statement specifies an SQL query used to generate data for a report.

Syntax

.query

select [allldistinct] column_list
from table [corr_name] {, table [corr_name]}
[where search_condition]
[group by column {, column}]
[having search_condition]
{union select ... }
[order by ...]

.query

See the ODT-DATA SQL Reference Manual for a complete explanation of the syntax of the
select statement.

Description

The .query statement indicates the start of a valid SQL query that creates the data to be
reported. This query follows the same rules as any other SQL select statement, although it
may also contain parameters. You may use as many lines as you need to specify the query.
The end of the query is detected by the start of a new report formatter statement.

Either the .query or the .data statement (but not both) must be specified for every report.
Only one .query statement is permitted for a report, and only one data retrieval statement is
permitted within the .query statement. There may not be both a .query with an order by
clause and a .sort statement in the same report specification, because their functions are
mutually exclusive.

Because the .query statement generates a standard GOT-DATA query, the standard limits apply
to any report's query. ForGOT-DATA databases, these limits are 127 columns and 2008 bytes
per row. These limits are extended on some gateways--please refer to your ODT­
DATA/Gateway manual if accessing your databases through a gateway.

String constants must be enclosed by the standard SQL string delimiter, the single quote. Note
that the single quote string delimiter is required only within the .query statement; within other
RepoTt-Writer statements, either the single or double quote may be used as the string delimiter.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 81

.query

Parameters and declared variable names:

• Can be up to 32 characters long. Valid characters are letters, digits, and underscore
C-). /

• Must begin with a letter.

• Cannot match any of the reserved words listed under "Reserved Words" in Chapter
4.

Parameters and Declared Variables In Queries

Parameters and declared variables may be specified for runtime substitution of text into the
query. You indicate parameters and declared variables in a query by preceding the name with
a dollar sign ($). For example, you can specify a query as follows:

. query
select empname, salary, manager

from emp
where salary > $minsal

Subsequently, you can invoke the report with a statement like the following:

report my db myrep (minsal = 20000)

in which case the query is converted to:

... where salary> 20000

If the value of a parameter is not specified on the command line, the Report-Writer prompts
you for the value, using a default prompt. If you wish to use a different prompt, you may use
a declared variable in the query and specify a prompt string using the with prompt option in
the variable declaration.

You can specify as many parameters or declared variables as you wish in a query, differentiated
by name. If the same parameter or declared variable is to be substituted more than once within
the query, simply specify the name, prefixed by a dollar sign, at each place where substitution
is to be done.

82 Report-Writer Reference Manual

·query

Parameters and declared variables may be specified anywhere in the query. They may even
be specified within quoted strings, or within the column list for a select statement. For
example, the following query phrases are legal:

where name = '$Employee_name'
select $var, ... from emp ...

Uyou actually want to include the dollar sign ($) as a constant part of the query, simply precede
it with a backslash N. For example:

... where symbol = , \$' ...

Parameters and declared variables specified in the report command may also be used in the
body of the report to indicate text to be printed. The value of the parameter or variable is
printed when the parameter or variable name is used in a text printing statement. See the
POPULATION example in Appendix A for an example of this.

Examples

The query:

.query
select *

from emp
where salary > $sal
and dept = '$dept'

when invoked with the command:

report my db myrep (sal 50000,dept

executes the following query:

select *
from emp
where salary > 50000
and dept = 'CAE'

CAE)

Chapter 5: Report Setup Statements Report-Writer Reference Manual 83

.query

For another example, consider a table called "account" with fields including "custno,"
"custname," "checking," and "savings". You have separate fields for checking and savings
accounts on one row because most customers have both a savings and a checking account with
the bank. If you want to write one report specification that prints either the savings or checking
account balances with a single query, you could code a .query statement similar to the
following:

.declare Account_type = ...

. query
select custno, custname, val=$Account_type

from account

The above query can be invoked with the command:

report otherdb repname

At execution, the Report-Writer issues the following prompt:

If you were to respond with:

savings

the following query would be executed:

select custno, custname, val=savings
from account

Note that this query selects values from the database column "savings"; it does not select the
string constant "savings".

84 Report-Writer Reference Manual

.sort

.sort
(The .sort statement specifies the ordering of rows to be reported.

Syntax

.sortl.srt {columnname[:sortorder] {,co/umnname[:sortorder]} }

Description

The optional .sort statement specifies the ordering that applies to the rows of data to be
reported. Rows are frrst sorted on the first column in the list. and if several rows have the
same value for that column. they are sorted on the second column in the list. and so forth. If
there is exactly one sort column, and there are duplicate values for the sort column. all rows
with that value appear together. but in an undetermined order relative to each other.

The .sort statemerit also specifies the columns used as break columns in the report (unless
overridden by a .break statement). A break on one column in the sort list produces a break on
all subsequent columns in the list.

Each column specified in the .sort statement can have header and/or footer formatting
statements specified (with the .header or .footer statement.) Of course, columns specified on
the .sort statement do not have to be break columns as well. You can use the .sort statement
simply to order rows for appearance in the report.

Note that using a .sort statement eliminates duplicate rows from your query, leaving only one
instance of each different set of data values. Depending on the storage structure of the table.
the table may have duplicate rows stored in it. When that table is sorted using the .sort
statement. the duplicate rows are eliminated, which could result in fewer records than you
initially expected.

You may have either a .sort statement or an order by clause in a .query statement but not
both in a report specification.

Chapter 5: Report Setup Statements Report·Writer Reference Manual 85

.sort

Parameter

columnname

sorlorder

Examples

Parameters for .sort

Description

The name of a column in the table to be
reported, or the label for a column in the result
column list of the specified query.

Either ascending (or a) or descending (or d),
depending on how you want the rows to be or­
dered. If neither is specified, the default is as­
cending.

Sort two columns of a table, both in ascending order:

.sort sex, name

Sort three columns of a table, each with different orders .

. srt dept:descending, jobcode, name:d

86 Report-Writer Reference Manual

(

.(

.break

.break
The .break statement specifies the break columns for the report and the order in which they
should break.

Syntax

.breakl.brk columnname (, columnname)

Description

The optional .break statement can specify the break columns if no .sort statement has been
specified, or to override the default break columns created by the .sort statement. The order
in which the break statements are processed is the order in which they appear in the specified
break list. A break on one column in the list produces a break on all subsequent columns in
the list.

The columns that have .header or .footer statements must be included in this break list if no
.sort statement is specified. However, you do not have to specify a .sort statement to use the
.break statement.

If you specify an order by clause in a .query statement, you must also specify a .break
statement that lists the columns in the order by clause. The .query statement does not create
default column breaks as does the .sort statement.

If a .sort statement is specified in addition to a .break statement, the break columns in the
.break statement completely supersede the list of break columns declared implicitly in the
.sort statement. The sort still takes place in the order requested in the .sort statement.
However, the columns named in the .sort statement are no longer assumed to be the break
columns by default. This feature is useful in situations where you want to disable the break
action on one column of a report, but you still want to print the report in sorted order on that
column.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 87

.break

Parameter

columnname

Parameters for .break

Description

The name of a column in the table to be
reponed, or the label for a column in the result
column list of the specified query. .

Examples
The fust example breaks on two columns. The order to sort the rows retrieved from the
database appears in the .query statement:

. query
select *

from emp
order by state, city

.break state, city

In this example, the .break statement was. required to identify the sort columns to the
Report-Writer. \ .. /

88 Report-Writer Reference Manual

(
~.

(

Chapter 6

Page Layout and Control
Statements

This chapter explains the page layout and control statements. These include:

.leftmargin

.rightmargin

.pagelength

.formfeedsl.noformfeeds

.newpage

.need

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 89

.Ieftmargin

.Ieftmargin
The .Ieftmargin statement sets a specific left margin to the report.

Syntax

.leftmarginl .Im [+1-] n

Description

The .Ieftmargin statement sets the left margin of the report. Subsequent to this statement,
new lines begin at the new left margin position. To set the left margin for the entire report,
place the statement in the .header report section. The .Ieftmargin position is used by the
.Ieft and .center statements to determine the default position for those statements.

If not specified, a default value is determined for your report. See" Automatic Determination
of Default Values" in Chapter 3.

Parameter

n

Parameters for .leftmargin

Description

The position of the new left margin of the report.
If signed, the new position is calculated relative
to the current position. If unsigned, it is set to
absolute position n. The default value is dis­
cussed in "Automatic Determination of Default
Values" in Chapter 3.

The value specified for the .Ieftmargin statement must be greater than or equal to zero (0),
less than the specification for the right margin and less than the line size (as specified with
the -I flag on the report command).

Example

The following sets the left margin to 5; printing begins at the sixth character position. (

.1m 5

90 Report-Writer Reference Manual ODT-DATA

·rightmargin

. rightmargi n

(The .rightmargin statement sets a specific right margin to the report.

d

't

(

Syntax

.rightmarginl .rm [+1-] n

Description

The .rightmargin statement sets the right margin of the reporL To set the right margin for
the entire report, place the statement in the .header report section. The .rightmargin value
is used by the .right and .center statements to detennine the default position for those
statements. Text is wrapped around within the right margin.

If not specified, a default is detennined for the report. See "Automatic Determination of
Default Values" in Chapter 3.

Parameter

n

Parameters for .rightmargin

Description

The position of the new right margin of the
report. If signed, the new position is calculated
relative to the current position. If unsigned, it is
set to absolute position n. The default value is
discussed in the section titled "Automatic Deter­
mination of Default Values" in Chapter 3.

The value specified for the .rightmargin statement must be greater than the specification for
the left margin and less than the line length (as set by the -I flag on the report command).

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 91

·rlghtmargln

Examples
The following statements specify margins that produce a default .center position of 50.

.lm 10

. rm 90

. center

.print "This is a title in position 50"

92 Report-Writer Reference Manual ODT-DATA

/ -

f

.pagelength

.pagelength
The .pagelength statement sets a new default page length. in number of lines per page.

Syntax

.pagelengthl.pl nlines

Description

The .pagelength statement sets the page length. As the report is written. the report processor
checks the number of lines remaining on the current report page. If all the body text lines
have been written. a page footer is printed followed by a page header. assuming that headers
and footers have been specified.

If the .formfeeds statement is in effect. the pages are given formfeeds at the end of each page
footer.

This statement can be overridden at runtime by specifying the -v flag on the report command
line. as described in Chapter 11.

Parameter

nlines

Parameters for .pagelength

Description

The number of lines per page. The default is 61
lines per page if the report is written to a file.
and 23 lines per page if written to a terminal.

The value used in the .pagelength statement must be greater than the combined number of
lines specified in the heading and footing for the page.

Example

Set a new page length for terminals .

. pl 24

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 93

Jormfeeds and .noformfeeds

.formfeeds and .noformfeeds
The .formfeeds and .noformfeeds statements force or suppress the addition of formfeed
characters to the end of each page in the report.

Syntax

.formfeedsl.ffsl .ff

.noformfeedsl.noffsl .noff

There are no parameters to either statement.

Description

For printers that support formfeeds. use these statements to embed ASCII form feeds in your
report files for pagination. The .formfeeds statement can be used to force formfeeds at the
start of the report, and at the end of each page in the report. The page size is determined with
the .pagelength statement or as a default value. When writing to a terminal, the .formfeeds
statement is ignored. ."

The formfeed character is sent at the end of the page footer formatting statements, if specified.
If not specified. it is sent after the last line of the page, as determined from the page size.

Specify the .formfeeds statement at the start of your report specification statements, before
any header or footer statements are specified.

These statements can be overridden at runtime with the -bl+b flag on the report command
line, as described in Chapter 12.

Example

The default is:

.noformfeeds

To turn on .formfeeds:

.formfeeds

94 Report-Writer Reference Manual ODT-DATA

.newpage

.newpage
The .newpage statement forces a page break, with an optional change in the page number.

Syntax

.newpagel.np [[+1-] pagenumber]

Description

The .newpage statement can appear anywhere in your report specifications. It forces a page
break by skipping to the end of the page and printing a page footer. Then a new page begins
by incrementing the page number (or setting the page number to the specified value) and
writing out a page header.

At the end of the report, a .newpage statement is automatically performed if a page footer is
specified (in this case, no page header appears on the next page). If a .newpage statement is
encountered as the first printing action of the report, no page footer is printed.

Parameter

pagenumber

Parameters for .newpage

Description

The page number to be assigned to the next page
in the report. If signed, the next page number is
calculated relative to the current page number.
If unsigned, the next page number is set to the
specified value. If not specified, the default
page number is determined by incrementing the
current page number by one.

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 95

.newpage

Examples

The following skips to a new page, incrementing the page number by l.

. newpage

The following skips to a new page, and numbers the new page as page 22 .

. np22

96 Report-Writer Reference Manual

/

(

DDT-DATA

(

(

.need

.need
The .need statement keeps a specified number of text lines together on a page.

Syntax
.needl .ne nlines

Description

The .need statement insures that a number of text lines are kept together on a page. Page
breaks are conditionally made to keep the text blocks together. This statement can be used to
make sure that all lines of text in the headers, and so on, are kept on the same page. See
Appendix A for multiple examples of their placement.

Parameter

nlines

Example

Parameters for .need

Description

is the number of lines in the text block to remain
together.

The following keeps the break header together on one page .

. need 3

.print "Header for account:",acct .nl

.print "------ -------" .nl 2

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 97

98 Report-Writer Reference Manual ODT-DATA

(

(

(,

Chapter 7

Report Structure Statements

This chapter explains the report structure statements. These include:

.header

.footer

.detail

Chapter 7: Report Structure Statements Report-Writer Reference Manual 99

.header

.header
The .header statement identifies the beginning of a block of fonnatting statements to execute
at the top of a break.

Syntax

.headerl.headingl .head

report I page I column_name

Description

The .header statement starts the block of text fonnatting statements that define the action at
the start of a break in the report. The statements that appear after the .header statement are
executed before a new value of a break column (if the column _name is specified in the .header
statement), before the start of the report (if the keyword report is specified), or at the top of
all pages but the first (if the keyword page is specified).

All statements between one .header statement and any subsequent .header, .footer, or .detail
statement are considered as part of the first header action.

Parameter

column name

Example

Parameters for .header

Description

A break column name specified in the .sort or
.break statements.

The following statements start a page header .

. header page
.tab 10 .print "Accounts Receivable Aging

Report by Client"
. newline

100 Report-Writer Reference Manual ODT-DATA

(

.footer

.footer
The .footer statement identifies the end of a block of fonnatting statements to execute at the
end of a break.

Syntax

.footerl .footingl.foot

report I page I column_name

Description

The .footer statement starts the block of text fonnatting statements that define the footer action
at the end of a break in the report. The statements that follow the .footer statement execute
at the end of a group of data rows with the same value for a break column (if the column_name
is specified on the .footer statement), at the end of the report (if the keyword report is
specified), or at the bottom of each page (if the keyword page is specified).

All statements between one .footer statement and any subsequent .header, .footer, or .detail
statement part of the first footer action.

Parameter

column name

Example

Parameters for .footer

Description

A break column name specified in the list of the
.sort or .break statement.

The following starts the footer for a report. It is followed by a header for abc .

. footer report
.tab 10 .pr "This is the report footer" .nl

.head abc

Chapter 7: Report Structure Statements Report-Writer Reference Manual 101

.detall

.detail
The .detail statement specifies the start of the detail section of the report specification.

Syntax

.detaill.det

The .detail statement has no parameters.

Description

The .detail statement starts the group of formatting statements execute each time a data row
for the report is processed. These formatting statements execute after any break headers and
before any break footers.

The formatting statements specified in the .detail block are also used for determining the
default margins and the default positions of columns. See "Automatic Determination of
Default Values" in Chapter 3 for more information on how this is accomplished.

Example

.detail
.PRacctnum(b16), tdate(b16), .T+8.P

transnum("nnnn"), deposit,
withdrawal .T+5 .P cum (acctnum)

sum(amt.balance) .NL

This example illustrates how the .detail statement works, you need not understand the contents
of each line in this example.

102 Report-Writer Reference Manual ODT·DATA

(

(

Chapter 8

Column and Block Statements

This chapter explains the column and block statements. These include:

.format

.tformat

.position

.width

.block and .endblock

.top

.bottom

.within and .end"ithin

Chapter 8: Column and Block Statements Report-Writer Reference Manual 103

.format

.format
The .format statement sets up a default printing format for a column or set of columns.

Syntax
.formatl .fmt columnname {, columnname} (format)

{, columnname {, columnname} (format) }

Description

The .format statement sets up a default format associated with a column to be used whenever
the column or an aggregation of a column is printed. You can use the .format statement to
control the default width of a column. It is used in determining the default width only if the
.width or .position statements are not used to specify the default width for a column.

If a .format statement is not specified for a column, the Report-Writer determines it. See
"Setting Up Default Values." If a default format cannot be determined, the Report-Writer uses
the default values that are listed in "Automatic Determination of Default Values" in Chapter
3.

Breaks occur on the formatted values not on the actual values. To force the Report-Writer to
use the actual, rather than the formatted, values to determine breaks, you must specify the -t
flag on the report command line, as described in Chapter 12.

Parameter

columnname

format

Parameters for .format

Description

The name of a column (or columns) in the data
being reported.

A valid format specification, as described in the
section titled "Overview of Format Specifica­
tions." The format must be the correct type for
the column(s).

104 Report-Writer Reference Manual ODT-DATA

('
\
''-c

',,-- -/

.format

Example

This example shows a .format statement that declares formats for several columns, followed
by a .print statement that uses the formats specified in the .format statement to print the
information .

. format trans, balance ("$$$,$$$,$$$.nn"),
charvar (c20), a,b,c,d (flO.2)

.print trans,balance,charval,a,b,c,d

Chapter 8: Column and Block Statements Report-Writer Reference Manual 105

.tformat

.tformat
The .tformat statement changes the format temporarily for the output of a column.

Syntax

.trormatl.tfmt columnname {, columnname} (format)
{, columnname {, columnname} (format) }

Description

The .tformat statement temporarily changes the fonnat used to print a value of a column.
After the column is printed using this fonnat, the temporary fonnat is discarded, and the next
printing of the column uses the default fonnat.

To print a leading dollar sign for the currency the ftrst time it appears on a page, you could
specify a .tformat statement. For example, put "$$$,$$$,$$n.nn" in the "header" action for
page breaks. If the nonnal fonnat for the column is "zzz,zzz,zzn.nn," the column prints with
a leading dollar sign the ftrst time it prints on each page.

Another common use of the .tformat statement is for blanking out the unchanged values of
break columns in the "detail" action for a report. The B type fonnat (described in Chapter 4)
is used to accomplish this. By specifying a B fonnat with the appropriate field width as the
standard fonnat for printing a column in the detail section, the default action blanks out and
does not print the value of that column. If a printing fonnat in a .tformat statement is specified
in the heading for a break in the column, you can print the column whenever a new value is
encountered for that column. See the use of the .tformat statement for the "date" column in
the ACCOUNT report example in Appendix B or the examples below for more details.

Parameter

columnname

format

Parameters for .tformat

Description

The name of a column in the report data.

A printing fonnat, as described in Chapter 2,
"Overview of Report Speciftcation Statements".
It should be of the right type for this column.

106 Report-Writer Reference Manual ODT-DATA

(

(

Examples

The following prints a dollar sign at the top of a page:

Top of page

Jones, A.
Jones, B.
Jost, C .

$23,145
16,145
32,143

. header page
.print "Top of page" .nl 2,
.tformat salary("$$$,$$n")

.detail
.print name(c14), salary("zzz,zzn")

The following prints the value of a break column when it changes:

01-34567-8

04-35999-2

$345.21
$14.10

$1,143.23
$1. 99

$177.00

... */

.format acctnum(b10), transact("$$$,$$$,$$$.nn")

.heading acctnum
.tformat acctnum(c10)

.detail
.print acctnum .tab +2 .print transact

·tformat

Chapter 8: Column and Block Statements Report·Writer Reference Manual 107

.posltion

_position
The .position statement sets a default output position and optional width associated with a ('
column.

Syntax

.positionl.pos columnname {, columnname} (position [,width])

{, columnname {, columnname} (position [,width]) }

Description

The .position statement sets a default position in the output line associated with a column
name for use with statements such as: .

• Ieft
.right
.center
.tab.

It can also be used to set an optional default width of a column when calculating positions in
the .center and .right statements.

Normally, this statement is not needed, as default positions and widths are determined from
the formatting statements. See "Automatic Determination of Default Values" in Chapter 3.
However, if the determined default position for a column is not convenient, or you would like
a different position associated with a columnname, you can override the default with this
statement. Subsequently, you can use the .tab, .right, .Ieft, or .center statements with a
columnname to refer to this position.

If you do not specify a .position statement for a column, and columnname is not printed in
the report, the default position is zero (0). If a position is specified, but no width is specified
for a column, the default width is determined by looking at the default format for the column.
You can optionally use the .width statement to specify the width of a column.

1 08 Report-Writer Reference Manual ODT-DATA

(
"'. 7

(

(

Parameter

columnname

position

width

Examples

Parameters for .position

Description

The name of a column in the report.

Specifies the location on the output line where
the default column position should be. This
value must be less than the maximum line size
(as set by the -1 flag on the report command)
and greater than or equal to O.

The default width of the column to be used when
calculating the positioning for .center and .right
statements. If not specified, this value is deter­
mined by looking at the default format for this
column.

The following sets up a default position for columns, and prints out the data:

.position acct(S), transact(20), balance (35)

.format transact, balance ("$,$$$,$$$.nn")

.format acct("nn-nnnnn-n")

.tab acct .print acct

.tab transact .print transact

.tab balance .print balance

The resulting printout looks like this:

01-02234-4
02-41989-1

$1,345.24
$876.24

$11,429.32
$10,553.08

.position

Chapter 8: Column and Block Statements Report-Writer Reference Manual 109

·position

An easier way to set up the default positions is shown below:

110

.format transact, balance ("$,$$$,$$$.nn")

. format acct ("nn-.nnnnn-n")

.detail
.t5 .p acct .t20 .p transact
.t35 .p balance .nl

Report-Writer Reference Manual

(

ODT-DATA

.width

.width
(The .width statement sets a default output width associated with a column.

(

(

Syntax

.width columnname {, columnname} (width) {, columnname ... }

Description

The .width sets the default width of a column when calculating positions ~n the .center and
.right statements. Alternately, you can specify the default width for a column as a parameter
to the .position statement, and this statement is provided for convenience and documentation
only. Normally, this statement is not needed, as default widths are determined by an analysis
of the report-formatting statements. See the section titled "Automatic Determination of
Default Value" in Chapter 3 for a full description of how the default values are determined.
However, if the determined default width for a column is not convenient, or you would like a
different width associated with a columnname, you can override the default with this state­
ment. Subsequently, you can use the .right or .center statements with a columnname to use
this width, in conjunction with the default position for this column in calculating the placement
of text.

If no width is specified for a column, the default width is determined by looking at the default
format for the column.

Parameter

columnname

width

Parameters for .width

Description

The name of a column in the report.

The width of the column to be used when cal­
culating the positioning for the .center and
.right statements.

Chapter 8: Column and Block Statements Report-Writer Reference Manual 111

.width

Example

Set up default position and widths for columns to print out the following:

SAL1
$1,234.24

$876.24

SAL2
$11,429.321
$10,553.081

.position sal1(3), sa12(18)

.format sal1, sa12 ("$$$,$$$.nn")

.width sal1(14), sa12(16)

.head ...

. ce sall .pr "SAL1"

.rt sa12 .pr "SAL2"

.detail
.tab sall .pr "I", sal1
.rt sall .pr "I"
.tab sa12 .pr sa12
.rt sa12 .pr "I"

112 Report·Writer Reference Manual

'" /

(
I

~.

cDT·DATA

(

(

.block; and .endblock

.block; and .endblock
The .block and .endblock statements set the Report-Writer into, and out of, block mode. This
lets you refer to positions on previous as well as subsequent lines in the report.

Syntax

.blockl .blk
Other formatting statements
.endblockl.endblkl.end block

There are no parameters to either statement.

Description

The .block and .endblock statements switch the Report-Writer into and out of block mode.
This gives you advanced formatting capabilities. In block mode, you can move across the page
(through the .tab statement), down the page (through the .newline statement), and back up
the page (through the .top statement). Block mode gives you the capability of printing
information in your report, and then putting summary information ahead of the information.
This can be accomplished by switching the Report-Writer into block mode, printing out some
number oflines, moving to the top of the block to add summary information, and then printing
out the entire block by leaving block mode.

When used in conjunction with the .within and .endwithin statements, described later in this
chapter, you can describe column headings and subtotalling in a more natural and convenient
fashion than is possible if you had to describe each line completely before going to the next
line.

All formatting statements are allowed within block mode, except for the .newpage and .need
statements. You can use the .top and .bottom statements only while in block mode to move
the current position within the block.

The length of a block written in block mode is limited by the -w flag on the report command.
By default, a block can be up to 100 lines long, though by setting the value of mxwrap on the
report command line, you can increase this value.

Chapter 8: Column and Block Statements Report·Writer Reference Manual 113

.block; and .endblock

Examples
The following example illustrates a block of statements followed by an example of the output.

.block
.pr "Line 1" .newline
.pr "Line 2" .newline
.top
.tab 10 .pr "more line 1" .newline

.endblock

These statements produce the following:

Line 1 more line 1
Line 2

The following statements are from the POPULATION report:

.header region
.need 4
.block

.detail
.pr "Region: ", region .nl

.t5 .pr state(c15) ...
totother("n,nnn,nnn") .nl

.footer region
.top .lineend .tab+5
.pr "Count of states: ", count (state) (f3)

.end block

They produce the following output:

114

Region: Mountain
Arizona
Colorado
Idaho
Montana
Nevada
New Mexico
Utah
Wyoming

Report-Writer Reference Manual

Count of states:
1,770,900
2,207,259

712,567
694,409
488,738

1,016,000
1,059,273

332,416

8

DDT-DATA

(

(

(

.top
The .top statement changes the current output line to the top line in the current block.

Syntax

.topl.tp

There are no parameters to this statement.

Description

.top

The .top statement is used in block mode (after a .block statement and before the correspond­
ing .endblock statement). It moves the current output line to the first (topmost) line in the
block.

The character position on that line is the position at which the line was when the last .newline
statement affected the topmost line. To get to the left margin of the top line, you can use the
.tab statement with no parameters. To get to the last nonblank character on the line, you can
use the .Iineend statement.

Examples

The following is an example of the statements and the output they produce:

.block
.pr "Line 1" .newline
.pr "Line 2" .newline
.top
.tab+2 .pr "more line 1" .newline

.endblock

These statements produce the following output:

Line 1 more line 1
Line 2

Chapter 8: Column and Block Statements Report-Writer Reference Manual 115

.bottom

.bottom
The .bottom statement changes the current output line to the bottom line in the current block.

Syntax

.bottom I.bot

There are no parameters to this statement.

Description

The .bottom statement can be used only while block mode is in effect (that is, after a .block
statement, but before the corresponding .endblock statement). It moves the current output line
to the current bottom line in the block. The character position on that line is one space beyond
the last character printed on that line.

Example

By using the following sequence of Report-Writer statements:

.block
.pr "Line 1" .newline
.pr "Line 2" .newline
.top
.tab+2 .pr "more line 1" .newline
.bottom .lineend
.pr "Last line in block" .newline

.endblock

You would get the following output:

Line 1 more line 1
Line 2Last line in block

116 Report-Writer Reference Manual ODT-DATA

/

(

(

.within and .endwithin

.within and .endwithin
The .within and .endwithin statements set the Report-Writer into, and out of, column
fonnatting mode.

Syntax

.withinl.wi columnname (, columnname} I all

Other formatting statements:

.endwithin

.endwi

.end within

Description

The .within and .endwithin statements switch the Report-Writer into and out of column
fonnatting mode, in which the right and left margins of the report are temporarily set to
correspond to a column position within the report. This allows you to set margins of the report
temporarily to the left and right margins for a given column, detennined either by default (as
described in Chapter 3), or through the use of the .position, .width, and .format statements.
All statements between the .within and the corresponding .endwithin statement is processed
using the margins for that column, rather than the margins for the report. If more than one
column is specified on the .within statement, or if the keyword all is used, the set of statements
is applied to each of the columns i~ ~~m.

Parameter

columnname

all

Parameters for .within and .endwithin

Description

The name of a column (or columns) in the data
being reported within which the "other format­
ting statements" are to be used.

Means that all columns in the report are to b~
used.

Chapter 8: Column and Block Statements Report-Writer Reference Manual 117

.within and .endwithin

When using the .within and .endwithin block of statements for a set of columns, it is often
useful to be able to invoke a slightly different set of formatting statements within each column,
differing only in the column referenced by a formatting statement. To help accomplish this,
two special names are available for use in formatting statements while in column formatting
mode. These can be used to refer to the column that is currently being used. These names
are:

w column

w name

Can be used anywhere columnname would normally
be used on a formatting statement, such as in ".print
w_column" or ".print sum(w_column)."

The name of the column currently being used in the
within block. It can be used to print out the actual
column names.

See the following examples or the reports in Appendix A for the use of these special names.

Because the margins of the report are temporarily changed to the margins for a column while
the .within statement is in effect, the positions referred to by the default values for the .left,
.right, and .center statements are those of the column, rather than the full width of the report.

In most cases where the formatting statements inside the .within block include one or more
.newline statements, you should precede the .within statement with a .block statement (and
follow the .endwithin with an .endblock), because you probably want to move down the page
within one column and go back up to the line on which you started before proceeding to the
next column. In fact, a .top statement is automatically executed immediately before the
.endwithin statement to simplify this type of specification.

Once you start to use the .within and .endwithin statements, you may find that the .position,
.width, and .format statements take on additional usefulness.

Examples

Here is a sequence of Report-Writer statements:

.position coll(O), co12(8), co13(16)

.within coil, co12, co13
.pr w_name

.end within

118 Report-Writer Reference Manual ODT-DATA

-/

/

.within and .endwithin

The sequence results in the following output:

colI co12 col3

(Here is another example:

(

.position totpop(2,15), totwhite(20,15)

.block
.within totpop

.ce .pr "Total" .nl

.ul .ce .pr "Population" .nl .nou
.end within
.within totwhite

.nl

.ul .ce .pr "White Pop" .nl .nou
.end within

.end block

This sequence results in the following output:

Total
Population White Pop

The following statements in POPULATION can be used to print out the subtotals for each of
two columns using the same set of statements .

. position totpop(lO), totwhite(25)

.format totpop,totwhite("nnn,nnn,nnn")

.foot report
.block

.within totpop, totwhite
.rt .prline "-----------"
.rt .prline sum (w_colurnn)

.end within
.end block

Chapter 8: Column and Block Statements Report-Writer Reference Manual 119

.within and .endwithin

This would result in the following:

(detail lines)
I

203,165,699 177,612,309

120 Report-Writer Reference Manual ODT-DATA

Chapter 9

Text Positioning Statements

This chapter explains the text positioning statements. These include:

.tab

.linestart

.lineend

.newline

.left

.center

.right

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 121

.tab

.tab
The .tab statement specifies the position on the line to print text.

Syntax

.tab [+1-] n I columnname

Description

The .tab statement moves the current position marker to the specified position.

Parameter

n

column name

Parameters for .tab

Description

The next print position on the line. If signed, n
represents a relative change from the last posi­
tion output. If unsigned, n represents an ab­
solute position in the line.

The name of a column being included. The posi­
tion on the line to which a column refers is deter­
mined either explicitly through the use of the
.position statement, or implicitly as described in
the section titled "Automatic Determination of
Default Values" in Chapter 3. If columnname is
specified, the next output text begins at the posi­
tion associated with the named column.

If the .tab statement is not followed by either nor columnname, then the .tab statement works
like a .linestart statement, with the next text beginning at the left margin of the report. The
.lines tart statement is described later in this chapter.

/

The .tab statement takes on a slightly different meaning when executed in column mNe ('
sections (when the .within statement is in effect and default column widths and positions are ~
assumed). When the .tab statement is executed without a parameter in column formatting - /
mode, the current position moves to the left margin of the current line. The left margin is
determined by the .within statement.

122 Report-Writer Reference Manual DDT-DATA

.tab

For more details on column fonnalling mode, see the .within and .endwithin statements in
Chapter 8.

;(Example
Suppose you want the following output:

abc def

Use these statements:

.print "abc" .tab +7 .print "def"

To output "HERE" in character position 12 on a line, use:

.tab12 .print "HERE"

To output the value of column "bal" in position 30 use:

(
.position bal(30)

.tab bal .print bal("+++++.NN")

(

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 123

.linestart

.Ii nestart
The .linestart statement moves the current position to the left margin.

Syntax

.linestart I.lnstart I .linebegin

There are no parameters to this statement.

Description

The .linestart statement changes the position of the current marker for the output line so that
the next text printed by the .print statement appears at the current left margin. The left margin
is set either by the .1m statement, by default, or by the left edge of the column currently in use
while in a .within block. The .linestart statement is useful in reports that use the .tab
statement extensively. The .Iinestart statement always restores the current position marker
to a known position, at the beginning of the line.

Example

Suppose you want the following output:

abc def

You could use these statements:

.tab 14 .pr "def"

.linestart .pr "abc"

124 Report-Writer Reference Manual GOT-DATA

(

.Iineend

.lineend
The .lineend statement moves the current position to the end of the current line.

Syntax

.Iineendl .Inend

There are no parameters to this statement.

Description

The .lineend statement changes the current position in the output line so that the text printed
in the next .print statement is placed immediately after the last non-blank character on the
line. This is useful in some advanced reports that use the .tab statement extensively. The
.lineend statement always moves the current position marker to a position within the current
margins of the report.

Example

Suppose you want the following output:

abc def:xyz

You could use these statements:

.tab 14 .pr "def "

.tab 5 .pr "abc"

.lineend .pr ":xyz" .linestart .pr "abc"

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 125

·newllne

.newline
The .newline statement writes out the current line and optionally advances a number of lines
on the output page.

Syntax

.newlinel.nl [nlines]

Description

You must specify the .newline statement to advance to a new line on the output page. A .print
. statement does not imply a new line at its completion. You can use the .println statement for
this purpose.

After .newline executes, text output begins at the left margin, unless another text positioning
statement overrides the default.

Parameter

nlines

Parameters for .newline

Description

The number of lines to advance. The default
value of nlines is one, advance to the next line.

If the output of a new line reaches the end of the current page, or if there are fewer than nlines
left on the current page, the page footer and page header are printed, if so specified.

If the current line includes column type (Cn.w) strings, the .newline statement advances to
the bottom of the longest column printed during the formation of the line. For the Dictionary
example in Appendix A, the .newline statement in the footer for "word" causes an advance to
the line following the end of the definition.

When you invoke column formatting mode, .newline causes an advance to the next line at the
left margin determined by the .within statement. For more information on column-formatting
mode, see the .within/.endwithin statements in Chapter 8.

126 Report-Writer Reference Manual COT-DATA

(

(

.newline

Examples
The following prints one line of text:

.print "This is a line" .newline

The following is one way you can print an end-of-page (note that the excess new lines are
ignored):

.print "bye bye page.".nl 10000

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 127

.left

.Ieft
Left justifies the next text to be printed.

Syntax

.Ieftl .Ift [[+1-] n I columnname]

Description

The .Ieft statement left justifies the text printed in the next .print statement to dther the
specified position (relative to the last output or absolute) or to a default position for a column.
All leading and trailing blanks are removed from the text before it is placed in the output line.

The .left statement is the same as the .tab statement for all output except text that contains
leading blanks, such as formatted numbers.

Note that the meaning of the .left statement is slightly changed when executed in column-for­
matting mode (when the. within statement is in effect and default column widths and positions
are assumed). When executed under these circumstances, the .Ieft statement positions text at

/

the left margin of the column indicated in the .within statement. For more details, see the ,/
.within and .endwithin statements in Chapter 8.

Parameter

n

Parameters for .left

Description

The position to which the next text is left jus­
tified. If signed, the position is moved n posi­
tions relative to the last position output. If
unsigned, the position is the absolute position in
the output line. The default value is the left mar­
gin of the report (set by the .Im statement).

128 Report-Writer Reference Manual ODT-DATA

Parameter

columnname

Examples

Description

The name of a column being included. The posi­
tion on the line to which a column refers is deter·
mined either explicitly through the use of the
.position statement, or implicitly as described in
the section titled "Automatic Determination of
Default Values" in Chapter 3. If columnname is
specified, the next output text is left justified and
placed at the position associated with the named
column.

This example outputs the value of "balance," left justifies to the default column .

. detail
.tSO .pr balance

.left balance .print balance (f20.2)

This example outputs the value of "abc" at the left margin .

. left

.print abc("+++++++")

Chapter 9: Text Positioning Statements Report-Writer Reference Manual

.Ieft

129

.center

.center
Centers the next text to be printed.

Syntax

.centerl.cenl.ce [[+1-] n I columnname]

Description

The .center statement centers the text printed in the next .print statement. All leading and
trailing blanks are removed from the text before it is placed in the output line.

Parameter

n

columnname

Parameters for .center

Description

The position around which the next block of text
is centered. If n is signed, the position is moved
n positions relative to the last output position. If
n is unsigned, the position is the absolute posi­
tion in the output line. The default value is the
halfway point between the left and right margins
of the report.

The name of a column being reported. The posi­
tion on the line to which a column refers is deter­
mined either explicitly through the use of the
.position statement, or implicitly as described in
the section titled "Automatic Determination of
Default Values" in Chapter 3. The text printed in
the next .print statement is centered around the
"center" for the column (see below).

130 Report-Writer Reference Manual ODT-DATA

/

(

.center

If you specify n (either relative or absolute), the text is centered around that position. If you
specify nothing, the Report-Writer calculates the center of the page as the halfway point
between the left and right margins of the report. If you specify .1m and .rm statements, you
can calculate the center by the same method. However, if you are using the default values for
the right and left margins (the right in particular), read the section titled "Automatic Deter­
mination of Default Values" in Chapter 3 for a discussion of how the margins are determined.

If you specify centering with the columnname parameter, the text is centered in that column.
The center of the column is determined through the default position of the following:

• The column, determined either by the .position statement or by default.

• The width of the column, either the default width, the width as specified in the .width
or the .position statements, or the width of the format specified in the .format
statement.

The .center statement centers around a position calculated as:

centering position = default column position + (default format width / 2)

(The position is rounded up if there is any fraction.

(

Note that the .center statement has a somewhat different meaning when executed in column­
formatting mode (that is, inside a .within statement with default column widths and positions
assumed). Because the .within statement temporarily resets the report margins to the left and
right margins of a specified column's width and position, a .center statement so executed
centers a text string within the column width, not within the report page margins. For more
information about column-formatting mode, see Chapter 8.

Examples

This example outputs a title centered on the page .

. center

.print "Report Title:",
current date

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 131

.center

This example outputs a heading for column "bal" centered above the default for that column
(here, this centers around position 25) .

. format bal("+++,+++.nn")

.center bal .print "Balance"

.detail

.tab 20 .print bal ...

132 Report-Writer Reference Manual ODT-DATA

(

(

(

(

.right

.right

.right justifies the next text to be printed.

Syntax

.rightl.rt [[+1-] n I columnname]

Description

The .right statement right justifies the text printed in the next .print statement. Allieading
and trailing blanks are removed from the text before it is placed in the output line.

Parameter

n

columnname

Parameters for .right

Description

The position to which the next block of text is
right justified. If signed, the position is moved n
positions relative to the last output position. If
unsigned, the position is the absolute position in
the output line. The default value is the right
margin of the report.

The name of a column being included. The posi­
tion to which this column refers is either deter­
mined explicitly, through the use of the .position
statement, or implicitly as described in the sec­
tion titled" Automatic Determination of Default
Values" in Chapter 3. The text printed in the next
.print statement is right justified to the right
edge of that column, as determined from the
default position and width of that column (see
below).

If you specify n (either relative or absolute), the text is right justified to that position. If you
specify nothing, the Report-Writer right justifies the text to the right margin of the report. The
right margin is either specified with the .rm statement or determined by default as described
in the section titled "Automatic Determination of Default Values" in Chapter 3.

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 133

.right

If you specify right justification with the columnname parameter, the text is right justified to
the right edge of that column, as detennined from the following:

• The default position of the column, detennined either from the .position statement
or by default.

• The width of the column, either the default width, the width specified in .width or
the .position statements, or the width of the fonnat specified in a .format statement
for that column.

The .right statement justifies to a position calculated as:

justification position =
default column position + default width

The meaning of the .right statement is slightly changed when the .right statement is executed
within column-fonnatting mode (that is, when the .within statement is in effect and default
column widths and positions are assumed). When the .right statement is so executed without
a parameter, the current position becomes the right margin as defined by the. within statement,
not the right margin of the report. For more infonnation about column-fonnatting mode, see
the .within and .endwithin statements in Chapter 8.

Examples

This example outputs a page number, right justified on the line .

. right

.print "Page", page_number (" zn")

This example outputs a heading for column "bal," right justified to the right edge of that
column (in this example, to position 50) .

. format bal{"+++,+++.nn")

.detail

.t 40 .print bal ...

. right bal .print "Balance"

134 Report-Writer Reference Manual DDT· DATA

/
~ .

(

Chapter 10

Print Statements

This chapter explains the print statements. These include:

.print and .println

.underline and .nounderline

.ulcharacter

.nullstring

Chapter 10: Print Statements

'. ,

Report-Writer Reference Manual 135

.print and .prlntln

_print and _println
The .print and .println statements print literal text strings, columns [rom the database, or / ",
expressions on the report. "

Syntax

.print I.prl.p expression [(format)] {, expression [(format)]}

.println I.prlnl.pln expression [(format)] {, expression
[(format)]}

Description

The .print statement specifies text to include in the body of the report. Text can be character
strings printed directly, data items from the data table, program variables, parameters,
aggregations or a combination of these. The text is included at the place in the report where
the .print statement is encountered. By preceding the .print statement with the positioning
statements such as .newline, .tab, .center, .right or .Ieft, you may specify the location of the
text. By default, the text is included immediately after the last text output with the .print
statement.

If you use the optional .println form of the statement, the current print position advances to
the next line after the specified text is printed.

Parameter

expression

format

Parameters for .print

Description

Any legal expression.

An optional format specification for the expres­
sion. The form of the specification depends on
the expression type. If you do not specify a for­
mat, the Report-Writer uses one of the default
formats (see "Format Specifications" in Chapter
4).

The .print statement can include as many expressions as you wish.

136 Report-Writer Reference Manual ODT·DATA

(
\

\. /

f

(

(

.print and .println

Examples

The following statements use literals:

.print "This is some text"
" which can be included on several lines."

The statements print the following:

This is some text which can be included on several
lines.

Note that the two text strings printed next to each other on the same, line, because no
specification statement separates the fields.

In another example, if "page_number" were equal to 3, here are the statements:

.pr "Page number:", page_number (f2)

It prints the following:

Page number: 3

The following example shows the specifications needed to print a data value and an aggregate,
using a numeric template for the aggregate:

.p bal, sum(bal) ("nnn,nnn,nnn")

A complex .print statement that displays a large number of data items might look like the
following:

.print "Values of the data are: ", varl,
var2(e20.4) cvarl(c40), " and finally",
lastvar (" $$$,$$$,$$$.nnCR")

Note that in the above example, the field varl was listed without a specification. The
Report-Writer prints the value with the default format for the data type, according to the table
in the section titled "Default Format for Columns." You can mix the default data formats with
complex templates.

Chapter 10: Print Statements Report-Writer Reference Manual 137

.underline and .nounderline

.underline and .nounderline
The .underline and .nounderline statements tum underlining of text on and off.

Syntax

.underlinel.ull.u
any printing statements
.nounderline/.noull.nou

There are no parameters to either statement.

Description

To underline text in a report. put an .underline statement immediately before the spot where
underlining begins. and .nounderline at the spot where it stops. You can underline anything
that can be printed-including character strings. column values. parameter values. or ag­
gregate values. By default. the underlining character is a hyphen (-) if the report is written to
a terminal, and an underscore CJ if written to a file. This can be changed with the .ulcharacter
statement (described in the next section).

When underlining mode is in effect. only letters and digits are underlined. All other characters.
such as blanks, commas, periods, and so on, are ignored. If the underlining character is
anything other than an underscore, the underlining is printed on the line below that containing
the text to be underlined. Underscores are printed on the same line.

Example

Suppose you want to produce the following line:

Here is 123,456 underlining

Use the following specifications:

.u .pr "Here" .nou .print "is" .u .pr

"123,456 underlining"

138 Report-Writer Reference Manual ODT-DATA

.ulcharacter

.ulcharacter
(The .ulcharacter statement sets the underlining character to any single character.

(

(

Syntax

.ulcharacterl.ulcharl.ulc "c"

Description

You can specify an alternate underlining character with the .ulcharacter statement.

Parameter

c

Parameters for .ulcharacter

Description

Any single character, within single or double
quotes, subsequently used as the underlining
character. The default underlining character is
the hyphen (-) for reports written to a terminal
and the underscore U for reports written to a
file.

The character c must be a single character enclosed in quotes. That character remains in effect
until another .ulcharacter statement is encountered in the report.

If underscoring U is specified with the .ulcharacter statement, underlining is printed on the
same line as the text. If any other character is specified, or the default character of hyphen
(-) is used, underlining is printed as a second line immediately below the underlined text.

Chapter 10: Print Statements Report-Writer Reference Manual 139

.ulcharacter

Example

To produce the following:

Underline me

and me

Use the following specifications:

140

.underline
.ulc "-" .pr "Underline me" .nl
.ulc "=" .pr "and me" .nl

.nounderline

Report-Writer Reference Manual COT-DATA

.nullstring

.nullstring
(The .nullstring statement specifies an alternate null string.

(

(

Syntax

.nullstringl.nullstr 'null_string' / "null_string"

Description

The .nullstring statement specifies a string to print when a null value appears on the report.
Because a data value of null means that there is really no data present to print, you can use
the .nullstring to print a designated string that signifies the absence of the data.

Parameter

Parameters for .nullstring

Description

Any string of characters. You must enclose the
string in single or double quotes, so the com­
puter can properly handle leading and trailing
blanks, which are important in some format
specifications.

The column must be large enough to print the designated null_string; if it is not, the empty
string is printed in that instance.

If you do not specify a .nuUstring statement, the Report-Writer uses a default of the empty
string (a string with no characters) to print a null value. You can specify several .nullstring
statements in a report specification. The system uses the current .nullstring until another
.nullstring statement is executed.

Chapter 1Q: Print Statements Report-Writer Reference Manual 141

.nullstrlng

Example
Suppose "phone_number" is an integer column with a null value. If you issued the following
print statements:

.nullstring

.print

.nullstr

.print

"N/A"
"Phone number = ",
phone_number .nl
, ?'

'Phone number = "
phone_number .nl

Report-Writer prints the following:

142

Phone number N/A
Phone number ?

Report-Writer Reference Manual ODT-DATA

/

Chapter 11

(Conditional and Assignment
Statements

This chapter explains the conditional and assignment statements. These include:

.ir

.tben

.else

.Iet

Chapter 11: Conditional and Assignment Statements Report-Writer Reference Manual 143

.if

.if
The .if statement specifies alternative statements to execute under specific conditions.

Syntax

.if condition .then {statement}
{.elseif condition .then {statement}}
[.else {statement}]

.endif

Description

The .if statement specifies alternative statements to execute depending upon the specific
condition.

Conditions are evaluated one after another. As soon as one condition is met, the statements
following .then are executed. If none of the specified conditions are met, nothing is done. If,
when none of the conditions are met, there is an .else included, the statements following the
.else statement are executed.

Parameter

condition

statement

Parameters for .if

Description

A Boolean expression that returns the value true
or false.

Any action statement, including the .if statement
(this excludes the setup and structure statements
in Chapters 5 and 7).

144 Report-Writer Reference Manual DDT-DATA

/

.if

Examples
This example illustrates the use of the .if statement to evaluate the current condition of the
Report-Writer environment. It tests the current character position, and starts a new line if the
current position is past the end of a line:

.if position_number> 80 .then
. newline

.endif

This example tests the data, executes, and prints different print statements depending on the
result:

.if balance> 0 .then
.print "(",-balance, H)"

.else
.tab +1
.print balance

.endif

rf This example tests a column value and uses .if statements to translate a numeric code to a text
'(string:

.if deptcode = 1 .then
.print "books"

.elseif deptcode = 2 .then
.print "furniture"

.elseif deptcode = 3 .then
.print "jewelry"

.else
.print "misc"

.endif

Chapter 11: Conditional and Assignment Statements Report-Writer Reference Manual 145

.let

.Iet
Assigns the value of an expression to a declared variable.

Syntax

.let variablename [:]= expression

Description

The .let statement evaluates an expression and assigns the value to a declared variable. The
type of the expression must be compatible with the type of the variable. For example, an
integer expression can be assigned to a floating-point variable, and a date expression string
can be assigned to a date variable, but a date expression cannot be assigned to an integer
variable.

Parameter

variablename

expression

Parameters for .Iet

Description

A variable name declared in a .declare statement
(see Chapter 5). The variablename cannot be a
special report variable or column.

An expression. The expression cannot be a
Boolean or conditional one,because there cannot
be variables of data type Boolean.

146 Report-Writer Reference Manual DDT-DATA

(~

/

"'.
/

.let

Example

The following .declare statement defines two data variables, age and birthday. These are then
~- used in .let statements showing a number of possible assignments that could be made .

. declare
age = integer,
birthday = date

.let age := 6.2

.let age = age+l /* one year older*/

.print age .nl

.let birthday := "29-jul-l954"

.let age =
date ("9-jul-l987") - birthday

.let age := interval ("years",
date ("9-jul-l987") - birthday)

.print age .nl

/*ERROR!*/

If these assignments were made in sequence as shown, the output would be as follows:

7
32

Chapter 11: Conditional and Assignment Statements Report-Writer Reference Manual 147

\.-,-

148 Report-Writer Reference Manual GOT-DATA

Chapter 12

f The sreport, report, and copyrep
Commands

This chapter explains the following commands:

sreport
report
copyrep

Chapter 12: The sreport. report. and copyrep Commands Report-Writer Reference 149

sreport

sreport
The sreport command checks a report specification file and stores the specification in a
database. \.'" _

Syntax

sreport [os] [-uusername] dbnamefilename

Description

The sreport command reads a report specification file of Report-Writer statements, performs
basic syntax error checking, and, if error-free, stores the report specification in the Reports
Catalog of the database you specify. If the report specification contains syntax errors, sreport
prints error messages. If a report in the text file has the same name as an existing report in
the Reports Catalog, the older report definition is replaced. If no prior report exists, the report
is added to the Reports Catalog. You can then use the specifications to run a report using
either the report command or the Reports option of ODT-DATA/MENU.

Parameter

-s

-uusername

dbname

Parameters for sreport

Description

If specified, requests that the status messages
normally printed by sreport be suppressed.

If specified, requests that sreport act as if you
are a user with login name username. This may
only be used by the DBA for the database or by
the ODT-DATA system manager. No spaces ap­
pears between the "u" in the flag and the first
character of the username. A space is interpreted
as a username of blank characters.

The database in which the report specification is
to be stored.

150 Report-Writer Reference Manual ODT-DATA

Parameter

filename

Description

The name of the report specifications file for one
or more reports. You may specify the full path­
name for the file. The full path is not required.
If you do not explicitly specify an extension for
the file, the system assumes the default exten­
sion of .rw.

sreport

The sreport command requires valid values for both filename and dbname. If you do not enter
these parameters, sreport prompts you for them.

The -u flag can be used by the database administrator (DBA) for a database or by the
ODT-DATA system manager to temporarily assume another user's account identity.

Examples

The following sreport command stores report specifications in file repspec.txt in the Reports
Catalog of a database named "mydb":

sreport my db repspec.txt

The following sreport command specifies a database name of "myowndb" and uses sreport 's
prompting facility to store the report specification located in the file myrep.rw:

sreport myowndb

You are prompted for the filename, as follows:

Report File?

You enter the name of a file containing report specifications:

myrep.rw

This third example uses sreport's prompting facility to store the report specification located
in the file myrep.rw, in the Reports Catalog for the database "myowndb". Enter:

sreport

Chapter 12: The sreport, report, and copy rep Commands Report-Writer Reference 151

sreport

At the database prompt, enter a database name:

Database? myowndb

At the "Report File?" prompt, enter a filename:

Filename? myrep

152 Report-Writer Reference Manual OOT-OATA

report

report
(- The report command executes a report specification.

(

(

Syntax
report [-cnumactions] [-qilename] [-s] [-uusername]

[-r]I[-m[modellIHfilename] [-lmxline] [-qmxquer]
[-wmxwrap] [+tl-t] [+bl-b] [-h] [-5] [-vpagelength]
dbname reportnameltablename [((parameter=value))]

Description

The report command executes the report specifications that correspond to the reportname
parameter or a default report for a table in the database.

This command produces the report. The report command produces the following actions.
The report catalogs are checked to see if the report has been stored in the database. If found,
the specifications for the report are read and checked for errors. If errors occur, the report is
oot ru~. If the specification is error-free, parameters are replaced with their specified values.
Data is extracted and the query, if specified, is run, the data are sorted. if required, and the
report is formatted and output If no report with the given name is found, the name is assumed
to be a table name. A default report for that table is formatted and run. If the table or report
is oot found, an error message results.

The Report-Writer prompts you for anything that you do not specify on the report command
line, including the reportname, the dbname. and values for any parameters encountered in the
report specifications.

If specified, the dbname, reportname, or tablename, and parameter should be placed at the
end of the command line, in the order shown earlier under "Syntax."

The recommended use is to let the Report-Writer prompt you if you have parameters to enter
for your report. When prompted, you may enter embedded blanks or commas as part of the
parameter value.

Chapter 12: The sreport. report. and copyrep Commands Report-Writer Reference 153

report

Parameter

-cnumactions

-fjilename

-s

-uusername

-r

Parameters for report

Description

If specified, this sets the number of Report­
Writer action statements to be processed within
one buffer to "numactions." This minimizes real
memory usage on systems where this is a con­
cern. The default is 32,000, which is large
enough to cover all known cases. If the value is
set too large, only the actual number of state­
ments is used in computing the value.

Directs the formatted report to filename for sub­
sequent output. If this option is not specified,
the report may be written to the file specified in
the .output statement in the report specification
file or to the default output file (normally your
terminal).

If specified, requests that status messages, includ­
ing prompts, be suppressed.

If specified, requests that the Report-Writer
pretend you are the user with login name user­
name. This can be used only by the DBA for a
database, or by the ODT-DATA system manager.

If specified, tells the Report-Writer that a report
is being specified, rather than a table. This gives
an error if no report with the given name is
found. By default, the Report-Writer looks for a
report of the given name, and if one is not found,
and a table of the given name exists, a default
report for that table is set up.

154 Report-Writer Reference Manual ODT-DATA

f

(

Parameter

-m[mode]

-ifilename

-Imxline

-qmxquer

Description

If specified, tells the Report-Writer that a table
has been specified, rather than a report. This in­
structs the Report-Writer to format a default
report for the specified table. If the optional
mode value of wrap, column or block is
specified after the -m flag, that style of default
report is used.

If specified, tells the Report-Writer to read
report specifications from a source file outside
the Reports Catalog. This lets you run a report
without first executing the sreport command.
You cannot use this flag in conjunction with the
-c, -m, or -r flags.

If specified, sets the maximum output line size
to mxline characters. By default, the maximum
output line size is 132 characters if output is to a
file; otherwise, the default maximum line size is
the width of the terminal. This option is needed
only if reports are written that contain unusually
long lines.

If specified, sets the maximum length of the
query specified in the .query statement, after all
substitutions for runtime parameters have been
made. By default, the maximum query size is
1000 characters. This option is needed only for
particularly long queries.

report

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 155

report

Parameter Description

-wmxwrap If specified, sets mxwrap as the maximum num- /
ber of lines to wrap with one of the column C \

formats, or the maximum number of lines that
\.'" J

can be used within any block. By default, the
maximum value is 100 lines. This means that a
column written with a format such as "cO.20"
(which writes a character string in a column 20
characters wide) contains a maximum of 100
lines, or the maximum number of .newline state-
ments within an invocation of "block" mode is
100. This maximum is provided as a protection
against misspecified columns, and is rarely
needed.

-tl+t If turned on (+t), causes aggregates to occur over
rounded values for any floating-point column
whose format has been specified in a .format
statement as numeric F or template. Each value

,
\

in the column is rounded to the precision given --- _/

by its format. If this flag is turned off (-0, ag-
gregates utilize the underlying values, not the
rounded values. +t is the default.

-bl+b If turned on (+b), forces formfeeds at the end of
each page. If turned off (-b), this flag suppresses
form feeds for the end of each page. The flag
overrides any .formreed or .norormfeed state-
ment occurring in the report specification file.

-h If specified, a report that retrieves no rows is
provided a null set of data. All header and footer
sections are executed. The detail section is sup-
pressed. This feature allows you to include the
following .if statement in the report footer to out- /-

,
put a positive acknowledgement that no rows \

" were found:

156 Report-Writer Reference Manual ODT-DATA

Parameter Description

. if count (column) = 0 . then
.println
"No data matched the query specifications. II

.endif

-5

-vpagelength

dbname

If specified, the report is made compatible with
version 5.0 ofINGRES. The default is that the
flag is not specified. To ensure compatibility,
the following assumptions are made:

+t option is the default.

Only floating-point arithmetic is used. Integer
columns are converted to floating-point before
use in computation.

The month part of the current _date function is
displayed in capitals if no format is specified.
Normally, the system displays the month names
in lowercase letters. For example, what is now
displayed as "01-feb-1985~ would, with the-5
flag set, be displayed as "OI-FEB-1985."

If specified, sets pagelength as the number of
lines for each page of output. pagelength must
be a positive integer. This flag overrides any
.pagelength statement in the report specifica­
tion file. The default is 61 lines per page if the
report is written to a file, and 23 lines per page if
written to a terminal.

The name of the ODT-DATA database containing
the report data.

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference

report

157

report

Parameter

reportname

tablename

parameter

value

Description

The name of a report that appears in a .name
statement in a report specification that has been
stored in the Reports Catalog. Do not enter a
reportname if you specify a table name in this
command.

The name of a table or view in your database for
which you want a default report. Do not enter a
tablename if you have specified a reportname in
this command.

The name of a parameter used in the report
specification. This parameter may either be used
in the specified query as a declared variable or
simply referred to in a Report-Writer statement.
Parameter or value combinations on the com­
mand line must be separated by blanks, commas,
or tabs. Note that you must specify a space (or
tab) before the opening parenthesis of the
parameter or value list.

The value placed in every occurrence of the cor­
responding parameter reference in the report
specifications. value should be surrounded by
quotes (which are removed when it is processed)
if you want to pass through a string or date value.

If you specify neither the -r option on the command line nor an .output file in your report
specifications, the report is written to the standard output file. If this is a terminal, the default
page size set for the report is 23 lines, rather than the normal 61. At the end of each page
written to your terminal, the following prompt appears:

ENTER C, S, HELP OR RETURN:

158 Report-Writer Reference Manual ODT-DATA

'\

./

(-

You should respond:

C

S

RETURN

H

Or "c" to request that printing of the report be con­
tinuous to the end of the report.

Or "s" to stop printing the report.

Or ENTER to request the printing of the next page of
the report.

Or "h"or "HELP" to print a description of these op­
tions.

report

If you specify the -u flag. the Report-Writer acts as if you were another user. It allows the
DBA for a database or the ODT-DATA system manager to run cataloged or default reports that
are owned by others.

The -r flag can be used to force the Report-Writer to only check for reports with the given
name. and the -m flag can be used to force the Report-Writer to only check for tables with the
given name. These are sometimes useful if you have reports and tables with the same name,
and need to be more specific about what you want. Additionally. the -m flag can be used to
specify the style of default report to be produced. See Chapter 2 for more information on these
styles. or see Using ODT-DATA Through Forms and Menus.

Examples

In this example. run a report that has no parameters:

report my db myreport

This example uses the report prompt facility to enter a report name and a database name, and
also have the Report-Writer write the report to an alternate file:

report -faltout.rep

At the "Database" prompt, enter a database name:

Database name? mydb

Chapter 12: The sreport, report, and copy rep Commands Report-Writer Reference 159

report

At the "Report or Table" prompt, enter a report or table name:

Report or Table myrep

In this example, specify all parameters to a report with a query specification such as the
following:

.query
select *

from emp
where name = '$name'

report persdb namerep , (name
"Smith, T. ") ,

The same report prompts you with:

Enter 'name'?

You would respond:

Smith, T.

This also requests a default line size of 200 characters.

report persdb namerep -1200

In this example, report with parameters to a query and also for printing within the body of the
report. The query might be:

.query
select transact, name

from trans
where transact > $minval
and transact < $maxval

A print statement in the report might be:
.print $date (c20) .nl

Note that this prompts for some things (that is, the values of report name and "maxval".

report mydb '(minval=+123.45
date=06/20/81),

160 Report-Writer Reference Manual ODT-DATA

(

report

In this example, write out a default report for MYTAB. Also, write out a default report for
YOURTAB, which forces the block style of format for the default report.

report my db my tab
report -mblock mydb yourtab

Chapter 12: The sreport, report, and copy rep Commands Report-Writer Reference 161

copyrep

copyrep
Allows you to copy report specifications from one database to another.

Syntax

copyrep [os] [-uusername] [of] [-cnumactions]
dbname txtfile report {report}

Description

The copyrep command copies a report specification, or set of report specifications, from a
database to a text file. You can then use the report specification with a different database in
the sreport command.

This command works much like the Archive operation accessed through the Reports Catalog
form of RBF. However, reports created with RBF may also be copied using the copyrep
command, retaining the knowledge that they are RBF reports.

As a useful side effect, the command also provides a method for externally storing the
definitions of reports in simple files in much the same way as the copydb command works.
The command allows you to copy any number of reports to a single text file. The reports are
named within the file, but contain no owner tied to a report. Therefore, you may copy out a
(set of) report(s) owned by one user, and then copy them back in as another user, effectively
changing their owner.

If you omit any of the parameters not preceded by a dash, the copyrep command prompts you
for the missing values. If no reports are specified, you are prompted for reports to be entered
one per line.

You end the list with a etrl D.

162 Report-Writer Reference Manual ODT-DATA

(

(

Parameter

-s

-cnumactions

-uusername

-f

dbname

txtfile

report

Parameters for copy rep

Description

If specified, means to suppress status messages.

If specified, this sets the number of Report­
Writer action statements to be processed within.
one buffer to "numactions." This can be useful
to minimize real memory usage on systems
where this is a concern. Default value is 32.000.
which is large enough to cover all known cases.
If the value is set too large, only the actual num­
ber of statements is used in computing the value.

Uses reports owned by the specified user. This
command can only be used by the DBA for a
database, or an ODT-DATA superuser.

If specified, writes the reports out in the same
format as is done with the Archive operation ac­
cessed through the Reports Catalog form of
RBF. For reports created with RBF, this will
strips out many of the statements.

The name of the database.

The name of a text file in which to write the
report definitions.

The name of one or more reports that are to be
written to the text file.

copyrep

The file created by this command is almost the same as the file created through the use of the
Archive operation accessed in the Reports Catalog form of RBF. (See Using ODT-DATA
Through Forms and Menus for more information.) For reports originally created outside of
RBF and entered by using the sreport command, the output to the file created by the copyrep
is identical (except that comments are stripped out). However, for reports created by RBF. all
information pertaining to RBF is retained in the report output, thus eliminating the restriction

Chapter 12: The sreport, report, and copy rep Commands Report-Writer Reference 163

copyrep

in Archive that the reports cannot be copied directly back into a database as RBF reports. The
-f flag can be used to mimic the Archive method, which strips many of the RBF statements
out of the report, making it easier to edit. However, you should be warned not to edit the RBF
reports created by the copyrep command before copying them back into a database, as you
could easily make a report unusable in additional RBF sessions.

Examples

Suppose you want to move a report called "emphours" from the "emp" database into the
"newemp" database. The following statement performs the fIrst part of the task, copying the
report into a text fIle called emphours.txt:

copyrep emp emphours.txt emphours

To copy report files created through the copyrep command back into a database, perhaps under
a different owner, you can use the sreport command. To continue the example above, the
report in the text fIle emphours.txt can be copied into the database "newemp" simply by
executing the following command:

sreport newdb emphours.txt

164 Report-Writer Reference Manual ODT-DATA

/

/'

Appendix A

f- Report Examples

This chapter contains five sample reports, including both input and output. Two of the reports
have two alternative sets of specifications. The reports are as follows:

• The POPULATION report demonstrates a common type of report with sub totalling.
POP2 shows an alternative set of formatting statements for producing the same
output.

• The ACCOUNT report gives a complex report that might be used in accounting
applications.

• The DICTIONARY report shows the use of character printing options within the
Report-Writer. DICT2 shows an alternative set of formatting statements for produc-

f ing the same output.
:~

(

• The LABEL report demonstrates the formatting of mailing labels, three across on a
page, from a list of names and addresses. It features the use of the .if statement (see
Chapter 11).

• The BOOKS report illustrates the use of joining tables for producing a report.

Each example is organized as a set of explanatory texts, followed by a listing of the report
formatting statements, followed by a listing of the report itself. For the sake of clarity, the
formatting statements are indicated in the examples by uppercase letters, although they can
actually be specified in either upper- or lowercase letters.

Appendix A: Report Examples Report-Writer Reference Manual 165

Population Example

Population Example
The POPULATION example demonstrates the use of the Report-Writer in formatting a report
of census data, by region and state, for the United States. The base tables for this report are ''' .. /
the following:

• "Region" contains region names associated with region abbreviations.

• "State" contains state names, as well as state abbreviations, and associated region
abbreviations.

• "Pop" contains population data for each state for different census years.

The report formatter statements are discussed below. Notice that the output for this report is
followed by a description and listing of a slightly different set of statements that can be used
to produce the same output.

• The .query statement shows the database query needed to set up the data in the form
required to write the report. Essentially, the query sets up a table with one row for
each state, including the columns "region" (name of region), "state" (name of state),
"tot" (the total population of the state), "totwhite," "totblack," and "totother"
(populations of three racial groups).

• The query contains a parameter, "$Year," which is used in the where clause to select
data for only one census year. In the example shown, you can select the data for
1970 by running the report with the command:

report rwsqldb pop' (year=1970),

You can also run the report with the following:

report

In this case the Report-Writer prompts you for the report name, database name, and value for
"year."

166

• The .sort statement specifies a sorting of the data by "region," and within region,
by "state." This also defines potential break actions for changes in value of "region" I

and "state." \.

Report-Writer Reference Manual ODT-DATA

(

(

Population Example

• The .format statement sets up a default format for a set of columns in the report.
These are used not only for the printing of the actual data but also for the printing
of subtotals based on that data. Note that the four numeric columns ("tot,"
"totwhite," "totblack," and "totother") are given the same format specification.
Actually, the .format statement is not strictly needed, but provides a convenient way
to specify the same format for a number of columns.

• The .header report statement is followed by a set of formatting statements that are
run at the start of the report. There is nothing particularly elegant about the
formatting statements, which write out the centered title seen at the top of the report.
Note the value of parameter "year" is preceded by a dollar sign to indicate that it is
a parameter. Also, underlined column headings are printed in this section. The
locations of the headings are based on the positions of the column names given as
parameters to the .rt (right justify) statements. These positions are determined by
the location at which the associated column is printed in the .detail statements.

• The .header region statement is followed by a set of formatting statements that are
run at the start of each region. The .need statement insures that at least four lines are
available on a page before printing the heading for "region." This assures that the
heading and the detail lines for at least two states are printed on a page.

• The .detail statement is followed by formatting statements that are processed for
every row created by the query. In this case, rows are created for each state, and the
statements specify printing of the actual population data. By analyzing these
statements, the Report-Writer determines the "positions" of the columns used
throughout the report in the .rt statements.

• The .footer statement is followed by formatting statements, which are processed
after the last state in each region is read and the requisite .detail formatting
statements are processed. A .need statement is included simply to assure that the
two lines in the footer are printed on the same page. A region heading is printed and
followed on the same line with the values of some subtotals for the region. The
formats used in printing the subtotals are those specified in the .format statement at
the start of the report.

• The statements following the .footer report statement are almost identical to those
following the .footer region statement, except for the heading and length of the
dashed line separators. The values of the subtotals, however, are different because
of the different context. '

Appendix A: Report Examples Report-Writer Reference Manual 167

Population Example

168

• The statements following the .header page statement specify the title seen at the top
of the second page of the report, as well as a respecification of the column headings.
(A macro facility is planned to simplify this respecification in the future.)

• The footer page statement starts the block of statements printed at the bottom of \
each page, including the current page number. Because the .right statement has no
parameters, the text is justified to the right margin (detennined as the rightmost
position printed in the fonnatting statements in the report).

/* POPULATION Population Report */

.NAME pop

. QUERY

select region. region, state. state,

tot = pop.totwhite + pop.totblack + pop.totc::her.

pop.totwhite, pop.to::black, pop.totothe

from region, state, pop

where state.statabbrev = pop.statabbrev

and state.regabbrev = region.regabbrev

and pop. year = $Year

.SORT region, state

.FORMAT tot, totwhite, totblack, totother (" Z,ZZZ,ZZZ,ZZZ")

. HEADER report

• NEWLINE 3

• UL • CE • PR "Population of the United States, by Race" . NOU • NEWLINE

• CE • PR "Data for the Year - ", $Year (c4) • NL2

· U .RT tot .PR "Total Pop" .RT totwhite .PR "White Pop"

• RT totblack . PR "Black Pop" . RT totother . P "Other Pop"

.NOU .NL2

. HEADER regi on

• NEED 4

.PR "Region: "0 region .NL

.DETAIL

.NEED 2 .TS

.PR state(c20) .T+11 .PR tot, totwhite, ::otblac:':' totot.her .NL

Report-Writer Reference Manual ODT-DATA

(
\
"-

(

(

Population Example

.FOOTER region

.NEED 2 .RT tot .PR "----------" .RT totwhite .P "----------,,

.RT totblack .P "----------" .RT totother .P "----------" .NL
.PR "Totals: ", region (cO) • T tot
.PR sum(tot) , sum(totwhite), sum(totblack), sum (totother) .NL2

• FOOTER report
.NEED 2 .RT tot .PR "-------------" .RT totwhite .P "-------------"

.RT totblack .P "-------------" .RT totother .P "-------------,, .NL
.PR "USA Totals" • T tot
.PR sum(tot) , sum(totwhite), sum(totblack), sum (totother) .NL

• HEADER page
.NL3 .PR "Population by State and Region: ", $Year .NL2

.U .RT tot .P "Total Pop .RT totwhite .P "White Pop"

.RT totblack .P "Black Pop" • RT totother .P "Other Pop"

.NOU .NL2

• FOOTER page
.NL
.PR "Source: US Department of the Interior, Bureau of the Census."
.RIGHT .PR "Page", page_number("zN") .NL4

Report output:

Population of the United States. by Race

Data for the Year - 1970

Total pop White Pop Black pop

Re9ion, East North Central

Illinois 11.113.976 9.600.381 1.425.674

Indiana 5.193.669 4.820.324 357.464

Michi9an 8.875.083 7.833.474 991.066

Ohio 10.652.017 9.646.997 970.477

Wisconsin 4.417.731 4.258.959 128.224

Other Pop

87.921

15.881

50.543

34.543

30.548

---------- ---------- ---------- ----------
Totals, East North Central 40.252.476 36.160.135 3.872.905 219.436

Appendix A: Report Examples Report-Writer Reference Manual 169

Population Example

Region: East South Central

Alabama 3,444,165 2,528,983 908,247 6,935

Kentucky 3,218,706 2,971.232 241,292 6,182

Mississippi 2,216,912 1.393,283 815,770 7,859

Tennessee 3,923,687 3,283,432 631. 696 8,559 ,/

---------- ---------- ----------

Totals: East South Central 12,803,470 10,176,930 2,597,005 29,535 \

Region: Middle Atlantic

New Jersey 7,168,164 6,349,908 770,292 47,964

New York 18,190,740 15,790,307 2,166,933 233,500

Pennsyl vania 11,793,909 10,737,732 1,016,514 39,663

---------- ---------- ----------
Totals: Middle Atlantic 37,152,813 32,877,947 3,953,739 321.127

Region: Mountain

Arizona 1,770,900 1. 604, 948 53,344 112,608

Colorado 2,207,259 2,112,352 66,411 28,496

Idaho 712,567 698,802 2,130 11,635

Montana 694,409 663,043 1. 995 29,371

Nevada 488,738 448,177 27,762 12,799

New Mexico 1,016,000 915,815 19,555 80,630

Utah 1. 059, 273 1,031. 926 6,617 20,730

Wyoming 332,416 323,024 2,568 6,824

---------- ---------- ----------
Totals: Mountain 6,281,562 7,798,087 180,382 303,093

Region: New Engla!':.d

" connecticut 3,031,709 2,835,458 181,177 15,074

Maine 992,048 985,276 2,800 3,972 /
Massachusetts 5,689,170 5,477,624 175,817 35,729

New Hampshire 737,681 733,106 2,505 2,070

Rhode Island 946,725 914,757 25,338 6,630

Vermont 444,330 442,553 761 1. 016

---------- ---------- ----------
Totals: New Engla::c. 11,841,663 11,388,774 388,398 64,491

Source: US Departtent of the interior. Bureau of the Census. Page 1

Popula tion by Stat.e and Region: 1970

Total Pop White Pop Black Pop O':.!ler Pop

Region: Pacific

Alaska 300,382 236,767 8,911 54,704

California 19,953,134 17,761,032 1,400,143 791. 959

Ha-..aii 768,561 298,160 7,573 ~62, 828

Oregon 2,091,385 2,032,079 26,308 32,998 /'

Washington 3,409,169 3,251.055 71,308 86,806 (
~

---------- ---------- '-

Totals: Pacific 26,522,631 23,579,093 1,514,243 ,,429,295

170 Report-Writer Reference Manual ODT-DATA

(

Pop2 Example

Region: South A.tlantic

Delaware 548.104 466.459 78.276 3.369

District of Columbia 756.510 209.272 537.712 9.526
Florida 6.789.443 5.711.411 :.049.578 28.454

Gear;ia 4.589.575 3.387.516 1.190.779 11.280
Maryland 3.922.399 3.193.021 701. 341 28.037

North Carolina 5.082.059 3.891.510 1. 137.664 52.885

South Carolina 2.590.516 1. 794.430 789.041 7.045

Virginia 4.648.494 3.757.478 865.388 25.628

West Virqinia 1.744.237 1. 666. 870 73.931 3.436

---------- ----------
Totals. South Atlantic 30.671.331 24.077.967 6.423.710 169.660

Reqion. West Horth Central

I ow. 2.824.376 2.782.762 32.596 9.018

Kansas 2.246.578 2.122.068 106.977 11.533

Kinnesota 3.804.971 3.736.038 34.868 34.065

Missouri 4.676.501 4.177.495 480.172 18.834

Nebraska 1. 483. 493 1.4323.867 39.911 10.715

North Dakota 617.761 599.485 2.494 15.782

South Cakota 665.507 630.333 1.627 33.547

---------- ----------
Totals: West North Central 16.319.187 15.481. 048 698.645 139.491

Region. West South Central

Arkansas 1.923.295 1.561.108 357.225 4.962

Louisiana 3.641.306 2.539.547 1.088.734 13.025

Oklahoma 2.559.229 2.275.104 177.910 106.218

Texas 11.196.730 9.696.569 1. 4l9. 677 80.484

---------- ----------
Total •• West South Central 19.320.560 16.072.328 3.043.543 204.689

------------- ------------- ------------- -------------
USA Totals 203.165.699 177.612.309 22.672.570 2.880.820

Source: US Department of the Interior, Bureau of the Census. Page 2

Pop2 Example
The POP2 example shows an alternative set of formatting statements for producing the same
output as POPULATION. This report makes use of the .block and .endblock statements, as
well as the .within and .endwithin statements in producing the report. These statements are
useful for reports that contain several columns for which the same set of statements is repeated,
as is the case with the "totpop," "totwhite," "totblack" and "totother" columns in POPULA­
TION.

All of the statements in POP2 are identical to the statements in POPULATION with the
exception of those in the .foot region and .foot report sections. In these sections, instead of
spelling out the format of the subtotals line by line, the block and column formatting statemen ts
can be used to duplicate the same set of statements for each of several columns.

Appendix A: Report Examples Report-Writer Reference Manual 171

Pop2 Example

In detail, the statements are:

• The .block statement sets the Report-Writer into block mode, which allows you to
write a two-dimensional block of text, in which you can write text on several lines,
return to the first line in the block, and then write more text on the first lines in the
block.

• The .within statement sets the Report-Writer into column-formatting mode. Be­
cause the statement is followed by four column names, "tot," "totwhite," "totblack,"
and "totother," all statements between the .within and its corresponding .endwithin
statement are executed four times, using the margins for each of the columns in tum.

• The string "----------" is printed, right justified, within each of the four columns in
the first line of the block. Because this is a .printline statement, the current output
line is moved down one line in the block after the string is printed. On the second
line of the block, right justified within each of the columns, a sum is printed. Because
this sum uses the special name w _column, a separate sum is calculated and printed
for each of the columns in tum.

• The .end within statement ends the set of formatting statements to be done within
each column. Note that because the block mode of the Report-Writer is in effect, a
.top statement is automatically executed immediately before the .end within state- ./
ment. This assures that the statements for each of the columns prints across the page,
rather than stairstepping down the page.

• Immediately following the .end within statement is the .top statement, which moves
the current output line back to the first line in the current block (which contains all
of the "-----------" strings). The .newline statement moves the current position to the
second line in the block (because block mode is still in effect). There, the "Totals:
region" message is printed. Block mode is then left, by specifying the .endblock
statement, which causes the block, consisting of two lines, to be printed. The last
.newline statement merely inserts a blank line.

• The statements within the .foot report are identical, except for the message "USA
Totals." Because of the context, the "sum(w_column)" refers to totals over the
report, rather than the region.

The statements in this example are not quite as intuitive as those in the first report, but they (
show an important capability in formatting reports with column-oriented statements. "

172 Report-Writer Reference Manual DDT-DATA

(

Pop2 Example

1* POP2 - Population Report using. WITHIN */

.NAME pop2
• QUERY

select region. region, state. state,

tot = pop.totwhite + pop.totblack + pop.totother,

pop.totwhite, pop.totblack, pop.totother

from region, state, pop
where state.statabbrev = pop.statabbrev

and state.regabbrev = region.regabbrev

and pop. year = $Year

.SORT region, state

.FORMAT tot, totwhite, totblack, totother (n Z,ZZZ,ZZZ,ZZZ")

• FORMFEEDS

• HEADER report
.NEWLINE 3
.UL .CE .PR "Population of the United States, by Race" .NOU .NEWLIN=:

• CE • PR "Data for the Year - ", $Year (c4) . NL2

.U .RT tot .PR "Total Pop" .RT totwhite .PR "White Pop"

.RT totblack .PR "Black Pop" .RT totother .P "Other Pop"

.NOU .NL2

• HEADER region
.NEED 4

.PR "Region: n, region .NL

• DETAIL
.NEED 2 .TS

.PR state (c20) .T+ll .PR tot, totwhite, totblack, totother .NL

• FOOTER region
.NEED2

.BLOCK .WITHIN tot, totwhite, totblack, totother

.RT .PRINTLINE "----------"

.RT .PRINTLN sum(w_column)

.ENDWITHIN

.TOP .NEWLINE .PR "Totals: n, region (cO)

.ENDBLOCK • NEWLINE

Appendix A: Report Examples Report·Writer Reference Manual 173

Account Example

• FOOTER report

.NEED2

.BLOCK .WITHIN tot, totwhite, totblack, totother

.RT .PRINTLINE "-------------"

.RT .PRINTLN sum(w_column)

.END WITHIN

• TOP • NEWLINE • PR "USA Totals"

.ENDBLOCK .NEWLINE

. HEADER page

.NL3 .PR "Population by State and Region: ", $Year .NL2

.U .RT tot .P "Total Pop .RT totwhite .P "White Pop"

.RT totblack .P "Black Pop" .RT totother .P "Other Pop"

.NOU .NL2

. FOOTER page

.NL

.PR "Source: US Department of the Interior, Bureau of the Cens~s."

.RIGHT .PR "Page", page_number ("zN") .NL4

Account Example
The ACCOUNT example shows a fairly complex report that could be written from some
accounting data. For each account, the report prints the name and address of a customer,
followed by a listing of transactions in an account. Deposits are listed in one column,
withdrawals in another, and a running balance is listed in a third. The base tables used are the
following:

174

• The "customer" table contains the name and address of a customer.

• The "account" table associates an account number with a customer name and address
(because a customer may have more than one account). It also contains the balance
of an account as of an arbitrary date. In actual accounting applications, this balance
must be updated outside of the Report-Writer.

• The "transact" table contains a description of all transactions for an account. This
contains columns "transnum" (the transaction number), "acctnum" (the account I
number), "date" (the date of the transaction), "amount" (the dollar amount of \"
transaction), and "type" (the type of transaction: 0 for deposits, 1 for withdrawals).

Report-Writer Reference Manual COT-DATA

,{-
i;

"~? ,
'{

Account Example

The report-fonnatting statements are discussed below:

• After the report is named, the query used to provide data for the report is shown.
This essentially retrieves the "transact" table, with data from the other tables joined
in. The calculation of the columns "amt," "withdrawal," and "deposit" is also shown.
"Withdrawal" is set to "amount" if type is I, and set to zero if not. "Deposit" is set
to "amount" if type equals 0, and set to zero otherwise. "Amt" is calculated as a
signed value of "amount," which is negative for withdrawals and positive for
deposits. "Amt" is used in calculating the running balance.

• The order of the data is described in the .sort statement. In the example output shown,
only one account is shown for a name, though this type of sort order does not limit
the report to that type of content.

• The .rormreeds statement tells the Report-Writer to insert fonnfeed characters at
the start of the report and at the end of each page of the report. Because no
.pagelength statement is specified, a default page size of 61 lines is assumed.

•

•

The .rormat statements provide default fonnats for some of the output columns.
Note the use of "-" in the fonnat for "acctnum" to force hyphens in specific places
in the output.

The .head name statement begins the set of fonnatting statements done at the start
of each new name. The .newpage statement tells the Report-Writer to skip to the
top of a new page and to set the page number to the value 1 at the start of each new
name. Next, the address is printed and lines are skipped.

• The .head acctnum block prints the opening balance, column headings, and sets a
temporary fonnat for "acctnum" (so that it is printed for the first transaction only).
Notice that the positions associated with the columns are detennined from a scan of
the fonnatting statements in the .detail section. Even a position for the "amt"
column is detennined, even though it is somewhat hidden in the cumulative sum
function.

• The .head tdate block simply sets a temporary format for "date," so that the date is
printed only the first time it is encountered.

• The .detail block simply prints out the lines in the report. It also detennines the
default margins and column positions from an analysis of these statements. Notice
that the fonnats for "date" and "acctnum," which specify nonprinting fonnats, may
be overridden by the .trormat statements specified in the header text for "date" and
"acctnum."

Appendix A: Report Examples Report-Writer Reference Manual 175

Account Example

The "cum(acctnum) sum(amt,balance)" aggregate specifies the calculation and
printing of the running balance. The first part, "cum(acctnum)" specifies that the
running balance is a cumulative aggregate, which is initialized at the most recent //
break in "acctnum." The rest, "sum(amt,balance)," specifies that the cumulative
aggregate is a sum of "amt," and that the cumulative is to be initialized to the value \.
of "balance" when the report starts (at the most recent break in "acctnum "). The
format to be used is specified as the default for "amt" because the aggregate
specification is not followed by a parenthesized format.

• The .foot accnum block prints out summations of the "withdrawal" and "deposit"
columns and the closing balance of the account. This figure, the "sum(amt,balance)"
aggregate, is calculated as the sum of "amt" for a specific "acctnum" (because of
the context), and is then initialized to the value of "balance" at the start of"acctnum."
Remember that the figure is negative for withdrawals and positive for deposits.
Again, because the aggregate specification is not followed by a parenthesized format
specification, the .format statement for "amt" at the beginning of the report is used
as the default format for the aggregate.

• The .foot name block specifies the printing of an ending statement.

• The .head page block describes the heading shown at the top of each page. Note
that the .newpage statement in the .head name statements forces the printing of the
page header on the first page (which normally does not happen).

• The .foot page block simply specifies a few lines to force at the end of each page.

176 Report-Writer Reference Manual DDT-DATA

(

Account Example

/*

• NAME

. QUERY

ACCOUNT example of bank statement report. */

account

select c.name, c.address, c.city, c.state, c.zip,
a.acctnum, a.balance, t.transnum, tdate = ~.date,

withdrawal = t.amount * t.type,
deposit = t.amount * (1 - t.type),
amt = (t.amount * (1 - t.type)) - (t.amount w t.type)

from transact t, account a, customer c

where a.acctnum = t.acctnum and c.name = a.name

.SORT name, acctnum, tdate

.FORMAT acctnum(" nn\e-nnnnnn\e-n "), tdate (d"Ol/02/03"),
withdrawal, deposit, amt, balance (" $$$, $$$, $$S. zz")

.HEAD name
• NEWPAGE 1 . NL 3
.PR name .NL
.PR address .NL

.PR city(cO), " ", state (cO), " ", zip("nnnnn") .N::' 4

.FOOT name
.NL3 .PR "End of accounts for: ", name .NL

• HEAD acctnum

.NL 3

.P "Account: ", acctnum .RT arnt .P "Opening balance:", balance .NL2

.UL .CE acctnum .P "Account" .CE tdate .P "Date" .CE trar.snum .P "Transaction"
.RT deposit .P "Deposit" .RT withdrawal .P "Withdrawal" .RT arne .P "Balance" .NL

.NOU

.TFORMAT acctnum(" nn\e-nnnnnn\e-n ")

.FOOT acctnurn

.NL 2

.PR "Account", acctnurn, "totals." .T deposit .P s~:::(deposit) .T withdrawal
.P sum(withdrawal)

.NL 2 .RT amt .P "Closing balance:", surn(amt, bala:-.ce) .NL

.HEAD tdate

• TFORMAT tdate (d"Ol/02/03 ")

Appendix A: Report Examples Report-Writer Reference Manual 177

Account Example

. DETAIL

.PR acctnum(b16), tdate(b16), .T+B.P transnum(nnnnnn), deposit,

withdrawal .T+S .P cum(acctnum) sum(amt, balance) .NL

.HEAD page

.NL 2

.PR "Customer: ", name .CE.P nDate: ", current_date (d"February 3,1901"),

.RT .PR "Page ", page_number .NL4

.FOOT page

.NL 3

Customer: Big Daddy

Big Daddy

1 Bestview Lane

Topofthehill NJ 05436

Account: 74-902543-6

Account Date

74-902543-6 81/07/01

81/07/15

81/07/17

81/07/22

81/07/23

Account 74-902543-6 totals.

End of accounts for: Big Daddy

Date: 24-JUN-1982

Transaction Oeposit

0101 $100.000.00

0102

0103

0104

0105 $50,000.00

0106

0107

0108

0109

0110 $100.000.00

$250.000.00

178 Report-Writer Reference Manual

Page

Opening balance: $234.657.00

Withdrawal Balance

$334.657.00

$50,500.00 $284.157.00

$24.56 $284.132.44

$10,100.00 $274,032.44

$324.032.44

$10.143.54 $313,888.90

$243.56 $313.645.34

$100.00 $313.545.34

$25.000.00 $288.545.34

$388.545.34

$96.111.66

Closing balance: $388.545.34

ODT-DATA

/

\

"-.

(

(

Customer: Fast Sally

Fast Sally

1234 7lst st

Big city NY 01234

Account: 48-821908-2

Account Date

48-821908-2 81/05/25

81/07/03

81/07/05

81/07/08

81/07/10

81/07/16

81/07/20

81/07/25

Account 48-821908-2 totals.

End of accounts for: Fast Sally

Date: 24-JUN-1982

Transaction Deposit

0101

0102 5250.00

0103

0104 565.23

0105

0106

0107

0108

0109

5315.23

Appendix A: Report Examples

Account Example

Page

Opening balance: Sl.245.00

withdrawal Balance

$200.00 $1.045.00

51.295.00

$320.34 5974.66

51.039.89

$100.00 5939.89

556.32 5883.57

524.71 $858.86

$120.00 5738.86

$31.16 5707.70

S852.53

Closing balance: 5707.70

Report-Writer Reference Manual 179

Dictionary Example

Dictionary Example
The DICTIONARY example shows an example of a report that lists a glossary of ODT-DATA .1
terms, with a listing of related keywords. This demonstrates the use of some of the word- \
processing functions available in the Report-Writer. The base tables used are the following:

• The "dder' table contains names of terms and definitions of those terms.

• The "drer' table contains a list of terms and their related keywords.

Additional details on these table layouts are given in the following table.

ddef Table

Column information:

Column Name Type Length Key Sequence
20 word c

definition c 250

Word

aggregate func­
tion

aggregate
operator

attribute

buffer

word

Definition

An aggregate operator that first groups rows on the
basis of the value of a (list of) column (called the
"by-list"), before computing the aggregate for each
value of the "by-list."

An aggregate operator is a computation performed
on a column across all rows in a table. Common ag­
gregateoperators are SUM, COUNT, and AVG. Ag­
gregate operators can have qualifications to limit the
number of rows used in the calculation.

Another term for a "column" in a table.

Another term for the ODT-DATA "workspace."

Definition

180 Report-Writer Reference Manual DDT-DATA

(

;(

\

(

column

comparison
operator

compressed

Dictionary Example

All data in ODT-DATA is saved in the form of tables
made up of rows and columns. In traditional
database terminology, a "column" is a "field" in a
record.

A symbol that specifies the kind of comparison to
make in a qualification, such as ">" (for greater
than), or "=" (for equality check).

Any of the ODT-DATA internal storage structures can
be compressed. Compression reduces the storage re­
quired for a table, by deleting all trailing blanks in
character columns.

dref Table

Column information:

Column Name Type Length Key Sequence
word c 20
ref c 20

Word Ref

aggregate function aggregate operator

aggregate function aggregation

aggregate function by list

aggregate function computation

aggregate operator aggregate function

Appendix A: Report Examples Report-Writer Reference Manual 181

Dictionary Example

Column information:

Column Name Type Length Key Sequence
" /

word c 20
ref c 20 -,

Word Ref

aggregate operator aggregation

aggregate operator computation

attribute column

buffer workspace

column attribute

column domain

column field

comparison operator qualification

comparison operator restriction

compressed character strings

compressed compression

compressed storage structures

(
\"" /

182 Report-Writer Reference Manual DDT-DATA

(

(

(

Dictionary Example

The report-fonnatting statements are discussed below:

• The query used to create the data for the report simply joins words and definitions
with a list of the related keywords. Therefore, the data returned to the report contains
one row per related keyword. The .detail statements deals with the keywords,
whereas the .heading word deals with the definition.

• The data are sorted by word, and within word, by related keyword.

• The left and right margins are set to specific values because the default margins
calculated for the report do not reflect the required margins of the report.

• The report header simply puts out a page header.

• The header for "word" prints out the underlined word and the newspaper style
printing of the definition. The "cjO.50" fonnat specifies a column fonnat 50 spaces

. wide, with right justification, with printing occurring until the end of the string. The
.t80 statement then moves to position 80 (5 spaces to the right of the edge of the
definition), and sets the left margin of the report to that position. This causes all
printing to wrap around between the left margin (80) and the right margin (100).
Notice that no .newline statement is given, so that the next printing occurs at column
80 of the top line of the definition.

• The .detail statements simply print out the next related keyword for "word," until
the next word is found. Because the fonnat specified for "ref' is "c20," it exactly
fits within the temporary margins, and wraparound causes each keyword to be placed
on a separate line. Remember that the .lmO statement in the header text for "word"
resets the left margin for printing a new word and definition.

• The footer for "word" simply finishes off the text for one "word" by printing out all
the lines in the definition and related keyword list, and an extra line as well.

• The page header simply prints out a title, page number, and column headings.

Appendix A: Report Examples Report-Writer Reference Manual 183

Dictionary Example

/*

.NAME dict

. QUERY

DICTIONARY - text example */

select ddef.word, ddef.definition, dref.ref

from ddef, dref

where ddeLword = dreLword

. SORT word, ref

.LM 0

.RM 100

• HEAD report

.NEWPAGE 1
.HEAD word

.NE3.LMO

.UL .PR word(c25) .NOU

.P definition (cjO.50) .T80 .LM80

• DETAIL
.P ref (c20)

.FOOT word

.NL2

.HEAD page

.NL2

.P "Dictionary of ODT-DATA Terms"

.RT .P "Page", page_number .NL2

.UL .P "Word" .T definition .P "Definition"

.T80 .P "Related Term" .NOU .NL2

.FooT page

.NL 3

184 Report-Writer Reference Manual

/

DDT-DATA

Dictionary Example

Dictionary of ODT-DATA Terms

f
Word Definition Related Term

aggregate func- An aggregate operator that first groups aggregate
tion rows on the basis of the value of a (list operator

of) column (called the "by-list"), aggregation
before computing the aggregate for by list
each value of the "by-list". computation

aggregate An aggregate operator is a computation aggregate func-
operator performed on a column across all rows tion

in a table. Common aggregate aggregation
operators are SUM, COUNT, and AVG. computation
Aggregate operators can have qualifica-
tions to limit the number of rows used
in the calculation.

attribute Another term for "column" in a table. column

I buffer Another term for the DDT-DATA workspace
t "workspace. "

column All data in DDT-DATA is saved in the attribute
form of tables made up of rows and domain
columns. In traditional database ter- field
minology, a "column" is a "field" in a
record.

comparison A symbol that specifies the kind of qualification
operator comparison to make in a qualification, restriction

such as ">" (for greater than), or "="
(for equality check).

compressed Any of the DDT-DATA internal storage character strings
structures can be compressed. Compres- compression
sion reduces the storage required for a storage structure

(
table, by deleting all trailing blanks in
character columns.

Appendix A: Report Examples Report-Writer Reference Manual 185

Dict2 Example

Dict2 Example
The DICTIONARY report uses some margin tricks to accomplish what can perhaps more
easily be accomplished with the block mode of the Report-Writer. Instead of letting the
margins and wraparound accomplish the task of moving down the page, within block mode,
you can use the more natural .newline statement to do this. The DICTl report is the same as
the DICTIONARY report, except for differences in the .head and .foot for "word," and a slight
change in the .detail section.

The changes in statements are:

• In the header for "word," the Report-Writer is fIrst set into block mode. This allows
you to move down the page in a more orderly fashion than would otherwise be
possible. The underlined word is printed on the fIrst line of the block. The
newspaper style printing of the defInition causes some number of lines within the
block to be written, depending on the length of the defInition. However, when it has
finished printing, the current output line is the top line in the block. You are now
ready to print the detail lines, which contain the keywords for a term.

• Within the detail section of the report, you tab to column 80, and print the next value
of "ref." The .newline statement moves the current output line down one line in
preparation for the next value of "ref." Because the Report-Writer is in block mode,
all text since the header for "word" is saved until the .endblock statement is
encountered.

• In the footer section for "word," the .end block statement is specifIed, which prints
out the current block containing the word, its definition, and a list of related
keywords. A .newline statement is given to add another blank line.

The DICTI report accomplishes the same output as the DICTIONARY report, but in a
somewhat more natural fashion.

186 Report-Writer Reference Manual DDT-DATA

,/ ,
!

f

(

(

/* DICT2 - text example, using .BLOCK

.NAME dic:2

• QUERY

select ddef.word, ddef.definition, dref.ref

from ddet, dref

where ddef.word = dref.word

.SORT word, ref

.LM a

.RM 100

• HEAD report

.NEWPAGE 1

. HEAD word

• DETAIL

.NEED 3

• BLOCK

.UL .PR word{c25) .NOU

.PR definition{cjO.50)

.T80 .PR ref{c20) .NL

.FOOT word

.END BLOCK

.NL

.HEAD page

.NL2

.P "Dictionary of ODT-DATA Terms"

.RT .P "Page", page_number .NL2

.UL .P "Word" .T definition .P "Definition"

.T80 .P "Related Term" .NOU .NL2

.FOOT page

.NL 3

Dict2 Example

*/

Appendix A: Report Examples Report-Writer Reference Manual 187

Label Example

Label Example
The LABEL example shows a report that prints mailing labels three across the page. The
base table "subscriber" is a mailing list containing the name, post office box, address, city,
state, and zip code for each label. If there is no post office box for the label, the field is left
blank.

The report-formatting statements are discussed below:

188

• The data are sorted by zip code.

• The labels are assumed to be 8 lines long and 30 columns wide. Therefore, the page
length is set to 8 and the right margin is set to 90 (3 * 30), as the labels are 3 across.

• The report first begins a block so that the labels may be printed across the page.

• A label is created by printing all fields of the table across 4 lines. If the field for the
post office box is blank, the corresponding line is not printed.

• The left margin for the next label is moved one label's width (30) to the right of the
previous left margin if doing so does not cause the label to move beyond the right
margin of90 (that is, only lor 2 labels have so far been formatted for the line). When
no more room exists on the line, the block of three labels ends, .newpage moves the
report to the top of the next block of labels, the left margin is reset to 0, and a new
block of labels begins. When the report finishes, the last block is ended because
there may be less than 3 labels left in the block buffer.

Report-Writer Reference Manual GOT-DATA

1 I,

(

/*

**
**
**
**

*/

LABEL. Write out three across mailing labels

with suppression of blank PO boxes. This

assumes printing to mailing labels that

are 8 lines tall and 30 columns wide

.NAME label

• QUERY

select name, po_box, address, city, state, zip

from subscriber

.SORT zip

• HEAD report

.PL 8

• DETAIL

• LEFTMARGIN 0

.RIGHTMARGIN 90

• BLOCK

.TOP .LINESTART

.PRINTLINE name

.IF po_box != " n .THEN

• PRINTLINE "PO Box " , po_box

.ENDIF

.PRINTLlNE address(cfO.30)

.PRINTLINE city (cO), n, n, state (cO), n ", zip

/* Now move the mailing label over if it fits */

• IF left_margin + 30 < right_margin. THEN

.LEFTMARGIN +30

.ELSE

.ENDBLOCK

• NEWPAGE

• LEFTMARGIN 0

• BLOCK

.ENDIF

• FOOTER report

.ENDBLOCK

• NEWPAGE

Label Example

Appendix A: Report Examples Report-Writer Reference Manual 189

Joining Tables for a Report

Betty Clark
2556 Carey Rd.
Boston, MA 01002

T.Shigio
POBox 1234
201 Emperor Lane
Rye, NY 10101

Anastassios Vasos
722 Fourth St
Gualala, CA 95035

Pat McTigue
Route 146
Trumbell, CT 04239

Marvin Blumbert
17 Saville Row
Carmel, CA 93001

Mario Verducci
PO BoxX-207
General Delivery
Middletown, WA 98112

MingHo
1020 The Parkway
Mamaroneck, NY 10012

Carlos Ramos
2459 39th Ave
SanFrancisco,CA 94121

Joining Tables for a Report
The following example demonstrates the technique of joining tables for a report. Suppose
you want to assemble a report from a database of the books in your personal library. You

\.. /

decide upon a report design to present title, author, and subject information like this: / -"

TITLE OF BOOK

Authorl

Author2

Subjectl

Subject2
SUbject3

In your database, you have designated three separate tables to hold this information. If you
do not recall the tablenames you assigned, take a moment to retrieve the table information.
In this case, you use one table for titles ("title"), one table for authors ("name"), and one table
for subject information ("subject").

190 Report-Writer Reference Manual COT-DATA

'~-,-./

(

Joining Tables for a Report

Here is the "title" table:

Book Table

Columns: id
title

integer
varchar(20)

Data:
lid Ititle 1
1--1
I 1001lThe C Programming Language 1
1--1

Here is the "name" table:

Author Table

Columns:

Data:

id
name

integer
varchar (15)

lid I name I
1-----------------------------1
I 1001lRitchie I
I 1001 I Kernighan I
1-----------------------------1

And here is the "subject" table:

Subject Table

Columns: id integer
subject varchar(15)

Data:
lid Isubject I
1-----------------------------1
I 1001lC I
I 1001 I programming I
I 1001 I language 1

1-----------------------------1

Appendix A: Report Examples Report-Writer Reference Manual 191

Joining Tables for a Report

Now you must combine these tables, establishing a Master or Detail relationship between
them. Taking "title" as your master table, you must join to it each detail table ("name" and
"subject") without joining the detail tables to each other. You must also include a code in the
new joined table to tell Report-Writer when to make its breaks. / -"

Here is one method, using a UNION:

select title.id, title, name, ", 1
from title, author
where title.id = author.id

union
select title.id, ", subject, 2

from title, subject
where title.id = subject.id;

Without the UNION, you would use these queries to join the tables:

192

create table tempreport
id integer,

) ;

title varchar(20) ,
name varchar(lS) not null with default,
subject varchar(lS) not null with default,
code integerl

insert into tempreport(id,title,name,
code)
selec"t b.id, b.title, a.name, code=l
from book b, author a
where b.id = a.id;

insert into tempreport (id,title,
subject,code)
select b.id, b.title, s.subject, code=2
from book b, subject s
where b.id = s.id;

Report-Writer Reference Manual

/

/

DDT-DATA

(

(

Joining Tables for a Report

Your new joined table should look like this:

lid Ititle I name I subject lcode I

1--1-----------1------------ -1------1

I lOOllThe C progrananing Language I Kernighan 11

1001 I The C Programming Language I Ritchie 11

10011 The C Programming Language Ie 21

1001 1 The C Programming Language 1 language 21

10011 The C proqramming La.nguage I programming t 2 I

1--1-----------1-------------1------1

In this example, we have labeled the new table "tempreport" because it represents only a
temporary arrangement of data, strictly for use in the Report-Writer. Although you may wish
to use such a join or view in a report more than once, the table data may change between
reports. Therefore, when you use this technique, you should make it a habit to define anew
the join or view each time you produce a report.

Putting Joined Tables in a Report

The final step in creating your library report is to write a report specifications file for your
joined table, "tempreport". (Note that the report is also to be named "tempreport".) Here are
the specifications:

.NAME tempreport

.DATA tempreport

.SORT title, code

.BREAK title, code /* title and code will
be break columns */

.RIGHTMARGIN 80 /* it is important to set
the right margin here*/

.HEADER title
.LEFTMARGIN 0
.ULCHARACTER "="
. UNDERLINE
.PRINT title .NEWLINE
. NOUNDERLINE
. BLOCK /* start a block after printing

the master info */

Appendix A: Report Examples Report-Writer Reference Manual 193

Joining Tables for a Report

194

.HEADER code
.TOP /* goto the top of the block

each time code changes */
.ULCHARACTER "-"

/* test the value of code and set the margin
appropriately */
.IF code = 1 .THEN

.LEFTMARGIN 5

. UNDERLINE

.PRINT "Authors" .NEWLINE

. NOUNDERLINE
.ELSEIF code = 2 .THEN

.LEFTMARGIN 20

.ENDIF

.DETAIL

. UNDERLINE

.PRINT "Subjects" .NEWLINE

. NOUNDERLINE

/* test the value of code to see which
column to print */
.IF code = 1 .THEN

.PRINT name .NEWLINE
.ELSEIF code = 2 .THEN

.PRINT sUbject .NEWLINE
.ENDIF

.FOOTER title
.ENDBLOCK /* end the block at the

end of the master info */
. NEWLINE

Report-Writer Reference Manual

~-./

DDT·DATA

(

(

Joining Tables for a Report

Here is the completed report:

The C Programming Language
= =========== ========
Authors Subjects

Kernighan
Ritchie

C
language
programming

Avoiding Awkward Page Breaks

Let's say that you have invested in a new bookcase and have expanded the size of your personal
library by many volumes. Now when you combine your three tables, you create a much larger
joined table than before:

lid Ititle I name !subject I code :

1--1-----------1-------------1------ I

I 10011 The C Proqramming Lanquage I Kernighan I I 11

I 1001 I The C Proqramming Lanquage I Ritchie 11

1002 I Computer Programming and Arch. I Eckhollse

1002 I Computer Prograrandng and Arch. I Levy

10031 The COT-D T Papers I Stonebraker I

1004 I Database Systems

1005 I The QUiet American

1001 1 The C Proqramming Lanquage

100llThe C Proqramming Lanquage

lOOllThe C Programming Lanquage

I Ullman

I Greene

1002 1 Computer Proqrallllling and Arch. I

1002 1 Computer proqrallllling and Arch. I

10021Camputer Proqrallllling and Arch. I

10021Computer Proqrallllling and Arch. I

10031The ODT-DAT Papers

10031The ODT-D T Papers

10031The ODT-DAT Papers

1004 I Database Systems

Ie

I language

I programming

I architecture

I assembler

I computer

I programming I

I Database

lOOT-DATA

I computer

I Database

11

11

I!

11

11

21

21

2!

21

21

2!

2 '

21

21

21

21

1004 I Database systems I management 21

10051The Quiet American I I Vietnam 21

1--1-----------1-------------1------ I

If you create a report from such variable blocks of data, you should issue very specific
instructions to the Report-Writer about where and where not to place pag.e br~aks; otherwise,
you may find that some of your data has been incongruously parceled across two pages. In
cases where you use the Report-Writer to generate a report from a single, unjoined table, you
would use the .need statement to establish proper page breaks (see Chapter 6 for a full
explanation of the .need statement).

Appendix A: Report Examples Report-Writer Reference Manual 195

Joining Tables for a Report

In this case, when you generate a report from a-joined table, you must simulate the .need
statement to assure proper page breaks. You must first create two additional tables before
executing your report.

Using SQL, simulating the .need statement is a three-step process:

1. First, you create two new tables.

2. Next, you join the two new tables to the "tempreport" table you have already made.

3. Finally, you add a .query section to your report specifications file, and alter some
of the file's fonnatting statements.

The reason for the three-step process is that SQL requires a special method for the calculation
of num_sub and num _auth. In SQL, when you perform a set function on a set of data and group
rows together, you cannot place in the select clause any column not also listed in the group
by clause, except as an argument to a set function. When a select statement includes a group
by clause, any columns listed in the select clause must be single-valued per group.

To solve this problem, you must create two new tables, and join them to the "tempreport"
table:

196

create table sub as
select id,num_sub=count(subject)
from tempreport
where subject != "
group by id;

create table auth as
select id.num_auth=count(name)
from tempreport
where name ! = "
group by id;

Report-Writer Reference Manual ODT-DATA

c

If I"

(-

Joining Tables for a Report

select * from sub;

I id I num_sub I
1---------------------------1
I 10011 31
I 10021 41
I 10031 31
I 10041 21
I 10051 11
1---------------------------1

select * from auth;

lid Inum_auth I
1---------------------------1
I 10011 21
I 10021 21
I 10031 11
I 10041 11
I 10051 11
1---------------------------1

Now that you have created and joined the necessary tables, you must add a .query section to
your report specifications file. Here is the revised specification file for your report, with the
new .query section:

.NAME tempreport

. QUERY
select t.id,t.title,t.subject,t.name,

t.code,s.num_sub,a.num_auth
from tempreport t,sub s,auth a
where t.id = s.id
and t.id = a.id

.SORT title,code

Appendix A: Report Examples Report-Writer Reference Manual 197

Joining Tables for a Report

198

.BREAK title,code/* title and code will be
break columns */

.RIGHTMARGIN 80 /* it is important to set
the right margin here*/

.HEADER title
/* The calculation below contains the

following variables and constants:*/
/* line number is the current line number

on the page (RW variable) *1
1* page_length is the current page length

in the report (RW variable) *1
1* num_sub is the number of subjects for

this book (calculated above) */
1* num auth is the number of authors for

this book (calculated above) */
1* 4 is the number of lines taken up by

headers in each block */
/* These variables are used to determine if

there is enough *1
1* room left on the page to print the next

block of data *1
.IF line number + num sub + 4 > page_length

.THEN
. NEWPAGE

.ELSEIF line number + num auth + 4 >
page_length .THEN

.ENDIF
. NEWPAGE

.LEFTMARGIN 0

.ULCHARACTER "="

. UNDERLINE

.PRINT title .NEWLINE

. NOUNDERLINE

.BLOCK /* start a block after printing the
master info *1

Report-Writer Reference Manual DDT-DATA

(

(

Joining Tables for a Report

.HEADER code
.TOP /* goto the top of the block eash time

code changes */
.ULCHARACTER "-"

/* test the value of code and set the
margin appropriately */

.IF code = 1 .THEN
.LEFTMARGIN 5
. UNDERLINE
.PRINT "Authors" .NEWLINE
. NOUNDERLINE

.ELSEIF code = 2 .THEN
.LEFTMARGIN 20
. UNDERLINE
.PRINT "Subjects" .NEWLINE
. NOUNDERLINE

.ENDIF

.DETAIL
/* test the value of code to see which

column to print */
.IF code = 1 .THEN

.PRINT name .NEWLINE
.ELSEIF code = 2 .THEN

.PRINT subject .NEWLINE
.ENDIF

.FOOTER title
.ENDBLOCK /* end the block at the end of the

master info */
. NEWLINE

Appendix A: Report Examples Report-Writer Reference Manual 199

/ "

200 Report-Writer Reference Manual DDT-DATA

Appendix B

(Report-Writer Error Messages

Number Message

7000 Bad flag '%0' specified in REPORT command. Cor-
rect usage of REPORT command is: REPORT [-f ..] [-
m . .I-r] [-qn] [-In] [-wn] [+tI-t] [-s] [-uuser] [-h] [-a]
[-vn] [+bl-b] db rep ['({param=val})'].

7001 Bad parameters specified at or near '%0'. Correct
usage of REPORT command is: REPORT [-L] [-m . .I-r]
[-qn] [-In] [-wn] [+tI-t] [-s] [-uuser] [-h] [-a] [-vn] [+bl-
b] db rep ['({param=val})'].

(7002 Not enough information specified on the REPORT
command. You must specify "repname," "dbname,"
and any parameters used in your query, unless you
specify the "-p" flag on the REPORT command, which
prompts you for any missing information. Correct
usage of REPORT is: REPORT [-f ..] [-m . .I-r] [-qn] [-
In] [-wn] [+tI-t] [-s] [-uuser] [-h] [-a] [-vn] [+bl-b] db
rep [' ({ param=vaI}) '].

7004 Report or table '%0' does not exist or is not owned by
you.

7005 Data table '%0' in Report '%1' does not exist or is not
owned by you.

7006 Sort column '%0' does not exist.

(7007 Database '%0' does not exist.

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 201

Number Message

7008 Bad numeric value specified for flag '%0' on REPORT
/ '" c()mmand. Only positive values allowed. Value set to

default. Correct syntax of REPORT is: REPORT [-f ..]
[-m . .I-r] [-qn] [-In] [own] [HI-t] [os] [-uuser] [-h] [-a] [-
vn] [+bl-b] db rep [({param=val})]. Error check con-
tinues ...

7009 Bad value '%0' specified for the -m flag on REPORT
command. Legal values are -mdefault (or om),
-mcolumn, -mwrap or -mblock. Value set to default.
Error check continues ...

7010 '%0' nonfatal errors have occurred in setting up the
report. No report is written. Correct errors and rerun.

7011 Error opening report file '%0'. No report is written.

7012 Because of errors found in the .SORT list, the report "
writer stops. Fix .SORT list and rerun SREPORT.
Processing stops.

7020 Query specified in .QUERY command is too long.
Maximum allowable size is %0 characters. You can
use the -q flag on the REPORT command to extend the
max.

7021 Error in .QUERY command RANGE statement. Prob-
lem at or near RANGE of %0 is % 1. Error check con-
tinues ...

7022 Parameter '%0' not specified on command line. You
can have the Report-Writer prompt you for values of
parameters by specifying the -p flag on the REPORT
command. Correct syntax is: REPORT [-f ..] [-m . .!-r] [- (

,

qn] [-In] [own] [HI-t] [os] [-uuser] [-h] [-a] [-vn] [+bl-b]

"" db rep ['({param=val})']. Error check continues ...

202 Report-Writer Reference Manual DDT-DATA

Number Message

(
"" 7023 Bad parameter name in .QUERY at or near '%0'. Error

check continues ...

7025 Either you had errors in the .QUERY command, or you
did not specify either a .QUERY or ,DATA command.
Processing stops.

7026 Because of errors in running report, the Report-Writer
stops. Fix errors in report or data table and rerun.

7027 Cannot open temporary filenamed %0, used internally.
May not be able to provide complete information on fu-
ture occurrences of errors 7510-7521. Processing con-
tinues.

7100 Unrecognizable command in %0 text for '%1'. Line
with error: ' %2 %3'. Error check continues ...

oof

\ 7101 Cannot interpret printing command in %0 text for
'%1'. Problem occurs at or near '%2'. Line with error:
'%3 %4'. Error check continues ...

7102 Unknown parameter name '%0' in %1 text for '%2',
Line with error: '%3 %4'. Error check continues ...

7103 Unrecognized numeric value in %0 text for '% l' . Line
with error: ' %2 %3'. Error check continues ...

7104 Extra characters ignored in %0 text for '% 1 '. Did you
forget to specify the .PRINT command? Line with
error: '%2 %3'. Error check continues ...

7105 Bad format for '%0' in %1 text for '%2'. Line with

(error: '%3 %4'. Error check continues ...

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 203

Number Message

7106 Character format specified for numeric item '%0' in
" %1 text for '%2'. Line with error: '%3 %4'. Error

check continues ... /

7107 Numeric format specified for character or date item
'%0' in %1 text for '%2'. Line with error: '%3 %4'.
Error check continues ...

7108 No column specified for aggregate '%0' in %1 text for
'%2'. Line with error: '%3 %4'. Error check con-
tinues ...

7109 Bad column '%0' specified for aggregate '%1'. Error
occurred in %2 text for '%3'. Line with error: '%4
%5'. Error check continues ...

7110 Aggregate '%0' in % 1 text for '%2' not in footer text. ,

Line with error: ' %3 %4'. Error check continues ... '\

7111 Cannot aggregate a column with a higher sort order.
Aggregate '%0' in '%1' caused the error. Line with
error: '%2 %3'. Error check continues ...

7112 Trying to aggregate character column '%0' in ag-
gregate '% l' in text for '%2'. Line with error: '%3
%4'. Error check continues ...

7114 Column '%0' not a break column in %1 text for '%2'.
Line with error: '%3 %4'. Error check continues ...

7115 Bad name '%0' found in cumulative in %1 text for
'%2'. Line with error: '%3 %4'. Error check con-
tinues ...

("
7116 Bad name found in %0 text for '%1'. Line with error: \",-_/

'%2 %3'. Error check continues ...

204 Report-Writer Reference Manual ODT-DATA

Number Message

.- 7117 Bad or no primitive aggregate found for cumulative in

(%0 text for '%1'. Line with error: '%2 %3'. Error
check continues ...

7118 Bad preset value found in '%0' in %1 text for '%2',
Preset can be a numeric, date constant, or a column
name and must match the type of the aggregated
column. Line with error: '%3 %4'. Error check con-
tinues ...

7119 Cannot preset average aggregate in %0 text for '% 1 ' .
Line with error: '%2 %4'. Error check continues".

7120 Bad parameter name at or near '%0' in % 1 text for
'%2'. Rest of print command skipped, Line with error:
'%3 %4'. Error check continues ...

f 7121 Parameter '%0' in %1 text for '%2' not on command
t line. Use -p option on REPORT command to have the

report writer prompt you for values of parameters,
Rest of command skipped. Line with error: '%3 %4',
Error check continues ...

7123 You can only specify a COUNTU, SUMU or AVGU ag-
gregate on a column which is in the sort list. Ag-
gregate '%0' in '%1' caused the error. Line with error:
'%2 %3'. Error check continues ...

7129 Date format specified for numeric or character item
'%0' in %1 text for '%2'. Line with error: '%3 %4'.
Error check continues ...

7130 Bad column name '%0' found in %1 text for '%2',

(Line with error: '%3 %4', Error check continues .. ,

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 205

Number Message

7131 Bad fonnat of FORMAT or TFORMAT command at or
near '%0'. Error found in % 1 text for '%2'. Correct for­
mat is: Line with error: '%3 %4'. Rest of command
skipped. Error check continues ...

7133 A .PRINT command does not follow justification in
%0 text for '% 1'. Line with error: '%2 %3'. Error
check continues ...

7140 Bad fonnat of .POSITION command at or near '%0'.
Error found in %1 text for '%2'. Correct fonnat is:
Line with error: ' %3 %4'. Rest of command skipped.
Error check continues ...

7141 Value given for .POSIT10N command too large or too
small. Error found in %0 text for '%1'. Maximum
value is 255, minimum is O. Line with error: '%2 %3'.
Error check continues ...

7143 Bad fonnat of .WIDTH command at or near '%0'.
Error found in %1 text for '%2'. Correct fonnat is:
Line with error: ' %3 %4'. Rest of command skipped.
Error check continues ...

7144 Value given for column width too large or too small.
Error found in %0 text for' % 1 '. Maximum value is
255, minimum is 1. Line with error: '%2 %3'. Error
check continues ...

7160 Expected quoted character for .ULCHAR command at
or near '%0'. Error found in %1 text for '%2'. Line
with error: '%3 %4'. Error check continues ...

7162 No column name specified for .WITHIN command.
Error occurred in %0 text for' % 1 '. Error check con­
tinues ...

206 Report-Writer Reference Manual DDT-DATA

Number Message

(- 7163 Bad column name '%0' found in .WITHIN command.
Error occurred in %1 text for '%2'. Error check con-
tinues ...

7164 Bad format of .WITHIN command at or near '%0'.
Error occurred in % 1 text for' %2' . Correct format of
command is: Line with error: '%3 %4'. Rest of com-
mand skipped. Error check continues ...

7165 Nested. WITHIN blocks in %0 text for' % 1'. Make
sure you .ENDWITHIN the previous block first. Line
with error: '%2 %3'. Error check continues ...

7166 Tried to .END a .WITHIN command in %0 text for
'%1 '. No .WITHIN command precedes the .END.
Error check continues ...

,{- 7170 Bad name '%0' found after .END command. Error oc-II curred in %1 text for '%2'. Only .END WITHIN or
.END BLOCK or .END allowed. Error check con-
tinues ...

7175 Bad name' %0' found after .BEGIN command. Error
occurred in %1 text for '%2'. Error check continues ...

7181 Command out of place in %0 text for' % 1 '. Command
only allowed in a .WITHIN block of commands. Line
with error: '%2 %3'. Error check continues ...

7182 Command out of place in %0 text for '%1 '. Command
not allowed in a . WITHIN block of commands. Line
with error: '%2 %3'. Error check continues ...

(

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 207

208

Number

7183

7184

Message

Column name specified in positioning command in %0
text for '% 1'. Because you are currently in a .WITHIN
block, you cannot specify a column name on the
positioning command. Line with error: '%2 %3'. Error
check continues ...

Specified W _COLUMN constant outside of .WITHIN
block. Error occurred in %0 text for' % I ' . Line with
error: '%2 %3'. Error check continues ...

7185 Cannot specify W _COLUMN as the CUM column or
the PRESET column. Error occurred in %0 text for
, % 1 '. Line with error: ' %2 %3'. Error check con­
tinues ...

7201 Left margin set to too small a value in %0 text for
, % 1 '. Value set to minimum allowable value. Process­
ing continues ...

7202 Left margin set to too big a value in %0 text for' % 1'.
Value set to default. Processing continues ...

7203 Page length set to too small a value in %0 text for
, % 1'. Must be greater than the combined size of the
page header and page footer. Set to minimum allow­
able value. Processing continues ...

7204 Non-character format found in %0 text for '% 1'. Field
skipped. Error check continues ...

7206 Right margin set to too small a value in %0 text for
, % 1 '. Value set to default. Processing continues ...

7207 Right margin set to too large a value in %0 text for
'%1'. Value set to maximum allowable value. Process­
ing continues ...

Report-Writer Reference Manual GOT-DATA

Number Message

(
7208 Tab set to negative column number in %0 text for

'% 1'. Value set to zero. Processing continues ...

7209 Tab set to position beyond end of line in %0 text for
'%1'. Value set to maximum allowable value. Process-
ing continues ...

7210 Left margin set to value greater than right margin in
%0 text for '% 1 ' . Right margin set greater than this
value. Processing continues ...

7211 Right margin set to value less than left margin in %0
text for '%1'. Value set greater than left margin.
Processing continues ...

7220 Positioning for .CENTER, .LEFT, or .RIGHT too
small. Error found in %0 text for '% 1 ' . Position set to

(default. Processing continues ...

7221 Positioning for .CENTER, .LEFT, or .RIGHT too big.
Error found in %0 text for' % 1 '. Position set to default.
Processing continues ...

7230 Value for .POSmON in %0 text for '%1' ignored.
Value is below minimum(O) or above maximum(255).
Processing continues ...

7231 Value for .WIDTH in %0 text for '%1' ignored. Value
is below minimum(l) or above maximum(255).
Processing continues ...

7301 Exceeded maximum number of lines that can be writ-
ten in one block (using the wraparound, filling, or ad-

(justing formats). Maximum value allowed is %0. You
can change this maximum by using the -w flag on 'the
REPORT command. Processing continues ...

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 209

210

Number Message

7305 Tried to write beyond end of line while centering or
justifying. The offending line has been truncated. Max­
imum line length is %0. You can change this maximum
by using the -1 flag on the report command. Processing
continues ...

7500 Comparison done between expressions of different
kind (numeric, string, or date) in %0 text for '% 1'.
Line with error: ' %2 %3'. Processing continues ...

7501 Expected numeric expression in %0 text for '%1'. Line
with error: '%2 %3'. Processing continues ...

7502 Expected numeric or date expression in %0 text for
, % I' . Line with error: ' %2 %3'. Processing continues ...

7503 Arithmetic operands not the same type (numeric or
date) in %0 text for '%1'. Line with error: '%2 %3'.
Processing continues ...

7504 Wrong type of argument for function in %0 text for
'%1'. Line with error: '%2 %3'. Processing continues ...

7510 Comparison done between expressions of different
kind (numeric, string, or date) in %0 text for '% 1'.
Line with error: '%2 %3'. Processing stops.

7511 Expected numeric expression in %0 text for' % 1'. Line
with error: '%2 %3'. Processing stops.

7512 Expected numeric or date expression in %0 text for
'%1'. Line with error: '%2 %3'. Processing stops.

7513 Arithmetic operands not the same type (numeric or
date) in %0 text for '%1'. Line with error: '%2 %3'.
Processing stops.

Report-Writer Reference Manual ODT-DATA

Number Message

(
7514 Wrong type of argument for function in %0 text for

, % 1 '. Line with error: '%2 %3'. Processing stops.

7515 Divided by zero in expression in %0 text for' % 1 ' .
Line with error: '%2 %3'. Processing continues ...

7516 Result overflowed while evaluating expression in %0
text for' % 1 ' . Line with error: ' %2 %3'. Processing
continues ...

7517 Error occurred evaluating numeric expression (for ex-
ample, divided by zero or result overflowed) in %0
text for '%1'. Line with error: '%2 %3'. Processing
continues ...

7518 Error occurred in %0 text for' % 1 '. Line with error:
'%2 %3'. Processing continues ...

(
7520 Absolute date encountered while doing sum or avg on

%0. This value is skipped. Processing continues ...

7521 Can't obtain diagnostic information for next error:

7700 Bad flag '%0' specified on RBF command. Correct
usage ofRBF command is: RBF [-m . .I-r] [-In] [-s] [-
uuser] db rep. Processing stops.

7702 Not enough information specified on the RBF com-
mand. You must specify "repname" and "dbname," un-
less you specify the -p flag on the RBF command,
which prompts you for any missing information. Cor-
rect usage ofRBF is: RBF [-m . .I-r] [-In] [-s] [-uuser]
db rep. Processing stops.

(

Appendix 8: Report-Writer Error Messages Report-Writer Reference Manual 211

Number

7708

Message

Bad numeric value specified for flag '%0' on RBF
command. Only positive values allowed. Value set to
default. Correct usage of RBF command is: RBF [-
m .. I-r] [-In] [os] [-uuser] db rep Error check continues ...

7709 Bad value '%0' specified for the -m flag on RBF com­
mand. Legal values are -mdefault (or om), -mcolumn,
-mwrap, or -mblock. Value set to default. Correct
usage ofRBF command is: RBF [-m .. I-r] [-In] [os] [­
uuser] db rep. Error check continues ...

7710 Report '%0' created with SREPORT rather than RBF.
You can only use RBF to edit reports created by
default or in a previous RBF session.

7711 Report '%0' is too wide for your terminal.

7800 Bad flag specified on COPYREP command. Legal syn­
tax is: COPYREP [of] [os] [-uuser] db file (report(s)}
Use SREPORT to load reports into a database. Process­
ing stops.

7801 No reports specified for COPYREP command. Legal
syntax is: COPYREP [of] [os] [-uuser] db file
(report(s)}. Processing stops.

7803 Error opening or writing file '%0' in COPYREP.
Processing stops.

7900 Bad flag '%0' specified on SREPORT command. Cor­
rect format is: SREPORT [os] [-uuser] dbname
filename. Processing stops.

212 Report-Writer Reference Manual ODT-DATA

Number Message

7901 Not enough information specified on lhe SREPORT

(command. You must specify a filename and a dbname,
unless you specify the -p flag, which prompts you for
any missing information. Correct format is: SREPORT
[-s] [-uuser] dbname filename. Processing stops.

7902 Text file '%0' does not exist, is not readable, or is a
bad name. Processing stops.

7903 File '%0' Line %1: Expected command at '%2'.

7904 File '%0' Line %1: Bad command name '%2' found.

7905 File '%0' Line %1: Bad name '%2' specified for
report. Processing stops.

7906 File '%0' Line %1: No .NAME command encountered.
It must be the first command in the file. Processing
stops.

7907 File '%0' Line %1: Parameters starting at '%2' in com-
mand '%3' won't fit. Break up the command into two
or more commands so that it fits.

7908 File '%0' Line %1: .HEADER or .FOOTER specified
for '%2', which is not a break column (specified in a
.SORT command), or 'report' or 'page'. Command ig-
nored.

7909 File '%0' Line %1: Bad format of .HEADER or
.FooTER command. Correct format is: .HEADER
columnlreportlpage or .FOOTER columnlreportlpage.
Command ignored.

i(7910 %0 errors encountered in report specification. The
report(s) is not added to your database. Rerun
SREPORT with errors corrected. Processing Slaps.

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 213

214

Number

7911

Message

File '%0' Line %1: Bad format of .DATA command.
Correct format is: Command ignored.

7912 File '%0' Line %1: Bad format of .OUTPUT com­
mand. Correct format is: Command ignored.

7913 File '%0' Line %1: Bad format of .SORTcommand.
Correct format is:

7914 File '%0' Line %1: '%2' is a reserved name. It cannot
be used as a column name in your data table.

7915 File '%0' Line % 1: Bad sort direction '%2' specified.
Correct values are 'ascending' or 'descending' (or 'a'
or 'd'). 7916 File '%0' Line %1: Column name '%2' al­
ready specified in .SORT. You can only specify a
column name once.

7917 File '%0' Line % 1: Bad format of cumulative or ag­
gregate. Correct format is: [CUM [(break)]] aggname
(col name [,preset))

7920 Cannot create file '%0' for writing. Processing stops.
This file is used internally by the SREPORT program.
If you don't know why this error occurs, see the ODT­
DATA system manager.

7921 File '%0' Line % 1: Header or Footer already specified
for %2. You can only specify one header and one
footer for a break.

7922 File '%0' Line % 1: .OUTPUT already specified for
report. You can only specify one output file for a
report.

Report-Writer Reference Manual ODT-DATA

Number Message

(
7930 Premature end-of-file found. This is probably caused

by unmatched quotes ("), parentheses, or .IF/.ENDIF.
Processing stops.

7950 File' %0' Line % 1: Error in RANGE statement in
.query command. Correct format of RANGE is: range
of range_ var is tablename. Rest of query skipped.

7951 File '%0' Line %1: Unrecognized QUEL command in
.query. Problem at or near '%2'. You can only specify
RANGE and RETRIEVE commands in query. Rest of
query skipped.

7952 File '%0' Line %1: Cannot use RETRIEVE INTO in
.query. Only a simple RETRIEVE statement is al-
lowed in query. Rest of query skipped.

f 7953 File '%0' Line %1: Error in RETRIEVE target list in ,- .query. You probably have a problem with nesting of
parentheses. Rest of query skipped.

7954 File '%0' Line %1: Error in RETRIEVE "where"
clause in .query. You probably have a problem with
nesting of parentheses. Rest of query skipped.

7955 File '%0' Line %1: Premature end of query found.
Check the syntax of your query. Correct syntax is:
Range of x is y retrieve (targeUist) [where ...]

7956 File '%0' Line %1: You have already specified .query
or .data. You must specify .query or .data for each
report, but you can't specify both, or one of them twice.

(7960 File '%0' Line %1: .%2 cannot be within an .IF state-
ment.

7961 File '%0' Line %1: .%2 must follow .IF ...

Appendix B: Report-Writer Error Messages Report-Writer Reference Manual 215

216 Report-Writer Reference Manual COT-DATA

(

't" \

(-

Number

7983

Message

File '%0' Line %1: + or - must have numeric or date
expressions as operands.

7984 File '%0' Line %1: Wrong type of argument for func­
tion.

7991 Report '%0': Query specified in '%1'; '%1' is not a
valid query language at this installation.

7992 Report '%0': The "order by" clause and "distinct"
keyword cannot be used in the query specified with the
.QUERY command. To specify ordering use the .SORT
command.

Appendix 8: Report-Writer Error Messages Report-Writer Reference Manual 217

218 Report-Writer Reference Manual DDT-DATA

(

Index

Special Characters

! (exclamation point)
in Boolean expressions ,47

" (double quotation marks) ,34, 47
$ (dollar sign)

in report formats ,38, 83
... (asterisk)

as wild card character ,48
exponentiation and ,46
for centering ,51
multiplication ,46

+ (plus sign)
arithmetic ,46
for justification ,51

- (hyphen)
as underlining character ,138
in reports ,138

- (minus sign)
arithmetic and ,46
specified field width ,51

/ (slash)
as comment indicator (with asterisk) ,10

= (equals sign)
in Boolean expressions ,47

? (question mark)
as wild card character ,48

\ (backslash)
as text match indicator ,34, 83

_ (underscore)
as underlining character ,138
in reports ,138

• (single quotation marks)
and constants ,33

{) (curly braces)
in syntax descriptions ,vi

I (vertical bars)
as separators ,vi

Index

A

Absolute
dates/times ,35, 37

Aggregates
cumulative ,44
examples ,45
in reports ,40, 45, 69
over breaks ,45
printing of ,69
syntax of ,42
unique ,43

And (Boolean operator) ,49
Arithmetic

in reports ,46
operations ,46

Avg aggregate ,41
Av gu aggregate ,42, 43

8

B format ,59
Blanks

inserting in reports ,59
Block (statement) ,113, 116
Blocks

advanced formatting features ,113
block/endblock statements, 113
Report-Writer features, 113
Top (statement) and ,115

Boolean functions
break ,50
described ,49

Boolean operators
in Report-Writer ,49

Break (statement) ,87
Columns ,4
Page breaks ,4

Break function ,50

Report Writer Reference Manual 219

Index

c
C format ,52
Center (statement) ,130
Centering

reports ,51
Clauses ,47
Columns

as expressions ,38
Columns (in reports)

aggregate operations ,40, 45
breaks ,4, 6, 50
defaults ,28, 29, 67, 104, 105
footings ,5
format ,12, 29, 102, 104, 105
headings ,5, 102
positioning ,28, 108
printing ,104,105,117,120,136,137
sorting in ,19, 20
temporary formats ,117, 120
width ,29, 108

Comments
in report specifications ,10

Comments (statement) ,73
Comparison operators

in Report-Writer ,47
Computation

arithmetic ,46
exponential notation ,46
in reports ,40, 46

Conditional statements ,49, 144
Constants

date ,35, 37
in reports ,33, 37
numeric ,35
string ,33

Copying
Sreport (command) ,150

Copyrep (command) ,162
Count aggregate ,41
Countu aggregate ,41, 43
Cumulative (keyword) ,44

220 Report Writer Reference Manual

D

Data
expressions ,31, 33, 35, 37, 39, 41, 43, 45,
47,49,51,53,55,57,59,61,63,65,67.
69
formatting ,50, 137

Data (statement) ,77
Data types

in reports ,33, 37
SQL ,38

Dates
absolute ,35
constants ,35, 37
formats ,63, 67, 69
in reports ,35, 37, 69
interval function ,66
templates ,63, 67
variables ,40

Declare (statement) ,78
Defaults

for formats ,27, 29
for margins ,28, 69
for reports ,12, 27, 29, 67, 153,161

Delimiters
string literal ,34

Detail (statement) ,29, 102
Detail break

in report ,5, 29

E

E format ,56
Endb10ck (statement) ,113
Endremark (statement) ,75
Endwithin (statement) ,117
Exponential notation ,46
Expressions

Boolean ,49
described ,31,33,35,37,39,41,43,45.
47,49,51,53,55,57,59,61,63,65,67.
69
format specifications ,50, 137
printing in report ,136, 137
string constants ,33, 45
types of data ,33, 45

DDT-DATA

(

(

(

Index

F

F format ,55
Footer (statement) ,101
Footings

in reports ,5
Format (statement) ,104, 105
Formats

data types ,50
defaults ,27, 29
for expressions ,50, 137
Format (statement) ,29

Formfeeds (statement) ,21, 94
Functions

built-in ,49
in Report-Writer ,49

G

G format ,57

H

Header (statement) ,100
Headings

of columns ,5

If (statement) ,49, 144
Is null (Boolean operator) ,49

Index

L

Labels
report example ,188

Left (statement) ,128
Leftmargin (statement) ,90
Let (statement) ,146
Lineend (statement) ,125
Lines

Lineend (statement) and ,125
Need (statement) ,97

Linestart (statement) ,124
Literals

string ,34
Logical operators ,49
Longremark (statement) ,75

M

Mailing labels
example ,188

Margins
defaults ,28, 69
for page header and footer ,22
left_margin variable and ,40
on reports ,22, 40
right_margin variable ,40
rightmargin (statement) ,91
temporary ,117, 120

Master/Detail JoinDefs
in reports ,190, 199

Matching ,48
Max aggregate ,41
Min aggregate ,41

N

N format ,58
Name (statement) ,72
Naming

parameters ,82
Need (statement) ,21, 97

Report Writer Reference Manual 221

Index

Newline (statement) ,126
Newpage (statement) ,21,95
Noformfeeds (statement) ,94
Not (Boolean operator) ,49
Nounderline (statement) ,138
Nullstring (statement) ,141
Numeric data type

E format for ,56
F format ,55
G format ,57
in reports ,35, 55, 59, 60, 69
N format ,58
numbers ,35
printing ,55, 59, 60, 69
templates ,60

o
Or ,49
Output (statement) ,80
Outputting

of reports ,113, 120, 122, 134, 153, 161

p

Pagelength (statement) ,93
Pages (in reports)

breaks ,5, 50,195
Formfeeds (statement) ,21, 94
layout and control ,93, 97
length ,21, 93
Need (statement) ,21, 97
Newpage (statement) ,21, 95
page_length variable ,39
page_number variable ,39
Pagelength (statement) ,21, 93

Pagination ,21
Parameters

as expressions ,38
naming ,82
query ,4, 81, 82
run-time ,38

222 Report Writer Reference Manual

Patterns
matching ,48

Position (statement) ,108
Position_number variable ,39
Print (statement) ,136,137
Printing

aggregates ,69
columns ,104, lOS, 112,117, 120, 136, 137
dates ,63, 67, 69
default formats ,67,104,105,112
expressions ,136, 137
formats ,50,104,105, 112, 137
Formfeeds (statement) ,21
in block mode ,113, 116
layout and control ,93, 97
numbers ,55, 59, 60, 69
Print (statement) ,136, 137
Print In (statement) ,136, 137
reports ,93, 97,104,105,112,113,120,
136, 137
strings ,67,136,137
temporary formats ,117, 120
text positioning ,122,134
variables ,68

Println (statement) ,136, 137

a
Queries ,4

parameterized ,81, 82
parameters ,4
report specification with ,81

Query (statement) ,81

R

Report (command) ,153
Report-Writer

block mode ,113, 116
Boolean operators ,49
expressions in ,31, 33, 35, 37, 39, 41, 43,
45,47,49,51,53,55,57,59,61,63,65,
67,69

ODT-DATA

features ,I, 113
functions ,49
See also Reports

reserved words ,32
sample report ,6, 7, 8

Report-Writer error messages ,201, 203,
205,207,209,211,213,215,217

Reports
aggregates ,40, 45
arithmetic in ,46
block mode capabilities ,113
breaks ,4, 6
computation in ,40
conditions ,49, 144
constants in ,33, 37
creating ,2, 3, 10, 15
data ,3, 4, 81
default ,27, 29,104, 105, 112, 153, 161
default formats ,67
examples ,165, 188
formatting ,2,9,15,50, 102, 137
from files outside database ,155
from joined tables ,190, 199
If (statement) ,49, 144
layouts ,11, 93, 97
outputting ,113, 120, 122, 134, 153, 161
pagination ,21
printing ,93, 97,104,105,112, 113,120,
136, 137

remarks ,75
Report (command) ,153, 161
Report (statement) ,3
See also Report-Writer

running ,153, 161
runtime parameters ,81, 82
sample ,6, 7, 8
setup procedures ,10, 15,78
sorting ,4
special report variables ,39
specification of ,9, 15
Sreport(command) ,2
structure statements ,102
types ,2
underlining ,140

Reserved words
in Report-Writer ,32

Right (statement) ,133
Rightmargin (statement) ,91
Run-time system

parameters ,81, 82

Index

s
Shortremark (statement) ,74
Sort(statement) ,85
Sorting

columns ,19, 20
SQL

aggregates ,40
report query ,81

Sreport (command)
bypassing ,155
role of ,2
using ,150

Strings
as constants ,33
C format ,52
delimiters for ,34
in reports ,33, 55, 136
literal ,34
printing ,55, 136
printing of ,67
T format ,54

Sum aggregate ,41
Sumu aggregate ,41, 43

T

T format ,54
Tab (statement) ,29, 122
Tables

joining for reports ,190, 199
reports created from .4, 77

Templates
for date format ,63, 67
for numeric data type ,60

Text
positioning ,122, 134
underlining ,140

Text file
for report definition ,9

Tformat (statement) ,106
Time

absolute ,36
templates for ,66

Top (statement) ,115

Report Writer Reference Manual 223

Index

u
Ulcharacter (statement) ,139
Underline (statement) ,138
Underlining

in reports ,140

v
Variables

default formats ,68
in reports ,39
Position_number ,39
printing ,68

Views
for reports, 19, 77

w
Width (statement) ,111
Wild card characters

? (question mark) ,48
asterisk (*) ,48
in Report-Writer ,48

Within (statement) ,117

224 Report Writer Reference Manual ODT-DATA

(ODT-DATA
SQL
Reference

(

ODT-DATA is based on technology developed by INGRES CORPORATION, and includes
the following INGRES components:

INGRES/DBMS and SQL Tenninal Monitor

INGRES/User Interfaces
Query-by-Fonns
Report-by-Fonns
Report Writer
Menu
Fonns Runtime Systems and VIFRED

INGRESJNET with TCPJIP Support
INGRES/WindowView
INGRESIESQL Preprocessor for C

Document version: 1.0.OC
Date: 15 June 1990

(

(

Contents

Preface: v
Intended Audience v
Structure of This Manual v
Conventions vii
Associated Publications viii

Chapter 1: Sal Syntax 1
Notation and Terminology 2
Data Types 3
Constants 12
Structured Data 14
Expressions 19
Search Conditions 39
Data Manipulation Statements 46
Relational Concepts 50
Transactions 54
Database Procedures 58
Multi-Filesystem Databases 63

Chapter 2: Sal Commands
commit 68
copy 69

80 create index
create integrity
create procedure
create table 88
create view 92
declare 94
delete 96
drop 97

84
85

drop integrity
drop permit
drop procedure

98
99

100
grant 101
help 103

Contents

67

SOL Reference

if-then-else 105
insert 108
message 110
modify 112
return 118
rollback 120
save 121
savepoint 122
select 124
set 128
update 134
while - endloop 136

Chapter 3: ODT-DATA Terminal Monitor 139

Chapter 4: ODT-DATA Operating System Commands 145
accessdb 146
auditdb 147
catalogdb 150
ckpdb 153
compform 155
copydb 157
copyform 159
copyrep 161
createdb 163
destroydb 166
esqlc 167
finddbs 169
ing menu 170
isql 171
optimizedb 172
printform 176
qbf 177
query 179
rbf 180
report 182
rolldb 186
sql 188
sreport 193

SOL Reference OOT-OATA

statdump 194
sysmod 196
unloaddb 198
vifred 200

(-
Appendix A: Keywords 201

ODT-DATA Sal 201
ODT-DATA Embedded Sal 202
ANSI Sal 203
Host language Keywords 203

Appendix B: The COT-DATA System Catalogs 205
Standard Catalog Interface 207
Extended System Catalogs 225
The DBMS System Catalogs 242

Index 245

Contents SOL Reference iii

iv sal Reference OOT-OATA

f
t

Preface

The primary 'objective of this manual is to provide the ODT-DATA user with a complete
description of the ODT-DATA relational database system, including ODT-DATA SQL (Struc­
tured Query Language). It is not intended to serve as a tutorial on the use of ODT-DATA or on
relational database systems. Rather, it serves as the primary reference to the current syntax
and function of ODT-DATA commands and files.

Intended Audience
The ODT-DATA SQLRejerence Manual is intended for Open Desktop users who have a basic
understanding of how ODT-DATA or other relational database systems work. The reader is not
required to have a detailed understanding of the computer's operating system. However,
readers should be familiar with logging on and off, as well as the computer's filesystem, if
advanced features are to be used.

In a multiuser installation, various database-related tasks are assigned to various individuals
with different privileges:

• The system administrator manages the ODT-DATA installation

• The database administrator (DBA) creates and manages a database

• The user manipulates data in the database

This manual is addressed to both types of installations, though at times the multiuser type is
addressed explicitly. If you are a single user, assume that you are the system administrator
and the database administrator as well as the user.

(Structure of This Manual
The manual is divided into four chapters and two appendixes, each of which contains a number
of subsections. Each chapter contains an introductory explanation, followed by detailed
descriptions of applicable commands and files.

Preface SOL Reference v

Structure of This Manual

The contents include:

• Chapter 1 which explains SQL's syntactic elements.

• Chapter 2 which describes the SQL statements.

• Chapter 3 which describes the ODT-DATA SQL Terminal Monitor, the interactive
system that allows you to enter SQL commands, edit the query and perform other
useful tasks.

• Chapter 4 which describes the operating system's commands that apply to ODT­
DATA. At the operating system command level, a database can be created or
destroyed, the Terminal Monitor and Embedded SQL programs can be executed, and
some database maintenance functions can be performed.

• Appendix A which lists the keywords in the Interactive and Embedded SQL environ­
ments.

• Appendix B which gives an in-depth description of the system catalogs required to
operate an ODT-DATA environment.

The reference sections for statements and files contain various subsections, which are
described and discussed in the following parts:

vi

Purpose

Syntax

Description

Examples

Files

SOL Reference

A one-line summary of what the statement does or what the file is.

The statement's syntax and usage (only included in sections that
describe statements).

For commands: A detailed description of command parameters
and function.

For files: The file format.

For others: Applicable descriptions.

For commands: Specific examples.

For files: Sample formats.

For the operating system commands, the names of files refer­
enced or affected by the command.

ODT-DATA

(

(

Conventions

Conventions
The following conventions are used for describing the syntax of statements in this manual:

• Words in boldface are keywords and must be typed as shown when used. Required
symbols and punctuation are also indicated by boldface.

• Words in italics are program-supplied elements.

• Clauses enclosed in square brackets ([]) are optional.

• Clauses enclosed in curly braces ({ }) are optional and can be repeated zero or
more times.

• Keywords or clauses separated by vertical bars (I I) indicate lists from which one
element is chosen.

Preface SOL Reference vii

Associated Publications

Associated Publications
The ODT-DATA SQL Reference Manual is one of several publications provided for your use
of ODT-DATA. The table below lists all the ODT-DATA books available with each Open
Desktop product:

• ODT-DATA Embedded SQL User's Guide

• ODT-DATA Embedded Open SQL Forms Reference Manual

• ODT-DATA Open SQL Reference Manual

• ODT-DATA Embedded SQL Companion Guide for C

• GCA Application Program Interface

• Using ODT-DATA Through Forms and Menus

• ODT-DATAReport-Writer Reference Manual

• ODT-DATA SQL Reference Manual

viii Sal Reference ODT-DATA

/'

Chapter 1

(SQLSyntax

SQL (Structured Query Language) is the database language supported by ODT-DATA. SQL
allows you to retrieve, manage, and maintain data in an existing ODT-DATA database. SQL
statements are high-level descriptions of what needs to be done rather than how it should be
done. In relational database terminology, SQL provides "automatic navigation" to the data in
the database.

SQL statements can be used in any of several contexts. They can be:

• Entered directly through the ODT-DATA Terminal Monitor

'.'

• Embedded within programs written in high-level languages by using Embedded
SQL

(• Included in report specifications for the ODT-DATA Report-Writer

Consult Chapter 3 of this manual for information about the ODT-DATA Terminal Monitor. For
information about Embedded SQL, consult the ODT-DATA Embedded SQL Companion Guide
for C. The ODT-DATA Report-Writer Reference Manual describes the Report-Writer. There
are four major SQL statements, each beginning with one of the following keywords:

select
insert
delete
update

As the keywords suggest, the statements are used, respectively, for selecting data, inserting
data, deleting data, and updating data values. The syntactical forms of the four statements are
similar, with select statements being the most general. For that reason, select statements are
used in this chapter to illustrate SQL syntax.

Chapter 1: SOL Syntax SOL Reference

Notation and Terminology

Notation and Terminology

Keywords

A list of all keywords in GOT-DATA SQL is included in Appendix A of this manual. There you
will also find the keywords of GOT-DATA Embedded SQL and ANSI standard SQL.

Names

Names in SQL are sequences of no more than 24 alphanumeric characters, starting with an
alphabetic character. The underscore U is considered an alphabetic character. The "#", "@",
and "$" signs are considered part of the alphanumeric character set. Thus, a name may begin
with "a" through "z" (upper- or lowercase) or underscore U, and the rest of the name may
contain those characters, as well as "0" through "9" and "#", "@", and "$". A name may not
begin with "ii". Names beginning with "ii" are reserved for use by GOT-DATA.

All uppercase letters in a name are converted to lowercase.

Comments

A comment is an arbitrary sequence of characters bounded by "/*" on the left and by "*/" on
the right. For example:

/* This is a comment */

A comment so bounded is ignored in query processing.

Statement Separator

No statement terminator is required by the SQL language. For this reason, no semicolon is
included in the syntax description for each statement.

The semicolon (;) as a statement separator is required in using the Terminal Monitor when
more than one statement precedes a "\g". (Chapter 3 discusses the Terminal Monitor.) A group
of statements followed by "\g" is called a "go block."

Examples showing modules of code in this manual include optional semicolons (;) as
statement separators. Because SQL is used in a variety of contexts, the optional statement
separator helps avoid unwanted side effects that could result if the context were to change.

2 SOL Reference DDT-DATA

Data Types

Data Types

There are three classes of data type: character, numeric, and abstract. Character strings can be
fixed length (c and char) or variable length (vchar and varchar). Numeric strings may be
exact numeric (integer, smallint, or integer!) or approximate numeric (float and float4). The
abstract data types are date and money.

Numeric Approximate float (float8)
numeric float4

Exact numeric integer (integer4)
smallint (integer2)
integerl

Character Fixed length c
char

Variable-length vchar (text)
varchar

Abstract date
money

Fixed-Length Character Strings

Fixed-length character strings are sequences of no more than 2000 ASCII characters. Uppcr­
and lowercase alphabetic characters within strings are accepted literally.

Two types of fixed-length character strings are supported in ODT-DATA: char and c. Char
strings may contain any character, printing or non-printing. Blanks are significant when
comparing char strings. Char is the preferred fixed-length character type. The C type is
supported for compatibility with previous ODT-DATA versions.

Only printing characters are allowed within c strings. Non-printing characters (for example,
control characters) are converted to blanks.

Chapter 1 : Sal Syntax Sal Reference 3

Data Types

Blanks are ignored when comparing c strings. For example, the next two c strings are treated
identically:

the house is around the corner

thehouseisaroundthecorner

Variable-Length Character Strings

Variable-length character-string constants are sequences of no more than 2000 ASCII charac­
ters. Upper- and lowercase alphabetic characters within variable-length strings are accepted
literally.

To include a quotation mark within a variable length character string, double it, as in:

the "dog" is black

This evaluates to:

the 'dog' is black

.".

/

There are two types of variable-length Character-strings in ODT-DATA: vchar and varchar. \......../
Varchar is the preferred variable-length character-string type. Vchar is supported for com­
patibility with previous ODT·DATA versions. All ASCII characters except the NULL character
are allowed within vchar strings. NULL characters are converted to blanks. varchar strings
may contain any character, including non-printing characters and the NULL character.

Blanks are not ignored in comparisons by either vchar or varchar. For example, the next two
character strings are treated identically:

the house is around the corner

thehouseisaroundthecorner

However, the way blanks are handled by the two data types is different. In comparing strings
of unequal length, varchar effectively adds blanks to the end of the shorter string to bring it
up to the same length as the longer string. Vchar does not add blanks; it considers a shorter
string as "less than" a longer string if all characters up to the length of the shorter string are
equal.

4 SOL Reference ODT-DATA

(

Data Types

As an example of how this affects comparisons, consider the two strings (a) abcd\001 and
(b) abed. (Assume \001 represents one ASCII character, ControIA.) If these are compared as
vchar, then (a) > (b). However, if compared as varchar, then (a) < (b), because the varchar
has a higher ASCII value than 001.

Integer Numbers

Integer values range from -2,147,483,648 to +2,147,483,647, and they contain no fractional
part. Integer values that exceed that range are converted to floating-point. If an integer is less
than +32,767 and greater than -32,768, it is treated as a 2-byte integer. Otherwise, it is
converted to a 4-byte integer.

The three integer data types are integer! (1 byte), smallint (2 bytes), and integer (4 bytes).

Floating-point Numeric Data Types

Floating-point values consist of an integer part, a decimal point and a fraction part or scientific
notation of the following format:

[+1-] {dig} [.dig{dig}][eIE [+1-] {dig}]

where dig is a digit. An example is:

2.3 e-02

A mantissa with a missing exponent has an exponent of one (1) inserted. Floating-point
numbers are double-precision quantities with a range of approximately -10**38 to +10**38
and a precision of approximately 16 significant figures.

The character used to indicate the decimal point, by default a period (.), can be changed by
means of the II_DECIMAL environment variable, described in Administering ODT-DATA.

The two approximate numeric data types are float4 (4 bytes) and float (8 bytes).

Chapter 1 : Sal Syntax Sal Reference 5

Data Types

Dates

Date Output

ODT-DATA supports date values that constitute either absolute dates and times or time
intervals. ODT-DATA outputs such values as strings of 25 characters with trailing blanks
inserted.

ODT-DATA uses one of the following output formats for an absolute date or time:

Format Example

dd-mmm-yyyy 15-nov-1982

dd-mmm-yyyy hh:mm:ss 15-nov-1982 12:32:48

ODT-DATA displays 24-hour times for the current time zone, which is determined when
ODT-DATA is installed. Dates are stored in Greenwich Mean Time and adjusted for your time
zone when they are displayed. ~

For a time interval, ODT-DATA displays the most significant portions of the interval that fit in \''-_/
the 25 character string. If necessary, ODT-DATA inserts trailing blanks to fill out the string.
The format appears as follows:

yy yrs mm mos dd days hh hrs mm mins ss sees

Significance is a function of the size of any component of the time interval. For instance,
consider the following time interval:

5 yrs 4 mos 3 days 12 hrs 32 min 14 sees

ODT-DATA displays such an interval as follows:

5 yrs 4 mos 3 days 12 hrs

6 SOL Reference DDT-DATA

.. "

if

Data Types

Date Input

Dates are input as quoted character strings. ODT-DATA accepts the following \'alid input
formats: .

• These are the legal formats for input of November 15, 1982:

Format

'mmldd/yy'

'dd-mmm-yy'

'dd-mmm-yyyy'

'mm-dd-yy'

'yy.mm.dd'

'mmddyy'

'mm/dd'

'mm-dd'

'today'

'now'

Example

'11/15/82'

, 15-nov-82'

'15-nov-1982'

, 11-15-82'

'82.11.15'

'111582'

'11/15'

'11-15'

The string 'today' is a legal absolute date
with today's date as its value.

The string 'now' is a legal absolute date
and time with today's date and the cur­
rent time as its value.

NOTE: The date formats described here are the default formats, also known as CS format.
See the following section titled "International Date Formats" for information about
changing the date format conventions to accommodate international con\'entions.

Chapter 1: SOL Syntax SOL Reference 7

Data Types

• These are the legal formats for input of 10:30:00:

Format Example

'hh:mm:ss' , 10:30:00'

'hh:mm:ss xxx' '10:30:00 pst'

'hh:mm' '10:30'

NOTE: ODT-DATA supplies the appropriate time zone designation. Time formats are assumed
to be on a 24-hour clock. However, times entered with a designation of "am" or
"pm" are automatically converted to 24-hour internal representation. Any such
designation must follow the absolute time and precede the time zone, if included. If
you do not specify a date with an absolute time, today's (that is, the current day's)
date is supplied.

• These are the legal input formats for November IS, 1982, 10:30:00:

Format Example

'mm/dd/yy hh:mm:ss ' '11/1S/82 10:30:00'

'dd-mmm-yy hh:mm:ss' 'IS-nov-82 10:30:00'

'mm/dd/yy hh:mm:ss xxx ' '11/1S/82 10:30:00 pst'

'dd-mmm-yy hh:mm:ss xxx ' 'lS-nov-82 10:30:00 pst'

'mm/dd/yy hh:mm ' '11/1S/82 10:30'

'dd-mmm-yy hh:mm ' 'IS-nov-821O:30'

'mm/dd/yy hh:mmxxx' '11/1S/82 10:30 pst'

'dd-mmm-yy hh:mmxxx' 'IS-nov-82 10:30 pst'

8 Sal Reference DDT-DATA

~

"-

Data Types

• These are the legal formats for date intervals which include the following designa­
tions:

Examples:

, 5 years'
, 8 months'
'14 days'
'5 yrs 8 mos 14 days'
'5 years 8 months'
'5 years 14 days'
'8 months 14 days'

• These are the legal formats for time intervals which include the following designa­
tions.

Examples:

'23 hours'
, 38 minutes'
'53 seconds'
'23 hrs 38 mins 53 sees'
'23 hrs 53 seconds'
'28 hrs 38 mins'
'38 mins 53 sees'
'23:38 hours'
'23:38:53 hours'

Chapter 1 : Sal Syntax Sal Reference 9

Data Types

International Date Formats

The database may be set to one of five date formats (modes) for the interpretation of dates.
This mode is set on a session basis. The II_DATE_FORMAT environment variable described ,/­
in Administering ODT-DATA can be used to change the date format conventions to accom- .
modate the international date conventions shown here. The modes are: '''--../

Mode Input Interpreted as

US default (as above)

MULTINATIONAL mm/dd/yyyy dd/mm/yyyy

ISO (Multinational) mmddyy yymmdd

SWEDEN/FINLAND mm-dd-yyyy yyyy-mm-dd

GERMAN xxxxx dmmyy

xxxxxx ddmmyy

xxxxxxx dmmyyyy

xxxxxxxx ddmmyyyy

Money

ODT-DATA stores money values as their actual money amount, significant to exactly two
decimal places. Thus, DDT-DATA rounds all money values to their amounts in dollars and
cents on input and output. Arithmetic operations on the money data type retain two-decimal
place precision.

ODT-DATA supports the following range of money values:

$-99999999999999.99 <= m <= $99999999999999.99

ODT-DATA displays money values as strings of 20 characters. The display format is:

$sdddddddddddddd.dd

where s is the sign (. for negative and no sign for positive) and d is a digit from 0 to 9.

10 Sal Reference ODT-DATA

,/ ."
.,~

(

(

Data Types

ODT-DATA accepts money values on input either as character strings or as numbers, as follows:

Character string input - '$sdddddddddddddd.dd'

The dollar sign is optional. The sign defaults to + if not specified. A cents value of zero C" .00")
need not be specified.

Numeric input ODT-DATA accepts any valid integer or floating­
point number on input as a money value, and con­
version to the money data type occurs automatically.

Note that several environment variables described in Administering ODT-DATA affect the
display of money values. The II_MONEY _FORMAT environment variable can be used to
set the currency symbol. As indicated above, the default currency symbol is the dollar sign
($). The II_MONEY _PREC environment variable sets the precision with which money values
are displayed. The default precision is two decimal digits. The II_DECIMAL environment
variable sets the character used to indicate the decimal point, by default a period C.).

Storage Formats for Data Types

Every data item in an ODT-DATA database is stored in one of the following storage formats:

Notation Type Range

char(l) - char(2000) character a string of 1 to 2000 characters

c1- c2000 character a string of 1 to 2000 characters

varchar(l) - varchar(2000) character a string of 1 to 2008 characters

vchar(l) - vchar(2008) character a string of 1 to 2008 characters

integerl I-byte integer -128 to +127

smallint (integer2) 2-byte integer -32,768 to +32,767

integer (integer4) 4-byte integer -2,147,483,648 to +2,147,483,647

Chapter 1: SOL Syntax SOL Reference 11

Constants

Notation Type Range

float4 4-byte floating -10**38 to +10**38
(7 decimal precision)

float (float8) 8-byte floating -10**38 to +10**38
(16 decimal precision)

date date (12 bytes) I-jan-1582 to 31-dec-2382 (for ab-
solute dates) and -800 years to
800 years (for time intervals)

money money (8 bytes) $-99999999999999.99 to
$99999999999999.99

NOTE: c and vchar are supported for compatibility with previous ODT-DATA versions. Char
and varchar are now preferred.

NOTE: If your hardware supports the IEEE standard for floating-point numbers, then the
float type is accurate to 15 decimal precision, and money type is accurate to 14
decimal precision (that is, -$dddddddddddd.dd to +$dddddddddddd.dd). Also, float­
ing-point numbers range from -10**256 to +10**256.

The designations integer2, integer4, and float8 may be used in place of smallint, integer,
and float, respectively.

Constants
There are two basic types of constants: string and numeric. In addition, there is a special
constant, NULL. SQL also provides system constants to provide data that can help improve
query performance. Constants are also known as "literals."

Each type of constant is assigned a default data type, but you can assign them another data
type if you wish.

12 SOL Reference DDT-DATA

,/

""'---_/

(

(

(

Constants

String Constants

String constants are represented by a sequence of characters enclosed in apostrophes (' ').
Printing characters are represented literally. To represent a non-printing character you must
use the hex constant. (The hex constant is only necessary in the Terminal Monitor; in
Embedded SQL, any sequence of characters that can be assigned to a host program variable
may be assigned to a character string.)

A hex constant is a special kind of string constant. It is represented by an "X" followed by a
string enclosed by apostrophes that contains an even number of characters from the set
{['A'-'F'],['a'-'f'],['O'-'9']}. For example, this represents the ASCII string "ABC<carriage
return>":

X'4142430D'

SQL string constants do not suppon the octal representation of ASCII.

The default data type for string constants is varchar, but they may be assigned without explicit
conversion to any of the character data types or the money data type.

Numeric Constants

Numeric constants are represented by a sequence of digits, an optional decimal point, and an
optional exponent representation. If no decimal point is specified, and if the value of the
constant is within the legal range, the default is integer. Otherwise, the default is float.
Numeric constants may be assigned without explicit conversion to any of the numeric data
types or the money data type.

Null Constant

The NULL constant may be assigned to any nullable data type.

Chapter 1 : Sal Syntax Sal Reference 13

Structured Data

Structured Data

Tables

All data in ODT-DATA is stored as tables. A table is a named array of values. The array is
composed of columns (sometimes called fields or attributes) and rows (sometimes called
records or tuples). Table names may not begin with "ii".Here is an example of a table:

Name Party Age Funding

Robbins Republican 42 1250000

Capetti Democrat 52 946000

Greenberg Citizens 48 766000

Hernandez Democrat 38 987000

Johnson Independent 46 854000

Chang Republican 55 1540000

Columns

Each column of a table has a name, which must be a legal ODT-DATA name. All values in any
given column have the same storage format (that is, data type and width in bytes). The
maximum number of columns in a table is 127.

Rows

A row represents an individual record in a table. All rows in a table are of the same width in
bytes, and they each maintain the same column types. The maximum length of a row is 2000
bytes.

14 SOL Reference DDT-DATA

/- -"',

(

(

Structured Data

A Sample Database

A sample database is used for examples throughout this reference manual. The name of the
database is "empdata," and its description appears in the following table:

Table Name Column Name Data Type

employee enD smallint

ename char(lO)

age integer 1

job smallint

salary float4

dept smallint

dept dno smallint

dname char(lO)

mgr smallint

floor integerl

job jid smallint

jtitle char(lO)

lowsal float4

highsal float4

Chapter 1 : Sal Syntax SOL Reference 15

Structured Data

Correlation Name

Consider the following select statement:

select
from
where

employee.eno, employee.ename
employee
employee.dept = 23;

This statement retrieves employee numbers and names for all employees in department 23.
Its select-from-where structure is typical of retrieval statements in SQL.

Now consider the following alternative formulation of the same query:

select
from
where

e.eno, e.ename
employee e
e.dept = 23;

In the second query example, "e" is a correlation name. A correlation name is also known as
a range variable because it is used in an SQL statement to "range over" some table. It is
specified as shown, by its appearance following the table name in a from clause (or an update
clause, in the case of an update statement). At any particular point during execution of the /' -'~~
statement in question, the correlation name serves to mark a particular row of the specified~,~
table as the current row for processing. Statement execution completes when every row of
the table has been marked and processed in this way. Thus, in the earlier example, "e" marks
each employee record in turn, and the query is complete when all employee records have been
processed.

It is not always necessary to introduce a correlation name explicitly; the first formulation
shown above is perfectly legal SQL. However, the correlation name is still present there
implicitly. The symbol "employee" in that version is actually being used to play two roles:
(1) it serves to identify the employee table and, (2) it also serves as a correlation name ranging
over that table. Note that it is never wrong, and sometimes it is necessary, to introduce
correlation names explicitly.

A correlation name can be any sequence of alphanumeric characters acceptable as a name (see
"Names" earlier in this chapter).

16 SOL Reference GOT· DATA

(

Structured Data

Finally, it is not always necessary to qualify column names explicitly with the correlation
name. An unqualified column name (appearing in, for example, a select or a where clause)
is assumed to be implicitly qualified by a table or correlation name appearing in the from
clause (or update clause) on the same syntactic level as that unqualified reference (see
"Subqueries" later in this chapter). Thus, for example, the first query could be simplified to
the following:

select
from
where

eno, ename
employee
dept = 23;

"Eno," "ename," and "dept" are all implicitly qualified by "employee." Likewise, the second
query could be simplified to the following:

select
from
where

eno, ename
employee e
dept = 23;

"Eno," "ename," and "dept" are now all implicitly qualified by "e."

Note that, to prevent ambiguity, column names must be qualified explicitly when it is not clear
which table the column comes from.

The maximum limit to the number of correlation and table names that can be referenced in a
single statement is 30. Under certain circumstances, the limit may be less.

Chapter 1 : Sal Syntax Sal Reference 17

Structured Data

Groups

It is sometimes convenient to think of the rows of a table as being divided up into groups or
partitions by the value(s) of some column(s) of that table. For example, the candidates table
presented in the "Tables" section might be grouped by party, to yield the result shown in the
following table:

Name

Greenberg

Capetti

Hernandez

Johnson

Chang

Robbins

Party

Citizens

Democrat

Democrat

Independent

Republican

Republican

Age

48

52

38

46

55

42

Funding

766000

946000

987000

854000

1540000

1250000

Note that such grouping is purely conceptual; the table is not really rearranged in the database.
The grouping is specified dynamically by means of a group by clause, as follows:

select
from
group by

candidates
party;

The purpose of such grouping is generally to allow some set function to be computed for each
group. For example:

select
from
group by

party, avg (funding)
candidates
party;

This statement will retrieve each party name, together with the average funding for that party,
from the candidates table.

18 SOL Reference ODT-DATA

(

Expressions

Expressions
Expressions are used in SQL in many contexts; for example, to denote values to be retrieved
(in a select clause) or compared (in a where clause). SQL expressions fall into two broad
classes: those that involve set functions and those that do not. Most of the rules for forming
expressions apply equally to each of the two classes, with the following exceptions:

• The argument to a set function is an expression, but that expression cannot in turn
involve any set functions. In other words, no nesting of set functions is permitted.

• Expressions involving set functions can appear only in certain specific contexts.

• Constants are considered expressions.

The sections later in this chapter titled "Scalar Functions" and "Set Functions" provide more
information about functions and expressions.

Columns

A column name, explicitly or implicitly qualified, is an expression. For example, each of the
following names in an expression:

employee.ename

e.ename

ename

Parentheses

An expression can be enclosed in parentheses, such as ('J. J. Jones'), without affecting its
meaning.

Chapter 1 : Sal Syntax Sal Reference 19

Expressions

Arithmetic Operations

Expressions of numeric types can be combined arithmetically to produce other expressions.
ODT-DATA supports the following arithmetic operators (in descending order of precedence):

+,- plus, minus (unary)

** exponentiation

*j multiplication, division

+,- addition, subtraction (binary)

Unary operators group from right to left, and binary operator group from left to right.

Parentheses can force the desired order of precedence. For example:

(job.lowsal + 1000) * 12

In this expression, the "+" operator is forced to take precedence over the "*,, operator.

A variety of arithmetic checks, such as integer overflow, integer divide by zero, floating-point
underflow, floating-point overflow, and floating-point divide by zero, can be enabled by
specifying the -x flag on the sqJ command line. Refer to the sqJ command in Chapter 4,
"ODT-DATA Operating System Commands."

The + operator can also be used to concatenate strings. For example

, This ' + ' is ' + ' a ' + ' test. '

This gives the value:

'This is a test.'

When used in this fashion, the + operator behaves exactly like the concat function.

20 SOL Reference GOT-DATA

(

(

(~

Expressions

Arithmetic Operations on Dates

ODT-DATA SuppOrts a limited set of arithmetic operations on items of the date data type:

Addition:

interval + interval -> interval

interval + absolute -> absolute

Subtraction:

interval interval -> interval

absolute absolute -> interval

absolute interval -> absolute

ODT-DATA does not support multiplication or division of date values.

ODT-DATA also enables you to convert date constants into numbers of days relative to an
absolute date. For example, to convert today's date to the number of days since January 1,
1900, use the expression:

num_days = int4 (interval ('days' , 'today' -
date('l/l/OO')))

To convert back, use:

(date('l/l/OO') + concat(char(num_days), , days'))

where "num_days" is the number of days added to the date constant.

Note that for comparisons, a blank (default) date is less than any interval date. All interval
dates are less than all absolute dates. Intervals are converted to comparable units before they
are compared. For instance, date ("5 hours") is greater than date ("200 minutes"). Note also
that dates are stored internally in an absolute format. For this reason, "5:00 pm pst" compares
as equal to "8:00 pm est."

Chapter 1 : Sal Syntax Sal Reference 21

Expressions

Note also that this expression yields March 1:

date ("l-feb") + -1 month"

Adding a month always yields the same date in the next month unless there are fewer days in
the next month, in which case it yields the last day of the next month. For instance, adding a "­
month to May 31 yields June 30. Similar rules hold for subtraction. Moreover, similar rules
apply for adding and subtracting years.

When adding intervals, each of the units is added. For example:

date("6 days") + date("5 hours")

This yields "6 days 5 hours." To yield "4 years 6 months 1 hour 40 minutes," use the
expression:

date("4 years 20 minutes") + date("6 months 80
minutes")

When adding or subtracting intervals, or when subtracting absolute dates, overflow or
underflow are propagated upward, except that neither passes from days to months.

Type Conversion

When two numeric expressions are combined, ODT-DATA converts as necessary to make the
storage formats (that is, data types and widths) identical. The resulting expression then has
the same storage format.

When ODT-DATA operates on an integer and a floating-point number, the integer is converted
to a floating-point number before the operation. When ODT-DATA operates on two integers
of different sizes, the smaller is converted to the size of the larger. When operating on two
floating point numbers of different sizes, ODT-DATA converts the larger to the size of the
smaller number.

When multiplying or dividing a money data item by a non-money item (that is, integer or
floating-point), ODT-DATA converts the non-money multiplier or divisor to the money type
prior to calculation.

22 SOL Reference ODT-DATA

(--

(

(

Expressions

The following table summarizes the possible results of numeric combinations:

integer1 smallint integer float4 float money

integer 1 integer 1 smallint integer float4 float money

smallint smallint smallint integer float4 float money

integer integer integer integer float4 float money

float4 float4 float4 float4 float4 float4 money

float float float float float4 float money

money money money money money money money

For example:

(job .lowsal + 1000) * 12

For this expression, the first operator (+) combines a float4 expression Uob.lowsal) with a
smallint constant (1000). The result is float4. The second operator (*) combines the float4
expression with a smallint constant (12), resulting in a float4 expression.

Note that this produces a float4 expression:

(job.lowsal + 1000) * 12

On the other hand, this produces a float expression:

float8«job.lowsal+1000)*12)

ODT-DATA also provides specific type converison functions. These are discussed later in
"Explicit Type Conversion Functions."

Chapter 1: Sal Syntax SOL Reference 23

Expressions

Numeric Overflow

Numeric overflow can occur when the results of a computation are larger than can be held by
the data type the computation is performed in. For example, in the following statement the
calculation on the right-hand side is done in integer2 arithmetic. If the integer2 arithmetic
results in a value greater than 32767, the largest possible integer2 value, then overflow
occurs.

update emp
set integer4col = integer2col * integer2col ;

You can avoid many common types of overflow by converting to a higher precision before
performing the calculation. For example

update emp
set integer4col=int4(integer2col) * int4(integer2col);

(For more information on the int4 function, see "Explicit-Type Conversion Functions" later
in this chapter.)

Numeric overflow, underflow (for floating-point calculations), and division by zero are
controlled by the -x command-line flag on the sql database start-up statement. ODT-DATA
either continues as if no error occurred, signals an error and aborts the query, or signals a
warning and continues, depending on how the -x flag is set. See the sql statement in Chapter
4, "ODT-DATA Operating System Commands," for more information.

Default Character-Type Conversion

Whenever a string of type c or char is put into a column defined as type vchar or varchar,
all the string's trailing blanks are removed. Conversely, whenever a string of type vchar or
varchar is put into a column defined as type c or char, the string is padded with blanks to fill
out the column's defined width, if necessary.

Explicit-Type Conversion Functions

In addition to ODT-DATA's default type conversions, many explicit-type conversion functions
are available. The following explicit-type conversion functions can be used:

24 SOL Reference COT-DATA

-'--._.//

Expressions

Name Operand Type Result Description
(Format)

(c(expr) any c Converts any value to c string.

char(expr) any char Converts any value to char string.

date(expr) c, vchar, date Converts c, char, \'archar, or vchar
char, varchar string to internal date representation.

dow(expr) date c Converts absolute date into its day of
week (for example, 'Mon,,' 'Tue').

float4(expr) any except date float4 Converts non-date expression to float4.

float8(expr) anyexceptdate float Converts non-date expression to float.

hex(expr) varchar, char, c, varchar Returns the hex representation of the ar-

(
vchar gument string. The result length is 2

times the input string length. For ex-
ample:
hex(' A') - '61' (ascii) or 'Cl' (ebcdic).

int1(expr) anyexceptdate integer 1 Converts non-date expression to in-
tegert.

int2(expr) anyexceptdate smallint Converts non-date expression to smal-
lint.

int4(expr) an yexceptdate integer Converts non-date expression to in-
teger.

money(expr) anyexceptdate money Converts non-date expression to inter-
nal money representation.

(vchar(expr) any vchar Converts any value to a v,char string.
This function removes trailing blanks,
if any, from c or char string expres-
sions.

Chapter 1 : SOL Syntax Sal Reference 25

Expressions

Name Operand Type Result Description

varchar
(expr)

any

Scalar Functions

(Format)

varchar Converts any value to a varchar string.
This function also removes trailing
blanks, if any, in c or char string ex­
pressions.

Two kinds of functions are provided: scalar functions and set functions. Scalar functions take
as their argument a single-valued expression (or, in some cases, two such expressions). Set
functions take as their argument an entire set of scalar values. This section is concerned only
with scalar functions; set functions are described in a following section.

A scalar function reference consists of the function name, followed by a parenthesized
expression (or pair of expressions) representing the function argument(s). A scalar function
reference is an expression. Scalar function references can be nested to any level.

The explicit-type conversion functions discussed earlier are scalar functions; the other
available scalar functions are described next.

Numeric Functions

In addition to the type conversion functions described above, the following numeric functions
are available:

Name Format(Result) Description

abs(n) all numeric types and absolute value of n
money

atan(n) float arctangent of n

cos(n) float cosine of n

exp(n) float exponential of n

log(n) float natural logarithm of n

26 SOL Reference DDT-DATA

(".
\
,,~ ./

(

(

Expressions

Name

mod(n.b)

sin(n)

sqrt(n)

For example:

Format(Result)

integer, smallint,
integer1

float

float

exp (job.lowsal)

Description

n, modulo b. n. and b must be in­
tegers

sine of n

square root of n

This gives the exponential of "job.lowsal" as a float expression.

String Functions

The following functions operate on c, char, vchar, or varchar data. The expressions c1 and
c2 represent arguments for the various functions. They can represent any of the string types,
except where noted. The expressions len and nshift represent integer arguments.

Name Format(Result) Description

concat(c1.c2)

1st String

c

c

c, vchar or
varchar

2nd String

c

vchar

Chapter 1 : SOL Syntax

Concatenates one string to another. The
result size is the sum of the sizes of the
two arguments. If the result is a c or char
string, it is padded to achieve the proper
length. To determine the characteristics
of concatenating one string to another, see
the following chart.

Trim Blanks Result Type

from 1st? from 2nd?

Yes c

Yes c

SOL Reference 27

Expressions

1st String 2nd String Trim Blanks Result Type

from 1st? from 2nd?
,/ ~',

c char Yes c ", ./

C varchar Yes c

vchar c No c

char c Yes c

varchar c No c

vchar vchar No No vchar

vchar char No Yes vchar

vchar varchar No No vchar '"
char vchar Yes No vchar -~

varchar vchar No No vchar

char char No char

char varchar No char

varchar char No char

varchar varchar No No varchar

Name Format(Result) Description

left(cl.len) any character Returns the left-most len characters of cl. If
(~
I

data type the result is a fixed-length c or char string. it ""./
is the same length as cl. padded with blanks.
The result format is the same as cl.

28 Sal Reference ODT-DATA

Expressions

Name Format(Result) Description

length(el) smallint If el is a fixed-length c or char string, returns

(the length of el without trailing blanks. If el
is a variable-length string, returns the number
of characters actually in el.

locate(el,c2) smallint Returns the location of the first occurrence of
c2 within el, including trailing blanks from c2.
The location is in the range 1 to size(el). If c2
is not found, the function returns size(el) + 1.

lowercase(c1) any character Converts all uppercase characters in cl to
data type lowercase.

pad(el) vchar or varchar Returns el with trailing blanks appended to
el; for instance, if el is a varchar string that
could hold 50 characters but only has two char-
acters, then "pad(el)" appends 48 trailing

(blanks to el to form the result.

right(el,len) any character Returns the right-most len characters of el.
data type Trailing blanks are not removed first. If el is

a fixed-length character string, the result is
padded to the same length as el. If el is a vari-
able-length character string, no padding oc-
curs. The result format is the same as el.

shift(el,nshi!t) any character Shifts the string nshift places to the right if
data type nshift> 0 and to the left if nshift < O. If el is a

fixed-length character string, the result is
padded with blanks to the length of el. If el is
a variable-length character string, no padding
occurs. The result format is the same as el.

f size(el) smallint Returns the declared size of c1without
removal of trailing blanks.

Chapter 1 : SOL Syntax SOL Reference 29

Expressions

Name

squeeze(c1)

trim(c1)

uppercase(c1)

Format(Result)

vchar or
varchar

vchar or
varchar

any character
data type

Description

Compresses white space. White space is
defined as any sequence of blanks, NULL
characters, newlines (line feeds), carriage
returns, horizontal tabs, and form feeds (verti­
cal tabs). Trims white space from the begin­
ning and end of the string, and replaces all
other white space with single blanks. This
function is useful for comparisons. The value
for c1 must be a string of variable-length char­
acter string data type (not fixed-length charac­
ter data type). The result is the same length as
the argument.

Returns c1 without trailing blanks. The result
has the same length as c1.

Converts all lowercase characters in c1 to up­
percase.

The string functions can be arbitrarily nested to achieve other string functions. For example:

left (right (x.name, size(x.name) - 1), 3)

This returns the substring of "x.name" from character positions 2 through 4.

You can also nest string functions within themselves. For example:

cone at (concat(x.lastname, ','), x.firstname)

This concatenates "x.lastname" with a comma and then concatenates "x.firstname" with the
first concatenation result. Note, however, that the same result can be achieved with the +
operator:

x.lastname +

30 Sal Reference

, , , + x.firstname

ODT·DATA

.. "

(

(

Expressions

Date Functions

ODT-DATA SuppOrts two functions that derive values from absolute dates and one function
that derives a value from interval dates. These functions operate on rows that contain date
values. The unit expression is a quoted string that represents the part of the date to use in the
calculation. Legal values are:

Unit Value

second seconds sec secs

minute minutes min mins

hour hours hr hrs

day days

week weekswk wks

month months mo mos

quarter quarters qtr qtrs

year years yr yrs

The date expression must be an absolute date and not a date interval.

Chapter 1: SOL Syntax SOL Reference 31

Expressions

Name Format (Result) Description

date trunc
(unit,date)

date

32 Sal Reference

Returns a date value that represents the input date
truncated to the level of granularity expressed in the
unit. By using the date_trunc function you can
group all the dates within the same month or year,
and so forth.

For example:

date_trunc('month' ,date (' 23-oet-1985 12 :3':;'))

This returns "I-oct-I985" as its value. Another ex­
ample is:

date_trunc('year' ,date('23-oet-1985'))

This returns "I-jan-I985" as its value.

All truncation takes place in terms of calendar years
and quarters ("I-jan," "I-apr," "I-jun," and "I-oct").
If you need to truncate in terms of a fiscal year, simp­
ly offset the calendar date by the number of months
between the beginning of your fiscal year and the
beginning of the next calendar year ('6 mos' for a fis­
cal year beginning July 1, or '4 mos' for a fiscal year
beginning September 1). For example:

date_trune('year' ,date+'4 mos') -'4 mes'

Monday constitutes the starting day for weeks. Kote
that the beginning of a week for an early January
date may fall into the previous year.

DDT-DATA

(

(-

Expressions

Name Format (Result) Description

date_part integer Returns an integer representing one component of the
(unit,date) input date. The unit parameter represents the desired

component. This function is useful in set functions
and in assuring correct ordering in complex date
manipulation.

For example, if date Jield contains the value "23-oct-
1985," then this returns a value of 10:

date_part('month',date(date_ field))

This returns a value of 23:

date_part ('day' ,date (date field))

Months are ordered with January set to month 1.
Hours are set to a 24-hour clock. Quarters are num-
bered 1 through 4. Weeks return a number repre-
senting the number of the week since the beginning
of the year in which the input date falls. Week 1
begins on the first Monday of the year. Dates before
the first Monday of the year are considered to be in
weekO.

interval float Converts a date interval into a floating-point constant
(unit,date) in user-specified units. Allowable values for unit are

seconds, sees, minutes, mins, hours, hrs, days,
weeks, wks, months, mos, quarters, qtrs, years or
yrs.

NOTE: The interval function assumes that there are 30.4375 days per month and 365.25
days per year when using the mos, qtrs, and yrs specifications.

Chapter 1 : Sal Syntax Sal Reference 33

Expressions

The Ifnull Function

The ifnull function allows users to return a fixed value instead of a null value when a null is
encountered. The ifnull function is defined as ifnull(vI.v2). The function takes two input
arguments of the same data type, vI and v2. The resulting value is the same type as the type
specified in vi and v2. If the value of vi is not null, vi is returned. If the value of vi is null.
v2 is returned. For example:

ifnull (i2. i4) results in i4
ifnull (i4, i2) results in i4

The result is the "larger" of the data types where

f8 > f4 > i4 > i2 > il

and

varchar > text> char> c

and the length is taken from the longest value. Therefore:

ifnull (varchar (5), c 10)

results in varchar (10).

The result is nullable if either argument is nullable. The vi value is not required to be nullable,
although in most applications it would be nullable.

Dbmsinfo() Function

The dbmsinfo() function is used to request information from a database. This function
queries the database from SQL.

The dbmsinfo() function takes the place of _username. This function has the syntax:

dbmsinfo (request_name)

The following request names can be used with dbmsinfo().

34 SOL Reference OOT-OATA

(

Expressions

Request Name

transaction state

autocommit state

bin tim

et sec

dio cnt

bio cnt

dba

username

version

database

terminal

query)anguage

Response Description

'1' means in a transaction; '0' means not in a transaction

'1' means autocommit is on; '0' means off

Returns the current time and date in an internal fonnat, repre­
sented as the number of seconds since January 1, 1970 00:00:00
GMT

CPU time for session, in milliseconds

Elapsed time for session, in seconds

Direct I/O requests for session

Buffered I/O requests for session

Page faults for server

ODT-DATA usemame of the database owner

ODT-DATA usemame of the user currently running ODT-DATA
(like user)

ODT-DATA version number (for example, '6.0/01')

Database name

Terminal address

SQL

These request names are case insensitive, and dbmsinfo() always returns a varchar(32) as
the result. If dbmsinfo is given a request name it does not recognize, it returns an empty
string.

The following query returns a variable-length string containing the answer, that is, '1':

select dbmsinfo('transaction_state')

Chapter 1: Sal Syntax Sal Reference 35

Expressions

Set Functions

A set function is a function that operates on an entire column of values, not just a single value.
Consider the following example:

select
from
where

sum (employee.salary)
employee
employee.dept = 23;

This statement retrieves the total salary for employees in department 23. The argument to the
function is the set (column) of employee salary values where the employee department is equal
to 23.

The following set functions are supported:

Name Format(Result) Description

count integer Count of occurrences

sum integer, float, money Summation

avg float, money Average (sum/count)

max same as argument Maximum value

min same as argument Minimum value

The general syntax of a set function reference takes the form:

set Jun ([distinct I all] expr)

where setjun denotes a set function, expr denotes any expression that does not itself include
a set function reference (at any level of nesting), and the optional distinct keyword indicates
that duplicate values are to be eliminated from the argument before the set function is
performed. The optional keyword all indicates the default condition, in which duplicate
values are not eliminated. Note that it makes no sense to use distinct in conjunction with the
functions min and max.

36 SOL Reference ODT-DATA

(

The count function includes a special case. The set function reference

count(*)

may be used to count the number of rows in the result table. For example:

select
from
where

count(*)
employee
dept = 23;

Expressions

This statement counts the number of employees in department 23. The argument "*,, cannot
be qualified by all or distinct.

NULL values are ignored by the set function. Here again, count(*) is the exception, because
it counts rows rather than columns. Consider the following table:

Name Exemptions

Smith o

Jones 2

Tanghetti 4

Fong NULL

Stevens NULL

Running

count (cl)

returns the value "3" whereas

count(*)

(returns "5".

Chapter 1 : Sal Syntax Sal Reference 37

Expressions

The following restrictions apply to the use of set functions:

• First, as already mentioned, they cannot be nested.

• Second, set function references, or expressions
that include such a reference as

sum (employee. salary) / 25

are permitted only in the context of a select or having clause. Furthermore, any
column names appearing (in such a select or having clause) outside such a set
function reference must have been specified as one of the operands in a group by
clause at the same syntactic level as that select or having clause.

If the argument to a set function evaluates to an empty set, then the value returned is as follows:

count

sum, avg

max, min

zero

the NULL value

the NULL value

The group by clause allows set functions to be performed on groups of rows, according to
the values in specified columns of the rows.

Set functions are also available in the ODT-DATA REPORTS subsystems (Report-Writer and
Repon-By-Forms). There they are known as aggregate functions.

IFNULL and Set Functions

As stated above, the sum, avg, max, and min set functions can return a null value, when the
argument to a set function evaluates to an empty set. This can occur even when the column
the set function is operating on is not nullable. To assure that a set function never returns a
null, use the ifnull function. Ifnull returns the normal set function result unless that result is
null, in which case it returns the second argument to the ifnull function.

The following returns -1 if sum(employee.salary)/25 is null:

ifn°.:ll (sum (employee. salary) /25, -1

The following returns 0 if max(s.empno) is null:

ifn°.:ll (max(s.empno), 0)

38 Sal Re:erence COT-DATA

/

/

I
\. j

Search Conditions

Search Conditions
Search conditions are used in where and having clauses to qualify the selection of data.
Search conditions are composed of predicates of various kinds, optionally combined together
by means of parentheses and the logical operators and, or and not. Thus, any of the following
is a legal search condition:

predicate
not search condition
search condition or search condition - -
search condition and search condition - -
(search_condition)

where search_condition stands for an arbitrary search condition.

Of the three logical operators, not has the highest precedence, followed by and, with or having
the lowest precedence. They group from left to right. The parentheses may be used for
arbitrary grouping.

{_ There are seven kinds of predicates, each described in its own section below:

(

comparison predicate
like predicate
between predicate
in predicate
any-or-all predicate
exists predicate
is NULL predicate

Predicates evaluate to "true," "false," or "unknown." They evaluate to "unknown" if one or
both operands are the NULL value (the "is NULL" predicate is the exception). When
predicates are combined using logical operators (and, or, or not) to fonn a search condition,
the search condition evaluates to "true," "false," or "unknown" as determined by the following
tables:

Chapter 1: Sal Syntax Sal Reference 39

Search Conditions

unknown

false false

false unknown

true

true false unknown

true unknown unknown

Not(true) is false, not(false) is true, not (unknown) is unknown.

After all search conditions are evaluated, the value of the where or having clause is
determined. The where or having clause can be "true" or "false" only; "unknown" values
are considered "false."

Subqueries

Nesting of queries is accomplished in SQL by means of a search condition feature known as
the subquery. A subquery is a subselect used in a predicate of a search condition. (See the
section called "Select" in this chapter for more information about subselects.) The search
condition containing the subquery can be part of another subquery, or of any data manipulation
statement permitting search conditions. Multiple levels of nesting are permitted. Here is an
example of a subquery:

40

select
from
where

SOL Reference

ename
employee
dept in
(select dno
from dept
where floor 3);

DDT-DATA

,/.~
I .
'", /

(

(

Search Conditions

The expression in parentheses is the subquery; it evaluates to the set of department numbers
for departments on the third floor. The outer query then retrieves the names of employees
whose department number is in that set, that is, names of employees who work on the third
floor.

Subqueries often take the place of expressions in predicates. Note that sub queries can be used
in place of expressions only in the specific instances outlined in the following sections on
predicate types.

The previous example serves to illustrate the concept of syntactic level. Briefly, the select,
from, and where clauses in the subquery are considered to be at a different syntactic level
from the select, from, and where clauses in the outer subselect. More generally, two syntactic
units within the same statement are considered to be at the same syntactic level if and only if
there exists a subselect within that statement such that the two syntactic units are both
immediately contained within that subselect (that is, neither one is contained within a subselect
(subquery) nested within that subselect).

The syntax of the subquery is identical to that of the subselect, except for one restriction:
expressions in the select clause cannot be assigned result column names.

A subquery may include references to correlation names defined (explicitly or implicitly)
outside the subquery. For example:

select
from
where

ename
employee empx
salary >
(select avg (salary)
employee empy where
empy.dept = empx.dept);

from

("Select names of employees with salary greater than the average for their department.")

Here the subquery includes a reference to a correlation name (empx) defined in an outer query;
that is, at a different syntactic level. Note that the reference must be explicitly qualified here;
otherwise, it would be assumed to be implicitly qualified by "empy." The overall query is
evaluated by letting "empx" take each of its permitted values in turn (that is, letting it range
over the employee table), and for each such value of "empx," evaluating the subquery. Note
that at least one of the correlation names must be explicit in this example (either "empx" or
"empy," but not both, could be allowed to default to simply "employee").

Chapter 1 : Sal Syntax Sal Reference 41

Search Conditions

Comparison Predicate

A comparison predicate takes the form:

expression _1 comparison_operator expression _2

where comparison_operator is one of the following:

= equal to

!= not equal to .

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Note that the comparison operator "not equal to" may also be indicated by "< >" or "1\=".

All comparison operators are of equal precedence.

NOTE: If a subquery is in the right-hand argument of a comparison predicate, the subquery
may return at most one row. If the subquery returns zero rows, the comparison
predicate evaluates to "false."

If there is a NULL value on either or both sides of any comparison operator, it evaluates to
"false."

Like Predicate

The like predicate provides the only pattern-matching capability in SQL for the character data
types (char, varchar, c, and vchar). It takes the following form:

columnname [not] like pattern [escape escape_character]

where pattern is a string constant, not a column. The pattern-matching characters are the (~\
percent sign (%) to denote zero or more arbitrary characters, and the underscore (J to denote (
exactly one arbitrary character. ',,-. /

42 Sal Reference DDT-DATA

Search Conditions

If the escape clause is specified, the escape character' escapes' the pattern matching characters
mentioned previously. In addition, the escape_character, if specified, also escapes the bracket
characters ([and]) with a twist. When the escape character escapes the pattern match
characters, percent and underscore, it means to treat these characters like normal characters
in the string; do not use their pattern-matching meanings. When the escape character escapes
a bracket, it means to treat this character like a pattern-matching character. If a bracket is not
escaped, it is treated like a normal character in a string.

Between Predicate

The operators between and not between have the following meanings:

Operator Meaning

y between x and z x< y ,and y< z

y not between x and z not (y between x and z)

In the foregoing, x, y, and z are expressions. Subqueries may not be substituted for any of the
expressions.

(In Predicate

The operators in and not in (followed by a parenthesized list of expressions) are defined as
follows:

Operator Meaning

y in (x • z) y = x or ... or y = z

y not in (x • z) not (y in (x • z»

In the foregoing, x, y, and z are expressions and may not be sUbqueries. If there is only one
expression in the list, the parentheses are optional.

Another version of the in predicate takes the form:

expression [not] in (subquery)

The subquery must contain a reference to exactly one column in its select clause.

Chapter 1 : Sal Syntax Sal Reference 43

Search Conditions

Any-or-AII Predicate
An any-or-all predicate takes the form:

any-oreal/-operator (subquery)

The subquery must have exactly one expression in its select clause (so that it evaluates to a
set of scalar values, not a set of rows). The any-or-all operator is one of the following:

=any =all
!=any !=all
<any <all
<=any <=all
>any >all
>=any >=all

It is permissible to include a space between the comparison operator and the keyword any or
all.

Let "$" denote anyone of the comparison operators =, !=, <, <=, >, >=. Then the predicate

x $any (subquery)

evaluates to "true" if and only if the comparison predicate

x$y

is true for at least one value y in the set of values represented by subquery. If the subquery is
empty, the $any comparison fails (evaluates to "false"). Likewise, the predicate

x $all (subquery)

is true if and only if the comparison predicate

x$y

is true for all values y in the set of values represented by subquery. If the subquery is empty,
the $all comparison succeeds (evaluates to TRUE).

44 Sal Reference DDT-DATA

(

(

Search Conditions

The operator =any is equivalent to the operator in. For example:

select ename
from employee
where dept in

(select dno
from dept
where floor = 3) ;

This may be rewritten as:

select ename
from employee
where dept = any

(select dno
from dept
where floor = 3) ;

The operator some is a synonym for operator any and would appear as:

select
from
where

ename
employee
dept = some
(select dno
from dept
where floor = 3);

Exists Predicate
An exists predicate takes the form:

exists (subquery)

It evaluates to "true" if and only if the set represented by subquery is nonempty. For example:

select
from
where

ename
employee
exists
(select *
from dept
where dno = employee.dept
and floor = 3);

("Names of employees who work on the third floor.")

It is typical, but not required, for the subquery argument to exists to be of the form "select *".

Chapter 1 : Sal Syntax Sal Reference 45

Data Manipulation Statements

Is NULL Predicate

The is NULL predicate takes the fonn:

is [not] null

where x is null is true if and only if x is the NULL value. Because you cannot test for NULL
by using the comparison operator "=", you must use this predicate to find out whether an
expression is NULL.

Data Manipulation Statements
The SQL data manipulation statements are select, update, delete, and insert.

Select

The general syntax of select is:

subselect
{union [all] subselect}
[order by result_column [asc I descH, result_column [asc I desc]}]

where:

• subselect union subselect yields all results that either subselect run individually
would yield.

• Corresponding data types across subselects must be coercible into a common data
type. They must be either all character types or all numeric types.

• All subselects in a select have the same number of columns in their result table.

• Each result_column in the order by clause consists of either a result column name
or an integer constant in the range 1 - n, where n is the number of columns in the
result table of each of the subselects.

• The optional keywords asc and desc specify ascending and descending sort se-
~~

quence, respectively. If neither is specified for a particular column, asc is assumed (
by default. \, ./

• Each subselect has the syntax shown below.

46 SOL Reference DDT-DATA

(

Data Manipulation Statements

The syntax for subselect is:

select [alIldistinct] expression [as result_column] (, expression [as result_column])
from table [corr _name] {, table [corr _name]}
[where search_condition]
[group by column {, column}]
[having search_condition]

The keyword distinct indicates that duplicate rows are to be eliminated. The keyword all, the
default condition, causes duplicate rows to remain.

The expressions in the select clause can be any expressions constructed in accordance with
their rules (refer to the earlier section titled "Expressions" in this chapter). They may also take
one of the following forms:

correlation name.'"

table.'"

'"

meaning all the columns of the table denoted
by correlation_name.

meaning all the columns of table.

meaning all the columns of all the tables
named in the from clause. This cannot be part
of a comma-separated list; it must be the only
statement in the select list.

Aresuiccolumn may be assigned to any expression that denotes a single column in the result
table (that is, where expression does not use the "*,, syntax). The result column then appears
in the result table as the column heading for the expression.

The ability to assign a result column name to an expression is of particular benefit when the
expression is not simply a column from a database table. If the expression is such a column,
the column heading in the result table is by default, the name of that column. However, when
the expression is, for example, a scalar or set function or involves a computation, DDT-DATA
returns blanks for the column heading. To override this default, assign the expression an
appropriate result column. The result column, whether default or explicit, is also used in the
order by clause.

The columns in the group by clause are names of columns from the table(s) identified in the
from clause. They may be qualified by a having clause.

Chapter 1 : Sal Syntax Sal Reference 47

Data Manipulation Statements

From a conceptual standpoint, the subselect is evaluated in the following manner:

• The Cartesian product of all tables identified in the from clause is formed. (Cartesian
products are defined later in the section titled "Cartesian Product.")

• From that product, rows not satisfying the search condition specified in the where
clause are eliminated.

• Next, the remaining rows are grouped in accordance with the specifications of the
group by clause.

• Groups not satisfying the search condition in the having clause are then eliminated.

• Finally, the expressions specified in the select clause are evaluated. If the keyword
distinct has been specified, any duplicate rows are eliminated from the result table.

NOTE: Bear in mind that the foregoing explanation is purely conceptual in nature. Actual
evaluation normally does not proceed in precisely the manner described but instead
uses some more efficient method, as determined by the DDT-DATA query optimizer.

If the subselect includes a group by clause, each expression in the select clause must be
single-valued per group. That is, the only data items permitted in such an expression are the
following:

• constants

• the grouping columns

• set function references

As usual, however, terms that can be combined by the use of arithmetic operations, can also
be the arguments to scalar functions, and so on.

If the subselect includes a having clause, each expression in that clause must also be
single-valued per group. If the group by clause is omitted in a subselect with a having clause,
the entire table is considered to be a single group.

The result of a select statement is the union of the results of all subselects in that statement,
ordered in accordance with the specifications of the optional order by clause. Duplicate rows
are always eliminated if either union or distinct is specified. If order by is not specified,
the rows of the result appear in unpredictable order.

48 SOL Reference COT-DATA

(

The following is an example of a select statement:

select eno
from employee
where age 45
union
select mgr
from dept
where floor 3
order by 1;

Update
The general syntax of update is as follows:

update table [corr _name]
set column = expression(, column = expression}
[where search_condition]

Here is an example:

update
set

where

Delete

employee
job = 27,
salary = salary * 1.1
job = 25;

The general syntax of delete is:

delete
from table [corr _name]
[where search_condition]

Here is an example:

delete
where

Chapter 1 : Sal Syntax

from employee
job = 0;

Data Manipulation Statements

Sal Reference 49

Relational Concepts

Insert

The general syntax of insert is:

insert
into table [(column (, column})] source

where source is either a subselect or takes the form:

values (expression (, expression)

Expressions used in the ,'alues clause can be only constants, scalar functions on constants, or
arithmetic operations on constants.

Here are two examples:

insert
into
values

dept (dna, dname, mgr)
(38, 'Purchasing', 21458);

insert
into employee (eno)

select mgr
from dept
where dname , newdept' ;

Relational Concepts
One of the first query languages proposed for use in relational systems was based on relational
algebra. Even though no purely algebraic language is in current use, some of the algebraic
operators have become a standard part of the terminology of relational systems. The most
familiar of these are:

• Projection

• Restriction

• Cartesian product

• Join

50 Sal Reference DDT-DATA

(' -"
l
"'-- -

/

Relational Concepts

This section shows how these operators are expressed in SQL. For illustration, this section
uses the tables "employee," "dept," and "job" defined in the earlier section, "A Sample
Database."

(- Projection

(

(

Projection is an operator that constructs a "vertical section" of an existing table by taking a
subset of its columns. For example:

project employee on (ename, age)

This theoretical statement specifies a table consisting of the "ename" and "age" columns of
the "employee" table.

The select clause in SQL corresponds to projection. For example, the statement "project
employee on (ename, age)" is expressed in SQL as:

select
from

Restriction

ename, age
employee;

Restriction constructs a "horizontal section" of a table by taking those rows that satisfy a
specified condition. For example

restrict employee on (age = 40)

This theoretical statement defines a table consisting of all rows in "employee" for which the
value in "age" is greater than 40.

The where clause of an SQL statement corresponds to restriction. For example, "restrict
employee on (age >40)" is expressed in SQL as:

select
from
where

Chapter 1 : SOL Syntax

*
employee
age >40;

SOL Reference 51

Relational Concepts

Cartesian Product

The Cartesian product of two tables, for example, A and B, is a table (denoted, for example,
by A *B) consisting of all concatenations of rows from A with rows from B. That is, each row
t in A *B is of the form:

t=ab

where a is a row from A and b is a row from B. and every distinct pair (a,b) produces a row
inA*B.

For example, "employee*job" is a table consisting of all concatenations ej, where e is a row
from "employee" andj a row from "job."

The Cartesian product is easily expressed in SQL with the select statement. For example, the
theoretical "employee*job" is expressed in SQL as:

select *
from employee, job;

Join

The join operator constructs a table out of two existing tables by collecting all pairs of rows
such that each pair satisfies some condition. When the condition is equality between columns
from the rows, the operator is called an equijoin. For example:

join employee with job on (job of employee = jid of job)

This theoretical statement would be an equijoin. By contrast, the following theoretical
statement is ajoin, but not an equijoin:

join employee with job on (lOO*(age of employee)
lowsal of job

A join is equivalent to a combination of Cartesian product followed by a restriction. For
example, the second join in the previous paragraph is equivalent to a theoretical formulation:

52

restrict (employee*job) on (lOO*(age of employee)
lowsal of job

Sal Reference ODT-DATA

"--_/

(

(

Relational Concepts

Joins are easily expressed because SQL allows Cartesian product and restriction Lo be
combined in a single query. The two theoretical examples of joins that were given are
expressed in SQL as follows:

select
from
where

select
from
where

employee.*, job.*
employee, job
employee. job = job.jid;

employee.*, job.*
employee, job
100*employee.age job.lowsal;

Nulls and Defaults
NULL is a data value that represents an unknown or inapplicable value. ODT·DATA gives you
the option of having NULL values assigned automatically in a given column when no other
value is specifically assigned. NULL is not the same as a zero, a blank, or an empty string.

NULLs are useful if you want to take an aggregate on a column, but do not want unknown
or inapplicable values to affect the aggregate. For example, if there is a column "age" in the
"employee" table, and you want to run an aggregate on that column to determine the average
age of the employees, you want to make sure that any ages that have not been entered do not
count as zeros. If ages that have not been entered are given the value NULL rather than zero,
they aer not counted when the aggregate is run.

If you choose not to allow a column to contain the NULL value, ODT-DATA also lets you
choose whether you want a default value (zero, blank, or empty) assigned to that column. If
you do not allow either a NULL or a default value to be assigned, then the user is forced to
enter a value in the column to avoid an error message. Disallowing NULLs and defaults is a
good way to make sure that all columns are filled in, in cases where this is appropriate.

SQL returns NULL for an aggregate over an empty set, even when the aggregate includes
columns that are not nullable. In the following example, select returns NULL, because there
are no rows in thi.

create table tbl (colI integer NOT NULL) ;
select max (colI) as x from tbl;

To eliminate this condition, you could use the IFNULL function. For example:

select IFNULL(max(coll) ,0) as x from tbl;

This returns zero (0).

Chapter 1 : Sal Syntax Sal Reference 53

Transactions

You determine whether to allow NULLs and defaults in a column at the time you create the
table, either with the create table command or the table facility ofODT-DATA/MENU. Please
refer to Using ODT-DATA Through Forms and Menus or Chapter 2, "SQL Commands" of this
manual for more details. f "

Transactions
A transaction in ODT-DATA is defined as one or more SQL statements that are to be processed
as a single, indivisible database action. Transactions are atomic units of consistency and
concurrency in the ODT-DATA multiuser database environment. None of the effects on a
database of one user's transaction is visible to other users' transactions until the transaction
is committed. When the transaction is committed, all of its effects are written permanently to
the database, and they become available to the transactions of other users.

Concurrency control in ODT-DATA insures that simultaneously executing transactions do not
interfere with each other in ways that could compromise the atomic status of a transaction.
Deadlock is a possible consequence of transaction concurrency control, and deadlock is
handled by the ODT-DATA transaction processing system. (See "Transaction Rollback" later
in this chapter for a definition of deadlock.)

Transactions are committed or rolled back under user control. Transactions can also be rolled
back under system control in cases of deadlock. Users can also declare savepoints within a
transaction and subsequently roll back parts of a transaction to a declared savepoint.

Single statements, both inside and outside a transaction, can be rolled back under system
control in cases of deadlock, timeout or error conditions (for example, a replace that generates
a duplicate key in a table that has unique keys). Single statements can be rolled back under
user control in the case of interrupts.

54 Sal Reference ODT-DATA

(

Transactions

Transaction Control Statements

The transaction-controlling statements are as follows:

Command

commit

rollback

savepoint savepoint_name

rollback to savepoint _name

Committing Transactions

Function

Ends a transaction block and commits
the transaction's effects to the
database.

Terminates a transaction in progress,
undoing the effects of all processed
statements.

Declares a savepoint.

Rolls back all statements of a transac­
tion subsequent to the named
savepoint.

A transaction is committed when its updates to the database are written. Committing a
transaction occurs at the end of the transaction. Before DDT-DATA commits a transaction,
none of its updates to the database are available to other users, and the transaction can be
rolled back without causing inconsistency or propagating undesirable rollbacks of other
transactions. After the transaction is committed, however, its effects in the database are
considered permanent and are visible to other transactions.

A transaction is committed explicitly with the commit statement. If a user rollback command
or system-generated rollback on deadlock terminates the transaction before a commit com­
mand is processed, then the transaction is rolled back, and all its effects on the database are
backed out.

A user may specify that queries should be committed implicitly by using the set autocommit
on statement.

Chapter 1 : Sal Syntax Sal Reference 55

Transactions

Transaction Rollback

At any time before a rollback statement commits a transaction, the transaction can be rolled
back under user or system control. All effects of the transaction on the database are "undone," ./
and no other transactions in progress are adversely affected.

Transactions can be rolled back in any of the following ways:

• User Rollback-The rollback statement causes immediate termination of a transac­
tion in progress.

• System Abort-Deadlock is a situation that may arise during concurrent execution
of transactions. Briefly described, deadlock can occur when transactions must "wait"
to perform updates on a part of a database (for example, a table or a data page)
because other transactions are currently updating the same part of a database.
Deadlock occurs when two transactions are waiting for each other to release a part
of the database that is being updated so it can perform its update. One transaction
requires what the other transaction owns, and vice versa. Neither transaction
releases the part of the database it has until it gets the other part, which it needs.
Because of this standoff, neither transaction can proceed.

ODT-DATA detects this situation when it occurs and chooses one transaction to roll ~-

back to end the deadlock. An error message (4700) is returned to the user to indicate
rollback on deadlock. The user may then restart the transaction, if desired.

• Quitting ODT-DATA (\q) within a transaction-Exiting the Terminal Monitor
(described in Chapter 3, "ODT-DATA Terminal Monitor") by typing \q while in the
midst of a transaction causes the Terminal Monitor to ask whether you want your
transaction committed or rolled back, and then it waits for your reply. Remember
to commit transactions with the commit command before exiting ODT-DATA.

Savepoints and Partial Transaction Aborts
Savepoints are marker statements within a transaction. The savepoint command allows users
to establish savepoints within a transaction. Within a transaction, statements already executed
can be backed out as far as any specified savepoint included in the transaction. Savepoint
names are character strings that conform to the rules for valid ODT-DATA names, with one
exception. This exception is that savepoint names may begin with a numeric character; this
allows integers (for example, 1,2,44) to be used as savepoint names. If the same savepoint
name is used in multiple savepoint declarations within a single transaction, only the latest
savepoint with that name is available for rollbacks. There is no limit to the number of savepoint
declarations allowed within a single transaction.

56 Sal Reference DDT-DATA

(

(

(

Transactions

It is worth noting that the savepoint command does not commit the partial transaction. None
of the changes to a database affected by the transaction are committed until a commit
statement commits the entire transaction. Savepoints provide useful constructs that facilitate
conditional processing within a transaction by allowing partial or total transaction rollback.

At any time within a transaction a user can roll back to a pre-declared savepoint. All database
changes affected by the transaction appearing after the savepoint are "undone," and all effects
of transaction statement preceding the savepoint remain. The transaction can then continue
executing other statements, including the declaration of other savepoints.

It is permissible to roll back to the same savepoint repeatedly within a transaction.

Interrupt and Timeout Handling in Transactions

The transaction-processing system in ODT-DATA recognizes the interrupt signal Ctrl C. This
has a distinct effect on transaction processing.

A Ctrl C received by the Terminal Monitor during Multi-statement Transaction processing
causes ODT-DATA to abort automatically the latest statement of the transaction. The transac­
tion remains uncommitted and can be continued in normal fashion. This action takes place
only once for a given transaction; subsequent Ctrl C characters are ignored unless a new
statement is added to the MST since the last Ctrl C. The transaction must eventually be
terminated in normal fashion, either with end transaction or abort.

A timeout condition detected while waiting for a lock (see the set lockmode statement) causes
an error status (4702) to be returned to the user and otherwise behaves as if a Ctrl C had been
received from the front-end.

SQl Transaction Semantics

Every SQL database query either begins or is added to an existing "Multi Query Transaction."
An SQL transaction is started at the execution of the first SQL statement, and subsequent
statements (for example, select/insert/update/delete) accumulate as part of that transaction.
The transaction is not committed until a commit (or end transaction, which is supported for
compatibility with previous versions of DDT-DATA) statement is issued. Statements that
cannot be issued within a transaction, for example the set lock mode and set autocommit
statements, can be executed if no other SQL statements have been executed since the last
commit.

Queries issued between commits accumulate as part of the transaction and locks on data
touched by each query held until the next commit statement. Even read locks, associated with
select statements, accumulate and are held until commit time.

Chapter 1 : Sal Syntax Sal Reference 57

Database Procedures

It is possible to change these standard SQL transaction semantics so that every SQL statement
becomes a "Single Query" transaction and an implicit commit statement happens after every
successful statement. This is referred to as autocommit, and can be turned on by the
statement:

set autocommit on ;

See the set command in Chapter 2, "SQL Commands," for more information on set autocom­
mit.

Database Procedures
Database procedures are a collection of statements managed as objects by DDT-DATA as part
of the database definition. Procedures provide strong benefits for the user. They enhance
performance by reducing the amount of communication between the application and the
DBMS. They provide the database administrator (DBA) with an extra level of control over
data access and modification. Additionally, one procedure can be used in many applications
in a database, which reduces coding time.

Using Database Procedures

Procedures can be created or dropped in the SQL Terminal Monitor or within Embedded SQL.
Procedures can only be executed from within Embedded SQL.

A procedure may include data manipulation statements, such as select or insert, as well as
control flow statements, such as if and while, and the status statements, message and return.

When you create and use database procedures, there are several considerations to remember:

58

• Within a database procedure, all object references are resolved when a procedure is
created. This means that if a procedure references a public table when it is created,
the procedure always uses that table, even if executed by a user having a private
table with an identical name.

• All referenced objects must exist at the time the procedure is created and when it is
executed. Between the time of creation and the time of execution, you can modify,
reorder, or drop and recreate objects such as tables and columns without affecting
the procedure definition. If an object is redefined in a way that in validates the
procedure definition, then the definition must be dropped and recreated. An example
of this is a column whose data type is changed from numeric to string.

Sal Reference ODT-DATA

('
~ ... /

Database Procedures

• The procedure's query execution plan is created when the procedure is created. If
the procedure is modified in a way that invalidates the plan, then the plan is recreated
at the next invocation of the procedure.

f· The following is an example of a database procedure. This example, "move_emp," accepts
as input an employee id number. The employee matching that id is moved from the
"employee" table and added to the "emptrans" table. Both tables are inaccessible to users
except through the procedure. When the procedure is invoked, the executing application
passes a single integer parameter.

CREATE PROCEDURE move_emp (id INTEGER NOT NULL) AS
BEGIN

END;

INSERT INTO emptrans
SELECT *

FROM employee
WHERE id = : id;

DELETE FROM employee
WHERE id = : id;

(Permissions on Procedures

(

A procedure is owned by the person who creates it. If the creator is the DBA, then the procedure
is public and available to any user having the DBA's permission. A procedure created by any
other user is private to that user. If the DBA and a user have identically named procedures,
the user has access only to the private procedure.

Procedures provide the DBA with greater control over database access. The DBA can grant a
user permission to execute a procedure even if the user has no direct access to the underlying
tables. In this way, the DBA controls exactly what operations a user can perform on a database.

The DBA uses the following statement to grant permissions to users:

grant execute
on procedure procedure_name to user_list

Chapter 1 : Sal Syntax Sal Referen:e 59

Database Procedures

Error Handling

Unless the procedure programmer provides explicit error handling mechanisms, either within
the procedure itself or within the calling application, the default action when an error occurs /'
is to continue to the next statement \,--- "

Database procedures make use of the control flow statements, if and while, and two built-in
variables, "iirowcount" and "iierrornumber", to process errors. An application that invokes
a database procedure must use the SQLCA to process errors occurring inside the database
procedure. "iirowcount" and "iierrornumber" are only available within the database proce-
dure. (Refer to the ODT-DATA Embedded SQL User's Guide for information about using the
SQLCA.)

"iirowcount" is an integer that indicates the number of rows affected by the last executed SQL
statement. If the statement was not a statement that affects rows or if an error occurred, then
"iirowcount" is set to -1. If the statement was a row-affecting statement, but no rows were
affected, then the value of "iirowcount" is set to O. The initial value of "iirowcount" is O.

"iierrornumber" is an integer that holds the error number associated with an error occurring
during the execution of a statement If no error occurs, the value of "iierrornumber" is set to
O. The error number is a positive number, equivalent to errorno in 4GL. The initial value of /"
this variable is O.

The execution of each statement sets the value of "iierrornumber" either to zero (no errors)
or an error number. To check the execution status of any particular statement, "iierrornumber"
must be examined immediately after the statement's execution.

Errors occurring in if, while, message, and return statements do not set "iierrornumber".
However, any errors that occur during the evaluation of the condition of an if or while
statement terminate the procedure and return control to the calling application.

Message Handling

Database procedures,like embedded forms applications, use the message statement to display
text on the screen while executing. It is possible to provide alternative instructions for
message processing using the whenever statement within the Embedded SQL. Refer to the
ODT-DATA Embedded SQL User's Guide for information about using the whenever statement
and processing procedure messages. ('/

I " /

60 SOL Reference DDT-DATA

(

Database Procedures

Creating and Executing a Procedure

A database procedure can be created with Interactive SQL or within Embedded SQL. The
syntax for the statement is:

[create] procedure proc_name
[(param_name [=]param_type (,param_name [=]param_type))]
=Ias

[declare_section]
begin

statement list
end;

where proc _name is the name of the procedure to be created and param _name is the name of
the procedure parameter.

Procedure parameters are treated as local variables in the procedure body, although they have
an initial value assigned when the procedure is invoked. You can also assign values to
procedure parameters within the body of the procedure. (Local variables are discussed later.)

param _type is the procedure parameter's type. All types may have the NULL or DEFAULT
clauses. For example, the following procedure fragment accepts three parameters, a non-null
integer, a varying length string, and a date:

CREATE PROCEDURE eval_emp (id INTEGER NOT NULL)
comment VARCHAR(lOO),
meeting DATE NOT NULL) AS ...

The declare section declares a list of local variables that can be referenced within the
procedure. The syntax. for this statement is:

declare
var_name {,var_name} [=] var_type;
{var _name { ,var _name} [=] var _type;}

where var name is the name of the local variable.

var _type is the type of the variable. Variable names must be uniq ue within the procedure. If
a variable is nullable, it is initialized to NULL. If a variable is not nullable, it is initialized to
the default value.

Chapter 1: SOL Syntax SOL Reference 61

Database Procedures

You can substitute local variables and procedure parameters for any constant value in
statements in the procedure body. A preceding colon (:) is only necessary if the referenced
name could be misin terpreted as an SQL column name. For example, if a procedure parameter
and a referenced column (in a procedure statement) have the same name, the referenced
column name must be preceded by a semicolon. The following example illustrates this rule.

In this example, the procedure retrieves the name of an employee who matches an employee
id. Both the employee id column and the procedure parameter are named "id." The colon in
the where clause distinguishes the column from the parameter.

CREATE PROCEDURE name_of_emp (id INTEGER NOT NULL) AS
DECLARE

name CHAR(SO);
BEGIN

SELECT fname + ' , + lname
INTO :name
FROM employee
WHERE id = : id;

MESSAGE : name;
END;

The statement _list may include local variable assignments and any of the following state­
ments:

insert
delete
update
commit
rollback
select
if
while
return
message

-"---.. __ ./

You cannot issue any data definition statements, such as create table, from inside a database
procedure.

(~"

Refer to the statement summary in Chapter 2, "SQL Commands," for detailed information \.. j

about the syntax of the create procedure statement.

62 Sal Reference OOT-OATA

(

(

Multi-Filesystem Databases

Executing a Procedure

Procedures are invoked from within an Embedded SQL application. You cannot invoke a
procedure interactively or from inside another procedure. The statement that invokes a
procedure is execute procedure. Refer to the ODT-DATA Embedded SQL User's Guide for
information about executing a database procedure.

Dropping a Procedure

Dropping a procedure removes the procedure's definition from the database. You must be the
owner of a procedure to drop a procedure. Procedures may be dropped using Interactive SQL
or within an Embedded SQL application. You cannot drop a procedure from inside another
procedure.

The syntax of the statement is:

drop procedure proc _name

where proc _name is the name of the procedure you want to drop.

The statement takes effect immediately. Executions of the procedure in progress, invoked by
other users, continue until they are completed. However, no additional references to the
procedure are allowed.

Multi-Filesystem Databases
To accommodate large databases within a finite computer system, ODT-DATA enables users
to locate the user tables of a single database on more than one filesystem.

Merely by establishing names for discrete areas of a given disk, an ODT-DATA system
administrator can preserve the usefulness of an ODT-DATA database, even when it becomes
extremely large.

ODT-DATA Locationnames and Areas

Locationnames are labels that denote subpaths to ODT-DATA directories. These labels are
independent of the operating system. In the UJlHX operating system, an area would be defined
as a directory or subdirectory (for example,/usr/corrnac/new or . .Irnydb/other).

Chapter 1 : Sal Syntax Sal Reference 63

Multi-Filesystem Databases

Each location name maps to exactly one area; however, many different locationnames can map
to the same area. Locationnames follow the ODT-DATA naming convention: they must begin
with a letter and then must be alphanumeric. Underscores are allowed after the first letter,
and the maximum length is 24 characters. The area designation can be up to 255 characters
and must follow the syntax of the host operating system in directory names.

Locationnames and areas are specified with the accessdb command, described in Appendix
B of Administering ODT-DATA.

Locationnames may be used in the createdb and finddbs utilities, as well as in the create
table, create index and modify commands. If a locationname is not specified in a utility or
SQL command, then the appropriate default is used. C language programs using SQL can be
written in a manner independent of the operating system because all references to devices can
be location names. Each installation has a set of default locationnames. These are
ii_database, iiJournal and ii_checkpoint. These location names map to the environment
variables II_DATABASE, II_JOURNAL and ICCHECKPOINT, respectively.

Assigning Database Tables to Single Areas

ODT-DATA, as mentioned previously, assigns a table or index in a database to a default area
unless it is otherwise specified on the create table or create index statement. However, if
disk space on the default filesystem that stores the database becomes too filled, the table can
be relocated to another filesystem in the computer system.

The process of relocating a database's user tables to a different device requires three steps:

64

• Make sure there is a valid ODT-DATA directory for databases there.

• The ODT-DATA system administrator extends the database to the additional area(s)
by assigning the requisite locationname(s). The ODT-DATA system administrator
uses the accessdb command, described in Administering ODT-DATA, to accomplish
the database extension.

• The ODT-DATA user relocates the user table to a new area using an SQL command.
To move a table from one area to another, the mOdify to reorganize command,
described in Chapter 2, has the syntax:

modify tablename to reorganize with
location = (locationname)

The modify command, of course, requires that the user be the table's owner.

SOL Reference DDT-DATA

\.,---

('
~ /

(-

MUlti-Filesystem Databases

Multi-Location Tables

Tables and indexes may also be physically partitioned across multiple areas. A table may be
assigned to multiple areas when it is created (using the create table or create index statement)
by way of the with location = (location-list) clause. For example:

create table large (wide varchar (2000))
with location = (areal, area2, area3);

The specified areas must already exist. (See accessdb description in Administering ODT­
DATA.)

Alternatively, a table may be spread over several areas using the modify to reorganize
statement:

modify large to reorganize with location
area2, area3);

(areal,

A table, or part of a table, may be relocated to a corresponding area or set of areas by using
the modify to relocate statement:

or

modify large to relocate
with oldlocation (areal, area2, area3),

newlocation = (area4, areaS, area6);

modify small to relocate
with oldlocation (areal),

newlocation = (area2);

The difference between modify to relocate and modify to reorganize is that with the relocate
option, the relocation is strictly physical, with the data from each area in the old location list
being moved "as is" to the corresponding area in the new location list. For example:

modify medium to relocate with
oldlocation (areal, area2),
newlocation = (area3, area4);

The data for table large in areal is moved to area3 and the data in area2 is moved to area4.
The number of areas in the oldlocation list must be equal to the number of areas in the
new location list.

Chapter 1 : Sal Syntax Sal Reference 65

MUlti-Filesystem Databases

A portion of a table may be relocated by specifying only specific areas in the location lists;
for example:

modify large to relocate with
oldlocation (area3),
newlocation = (areaS);

This only relocates the table's data that resides in area3, leaving areal and area2 unchanged.

The Modify to relocate statement with only one area in the location lists is analogous to the
relocate statement. The relocate statement continues to be supported, but does not extend to
include multiple locations support, and eventually is undocumented.

With the reorganize option, the table is not just moved, but also reorganized. That is, a table
that is spread across three areas can be reorganized to be spread across only two areas, or five
areas. For the reorganize form of modify, it is not necessary (or allowed) to specify the old
locations. The entire table is reorganized. The only parameter in the with clause that is
accepted is the location = (location [,location ... J) clause.

The algorithm for spreading a table or index across multiple areas is very simple (that is,
efficient) from an internal standpoint, but may be a bit confusing from an external point of
view.

In this example, if a table is spread over three areas:

create table large (wide varchar(2000),
with location = (areal, area2, area3);

As rows are added to the table, they are added to each area in 16 page (approximately 32
Kbytes) chunks. When the first 16 blocks are filled areal, the following 16 pages of data are
put in area2. Then area3 starts to fill up 16 pages. Then it goes back to areal.

If it is not possible to allocate 16 full pages on an area when it is that area's turn to be filled,
the table is out of space, even if there is plenty of room in the table's other areas.

66 SOL Reference ODT-DATA

(
~

/

Chapter 2

SQl Commands

SQL (Structured Query Language) consists of explicit, keyword commands that perform a
range of functions for data definition, data manipulation, and database administration. This
chapter presents each of these commands. Each section is devoted to a single command;
within each section, subsections present the command name, syntax, description, and ex­
amples.

When consulting the material in this chapter and others in the ODT-DATA SQL Reference
Manual, please remember that this manual is intended to provide the definitive description of
ODT·DATA's functions. Chapter 3, "ODT-DATA Terminal Monitor," of this manual describes
how to use these functions interactively by using the ODT-DATA SQL Terminal Monitor. For
guidance in how to use ODT-DATA's functions within a host language program, please consult
the ODT-DATA Embedded SQL User's Guide and the ODT-DATA Embedded SQL Companion
Guidefor C.

Chapter 2: Sal Commands Sal Reference 67

commit

commit
Commits the current transaction.

Syntax
commit [work]

Description

This statement commits the current transaction. Once committed, the transaction cannot be
aborted, and all changes it made become visible to all users by using the select statement.
Once executed, the current transaction is terminated; a new one is automatically started just
before the next SQL command. Any open cursors are closed.

The optional word work has no effect. It is included for compatibility with other versions of
SQL.

The statement analogous to commit in pre-6.0 versions of INGRES is end transaction.

68 SOL Reference ODT-DATA

(

copy
Copies data into/from a table from/into a file.

Syntax

copy table tablename (columnname = format [with null (value)]
(, columnname = format [with null(value)]}) into I from 'filename'

[with-clause]

copy

A with-clause consists of the word with followed by a comma-separated list of any number
of the following items:

on error = terminate I continue
error count = n
rollback = enabled I disabled
log = 'filename'

Description

The copy command moves data between ODT-DATA tables and standard files. Table is a
keyword and must be typed as shown. Tablename is the name of an existing table. In general,
columnname identifies a column in the table. Format indicates the storage format for the
column's values in the file.

The with null value clause allows you to specify the value NULLs have in the target table.
If you specify with null but do not specify a value, you get an ODT-DATA binary data value.
It has non-printable characters as part of the data representation because every data value has
a trailing byte specifying whether the value is NULL. Therefore, you must specify the value
in a with null clause when using the cO, vchar(O), cbar(O), and varchar(O) data types.

If you do specify value in the with null clause, NULL values are represented by the value
specified and there is no byte to represent the NULL. So be sure the file you are copying does
not contain the value specified by value as a legitimate non-NULL value (that is, do not set
value to "35" for a column of people's ages; use "-I" instead).

To write a file, use the into filename form of the copy command. To copy da,ta from a file to
an ODT-DATA table, use the from filename form of the command. Filename must be enclosed
in single quotation marks. Filename is assumed to be in the front-end process's current
directory unless the full path name is specified.

Chapter 2: SOL Commands SOL Reference 69

copy

The with on _error clause lets you specify that copy should not be terminated due to an error
processing a row. If continue is set, the front end does not terminate the copy if it encounters
errors converting between row and file format. The copy continues to be terminated by errors
reading or writing the copy file, back-end errors, or other errors that signify a problem with
copy processing in general rather than a problem confined to a single row. If terminate is
set, copy terminates at the first conversion error. Terminate is the default.

If an error is encountered while on_error is set to continue, a warning message corresponding
to the type of error is printed and that row is skipped. When the copy is finished, the following
message is displayed:

COPY: Warning: Copy completed with %d warnings. %d
rows successfully copied.

The error_count = n clause instructs copy to terminate after n errors instead of just one. This
clause is meaningful only if on_error = terminate is set. It is an error to specify an
error_count if on_error = continue is specified. The default error_count is 1.

The with rollback clause lets you specify whether rows appended to the database during a
copy should be backed out if the copy is terminated due to an error. This option is meaningful
only with copy from, because rows are never backed out of the copy file if copy into is
terminated.

If rollback = enabled is specified, all rows added to the database during a copy statement are
backed out if the copy is terminated abnormally. This is the default setting.

The rollback = disabled option does not mean that a transaction cannot be rolled back.
Database engine internal errors that may indicate data corruption still causes back out, and
rows are still not committed until the transaction is complete. This option means only that
rows are automatically backed out if an error occurs.

There are two error messages that indicate that copy has been interrupted abnormally due to
an error or interrupt. If you are running copy from and either rollback = enabled is set or
the termination is due to a database engine error, you will get the error message:

COPY: Copy has been aborted

Any other abnormal termination produces the error message:

70

COPY: Copy terminated abnor;nally, %d rows successfully
copied.

SOL Reference DDT-DATA

copy

The with log 'filename' clause lets you send rows that copy cannot process to the file specified.
In a copy from. rows written to the log file are exactly the same as they were in [he copy file.
In a copy into. they are in the format of the rows in the database. r This option is especially useful in a copy from statement when the on _error:: continue option
is set. In this case. the copy continues to completion even though there may be rows in the
copy file that cannot be processed. Warnings are given for each row that cannot be appended
to the database. and those rows are written to the log file. You can then edit the log file and
fix up the rows to load them into the database.

(

(

If an error occurs opening the log file. the copy halts. The log file is opened prior to the start
of data transfer. so this happens immediately.

Ifan error occurs writing to the log file. a warning is given and the copy continues.

If the specified log file already exists. it is overwritten with the new values or truncated if the
new copy statement produces no bad rows.

On a copy from a file to a table. the table can have an index. but performance is much slower
than for the same table without an index. You must have update permission on the table. and
the table must be updatable (that is, it cannot be an index or system table). You cannot use the
copy command to add data to a view. If you copy to add rows to a table that has integrity
constraints. the integrity constraints are ignored.

To execute a copy into a file. either you must be the owner of the table. or the table must have
retrieve permission for all users (or all permissions for all users).

The formats allowed in this mode are the following:

integerl, smallint. integer

float4. float

cl •...• 2000
char(1) •...• char(2000)

vchar(1) •...• vchar(2000)
varchar(1), ...• varchar(2000)

cO. char(O)

Chapter 2: SOL Commands

Values are stored as integers of 1-. 2- or 4-byte
length in the file.

Values are stored as floating-point numbers
(either single or double precision) in the file.

Values are stored as fixed-length strings of
type c or char.

Values are stored as fixed-length strings of
type vchar or varchar.

Variable length character string (any data
type).

SOL Reference 71

copy

vchar(O). varchar(O)

dO.dl d255

date

money

Variable length vchar string (any data type).

Dummy column of variable (dO) or fixed
(dl d255) length (that is. skip it).

Values stored as internal DDT-DATA date value.

Values stored as internal DDT-DATA money
value.

Corresponding columns in the table and their entries in the file need not be of the same type
or length. For example, most applications read and write numeric data from files stored in
character format and, therefore, primarily use the cO or vchar(O) type format. The copy
command converts as necessary. When converting anything except character to character,
copy mode checks for overflow. When converting from character to character, the copy
command pads character strings with blanks or truncates strings on the right. as necessary.

The column names should be ordered according to how they are to appear in the file. Columns
are matched according to name. Thus the order of the columns in the table and the file need
not be the same.

The copy command provides for variable length strings and dummy columns. The action
taken depends on whether it is a copy into or a copy from command. Delimiters for variable
length strings and dummy columns can be selected from the following list:

nl newline character

tab tab character

sp space

nul or null NULL character

comma comma

colon colon

dash dash

Iparen left parenthesis

rparen right parenthesis

x any single character x (excluding digits. that is.
0, 1,2,3,4, S, 6, 7, 8" or 9)

72 Sal Reference DDT-DATA

("
~

copy

In the file, the special meaning of any delimiter can be suspended by preceding the delimiter
with a backslash N, unless the field format is vchar(O)deiim.

f Copying from a File into a Table

(-

When copying data from a file into a table, columns in the ODT-DATA table that are not
assigned values from the file are assigned the default NULL values of zero for numeric
columns and blanks for character columns. When copying data in this direction, the following
special meanings apply:

cOdelim,
vchar(O)delim or
char(O)delim

dOdelim

Values in the file are variable length character strings terminated
by the delim delimiter. If delim is not specified, the first comma,
tab, or newline encountered terminates the string. The delimiter is
not copied. For example:

pnum=cO

pnum=vchar(O)nl

pnum=cOnl

pnum=cOsp

pnum='cOZ'

pnum=vchar(O)'Z'

pnum='cO%'

String ending in comma, tab or nl.

String ending in nl.

String ending in nl.

String ending in a space.

String ending in the "z" character.

String ending in the "z" character.

String ending in the "%" character. A string
in the file can contain the delimiter by
preceding it with a backslash character (\),
but only if the format is cOdelim. For ex­
ample:

name = cO

When using this. the string "BIow\ Joe" is
accepted into the column as ",BlOW, Joe."

Values in the file are variable-length character strings delimited by
delim. Each string is read and discarded. The delimiter rules are
identical for cO and dO. The column name is ignored.

Chapter 2: Sal Commands Sal Reference 73

copy

dl,d2, ••. ,d2SS Values in the file are fixed-length character strings. Each string is
read and discarded. The column name is ignored.

vchar(l), ••• ,
vchar(2000)

Values in the file are fixed-length vchar strings. The field must be
padded with NULL characters to the given length.

varchar(O) Values in the file are variable-length varchar strings preceded by a
2-byte length specifier.

When copying from a fixed format file, be sure to take into account the newline characters at
the end of each line because there is no requirement that the rows you read from the file
correspond to the records in the file. For example, if you have a table called "employee"
containing the columns "name," "age," and "department," and a text file containing employee
data in a fixed format, such as

Jones,J.~~~~~32~~~Anytown,USA~~~toy

Smith,P.~~~~~41~~~New York,NY~~~admin

where "A" is a blank space.

A valid copy statement would be something like:

copy table employee (name~c12, age~c3, xxx~d17,

department~cOnl) from ...

Note that the dummy column name "xxx," which is not in the table, is an arbitrary name for
the skipped field from the file. The name itself has no particular meaning. The last field in
the fixed field file, in this case "department," is most conveniently specified as cOnI. This
instructs DDT-DATA to read the remainder of the line into the "department" column of the
table.

Note that the format indicators in the copy from command should describe how values are
represented in the file. This is not necessarily the same format as the corresponding table
column. For example, the file record might contain a numeric field holding a string of ASCII
characters, such as "1927.63," which would be converted on input and stored in the DDT-DATA
table in a column of type float. In this case, the copy command should describe the field as
a c format item, not float.

Finally, note that copying from a file into an empty, non-joumaled table without indexes runs (.
significantly faster than copying into a table that contains one or more rows, is joumaled, or
has indexes. The copy is fastest when the table is in the heap storage structure.

74 Sal Reference COT-DATA

/

copy

Copying Data to a File

When the direction is into, copy transfers data into the file from the table. If the file already
exists, it is overwritten, if allowed by the UNIX environment.

When copying in this direction, the following special meanings apply:

cO, char(O)

varchar(O)

cOdelim, char(O)delim

vchar(O)delim

Chapter 2: SOL Commands

The column is converted to a fixed-length character string
and written into the file. For character columns, the length
is the same as the column length. For numeric columns,
the standard ODT-DAT A conversions take place as specified
by the -i, -f and -c flags. (See the sql command in Chapter
4, "ODT-DATA Operating System Commands.")

The column is converted to "archar and written as a vari­
able length string preceded by a 2-byte length specifier.

The column is converted according to the rules for cO
above. The one-character delimiter is inserted immediately
after the column.

NOTE: For numeric columns, cOsp and char(O)sp are not
meaningful and results in input errors, because the data are
converted by right justification and blankfill.

The column is converted to a \'Char string and written into
the file. The one-character delimiter is inserted immedi­
ately after the column. For c and char columns, the length
is the same as the column length. For vchar and varchar
columns, the length varies according to the number of char­
acters in each text value. For numeric columns, the stand­
ard ODT-DATA conversions take place as specified by the -i
and -f flags. (See the sql command in Chapter 4, "ODT­
DATA Operating System Commands."

NOTE: For numeric columns, vchar(O)sp is not meaning­
ful and results in input errors, because the data are con­
verted by right justification and blankfill.

SOL Reference 75

copy

vchar(1) vchar(2000)

dl,d2 •...• d255

dO

dOdelim

varchar(O)

The column is converted to a vchar string and written into
the file. according to the rules for vchar(O) delim. No
delimiter is used. If necessary. the column is padded with
NULL characters to the given length.

The column name is taken to be the name of the delimiter.
It is written into the file once for dl. twice for d2. and so
forth.

This format is ignored on a copy into command.

The de lim is written into the file. The column name is ig­
nored.

The variable-length-only specifier and data are written to
the file.

Note that arbitrary delimiters can be specified independently of columns on a copy into
command. If you want to specify a newline character at the end of a line. include "nl=d 1" at
the end of the list of columns. This alerts ODT-DATA to add one (dl) newline (nl) character.
Do not confuse "I" (lowercase L) and "1" (number one).

If no columns appear in the copy command (that is. copy table table name 0 intolfrom
filename). then the copy command automatically performs a bulk copy of all columns, using
the order and formats of the columns in the table. This is provided as a convenient shorthand
notation for copying and restoring entire tables.

In the "Examples" section later in this chapter. the first two examples illustrate different ways
of representing numeric data in a file. In the first example. several fields are represented in
2-byte integer format. and "sal" is represented as a 4-byte floating-point item. These items
would not be readable as characters with the text editor. The copy command loads them into
ODT-DATA table columns. which mayor may not have the same format as the file data.

The second example copies some of the same data out of the "employee" table into a file.
This time. all items are written as character data. This means. for instance. that "sal" would
be converted from its format in the ODT-DATA table (say. float4 or float) to ASCII characters / '\
in the result file.

76 Sal Reference DDT-DATA

(

copy

Performance of Copying from a File into a Table

Copying from a file into a non-journaled heap table without secondary indexes runs sig­
nificantly faster than copying into a btree, isam, or hash table, or one that is journaled or has
secondary indexes.

For example, consider the following two queries. The first runs more slowly because the
table's btree index must be dynamically maintained as data are copied from the external file
into the table:

CREATE TABLE employee (name vchar(12), age integer2,
department vchar(8))

MODIFY employee TO btree ON name ;
COpy TABLE employee (name=c12, age=c3, xxx=d17,

department=cOnl) FROM ... ;

The following query, on the other hand, runs more quickly because the "employee" table is a
heap while data are copied and ODT-DATA, therefore, does not need to maintain an index
structure for the table during the copy operation. After the copy statement is complete, the
table is modified to btree:

CREATE TABLE employee (name vchar(12) , age intege=2,
department vchar(8)) i

COPY TABLE employee (name=c12, age=c3, xxx=d17,
department=cOnl) FROM ... ,

MODIFY employee TO btree ON name i

Depending on the initial size of the database table and the amount of data to be copied from
the external file, it may be faster to modify the database table to heap before copying data
into it. For example, if "departments" is an existing table that is btree on column "department,"
it may be faster to copy with the first of the following two scripts:

MODIFY departments TO heap ;
COPY TABLE departments (departrnent=c8, ...) FROM ... ;
MODIFY departments TO btree ON department; /* resto=e

original structure ~/

This second copy script, below, may run more slowly because it requires ODT-DATA to
maintain the index structure on the "departments" table during the copy operation:

COPY TABLE departments (departrnent=cB, ...) FROM ... ;

Chapter 2: SOL Commands SOL Reference 77

copy

As a general rule, if the external file contains more rows than the database table, then you may
get better performance by modifying to heap before doing the copy and then modifying to
the correct structure when the copy is complete. Note that if the database table is empty, it is
nearly always better to modify to heap before doing the copy.

Effect of Table Structure on Copy from Performance

Isam Avoid copying large amounts of data into a database table that
has an isam structure (modify table to heap first, as described
earlier). It is particularly dangerous, from a performance
standpoint, to copy into an empty isam table.

Hash

The index structure of an isam table is fixed (as opposed to
btree, whose index structure grows dynamically as data are
added to the table) and therefore does not grow as you add
data; the net result is overflow chains that can significantly
degrade performance.

You can get good performance copying data into a hash struc­
ture, If the hash structure has been preallocated with enough
space for the new data, and if many rows do not hash to the
same page and produce overflow. The miopages parameter is
used to preallocate space in hash tables.

Copying into a heap structure gives the best performance. Use of the btree structure is oot
as fast as heap because the index structure must be maintained, but should be faster than isam
because of the lack of long overflow chains. The hash structure is will be fast if the table has
enough empty space to hold the new data.

78 Sal Reference DDT-DATA

/

(

(

copy

Examples

Copy data into the "employee" table.

copy table employee (eno=integer2, ename=clO,
age=integer2,

job=integer2, sal=float4, dept=integer2, xxx=dl)
from '/usr/mydir/files/myfile.in';

Copy employee names, numbers, and salaries into a file, inserting commas and newline
characters so that the file can be printed or edited.

or

copy table employee (enarne=cO, comrna=dl, eno=cO, comrna=dl,
sal=cO, nl=d1)
into' /usr/mydir/files/mfile.out' ;

copy table employee (enarne=cOcomma, eno=cOcomma, sal= cOnI)
into' /usr/mydir/files/mfile.out' ;

Bulk copy the "employee" table into a file.

copy table employee () into
'/usr/mydir/files/ourfile.dat' ;

Bulk copy the "employee" table from a file.

copy table employee ()
from '/usr/mydir/another.fil';

Chapter 2: SOL Commands SOL Reference 79

create index

create index
Creates an index on an existing base table.

Syntax

create [unique] index indexname on tablename
(columnname [asc I desc] (,columnname [asc I desc]})

[with-clause]

A with-clause consists of the word with followed by a comma-separated list of any of the
following items:

structure = cbtree Ibtree I cisam I isam I chash I hash
key = (column list)
fill factor = n
min pages = n
rnaxpages = n
leaffiIl= n
nonleaffill= n
location = (locationname ...)

Description

The create index command creates an index on an existing base table. The index key is
constructed of columns from the specified table in the order given. A maximum of 32
columnnames may be specified per index, but you can build any number of indexes for a table.
Only the owner of a table is allowed to create indexes on that table.

asc and desc specify ascending and descending sort sequence, respectively. asc is the default.
btree and isam indexes are always kept in ascending order, even ifthe desc option is specified.

If key=(column list) is specified, the columns in column list must be an ordered subset of the
columns specified in the index definition. In addition, they must be the leading columns in
the index definition. For example, an index defined on columns a, b, c, and d may be keyed
on a, or ab, or abc, or abcd. (The default is abcd if the key clause is omitted.)

80 Sal Reference ODT-DATA

/

(

!(

create index

The fillfactor specifies the percentage (from 1 to 1(0) of each primary data page that should
be filled with rows, under ideal conditions. The fill factor may be used with isam, cisam,
hash, chash, btree, and cbtree. When creating a table with storage structure btree or cbtree,
nonleaffill determines the percentage of each index page to fill. Care should be taken when
specifying large fill factors because a non-uniform distribution of key values could later result
in overflow pages and thus degrade access performance for the table.

min pages specifies the minimum number of primary pages a hash or chash table must have.
max pages specifies the maximum number of primary pages a hash or chash table may have.
min pages and maxpages must be at least one. If both minpages and maxpages are specified
in a create index command, min pages cannot exceed maxpages.

Default values for fillfactor, min pages, and maxpages are as follows:

fillfactor minpages maxpages

hash 50 10 no limit

chash 75 no limit

cisam 100 NA NA

btree 80 NA NA

cbtree 100 NA NA

The leaffill parameter of the create index command applies only to tables stored in btree and
cbtree structures. The leaffill parameter specifies percentages to fill each index page for a
btree or cbtree table.

The leaffill specifies a percentage n, where n ranges from 1 to 100, and its percentage specifies
how much each index page should be filled at the time the table is modified to btree or cbtree.
This parameter contrasts with the fillfactor parameter, which specifies the percentage oc­
cupancy of data pages (not index pages) when a table is converted to btree or cbtree.

Chapter 2: Sal Commands Sal Reference 81

create index

The leaffill parameter allows you to control locking contention in btree and ebtree index
pages. By retaining a percentage of open space on these index pages, more concurrent users
can access the btree without contention while their queries descend the index tree. Note,
however, that you must strike a balance between preserving space in index pages and creating
a greater number of index pages; more levels of index pages require more I/O to locate a data
row.

Default value for leaffill is 60 (percent). This default applies to both btree and ebtree indexes.

The Locationname refers to the area(s) on which the new index is created. The location­
name(s) must be defined on the system, and the database must have been extended to the
corresponding area(s). If no locationname is specified, the default area for the database is
assumed. If multiple locationnames are specified, the index is physically partitioned across
the areas. (See Chapter 1 for more information about ODT-DATA locationnames and areas and
multi-location tables.)

To maintain the integrity of the index, users are not permitted to update indexes directly.
However, whenever a table is changed, its indexes are automatically updated by the system.
Indexes may be modified to increase even further the access efficiency of the table. When an
index is first created, it is automatically modified to an isam storage structure on all its
columns. If this structure is undesirable, you may override the default structure with the -n
flag (see the sql command in Chapter 4, "ODT-DATA Operating System Commands"), by
entering a modify command directly, or by specifying the modify parameters in the with
clause of the create index command.

Once created, an index improves query processing "silently." That is, if you retrieve data from
a table based on an indexed column, you need not indicate to ODT-DATA that it should consult
the index; ODT-DATA automatically uses indexes to accelerate query processing once the
indexes are created.

If a modify or drop command is used on a table, all indexes on that table are destroyed. Note
also that the modify and drop commands can be executed directly on an index.

You are not allowed to create indexes on system tables. No more than 32 columns may appear
in the index key.

82 Sal Reference ODT-DATA

'- ./

/'
(

~

(

create index

Examples

Create an index called "x" for the columns "ename" and "age" on table "employee":

create index x on employee (ename, age);

Create an index called "ename" and have it located on the area referred to by the locationname
"remote":

create index ename on employee (ename, age) with
location = (remote);

Chapter 2: Sal Commands Sal Reference 83

create integrity

create integrity
Defines integrity constraints on a base table.

Syntax

create integrity on tablename [corr_name] is search_condition

Description

The create integrity command creates an integrity constraint for the specified base table.
After the constraint is defined, all updates to the table must satisfy the specified search
condition. The search condition must be true for every existing row in the table when the
create integrity statement is issued; if it is not true, a diagnostic is issued, and the integrity
constraint is rejected.

In the current implementation, integrity constraints that are violated are not specifically
flagged. Updates that violate any integrity constraints are simply not performed.

The search condition must not involve any tables (or their correlation names) other than the
one specified in the on clause. The search condition must also not contain a subselect.

The create integrity statement may be issued only by the table owner.

Examples

Make sure that all employee salaries are not less than 6000.

create integrity on employee is salary 6000;

84 SOL Reference ODT-DATA

(

create procedure

create procedure
Creates a named database procedure definition.

Syntax

[create] procedure proc_name
[(param_name [=] param_type (,param_name [=] param_type})]
=Ias

[declare_section]
begin

statement (; statement}[;]
end;

Description

The create procedure statement creates a named database procedure definition that is
managed as a named object by ODT-DATA as part of the database.

The proc _name is the name of the procedure. The name must be a legal ODT-DATA SQL name
(see Chapter 1, "SQL Syntax").

The param _name is the formal name of the procedure parameter.

The param_type is the procedure parameter's type. The Param_type can be any of the
ODT-DATA types (see Chapter 1, "SQL Syntax"). All types may have the NULL or DEFAULT
clauses.

The declare _section declares a list of local variables that you can reference in the procedure
body. The syntax for this section is:

declare
var _name (,var _name} [=] var _type;
{var _name (, var _name} [=] var _type;}

Refer to the summary of the declare command in this manual for full information about this
syntax.

Chapter 2: Sal Commands Sal Reference 85

______ ._0 __ --_-

create procedure

The Statements may include local variable assignments and any of the following:

commit return

delete rollback

if select

insert update

message while

A procedure cannot contain any data definition statements, such as create table, nor may it
create, drop, or execute another procedure. Additionally, unlike the Embedded SQL versions
of some of these statements, you cannot use the repeated clause in a statement in the procedure
body. (Using the procedure itself provides the same performance benefits as the repeated
clause.)

select statements inside a procedure must assign their results to local variables. Also, they
can return only a single row of data. If more rows are returned, no error is issued, but only
the first row retrieved is in the result variables.

Both procedure parameters and local variables can be used in place of any constant value in
statements in the procedure body. Procedure parameters are treated as local variables inside
the procedure body, although they have an initial value assigned when the procedure is
invoked. Preceding colons C:) are only necessary if the referenced name could be interpreted
to refer to more than one object.

Local variable assignments use the "=" or ":=" operator.

All statements, except a statement preceding an end, endif, or endwhile, must be terminated
by a semicolon.

You can replace the keywords begin and end with braces {}, but the terminating semicolon
must follow the closing brace if another statement is entered interactively after the create
procedure statement and before committing the transactions.

Examples

/--"

\

This database procedure, "mark_emp," accepts as input an employee id number and a label ("­
string. The employee matching that id is labeled and an indication is returned. \" j

86 SOL Reference GOT-DATA

(

create procedure

CREATE PROCEDURE mark_emp

BEGIN

END;

(id INTEGER NOT ~ULL, label VARCHAR(100)) AS

UPDATE employee
SET comment = :label
WHERE id = : id;

IF iirowcount =1 THEN
MESSAGE 'Employee was marked'
COMMIT;
RETURN 1;

ELSE
MESSAGE 'Employee was not marked - record error'
ROLLBACK;
RETURN 0;

ENDIF;

In this next example, the database procedure "add_n_rows" accepts as input a label, a base
number, and a number of rows. It inserts the specified number of rows in to the table "blocks,"
starting from the base number. If an error occurs, then the procedure terminates and the current

11 row number is returned .
. "(

(

CREATE PROCEDURE add n rows
(base INTEGER, n INTEGER, label VARCHAR(100)) AS

DECLARE

BEGIN

END:

limit INTEGER;
err INTEGER:

limit = base + n:
err = 0:
WHILE (base < limit) AND (err = 0) DO

insert into blocks VALUES (:label, :base);
IF iierornumber > 0 THEN

err = 1:
ELSE

base = base + 1:
ENDIF:

ENDWHILE:
RETURN :base;

Chapter 2: Sal Commands Sal Reference 87

create table

create table
Creates a new base table.

Syntax

create table tablename
(columnname format {, columnname format})

[with-clause]

create table tablename
[(co/umnname {, co/umnname})]
as subselect

[with-clause]

A with-clause consists of the word with followed by a comma-separated list of any number
of the following items:

location = (/ocationname ...)
[no]journaling
[no]duplicates

For the syntax of subse/ect, see the "select" section later in this chapter.

Description

The create table command creates a new base table. The table is owned by the user issuing
the create table command and, by default, has no expiration date. However, the expiration
date can be changed by using the save statement. At this time there is no means by which
expired tables can be destroyed; they are not destroyed automatically.

The created table has a name as specified by the indicated tablename, with columns named
as specified by the indicated co/umnnames. Ifno co/umnnames are specified, then an as clause
must be specified, and the table inherits co/umnnames in the obvious way from the select
clause of the subselect in that as clause. Even if an as clause is specified, columnnames must
also be specified if two or more columns of the table would otherwise have the same name.
If there is an expression in the select clause of the subselect, columnnames are assigned
randomly.

88 SOL Reference DDT-DATA

./

(

(

create table

The formats specify the data type of a column as well as how unspecified values are to be
handled. The formats must be omitted if an as clause is specified (in which case the formats
are inherited in the obvious way from the expressions in the select clause of the subselect).
When an as clause is not specified,formats must be included.

The formats have the syntax:

datatype [not null [with I not default] I with null]

The withlnot null clause detennines what happens during an insert to a field for which no
value is specified. There are three possible settings for this clause:

with null
not null with default
not null not default

The with null clause means that a field into which no data has been inserted is marked as
having no value. The not null with default clause means the default value ("0" or blank) is
entered. The not null not default clause means an error condition is created when the insert
is attempted.

If no withlnot null clause is specified, with null is assumed. If not null alone is specified,
not null not default is assumed.

Pre-6.0 versions of INORES entered a field value of "0" or blank if no value was specified.
This corresponds to not null with default.

A table can have a maximum of 127 columns and can be a maximum of 2008 bytes wide.
Note that a varchar or vchar column requires two more bytes than the value specified in the
format; for example, varchar(20) stores values up to 20 characters long, but requires 22 bytes
in storage. A table cannot be defined to have a name beginning with "ii".

If an as clause is specified, the table is populated with the set of rows resulting from execution
of the specified sub select; otherwise the table is created empty. If as is specified, the new
table is created with the storage structure defined by the most recent set result_structure
command within the session (see the modify command); the default is compressed heap. If
as is not specified, the new table is created as heap.

Chapter 2: SOL Commands SOL Reference 89

create table

The locationname refers to the area(s) (see Chapter 1, "SQL Syntax") on which the new table
is created. The locationname(s) must be defined on the system, and the database must have
been extended to the corresponding area(s). If no locationname is specified, the default area
for the database is assumed. If multiple locationnames are specified, the table is physically /'
partitioned across the areas, as described in the section of Chapter 1 titled "Multiple-Location " . ./
Tables." (Please see Appendix B, "Authorizing User Access to ODT-DATA and Databases," in
Administering ODT-DATA.)

If with journaling is set, journaling occurs for the table only if journaling is enabled for the
database as a whole by using the ckpdb command (see Chapter 4, "ODT-DATA Operating
System Commands"). Enabling journaling causes ODT-DATA to keep a record of all changes
to the table (inserts, updates, and deletes) in the journal for the containing database, and thus
allows the ODT-DATA recovery system to reconstruct the table after a disk crash. It also allows
an audit trail to be built for the table, and thus can be useful for monitoring updates or for
maintaining change histories.

It is not necessary to enable journaling to recover from operating system or ODT-DATA
crashes; this kind of recovery is handled by normal query processing.

The duplicates!noduplicates option does not affect a table created as a heap; this type of
storage structure allows duplicate rows regardless of the setting of this option. The dupli­
cates! noduplicates setting affects only those tables created as, or later modified to be,
structures other than heap.

Additionally, this setting can be overridden by specifying a unique key for a table by using
the modify command. See the modify command for more information about table structures
with unique keys.

Examples
Create the "employee" table with columns "eno," "ename," "age," "job," "salary," and "dept,"
with journaling enabled.

create table
(eno
ename
age
job
salary
dept
with

90 Sal Reference

employee
smallint,
varchar(20) not null with default,
integerl,
smallint,
float4,
smallint)
journaling;

ODT-DATA

(

create table

Create a table with some other data types.

create table
(acct
owes
due

debts
varchar(20) not null not default,
money,
date not null with default) ;

Create a table listing employee numbers for employees who make more than the average
salary.

create table
as select
from
where

highincome
eno
employee
salary all
(select avg (salary)
from employee) i

Create a table that spans two locations.

create table emp as
select eno from employee

which location = (locationl, location2);

Chapter 2: SOL Commands SOL Reference 91

create view

create view
Defines a virtual table.

Syntax
create view view_name [(columnname (, columnname»] as subselect
[with check option]

The syntax of the subselect is described in the select command summary later in this chapter.

Description

The syntax of the create view statement is very similar to that of the as form of create table.
However, data are not retrieved. Instead, the definition is stored. When the view _name is
later used in an SQL statement, the statement operates on the tables that are used to define the
view, called the base tables.

All selects on views are fully supported. Simply use a view _name in place of a tablename in
any SQL retrieval.

Only a limited set of updates on views is supported because of anomalies that can occur.
Generally, no updates are supported on views that have more than one base table. No updates
are allowed on columns that are in the qualification of the view definition, or on any column
whose source is not a simple column name (that is, set functions or computations). Updates
not allowed on view columns may, of course, be performed on columns in the base tables.

In general, updates are supported only if it can be guaranteed (without looking at the actual
data) that the result of updating the view is identical to updating the corresponding base table.

Although a person who defines a view need not own all tables upon which a view is based,
use of the view is restricted to those who have all necessary permissions to the base tables.
Permissions may be granted by the DBA using the grant priv command.

When a table used in the definition of a view is dropped, the view is also dropped.

The with check option clause causes each insert and update done using the view to be checked
to make sure that a row inserted through the view actually appears in the view, and that an
update of a row in the view does not cause the row to disappear from the view.

92 Sal Reference DDT-DATA

/

f

(

create view

For example, consider the following two commands:

create view
as select
from
where

update
set

v

C = 5

v

*
t
c 10

Once "e" is set to the value "5" when "t" is updated, the updated rows are no longer in the
view. If the view had been created with the \lith check option, the update would not be
allowed.

By default, the with check option is not set. All views created in pre-6.0 releases of Ingres
had the check option attribute automatically set.

Example

Define a view of employee data including names, salaries, and managers' names.

create view
as select

from
where

Chapter 2: Sal Commands

empdpt (ename, sal, dname)
employee. name, employee. salary,

dept.name
employee, dept
employee.mgr = dept.mgr;

Sal Reference 93

declare

declare
Declares a list of local variables for use in a database procedure.

Syntax

declare
var _name (,var _name) [=] var _type;
(var_name (, var_name) [=] var_type;}

Description

This statement is used only in a database procedure definition, to declare a list of local
variables for use in the procedure. The statement is optional and, if used, is placed before the
begin clause.

The var _name is the name of the local variable. Variable names must be unique within the
procedure body. Also, a variable and a procedure parameter may not have the same name.

The var _type is the type of the variable. A local variable type may be any of the ODT-DATA
SQL data types. Nullable variables are initialized to NULL; non-nullable variables are '< j

initialized to the default value. For example, a non-nullable floating-point variable is initial-
ized to 0.0. Any non-nullable variables declared without an explicit default value are initial-
ized to the ODT-DATA default value.

Example

This procedure fragment demonstrates some declarations and uses of local variables. Note
that some of these statements cause an error.

CREATE PROCEDURE variables (vmny MONEY NOT NULL) AS

DECLARE

BEGIN

vi4 INTEGER NOT NULL;
vfS FLOAT;
vell CHAR(ll) NOT NULL;
vdt DATE;

vi4 1234;
vfS NULL;
vell = '26-jun-1957';

94 Sal Reference ODT-DATA

(
~ /

(

declare

SELECT DATE(:vcll) INTO :vdt;

END;

vcll = vmny;

vmny = vfS;

RETURN :vi4;

Chapter 2: Sal Commands

-data type conversion error
-null to non-null conversion error

Sal Reference 95

delete

delete
Deletes rows from a table.

Syntax

delete from tablename [corr _name]
[where search_condition]

Description

The delete command removes rows that satisfy search_condition from the specified table. If
the where clause is omitted, the command deletes all rows in the table. The result is a valid
but empty table.

Note that delete does not automatically recover the space in a table left by the deleted rows.
However, if you add new rows later, the empty space may be re-used. If you delete many rows
from a table, you may want to run the modify command to recover the lost space. You can
specify any storage structure and still recover the empty space. In particular, if you want to
delete all rows from a table, you can use the special modify table name to truncated to delete
all rows and recover the space at the same time. (See the modify command in this chapter for
more information.)

To delete rows from a table, you must either be its owner or have select and delete permission
on the table.

Example

Remove all employees who make over $35,000.

delete from employee where salary> 35000;

96 Sal Reference ODT-DATA

/
I
\

/

/

"-- ./

(

drop
Destroys one or more tables, indexes, or views.

Syntax

drop tablenamelindexnamelviewname {, tablenamelindexnamelviewname}

Alternate forms:

drop table tablename {,tablename}
drop index indexname {,indexname}
drop view viewname {,viewname}

Description

drop

The specified tables, indexes, and views are removed from the database. Only the owner of
the view or table is allowed to drop it. Likewise, only the owner of an indexed table is allowed
to drop an index.

If a table is dropped, any indexes and views defined on that table are automatically dropped
too.

If the drop tablelviewlindex form is used, the object name is checked to be sure it is the "right"
type. So drop table viewname is not permitted. Similarly, drop table tablename, viewname
drops the table and not the view.

If the generic drop form is used, the objectnames may be any mixture of the three types.

Example

Drop the "employee" and "dept" tables.

drop employee, dept;

Chapter 2: Sal Commands Sal Reference 97

drop Integrity

drop integrity
Destroys one or more integrity constraints.

Syntax

drop integrity on tablename integer {, integer}

The keyword all can appear in place of the list of integers.

Description

The specified integrity constraints are removed from the database. The constraints are
specified by integers whose values can be obtained by using the help integrity command.
Alternatively, the keyword all can be specified, meaning all integrity constraints currently
defined for the table in question.

Only the owner of the table to which a given constraint applies is allowed to drop that
constraint.

Example

Drop integrity constraints 0,4, and 5 on "job."

drop integrity on jc~ 0, 4, 5;

98 Sal Reference ODT-DATA

drop permit

drop permit
f Destroys one or more pennissions.

(

Syntax

For tables and views:

drop permit on tablename integer (, integer}

For procedures:

drop permit on procedure proc _name
integer I all

Description

The specified pennissions are removed from the database. The pennissions are specified by
integers whose values can be obtained by using the help permit command. Alternatively, the
keyword all can be specified, meaning all permissions currently defined for the table or
procedure in question.

Only the owner of the table to which a given pennission applies is allowed to drop that
permission.

Examples

Drop all pennissions on "job."

DROP PERMIT ON job ALL;

Drop the second permission on procedure "AddEmp."

DROP PERMIT ON PROCEDURE AddEmp 2;

Chapter 2: Sal Commands Sal Reference 99

drop procedure

drop procedure
Removes a procedure definition from the database.

Syntax

drop procedure proc _name

Description

This statement removes a database procedure definition from the database. When executed,
it takes effect immediately. Executions in progress, invoked by other users, are allowed to
continue until they are completed. A procedure can only be dropped by its owner.

proc _name is the name of the procedure to be removed.

Example

This statement removes the procedure named "salupdt."

DROP PROCEDURE salupdt

100 Sal Reference ODT-DATA

./

(

grant
Grants privileges on a table, view, or procedure.

Syntax

grant all [privileges] on [table] tablename {, tablename} to public

grant all [privileges] on [table] tablename {, tablename} to username
{, username}

grantpriv {,priv} on [table] tablename {, tablename} to public

grantpriv {,priv} on [table] tablename {, tablename} to username {, username}

grantpriv on procedure proc_name { ,proc_name} to public I username
{, username}

Description

priv represents one of the following privileges:

• select

• insert

• delete

• update (columnname {, columnname})

• execute

grant

This command grants one or more of these privileges to any set of users on the tables, views,
or procedure specified. The Select, insert, update, and delete privileges can only be granted
on tables or views. The Execute privilege can only be granted on procedures.

The Grant statement must be issued by the DBA of the current database, who must own the
procedure or all the tables and views specified. If a non-DBA issues a grant statement, an
error is returned. If the DBA issues a grant statement that includes tables or views that the
DBA does not own, processing continues on all the tables or views that the DBA does own.

Chapter 2: Sal Commands SOL Reference 101

grant

If the DBA issues a grant statement to allow a user to use a view or procedure, then the user
can do so without permission(s) on the underlying tables or views.

The optional words privileges and table have no effect. They are included for compatibility
with other versions of SQL.

102 Sal Reference ODT-DATA

(
help
Gets information about SQL, or about tables in the database.

Syntax
help [[all]l[tablename{, tablename)]]
help view viewname {, viewname}
help permitlintegrity tablename {, tablename}
help help
help sql
help sql_statement

Description

help

The help function can be used to display information about ODT-DATA features, definitions
of views, protections or permissions, or information about the contents of the database and
specific tables in the database. In addition, help can be used inside the ODT-DATA SQL
Terminal Monitor to obtain information regarding SQL, including such features as the syntax

if of SQL statements and the available datatypes. The legal forms are as follows:
(

(

help

help all

help tablename
{, table name }

help view
viewname}

help permit tablename
{, tablename}

help integrity tablename
{, table name }

help help

help sql

help sql_statement

Chapter 2: Sal Commands

Lists all user (that is, not system) tables that exist in the cur­
rent database.

Gives information about the makeup of all user (that is, not
system) tables in the database.

Gives information about the specified table(s).

Prints view definition of specified view(s).

Prints permissions on specified table(s).

Prints current integrity constraints on specified table(s).

Prints a list of SQL features for which help is available.

Prints information of a general nature pertaining to SQL.

Prints information on the specified sql_statement.

SOL Reference 103

help

The permit and integrity fonns of the help command print out unique integer identifiers for
each constraint. The drop permit and drop integrity commands use these identifiers to
remove individual constraints. (See the sections in this chapter on drop integrity and drop
permit.)

Examples

Retrieve a list of all tables in the database.

help;

Retrieve help about the "employee" table.

help employee;

Retrieve help about the "employee" and "dept" tables.

help employee, dept;

Retrieve the definition of the "highpay" view.

help view highpay;

List all pennits issued on the "job" and "employee" tables.

help permit job, employee;

List all integrity constraints issued on the "dept" and "employee" tables.

help integrity dept, employee;

List infonnation on the select statement.

help select;

104 Sal Reference ODT-DATA

/

(

(

if-then-else

if-then-else
Chooses between alternative paths of execution inside a database procedure.

Syntax

if boolean _ expr
then statement; {statement;} {elseif boolean_txpr then
statement; {statement;}} [else
statement; {statement;}] endif

Description

In SQL, this statement can only be issued from within the body of a database procedure.

A boolean expression (boolean _expr) must always evaluate to "true" or "false." As discussed
in Chapter I, "SQL Syntax," a boolean expression can include comparison operators ("=",
">" and so on) and the logical operators and, or, and not. Boolean expressions involving
NULL values frequently evaluate to "unknown", which will behave exactly as if it evaluated
to "false."

The simplest variant of the if statement performs an action only if the boolean expression
evaluates to true. The synt2x for this variant is:

if boolean_expr then
statement; {statement;}

endif

If the boolean expression evaluates to true, the list of statements is executed. If the expression
evaluates to false (or "unknown"), the statement list is not executed, and control passes directly
to the statement following the endif terminator.

The second variant of the if statement includes the else construct. Its simplest form is:

if boolean_expr then
statement; {statement;}

else
statement; {statement;}

endif

Chapter 2: Sal Commands Sal Reference 105

if-then-else

In this variant, if the boolean expression is true, the statements immediately following the
keyword then are executed. If the expression is false (or "unknown"), the statements
following the keyword else are executed. In either case, after the appropriate statement list
is executed, control passes to the statement immediately following endif. /

The third if variant involves the elseif construct. The elseif construct allows the running
application to test a series of conditions in a prescribed order. The statement list corresponding
to the first true condition found is executed; all other statement lists connected to conditions
are skipped. The elseif construct can be used with or without an else construct, which must
follow all the elseif constructs. If an else construct is included, one statement list is guaranteed
to be executed, because the statement list connected to the else is executed if all the specified
conditions evaluate to false.

The simplest form of this variant is:

if boolean_expr then
statement; (statement;)

else if boolean_expr then
statement; (statement;)

endif

\
"'---- _/

If the first boolean expression evaluates to true, the statements immediately following the first /'
then keyword are executed. In such a case, the value of the second boolean expression is
irrelevant. If the first boolean expression proves false, however, the next boolean expression
is tested. If the second expression is true, the statements under it are executed. If both boolean
expressions test false, neither statement list is executed.

A more complex example of the elseif construct is:

106

if boolean_expr then
statement; (statement;)

else if boolean_expr then
statement; (statement;)

elseif boolean_expr then
statement; (statement;)

else
statement; (statement;)

endif

SOL Reference ODT-DATA

(

(

if-then-else

In this case, the first statement list is executed if the first boolean expression evaluates to true.
The second statement list is executed if the first boolean expression is false and the second
true. The third statement list is executed only if the first and second boolean expressions are
false and the third evaluates to true. Finally, if none of the boolean expressions is true, then
the fourth statement list is executed. After any of the statement lists is executed, control passes
to the statement following the endif.

Two or more if statements can be nested. In such cases, each if statement must be closed with
its own endif.

If an error occurs during the evaluation of an if statement condition, the database procedure
terminates and control returns to the calling application. This is true even if the statement is
nested.

Example

This if statement performs a delete or an insert and checks to make sure the statement
succeeded.

IF (id > 0) AND (id <= maxid) THEN
DELETE FROM emp WHERE id = :idi
IF iierrornumber > 0 THEN

MESSAGE 'Error d~leting specified row' ;
RETURN 1;

ELSEIF iirowcount = 0 THEN

ENDIF;

MESSAGE 'Specified row does not exist'i
RETURN 2;

ELSE IF (id < maxid) THEN

ELSE

INSERT INTO emp VALUES (:name, :id, :status);
IF iierrornumber > 0 THEN

ENDIF;

MESSAGE 'Error inserting specified row'i
RETURN 3;

MESSAGE 'Invalid row specification';
RETURN 4;

ENDIF;

Chapter 2: Sal Commands SOL Reference 107

insert

insert
Inserts rows into a table.

Syntax

insert into tablename [(column (, column })]
[values (expr{, expr})] I [subselect]

Either the values clause or the subselect must appear. See the select command description for
the subselect syntax.

Description

The insert statement inserts new rows into the specified table. In the values form, a single
row is inserted; in the sub select form, all rows that result from evaluating the subselect are
inserted.

The ith expression in the values list, or the ith expression in the select clause of the subselect,
corresponds to the ith column in the list of column names. Omitting the list of column names
is allowed when a subs elect is used and the column names in the subselect match column
names in the table, or if the values list corresponds exactly to the columns in the table. That
is, the values list must have a value for each column and that value must be the appropriate
data type. Additionally, the values must be listed in an order corresponding to the order of
the columns in the table.

What happens in columns not specified in the column list depends on the fonnat used when
the table was created with create table. If the column was set with nUll, the NULL value is
assigned. If the column is set not null with default, the appropriate default value ("0" or
blank) is assigned. Otherwise, an error code is returned and the insert is not executed.

Expressions used in the values clause can only be constants (including the NULL constant),
scalar functions on constants, or arithmetic operations on constants.

An insert statement may be issued only by the owner of the table or by a user with insert
permission on the table.

Inserted data must be coercible into the data type of the target column, that is, either both must
be numeric types or both must be character types . .

108 SOL Reference ODT-DATA

insert

Some common errors to watch for are:

• Use of a numeric expression to set the value of a string column or vice versa

(• Failure to specify a value for a column that is not nullable and not defaultable

(

• An attempt to insert the NULL constant into a non-nullable column

Examples

1. Simply add a row to an existing table.

insert into emp (name, sal, bdate)
values (' Jones, Bill', 10000, 1944);

2. Insert into the "job" table all rows from the "newjob" table where the job title is not
"Janitor."

insert
select
from
where

into job (jid, jtitle, lowsal, highsal)
job_no, title, lowsal, highsal
newjob
title != 'Janitor';

3. Add a row to an existing table, using the default columns.

insert into emp
values ('Jones, bill', 10000, 1944)

Chapter 2: Sal Commands Sal Reference 109

message

message
Returns a message number, message text, or both to the executing application.

Syntax
message message_text I message_number I message_number message_text

Description

This statement can only be issued from inside the body of a database procedure.

The Message_text can be a string literal, or a non-null local character variable or parameter.
The Message_number can be an integer or a non-null local integer variable or parameter.
Neither can be expressions. Both the message _text and the message_number are supplied by
the database procedure programmer.

When a message is returned to an application, the default behavior is to display the message
on the screen. (In an interactive forms application, the message is displayed in a window at
the bottom of the screen.) An application may override the default behavior by using the
Embedded SQL whenever statement. Consult the ODT-DATA Embedded SQL User's Guide
for more details about the wbenever statement and processing procedure messages.

Examples

This fragment returns trace text to the application.

MESSAGE 'Inserting new row';
INSERT INTO tab VALUES (:val);
MESSAGE 'About to conmit change';
COMMIT;
MESSAGE 'Deleting newly inserted row';
DELETE FROM tab WHERE tabval = :val;
MESSAGE 'Returning w~th pending change';
RETURN;

11 0 Sal Reference COT-DATA

/

"

/

message

This example returns a message number to the application. The application can then extract
the international message text out of a message file.

IF iierrornumber > 0 THEN
MESSAGE 58001;

ELSE IF iirowcount != 1 THEN
MESSAGE 58002;

ENDIF;

Chapter 2: Sal Commands Sal Reference 111

modify

modify
Converts the storage structure of a table or index.

Syntax

modify tablenamelindexname to storage_structure I verb[unique]
[on columnname [ascldesc]{,columnname [ascldesc])]

[with-clause]

A with-clause consists of the word with followed by a comma-separated list of any number
of the following items:

flllfactor=n
minpages=n
maxpages=n
leaffill=n
nonleaffill=n
newlocation={locl{.loc2{.loc3 ...)]).
oldlocation=(locl (.loc2{. loc3 ...)]).
location=(iocl{.loc2{.loc3 ...)]).

Description

The modify command changes table name or indexname to the specified storage structure,
reorganizes a btree index, or moves a table to two or more different locations. Only the owner
of a table can modify that table. This command is used to accelerate performance of queries
that access the table, particularly when thetal>le is large or frequently referenced. The
Storage _structure can be any of the following:

isam indexed sequential access method structure, duplicate rows allowed un­
less the with noduplicates clause is specified when the table is created.

cisam

hash

compressed isam, duplicate rows allowed unless the with noduplicates
clause is specified when the table is created.

random hash storage structure, duplicate rows allowed unless the with
noduplicates clause is specified when the table is created.

112 Sal Reference DDT-DATA

(

~. /

c

(

(

chash

heap

cheap

heapsort

cheap sort

btree

cbtree

modify

compressed hash, duplicate rows allowed unless the with noduplicates
clause is specified when the table is created.

unkeyed and unstructured, duplicated rows allowed, even if the with
noduplicates clause is specified when the table is created.

compressed heap.

heap with rows sorted and duplicate rows allowed unless the with
noduplicates clause is specified when the table is created (sort order not
retained if rows are added or replaced).

compressed heapsort.

dynamic tree-structured organization with duplicate rows allowed unless
the with noduplicates clause is specified when the table is created.

compressed btree, duplicate rows allowed unless the with noduplicates
clause is specified when the table is created.

The Verb can be any of the following:

merge

relocate

reorganize

truncated

special form of modify for btree and cbtree storage structures; modifies
the tree structure only merging adjacent pages whenever possible and
deleting empty pages.

move a table or portion of a table from the location{s) listed in the
oldlocation list to the location specified in the new location list.

spread the contents of the table over the location{s) in the location list.

special form to delete all rows quickly and release all file space back to
the operating system; structure automatically converted to heap.

r The current compression algorithm suppresses trailing blanks in columns of the c data type.

Chapter 2: SOL Commands SOL Reference 113

modify

The keyword unique may be used with the following storage structures:

isam cisam

hash chash

btree cbtree

This keyword has the effect of requiring each key value in the table to be unique. (A key value
is the concatenation of all key columns in a row.) If you try to use the unique keyword for a
table containing non-unique keys, ODT-DATA returns an error message and does not change
the storage structure.

Keys may be defined on nullable columns, even unique keys. For determining "uniqueness"
on a key, a column or a whole row, NULL values are considered equal to other NULL values.
Therefore, if you define keys on nullable columns, use btree, because the duplicate NULL
values create overflow chains in isam and hash tables, making them very inefficient.

For determining the ordering of values in a column, NULL values are considered "greater
than" any non-NULL value.

If the on phrase is omitted when modifying to isam, cisam, hash, chash, btree or cbtree, the
table automatically keyed on the frrstcolumn. When modifying to heap or cheap, the on phrase
is meaningless and must be omitted. When modifying to heapsort or cheapsort, the on phrase
is optional.

When a table is sorted (isam, cisam, heap sort, cheapsort, btree, and cbtree) the primary
sort keys are those specified in the on phrase (if any). The first key (columnname) after the
on phrase is the most significant sort key, and each successive columnname specified is the

. next most significant sort key. Any columns not specified in the on phrase is used as least
significant sort keys in column number sequence.

When a table is modified to heapsort or cheapsort, the sortorder can be specified to be asc or
desc, meaning ascending or descending, respectively. The default is asc.

The filIfactor specifies the percentage (from 1 to 100) of each primary data page that should
be filled with rows, under ideal conditions. The fillfactor may be used with isam, cisam, C"
hash, chash, btree, and cbtree. When modifying to btree or cbtree, nonleaffill determines /
the percentage of each index page to fill. Care should be taken when specifying large
fill factors because a non-uniform distribution of key values could later result in overflow
pages and thus degrade access performance for the table.

114 Sal Reference DDT-DATA

(

(

modify

The minpages specifies the minimum number of primary pages a hash or chash table must
have. The maxpages specifies the maximum number of primary pages a hash or chash table
may have. The min pages and max pages must be at least one. If both minpages and
maxpages are specified in a modify command, minpages cannot exceed maxpages.

Default values for fill factor , min pages, and maxpages are as follows:

Fillfactor Minpages Maxpages

hash 50 10 no limit

chash 75 1 no limit

cisam 100 NA NA

btree 80 NA NA

cbtree 100 NA NA

The leaffill parameters of the modify command applies only to tables stored in btree and
cbtree structures. The leaffill parameter specifies the percentage to fill each index page for a
btree or cbtree table.

The leaffill specifies a percentage n, where n ranges from 1 to 100, and its percentage specifies
how much each index page should be filled at the time the table is modified to btree or cbtree.
This parameter contrasts with the fill factor parameter, which specifies the percentage oc­
cupancy of data pages (not index pages) when a table is converted to btree or cbtree.

The leaffin parameter allows you to control locking contention in btree and cbtree index
pages. By retaining a percentage of open space on these index pages, more concurrent users
can access the btree without contention while their queries descend the index tree. Note,
however, that you must strike a balance between preserving space in index pages and creating
a greater number of index pages; more levels of index pages require more I/O to locate a data
row.

Default value for leaffill is 60 (percent). This default applies to both btree and cbtree indexes.

Chapter 2: Sal Commands Sal Reference 115

modify

ODT-DATA storage structures use existing data to build the index (for isam and cisam), the
hash function (for hash and chash), or for sorting (heap sort and cheapsort). Therefore, it is
pointless to modify a table to any of these six structures before adding data to the tables. You
are thus strongly encouraged to add all data to a table as a heap before modifying a table to (
these structures. Then, after the table contains its data, run modify to optimize storage for ~_
retrievals. If you add, delete, or change the data in the table significantly, affecting, say, 20%
of the data, run modify again to re-optimize storage. If the table is dynamically used as part
of an ongoing application, periodically re-optimize it with the modify command. If the table
is merely a static repository for data. this maintenance procedure is not needed.

When data is added to a table stored as a btree or cbtree, the btree index automatically
expands, so there should be no need to remodify a growing btree index. However, a btree
index does not shrink when rows are deleted from the btree table. A special form of modify
can be used to shrink a btree index after you have deleted a significant number of rows from
the btree table.

modify table name to merge

Because this form of modify only affects the index. it usually runs a good deal faster than a
normal modify command. This form of modify does not require any temporary disk space to
execute.

When modify is run on a table. any indexes created for the table are destroyed and must be
recreated (except for modify to merge). For more information on indexes. please refer to the
create index command description.

For information on the reorganize and relocate clauses. see "Multi-Location Tables" in
Chapter 1.

Examples

Modify the "employee" table to an indexed sequential storage structure with "eno" as the
keyed column.

modify employee to isam on enOi

If "eno" is the first column of the "employee" table. the same result can be achieved by:

modify employee to isami

116 SOL Reference DDT-DATA

. ... /

c/

(

modify

Perform the same modify command but request a 60% occupancy on all primary pages.

modify employee to isam on eno with fillfactor = 60;

Modify the "job" table to compressed hash storage structure with "jid" and "salary" as keyed
columns.

modify job to chash on jid, salary;

Perform the same modify command but also request 75% occupancy on all primary pages, a
minimum of seven primary pages and a maximum of 43 primary pages.

modify job to chash on jid, salary with fill factor
75, minpages = 7, maxpages = 43;

Perform the same modify command again but only request a minimum of 16 primary pages.

modify job to chash on jid, salary with
minpages = 16;

Modify the "dept" table to a heap storage structure.

modify dept to heap;

Modify the "dept" table to a heap again, but have rows sorted on the "dno" column and have
any duplicate rows removed.

modify dept to heapsort on dno;

Modify the "employee" table in ascending order by "ename," descending order by "age" and
have any duplicate rows removed.

modify employee to heapsort on ename, age desc;

Modify the "btree on "ename," so that data pages are 50% full and index pages are initially
40% full.

modify employee to btree on ename
with fill factor = 50, leaffill

Chapter 2: Sal Commands

40;

Sal Reference 117

return

return
Terminates a currently executing database procedure and returns control to the calling /
application and, optionally, retrieves a value. ~ __

Syntax

return [return_status]

Description

In a database procedure, the return statement terminates the procedure and returns control to
the application. The calling application resumes execution at the statement following execute
procedure.

The return statement can return a value to the application that executed the procedure by
using the return _status. The return _status must -null integer constant, variable, or parameter
whose data type is compatible with the data type of the field to which its value is assigned
upon the return. If the return _status is not specified or if a return statement is not executed,
then 0 is returned to the calling application.

The into clause of the execute procedure statement allows the calling application to retrieve
the return_status once the procedure has finished executing. Consult the ODT-DATA Em­
bedded SQL User's Guide for information about the execute procedure statement.

Example

This fragment of a database procedure returns a passed parameter to the calling application.

118

CREATE PROCEDURE CHECK (okval INTEGER, failval
INTEGER) AS
BEGIN

Sal Reference COT-DATA

(

(/

IF (iierrornumber = 0) THEN
COMMIT;
RETURN :okval;

ELSE
ROLLBACK;
RETURN :failval;

ENDIF;
END;

Chapter 2: Sal Commands

return

Sal Reference 119

rollback

rollback
Rolls back the current transaction.

Syntax

rollback "[work] [to savepointname]

Description

This statement aborts part or all of the current transaction. If the to savepointname clause is
given, the transaction is undone to the point of the savepoint declaration. Otherwise, the entire
transaction is erased.

The optional word work has no effect. It is included for compatibility with other versions of
SQL.

The statement analogous to rollback in pre-6.0 versions of INORES is abort.

120 SOL Reference ODT-DATA

save

save
Saves a base table until a specified date.

Syntax
save tablename [until month day year]

Description

Use save to preserve tables until the given expiration date. Only the owner of a table can save
that table. User tables, when created, default to "no expiration date."

The month can be an integer from 1 through 12, or the name of the month, either abbreviated
or spelled out. The day is simply the day of the month, and year is the fully specified year
(that is, 1982 or 1999).

If the optional until clause is omitted, the expiration date is set to "no expiration date."

Tables are not automatically destroyed after their expiration date. At this time there is no means
by which expired tables can be destroyed.

System tables have no expiration date.

Example

Save the "employee" table until the end of February, 1989.

save employee until feb 28 1989;

Chapter 2: SOL Commands SOL Reference 121

savepoint

savepoint
Declares a savepoint marker within a transaction.

Syntax

savepoint savepoint _name

Description

The savepoint command declares a named savepoint marker within a transaction, allowing
subsequent rollbacks back to the declared savepoint at any time before the transaction is
terminated. The savepoint _name can be any character string conforming to rules for ODT­
DATA names, except that the ftrst character need not be alphabetic. This allows the naming
of savepoints with integers. Note that the savepoint _name is not entered with quotation marks.

There is no limit to the number of savepoints that you can declare within a transaction. You
can also use the same savepoint _name more than once; however, only the most recently
declared use of a savepoint _name is active within the transaction. That is, if you abort the
transaction to a savepoint whose name is used more than once, the transaction is backed out
to the most recent use of the savepoint _name.

All savepoints of a transaction are rendered inactive when the transaction is terminated (either
committed with commit or rolled back with rollback or a system intervention upon deadlock).
Please refer to Chapter I, "SQL Syntax," for more information on deadlock and to the
command descriptions in this chapter for information on commit and rollback, respectively.

Example

Declare savepoints among other SQL statements, then do partial rollbacks of the transaction.

insert into emp (name, sal, bdate)

values (' Jones,Bill', 10000, 1945);

savepoint setone; 1* sets first savepoint marker

insert into emp (name, sal, bdate)

values (' Smith, Stan', 20000, 1948);

savepoint 2; \g /* set second savepoint marker

122 Sal Reference ODT-DATA

/

(

(

(

savepoint

insert into emp (name, sal, bdate)

values (' Engel, Harry' , 18000, 1954) ;

rollback to 2; \g /* undoes third append; first ana second renai.'"l */

rollback to setone; \g /* undoes second append; first remains */

commit; \g /* only the first append is committed */

Chapter 2: Sal Commands Sal Reference 123

select

select
Retrieves values from one or more tables.

Syntax

subselect
{union [all] (subselect)}
[order by order_column [asc I desc] {. order_column [ase I desc]}]

where subselect has the syntax:

select [allldistinct] expression [as result_column] {, expression [as result_column]}
from table [corr_name] {. table [corr_name]}
[where search_condition]
[group by column {, column}]
[having search_condition]

Description

The result of a select statement is the union of the results of all subselects in that statement,
ordered in accordance with the specifications of the optional order by clause.

Duplicate rows are always eliminated if union is specified. But if you say union all,
duplicates are not removed. If you say union all once, you must say it for all unions within
one statement. If order by is not specified, the rows of the result table appear in unpredictable
order.

Note that all subselects in a select statement with union must have the same number of
columns in their result tables. Additionally, columns of numeric type cannot be matched with
columns of character type.

Each order _column in the order by clause must consist of either a result column name or an
integer constant in the range 1 - n, where n is the number of columns in the result table of each
of the subselects. The order_column designations are taken only from the first subselect in a
set of "unioned" subselects. The optional keywords ase and desc specify ascending and
descending sort sequence, respectively. If neither is specified for a particular column, asc is
assumed by default.

124 Sal Reference DDT-DATA

select

The keyword distinct, used in a subselect, indicates that duplicate rows are to be eliminated.
If distinct is not specified, the subselect defaults to all, in which case duplicate rows are not
eliminated.

!(The expressions in the select clause of the subselect can be any expressions constructed in
accordance with the rules set forth in Chapter 1, "SQL Syntax." They may also take one of
the following forms:

i('.·. '~

correlation name.*

table.*

meaning all the columns of the table denoted
by correlation_name.

meaning all the columns of table.

Note that * is considered 'wild card.'

Additionally, you can specify select * from tablenames, which returns all the columns from
all the tables named in the from clause.

A result_column may be assigned to any expression that denotes a single column in the result
table (that is, where expression does not use the "*,, syntax). The result column then appears
in the result table as the column heading for the expression. The ability to assign a result
column name to an expression is of particular benefit when the expression is not simply a
column from a database table. If the expression is such a column, the column heading in the
result table is by default the name of that column. However, when the expression is, for
example, a scalar or set function or involves a computation, ODT-DATA returns blanks for the
column heading. To override this default, assign the expression an appropriate result column.
The result column, whether default or explicit, may also be used in the order by clause.

The from clause is used to specify the base tables from which rows are to be selected. An
optional correlation name (corr _name) may be chosen for each table specified (see Chapter
1, "SQL Syntax" for information about correlation names). If the from clause includes more
than one table, and a column name in the select list appears in more than one of the tables in
the from clause, column names in the select statement must be qualified explicitly by a table
name or a correlation name. This eliminates ambiguity as to which table a column belongs.

The from clause may be omitted if the statement consists only of a select clause of a constant
expression. (See the examples following this description.)

The where clause qualifies the selection of rows; only those rows that satisfy the search_ con­
dition are selected.

Chapter 2: SOL Commands SOL Reference 125

select

The columns in the group by clause of the subselect are names of columns from the table(s)
identified in the from clause. The groups may be qualified by a having clause.

From a conceptual standpoint, the subselect is evaluated in the following manner:

• First, the Cartesian product of all tables identified in the from clause is formed.
From that product, rows not satisfying the search condition specified in the where
clause are eliminated.

• Next, the remaining rows are grouped in accordance with the specifications of the
group by clause.

• Groups not satisfying the search condition in the having clause are then eliminated.

• Finally, the expressions specified in the select clause are evaluated.

• If the keyword distinct has been specified, any duplicate rows are eliminated from
the result table.

If the subselect includes a group by clause, each expression in the select clause must be
single-valued per group. That is, the only data items permitted in such an expression are the
following:

• the grouping columns.

• set function references. As usual, however, such terms can be combined by using
arithmetic operations, can be the arguments to scalar functions, and so on.

If the subselect includes a having clause, each expression in that clause must also be
single-valued per group. If the group by clause is omitted in a subselect with a having clause,
the entire table is considered to be a single group.

NOTE: When select is used to display varying length character columns, two features
should be noted. First, the select statement pads unused space with blanks. Second,
nonprinting characters and control characters are displayed as blanks. select assumes
that each varying length character column requires a width of n characters on the
screen, where n is the width specified when the column was created.

Only the table's owner or a user with select permission on the table may issue a select
statement.

126 Sal Reference DDT-DATA

/

('
, ",/

(-

Examples

Find all employees who make more than their managers.

select e.ename
from employee e, dept, employee m
where e.dept = dept.dno
and dept.mgr m.eno
and e.salary > m.salary;

Retrieve all columns for those employees who make more than the average salary.

select
from
where

*
employee
salary >
(select avg (salary)
from employee) ;

Retrieve employee information sorted, with duplicate rows removed.

select distinct e.ename, d.dname
from employee e, dept d
where e.dept = d.dno
order by dname desc, ename;

Select lab samples from production and archive tables that were analyzed by lab #12.

select *
from samples s
where s.lab 12
union
select *
from archive _samples a
where a.lab = 12 ;

Select the current user name.

select username();

Select a data conversion operation.

select dow(date('today') + date('3 days'»;

Chapter 2: Sal Commands Sal Reference

select

127

set

set
Sets an ODT-DATA session option.

Syntax

set autocommit on lofT
set journaling I nojournaling [on tablenamel
set result structure

heaplcheaplheapsortlcheapsortlhashlchashlisamlcisamlbtreelcbtree

Set lockmode parameters for your ODT-DATA session to the desired values. Tables accessed
after executing this command are governed by these locking behavior characteristics.

Description

The set command specifies an ODT-DATA run-time option for a single ODT-DATA session.
The selected run-time option remains in effect until the end of the ODT-DATA session, by using
either the ODT-DATA Terminal Monitor or a database invocation within an Embedded SQL
program. Alternatively, another set command can change the value of a current run-time
option established by a previous set command. ~~

See Administering ODT-DATA for information about changing environment variables.

The SET AUTOCOMMIT Option

The set autocommit on command causes an implicit commit to occur after every successfully
executed SQL query. The set autocommit ofT, the default case, means an explicit command
is required to commit a transaction.

The JOURNALING/NOJOURNALING Option

The set journaling command causes all tables created within a session to be logged in with
the ODT-DATA joumaling system. Note, however, that journaling does not take effect until
journaling is enabled for the entire database with the ckpdb command. (please refer to Chapter
4, "ODT-DATA Operating System Commands," for information about ckpdb.) With the (
journaling option set, the explicit with journaling clause is not necessary in the create table ~.

128 SOL Reference DDT-DATA

(

set

command. Additionally, tables created using the as clause of the create table command are
also logged. If the set nojournaling command, which is the default, is set, tables are created
without logging to the journal, unless the explicit with journaling clause appears in the create
table command. The set journaling command, when used with an optional table name, causes
journaling to begin at the next checkpoint for the named table.

The RESULT_STRUCTURE Option

The set result_structure command sets the default storage structure for tables created with
the as clause of the create table command. If the value of heap or cheap is selected as the
default, tables are created exactly as through the select command, which may result in
duplicate rows. However, performance of the create table as command is best with the heap
or cheap option specified. You can optionally set the default structure of tables created by
create table as to any of the structures described in the modify command, that is, heap, cheap,
heapsort, cheapsort, hash, chash, btree, cbtree, isam or cisam. For example, this first
sequence of statements does the same thing as the second sequence:

set result_structure hash;
create temp as select id

create temp as select id
modify temp to hash;

Either sequence results in the "temp" table being stored in a hash structure, hashed on the first
column, "id" in this case. For hash, chash, isam, and cisam, the newly created table is
automatically indexed on the first column.

If you do not execute a set result_structure command, the default storage structure for a table
created by the create table as command is cheap. If distinct is specified, the cheapsort
structure is used if the default storage structure is cheap, chash, or cisam; if the default storage
structure is heap, hash or isam, heap or btree, then heapsort is used.

The SET LOCKMODE Option

You can also use the set command to determine how the ODT-DATA locking system operatse
when ODT-DATA accesses data in a table. The set lockmode option allows you to establish a
number of different types and levels of locks.

You should know that ODT-DATA provides a default strategy for locking in query processing.
If you have no interest in overriding this default, you need not make use of the set lockmode
option. The set lockll!0de option is provided to allow you to optimize performance or enforce
stricter validation andlor concurrency controls.

Chapter 2: Sal Commands Sal Reference 129

set

set lockmode acknowledges three basic types of locking: (1) locking provided by default, that
is, by the ODT-DATA system; (2) locking instituted for an ODT-DATA session; and (3) locking
specified on an ad hoc basis. Therefore, set lockmode allows you to switch among any of
these three types of locking at any time in your ODT-DATA session, except where specifically
disallowed, such as within a multi-statement transaction (see Appendix B, "The ODT-DATA
System Catalogs," on the begin transaction command).

set lockmode provides four different parameters to govern the nature of locking in an
ODT-DATA session:

130

• level: This refers to the level of granularity desired when the table is accessed. You
can specify any of the following locking levels:

page Specifies locking at the level of the data page (subject to
escalation criteria; see "maxlocks" later in this list).

table Specifies table-level locking in the database.

session

system

Specifies the current default for your ODT-DATA session.

Specifies that ODT-DATA starts with page-level locking,
unless it estimates that more than max/ocks pages are ref­
erenced, in which case table level locking is used.

• read lock: This refers to locking in situations where table access is for reading of
data only (as opposed to updates of data). You can specify any of the following
readlock modes:

no lock

shared

exclusive

session

system

Sal Reference

Specifies no locking when reading data.

Specifies the default mode of locking when reading data.

Specifies exclusive locking when reading data (useful in
"select-for-update" processing within a multi-statement
transaction).

Specifies the current readlock default for your ODT­
DATA session.

Specifies the general readlock default for the ODT-DATA
system.

ODT-DATA

c

(

set

• maxlocks: This refers to an escalation factor, or number of locks on data pages, at
which locking escalates from page level to table level. The number of locks
available to you is dependent upon your system configuration. You can specify the
following maxlocks escalation factors:

n

session

system

Specifies a specific (integer) number of page locks to
allow before escalating to table-level locking. n now
defaults to 10. n must be greater than O.

Specifies the current maxlocks default for your DDT­
DATA session.

Specifies the general max locks default for the DDT­
DATA system.

NOTE: If you specify page-level locking, and the num­
ber of locks granted during a query exceeds the system­
wide lock limit, or if the operating system's locking
resources are depleted, locking escalates to table level.
This escalation occurs automatically and is independent
of the user.

• timeout: This refers to a time limit, expressed in seconds, for which a lock request
should remain pending. If DDT-DATA cannot grant the lock request within the
specified time, then the query that requested the lock aborts. You can specify the
following timeout characteristics:

n

session

system

Specifies a specific (integer) number of seconds to wait
for a lock (setting n to 0 requires DDT-DATA to wait in­
definitely for the lock).

Specifies the current timeout default for your DDT­
DATA session (which is also the DDT-DATA default).

Specifies the general timeout default for the DDT-DATA
system.

Chapter 2: Sal Commands Sal Reference 131

set

Against the backdrop of these set lockmode parameters and options are, of course, the
DDT-DATA system defaults for each of the parameters:

level dynamically determined by DDT-DATA

read lock shared

maxlocks 10

timeout o (no timeout)

If you select the system option for any of the set lockmode parameters, the values above are
automatically supplied. When you begin your DDT-DATA session, the DDT-DATA system
defaults are in effect. If you override them with other values using the set lockmode command,
you can revert back to the system defaults easily.

Similarly, if you set session parameters (that is, locking behavior for all user tables accessed
by queries in your DDT-DATA session). you can further set parameters for individual tables on
an as needed basis. After setting the as needed locking behavior, you can return it to either the
session defaults or the DDT-DATA system defaults.

Examples

Within an DDT-DATA session, create three tables with journal logging enabled and one
without.

set journalingi
create table withlog1
create table withlog2
set nojournalingi
create table withlog3
create nolog1 (...)i

Create a few tables with different structures.

) ;

) ;

) with journalingi

/

create table a as ... i /* heap */ (,

132

set result_structure 'hash'; ~
create table b as select id ... ; /* hash on 'id' */
set result_structure 'heap';
create table d as select id ... ;

Sal Reference

/* heap again */

ODT-DATA

(

(

set

Set lockmode parameters for your ODT-DATA session to the desired values. Tables accessed
after executing this command are governed by these locking behavior characteristics.

set lockmode session where level = page, readlock = nolock,
maxlocks = 50, timeout = 10;

Set the lockmode parameters explicitly for a particular table.

set lockmode on employee
where level = table, readlock = exclusive,
maxlocks = session, timeout = 0;

Reset your ODT-DATA session default locking characteristics to the ODT-DATA system
defaults.

set lockmode session where level = system, readlock = system,
maxlocks = system, timeout = system;

Chapter 2: Sal Commands Sal Reference 133

update

update
Updates values of columns in a table.

Syntax

update tablename [corr _name]
set columnname = expression {, columnname = expression}
[where search_condition]

Description

The update statement replaces the values of the specified columns by the values of the
specified expressions for all rows of the table that satisfy the search_condition.

The expressions in the set clause may only use constants or columns from the table specified
by tablename.

Only the owner of the table or a user with update permission on the table is allowed to update
a table. If a given row update would violate an integrity constraint on the table, that row
remains unchanged. Any data used to update a table must come from that same table.

Numeric columns may be updated by values of any numeric type. Update values are converted
to the type of the result columns. Character string columns may be updated by values of any
character string type. Nullable columns may be set to the NULL value by using the NULL
constant.

NOTE: Use a numeric expression to set the value of a numeric column and use a string
expression to set the value of a string column. Mixing them does not work.

134 Sal Reference GOT-DATA

/ ,

f

(

Examples

Give all employees who work for Smith a 10% raise.

update emp
set salary = 1.1
where dept in

* salary

(select
from
where

dno
dept
mgr in

(select eno
from
where

emp
ename

Set all salaried people who work for Smith to null.

update emp
set salary = null
where dept in

(select
from

dno
dept

where mgr in
(select eno
from
where

Chapter 2: Sal Commands

emp
ename

update

'*Smith')) ;

, *Smith')) ;

Sal Reference 135

while - end loop

while - endloop
Repeats a series of statements while a specified condition is true.

Syntax

[label:] while boolean _ expr do
statement; {statement;}

endwhile

Description

This statement may only be issued within the body of a database procedure.

A boolean expression (boolean_expr) must always evaluate to "true" or "false." A boolean
expression can include comparison operators ("=", ">," and so on) and the logical operators
and, or, and not.

The statement list may include any series of legal database procedure statements, including
another while statement.

As long as the condition represented by the boolean expression remains true, the series of
statements between do and endwhile is executed. The condition is tested only at the start of
each loop; if values change inside the body of the loop so as to make the condition false,
execution still continues through the current iteration of the statement list, unless an endloop
statement is encountered.

The end loop statement may be used to break out of a while loop. When endloop is
encountered, the loop is immediately closed, and execution continues with the first statement
following endwhile. For example:

while condition 1 do
statement list 1
if condition 2 then

endloop;
end if;
statement list 2

endwhile;

136 Sal Reference DDT-DATA

\

(

while - end loop

In this case, if condition _2 is true, statement_list _2 is not executed in that pass through the
loop, and the entire loop is closed. Execution resumes at the statement following the endwhile
statement.

A while statement may also be labeled to allow end loop to break out of a nested series of
while statements to a specified level. The label precedes while and is specified by a unique
alphanumeric identifier followed by a colon, as in:

A: while

The label must be a legal ODT-DATA SQL name (see Chapter 1, "SQL Syntax"). The endloop
statement uses the label to indicate which level of nesting to break out of. The following is
one example of the use of labels in nested while statements:

label 1: while condition 1 do - -
label 2:

statement list 1
while condition 2 do

statement list 2
ir condition 3 then

endloop label_I;
elseir condition 4 then

endloop label_2;
endir;
statement list 3

endwhile;
statement list 4

endwhile;

In this example, there are two possible breaks out of the inner loop. If condition _3 is true, both
loops are closed, and control resumes at the statement following the outer loop. If condition_3
is false but condition _ 4 is true, the inner loop is exited and control resumes at statement_list _4.

If no label is specified after endloop, only the innermost loop currently active is closed.

If an error occurs during the evaluation of a while statement, the database procedure terminates
and control returns to the calling application.

Chapter 2: Sal Commands Sal Reference 137

while - endloop

Example

This database procedure "delete_n_rows" accepts as input a base number and a number of
rows. The specified rows are deleted from the table "tab," starting from the base number. If /
an error occurs, then the loop terminates. ~~ . /

138

CREATE PROCEDURE delete n rows
(base INTEGER, n INTEGER) AS

DECLARE

BEGIN

END;

limit INTEGER;
err INTEGER;

limit = base + n;
err = 0;
WHILE (base < limit) DO

DELETE FROM tab WHERE val
IF iierrornumber > 0 THEN

err = 1;
ENDLOOP;
base = base + 1;

ENDWHILE;
RETURN :err;

Sal Reference

:base;

GOT-DATA

ODT-DATA Terminal Monitor

Chapter 3

ODT-DATA Terminal Monitor

The ODT-DATA Tenninal Monitor is the primary user interface to SQL. The Tenninal Monitor
allows you to enter a query and execute it. After executing the query, you can either enter a
new query or edit the existing query if minor changes are to be made. The Terminal Monitor
also allows you to read or write files containing queries or execute operating system level
commands from within.

The Tenninal Monitor is invoked by typing the system-level command sq I at your tenninal.
(See the sql command description in Chapter 4, "ODT-DATA Operating System Commands,"
for details). At its simplest, you can then type a SQL query, type \g (for go) to run the query,
and see the results of the query at your tenninal. Simply by typing additional queries, followed
by \g. any of the capabilities of SQL can be invoked. To exit the Terminal Monitor, type \q
(for quit).

4
1 Messages and Prompts

The Tenninal Monitor gives a variety of messages to keep the user infonned of the status of
the monitor and the query buffer.

As the user logs in, a message is printed. This typically tells the version number and the login
time. It is followed by the dayfile, which gives infonnation pertinent to users.

When the Tenninal Monitor is empty and ready to accept input, the message go is printed.
The message continue means there is something in the query buffer. After a \go command,
the query buffer is cleared if another query is typed in, unless a command that affects the query
buffer is typed first. Commands that retain the query buffer contents are:

\append or \a
\edit or \e
\print or \p
\bell
\nobell

Chapter 3: DDT-DATA Terminal Monitor SOL Reference 139

ODT-DATA Terminal Monitor

For example, type:

help parts
\go
print parts

This results in the query buffer containing:

print parts

Now type:

help parts
\go
\print
print parts

This results in the query buffer containing:

help parts
print parts

An asterisk is printed at the beginning of each line as the prompt character.

Commands

A number of commands may be entered by the user to manipulate either the contents of the
query buffer or the user's environment. They are all preceded by a backslash (\), and all are
executed immediately (rather than at execution time, like queries).

Some commands may take a filename. In such commands, the filename is designated by a
string defined by the first significant character after the end of the command until the end of
the line. These commands may have no other commands on the line with them. Commands
that do not take a filename may be stacked on a single line. For example:

\date\go\date

This returns the time both before and after execution of the current query buffer.

140 Sal Reference DDT-DATA

/' '

(-'

\r or \reset

\p or \print

\e or \ed or \edit or
\editor [filename]

\g or\go

\a or \append

\time or \date

\s or \sh or \shell

\q or\quit

\ed or \ehdir
dir name

\i or \include or
\read filename

ODT-DATA Terminal Monitor

Erase the entire query (reset the query buffer). The former contents
of the buffer are lost and cannot be retrieved.

Print the current query. The contents of the buffer are printed on
the user's tenninal.

Enter the operating system's text editor (designated by the ODT­
DATA startup file). Use the appropriate editor command to return to
the OOT-DATA monitor. If no filename is given, the current con­
tents of the query buffer are sent to the editor, and upon return, the
query buffer is replaced with the edited query. If a filename is
given, the query buffer is written to that file. On exit from the
editor, the file contains the edited query, but the query buffer
remains unchanged.

Process the current query. The contents of the buffer are trans­
mitted to OOT-DATA and run.

Append to the query buffer. Typing \append after completion of a
query overrides the auto-clear feature and guarantees that the query
buffer is not reset until executed again.

Print out the current time and date.

Escape to the UNIX System shell (command line interpreter).
Typing Ctrl D causes you to exit the shell and return to the ODT­
DATA Tenninal Monitor.

Exit OOT-DATA terminal monitor.

Change the working directory of the monitor to the named direc­
tory.

Read the named file into the query buffer. Backslash characters in
the file are processed as they are read.

\w or \writefilename Write the contents of the query buffer to the named 'file.

Chapter 3: ODT-DATA Terminal Monitor Sal Reference 141

ODT-DATA Terminal Monitor

\script [filename] Write/stop writing the subsequent SQL Slll. ~ments and their results
to the specified file. If no filename is suppl.ed with the \script
command, output is logged to a file called script.ing in the current
directory. The \script command toggles between logging and not
logging your ODT-DATA session to a file. If you supply afilename
on the \script command that terminates logging to a file, the
filename is ignored. You can use this command to save result
tables from SQL statements for output. The \script command in no
way impedes the terminal output of your session.

\bell and \nobell Tell the Terminal Monitor to include (\bell) or not to include
(\nobeU) a bell (that is, Ctrl G) with the continue or go prompt.
The default is \nobell.

any other character Ignore any possible special meaning of character following \. This
allows the backslash itself to be inserted as a literal character. (See
also Chapter 1, "SQL Syntax," on character strings).

Flags

Certain flags may be included on the sqJ command line. These flags affect the operation of
the Terminal Monitor. Among the most useful of these flags are:

-a

-d

-s

Disable the autoclear function. This means that the
query buffer is never automatically cleared; it is as
though the \append command were inserted after every
\go. Note that this flag requires that the user must ex­
plicitly clear the query buffer using \reset after every
query.

Tum off printing the dayfile.

Tum off printing of all messages (except errors) from
the monitor, including the login and logout messages,
the dayfile and prompts. It is used for executing
"canned queries," that is, queries redirected from files.

For a complete list of flags available with the sqJ command, consult Chapter 4, "ODT-DATA
Operating System Commands," of this manual.

142 Sal Reference DDT-DATA

(

ODT-DATA Terminal Monitor

Diagnostics and Messages

go

continue

Executing ...

»editor

Non-printing
character nnn
converted to
blank:

You may begin a new query.

The previous query is finished and you are back in the
Terminal Monitor.

The query is being processed by DDT-DATA.

You have entered the text editor.

DDT-DATA maps non-printing ASCII characters into
blanks; this message indicates that one such conversion
has been made.

Chapter 3: ODT-DATA Terminal Monitor Sal Reference 143

144 SOL Reference DDT-DATA

(

Chapter 4

ODT-DATA Operating System
Commands

A number of ODT-DATA commands are entered at the level of the computer's operating
system. These "utility" commands control the overall database organization, its creation,
backup, maintenance and the like. Unlike the SQL commands, these do not affect the data in
the database. but rather the database as a whole.

Parameter name conventions in the syntax of these commands are:

dbname

flags

tablename

username

The ODT-DATA database name, which must be nine characters or less.

The set of flags used to select special options to the command. Flags are
one letter names, preceded by a sign and optionally followed by a
parameter value. If an option provides a "+" or "." choice before the
name, the "+"sign means to turn the option on and the "." sign means to
turn it off. If only a "." is shown before the name, specification of the "."
turns the option on. For example, a flag is described as:

+·X
or

[=xl·x]

This means that option x has two settings (which are explained in the op­
tion description). A +x means to tum on the option, and ·x means to tum
it off. However, if a flag is described as ·x, specifying.x invokes the op­
tion.

The name of a table in the database.

The login user name for a valid ODT-DATA user.

Chapter 4: COT-DATA Operating System Commands Sal Reference 145

accessdb

accessdb
Authorizes access to database.

Syntax

accessdb

Description

The accessdb command is a forms-based interface to list and modify the databases you may
access, the locationnames known to the system, and the extensions allowed for databases. You
can also use accessdb to add users to the ODT-DATA system. See Administering ODT-DATA
for a complete description of this utility.

146 Sal Reference OOT-OATA

(
\

f

auditdb

auditdb
Audits a database.

Syntax
auditdb [-bdd-mmm-yyyy:hh:mm:ss] [-edd-mmm-yyyy:hh:mm:ss] [-f] [-iusername] [os]
[-ttablename] [-uusername] {dbname}

Description

The auditdb command allows the user to print selected portions of the journal for a database
or to create an ODT-DATA readable audit trail of the changes made to a particular table. The
auditdb command operates on all journal entries that have been moved to the journal files.
The flags are interpreted as follows:

-b Print journal entries for ODT-DATA transactions committed after the time
following the -b flag.

-e Print journal entries for ODT-DATA transactions committed before the time
following the -e flag.

Chapter 4: ODT-DATAOperating System Commands Sal Reference 147

auditdb

-f Create a file in "bulk copy" (that is, binary) format containing rows ap­
pended to, deleted from, or copied into the table specified in the t com­
mand. This file may be copied into an ODT-DATA database table that has
been created in the following manner:

create auditrel (date = date, user = c24, oper = c8, tranidl = i4, tranid2 =
i4, tbUdbase = i4, tbUd_index = i4 (columns of tablename))

The first eight columns of "auditrel" contain control information that
allow you to identify the user and transaction that performed the opera­
tion, the operation itself and the tuple identifier of the row modified. The
rest of the columns are identical to the columns in the table being audited.
Note that the column information restricts this function to tables that have
less than 120 columns and less than 1948 bytes per row .

. The -f flag creates a filenamed audit.trl in your current directory. This file
may be copied into the table created above with the following command:

copy auditrel 0 from "/usr/dir/audit.trl"

-i Print journal entries for actions taken by the specified user only.

-s Invoke "super user" status for system-wide access to any database.

-t Print the journal entries for the table specified in the -t flag.

-u Print the journal, with specified options, for databases owned by the indi­
cated user.

Only the database administrator, who created the database, or the ODT-DATA system ad­
ministrator (if the -s flag is specified) may run the auditdb command on a database.

Note that auditdb does not necessarily give you a complete list of all transactions since the
last checkpoint. There are two reasons for this:

•

•

148

Because auditdb does not exclusively lock the database, other users may complete-
a transaction while auditdb is running. (

In some cases, a completed transaction might not yet have been moved to the journal
files.

SOL Reference ODT-DATA

auditdb

If you need an absolutely accurate list of transactions since the last checkpoint, make sure all
users exit the database before you run auditdb.

Some possible diagnostic messages you may receive and their causes are:

You are not a valid ODT-DATA user The current usemame is not entered in the
ODT-DATA users file.

You may not use the -s flag You have tried to use the -s flag, but you do
not have ODT-DATA system administrator
privileges.

You are not the dba for dbname You have tried to audit a database for which
you are not the database administrator.

Cannot enter dbname The database does not exist.

Examples

Audit the "empdata" database.

auditdb empdata

Audit "empdata," creating an ODT-DATA-readable audit trail for the "employee" table; then
copy this into ODT-DATA.

auditdb -temployee -f empdata

sql empdata

create empaudit(date = date,

user =
tbl base =

c24, oper = ca, tranidl = i4, tranid2 = i4,

i4, tbl_index = i4, eno = i2,

ename = cl0, age = iI, job = i2, salary = money, dept

* copy empaudit () from "/usr/directory/audit.trl"

\g

Chapter 4: ODT-DATA Operating System Commands SOL Reference

i2)

149

catalogdb

catalogdb
Lists databases that you own.

Syntax

catalogdb [-uusername]

Description

catalogdb is a forms-based interface to list your databases, the databases that you may access,
the location names known to the system, and the extensions made to your databases. You may
also use catalogdb to view your user capabilities. See the accessdb command for information
on how to modify these attributes.

The optional flag for catalogdb and its purpose is:

-u Allows the system administrator to use catalogdb as the user
specified by username.

catalogdb, as with other ODT-DATA forms-based products, requires that you specify the type
of terminal you are using. For information on defining your terminal, please refer to Using
ODT-DATA Through Forms and Menus.

As with other ODT-DATA forms-based products, command menus accompany forms on the
terminal screen. When you invoke the catalogdb command, the main menu appears, offering
the following items:

Catalog Database User Help Quit :

Note that this menu, along with others, contains an entry for help. After you select one of these
operations, the screen clears, and a new form appears. Each menu item evokes a different
form.

The User item displays a summary of information about your username. The form lists the
permissions accorded to your account, the database that you own and the private databases to
which you have access. Notice that the two lists (that is, the databases you own and those you
may access) appear in a table field. Table fields contain more than one entry and display only
a limited number of entries at one time. You can scroll among the entries of a table field using

150 Sal Reference DDT-DATA

(~,

catalogdb

the techniques described in Using ODT-DATA Through Forms and Menus. You can only
browse through the forms and cannot change the data. This is true with all forms in catalogd b.
To change any values displayed in the fields, you must run the accessdb program, described
in Administering ODT-DATA for the current ODT-DATA release. You must be the ODT-DATA
system administrator to run this program.

To leave the form invoked by the User option, select e or End from the menu. and you arc
returned to the main menu for catalogdb. You may then select another main menu item.

You can use the Help menu command for a full description of the main menu items. In
summary, these options do the following:

Command Function

Catalog Submenu of additional operations (see below)

Database Detailed information on one database

Users Summary information about you

Help Help message

Quit Exit the catalogdb program

Each command evokes a form for you to browse. Each form includes its own command menu,
including a Help command. which provides a help message, and an End command, which
returns you to the main menu.

The Catalog operation calls a submenu offering the following items:

Databases DbExtensions LocationNarnes Help End

In summary. these options perform the following functions:

Command Function

Databases Table of all your databases

DbExtensions Table of all your database extensions

Chapter 4: ODT-DATA Operating System Commands Sal Reference 151

catalogdb

Command Function

LocationNames Table of alliocationname or area mappings on the sys­
tem

Help Help message

End Return to catalogdb menu

Note that the Database command prompts you for the name of one of the databases that you
own. Simply enter the full name of the database to invoke the form with information about
that database.

Examples
Browse through data on your own account and database(s).

catalogdb

As system administrator, browse the data for another user.

catalogdb -uPeter

152 Sal Reference ODT-DATA

/

4 ,

ckpdb

ckpdb
Checkpoints a database.

Syntax

ckpdb [-d) [+jl-j] [-mdevice] [-uusername] [-5] [+wl-wJ {dbname}

Description

The ckpdb command creates a new checkpoint for the named database(s) and marks all journal
entries up to this checkpoint as expired. Because there is a new checkpoint, previous journal
entries are no longer needed. Command line flags have the following interpretations:

-d

+jl-j

-m

-5

-u

+wl-w

Destroy the most recently expired checkpoint and journal files.

Enable/disable journaling for a database. When this flag is not
specified, the current joumaling status of the database is main­
tained.

Place the new checkpoint onto the specified tape device rather
than on disk.

Invoke "super user" (system administrator) status for system­
wide access to any database. You must be the system ad­
ministrator.

Execute the ckpdb command on specified or all databases
owned by the indicated user.

Wait/do not wait for the database to be "free." Note that this
flag can be used only in interactive sessions and not in batch
mode. The default is ow.

Only the database administrator who created the database, or the ODT-DATA system ad­
/ ministrator (if the -5 flag is specified), may run the ckpdb command on a database. If neither

+j nor -j is specified, then the current status of joumaling for the database as a whole is
maintained.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 153

ckpdb

If you wish, you can write the checkpoint to a specified tape device instead of to disk. Note
that you can write only one checkpoint per tape.

If no databases are specified, all databases for which you are the database administrator are
affected. All databases can have new checkpoints created if the ODT-DATA system ad­
ministrator uses the -s flag.

The ckpdb command locks the database because errors can occur if the database is active
while Ihe ckpdb command is running. If a database is busy, the ckpdb command reports this
and proceeds to the next database, if any. If the -w flag is specified, the ckpdb command does
not wait, regardless of standard input. The +w flag always causes the ckpdb command to
wait.

Examples
Checkpoint "empdata" and initiate joumaling on "empdata".

ckpdb +j empdata

Checkpoint all databases for which you are database administrator, retaining
only the newest checkpoints.

ckpdb -d

Checkpoint empdata to tape.

ckpdb -m/dev/rmtO empdata

154 SOL Reference ODT-DATA

(-

(

compform

compform
Compiles a form.

Syntax
compform [-uusername] dbnameform txtfile

Description
The compform command compiles a form that is already stored in a database and places the
compiled form in a text file. The command is entered at the operating system.

The flags and parameter names for compform have the following meanings:

-uusername

dbname

form

txtfile

Example

if specified, compiles the form owned by the stated user. You
must be the database administrator for the database or an ODT·
DATA super user to use this flag.

is the name of the database.

is the name of the form. You may compile only one form at a
time.

is the name of the text file in which the compiled form is placed.

To compile the form "employees" which is stored in the "emp" database, and place it in the
file empform.c, use the command line:

compform emp employees empform.c

Compiling a Compiled Form
Before you can link the compiled form to your application, you must translate the compiled
form into object code.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 155

compform

If the text file is in C language format and the file is "form.c," the following command
translates the form into object code:

cc forrn.c

If the symbol for the C language compiler at your installation is not "cc," substitute the
appropriate compiler symbol in the place of "cc."

The compform command automatically generates the correct header file include statement
for a compiled form in C language format so you do not have to worry about header files when
calling the C language compiler to generate object code for a compiled form.

156 Sal Reference ODT-DATA

(

copydb

copydb
Creates command files to copy out a database and restores it.

Syntax

copydb [-uusername] [-c] [-dpathname] dbname {tab/enamel

Description

The copydb command creates two ODT-DATA command files in the current directory:

• copy.out, which contains SQL instructions to copy all tables owned by the user into
files in the named directory; and

• copy.in, which contains SQL instructions to copy the files into tables, create indexes,
and perform modifications.

The copydb command does not copy the database but creates SQL commands that do the
copying. Run sql using the commands in the copy.in and copy.out files to copy the database
(see the examples). The name of a file created by copy.out consists of the name of the table,
truncated to eight characters if necessary, followed by an extension made up of the first three
letters of the owner's login name. If filenames collide, a unique digit replaces the last character
of the table name segment. The directory must not be the same as the database's actual
directory, $II_DATABASElingresldataldefaultldbname, because the files have the same
names as the table files.

The optional flags have the following purposes:

-u

-d

Run copydb with the user identification specified by username.
This flag may only be used by the database administrator or an OOT­
DATA super user. The fact that the copydb command creates the
copy files does not necessarily mean that the user can access the
specified table. If table names are specified, only those tables are
included in the copy files.

Store the copy.in and copy.out files in the directory specified by
directory-specification instead of the default current directory. The
specification may be either a full or relative path name.

Chapter 4: DDT-DATA Operating System Commands Sal Reference 157

copydb

-c Cause the copy commands in the generated command files to use a
portable fonnat. That is, all data are copied in and out as ASCII
characters. This is useful for transporting databases between com­
puter systems whose internal representations of non-ASCII data dif­
fer.

NOTE: The copydb command automatically converts data stored
in this format back to the appropriate ODT-DATA type for the cor­
responding table column.

Because databases recreated with the copy.in file are new, be sure to run sysmod after
recreating the databases to reinstitute the optimizing effects of storage structures.

It is important that the database is recreated with copy.in before doing any work (for example,
creating tables, forms, applications, reports, and so on.) in the new database.

Note that system catalogs may not be copied using copydb. Use unloaddb to copy a complete
database, including system catalogs.

Examples

Copy "mydb" to tape.

cd /usr/rnydir/backup
/* Or whatever directory you wish */

copydb rnydb /usr/rnydir/backup
sql rnydb copy.out
tar c
rrn *

Copy tape to "mydb."

cd /usr/rnydir/backup
tar xrpf /dev/rrntO
sql rnydb copy.in
sysrnod rnydb

158 SOL Reference

1* Again, your choice *1

COT-DATA

r

f

copyform

copyform
Copies a form created with the DDT-DATA/Visual-Forms-Editor (VIFRED) from one database
to another.

Syntax

copyform [-s] [-uusername] dbnamefilenameform {form}

copyform -i [-s] [-uusername] [-r] dbnamefilename

Description

copyform is a utility of the Visual-Forms-Editor (VIFRED) for copying a form from one
database to another. Additionally, it can be used to change ownership of a form by copying
out a form owned by a particular user into a text file and copying it back into the database
under the ownership of another user, effectively changing its owner. Using copyform is a
two-step process. First, you must copy one or more forms from a database to a text file, using
the ftrst variant of the command, as presented above. Next, by using the copyform command
with the -i flag. as shown in the second syntax statement above, you can copy the forms from
the text file into a database. See Using ODT-DATA Through Forms and Menus for a complete
description and examples of this utility.

The flags and parameter names for copying forms from a database into a text file (the first
variant shown in the syntax section) have the following meanings:

-s

-uusername

dbname

filename

form

Suppresse status messages.

Copy forms owned by the stated user. This flag can be used only
by the database administrator for the database or the DDT-DATA
system administrator.

The name of the database containing the forms.

The name of a text file in which to write the forms.

The name of the formes). Any number of forms may be specified
on the command line.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 159

copyform

The flags and parameter names for copying forms from a text file into a database (the second
variant shown in the syntax section) have the following meanings:

-i

-s

-uusername

-r

dbname

filename

A required parameter, telling copyform that this is an "input"
operation.

Suppress status messages.

Add the forms into the database owned by username. This flag
can be used only by the database administrator for the database or
the ODT-DATA system administrator.

Suppress the verification prompt for overwriting existing forms.
If a form exists in the database under the same name and owner, it
is overwritten by the form from the file. If this flag is not
specified, the user is prompted for verification.

The name of the database to which the forms are being copied.

The name of the text file previously created by copyform, which
contains the forms to be copied into the database.

160 SOL Reference DDT-DATA

copyrep

copyrep
Copies a report specification from a database to a text file.

Syntax
copyrep [os] [-uusername] [of] [-cnumactions] dbnamefilename report (report}

Description

copyrep is a utility of DDT-DATA REPORTS that can be used, in conjunction with the sreport
command, to copy a report from one database to another. Additionally, the two commands
can be used to change ownership of a report by copying out a report owned by a particular
user into a text file and copying the report back into the database under the ownership of
another user.

The reports to be copied may have been created by either Report-By-Forms (RBF) or the
Report-Writer. Copying a report into a new database is a two-step process. First, you must
copy one or more reports from a database to a text file, using the copyrep command. Next,
by using the sreport command, you can copy the reports from the text file into a database.
See the ODT-DATAReport-Writer Reference Manual for a complete description and examples
of these utilities.

The flags and parameter names for the copyrep command have the following meanings:

-s

-uusername

-f

Suppress status messages.

Copy reports owned by the stated user. This flag can be used
only by the database administrator for the database or the ODT­
DATA system administrator.

Write the reports out in the same format as is done with the
FileReport option in the Catalogs frame of RBF. For reports
created with RBF, this strips out many of the commands.

Chapter 4: DDT-DATA Operating System Commands SOL Reference 161

copyrep

-cnumactions

dbname

filename

report

162 Sal Reference

If specified, this sets the number of Report-Writer action com­
mands to be processed within one buffer to "numactions." This
can be useful to minimize real memory usage on systems where
this is a concern. Default value is 32,000, which is large
enough to cover all known cases. If the value is set too large,
only the actual number of commands is used in computing the
value.

The name of the database containing the reports.

The name of a text file in which to write the report definitions.

The name of one or more reports that are to be written to the
text file.

DDT-DATA

(

(

createdb

createdb
Creates a database.

Syntax
createdb [-uusername] [-p] dbname [-clocationname] [-dlocationname] [-jlocationname]

Description

The createdb command creates a new ODT-DATA database. The person who executes this
command becomes the database administrator (DBA) for the database. The database ad­
ministrator has special powers not granted to ordinary users.

The name of the database to be created (dbname) must be unique among all ODT-DATA users.
It must begin with an alphabetic character, and it may have a maximum of 12 characters.

The optional flags and their purposes are:

-u Allow the system administrator to create a database as the user specified by
username.

-p Restrict access to the database to only the database administrator and other
users specifically named in the access db command. (By default, the
database is created with access permitted to all ODT-DATA users, although
access to any tables in the database must be explicitly granted.) The ac­
cessdb command, used by the ODT-DATA system administrator, allows addi­
tional users access to a private database. For more information about the
accessdb command, please refer to Administering ODT-DATA for the cur­
rent ODT-DATA release.

-c Store the checkpoint files at the location specified by locationname. The
default location is ii_checkpoint.

-d Store the database files at the location specified by locationname. The
default location is ii_database.

-j Store the joumaling files at the location specified by locationname. The
default location is iijournal.

Chapter 4: ODT-DATA Operating System Commands SOL Reference 163

createdb

Note that before you can specify any of the location names mentioned above, the location­
names must be created by the ODT-DATA system administrator using accessdb. The proce­
dures for creating locationnames are described in Administering DDT-DATA. If you do not
specify one of the flags, the files are placed on the area corresponding to the default
locationname for the relevant aspect of the database (that is, checkpoint, database, and
journal). Note that databases and their associated journaling files should not reside on the same
device.

If createdb fails for any reason, the partially created database should be destroyed using
destroydb.

There are two ways to use the -c, -d, and -j flags to place database components in directories
other than the default. This capability is particularly designed to enable you to locate various
database (as well as checkpoints and journals) on different filesystems in your UNIX System
installation, and thus on different disks.

One alternative is to name a directory after the flag by the end of its pathname. For example:

createdb -daltdir newdb

This command creates the "newdb" database in the $II_DATABASE/ingres/dataJaltdir
instead of the $1I_DATABASElingresidata/default location. Because altdir could be
mounted as a file system on a UNIX System, this technique provides the capability of placing
different databases on different disks. Please note that you must create such an alternate
directory in 700 mode (read, write and execute permission for ODT-DATA and owned by
ODT-DATA before using the directory name in a createdb command. The same is true for
checkpoints and journals.

createdb -caltdir newdb

This command creates a database and locates its checkpoints in $II_CHECKPOINT/in­
gresickp/aItdir instead of the $11_ CHECKPOINT/ingresickp/defauIt directory.

The second way to use the -c, -d. and -j flags is to supply a prefix of the directory path name,
beginning with a "f' character. Consider the command:

createdb -d/other newdb

In this case, a new database is created in a directory named lother/ingresidata/defauIt as
opposed to the default location. The directories at all these levels must already exist prior to
executing the particular createdb command .

... -.-

164 SOL Reference DDT-DATA

createdb

The first part of the pathname, in the previous case lother, can be whatever you choose,
including additional directory levels. Thus,/aa/other would also work. (But note the limit on
the number of characters, specified below.) The lower level directories, starting with "ingres,"
must have the same names as shown in this example.

The ownership and permissions for the sample directories should be:

/other/ingres
/other/ingres/data
/other/ingres/data/default

-rwxr-xr-x
-rwxr-xr-x
-rwxrwxrwx

Note, however, that whichever alternative you use, the part of the directory name supplied
after the -c, -d, or -j flags may be no more than 12 characters.

Examples

Create a private database on the default device(s).

createdb -p mydb

Create public databases under different user names.

createdb -ueric ericsdb

Create a database with files for the database, checkpoints, and journal on different devices.

createdb bigdb -ddb_ingres -cnewdev_ingres
-jotherdev_ingres

Files

$11 SYSTEMIingreslfiles/dbtmpltl*
$I(SYSTEMIingresldataidefaultldbname/* [This is the default.]
$11_ SYSTEMIingres/ckp/default
$11_ SYSTEMIingresljnl/default

Chapter 4: DDT-DATA Operating System Commands SOL Reference 165

destroydb

destroydb
Destroys an existing database.

Syntax

destroydb [os] [-p] [-uusername] dbname

Description

The destroydb command removes all references to an existing database. The directory of the
database and all files in that directory are removed.

To execute this command. you must be either the database administrator for dbname or the
ODT-DATA system administrator and have the -s flag specified.

The optional flags have the following meanings:

-s Indicates that you are the ODT-DATA system administrator.

-p Requires ODT-DATA to ask if you are sure that you want to destroy
the database.

-u Allows the system administrator to use destroydb as the user
specified by username.

Examples

Files

destroydb empdata
destroydb -s empdata
destroydb -uBrad video

$11_ DATABASElingresidata/defauItldbname/*

166 SOL Reference ODT-DATA

esqlc

esqlc
Invokes the Embedded SQL/C preprocessor.

Syntax

esqlc {flags} {filename}

Description

The esqlc command invokes the Embedded SQL/C preprocessor. See the ODT-DATA Em­
bedded SQL Companion Guide for C for a complete description of this command. The flags
and parameter names have the following meanings:

-I

-10

-fffilename]

-s

-0. ext

-0

-{#Ip}

Write preprocessor error messages to the preprocessor's listing
file, as well as to the terminal. The listing file includes preproces­
sor error messages and your source text in a filenamed
filename.lis, where filename is the name of the input file.

Like -I, but the generated C code also appears in the listing file.

Write preprocessor output to the named file. If no filename is
specified, the output is sent to standard output, one screen at a
time.

Read input from standard input and generate C code to standard
output. This is useful for testing statements you are not familiar
with. If the -I option is specified with this flag, the listing file is
called stdin.lis. To terminate the interactive session, type Ctrl D.

Include files preprocessed by Embedded SQL are output to a file
with the given extension, ext. The default is .c.

If no extension is given, output files are not generated for include
files.

Generate # line directives to the C compiler (by default, they are
in comments). This flag can prove helpful when debugging the
error messages from the C compiler.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 167

esqlc

-d

-?

Add debugging information to the run-time database error mes­
sages generated by Embedded SQL. The source filename, line
number, and the erroneous statement itself are printed along with
the error message.

Show what command-line options are available for esqlc.

filename The input file containing the Embedded SQL program.

168 Sal Reference ODT-DATA

('

./

,c-

(!

(

finddbs

finddbs
Recovers databases when the database database is corrupted, or when an entry in a database
is missing.

Syntax

finddbs [-al-r] [-p]

Description

The finddbs command is used to recover DDT-DATA when the database database (iidbdb) has
been corrupted. Only the ODT-DATA system administrator can use it. See Administering
ODT-DATA for a complete description of this utility. The flags have the following meanings:

-a Run finddbs in analyze mode (the default), informing you of pos­
sible errors in the database table.

-r

-p

Run finddbs in replace mode, rebuilding the dbdb database table
by scanning a list of directories for databases.

Cause all databases rebuilt in replace mode to be made private, ex­
cept for the iidbdb. By default, replace mode makes all databases
globally accessible.

Chapter 4: DDT-DATA Operating System Commands Sal Reference 169

ingmenu

ingmenu
Invokes ODT-DATA/MENU.

Syntax

ingmenu roe] dbname [-uusername]

Description

The ingmenu command invokes ODT-DATA/MENU, a fonns-based interface for accessing the
capabilities and subsystems ofODT-DATA. See Using ODT-DATAThroughForms and Menus
for a complete description of ODT-DATA/MENU. The flags have the following meanings:

-e

-uusername

170 SOL Reference

Invoke ODT-DATA/MENU in "empty" mode. This flag is passed
to the QBF, RBF, TABLES, or VIFRED capabilities of ODT­
DATA/MENU. In essence, it causes any catalog of applications,
join definitions, tables, reports or other objects to be initially
displayed empty, so that specific names of such objects may be
entered by the user.

Invoke ODT-DATA/MENU as the user with the login name user­
name. This flag may only be used by the database administrator
for the database or by the ODT-DATA system administrator.

ODT-DATA

(

isql

isql
Initiates Interactive SQL system.

Syntax

isql dbname

Description

The isqlevokes the Interactive SQL system, as described in Using ODT-DATA Through Forms
and Menus.

Example
Invoke Interactive SQL on the "employee" database.

isql employee

Chapter 4: ODT-DATA Operating System Commands SOL Reference 171

optimizedb

optimizedb
Generates statistics for use by the query optimizer.

Syntax
optimizedb [-zf/ilename] [-zv] [-zbJ [-zk] [-zx] [-zu#] [-zr#] [ODT-DATAjlags]

dbname [{ -rtablename {-acolumnname}}]

Description

The optimizedb command retrieves values from the specified tables and columns. These
values are used to generate statistics, which are stored in the "iistats" and "iihistograms"
system catalogs. These statistics are used by the query optimizer to select an efficient query
processing strategy. Such statistics should be generated for all columns that may appear in
the qualification of a query statement. Statistics for columns named in the target list of a query
or a query's sort list are not used. After running optimizedb, it is prudent to run sysmod to
restructure the "iistats" and "iihistograms" catalogs. This is especially true the first time
optimizedb is run on a database.

More complete and accurate statistics in the "iistats" and "iihistograms" system catalogs
generally result in more efficient query execution strategies, which further results in faster
system perfonnance. The process of generating such complete and accurate statistics may
require some time, but a tradeoff between accurate statistics and the time to generate them can
be achieved by specifying the -zx flag described later. Another compromise relies on how
often you regenerate the statistics. The statistics need only infrequent regeneration, usually
when a significant change has occurred in the distribution of a column's values.

There need be no statistics for any columns whatsoever, and any statistics may be incorrect.
The only effect is on the speed of query processing, not whether the query executes or not.

The statistics generated by the optimizedb command for any column consist of two basic
elements: (1) the number of unique values in a column, and (2) a histogram with a variable
number of variable-width cells. The accuracy of the histograms can be controlled by the -zu#
and -zr# flags described later. Increasing the number of cells in the histograms increases the
amount of space required for the "iihistograms" table and thus increases somewhat the amount ,/--"
of space and time used by the query optimizer. However, the increased accuracy of the (, .
statistics generally results in more efficient query execution strategies.

NOTE: While optimizedb is running, the database is not locked. Only the current table being
optimized has a read lock.

172 Sal Reference ODT-DATA

optimizedb

The optimizedb command-line flags have the following functions:

(
-zfjilename If this is the first command-line flag, the following argument is

taken as a filename containing all further flags on the current in-
vocation of optimizedb. This file must contain only one flag
per line. (please refer to the following examples.)

NOTE: If this flag is used, the optimizedb command line can
contain only three items: the keyword optimizedb, the -zr flag,
and thefilename, which contains any other flags, database
names, or other permissible arguments.

-ZV Verbose. Print information about each column as it is being
processed.

-zh Histograms. Print the histogram that was generated for each
column. This flag also implies the -zv flag.

-zk In addition to any columns specified for the table, statistics for
columns that are keys on the table or are indexed are also
generated.

-zx Do minimal statistics only. Determine only the minimum and
maximum values for each column. Because minimum and max-
imum values for columns from the same table can be deter-
mined by a single scan through the table, this flag provides a
quick way to generate a minimal set of statistics.

-zr# The histogram can contain no more than this number of cells
(but see the -zu# flag next). Larger numbers require more
processing time by the query optimizer but, because they are
more accurate, generally result in more efficient query execu-
tion strategies. The default for this flag is 15.

-zu# If there are not too many unique values for a column, then it is

f
worth allowing more cells to produce an exact histogram. This
number, therefore, specifies the number of unique values that
the histogram is automatically extended to accommodate. The
default for this flag is 50.

Chapter 4: DDT-DATA Operating System Commands Sal Reference 173

optimizedb

[ODT-DATAjlags] ODT-DATA flags on the optimizedb command line are automat­
ically passed to ODT-DATA. Consult the sql command summary
for a description of the ODT-DATA flags.

-rtablename

-acolumnname

If no table name is specified, then all columns for all tables in
the database are processed. Otherwise only columns for the
specified tables are processed.

If the -rtablename flag is specified, then (and only then) can in­
dividual columns be specified for the generation of statistics.
When table(s) and column(s) are specified, then statistics
processing occurs only for the specified columns (but see the -
zk flag earlier in this table).

Some possible diagnostic messages you may receive and their causes are:

More than 1000 arguments

Bad unique cells value

Bad regcells value

Examples

There are too many lines in the argu­
ment file, specified with the -zf flag.

The value specified in the -zu# flag
was not a number, was less than 1 or
greater than 249.

The value specified in the -zr# flag
was not a number, was less than 2 or
greater than 499.

Generate full statistics for all columns in all tables in the "empdata" database.

optimizedb empdata

Generate statistics for key or indexed columns in the "employee" and "dept" tables, and

~ ..

additionally generate statistics for the "dno" column in the "dept" table. (.

'.
optimizedb -zk empdata -remployee -rdept -adno

174 Sal Reference DDT-DATA

optimizedb

Do the same as the second example, but from a file.

optimizedb -zf flagfile

f The "flagfile" contains:

(

-zk
empdata
-remployee
-rdept
-adno

Generate statistics for all key or indexed columns in "employee," "dept" and "salhist." Also
process the "eno" column in "employee," whether "eno" is a key or an indexed column or not.
Generate statistics with only minimum and maximum values from the columns. Print status
information as each column is processed.

optimizedb -zk -zv -zx empdata -remployee -aeno
-rsalhist

-rdept

Allow up to 100 unique values from each column in the "employee" table before merging
adjacent values into the same histogram cell.

optimizedb -zulOO empdata -remployee

Chapter 4: ODT-DATA Operating System Commands Sal Reference 175

printform

printform
Places an image of the fonn and a description of the fonn and its fields into a text file.

Syntax

printform [-uusername] dbname form txtfile

Description

The printform command places an image of the fonn and a description of the form and its
fields into a text file.

The parameter names for printform have the following meanings:

-uusername

dbname

form

txtfile

Example

if specified, prints the fonn owned by the stated user. You
must be the database administrator or an ODT-DATA super user
to use this flag.

is the name of the database.

is the name of the fonn. You may print only one fonn at a time.

is the name of the text file to which printform prints the form.

To print the fonn "employees," which is stored in the "emp" database, into the file emp.prf,
use the following command line:

print form emp employees emp.prf

176 SOL Reference OOT-OATA

qbf

qbf
Invokes ODT-DATNQuery-By-Fonns (QBF).

Syntax

qbf dbname [-s] [-mmode] [-uusername] [[-f1-jl-tl-1] [query target]

Description

The qbf command invokes Query-By-Fonns, a fonns-based interface for manipulating data
in a database. See Using ODT-DATA Through Forms and Menus for a.complete description
of this system. The flags and parameter names have the following meanings:

dbname

-s

-mmode

-uusername

query target

The name of the database.

Put QBF into silent mode, eliminating verbose messages.

Bypass the Join Definition phase of QBF, putting you directly into
the mode function for Query Execution where mode is retrie\'e,
append, update, or all. If you use the -mmode flag, you must
also specify a query target on the command line.

Invoke QBF as if you were the user with the login name username.
This flag can be used only by the database administrator for the
database or the ODT-DATA system administrator.

Either a QBFName, JoinDef, or Table you want to access in your
query. Specifying query target brings you directly into Query Execu­
tion phase. If you specify it without also specifying -mmode, you
have the option of switching to the Join Definition phase. You can
specify the type of query target to QBF by using the of, oj, or -t flag,
as described below. An alternative is to use the -I flag described
below and let QBF figure out the query target's type. If no flag is
specified for query target, QBF assumes that the type is Table and
generates an error if it cannot find a table with that name.

Chapter 4: DDT-DATA Operating System Commands Sal Reference 177

qbf

-f

-j

-t

-I

178

Indicate that query target is a QBFName. This invokes QBF with a
VIFRED (Visual-Forms-Editor) Form.

Indicate that the query target is a JoinDef.

Indicate that query target is a Table. This flag further indicates that
a table field format is used to query the Table.

Cause QBF to look for a QBFName first, then a JoinDef, and final­
ly a Table until it finds the query target specified.

SOL Reference ODT-DATA

(

query

query
Invokes Query Execution phase of ODT-DATA/Query-By-Forms (QBF).

Syntax

query dbname [-mmode] [-uusername] [-fl-jl-t] query target

Description

The query command invokes the Query Execution phase only of Query-By-Forms, a forms­
based interface for manipulating data in a database. Through the Query Execution phase you
can append, retrieve, or modify data. See Using ODT-DATA Through Forms and Menus for
a complete description of Query Execution. The flags and parameter names have the same
meaning as for the qbf command, except that here query target is required. Unless otherwise
specified, query uses the same order for looking up query target as the flag -I in the qbf
command - QBFName, JoinDef, Table.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 179

rbf

rbf
Invokes ODT-DATA/Report-By-Forms (RBF).

Syntax
rbf [-s] [-uusername] [-r]l[-m[mode]] [-Imxline] [-cnumactions] [-e] dbname

[reportnameltablename]

Description

The rbf command invokes Report-By-Forms, a forms-based interface for specifying reports.
See Using ODT-DATA Through Forms and Menus for a complete description of this system.
The flags and parameter names have the following meanings:

-s

-uusername

-r

-m[mode]

Request that status messages, including prompts, be suppressed.

Request that RBF pretend you are the user with login name user­
name. This can only be used by the database administrator for a
database, or by the ODT-DATA system administrator.

Tell RBF that a report and not a table is specified on the command
line. This returns an error if the named report is not found.
Without the -r flag, RBF first looks for the named report, and if
the report is not found, and a table with the same name exists, a
default report for that table is set up.

Tell RBF that a table and not a report is specified. This instructs
RBF to format a default report for the specified table and not to
check for a report of the given name first. If the optional mode
value of wrap, column, or block is specified after the -m flag,
that style of report is used rather than the default.

180 Sal Reference ODT-DATA

-Imxline

-cnumactions

-e

dbname

reportname

tablename

The line length to use when generating default reports. By
default, default reports use a line length appropriate to the type of
terminal on which they are run (either 80 or 132 characters). This
default can be changed by using the -I flag.

Set the number of Report-Writer action commands to be processed
within one buffer to the numactions value. This can be used to
minimize real memory usage on systems where this is a concern.
The default value of 32,000 is large enough to cover all known
cases. If the value is set too high, only the actual number of com­
mands is used in computing the value.

Cause the RBF Reports Catalog frame to appear without data in
its table field. This flag is designed to accelerate the process of
selecting a report definition for editing, for the benefit of users
who are quite familiar with the contents of a database's reports
catalog. To use this flag with a particular report definition, move
the cursor to the Name column, enter the desired report name and
select the appropriate operation.

The name of the ODT-DATA database containing the report data.

The name of a report as specified in a previous RBF session.

The name of a table or view in your database for which you want
a default report formatted.

Chapter 4: ODT-DATA Operating System Commands SOL Reference

rbf

181

report

report
Runs a default report or a report created with the sreport or rbf command.

Syntax
report [-cnumactions] [-f]ilename] [-5] [-uusername] [-r]I[-m[mode]] [-Imxline]
[-qmxquer] [-wmxwrap] [+tl-t] [+bl-b] [-b] [-5] [-vpagelength] dbname
reportnameltablename ['((parameter=value))'J

Description

The report command writes a report set up by the sreport or rbf commands, or sets up a
default report for a table in the database. See Using ODT-DATA Through Forms and Menus
and the ODT-DATA Report-Writer Reference Manual for a complete description of this
command. The flags and parameter names have the following meanings:

-cnumactions

-fJilename

-5

-uusername

182 SOL Reference

If specified, this sets the number of Report-Writer action com­
mands to be processed within one buffer to numactions. This
can be useful to minimize real memory usage on systems
where this is a concern. Default value is 32,000, which is
large enough to cover all known cases. If the value is set too
large, only the actual number of commands is used in comput­
ing the value.

Direct the formatted report to filename for subsequent output.
If this option is not specified, the report is written to the stand­
ard output file (normally your terminal), or, in the case of a
report specified by the Report-Writer, to the file designated
by the .output command in the report specification file.

Request that status messages, including prompts, be sup­
pressed.

Request that the Report-Writer pretend you are the user with
login name username. This can only be used by the database
administrator for a database, or by the ODT-DATA system ad­
ministrator.

ODT-DATA

/

c

. ¢

-r

-m[mode]

-Imxline

-qmxquer

-wmxwrap

Tell the Report-Writer that a report is being specified, rather
than a table. This returns an error if no report with the given
name is found. By default, the Report-Writer first looks for a
report of the given name, and if one is not found, and a table
of the given name does exist, a default report for that table is
set up.

Tell the Report-Writer that a table has been specified, rather
than a report. This instructs the Report-Writer to format a
default report for the specified table and not to check for a
report of the given name first. If the optional mode value of
wrap, column ,or block is specified after the -m flag, that
style of default report is used rather than the default.

report

Set the maximum output line size to mxline characters. By
default, the maximum output line size is 132 characters if out­
put is to a file; otherwise, the default maximum line size is the
width of the terminal. This option is needed only if reports
are written that contain unusually long lines .

Set the maximum length of the query after all substitutions for
run-time parameters have been made to mxquer characters.
By default, the maximum query size is 1000 characters. This
option is needed only for particularly long queries.

Set mxwrap as the maximum number of lines to wrap with
one of the column "e" formats, or the maximum number of
lines that can be used within any block. By default, the maxi­
mum value is 100 lines. This means that a column written
with a format such as "c0.20" (which writes a character string
in a column 20 characters wide) contains a maximum of 100
lines. This maximum is provided as a protection against mis­
specified columns and is rarely needed.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 183

report

-tl+t

-bl+b

-h

-a

184 SOL Reference

if turned on (+t), this flag causes aggregates and breaks to
occur over rounded values for any floating-point column
whose format has been specified in a .format command as
numeric F or template. Each value in the column is rounded
to the precision given by its format. Additionally, breaks for
date columns using a date template occur over the actual
values appearing for the dates. +t is the default. If this flag is
turned off (-t), aggregates and breaks use the underlying
values, not the rounded values.

If turned on (+b), this flag forces formfeeds at the end of each
page. If turned off (-b), this flag suppresses formfeeds for the
end of each page. The flag overrides any .formfeed or .
. noformfeed command occurring in the report specification
file.

If specified, a report that retrieves no rows is provided a null
set of data. All header and footer sections are executed. The
detail section is suppressed.

If specified, the report is made compatible with version 5.0 of
ODT-DATA. (The default is that the -a flag is not specified.)
To ensure compatibility, the following assumptions are made:

• I+t option is the default.

• Only floating-point arithmetic is used. Integer columns
are converted to floating-point before use in computa­
tion.

• The month part of the current _date function is displayed
in capitals if no format is specified. Normally, the sys­
tem displays the month names in lowercase letters. For
example, what is now displayed as "01-feb-1985"
would, with the flag set, be displayed as "01-FEB-1985".

ODT-DATA

-vpage/ength

dbname

reportname

tablename

parameter

value

report

If specified, this flag sets pagelength as the number of lines
for each page of output. page length must be a positive integer.
This flag overrides any .pagelength command in the report
specification file. The default is 61 lines per page if the report
is written to a file, and 23 lines per page if written to a ter­
minal.

The name of the DDT-DATA database containing the report
data.

The name of a report as specified in a report specification that
is set up with RBF or sreport.

The name of a table or view in your database for which you
want a default report formatted.

The name of a parameter used in the report. Parameter/value
combinations on the command line may be separated by
blanks, tabs, or commas.

The value that is replaced for every occurrence of the cor­
responding parameter name in the report specifications. value
should be surrounded by quotes (which are removed when it
is processed) if you want to pass through a string or date value.

Chapter 4: ODT -DATA Operating System Commands Sal Reference 185

rolldb

rolldb
Recovers the database from the last checkpoint and the current journal.

Syntax
rolldb [+cl-c] [+jl-j] [-mdevice:] [os] [-uusername]

[-v] [+wl-w] {dbname}

Description

The rolldb command recovers the named database(s) from the last checkpoint and the current
journal. The recommended procedure is to recover the last checkpoint, then recover from the
journal (see the following examples).

The command line flags have the following interpretations:

+cl-c

+jl-j

-m

-s

-uusername

-v

+wl-w

Recover/do not recover the database from the last checkpoint.
The flag defaults to +c.

Recover/do not recover the database from the journal. The flag
defaults to +j.

Recover the checkpoint from the specified tape device rather
than from disk.

Invoke "super user" (system administrator) status for system­
wide access to any database. You must be the system ad­
ministrator.

Pretend you are the user with login name username. This may
only be used by the database administrator for the database or by
the DDT-DATA system administrator.

Recover the database from the journal in verbose mode, which
provides diagnostic information detailing all operations executed
during the recovery process.

Wait/do not wait for the database to be "free." The flag defaults
to ow.

If you have written to tape the checkpoint from which you want to restore the journal, you can
use the -m flag to read in the checkpoint from a tape device.

186 Sal Reference ODT-DATA

rolldb

Only the database administrator, who created the database, or the ODT-DATA system ad­
ministrator (if the -s flag is specified) may run the rolldb command on a database.

If no databases are specified, all databases for which you are the database administrator are
affected. All databases can be purged if the ODT-DATA system administrator uses the -s flag.

The rolldb command locks the database because errors can occur if the database is active
while the rolldb command is running. If a database is busy, the rolldb command reports this
and proceeds to the next database, if any. If the -w flag is specified, the rolldb command does
not wait, regardless of standard input. The +w flag always causes the rolldb command to
wait.

Some possible diagnostic messages you may receive and their causes are:

You are not a valid
ODT-DATA user

You may not use the -s flag

The current login name is not entered in
the ODT-DATA users file.

You have tried to use the -s flag, but you
do not have ODT-DATA system ad­
ministrator privileges.

You are not the dba for dbname You have tried to recover a database for
which you are not the database ad­
ministrator.

Cannot enter dbname The database does not exist.

Examples

Recover the "empdata" database from the last checkpoint and journal. This assumes that both
the journal and the checkpoint are currently online. If not, they should be placed online before
executing these commands.

rolldb -v empdata

Recover all databases for which you are database administrator.

rolldb -v

Recover "empdata" from tape, and then apply the journals.

rolldb +c +j -m/dev/rmtO empdata

Chapter 4: ODT-DATA Operating System Commands SOL Reference 187

sql

sql
Invokes the ODT-DATA relational database management system.

Syntax

sql (flags] [<altin] [altout] dbname

Description

This command invokes ODT-DATA. dbname is the name of an existing database. The optional
flags have the following meanings:

+UI-U

-uusername

-eN

-w

-ik,N

Enable/disable user updating of the system catalog tables and secondary
indexes. You must have the "update system tables" privilege obtained
through accessdb. This option is provided for system debugging and is
strongly discouraged for normal use. The default is " Note that this flag
causes an exclusive lock of the database during the session for which
it is specified."

Pretend you are the user with login name username (found in the users
file). If name is of the form :XX, then xx is the two-character user code of
a user. This may only be used by the database administrator for the
database or by the ODT-DATA system administrator.

Set the minimum field width for printing character columns to N. The
default is 6.

Set the minimum field width for printing text columns to N. The default
is 6.

Set integer output column width to N. k may be 1,2, or 4 for iI's, i2's, or
i4 's, respectively. The default for N is 6 for il and i2 fields, and l3 for
i4 fields.

188 Sal Reference DDT-DATA

''''---- .

(

-fkxM.N

-vx

-nM

+al-a

-I

+dl-d

+sl-s

sql

Set floating-point output column width to M characters (total), including
N decimal places, and (if warranted) e+-xx and the decimal indicator
character itself. k may be 4 or 8 to apply to f4's or fS's, respectively. x
may be E, F, G, or N (upper- or lower-case) to specify an output format.
For a number to be displayed in E (that is, exponential) format, either E
must be specified in the flag or the number must be too large for the for­
mat indicated in the flag. E is exponential form, F is floating-point form,
and G and N are identical to F unless the number is too large to fit in
that field, when it is output in E format. G format guarantees decimal­
point alignment; N does not. The default display format for both f4 and
fS is 810.3, unless your computer supports the IEEE standard for float­
ing-point numbers, in which case the display format for f4 and fS is
811.3.

Set the column separator for retrievals to the terminal and print com­
mands to be X. The default is venical bar (I).

Set modify mode on the index command to M. M can take as values any
of the storage structures described in the modify command, which are
heap, cheap, heapsort, cheap sort, isam, cisam, btree, cbtree, hash
and chash. heap, and btree. The default is isam.

Set/clear the autoclear option in the Terminal Monitor. It defaults to +a.

Lock the database for your exclusive use. When you specify this flag,
no one else can open the database while you are in it. If you attempt to
use this flag on a database that is already opened, the system informs
you that the database is temporarily unavailable.

Print/do not print the dayfile. It defaults to +d.

Print/do not print any of the monitor messages, including prompts. This
flag is normally set to +s. If cleared, it also clears the -d flag. It defaults
to +s.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 189

sql

+wl-w

-xk

<altin

altout

190

Wait/do not wait for the database. If the +w flag is present, ODT-DATA
waits, provided that certain processes are running (sql-I, sql -U,
verifydb, rollforwarddb and/or sysmod) on the given database. Upon
completion of those processes, ODT-DATA proceeds. When the -w flag is
present, a message is returned and execution is stopped if the database is
not available. When the +wl-w flag is omitted and the database is un­
available, then the error message is returned if ODT-DATA is running in
foreground (more precisely, if the standard input is from a terminal).
Otherwise the wait option is invoked.

NOTE: This flag can be used only in interactive sessions and not in
batch mode. The flag defaults to ow.

Set arithmetic handling mode. k may be for w. f indicates that all arith­
metic exceptions (floating overflow and underflow, integer overflow,
and divide by zero) should be treated as fatal errors. In this mode, the
detection of an arithmetic exception terminates query processing. w indi­
cates that warning messages should be generated for arithmetic excep­
tions. In this mode, the query is run to completion, and a summary of
exceptions detected is generated. The default condition is to ignore ex­
ceptions.

Use an alternate file to input Terminal Monitor commands to ODT-DATA.
The file altin should contain all the terminal monitor commands needed
to run an ODT-DATA session. This can be used to run "canned" ODT­
DATA procedures, such as processing the output of the copydb command.

Use an alternate file for all output from the terminal monitor. This op­
tion can capture the output of a terminal session for later reference.

NOTE: You do not see any output from ODT-DATA if you use this option.

SOL Reference ODT-DATA

(

Some possible diagnostic messages you may receive and their causes are:

Too many options to ODT-DATA

Bad flag format

Too many parameters

No database name specified

Improper database name

You may not access database
name

You are not authorized to use
theflag flag

Database name does not exist

You are not a valid ODT-DATA
user

You have stated too many flags as ODT­
DATA options.

You have stated a flag in an unintel­
ligible fonnat, or an entirely bad flag.

You have given a database name and
"something else," which ODT-DATA can­
not decipher.

The database name is not legal.

According to the users file, you do not
have penn iss ion to open this database.

The flag specified requires some special
authorization, which you do not have.

You are not entered into the user's file;
you may not use ODT-DATA at all.

Database temporarily unavail- Someone else is currently performing
able some operation on the database; you can­

not start ODT-DATA now.

Error starting up ODT-DATA:
19: Request for lock failed

The database you tried to access is cur­
rently exclusively reserved for another
user.

Chapter 4: ODT-DATA Operating System Commands Sal Reference

sql

191

sql

Examples

Open the "empdata" database.

sql empdata

Open "empdata," suppressing the dayfile message.

sql -d empdata

Open "empdata," suppressing the dayfile message and the Terminal Monitor prompts and
messages; read into the workspace the contents of the batchfile file.

sql -s empdata batchfile

Open "empdata," display f4 columns in G format with two decimal places and il columns
with three spaces.

sql -f4g12.2 -i13 empdata

Files

$1I_SYSTEMlingreS/files/users
$11_ DATABASElingres/data/defaultldbname/*

192 Sal Reference DDT-DATA

(

sreport

sreport
Sets up report specifications created with the Report-Writer in a database.

Syntax
sreport [-s] [-uusername] dbnamefilename

Description

The sreport command writes a report definition specified with the Report-Writer report
definition language into the database. This command may also be used in conjunction with
the copyrep command to copy a report from one database to another, or to change a report's
ownership. See the ODT-DATA Report-Writer Reference Manual for a complete description
of sreport. The flags and parameter names have the following meanings:

-s

-uusername

dbname

filename

Suppress status messages.

Request that sreport act as if you are a user with login name user­
name when creating a report. This may only be used by the
database administrator for the database or by the ODT-DATA sys­
tem administrator.

The name of the ODT-DATA database that is to contain the report.

The name of a text file containing report-formatting commands
for one or more reports.

Chapter 4: OOT -OAT A Operating System Commands Sal Reference 193

statdump

statdump
Prints statistics contained in the "iistats" and "iihistograms" system catalogs.

Syntax

statdump [-zq] [-zdl] [ODT-DATAflags] dbname [(-rtablename {-acolumnname) }]

Description

The statdump command allows you to inspect the "iistats" and "iihistograms" tables. These
system tables contain statistical information about columns used by the query optimizer as it
selects an efficient query processing strategy. The data in these tables are usually loaded by
the optimizedb command.

The command-line flags have the following meanings:

-zq

-zdl

Quiet mode. Print out only the information contained in the "iis­
tats" table and not the histogram information contained in the
"iihistograms" table.

Delete statistics from the system catalogs. When this flag is in­
cluded, the statistics for the specified tables and columns (if any
are specified) are deleted rather than displayed.

[ODT-DATAflags] Pass any of these flags to ODT-DATA. For more information
about the ODT-DATA flags, refer to the sql command description
in this chapter.

-rtablename

-acolumnname

194 SOL Reference

Produce statistics for all columns in the table specified. If no
table is specified, then statistics for all columns in all tables are
produced.

Produce statistics for the specified column(s) only. Note that to
specify individual columns, you must first specify a table name
with the -r flag, as the syntax summary indicates.

DDT-DATA

/

."
/

(

statdump

Examples
Print the statistical infonnation for all columns in the "employee" table in the "empdata"
database.

statdump empdata -remployee

For all columns in all tables of the "empdata" database, print out only the information in the
"iistats" system table.

statdump -zq empdata

Delete statistics for all columns in the "employee" table.

statdump -zdl empdata -remployee

NOTE: If a specified table or column cannot be found, then a warning message is printed
and processing continues.

Chapter 4: DDT-DATA Operating System Commands Sal Reference 195

sysmod

sysmod
Modifies system tables to predetennined storage structures.

Syntax

sysmod [os] [+I-w] dbname [tablename { ,tablename}]

Description

The sysmod command modifies a database's system tables to the most appropriate storage
structure, usually hash, for accelerating query processing. You can run sysmod on the whole
database or on specified tables. The user must be either the database administrator for the
specified database or the ODT-DATA system administrator, in which case the -s flag must be
specified.

The flags have the following meanings:

-s Allow the OOT-DATA system administrator to use sysmod on another
user's database.

• -w Cause OOT-DATA to wait or not wait until the database is free before
executing sysmod. This can only be used in interactive sessions, not
in batch mode.

sysmod locks the database while it modifies the system tables, to
prevent errors. If the database is in use, sysmod reports that the
database is not free, and sysmod does not execute. If standard input is
not a terminal, sysmod waits for the database to be free. If the -w flag
is stated, sysmod does not wait, regardless of standard input. The +w
flag causes sysmod to wait until the database is no longer in use,
regardless of standard input.

sysmod should be run on a database periodically to maintain peak perfonnance. This is
particularly true whenever many tables and secondary indexes are created and/or destroyed,
in which case sysmod should be nin even more often. C

196 Sal Reference DDT-DATA

/

(

(

sysmod

Examples

Optimize the system tables in "empdata.··

sysmod empdata

Optimize the "iirelation" and "iiindexes" system tables in "empdata:' but only if the database
is not currently busy.

sysmod -w empdata iirelation iiindexes

Chapter 4: ODT-DATA Operating System Commands Sal Reference 197

unloaddb

unloaddb
Creates command files for complete unloading and reloading of a database.

Syntax

unloaddb [-uusername] [-c] [-dpalhname] [-Isql] dbname

Description

The unloaddb command creates a set of command files that can be run by the database
administrator for a database to unload all tables in the database. The unloaddb utility works
in the same way as the copydb command except that it also unloads all views, integrity
constraints, permissions, forms, graphs, and report definitions in the database. Also, unlike
the copydb command, unloaddb unloads all user-defined tables, views, and so on, in the
database of which you are database administrator, not merely those items that you own. This
utility can be used when a database must be totally rebuilt or for checkpointing the database.

The unloaddb utility creates two command files in the current directory that can then be
executed by the database administrator: ;'

• unload.ing contains commands to read sequentially through the database, copying
every user table into its own file in the named directory.

• reload.ing contains commands to reload the database with the information contained
in the files created by the unload.ing command file.

Note that the unloaddb command does not actually do the unloading or reloading of the
database. The command files created by unloaddb must be executed by the database
administrator to accomplish these tasks. The directory specified in the unloaddb command
must not be the actual database directory $II_DATABASFJingres/dataidefaultidbname
because the files created by unloaddb may have the same names as the tables in the database.

198 Sal Reference ODT-DATA

(

unloaddb

The optional flags and their purposes are:

-u

-c

Allows you to run unloaddb as the user specified by username.

Causes the commands in the generated command files to use a port­
able format. That is, all data are copied in and out as ASCII charac­
ters. This is useful for transporting databases between computer
systems whose internal representations of non-ASCII data differ.

-d Stores the unload.ing and reload.ing in' the location specified by
directory-specification instead of the default current directory. The
specification may be either a full or relative directory specification.

Because databases recreated with the reload.ing file from unloaddb are new databases, you
should be sure to run the sysmod command after recreating the database to re-optimize
performance.

It is important that the database be recreated with reloading before doing any work (for
example, creating tables, forms, reports, and so on.) in the new database.

Example

Unload and reload the "empdata" database.

cd /mydir/backup unloaddb empdata unload.ing destroydb
empdata createdb empdata reload.ing sysmod empdata

The unloaddb command uses a version of the copydb utility to generate the copy commands
in the unload.ing and reload.ing files.· Thus all limitations of the copydb command apply to
the unloaddb command.

Chapter 4: ODT-DATA Operating System Commands Sal Reference 199

vifred

vi fred
Invokes the ODT-DATA/Visual-Forms-Editor (VIFRED).

Syntax
vifred dbname [objectname [-fl-tl-j]] [-e) [-uusername]

Description

The vifred command invokes the Visual-Forms-Editor, a forms-based interface for editing the
appearance of a form. See Using ODT-DATA Through Forms and Menus for a complete
description or"this system. The flag and parameter names have the following meanings:

dbname

objectname

-f

-t

-j

-e

-uusername

The name of an ODT-DATA database.

If specified, is the name of a form, table, or joindef.

If specified, indicates that objectname is the name of an exist­
ing form, already created with VIFRED. By default, ob­
jectname is a form name; therefore, this flag may be omitted.

If specified, indicates that objectname is a database table name.

If specified, indicates that objectname is the name of a joindef.

If specified, starts VIFRED with an empty table field in the
Catalog frame. The user can then access the desired form
directly by entering its name in the table field.

Request that the Visual-Forms-Editor act as if you are a user
with login name username. This may be used only by the
database administrator for the database or by the ODT-DATA sys­
tem administrator.

200 Sal Reference ODT-DATA

'. /

Appendix A

i(Keywords

ODT-DATA SQl
The following identifiers are keywords in ODT-DATA SQL:

abort count endwhile is privileges then
all create execute like procedure to
and current exists max public union
any cursor for message relocate unique
as declare from min return until
asc delete grant modify revoke update
alter desc group not rollback user
at describe having null save using

V avg distinct if of savepoint values t between do immediate on select where
by drop in open set while
check else index or some with
close elseif insert order sql work
commit endif integrity permit sum
copy endloop into prepare table

Appendix A: Keywords Sal Reference 201

ODT·DATA Embedded Sal

ODT-DATA Embedded SQl
The following list contains the keywords specific to ODT·DATA Embedded SQL. Note that all (
the SQL keywords listed above are also reserved in Embedded SQL. "'--

activate deleterow getform loadtable scroll
add form disconnect getoper menuitem scrolldown
breakdisplay display getrow message scrollup
call down go next sleep
clear enddata goto notrim stop
c1earrow enddisplay help open submenu
close endforms helpfile out tabledata
column endloop identified print unloadtable
command endselect include prompt up
connect fetch indicator putform validate
continue field initialize putrow validrow
current finalize inittable redisplay wheneyer
cursor formdata inquire _frs repeated
declare forminit inquire)ngres resume
descriptor forms insertrow screen

Double Reserved Words

The following words are reserved when they appear together on the same line with only spaces
separating them.

202

add node
begin declare
begin transaction
create link
create permanent
create temporary

Sal Reference

drop link
drop permanent
drop temporary
end transaction
remove node

DDT·DATA

'"
/

(

ANSISQL

ANSI SQl
The following list comprises the proposed ANSI standard keywords that are not currently
reserved in ODT-DATA SQL or ODT-DATA Embedded SQL. You may wish to treat these as
reserved words to ensure compatibility with other implementations of SQL.

authorization double module public
char noat numeric real
character fortran option schema
cobol found pascal smallint
constraints int pJi sqlcode
dec integer precision sqlerror
decimal language procedure

Host language Keywords
You cannot use host language keywords, including language-defined data types, as objects in
Embedded SQL statements.

Appendix A: Keywords Sal Reference 203

204 Sal Reference DDT-DATA

Appendix 8

(The DDT-DATA System Catalogs

This appendix describes the Standard Catalog Interface views, the Extended System Catalogs,
and lists the DBMS System Catalogs.

System catalogs are tables, just like user tables in a database. Each system catalog has a
distinct set of columns (attributes), each of which has a distinct database management
function. These catalogs can be used in programs to access (but not update) information about
the system. Each row in a system catalog reflects some aspect of the database.

The Standard Catalog Interface is a group of views defined on the system catalogs. These
views are the supported catalogs, and users who need to query the system catalogs should use
them.

To reduce coding time, the definitions for the columns in the catalogs let the programmer
know (1) that all values are left-justified in a column unless otherwise noted, (2) that all
columns are uppercase unless otherwise noted, and (3) what are valid values for the column.

Columns are assumed to be non-nullable, except where explicitly noted.

Many columns that are char(2S) names are valid ODT-DATA names. ODT-DATA names are
described in Chapter I, "SQL Syntax."

Allowable values for those columns described as ODT-DATA usernames are determined by
operating systems in general, but should be drawn from the list of values in the iidbconstants
catalog, which contains the current usemame and current dbaname.

Appendix B: The ODT-DATA System Catalogs Sal Reference 205

All char(24) fields described as ODT-DATA standard dates have the following format:

yyyy _mm_dd hh:mm:ss GMT

where: ~-

yyyy is the year (for example. 1987)

mm is the month (for example. 11)

dd is the day of the month (for example. 21)

hh is the military hour (for example. 14)

mm is the minute (for example. 43)

ss is the second (for example. 32)

GMT is for Greenwich Mean Time

'- /

The underscores and colons are required between the parts of the date.

206 Sal Reference ODT-DATA

(

Standard Catalog Interface

Standard Catalog Interface
All database users can read the Standard Catalog Interface views, but they may only be updated
by a privileged ODT-DATA user who specifies the +U flag when the database is accessed.

The iidbcapabilities Catalog

The iidbcapabilities view contains information about the capabilities the DBMS provides.

The following table describes the columns in the iidbcapabilities catalog:

Column Name Data Type

char(24)

char(24)

cap_description varchar(240)

Description

Contains one of the values listed in the following
table. If the cap_capability has a value, it is ac­
tivated by the value in the cap_value column.

Most capabilities are binary and ise set to the
string "Yes" or "No"; either the DBMS supports
them or it does not. Some, however, have values.
For those, this field contains the value of the
capability.

Contains a description of the capability this row
represents.

Appendix B: The OOT-OATA System Catalogs Sal Reference 207

Standard Catalog Interface

The cap_capability column in the iidbcapabilities catalog contains one or more of the
following values:

Capability Value

The type of case sensitivity the database has with respect to
database objects. It takes on the value of "LOWER,"
"UPPER," or "MIXED." If not present, this capability
defaults to "LOWER." Database objects may be specified
in programs and queries in either mixed, lower, or upper­
case if the value is "LOWER" or "UPPER." If the value is
"MIXED," be careful to preserve the case specified by the
user for database objects. Database objects are stored in
the system catalogs, as specified by DB_NAME_CASE.
For database and user names, the names are stored in upper­
case if the value of DB_NAME_CASE is "UPPER" or
"MIXED."Uis it "LOWER," then they are stored in lower­
case in the system catalogs. Note that this applies only to
database objects (tables, columns, and users). Front-end ob-
jects, such as forms and reports, are always lowercase. /~

INURES

INGRES/SQL_LEVEL

208 Sal Reference

Set to "Yes" if the database service requires that all tables
have a unique key. Set to "No" or not present if the
database service allows tables without unique keys.

Set to "Yes" if the DBMS supports, in ALL respects, 100%
of ODT-DATA. Otherwise "No," Defaults to "Yes."

Version ofINGRES/SQL support provided by the DBMS.
Examples:

00600 - DBMS supports INGRES/SQL Version 6.0
00601 - DBMS supports INGRESISQL Version 6.1
00000 - DBMS does not support INGRES/SQL

Default is 00600.

ODT-DATA

\.~ j

(-

(

(

Capability

OPEN/SQL_LEVEL

SAVEPOINTS

Standard Catalog Interface

Value

Version ofOPEN/SQL support provided by the DBMS.
Examples:

00600 - DBMS supports OPEN/SQL Version 6.0
Default is 00600.

"Yes" if savepoints behave exactly as in ODT-DATA, else
"No." Default is "Yes."

What type of DBMS the application is communicating
with. Valid values are the same as those accepted by the
with DBMS = clause used in queries. Some are "IN­
GRES," "RMS." The default value is "INGRES."

The iidbconstants Catalog

The iidbconstants view contains a list of values that must be known by the ODT-DATA
frontends.

The following table describes the columns in the iidbconstants catalog:

Column Name Data Type Description

usecname char(24) The name of the current user.

dbaname char(24) The name of the db's owner.

Appendix B: The ODT-DATA System Catalogs Sal Reference 209

Standard Catalog Interface

The iitables Catalog

The iitables catalog contains an entry for each queryable object in the database. In
ODT-DATA, these objects are tables, views, and indexes. The iitables catalog contains basic
system-independent logical information. User programs can query this catalog to find out
what tables, views, and indexes exist in a database.

In ODT-DATA, this view is keyed on table_name and table_owner, so the best way to query
this view is with a query such as:

select
from
where
and

Column Name

*
iitables
(table_name = (anyname)
(table_owner = (myname) or table owner
(dbaname))

Data Type

char(32)

char(32)

char(2S)

char(2S)

Description

The object's name. This is an ODT-DATA name.

The object's owner, expressed as an ODT-DATA user­
name. Generally the creator of the object.

The object's creation date, expressed as an ODT­
DATA standard date. This is blank if unknown.

The last time this table was altered, expressed as an
ODT-DATA standard date. For ODT-DATA tables,
this date is the same as the create date. This date is
updated whenever the logical structure of the table
changes, either through changes to the columns in
the table or changes in the primary key itself. Physi­
cal changes to the table, such as changes to data, in­
dexes, or physical keys, do not change this date.
This is blank if unknown.

210 Sal Reference ODT-DATA

/~- ~,

I

\",

Standard Catalog Interface

Column Name Data Type Description

(
table_type cbar(8) This describes the type of the query object. The pos-

sible values are:

"T" if the object is a table
"V" if the object is a view
"I" if the object is an index

Further information about tables can be found in sys-
tem catalogs iipbysical_tables and about views in
iiviews.

table_subtype char(8) This describes the type of table or view that this is.
Possible values are:

"No" - (native) for standard ODT-DATA databases
"I" - (imported tables) for gateways
"" - for unknown

(table_version char(8) This is the version of the object. which allows the
frontends to determine where additional information
about this particular object is stored. This reflects
the database type. as well as the version of an object
within a given database. For ODT-DATA tables. the
value for this field is "ING6.0".

system_use char(l) Specifies whether the object is a system object or a
user object. The system_use field is used by the
front ends to screen lists of tables in catalog dis-
plays. Values are " " (if unknown). The distinction
between "S" and "U" is used in utilities to know
which tables need reloading. If the value is un-
known. the utilities use the naming convention of
"ii" for tables to distinguish between system and

(
user catalogs. Also. any table beginning with ii_ is
assumed to be a frontend object. rath<;r than a
DBMS system object. The standard system catalogs
themselves must be included in the iitables catalog
and are considered system tables.

Appendix B: The ODT-DATA System Catalogs Sal Reference 211

Standard Catalog Interface

The following columns in iitables have values only if the table_type is "T" or "I."

Gateways that do not supply this information must set these columns to the default values: -1
for numeric data types and a blank for character data types.

,-
Column Name Data Type Description

table_stats char(8) "Yes" if this object has entries in the iistats table,
or "No" if this object does not have entries.
Whether this is blank or not is not a determinant of
"Yes" or "No." If the field is blank, then a probe of
the iistats table should be done to determine if they
exist. This column is used only for optimization of
ODT-DATA databases.

table_indexes char(8) "Yes" if this object has entries in the iiindexes table
that refer to this as a base table, or "No" if this ob-
ject does not have entries. Whether this is blank or
not is not a determinant of "Yes" or "No." If the
field is blank, then a probe of the iiindexes table on
the base_table column should be done to determine

~/ if they exist. This field is used only for optimiza-
tion of ODT-DATA databases.

is_readonly char(8) "No" if updates are physically allowed, or "Yes" if
no updates are allowed. This is blank if it is un-
known. This is used for tables that are defined to a
gateway only for retrieval, such as tables in hierar-
chical database systems. If this field is set to "Yes"
then no updates works, independent of what permis-
sions might be set. If it is set to "No," updates may
be allowed, depending on whether the permissions
allow it or not.

num_rows integer The estimated number of rows in the table. Set to -1
if it is unknown.

/ ..

I

\
"

212 Sal Reference ODT-DATA

Standard Catalog Interface

Column Name Data Type Description

storage_structure cbar(16) The storage structure for the table. It is one of the
following:

"HEAP" if the table is a heap
"HASH" if the table is a hash structure
"ISAM" if the table is an isam structure
"B1REE" if the table is a btree,
Blank if the table structure is unknown.

is_compressed cbar(8) Set to "Yes" if the table is stored in compressed for-
mat, or "No" if the table is uncompressed. This is
blank if this is unknown.

duplicateJows cbar(8) "D" if the table, as created, allows duplicate rows
or "U" if it does not. The table storage structure
(unique vs. non-unique keys, and so on) can over-
ride this setting. This column is blank if this infor-
mation is unknown.

(unique_rule cbar(8) The value may be either "U," "D," or a blank. If
the value is "u" and the object is an ODT-DATA ob-
ject, then it indicates that the object has a unique
storage structure key(s). Refer to the key _sequence
column of the iicolumns catalog for the key(s). If
the value is "u" and the object is not an ODT-DATA
object, then it indicates that the object has a unique
key, described in either iicolumns or
iialt_columns. If the value is "D," it indicates that
duplicate physical storage structure keys are al-
lowed. (A unique alternate key may exist in
iialt_columns and any storage structure keys may
be listed in iicolumns.) If this value is blank, uni-
queness is unknown or does not apply.

number-pages integer The estimated number of physical pages in the
table. Set to -1 if unknown.

(overflow_pages integer The estimated number of overflow pages in the
table. Set to -1 if unknown.

Appendix B: The ODT-DATA System Catalogs Sal Reference 213

Standard Catalog Interface

The following columns are used by the ODT-DATA DBMS. If a gateway does not supply this
information, they should set these column to the default values: -1 for numeric columns and
a blank for character columns.

Column Name Data Type

integer

table_in tegri ties char(l)

char(l)

char(l)

char(l)

integer

isjoumaled char(l)

view_base char(l)

char(25)

214 Sal Reference

Description

Expiration date of table. This is an ODT-DATA _bin­
time date.

"Yes" if this object has ODT-DATA style integrities.
If the value is blank, a probe of the iiintegrities table
determines if integrities exist or not.

"Yes" if this object has ODT-DATA style permissions.
A value of blank is not determinant on entries in the
iipermits table.

"Yes" if this object has an ODT-DATA permit all to
all, or "No" if not.

"Yes" if this object has an ODT-DATA permit retrieve
to all, or "No" if not.

The size, in bytes, of the uncompressed binary value
for a row of this query object.

"Yes" if ODT-DATA joumaling is enabled on this ob­
ject, or "No" if it is not. Set to "e" if joumaling is
enabled at the next checkpoint. This is blank if ODT­
DATA journaling does not apply.

"Yes" if this is a base for a view definition, "No" if it
is not, or blank if this is unknown.

The date on which the last physical modification to
the storage structure of the table occurred. This is an
ODT-DATA standard date. This is blank if unknown
or inapplicable.

ODT-DATA

Standard Catalog Interface

Column Name Data Type Description

(
table_ifillpct smallint This is the fill factor for the index pages used on the

last modify command in the nonleaffill clause, ex-
pressed as a percentage from 0 to 100. This is used
for DDT-DATA btree structures to rerun the last
modify command.

table_dfillpct smallint This is the fill factor for the data pages used on the
last modify command in the fillfactor clause, ex-
pressed as a percentage from 0 to 100. This is used
for DDT-DATA btree, hash, and isam structures to
rerun the last modify command.

table_lfillpct smallint This is the fill factor for the leaf pages used on the
last modify command in the leaffill clause, expressed
as a percentage from 0 to 100. This is used for DDT-
DATA btree structures to rerun the last modify com-
mand.

ff
\ table_minpages integer This is the minpages parameter from the last execu-

tion of the modify command. This is used for DDT-
DATA hash structures only.

table_maxpages integer This is the maxpages parameter from the last execu-
tion of the modify command. This is used for DDT-
DATA hash structures only.

location_name char(24) The first location of the table. If there are additional
locations for a table, they are shown in the Hmul-
tUocations table and multi_locations are set to
"Yes."

table_reltid integer The first part of the internal relation id. This is used
to derive the filename for the table.

(
table_reltidx integer The second part of the internal relation id. This is

used to derive the filename for the table.

Appendix B: The DDT-DATA System Catalogs Sal Reference 215

Standard Cat",log Interface

Column Name Data Type Description

multi_locations char(l) Indicates if the database is located in more than one
area. "Yes" if it is in multiple locations, "No" if not.

table_relstamp integer High part of last create or modify timestamp for the
table.

table_relstamp2 integer Low part of last create or modify timestamp for the
table.

The iicolumns Catalog

For each object in the iitables catalog, there are one or more entries in the iicolumns catalog.
Each row in iicolumns contains the logical information on a column of the query object. This
view is used by the frontends and user programs to perform dictionary operations and dynamic
queries.

Column Name

216 Sal Reference

Data Type Description

char(32)

char(32)

char(32)

char(32)

The name of the table. This is an ODT-DATA name.

The owner of the table. This is an ODT-DATA user­
name.

The column's name. This is an ODT-DATA name.

The column's data type name. This is one of the
type names: integer, smallint, int, float, real,
double precision, char, character, varchar, c,
text, date, and money.

ODT-DATA

i
.~

/

Standard Catalog Interface

Column Name Data Type Description

column_length integer The length of the column as specified by the user.

(If a data type contains two length specifiers, this
column uses the first length. For the data types
which are specified without length (money and
date), this is set to zero.

NOTE: This length is not the actual length of the
column's internal storage.

column_scale integer This is the second number in a two-part user-length
specification, that is, for typename(len I, len2) it is
len2.

column_nulls char(S) Tells whether the column can contain null values.
It is "No" if the column cannot contain null values.
It is "Yes" if the column can contain null values.

tf column_defaults char(S) Tells whether the column is given a default value.

\t It is "No" if the column is not given a default value
on insert It is "Yes" if the column is given a
default value on insert.

column_sequence integer The number of this column in the corresponding
table's create statement, numbered from 1.

key_sequence integer The order of this column in the primary key, num-
bered from 1. For an DDT-DATA table, this indi-
cates the column's order in the primary storage
structure key. If 0, then this column is not part of
the primary key. This is unique if the unique_rule
column for the table's corresponding entry in
iitables is set to "U."

(sort_direction char(S) Set to "A" for ascending or "D" for descending
when key _sequence is greater than 0., Otherwise,
this value is a blank.

Appendix B: The DDT-DATA System Catalogs Sal Reference 217

Standard Catalog Interface

Column Name Data Type Description

column_
ingdatatype

smallint

The iiviews Catalog

This value indicates the ODT-DATA data type of the
column. If the value is positive then the column is /
not nullable; if the value is negative, then the
column is nullable. The data types and their cor­
responding values are:

integer-30/30
float-31/31
c-32/32
text-37!37
date-3/3
money-515
char-20/20
varchar-2 1/2 I

The iiviews catalog contains one or more entries for each view in the database. (Views are
represented in iitables by table type = "V.") Because the texcsegment column is limited to
240 characters per row, a single view may require more than one entry to represent all its text.
There are as many entries in this table as needed to represent all the text of a view.

The text may be broken in mid-word across the sequenced rows. The text column is pure text.
Also, the text mayor may not contain newline characters.

Column Name Data Type

table_name char(24)

table_owner char(24)

view_dml char(8)

check_option char(8)

integer

texcsegment varchar(240)

218 SOL Reference

Description

The view name. This is an ODT-DATA name.

The view's owner. This is an ODT-DATA usemame.

The language the view was created in. "S" (for
SQL).

Set to "Yes" if the check option was specified in
the create view statement and "No" if not. This is
blank if unknown.

The sequence number for the text field, numbered
from 1.

The text of the view definition.

ODT-DATA

/

~ ..

(

(

Standard Catalog Interface

The iiindexes Catalog

Each table with a table_type of "I" in the iitables table has an entry in iiindexes. In
DDT-DATA, all indexes also have an entry in iiphysical_tables.

Column Name Data Type

index_name char(24)

index_owner char(24)

create_date char(24)

base_name char(24)

base_owner char(24)

storage_structure char(16)

char(8)

char(8)

Description

The index name. This is an DDT-DATA name.

The index owner. This is an DDT-DATA usemame.

Creation date of index. This is an DDT-DATA
standard date.

The base table name. This is an DDT-DATA name.

The base table owner. This is an DDT-DATA name.

The storage structure for the index. It is one of the
following:

"HEAP" if the table is a heap
"HASH" if the table is a hash structure
"ISAM" if the table is an isam structure
"B1REE" if the table is a btree
Blank if the table structure is unknown.

Set to "Yes" if the table is stored in compressed
format, or "No" if the table is uncompressed. This
is blank if this is unknown.

"U" if the index is unique, or "D" if duplicate key
values are allowed or blank if unknown.

Appendix B: The DDT-DATA System Catalogs Sal Reference 219

Standard Catalog Interface

The iiindex_columns Catalog

For indexes, any DDT-DATA columns that are defined as part of the index has an entry in
iiindex columns. ("

Column Name Data Type Description

index_name char(24) The index containing column_name. This is an
DDT-DATA name.

index_owner char(24) The index owner. This is an DDT-DATA username.

column_name char(24) The name of the column. This is an DDT-DATA
name.

key_sequence integer Sequence of column within the key, numbered
from 1.

sore direction char(8) Set to "A" for ascending or "D" for descending.

The iialt_columns Catalog

For each alternate key, any columns that are defined as part of the key have an entry in
iialt columns.

Column Name Data Type Description

table_name char(24) The table that column_name belongs to.

table_owner char(24) The table owner.

key_id integer The number of the alternate key for this table.

column_name char(24) The name of the column.

key_sequence smallint Sequence of column within the key, numbered
from 1.

220 Sal Reference DDT-DATA

'\

'" /

(

~
--

(

(

(\

Standard Catalog Interface

The iistats Catalog

If a column has statistics, then it has a row in this table.

Column Name Data Type

table_name cbar(24)

table_owner cbar(24)

column_name cbar(24)

create_date cbar(24)

num_unique float8

rept3actor float8

cbar(8)

pccnulls floatS

integer

Description

The name of the table. This is an ODT-DATA
name.

The owner of the table. This is an ODT-DATA user­
name.

The column name to which the statistics apply.
This is an ODT-DATA name.

Date statistics were gathered, as an ODT-DATA
standard date.

The number of unique values in the column.

The repetition factor, or the inverse of the number
of unique values (number of rows/number of uni­
que values).

This is "Yes" if the column has unique values.
"No" otherwise.

The percentage (fraction of 1.0) of the table that
contains NULL for the column.

The number of cells in the histogram.

Appendix B: The ODT-DATA System Catalogs SOL Reference 221

--- -- --------- ---

Standard Catalog Interface

The iihistograms Catalog
The iihistograms table contains histogram infonnation used by the optimizer.

Column Name Data Type

table_name char(24)

table_owner char(24)

column_name char(24)

texcsequence integer

texcsegment cbar(228)

The iipermits Catalog

Description

The table for the histogram. This is an ODT-DATA
name.

The table owner. This is an ODT-DATA usemame.

The name of the column. This is an ODT-DATA
name.

The sequence number for the histogram, num­
bered from 1. There may be several rows in this
table, used to order the "optdata" data when his­
togram is read into contiguous memory.

The histogram data, created by optimizedb. This
is encoded.

The iipermits catalog contains one or more entries for each pennit defined. Because the text
of the pennit definition may contain more than 240 characters, iipermits may contain more
than one entry for a single pennit. The text mayor may not contain newlines and may be
broken mid-word across rows.

This table is keyed on object_name and object_owner.

Column Name Data Type

objeccname cbar(24)

objeccowner cbar(24)

222 SOL Reference

Description

The table or procedure name. This is an ODT­
DATA name.

The owner of the table or procedure. This is an
ODT-DATA username.

ODT-DATA

/

(

(

Standard Catalog Interface

Column Name Data Type Description

create_date cbar(24) The permit's creation date. This is an ODT-DATA
standard date.

permicuser cbar(24) The username to which this permit applies.

permicnumber smallint The number of this permit.

texcsequence smallint The sequence number for the text, numbered from
1.

text-segment varcbar(240) The text of the permission definition.

The iiintegrities Catalog

The iiintegrities catalog contains one or more entries for each integrity defined on a table.
Because the text of the integrity definition may contain more than 240 characters, iiintegrities
may contain more than one entry for a single integrity. The text mayor may not contain
new lines and may be broken mid-word across rows.

(/ This table is keyed on table_name and table_owner.

Column Name Data Type Description

table_name cbar(24) The table name. This is an ODT-DATA name.

table_owner cbar(24) The table's owner. This is an ODT-DATA user-
name.

create_date cbar(24) The integrity's creation date. This is an ODT-
DATA standard date:

integrity_number smallint The number of this integrity.

texcsequence smallint The sequence number for the text, numbered

(~~' from 1.

texcsegment varcbar(240) The text of the integrity definition.

Appendix B: The DDT-DATA System Catalogs Sal Reference 223

Standard Catalog Interface

The iimulti_locations Catalog
Because a table, due to size or space constraints, may be located on multiple volumes, this
table contains an entry for each additional location on which a table resides. The first location
for a table can be found in the iitables catalog.

This table is keyed on table_name and table_owner.

Column Name

table_name

table_owner

sequence

Data Type

char(24)

char(24)

integer

char(24)

The iiprocedures Catalog

Description

The table name. This is an ODT-DATA name.

The table's owner. This is an ODT-DATA user­
name.

The sequence of this location in the list of loca­
tions, as specified in the mOdify command.
This is numbered from 1.

The name of the location.

The iiprocedures catalog contains one or more entries for each database procedure defined
on a database. Because the text of the procedure definition may contain more than 240
characters, iiprocedures may contain more than one entry for a single procedure. The text
mayor may not contain newlines and may be broken mid-word across rows.

This table is keyed on procedure_name and procedure_owner.

Column Name Data Type Description

procedure_name char(24) The database procedure name, as specified in
the create procedure statement.

procedure_owner char(24) The procedure's owner. This is an ODT-DATA
usemame.

create_date char(24) The procedure's creation date. This is an ODT-
DATA standard date.

text_sequence smallint The sequence number for the texCsegment.

texcsegment varchar(240) The text of the procedure definition.

224 Sal Reference ODT-DATA

C- ,

(

(

Extended System Catalogs

Extended System Catalogs
Extended system catalogs used by the ODT-DATA frontend products, such as VIFRED and
RBF, to store information on frontend objects such as applications, forms, and reports. These
catalogs are also known as the ODT-DATA frontend catalogs.

Object id

Every ODT-DATA frontend object (form, report, QBF JoinDef, and so on.) is identified in the
extended system catalogs by a unique number, the object id. The object id is generated by
ODT-DATA when the frontend object is created. For each database, ODT-DATA stores the
largest object id issued to date in the table ii_id; this value is incremented and issued as the
id for each new frontend object.

An object's name, owner, and other information is stored once only, in the ii_objects catalog.
In all other extended system catalogs, objects are identified by their object id.

User programs that insert objects into the extended system catalogs should be careful to first
generate a unique object id for each new object. New object ids are generated by incrementing
the id column in the ii_id catalog while inside a transaction. Be sure to keep the transaction
that updates iUd.id as short as possible and to recover properly from errors; see the
ODT-DATA Embedded SQL User's Guide for information on writing a transaction that
recovers from errors.

Copying the Extended System Catalogs

Extended system catalogs should only be copied into new databases, never into existing
databases that contain frontend objects (forms, reports, and so on).

Copying extended system catalogs with the ODT-DATA copy statement does not create new
object ids for the copied objects. If the target database already contains frontend objects, then
copying extended system catalogs into that database with the copy statement can result in
catalogs that contain different objects with the same object id (for example, both a form and
a report with the same object id). That will cause serious problems in the target database's
extended system catalogs. Use the appropriate copy utility (copyform, copyrep, and so on)
to copy objects to existing databases. The copy utilities generate a new object id for each
object copied into the target database.

Appendix B: The ODT-DATA System Catalogs Sal Reference 225

Extended System Catalogs

Queryi ng the Extended System Catalogs
These are examples of queries you can issue to get infonnation from the extended system
catalogs. Note that each query specifies the class code for the type of object being selected. ./ "
A table of class codes accompanies the description of the ii_objects extended system catalog.

Find information on every report in the database.

select report=o.name, o.owner, o.short_remark, r.repcype
from ii_objects 0, ii_reports r
where (o.class = 1501 or o.class = 1502 or o.class = 1511)

/* classes 1501, 1502, 1511 = reports */
and o.id = r.id

Find the name and tabbing sequence number of every simple field and table field on fonn
"empform" (empform is owned by user "susan").

select form=o.name, f.fldname,
from ii_objects 0, ii_fields f
where o.class 1601
and o.name 'empform'
and o.owner , susan'
and o.id Lid
and (f. fltype = 0 or f. fltype
field */
order by flseq

f.flseq, f.fltype

/* class 1601 = "form" */

I) /* simple field or table

Select object information and long remarks, when available, by performing an outer join of
ii_objects with iUongremarks.

226

select o.name, o.class, o.owner, o.short_remark,
I. long_remark

from ii_objects 0, ii_Iongremarks I
where o.id = l.id

union all

select o.name, o.class, o.owner, o.short_remark, "
from ii_objects 0

where not exists

(se2.ect *
from ii longremarks
where ii longremarks.id ii_objects.id)
order by name

SOL Reference DDT-DATA

(

(

(

Extended System Catalogs

Catalogs Shared by All Frontend (FE) Objects

This section contains a description of the extended system catalogs that are not unique to any
particular frontend (FE), but they are used by them all.

The "_Id Catalog

This catalog consists of one column with a single row. The value in this catalog is the highest
object id currently allocated within this database. For a newly created database, this value is
initialized to 10000 and can grow as large as the largest positive integer(4) value.

The iUd catalog is a heap table with 1 row.

Column Name Data Type Description

objecUd integer(4) The highest current object id in this database.

The ii_obJects Catalog

This catalog contains a row for every FE object in the database. Its columns provide basic
information about each object, such as name, owner, object id, object class, and creation date.
Objects in this table often have additional information represented in rows of one or more
other FE catalogs. For example, form objects are also represented by rows in iiJorms,
ii_fields, and ii_trim. In all cases, the object id is used as the key column to join information
from multiple catalogs about a single object.

The ii_objects catalog is structured as btree on the objeccclass, objeccowner, and ob­
ject_name columns. It also has a secondary index, which is btree unique on the objecUd
column.

Column Name

objecUd

objeccclass

Data Type

integer(4)

integer(4)

Description

The object identifier, unique among FE objects
in the database.

The object's class. Tells what type of object this
is (form, report, and so on). See the following
for a table of object classes.

Appendix B: The DDT-DATA System Catalogs Sal Reference 227

Extended System Catalogs

Column Name Data Type

objeccname varchar(32)

object_owner varchar(32)

objeccenv integer(4)

is_current integer(l)

short_remark varchar(60)

objecUanguage integer(2)

create_date char(24)

altecdate char(24)

integer(4)

varchar(32)

Description

The name of the object.

The object owner's username.

Currently unused.

Currently unused.

A shon descriptive remark associated with the
object.

Currently unused.

The time and date at which the object was ini­
tially created.

The time and date at which the object, or as­
sociated information, was most recently altered
or saved.

A count of the number of times this object has
been altered or saved.

The name of the user who last altered or saved
this object.

The following table describes each object class. Object class is a column in the ii_objects
catalog.

Object Class Description

1002 JoinDef

1501 Generic Report

1502 Repon-Writer Report

228 Sal Reference DDT-DATA

Object Class

1511

1601

2021

2190

2201

2220

2230

2249

2250

3501

3502

3503

3504

Extended System Catalogs

Description

RBFReport

Fonn

Host Language Procedure

Undefined Procedure

QBFName

Report Frame

QBFFrame

GBFFrame

Undefined Frame

Dependency Type: member of

Dependency Type: database reference

Dependency Type: call with no use of return code

Dependency Type: call with use of return code

The "_Iongremarks Catalog

This catalog contains the "long remarks" text associated with FE objects. Only those objects
that have an associated long remark are entered in this catalog. Consequently, unless all
objects being selected have a long remark entered, joins between ii_objects and
iUongremarks should be outer joins. See "Querying the Extended System Catalogs" earlier
in this appendix for an example of an outer join between the ii_objects and iUongremarks
catalogs. The current implementation restricts long remarks to a single row; the sequence
column is provided for a future enhancement to allow remarks of arbitrary length.

(/ The iUongremarks catalog is structured as btree unique on the objecUd c,?lumn.

Appendix B:TheODT-DATASystem Catalogs Sal Reference 229

Extended System Catalogs

Column Name Data Type

objecUd integer(4)

integer(2)

lon&-remark varchar(600)

integer(2)

Forms System Catalogs

Description

Object id of the frontend object this remark
belongs to. Various other information about this \,
object (such as name, owner, and object class)
is kept in the ii_objects catalog.

A sequence number for (future) representation
of multiple segments of text comprising one
object's long remarks.

The long remarks text associated with the ob­
ject.

Currently unused.

This section contains a description of the extended system catalogs that are unique to the "

/

forms system. \. /

The ii_forms Catalog

This catalog contains one row for each form in a database.

The ii Jorms catalog is structured as btree unique on the objecUd column.

Column Name Data Type

objecUd integer(4)

frmaxcol integer(2)

frmaxlin integer(2)

230 Sal Reference

Description

Unique identifier (object id) for identifying this
form in the ii_objects catalog. Other information
about the form (such as name, owner, and object
class) is stored in the ii_objects catalog.

The number of columns the form occupies.

The number of lines the form occupies.

ODT-DATA

Extended System Catalogs

Column Name Data Type Description

frposx integer(2) The x coordinate for the upper left corner of the

(fonn.

frposy integer(2) The y coordinate for the upper left corner of the
fonn.

frfldno integer(2) The number of updateable regular or table fields in
the form.

frnsno integer(2) The number of display-only regular fields in the
fonn.

frtrimno integer(2) The number of trim and box graphic trim strings in
the form.

frversion integer(2) Version number of the form.

(frscrtype integer(2) Reserved for future use.

frscrmaxx integer(2) Reserved for future use.

frscrmaxy integer(2) Reserved for future use.

frscrdpix integer(2) Reserved for future use.

frscrdpiy integer(2) Reserved for future use.

frflags integer(4) The attributes of the fonn, such as whether this a
pop-up or normal fonn.

fr2flags integer(4) More attributes for the fonn. Currently unused.

(-
frtotflds integer(4) The total number of records in the ii_fields catalog

for the form.

Appendix B: The ODT-DATA System Catalogs SOL Reference 231

Extended System Catalogs

The Ii_fields Catalog

This catalog contains information on the fields in a form. For every form, there is one row in
this catalog for each field, table field, and table field column. As used below, the wordfield
refers to a simple field, a table field, or a column in a table field. See "Querying the Extended
System Catalogs" earlier in this appendix for an example of a query that selects information
about fields on a form.

The ii_fields catalog is structured as btree unique on the objecUd and flsubseq columns.

Column Name Data Type

objecUd integer(4)

flseq integer(2)

fldname varchar(32)

fldatatype integer(2)

232 Sal Reference

Description

Unique identifier (object id) for identifying the
form this field belongs to in the ii_objects catalog.
Other information about the form (such as name,
owner, and object class) is stored in the ii_objects
catalog.

The sequence number of the field in the form (or
column in a table field). This detennines the tab- /"
bing order among fields and among columns in a ',/
table field. If the number is less than zero (0), it is
a display-only field or column.

The name of the field.

The field's data type. Possible values are listed
below with nullable data types being the negative
of the listed value:

3 - date
5 - money
20 - char
21 - varchar
30 - integer
31 - floating-point
32 - c
37 - text

ODT-DATA

Extended System Catalogs

Column Name Data Type Description

(
fllength integer(2) The internal DDT-DATA data length of the field in

bytes. Note that this may not be the same as the
user-defined length. This is the length used by
DDT-DATA.

flprec integer(2) Reserved for future use.

flwidth integer(2) The number of characters displayed in the field on
the fonn including wrap characters. For example,
if the fonnat for the field is c20.10, flwidth is 20.

flmaxlin integer(2) The number of lines occupied by the field (title
and data).

flmaxcol integer(2) The number of columns occupied by the field (title
and data).

(flposy integer(2) The y coordinate of the upper left comer of the
field.

flposx integer(2) The x coordinate of the upper left comer of the
field.

fldatawidth integer(2) The width of the data entry area for the field. If
field fonnat is c20.1O, fldatawidth is 10.

fldatalin integer(2) The y coordinate position of the data entry area
relative to the upper left comer of the field.

fldatacol integer(2) The x coordinate position of the data entry area
relative to the upper left comer of the field.

(
fltitle varchar(SO) The field title.

fltitcol integer(2) The x coordinate position of the title relative to the
upper left corner of the field.

Appendix B: The ODT-DATA System Catalogs Sal Reference 233

Extended System Catalogs

Column Name Data Type Description

fltitlin integer(2) The y coordinate position of the title relative to the / "
upper left corner of the field. \

"

flintrp integer(2) Reserved for future use.

fldflags integer(4) The field attributes, such as boxing the field or dis-
playing the data entry in reverse video.

fld2flags . integer(4) More attributes for the field, such as is the field
scrollable.

fldfont integer(2) Reserved for future use.

fldptsz integer(2) Reserved for future use.

fldefault varchar(SO) The default value for the field.
"

flfonnat varchar(SO) The display fonnat for the field (for example, c10
or/10.2).

flvalmsg varchar(lOO) The message to be displayed if the validation
check fails.

flvalchk varchar(240) The validation check for the field.

fltype integer(2) Indicates if the record describes a regular field, a
table field, or a column in a table field. Possible
values are:

o - simple field
1 - table field
2 - table field column

flsubseq integer(2) A unique identifying record number with respect to
the set of records that describe all the fields in a
fonn.

234 SOL Reference ODT-DATA

(

(

(

Extended System Catalogs

The II_trim Catalog

This catalog contains the trim strings and box graphic trim for a form. There is one row for
each trim string and for each box graphic trim. This table allows duplicates to support box/trim
graphics that start at the same location.

The ii_trim catalog is structured as compressed btree unique on the objecUd, trim_col and
trim_lin columns.

Column Name

objecUd

trim301

trim_lin

trim_trim

trim_flags

trim2_fIags

trim_font

trim_ptsz

Data Type

integer(4)

integer(2)

integer(2)

varchar(150)

integer(4)

integer(4)

integer(2)

integer(2)

Description

Unique identifier (object id) for identifying the
form, this trim string belongs in the ii_objects
catalog. Other information about the form (such as
name, owner, and object class) is stored in the
ii_objects catalog.

The x coordinate for the starting position of the
trim string or box graphic trim.

The y coordinate for the starting position of the
trim string or box graphic trim.

The actual trim string or encoding of box graphic
trim size (number of rows and columns).

Attributes of the trim string.

More attributes for the trim string. Currently un­
used.

Reserved for future use.

Reserved for future use.

Appendix B: The COT-DATA System Catalogs Sal Reference 235

Extended System Catalogs

The ii_encoded_forms Catalog

This catalog contains encoded versions of forms. The encoding allows forms to be retrieved
from the database faster. C
The ii_encoded _forms catalog is structured as compressed btree unique on the objecUd and
cfseq columns.

Column Name Data Type

objecUd integer(4)

cfseq integer(2)

cfdatsize integer(4)

cftotdat integer(4)

cfdata varchar(1960)

aBF System Catalogs

Description

Unique identifier (object id) for identifying this
form in the ii_objects catalog. Other information
about this form (such as name, owner, and object
class) is stored in the ii_objects catalog.

Sequence number of this record for a particular
encoded form. Record sequence numbering start
at zero (0).

Number of bytes of actual data in column cfdata.

Total number of bytes needed to hold an encoded
form.

Data area used for holding an encoded form.

This section contains a description of the extended system catalogs that are unique to the QBF
system.

The lI_qbfnames Catalog

This catalog contains information used by QBF on the mapping between a form and a
corresponding table or JoinDef.

The ii_qbfnames catalog is structured as compressed btree unique on the objecUd column.

236 Sal Reference GOT-DATA

(

(...
,.

Column Name Data Type

objecUd integer(4)

relname varchar(32)

fmame varchar(32)

qbftype integer(2)

The li.Jolndefs Catalog

Extended System Catalogs

Description

Unique identifier (object id) for identifying this
QBFName in the ii_objects catalog. Other informa­
tion about this QBFName (such as its name, owner,
and object class) is stored in the ii_objects catalog.

The name of a table or JoinDef.

The name of a form corresponding to the table or
JoinDef.

Indicates if the QBFName is mapping a form to a
table (value 0) or JoinDef (value 1).

This catalog contains additional information about join definitions (JoinDefs) used in QBF.
Basic information about the JoinDef is contained in a row in the ii_objects catalog. Each
JoinDef can have several rows in iijoindefs associated with it. Each row of iijoindefs
contains one of four types of records, each of which contains a different kind of information
about the structure of the JoinDef. The interpretation of the respective columns differs
depending on the value of "qtype."

The iiJoindefs catalog is structured as compressed btree unique on the objecUd and qtype
columns.

Column Name Data Type

objecUd integer(4)

Description

Unique identifier (object id) for identifying this
J oinDef in the ii_objects catalog. Other informa­
tion about the JoinDef (such as its name, owner,
and object class) is stored in the ii_objects catalog.

Appendix B: The ODT-DATA System Catalogs SOL Reference 237

Extended System Catalogs

Column Name Data Type Description

qtype integer(4) The low order byte of this column indicates the
(,

record type of this row, as follows: 0 - Indicates if a
\ table field is used in the JoinDef; 1 - Table informa-

tion; 2 - Column information; 3 - Join information.
(The high order byte is used as a sequence number
for multiple entries of a particular record type.)
Each JoinDef has exactly one row with qtype = 0;
it has one row with qtype = 1 for each table used in
the JoinDef; it has one row with qtype = 2 for each
field displayed in the JoinDef; it has one row with
qtype = 3 for each pair of columns joined in the
JoinDef.

qinfol varchar(32) If qtype = 0, then qinfol indicates if the JoinDef is
built with a table field format (y = yes, n = no). If
qtype = I, then qinfol contains the name of a table
used in the JoinDef. If qtype = 2, then qinfol con-
tains a correlation name (range variable) for the '"
table used in the JoinDef that contains the column ,

/

named in qinf02. If qtype = 3, then qinfol contains
a correlation name (range variable) for a column
named in qinf02 that is joined to the column refer-
enced in qinfo3 and qinf04.

qinf02 varchar(32) If qtype = 0, then qinf02 is not used. If qtype = I,
then qinf02 indicates whether the table named in
qinfol is a Master (0) or Detail (I) table. If qtype
= 2, then qinf02 contains the name of the column to
be used in conjunction with the correlation name in
qinfol. If qtype = 3, then qinfo2 contains the name
of the column to be joined to the column refer-
enced in qinf03 and qinf04.

/'
,

I
\.

238 Sal Reference ODT-DATA

c

Column Name Data Type

qinf03 varchar(32)

qinf04 varchar(32)

Extended System Catalogs

Description

If qtype = 0, then qinf03 is not used. If qtype = 1,
then qinf03 contains a correlation name (range vari­
able) for the table named in qinfol. If qtype = 2,
then qinf03 contains the field name in the fonn cor­
responding to the column identified by qinf02. If
qtype = 3, then qinf03 contains a correlation name
(range variable) for a column named in qinf04 that
is joined to the column referenced in qinfol and
qinf02.

If qtype = 0, then qinf04 is not used. If qtype = 1,
then qinf04 contains the delete rules for the table
named in qinfol (0 = no, 1 = yes). If qtype = 2,
then qinf04 contains the status codes for the
column identified by qinfol and qinf02. These
status codes are expressed as a 3-character text
string; the first character denotes update rules for
values in this column (0 = no, 1 = yes); the second
character denotes whether this column is part of a
join (0 = no, 1 = yes); the third character denotes
whether this column is a displayed column (0 = no,
1 = yes). Typically, if the column is not part of a
join the third character is not used by QBF. If qtype
= 3, then qinf04 contains the name of the column 1-
Catalogs (QBF system);described!E to be joined to
the column referenced in qinfol and qinf02.

Report-Writer System Catalogs

This section contains a description of the extended system catalogs that are unique to the
Report-Writer system.

The "_reports Catalog

This catalog contains information about reports. There is one row for every report in the
database. Both reports created through RBF and reports created through sreport contain
entries in iiJeports. See "Querying the Extended System Catalogs" earlier in this appendix
for an example of a query that selects information about reports.

Appendix B: The ODT-DATA System Catalogs SOL Reference 239

Extended Syst~m Catalogs

The iiJeports table is structured as btree unique on the objecUd column.

Column Name Data Type Description

objecUd integer(4) Unique identifier (object id) for identifying this
report in the ii_objects catalog. Other information
about the report (such as name, owner, and object
class) is stored in the ii_objects catalog.

reptype char(l) The method used to create the report; "S" if the
report was created by sreport, and "F' if the report
was created by RBF.

repacount integer(2) The number of rows in the iiJcommands catalog
with an rcotype of "Ae." This is used for internal
consistency.

repscount integer(2) The number of rows in the ii _ rcommands catalog
with an rcotype of "SO." This is used for internal
consistency.

repqcount integer(2) The number ofrows in the iiJcommands catalog
with an rcotype of "QU." This is used for internal
consistency.

repbcount integer(2) The number ofrows in the iiJcommands catalog
with an rcotype of "BR." This is used for internal
consistency.

The ii3commands Catalog

This catalog contains the formatting, sorting, break, and query commands for each report,
broken down into individual commands.

The iiJcommands catalog is structured as compressed btree unique on the objecUd column.

240 Sal Reference ODT-DATA

/--~

(
I

~-j

',-

(

''''--

Extended System Catalogs

Column Name Data Type Description

f
objecUd integer(4) Unique identifier (object id) for identifying the

report this command belongs to in the ii_objects
catalog. Other information about the report (such as
name, owner, and object class) is stored in the ii_ ob-
jects catalog.

rcotype char(2) Report command type. Valid values are:

"TA" - Table for a .data command
"SQ" - Piece of SQL query for the .query

command
"SO" - Sort column for a .sort command
"AC" - Report formatting or action

command
"OU" - .output filename, if specified
"BR" - .break command information
"DE" - .declare statement information

(- rcosequence integer(2) The sequence number for this row, within the
rcotype.

rcosection varchar(12) The section of the report, such as header or footer,
to which the commands refer if rcotype is "Ae." If
rcotype is "QU" or "SQ," this refers to the part of
the query described. For other values of rcotype,
this field is unused.

rcoattid varchar(32) If rcotype is "AC," this indicates either the column
name associated with the footer/header section or
contains the value "PAGE" or "REPORT" or
"DETAIL." Ifrcotype is "SO," this is the name of
the sort column. Ifrcotype is "QU," the range vari-
able names are put in this column. If rcotype is

("BR," the name of the break column is put in this
column. If rcotype is "DE," the name of the
declared variable is put in this column.

Appendix B: The ODT-DATA System Catalogs Sal Reference 241

The DBMS System Catalogs

Column Name

rcocommand

rcotext

Data Type Description

varchar(12) Primarily used for the names of the formatting com- ,/ "

~sano?s when rcot.YPdi~ is "AthC·"thThiS is also used for \ ..
, rcotype to 10 cate at e sort column is also
a break column.

varchar(lOO) If the rcotype is "AC," then this contains the text of
the formatting command. If rcotype is type "OU,"
then this contains the name of the output file. If
rcotype is "QU" or "SQ," then this contains query
text. If rcotype is "TA," then this contains the table
name. If rcotype is "SO," then this contains the sort
order. If rcotype is "DE," then this contains the text
of the declaration. If rcotype is "BR," then this is
unused.

The DBMS System Catalogs
The section provides a list of the DBMS catalogs with a short description of each. The table
names of the DBMS System Catalogs may be used as arguments to the sysmod command (see
Chapter 4, "DDT-DATA Operating System Commands").

iirelation

iirel idx

iiattribute

iiindex

iidevices

iiintegrity

Describes each table in the database.

An index table that indexes the iirelation table by table name and
owner.

Describes the properties of each column of a table.

Describes all the indexes for a table.

Describes additional locations when a user table spans more than
one DDT-DATA location.

Contains information about the integrities applied to tables.

242 SOL Reference DDT-DATA

(

(j

(

iiprotect

iitree

iiqrytext

iidbdepends

iixdbdepends

iiprocedure

iihistogram

iistatistics

iidatabase

iidbid idx

iidbaccess

iiextend

ii1ocations

iiuser

The DBMS System Catalogs

Contains information about the protections applied to tables.

Contains the DBMS internal representation of query text for
views, protections, and integrities.

Contains the actual query text for views, protections, and in­
tegrities.

Describes the dependencies between views or protections and
their base tables.

An Index table used to find the rows that reference a dependent
object in the iidbdepends catalog.

Contains information about database procedures.

Contains database histograms that are collected by the op­
timizedb program.

Contains database statistics that are collected by the optimizedb
program.

Describes various attributes of each database in an installation.

A secondary index built on a column in the iidatabase catalog.

Describes which users have access to private databases.

Defines the extended data locations of a database.

Maps locations to physical areas and indicates what that location
can be used for.

Defines valid users and their privileges in an ODT-DATA installa­
tion.

Appendix B: The ODT-DATA System Catalogs SOL Reference 243

244 SOL Reference DDT-DATA

(/

Index

Special Characrters

; (semicolon)
as statement separator, 2

1# (number signs)
in object names, 2

$ (dollar sign)
in object names, 2

% (percent sign)
as pattern match character, 42

() (parentheses)
and precedence of arithmetic operations, 20
for expressions, 19
for logical operator grouping, 39

* (asterisk)
as Terminal Monitor prompt character, 140
count function and, 37
exponentiation, 20
multiplication and, 20

+ (plus sign)
addition, 20

- (minus sign)
subtraction, 20

. (period)
as decimal indicator, 5

I (slash)
as comment indicator (with asterisk), 2
division, 20

@ (at sign)
in object names, 2

\ (backs lash)
as dereference character, 73, 142

An operator, 42
_ (underscore)

in Locationnames, 64
in object names, 2
in pattern matching, 42

{ } (curly braces)
in syntax descriptions, vii

I (vertical bars)
in syntax descriptions, vii

Index

A

\a (Terminal Monitor command), 141
Aborting

transactions, 56, 63
Absolute

value, 26
Accessdb (command), 146
Aggregates

functions, 1
nulls in, 53
See also Set functions

And (Boolean operator), 39
ANSI format

standard keywords, 203
Any-or-All (predicate), 44
\append (Terminal Monitor command), 141
Arctangent function, 26
Arithmetic

dates, 21
expressions, 20
operators, 20

As clause, 47, 89
Asc sort sequence, 80
ASCII characters

allowable, 4
conversion to blanks, 143

At sign (@)
See character list at front of index

Audit trails
for tables, 90

Auditdb (command), 147
Autocommit, 55, 128
Avg function, 36

Sal Reference 245

B

Base tables. 92
\bell (Terminal Monitor command). 142
Between (predicate). 43
Binary format

See Bulk copying
Binary operators. 20
Blanks

in character data type. 4
padding with. 29
trailing. 29. 30

Bold typeface
in statement syntax. vii

Boolean expressions
If-Then-Else (statement). 105, 106, 107
While (statement). 136

Boolean operators
SQL.39

Btree (storage structure). 113. 129
Bulk copying. 76. 148

c
C

preprocessor invocation. 167
C data type. 3
Caret (All)

See character list at front of index
Cartesian product operator. 52
Case

lowercase function. 29
uppercase function. 30

Catalogdb (command). 150
Catalogs (ABF system)

ii_qbfnames. 236
Catalogs (extended system)

copying. 225
described. 225
iUd.227
ii_objects. 227
object id. 225
querying. 226

246 Sal Reference

Catalogs (forms system)
described. 230. 236
ii_fields. 232
iijorms. 230
iUrim.235

Catalogs (frontend)
See Catalogs (extended system)

Catalogs (QBF system)
described. 236
iUoindefs. 237

Catalogs (report writer system)
described. 239. 242
ii_rcommands. 240
ii_reports. 239

Catalogs (system)
dates. 206
described. 205
iialt30lumns. 220
iicolumns. 216
iidbcapabilities. 207
iidbconstants. 209
iihistograms. 222
iiindex301umns. 220
iiindexes.219
iiintegrities. 223
iimulti_Iocations. 224
iipermits. 222
iiprocedures. 224
iistats. 221
iitables. 210
iiviews.218
See also individual catalogs
printing statistics from. 194
updating. 207

Cbtree (storage structure). 113. 129
\cd (Terminal Monitor command). 141
Character data

comparing. 4
converting, 24
in SQL, 3, 24. 27. 30

Chash (storage structure), 113, 129
\chdir (Terminal Monitor command), 141
Cheap (storage structure), 113, 129
Cheapsort (storage structure), 113, 129
Checkpoints

establishing, 153
Cisam (storage structure), 112, 129
Ckpdb (command), 153
Clauses, 39

escape, 43

DDT-DATA

(~

Columns
as expressions, 19
handling by sets, 51, 54
maximum number, 89
naming, 88

Columns (in table fields)
headings, 47

Columns (in tables)
defaults, 53
formats, 89
handling by sets, 36, 38
in subselects, 47
maximum number, 14
null ability of, 53
selecting, 124
sorting, 114
updating, 134

Comments
in SQL, 2

Commit (statement), 55, 57
Comparison (predicate), 42
Comparison operators

predicates in SQL, 39
Compform (command), 155
Compiled forms

Compform (command), 155
Compression, 112, 117
Computation

logarithms and, 26
mantissa, 5

Concat function, 27
Concurrency, 54
Constants

hex, 13
null, 13
numeric, 13
string, 13

Constraints
integrity, 84

Continue (Terminal Monitor message), 139
Control key, I, 57
Conversion

of numeric data, 22, 26
of string/character data, 24

Copying
bulk copy, 76
Copy (command), 69, 80
Copy from (command), 71
Copydb (command), 157
Copy form (command) for, 159

Index

Copyrep (command), 161
databases, 157
error detection, 70
files to/from tables, 69, 80
forms, 159
performance hints, 74
reports, 161

Correlation names, 16
Cosine function, 26
Count function, 37
Create index (command), 80, 83
Create integrity (command), 84
Create procedure (command), 85
Create table (command), 88
Create view (command), 92
Createdb (command), 163
CTRLkey

See Control keys

o
Data

copying, 69,80
deleting, 49
inserting, 50
manipulating, 46, 50

Data dictionary
See also Catalogs (system)
defined, 205

Data types
c,3
char, 3, 24
character, 3
date, 6, 10
described, 3, 12
floating-point, 5, 22
formats for storage, 11
integer, 5
money, 10,22
See also Numeric data type
varchar, 4, 24
vchar, 4, 24

database administrator (DBA)
establishing, 163

Sal Reference 247

Databases
accessing/terminating access to. 146. 163
audit trail creation. 147
checkpointing of. 153
copying. 157
creating. 163
default locations. 164
destroying. 166
example. 15
listing names. 150
moving. 64
naming. 163
private. 163
procedures. 63
relocating. 64
transactions. 54. 63
unloading. 198

Dates
\date (Terminal Monitor command). 141
arithmetic operations upon. 21
Date_part function. 33
Date_trunc function. 32
formats. 6. 10
functions. 31
German format. 10
in catalogs (system). 206
interval function. 33
ISO (Multinational) format. 10
Multinational format. 10
selecting current/system. 35
Sweden/Finland format. 10
See also Time
unit expressions. 31
US format. 10

Dayfile. 139
DBA

See database administrator (DBA)
DBMS System Catalogs. 242. 243
Dbmsinfo (function). 34
Deadlock

causes. 56
definition of. 54

Debugging
error information in aid. 168

Decimal point
See Period in character list at front of
index

Declare (command). 94

248 Sal Reference

Defaults
for directory subpaths. 64
for field nullability. 53
for storage structures. 115. 129
reports. 182. 185

Deleting
data. 49
Delete (command). 96
Delete (statement). 49
rows. 96
table space recovery. 96

Desc sort sequence. 80
Destroying

Destroydb (command). 166
Drop (command). 97

Directories
Locationnames for. 63

Drop (command). 97
Drop integrity (statement). 98
Drop permit (command). 99
Drop procedure (statement). 100
Duplicates

of table rows. 90

E

\e (Terminal Monitor command). 141
\ed (terminal monitor command). 141
\edit (Terminal Monitor command). 141
\editor (Terminal Monitor command). 141
Elseif (statement). 106
Embedded SQL

keywords. 202
End transaction (statement). 68
Equijoin. 52
Errors

"iierrornumber". 60
"iirowcount". 60
Database procedures. 60
finding during copy operations. 70

Escape clauses
in like (predicate). 43

Esqlc (command). 167
Exists (predicate). 45
Expiration date (tables). 88. 121

DDT-DATA

Exponential
functions, 26
notation,S, 26

Expressions
classes of, 19,38

F

Files
copying to/from, 69, 80

Fillfactor, 81, 114
Finddbs (command), 169

See also Recovery
Floating.point

conversion to, 22
data type,S

Forms
copying, 159
ownership, 159

From clause, 47
Functions

avg, 36
date, 31, 33
dbsminfo, 34
ifnull, 34, 38
max, 36
min, 36
numeric, 26
scalar, 26
set, 36, 38
string, 27, 30
sum, 36

G

\g (Terminal Monitor command), 141
\go (Terminal Monitor command), 139, 141
Grant (command). 101
Granulatity, 32, 130
Greater/less than symbol. 1
Group by clause. 18,38,47.48,124

Index

H

Hash (storage structure), 112, 129
Having clause, 39, 47, 48, 124
Heap (storage structure), 113, 129
Heapsort (storage structure), 113, 129
Help (statement), 103

\i (Terminal Monitor command), 141
IF·THEN·ELSE (statement), lOS, 106, 107
Ifnull function, 34, 38
II_CHECKPOINT,64
II_DATABASE, 64
II_DECIMAL,S
ii_fields catalog, 232
iCforms catalog, 230
ii_id catalog, 227
ii.Joindefs catalog, 237
II_JOURNAL,64
II_MONEY _FORMAT, 11
II_MONEY _PREC, 11
ii_objects catalog, 227
ii_qbfnames catalog, 236
ii_Icommands catalog, 240
ii_reports catalog, 239
ii_trim catalog, 235
iialt_columns catalog, 220
iicolumns catalog, 216
iidbcapabilities catalog, 207
iidbconstants catalog, 209
iierrornumber, 60
iihistograms catalog, 172, 194, 222
iiindex301umns catalog, 220
iiindexes catalog, 219
iiintegrities catalog, 223
iimulti_Iocations catalog, 224
iipermits catalog, 222
iiprocedures catalog, 224
iirowcount, 60
iistats catalog, 172, 194, 221
iitables catalog, 210 '
iiviews catalog, 218
In (predicate), 43
\include (Terminal Monitor command), 141

Sal Reference 249

Indexes
Create index (command), 80, 83
destroying, 82, 97
sorting, 80
storage structure, 112, 117

ing_menu (command), 170
Insert (statement), 50, 108
Integers

as constants, 5
range of, 5

Integrity
constraints, 84
Create integrity (command), 84
destroying, 98
printing, 103
unloading, 198

Interactive SQL
See ISQL (Interactive SQL)

Interrupts, 57
Interval function, 33
!sam (storage structure), 112, 129
Isnull (predicate, 46
ISQL (Interactive SQL)

invoking, 171
Isql (command), 171

J

Join operator, 52
Journal entries, 147
10urnaling

Auditdb (command), 147
Ckpdb (command), 153
described, 128
invoking, 90, 128
recovery, 90
table creation with, 90

250 Sal Reference

K

Keyboard keys
CTRL,57

Keywords
ANSI,203
Embedded SQL and, 202, 203
SQL,201
SQL and, 203

L

Leaffill, 81. 115
Left function, 28
Length function, 29
Levels

of table access, 130
Like (predicate), 42

escape clauses, 43
Literals

Constants, 12
Locate function, 29
Locationnames, 63, 64, 90
Locking

level,129
Set lockmode (statement) and, 129
timeout, 131

Lowercase function, 29

M

Manuals
See Conventions

Max function, 36
Maxlocks, 131
Maxpages, 81, 115
Message (statement), 11 0, 111

in Database procedures, 60

ODT-DATA

Min function. 36
Minpages. 81. 115
Modify (command). 112.117
Modulo arithmetic, 27
Money data type. 10

N

Naming
columns. 88
conventions. 2
correlation names. 16. 17

Nesting
of function calls, 30
of if statements, 107
of queries. 40

\nobell (Terminal Monitor command). 142
Not (Boolean operator). 39
Not null column format. 89
Null values

in set functions. 37
in SQL, 46, 53

Nullability
aggregates, 53
for data types, 13
for table columns, 53
Ifnull function, 34
Isnull (predicate), 39. 46

Number signs (#)
See character list at front of index

Numeric data type
functions. 26
ranges/precision,S

o
Object id. 225
ODT-DATA

caution on exiting, 56
See also Systems

ODT-DATA/MENU
calling. 170

Index

Operators
arithmetic. 20
logical, 39
relational, 50. 54

Optimizedb (command), 172. 175
Or (Boolean operator). 39
Ownership

of forms, 159
of tables, 88, 101
of views. 101
See also Permissions

p

\p (Terminal Monitor command). 141
Pad function. 29
Parentheses ()

See character list at front of index
Partial transaction aborts, 56
Patterns

matching. 42
Permissions

creating. 163
on Database procedures. 59. 101
printing. 103
unloading. 198

Permits
destroying. 99

Pound signs (#)
See character list at front of index

Predicates. 39. 46
any-or-all. 44
between. 43
comparison. 42
exists, 45
in. 43
isnull.46
like. 42

Printing
\print (Terminal Monitor command). 141
Printform (command). 176

Privileges. 101
Projection operator. 51

SOL Reference 251

Q

\q (Terminal Monitor command), 141
QBF (query-by-forms)

invoking, 177, 179
Qbf (command), 177

QBF System Catalogs, 236
Qualifications

See Search conditions
Queries

nested,40
optimizing, 172, 175, 194
Query (command), 179
subqueries, 40

\quit (Terminal Monitor command), 141

R

\r (Terminal Monitor command), 141
Range variables, 16
RBF (report-by-forms)

invoking, 180
Rbf (command). 180

\read (Terminal Monitor command), 141
Readlock, 130
Recovery

checkpoints, 153, 186, 187
Finddbs (command), 169
journaling, 90
Rollforwarddb (command), 186, 187

Relational algebra, 50
Relational operators, 50, 54
Reports

copying, 161
default, 182, 185
Report (command), 182, 185
running, 182, 185
specification, 193
unloading, 198

\reset (Terminal Monitor command), 141
Restriction operator, 51
Result

column, 47
structure, 128

252 SOL Reference

Retrieving
Select (statement), 124, 127
values, 124, 127

Return (statement)
in Database procedures, 118

Right function, 29
Rollback, 63

See also Aborting
See also Savepoints

Rollback (statement), 55, 56, 70, 120
Rolldb (command), 186, 187
Rollforwarddb (command), 186, 187
Rows

duplicates of, 90, 112, 117
grouping, 51, 54
inserting, 108

Rows (in tables)
counting, 37
deleting, 96
duplicates of, 48
grouping, 18
maximum length, 14, 89
selecting, 124
sorting, 114

s
\s (Terminal Monitor command), 141
Savepoints, 56, 63
Savepoints (command), 120, 122
Saving

Save (statement), 121
table updates, 121

Scalar functions, 26
\script (Terminal Monitor command), 142
Search conditions

in SQL, 39, 46
Select (statememt), 46
Select (statement), 124, 127

in Database procedures, 86
Set (command), 128, 133
Set autocommit, 55, 128
Set clause, 49
Set functions, 36, 38
\sh (terminal monitor command), 141
\shell (Terminal Monitor command), 141

ODT-DATA

Shift function, 29
Sine function, 27
Size function, 29
Sorting

columns, 114
indexes, 80
rows, 114

source, 50
SQL

comments, 2
data types, 3, 12
invoking, 188, 192
keywords, 201,203
names, 2
Sql (operating system command), 188, 192
statement placement, 54, 63
statements/commands, 67, 135
syntax overview, 1,66

Square root function, 27
Squeeze function, 30
Sreport (command), 193
Statdump (command), 194
Statistics

for optimizer, 172
Storage structures

(.
.. ~. default keys, 114
/ modifying, 112, 117, 196

sort order, 114
Strings

c function, 3, 27, 30
char function, 3, 27, 30
concat function, 27
functions, 27, 30
in SQL, 3
left function, 28
length function, 29
locate function, 29
lowercase function, 29

. padding, 29
right function, 29
shift function, 29
size function, 29
squeeze function, 30
trim function, 30
uppercase function, 30
varchar function, 4, 27, 30
variable-length, 4
vchar function, 4, 27, 30

Subqueries, 40
Subselects. 46

Index

Sum function. 36
Superuser (system administrator) status.
153, 186
Syntax

syntactic level, 41
Sysmod (command). 196
System catalogs

See Catalogs (system)
Systems

administrator, 63, 153, 186
ODT-DATA settings, 128. 133
operating system commands. 145
returning information, 194
tables for, 14, 196

T

Tables
base, 92
See also Columns
combining subsets. 50, 54
copying data from/to, 69, 80
creating, 88 .
defined, 14
destroying, 97
examples, 14
expiration, 88
granting privileges. 101
naming, 14
obtaining information about. 103
ownership of, 88
retrieving into/from, 124. 127
See also Rows
saving, 121
size, 89
storage structure, 112. 117. 196
system, 14
See also Views
virtual,92

Tape devices
checkpoint writing to. 154

Terminal Monitor
commands. 143
flags, 142
messages, 139. 143
stacking of commands. 140
use. 139

Sal Reference 253

Time
\time (Terminal Monitor command), 141
formats for, 6
functions, 31, 33
interval function, 33
selecting current/system, 35

Timeouts, 57,131
Transactions

aborting, 56, 63
Commit (statement), 55
control statements, 55
management, 54, 63
quitting during, 56
rolling back, 56, 120
savepoints, 56, 122

Trim function, 30
Truncation

of dates, 32
Truth functions, 39
Tuple

defined, 14

u
Unary operators, 20
Underscore C)

See character list at front of index
Union

in select statements, 46
Unique clause, 80, 114
Unit expression, 31
Unloaddb (command), 198
Update (statement), 49, 134
Uppercase function, 30
User

listing databases accessible to, 150

254 Sal Reference

v
Values

retrieving, 124, 127
transferring from procedures, 118

Values clause, 50
Varchar data type, 4
Variable declarations

in Database procedures, 94
Variables

range, 16
Vchar data type, 4
Views

creating, 92
destroying, 97
granting privileges on, 101
ownership of, 92
printing, 103
unloading, 198
updating, 92

VIFRED
forms copying, 159
invoking, 200
Vifred (operating system command), 200

w
\w (Terminal Monitor command), 141
Where clause, 39, 47, 124
While (statement), l36
With clause, 69
With journaling clause, 90
With null column format, 89
\write (Terminal Monitor command), 141

DDT-DATA

C:

- - - --:--~. ---. ---- .~-.-.--.----.----- ---

1 5June 1990

AZ10405POOO

PO# 28305

PAT 050

/
i "'.

