a0

Open Desktop

iract Labor
ndirect Laboe

o
on
-5
:o
a:-
o=
a3

f il
2
o

The Complete Graphical Operating System

« ODT-DATA
Report Writer
Reference

ODT-DATA is based on technology developed by INGRES CORPORATION, and includes
the following INGRES components:

- INGRES/DBMS and SQL Terminal Monitor

- INGRES/User Interfaces
Query-by-Forms
Report-by-Forms
Report Writer
Menu
Forms Runtime Systems and VIFRED
- INGRES/NET with TCP/IP Support
- INGRES/WindowView
- INGRES/ESQL Preprocessor for C

Document version: 1.0.0C
Date: 15 June 1990

S

/”‘\
N

(

Table of Contents

Preface: v
Audience Vi
Conventions Used in This Guide vi
Associated Publications vii

Chapter 1:Overview of the Report-Writer 1
Types of ODT-DATA Reports 2
Creating the Report Specification 2
About Queries, Sorts, and Breaks 4
Sample Report 6

Chapter 2:Report Specification Statements 9
Types of Report Specification Statements 10
Format for Specification Statements 15

Chapter 3:Using Report-Writer 17
Creating Reports Parameters 18
Creating Reports Using Several Tables 19
Specifying Sorts and Breaks 19
Pagination in Reports 21
Setting Report Margins 22
Positioning, Formatting, and Printing Data 22
Using Conditional and Assignment Statements 26
Calculating and Printing Summary Data 27
Automatic Determination of Default Settings 27

Chapter 4:Expressions and Formats 31
Reserved Words 32
Types of Data in Expressions 33
Operations 46
Format Specifications 50

Table of Contents Report-Writer Reference Manual

Chapter 5:Report Setup Statements 71

.name 72

comments 73

.shortremark 74

Jongremark and .endremark 75
.data 77

.declare 78

.output 80

.query 81

.sort 85

.break 87

Chapter 6:Page Layout and Control Statements

Jleftmargin 90
-rightmargin 91
.pagelength 93

formfeeds and .noformfeeds 94
.newpage 95
.need 97

Chapter 7:Report Structure Statements
.header 100
footer 101
.detail 102

Chapter 8:Column and Block Statements

format 104

tformat 106

.position 108

.width 111

.block; and .endblock 113
top 115

.bottom 116
.within and .endwithin 117

Table of Contents

99

103

89

ODT-DATA

oy,

Chapter 9:Text Positioning Statements
.tab 122
Jlinestart 124

lineend 125
.newline 126
Jdeft 128
.center 130
.right 133

Chapter 10:Print Statements 135
.print and .printin 136
.underline and .nounderline 138
.ulcharacter 139
.nullstring 141

121

Chapter 11:Conditional and Assignment Statements 143

if 144
et 146

Chapter 12:The sreport, report, and copyrep Commands 149

sreport 150
report 153
copyrep 162

Appendix A:Report Examples 165
Population Example 166
Pop2 Example 171
Account Example 174
Dictionary Example 180
Dict2 Example 186
~ Label Example 188
Joining Tables for a Report 190

Appendix B:Report-Writer Error Messages

Index: 219

Table of Contents

201

Report-Writer Reference Manual

iv Table of Contents ODT-DATA

i,

Preface

This guide describes the ODT-DATA Report-Writer language. It provides an overview of the
Report-Writer, documents the Report-Writer statements, and gives examples to help you
create your own reports.

In addition to the Report-Writer language described here, ODT-DATA provides other tools for
writing reports, such as Report-By-Forms (RBF). For information about RBF, see Using
ODT-DATA Through Forms and Menus.

This guide can be broken into two sections. Chapters 1 through 4 serve as an overview, while
Chapters 5 through 12 provide reference information. The information is presented as follows:

Preface

Chapter 1 introduces ODT-DATA Report-Writer. It discusses the process of creating
reports, along with the concepts necessary to understand the ODT-DATA Report-
Writer.

Chapter 2 is an overview of the report-specification statements.

Chapter 3 covers report parameters, pagination, margins and columns, calculations
and summary data.

Chapter 4 explains print-format statements. This includes the use of aggregates,
operations, and template formats for functions, character data, and numeric data.

Chapters 5 through 12 provide reference material for the Report-Writer statements.
For each Report-Writer statement, there are syntax, the parameters associated with
the syntax, a description of the functions of the statements, and examples showing
how to use the statement.

Appendix A shows six sample reports. Included with the sample reports are the
report format statements for the reports.

Appendix B list the various error messages available in Report-Writer.

Report-Writer Reference Manual v

Audience

Audience
In a multiuser installation, various database tasks are assigned to various individuals with
differing privileges: N

W The system administrator manages the ODT-DATA installation
B The database administrator (DBA) creates and manages the database
B The user manipulates data in the database
This guide is for individuals in both types of installations, though at times only the multiuser

installation is explicitly addressed. If you are using ODT-DATA in a single-user installation,
assume that you are the system administrator, the database administrator and the user.

Conventions Used in This Guide

This guide uses the following conventions:
B Words in bold are keywords and must be typed as shown or in its abbreviated form. -
Keywords preceded by a period (.) are report-formatting statements and must be
typed as shown or in its abbreviated form.

B Words in italic are variables, the values of which are supplied by the user or the
program.

B Clauses in square brackets ([]) are optional.
B Clauses in curly braces ({ }) are optional and can be specified zero or more times.

B Vertical bars (I) separate multiple items from which you choose one.

System Notes

In a command line to the UNIX system, a set of parentheses must be preceded and followed
by single quotes, for instance: (...)".

\
.

vi Report-Writer Reference Manual ODT-DATA

Associated Publications

Associated Publications

The ODT-DATA Report -Writer Reference Manual is one of several publications provided for
your use of ODT-DATA. The table below lists all the ODT-DATA books available with each
Open Desktop product: '

Preface

Administering ODT-DATA
Using ODT-DATA

ODT-DATA Embedded SQL User's Guide

ODT-DATA Embedded Open SQL Forms Reference Manual
ODT-DATA Open SQL Reference Manual

ODT-DATA Embedded SQL Companion Guide for C

GCA Application Program Interface

Administering an ODT-DATA NET Server

Using ODT-DATA Through Forms and Menus

ODT-DATA Report-Writer Reference Manual

ODT-DATA SQL Reference Manual

Report-Writer Reference Manual

vii

vii Report-Writer Reference Manual ODT-DATA

Chapter 1
Overview of the Report-Writer

The ODT-DATA Report-Writer provides a language to help you create sophisticated reports
without having to write an applications program. The Report-Writer can create regular
production reports as well as reports for ad hoc applications.

Features of the Report-Writer

The Report-Writer contains the following features:

Tools to extract the data you want to print. For simple reports, you can specify a
single table and indicate how you want the information sorted. For acomplex report,
you can use a query to retrieve selected rows from a database.

Support for nulls. You can include logical operators, null variables, dynamic
definition of null strings, and null expressions for specifying how null data should
be represented.

Control of report appearance. You can control titles, headings, and the placement
of the data on a page. Formatting commands let you specify how numbers and text
should be presented. Text formatting includes centering, justification, and automatic
pagination.

Arithmetic capabilities. Arithmetic functions make almost any kind of computation
possible, including totals and averages over ranges of data.

Variables. Variables are used to assign values in the report specification. You can
assign values directly in the report specification, or you can interactively prompt the
user to enter the value for a variable.

Reports can be run from a file or stored permanently. You can run reports directly
from a file. This lets you test the report interactively. Once the report has been
tested, it can be stored in the database.

Dynamic report parameters. Report parameters such as range of data, table names,
or any other information can be specified at report time; thus, you can use the same
formatting commands for different reports.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual 1

Types of ODT-DATA Reports

Types of ODT-DATA Reports

While the Report-Writer facility permits you to create sophisticated reports, you should also
be aware of the alternative report writing facilities available to you. These include:

B Default reporting facility. The simplest way to create a report is to access the
default report-writing facility through ODT-DATA/MENU. With this facility, ODT-

DATA chooses a report format based on the particular table you select.

Report-By-Forms. For more flexibility, you can modify the default report using
Report-By-Forms (RBF). This lets you change many of the formatting features of a

report.

Report-Writer. The Report-Writer lets you create a custom report specification.
You create a text file of Report-Writer statements. The report can be run directly
using the report command, or it can be stored in a database using the sreport

command.

This guide describes the Report-Writer facility. For information about the default report or
Report-By-Forms, see Using ODT-DATA or Using ODT-DATA Through Forms and Menus.

Creating the Report Specification
To create a report with the Report-Writer, you follow these steps:
1.
2.
3.
4,
5.

These steps are described in detail next.

Create a report specification.
Collect the data.

Test the report.

Run the report.

Store the report specification.

2 Report-Writer Reference Manual

ODT-DATA

Creating the Report Specification

Create a Report Specification

To create the report specification, use your text editor to create a file that contains the
appropriate Report-Writer statements. This guide documents all the statements that can be
included in the report specification file.

Collect the Data

The tables you intend to use for your report must exist on the computer. They must also contain
valid data if you want accurate reports. Make sure the tables exist and that you know the
names of all the columns.

You may also want to consider queries. Will your report include an entire table or selected
rows from a table? If a report is for an entire table, you simply reference the table name. If a
report requires a query to extract data, make sure that the query and the tables needed by the
query are configured to produce the desired data for the report. For a complex query, you may
wish to run the query before you run the report to make sure the query works.

If your report includes a large amount of data, you should use a subset of the data for testing
the report. Once you are satisfied with the report, you can use the specified data.

Test the Report

Use a subset of the data to test your report specification. During this phase, you may run the
report a number of times on a small segment of data to make adjustments to the specification.

To test the report, use the report command with the optional -i parameter. This reads the
report specifications from the text file and produces the report.

Run the Report

Once the report specification has been tested, you are ready to print reports on the desired
tables. Use the report command to print the report.

The report command reads in the report specifications created by RBF or stored by an sreport

command, performs additional error checking, runs the database query to extract the data (if
specified), and writes the formatted report either to a file or to your terminal screen.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual 3

About Queries, Sorts, and Breaks

Store the Report Specification

When the report has been tested, can store it in the database. Report specifications that are
stored in the database are accessible to other users who have access to the database. Reports
that are not stored in the database are not accessible to other users.

Use the sreport command to store the report specification in the database. sreport reads the
text file containing report specifications. sreport performs rudimentary syntax checking.

If no errors are found, the report specification is added to the database. If the report already
exists in the database, sreport replaces the old report specification with the new one. If the
report does not exist, sreport adds the specification into the database and the Report Catalog.

About Queries,‘ Sorts, and Breaks

When you create the report specification, consider how you want the information organized.
This includes querying for a subset of data, sorting the data in a logical order, and organizing
the printed data by defining breaks. You may want to include summary information such as
subtotals. These features are discussed in the following sections.

Queries

Your report can include all the data in a table, or it can include a subset of data that meets a
query. The query can contain parameters or variables that are specified when you run the
report. The use of parameters in reports is discussed in Chapter 3.

Using Sorted Data

Most reports display sorted data. This makes the report more usable. If you have a report of
employees listed by job title within each department, you may need to sort the data in the
table. Reports with subtotals require sorting. Sorting is discussed in “Specifying Sorts and
Breaks” in Chapter 3.

About Breaks

Breaks are divisions between parts of a report (such as page breaks) or between groups of data
in your report (for instance, between data for Employee 1 and Employee 2). You specify breaks
between groups of data by designating certain columns in a report as break columns. A break
occurs when Report-Writer encounters a change of value in a break column while reading the
data.

4 Report-Writer Reference Manual . ODT-DATA

,m‘f . 3

About Queries, Sorts, and Breaks

You can instruct Report-Writer to perform an action after a break has occurred by placing
instructions, called break actions, in a header or footer section associated with the break
column. For example, you can instruct Report-Writer to print heading information for the
next group of data rows, print summary information for the data rows associated with the last
break column value, or skip to a new page and print-a page header.

Some breaks occur automatically. These include:

B Start of report. This break is a change from no data to some data. You can use this
break to specify titles and other heading information that appears once at the top of
the report.

B End of report. This break is a change from some data to no data. You can use this
break to specify information that is only printed once, at the end of the report, such
as grand totals and footnotes.

B Detail break. This break occurs between data rows in a table. This is called a detail
break.

You can specify break actions at the tops and bottoms of pages. A page break occurs when
the report comes within a specified number of lines of the end of the page. You can define
the page size to fit your needs. When a page break occurs, a page footer may be printed,
followed by a page header at the top of the next page. You can also print page numbers, the
current date or time, values of data items currently being processed by the report, or any
number of other items.

Headers and Footers

Headers and footers indicate in your report specification what actions to perform during a
break. Headers and footers can be specified at the start and end of the report, at the top and
bottom of the page, and at the start and end of a column of data specified as a break column,
such as all employees in a department. The footer section can contain instructions for
calculating and printing subtotals or other summary information. To calculate this informa-
tion, you use set functions or aggregates. These are specified in print statements. A header
action, if specified, may occur at the start of the report, at the start of a new page, or before
the next group of data is processed.

You may specify both footer and header actions for a break column. The footer actions are
performed on the previous group of data rows, and the header actions are performed for the
group yet to come. At the end of the report, only footer actions are performed, because there
is no more data. Similarly, at the start of the report, a break in each of the break columns
occurs, and header actions may be performed for each of the major-to-minor break columns.

Chapter 1: Overview of the Report-Writer Report-Writer Reference Manual 5§

Sample Report

Detail Section

Report-Writer instructions containing statements used to format, position, and print the data
retrieved from the data table are called detail instructions. The detail instructions are grouped
together in a detail section.

Summary of a Report Specification

A report specification is a collection of distinct groups of related statements. Some of these
statements relate to the overall composition of the report and some relate to action groups.
These groups include:

B The report header. At the start of the report, you can print text and set up many of
the report layout specifications, such as page size and margins.

B Page headers and footers. At the top of each page, you can print a page header, and
at the bottom, a page footer. These may include titles, page numbers, and the date
and time the report was printed.

B A break header. Break headers appear at the start of a group of data related to a
break column. When a change is detected in a break column, a break occurs. Before
a new group of data rows is processed, the break header actions are performed.
Break headers can be used to title information in a break.

B Detail section. This contains the instructions on how to format and print the report
data. The detail break is the only break that does not include a header and a footer.

B A break footer. Break footers appear at the end of a group of data related to a break
column. Break footers can print subtotals and related information associated with
the data rows just processed.

B The report footer. The report footer can include text, footnotes, or summary
information for the whole report.

Sample Report

The following is a listing for a simple report specification using the ODT-DATA Report-Writer.
The Report-Writer specification was created with a text editor, processed with the sreport
utility, and run with the report command.

6 Report-Writer Reference Manual ODT-DATA

/

Sample Report

The report shows a titled listing of data from an existing view in a database. The “jobcat”
column is displayed only once for each job category value.

/* Sample report */

.NAME sample
.DATA edat
.SORT jobcat, name
.HEADER report
.NEWLINE2
.CENTER
.PRINT ’'Sample Report’
.NL2
.HEADER jobcat
.TFORMAT jobcat (" zzzz ")
.DETAIL
.PRINT jobcat (b8), name(cl5), dept,
code, age, sales(fl12.3)
.NL

The statements in this specification work as follows:

Chapter 1: Overview of the Report-Writer

The .name statement gives a name to the report. This name is placed in the Reports
Catalog by the sreport facility, and it is used by the report command to locate the
report specifications.

The .data statement identifies an existing table or view in the database that contains
the data to report.

The .sort statement indicates the order the data is displayed in the report.

The .header report statement indicates that the following Report- Writer statements
are part of the report header.

The .newline, .center, and .print statements position and print a title.
The .header jobcat statement indicates that the following statements are part of a

break header associated with the “jobcat” break column. This header is printed any
time the value in the “jobcat” column changes. '

Report-Writer Reference Manual 7

Sample Report

B The .tformat statement temporarily changes the normal print format of the “‘jobcat”
column, but only on the next printing of “jobcat.” This occurs in the .detail section.
Normally, “jobcat” is not printed. Its format is (b8), which means “print 8 blank
spaces.” The .tformat statement makes a “‘one printing” change to the format so the
actual value of the “jobcat” column is printed.

B The .detail statement indicates that the following statements are the start of the detail
section. The .print statement prints out the values of the columns in the formats
given after the column names, or the default format for that type of data item, if no
format is specified. The format specifications, which appear in the parentheses

following the column names, are described in Chapter 7.

The table below shows the data on which the report was run.

Data for the Sample Report

Column Name Type Length Nulls Defaults
jobcat integer 4 yes no

name c 15 yes no

dept c 6 yes no

code integer 1 yes no

age integer 2 yes no

sales money yes no

jobcat | name dept code age | sales

10 Adams,Joe toy 0 22 | $ 10,500.00
10 Green,James toy 0 34 | $ 43,645.00
10 Smith,Tony acct 0 48 | $ 8.,690.00
20 Davis, Miles music | 0 56 | $234,987.00
20 Tanhaus,Karl music | 0 20 | $ 18,765.00
30 Jones,Mary acct 1 34 | $ 34,599.00
30 Maney,Sikkim none 1 51 | $ 15,333.00
30 Mellon,Tim toy 0 4 | $ 67,876.00
30 Mellon,Tim any 0 24 | $ 45,098.00
30 Norris,Bill acct 0 26 | $ 23,988.00

8 Report-Writer Reference Manual

ODT-DATA

p

SRS

Chapter 2
Report Specification Statements

To specify a report, you create a text file that contains Report-Writer statements. These
statements define the data, the sort order, the page layout, the position and format of titles and
text to be inserted in the report, and the position and format of the data.

Before you begin a report specification file, consider the following:

What data do you need for the report? If you need to run a database query, design
the query and run it independently to make sure it retrieves the correct data.

Will the report be reproduced with different values each time it is run? If so, you
need to assign variables and report parameters.

Will the data be sorted? If you want headers or footers for subgroups of your data,
the data must be sorted on the columns that define the subgroups.

What will the headers and footers to look like? Do you want titles, subtotals or other
aggregates, and extra blank lines? Sketch the report layout on a piece of paper to see
how it will look.

What will be printed for each data row? In what format should the information
appear? For numbers, think about the number of significant digits to print, and the
number of decimal places.

What kind of page headers and footers do you want?

Once you have identified these elements, you are ready to begin creating a report specification

file.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 9

Types of Report Specification Statements

Types of Report Specification Statements

Report specification statements fall into several groups: report setup statements, page layout
and control statements, report structure statements, column and block statements, text-
positioning statements, print statements, and conditional and assignment statements. These
statements are introduced by group in the following sections.

Report Setup Statements

Statements for setting up the report environment include:

.name

.shortremark

Jongremark
.endremark

omments

.output
.data
.query
.sort

.break

.declare

Names the report.

Provides a short description of the report. This is in-
cluded in the Reports Catalog.

Mark the beginning and end of a long description
about the report. This description is included in the
Reports Catalog.

Comments may be placed in the report specifications
file if preceded by /* and followed by */. Comments
are ignored in report processing.

Sets up an external file to receive the report.

Define the data for the report.

Defines the order in which to sort the data for the

report.

Specifies the break columns for the report and the
order in which to process breaks.

The .declare statement declares variables.

10 Report-Writer Reference Manual

ODT-DATA

=

Types of Report Specification Statements

Page Layout and Control Statements

You can specify the page layout of the report with the following statements:

.pagelength

formfeeds

.noformfeeds

Jeftmargin

-rightmargin

.need

.newpage

Defines the page length, in lines.

Inserts formfeed characters to force a page break at
the start of the report and at the end of each page.

Suppresses formfeeds within the report.

Sets up a left margin for the report lines that follow
the statement. If the left margin is not specified,
Report-Writer determines this default automatically.
(See “Automatic Determination of Default Settings”
in Chapter 3 for details.)

Sets the right margin of the report for use with the
.right and the .center statements. If the right margin
is not specified, Report-Writer determines this default
automatically. (See “Automatic Determination of
Default Settings” in Chapter 3 for details.)

Tests for a given number of lines on a page to see if a
page break is appropriate.

Skips to a new page, and optionally sets a page num-
ber.

Report Structure Statements

The statements used to set up the structure of the report include:

.Jheader

footer

.detail

Chapter 2: Report Specification Statements

Designates a group of formatting statements as a
header. This can be a report header, a page header, or
a break header.

Designates a group of formatting statements for the
footer.

Designates a group of formatting statements for each
data row.

Report-Writer Reference Manual

11

Types of Report Specification Statements

Column and Block Statements

The following statements specify the print position, column width, and format for the specified
database column or for a report block (as defined by a .block statement).

format

tformat

.position

-width

.block
.endblock

top

.bottom

.within
.endwithin

Specifies a print format for a column, such as a charac-
ter string or a decimal notation.

Temporarily changes the print format for a column,
only for the next value to be printed. This statement
has several uses; for example, it can be used to print a
value of a column on the first line of a page, or to print
a currency symbol at the top of a column of currency
values.

Defines the starting position for a column, which can

be used with the .tab, .right, .left, or .center statement.

Defines the width for a column, to be used with the
.right or .center statements.

Treat sections of the report as blocks, so that you can
refer to positions on previous as well as on subsequent
lines in the report. These statements can be used with
the .top and .bottom statements to align blocks of data
adjacent to each other, rather than in vertical sequence.

Moves the current position to the top line of the cur-
rent block, used while in block mode.

Moves the current position to the bottom line of the
current block, used while in block mode.

Allow you to set the report margins temporarily to the
confines of a specific column, using the column posi-
tion and width.

You should also read the following discussion on “Text Positioning Statements,” and “Auto-
matic Determination of Default Settings” in Chapter 3, for additional information.

12 Report-Writer Reference Manual

ODT-DATA

Ve

\,\;)

SaEil

Types of Report Specification Statements

Text Positioning Statements

The following statements are used to position text. The positioning can be absolute or relative
to other positions on the page. See the preceding section “Column and Block Statements.”

.tab

.newline

.center

right

Jeft

Jineend

Jinestart

Tabs to a specified position before printing. The tab
can be in reference to a column name or the default
print position for a column.

Prints the current line and skips to the start of a new
line.

Centers text. The position may be the center of the
page or the center of a column. For a column, the mar-
gins may be either specified or default.

Right justifies text to the right margin or to a specified
position, for either the report or a column in the report.

Left justifies text to the left margin or to a specified
position, for either the report or a column in the report.

Tabs to the end of the text on the current line before
continuing to print.

Tabs to the left margin before continuing to print.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 13

Types of Report Specification Statements

Print Statements

You use these statements to print text or data values in a report.

.print Prints text or values at a default position, or at a posi-
tion that was previously specified with the column and
block or text-positioning statements. The text or value
to print is specified in an expression in the .print state-
ment syntax. Expressions may include any column
names from the data retrieval statement, program vari-
ables, constants, functions, aggregates, report variables
(time, date, day of week, or page number) or run-time
parameters. You can optionally indicate the print for-
mat within the syntax of the .print statement, or you
can specify it in a separate .format or .tformat state-
ment for column values. (See the previous section
“Column and Block Statements.”)

.nullstring Specifies a string of characters you want to print in the
report, whenever a null value is encountered in the
data.

.underline Control underlining for sections of text.
.nounderline

.ulcharacter Sets up a different underline character from the
default, for use with the Report-Writer underlining
statements.

Conditional and Assignment Statements

Aif Specify blocks of statements to execute under

.then specified conditions.

.else

Jet Assigns a value to a variable, which can be used in sub-
sequent computations.

14 Report-Writer Reference Manual ODT-DATA

Format for Specification Statements

Format for Specification Statements

Every formatting statement is specified with a keyword, preceded by a period (.). The keyword
may be followed by parameters. The format for a report specification statement is:

.statement {parameters}

where

statement One of the text formatting statements, such as .data
or .tab. The statements can be upper- or lowercase
letters.

parameters Parameters may be optional. Their form is depend-
ent on the specific statement. The space between the
statement name and parameters is optional if the
parameter does not start with a letter. For example,
“.nl 2” is the same as “.nl2”.

Here are some examples of report-formatting statements; they include a tab example, a
.newline statement, a heading, a print line, and a .sort statement:

.tab 10
.newline
.heading report

.pr "This is the value of:",abc(f10.2),
" Sum:",sum(def)

.sort a,b,c

Report-formatting statements within the text file end with the start of a new statement.
Statements can span any number of lines. Except where noted, spaces are used as separators
of statements, and commas separate multiple entries for a parameter within statements such
as .sort or .print. The example reports in Appendix A demonstrate the correct specification
of statements.

Chapter 2: Report Specification Statements Report-Writer Reference Manual 15

16 Report-Writer Reference Manual ODT-DATA

.

Chapter 3
Using Report-Writer

The initial setup statements must appear at the beginning of your report specification file. The
setup statements perform the following tasks:

Name the report

Set up a report results file

Specify the table, view, or query from which data is to be obtained
Define the order in which the data is to be sorted

Define the break columns for the report

Declare any variables used in the report specification

Enter optional remarks and comments

You use the .name statement to name the report, the .output statement to set up the output
file, and the .declare statement to declare variables. These statements are discussed in Chapter
S, “Report Setup Statements.”

To obtain the data for your report, you use either the .data or the .query statement. You cannot
use both. The .data statement names a table or view from which data is obtained. The .query
statement retrieves a subset of the available data, based on the results of the query. You can
include parameters or variables in the query. This lets the user specify the criteria for the report
at runtime. For more information on queries and data retrieval, see “Creating Reports
Parameters” and “Creating Reports Using Several Tables” later in this chapter.

To sort the data for your report, you include a .sort statement in your report specification. The
.sort statement lists the columns, in sort order, on which the data is sorted. You also specify
the break columns, using the .break statement, if you want breaks to occur between data items
in columns other than those specified in the .sort statement. For more information on sorts
and breaks, see “Specifying Sorts and Breaks” later in this chapter.

Your report-specification file can also include descriptive text about your report. The
.shortremark and .longremark statements may be used to include text that appears in the
Reports Catalog. Comments may be placed anywhere in the report specification by enclosing
them with the comment delimiters /* and */. These are discussed in Chapter 5, “Report Setup
Statements.”

Chapter 3: Using Report-Writer Report-Writer Reference Manual 17

Creating Reports Parameters

Creating Reports Parameters

For flexibility, you can design one report specification to be run with different parameters or
variables that are specified by the user at runtime. Declared variables can also be assigned a
value in the report-specification file.

Using parameters or declared variables in the query lets the user retrieve data that meets
particular needs. For instance, the user could obtain a report on a single employee or on all
employees in a specified department by entering the employee name(s) or the department
name(s) at runtime. The parameters may be entered on the command line when the report is
invoked, or they may be entered in response to a prompt.

To create a report parameter, you specify the parameter or declared variable in the query,
preceded by a dollar sign (8$). This tells the Report-Writer to accept a value entered on the
command line, or to prompt the user interactively if a value is not specified on the command
line.

For example, suppose you have a banking database in which you keep a table of customer
accounts. In this table, you have fields for customer names (“custname”), customer account
numbers (“custno”), checking account balances (“‘checking”), and savings account balances
(“savings”). You want to create two reports. They should be identically formatted, but must
present different information; one report should provide checking account balances, and the
other should give savings account balances. To accomplish this task, you might write a query
like this:

.query select custno, custname,
val=$Account_type
from account

As the Report-Writer generates your report, it prompts you to enter an account type (savings
or checking). Your response tells Report-Writer which kind of information it should retrieve
with the query. If you responded to the prompt with “checking,” the completed query would
look like this:

select custno, custname, val=checking
from account

18 Report-Writer Reference Manual ODT-DATA

Creating Reports Using Several Tables

If you use a parameter in your query, Report-Writer uses a default prompt string when
prompting for its value. If you use a declared variable in the query, Report-Writer uses a
customized prompt instead. To create the customized prompt, you must use a declared variable
rather than a parameter in the query, and use the with prompt option in the .declare statement
to specify the prompt string.

You can use parameters and declared variables in titles and other places within the report.
When used outside of the query, declared variables need not be preceded by the dollar sign
($). Parameters, however, must always be preceded by a dollar sign ($).

For more detailed information on using parameters and declared variables in reports, refer to
sections on the .query and .declare statements in Chapter 5.

Creating Reports Using Several Tables

There may be times when you want to use the Report-Writer to produce a report from related
information scattered across several tables that share one or more column definitions. The
Report-Writer cannot by itself construct such a report, because it does not recognize multiple
queries. It can, however, construct a report from a view you define for one or more tables, or
from a join of several tables that you specify in an SQL select statement.

An example of joining tables for a report is given in Appendix A, “Joining Tables Example.”

Specifying Sorts and Breaks

To produce an easy-to-read report, you may want to sort the data on the basis of one or more
of the columns. You must sort the data if you want to include subtotals or other summary
information in your report. You also specify the break columns to signal Report-Writer to
look for subtotaling or other special statements. For example, the first POPULATION sample
report in Appendix A is a 1970 U.S. population report by region and state. To generate the
regional population subtotals, the states must first be grouped by the value of the “region”
column in the database, and breaks must occur at each change of value in the “region” column.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 19

Specifying Sorts and Breaks

The easiest way to group rows is to sort them on the column that is used as the grouping
column, such as “region” in the POPULATION example report. Often, a report is sorted on
more than one column. In such cases, the rows are grouped on the basis of the first sort column
(called the major sort column) and, within those groups, on the basis of the next sort column
(called a minor sort column), and so forth. The sort order is specified by naming the columns
in the .sort statement in a section containing report setup statements (as discussed in Chapter
5). The .sort statement can be used whether or not there is a database query, and provides an
alternative to sorting via an order by clause in a .query statement.

By default, Report-Writer assumes the break columns are the same as the sort columns. In
the above example, for instance, no other breaks need be specified. However, the default
breaks can be overridden by specifying break columns with the .break statement. (See Chapter
5 for details.) The currently active list of break columns (specified by either the .sort or the
.break statement) is known as the break list. The first column in the break list indicates a
major break column, while those which follow are considered minor break columns. A break
on one break column automatically produces a break on all subsequent break columns in the
currently active break list.

In the ACCOUNT example report in Appendix A, break columns are not explicitly specified,
so breaks occur on the sort columns. The data is sorted on “acctnum” (the major sort column)
and, within “acctnum,” on “date.” When a change occurs in the value of “date,” the “date”
break occurs and the system looks for formatting instructions. When a value changes in the
“acctnum” column, breaks occur in both “acctnum” and “date.”

You do not need to specify actions for every break in your report. You may wish to specify
sort columns (which produce breaks) for appearance. In the POPULATION example in
Appendix A, breaks in “region” invoke a number of summary and heading actions, whereas
breaks in “state” do not.

Under certain conditions, such as with rounded numbers in break columns, the breaks occur
when the formatted values change, not when the actual values change. For example, assume
acolumn is rounded to the first decimal place. There is no break between the values of “35.87”
and “35.92”, since each rounds to “35.9.” You have control over how numeric values are
rounded through the format specification. (See “Format Specifications” in Chapter 4.) To force
breaks to occur on the actual values rather than on the formatted values, use the -t flag on the
report command line, as described in Chapter 12.

20 Report-Writer Reference Manual ODT-DATA

Pagination in Reports

Pagination in Reports

Pagination in the report is controlled by a number of statements. The .pagelength statement
specifies the vertical size of pages, in lines. The statements placed in the page header and
footer sections are used to define actions taken at the start and end of pages. The .newpage
and .need statements force page breaks, and the .formfeeds statement sends a formfeed
character to the printer after printing all lines that fit on the defined page. Line numbering
begins at 1 (top line).

Before the Report-Writer begins to print a report, it calculates the number of lines in the page
header and footer. After each line is printed, Report-Writer compares the page length with
the number of lines printed. If there are only enough blank lines left to write the page footer,
the Report-Writer prints the page footer, issues a formfeed (if specified) for a page break,
updates the page number, and prints the page header for the next page.

If the .formfeeds statement is in effect, the formfeed character is inserted at the start of the
report and at the end of each page. In some cases, the .formfeeds statement is not needed. For
instance, the .print statement automatically inserts formfeeds appropriate for 11-inch paper
if the default page length (61 lines) is used.

The following shows the commands to create and print a report file. This example assumes
the default value of 61 lines per page. It does not require the .formfeeds statement.

$ report -frepfile.lis mydb myreport
% lpr repfile.lis

For a format that uses 66 lines per page, you can add a flag of -v66 at the end of the report
command line, or you can use the .pagelength statement in the report specification.

For special forms and other printers, you can use the .formfeeds statement 1o instruct the
Report-Writer to insert formfeeds, or the .noformfeeds statement to prevent tham.

The .newpage statement forces a page break at any point in the report. This statement causes

Report-Writer to skip to the bottom of the page and print a page footer, if one is specified, and
then skip to the top of the next page.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 21

Setting Report Margins

The .need statement forces a page break to occur if the remaining available lines on the page
are fewer than the number of lines specified in the .need statement. It is used to keep lines of
text together on the same page. For instance, this statement may be used prior to a break
header to insure that enough lines remain on the current page to print the entire break header.

For detailed information on page control statements, see Chapter 6.

Setting Report Margins

Report-Writer can determine report margins by analyzing your report code. In most cases,
the default settings generated by Report-Writer are adequate. In some cases you may want to
define these settings explicitly, using the .leftmargin and .rightmargin page-layout state-
ments. Horizontal character positions start at the left margin (position 0).

In some reports, the right and left margins change dynamically. (See the DICTIONARY
example in Appendix A.) In these cases, the margins for the page header and footer are
independent of the margins for the rest of the report. These margins may be determined
automatically, or they may be specified with the margin-setting statements .leftmargin and
-rightmargin withing the page header statements.

For information on margin setting statements, see Chapter 6.

Positioning, Formatting, and Printing Data

The Report-Writer relies on three different groups of statements to print data in the correct
place and format. These are:

® Column and block default setting statements
B Text-positioning statements
¥ Print statements
These statements are used to:
B Set default print positions and widths for columns

B Position text explicitly, or left justify, right justify or center column values within
the margins defined by the column defaults

22 Report-Writer Reference Manual ODT-DATA

Positioning, Formatting, and Printing Data

B Define the print format (character string, decimal, and so on) for the value to be
printed

B Print an explicit value or print the next value in a column at the previously defined
position, in the designated format

The process of positioning, formatting, and printing data is described below.

Setting Default Print Positions for Columns

Before you can print a value, you must indicate where it should be printed. Report-Writer can
automatically determine default column print positions. To set your own defaults, use the
following column and block statements:

B _position
B width

The .position statement lets you set up margins for each column, setting the starting print
position for a column and, optionally, the width of the printed column in number of characters.
You can also set the width of a column with the .width statement. All horizontal print positions
start at the left margin (position 0).

To print columns adjacent to each other, you reference the column names within the same
.print statement, separated by commas. If possible, Report-Writer prints the columns next to
each other, at the positions specified in the .position statements or at default print positions.

In some cases, you may want to use the following block statements for more control over the
printing of adjacent text:

@ _.block and .endblock

B _top
H _bottom
B within and .endwithin

Chapter 3: Using Report-Writer Report-Writer Reference Manual 23

Positioning, Formatting, and Printing Data

The .block and .endblock statements define a block of formatting and print statements as a
unit. You use the .top or .bottom statement to reset the current line to the top or bottom of
the defined block before processing the next statement. The .within and .endwithin statements
temporarily set the report margins to the margins for a referenced column. This enables you
to print text (such as the caption “Total”) within the column margins without having to
calculate the exact print position.

Column and block statements are discussed in Chapter 8.

Positioning Text

In addition to the column and block statements, you can use text-positioning statements to
position the text or data. The text positioning statements are:

® tab

B newline

B Jeft

B _center
B right

® lineend

® linestart

You may use the .tab statement with a column name to tab to the assigned print position for
that column before issuing a .print statement. In addition to tabbing, text-positioning
statements allow you to center or justify text within the column margins, or to position text at
the beginning or end of a line, or on another line.

You may use the text-positioning statements with values instead of column names. Explicitly

set positions override column defaults. Text-positioning statements are summarized in Chap-
ter 2 and discussed in Chapter 9.

24 Report-Writer Reference Manual ODT-DATA

Positioning, Formatting, and Printing Data

Specifying the Print Format

The appearance of the text or data in your report is controlled by the format specification. For
instance, the ¢ format indicates a character string format and the e format causes a value print
in scientific notation. You specify the format with a template such as “$zz,zzz.nn,” containing
characters that define how a value prints.

The print format may be specified in the .print statement, or it may be used in a .format
statement to set a default print format for a column, as in the following:

.format emp (cl2), sal ("S$zz,zzz,zzn.nn")
.print emp,sal

The results look like this:

Jones $ 109,224.00
Smith $ 32,575.00

You can temporarily override a default column format with the .tformat statement to print the
next value only in a different format. After the value is printed, the format returns to the
original default type. This is useful for printing a dollar sign at the start of a page.

You can also override a default format by specifying the format as a parameter in the .print
statement, such as:

.print salary ("zz,zzz,zzn.nn")

This prints the “salary” values in the specified format, without the dollar sign, until it
encounters another format or print statement for this column. For more information on print
formats, see “Format Specifications” in Chapter 4.

You may indicate underlining of text or values using the .underline and .nounderline
statements. Any .print statements located between the .underline and .nounderline state-
ments produce underlined text. By default, the underline character is the hyphen (-) for reports
written to a terminal, or the underscore (_) for reports written to a file. You can change the

- default to any character, using the .ulcharacter statement. All underline characters are printed
on the line below the text, except for the underscore (_) character, which appears on the same
line as the text. For more information on underlining, see Chapter 10.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 25

Using Conditional and Assignment Statements

Specifying What to Print

The actual text or value to print is specified as an expression in the .print statement syntax.
The expression can be a column name, a constant, a function or an aggregate, a runtime report
parameter such as the current date and time, or a variable whose value is specified on the
command line with a prompt or a .let statement. The use of expressions is discussed in Chapter
4.

By default, Report-Writer prints an empty string when a null value is encountered. If you
wish, you may change this default to any string of characters, using the .nullstring statement.
For instance, you can tell Report-Writer to print the string “none” wherever it finds a null
value in the data.

For more information on the .print and .nullstring statements, see Chapter 10.

Using Conditional and Assignment
Statements

You may use the conditional .if, .then, and .else statements to tell Report-Writer to execute
blocks of statements, under specific conditions. For example, you could execute alternative
.print statements to suppress confidential data, based on a user’s ID number.

The condition in an .if statement is a Boolean expression that returns the value true or false.
Each of the following is a condition:

B aclause

® aBoolean function

B not condition

B condition or condition
B condition and condition

B (condition)

26 Report-Writer Reference Manual ODT-DATA

g,

P

Calculating and Printing Summary Data

Examples of conditions in .if statements are:

age <= 50

not (age <= 50)

(age <= 50) and (salary >= 40000) and
(job = "programming")

age > avage

The .let statement assigns a value to a declared variable. For instance, you could calculate
the number of years that have elapsed since an employee was hired, and assign the result to a
variable for a report on employee longevity. The .let statement can be used with the .if, .then,
and .else statements.

For a detailed description of conditional and assignment statements, see Chapter 11.

Calculating and Printing Summary Data

You may use set functions or aggregates such as sum or count, as well as arithmetic and other
built-in functions to calculate subtotals and other summary values to print in a report. An
aggregate, arithmetic operation, or function can be specified in the .print statement, or an
expression containing the operation can be used in a .let statement to assign the calculated
value to a variable prior to printing.

For a detailed discussion of aggregates, operations, and functions, see Chapter 4.

Automatic Determination of Default
Settings

Report-Writer can automatically calculate default settings for the right and left margins of the
report, for the starting position and width of each column (for use with the .tab, .right
statements, and so on), and for the formats to use when printing columns. These are only
calculated when they have not been specified. The default settings are determined by
analyzing the other report-formatting statements. This takes place after the report setup and
page layout statements (such as .leftmargin) are processed, and before the first printing of
the report. '

Chapter 3: Using Report-Writer Report-Writer Reference Manual 27

Automatic Determination of Default Settings

Analysis of Report-Formatting Statements

To determine default values, Report-Writer analyzes the formatting statements in reverse
hierarchical order, from the innermost (detail level) statements to the outermost (report level)
statements, as shown below:

p—

. .detail section statements

[38]

. Jfooter statements for innermost sort column

3. .header section for innermost sort column

H

. footer and .header sections for next to last sort column, and so on

S. footer and header text for the report

In analyzing the report code, the Report-Writer determines the innermost references to
columns in the report, and the leftmost and rightmost print positions indicated by the specified
report-formatting statements.

Determining Default Margins

If the margins for the report are specified with the .leftmargin and .rightmargin statements,
these values are used. If not, the minimum and maximum print positions for a line in the report
are determined in the scan of the report-formatting statements. If only one of the margins is
specified, the other is determined in the scan. The margins are used to determine line positions
for the .center, .right, and .left statements, when these statements are used without specified
parameters.

Determining Default Column Positions

If no .position statement is given for a column, its default position for use with the .tab, .right,
Jeft, or .center statement is determined from the analysis of report-formatting statements.
Default column positions are determined by the first print position Report-Writer encounters
that has been specified for the printing of a value in that column or for an aggregate of that
column.

28 Report-Writer Reference Manual ODT-DATA

-

Automatic Determination of Default Settings

Reports are set up so that the innermost printing of column values occurs in the .detail
statements of the report. Column headers and aggregates, which print in header or footer text
for a break, can then use the .tab or another positioning statement in relation to the default
position established for the innermost position of a column. If changes are desired in the
position of a column and its associated heading or aggregates, only the innermost print position
for the column need be changed. Because all references to header, are given in relative terms,
their positions are changed automatically.

As an example, see the ACCOUNT example in Appendix A. The default position for the “amt”
column is determined by the cumulative aggregate for “amt.”

Determining Default Column Formats

If no .format statement is given for a column, the default format is determined in a manner
similar to that used for determining the default column position. The innermost reference to
a format for a column, or to an aggregate for a column, is used as the default format for the
column. If no formats are given for a column, the Report-Writer determines defaults from the
data type of the column, as described in the discussion entitled “Default Formats” in Chapter
4,

The default format for a column is best used in situations where the format is specified in the
reference to a column in the .detail formatting statements. Aggregates of that column are then
specified in the footers for some of the breaks. The Report-Writer then correctly uses the
format specified in the .detail section for the aggregates.

However, the .format statement is often useful for specifying a series of columns with the
same format. See the POPULATION example in Appendix A for a good illustration of the use
of the .format statement for this purpose.

Determining Default Column Widths

If no .width statement or width parameter to the .position statement is specified for a given
column, the default column width is determined by the default format for that column, as
specified by the .format statement or as determined from the analysis of report-formatting
statements. The default width of a column is the width required by the column format to print
a value. Report-Writer uses the column width to determine the print positions for the .right
or .center statements.

Chapter 3: Using Report-Writer Report-Writer Reference Manual 29

30 Report-Writer Reference Manual ODT-DATA

Chapter 4
Expressions and Formats

Report-Writer accepts a variety of expressions. These may be used in queries, in conditional
and assignment statements, and in .print statements. Expressions are data elements that may
be combined with operators and functions. They may include the following:

B constants

® column names

B parameters

B variables

B aggregates

B arithmetic operators

B comparison operators

B]ogical operators

B functions
Expressions may be used in the .query statement to retrieve a subset of the data. (See Chapter
5 for information on queries.) They may be compared to other expressions with the .if
statement, or used in the .let statement to assign a value to a variable. (See Chapter 11 for
conditional and assignment statements.)
Expressions may be printed using the .print statement. (See Chapter 10 for details on the
.print statement.) The format specification determines how the data is printed. It may be as
a character string, in decimal or scientific notation, and so forth. Report-Writer uses a default

format if you do not specify one in the .print statement or with a .format or .tformat
statement. Formats are discussed in “Format Specifications™ later in this chapter.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 31

Reserved Words

The following example shows several expressions. The example uses a database that has a
table of shipments featuring part number, number of defective parts in a shipment, and the
total number of parts in a particular shipment. Suppose you want a report of the shipments

grouped by part number, with the calculated percentage of defective parts for all the shipments o

of that part. The following accomplishes this:

.sort partno

.footer partno

.print partno, " IS "

.print (sum (defective)/sum (total)) * 100, "
DEFECTIVE "

.newline

o

In this example, the following are expressions:

partno

” IS ”

(sum(defective) /sum(total)) * 100
"% DEFECTIVE"

Because no print formats are specified in this report code, Report-Writer automatically
determines them.

Reserved Words

The following table lists reserved words. They should not be used in any other way. Using
reserved words in other ways, particularly as column names, produce unexpected or incorrect
results when the Report-Writer prints the report.

32 Report-Writer Reference Manual ODT-DATA

Types of Data in Expressions

abs current_date line_number page_length

and current_day locate page_number

ascii current_time log position_number

atan date lowercase report

average detail max right

averageu dow maximum right_margin

avg exp maximumu run

avgu floatd maxu shift

break float8 min sin

cnt int4 minimum smallint

cntu integer minimumu sqrt

concat integerl minu squeeze

cos integerd mod sum

count interval not sumu

countu left null trim

cum left_ margin or uppercase

cumulative length page w_column
w_name

If you use one of the reserved words in the preceding table as a column name, the Report-
Writer does not issue an error message. It supersedes the definition of the built-in function
with the column name you specify. All further references to the reserved word is to the column,
not to the Report-Writer function. This can produce unexpected results. For example, if you
had a column in your retrieval named “page,” the built-in definition for the name “page” would
be replaced by your definition. After that, when you used a .page statement, you would
actually get the column name “page.”

Types of Data in Expressions

Expressions may contain any of the data elements described below.

String Constants

Many reports have lines of text, or strings that appear in the body of the report. You can
specify these string constants by enclosing them in single or double quotation marks. For
example: '

/string’

Chapter 4: Expressions and Formats Report-Writer Reference Manual 33

Types of Data in Expressions

or

"string"
where

string
is any character string.
If you use single quotes as the string delimiter and you wish to include a single quotation mark
within the text of the string, you must enter it as two single quotes so that the Report-Writer
does not assume it has found the end of a string. Such a pair of single quotes must be placed
together on a single line. A backslash (\) within a single-quoted string is automatically
interpreted as a literal backslash, unless it precedes a wild card character. (See the following

explanation.)

If double quotes are used as the string delimiter, a double quotation mark (") or a backslash
(V) within the string must be preceded by a backslash to be interpreted literally.

Examples of valid strings delimited by single quotes are:
'This is a string’
"This has extra Dblanks’
‘This has a "quoted" string in it’
'This has one \ backslash in it’
Examples of valid strings delimited by double quotes are:
"This is a string"
"This has extra blanks"
"This has a \"quoted\" string in it"
"This has one \\ backslash in it"
In most cases, you can choose single or double quotes for the string delimiter; you must use

single quotes within an SQL .query statement. As a convention, this manual uses double
quotes to delimit string constants, except within SQL .query statements.

34 Report-Writer Reference Manual ODT-DATA

Types of Data in Expressions

Numeric Constants

Numeric constants consist of an integer, a decimal point, and a fraction or scientific notation.
Numeric constants may be specified with the following format:

(+I-] {d} [.{d} [elE[+I-]d[d]]]
where d is a digit
Examples of valid numeric constants are:

23
8.97327
4.7 e-2

Numeric constants may range from -10**38 to +10**38 (“**” being interpreted as “to the
power of”’) with precision to 17 decimal places.

Date Constants

Dates are referenced as single- or double-quoted character strings. (Just as with string
constants, however, within a .query statement, you must use the quotation marks appropriate
to your query language.) The Report-Writer accepts formats described below.

Absolute dates. Legal formats for input of the date November 15, 1988, are shown in the
following table:

Absolute Date Formats

Format Example
"mm/ddlyy" "11/15/88"
"dd-mmm-yy" "15-nov-88"
"dd-mmm-yyyy" "15-nov- 1988"
"mm-dd-yy" "11-15-88"
"yy.mm.dd" "88.11.15"

Chapter 4: Expressions and Formats Report-Writer Reference Manual 35

Types of Data in Expressions

Format Example

"mmddyy" "111588"

"mm/dd" "11/15"

"mm-dd" "11-15"

"today" The string today is a legal absolute date with

today’s date as its value.

"

"now The string now is a legal absolute date and time

with today’s date and the current time as its
value.

Absolute times. Legal formats for input of the time 10:30:00 are shown in the following table:

Absolute Time Formats

Format ’ Example
"hh:mm:ss" "10:30:00"
"hh:mm:ss xxx" "10:30:00 pst"
"hh:mm" "10:30"

Note: ODT-DATA supplies the appropriate time zone designation. Time formats are
assumed to be on a 24-hour clock. Times entered with designations of “am” or “pm”
are automatically converted to 24-hour internal representation. Any such designa-
tion must follow the absolute time and precede the time zone, if included. If you do
not specify a date with an absolute time, today’s (that is, the current day’s) date is
supplied.

Absolute date and time. Legal input formats for November 15, 1988, 10:30:00, are shown
in the following table:

36 Report-Writer Reference Manual ODT-DATA

i

Types of Data in Expressions

Absolute Date and Time Formats

Format Example

"mmldd/yy hh:mm:ss" "11/15/8810:30:00"
"dd-mmm-yy hh:mm:ss" "15-nov-88 10:30:00"
"mmldd/yy hh:mm:ss xxx" "11/15/8810:30:00 pst™
"dd-mmm-yy hh:mm:ss xxx" "15-nov-8810:30:00 pst"
“mmiddlyy hh:mm" "11/15/88 10:30"
"dd-mmm-yy hh:mm" "15-nov-88 10:30"
"mmlddlyy hh:mm xxx" "11/15/8810:30 pst"
"dd-mmm-yy hh:mm xxx" "15-nov-88 10:30 pst"

Date intervals. Examples of valid formats for date intervals include the following:

"5 years"

"8 months"

"14 days"

"S5 yrs 8 mos 14 days"
"5 years 8 months”

"5 years 14 days"

"8 months 14 days"

Time intervals. Examples of valid time intervals are:

"23 hours"

"38 minutes"

"53 seconds”

"23 hrs 38 mins 53 secs”
"23 hrs 53 seconds”

"28 hrs 38 mins"

"38 mins 53 secs"”
"23:38 hours"

"23:38:53 hours”

Chapter 4: Expressions and Formats Report-Writer Reference Manual 37

Types of Data in Expressions

Columns

To reference a column value in a datarow currently being processed, specify the column name.

Columns for SQL data types: integer1, smallint (integer2), integer (integer4), float4, and float /~

(float8) are numeric expressions. Columns for the SQL data types c, char, text, and varchar -
are character expressions. Columns for the SQL data types date and money are abstract
expressions.

Parameters

You may specify parameters for runtime substitution in expressions. To indicate parameters,
you must precede an alphanumeric name with a dollar sign ($). Examples of parameters are:

Smyvar
$your_name
$salary
$start_date

You can use parameters as substitutes for any part of a query: field names, table names, or
even where clauses. For example, you may specify a report with the following query:

select *
from emp
where dept = ‘S$dname’

When the report runs, you enter the parameter value on the command line. If you do not enter
a value on the command line, the Report-Writer prompts you to enter the value.

Parameters used in a query may be used in other parts of the report specification. Wherever
a parameter is used, it must be preceded by the dollar sign (S).

If the parameter is used as a number, its value must be a real number. If the parameter is used
asadate, its value must be a legal date. Otherwise the parameter is treated as a character string.

38 Report-Writer Reference Manual ODT-DATA

i Ry

Types of Data in Expressions

Declared Variables

You may use declared variables in place of, or in addition to, parameters for the runtime
substitution of values in an expression. The value must be specified in one of these ways:

B On the command line

B In response to a prompt string you specify with the .declare statement

B In a .let statement
The advantage of a declared variable over a parameter is that you can create your own prompt.
Parameters use a standard Report-Writer prompt. You can specify the data type and null for
a declared variable. (See the .declare statement in Chapter 5.)
As with parameters, you can use declared variables as substitutes for any part of a query. When
used in a query, the declared variable must be preceded by a dollar sign ($). (For more
information on the .query statement, refer to Chapter 5.)
Declared variables can also be assigned values by means of the .let statement for use within

the body of the report. When used outside of the query, declared variables should not be
preceded by a dollar sign (8). See the .let statement in Chapter 11.

Special Report Variables

The following report variables may be used to generate and print such items as page numbers
and the date and time a report is run, or to control the report layout.

Special Report Variables
Name Description

page_number Current page number in the report. Pages
number from 1.

line_number Current line number on the page. Starts at 1.
position_number Current column position on the page. Starts
at0.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 39

Types of Data in Expressions

Name Description

page_length Current length of the page.

left_margin Current left margin column position.

right_margin Current right margin column position.

current_date Date when report is run.

current_day Day of the week when report is run. This is a
three-character string (for example, “Mon” or
L‘Fri”).

current_time Time of day when report is run. Thisis a
date.

w_name Name of the column currently being used in a

block. This is a string.

w_column Value of the w_name column in the data row
currently being processed.

Aggregates

An aggregate, such as sum or count, is used to perform a calculation on data read in from one
column, up to the occurrence of a break in another column. For instance, in the POPULATION
example report shown in Appendix A, the regional population subtotals represent use of the
sum aggregate on each of the columns “tot,” “totwhite,” “totblack,” and “totother,” up to a
break in “region.” Additionally, the population totals at the end of the report represent use of
the sum aggregate for the same columns up to a break in “report.”

You specify which data should be used in the calculation by naming the column containing
that data as a parameter of the aggregate function. In the POPULATION example, the columns
containing the relevant data are “tot,” “totwhite,” “totblack,” and “totother.”) You indicate the
cut-off point for the data to be included in each calculation by placing the aggregate function
within the footer section for a particular column or section of the report. The aggregate value
is calculated each time a break occurs in the specified footer. SQL users should note that
aggregates correspond to the set functions of SQL.

40 Report-Writer Reference Manual ODT-DATA

Types of Data in Expressions

Aggregates may be non-unique or unique, simple, or cumulative. A non-unique aggregate

performs a calculation based on every value read in from the aggregate column up to a break

in the specified footer. A unique aggregate performs a calculation on each break value in the

' aggregate column, up to a break in the specified footer. Depending on how the data is sorted

{ and where the aggregate is specified, the break values may or may not be the actual unique

values in a column. A simple aggregate produces a single value, calculated on all the values

in the aggregate column up to a break in the specified footer. A cumulative aggregate

calculates a running total for each value in the aggregate column up to the break containing

the aggregate instruction. Simple and cumulative aggregates may be either non-unique or
unique. Aggregate types are discussed in more detail later in this section.

The following aggregates are allowed:

sum Sum value of a numeric column up to a break in the
specified footer. If the specified footer is a date
column, it must have time intervals as values to sum
over it.

sumu Sum unique or break values in a numeric column up
to a break in the specified footer. You can specify
sumu only for break columns. (See additional details
in “Unique Aggregates™ later in this chapter.)

count Count the number of rows up to a break in the
specified footer.
countu Count the number of unique or break values up to a

break in the specified footer. You can specify coun-
tu only for break columns. (See additional details in
“Unique Aggregates” later in this chapter.)

min Find the minimum value of a numeric or date
column up to a break in the specified footer.

max Find the maximum value of a numeric or date
column up to a break in the specified footer.

avg Find the average value of a numeric column lip to a
break in the specified footer.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 41

Types of Data in Expressions

avgu Find the average value of the unique or break values
for a numeric column up to a break in the specified
footer. You can specify agvu only for a break
column. (See additional details in “Unique Ag-
gregates™ later in this chapter.)

Syntax of Aggregates

The syntax for an aggregate specification is:

[cum [(breakname)]] aggname (columnname [, preset))

breakname The name of a break in the report (either a sort
column name, or report or page). It is optionally
used as a parameter to the cumulative function to in-
dicate when to reset the cumulative. The value of a
cumulative then represents the aggregate since the
last break in breakname. The default value for
breakname is report (that is, it represents the
cumulative value of an aggregate since the start of
the report).

aggname The name of the aggregate to be executed. Valid ag-
gnames and synonyms are sum, minimum (min),
maximum (max), average (avg) and count (cnt).

columnname A column name in the data being reported. Values of
this column are aggregated. Therefore, the column
must be of the correct type (for example, numeric or
date columns only, for all aggregates except count).
Note that a columnname must be specified for the
count aggregate, even though all columns result in
the same value.

42 Report-Writer Reference Manual ODT-DATA

Types of Data in Expressions

preset Either a constant value or the name of a column that
is used for presetting the aggregate before calcula-
tions begins. This is used primarily with the cumula-
tive function to set an aggregate to a non-zero value
before starting.

For example, if you want to print an account balance
next to each transaction in an account, you can use
the cumulative sum aggregate with a preset to the
starting balance of the account. See the ACCOUNT
example report at the end of the guide for an ex-
ample of this. If preset is a constant, the aggregate is
set to that value. It may be a numeric or date con-
stant. If preset is a valid numeric or date column
name, the aggregate is set to the value in that column
at the start of the break over which the aggregate is
defined. Also, preset is not allowed with the
average aggregate.

| Simple Non-Unique Aggregates

The scope of a simple non-unique aggregate is determined by the context in which it is
specified. For example, if “sum (salary)” is specified in the footer for the report, it refers to
the sum of “salary” for all rows read in the report. If “sum(salary)” is specified in the page
footer, it refers to the sum of “salary” for all rows that were processed during the printing of
each page. If specified in the footer for a break in “department,” “sum(salary)” refers to the
sum of “salary” for all rows in each department.

Simple aggregates can only be specified in the footer action for breaks, because these
calculations are intended to provide summary information.

Unique Aggregates

€

You specify a unique aggregate by following the aggregate name with the letter “u,” as in
sumu, countu, or avgu, respectively. The difference between a unique and a non-unique
aggregate is that a unique aggregate performs an operation only when the value in the
aggregate column changes, while a non-unique aggregate performs the operation for every
value in the aggregate column. Therefore, a unique aggregate performs its calculation only
on the break values in the specified column, up to the break containing the aggregate
instruction.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 43

Types of Data in Expressions

For example, if the aggregate “count(region)” were specified in the report footer for the
POPULATION example report in Appendix A, the result would be 51 (including the District
of Columbia), because there are 51 rows in the report. However, if “countu(region)” were
specified instead, the result would be 9, because nine breaks would occur on region.

The number of breaks is not necessarily the same as the actual unique values in the column.
This result depends on'the break in which the aggregate instruction is placed, and on whether
the data in the aggregate column has been sorted or not. For instance, countu would produce
aresult of 3 on the following unsorted data in column 1, even though the data contains only
two unique values, because three breaks would occur:

Column 1

AAA
BBB
AAA

Cumulative Aggregates

Preceding an aggregate name with the keyword cumulative or cum indicates that the
cumulative value of an aggregate is calculated and printed. As such, cumulatives can be
specified in any context (for instance, in detail sections) because they are used to provide
running totals. A cumulative can be applied to any of the other aggregates. It is particularly
useful for applications that need to use running totals, such as account balance applications.

If no breakname is specified after the cumulative keyword, or if a breakname of “report” is
specified, the cumulative aggregate is assumed to refer to all data rows processed since the
start of the report. If a breakname of “page” is specified, the cumulative aggregate refers to
all data rows processed since the last page break. If a specified breakname is one of the break
columns, the cumulative aggregate refers to all data rows processed since the last break in that
column.

The preset parameter may be specified to set the cumulative function to a constant value or
to the value of a column when it is initialized (that is, at the start of the break in breakname).
For example, in the ACCOUNT example in Appendix A, the “cum(acctnum)
sum(amt,balance)” aggregate in the detail block indicates a common use of the preset
parameter. When a break occurs in “acctnum,” the cumulative function is set to the value of
“balance.” As each new transaction is processed, the value of “amt” is added to the cumulative
aggregate. Because “deposits” are positive and “withdrawals” are negative, the cumulative
aggregate reflects the running balance.

44 Report-Writer Reference Manual ODT-DATA

T

Types of Data in Expressions

Rounded Versus Actual Values

By default, aggregates utilize the rounded values for any floating-point column whose format
has been specified in a .format or .print statement with a template or as numeric F. For
additional information about these formats, see “Format Specifications” later in this chapter.
That is, the value of the aggregate for such a column is derived from the rounded values for
the individual column rows. To force the aggregate to use the actual, rather than the rounded,
values, the -t flag must be specified on the report statement line, as described in Chapter 12.

Examples of Aggregates
Here are some examples of aggregates, with explanations:
min(salary)

Specified in the footer for “dept,” this element gives the minimum value of salary for all data
rows in a “dept.”

average (age)

Specified in the footer for “class,” this element gives the average age for all data rows in a
“class.”

count (name, 200)

Specified in the footer for the report, this element gives the count of the number of data rows
in the report + 200.

sum(transact,oldbal)

Specified in the footer for “acct,” this element gives the sum of “transact,” initialized by the
value of “oldbal” at the start of each “acct.”

cumulative avg(height)

Specified in the detail text, this element gives the cumulative average of height since the start
of the report.

cum(acctnum) sum(amt,balance)
Specified in the detail text, this element gives the cumulative sum of “amt” since the last

change in “acctnum” and initialized by the value of “balance” at the last change of value in
“acctnum.”

Chapter 4: Expressions and Formats Report-Writer Reference Manual 45

Operations

Operations

Expressions can include arithmetic, comparison, and logical operators, Boolean and built-in
functions, as well as pattern matching with wild cards.The following operators may be used .
in expressions. These are described in the following sections.

Arithmetic Operators

Numeric expressions may be combined arithmetically to produce other (compound) expres-
sions. The following arithmetic operators are supported (in descending order of precedence):

+,- plus, minus (unary)

** exponentiation

*, ! multiplication, division

+, - addition, subtraction (binary)

Unary operators group from right to left, while binary operators group from left to right. You
may force the order of precedence of operations using parentheses. This, for example, is an
expression with no ambiguity as to precedence of operations:

(salary + 1000) * 12
Arithmetic Operations on Dates
The following arithmetic operations are available for date expressions:
Addition:

interval + interval — interval

interval + absolute — absolute

Subtraction: —

interval - interval — interval
absolute - absolute — interval
absolute - interval — absolute

46 Report-Writer Reference Manual ODT-DATA

VA

iy,

Operations

An example of the correct use of arithmetic operators in date expressions is:
current_date + date("1 days")

Another example is:
current_date - birthdate

The first example returns tomorrow’s date. The second example gives a person’s age.

Comparison Operators

A comparison operator has two expressions as operands, and returns the result of true or false.
Both expressions must have the same type: numeric, string, or date. The following operators
are recognized:

= equal to

1= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to

All comparisons have equal precedence. When character strings are compared, blanks are
ignored.

Conditional Clauses
A conditional clause has the form:
expr comp_op expr
The expr is an expression, and comp_op is a comparison operator.

A clause may be enclosed in parentheses without affecting its interpretation, as in the following
examples:

(age < 50)
((salary * 12) >= 20000)

A clause returns the value true or false. It may contain comparison operators and partial match
specification characters.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 47

Operations

Pattern Matching with Wild Cards

You may indicate partial matches of character strings in a conditional clause, in an .if
statement, and in the where clause of a query by using wild card characters with the
comparison operators. The character string must have single or double quotes as delimiters.

Wild Cards in an .if Clause

When used in a string within an .if condition, wild card characters can be disabled by preceding
them with a backslash (\) character. In this case, the character is interpreted literally. Thus,
“N*” refers to the asterisk character. When used outside of an .if condition, wild card characters
have no special meaning and are always interpreted literally.

The following wild card characters may be used in an .if statement for comparing character
strings: ‘

* matches any string of zero or more characters
? matches any single character
[..] matches any of the characters in the brackets

Examples of the use of wild card characters are:

ename = "*" matches any value in "ename”

ename = "E*" matches any value beginning with "E"

ename = "*ein" matches any value ending with "ein”

ename = "*[aeiou]*" matches any value with at least one
vowel

ename = "Br" matches any five-character value begin-
ning with "Br"

ename = "[A-J]*" matches any value beginning with A, B,
"C, ..., J."

ename = "[N-Z]77?" "matches any four-character value begin-

ning with N, O, P, ..., Z.

Blanks must be eliminated in bracketed expressions such as "[A-J]*" or "[N-Z]?72."

48 Report-Writer Reference Manual ODT-DATA

Operations

Wild Cards in Queries

When a string appears in the where clause of a .query statement, the wild card conventions

- follow those of the SQL database language used to retrieve the data.

Logical Operators

The following logical operators are recognized:

(Boolean operator)

not (logical not - negation)
and (logical and - conjunction)
or (logical or - disjunction)
is null (test to see if value is null)
is not null (test to see if value is null)

These operators evaluate clauses or Boolean functions as operands, and return the value of
true or false. The Not operator has the highest precedence. The and and or operators have
equal precedence. You may use parentheses for arbitrary grouping. Logical operators group
from left to right.

Built-in Functions

Functions are denoted by a function name, followed by one or two operands in parentheses.
When expressions are substituted for the operands, the function is evaluated and the result is
a number, a string, or a date. Functions can be nested to any level.

All of the ODT-DATA conversion, numeric, string, and date functions such as char(expression),
log(n), concat(stringl string2), and date_trunc are available to the Report-Writer user. For
descriptions of the functions, see the ODT-DATA SQL Reference Manual or the ODT-DATA
Open SQL Reference Manual.

Boolean Functions

A Boolean function returns a value of true or false. The result of a Boolean function cannot
be printed; it can only be used as a condition. A Boolean function is composed of a function
name followed by an operand in parentheses.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 49

Format Specifications

The break function is the only Boolean function found in the Report-Writer. (See “The
Concept of Breaks” in Chapter 1.) The syntax is:

break (columnname)
where columnname must either be a break column (that is, in the sort list) or the value report.

When a break column is specified, the value true is returned if the current value for that column
changes from the previous value or if the current value in any column of higher precedence
than column changed. If neither the current value for column nor the current value of any
column of higher precedence in the sort list changed, the value of false is returned. When
report is specified, true is returned if the end of the report is reached; otherwise, false is
returned.

Example of Boolean functions include:

.sort dept, empno
/* Other Report-Writer statements */
.footer empno
.if not break(dept) .then
.newpage
.endif

This generates a new page when the employee number breaks, but only if the department has
not changed.

Format Specifications

Expressions in the report may be given special format specifications in the .print statement
or in a .format or .tformat statement. The format determines whether the data is printed as
a character string, decimal value, date, and so on. Be sure to use the right type of format,
depending on the type of expression. As discussed in Chapter 3, if no format is specified,
Report-Writer determines a default format from an analysis of your other statements. The
following formats are allowed:

B C format specifies character strings.

B T format specifies character strings like the C format, except that it displays certain
unprintable characters in a visible format.

50 Report-Writer Reference Manual ODT-DATA

Format Specifications

B F format specifies numeric expressions. In the F format, you can control the
placement of the decimal point or suppress it entirely.

g’ B E format specifies numeric expressions printed in scientific notation.

B G format specifies numeric expressions. This format chooses either F or E format,
depending on what fits in the field width. This format also guarantees that decimal
points align, whether printed in F or E format.

B N format specifies numeric expressions like G format, but decimal points do not
necessarily align.

B B format specifies that the value be blanked out. It is a special format used for
blanking out a field, for use with temporary formats in conjunction with the .tformat
statement.

B Numeric templates are complex formats for numeric data that allow you to control
placement of dollar signs, commas, or other punctuation within the number.

B Date templates are formats that allow you very detailed control over the appearance
of dates and times in your reports.

A sign character can precede the format specifications to indicate that the print value is right
justified, left justified, or centered. The following are valid sign characters:

- A minus sign indicates tht the data is to be left justified
in the specified field width.

* An asterisk indicates that the data is to be centered in the
specified field width.
+ A plus sign indicates that the data is to be right justified

in the specified field width.

Examples of each sign character can be seen in the discussions below for each format type.
If no sign is given, justification defaults to left for character fields and right for numeric fields.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 51

Format Specifications

Character String Format C

Use the C format to print string expressions.

The syntax of is:

[-1*1+] c[fijlnl.w]

Parameter

C Format Parameters

Description

If specified, this tells the Report-Writer to break
the text at words when the text spans lines.

If specified, this tells the Report-Writer to right
justify text.

Specifies the maximum number of characters to
print. If there are more than n characters in the
string, the string is truncated. If there are fewer,
it pads with blanks until n characters have been
printed. Use O for n to print the entire string,
regardless of its length.

Specifies the number of characters to print on
each line. If n is greater than w, then more than
one line is written in a newspaper column for-
mat. By default, wis setto n.

When specifying these options, you may use upper- or lower-case letters. The field width » is
optional and may be used to specify an exact width. If n is specified and the string is fewer
than n characters long, blanks are added to make up the n characters. If the string is longer
than n characters, only the leftmost n characters are printed.

If you specify a value for w and n, you can print text in newspaper column format. The f and
Jj modifiers cause breaks at words for wrapping and right justification of text. If neither is

specified, simple wraparound of text occurs, with breaks occurring regardless of words.

52 Report-Writer Reference Manual

ODT-DATA

Format Specifications

To print a visual representation of unprintable characters, use the T format statement,
discussed below. Tab characters and carriage returns cause tabs and carriage return actions if
you are using the cf or ¢j format.

Example 1

The following six .print statements are for a report that contains a character column called
“name” that you want to print, and a value for name is “Jones, J.”:

.print "First :", name (cl5),":First" .nl
.print "Second:", name (c4), ":Second" .nl
.print "Third :", name (c0), ":Third" .nl
.print "Fourth:", name (-cl5), ":Fourth" .nl
.print "Fifth :", name (+cl5), ":Fifth" .nl
.print "Sixth :", name (*cl5), ":Sixth" .nl

It produces, respectively, the following six lines of output:
First :Jones, J. :First

Second:Jone: Second
Third :Jones, J.:Third

Fourth:Jones, J. :Fourth

Fifth : Jones, J.:Fifth

Sixth : Jones, J. :Sixth
Example 2

If your data includes the character string “Now is the time for all good people to come to the
aid of their country,” the following shows the effect of three different format specifications:

c0.15 cf100.15 cj0.15

Now is the time for Now is the time for Now is the time for
all good people to all good people to all good people to
come to the aid of come to the aid of come to the aid of
their country. their country. their country.

Because the second format specification, “cf100.15,” specifies an actual number of character
positions to print, Report-Writer prints out two blank lines after the text, to pad to the full
100-character column width.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 53

Format Specifications

After a string prints in column format, the current position moves to the top line of the column,
at the end of the line. In the example, this is to the right of “time”.

Character String Format T

The T format is similar to the C format. The T format translates characters outside the normal
character set into visible representations.

This format is useful when you want the output to look like that of the ODT-DATA Terminal
Monitor, which expands unprintable characters into visible representations.

The syntax of a T format specification is:

[-1*1+] t{fljlnl.w]
The f and j options work the same as they do for the C format.

Note that n is the width of the field that the expanded output occupies on the page. It does
not refer to the number of characters of data that are translated.

Examples

For the character string “John?Smith \Esq.”, where the “?” character stands for a non-printing
formfeed character: '

.print "Output:", :Output" .nl
This print statement produces:

Output :John\fSmith, \\Esq. :Output

The following lists the character representation of the T format:
® Newline becomes \n.
® Horizontal Tab becomes \t.
® Backspace becomes \b.
W Carriage Return becomes \r.

B Form Feed becomes \f.

54 Report-Writer Reference Manual ODT-DATA

Format Specifications

B Backslash becomes \\.
® Null becomes \0.

8 Any other unprintable character becomes the character string ‘“\nnn”, where nnn is
the three-digit octal equivalent for character.

Numeric Format F

The F format prints numeric expressions in standard decimal notation, with or without a
decimal point. Numbers are right justified in the field, unless preceded by a .left statement
or by the “-” sign in the format designation.

The syntax is:

[-I*I+] fwl.d]

F Format Parameters

Parameter Description
w , The maximum field width.
d The precision, or the number of digits to print

after the decimal point.

The “+” and “-” prefixes specify how the text should appear in the field; as either right or
left-justified. They do not have any bearing on the sign of the data.

You may specify this format with upper- or lower-case letters. The field width w must be
specified, and refers to the maximum number of printing positions in the field. If the value
can be printed in fewer than w spaces, it is right justified in the field. If the value cannot be
printed in w or more spaces, the field is filled with asterisks (*).

If d is specified, a decimal point is printed, with d digits to the right of the decimal point. The

number of digits to the left of the decimal point cannot exceed w - (d + 1), because you must
account for the fractional part in the field width specification.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 55

Format Specifications

If d is not specified, or if the value “0” is specified for d, for example “F20.0”, then no decimal

place is printed.

The following table illustrates the F format specification:

Format

£10.2
F10.2
£10
£f4.2
+£10.2
-£10.2

Value

22.3
-.123
123.789
22.34
22.6
22.6

Numeric Format E

Output

" 22.30"
" -0.12"
" 124"
Mokokkk M

" 22.60"
"22.60 "

The E format prints numeric expressions in scientific notation. Numbers print with the form
[-1“m.nnnnnnE[+|-]pp”. An example is “10.456e+03”, which means 10.456 times 10 raised
to the 3rd power. Numbers output in E format are right justified in the field (unless preceded
sign on the format designation).

by a .left statement or the

The syntax is:

[-1*1+] ew[.d]

Parameter

“

E Format Parameters

Description

The maximum field width.

The precision, or the number of digits to print

after the decimal point.

The “e” may be upper- or lower-case. The case specifies the case of the “e” in the output.
The field width w must be specified, and refers to the maximum number of spaces in the field.

Be sure to include four extra spaces for the exponent part of the printout. If the value can fit [\\7

in fewer than w spaces, it is right justified. If the field width is too small for the value, the
field is filled with asterisks (*).

56 Report-Writer Reference Manual

ODT-DATA

7
/

i Ty

Format Specifications

If d is specified, a decimal point is printed, and d digits are printed to the right of the decimal
point. If d is not specified, or if a value of “0” is specified for d, such as “E20.0”, then no
decimal decimal place prints, although the exponential part prints.

The following shows examples of the E format:

Format Value Output

el0.3 22.3 "22.300e+00"
E10.2 -.123 "-12.30E-02"
elo 123.789 " 1238e-01"
E4.2 22 .34 MRk KA

+E10.2 22 .34 " 22.34E+00"
-el0.2 22 .34 "22.34e+00 "

Numeric Format G

The G format uses an F format specification if there is enough room in the field, or E format
if there is not enough room.

The syntax is:
[-I*1+] gwl.d]
G Format Parameters
Parameter Description
w The maximum field width.
d The precision or number of digits to print after

the decimal point.

%

An upper- or lower-case “g” may be specified. The case determines the case of the “e” if the
value is printed in scientific notation. See the F and E formats for the use of w and d.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 57

Format Specifications

Numbers are right justified if the decimal points are aligned. Numbers that are too long for
an F format print with E format and are right justified. To align F format numbers with E
format numbers, Report-Writer right justifies F format numbers four spaces in from the right
edge of the field to match up with the exponential designator, (“E+I-pp”). If you specify the
optional justification sign (“+” or ““-”), the values are forced right or left, according to the sign.

The following are examples of the G format:

Format Value Output
gl0.2 123.456 "123.46 "
G10.2 ' 123456 " 12,35E+04"
g8.2 -134.65 "-.13e+03"
g8 -123 "-123 "
+g10.2 123.45 " 123.45"
-g10.2 123.45 "123.45 "

Numeric Format N

The N format is similar to the G format specification except that the field is right justified,
whether printed with E or F format. If you specify the optional “-” sign, the value is left
justified.

The syntax is:

[-I*I+] nw[.d]
N Format Parameters
Parameter Description
w The maximum field width.
d The precision, or number of spaces to print after

the decimal.

58 Report-Writer Reference Manual ODT-DATA

sy

Format Specifications

The “n” may be upper- or lower-case. The case determines the case of the “e” for scientific
notation. See the F and E formats for the use of w and d.

Numbers printed with N format are right justified in the output field. Unlike G format, the
decimal points are not always aligned.

The following are examples of the N format:

Format Value Output
nl0.2 123.456 " 123.46"
N10.2 123456 " 12.35E+04"
n8.2 -134.65 "-.13e+03"
n8 -123 " -123"
+nl0.2 123.79 " 123.79"
-nl0.2 123.79 "123.79 "

Blanking Format B

The B format, which may be used with any type of data, functions in a special way when used
in conjunction with the .tformat statement, which temporarily changes a column format. The
value of a variable printed with B format is not printed but is replaced with blanks.

The syntax of the B format is:

bw
B Format Parameters
Parameter Description
w The desired field width.

The “b” may be upper- or lowercase. This format ignores the value of an expression and
inserts w spaces in the output.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 59

Format Specifications

Numeric Templates

If you need complex numeric formats, you can use a template. A template specifies what the
output should look like. You use template characters to indicate what should be printed in the
template. For instance, a “Z” prints a digit of a number. A comma (,) in the template prints a
comma in the specified position. The template “Z,ZZZ” prints the value “1000” as “1,000”.
In addition to the template characters listed below, you may include any other character
directly in the numeric template by preceding it with a backslash.

The syntax of for a numeric template is:

[_l*|+] ” {C}"
Numeric Template Parameters
Parameter Description
¢ One of several special characters that may be

repeated any number of times

The numeric template is right justified by default. By specifying the optional “-” sign, you
can left justify the template. You must surroundit with double quotes; single quotes are not
allowed.

The following special characters are defined:

norN Prints a digit if unprinted digits remain in the num-
ber. If none remain, prints a zero.

zorZ Prints a digit if unprinted digits remain in the num-

ber. If none remain, prints a space. This is used for
standard blank-padded numeric fields.

60 Report-Writer Reference Manual ODT-DATA

Format Specifications

$ (Dollar sign) Prints a digit if unprinted digits remain
in the number. If none remain, prints a floating dol-
lar sign (at its right-most position only, within a
repeated sequence of dollar signs). If a dollar sign
has already been printed, prints a space. This can be
used to print a dollar sign directly to the left of the
number, or to place a dollar sign in a fixed position
in the field.

- (Minus sign-Preceding or Trailing) For preceding:
Prints a digit if unprinted digits remain in the num-
ber. If none remains and if the number is negative,
prints a floating minus sign (at its rightmost position
only, within a repeated sequence of minus signs). If a
minus sign has already been printed, or if the number
is positive, prints a space. For trailing: Prints a
minus sign in the position if the number is negative;
or if the number is positive, prints a space.

+ (Plus sign—Preceding or Trailing) For preceding:
Prints a digit if a digit remains in the number. If
none remains, prints a floating sign (+ or -). If one
has already been printed, prints a space. For trailing:
Prints a plus sign in the position if the number is
positive, or a minus sign if the number is negative.

s (Comma) If followed by a digit, prints a comma in
this position. If no digits remain, prints a space.

(Decimal point) Prints the decimal point in this posi-
tion. The template may contain only one decimal
point.

* Prints a digit if unprinted digits remain in the num-
ber. If no digits remain, prints an asterisk. This is
useful to fill a number on the left with asterisks (such
as, for checks).

space Prints a blank space in this position.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 61

Format Specifications

CR

DB

AN ™

(Backslash) Indicates that the character immediately
following the backslash is to be printed in that posi-
tion. This allows dashes, slashes, or other characters
to be inserted into the number at runtime. (The back-
slash itself is not printed.)

(Two characters) Inserts the characters “CR” (for
credit) if the number is negative, or two blanks if
positive. The letters “CR” appear exactly as
specified, in upper- and/or lowercase letters.

(Two characters) Inserts the characters “DB” (for

debit) if the number is negative, or two blanks if posi-

tive. The letters “DB” will appear exactly as
specified, in upper- and/or lowercase letters.

(Parentheses, square brackets or angle brackets) If
the number is negative, prints it within the specified
symbols.

6

If a field is specified without any “n”s in the numeric positions, and a value
encountered, nothing is printed in the output field. Also note that where the floating symbols
(“$7, “-” or “+”) are repeated more than once in a template to specify a floating character, the
floating character is printed only once in the output field, in its right-most position within the

sequence.

The following examples illustrate numeric templates:

62 Report-Writer Reference Manual .

of zero is

ODT-DATA

ke,

Format Specifications

Format Value Output

"zzzzz" 123 "o123"
"z22zZz.Zz" 0 " "
"zzzzz.nn" 0 " .00"

"+++, +++, +++" 23456 " +23,456"

Weewe ===, -——_NN 23456.789 " 23,456.79"
ooy, ——=—.2z2 " -3142.666 " =3,142.67"
“"zzz,2z2,2z2.22-" -3142.666 " 3,142.67-"
"5,8,8.nncr” 235122.21 " $235,122.21 "
"$$S,585,5$8$.nnDb" -235122.21 " $235,122.21Db"
"$zz,zzz,zzn.nn" 1234.56 "$ 1,234.56"
"GKkk kkk kkk nn" 12345 "Sxkxxx12, 345.00"
"+$$5,585,885. " 54321 " +$54,321.00"
" nnn\-nn\-nnnn " 023243567 " 023-24-3567 "
-"zzzzz" 123 "1i23 "

"(zzzzz)" -123 "(123)"
"rreiiz1m -123 "o[i23)”

Date Format D

The date format specification is a D, followed by a double quoted string template indicating

ARl

how to print a date. The date is left justified by default. By specifying the optional “+” sign,
you can right justify the date. You must surround the template with double quotes; single
quotes are not allowed.
The syntax for a date template is:
[-I*I+] d "template"
Date Format Parameters

Parameter Description

template A string of characters representing a sample ab-
solute date and time.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 63

Format Specifications

Specifying Absolute Date and Time Templates

The absolute date and time format is specified by a string containing one of many possible
representations of a sample date and time, such as “SUN Feb 3 04:05:06 p.m.” or “FEB 03
16:05”. The selection and arrangement of the sample date and time eclements within the
template indicate the way you want all dates and times to be displayed or printed. You must
use the following date and time as the basis for your template:

Sunday, 1901 February 3 at 4:05:06 p.m.

Note: This specific date and time was chosen as the sample for the template because Sunday
is the first day of the week, and arguments 1, 2, 3, 4, 5, and 6 are the year, month,
day, hour, minute, and second, respectively. This makes it easy to interpret the
elements of the template correctly. For instance, in the template d*2/3/01” the “2”
indicates the month (February), the “3” indicates the day (3), and “01” indicates the
year (1901).

You may use all or only some of the arguments in your template, and you may arrange the

arguments in any order. The following examples demonstrate the use of absolute date and
time templates:

64 Report-Writer Reference Manual ODT-DATA

Format

d" 2/ 3/01"

d" 2/ 3/01"
d"03-02-01"

d"2/3/1"

p"2/3/1"

d"010203"

d"1\[2\|3"
d"FEBRUARY, 1901"
d"FEBRUARY, 1901"
d"February,,| 1901"
d"February,,| 1901"
d"Sunday"

d"SUN Feb 316:051901"
d"FEB 03 4:05:06 p.m. "
d"04:05:06 PM"
d"04:05:06 PM"
d"16:05 pst"
d"sunday, February|"
+d"Sunday, February|"™
+d"Sunday, February|"
d"3/01"

d"February 3rd"

d"3rd day of 1901",

Value

25-o0ct-1982
5-3jun-1909
5-0ct-198207:24:12
25-o0ct-1982
5-jun-1909
S5-oct-1982
5-oct-1982
l-sep-2134 09:13:02
7-may-1962 13:08:42
12-sep-1982
3-may-1982
5-oct-1983
13-0ct-1983 07:24:03
12-dec-[1983 22:13:03
5-oct-198314:08:45
5-0ct-1983 07:29:12
5-0ct-1983 14:08:45
27-jun-1983
27-3jun-1983
5-oct-1983
5-oct-1983
29-jul-1954
11-may-1999

Format Specifications

Output

"10/25/82"

"6/ 5/09"

"05-10-82"
"*10/25/82"

"6/5/9"

"821005"

"82110]|5"

"SEPTEMBER, 2134"
"MAY, 1962"
"September, 1982"
"May, 1982"
"Wednesday"

"THU Oct 13 07:241983"
“"DEC 12 10:13:03 p.m. "
"02:08:45 PM"
"07:29:12 AM"

"14:08 pst™

"Monday, June n

" Monday, June"

" Wednesday, October"
"278/83"

"July 29th"

"131st day of 1999"

You cannot use month names other than February, days other than Sunday, or the time

It

designations “a” or “am” in the date template. Any other word is printed as it appears.

[ysugt)

You can specify 24-hour “military” time by using “16” instead of “4.” You cannot use *“p” or

“pm” with 24-hour time.

The day of the year is printed by specifying the day and year, but leaving out the month (such

as, “3/19017).

You can create ordinal numbers from numbers by suffixing them with the appropriate “st”,
“nd”, “rd”or “th” (such as, “3rd day of the 2nd month of 1901”).

Chapter 4: Expressions and Formats

Report-Writer Reference Manual 65

Format Specifications

Numbers requiring more than one digit replace preceding blanks or zeroes in the template. If
there are no preceding blanks or zeros left, the number expands to the right. A blank that
follows a letter, word, or number in the template is retained in the output; it is not replaced by
a succeeding number. Columns of numbers may be aligned by preceding them with an
appropriate number of blanks or zeroes (note the first three examples above).

Since full month and weekday names (as well as numbers without preceding blanks or zeros)
are of differing lengths, date columns using either of these components in the format will
rarely line up. Following “February” or “Sunday” with a vertical bar (l) specifies that for
shorter month names or weekdays, an appropriate number of blanks are substituted for the
vertical bar to line up the components. Similarly, if you place a vertical bar after a single digit
number in your template, Report-Writer prints a blank before each single-digit number it
encounters (unless the digit is already preceded by a blank or zero).

Any character preceded by a backslash is printed as it appears.

Specifying Time Interval Templates

The time interval is specified by a string containing one of many possible representations of
a sample time interval such as “1 year” or “1 yr 3 day”, and so on. The selection and
arrangement of the time interval elements within the template indicate the way you want time
intervals to be displayed or printed. You must use the following time interval as the basis for
your template:

1 year 2 months 3 days 4 hours 5 minutes 6 seconds

You may use one or more of these units in your template and you may arrange the units in any
order. The following examples demonstrate the use of the time interval templates:

Output

Format Value

D"1 year™ 3 yrs S5mos 16 days "3 years"

d"2 MONTHS, 3 DAYS" 3 yrs Smos 1 days "41 MONTHS, 1 DAY"
qan3n 3 yrs 5mos 16 days "1264"

d"l yr 3 day"

D"4 hours 6 seconds™
d"04:05 \hours"

d"3 days 4 hours"

d" 1yr 2mos 3 days"
d"™ 1yr 2mos 3 days"

1 yrs 5mos 16 days

23 hrs 8 mins 53 secs
23 hrs O mins 53 secs
23 hrs 8 mins 53 secs
200 yrs 11 mos 28 days
5 yrs 1l mos 3 days

66 Report-Writer Reference Manual

"1lyr 168 days”

"23 hours 533 seconds™
"23:01 hours"

"0 days 23 hours"

"2CC yr 11 mos 28 cays"

" Syr 1mos 2 days"

ODT-DATA

Format Specifications

There are 30.4375 days in a month and 365.25 days in a year. The smallest unit specified is
rounded up.

Numbers requiring more than one digit replace preceding blanks or zeroes in the template. If
there are no preceding blanks or zeroes left, the number expands to the right. A blank
following a letter, word, or number in the template is retained in the output. Columns of
numbers may be aligned by preceding them with an appropriate number of blanks or zeros
(note the last two examples above).

The word following a number is singular if the number is one; it is made plural if not equal
to one. ODT-DATA makes this change only for English-language versions, and only when the
on-line word is spelled out. For example, “5 month” would become plural, while “5 mo”
would not.

Any character preceded by a backslash is printed as it appears.

Default Formats
If there is no format specified after an expression, the Report-Writer uses a default format.

Default Format for Strings

Any string expression without a specified format is printed in its entirety. That is, the default
format for strings is “c0.”

Default Format for Columns

If you do not specify a column format with the .format statement, the Report-Writer uses the
default format for the column. The default format is based on the data type of the column.
See “Determining Default Column Formats” in Chapter 3.

The following lists default formats for SQL data types.

Default Column Formats

SQL Data Type Default Column Format
{ c1-¢35 c1-c35
€36 - c2000 cj0.35

Chapter 4: Expressions and Formats Report-Writer Reference Manual 67

Format Specifications

SQL Data Type
char(1) - char(35)
char(36) - char(2000)"
text(1) - text(35)
text(36) - 1ext(2000)"
varchar(1) - varchar(35)
varchar(36) - varchar(2000)*
integerl

smallint (integer2)
integer (integer4)

float4

float (float8)

date

money

* All character data types are fully supported in non-ODT-DATA
databases accessed via gateways, in which case the column size limit
may be greater than 2000 bytes.

Default Column Format
cl-¢c35
¢j0.35
cl-c35
¢cj0.35
cl-c35
cj0.35
f6

f6

f13
nl10.3
n10.3

c25

Default Format for Special Report Variables

The following non-string report variables have the corresponding default formats:

68

Report-Writer Reference Manual

ODT-DATA

L

sy

Format Specifications

Default Formats for Report Variables

Report Variable Default Format
page_number f6

line_number f6

position_number f6

left_margin f6

right_margin f6

page_length f6

current_date d"3-feb-1901"
current_time d"16:05:06"

w_column The default format for the

column currently being used in a
within block (see the default
column formats in the previous
table).

Default Format for Aggregates

The default format for all the aggregates except count(u) is the format of the column being
aggregated. For count(u), the default format Nw is used, where w is the width of the column
being counted.

Default Format for Numbers

Any other numeric expressions such as numeric constants, numeric functions, numeric
parameters, and arithmetic operations have a default format of n12.2.

Default Format for Dates

Any other date expressions such as the date function, date parameters and date arithmetic
operations have a default format of c0, which appears in the report as d* 3-feb-1901” for an
absolute date, d“3-feb-1901 16:05:06” for an absolute date and time, or the portion needed of
the template d“1 yrs 2 mos 3 days 4 hrs 5 mins 6 secs” for a time interval.

Chapter 4: Expressions and Formats Report-Writer Reference Manual 69

70 Report-Writer Reference Manual ODT-DATA

AR,

Chapter 5
Report Setup Statements

This chapter documents the report setup commands. These commands are used at the
beginning of a report specifications file to identify report parameters.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 71

.name

.name

The .namestatement names a report.

Syntax

.name l.nam reportname

Description

The .name statement is required and must be the first statement specified for a report. The
report specification program sreport stores the report in the database under the report name.

You may store specifications for several reports in one text file by using several .name
statements. Each occurrence of a .name statement signals the end of the previous report’s
specification statements and the beginning of a new report.

Parameters for .name

Parameter Description
reportname The name of a report to which the next set of for-
matting statements apply. The reportname is a
standard ODT-DATA object.
Examples

The following denotes the start of report “abc”:
.name abc

The following denotes the start of report “my_rep”:

.name my_rep

72 Report-Writer Reference Manual

comments

comments

The comment delimiters include documentation in the report specification file.

Syntax

/* {any_text}) */

Description

You can include comments in the report specification file by bracketing between the *“/*” and
“*f” characters. All text between these characters is ignored in report processing and can be
used as your own documentation.

Comments may be nested (that is, you can have a set of comments within another set of
comments). Comments may be placed anywhere within your file.

Parameters for comments

Parameter Description
any_text Any text, except the characters "*/", which close
the comment.
Example

/* this is an example
of a comment...

*/

Chapter 5: Report Setup Statements Report-Writer Reference Manual 73

.shortremark

.shortremark

The .shortremark identifies a one-line remark describing the report.

Syntax

.shortremark|.srem remark-text

Description

The .shortremark statement is an optional statement that specifies a one-line description of
the report. You can use this short description to help document your report specifications if
you wish, but its primary purpose is to provide information that appears on the Catalog and
Save frames of the RBF application.

Use only one .sremark statement in a program. A second .sremark statement is flagged as
a syntax error. Only the first 60 characters of the descriptive text are stored in the database.

Parameters for .shortremark

Parameter Description
remark-text A string of characters on the same line as the
statement keyword.
Examples

.shortremark Monthly Accounts Receivables

.srem customized emp & dept report tables

74 Report-Writer Reference Manual

Jlongremark and .endremark

longremark and .endremark

The .longremark statements mark the begining and the end of a block of text that describes
the report.

Syntax

Jongremark|.Irem
remark_text
.endremark\.endrem

Description

The .longremark and .endremark statements are an optional pair that specify a lengthy
description of the report. The start of the block of descriptive text is denoted with the
Jongremark statement, and the end is denoted by the .endremark statement. This long
description appears in the Catalog and Save frames of the Report-by-Forms utility.

The descriptive text is stored in the database and is available to other ODT-DATA application
development tools.

Use only one .longremark statement in a report specification. A second statement produces
a syntax error.

Parameters for .longremark
Parameter DescripAtion

remark-text Any number of characters or lines of text.

You may enter as much remark text as you like. Only the first 600 characters are saved in the
database. Leading spaces that separate the .longremark statement from the first character of
text are ignored. Tab characters are converted to blank characters.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 75

Jlongremark and .endremark

Examples

.longremark

This report correlates information from the sales
order header, the sales order detail, and the
inventory files, to produce the customer backlog by
part number report.

.endremark

.lrem

Stock Analysis Report
8 1/2"™ x 11" output

10 minutes runtime
Input: Begin/End date
.endrem

76 Report-Writer Reference Manual

.data

.data

The .data statement specifies the table or view in the database that is the source of the data
for the report.

Syntax

.data| .dat | .tablel .view tablename

Description

The .data statement identifies a table in the database that is used in its entirety in the report.
The four synonyms above can be used interchangeably. Allof the data in the table are available
for use in the report specification.

Either the .data or the .query statement is required. The .data and .query statements are
mutually exclusive. Only one may appear in a report specification.

Parameters for .data

Parameter Description

tablename The name of a table or view in the database. All
rows and columns in the table are read each time
the report is run. Tablename, because it is the
name of a table in your database, follows the
same rules for table names as the rest of ODT-
DATA.

Examples
Use table “repdat” for the report.
.data repdat
ri ~ Use view “myview” for the report.

.table myview

Chapter 5: Report Setup Statements Report-Writer Reference Manual 77

declare

.declare

The .declare statement declares variables that can be assigned values and used in expressions.

Syntax

.declare variablename = datatype

[with nulljnot null]
[with prompt]
{, variablename = datatype...}

Description

The .declare statement declares variables that may be assigned runtime values on the
command line or through a prompt, or that may be assigned values in .let assignment
statements, for later use in expressions. Only one .declare statement may be specified.
Declared variables may also be used in a query block to specify runtime substitution of text
in the query.

Parameters for .declare

Parameter Description

variablename A valid name up to 32 characters long. It must
begin with an alphabetic or underscore (_) char-
acter. Following characters must be al-
phanumeric or underscore.

datatype A legal ODT-DATA data type.

promptstring A string constant up to 100 characters in length.
See String Constants in Chapter 4, “Expressions
and Formats.”

Note: When declared variables are referenced within a query block, they must be preceded .
by a dollar sign ($). The dollar sign ($) is not be used in the .declare statement, it is ‘
used in a query.

78 Report-Writer Reference Manual

N

.declare

The .declare statement declares each variable to be the given data type. You may include the
with null or not null option.

® If the variable is declared with the with null option, it is initialized to the null value.

B Ifthe variable is declared with the not null option, it is initialized to the default value
for the data type.

If neither option is specified, the variable data type defaults to null or not null, depending on
the query language (SQL or QUEL) used in the .query statement. If a .data statement is
specified instead of the .query statement, the installation default language determines default
nullability.

A declared variable may be assigned a value in any of these ways:
B With the .let statement, placed anywhere in the Report-Writer code .

B Alternatively, the initial value of any declared variable may be specified on the
command line with the runtime parameters.

B You may use the with prompt option to instruct Report-Writer to prompt for the
initial value of the variable, using the specified prompt string.

If no initial value or prompt is specified and the variable is referenced outside of a query block,
the initial value is null (or the default value for that data type if not null was used). When a
declared variable is referenced within a query block, its initial value must be entered either
on the command line or in response to a prompt string, which was specified in the .declare
statement.

Example

.declare
counter = integer,
salary = money with prompt
"Please enter the salary:",
spouse = c30 with null,
dept = i4 not null with prompt
"What department?”

Chapter 5: Report Setup Statements Report-Writer Reference Manual 79

.output

.output

The .output statement specifies the filename to which the report is written.

Syntax
.output/ .out filename

Description

The .output statement is an optional statement that specifies the name of a file where the
report will be written. If you do not use the .output statement in your report specification, the
Report-Writer either directs the output to the terminal or to a filename specified on the
command line for the report command with the -f flag. If the .output statement is not
specified, and no file is specified with the -f flag, the report is written to your terminal.

Parameters for .output

Parameter Description
filename A file to which the formatted report is written

each time the report is run. Filename must fol-
low all conventions for valid filenames in the

operating system.
Write to file in current directory.
.output myreport.lis
Write to file with full pathname.

.out /direct/subdirect/otherrep.out

80 Report-Writer Reference Manual

.query

.query

The .query statement specifies an SQL query used to generate data for a report.

Syntax
.query

select [allldistinct] column_list

from table [corr_name] {, table [corr_name]}
[where search_condition]

[group by column {, column}]

[having search_condition]

{union select ...}

[order by ...]

See the ODT-DATA SQL Reference Manual for a complete explanation of the syntax of the
select statement.

Description

The .query statement indicates the start of a valid SQL query that creates the data to be
reported. This query follows the same rules as any other SQL select statement, although it
may also contain parameters. You may use as many lines as you need to specify the query.
The end of the query is detected by the start of a new report formatter statement.

Either the .query or the .data statement (but not both) must be specified for every report.
Only one .query statement is permitted for a report, and only one data retrieval statement is
permitted within the .query statement. There may not be both a .query with an order by
clause and a .sort statement in the same report specification, because their functions are
mutually exclusive.

Because the .query statement generates a standard ODT-DATA query, the standard limits apply
to any report’s query. For ODT-DATA databases, these limits are 127 columns and 2008 bytes
per row. These limits are extended on some gateways--please refer to your ODT-
DATA/Gateway manual if accessing your databases through a gateway.

String constants must be enclosed by the standard SQL string delimiter, the single quote. Note

that the single quote string delimiter is required only within the .query statement; within other
Report-Writer statements, either the single or double quote may be used as the string delimiter.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 81

.query

Parameters and declared variable names:

B Can be up to 32 characters long. Valid characters are letters, digits, and underscore

()
B Must begin with a letter.

B Cannot match any of the reserved words listed under "Reserved Words" in Chapter
4,

Parameters and Declared Variables in Queries

Parameters and declared variables may be specified for runtime substitution of text into the
query. You indicate parameters and declared variables in a query by preceding the name with
a dollar sign ($). For example, you can specify a query as follows:

.query
select empname, salary, manager
from emp
where salary > S$minsal

Subsequently, you can invoke the report with a statement like the following:

report mydb myrep (minsal = 20000)
in which case the query is converted to:

.. where salary > 20000

If the value of a parameter is not specified on the command line, the Report-Writer prompts
you for the value, using a default prompt. If you wish to use a different prompt, you may use
a declared variable in the query and specify a prompt string using the with prompt option in
the variable declaration.
You can specify as many parameters or declared variables as you wish in a query, differentiated
by name. If the same parameter or declared variable is to be substituted more than once within

the query, simply specify the name, prefixed by a dollar sign, at each place where substitution
is to be done.

82 Report-Writer Reference Manual

.query

Parameters and declared variables may be specified anywhere in the query. They may even
be specified within quoted strings, or within the column list for a select statement. For
example, the following query phrases are legal:

. where name = ’'S$Employee_name’
select $var, ... from emp ...

If you actually want to include the dollar sign ($) as a constant part of the query, simply precede
it with a backslash (\). For example:

.. where symbol = ’\$’

Parameters and declared variables specified in the report command may also be used in the
body of the report to indicate text to be printed. The value of the parameter or variable is
printed when the parameter or variable name is used in a text printing statement. See the
POPULATION example in Appendix A for an example of this.

Examples
The query:
.query
select *
from emp

where salary > $sal
and dept = ’S$dept’

when invoked with the command:
report mydb myrep (sal = 50000,dept = CAE)
executes the following query:
select *
from emp

where salary > 50000
and dept = ’CAE’

Chapter 5: Report Setup Statements Report-Writer Reference Manual 83

.query

For another example, consider a table called “account” with fields including “custno,”
“custname,” “checking,” and “savings”. You have separate fields for checking and savings
accounts on one row because most customers have both a savings and a checking account with
the bank. If you want to write one report specification that prints either the savings or checking
account balances with a single query, you could code a .query statement similar to the
following:

.declare Account_type = ...

.query

select custno, custname, val=$Account_type
from account

The above query can be invoked with the command:

report otherdb repname
At execution, the Report-Writer issues the following prompt:

$_Enter 'Account_type’:
If you were to respond with:

savings

the following query would be executed:

select custno, custname, val=savings
from account

Note that this query selects values from the database column “savings”; it does not select the
string constant “savings”.

84 Report-Writer Reference Manual

/éﬁx 2,

.sort

.sort

The .sort statement specifies the ordering of rows to be reported.

Syntax

.sort|.srt {columnname[:sortorder) {,columriname(:sortorder]})

Description

The optional .sort statement specifies the ordering that applies to the rows of data to be
reported. Rows are first sorted on the first column in the list, and if several rows have the
same value for that column, they are sorted on the second column in the list, and so forth. If
there is exactly one sort column, and there are duplicate values for the sort column, all rows
with that value appear together, but in an undetermined order relative to each other.

The sort statement also specifies the columns used as break columns in the report (unless
overridden by a .break statement). A break on one column in the sort list produces a break on
all subsequent columns in the list.

Each column specified in the .sort statement can have header and/or footer formatting
statements specified (with the .header or .footer statement.) Of course, columns specified on
the sort statement do not have to be break columns as well. You can use the .sort statement
simply to order rows for appearance in the report.

Note that using a .sort statement eliminates duplicate rows from your query, leaving only one
instance of each different set of data values. Depending on the storage structure of the table,
the table may have duplicate rows stored in it. When that table is sorted using the .sort
statement, the duplicate rows are eliminated, which could result in fewer records than you
initially expected.

You may have either a .sort statement or an order by clause in a .query statement but not
both in a report specification.

Chapter 5: Report Setup Staterﬁents Report-Writer Reference Manual 85

.sort

Parameter

columnname

sortorder

Examples

Parameters for .sort
Description

The name of a column in the table to be
reported, or the label for a column in the result
column list of the specified query.

Either ascending (or a) or descending (or d),
depending on how you want the rows to be or-
dered. If neither is specified, the default is as-
cending.

Sort two columns of a table, both in ascending order:

.sort sex,name

Sort three columns of a table, each with different orders.

.srt dept:descending, jobcode, name:d

86 Report-Writer Reference Manual

™

i,

.break

.break

The .break statement specifies the break columns for the report and the order in which they
should break.

Syntax

.breakl.brk columnname {, columnname)

Description

The optional .break statement can specify the break columns if no .sort statement has been
specified, or to override the default break columns created by the .sort statement. The order
in which the break statements are processed is the order in which they appear in the specified
break list. A break on one column in the list produces a break on all subsequent columns in
the list.

The columns that have .header or .footer statements must be included in this break list if no
.sort statement is specified. However, you do not have to specify a .sort statement to use the
.break statement.

If you specify an order by clause in a .query statement, you must also specify a .break
statement that lists the columns in the order by clause. The .query statement does not create
default column breaks as does the .sort statement.

If a .sort statement is specified in addition to a .break statement, the break columns in the
.break statement completely supersede the list of break columns declared implicitly in the
.sort statement. The sort still takes place in the order requested in the .sort statement.
However, the columns named in the .sort statement are no longer assumed to be the break
columns by default. This feature is useful in situations where you want to disable the break
action on one column of a report, but you still want to print the report in sorted order on that
column.

Chapter 5: Report Setup Statements Report-Writer Reference Manual 87

.break

Parameters for .break

Parameter Description

columnname The name of a column in the table to be
reported, or the label for a column in the result
column list of the specified query.

Examples

The first example breaks on two columns. The order to sort the rows retrieved from the
database appears in the .query statement:

.query
select *
from emp
order by state, city
.break state, city

In this example, the .break statement was required to identify the sort columns to the
Report-Writer.

88 Report-Writer Reference Manual

Chapter 6
Page Layout and Control
Statements

This chapter explains the page layout and control statements. These include:

Jeftmargin
-rightmargin
.pagelength
Jformfeeds/.noformfeeds
.newpage

.need

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 89

leftmargin

Jdeftmargin

The .leftmargin statement sets a specific left margin to the report.

Syntax

Jeftmargin| .Im [+|-] n

Description

The leftmargin statement sets the left margin of the report. Subsequent to this statement,
new lines begin at the new left margin position. To set the left margin for the entire report,
place the statement in the .header report section. The .leftmargin position is used by the
Jeft and .center statements to determine the default position for those statements.

If not specified, a default value is determined for your report. See “Automatic Determination
of Default Values” in Chapter 3.

Parameters for .leftmargin

Parameter Description

n The position of the new left margin of the report.
If signed, the new position is calculated relative
to the current position. If unsigned, it is set to
absolute position n. The default value is dis-
cussed in “Automatic Determination of Default
Values” in Chapter 3.

The value specified for the .leftmargin statement must be greater than or equal to zero (0),
less than the specification for the right margin and less than the line size (as specified with
the -1 flag on the report command).

Example
The following sets the left margin to 5; printing begins at the sixth character position.

.1m 5

90 Report-Writer Reference Manual ODT-DATA

.rightmargin

rightmargin
The .rightmargin statement sets a specific right margin to the report.

Syntax

rightmargin| .rm [+|-] n

Description

The .rightmargin statement sets the right margin of the report. To set the right margin for
the entire report, place the statement in the .header report section. The .rightmargin value
is used by the .right and .center statements to determine the default position for those
statements. Text is wrapped around within the right margin.

If not specified, a default is determined for the report. See “Automatic Determination of
Default Values” in Chapter 3.

Parameters for .rightmargin

Parameter Description

n The position of the new right margin of the
report. If signed, the new position is calculated
relative to the current position. If unsigned, it is
set to absolute position n. The default value is
discussed in the section titled “Automatic Deter-
mination of Default Values” in Chapter 3.

The value specified for the .rightmargin statement must be greater than the specification for
the left margin and less than the line length (as set by the -1 flag on the report command).

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 91

.rightmargin

Examples

The following statements specify margins that produce a default .center position of 50.

.1m 10
.rm 90

.center
.print "This is a title in position 50"

92 Report-Writer Reference Manual ODT-DATA

e

o

.pagelength

.pagelength
The .pagelength statement sets a new default page length, in number of lines per page.

Syntax

.pagelength|.pl nlines

Description

The .pagelength statement sets the page length. As the report is written, the report processor
checks the number of lines remaining on the current report page. If all the body text lines
have been written, a page footer is printed followed by a page header, assuming that headers

and footers have been specified.

If the .formfeeds statement is in effect, the pages are given formfeeds at the end of each page
footer.

This statement can be overridden at runtime by specifying the -v flag on the report command
line, as described in Chapter 11.

Parameters for .pagelength
Parameter Description
nlines The number of lines per page. The default is 61

lines per page if the report is written to a file,
and 23 lines per page if written to a terminal.

The value used in the .pagelength statement must be greater than the combined number of
lines specified in the heading and footing for the page.

Example

Set a new page length for terminals.

.pl 24

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 93

.formfeeds and .noformfeeds

.formfeeds and .noformfeeds

The .formfeeds and .noformfeeds statements force or suppress the addition of formfeed
characters to the end of each page in the report.

Syntax
formfeedsl.ffs| .ff
.noformfeedsl.noffsl .noff

There are no parameters to either statement.

Description

For printers that support formfeeds, use these statements to embed ASCII formfeeds in your
report files for pagination. The .formfeeds statement can be used to force formfeeds at the
start of the report, and at the end of each page in the report. The page size is determined with
the .pagelength statement or as a default value. When writing to a terminal, the .formfeeds
statement is ignored.

The formfeed character is sent at the end of the page footer formatting statements, if specified.
If not specified, it is sent after the last line of the page, as determined from the page size.

Specify the .formfeeds statement at the start of your report specification statements, before
any header or footer statements are specified.

These statements can be overridden at runtime with the -bl+b flag on the report command
line, as described in Chapter 12.

Example

The default is:
.noformfeeds

To turn on .formfeeds:

.formfeeds

94 Report-Writer Reference Manual ODT-DATA

/ 4:-’%\

.newpage

.newpage
The .newpage statement forces a page break, with an optional change in the page number.

Syntax

.newpagel.np [[+I-] pagenumber]

Description

The .newpage statement can appear anywhere in your report specifications. It forces a page
break by skipping to the end of the page and printing a page footer. Then a new page begins
by incrementing the page number (or setting the page number to the specified value) and
writing out a page header.

At the end of the report, a .newpage statement is automatically performed if a page footer is
specified (in this case, no page header appears on the next page). If a .newpage statement is
encountered as the first printing action of the report, no page footer is printed.

Parameters for .newpage

Parameter Description

pagenumber The page number to be assigned to the next page
in the report. If signed, the next page number is
calculated relative to the current page number.
If unsigned, the next page number is set to the
specified value. If not specified, the default
page number is determined by incrementing the
current page number by one.

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 95

.newpage

Examples
The following skips to a new page, incrementing the page number by 1.
Ve

.newpage

The following skips to a new page, and numbers the new page as page 22.

.np22

96 Report-Writer Reference Manual ODT-DATA

- T

.need

.need

The .need statement keeps a specified number of text lines together on a page.

Syntax

.need| .ne nlines

Description

The .need statement insures that a number of text lines are kept together on a page. Page
breaks are conditionally made to keep the text blocks together. This statement can be used to
make sure that all lines of text in the headers, and so on, are kept on the same page. See
Appendix A for multiple examples of their placement.

Parameters for .need

Parameter Description
nlines is the number of lines in the text block to remain
together.
Example
The following keeps the break header together on one page.
.need 3
.print "Header for account:",acct .nl
.print "------ —-= ——————- " .nl 2

Chapter 6: Page Layout and Control Statements Report-Writer Reference Manual 97

98 Report-Writer Reference Manual ODT-DATA

Chapter 7
(Report Structure Statements

This chapter explains the report structure statements. These include:

.header
footer
detail

Chapter 7: Report Structure Statements Report-Writer Reference Manual 99

.header

.header

The .header statement identifies the beginning of a block of formatting statements to execute -
at the top of a break.

Syntax

.header|.heading| .head

report | page | column_name

Description

The .header statement starts the block of text formatting statements that define the action at
the start of a break in the report. The statements that appear after the .header statement are
executed before a new value of a break column (if the column_name is specified in the .header
statement), before the start of the report (if the keyword report is specified), or at the top of
all pages but the first (if the keyword page is specified).

All statements between one .header statement and any subsequent .header, .footer, or .detail
statement are considered as part of the first header action.

Parameters for .header
Parameter Description

column_name A break column name specified in the .sort or
.break statements.

Example
The following statements start a page header.

.header page

.tab 10 .print "Accounts Receivable Aging o
Report by Client™ (
.newline -

100 Report-Writer Reference Manual ODT-DATA

footer

footer

The .footer statement identifies the end of a block of formatting statements to execute at the
end of a break.

Syntax

footer| .footingl.foot

report | page | column_name

Description

The .footer statement starts the block of text formatting statements that define the footer action
at the end of a break in the report. The statements that follow the .footer statement execute
at the end of a group of data rows with the same value for a break column (if the column_name
is specified on the .footer statement), at the end of the report (if the keyword report is
specified), or at the bottom of each page (if the keyword page is specified).

All statements between one .footer statement and any subsequent .header, .footer, or .detail
statement part of the first footer action.

Parameters for .footer

Parameter Description

column_name A break column name specified in the list of the
.sort or .break statement.

Example

The following starts the footer for a report. It is followed by a header for abc.
.footer report

.tab 10 .pr "This is the report footer™ .nl
.head abc '

Chapter 7: Report Structure Statements Report-Writer Reference Manual 101

.detail

.detail

The .detail statement specifies the start of the detail section of the report specification.

Syntax

.detaill.det

The .detail statement has no parameters.

Description

The .detail statement starts the group of formatting statements execute each time a data row
for the report is processed. These formatting statements execute after any break headers and
before any break footers.

The formatting statements specified in the .detail block are also used for determining the
default margins and the default positions of columns. See “Automatic Determination of
Default Values” in Chapter 3 for more information on how this is accomplished.

Example

.detail
.PR acctnum(bl6), tdate(bl6), .T+8 .P
transnum("nnnn"), deposit,
withdrawal .T+5 .P cum(acctnum)
sum(amt .balance) .NL

This example illustrates how the .detail statement works, you need not understand the contents
of each line in this example.

102 Report-Writer Reference Manual ODT-DATA

Chapter 8
Column and Block Statements

This chapter explains the column and block statements. These include:

format

tformat

.position

width

.block and .endblock
top

.bottom

.within and .endwithin

Chapter 8: Column and Block Statements Report-Writer Reference Manual

103

format

format

The .format statement sets up a default printing format for a column or set of columns.

Syntax

Sformatl .fmt columnname {, columnname} (format)

{, columnname {, columnname} (format) }

Description

The .format statement sets up a default format associated with a column to be used whenever
the column or an aggregation of a column is printed. You can use the .format statement to
control the default width of a column. It is used in determining the default width only if the
.width or .position statements are not used to specify the default width for a column.

If a .format statement is not specified for a column, the Report-Writer determines it. See
“Setting Up Default Values.” If a default format cannot be determined, the Report-Writer uses
the default values that are listed in “Automatic Determination of Default Values” in Chapter
3.

Breaks occur on the formatted values not on the actual values. To force the Report-Writer to
use the actual, rather than the formatted, values to determine breaks, you must specify the -t
flag on the report command line, as described in Chapter 12.

Parameters for .format

Parameter Description

columnname The name of a column (or columns) in the data
being reported.

format A valid format specification, as described in the

section titled “Overview of Format Specifica-
tions.” The format must be the correct type for
the column(s).

104 Report-Writer Reference Manual ODT-DATA

o

o

.format

Example

This example shows a .format statement that declares formats for several columns, followed
by a .print statement that uses the formats specified in the .format statement to print the

information.

.format trans, balance ("$$$,5$S5$,$S$$.nn"),
charvar (c20), a,b,c,d (£10.2)

.print trans,balance,charval,a,b,c,d

Chapter 8: Column and Block Statements Report-Writer Reference Manual 105

tformat

tformat

The .tformat statement changes the format temporarily for the output of a column.

Syntax

tformat| .tfmt columnname {, columnname} (format)
{, columnname {, columnname} (format) }

Description

The .tformat statement temporarily changes the format used to print a value of a column.
After the column is printed using this format, the temporary format is discarded, and the next
printing of the column uses the default format.

To print a leading dollar sign for the currency the first time it appears on a page, you could
specify a .tformat statement. For example, put “$$$,$$$,$$n.nn” in the “header” action for
page breaks. If the normal format for the column is “zzz,zzz,zzn.nn,” the column prints with
a leading dollar sign the first time it prints on each page.

Another common use of the .tformat statement is for blanking out the unchanged values of
break columns in the “detail” action for areport. The B type format (described in Chapter 4)
is used to accomplish this. By specifying a B format with the appropriate field width as the
standard format for printing a column in the detail section, the default action blanks out and
does not print the value of that column. If a printing format in a .tformat statement is specified
in the heading for a break in the column, you can print the column whenever a new value is
encountered for that column. See the use of the .tformat statement for the “date” column in
the ACCOUNT report example in Appendix B or the examples below for more details.

Parameters for .tformat

Parameter Description
columnname The name of a column in the report data.
format A printing format, as described in Chapter 2,

“Overview of Report Specification Statements”.
It should be of the right type for this column.

106 Report-Writer Reference Manual ODT-DATA

.tformat

Examples
The following prints a dollar sign at the top of a page:
% Top of page

Jones, A. $23,145
Jones, B. 16,145
Jost, C. 32,143

.header page
.print "Top of page" .nl 2,
.tformat salary("$$$,S$Sn")

.detail
.print name(cl4), salary("zzz,zzn")

The following prints the value of a break column when it changes:

1
i 01-34567-8 $345.21
\ $14.10
$1,143.23
04-35999-2 $1.99
$177.00

Lx/
.format acctnum(bl0), transact("$$$,$$$,5$$$.nn")
.heading acctnum
.tformat acctnum(cl0)

.detail
.print acctnum .tab +2 .print transact

Chapter 8: Column and Block Statements Report-Writer Reference Manual 107

.position

.position

The .position statement sets a default output position and optional width associated with a
column.

Syntax
Jposition| .pos columnname {, columnname} (position [,width])

{, columnname {, columnname} (position [,width)) }

Description

The .position statement sets a default position in the output line associated with a column
name for use with statements such as:

Jeft
right
.center
.tab.

It can also be used to set an optional default width of a column when calculating positions in
the .center and .right statements.

Normally, this statement is not needed, as default positions and widths are determined from
the formatting statements. See “Automatic Determination of Default Values” in Chapter 3.
However, if the determined default position for a column is not convenient, or you would like
a different position associated with a columnname, you can override the default with this
statement. Subsequently, you can use the .tab, .right, .left, or .center statements with a
columnname to refer to this position.

If you do not specify a .position statement for a column, and columnname is not printed in
the report, the default position is zero (0). If a position is specified, but no width is specified
for a column, the default width is determined by looking at the default format for the column.
You can optionally use the .width statement to specify the width of a column.

108 Report-Writer Reference Manual ODT-DATA

Parameter
(
‘ columnname

position

width

¢ Examples

.position

Parameters for .position

Description
The name of a column in the report.

Specifies the location on the output line where
the default column position should be. This
value must be less than the maximum line size
(as set by the -1 flag on the report command)
and greater than or equal to O.

The default width of the column to be used when
calculating the positioning for .center and .right
statements. If not specified, this value is deter-
mined by looking at the default format for this
column.

The following sets up a default position for columns, and prints out the data:

.position acct(5), transact(20), balance(35)
.format transact, balance ("$,$$S$,3$$S.nn")
.format acct ("nn-nnnnn-n")

.tab acct .print acct
.tab transact .print transact

.tab balance

.print balance

The resulting printout looks like this:

01-02234-4 $51,345.24 $11,429.32

02-41989-1

$876.24 $10,553.08

Chapter 8: Column and Block Statements Report-Writer Reference Manual 109

.position

An easier way to set up the default positions is shown below:

.format transact, balance ("$,$$$,$$$.nn")
.format acct ("nn-nnnnn-n")

.detail

.t5 .p acct .t20 .p transact
.t35 .p balance .nl

110 Report-Writer Reference Manual ODT-DATA

.width

.width

The .width statement sets a default output width associated with a column.

Syntax

.width columnname {, columnname} (width) {, columnname ...}

Description

The .width sets the default width of a column when calculating positions in the .center and
right statements. Alternately, you can specify the default width for a column as a parameter
to the .position statement, and this statement is provided for convenience and documentation
only. Normally, this statement is not needed, as default widths are determined by an analysis
of the report-formatting statements. See the section titled “Automatic Determination of
Default Value” in Chapter 3 for a full description of how the default values are determined.
However, if the determined default width for a column is not convenient, or you would like a
different width associated with a columnname, you can override the default with this state-
ment. Subsequently, you can use the .right or .center statements with a columnname to use
this width, in conjunction with the default position for this column in calculating the placement
of text.

If no width is specified for a column, the default width is determined by looking at the default
format for the column.

Parameters for .width

Parameter Description
columnname The name of a column in the report.
width The width of the column to be used when cal-

culating the positioning for the .center and
.right statements.

Chapter 8: Column and Block Statements Report-Writer Reference Manual 111

.width

Example

Set up default position and widths for columns to print out the following:

SAL1l SAL2 |
| $1,234.24 | $11,429.32 |
| $876.24 | $10,553.08]

.position sall(3), sal2(18)
.format sall, sal2 ("$S$$,S3%S.nn")
.width sall(14), sal2(16)

.head ..
.ce sall .pr "SALl1"
.rt sal2 .pr "SAL2"
.detail
.tab sall .pr "|", sall
.rt sall .pr "|"
.tab sal2 .pr salz2
.rt sal2 .pr "|"

112 Report-Writer Reference Manual

ODT-DATA

.block; and .endblock

.block; and .endblock

The .block and .endblock statements set the Report-Writer into, and out of, block mode. This
lets you refer to positions on previous as well as subsequent lines in the report.

Syntax

.block| .blk
Other formatting statements
.endblockl.endblk|.end block

There are no parameters to either statement.

Description

The .block and .endblock statements switch the Report-Writer into and out of block mode.
This gives you advanced formatting capabilities. In block mode, you can move across the page
(through the .tab statement), down the page (through the .newline statement), and back up
the page (through the .top statement). Block mode gives you the capability of printing
information in your report, and then putting summary information ahead of the information.
This can be accomplished by switching the Report-Writer into block mode, printing out some
number of lines, moving to the top of the block to add summary information, and then printing
out the entire block by leaving block mode.

When used in conjunction with the .within and .endwithin statements, described later in this
chapter, you can describe column headings and subtotalling in a more natural and convenient
fashion than is possible if you had to describe each line completely before going to the next
line.

All formatting statements are allowed within block mode, except for the .newpage and .need
statements. You can use the .top and .bottom statements only while in block mode to move
the current position within the block.

The length of a block written in block mode is limited by the -w flag on the report command.

By default, a block can be up to 100 lines long, though by setting the value of mxwrap on the
report command line, you can increase this value.

Chapter 8: Column and Block Statements Report-Writer Reference Manual 113

.block; and .endblock

Examples

The following example illustrates a block of statements followed by an example of the output.

.block

.pr "Line 1" .newline

.pr "Line 2" .newline

.top

.tab 10 .pr "more line 1" .newline
.endblock

These statements produce the following:

Line 1 more line 1
Line 2

The following statements are from the POPULATION report:

.header region
.need 4
.block
.pr "Region: ", region .nl
.detail
.t5 .pr state(clb5)
totother("n,nnn,nnn") .nl
.footer region
.top .lineend .tab+5
.pr "Count of states: ", count(state)
.end block

They produce the following output:

Region: Mountain Count of states: 8
Arizona 1,770,900
Colorado 2,207,259
Idaho 712,567
Montana 694,409
Nevada 488,738
New Mexico 1,016,000
Utah 1,059,273
Wyoming 332,416

114 Report-Writer Reference Manual

ODT-DATA

/ —

top

.top

The .top statement changes the current output line to the top line in the current block.

Syntax
.top| .tp

There are no parameters to this statement.

Description

The .top statement is used in block mode (after a .block statement and before the correspond-
ing .endblock statement). It moves the current output line to the first (topmost) line in the
block.

The character position on that line is the position at which the line was when the last .newline
statement affected the topmost line. To get to the left margin of the top line, you can use the
.tab statement with no parameters. To get to the last nonblank character on the line, you can
use the .lineend statement.

Examples
The following is an example of the statements and the output they produce:

.block

.pr "Line 1" .newline

.pr "Line 2" .newline

.top

.tab+2 .pr "more line 1" .newline
.endblock

These statements produce the following output:

Line 1 more line 1
Line 2

Chapter 8: Column and Block Statements Report-Writer Reference Manual 115

.bottom

.bottom

The .bottom statement changes the current output line to the bottom line in the current block.

Syntax

.bottom l.bot

There are no parameters to this statement.

Description

The .bottom statement can be used only while block mode is in effect (that is, after a .block
statement, but before the corresponding .endblock statement). It moves the current output line
to the current bottom line in the block. The character position on that line is one space beyond
the last character printed on that line.

Example
By using the following sequence of Report-Writer statements:

.block

.pr "Line 1" .newline

.pr "Line 2" .newline

.top

.tab+2 .pr "more line 1" .newline

.bottom .lineend

.pr "Last line in block" .newline
.endblock

You would get the following output:

Line 1 more line 1
Line 2Last line in block

116 Report-Writer Reference Manual ‘ ODT-DATA

s,

.within and .endwithin

.within and .endwithin

The .within and .endwithin statements set the Report-Writer into, and out of, column
formatting mode.

Syntax
.within|.wi columnname {, columnname}| all

Other formatting statements:

.endwithin
endwi
.end within

Description

The .within and .endwithin statements switch the Report-Writer into and out of column
formatting mode, in which the right and left margins of the report are temporarily set to
correspond to a column position within the report. This allows you to set margins of the report
temporarily to the left and right margins for a given column, determined either by default (as
described in Chapter 3), or through the use of the .position, .width, and .format statements.
All statements between the .within and the corresponding .endwithin statement is processed
using the margins for that column, rather than the margins for the report. If more than one
column is specified on the .within statement, or if the keyword all is used, the set of statements
is applied to each of the columns in turn.

Parameters for .within and .endwithin
Parameter Description

columnname The name of a column (or columns) in the data
being reported within which the “other format-
ting statements” are to be used.

all Means that all columns in the report are to be
used.

Chapter 8: Column and Block Statements Report-Writer Reference Manual 117

.within and .endwithin

When using the .within and .endwithin block of statements for a set of columns, it is often
useful to be able to invoke a slightly different set of formatting statements within each column,
differing only in the column referenced by a formatting statement. To help accomplish this,
two special names are available for use in formatting statements while in column formatting
mode. These can be used to refer to the column that is currently being used. These names
are:

w_column Can be used anywhere columnname would normally
be used on a formatting statement, such as in “.print
w_column” or “.print sum(w_column).”

w_name The name of the column currently being used in the
within block. It can be used to print out the actual
column names.

See the following examples or the reports in Appendix A for the use of these special names.

Because the margins of the report are temporarily changed to the margins for a column while
the .within statement is in effect, the positions referred to by the default values for the .left,
.right, and .center statements are those of the column, rather than the full width of the report.

In most cases where the formatting statements inside the .within block include one or more
.newline statements, you should precede the .within statement with a .block statement (and
follow the .endwithin with an .endblock), because you probably want to move down the page
within one column and go back up to the line on which you started before proceeding to the
next column. In fact, a .top statement is automatically executed immediately before the
.endwithin statement to simplify this type of specification.

Once you start to use the .within and .endwithin statements, you may find that the .position,
.width, and .format statements take on additional usefulness.

Examples

Here is a sequence of Report-Writer statements:
.position coll(0), col2(8), col3(1l6)
.within c.o’ll, col2, col3

.pr w_name
.end within

118 Report-Writer Reference Manual ODT-DATA

p—

.within and .endwithin

The sequence results in the following output:

coll col2 col3

Here is another example:

.position totpop(2,15), totwhite (20,15)

.block
.within totpop .
.ce .pr "Total"™ .nl
.ul .ce .pr "Population" .nl .nou
.end within '
.within totwhite
.nl
.ul .ce .pr "White Pop" .nl .nou
.end within
.end block

This sequence results in the following output:

Total
Population White Pop

The following statements in POPULATION can be used to print out the subtotals for each of

two columns using the same set of statements.

.position totpop(10), totwhite(25)
.format totpop,totwhite("nnn,nnn,nnn")

.foot report
.block
.within totpop, totwhite
.rt .prline
.rt .prline sum(w_column)
.end within
.end block

Chapter 8: Column and Block Statements

Report-Writer Reference Manual

.within and .endwithin
This would result in the following:
(detail lines)

203,165,699 177,612,309

120 Report-Writer Reference Manual ODT-DATA

Chapter 9

Text Positioning Statements

This chapter explains the text positioning statements. These include:

.tab
Jinestart
Jineend
.newline
Jeft
.center
right

Chapter 9: Text Positioning Statements

Report-Writer Reference Manual

121

tab

.tab

The .tab statement specifies the position on the line to print text.

Syntax

.tab [+|-] n | columnname

Description
The .tab statement moves the current position marker to the specified position.

Parameters for .tab

Parameter Description

n The next print position on the line. If signed, n
represents a relative change from the last posi-
tion output. If unsigned, n represents an ab-
solute position in the line.

columnname The name of a column being included. The posi-
tion on the line to which a column refers is deter-
mined either explicitly through the use of the
.position statement, or implicitly as described in
the section titled “Automatic Determination of
Default Values” in Chapter 3. If columnname is
specified, the next output text begins at the posi-
tion associated with the named column.

If the .tab statement is not followed by either n or columnname, then the .tab statement works
like a .linestart statement, with the next text beginning at the left margin of the report. The
Jinestart statement is described later in this chapter.

The .tab statement takes on a slightly different meaning when executed in column made
sections (when the .within statement is in effect and default column widths and positions zre
assumed). When the .tab statement is executed without a parameter in column formatting
mode, the current position moves to the left margin of the current line. The left margin is
determined by the .within statement.

122 Report-Writer Reference Manual ODT-DATA

.tab

For more details on column formatting mode, see the .within and .endwithin statements in
Chapter 8.

Example

Suppose you want the following output:

abc def
Use these statements:
.print "abc" .tab +7 .print "def"
To output “HERE” in character position 12 on a line, use:
.tabl2 .print "HERE"
To output the value of column “bal” in position 30 use:
.position bal(30)

.tab bal .print bal("+++++.NN")

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 123

linestart

Jinestart

The .linestart statement moves the current position to the left margin.

Syntax

Jinestart |.Instart | .linebegin

There are no parameters to this statement.

Description

The .linestart statement changes the position of the current marker for the output line so that
the next text printed by the .print statement appears at the current left margin. The left margin
is set either by the .Im statement, by default, or by the left edge of the column currently in use
while in a .within block. The .linestart statement is useful in reports that use the .tab
statement extensively. The .linestart statement always restores the current position marker
to a known position, at the beginning of the line.

Example

Suppose you want the following output:

abc def
You could use these statements:

.tab 14 .pr "def"
.linestart .pr ™"abc"

124 Repont-Writer Reference Manual ODT-DATA

lineend

Jdineend

The .lineend statement moves the current position to the end of the current line.
Syntax
Jineend! .Inend

There are no parameters to this statement.

Description

The .lineend statement changes the current position in the output line so that the text printed
in the next .print statement is placed immediately after the last non-blank character on the
line. This is useful in some advanced reports that use the .tab statement extensively. The

Jineend statement always moves the current position marker to a position within the current
margins of the report.

Example

Suppose you want the following output:

abc defixyz
You could use these statements:
.tab 14 .pr "def "

.tab 5 .pr "abc"
.lineend .pr ":xyz" .linestart .pr "abc"

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 125

.newline

.hewline

The .newline statement writes out the current line and optionally advances a number of lines
on the output page.

Syntax

.newline|.nl [nlines]

Description

You must specify the .newline statement to advance to a new line on the output page. A .print
" statement does not imply a new line at its completion. You can use the .println statement for
this purpose.

After .newline executes, text output begins at the left margin, unless another text positioning
statement overrides the default.

Parameters for .newline

Parameter Description

nlines The number of lines to advance. The default
value of nlines is one, advance to the next line.

If the output of a new line reaches the end of the current page, or if there are fewer than nlines
left on the current page, the page footer and page header are printed, if so specified.

If the current line includes column type (Cn.w) strings, the .newline statement advances to
the bottom of the longest column printed during the formation of the line. For the Dictionary
example in Appendix A, the .newline statement in the footer for “word” causes an advance to
the line following the end of the definition.

When you invoke column formatting mode, .newline causes an advance to the next line at the
left margin determined by the .within statement. For more information on column-formatting
mode, see the .within/.endwithin statements in Chapter 8. \

126 Report-Writer Reference Manual ODT-DATA

.newline

Examples

The following prints one line of text:
.print "This is a line" .newline

The following is one way you can print an end-of-page (note that the excess newlines are
ignored):

.print "bye bye page.".nl 10000

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 127

Jdeft

Jeft

Left justifies the next text to be printed.

Syntax

Jeft] Aft [[+|-] n | columnname]

Description

The .left statement left justifies the text printed in the next .print statement to either the
specified position (relative to the last output or absolute) or to a default position for a column.
All leading and trailing blanks are removed from the text before it is placed in the output line.

The .left statement is the same as the .tab statement for all output except text that contains
leading blanks, such as formatted numbers.

Note that the meaning of the .left statement is slightly changed when executed in column-for-
matting mode (when the .within statement is in effect and default column widths and positions
are assumed). When executed under these circumstances, the .left statement positions text at
the left margin of the column indicated in the .within statement. For more details, see the
.within and .endwithin statements in Chapter 8.

Parameters for .left

Parameter Description

n The position to which the next text is left jus-
tified. If signed, the position is moved n posi-
tions relative to the last position output. If
unsigned, the position is the absolute position in
the output line. The default value is the left mar-
gin of the report (set by the .Im statement).

128 Report-Writer Reference Manual ODT-DATA

Jleft

Parameter Description

columnname The name of a column being included. The posi-
tion on the line to which a column refers is deter-
mined either explicitly through the use of the
.position statement, or implicitly as described in
the section titled “Automatic Determination of
Default Values” in Chapter 3. If columnname is
specified, the next output text is left justified and
placed at the position associated with the named
column.

Examples

This example outputs the value of “balance,” left justifies to the default column.
.detail
... .t50 .pr balance
.left balance .print balance (£20.2)

This example outputs the value of “abc” at the left margin.

.left
.print abc ("+++++++")

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 129

.center

.center

Centers the next text to be printed.

Syntax

.center|.cen|.ce [[+]-] n | columnname)

Description

The .center statement centers the text printed in the next .print statement. All leading and
trailing blanks are removed from the text before it is placed in the output line.

Parameters for .center

Parameter Description

n The position around which the next block of text
is centered. If n is signed, the position is moved
n positions relative to the last output position. If
n is unsigned, the position is the absolute posi-
tion in the output line. The default value is the
halfway point between the left and right margins
of the report.

columnname The name of a column being reported. The posi-
tion on the line to which a column refers is deter-
mined either explicitly through the use of the
.position statement, or implicitly as described in
the section titled “Automatic Determination of
Default Values” in Chapter 3. The text printed in
the next .print statement is centered around the
“center” for the column (see below).

130 Report-Writer Reference Manual ODT-DATA

.center

If you specify n (either relative or absolute), the text is centered around that position. If you
specify nothing, the Report-Writer calculates the center of the page as the halfway point
between the left and right margins of the report. If you specify .Im and .rm statements, you
can calculate the center by the same method. However, if you are using the default values for
the right and left margins (the right in particular), read the section titled “Automatic Deter-
mination of Default Values” in Chapter 3 for a discussion of how the margins are determined.

If you specify centering with the columnname parameter, the text is centered in that column.
The center of the column is determined through the default position of the following:

® The column, determined either by the .position statement or by default.

B The width of the column, either the default width, the width as specified in the .width
or the .position statements, or the width of the format specified in the .format
statement.

The .center statement centers around a position calculated as:

centering position = default column position + (default format width / 2)

The position is rounded up if there is any fraction.

Note that the .center statement has a somewhat different meaning when executed in column-
formatting mode (that is, inside a .within statement with default column widths and positions
assumed). Because the .within statement temporarily resets the report margins to the left and
right margins of a specified column’s width and position, a .center statement so executed
centers a text string within the column width, not within the report page margins. For more
information about column-formatting mode, see Chapter 8.

Examples

This example outputs a title centered on the page.
.center

.print "Report Title:",
current_date

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 131

.center
This example outputs a heading for column “bal” centered above the default for that column
(here, this centers around position 25).

.format bal ("+++,+++.nn")

.center bal ...p'rint "Balance"

.detail

.tab 20 .print bal

132 Report-Writer Reference Manual ODT-DATA

.right

.right

-right justifies the next text to be printed.

Syntax

rightl.rt [[+|-] n | columnname]

Description

The .right statement right justifies the text printed in the next .print statement. All leading
and trailing blanks are removed from the text before it is placed in the output line.

Parameters for .right

Parameter Description

n The position to which the next block of text is
right justified. If signed, the position is moved n
positions relative to the last output position. If
unsigned, the position is the absolute position in
the output line. The default value is the right
margin of the report.

columnname The name of a column being included. The posi-
tion to which this column refers is either deter-
mined explicitly, through the use of the .position
statement, or implicitly as described in the sec-
tion titled “Automatic Determination of Default
Values” in Chapter 3. The text printed in the next
.print statement is right justified to the right
edge of that column, as determined from the
default position and width of that column (see
below).

If you specify n (either relative or absolute), the text is right justified to that position. If you
specify nothing, the Report-Writer right justifies the text to the right margin of the report. The
right margin is either specified with the .rm statement or determined by default as described
in the section titled “Automatic Determination of Default Values” in Chapter 3.

Chapter 9: Text Positioning Statements Report-Writer Reference Manual 133

.right

If you specify right justification with the columnname parameter, the text is right justified to
the right edge of that column, as determined from the following:

B The default position of the column, determined either from the .position statement
or by default.

B The width of the column, either the default width, the width specified in .width or
the .position statements, or the width of the format specified in a .format statement
for that column.

The .right statement justifies to a position calculated as:

justification position =
default column position + default width
The meaning of the .right statement is slightly changed when the .right statement is executed
within column-formatting mode (that is, when the .within statement is in effect and default
column widths and positions are assumed). When the .right statement is so executed without
a parameter, the current position becomes the right margin as defined by the .within statement,

not the right margin of the report. For more information about column-formatting mode, see
the .within and .endwithin statements in Chapter 8.

Examples

This example outputs a page number, right justified on the line.

.right
.print "Page", page_number ("zn")

This example outputs a heading for column “bal,” right justified to the right edge of that
column (in this example, to position 50).

.format bal ("+++,+++.nn")
.detail
.t 40 .print bal

.right bal .print "Balance"

134 Report-Writer Reference Manual ODT-DATA

Chapter 10
Print Statements

This chapter explains the print statements. These include:

.print and .println
.underline and .nounderline
zulcharacter

.nullstring

Chapter 10: Print Statements Report-Writer Reference Manual 135

.print and .printin

.print and .printin

The .print and .println statements print literal text strings, columns from the database, or /
expressions on the report.

Syntax
.print |.pr|.p expression [(format)] {, expression [(format)]}

.println |.prin|.pln expression [(format)] {, expression

[(format)]}

Description

The .print statement specifies text to include in the body of the report. Text can be character
strings printed directly, data items from the data table, program variables, parameters,
aggregations or a combination of these. The text is included at the place in the report where
the .print statement is encountered. By preceding the .print statement with the positioning
statements such as .newline, .tab, .center, .right or .left, you may specify the location of the
text. By default, the text is included immediately after the last text output with the .print
statement.

If you use the optional .printin form of the statement, the current print position advances to
the next line after the specified text is printed.

Parameters for .print

Parameter Description
expression Any legal expression.
format An optional format specification for the expres-

sion. The form of the specification depends on

the expression type. If you do not specify a for-

mat, the Report-Writer uses one of the default

formats (see "Format Specifications” in Chapter \
4).

The .print statement can include as many expressions as you wish.

136 Report-Writer Reference Manual ODT-DATA

.print and .printin

Examples

The following statements use literals:

.print "This is some text"
" which can be included on several lines."

The statements print the following:

This is some text which can be included on several
lines.

Note that the two text strings printed next to each other on the same line, because no
specification statement separates the fields.

In another example, if “page_number” were equal to 3, here are the statements:
.pr "Page number:", page_number (£2)

It prints the following:
Page number: 3

The following example shows the specifications needed to print a data value and an aggregate,
using a numeric template for the aggregate:

.p bal, sum(bal) ("nnn,nnn,nnn")

A complex .print statement that displays a large number of data items might look like the
following:

.print "Values of the data are: ", varl,
var2 (e20.4) cvarl(c40), " and finally",
lastvar (" $85,8$35,$$$.nnCR")

Note that in the above example, the field var! was listed without a specification. The
Report-Writer prints the value with the default format for the data type, according to the table
in the section titled “Default Format for Columns.” You can mix the default data formats with
complex templates.

Chapter 10: Print Statements Report-Writer Reference Manual 137

.underline and .nounderline

.underline and .nounderline

The .underline and .nounderline statements turn underlining of text on and off.

Syntax

.underline|.ul|.u
any printing statements
.nounderline/.noul|.nou

There are no parameters to either statement.

Description

To underline text in a report, put an .underline statement immediately before the spot where
underlining begins, and .nounderline at the spot where it stops. You can underline anything
that can be printed—including character strings, column values, parameter values, or ag-
gregate values. By default, the underlining character is a hyphen (-) if the report is written to
aterminal, and an underscore (_) if written to a file. This can be changed with the .ulcharacter
statement (described in the next section).

When underlining mede is in effect, only letters and digits are underlined. All other characters,
such as blanks, commas, periods, and so on, are ignored. If the underlining character is

anything other than an underscore, the underlining is printed on the line below that containing
the text to be underlined. Underscores are printed on the same line.

Example
Suppose you want to produce the following line:

Here is 123,456 underlining

Use the following specifications:

.u .pr "Here" .nou .print "is" .u .pr

/!

"123,456 underlining”

138 Report-Writer Reference Manual ODT-DATA

.ulcharacter

.ulcharacter

The .ulcharacter statement sets the underlining character to any single character.

Syntax

.ulcharacterl.ulchar].ulc "¢"

Description
You can specify an alternate underlining character with the .ulcharacter statement.

Parameters for .ulcharacter

Parameter Description

c Any single character, within single or double
quotes, subsequently used as the underlining
character. The default underlining character is
the hyphen (-) for reports written to a terminal
and the underscore (_) for reports written to a
file.

The character ¢ must be a single character enclosed in quotes. That character remains in effect
until another .ulcharacter statement is encountered in the report.

If underscoring () is specified with the .ulcharacter statement, underlining is printed on the
same line as the text. If any other character is specified, or the default character of hyphen
(-) is used, underlining is printed as a second line immediately below the underlined text.

Chapter 10: Print Statements Report-Writer Reference Manual 139

.ulcharacter

Example
To produce the following:

Underline me

Use the following specifications:

.underline
.ulc "-" .pr "Underline me" .nl
.ulc "=" .pr "and me" .nl
.nounderline

140 Report-Writer Reference Manual ODT-DATA

{ — i}

.nullstring

.nullstring

The .nullstring statement specifies an alternate null string.

Syntax

-nullstring|.nullstr ’null_string’ | "'null_string"'

Description

The .nullstring statement specifies a string to print when a null value appears on the report.
Because a data value of null means that there is really no data present to print, you can use
the .nullstring to print a designated string that signifies the absence of the data.

Parameters for .nullstring

Parameter Description

null_string Any string of characters. You must enclose the
string in single or double quotes, so the com-
puter can properly handle leading and trailing
blanks, which are important in some format
specifications.

The column must be large enough to print the designated null_string; if it is not, the empty
string is printed in that instance.

If you do not specify a .nullstring statement, the Report-Writer uses a default of the empty
string (a string with no characters) to print a null value. You can specify several .nullstring
statements in a report specification. The system uses the current .nullstring until another
~ullstring statement is executed.

Chapter 10: Print Statements Report-Writer Reference Manual 141

.nullstring

Example

Suppose “phone_number” is an integer column with a null value. If you issued the following

print statements:

.nullstring
.print

.nullstr
.print

"N/A"

"Phone number = ",
phone_number .nl

14 ?l .
‘Phone number = ',
phone_number .nl

Report-Writer prints the following:

Phone number =
Phone number

N/A

142 Report-Writer Reference Manual

ODT-DATA

PN

Chapter 11
Conditional and Assignment

Statements

This chapter explains the conditional and assignment statements. These include:

Jf
.then
.else
Jdet

Chapter 11: Conditional and Assignment Statements Report-Writer Reference Manual

143

if

if
The .if statement specifies alternative statements to execute under specific conditions.
Syntax
.if condition .then {statement)}
{.elseif condition .then {statement})

[.else {statement)]
.endif

Description

The .if statement specifies alternative statements to execute depending upon the specific
condition.

Conditions are evaluated one after another. As soon as one condition is met, the statements
following .then are executed. If none of the specified conditions are met, nothing is done. If,
when none of the conditions are met, there is an .else included, the statements following the
.else statement are executed.

Parameters for .if

Parameter Description

condition A Boolean expression that returns the value true
or false.

statement Any action statement, including the .if statement
(this excludes the setup and structure statements
in Chapters S and 7).

144 Report-Writer Reference Manual ODT-DATA

e

Examples

This example illustrates the use of the .if statement to evaluate the current condition of the
Report-Writer environment. It tests the current character position, and starts a new line if the
current position is past the end of a line:

.if position_number > 80 .then
.newline
.endif

This example tests the data, executes, and prints different print statements depending on the
result:

.if balance > 0 .then

.print " (",-balance, ")"
.else

.tab +1

.print balance
.endif

This example tests a column value and uses .if statements to translate a numeric code to a text
string:

.if deptcode = 1 .then
.print "books"
.elseif deptcode = 2 .then

.print "furniture"
.elseif deptcode = 3 .then
.print "jewelry"”

.else
.print "misc"
.endif

Chapter 11: Conditional and Assignment Statements Report-Writer Reference Manual 145

let

Jet

Assigns the value of an expression to a declared variable.

Syntax

Jet variablename [:]= expression

Description

The .let statement evaluates an expression and assigns the value to a declared variable. The
type of the expression must be compatible with the type of the variable. For example, an
integer expression can be assigned to a floating-point variable, and a date expression string
can be assigned to a date variable, but a date expression cannot be assigned to an integer

variable.

Parameters for .let

Parameter Description

variablename A variable name declared in a .declare statement
(see Chapter S). The variablename cannot be a
special report variable or column.

expression An expression. The expression cannot be a
Boolean or conditional one,because there cannot
be variables of data type Boolean.

146 Report-Writer Reference Manual ODT-DATA

let

Example

The following .declare statement defines two data variables, age and birthday. These are then
used in .let statements showing a number of possible assignments that could be made.

.declare

age = integer,
birthday = date

.let age := 6.2

.let age = age+l /* one year older*/
.print age .nl

.let birthday := "29-jul-1954"

.let age =
date ("9-3jul-1987") - birthday /*ERROR! */
.let age := interval ("years",

date ("9-jul-1987") - birthday)

.print age .nl

If these assignments were made in sequence as shown, the output would be as follows:

7
32

Chapter 11: Conditional and Assignment Statements Report-Writer Reference Manual 147

148 Report-Writer Reference Manual ODT-DATA

Chapter 12
; The sreport, report, and copyrep
Commands

This chapter explains the following commands:

sreport
report
copyrep

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 149

sreport

sreport

The sreport command checks a report specification file and stores the specification in a "'/
database. “

Syntax

sreport [-s] [-uusername) dbname filename

Description

The sreport command reads a report specification file of Report-Writer statements, performs
basic syntax error checking, and, if error-free, stores the report specification in the Reports
Catalog of the database you specify. If the report specification contains syntax errors, sreport
prints error messages. If a report in the text file has the same name as an existing report in
the Reports Catalog, the older report definition is replaced. If no prior report exists, the report
is added to the Reports Catalog. You can then use the specifications to run a report using
either the report command or the Reports option of ODT-DATA/MENU.

Parameters for sreport
Parameter Description

-S If specified, requests that the status messages
normally printed by sreport be suppressed.

-uusername If specified, requests that sreport act as if you
are a user with login name username. This may
only be used by the DBA for the database or by
the ODT-DATA system manager. No spaces ap-
pears between the “u” in the flag and the first
character of the username. A space is interpreted
as a username of blank characters.

dbname The database in which the report specification is
to be stored.

150 Report-Writer Reference Manual ODT-DATA

sreport

Parameter Description

filename The name of the report specifications file for one
or more reports. You may specify the full path-
name for the file. The full path is not required.
If you do not explicitly specify an extension for
the file, the system assumes the default exten-
sion of .rw.

The sreport command requires valid values for both filename and dbname. If you do not enter
these parameters, sreport prompts you for them.

The -u flag can be used by the database administrator (DBA) for a database or by the
ODT-DATA system manager to temporarily assume another user’s account identity.

Examples

The following sreport command stores report specifications in file repspec.txt in the Reports
Catalog of a database named “mydb”:

sreport mydb repspec.txt

The following sreport command specifies a database name of “myowndb” and uses sreport’s
prompting facility to store the report specification located in the file myrep.rw:

sreport myowndb

You are prompted for the filename, as follows:
Report File?

You enter the name of a file containing report specifications:
nyrep.rw

This third example uses sreport’s prompting facility to store the report specification located
in the file myrep.rw, in the Reports Catalog for the database "myowndb". Enter:

sreport

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 151

sreport

At the database prompt, enter a database name:

Database? myowndb

At the "Report File?" prompt, enter a filename:

Filename? myrep

152 Report-Writer Reference Manual

ODT-DATA

report

report

The report command executes a report specification.

Syntax

report [-cnumactions] [-ffilename] [-s] [-uusername)
[-r]i[-m[mode]ll[-ifilename] [-Imxline] {-qmxquer]
[-wmxwrap] [+tl-t] [+bl-b] [-h] [-5] [-vpagelength]
dbname reportnameltablename [({parameter=value}))

Description

The report command executes the report specifications that correspond to the reportname
parameter or a default report for a table in the database.

This command produces the report. The report command produces the following actions.
The report catalogs are checked to see if the report has been stored in the database. If found,
the specifications for the report are read and checked for errors. If errors occur, the report is
not run. If the specification is error-free, parameters are replaced with their specified values.
Data is extracted and the query, if specified, is run, the data are sorted, if required, and the
report is formatted and output. If no report with the given name is found, the name is assumed
to be a table name. A default report for that table is formatted and run. If the table or report
is not found, an error message results.

The Report-Writer prompts you for anything that you do not specify on the report command
line, including the reportname, the dbname, and values for any parameters encountered in the
report specifications.

If specified, the dbname, reportname, or tablename, and parameter should be placed at the
end of the command line, in the order shown earlier under “Syntax.”

The recommended use is to let the Report-Writer prompt you if you have parameters to enter

for your report. When prompted, you may enter embedded blanks or commas as part of the
parameter value.

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 153

report

Parameter

-cnumactions

-ffilename

-S

-uusername

-r

Parameters for report
Description

If specified, this sets the number of Report-
Writer action statements to be processed within
one buffer to “numactions.” This minimizes real
memory usage on systems where this is a con-
cern, The default is 32,000, which is large
enough to cover all known cases. If the value is
set too large, only the actual number of state-
ments is used in computing the value.

Directs the formatted report to filename for sub-
sequent output. If this option is not specified,
the report may be written to the file specified in
the .output statement in the report specification
file or to the default output file (normally your
terminal).

If specified, requests that status messages, includ-
ing prompts, be suppressed.

If specified, requests that the Report-Writer
pretend you are the user with login name user-
name. This can be used only by the DBA for a
database, or by the ODT-DATA system manager.

If specified, tells the Report-Writer that a report
is being specified, rather than a table. This gives
an error if no report with the given name is
found. By default, the Report-Writer looks for a
report of the given name, and if one is not found,
and a table of the given name exists, a default
report for that table is set up.

154 Report-Writer Reference Manual ODT-DATA

"”‘ oY

Parameter

-m[mode]

-ifilename

-lmxline

-qmxquer

Description

If specified, tells the Report-Writer that a table
has been specified, rather than a report. This in-
structs the Report-Writer to format a default
report for the specified table. If the optional
mode value of wrap, column or block is
specified after the -m flag, that style of default
report is used.

If specified, tells the Report-Writer to read
report specifications from a source file outside
the Reports Catalog. This lets you run a report
without first executing the sreport command.
You cannot use this flag in conjunction with the
-c, -m, or -r flags.

If specified, sets the maximum output line size
to mxline characters. By default, the maximum
output line size is 132 characters if output is to a
file; otherwise, the default maximum line size is
the width of the terminal. This option is needed
only if reports are written that contain unusually
long lines.

If specified, sets the maximum length of the
query specified in the .query statement, after all
substitutions for runtime parameters have been
made. By default, the maximum query size is
1000 characters. This option is needed only for
particularly long queries.

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference

report

155

report

156

Parameter

-wmxwrap

-tl+t

-bl+b

-h

Description

If specified, sets mxwrap as the maximum num-
ber of lines to wrap with one of the column C
formats, or the maximum number of lines that
can be used within any block. By default, the
maximum value is 100 lines. This means that a
column written with a format such as “c0.20”
(which writes a character string in a column 20
characters wide) contains a maximum of 100
lines, or the maximum number of .newline state-
ments within an invocation of “block” mode is
100. This maximum is provided as a protection
against misspecified columns, and is rarely
needed.

If turned on (+t), causes aggregates to occur over
rounded values for any floating-point column
whose format has been specified in a .format
statement as numeric F or template. Each value
in the column is rounded to the precision given
by its format. If this flag is turned off (-t), ag-
gregates utilize the underlying values, not the
rounded values. +t is the default.

If turned on (+b), forces formfeeds at the end of
each page. If turned off (-b), this flag suppresses
formfeeds for the end of each page. The flag
overrides any .formfeed or .noformfeed state-
ment occurring in the report specification file.

If specified, a report that retrieves no rows is
provided a null set of data. All header and footer
sections are executed. The detail section is sup-
pressed. This feature allows you to include the
following .if statement in the report footer to out-
put a positive acknowledgement that no rows
were found:

Report-Writer Reference Manual ODT-DATA

report

Parameter Description

.if count (column) =0 .then

.println

"No data matched the query specifications."”
.endif

-5 If specified, the report is made compatible with
version 5.0 of INGRES. The default is that the
flag is not specified. To ensure compatibility,
the following assumptions are made:

+t option is the default.

Only floating-point arithmetic is used. Integer
columns are converted to floating-point before
use in computation.

The month part of the current_date function is
displayed in capitals if no format is specified.
Normally, the system displays the month names
in lowercase letters. For example, what is now
displayed as “01-feb-1985" would, with the -5
flag set, be displayed as “01-FEB-1985.”

-vpagelength If specified, sets pagelength as the number of
lines for each page of output. pagelength must
be a positive integer. This flag overrides any
.pagelength statement in the report specifica-
tion file. The default is 61 lines per page if the
report is written to a file, and 23 lines per page if
written to a terminal.

dbname The name of the ODT-DATA database containing
the report data.

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 157

report

Parameter Description

reportname The name of a report that appears in a .name
statement in a report specification that has been
stored in the Reports Catalog. Do not enter a
reportname if you specify a tablename in this
command.

tablename The name of a table or view in your database for
which you want a default report. Do not enter a
tablename if you have specified a reportname in
this command.

parameter The name of a parameter used in the report
specification. This parameter may either be used
in the specified query as a declared variable or
simply referred to in a Report-Writer statement.
Parameter or value combinations on the com-
mand line must be separated by blanks, commas,
or tabs. Note that you must specify a space (or
tab) before the opening parenthesis of the
parameter or value list.

value The value placed in every occurrence of the cor-
responding parameter reference in the report
specifications. value should be surrounded by
quotes (which are removed when it is processed)
if you want to pass through a string or date value.

If you specify neither the -f option on the command line nor an .output file in your report
specifications, the report is written to the standard output file. If this is a terminal, the default
page size set for the report is 23 lines, rather than the normal 61. At the end of each page
written to your terminal, the following prompt appears:

ENTER C, S, HELP OR RETURN:

158 Report-Writer Reference Manual ODT-DATA

report

You should respond:

C Or “c” to request that printing of the report be con-
tinuous to the end of the report.

S Or “s” to stop printing the report.

RETURN Or ENTER to request the printing of the next page of
the report.

H Or “h”or “HELP” to print a description of these op-
tions.

If you specify the -u flag, the Report-Writer acts as if you were another user. It allows the
DBA for a database or the ODT-DATA system manager to run cataloged or default reports that
are owned by others.

The -r flag can be used to force the Report-Writer to only check for reports with the given
name, and the -m flag can be used to force the Report-Writer to only check for tables with the
given name. These are sometimes useful if you have reports and tables with the same name,
and need to be more specific about what you want. Additionally, the -m flag can be used to

specify the style of default report to be produced. See Chapter 2 for more information on these
styles, or see Using ODT-DATA Through Forms and Menus.

Examples
In this example, run a report that has no parameters:
report mydb myreport

This example uses the report prompt facility to enter a report name and a database name, and
also have the Report-Writer write the report to an alternate file:

report -faltout.rep
At the “Database” prompt, enter a database name:

Database name? mydb

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 159

report

At the “Report or Table” prompt, enter a report or table name:
Report or Table nyrep

In this example, specify all parameters to a report with a query specification such as the
following:

.query
select *
from emp
where name = ’$name’

report persdb namerep ‘' (name =
"Smith, T.")'

The same report prompts you with:
Enter ‘name’?

You would respond:
Smith, T.

This also requests a default line size of 200 characters.
report persdb namerep -1200

In this example, report with parameters to a query and also for printing within the body of the
report. The query might be:

.query
select transact, name
from trans
where transact > $minval
and transact < S$maxval

A print statement in the report might be:
.print $date(c20) .nl

Note that this prompts for some things (that is, the values of report name and “maxval”.
report mydb ‘ (minval=+123.45
date=06/20/81)"

160 Report-Writer Reference Manual ODT-DATA

report

In this example, write out a default report for MYTAB. Also, wnite out a default report for
YOURTAB, which forces the block style of format for the default report.

report mydb mytab
report -mblock mydb yourtab

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 161

copyrep

copyrep

Allows you to copy report specifications from one database to another.

Syntax

copyrep [-s] [-uusername] [-f] [-cnumactions]
dbname ixtfile report {report}

Description

The copyrep command copies a report specification, or set of report specifications, from a
database to a text file. You can then use the report specification with a different database in
the sreport command.

This command works much like the Archive operation accessed through the Reports Catalog
form of RBF. However, reports created with RBF may also be copied using the copyrep
command, retaining the knowledge that they are RBF reports.

As a useful side effect, the command also provides a method for externally storing the
definitions of reports in simple files in much the same way as the copydb command works.
The command allows you to copy any number of reports to a single text file. The reports are
named within the file, but contain no owner tied to a report. Therefore, you may copy out a
(set of) report(s) owned by one user, and then copy them back in as another user, effectively
changing their owner.

If you omit any of the parameters not preceded by a dash, the copyrep command prompts you
for the missing values. If no reports are specified, you are prompted for reports to be entered
one per line.

You end the list with a Ctrl D.

162 Report-Writer Reference Manual ODT-DATA

copyrep

Parameters for copyrep

B Parameter Description
{
-S If specified, means to suppress status messages.
-cnumactions If specified, this sets the number of Report-

Writer action statements to be processed within.
one buffer to “numactions.” This can be useful
to minimize real memory usage on systems
where this is a concern. Default value is 32,000,
which is large enough to cover all known cases.
If the value is set too large, only the actual num-
ber of statements is used in computing the value.

-uusername Uses reports owned by the specified user. This
command can only be used by the DBA for a
database, or an ODT-DATA superuser.

-f ’ If specified, writes the reports out in the same
format as is done with the Archive operation ac-
cessed through the Reports Catalog form of
RBE. For reports created with RBF, this will
strips out many of the statements.

dbname The name of the database.

txtfile The name of a text file in which to write the
report definitions.

report The name of one or more reports that are to be

written to the text file.

The file created by this command is almost the same as the file created through the use of the

) Archive operation accessed in the Reports Catalog form of RBE. (See Using ODT-DATA
(Through Forms and Menus for more information.) For reports originally created outside of
‘ RBF and entered by using the sreport command, the output to the file created by the copyrep
is identical (except that comments are stripped out). However, for reports created by RBF, all
information pertaining to RBF is retained in the report output, thus eliminating the restriction

Chapter 12: The sreport, report, and copyrep Commands Report-Writer Reference 163

copyrep

in Archive that the reports cannot be copied directly back into a database as RBF reports. The
-f flag can be used to mimic the Archive method, which strips many of the RBF statements
out of the report, making it easier to edit. However, you should be warned not to edit the RBF
reports created by the copyrep command before copying them back into a database, as you
could easily make a report unusable in additional RBF sessions.

Examples

Suppose you want to move a report called “emphours” from the “emp” database into the
“newemp” database. The following statement performs the first part of the task, copying the
report into a text file called emphours.txt:

copyrep emp emphours.txt emphours
To copy report files created through the copyrep command back into a database, perhaps under
a different owner, you can use the sreport command. To continue the example above, the
report in the text file emphours.txt can be copied into the database “newemp” simply by
executing the following command:

sreport newdb emphours.txt

164 Report-Writer Reference Manual ODT-DATA

,5 s,

Appendix A
Report Examples

This chapter contains five sample reports, including both input and output. Two of the reports
have two alternative sets of specifications. The reports are as follows:

The POPULATION report demonstrates a common type of report with subtotalling.
POP2 shows an alternative set of formatting statements for producing the same
output.

The ACCOUNT report gives a complex report that might be used in accounting
applications.

The DICTIONARY report shows the use of character printing options within the
Report-Writer. DICT2 shows an alternative set of formatting statements for produc-
ing the same output.

The LABEL report demonstrates the formatting of mailing labels, three across on a
page, from a list of names and addresses. It features the use of the .if statement (see
Chapter 11).

The BOOKS report illustrates the use of joining tables for producing a report.

Each example is organized as a set of explanatory texts, followed by a listing of the report
formatting statements, followed by a listing of the report itself. For the sake of clarity, the
formatting statements are indicated in the examples by uppercase letters, although they can
actually be specified in either upper- or lowercase letters.

Appendix A: Report Examples Repont-Writer Reference Manual 165

Population Example

Population Example

The POPULATION example demonstrates the use of the Report-Writer in formatting a report
of census data, by region and state, for the United States. The base tables for this report are
the following:

B “Region” contains region names associated with region abbreviations.

B “State” contains state names, as well as state abbreviations, and associated region
abbreviations.

B “Pop” contains population data for each state for different census years.

The report formatter statements are discussed below. Notice that the output for this report is
followed by a description and listing of a slightly different set of statements that can be used
to produce the same output.

B The .query statement shows the database query needed to set up the data in the form
required to write the report. Essentially, the query sets up a table with one row for
each state, including the columns “region” (name of region), “state” (name of state),
“tot” (the total population of the state), “totwhite,” “totblack,” and “totother”
(populations of three racial groups).

B The query contains a parameter, “$Year,” which is used in the where clause to select
data for only one census year. In the example shown, you can select the data for
1970 by running the report with the command:
report rwsqgldb pop ’ (year=1970)°
You can also run the report with the following:

report

In this case the Report-Writer prompts you for the report name, database name, and value for

3 ”»

year.
® The .sort statement specifies a sorting of the data by “region,” and within region,

by “state.” This also defines potential break actions for changes in value of “region”
and “state.”

166 Report-Writer Reference Manual S ODT-DATA

i

Population Example

The .format statement sets up a default format for a set of columns in the report.
These are used not only for the printing of the actual data but also for the printing
of subtotals based on that data. Note that the four numeric columns (“tot,”
“totwhite,” “totblack,” and “totother”) are given the same format specification.
Actually, the .format statement is not strictly needed, but provides a convenient way
to specify the same format for a number of columns.

The .header report statement is followed by a set of formatting statements that are
run at the start of the report. There is nothing particularly elegant about the
formatting statements, which write out the centered title seen at the top of the report.
Note the value of parameter “year” is preceded by a dollar sign to indicate that it is
a parameter. Also, underlined column headings are printed in this section. The
locations of the headings are based on the positions of the column names given as
parameters to the .rt (right justify) statements. These positions are determined by
the location at which the associated column is printed in the .detail statements.

The .header region statement is followed by a set of formatting statements that are
run at the start of each region. The .need statement insures that at least four lines are
available on a page before printing the heading for “region.” This assures that the
heading and the detail lines for at least two states are printed on a page.

The .detail statement is followed by formatting statements that are processed for
every row created by the query. In this case, rows are created for each state, and the
statement