
~~It';7)

BRAPHIC 7 MONITOR

PRELIMINARY USER'S GUIDE

5'th Printing, May 1979 COpy

~C2.+-' ~

K, ~I...-l '-'\~

'I' ,.'
i I:

J":' ·
! i

;,[
,',
j' , !

"~I
,1·":, ~

,[,I, ' ,,.

if"
Ir

' ~ .

(,{",1
1,', "

Ct,,'I' \
/..'e '

tIl
.... ~\

<",,,1,,"
l!. t'

, ,

l>
/ \

l'
i
If

SECTION

1.0

2.0

3.0

4 . 0

5.0

6.0

,F
7.0

8 .0

9.0

10.0

11. 0

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

GRAPHIC 7 MONITOR
PRELIMINARY USERIS GUIDE

TABLE OF CONTENTS

INTRODUCTION

MONITOR SUPERVISOR

MEMORY MANAGEMENT

TASK MANAGEMENT

DISPLAY ELEMENT l'v1ANAGEMENT

DISPLAY SCHEDULING

INPUT/OUTPUT PROCESSING

TIMING SERVI CBS

DATA TRANSFER SERVICES

MONITOR SERVICES

PHOTOPEN SERVICES

MEMORY ADDRESSING

SYSTEM GENERATION

QUERY/RESPONSE AID

OPERATOR COMMUNICATIONS

DISPLAY DATA SUPPORT

DEVICE HANDLER DESIGN

PAGE
~

I r

(
.. I ,

I

I'
l'

t ~
('

t'
I,

, {'

1 I
l'
('

I

1:
I

{\

1:

GRAPHIC 7 MONITOR

1.0 INTRODUCTION

The Graphic 7 Monitor provides s~pport for multi-task
application problems within the Graphic 7 Display Processor.
The monito'rsupplies most of those functions commonly associated
with a real-time system while emphasizing facilities associated
with display creation and management. Figure 1.0-1 presents' the
overall monitor structure.

Fundamental to any monitor capability is the management of
system resources, with memory being perhaps the most important.
In the Graphic 7 monitor, memory must be shared among user tasks,
refresh code and the monitor itself. - In addi 'Cion, the utilization.
of the memory management hardware is left to the monitor. This
entails initialization of the mapping hardware prior to passing
control to -a user task.

Within the Graphic 7 monitor, user 'Casks .represent demands
for various system resources. As in most real-time systems, each
task is assigned a priority which reflects its· need for CPU
time in relation to other tasks. Once in execution, tasks may
issue requests for monitor services in the ar~as of I/O, displE.y
management, timing, etc. These monitor services p~ovide many
functions which would normally be left to the host machine or
application programmer.

1

'..

N

1

I/O
CONTltOL

MEMORY
liANAGIUfENT

-,

DEVICE

11ANDLERS
I

r~-;

"< 1

MONI'J;on

SUPERvrSOIt

INITIALIZATIG1J . I .. I PARAMETERS

(lATA TRAnSFE.R
- SERVICES

. 'fASJ(
MAHAGEHEHT

J
DI.SfLAY
ELEMENT

HAN AG1UtEN'!'j

..

i'UUliG
SERVICi!S

DISPLAV
SClIEDUI.HH

NI01'0~EN

CON1'ROL

Figure 1. 0-1 - GRAPUIC 7 MONl.TOR FUNCTIONAL AREAS

~-- ~;-- ~--- - ~- ~ .. - .~.- .-..,. ~- ~; -~ ~, ~

'.

II

tJONITOR
SERVICE:!

~ ~ ~

\

'': .. '

Of these services, the Display Management area represents an
important advance over traditional implementations. Within Display
Management are the three functions of Display Element Maintenance,
Display Scheduling and Photopen servicing. Let us address these
individually. A Display Element consists of a set of refresh
instructions which define a particular display entity. Within the
monitor, these Display Elements are assigned a separate memory
area managed by the Monitor. Services within this domain include
Element Creation, deletion, enable and disable. In general,
Display Elements may be either passed from a user task area or
loaded directly from an external medium. Onae defined to the
system, Display Elements may be brought into the current image
Via the Display Scheduler.

The Display Scheduler assumes responsibility for managing the
Graphic Controller. This consists of displaying all the currently
sch~duled Elements accordin.g to .attributes supplied by the' user
tasks. Theseatt'ributes consist 'of, for example, position) color,
in~ensity and line structure. Selective enable/disable of
individ'l.lal schedule table ent'ties is also provided. The Display
Scheduler thus provides for considerable flexibility in the final
image with minimal refresh code manipulation.

The Photopen capability is included within the Display Manage­
ment facilities because of the close association with the
displ~y schedule table. In particular, use'ts may selectively
sensitize individual display elements to be responsive to the
photopen. Furthermore, photopen input may be done in either wait
or no-wait mode. Thus, user tasks may, at their disc'tetion, provide
for the typical photopen applications of object specification,
list selection, image editing, etc.

The last major monitor functional area comprises those functions l'
associated with data input-output. These activities include task!
display-element loading, data input, operator interaction and
any host communications. As in most computer operating systems,
these functions consist principally of the various device handlers.
With re~pect to the Graphic 7 monitor, it should be noted that
considerable flexibility has b~en left to the individual device
handlers due to minimal centralized I/O activities. In other
words, most of the processing associated with a user I/O request
is dane within the handler rather than having some functions
provided within an I/O nucleus. The advantage of this apprciach
is maximum flexibility to the driver and relative ease of system
adaption to configuration changes. One possible disadvantage is
greater memory usage. With regard to user task I/O, the approach
is fairly conventional w"i th a standard control block structure
and the usual tranafer options.

{

f

I

In summary, the Graphic 7 Monitor provides many of the functions '1
relevant to the real-time graphics problem. These capabilities ~'

have the effect of relieving the host machine of burden-some ~

terminal management responsibilities and improving re~J~9nse
to operator demands. 1

l'
fi

I

i
1

I

i
,

"~

4 I

\

,
\

'I,

r

GRAPHIC 7 MONITOR

MONITOR SUPERVISOR

2.0 MONITOR SUPERVISOR

2.1 SUPERVISOR CIMPL"EMENTATION

5

2.0 MONITOR SUPERVISOR

The Monitor Supervisor will be princip.ally concerned with
coordinating the CPU resource. This includes selecting the
appropr.iatetask for execution and fielding user~ task -ol"igina ted
request·s for monitor functions. The. Gommunication medium
between the monitor and user tasks is the EMT instruction. This
instruction allows for passinga.n 8-bit variable code in th.
instruction word to the EM! trap handler. This trap handler
represents the hea.rt of the· Monitor Supervisor.

The 8~bit variable field is utilized in two sections as
follows: The high ot"der fou!' bits indicate a pa!'ticular monitor
functional area. Current assigD,lllents for these four bits (i.e.
the major monitor functional a!'ea.s) are listed in Figure ,2.0-1.

The low order four bits of theSr!' instruction word indicate·
the particular sub-function (Le. entrY point) within the
indica.ted functional area. The Supervisor will simply pass this
entry code to the functional al"ea where deci! ions regarding·· such

-_ ...

are handled on a localized basis. S.pecificsub" functions for
each monitor functional area are outlined within. the individual
functional area. descriptions.

Ma.ny monitor functions require the specification ofa list
of parameters which indicate the location of relevantciata or
details regarding the service to be performed. This paramete-r
list, when -requi-red, will be. supplied via a pointer in general

. register one. Thus, prior to executing the EM! instruction,
the user will typically load a parameter block address into
register one. Particular parameter block structures are
indicated with eachsub,.function description.

The user may ascel"tain· the success or failure of any
monitor -request by testing the status return code which resides
in the task header (!$MRST). Success is generally indicated by
a zero in this byte; Non-zero-return cades indicate an error

6

I
·1 t t

I
1
-1

I
]

'f.'
.-f '
-_·t-(..

! I

,[;,

J "
i'
{
rl'l -)

1:
i'
f

_(1 t
, ,)

L

r
,I

1

l'

1

I
)

.
J

J
OJ

\ -.

J

J

J

EMT INSTRUCTION CODE: 104000 ~ 104377 (octal)

CODE .(HEX)

Ox
Ix
2x
3x

4x

Sx
6x
7x
8x

9x

A:x

Bx
Cx
Dx
Ex
Fx

MONITOR FUNCTION

Reserved
Monitor Services
Memory Management
Task Management
Display Element Management
Display Management
PROTOPEN Services

I/O
Timing Services

Data Transfer Services
Unused*
Unused'"
Unused*
Unused'"
Unused*
Unused*

*Reserved for future expansion

\

FIGURE 2.0-1 MONITOR CALL CODES

7

in the parameter specifications or the unavailability of a
necessa.ry system" resource. Pa.rtic1.llar codes relevant to each
sub-function are listed with the function description.

The Monitor-Task communications mechanism is depicted in
Figure 2.0-2.

8

I
I ·
I
l
""J

" ,

)

l
[
:'1 /,

",
'f'"
i :.
~\

1
,'f

t
\

~:J

(
(

-1
.'}

if)

Ii

1

1

1
1

I

J
<

o

o

o

USER
TASK

J ._ .. , "--- _ .. -- -......... .

J

J
~.

J

j

J

J

l

, . FIGURE 2. 0- 2
1

SUPERVISOR

~
SAVE CALLING
TASK STATUS

... ~
PICK UP

FUNCTION CODE

~
CALL

FUNCTION X --

,,'"
-:,

..-0'-
SELECT HIGHEST
PRIORITY, NON-
SUSPENDED TASK
FOR CPU ALLo-
CATION

~
SURRENDER

CONTROL

-.... -----.,... ~'

...... --
HONITOR -r

FUNCTION Xl
SUBFUHC'l'ION1i

. ,,~~~SUBFUNCTION21
.".,,,-' ~

r---- ----- ---I
SUBFUNCTION I I. __________ 'll-l

TASK ~ MONITOR COMMUNICATIONS

9

2.1 SUPERVISOR IMPLEMENTATION

The Supervisor module includes the fOllowing compPDents:

a) System constants and parameters
b} System ini.tialization
c) E.L"fT servicing'
d) InterTupt save state/restore~state

The constants and parameters section includes those
quantities which describe the curTent system state. Some of
the parameters may require adjustment during system generation.
Th& system initialization section receives control when the
monitor image is initially loaded. In addition, this routine
receives contTol when no other task is active. Tne EMT
service routine will intercept mcuitoT requests issued by
user tasks and direct them to the appropriate monitor functional
area. During .I/O operations the respective interrupt handlers
will us e the save/restore subroutines to record the syst.em s ta te
prior to interrupt serVicing, and then restOre that state after
servicing is completed. Inherent in these. subroutines is the
CPU alloeation algorithm which operates on the basis of task
prioritya.nd other task status conditions.

10

/
1'

I,

f;

f'
·11

t
'f..

(:
,-(.

.I:
--I '

.'1,:

II
t:
i

,,·,1·
. l

-1 ~.
I

-t,
i)
"I:
. \

':1' I ,\

.,

I

GRAPHIC 7 MONITOR

MEMORY MANAGEMENT

~.1 Memory Management Overview

3.2 "Task Memory Management

3.3 Display Element 'Memory Management

3.4 Schedule Table Space

3.5 'Glob-al Common Allocation

3.6 -System Genera tion Considerations

11

.... -:.

3.1 HEMORY MANAGEMENT OVERVI:4W

The Memory Management section of the Graphic 7 Monitor
is responsible for maintaining the current status of the memory
resource. For' this system, the memory resource is divided
into several classifications, with a. management scheme tailored
to each. An important aspect of the memory structure is the
hardware memory management. The allocation of available
memory space is heavily dependent on the hardware flexibilities
provided. First, the. resident monitor code must reside in
non ... relocated Cdirectaddress) space as shown in Figure3.l~1.
This includes addresses 100000 thru 157177 (octal). The
remaining memory spac.e is then. divided into three distinct
regions as follows: Task space. will include all 4K blocks in
relocated memory space; normally above oC.tal ad.dress 160000.
Display Element memory space will normally encompass octal
addresses 20000 througn71T77. This is indir~ct address space
dedicated to Graphic Controller refresh code. The remaining
4K block, addresses 0 through 11777, will oe u$edfor the
schedule table. This direct addres~ spac~will !. used to
control the disp.lay operation per directives issued :from user
tasks. . The follo\l/'ing sections a.ddress each of the memory areas
in more detail and discuss the .various monitor services available
for communicating with the memory management services. Users
should note that these services are a.va.ilable only via ot.her
monitor functions, i.e., user tasks ,do not directly issue
memory management requests.

12

[

I '

" ·1
-,

I
(

1
l
I

)

1
i
-I

I
- !

·1 '
.- ,

t
,

l'
. ., i'

., \

, .

,-_.

------------------.~----~---t SCHEDULE TABLE ..
____ .. -' ________ ... _ _ ~. ______ __ f

t
DISPLAY
ELEHENTS

. MONITOR

TASK
SPACE

4K Block

o

1

2

3

4

5

7

.8

9

n-1

n

Figure 3.1-1 Memory Allocation

.. -

'-

3. 2 T ASK MEMORY HANAGEHENT

Task memory space will be allocated in 4K (words) sections
with up to three blocks per task. This limitation is based on
the hardware memory management scheme which provides three
relocation registers. For task memory then, the allocation
algorithm simply looks for available 4K blocks without regard
to continuity~ actual location. As with the other memory
areas, the monitor routines are principally concerned with
available space rather than maintaining a list of allocated
space. The implication is that the space requestor is responsible
for returning the space when it is no longer required. In the
case of task memory space, the status is maintained via a simple
bi t map. Thus each 4K block has a corresponding bi t 'N"hich is
zero if the block is available. The initial bit map value is
determined at' system generation time oy setting bi ts corresponding
to those 4K blocks which are taken up by the other data types,
the monitor or global common blocks. The 5it map approach is
highly efficient and simple to implement but, of course, the 4K
block granularity results in some inefficiencies in allocation.
Readers expecting to use this system should also consult the
Appendix which discusses the hardware memory management scheme.*
Following are the monitor subfunctions associated with task
memory management.

* In particular, note that user tasks should begin at address
20000 (octal) in order to properly activate the relocation
feature.

14

I

1
-I

I
t
t
I
1

I
1

" I

,"-.,

3.2. I Allocate Task Memory Space

This service will be used by the Task Management area to
fetch memory space prior to task load. The requested area
length is rounded up to include whole 4K Cword) blocks. Up
to three such blocks will be provided. The blocks are not
guaranteed to be contiguous.

E1vIT Code: 21 (Hex)

Parameter Block:

WORD

o
1

2

3

Status Return Codes:

CONTENTS

Start Addr'ess Creturned)*
Required Length (bytes)
'Relocation Register 1 & 2
ReloCation Register 3

o - Request satisfied
2 - Insufficient memory

* The Start Address is basically meaningless - it is always set
to the constant 20000 (8). The area start is effectively the
beginning of the 4K block pointed to by relocation register one.

15

,'-

3.2. 2 Deallocate Ta~k Space

Upon task exit 01' abort, the corresponding 4K blocks are
returned to the system pool. Respective bits in the allocation
map are clea.red. The parameter block is of the same stl'ucture
as that used in the Allocate service, however, the firstt'Wo
words are ignored. This service is employed only by the Task
Management monitor area.

EMT Code: 22 (Hex)

Parameter Block:

o
1

z
3

CONtENTS

Ignored
Ignored
Relocation Register 1 & 2
Reloca.tion Registe'r 3

(A Zero, value for a. Relocati.on Register entl'Y implies
n.o memory was associated with that offset, Le., the
task image did no-t requite all three registers).

Status Return Codes:

o . Request satisfied

16

I
I .

I
1
J.
1
'I

J
-1

l'
I,
f

--I :
1

·1
I

.1. '
-"Ii

3.3 DISPLAY ELEHENT MEMORY MANAGEMENT

Display Elements represent jobs which are presented to
the Graphic Controller. These data blocks are stored together
in a common memory region managed by this monitor section.
Display element lengths can vary widely, thus these routines
must be able to optimize the allocation to achieve reasonable
memory usage. On deallocation, these routines will concatenate
adjacent areas when possible. Due to addressing complications,
allocated areas are prevented from crossing 4K (word) memory
boundaries. Available space in the display element area is
maintained by a list of free areas and a pointer to the next
av'ailable open space. On allocation, the list of free areas
is first searched to determine if an availaBle space exists.
Otherwise ,'the space 1staken in the open area. The list
of fre·e areas is maintained via forward pointers . and length

. fields, as depicted in Figure 3.3-1. Note that indirect
addressing will generally be necessary throughout the display
element area. The following two sections discuss the.relevant
Memory Management entry points.

17

. OPEN SPACE

I .

---~-~-"---...-

ELEMENT n"'1

Address
LOW

-- DETOP

.......... ~--............... -.~.--<: '--~-

FREE n

~-....- .-,...,. ;~-""-'--,-

ELEMENT n

. FREE, 2

- - ELEMENT' 2-'

--.- -'~--- ---- ~ -_._-""'-- ~ DELST
FREE 1

~ --.- .-..- -' -, ----,~~...--..--
.. ELEMENT 1.

HIGH

Figure 3.3-1 Display Element Space In.ventory
11<

I
t '

·f

I
1,

1
J
'"

I
I
r
I'

1
!

.,
\

Ji
I:

I

t \
I

.. I)
-I

3.3,1 Allocate Display Element Space

This entry will be used by the Display Element Management
section to fetch space for element storage. The provided area
will be rounded up to include an even number of 4-word allo­
cation units. In addition, the routine will ensure that the
area does not cross a 4K memory block boundary. If available
"s10ts" exist in the element region, such will be searched
for that which yields minimum residue.

EM! Code: 2 3 (Hex)

Parameter Block:

WORD

o
1

CONTENTS

Start Address (returned)*
Required length (bytes)

Status Return Codes:

o - Request satisfied
2 Insufficient memory

r. As per Flgure 3.1-1, this is the actual physical address since
this area lies within the first 32K of core.

19

3. 2. 2 Deallocate Dts~lay Element Space

The Display Element Management monitor services will use
this entry to release display element space. Released space
will be combined with other "holes" to the extent possible
while prohibi ting 4K boundary spans. Users should delete
display elements as soon as they are no longer required so
as to free space for other tasks' elements.

E~!T Code: 24 (Hex)

Parameter Block:

WORD

o
1

Status Return Codes:

CONTENTS

Start Address
Length (bytes)

o - Request satisfied

20

I
I
t
')

1\

1 ,
I
I

" ,)

-J
"

1,

I
i

.. 1

-II
,

t
-I

.1'
r:

3.4 SCHEDULE TABLE SPACE

The Schedule rable is used to control the operation of
the Graphic Controller Processor. This taBle is managed by
the Display Scheduler monitor services with calIsta this and
the following subfunctions for fetch/release of table space.
The inventory of Schedule Table memory space is simplified
by the allocation of fixed length (12 word) blocks. As in the
other memory areas, the Memory Management function only
maintains the inventory of un-allocated space. This free
space is recorded by a linked list of free b1~cks and a pointer
tc the beginning of the open area. No attempt at concatenating
adj acent blocks is necessary since allocations are always 'of
the sa.me size.' The system design assumes that the schedule
table space is ccntained within a direct addressing area, in
thii ca5e~ octal addresses lOGO through 17777. Usage of ~he
direct,addres sing area will allow more ef:ficient schedule
table monitor services while also allowing users direct access
to their table entries, if desired. As shown in Figure 3;1-1,

the schedule table and the display elements build against each
other but, of course, the schedule table is not allowed to grow
out of the first 4K block. (Recall also that interrupt vectors
occupy the beginning of said 4K block.) The following two
monitor services provide for allocation/release of ,the schedule
table space.

21

3.4.1 Allocate Sched~le Table Space

The Display Sch,edulermonitor service will use this entry
to fetch a 12"wol"d block forconstructio.n of· a new schedule
table entry. Since the length is fixed,only the start address
need. be returned in th.e caller parameter block.

3.4.2

EMT Code.: 25 (Hex)

Parameter Block:

WORD - CONTENTS

o Start Address (returned)

Status Return Codes;

o .. Request satisfied·
2 .. No space ava.ila.ble

Deallocate Schedule Table Space

This service will be utilized whea the user deletes a schedule.
table entry. As with allocation, this entry is gene'rally only
called by the Display Scheduler monitor services.

EM'!' Code; 2.6 (Hex)

Parameter Block:

WORD CONTENTS -
o Start Address

(The length is assumed to be a fixed l2w·ords.)

Status Return Codes:

o .. Request satisfied

22

" I' ;
1
I
1
l
J
0(

,I

:f
-J
..... ,

.~

1
I

·1
- ,

t
;

·1
;]

I

jJ(I . I
l ~l

·1

\ ..

!.

'-,

r .

3.5 GLOBAL COMMON ALLOCATION

During system generation, up to four, 4K blocks may be
set aside as system global common areas. Depending on their
length, user tasks may have access to either one or two of
the four areas. Generally, the global common blocks will be
taken directly from available task space. However, if
demand on display .lement space is lax then it will be
possible to use a 4K block from this area.* !n any case, user
tasks will need to indirectly map into the global common
area and thus cannot be using all three .relocation registers
for task execution. The usage oTformat of the globalconunon
area is entirely leit to the particular applicational require­
ments. Obtaining acces sto -a global commonar.aa, fTom within
a user task, is di-scussed in the TaskManag·ement S ec tion.

It w1l1 not be possible to specify block 0 (zero).

23

..

'­\

i

.t
"-"

3.6 MEHORY MANAGEMENT SYSTEM GENERATION CONS'IDERATIONS

At system generation time the user may wish to tailor
the memory configuration to fit a particular application
requirement. Normally, the configuration shown in Figure 3.1,,1
will be provided, with users specifying global common blocks
as necessary. However, users may vdsh to restrict the display
element space or schedUle table space via manipulation of

·the associated bounds contained within the routine .. In any
case, thebi t .. map initial value (BMASK.) . will need to be
adjusted to aCcCount ror which 4K. blocks are available for task
execution. In pa.rticular, bits must be set to correspond
to those blocks which.; have been specified ror global common
areas· (G:BLCOM).

I

24

f
I r

I
1
1
1
"(:'

r
II

Ii
1 .'
t I'

·r '
I:
.{ (

l'
f:
I' ~
~rii:

'.

t.·

-

' -

4.0

4.1

GRAPHIC 7 MONITOR
TASK MANAGEMENT

Graphic 7 Task Definition

Task Memory Allocation

-4. 2 Task-Moni tor Communication

4.3 Task Header Format

4.4 Task Loading

4.5 Task Management Monitor Services

4.6 Task Error Monitoring

25

."'"\
\ .--:' 4. a GRAPHIC 7 TASK DEFINITION

Within the Graphic 7 Operating System,use.r problems will
generally be solved by a group of ~nter~related "tasks". To the
Monitor, a task represents the smallest entity ~hich can be
allocated - the CPU resource. Beyond this and certain memory
allocation restrictions, the definition of "tasks" is left entirely
up to the particular {;lser application. Also,there is no maximum
number of tasks other than as restricted by the memory size.

The Task Management· monitor section is respons~blefor
maintaining the current system status with respect to the task
population. In general, any activity which reqUires a task to
either enter or exit the system must be coordinated by this
Moni tor section. In addition, should a task wis h to suspend it­
self (timed or indefinite) the appropriate Task Mana-gemen·t entry
will be employed.

Current system task status ismaintain.ed by means of a
linked list with painters contained in the task headers. (Since
all task headers start on a 4Kboundary·, the pointers are simply
relocation register 1 values.) The task list is maintained in
priority order so that the highest priority task capable of
execution ma.y easily be located~ The task list header will be
located in monitor global variable T5KL5T. Allocation of task
memory space with. i.mplications for system design is discussed
in the fallowing.

26

.

l
I • t

..

t
J

I
1
f

1
]

1
"~.

t
-I
., '

.{
.,

-f .
,

-t '.
. , '('
."

·~l

·1 :

i .

4.1 TASK MEMORY ALLOCATION

As discussed under the Memory Management section, alloca­
tion of task space is in 4K word blocks. Furthermore, since
only three of eight 4K blocks within the 16 bit address space
are relocatab1e, task size is limited to 12K words.* This
restriction may make it necessary to divide tasks which would
otherwise be a logical, unified application area.

In addition to task execution space, it may also be
necessary to access a global common area or the Display Element
storage region.** For these actions, it will be necessary to
have available one of the three relocation regi~ter? to pOint to
the particular 41 block under consideration.*** Given that such
additional add~essing is necessary, it is clear that user task
length will need to be held to 81 words. (Actually somewhat less
due ~o stack space requiremen~$.)

The above discussed limitations will obviously 'make it
necessary to give careful consideration to "task definition during
system4'esign.

*For additional clarification on this point, please see the
Appendix which discusses the Memory Management hardware.

**Access to a global common area may be provided automatically
on task load. References into the Display Element region
must be arranged by the user.

***Relocation Register I may never be used for other than address­
ing into the first 4K block of task space.

"

27

4.2 TASK·MON!TOR COMMUNICATION

User tasks may issue a variety of requests to the
Graphic 7 ~Ioni tot. Such reques ts are communicated to the
Monitor by an EM! instruction which contains a function code
in the ·low order byte. The Monitor interprets this byte as
two hexadecimal dig~ts, the first ·specifying the monitor
;functional area and the second a particular subfunction.
Along with the EM! instruction, most Monitor functions require
a list of parameters against which the function is applied.
The user sUFplies this par,ameterlist by placing ,th'e start
address of such in Register 1 prior to the EMT.

Successful completion of the user request is indicated
. by returning a status, cod. toa-dedicat.d location in the task
h'eader. Generally, user tasks will need to check the status
code to verify proper command performance. Particular status

'" codes' for each Monitor func:tion are listed with the function
description. Normally, ,a zero sta.tus indicates successful
completion.

On. issuing. an EM! to the Moni tor, th~ current task status
is saved either in the task header or on the user stack. Except
for I/O operations which may be either wait or no-wait, the
user task is suspended while the request is satisfied. On
return from the subject Monitor functionala-rea, the system
s.upervisor will normally perform a task scan to allocate the CPU
re$outce to the current highest priority task. Thus, as the
system envlronmentchanges, the various ta.sks can all have an
opportunity for execution.

28

1·
I

_.,

'1

l
I
-I

{

-1

1
-I
,

I
f

t
1,

, '~-

4.3 TASK HEADER FORMAT

Most of the information concerning a task!s current
status is contained in the task header. This data block, out­
lined in Figure 4.3-1, will be pte-allocated by the user at
assembly time. Some of the parameters must be initialized at
assembly time while others are strictly reserved for Monitor
usage. The following sections address each of the individual
parameters. The varioul fields will normally be referred to
via their offset names which are of the form T$xxxx. Usage of
the offset definitions is recommended since some re-arrangement
of the header structure may be neces s.ary as the sy! tem defini tion
matures.

4.3.1 Task ID (T$ID)

The Task ID byte will contain the unique identification
for the task. Each task to be entered .into the system ·must
have a unique ID to be used in conjunctio.n with operator
communication or task-task/task-monitor data exchange. Generally,
;this field will be "-referred to.as twob.exadecim.al ;digi ts. The
Task ID should be inserted at assembly time. User task ID's
are restricted to the range 1016 to FF16 .

29

Word Offset
0- 0

! 2'

2 4

3 6

4 10

5 1.2;.

6 14

7 16

8 20,
9 22

1.0 24

11 . 26:,

1'2 30
13 . 32
14 34
15 36
16 4Q
17 42
18 44
19 46
20 50
21 52
22 54
23 56
24 60

25 62
26 64
27 66

28 70
29 72
30 74
31 76

Byte 1
".

Byte 0

Priority TSPR In TS!D
Status T$ST

Monl.tor·Req.
Status 1'$MRST

,
Task List
Forwa rd Link T$FINK

Relocation· Reg ,.' Relocation Reg.
.·Two Save One Save T$RR
Memory Relocation Reg.
Extension T$EXTR Three Save

Stack Pointer Save T$REG
Allocation ':::a.v~ T$ALLC
Start Addtess' T$STR1'

Global Common Requests T$COM
Display Element ContrOl
Block List Header' ' T$ELS
Display Schedule Control
Block ,Lfst Heade.r T$5LS
photopen ContrOl
Block List Header T$PPEN

Task Suspension T$TIM
,.- "c'o'Ii t r'e 1

P:t"ivateTimer T$PT!
Contrel

Logical Device 1 T$DEV

Logica) . Device 2

r,., stical .- Device S

Logical Device 4

Logical Device S

Logical Device 6

Logl.cal Device 7

La gical Device 8

Figure 4.3;'1 Ta.sk Header La.yout

"

I
I i-

t

I
'I
1
1
L
.f
1,1

,~-, I: •
II
-I \

t:
I:

'f ;
.{ I.

i (
.. J (, .
I f

, i

'\ '

, ,

1,

-,

4.3.2 Task Priority (T$PR)

The Task Priority will indicate the particular task's
requirements for CPU time with respect to other tasks in the
system. The task list will be maintained in decreasing priority
order. Priority should be a positive integer between 1 (lowest)
and 12.7. Ihis field should be definea at assembly 'time.

4.3.3 Task ,Status (I$S!)

The Task Status bits will indicate the current state of
the task with respeCt to various system-task interfaces. The low
order eight tILts of the status word will be modifiable by other
tasks. The definition of the individual bits is as follows:

Bit -
15
14
13
12
11
10

9
8

7-0

On Implies

Task Disab1ed
TaSk, Suspended
I/O Wait
Timed Suspension
Photopen Wait
W;ai ting for "Da'ta

User Defined
(Externally Modifiable)

The user will normally set this word to zero at assembly
time, however, the Disable or Suspend bits may be used to effect
a particular initial task state. With regard to bits 0-7, user
tasks will usually establish usage conventions during system
design.

31

;'\
\ :

·0

4.3.4 Monitor Request Status (TSMRSTJ

The Monitor RequestSta tus Byte is use-d to return a
status code to the user task fallowing ~ request for a monitor
service. Zero genera.llyindicates successful request satis­
faction wi.th other numbers .defined :'£01' each individual sub­
function. Initialization of this parameter is not n.ecessary
however, of course, space a.llocation is necessary at a.ssembly
time.

4.,3.5 Task List Forward Link (T$FLNK)

The Forward Link simply serves to point to the next
.lower priority ta.sk. If this is the lowest priority task, then
this parameter will bezara. This parameter is mainta.inedby
the operating system and will generally be of no concern to the
user. (The actua,lcontentswill simply be reloca.tion register
one of the next task.)' (Backward links in the ta.sk list are not
cUT'rently being used.)

I
I
I
I
"(

I
-L

1"
{,

il

f
",

1\

l:
I;
·f '

t
i

-{ ':,

-t.
-(')

, I

4.3.6 Relocation Register Save Area CT$RR)

The three bytes in this area will be used to store the
ta.sk relocation registers whenever control is passed to the
operating system. The user will not generally be concerned with
these entries. CThese values must be saved on interrupt since
some tasks may use the relocation registers to access global
common areas or display element space.)

4.3.7 E;xtended Memo[y Allocation CT$EXTR)

A user task may request an additional memory allocation
above that required by the loaded task image. The extension
quantityJexpressed at offset T$EXTR (byte), is in units of 256
bytes. Such memory .. .space is located at the end of, .. the task
image. Remember that task space is normally allocated in 4K word
blocks so the memo.ry extension may not actually Tesul t in any
addi tional memory being ,allocated. The purpos e of, this service
is to allow tasks to set aside space for data bases or other
usages without ha.ving to define this space at assembly time; the
resul tbeing a smaller load f.ile.

33

4.3.8 S tack Po in ter Save (T$'REG)

This word will be used to save the task stack pointer

I
1
I

whenever the task surrenders control. Other general registers -I
will be sa.ved on the sta.ck. Note that the task relocation
registers will, in general, need to·be installed to access stack
entries. The sta.ck painter save word need not be initialized by

'-(
the user at assembly time since the operating system will auto~ -,
11latically point R6t.o the last word in the la.st 4K block allocated.

I
(In allocating space for the user task, the system will request
32 words greater than, the task length.)

4.3.9 Alloca. tron. Save CT$A11C)

The'Allocation Save word will be used to record the initial
,f

values of the task re.location registers. This serves to indica te
which 4K memory blocks were allocated so that such can be de-
al,locate'd on task exit. This para.meter- is of no, concern to user
tasks but, of course, space must b~kallocated for the word at
assembly time~

34

.t
--I

i .,

i
o"f

'I " ~

'. ~.~

4.3.10 Start Address (T$STRT)

The Start Address word will contain the desired start
address for user task execution. This will be defined at assembly
time; typically the first word following the task header.

4.3.11 Global Common Reguests (T$C0M)

User tasks which do not require all three relocation
registers for execution addressing may access one or two global
co.mtnon areas. The operating system may have defined to it, at
system generation time, up to four 4K blocks to be used for global
common areas. For user tasks of less than 8K words,the third
relocati'Jn register (R.R3) m.ay be used to refer-ence one of the four
global common blocks. (Addresses would be o.ithe form: 6xnx
where l/Oxxxx is the offset into the 4K block.) This may be
indicated at assembly time by placinga bina:ry 1-4 at T$C0M.
The corTeet reloes. tion Teg isteT value,to correspond .. to -the
common block selected, will be inseTted at task load time.
Similarly) ~foruser tasks of less than 4K words , relocation
register two may be pointed toa global common area by placing a
binary 1-4 at T$C0M+1. (Clearly it would not make much sense to
have the same number in both T$COM bytes.) If global common
access is not desired,then these bytes should be set to zero at
assembly time. Inability to satisfy global common requests will
result in task load failure.

4.3.12 Display Element Contro..l Block List Header (T$ELS)

A linked list of Display Element ContTol Blocks is main­
tained within each useT task. This list is updated whenever the
user task references the Display Element Management monitor
services. Subject word is simply the list header (i.e., pointer
to first entry). Users should set this w~Td to zero at assembly
time.

35

c' 4.3.13 Schedule Control Block List Header (T$SLS)

User Schedule Control Blocks are maintained on a linked
list far ~which ~$SLSis the list header. This list is updated
by the Display Scheduler Monitor sub~functions. Users should
set th£s word to ~ero at assembly time.

4.3.14' PhotoEenGontTol' B.lock List· Header (T$PPEN)

Requests for Photopen input will be linked together within
each user task. This word serves as the linked list header. The
Photopen m.onitor services maintain the control block list. Users
should set this,word to Zero ata.ssembly time.

4.3.1S TaskS~sEension CoptrOl(T$TIM)

Words at: JStIM and T$11M-+-2wilL be,usedto maintain the
tas.k suspenslon.t·imer on timed suspension; . .The£irst word is' used
for linking wi th the second word containing .. the actual timer valLle,

I
l'
I
1
r
I
1
I,
l
"("

These words are manipulate~ only bi·the operating system .. They I
should be set to zero at ~ssembly time ..

4.3.16 Fri vate Timer Con-erol CTS,FTI) (

User~issuing private timer requests will have such main­
tained on linked lists within their task areas. The two words at
T$PTI are used fOT linking. The first word essentially links th~

various tasks currently having outstanding~rivate timers. The
second word is the list headerf.or, the individual ta.sk's timers.
These words a.re maintained by the Timing Services monitor' section
a.nd a.re not m.a.nipulated by the user task. Both words .should be
set to ~ero at assembly time.

36

1

I
{
~(

t
{

.t
(

" '

,r-·

r-

4.3.17 Logical Device Association (T$DEV)

The eight words at T$DEV will serve to connect the user
specified logical devices (1-8) with any eight physical device/
unit combinations. The logical device specification (contai~ed

in the second word of the I/O control block) will simply serve
a~ an index into this table. The low order byte should contain
the physical device number (1-) with the high order ?yte the
unit number. These specifications will normally be made at
assembly time. All eight entries must be defined; unused en~ries
set to zero. The correspondence between physical device number
and respective handler will be set up during system generation.

37

r""""'·

c:

4.4 TASK LOADING

Tasks will generally be brought into the system iTom some
external, bulk storage medium. The task load monitor request
allows'for the specificationo£ a file name to be communicated to
the host or external medium contToller. The loa,d process involves
first issuing a "File Query" to the subject handler. This request
specifies the target file name and should return the file length.
The length: information is then used to allocate task space. After
the memory space has peen successfully allocated, the task image
is input using a standard read request . *

Two pOints should be emphasized regarding the above

I
f
I
I
(

I
(

(

I described procedure. First, the specifie<:l, handler. must be able to
accept a "File Query" request, as described in the IIO section.
Secondly,. when building user tas k images on the host stol"age medium, ---I

the length information must be made l"eadily available. Por' paper (
tape oriented input, th.:is information is already included in the
absolute load format.

Following the task image input, the task is linked into
the current task list and made eligible for execution beginning
at the user specified start address.

*Note that contiguous 4K memory blocks are not guaranteed by
the memory allocation section. This has possible implications
for DM.A transfers.

)

I
l
t
1

.1
I

(

, I

,-

\ -

!---

4.5 TASK MANAGEMENT MONITOR SERVICES

User tasks will access the .various Task Management
monitor functions via EMT codes of the form 3x (Hex). The
services available are as follows:

4.5.1 Load Task

This service will be used to bring a new task into the
system. Specified input device (logical unit numb-err "must
be able to accept a "File Query" request.

EM! Code: 31 (Hex)

Parameter Block:
Word Contents - o

1
2-6

Task ID (low order by~e)
Logical Device Number'
Source File Name

(ASCI I,. terminated by .a null)

Status Return Codes:

o - Request Satisfied
2 - Insufficient Memo~y

32 - 110 Failu!'e
33 - Invalid Device Code
34 - Task ID Mis-Match
35 - Device Unavailable
36 - File Not Found .
37 - Unable to Satisfy Global Common Requests

4.5.2 Load Overlay

This service is not currently supported.

39

... ",
.. ./

. ~,.

4.5.3 Enable Task

This entry may be used to reset the task disabled bit
and thus' make the task eligible' for execution. The Enable/
Disa.ble services should not normally be used on an inter~task
bas is ..

EMT Code:

Parameter
Word -

33 (Hex)

Block:
Contents

o Task ID (lowo~der byte)

Status· Return Codes.:

o . Request Satisfied
32 - No Such Task Found

4.5.4 Disable Task

'this service will set the Di.sabled bit in the task header
status bits (T$S1). Task is then ineligible for execution.

EM! Code: 34 (Hex)

Parameter Block:
Word Contents - o Task ID (.low order byte)

Status Return Codes:

o - Request Satisfied
32 - No Such Task Found

40

-(

(.

I
f
1
I
(

.-[

, 1 ,

. -I

1

\ -

r_

.r

1 _

-- -- ---- -----

4.5.5 Task Suspend

This service may be used to suspend the calling task for
a timed or indefinite interval. If timed, then the Timing
Services section will be notified to set up a timer. Tasks can
only suspend themselves.

EMT Code: 35 (Hex)

Parameter Block:

Word Contents - o Time Out Value in 1/10 Seconds,
Zero implies indefinite suspension

Status Return Codes:

o - Request .Satisfied

'-.. -4.5.6 Task Continue

Continue will remove a task from a timed or indefinite
suspension state. This service may be directed from/to .any-,' task
in the system .

EMT Code: 36 (Hex)

Parameter Block:

Contents Word
o Task ID (low order byte)

Status Return Codes:

o - Request Satisfied
32 - No Such Task Found

41

/
..

4.5.7 Task E~it

A task leaves the system and thereby relinquishes system
resources by issuing the Exit ENT. All I/O must have been completed I
prior to issuing this request. It i5a1so recommended, though
not nec'es sary, to delete all schedul e table entries, di splay "1
elements and private timer~.

EM! Code: 37 (Hex)

Parameter Block: None (Only the calling task may Exit)

Sta.tus Return Codes: N/A

4-.5.8 Fetch Tas~ Status

The current task status is maintained in word T$S1' in the
task hea,der. This service will allow any task to check the status

, of any othet task.

Parameter Block:

Word Contents
~.

o Task ID (low order byte)
1 Returned Task Status

Status Return Codes:

o - RequestSatis£ied
32 -No Such. Task

42 f ..

1
(.

",

I
1

\

-I
-{

1
\

-r
)

. -l
1

t

r ..

f.

4.5.9 Update Task Status

This service allows for the modification of bit 0-7
in the subject task!s status word. The supplied bits are logically
ored with the current status. word contents. Users may wish to
restrict, by definition, some of these bits to be read or write
only.

EMT Code: 39 (Hex)

Parameter Block:

Word
o·
1

Status Return Codes:

Contents
Task ID (low order by~e)
New Status Bits (Byte 0)

o - Request Satisf"i:ed
32 No Such Task

4.5.10 Abort Task

The Abort entry may be used to cause the involuntary,
termination of a user task. This entry is included primarily
for operator communications usage.

EM! Code: 3A (Hex)
Parameter Block:

Word
~

o

Status Return Codes:

Contents

Task ID (Low Order Byte)

o - Request satisfied
32 - No such task found

4.5.11 Search for Task

The Search function will allow the caller to locate the
beginning of any user task in the system. The returned value
essentially the 4K block number which becomes the relocation
register value if access to the subject task is required.

ENT Code: 3B (Hex)
Parameter Block:

Word

o
1

Status Return Codes:

Contents

Task ID (low order byte)
4K block number (returned)

o - Request satisfied
32 - No such task found

44

I'
f 1

I
(

l
I
f
I
f
I·

I
is I

I
I

\
I

I
I

-1
i

-I
I
I
I

I
1

\.

. (

, ,

4.5.12 Continue Task & Suspend

Inter-task execution control may be aided by the
ability to, in a single monitor request, continue a given
task and suspend oneself. The suspension provided by this
service is non-timed.

EMT Code: 3C (Hex)
Parameter Blook:

Contents Word
o Task ID of task ~o be continued

(low order byte)
Status Return Codes:

o . Request satisfied
32 '"- No such tas.k found

45

4.6 TASK ERROR MONITORING

The monitor generally performs no error processing for
user tasks. Thus, mistakes in the preparation of the various
control blocks or other programming oversights will generally
result in fa.:t"al system errors. Li ttleadvice can be offered
in such circumstances above the usual debug techniques of e.xamin­
ing the various task variableS, status indicators and stack.
This examination may be performed through the ROM resident
debug capability. The appropriate 4k block number for the task
in question will need to be inserted in the relocation register
before attempting to display task-memory contents.

One exception to the above is the case of the bus
time-out error. The monitor supervisor will intercept this
interrupt and, if currently executing within a user task, will
mark the task disabled and notify operator communications
(assuming OPCOM is installe,d}.~

46

I
I '
(

I
f

I
(

I
(

-~I·

I
-I
:

f
I
~r '
I
-f

.1
I

I.

..... ,.

r

r

GRAPHIC 7 MONITOR

DISPLAY ELEMENT MANAGEUENT

5.0 Display Element Management Overview

5.1 Standard Element 'ControlBlock

5.2 . Display Element "Storage Format

5. :5 DisplaY,Elemen.t ;Moni tor Services

47

5.0 DISPLAY ELEMENT NAl\fAGEMENT OVERVIEW

Construction of the g1"aphic image will entail the
definition of various pictU1"e elements and the sche.duling of
th.ese e-lements to suit the particular application requirement.
Display Element Managem.ent includes those services iihich are
used to define picture. elements to the Graphic 7 monito1".
Scheduling of picture elements is cove1"ed in a sepal'ate monitor
functional area. Within the Graphic T Operating System stTucture,
display elements are stored" in a dedicated memory area, separate
from task image areas. The picture elements (refresh code
blocks) are processed directly il'om t.hisdedicated rriemol'Y area
by the Graphic Controller. Three methods exist for presenting
display elements~to the monitol'. Fil'st, the user task: may
"pass" aJl element directly fl'om his task image . This procedure
would generally apply to small, fairly sta.tic pictul'e elements.

l_ Secondly, the. usel' maYl'equest to have a display element loaded
fl'oman extel'nal medium. For this case, the user must, obviously,

. specify a file name 01' other external. data source identifier.
The extel'nal medium"approac.h will normally 5e used for large,
static display elements. Finally, USer tasks may allocate
disp"lay element space and dynamically build the ref1'6shblock
as, for example, rea.l time data is received. This approach
yields maximum flexibility but can be rather expensive to
implement.

Once the display element has been defined, the user ta.sk
may cause it to oe displa.yed via the Display Scheduler. Temporary
removal o£ the element from the c"Ul'l"ent image can be done via.
the Element Disable Service. Elements which are"no longer needed
should be discarded via. the Element Delete Service.

48

~

[

-I ;

~

I
I
"I

"I

[.

I
.-",

r
"1
.-~, ,

_('

-.(.

{.

-t
.{ ,

.-t
i

~t
j

1
)

-"(

r .

. r

Required

Optional

STATUS BITS

a
1

2

3

4

5

WORD CONTENTS

o
1

2

3

4

5·9

Reserved (Link Field)
Element Start Address*
Flags/Status
Length (Bytes)
Start Address or Input Device**
File Name***

FLAG BITS

8 1
9 1

10

11

12
13

Position Absolute****
Size Absolute****

61

7 0
Control block in'llse 14

Enabled, 1 Disabled 15

* Address in monitor storage area (returned).
** Start Address in user task for "PASS" service,

Input Device for "LOAD" service.
*** File Name relevant only for "LOAD"; must be

terminated by Null character.
**** These bits are not currently used by ~he monitor.

Figure 5.1-1 Display Element Control Block Format

49

"--

5.1 . S1A.\fDARD ELEMENT CONTROL .. BLOCK

Display Elements always hav~ an associated control block
within the task which requested their definition. This control
b10ck~ outlined in Figure $.1 ... 1, contains all the parameters
n-ee~s.sca.ry to th~ v-a-rif.lus Meniter functions. This e-lf.lck is

important because the. Monitor does not maintain any internal
inventory of Display Elements or associated memory space.

-,-Thus, whenever a user task issues a monitor request relating
to a display e1ement,theassociated parameter (control) block
address must De specified. Within the user task image,the
Display Element Control Blocks are maintained ona linJ<ed list.
This iS,a simple., singly linked list with tnelist header at
tS'ELSwithin the task.neader. Maintenance of this list is
done entirely by the Monitor'routines and will generally be
of no concern to the a:pplication task developer ... !nsummary,
the Display Element Control Block is the parameter block for
user requests to monitor service and also the inventory
mechanism for monitoring the cur'I'ent display element configuration.

The individual fields within the element control block
are defined as follOWS: word zero is used for control block. list
linking and is generally of no concern to the user. Word one
contains the element start address within the monitor stoTage
area. This address is the actual physical address since the
display elements are stored within the first 32K of memory.
Note also that this address actually points to word zero as shown
in Figure S. 2~1, thus the user code will normally 5.tart a.t 4
bytes past the given start addl"ess. The third control block word
contains status and flag bits as outlined in Figure 5.1-1.

Next comes the element length in bytes. This length does £.2.!
include the six control bytes which are added to each element.
Words 4 through 9 are defined only for certain element services
as descl'ib~d in Section 5.3.

50

[

.""

(

r
't
I

I
(

·t '
\

",(

·r
-(,

-I
'1

.1

I.

, .

-,
l

r-

, -,

WORD
o FLAGS TASK ID
1 IZPR or RETURN ---.~-...-...-. - - ----- -
2 iii

3

4
5
6. ___ •.

7

.~ . _._ . _ .. _ .. __ _ .a_ ...
9

10

11
12

n-l
n

. ~. . ..

-ELEMENT REFRESH CO DE

RETURN

Figure 5.2-1 Display Element Storage Format

51

5.2 DISPLAY ELE£1ENT STORAGE FORMAT

Display Elements are of variable length and packed within
the reserved system storage area. (Generally this will be
some or all of 4K pages 1, 2 and 3.) The length of the
allocated space is six bytes greater than that specified by
word three of the Element Control block. The three extra
words are accounted for by two control "liords at the beginning
of the element and a "RETUruP' instruction as the last word. *
Of the first two 'Hords, the ini tial contains the Fl ags byte
C.direct from word 2 of the respective element control block)
and the parent task rD. The second word will contain either
an IZPR instruction (if the element is enabled) or a RETURN
instr:uction (for the case of a disabled element). The Element
Storage format is portrayed, in Figure 5.2.,.1. The maximum
element length, including control words, is 4K ;;'Iords.

I

* Recall that the elements are executed as subroutines from
related Schedule Table entries.

52

I
I '

I
[

]

1
I

.1

.. 'I

-I

.(

(
\

I

-1
i

-I
'!

. c(

-(

I
C.

I

\.

--.
. /'

5.3 DISPLAY ELEMENT MONITOR SERVICES

The following sections detail the basic monitor services
related to Display Element manipulation within the Monitor.
Note that ~he first four words of all parameter blocks
are common, as presented in Figure 5.1-1.

5.3.1 Load Display Element

The Load service will be used to fetch a display element
from an external medium. The input device specification should
be a logical device number, relative to the calling task.

The source file identifier should be an ASCII string terminated
by a nUll.

EMT Code: 41 (Hex)

Parameter Block:

WORD
,~

0- 3

4

5-9

Status Return Codes:

CONTENTS;.,-.---~---
(standard)

Logical Input Device
Source File Identifier

o - Request satisfied
2 - Insufficient Memory

32 - I/O failure
35 - Device unavailable
36 - File not found

53 .. -.

5.3.2 Pass Display Element

The Pass serviCe may be used to transfer a display element
image from user task spac$ to monitor space. Display elements,
i. e., refresh code blocks, are alway~ assumed to begin on word
boundaries.

EM'! Code: 42 (Hex)

Parameter Block:

WORD -
0-3

4

Status Return Codes:

CONtENTS

(standard)

Element start address
within user task

Q Request satisfied.

2 - Insufficient memory

54

I
(

I
(

t
t
'(

(

I
·1
I

I
I

·f

I
-(

I
i

\1 .

1, .

5.3.3 Update Dis'Play Element

Update may be used to provide a revised copy of a display
element which was previously defined via the PASS function. The
length of the element may not be changed. The user task is
responsible for avoiding conflicts with the Graphic Controller in
the case of updating an active (enabled) display element. This
service is oriented toward fixed format refresh elements such as
textual tables.

EM! Code: 43 (Hex)

Parameter Block:

Standard Element Control Block
(words 0 -4)

Status Return Codes:

o - RequeSt satisfied

55

l
\

5.:5.4" Fetch Element Space

There may be instances where Ue user task must construct
the display element according to data received during execution.
For this circumstance, the system allows the user task to
allocate display element space via the Fetch service. Obviously,
the element should be fully defined (including the ending
RETUfu~ instruction) prior to being scheduled. Access to this
element area will Be via one of the relocation registers and,
thus, the user task will generally need to Be less than 8K
in length. Construction of the required relocation register
bias is left up to the user task. This may oe done by isolating
the three high order bits in the element address (returned
in word 2 of the parameter block); moving tn.ese tnree Bits
to relocation register three and then replacing them by 011.
The effect is to force mapping through relocati:on register
three, into the target 4K block." (Caution: The address con­
tained in word" two of the parameter Block sn.ould De conSidered
"read onlyl! to the user task.) *.

EMT Code: 44 (Hex)

Parameter Block:

- Standard Element Control Rlock -

Status Return Codes:

o - Request satisfied
2 - Insufficient memory

n Remember that user refresh code should start at four
bytes past tn.e given start address~

S6

II
t,

f
I(

1

~" __ _" __ • _______ •• ~ ~ h ..:. _ •• __ ••

5.3.5 Delete Displa¥ Element

\ I"..: The Delete function should be employed after the' particular

, ,

(-'.'.

.. r:---
. \

: _____ - -/0000..

, "­
\

r""
" ,

\ ..

"

element is no longer required by the user task. This service
will free the associated display element memory space and
remove the control block from the user task control block list.

IHPORTANT: All schedule table entries referencing said
element should be deleted prior to element removal.
The system will not check for this error.

EM! Code: 45 (Hex)

Parameter Block:

- Standard Element Control'Block-

~tatus Return Codes:

o - Request satisfied
33'- No such element*

* this error would normally occur when the user fails to set Rl
to point to subject parameter block prior to the Delete EMT.

57

5.3.6 Enable Display Element

The second word within the element space will determine
the Enabled/Disabled element state. The Enaole service simply
inserts. an IZPR instruction into this word.

EM! Code: 46 (Hex)

Parameter Block:

- Standard Element Control Block •

Status Return Codes~

o • Request satisfi~d

S. 3. 7 Disable Disp lay Elem~nt

-, The Disable service will insert a return' in. word two of
the element space. (Users should note the differences in
efficiency between disable of the element and disable of the

"-asso:ciated s'chedule table entry or entries .)

EM'! Code: 47 (Hex)

Parameter Block:

- Standard Element Control Block -

Status Return Codes:

a - Request" satisfied

58 -

I
I
f
I
I
I.
'f
f'
L
f
C
1i

!

[I

l
fi
(I
.
I

i III

\ .

\ •...

5.3.8 Purge Display Elements

On task exit, users should ensure that all display elements
and schedule table entries have been removed from the system.
This service may be used to eliminate all display elements.
(Clearly the complementary Scheduler service should be
exercised first.)

EMT Code: 48 (Hex)

Parameter Block: N/A

(The elements are found by scanning the
usert~element control block list.)

Status Retur.n Codes:

o - ~Request satisfied
(The absence of any element is not
considered an error.)

59

I

5.3.9 Revise Display Element

The Revise service may be used to replace an existing display,.,
element with a new version. This differs from Update in that the new I
element is installed in an area distinct from the old element, any

referent schedule entries are adjusted and then the old element is (I'
deleted. Revise is oriented toward non~frxed-format elements which,

typically, reflect real time varying data. I
EMT Code: 4B (Hex)

Parameter Block:

WORD

a

1

2

Status Return Codes:

CONTENTS

Pointer to Control Block for
current element version

Start addres~ of new element
version

Length of new element version
(bytes)

a ~ Request Satisfied
2 ~ Insufficient Memory

60

/
1

I
J
~

I
f
I
(

-f

-If

l
I

.l
l

· "
\

--, -.... ~

,'-

GRAPHIC 7 MONITOR

DISPLAY SCHEDULER

6.0 Display Sched~ling Overview

6.1 Standard Sc'heduler .control :Block

6.2 Schedule Table StructuTe

6.3 Dis~lay Scheduler Monitor Requests

6.4 Display Error Handling

6.S Monochrome Scheduler

61

6.0 DISPLAY SCHEDULING OVERVIEW

The Display Scheduler monitor functions will be used
to cause a. Display Element to be presented in the CRT image.
Variou~ parameters, provided during scheduling, will control
the actual element characteristics. These characteristics
are, for example, screen position, intensity and color. The
job of the Display SChedUler is to process all such display
requests and cause the GraphiC Controller to sequence through
each of the Display Elements selected. This is affected by
constructing, for each display request, a start ·upblock of
refresh code containing the parameter initialization instruc­
tions and a ,call to the selected display element ,code. These
start'-up code blocks must then be linked together according
to color ~nd user-supplied priority.

. Along with the; bas,ic scheduling capability, the. moni tor
also allows enable/disable, delete and modify of_selected,
scheduler cont1:"ol blocks.' These capabilities will allow the
user to tailor the display to. ii t 21, changing real-time environ·
ment. In summary then, display scheduling represents the second
step in image creation, following display element definition.
These two monitor functional areas will hopefUlly provide
suffiCient flexibility for most display creation/manipulation
tasks.

62

I
(

'I,
f,

f
1

" flO

, I

,'- "

, '

J:-

" .f.,

-I:

J,
"

"t' , , I

-.~
,

I-I
1.

. -~i,
--I

- -
J

--.

-,' --~

;
j-

,--- - --------------

6.1 STANDARD SCHEDULER CONTROL BLOCK

As in all task-monitor communications, a parameter
block must accompany each monitor request. The address (user
task relative) of such block is always supplied in register 1.
Figure 6.1-1 outlines the parameter list which is standard for
all Display Scheduler requests. Only the last word is optional.
This parameter block supplies several important quantities.
First, the linkage to the target display element is provided
in word 3 as a pointer to the respectiv~ Element ContrOl Block.
This mechanism allows for assembly-time definition of the
requested element. Second, the parameter block contains the
various attributes relevant to this incidence of the selected
element. Table6.l-1 shows possiblevalue~ fOT each of the
attribut~s~ Associated with each~chedule request block, the
monitor will build a companion Schedule 'Table entry as described
in Section 6. Z. It is i~portant to remember tha;t this
association (between the request parameter block and the Schedule
Table entry) must be maintained until the user task specifically
reque-st's -the schedule entry be deleted. 'This is necessary since,
as in Display Element Management, the monitor does not maintain
any internal inventory of the current schedule table status.

The user may directly reference his Schedule Table entry
via the address contained in word one of his request block.
This should be an un-mapped address.- The first word of the
request block is a link field used to maintain all Scheduler
request blocks belonging to this task on a linked list. The
list header is at T$5LS within the user task header. This list
is maintained by the monitor and will generally be of no
interest to the user.

''-.--/

WORD 1 5 0

0 0 Reserved (Link Field) --- ---'---~~-- -------------
2 1 Schedule Entry Address
4 2

6 3

10 4

12 5

-Plag""S- ~------TSta-t~; ------ I

!~€~e=,n~~Cj--::~r.~~~!~~c~:~~d!!i~,
CRT's ':Priority -j

-_ -- - -.--""""'!....-!II-.'-""- - ~---
Color i Intensity

14 0 1.1neStructurefCha.T'ac't;r- -S ite
'16 ' 7

... -_, -_ ... -.... _._- - ,..,.....,. -- -,--
X Start

{)

1
2

3

4

5

6

7

20 8 Y-S~tari-~ -- .. ~.- - ~--.--. --~-.

22 9 ., 1-- ... ------ -I Modify c~~rol

.' ~ ... ".' . -..... ;.
""'.-

'STATUS BITS , ~LAG BITS

8

9

10
GC Status Pending 11
Sch.Entry Caused Halt 12

Sch.Ent.Caused. Out~ofd· 13
Boun s

Parameter Block in use 14
l~Disabled 15

Photopen Enable (CRT 1)
Photopen Enab le (CRT, 2)
Charactet Rotate

Blink

Figute 6.1·1 Standard Display SchedUler Parameter Block

64

[

:[

1
I
'i
1,
1.
-II

f :'
,)'

('

'-:' '

I'
I
-f ~

-~ I

i
'''f,

1

'.'

J. "

ATTRIBUTE OFFSET (8~ SIZE POSSIBLE VALUES -
CRT's 11 Byte 0 (No CRT's)

I" 1 CRT 1

'" CRT 2 ",' t.

3 CRT 1 & 2

Priority 10 Byte 1 ~ 127

Color 13 Byte 0 - Red
'" 1 - Orange

2 - Yellow "-I", ,.

3 - Green

Intensity 12 Byte o~ 7

Line Structure 15 Byte 0 - Solid
1 Dotted
2 -Dashed
3 - c.enter Line

.,.....~. ' Character Size 14 .J~yte .O-+- 3

X Start 16 WOTd -1023 .. "'1-023 (Decimal)

Y Start 20 Word -1023~ +1023 (Decimal)

Table 6.1-1 Schedule Request Attribute Values

65

c

.. ---'

'-

6.2 SCHEDULE TABLE STRUCTURE

The Schedule Table is a linked list of Graphic Con­
troller initiation blocks. Space for the construction of these
blocks is allocated by the Memory Management services. Within
each black are links for both scheduler management functions ~

and Graphic Controller execution. In particular, Figure 6.2-1
shows the overall Schedule Table layout. You will note that
each color has its own linked' list of blocks. This structure
provides for a minimum of color changes and also allows for the
priori ty implementa t'ion discuss ed below.

Figure 6.2-2 shows the layout of the individual
schedule table blocks.

The various refresh instructions, LDDZ,LDDP, etc. are
cOllstructedbased on the attributes provided. in the parameter

'block in the- USer task. The element start address is retrieved
from the element 'control block contained within the user task.
The "forward link" and "backward link" fi alds serve to' doubly
link (in circular fashion) all existing schedule table- blocks.
These linked lists 1 one for each color, are maintained in
priority order.

The priority specification may be used to indicate the
relative importance of thisdispla.y request, and as such, helP
in avoiding image clutt~r and Graphic Controller overload. Th~

implementation of the priority scheme is quite simple. First,
when a new display request is received, the generated table entry
is linked int~ the existing structure according to the indicated
color and priority. Then, when constructing the Graphic Can· '
troller execution links (words 10 &11), the routine' will first

66

I
f i

J,\

I
1
I

"

~(,

,J ~

,I
J'

I~I,

(/
I

1
,

-f
J!

I . '

f
1

I
'1

) -

. " _.'\
\ ' -'

"..;.

I-'-~

I '.
I i.

\

,

INITIATE

BLOCK

CALLS

~J

RED

JUMP (S)

I ...

SCHED. SCHED.
START 1----""» ENTRY 1--09~ ENTRY
BLOCK n .n ... ~

ORANGE

j- -----j
I I

---~ , ... _,
I I I
~ ______ J I

I
I ~ _____ ____ 6

RETURN

START ----..0 [~ BLOCK " _. '. .')I ~-- ... - ...

Y~~~~;I---+"D' ____ ...
BLOCK

GREEN
START
BLOCK

-+ - - ------

I~·D-----·"
~---------

'Figure 6.2-1 Schedule Table Structure

67

4------ ---

o

C;

G

~ OFFSET (8)r-'------:---_----.,.
, 0 PRIORITY 'ITASK ID

WORD
0

1

2
3

4

5

6

7

8

9

10
11

LDDZ
LDDP
LOTI
LDXA
MVtA

__ _. ___ _____ 1...,; __ . __________ _

2 FORWARD LINK
4

6

10
12
14
16
20
22,

24

26

-..,. _ ... ---.-------- -... - --,-- --.. ~ ..
BACKWARD LINK -'- ... --.,..-.- ---- - ... _---- - ----.---
LDDZ
_" __ • __ ... oIOJiO,. -_ -_ ... _ --_._ - _ -,..._.' --

LDDP -...... ---...... ----------.-- ~-~---
LnTI -"""",,,,_'_---'- --- ---- ---- ------,"'""-
LDXA ___ _ ... -. _ ___ ~-._ ... - _"!'O

MVYA --..... -....... _--.--- --.- --- -- --- -.--.
CALL -_._.- - ---- -' -- - -. ----.-- -.;;....,.-
ABS. ELEMENt ADDRESS -... ,-- -- -. ---~ -.-_ ---.-"- ---
JUMP
-~ -...;. -'-'-"-"!" - ~:----. - - - - - ---

JUMP (LINK) ·ADDRESS

:~ LOAD DISPLAY Z REGISTER
LOAD DISPLAY PARAMETER REGISTER
LOAD TEXT INCREMENT REGISTER
LOAD X ABSOLUTE
MOVE Y A.BSOLUTE

Figure 6.Z·ZSchedule Entry Structure

68

I
I
l'
I
1
[
.,
f
:J :'

-I:

f
\

-)

~I
J
:1

! ,

',J'
r

-f,
i
\

I
I

I.

......

-"

--

6.2 SCHEDULE TABLE STRUCTURE (CONTINUED)

scan the existing table to find the highest enabled priority
(ignoring priority 127). Any blocks with priorities less than

highest-3 are then excluded from the current image. Finally,
those blocks with sufficiently high priority are linked to­

gether using the Graphic Controller jump address contained in
word 11. In sUlnInary, th.e Schedule Table represents the

GraphiC Controller conunand mechanism and also the Display
Scheduler monitoring scheme. Normally this structure will be
completely transparent to the user tasks .

69

6.3 DISPLAY SCHEDULER MONITOR REQUESTS

User tasks will communicate with the Display Scheduler
via the EMT monitor calls discussed below. The parameter block
is the same for all calls, as discussed in Section 6.1.

6.3.1 Schedule Element

This service will be used to bring a display element
into the current image, sub j ectto the given priority . (Priority
127 may be used if the element is to be displayed rega~dless of
the curTent highest priority schedule entry.) The associated
schedule table entry address is returned in Word 1 of the
parameter block.

EMT Code: 51 (Hex)

Parameter Block:
- Standard Scheduler Control)Block

Status Re~urn Codes:*

o - Request Satisfied
2 - Schedul¢ Table Space Exhausted

itparameter limit checks are not performed. All parameters are
masked to ensure a valid value for the respec~ive Graphic
Controller instructions.

70

I

I
I
I

I ,
r

,F

J;

1
i

. I
I

...

" ,

6.3.2 Delete Schequle Table Entry

Delete will remove a schedule table block and deallocate
the associated memory space. Note that all schedule table
entries referencing a particular display element should be
deleted prior to deleting the element.

EMT Code: S2 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes:
o Request Satisfied

32 - Control Block Not Found

6. 3. 3 Enab l,~ S,cb,ed'(,ll e Tab 1 eEn try

Enable will allow the curren~ display of a table ~ntry
subject to its relative priority. The enable/disable state is
indicated by the sign of the priority st"ate. The'respective
flag in the user parameter block is also updated.

EMT Code: S3 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes:
o - Request Satisfied

71

C",
. ,

6.3.4 Disable Sc~edule .Table Entrr

Disable will remova a schedule table entry from the I
Graphic Controller execution list. This is indicated by making
the Rriority field negative. With regard to the priority I
scheme, disabled entries are effectively non-existent.

EMTCode: 54 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes~
o - R~quest Satisfi~d

12

I
J
f

_I i

I
f:

. I

, -I'
f
t:
1

-11
, , ,

·f
, r

-:1'

I

OJ

'.

, .:

6.3.5 Modify Schedule Table Entry

The Modify service will allow for efficient update
of selected schedule entry attributes. Modify attributes are
selected by the bits of word 9 in the parameter block as
follows:

BIT ON 'IMPLIES

0 Update CRT Assignments
1 Change Intensity
2 Change Line Structure
3 Change Character Size
4 Change Character Rotate
5 Change Blink
6 Change X-Start
7 Change Y-Start

The new values for any modify requests are simply taken
from the assigned parameter block locations. NOte tb.at changes
to any parameters not .listed above (coloT,p:tiority, etc. ; must
be done via a deletefre-insert sequence .

. EMT Code: 55 (Hex)

P.a'rameter Block:
- Standard Scheduler Control Block

Status Return Codes:

o - Request Satisfied

73

('
',_.,'

6.3.6 Purae Schedule Table

The Purge entry may be us.d t~ delete all schedule
table entries belonging to the calling ta.sk. This, for
example, should be done prior to task exit.

EMT Code: 56 (Hex)

Parameter Bleck: N/A

Status Return Codes:
o - Request· Satisfied

l.
I'
I
r
I
f
, I,
'·1.

I
','
-I
",

. i

_I t
. I

i

"f.,
,

1,
t

·-1' Il :.!

'.,

l
I

.'J '
"f

;
'. '

\ . '

. '.

6.3.7 Graphic Controller Status (7)

The Status entry may be used to deter.mine the X,Y beam
coordinates at any point in a refresh file. ThiS service
operates by replacing the specified location by a halt in­
struction and then fetching the X,Y coordinates when the halt
interrupt occurs. Thus, the X,Y position will not include
the effects of the word at the specified display element offset.*

EMT Code: 57 (Hex)

Parameter Block:

This servioe operates through an extension
to the standard scheduler control block ,.as

;follows: **

10

11
12
13

OSAGE

Reserved
Element offset
X coordinate (returned)
Ycoordinate (returned)

Status Return Codes:

o
32

Request satisfied
Block not active

Status bit three will be used to indicate the service is
busy. Users will need to monitor this bit to ascertain request
completion. Note also that words 12 and 13 are used by the
monitor while the status request isacti ve.

* The offset includes the element control words.
** Register one should, as always, point to word zero.

75

:~ ... "., ,
\----

I
"'-..-.

6.4 DISPLAY ERROR HANDLING

The two display interrupts corresponding to display halt
and displayout .. of-bounds are serviced by the Display Scheduler.·~
If eit~er of these events occur, the following procedure is
followed:

a. The parent schedule table entry is located by an
examination of the Graphic Controller Stack Pointer.

b. The element call is "nUlled out ll andapPTopriate
status bits are sat in the user's Schedule Control
Bl.ock.

c.. The Gra.phic Controller is restarted. The user task
will need to delete the· associated schedule table
entry ~. enable. will not be effective.

I,

.1

I
I
I.
·1

L
.. \

I
l
I
/1

·i

I
J!

-I, .
i
i

I
;e PhotCpen handling is discussed in a separate monitor section. ·f;

-,. ' ..

. I
76

I

-
\

.. _ .. _--..... _--_ .. - -

6.5 MONOCHROMESCHEDULpR

A second version of the Display Scheduler has been
generated to provide for the monochrome display situation.
The monochrome scheduler is similar to the color version in
most respects. The major difference is in the area of
scheduling priority. In the color case, a single 'Priority
scheme applies to all current entries, i.e., the 'Priority
is not independent for each color or CRT. For the
monochrome case we have taken the list structure depicted
in Figure 6.2-1 and used a separate list for each CRT.
The priority value (specified in your parameter block) is
now a'Pplied to the particular list indicated by your CRT
specification. For the case of multiple CRT IS s'Pec.ified for
one schedule entry a default list assignment must be made.
The list assignments for each possible CRT combination are
given by Table 6.5-1.

Oth.er special characteristics of the monochrome scheduler
are .as follows.

a) The CRT assignment byte in the caller parameter
block is now extended to include 4 CRT's:

b)

BIT SET YIELDS .-" -
a CRT I

1 CRT 2

2 CRT 3

3 CRT 4

The Color byte in the caller parameter block{~
ignored,

77

c) There are no parameter limit checks (associated status
return codes are not used),

d) "Modify" not supported for CRT as.s igrunen ts byte.

CRT. ¥YTE (b inarr) .

'0000'

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

EXECUTION LIST
AS'S! GNMEl,,{T

1

1
Z

1

3

1
Z

1
4

1

2

1

:3

1
2

1

eIn other words, the schedule request is aSSigned to
the list of the lowest numbered CRT selected.)

TABLE 6.S-1 EXECUTION LIST ASSIGNMENTS

"..­
I '

I
I
I,
I
l:
',f _-

1.,
"-

I,
f
- ,

I
1
.,

!

f
. ,

-J;
i

.(:

0'1

f

\ .

GRAPHIC 7 MONITOR

INPUT-OUTPUT SERVICES

. "

7.0 I/O System Structure

7.1 User Task 1/0 ·Communication

7.2 I/o Monitor Services

7.3 Standard Graphic "7 Device Handlers

7.0 I/O SYSTEM STRUCTURE

Input/output processing generally represents one of the
more difficult areas of computer operating system endeavors.
This difficulty arises from the diversity of devices and re­
quired.operating modes. The current system implementation
is no different in this regard; however, the assumption of
mostly dedicated applications will permit some simplifying as~
sumptions. One of these assumptions is tha.t the number of
periphera.l devices is relatively small, thus allowing a rather
de-centralized approach to device handler design. An addi~

tional assumption is that there will generally be little de­
vice sharing between tasks. This assumption and the lack of
any local mass storage releases us from any serious I/O
queueing requirement. The Monitor I/O structure is depicted
in Figure 7.0-1.

It is likely that users will want to add specialized de­
vices/interfaces to the existing monitor configuration. For
this reason we present, in the following, a discussion of
the basic I/O monitor functional area. As mentioned above,
our approach has been to de-centralize the I/O requirements,
thus leaving -considerabl.e freedom to the indiVidual device
drivers. In fact, all the central I/O section does is deter­
mine which handler is to receive the request and then transfer
control to such. Within the individual handlers, we have de­
fined some standardized procedures which will make life easier
for applica~ion task developers. In particular, a standard
set of entry point assignments has been defined. Also, some
attempt has been made to be consi.stent with respect to status
bit assignments and error return codes. These standards are
listed in the next section.

Users wishing to implement their own device handlers
will be advised to follow the conventions which have been es­
tablished even though the overall Monitor operation is little
affected by your decisions. Addition of device handlers to

the GraphiC 7 Monitor is discus.sed in Appendix B.

I

).

/,

.f
f

USER
TASK

EMT 7x

I/O CONTROL
BLOCK

r- I/O BUFFER

I
I ,
I
I
I

~.,

J
J
I
I
I
I
I
I

MONITOR
SUPERVISOR

1-- -~ \V'
I
I I/O

. I
I
I
I
I
I

SUPERVISOR

, . .,..._----....,

I

I
I
I
I
L __

I i' DEVICE /
~ - - - - - ~ HANDLER ~-- - - -!'" 11

.... - -_ ~__________ I

---- CONTROL

- - - - - - DATA

FIGURE 7.0-1. G7 MONITOR I/O STRUCTURE

81

I
I
I

\~V r - - .::itt!_ --j

-} PERIPHERAL
f DEVICE
L.. --. ___ .. J

7.1 USER TASK I/O

With respect to I/O from application tasks,users will
find the facilities relatively conventional and easy to mani­
pulate. I/O may be issued in either wait or no-wait mode with
appropriate bits to indicate current I/O transfer status. The
Standard rio Control Block, discussed below, will be used to
communicate all I/O requests to the monitor. The address of
the parameter block should be placed in register one prioT to
the ENT instruction, the same as in other monitor calls. Spe­
cific ENT codes are discus sed. in Section 7. 2.

T.1.l Standard I/O Control Block

Figure 7.1.1-1 outlines the I/O Control Block structure.
The first word (word 0) is reserved for monitor usage and should
never be utilized by the application task. Other fields in
the I/O block ar~ discussed below. Keep in mind that the speci­
fic rio operation desired is encoded in the ENT instructi.on~

.. Thus,=g_oi]_o1!l~~_9P·era ti<in? 'tQe~-;~~-ole)/0 .bl6<K~i)5 .. ~o-t -need~~ : --_ -~--.
althou~h it will generally encompass a full eight words. Note
that an I/O control block is dedicated to a particular data
transfer as long as such transfer is in progress.

7.1.1.1 I/O ControlBlock,Word 1

Wbrd 1 will contain the device specifier. This is in
the form of a logical unit number which is used as an index
into the I/O table in the task header. (See Section 4.3).
The logical unit number should . be an integer in the
range one toeigh~. The high order byte of word 1 is not
currently used (check individual device handler).

7.1.1.2 I/O Control Block, Word 2

The user buffer address should be placed in word two
of the I/O block. Note that some devices require a ·buffer
which is of fixed length or !light1Y larger than the expected
transfer.

82

.

I I
It,

I

I

I'
I

I

I
I
I
I
1
f
1

" I)

f
I

I
i

f:
·f

{I

-J
i

r
I
f

_ "_. _~. ___ ._. ----.;..,c." ••• __ -- - _0 ,

,---_._ ... _ .. '

WORD BYTE 1 BYTE [)

a RESERVED --... ---.... -, ~- --_. __ --... -
I

1
: LOGICAL UNIT

UNUSED I NUMBER t--' ---- - - __ ____ .. _0 _______ _

.2 BUFFER START ADDRESS - - ... --_ -.. _---- -.- ... ---- -... -_ ..
3 TRANSFER LENGTH (Bytes). -............ - - .. ~ ... -.- ... --

(. .. 4

I TRANSFER . I:· STATUS
FLAGS . I FLAGS

I
-~~-~~~~~--~--~---~----

5 ERROR RETURN ADDP~SS
-------~--- .. ----,.. ... -------I .

6
I

UNUSED I TI~m OUT ___________ J __ lS.?.,g.Q~~s.J __ _

7 DEVICE SPECIFIC

FIGURE 7.1.1-1. I/O CONTROL BLOCK STRUCTURE

,
... -.. _------_ _-- - -~ - --.~.- .. ~--.--..

·83

I'
I

--.. - , .

; .-

7.1. 1. :3 I/O Control Block, Word 3

The expected number of bytes to be'-transferred should be
placed in Word 3. Obviously, the buffer address specified in
Word 2 should point to an area of sufficient capacity to al·
low t}fe expected transfer. This should normally be specified
as a byte count even though some devices may transfer only
words.

7.1.1.4 X/OCentrol Block, Word 4

The various status bits controlling the I/O transfer
and completion code reside in Word 4. The low order byte is
used for device status, returns (when requested). The high
order byte isusad to indicate the desired type of transfer
and resultant trans·fer execution status. The b~it assignments
areas follows:

Transfe!' Flass Device Status Flags

On' Im-eJ.ies On ImElies

15' No-wait 7

14 Busy* 6

}
I

13 Device 5

12 Dependent 4

11 Transfer Options 3 Busy
10 } 2 Attached

9 Camp let ion 1 Allocated
8 Code 0 On/Off line **

* Used for no~wait transfers only.
** This info'rmationis not always available.

I: .
II;

.(

.l·
I,
.1
-I

])
'.1

~t: I
t
:(,

t
4:

tl
,- :

-{ :

l'
1
-r

7.1.1.5 I/O Control Block, Word 5

An optional error return address may be provided in Word
5. This has meaning for wait I/O mode only. If the error
return point is exercised, the user may query the completion
code to determine the specific fault. One should note that
this optional error return applies only to the data transfer
itself and not to possible rejection of the I/O request.

7.1.1.6 I/O Control Block, Word 6

An optional time out value, in seconds, may be placed
in the low order byte of Word 6. This is considered to be a
positive number from one to 255*. If time out is not de­
siredi then a zero should be placed in said byte. The high
order byte is currently unused.

7.1.1.7 I/O Control Bloc~, Word 7

Word 7 is reserved for device-specific usage. For some
devices,it is not needed at all; others may only use it for
certain operations. Check the individual device descriptions
in Section 7.3

7.1.2 Standard Status Return Codes

Every monitor function returns a status code to in­
dicate the monitor's response to the user task's request.
For I/O operations, this status code only indicates whether
or not the request was accepted. Proper completion of the
I/O transfer must be verified by examining the completion code

* The accuracy of the time interval is zero to minus one second.

85

{:

1 ~ :
in Word 4 of the I/O ~ontrol Black. With regard to
handler design, the fallowing standard return cades
be used whenever possible:

device
should (

~tatusReturn Code Cdecimal)

Q

4
5

33

34

35

36

~eaning 1
Reques t accepted.,[,\
Requested function not available.' ,
No $uch. device
D,ev~ce not available or "' device busy.
Device not allocated/attached

to calling task. '
I/O operation completed prior I

to receipt of cancel re~
quest. -['

Resource Exhaustion.
-',

Standard 1/0 completion codes (contained in bits 8,9, 10
of Wbrd 4 of I/O black) are as follows: I'

Completion Code

o
1

2

3

4

5
(5

7

86

Meaning

Successful I/O transfer.
Buf_fer overflow.
Transmis,$ ion error.

I/O was canceiled.

Time out.

.

.r

(
)

r
I

I.
(

I
.,
(

. (

(

I

'.

7.2 MONITOR I/O SERVICES

A group of standard monitor services has been defined
which will correspond to entry points available in each de"
vice handler. As with other monitor functions, the desired
service is encoded in the EM! instruction as the sub .. function
number. Some handlers may not support all of the services
listed below due to logical or physical constraints. How ..
ever, adherence to the standard entry numbers when design'1ng
new device handlers will improve the overall system image.
In addition and of more practical significance, switching be­
tween devices via the logical unit ·numbers will be greatly
simplified if all handlers use the same function codes. One
may also note that several additional codes are available
for use with specialized devices or for other user"specific
requirements.

7.2.1 Allocate Device . . . b

'The allocate service maybe used ·to assign control ·of a
device to .aparticular user .application tas.k . This s~rvice
is used when the user wishes to issue monitor-independent I/O.
Any interrupts Teceived by the monitor while the device is
allocated are ignoTed. The only .way in .which the device can
be returned to general monitor usage is to have the task issue
a de-allocate request.

EMT Code: 71 (Hex)

ParameteT Block:
StandaTd I/O Control Block;
only the logical unit number is relev.ant.

Status Return Codes:
a - Request satisfied
4 - Function not SUPPoTted

33 - Device not available

7.2.2 Deallocate Devi~e

The deallocate service should be use,d when the task has
completed its operations. Devices should not be kept in the
allocated state when not needed.

EMT Code: 72 (Hex)
Parameter Block:

Standard I/O Control Block;
only the logical unit number
is relevant.

'Status Return Codes:

o - Request satisfied
4 • Fun,ct'ion not supported

34 • Device not allocated 01' not
allocated to the calling task~

7.2.3 Attach Devie.

The attachservi.cewill be used. when ,an application task
wants to reserve: a. device for its exclusive use. This differs
fl'omallocate in that attach implies usage of standard monitor
I/O. Attach will be used: When a task wishes to guaran.tee access
to a, device for a period. of time, spanning seveTal I/O opera.­
tions.

EMTCode: 73 (Hex)
Parameter Block:

Standard I/O Control Block;
only the logical unit number
is rel evan t.

Status Return Codes:
o - Request satisfied
4 - Function not supported

33 - Device not a.vailable

8S

f !.

I
'(

'I
-r
'I
-(

(,

I
'f
1
~(

t
1

l-
t
{

r
-I

I

7.2.4 Detach Device

Detach will be issued when ~~e application task wishes to
relinquish control of the subject device. This ma~es the device
available for use by other tasks.

EMT Code: 74 (Hex)
Paramater Block:

Standard I/O Control Block;
only the logical unit number is
relevant.

Status Return Codes:
o • Request satisfied
4 - Function not supported

33 - Device busy
34 - You're very mixed up

7 • 2 • 5 Read Data

The Read service will be used to transfer data from an
external device to a program ... local :b.uffer. The amount of data
transferred is determined by the transfer count in word 3 of
the I/O control block. Check the particular device handler
description in Section 7.3 for the exact functioning of this

servie.

EMT Code: 75 (Hex)
Paramter Block:

Standard I/O Control Block

Status Return Codes:

o - Request satisfied
4 - Function not supported

33 - Device not available

89

7.2.6 Write Data

Write will transfer data from a user buffer area to an
external device. There will commonly be a variety of device­
specific charactersitics in relation to this service.

EMT Code: 76 (Hex)
Parameter Block;

Standard I/O Control Block
Status Return Codes:

o - Request satisfied
4 Function not supported

33 - Device not available

7.2.7 Control Device

The Control service would be provided with devices which
require setup prior to data transfer. Some devices, such as
programmable switches, may support only the Control function.

EMT Code: 77 (Hex)

Parameter Block:
Standard I/O Control Block

Status Return Codes:
o - Request satisfied
4 - Function not supported

33 - Device not available
7.2.8 Fetch Device Status

This service will return the current devic:e/handler status to
the low order byte of word 4 in the specified I/O control block.
Standard bit assignments are given in Section 7.1.2. Other bits
may vary between devices.

EMT Code: 78 (Hex)

Parameter Slack:
Standard I/O Control Slock

Status Return Codes:
None

90

r.

7.2.9 Cancel I/~

Cancel may be used to prematurely terminate an I/~ transfer.
EMT Code: 79 (Hex)
Parameter Block:

The I/O block related to the
transfer to be cancelled.

Status Return Codes:
o - Request satisfied

35 - I/O has already completed

7.2.10 I/O Purge

The Purge entry will be used by the Graphic/7 Monitor to
ensure that a task Which is being aborted (or is doing a ~oluntary
exit) does not have any outstanding I/O in process. lfthe
handler is doing I/O for the subject task, it is cancelled. In

addition, any attach or allocate conditions, if relevant to the
subject task, are er.ased. This entry will normally be of no
interest to user tasks.

EMT Code: 7E (Hex)
Parameter Block: N/A

(RRI is assumed to·point to
the task being aborted.)

Status Return Codes: None

91

7.2.11. File Querv •

The status of a ciata .file may be determined via the File

Query entry point. This entry may not be supported by some
device handers or may be supported in modified form. For the
entry, the user buffer area has the following specific format:

Worci

o
1
2.

3 - 7

Contents

File Status/File Type

File Length (Records)*
Record Length (Bytes)

File Name (ASCII, terminated
by null)

The exact meaning of the above parameters is dependen.t

on the particular device and handler implementation.

EMT Code: 7F (Hex)

Parameter Slack:

Standard I/O Control Block

Status Return Codes:

o - Request satisfied

33 - Device not available

* For task images and display elements, the number of records
should be one with the number of bytes equal to the total
amount of data.

92

I
I ,

t
I
l'
~I

l
I,
I
]

(

I!
"

·1

.(

.(I

·f
f

;

t
I',

i·

r.

7.3 Graphic/7 Device Handle~ - .. "

Following sections outline specific capabilities of each
device driver. Users should note particular characteristics
of eath device in regard to entry points, transfer options
and completion codes. Entry points listed for each handler
do not include 0 Cini tialization) and 14 (I/O Purge) since
these must be pTovided for all handleTs.

7.3.1 AlehanumericKe;(,board

The keyboard will be used to input alphanumeric data

and fuilction key requests. The entry points supported are:

EMT Function -71 Allocate
72 Deallocate
73 Attach
74 Detach
75 Read
78 Fetch status
79 Cancel I/O

The following" transfer options are supported with the

3

UsaS'e
Accept only function key input
Mask out parity bit
Accept only alphanumeric input
the keyboard device hanrller

On Implies.
Allocated
Attached
Eusy

With regard to the .user buffer area, the following points
!Jhould. .be noted:

a) The count of the number of characters input (not
incluCiing the carriage r·eturn) is placed in word, 7

of the user Ilra control block.
b) Except in cases of buffer overflow,the carriage

return will always appear in the user buffer.

94

(,

'r;
[

01

1
"I

]

]1

~l

-1

'i
"

)

1
(
-f,
1

'. i

f:
I

. --(!

-(,

, .
i.

l I.

7.:5.2 POSITION ENTRY DEVICE (PED)

The PED handler will service either a trackball or

joystick device. The handler is set up to be used in

conjunction with a cursor or other screen-position-relevant

entity. Thus J the handler uses the delta XJ delta y values

returned by the device to update virtual x,y position

coordinates. These coordinates may be given to the user

task as binary integers or in the form ·of LOAD-X!MOVE .. Y

refresh instructions. Furthermore, the data may be provided

on a "one .. time" basis or via the notify service (discussed

below). Finally, the actual PED x,y delta values may b~

supplied by choosing one of. the option bits listed below.

The handler entry points supported. ,are:

EM!

71
72
7S
76
77
'78
7A
7B

95

FUNCTIONS

Allocate
Deallocate
Return current X,Y position
Setcul"'rent X,Y pOSition
Set X,Y to 0,0
Fetch status
Define notify requirement
Cancel notify

The following transfer options are supported:

BIT
13

12

11

USAGE

Setting this bit will cause the
X,Y coordinates to be returned as
LOAD-X,MOVE-Y (absolute) refresh
instr'l,lctions.

This bit will be set by the handler
whenever new x,Y values are supplled
by the notify service.

Setting this bit will cause the actual
x,Y delta values to be returned as
received from the PED. These are
signed integer w01"ds. This option is
on1yrelevant to the notifyse"tvice.

Status bits related to the PED handler are:

BIT -
1

Z

96

ON IMPLIES

Allocated

Notify Active

(

1;
'I,
'(

l
1
(

],

I
~l
'{

--t

1
(

-I'

-t
-I

Ii

.f,
I

1

Several points should be noted in regard to the PED device/
handler:

a. The notify service will return the new X,Y position
each time new coordinates are received from the PED
device. As with entry S, these coordinates may be
binary integers or refresh (load X, move Y) instructions.
Bit 12 in the user 1/0 transfer flags will be set
whenever new X,Y values are supplied. The user may
also, optionally, specify a subroutine address in word 7
of his I/O control block. This subroutine will be
called (JSR PC,XXXX) whenever a new PED X,Y is supplied.
The subroutine will need to be kept reasonably short.
Furthermore, any registers used must be saved/restored
and no monitor services maybe employed. If the optional
subroutine is not desired, then a .zero should be placed
in word 7 of the I/O control block.

b. The data buffer used with the PED device should be exactly
two words in length and begin on a word boundary eX in
first word, Y.in 'the second) .

c. All transfers related to the PED handler are satisfied
immediately, thus, the wait/no-wait transfer flag is
ignored.

d. Entry points 6 & 7 assume 16 bit binary X,Y values.

e. Time out and optional error return specifications are
not supported.

97

of the user I/O control block
are used for PED notify linking.

g. On calling the user specified subroutine, the following
register situation will exist:

1) User relocation registers are installed
2) RO,Rl contain binary X,Y
3) R2,R3 contain L0ADX,M0VEY
4) R4 paints to user I/O control block
5) RS points to user subroutine
6) R6 - system stack painter

Aga.in we emphasize that this state mu.st be
preserved across the ca.ll.

98

I
I '
(

I
1
I
(

I··
I
,(

;

I
-I

'I

(

(

-(
,

-I

f

. 1
1

7.3.3 Paper Tape Reader

The Paper Tape handler is configured for reading task images
or other data in file format. The handler is not a general purpose
capability. The expected file format is that employed in standard
PDP paper tape load images. The general form is:

header block

data block(s)

start block

The header block has format:

byte
a
~ ...
2

3
4, 5

6

7

10, 11

12, 13

contents (oc~al)

1

o
32 (block length)*
o

Start Address (typically the same as
the program load point)

1

7

Program load point
Total program length (bytes)

*In all cases, the block length includes everything except the
checksum byte. The checksum is the negative of the accumulated
preceding bytes in the block.

99

Data

byte
14, 15

16~3l

32

blocks have
byte

0

1

2 ,
.,.
.)

4 , 5

6

n

the

contents (octal)
Program Transfer Address
Unused
Checksum

general form:
contents

1

0

block length (n)
load address
data bytes

checksum

The trailer block is a data block with no data bytes, the
program transfer address as the load address and a block length
of six. Tasks .. to be loaded by the GRAPHIC T monitor should not
have a- specified transfer address (argument in the .END statement)
since this spe~ification is obtained from the task header. In this
cas e the trans fer addres s in the start b lock appears as uni ty . **

**1f examining a paper tape recall that the low order byte of
a word (the IIright" byte) comes firs t on the tape.

100

I
1
r
I
f
I
I
(,

I
-(

f
l

·1

I
(,

·1 '

-{

of I

1

.1

r

The entry points supported by the paper tape handler are:

EMT -
75

7F

Function

Read
File Query

All transfers are assumed to be binu'y data. Wait/No-Wait
and I/O time-out aTe supported in the normal manner.

I/O status returns of the paper tape handler are:

o - I/O success

NOTES:

1 - Checksum error
2 - Transmission error
3 - Invalid file format
6 - Time out

a. For task loads, the target address is taken from the
data block on the tape . Th.is is 'necessary since the
tape image does not typicall/refl.ect space allocated
by .BLKBot .BLKW directive;s. For this reason, all
task images must be linked to start at 20000 (octal).

b. For data input, the user generally wants th.e informa·
tion deposited at an address which he specifies in his
I/O control block. To accomplish this, have the header
punched with a zero in bytes 10, 11. This flag causes
the handler to load successive data bytes into successive
locations in the user buffer.

101

7.3.4 4923 Cassette Handler

The Tektronix 4923 cassette drive is a ~eneral purpose data
storage device utilizing the 3M DC-300 data cartridge. This device
is ASCII oriented with all data stored as ASCII characters and
several device control functions activated by character codes. The
monitor cassette handler is a minimal facility allowing recording
and fetching of task images or data files.

All data stored on the cassette cartridge is in the form of a
file. Multiple files may be stored on the same cartridge. The

basic file format employed is:

character contents

o M
1 U

2,3,4,5

6,7,8,9

10,11,12,13
14,15,16,17
etc.

Data load address, stored as
four ASCII, hex digits; most
significant 4 bits first,

File length as 4 ASCII hex
digits, this is total data
words

Data Word 1
Data Word 2

Files are generally terminated by a STOP ~haracter, octal 23.
This causes the cassette to pause until receiving a START character,
octal 21, f~om the device handler.

Entry points supported by the cassette handler are:

EMT Function

7S Read
76 Write

7F File'Query

102

I
I
I
I
Ii
I
(:

t
I
-I

(

,I

I
{

All data retrieved from the cassette must be via a file query
followed by a.file read. The write entry supports the following
options: (word 4 of the I/O block)

Bit On Implies

13 Data words are output as 4 ASCII
hex digits. Otherwise data words
are output directly as two bytes,
assumed to be valid ASCII characters.

I/O status returns for the cassette handler are:

NOTES:

o . I/O completed successfully
2 - Transmission error
3 - Invalid file format
6 - Time out

a. The I/O count for the cassette must be an even
number of bytes.

b. I/O time-out and Wait/no-wait options supported
in normal manner. Optional error return (word
5 of I/O block) is not implemented .

. c. There is no checksum in the file format, however
valid ASCII hex codes are ensured on reads.

d. A small delay may be necessary between the reads
of successive files.

10"3

GRAPHIC 7 MONITOR
T!MING SERVI_CES .

8.0 Timing Services Overview

8.1 Task. Suspensicn Timin~

8.2 I/O Suspension Timing

8.3 Private Timers

8.4 Monitor Timing Services

104

I
I
t
I
l:
1
.(;

('
.... \ '

I
:t t

I:'
-(

t
\

t "
-(i,

!

.. (
i

(:
I

. -1

I:

, r,

, r

8.0 TIMING SERVICES OVERVIEW

The maintenance of current realtime is always
an important, though usually transparent, feature of com­
puter operating systems. Current time is useful in many
applications for providing a reference frame for various
ongoing activities. Also, the clock is used to measure
timed intervals for application task functions. On the
Graphic 7, the fundamental clock pulse originates from the
60 cycle power source and thus the timing precision is to
the nearest 1/60 second. The interrupt handler for the
basic clock pulse will be contained within the Timing Ser­
vices mOdule. This handler will update the current stored
time-of-day and adjust any timers currently outstanding.
There are three distinct types of time,rsas discussed
·in the following sections ..

105

8.1 TASK SUSPENSION TIMERS

User tasks may request timed suspension £01" periods
up to S3 minutes. These requests,submitted to the Task
Management section, will be sp.eci£ied in 1/10 s econcl. uni ts. if
The Timing ServiGes section will maintain a linked listo£
all tasks Gurrently under timed suspension. On each 1/10
second boundary, the suspension list i5 sGanned and all asso­
Giated countel"sdec1"emented. When a Gounte1"reaGhes zero, .
the respective task is 1"emov.d from the timer .Gontrol list
and again made ava,ilable for execution. Timing serviGes re­
latedto task susp,ension are n01"mal1y employed only by other
monitor functions.

*The accuracy of these timers is plus ze1"O to minus one
1/10 second.

106

--
(

I
~i

1
,(

1
I

'I
',.(

-(
I

'I'
.'1

8.2 I/O SUSPENSION TIMING

The problem of an un-responsive external device is
typically handled by allowing a certain maximum time interval
for an I/O transfer. Timers used for this problem are updated,
on a one second basis, by the timer interrupt handler.* All
I/O timers are maintained on a linked list, with individual
nodes within the various device handlers. It should be noted
that such timers are assumed to be within the direct address
space of the monitor.

*The accuracy of these timers is plus zero to minus one second.

107

8.3 PRIVATE TIMERS

It is sometimes necessary for ~n application·task
to perfo!1ll a'function on' a'timed in.terval basis. This capa.bility
is provided by defining a. priva.te timer which is updated on a
1/10 second inte~val.*

Such p1"iV'ate timers are ma.intained on a linked list
within the user task space. Another list is then used to link
all tasks which currently have outstanding private timers.

As an option with the priva.te timer service, USers
may specify a subroutine which will be executed on timer expiration.
This subroutine will be executed as an extension of the clock
inter1"upthandler. Several restrictions must be placed on such
a routine as a result of the execution context. Thus, such a
subrouti~e. must' be kept very short (less than 100 usee execution
time), cannot reference any monitor services; and will savel restore
any registers. used. Obvi.ously., excessiv~ use of this service could
potentiallydegr.ade syst.em performance.

Priva.te timers are re ... ·settable· within the optional user
subroutine. Thus, if the user places a non~z;erov:.a.lue in the timer
entry before returning to the clock handler, then the timer is not
deleted. This mechanism c.an be used to ensure that a: particular
event occurs at a fixed repetition rate.

(

l'
I
I
l
I
1
.r
f
I;
I
~l !

'.j

I'
-I :

it The- accuracy of these timers is pluS zero to minus one 1/10 second. '-(

1

~f '

108

,I"~

8.4 MONITOR rIMlNG SERVICES

Titling services subfuncti,ons are discussed in the
following sections.

8.4.1 Set Date/Time

This service may be used to initialize the Current
date and time. The Operator Communications module will use
this entry when processing the related operator command.

EMT Code: 81 (Hex)

Parameter
Word - o

.l

2

Block:
Contents
Hours/Minutes (binary)
Seconds I :Month (binary)
.Day/Year (binary)

Status Return Codes:
o = Request satisfied

8.4.2 Fetch Date/Time

(The validi tyofthe supplied v.alues
is not checked).

The Fetch service will return the current date and
time to the caller parameter block.

EMT Code: 82 (Hex)

Parameter Block:
Word - o

I

2

Contents
Hours/Minutes (binary, returned)
Seconds/Month
Day/Year

Status Return Codes:
o Request satisfied

109 .-

8.4.3 Define Task SusEension Timer

This service is used by the Task Management module
to set up for' timed ta.sk· suspens.ion. The words a t T$TIM a.nd
T$TIM+Z within the task header are used to ma.intain the ta.sk
suspen;sion timer.

E.1'1T COde: 8 3 (Hex) .

FarameterBlock: N/A

Status Return Codes: None

8.4.4 CapcelTaskSusEension Timer

Cancel will be used by Task Manage.ent when a

"Continue" request is received for a task which is currently
in timed susp.ension.

EM! Code: 84 (Hex)

Farameter Block: N/A

Status Return Codes: None

110

(

(

(

I
.(

r
l

.(,

8.4.5 Define 110 Timer

This entry will be used by devic.e handlers when the
user task specifies a time-out value in his I/O control block.
The parameter block is assumed to reside in direct address
memory space. The second word in the parameter block 'should
point to the handler entry point which will be called on
timer expiration. The call, at priority seven, will be of the
form JSRPC,xxxx. The handler's Resume entry shall not
destroy registers 4 and 5.

E~IT Code: 85 (Hex)

ParaIIleter Block:

Word -
o
1

2

Contents

Reserved (used -for linking)
Resume Entry Address
Time-out Value (seconds)

Status Return Codes:
o ~ Request satisfied

8.4.6 Cancel I/O Timer

Cancel should be used by I/O handlers when an I/O
operation is completed prior to expiration of the time-out
value.

EM! Code: 86 (Hex)

Parameter Block:
- Same as used for EMT 85

Status Return Codes:

o - Request satisfied

8.4.7 Define Private TimeT

User tasks may set up a timed interval via this Timing
SeTvice entry. The time interval value should be a positive
binarynumoer in 1/10 second units. The second parameter is
an optional user subroutine adcl.ress which is called when the
timer expires. This subroutine may not reference anymoni tOT,
services and must save/Testare any registers used. Total
execution time of this optional SuoToutine should be held to
100 usee. If the subroutine call is not des-ired, then a zero
should appear in the second paTameter. Note that the timer
value is destroyed; however, it may be reset within the optional
user subToutina.

EM'!' Code: 87 (Hex)

Parameter Block.:

Word Contents -
o Reserved CLinking)
1 Optional Subroutine Address*
Z Timer Value (1/10 seconds)

Status Return Codes:

o = Request satisfied

*The call lS of the fom: JSP.. PC,xxxx.

112

I
·1

I
·1

l
l'
.(

]

.1

1
I

"I"

--t

··1

-(

.(
"

-1
1

·-1

.. (

r'

8.4.8 Cancel Private Timer

If a private timer is no longer required, then it

should be deleted with this service. The specified parameter
block should be exactly the same as that used in the definition
call to EMT 87.

EMT Code: 88 (Hex)

Parameter Block:
- Same as used for EMT 87

Status Return Codes

o = Request satisfied
32 1: No such timer fo.und

8.4.9 Purse~TaskTimers

The purge service will be used by Task Management
to ensure that all private timers are eliminated on task exit.
A user task could use this entry to remove all currently de­
fined private timers.

EM! Code:. 89 (Hex)

Parameter Block: N/A

Status Return Codes: None

113

9.0

. 9.1

9.2

GRAPHIC 7 MONITOR

DATA TRANSFER SERVICES

Data Transfer Introduction

Data T~ansfer Control Block

Ent'l"Y Points

114

r
(

I
l
1
I
J
I
I
""i .

1
''OJ

I
,

l ..
I

,(
1 .{,

. I

'11,:

'I:
. 1

{,

. 1
!

., ;\

r .

, "

9.0 DATA TRANSFER INTRODUCTION

The efficient manipulation of data within the real t: .. :~
system is, naturally, a prime objective of the Graphic 7
monitor. Within the context of the monitor there exists
three fundamental mechanisms for the transmission of int
task data. (Input/output functions are used to transm.it
accept data to/from an external medium). The simplest f
of inter-task data exchange is based on the task status'
contained in the task header. These status bits and ass
ciated manipulative services are discussed in the Task M.
ment area. Generally, the status bits will prove satisf
for those situations which require the notification of c
states or operating conditions. The second form of inte.
task data exch.ange may be set up on the basis of a globa
mon data area. Such areas are valuable when several tas
must have frequent 'access to the same informa tion.A:n e

wo~ld be the. system data base which typic:ally ~ontains t

various parameters and data defining the current operat:
situation. The third form of inter-task data communicat
is the subject of the monitor serviCe described in the :f

lowing.
The Data Trans£er SeTVices will allow f'orthe tran:­

of variable length data blocks between task memory area~
Specification of the desired transfer is done via a star
format parameter block, similar to an I/O control block.
In order for a transfer to take place, there must be a r.
ing sender/receiver pair. For the receive entry, the Uf

may indicate a specific sender task or allow for acceptE
from t1any sender". Senders must specify a particular rE
task (1. e., no "broadcast'l mode is supported). If no mc
ing transfer is pending, the user may elect to have his
quest queued or stacked. Separate send and receive que~
are maintained: queueing results in attachment of the r
to the end of the list; stacking results in attachment t

115

beginning of the list. In addition, users may, as in I/O
operations, specify wait or no·wait transfer mode. If wait
mode (the default) is used, then the ~equesting task is sus·
pendell until the transfer is completed.

The actual data transfer is performed, by't~-by-byte,
fTom the sender task area to the receiver task area. The
receiv'er buffer must be~ large enough to accommodate the
sending task's requirement.. Insufficient buffer space re­
sults in setting status bit ze~o in the sender if the re­
ceiver' request was already pep,ding. Conversely, if the
send request was already pending, then theerTor status is
returned to the receiver on inadequate receive-rbuffer
length. An error code will also be returned if neither
queueing nor stacking is specified and no matching trans­
fet" is,pending. Potential data receivet":; may query the send
queue· to deterIlline if any outstanding transfers are pending.
The sender task In. and transfer length' are returned. ,The

~. standard Data. Transfer parameter block is discussed in the
followirig section.

116

I

'"

(:

II
r
t
1·.
I

-t

,(t

{I

f;
1

- {,

I \

9.1 DATA TRANSFER CONTROL BLOCK

All requests for inter-task data transfer will be accom­
panied by a pointer (in register.one) to a standard parameter
block as shown in Figure 9.1-1. Users will note the similarity
of this structure and the IIO control block discussed in
Section 7.1. In particular, note that the transfer may be
performed in either wait or no-wait mode. In no-wait mode,
users will need to be careful to ensure that the transfer
has been completed before disturbing the control block or
the data buffer.

Let us briefly review the individual words in the con­
trol block. Word 0 and byte 1 of word 1 are used for send/
receive queueing and are of no conCG:on to the application
pT·ogrammer. Byte 0 of word 1 should contain the destination
task ID for send or the source task ID on receive. Addi­
tionally, the user may set this byte ·to ,z'ero iorrecei yes to
indicate ·tha t any sender is acceptable. In this case ,the
monitor will place the send.ing .ta.sk ID into this byte when
a t:ransfer ocCUrs. Word 2. sho'uld contain the 'data buffer
address. The transfer CO~Lt, as a number of bytes, will
appear in word three. Obviously, the maximum transfer length
is effectively determined by the maximum t.ask extent.·* The
Flags /Sta tus bits aT·e outlined' in Figure 9.1-1. Clearly
the Queue/Stack bits are mutually exc~usive. The count of
the number of bytes actually moved is placed in word S.
This word is only required for receivers.

*The Data Transfer mechanism does not detect departure
from the task space. Such errors will generally be
fatal.

117

~ --.... _ -.. ~ .. -.... ~ .. - - -_.- -'.~ .. _-.. - -. .,."'

'---'---r' .. .-..~ ,
I ,

· . .. _-··t"

,-;.. .. , - " ... _._------,.._ .. ,_:... : -

;
- ~-+--,. ---,-.;,--T--.... ~,' ,'-.......... -!,.....-....... --.,..,.;...--;..-. ...;--.;-.-..;--...;.--.... --.---;..--.-~-------.... ---_---- ,-WORD i ;BY~E;l ;B'lrE '0 ! ... --~ ... ~--~---.------...;,-.... -- r-----~-.... -------.... -..,. -'-----------------;_--.....,·-...,..~·--·-·

I
----.--.... :' --y-...... ·e -.:..-~ :-+--:-......--":'-'-·------R~~·l·i.,.f"dl--.... ·--t --

-.. ~"i,--+--.... ,.-.~ ... - - ... -.---_r_~--t_--------.-....~--~-.~, ~ . ..,..,,------, I

! , ' ,'; I " '.
-.--'--i--~--.+__, -r--7-1-1~--;.---r--' -·--1t'~~c:r:_·~--I----,-~~~-7Ir~----t --.--._ ... ",,--' f"~,

: ; i ! , i : i : ! I • . i .:

----,.....--i,--.;...-~'!--..... -'"------,.....----+ .. -----... -...... '.- --------.~ ... ~-. ----
---'-'--"---'-~~-.:...2·---.-.....-I---B..;.: u-£ ,·.· f-: -e1l'-: -A'dd·:r-e-s-s-...... ---.-" --r--:'---i~- t" . -...... --:--....,.-.,....,r----~-'------+,..--~--...... ---, ------... ------..,..---, !

! ' -- .---~---__ :_------'"-i-.----~ -l___r_--.... ---~-.... -..,.-.... ---.-_,.-~!.--., --i---+~ .. -----.. ,..;..-.!----__:_---~ .. -"'"'"-.
3 tra.nsfer! Gount (,Byt.eS) ,

,-,,·:'..,:-..... -..,1------...-......;--10;.. .. ----,--........ 1 ... · ---,--... :...-'-i-----\-. -------- f-----"--:-- (;
_ .•••• _,' . I I .~~_ __ _..:.......,_ .-----.._.---...,~__..;... .~-=---_~I ,... . .--.o" _____ j-_ _ ____ "' ... _. _,..1. , -r~--r .~'!',- : 4: Flab-s: : , ,~; Startu;;' , .

. 1 ' ;. .. ,0, ~,,: J ' , . ""1

.,;...-t-~-------"'"---....... '-!-~,-;..,'----- ',. ... ;" " , "1
". i 1,._' '_, : "; :'

-~ -.... ----:---.-:---~ .. ' .. I ByteS ;Tr~;;fe-rl'~a:'}..oun:e! '. --........ --~--.... --~:. --~--~--~-~-..:..--.... --~ ~ ~--' ~~~ ~---.--~~~ ~ ~~~ -.. ~ .. ~-----~~--,~
,

.t (set ±mpii~S) ,;i~s1eti ink lies:) .' "
i : i i ! .. . I : . , . . - ,l:

~_ .. f -.....,.;....;...---~..,;I--I.,.;5-'"tN..,..o~,,.;wa~ t~',..: -.,......··.;-1 -:---""""'!-..o:-~--"": '"=71""'i--""'+j - !-.;.-----~---....... ---;---" I
'i ,14 ~y:, ' '. ! e'" ___ ['"

l,13 Queue j : 5 : :'
--~~~~~~~; l~z~··~$~~t-a..:..c~k~:----~--'"-~~'-----~~-----'..:..,4~~---------~---~ -------'-'~-

1 1. y. . '., '%: \ ----r--, ---r--: i...!:O""--., ------i---'"""--.....--'-~--'""'--:--2.,..;'~R"'I"eq-~S t w"as c anc ~ ll.eo.I~.
--r--~r--r-g-- ; i, 1 ;N(j) s~q.er7rec~etiver : -:---'.

______ i,!,-.-;-~i--~i Q~&&e<taa:ee ~H.;eT·-~4-t,h..- .-
1 i " i . ~ I' ----..;..-.... -..... --------.:....-.... -...... ---.... -.....;--~-.:....-.;...-..... ------""'i --i_ --~-~-, \,

,-----;---... ~---,-.-~~-~~,----------------~--~,----~--...;.--------~--~--.... --~----~--~~~--.... ~--~-------~ -... ,~----'"""~. i j . .! ;.
: ,

-----""T-"O~ i---t--~-----~------~~ ~~~~---~i--~i--~~,----l~~!----,----.--------, -----.--- ".{
--'O--------:---:---i-----.-+--_p "-'1 C""O"""R-;"':s--g-· .-"'l-rTI' D:j\TJ1J ""MSPER: icocirrn;m:'~t(JC"r.-t-I·~--·~-- :--,
..... ___ .. ! . 1 f! .' .,'!., '1' ' : .. ! , . \ !

I ~: I .'. !fl----~ t ___ .L~.~~ --~~-l-

-.- : ~: :.~l,l~,f:T--;-~ ", !-, .. -. -=L, =t~, =l,'_.::·- :.,' : .l,: j-,_},j~-:~{
... ~..: -p 4 •. "!.4 ' 'r- ·-"1"'-·I'""'-'·:· .. - .. -r-~··· ... ~7 -r~- ·r--·~-'-

........ ~ • "" C' -;-,+-- -T'-;-''-L·~1!.L.....,-;--:-!-,..,--,--~ --'----.;--'--,-, --. f

· ,
\

\

\

'. ,'-

9.2 DATA TRANSFER ENTRY POINTS

The various services provided under the heading of
Data Transfer are discussed in the following sections. As
with all monitor functions, the address of the applicable
parameter block should be placed in register one prior to
the EMT. With regard to these services, users should care­
fully note the difference between the monitor call status
return and the completion codes returned in the status byte
of the parameter block. These considerations are identical
to the related I/O control functions in that the monitor
request status (in byte T$MRST of the task header) only
indicates acceptance of the request and does not imply suc­
cessful data transfer.

119

9.Z.1 Receive Query

The Receiver Query entry may be used by a prospective
receiver task to deter.mine if any outstanding' send requests
exist. The task ID (byte 0 of word 1) may specify a parti­
cular sending task or may be zero to indicate that 'any
sender is acceptable.· Discovered sender task ID is placed
in thi's byte. * Sender transfer length is placed in word· S.

EM! Code: 9 4 (Hex)
Pa'rameter Black:

Standard Da.ta Transfer contl"ol block ..
(Words Z & 3 are igngred).

Status Return Codes:
o -' Request. Sa~is£,ied

* Note carefully that, if said byte was given as zero, then
this action results in somewhat destructive modification
of Y0lJ,r parameter block.

9.Z.2 Receive Data

Receive will be used to accept data from another appli­
cation task. If no send is pending, then the user may have
his request placed. on the receive queue. The no·wait bit
may then be used to have control returned to the calling task.*
The count of the number of bytes transferred is placed in
word S. Sender task ID is placed in byte 0 of word l.

EM! Code: 9S (Hex)

Parameter Block:
Standard Data Transfer control block.

Status R e't urn Codes:
o • Request Satisfied.

* If neither queueing nor stacking is requested the
wai t/no-wai t specification is ineffectual.

120

r
-{ '"

"

f
{;r

-I
(

" 11
(;
'~
-11

{I

t 1\

. I

-I j
i

--} \
!

1,1

~i
!

'--il I.' ·1

, I

. -i I
-I'

9.2.3 Send Data

Transfer of data from the calling task to a receiving
task may be accomplished by the Send Data entry. The sending
task must specify a target receiver task rD. If no receive -is pending, then attachment of this request to the send queue
may be specified. Again, wait or no-wait mode may be em­
ployed.

EMT Code: 96 (Hex)

Parameter Block:
Standard Data Transfer control block.

Status Return Codes:
o . Request satisfied

121

9.2.4 Cancel Receive

Cancel may be used to terminate a. pending receive request
belonging to the calling task.

fu\fT Code: 97 (Hex)

Parameter Block:
The receive to be cancelled.

Status Return Codes:
o - Request satisfied

32 - No such request in existence

9.2.S Cancel Send

The Cancel Send entry may be used to remove a.. pending
send request which was previously defined by the calling task.

EMTCode: 98 (Hex)

Parameter Block:
The send to be cancelled

Status Return Codes :
o - Request sa.tis£ied

32 - No such Tequest in existence

lZZ

I ~. "
{ r

(
if
~'('

i~1

J
I
'Ie
t
t

'·t' i

-J '\

'f\.

~t :'
;

-(,

ii,
. -1

--I ;\

9.2.6 Purge Receive Requests

All Receive requests belonging to the calling task are
removed from the Receive queue.

EM! Code: 99 (Hex)

Parameter Block: None

Status Return Codes:
o - Request Satisfied

.9.2 .7 Purge Send Requests

All Send requests belonging to the calling task are
removed from the Send queue.

EM! Code: 9A (Hex)

~arameter Block: None

'Sta tus Return Codes:

o - Request Satisfied

12.3

9.2.8 Purge Requests

All Send & Receive requests belonging to the calling
task are removed from the respective queues. This entry
is exercised by Task Management on task exit or abort.

EM! CODE: 9E (Hex)

Parameter Block: None

Status Return Codes:

o - Request Satisfied

12.4

I'
If '
~ .I~

,I
J
I
f

'\
{:

{

1
(

t~

(i

-I

(
-{

~f ,
,
I
\

. -\

\

r

,-

'"'

GRAPHIC 7 MONITOR

MONITOR SERVICES

10.0 MONITOR SERVICES INTRODUCTION

10.1 QUERY BUFFER ALLOCATION

10. Z ALl'HAI'IUMERIC DECODE SERVICE

10.3 DISPLAY DATA SUPPORT

125

'\ -

,{ i

-"
I{

-f.

" 1
,,1
I,t i

{,
.,.....,..' .. , ~,
1
-f i

,.- .

~,

'f \
1
t
--f,

""f' ,.

--J:

-

{ \

)

10.0 MONITOR SERVICES INTRODUCTION

The Moni~or Services consis~ of a set of generally useful
facilities which may be employed from user tasks. The exact
content of this monitor functional area will depend on the
particular application requirements and availability of moni~or
memory space. The various sub-functions within Monitor Services
are easily accessed via the standard EMT calling sequence in
combination with the appropriate parameter block.

10.1 QuerY Buffer Allocation

There arise circumstances in which the availability of direct­
address -space memory is highly des ireab1e. One such instance is
the need for a buffer area for issuing a query/response sequence
via the display. Direct address space is necessary here since
such area must be accessible by all of the graphic controller,
the user task and the keyboard device handler. The Qu~ry Buffer
Allocation service is intended to satisfy this need by providing
for the 'allocation , ,within the monitor memory ,area, of 1.28 byte
working areas. These areas will typically be used with the Query/
Response service discussed in Appendix C , however, other use's are
possibl~. Users should beeareful to release these buffers when
they are no longer requiTed. The following monitor call is used
for'both allocate and deallocate ofa Query Buffer.*

EMT Code: 11 (Hex)
Parameter Block:

Word Contents
o If zero then the buffer starting address is

returned. If non- zero, then deal10ca tion of
the associated buffer is assumed. On deallo­
cation, this word is zeroed prior to return.

Status Return Codes:
o - Request satisfied

32 - No buffers available

*Users may also want to note that small direct-access working areas
may be provided via the schedule table space in memory block zero.
A1location/dea1location of this space, in fixed l2-word units, may be
accomplished via Memory Management entry points 5 and 6; As with the
Query buffers, users should be careful to deallocate this space when
no longer needed.

126

10.2 Alphanumeric Decod~ Service

The conversion of text inputs to numeric values is a common
requiremen t for problems involving opera to·r interaction . The
Decode service will provide for variable length conversions of octal,
dec.imal and hexade.cimal quanti ties. Specifications to this service
consist of:

a.' Argument count
b. Format ?tring address
c. Source string addr~ss
d. Erro~ return address
e. E0F returnaddres.s
f. Variable addresses

The format string. is of the form:

item,item, .•. ,item/null

whltre 11 i t emil . is one of: 01 , H 7 .r ? ; A?'":" -Thefo"mat -S fring--' ... ---_. ..- ·-_~·""""-'~1_.""""" .. _. ,,_,
sh.cuTZCbe'term£nafed- witna··ze'r·o·--b-yte-.-"'" .-_ .• _-- .-.------ - --_... -'-- . - -~ .. ----.~-.- --. ...-....,..--~-

Thesoul"ce string shOUld be stan.d.ardASCIIcharacter!"; with the
high. ot'de'T" (parity) bit zero. I fthefirs tsource string cha.racter
is a carriage return, then .. the E0F return adclres sis taken. If
invalid characters are encountered, the e'!'rOl'return address is
employed.

The nUlller,ic. varia.bles may be either single or double words.
If a d01,J.ble word qualtity, then preceed'the respective format item
wi th the letter "Dll•

Alph.a.nwnel'ic. CA?) strings will be termina.ted with a'null

(zero) byte.

127

I .
f /;
II
f
I
f

<f'
1\'

r
Ii

I

.J;

f,
t.,

t
(,

III.'

f

I

I \

A count of the number of characters processed in the source
string is returned in byte 1 (i.e., the second byte) of the
parameter block.

The total number of arguments should appear as the first byte
of the parameter block.

EMT Code: 12 (Hex)
Parameter Block:

Word - o
1
2
3
4
5

n

Contents
No. of arguments
Format address
Sourc.e. .. string addres s
Error return address
E~F return address

v'ariable arguments

Status Return Codes:
o - Request satisfied

32 - Invalid format syntax or format/argument
list mis-match

As an example of the Decode service, the following code may
be used to extract the first argument in string INPUT.

INPUT: . ASCI I
F~RMAT: . ASC I Z
DBLK: .W~RD
ARG1: .W~RD

M~V #DBLK,Rl
G7CALL 1,2

/12,5/
/.I?/
S,F\ORMAT,INPUT,ERR~R,E\2\F,ARGl
o

(ARG1 should equal 12,oon return.)
Note that the input string fields should be separated
by commas and/or blanks and (typically) terminated
by a carriage return.

128

10.3 DISPLAY DATA SUPPORT\

Display Data Support allows for conversion of display
elements from standard format to refresh format. This facility,

access,ed as a standard monitor service , is discussed in
Appendix E.

129

I,:

'f ,;

'i
{

I
f
t
t,
(,
:-1~ I
• I,

t'!,\: :
*.' c. -'((1

/~' ,

"f,\
\

,t,
,. ,

-~,;,
i

'''f'
(I.

J:

,. ,.'

11. 0

11.1

11. 2

GRAPHIC 7 MONITOR

PHOTOPEN SERVICES

Photopen Services Introduction

Standard Photopen Control Block

Photopen Monitor Services

130

l,

I'
f
il
{:

i(,
.,., .,

i(

.~ .

I

~

f
1,

i \

J'

i
f
L

11.0 PHOTOPEN SERVICES INTRODUCTION

The Graphic 7 PHOTOPEN may be used for list selection,
display element editing and task control functions. One or
two PHOTOPENS may be connected to the basic Graphic 7 mainframe.
The Monitor PHOTOPEN Services will make this hardware resource
available to user tasks fOT the various above mentioned usages.
PHOTOPEN requests will bear a close Telationship to schedule
table entries as depicted in Figure 11.0·1.

To employ the PHOTOPEN, the user task must first have
specified PHOTOPEN sensitivity in his schedule table control
block (see Section 6.1). After scheduling, the PHOTOPEN
request is made known via the "Define" service discussed below.
This request may be issued in either wait or no-wait mode,
similar to an I/O function. If issued in wait mode, then the
relevant task status bit is set and task execution is suspended
until the PHOTOPEN strike is received. In no-wait mode, the
user will need to monitor the request status bits to ascertain
r~quest completion.

The functioning of the PHOTOPEN interrupt handler is as
follows: On receiving the interrupt, the handler will search for
the related schedule table entry by examining the Graphic
Controller stack. The associated user Schedule Table Control
Block is located via a scan of the task list and then a search
of the parent task's Schedule Table Control Block list. A search
is then made of the currently outstanding PHOTOPEN requests
belonging to the subject task. If an associated PHOTO.PEN control
block is not found, then the interrupt is ignored. Assuming
a control block does exist, the appropriate status bits will be
set (corresponding to the CRT's activated) and the element
offset is computed and placed in the user's PHOTOPEN control

131

USER TAS~

TASK HEADER

T$ PPEN T$SLS T$ELS ---1---- -~- -- -1--
Photo ...

pen
eQ'\J.est

,
•

1

c •
C ontrel i'----I~l
Slock

~,
Seh. r----t.fDisp. El
Control Control

Beck . Block

t .

•

I

Figure 11. Q,.l Display Control B lock Associations,

132

I:

t.i
iI,

f~

···1'

I
I
,I':
'{"

t'
.1 ! I, ,

\(

JI

l'
f

1,'

I .,

-{ ' .•

r
,:1 ,

block. The Graphic Controller is then restarted. If the user
has selected wait mode PHOTOPEN operation, then his task is
again made eligible for CPU time.

The standard parameter block used with all PHOTOPEN
monitor requests is outlined in the following section.
Prospective users shou~d carefully note the definitions of
the various fields and operation of the PHOTOPEN related
monitor functions.

133

11.1 STA.NDARDPHOTOPENCONTROL BLOCK

All parameter blocks used with the PHOTOPEN services will
assume the format shown. in Figure l1.l~l. The first word is
used f.or linking of outstanding PHOrOPEN control blocks. The
second word should con.tain a pointer to the relevant schedule
entry control block. (The PHOTOPEN routines assume the
subject display has been scheduled. Note also that Display
Scheduler functions have no deliberate effect on possibly -.- ..
rela.ted PHOTOPEN requests.) Word two of the PHOrOPEN control
blockcont.ainsfla.gs and status conditions as outlined in
Figure 11.1-1. Note in particular, the high order bi t (15)
which should be set to enable no -wait mode. . The following
difference between wait. and no-wait mode must be.remembered:
In wait mode the user request (i.e. the PHOTOPEN control block)
is automa.tically deleted from his list on receiving the
PHOTOPEN input. In no-wait mode, the user is responsible for.
deleting the request via the PHOrOPEN delete service.

The actual PHOTOPEN input inform-a tion cons ists of the
offset (bytes) within the subject display element. This offset,
which is with respe,ct to the start address stored in the
second word of the element control block*, is placed in word
three of the PHOTOPEN control block. The offset will be odd
if bit 5 of the Graphic Controller sense register was set.

*E.G. - includes the control words.

'\
{,,;

It
l~
1,

I
'11

{'

f
.{,
I !,

;:
. !

\1

J

~I :
; .

.-{ .'

, "

byte 1 byte 0
WORD

o reserved
-- - - -- -- '-- - -- --------- -.-.-

1 Sch. Control Block Pointer
.. - - - - - --- - T - - - - - - - - - - - -

2 Flags Status
_ ___ •. __ -:" ~ __ __ 1... ________ . ____ _

3 Element Offset (Returned)

,
!

Flag Bits Status Bits

15 No Wait 7 Parameter Blk in Use
14 6
13 5
12 4
11 3
10 2

9 1 Strike (PP 2)
8 0 Strike (PP 1)

Figure 11.1-1 Standard PHOTOPEN Control Block

135

11.2 PHOTOPEN MONITOR SERVICES

The various PHOTOPENfunctions are accessed via the entry
points discussed below. As customary for Monitor functions,
the ado-ress of the applicable pqr.rameter block should be placed
in register one prior to the EMT.

11.2.1 Define PHOTOPEN Request

The Define function will serve to place a PHOTO PEN request
block on the user's PHOTOPEN request list. If wait mode (the
default) is' used, the request block will be deleted when the
request is satisf'ied. When the strike occurs, the Dis'Play
Element offset is placed in word three of the para.meter block.

EMT Code: 61~, (Hex)

Parameter Block:
Standa.rd PHOTOPEN Request Block

Status Return Codes:*
o - Request satisfied

*Asin I/O operations, the Status Return Code only indicates
acceptance or ~ejection of the monitor request; availability of
the relevant data is not implied.

I:

'f : ;
(I
,till

,]1

(

,1
it
,1 :
f
1:
I
I

I,
: 'I \

I

'1'
r

Ii
, ·1\ , ..

/.

11.2.2 Delete PHOTO PEN Request

An outstanding PHOTOPEN request may be cancelled via the
Delete entry. This entry (or the following Purge entry) will
need to be used for elimination of no-wait requests.

EMT Code: 62 (Hex)

Parameter Block:
Standard PHOTOPEN Control Block

Status Return Codes:
o - Request Satisfied

32 - No such request found

11.2.3 Purge PHOTOPEN Request

The Purge service may be used to erase all outstanding
PHOTOPEN requests.*

EMT Code: 63 (Hex)

Parameter Block: N/A

Status Return Codes:
o - Request satisfied

*The absence of any such request is not considered an erTor.

137

\.
APPENDIX A

GRAPHIC 7 HEHORY M.A.1\fAGEHENT

A.l THE ADDRESSING PROBLEM

Being 8016 bit machine, the basic Graphic 7 has a direct
addressing capability of 32K words. The evasion of this limi~

tation has proved to 5e a major objective of similar machines
and is currently the aim of the Graphic 7 Hemory ?-1anagement
option. This hardware will allow users to address up to l28K
words, or, effectively, an 18 bit address space. In as much
as the basic word size (16 bits) has not changed, a function
must exist for mapping a 16 5it address into an 18 bit realm.
ObViously, the two extra, oi ts mus t be supplied somewhere between
the operand address and an actual memory reference. In the case
at. hand, processor re-design was ruled out, thus leaving the
mapping function to the memory itself.

In additian to providing access to a greater volume .of
memary, mapping functions are also sometimes used ta solve the
problem of code relocation. In this role, the. relacation "value ll

not only provides the additianal addressing Eits but also yields
an address base. This results in all program-lacal addresses
being just an .offset with respect to the base value. Finally,
the combination of address relacation and extension is sometimes
central to the system protect mechanism.

A. 2 GRAPHIC 7 HE.1'10RY c4ANAGEMENT

Memary expansion will be accomplish.ed on the Graphic ,7

by supplying relocation registers within the memory logic. First,

138

'1 ';

r
,1 :;

l'
1:
\l
I: ,
t ~

f
I

:1
I

I
-I

t I .

the l28K (word) maXi'InUDl addre.ss space.. '\It'''ill '5:.e.. s·upplied as two
64K modules which are identical. fadi module will contain
three relocation registers which can Be addressed as regular
device registers. In order to understand tne usage of the
relocation function, we consider' a sample 16 Fit address.

Pigure A.2-l depicts the 16 bit address as presented
to the memory management logic. The three high order bits
(labeled "Key fie1d lt) will indicate, as shown, whether or
not relocation is to be used and which register will 'Be
applied. The relocation registers are five bits long, with
the final physical address determined as indicated in
Figure A.2-2. It is important to note that the offset portion
of the address remains ·the same in the final physical address.
The result is that the mapping function can point to any
pa.rticula.r4K (word) blo'Ck with user access to th.e entire block.

In summary, the 32K (words), 16 ... bit address space has
been divided .into 8, 4K blocks. Three of the clocks can be
mapped into any of th.e 32, 4K blocks in a 128K word, 18 oit
memory space. The four blocks of 0-4K, l6-20IC, 20 .. 24K and
24-28K will continue to reference respective pnysical memory
areas. Finally, the device register addresses continue to occupy
the highest 4K block.

A.3 OPERATING SYSTEM IMPLICATIONS

Th.e performance of th.e relocation function is usually
left to the operating system. This involves inserting the relevant
values into the relocation registers prior to giving control to
the user task. User tasks generally do not concern themselves'

139

(

I-E

a 15 a 14 iii) a 12 all a.10

.",;

(.' ". ,,4

VIR'rUAL AJ)PR~SS

a 9 . a 6 ai an

!~

:>1

as &4 a 3 a'
2

a 1 a o

~ A)
y)r

Key Field Offset

1
I

o ' 0 0 0 I

1
j

0 0 1 I

2
t

0 1 0 I I .

Dl~~ct Addr~s~lpp

Combine Off~e~ wit~ R~l~cation Register 1 . .

Combin~ ~ff~e~ w~t~ R~loca~i~n Register 2
'j-> 3 t 0 1 1

\~
I

4 1 1 0 0
1
I

1 0 1 5. ,
1

. ,
Com~ine Off~e~ W~th Rel~ca~ion Register)

,
Dir~ct, Addrrs1ing

Direct Addr~s~ing
". !" :

6 • 1 1 0 t
I

Dir~ct Addr~s~in~

7 I 1 I- i
1

Device Regi~ters
. .~'. ". ~

1
1

t

FIGURE A.2-1 MEMORY ADDRESSING
I . .

~i.. ... : __ -~ ---. .-.......~ --..- ~ ----'.,.....". ~.! ;~.'. -0.,: ---- ~ -- ~

,.
• t-'

,l>­
t-'

- I (-)

I~ VIRTUAL ADDRESS -------------------------~,

8 15 8 14 8 13 8 12 8 11 8 10 8 9 a O a 7 a 6 as

~ V-
'-- ~ offset Key

r~n~IillJ
1 ___ ~_

001

[r~ I r; I r; I ri I r~ I 010

1~-ri-I~8-r~ r~] on

~ ~ y

(:l lit
o .. ,

,,-t OJ
.u.u
'" fIl () ,,-t
o bO
rl Gl
CIJ~
p::

"4 ", '2 G
-- ------ ---- h I

------"
)

~ ___ A
/ ~(/~-----~----------~

[P17 P16 P15 P14 P13 P12 P1 1 P10 P9 PB P 7 1>6 1·5 Ip 4 Ip 3 I ·2 I PI I ·0 l
I~ PHYSICAL ADDRES~ >1

FIGURE A.2-2 PUYSICAL lDDRESS CONSTRUCTION

with the relocation problem thus allowing independence from
actual physical load-point considerations. The proposed
Graphic 7 operating system will satisfy this requirement by
storing the user relocation values in the task header.

Several aspects of the particular Graphic 7 memory
management facility result in operating system constraints.
One such restriction is the 12K task size limit, based on
the existence of only three relocation registers. Also, due
to the rather coarse discrimination of the relocation values,
the allocation of core will tend to be somewhat inefficient.
These limitations can probably be accepted for most applications.

Once in execution a tas-k will generally be ignorant of
its actual physical memory location. However, the monitor must
be able to access the task areas as well as itself. For this
reason the monitor will need to execute in direct address space,
leaving the reloca~ion registers free for references to l.lse:o
program space.* This requirement is reflected in our decision
to place the monitor in the direct address area of l6-Z8K.**
Most monitor functional areas may thus assume that the calling
task's relocation registers are currently installed.

Recording of task relative addresses either by the monitor
or by other user tasks is generally accomplished by saving the
16 bit task-relative a.ddress and the task RRl value. The RRI
value provides a pointer to the task header, hence access to the
task's relocation registers. Thus, saving the RRl value yields ,
in effect, addressing to the entire task image.

'If There are implications with respe,ct to interrupt vectors also.
it.* The problem of collision with dedicated ROM space in this area

is yet to ,be addressed.

142

I ;

-\

As an example of address manipulation within the memory
mapping mechanism we present the code necessary to provide
access to a display element. The display element address re­
turned by the monitor is a 16 bit physical memory address. For
the user task to gain access to the element storage aTea it is
necessary to construct a relocation register value and a modi~ied
16 bit address which will be mapped through the relocation register.
The follo",ringcodeassumes the display element address has been
loaded into general register one and relocation register three is
not needed for task execution.

Load Element Addr. Into Rl

CLR RO
ASHC #3,RO ;Isolate 4K Block Number
MOV RO, @#RR3 ;Set Relocation Value
BEQ .-1"6

MOV #6,RO ;Force Mapping Through R3
ASHe #-3,RO ;Create Revised Address ,in Rl.

A.4 GRAPHIC CONTROLLER MEMORY ACCESS

The Graphic Controller has an 18 bit address capabili ty_,
however, only the low order 16 bits are "active." Effectively
this amounts to dividing a 128K (word) memory into 4 , 32K blocks
which, during a continuous refresh cycle, the Graphic Controller
is restriced to one. This mechanism realistically prohibits
users from having refresh code within their task areas.

143

APPENDIX B

SYSTEM GENERATION

B.O Introduction
B.1 ~lemory Configuration Adj,ustment
B.2 Monitor Function Selec~ion
B.3 Device Handler Selection
B.4 Monitor Services
B.S Miscellaneous Considerations
B.6 ,Summary

144

{i
{'I;

l
'f:
I'
-,
:'(:'

t:
~l:

,:,{,

,','t"

'i'
:t' ','

, "
.;

t:
\

I:
"

~'."

',~,.,
(.<

""

~ ':

f
'Ii i

\,

B.O SYSTEM GENERA.TION - INTRODUCTION

System generation includestho,se' activities necessary
to tailor the monitor to a particular user application.
This involves the specification of a memory configuration
and inclusion of the required monitor functional areas.
For the case of the I/O function~ the user will also specify
the device handlers required by the expected peripheral/
interface population.

The following discussion assumes the user has available
a cross assembler/taskbuilder ~o be applied once the necessary
source file modifications have been made.

145

B.l MEMORY CONFIGURATION ADJUSTMENT

The basic memory allocation is discussed in Section
3.1. the user has some latitude in the actual assignments
made to the various basic memory areas. All of the param­
eters effecting memory allocation are within task ~IMGMT.MA.C.
Users should review the normal parameter values and make
adjustments as necessary. MMGMT s.hould be re-assembled
following adjustment of the allocation parameters. The
adjustable paints are:

B. L 1 Refresh Space Allocation

The nomal allocation for refresh space is 4K blocks
1, 2 and 3. This is indicated by parameterREFBGN and by
the pre-setting of appropriateBMASI< bits (to indicate these
b locks are not ava.ilab 1e fa l' task space al10ca.tion). The
us er may, depending on the particula:r application requi rements ,
res.trict the' refresh. space to only block 1 or blocks 1 and 2.

(Refresh space must be a.djacent to schedule table, block zero.)
Any change to the refresh alloca..cion is easi1y.accomp1ished
by adjusting parameter REFBGN and clearing respective BMASK
bi t5.

B.I.2 Monitor Space Allocation

The monitor image is assembled to begin ,toctal 100000

and occupy 4K blocks 4 and S. The scaling services I if used, .
occupy block 6. These blocks are reserved by the setting
of the respective BMASK bits. If the scaling services are
not required or the monitor image needs only one 4K block,
then the appropriate 4K block bits in BMASK should be reset
(thUS making these blocks available for task spa.ce allocation).

146

l~
II;

r'
t

'-1·

l
f
I
,{ /,.

I I
-, .

f
i:
'-f:

1
J

l

1\

f

A word concerning the monitor stack. The stack area
used by the monitor routines is nOl"mally located at the top
of 4K block S. The initial stack value is specified by
parameter SYSR6 in module MNTRSP.MAC. Obviously this value
must be adjusted if yeu restrict the monitor to block 4.
Also, the stack pointer initial value may be adjusted to
allow for a (small, typically) global common area within
the dil"ect address space of blocks 4 & 5. Such an area,
assuming the overall monitor memory l"equirementpermits,
can be pal"ticu1arly convenient in light of its direct-address
nature and consequent ease of access by all user tasks.
(This is independent of the global common discussed below.)

B.l.3 Global Common Allocation

During sys'tem gener.ation the usel" may reseTve up to
4 4Kb10cks as global common space. This is accomplished
by placing the block numbers in u"rayGBLCOM and then adj ust­
ingthe l"especti ve BMASK bits (see also section 3. S) .

B.1.4 Task Space Allocation

Any 4K blocks not ,.consumed by the above requirements
may be employed by user tasks. For this purpose, all 4K
blocks are identical and are assigned on an as-needed basis
by the appropriate MMGMTentry points.

The maximum memory size is indicated by parameter
MAXBLK which is typically set to either 16 (64K memory) or
32 ClZ8K memory). The initial state of all 4K. blocks
(allocated or unallocated) is indicated by BMASK.

147

B.Z MONITOR FUNCTION SELECTION

Inclusion of -~he bas ic m~ni tor functions is genera.lly
dependent _ on the user configuration and available monitor
memory space. Some of the functional areas arerathel' basic
to the overall monitor structure and must be included
(memory management, task management, etc.).

Other functions may be included at the option of the
user. Those which are easily excluded arephotopen services
and data transfer services. Display management involves Display
Element Management. and the Displa.y Scheduler. Thes~ two
elements generally need to be included or excluded togeth~r.
In summary, the system generation activity should include a
review of each functional area. with a decision to either
include or eXClude each from the final system image ..

These decisions result in modifications to the function
access table,FUNTBL, in the supervisor module, MNTRSP.
Appropriate adj us tments to the GLOBAL decla.ra tiens inMNTRSP
will also need to be made so that the selected modules are
included at task build time.*

B. Z.l Display Scheduler Selection

Two versions of the Display Scheduler are available;
one for color (SCHDLR) and one for monochrome (MSCHDL).
Users should include the one appropriate to their: si tua tion.
This may be done during system task build.

*Note that entrin in FUNTBLare pOSltlOn dependen.t.
Unused entries may be employed by indiVidual users
for specia.lized monitor functions.

148

II
Ii:
.1'

I,
~l

'I

I
·1'
.(~

·r
j --

... \

-,

-{ :'

1i
I

-I :i

f\
.)

I ,ii
l--

B.3 DEVICE HANDLER SELECTION

The monitor I/O functional area consists of an I/O
supervisor, module IOSPVR, and a variable number of device
handlers. Access to a particular device handler, by a
user task, is on the basis of a "physica1"* device number
contained in one of the eight entries of the user task
hea.der. This physical device number is simply used to index
the table of device driver addresses, DEVADR, contained in
the supervisor module, MNTRSP. Table DEVADR should be
adjusted by the user, at system generation time, to reflect
the actual device drivers required. Each entry will also
have a companion GLOBAL declaration. Parameter NUMDEV should
reflect the number of device handlers in the final system
image. Entries in DEVADR have positional Significance in
that user tasks expect a particular device to be associated
with a unique positive integer which is used ~o index into
the table.

*We use the term physical in order to distinguish
this quantity from the "logical" device number
contained in the user I/O control blocks.

149

B.4 MONITOR SERVICES SELECTION

The monitor functionalatea known as "Monitor Services"
contains a variety of sUb-modules which are of general interest
to many user application tasks. The system generator should
review the standard entries in this area and dispose of those
which are no t' reqUired by this app lica tion. In add! tion,
users may add specialized services to this section as required
by particular situations.* Addition/Deletion of specific
services en1;ails .the following adjustments:**

a) adj ust table SRv'tBL .in module MTRSRV

b) adjust GLOBAL declarations inMTRSRV

c) adjus.t the initialization entry (zero)
of MTRSRV to reflect any initialization
requirements of the added/dropped
services.

*Users will frequently face decisions regarding
inclusion of certain functions as monitor
services or as user-task-resident subroutines.
There are no generally applicab.le rules here,
however, inclusion of new monitor services should
take into account the overhead inherent in the
monitor call and expanded monitor memory reqUirements.

** In ad<ii don to adding sub- functions within the Monitor
ServiCeS section ,users may also add. ne t...,- monitor
functional areas. This is easily accom'Plished by
adjustments to table PUNTBr. in the supervisor module,
MNTRSP. It is advisa.ble to review theEMT servicing
section of MNTR,sP before proceeding with a functional
area addi don.

150

f \ .

I ;

r
I
""(,

f
r
·r',
:{:l
{'

I
.j:
{.

(

\. j.

B.S MISCELLANEOUS CONSIDERATIONS

B.S.I Initial Task Load

The standard monitor structure is set up to do a
task load as the last action of system initialization. The
usual task is· OPCOM (task 01), from the paper tape reader.
The task and/or device may be changed by modifying the
LDTSK block in the supervisor module, MNTRSP.

B.S.2 Execution Status Monitor

The standard monitor displays a system identification
message at the top of the screen. This line contains an
execution indicator (alternating XO pattern) which can be of
value during system implementation/test to roughly judge CPU
load. Suppression of the monitor title line is accomplished
by changing the priority of the schedule entry or nulling-out
t.he schedule request. Reference MN'I'~SP, initializ.ation
section.

151

B.6 SYSTEM GENERATION SU~~RY

The overall sequence for generating a tailored monitor
image is then:

a.,) Adjust memory layout
b) Se~ect monitor functions,
c) Select device drivers
d) Select monitor services
e) Edit necessary source modules
£) Assemble source modules *
g) Task build the system ima.geto start

at octa.l. 100000. 1vlodule MNTRSP
shoul~be first in the loa~ image;
ordering otherwise unimportant.

'it Monitor source modules require, on assembly, the
inclusion of file HDROFF.MACwhich contains the
task hea.der offset definiti'ons and theG7CALL macro.

152

It'

t ;
r:
1,
e
I
I

I
-"., :
. ::

J'
.t

\

I
I,
i
. ,

f
-j

I
{

.. -

APPEWIX C

QUE~Y/RESPONSE SUBROUTINE

C.O Query/Response Discussion

C.l Query Subroutine usage

I!

Ii
r
f.
(,

"I

I
]'

"(,
, ,

.1 \
"

(I

-I
'\ t ';

, I

.("

l
I

-I:'

{'

·,t
(

C.O Query/Response Discussion

~he ability to display a query to the operator and accept
his response is a common requirement of real time processing
systems. To t..."l.is end, the monitor provides the basic resources
necessary to implement the query capability with some of the
requirement left to the user application routine. The monitor
contribution to the query problem cons ists of the neoessary
display functions, keyboard handler and query buffer resources.
The user is then responsible for combining these facilities in
such fashion as is necessary to satisfy the particular query/
response requirement.

As an example of the possible manipulation of these re­
sources, we present a somewhat generali~ed query/response sub­
roUtine which the user may link into his application routine •

. This rou:t;.ine will take a reasonably s.imple para;meter block and
~thus rel.ieve the user of xnany details re9'arc9.ing the various
"monitor services employed. ,'While the routine dis,cuesedbelow
will serve a wide Variety of query situations, it may need to
be modified or ,'extended to "suit particular application require­
ments.

In addition to its usage here asa query subroutine, users
may also reference the inclUded listing for ex~ples of appli­
cation of the various monitor functions.

C.l. Query Subroutine Usage

The Query ;:aesponse subroutine (QRYRSP) may be useq. to dis­
play an alphanumeric query line in the lower left corner of the
display and aooept a response from the keyboard. Characters en­
tered on the keyboard are reflected in the display at the end
-of the query line. The user response is always terminated with
a carriage return'. Logical device zero is assumed to be the
relevant keyboard.

154

The call to th~s routine will consist of loading the

address ofa paramet.al:' block into register' one and then executing:

JSR I'C,QRYRSl?

The parameter block is of the form:

Wor.d

a
1

2

Contents

Address of query line

Add;ress of response buffe.z:

Response length (byte 1)

Max. Re$pOnse Length (byte' 0)

The q'llery lirie should be terminated wi th a null (zero) byte.

The response characters are returned wi th thapari ty (high order

bit) cleared.. The response will be term.i.nated with a ca.z:riage

return (oc:tal 15); howeVer', the count returned irtbyteS of~ the

parameter block, does not include the carl:'iaqe return charactu.

Osers may modify th.i.s routine to s1.lit thal.r particular re-

q1l.irements., As' an example, the: schedule en;t:rycontrol bloc..l(

may be adjusted to Change the location, intensity,color, etc.

of tl';l.e displayed query line. Time-out on the responSe might

also be req'l.lired in some instances.

The subroutj,ne aSlle.tnbly listing is shown in FiqW:'e C~l-l.

One m1ght also, note that QRYESP may be used to display non­

response messages by simply placing a zero in the response buffer

address parameter.

155

t ,tt'

{:

l' ,
{:

:II
'-.,

(,

f;
(:

{

t
(

. OR TR SI'

.....
U1
(J'o

1
2
:3 ,
5
6
7
8
9

fO
11
12
n
14
15
16
17
18
19
20
21
2l
B
H
Z5
26
Z7
28
29
30
3t
32
33
H
J5
36
H
38
39
'0 000000
~t 000000
,~ 000002
43 000004
44 000006
H ooooto
~6
H
48
49 000012
50 000012
51 000016
52 000020
53 000024

000000
000001
000002
000003
00000'
000005
000006
000007

010046
0101H
010246
010346
010102

012101

105731
OOUOl

000252 '

020004

"

HHRO r.iHO 31-JUL-79 Of,12~ PAt£ J

., tTlE t R TRSl'
• till S , fit' X * hE

...... '

, """ .". "" 11""" .. " "" "" "" """" If""" "" "'" 1f" " .. """" """" "" "" ... "·11 "M 11M II" "" "" .. " """" .. " ,,, II

J II ,11 OUER TIRE SP ON·SE USER U SK SUBROUTINE. "
" ."""""""""""""""""~""".II"""."""""".""""""""""""""""""M1111""""""""""""",,

f

, PROGRAMMER' Hi FRT

* , DATE i , .. .

, ,.UnpOSEI TO AllOII A USER R(JUlINE: TO DlSpLAT A OUERY tlrlE
, ~ND ACCEP.l __ llESPOtfSE VIA IN PUT REflECTED ON THE OISPUY. ,
, ENTRY CONDITIONS' .
, til pOUffS TO PARUiETER BUiCK Of HIE fORKI
t VORO eOffT1BH S , --------

o eHUY tJUFf£/t ADORESS
1 RESpo~iE BUFfER AOORESS
2 NO. CHARS ENTERED/flAX tHARS TO ACCEPT

NOlE sr
- UUERY LINE SHOUlO BE HRHHUTEft BY JlUlUlERO SnEl.

I - C(HIBfHEO td/iGiIl'S OF' ou£n IIRO RESP DnSE SHOULD IlE NO
• GREATEh '"ttl 126 8TTES CINtU/DING URRUG£ RElDR·K).
, -SI10ROU HNE VIU USE TI tiE 0 Sl'~r'EHSI ON I f Ii IlHER or

ORYRS,"'

,

QUERY llUHtR OR IN,"UT OEVI CE is UNAVAIlABLE.

.GUJBl ORYRSI'
ROzlO
Rt"111
R2"X2
R}213

R'''U
RS"U
Sp"lI6
f>c-lI1

HOY
flOY
ffOY
HOY
HOY

RO.-UP)
lUI -($1»
R2,-("")
R3,-(SI»
Rt.RZ

i ~AVE REGISTERS AS NHOED

, ~AVE PARK 8ll(POINTER

j ALLOCATE A OUERT/RESPONSE 8UFfER.
i
TRf21

tlOV
G7tUl
JSTIl
BEO

FIGURE C.i-l

flOnY8L1<,n,
1,1
mUlKAsT
kAYE It

, PO ItH To f> ARAKETER 8l0CK
• REfEReNCE KONlTtll SERVICes
• SUCCESSFUL ALLOCATION 1

(Page 1 of 4 pages)

,

OR VRSP lucao t11110 11-JUl-79 Oall] PAGE 4

55
56
51
58 000026 012101 000254.
59 oaOOH
60 000014 000166
61 .
(02
n
ill. 000016
.65 060036 016161 000i10 000126
66 00004' 011101 000256' .
61 ()O~OSO
U

J

J ON fAILURE, SllSfEtlO FOR O~f ~£CIHHl.

HOY
G1Ull
8R

J .

#THOUT ,til
1.5
t~Y2

• RfQu£!i T TI itO SU Sf' E .. ~I ou
J PflRY JIiE flUfH~ ALLCiCAHfiN .

J D!=flN.f: IHE DUPLAY U.£HEttl fOR o·mRY U~E UPOSlJR£.

• JUy£na
HOY
tlOV
G7CAH.

OR nU,08UfAO
1I0fCfLB.Rl ...
4,2

J INSEU CALL ADIH1. Itt HEttEl ..
,. fOINT TO l' !RAItH fa DLOct<
• PASS IHE: O(SPUY flft.Ehl

69 .
10

• ItE IGNORE HIE P{lSSltHlin Of
j DUPUY ELEhHHllltiCAHOH fllUIRE.

......
Ul
---I

71
'H
11 000052 011200
14 OilOOS4 . OU101 {)00t72
.75 000060
16 000060
11 0000.62
18 GO0064
79 0fl0670
80 000012
81 000014
82 lHI0014
Bl 000100
84 000104
as
8.6
87
fl& 000112

1120{U
{JOHO!.
052]0]
110121
000112

flG02tin

112121 (100240
OHll61 000114
116267 OODOG4

89 000112 012101 000H4.
90 600116
91 fUIOtlO
92 000124
93 oa0126
94 000132

10nH 020004
001404 .
012101 0~OlS4 •

95 OOOj li. 00016.6
96
'Ii
~8

99 000116
100 OOnl!6 012701 000]14.
tlB nOD142
lCI2
101
104
lOS 000144 012101 000214~
106 MOHO
101

'\ ~ ... I

000110

•
• HOVf OUflll LIHE H! !tuffE I! ARE~.
•
GnULl

BUfEND'

•

"Olt
H!lV

ttO\ftl
ilEG
tIS
ROU
DR

ItOV8
JUlV
Kayo

Ul2lJRO
OIH8LK,R1

'RDhIR3
BUfUIO
#2 011, Rl
ft3,(R1)"
GflALl

1I240~(UUt'

RI~R£SfJOH
4(Rl ~. HE Sf' lOt.

• HUC" , Iff teE lBOARt).
J
UHAGIU

hOIf
G1ULl
1518 .
BfQ
HOlt
G7C4l~
8a

IIftfSP1~. ~1
7.1
i1lHUtRSf •
SCtHI
III liOUI.& 1
3.5 . .
AHUGH

• J S~Hf.OOLE HIE OIiERV L Jt'E~

•
SCIiJ I'·

hOlt
G1CAlL

IJS CHDLl!. R.
5.1

I' HI(up '1U ERV 1I NE START AOORUS
fJeIl UP BUffER SURT AOOR.

t l' HK UP A OUEIH LItlE CIUIUCffR
• CtiECiC fllR HUll TEjUtlNU l~lft
J HAUlinG T·EXJ tnHPAI18lE fOM,
i "LACE· CHAR I" cuu ... aUffU .

• HE £1) BUNK Dff OOf liE SP OUSf
I Sfl RESpOIUf AOf)R Hi 110 BLOCK
fsqexPEC(fD L£tu;ni IN. JIO aUcl'

f fnun ,0 IUE 110 BLOCK
.IS~itlt AHACll REOUEST
J U UOI· ,lCC£PIEO 1
• CQtHhlUE If H1ACH SUCUS;}
• IHtE oin f O'aOtiE SHOtt(}
t PeoUEH IlHHi SUSPfUSIOH
• ,Ii.,. AllAeH AGA. IN

J PO INI 10 P ARAKEfER BLOCK
• ALERt HIE DlSPLH' SCHEDULER · , J ftEOUEst,NPUI fltOH IHE ~E¥BOJ.RO.

j

flOV IIftfsrlO~tH
GlULl 1.5 .'

I 1'.0 un III lit) (; II BU
• REOUEst 1(£ ¥ilOUA U'lPYI
• POSsiBLE 1/0 ERftOR IGNORED

- ~-.~; ---.,--. ,.....,..-.-- ~.
FICHJlF C. 1 -1.

~.- ,...:....~ ~
(Pq,~:'" .. 2

~> .--,J
.. ~.c f; r-;- '1)
__ i _" ~ ~

,-

(

....... ~ ~

t-'
111
00

OR VR SP

109

"0
111 ,,? 000152
113 GOOl56
114 000160 .
115000lM
" 6 000170
117 000172
uo 000176
11 'l 000176
120 000200
121 00020~
12i! 000206
123
12 f,
125
126 000210
121 000210
12 0 0002U
129
130
131
tHOOOi!16
133 000221
t3~
135
06
137 000224
138 000230
139
140
141
14 2 000232
14 3 000236
144
145
H6
1'1
1&8
14 9 000240
150 000242
151 0002&4
15 2 0002~6
153 000250

016(01)
OOH H
01670t
110'62
005201
G16703

112302
042702
110220
071105

012701

012701

012701

012701

012603
012602
012601
012600
000207

000002

000126
000005

000102

000200

0002n'

000314 '

000256'

000252 '

H~C~O "1'tO 31-JUL-1906123 PAGE 5

HOVE RESpbMSf TO USER BUFFER.

HOVIl.

tlOV
BEO
/10V
HOY 9
WC
HOV

110'18

BfC
"OVO
508

lfrl2"RO
IOIORE
HSP IOt'6, R1
"' ,5(R2)
Rt
RBPIOH,R]

(1\3,.,R2
/l200,R2
In. (ROH
R1,.Hovn

• OElA nr TilE KEYBOARO.
J
IGNOREI

HOV IlRESPlllt R1
G7CAlL 7,t.

PI 0 UP RE SPI)N S E DurrE R AOI1R.
IG';(,RE If ZERO

, P I (I< UP HE SP(;N H COUtn
IN SER l IN C AUf R PA RAtIE lER BLO CK
ACCOUNT FOR CARRJAGE "ETUrlN

, PICK UP START Of EUTEREO lEXl

i PiCK UP RESPONSE CHARACTER
, ER ASE PIIRIlV BIT
J Pl~CE IN USER BUFFER
J ~O'E ALL RESPONSE CHARACTERS

POINT TO 1/0 BLOCK
IS~UE UEfllClI RE{,UEST

onE TE THE 5 CHEOULI: TA ill E EN TRY.

HOY .SCH9LktR1
G 70Ll 5.2 ,

I OELETE 'HE OrSPlAY ELEMENT.
J

HOY DOEClLO.R1
GiCAlL ~.5 ,

, RELEASE ThE OUERI 8UFfER.

HOY DORYBLK.R1
GICALl 1.1

RESTORE REGISTERS ANO EXIT.

HOV
HOY
HQV
HOY
RfS

UP}t.R]
<SP). ,Rl
UP } .. R1
UP) •• RO
PC

POIHT TO 5CH, CON'"OL OlOCK
REFERENCE THE OISPL~1 SCHEOULER

, POINT To ElE~ENT CONT"Ol BlK
J REfERENCE OTSPL~V ELEMENT HGH'

, POINT TO P~RA"ETER BLOCK
_ REFERENCEO MONI10R SERVICE
, VJtL lERO ORrSLK so AS YO BE
, READY FOR 'HE NEXT ALLOCATION.

, RIO fURN TO CAllER

FI GURE C. 1-1 (Page 3 of 4 pages)

....

-.

.-.

011 VIt Sf

155
156
1157
B6
H9
1)60 000252 000000
Hi
162
163
164 000254 000012
~65

1i66
1167
168 UOO2S6 ooooon
169 U0026U oooonn
no 000262 000000
171 000264 000004
172 000266 OOOllO'
H1 0002]0 002100
HI. 00027 2 000000
os
n6
171
178 000274 000000
119 000276 000001
180 000300 OOOOM
Hll 000302 000000
t82 000304 020000
iS3 000306 000000

I-' 164 000310 000000 Ul
18 S 000312 OOOODO -.0
166
181
168
189 00(}31J. 000000
190 000316 000000
191 000320 000000
19l 000122 000256'
193 000324 171 003
194 000326 001 003
195 OOOBO 000 000
196000B2 117076
191 000H4 1770'S
19B
199 000001

HACRO HlllO l1-JUL-19 Obi B PHE 6

SIORAGE ANO CONSTANts fOil OUEIlY/RESPOtlSE SUBROUIWE.

pARAHEJf,R BLOCI< fOR OUEIl\' BUfHIl tLLOCAJ I(lI'.
J

OftV8LI<I .WORO 0

•
PAftAHHER BlOCl(fOR 1 SECOND lASI< SUSpENSION.

J
t /lOU, I .110 R 0 10. J 1 SHONO I t~ lfNIH SE CONOS

, I'ARAHHER BLOCK fOR OlSnH ELEHENl OH1NllJOIh ,
OEClLB4

ODUf AD I

•
• liD •
RESl'lOa

J

.1I0RO () , RE SERVEO ,lORD

.1I0RO 0 I HEIlEtH STARr AOOllfSS(RETUIUlEO)

.IIORO 0 , HEtlEIH fLACS/STAIUS

.1I0RO I. , ELEhENI LENGTH

.IIOR 0 •• 2 , .1'0 un TO H EtlEtU

.IWRn 2100 J CALL REfRESH SUBROUTJNE

.1I0RO 0 f OUEU DUffU AOOR". TO 61' INSERTED

BLOCK fOR KEV80A~0 IUtUI.

.1I0RO 0

.1I0RO 1
•. 1I0RO 0
.1I0R 0 0
aI/ORO 20000
.1I0RO 0
.IWRO 0
aI/ORO 0

, Ill' S£itVfO
, lI)GICAt. DE VILE OHE ASSUHO
J Rt SPtlU SE 6 uf fE R ADOR.
• RES/'OWSE EXPEClEO LENGIH
, IGNORE fUNCIlOH KEVS

NO ERRORIlElIJRN
NO TlIiE -01.1 J

J TRANSfER touNr (REltJRNEO)

J SCHEDULE CONTROL BLOCK fOR QUERY LINE.

• $CHBlIq .WORO
.1I0RO
.IIORO
.1i0RO
-!lYlE
~BnE
,BYTE
~1I0RO
.IIORO

.EIll)

o
a
I)
DE ClLB
127 ..]
1.3
0.0
-450.
-4]5.

• RE SERIlEO
J SCHEDULE ENTRY ADDRESS tREIUIHIED)
J Sr·.A IUS AND fLAGS
• Elfl1EtH ClL 8lt(I'OINIER
J PR IOkllY.CRTS
J lutHISU'a'.COLOR
• llltE STRUCTURE.CHAR SIZE
J X STARI
J 1 START
• IiOOlf. NOt ~EEOEO

~ .. ~ ..
J::TGUp-r:: ~.1_1 - ~.- ~ .. ---- (Pag~ Anf A ~ar~c\

__ .~ -...i ~; -: ~ .-- ~ ~ ~

"

APPENDIX 0

GRAPHIC 7 MONITOR

OPERATOR COMMUNICATIONS

O. a OPERATOR COMMUNICATIONS

0.1 OPERATOR COMMUNICATIONS IMPLEMENTATION

0.2 OPERATOR COMMANDS

D.3 BREAKPOINT SERVICES

160

Ii
Ii;

t
I
I:

·-1

(,

]'

~'('

"'(

(:

',f"

-I

I:
·t:
_, i

-(,
i

.. (

I

0.0 OPERATOR COMMUNICATIONS

Operating system interaction with the operator or application
task programmer takes place through the Operator Communications
module. Typically, the system provi~es for monitoring task
execution, displaying task sta.tus and dumping/modifying memory.
This fa.cility will normally be heavily used during application
system development and mayor may not be a.ctually present during
final system operation. The follOWing section describes the
implementation of the Operator Communications module in the
G.raphic 7 monitor.

D.l. 0EeratorCommunications ImElementation

In the Graphic 7 moni tor, the Opera tor Communications module
(hereinafter referred to a.s e\PC0M} executes: as an independent
task, the same as any application task. This configura.tion allows
for de~eting the 0PC0M module in the final. system implementation
(and. thus gaining an extra 4K block of memory space) while also
reducing requirem:ents on resident monitor direct address space.
During system development the elPC0M task will be automatically
loaded during system initialization. !tlPC0M is then activated by
simply depressing CantrallC on the system keyboard. Being at the
highest priority, the request prompt is immediately displayed.
0PC0M then utilizes the various standard monitor I/O services
to satisfy the request~

161

II
I'
L
I
f:

r
(.

\

.1'
.{

I
(

Commands to OF-COM take the following standard format:

verb argl, argZ, , argn

Argument formats are dependent on the particular verb
and are discussed in Section D.Z. The verb may be spelled
out completely or only to the extent necessary to distinguish
between the various commands. The following conventions
should be observed:

a. Task ID's are always specified as two hexadecimal
digits, (must be upper case).

b. .Addresses are speCified in .octal; up to six digits.
Task offsets are ~n the range 0-57776.

c.All inputs aretenninated ~Y a c:al'l'iageretul'n.

d. A carriage return must be entered torele.ase OPCOM
-in the ,event of ~a non-q.uel'Y message (i .e., .an error
message, memory dump, etc.).

162

Error messages from OPCOM take the following general
form:

ERR0R: nn message

"nn" is the status code returned by the particular monitor
function which was e:tercised. For example, the "Disable Task"
command will use the re'~ective Task Management entry point.
Any error returned from such would be reflect.ed. in the "nn"
field. This is a decimal number.. The "mess age" field will serve
to indicate the command type which failed or the failure reason.

D. 2 0Eerator Commands;

The various commands are outlined in the following sections.
U.sers are cautioned to pay part.icular attention to the argument
list and argument types which are e:tpected to be specified with
each verb. If there is some d.oubt about the required argument
list, then' just specify the verb and a separate que·ry will be issued
for the arguments.

0.2.1 Abort Task

Abort may be used to forcefully terminate task e:tecution.

Syntax: AB~RT taskid

In order to be run again, the task must be reloaded.

II
I . . .

!

t
1
1
r
1
"'(

,: ~

.I'
I
I

.,.(:

,r:
,.{

t·
j

-f

i

D. 2.4.1 Task Memory Dump

It is often convenient to display memory relative to
a particular task area. This may be accomplished via the
subject task ID and the "TDUMP" command:

Syntax: TDUMP taskid, offset

Following display of the initial 128 word block, the
following three single character options are available:

a. Slash - step forward 64 words

b. Up arrow - step back 64 words

c. Carriage return - exit

164

0.2.2 Continue Task

A task which is currently suspended (indefinite or timed)
may be activated by the continue command. An optional task
offset may be specified if the resumption point is not to be
the cur1."ent ta.sk execution loca.tion,'" The offset is a "zero~
relativeJ! value which OPCOM will'convert to a task address by
adding octal 20000. After possibly adjusting the saved PC
value, OPCOM utilizes the Task Mana.gement continue service
to awaken the task.

Syntax: CONTINUE taskid [,offset]

0.2.3 Disable Task

Disable may be used to ca.use a task to be ineligible for
execution. Activation of the task would not be possible until
an Enable was issued.

Syntax: DISABLE taskid

0.2.4 Dum;pMemory

The Memory Dump facility will cause a 12·8 word block of
memory to be displayed. The start address, to the nearest even
eight word boundary, is the only argument. Following display of
the initial 128 word block., the following three single character
options are available:

a. Slash - step forward 64 wClrds
b. Up ar1."OW - step back 64 words
c. Carriage return - exit

Syntax: DUMP address

* One should exercise ca.re in modifying the executioTl sequence
since, for obvious reasons, some task code is not re-executable.
For exa.mple, re-execution of display schedule req~ests or
display element requests would typically be una.cceptable and
yield mystifying system behavior.

165

(,

t
].

1
I,
1,
1
t "

,
i

'1
f
i ._(

"

-(

(.

D.2.S Enable T~sk

Enable will erase the relevant task status bit, via the
associated Task Management entry. Depending on relative priorities
and other status conditions, the task will now be eligible for
CPU time.

Syntax: ENABLE taskid

D.2.6 Load Task

Load will be used to introduce new ~asks to the system.

Syntax: L!2lADtaskid, device (,filename)

Notes:
a) DEVICE should be a phXsic~l devicenumbet. (Physical device

numbers are determined during system generation.)
b) FILENAME is optional, depending on the medium. Maximum of

ninecharacte~s.

D.2.7 Patch Memory

The Patch service allows for modifying a single memory word
or a block of words. This command has two forms depending on
whether two or three arguments are specified. The two argument
form is:

Syntax: PATCH address, value
(VALUE is placed at ADDRESS)

The three argument form is:

Syntax: PATCH addrl, addr2, value
(VALUE is placed in locations ADDIDtnru ADDR2.)

166

D.2.7-.1 Patch Task Memory

Memory can be modified on a task relative basis by
using the T~ATCH cormnand.. This command, as in the normal
PATCH, has t'Wo forms. tor a $ingle !Nord patch:

Syntax: TPATCataskid, offset, value
("value 11 is placed. at "offset")

tor a. block of words:

Syntax: 'l'PATCH taskid,. offset 1, offset 2, value
("value" is pJ.aced in locations "offset 1 t.
thru "offset 2")

167

(i

{

(

I
.I
I
(

I
I,
i,
J,

1

(

(

I
I

-(
'j

(
-(,

I

:(

(

r -

D~2.8 Display Tas~ Status

Task status includes the various parameters in the task
header and the general registers. The header parameters are
identified by their standard offset notations. For a description
of thes. entities~ see the Task Managem.nt section.

Syntax: STATUS taskid

D.2.9 SuspendTask

Suspend may be used to inhibit task execution for a timed or
indefini te interval. The time argument, .if supplied, should be
an integral value in 1/10 second units.

Syn tax: SUSPEND taskid (, time)

D.2.10 ppdateTask S~atus

The upd& te facility may be used. to'-modify "the low order eight
bits in the subject task's status word. The associated Task
Management entry is ~xercised.

Syntax: UPDATE taskid? status

D.2.l1 Display/Set Date/Time

The TIME command may be used to either enter the current time
OT display the current time. The syn.tax fOT entering the current
time is:

TIME HH:MM:SS fMM/DD/YY~
To display the CUTTent date/time simply issue the TIME command

with no arguments.

16~

D. 2.12 Step~Thru.Memorx

TSTEPM and STEPM allow a user to address and display a
memory word, step to and display the preceding or sUcceeding
word location, and optionally replace the value of the di~played
memory word. TSTEPM addres sas the word rela ti ve to i t5 location·
within a task memory space, while STEPM addresses the word
directly or by its absolute location in memory. Command syntax
is:

TSTEPM taskid, offset (wi thin task)
STEPM address

(task relative)
(direct)

where taskid is hex; address is: 16 bit octal for task. relative
18 bit octal. for direct.

Once the memory word is displayed the user may step to a
precedingol" succeeding memory word by depressing the uparrow or
slash k.ey, respec.tively.

The displayed. memory word may be replaced by entering' a
6-digit oC,tal number, ancldepressing the slash, uparrow, or'
carriage return key. Carriag~ return will display the new value
at the presently displayed location, while slash and uparrow
conceal the change from· the user because a different location is
next displayed.

Exi t from· t'he service is achieved by depres sing the carriage
return key when no new value is entered.

The TSTEPM/STEPM service is useful when several closely
locat~d changes are to be made and the TPATCHand PATCH service
may be awkward.

169

l
L
'1

.(:

", , -I .

.I
• ~(I

.f i

·1 :

1
J

I
f

D.2.13 Device RegisteT Display

The memory dump commands naturally refer·ence the memory
block for addresses which covel' the device register page. The
RegisteT command may be used to examine any diTect address in
the range 160000 to 177776. An error message is displayed if
the address is not within this range or the device is non­
responsive.

Syntax: REGISTER address

170

D.3 BREAKPOINT SERVICES

The OPCOM breakpoint services allow a user to interrupt
a task and examine task status or memory contents. This facility
will be valuable for determining the'e.xecution sequence or
intermediate results 0 f us-er tasks during initial debug.

D.3.1 BREAKPOINT OPERATION

Task brea,kl'oints are inserted by specifying the task
ID and an octal task offset (0- ...). When the breakpoint is
encountered during
OPCOM is notified.

a. task

task execution, the task is suspended and
OPCOM displays a message indicating:

ID (2 hexadecimal digits)
b. task offset (S octal digits)
c. breakpo in t number (dec.imal, l-n)

The breakpoint ,will need to be deleted if the task is to be
continued at the 'given offset. The optional offset parameter
of the task continue directive may be used to' cause execution
to resume at a, different point.

D.3.2 BREAKPOINT SIDE EFFECTS

The breakpoint capability is implemented using function
code zero of the standard E.MT.monitor call structure. The
sub-function bits are used to store the breakpoint number.
(Thus yielding a maximum of 16 breakpoints with OPCOM pos s ib ly
restricted to less.) As a result of this implementation scheme
the following side effect should be noted: the T$MRST status
byte in the user's task header is cleared when the breakpoint
occurs.

D. 3.3 BREAKPOINT RESTRICTIONS

The breakpoint service cannot be used '0'11 thin the moni tor
or any portion of a user task called as an appendage to the
monitor.

171

Ii
(

I
I
(,

I
I,
I
I
1\ ,

1

I
.. Ii i,

"

I
~(i

I:
I

'i i

t

I.

D.3.4 OPCOM BREAKPOINT COMMANDS

The following command verbs .may be used to manipulate
breakpoints.

D.3.4.l Insert Breakpoint

The insert directive will place a breakpoint in the
indicated task, at the specified offset. Remember that task
offset values are always relative to zero whereas task addresses
will typically be biased by octal 20000. The integral break­
point number is displayed following saving of the current offset
contents and insertion of the breakpoint instruction.

Syntax: BINSERT taskid, offset

D.3.4.2 Delete BreakpOint

Breakpoints are never automatically deleted by CPCOM.
Tnedelete command, .spe.cifying the breakpoint .number, will be
used to eliminate previously ~efined break locations. The
action of the delete is to replace the break instruc:tionwith
the previous offset contents. If this .is t'he currer.t task
execution point then the task may riow be continued in the
normal manner.. (When the br-eak··occurs the task pC is adj ust.ed
to force re-execution of the break offset location.)

Syntax: BDEiETE breakpoint-number

D.3.4.3 Purge Breakpoints

The purge command may be used to eliminate all currently
defiI}ed breakpoints. The purge request is advisable whenever
any task exists or aborts since the breakpoints are not
automatically eliminated. Purge takes no arguments.

Syntax: BPURGE

172

APPENDIX E

DISPIAY OATA SUPPORT

E.O Introduction

E.l Coordinate Systems/conversions

E.2 Stano.ard Display Element ro:r.mat

E.3 Display Data System Support Sui::lroutines

173

L
(/

[

1
-f"

I
'1 :i

'(,

~-(

'OJ" I

_. 'I

-I
·fl ,

"

t
',I "

t
i

--f

1,
I

-(

'f,

E.O DISPLAY DATA SOPPORT - INTRODOCTION

The objective of the Display Data Support facility is

to provide monitor based services relevant to general display

data manipulation. The following sections discuss a standard

display data format and associated support subroutines. The

standard display data format is intended to allow greater pre­

cision than a typical refresh instruction format as well as to

allow the user to supply graphic data independent of any par­

ticular machine code. The data format discussed herein will

provide all of the flexibility of a refresh representation

while being purposely tailored to geographic display elements.

The 'subroutines 'associated with support.i.ngthe stan,dard data

format will allow for converting to refresh code while apply­

ing coordinate transformations and scaling . These routines

vdll be callable in the standard Graphic 7 monitor context al­

t..'1.ough not cons idered part of the resident monitor. Details

regarding the subroutines are covered in Section B.3. Before

proceeding to the standard display data format, we review the

assumptions behind the coordinate system used for specifica­

tion of the input display data.

174
.' .

E.l COORDINAl'E SYSTEMS/COORDINAl'E CONVERSIONS

. Inherent in the specification of a common display da.ta

format is the definition of a global coordinate system.

This global coordinate system should allow for data descrip-

tion at precision. levels consistent with the 16 bit word size

and system design obj ectives. Also, the global coordinate

system will allow for relating display entities from iTarious

data sources. Given the global coordinate system, a function

must then be provided for converting to display coordinates.

This conversion involves the specification of the display

origin and a scale factor. In this area, we feel a careful

definition of ter.ms is necessary to ensure consistency and

thus allow for the application of generalized,_ monitor-based

services.

Our view of the global coordinate system wi th .respect

to a sainpl~ display element is shown in Figure E .1-1. The

overall scheme is one of cartesian coordinates.* A local

origin (X 0, Yo) is defined for each display element in terms

of the global coordinates. This element origin is stored in

the display element header. Specifications relevant to a par­

ticular display element (move to point XI Y i etc.) will then

be relative to the local element origin. A scale adjustment

may be made to the local coordinates via factors contained

in the element header. This adjustment may be necessa.ry, for

example, if data are obtained from different library or real

* Other coordinate systems (polar, etc.) could be supported
on a special case basis. The important point is that we do
not expect to support adjus~~ents for earth curvature or other
map related transformations.

175

I
I
1
l
I

-(:

,

'(1

·f
~f I.

i
..I

-(.

I ...

r~

~ __ ~y6

max.

yG

X~~--~ min XG>
min

XG
min

'XG , yG
max min

yG
max

max

- Global coordinate
system boundaries

FIGURE E.l-I. Global Coordinate System

176

time sources. At this point, the relationship between some

particula.,r map point (,for example, xc, Yc in Figure :£.1-1)

and the global coordinate SY$ tam should ae clear. How then

do we establish this element/point in a screen image?

Several mechanisms exist for defining the relationship

between the global coordinates and a particular screen area.

For our expected operating situation, it appears convenient

to specify the mapping function in terms of a display origin,

display aounda.ry and a scale factor. Thus 1 in transforming

a display element from the standard format, the user task will

need to inciicate what point on the display corresponds to the

element origin (Xo, Yo in Fig'W:'e m.l-l). A user supplied

scale and clipping boundary will also ae applied during the

element tZ'ansfor.m.ation. The overall,tZ'ansformati.on is de-

picted in Figure E.1-2.

Iflle steps involvect in converti.ng a display element

specification in standaJ;'d fozmat to an image component are

then:

(a) Apply the element origin and optional
scale factors to convert each element
point to the global coordinate system.

(b) Apply the requested display origin a.p.d
display scale facto!: to arrive at sc.:reen­
relative coordinates.

(c) Account for the specified clipping bounda.ry.

177

I

I
l
I,
I
I.
(

(',

I
I)
t
-(

-I,

I
I

XO'YO~

I .
I • .

DATA
SPACE

'r-- --~
I \ !

\: ~\:
\1 G~ \1 1-- _____ ..:1

LCliPPing
boundar~

FIGURE E.1-2 Display Element Transformation

178

SCREEN

E.2 STANDARD OISPtAy ELEMENT FORMA~

The Standard Oisplay Element Format is depicted in

rig'tlre E.2-l. The Element header will contain parameters

relevant to element identification, canversion and display.

Thesa attributes are outlined in Fig'tlre E.2.1~1.

The data portion of the display element is composed

of a ser.ies of s'!J.l::)sections which specify .the· various move,

draw, text, etc. image components. Each sUbsection is

composed of a mode (command) control word followed by a

group of paz:ameters (typically x,y coordinates). 'l'he nUl1'lber

of such parameters may be, dep.en.ding on the mod-e type, fixed,

adjustable, or variable. For variable modes, a terminator

must be specified pl:ior to the next mode control~

OseZOs will want, to note the 'definition of each mode:

very carefully before. proceeding to genezoat.e a standard data

file.

179

I
1
I
I
,]

(

'(

I
-~l

.J
,I

"'(

I
f)

-I
i

-1
.. (,

I
-(

\
I.

,.

HEADER

(FIXED LENGTH)

....... - - --.~-

DATA

{VAlUABLE LENGTH}

FIGURE E. 2-1 Standard Display Element Forma·t

180

E.2.1 Display Element Header

'!'he Element Sea.d.eJ:: contains puamete.rs relevant to

the id.enti£ication and. orientation of the image component.

The vaJ::ious parameters ue outlj,.ned in Figure E.2.1·1.

ReV'iewil'lg the vario1.lS fields:

Elem.ent IO: 8 ASCII characters
Length: tota.lbytes including the header
Flags: TEO
Origin X,Y: el$ment origin in global coordinate

system uni ts
X,Y Conversion Factors: optional factors for

converting from local units to
global units.

Colol:': 0, 1, :2 or 3*
Intensity: 0~7*
Line Structure:
Character' Size:
Display Flags:

0, 1, :2 or 3*
0, 1, 2. OJ:: 3*

:Sit 0 _ saS"e

a
1
:2 Chaz-.acter rotate'"
3
4
5 :slink *
6
7

.... These factors would, of course, only be recomxnend.ations,
Le" not. prohibiting the user routine from supplying its own
attributes.

181

I
I
(

I

f'
",

f

I
1

WORD
o
1

2

3

4

5

6

7

8

9

10

11
12
13

14
15

15

ELEMENT

ID

Length (Bytes) _ _-----
Flags

o

- -- -~ -
Origin X -- -,----~ -
Origin Y

"*-' --- - ..-.. - .- - .-- ,.,...

X conv. factor'"
- y con~ facto;;' -
---..---,---

-., --, ~-~-.- -
_ DisplaL Fla..£s_ .. _. --..1
_ ~l~ __ l_Int~Sity_

Line Struct Char. Siz

* The conversion factors have an assumed
binary point between bits i and 8.

Figure E.2.1-1 Display Element Header

182

E.2.2 Mode Definitions

The mode definitions consist of a mode identifier (tD)

and a list of applicable arguments. A new mode identifier

is assumed to follow the end of each subsection. The various

definitions are discussed on the following pages. Osers will

want to study the available options so as to allow the most

efficient data representation possible.

The mode numbers, placed in subsection byte 0 in each

case, are given in decimal. All x,ycoordinates/deltas-are

assumed to be si.gned binary integers.

The COONT Byte, where applicable, is taken t.o be an un­

signed eight bit integer.

183

I
-I

(
-(,

1
I'
I
r
I,
-,

f.
11
.J

-'} !

-{

" -\

-1'1
I.

,

L

MODE = I, MOVE ABSOLUTE

SUBSECTION STRUCTURE:

~

0*

1

:2

CON'l'ENTS

1

X COORDINATE

Y COORDINATE

(FIXED 'LENGTH SUBSECTION)

* High order byte ignored.

184

MODE = 2, MOVE RELATIVE: (SHORT)

SUBSECTION STRUCTURE:

WORD -

1, byte 0

1, byte 1

CONTENTS

2

X delta

Y delta

(FIXED LENGTH SUBSECTION)

* High order byte ignored.

185

-, .

\ .

MODE = :3 I ,MOVE RELATIVE (LONG)

\ ,. SUBSECTION STRUCTURE:

WORD CONTtNTS -
0* 3

1 X delta

:2 Y delta'

((FIXED LENGTH SUBSECTION)

(,

* High order byte ignored.

186

MODE = 4 I DRAW ABSOLUTE

SU'.BSECTION STRUCTURE:

WORt) CONTENTS -
0, byte 0

Q, byte 1

1

2

4

Count of coordinate pairs

X coordinate

Y coordinate

Thes'l:!bsection length is 2 + 4* COUNT bytes.

Count == Q is'an error.

This mode yields a vectoT dra-wn between the current X,Y
position and the first X,T coordinate pair. If more
than one coordinate pa.ir is specified, then draws are
defined to each successive point.

187

f,
ii, ;
t~

l'.
t
I,
I
1.1

(

f
].

]:
.., ,

t'
··1 :
.'(:

-{ i

.1 1

\ .

"~T

I
I

,
\ '

MODE = 5, DRAW Rl::LATIVE (SHORT)

SUBSECTION STRUCTURE:

WORD CONT;E:NT$
~

0, byte 0 5

0, byte 1 COUNT of delta pairs

1, byte 0 X delta

1, byte 1 y delta

The subsection length 2 + 2* COUNT bytes •

. ,.If .. COUNT is zero , then thesubseetion length .is' v-ariable
and the subsection must beter.minated by a zero word.
Thus a draw relativ~th zero x,y delta is not allowed.

188

MOOE = 6, ORAW RELATIVE (LONG)

SU!SEC'l'ION STRUCTURE:

WORD -
0, pyte 0

Q, byte 1

1

2

CON'l'ENTS'

6

COONT of coordinate- pa.irs

X Coordinate

YCoordinate

The stWsecti.on length is 2 + 4* COt."N.'l' bytes.

Variable' length subsections of this mode (i. e., COONT=O)
must be terminated wi th X, Y = o.

189:

l'
I'
f
,I r

(,

I
t
1':

I'
f
t
l:

f
t,
·1,

"

·f:
,., '

'f
\ ,

-{

MODE = 10, POINT PLOT ABSOLUTE

SOBSECTION STRUCTURE:

WORD

0, byte 0

0, byte 1

1

2

CONTENTS

10

COUNT of coordinate pairs

X Coordinate

Y Coordinate

The subsection length is.2 .+ 4* CdtJNTbytes ~

COUNT = 0 is an error.

190

MODE = 11, POINT PLOT RELATIVE (SHORT)

SUBSECTION STROCTURE:

WORD CONTENTS

0, byte 0 11

0, byte 1 COUNT of x,y delta pairs

1, byte 0 X delta

1, byte 1 Y delta

Subcection lengt." is 2 + 2* COQNT bytes

If COti"NT is z;ero I then the subsection length is variable
and the stWsection must be terminated by a z;ero word.
Thus! a point plot relative with zero x,y delta is not
allowed.

191 .

I:
I
l

I
r ,I

-'

I

r

MODE = 12, POINT FLOT ~LATIVE (LONG)

SUBSECTION STRUCTURE:

~

0, byte 0

0, byte 1

1

CONTENTS

12

COUNT of x,y ooordinate pairs

X coordinate

Y ooordinate

Subseotion len9th is 2 +4 * COUNTbyt.es.

If COUNT is zero, then the subseotion .1ength is variable
and the subseotion must be terminated by a zero x,y eoor­
dinate pair. Thus,-a:plot point relative at the current
beam position is not supported in a variable length sub­
section.

192

MODE = 20, SE~ TEXT INCREMENT

SOBSECTION STRUCTURE:

WORD -
o /byte" 0

0, byte 1

CONT$NTS

20

Te.."Ct Incr amen t

(FIXED LENGTH)

The l.lsageof' this mode lfdiscouraged since the system.
wil,l supply a default te:<t increment appropriate to the
particular. scre~l'l/character,size being used.

rae'text: increment is given in screen units.

193

I.
1';

1.
",

Ii'
I,
f
I:' ,I
:

l·
]

t
'I,
:11
'.

-(.

..f

-,
-I -

'f
1

MODE = 21, SET LINE INCREMENT

SUBSECTION STRUCTURE:

WORD CONTENTS --
0, byte 0 21

0, byte 1 Line Increment

(FIXED LENGTH SUBSECTION)

The usage of this mode is discouraged since the system
will supply a default line increment appropriate to
the particular screen/character size being used.

Th.e line increment is given in screen units.

194

MODE ~ 22, $~ CHARACTER SIZE

SUBSECTION STRUCTURE:

W'ORD CON'.!ENTS -
0, byte 0 22

0, byte 1 Character Size

(FIXEIl LENGTH SUBSECTION)

Usage of this mo<i$is not J:ecommended since it implies
the insertion ofLDDP instructions within the generated

. refresh element. Specification of the character size
may be dc:;ne in the element header.

195

I
'1;' . , ~

.. (~
, '

1;

1:
]',

]j

'~r

~r

·1
II
,

t,

t
I .,

. I

i
i

,of'
,

-·l.·

MODE = 23, SET TEXT ORIENTATION

SUBSECTION STRUCTURE:

WORD

Or byte 0

0, byte 1

CONTENTS

23

Character Orientation

o = horizontal

1 = vertical

(FIXED ,.LENGTH .sUBSECTION)

Usage of this mode is not recoI'rlInenaed since it implies
the insertion of LDDP instructions within the generated
refresh element. Specification of the character orien­
tation may be done in the element header.

196

MODE = 24, TEXT

SUBSECTION STROCTURE:

WORD CONTENTS

0, byte 0

0, byte 1

1, byte 0

24

COUNT of TEXT bytes

Text (ASCII) character

Subsection lengt."l is 2 + COUNT* bytes

If COUNT = 0, then the subsection must be terminated by
a zero byte. Carriage returns result in insertion of
Load X/Move :t instructions to effect normal CR/LF action.

* Rounded up to include whole words.

197'

I,
t:
I
1
f
I
(

" I
J
L

,

I,
Ii
-'I '

1.
I
I
r
t

MODE = 25, TEXT (Alternate Char. Set)

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 25

0, byte 1 COUNT of TEXT bytes

1, byte 0 Text (ASCII) character

Subsection length ,is 2 + COUNT* bytes.

If COUNT = 0, then the subsection must be terminated by
a zero byte. Carriage returns result in insertion of
LOAD-X/MOVE-Y instructions to effect normal CR/LF
action. This mode is similar to normal TEXT but a shift­
in/shift-out sequence is implied.

* Rounded up to include who~e words.

198

MOOE = 26, SINGLE CE1I.RACTER

SUBSECTION STRtJCTTJP..E:

WORD CONTENTS -
a, byte 0 26

0, byte 1 ASCII Character

(FIXED LmGT:a:SUBSECTION)

199

f~

Ii:

I'
I,
l~

(I

f'
"I :

I
.. f·
~t

t,
I

Ii

I
--I

\
;

-f
,

'-}I
I
!

. -:1

'1

MODE = 27, SINGLE CHA.RACTER WITH BLINK

SUBSECTION STRUCTURE:

WORD

0, byte 0

0, byte 1

CONTENTS

27

ASCII Character

(FIXED LENGTH SUBSECTION)

2.00

MODE = 28, SYMBOL

SUBSECTION STRUCTURE:

~ COmi:NTS

0, byte 0 28

0, byte 1 SYMBOL Code

(FIXED LENGTR SU$SEC'l'ION)

SYMBOL is the same a.s "SINGLE CEAAACTU" except that
. a Shift"'in/sh.ift~outsequence is itnplied.

201

(',

I' ;
I
{II

r
[;

"I];

I
I'
f:
l:
f.
f
I,

I'
I" ,

MODE = 29, SYMBOL WITH BLINK

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 29

0, byte 1 SYMBOL CODE

(FIXED LEl-lGTH".SUBSEC~IQN)

Gt'NDOL is the same as "SINGU; CHA.RAC'1'tR"except that
a shift-in/shift-out sequence is implied.

202

MODE = 30, SET INTENSITY

SUBSEC'l'ION S'l'ltUC'l'T,llU::

waRD CON'l':tN'l'S -
0 , oyi:e 0 30

0, oyi:e 1 INTENSI'l'Y

(FlXEP LENGTH SUBSEC'l'·ION)

Usage of thi.s mode is not reconuuendad since it. results
in insertion of tJ:)OZ instructions within the refresh.
Intensity ma.y be specified in the ale:meni: header.

203

1,
f.;

('

Ii
I­
[,

1;
f'
I

; ,

"

,II
(:'

,

. l
-I

' ..

I,'

MOD~ = 31, SET BLINK

SUBSECTION STRUCTURE:

t-10RD CONTEl'iTS -
0, byte 0 31

0, byte 1 BLINK SPEC.

0 = no blink

1 = blink

(FIXED LENGTH, SUBSECTION)

Osage of this mode is not recommended since it results
in insertion of LDDZ instructions within the refresh
file. In additi"on, the application task will typically
want to have global control of this parameter.

2.04

MODE = 32, SET LINE STRUCTURE

SUBSECTION STRUCTURE:

~ CONTENTS

0, byte 0 32

0, byte 1 LlNE STRUCTURE

(F IXED LENGTH SUBSECTION)

Usage of this mode is not recommended since it res-ults
in insertion of. LDDZ instr-uctions wi thin the refresh.
Line st.r-ucture may be specified in the element header.

205

I
I
f
t
I
II
I,
11

I
.'·1 '

-I:
;

-I:

-f

.,
-L

·f

MODE = 40, CONICS

SUBSECTION ST~UCTURE:

WORD -
0, byte 0

0, byte 1

1

:2

CONTENTS

40

Quadrant inhibit bits

o = inhibit quad. 1
1 = inhibi t quad. 2
2 .= inhibit quad. 3
3 = inhibit quad. 4

X rae-ius

.Y radius

(FIXED LENGTH SUBSECTION)

206

MODE = 50, END-OF-FILE

SUBSECTION DEFINITION.:

WORD

o

CON'l'ENTS

50

This mode may be used to ind£cate end of the display
element dQ.ta px:iox: to the end of the dQ.ta block
(as indicated by the byte count in the headex:) .

207

(

I }

I
f
1·
I,
I,
I '

I
·1

f

I'
I
t
-I

-,
I
f
I
f

MODE = 60, SWITCH TO SIZE ABSOLUTE

SUBSECTION STRUCTURE:

WORD -
o

CONTENTS

60

(FIXED LENGTH SUBSECTION)

This command will allow for inserting a fixed-size
cb j ect wi thin an otherwise scalable display element.
This command will typically be followed, eventually,
by a mode 61. Code wi thin a si.ze-absolut-e section
will not be effected when the operator requests a
zoom operation.

2.08

MODE = 61, SWI'I'Ca 1'0 SIZE ~LA'I'rvE

SUBSECTION S~~UC'I'URE:

WORD CONttN'I'S -
o 61

(FIXED LENGTH SUBSECTION)

This conunandwill'allow for returning to size relative
mod-a after a previoUsly' issued mode 60 .Si~e r.elati Ve
is t:b.e defau.l:,t element type and. neiiid hot be explicitly
specifiedunle:es a switch from al:;)solute m.ode is neces­
sary.

209

l.
r
II
,~

I:
I
r-
1,1

I:

I
I,

f ,
I

(

(--
\

E.2.3 A Note on Text Usage

A caution with respect to text usage within a display
element must be noted. Data within a standard format
element is generally given in local coordinate system
units which are translatable to global system units via
the X, Y convers ion factors given in the header. Tex t
however represents, effectively, data in display units
which may not be exactly represented in local system units.
Thus, following a string of text characters, the local
(virtual) beam position will not normally be equivalent
to the display beam position. For this reason, we
strongly encourage users to follow a text block with an
absolute \ffiove. This will ensure that -subsequent relative
vectors are properly positioned.

210

E.3 Display Data System Support Subroutines

From the Monitor viewpoint, Display Data Support consists
of providing the necessary facilities for transforming a standard
format display element into refresh code. Associated with this
transformation is the application of the current display origin
and scale factor. The description of these services which ~ollows
will need to be carefully considered by prospective users as the
control structure will seem somewh.at complex at first glance.

As previously discussed, the display element support routine
will reside in a separate 4K memory block. Communication with
this facHi ty will be via a standard Monitor Service call with the
usual parameter block pointer in Register 1. Execution "I>flthin
the suppert subroutine will be indirect via Relocation Register 2.
The overall task-monitor relationship is d.epicted in Figure
E.3-l.* We proceed now to a discussion of the control blocks
necessary to utilize the support routine.

* Loading mechanism for the Display Element
support routine is TED.

211

[,

t
I

II
{'

I
I
f
I

I
I
,

f
I
(

· ... ~·r-·---... -.~
... _~ __ ._._ _ __ l __ .. . _ .. :~. __ .• _ _ __ ;.. _._._ •• _ ... _ ______ •• ~ .1

------------.-.... --... ~--"--i------..,.·------.... -
",-

,-------,----------.--------~ ... -----....--.. - .. -----.-
------,._-, ..

----.----,~~-----~------------------
. ----------- ------_ _-----......---- -_. __ ----- ..

G7 Monitor
--------~----~ -,~-------------------~-f----~~~----....... --,-------------------------·--

','10 .. _-----,--------, iMe.mJUks 4 "& 51 ------'-... -----~-:------.-.--.-.---------

-_ .. _'-....,.-_.,------- ------,--.---~--- ------------,~~~---.-------.~-----

,--.----"
---..,..---'_. __ ------------.... :--.:....-

.. - --------------.-~. ----_._----_ _---,
------~-------. ,..--->- MNTR Se'tvices '" ---------> Element·

-'--·----... ~t--.. -· ------------- - ~ ---- -.----------____ !.~-:.-- " __ .. ___ .. _: . . _ ... --.: __ . __ .. ____ S.ll.ru>..Q.T.:t._ '
I ___ ~. __ l. __ ,

I .

-'""!"""'-..,..: -~+-.­
.... _----_.- ------.. - (Mem Blk 6) _ .• ___ --_ ______ _____ -.J

... _._,-.--- ... _ _--.----.. -_ ... _-

,---_ .. __ ..
---'-----_._ .

.;

I I . ! --... -. - --:-l--.;.·-'!·--,-.------- --.--. ... -:---.;.-,..;..-.... ---------,---~--.......-.-,-. .:,...-----.... -----
- ~ -~...---~r~ ... "----,...----r---.,.........: ~'--.... - :~-~ .. -----------..... --... " ' ... ~ -...,..-, -:.-..

I
,

---~--~------r-----~--~.--------~---~.-~~--------~-.-r--.~--..... ~----~--~------ ,----~-- -------.
I _ - .~ .. - ~~.;..- -r- ---.-.. - .. --.--.;----:-- --.~.-.-__:--i---r-­
I

- _.; --;-- -'7'- - r-"
____ ..l.....-__ ..: .. _.! .

, I
.. _ ... __ _ .. , ___ .. t. _._ • __ ,

I
t

----- -- --...... -. r'''-'

,

_ ... - _._ - .. --r--.. --.:..---- ~ -. _ ..

------ - - -
...,.. ____ ._ ... _ .. ,._ :~.:-:- _Di~_£'lrrt.:._Re9..u£:U.

• i .~ .._----------
"'!._- . ..,-.......... --_ ... _----._- -_._._- --~ •. -- .••. - .. --... ~- .•• g-! ••

.... _- -... - .. -:-----~ ._-.. _-_ ... _ -
--------------- --

... ----' -"_._ .. - --.. --~- _.-.--...-.. - -- _ ... -..... ...

---.. - "--'-'-'""--''' .-...... ·-·--'"-- .. --'·-.. 1----· ... ·--·,-------·--,·-- .. ·-···-··--·"---

.. • ~ •• .. "I

. "-' (. ·._4 .. _ __ ••• _ ~

Configuration

.. ;

... '"

,
"' '

............

E.3.l Control Bloc~ Structures
Associated with a Display Element Support request is a /

para.meter block which specifies the data to be acted upon a.nd
the tran'sformation parameters to be u'sed. In this case, the
input data consists of a standard format display element. The
transtormation parameters provide the current screen origin,
scale factors and clipping boundary to be used in creating the
refresh. code. Th.e relationships among the various control
blocks are depicted in Figure E.3.l~1.

The prima.ryparameter fJlockcontains three pointers as
depicted in Figure E. j .1 .. 1. Th.is block is outlined in Figure
E.3.l .. Z •. The first: word is a pointer to the relevant element
control block for the display element under consideration. The
element may or ma.ynot be currently scheduled.*' The se~ond word
contains a pointer to a; conversiqn control b'lock, discussed below.
The third word is 'a 'pointer to the standard forma,t displa.y element.

* Several points may be noted here. If the element h.as not yet
been displayed, then the element control Block will essentially
be null. The important point is that the user must supply an
element control block area. (4 wOt"ds) which the transforma.tion
routine will fill in whel.l the refresh image is created. If a
version of the elemene already exists. the revise service
will.Qe. used. to replace the existing element with. the new ver~
sian. Consequently, any existing schedule entries are auto­
maticallya.djusted .

I··.

I:e

I:
I
[

I,
" }

'. ,.

(,

II
.(,'

:(:

I

DISPLAY
ELEMENT -E---- -----

ELEMENT
CONTROL
BLOCK' (REFRESH FORMAT)

STD. FORMAT
DISPLAY
'ELEMENt·

~---------

!
I
I
I
I

'Y

ORIGIN
BLOCK

11\
I
I

! /1
CALLER
PARAMETER
BLOCK'

I
I
I
1

\V

C:ONVER:SION '
C;ONTRQL,
BLOCK

I
!
I
I
I

\JI

;SCALE
BLOCK

FIGURE'E.3.1-1 'CONTROL B10C:K RELATIONSHIPS

214

I
.", -.. -.. _ -._-:.-- ." (

_ .. ____ . _.....,_ ... _~~ _._ .. _ ---"iot .. __ ~ ___ _--:"!".". __ ;'_ .. __ ._ --..... ---_ .. ---_ _-,._---_ .. _"
:.~.- , -.. ,....-._._._-.,..-- . __ .. __ _-.---.. _------_.-~-~-.-.- .. --- . ..;.- .. -..

, , ._ _ .. -.. -,.....-....... -,-.. ----..... -...-----.~-----~-. - -:--.~~-----.. -.. -~~. -----..... ----~-.,..--.. '._ ..
".. ~ .-, ._---.,..- -:--"'_. __ ._---_ .• _ .. -........ _------_ _-_ ... - _._-_.-'---_. -------~- --~ _._ __ ... '(

- .. -.-.-...--'""""'----~ .-,-.:.--.... --.. -------~----- ----------.......... -~~----- ... ~ -..",....-··r .. ~--·-·- ...

. ' . . ._---_._._._ - (. -...... -.......... -... ~-".- ----•.. --•.. -~~ .. -.'--:'----~.--~ _------------
........... _ .•• _. _ __ _._ .•.• '-__ '00:-"" ~ •. __ .. _ _._, _'f'It _ ... __ ~. _. __ ... ____ _~ _, _ - - _ -_ - .. , ..

Word
... _ .. _ :" - --~-. -... ~-...-.~ ... -... _ .. _- --"'-.--~ . ,.I:--.. -~ -.- -- ._- -.... ~--.-... --. -- .-.--. ..

---_ .. ---.--..-.-...-...... -.. --------.... ------.. r-----------------------r------.,. ... -_.- .. _
..... _ __ ._ .. _ .. --- !oo_.~. __ ... ----,.--..... '0---"':*-' r'- Element.Control. Block

-~ .~ .. -.--.. - - ~ .. '.- .• _. __ __ ... _ .
.. _"._. C"-.~"'·- .•• : - ..•. , . .--:.--.~ ._-._ ..•.• -1:-_...:-_.,. _.C:.9.nve:r.s.:i.Q.~. _Con t.re l_.E.l.Qck
. Potnter

. _ - ~. -;--_._ ... , --.. ~~-.~-.--,..--... -... --.... _.

. \
\.

"-"'~ ___ '. __ .-.-0:--.,: __ -:--.. _.- - .. ~.--_~ ... _ _ ... ~:... __ -._ .. ~ -- .. - .. ;,. -- -----.:.-.
,

I
· .. ·- .. -···~·:~·~~~·=~~:~·~·····l . -···-··-.-.-.;.r·---··--·"7-· ~..,.-~~ "; .-.. ---: ~'...,-..,...~ ""! -....~-............... -~ :-~ - .'-.-.- •.•• ---:~

, , . , ... -~ --.- .. ;.--_ _._-_ -.- I·· .. -· .. f'''"!''----r--~~:--~-· -:.-....-!-~ -; -.~ _ .
, . . . : ,

_~_I..,._ ~~·_ ... _u_, -·-~·:--~·---... · ... '''" .. ''"""!''·· --~-..... ·--~~-~ ... -·i .. ~ .. -'--·-:·---.. - ,.-.......... - ... - ~ ... ------·~····-· .. ··'·1 ., ... ~~ •• -. '! ,. __ l _ --.. - ... ---- ---:--""':'"" ... ---'r - ._ ~ .. --: ._! . .- - _ -.. -.
t .

?u __
" -~- .:-- ... :'..-.......;.---.. ~ -.-.- ..

t
.- --... -.-....... -~~~,.....,...-~--,. ... ~-- . ..:..- ... -:---I_ .. -·-.. ----... - ..

. -.'- - .. -... _ - _. , ,

"""- ~- ~ ._- """':""'-.---_ ~ ... -.~ ... - ~--~ .. -- ~ ... I
. ~ -...... _- """'1 ... - -,~ ._ •. , ... "' - ._ '" _._' _ - .. t . . .-. _ ... _. - _ ..

1.-', ... - - - .. ~ ..

. .. - -.~-- -t- .. .- ":' _,; .. .; .. -~ ,
......... ,./ ...

i

- -'~"" , I
F;igUl'e E .. 3 .1·Z. Moni tor.Ca.ll Pa.ra.me.ter Block I

215

r-
l "

- \

I _ (.
'-...

The conversion control block contains parameters which are
used in transforming the standard format display element .into
refresh format. This Block is outlined in Figure E.3.l-3.
Reviewing the entries in this block:

a) Word 0 - The origin block pointer is used to fetch the
- definition of the current display origin.

b) Word 1 - The scale block pointer locates the current
display scale factor.

c) Word 2 - The 'conversion factor is used to convert from
global system units to display units, at SCALE =1. O.

d)

e)

For example , if the basic global system area spans a
l024 X 1024 mile area and the raw data is in 1/4 mile
'uni1:s, then a conversion factor of 1/8woul d suffice to
map the global -area to the display area. The conversion
factor and scale factor are represented as fixed point
binary nUl'lloers \\<i.th the binary point assumed between bits
'1 and 8. Thus 1/8 would--appear as 40 (octal). Generally)
the conversion factor would be fixed at system design
time.
Words 3, 4 - X min, X max define (in screen units) the X

clipping boundary.
Word:s 'S, 6 - Y min, Y max define (in screen units) the Y
clipping boundary.

The Origin Block serves to define the current display origin
in global system units. This block is outlined in Figure E.3.l-4.
The X, Y origin values are binary integers.

The Scale block, shown in Figure E.3.l-S, serves to. define
the current display scale factor. This quantity should initially
be 1.0 and then adjusted to reflect operator zoom requests. The

216

... _ ••• _ __ ... _. -: __ • : ____ ~.-. 4 .. _ • _ _ _ -_. -_ ---.~.:.-.... ---~-.
·1

"
. ~----.... - ... -~-..,.~.-.---... -",:" ... -;-.~.! .. - .. ~ -~--.~.- -;--.-... - - .. ~ ... ~---"-------~.:..-.. --.-.-~-. -'--1

I " _-;,.--_ __ ._-- ----...... .:..-..---~. "-'-,' ~~,-.~ ... ------... -...--... .. -----. I:' :' I ! ;' ' ..

(..-.... ,.;... -- ~-... ---.-. --.--.~-'--.- . ~ .. --........ ..;..-.... -r----r------L...--~- ... -.. j.----:---,--.;"..---.... -.~~-...... _ ---

.~(- . . . : .---;--;.~.--,-~-~-.. -.. ---- ... --..... --.....--.-..... -...... -- .. -. ~ ... - --:'-;-.. ~-T· .. -. .. ----I-;--~;i- ~

. . ,.. . , i ' !!, --.--.. -.--......... ----... --..... --~.....,........- -.~. --i-r'
. I : i . .

'------""""'7':~ J~_r~.-....... ---
I .

r-----.... ----- ~ _.;--- -... ;-.--:. ... -----..o--_-..;..--.:...-.~---.-,.-- ; ..
-------.. , -+---' -:-._-r

i '
-------~~-~--~--~--~---~----... ~------. .. '-.~..;..----..;..-~----'~-----:'--~--~-'~

!

---~--------~-~~~--~ .. ~~------------~---~--~i-· --~--~--- --~---------- --~-----~--~-----.. (.
. _-"._- ---_ _-~'~---:'-_ -.-'--~--;-;...-.,;-------""---_ ... - . Word ' ! r----------------------... ----.., .. -.----...-... - .. -,..----
- -----~--,.-.;.-....... &9 -' ~-'-- _;J'.9!in i:_'r~\;.Q._.Qlrilirt-. __ ., __ ~ "-'" --.- t'"

, ! ~ , :0 f" k : i I .: '

~ __ ~_. _.---.~..,.I--;.....-;..-..;..---..;.------·j..- ---......,.,....,J·~.:=;. ... ~·-~--~~ _. ---.......... . <-----.-!.

___ . ___ --.._ .. __ L---.--____ _._~,~9Jil?-.1;~r to_.~.~i,§L_, _._~ _~_: __ :--"'. __ .. ,'._. '_'. __ '(')'
I : • • 1 : I I ;.': '"; , .

. ' I : Bt cu- : __ ___ -,.._..:.. __ I __ """'"!!"-_o-t ~ .. ~·_· _ --.-__ ..;.. ______ ...,.. __ ,

; ~ i . ;

----i2:-~---I--·£o~iOll
i . ,

iii. ! rae t:~----:-,-+-.----.;,..--.-.-.. '--.. '
---~--(', ---.-.-.:...-... ·-...:..-..;.----.... -oi:-~i .. · ------·-il--f.-......... -.; ~ · ---..;.--':-... ---..... -+

.... _--- .. -'--~-.;,.. ... --..

-·--;--·'--'---:--....-·""!"'-:-~4T'"""---..... ·-· -:'"':-. l: J.:Maki~um:-x-,.*-*-. ----.... ..-~-
J, 1 . I

'''"1'' .,. --..;..-,-.... _.;..,-.;.' -r--....--~----.~ ; ---~ . - -----~-----,....--..... -- -.......-...-...----------;- 0J_
\"-' .!, j . I" I

-------,~____r___,---:-S!:--· .-·--..... ~--t_---'-·'"":"-,-_""":-:-.~~.;..-~~---..... -·t·------.--.-. ·--... --- '
;Mi~imum;Y**

--~--..;.---- ~--~--~----~~ .. ------~--~----~~~----~------.~~~~--~~~~--------~----------~------~ --
-~--...... _ .. _.;, .' 1.'.1,. ---____ .,._~-,__""!_'- -.-.----+-.:..,.."..I,.,-i---_________ ---_,.J. .. _ ... _____ _

i

,
I

-"'------,;.' ~--... ~---~--·"l'!6....;..-"r""""~---t___tMaximU:mj Y *r,-....,.--........ -....;:--~-"""I""--l

--....... ---'----------..... ~-"'\""-----;.!'----I--~·+-i ---.-;------- ,-------,...-----,...---.....:.--.....,.. ·Ii
--_ ---.;,--"'-... -, ---------··1-·:..: -,.;..,.---... -"'-........ --,-.-...;..-..;-----,--.:.-.,.. ----------.. -
---~----..... - ·---i ------.-----~---...:-...,..-",-............ .,.---..;..:--.:...-----• ..,.-...... --------:----...;.-.~-.------. i

·---...,·-----....··---~-----'-----'-----!·-............. -·i--"'"---;-·-... ~------:--:-····-1 ------.-.. _-_-..--- -

. _____;... ___ -_--~ _-_-_-~_-.L-...... ---~ .. ----':--,.,..-.--·---.. --------..;..-·-_,·I.
------.... ---~.---...... ----:.,..------------..;. ... -----~.-... ----..:,: ... ~...!-.-~~ ... ---- •

..--.-.:..,*.""'l1,$-S-ylll-&Q....Mn.al'rf+i:n4:"-b:e-t-"W"n-b-i-r;·,s.4--+-8-;-·-~-·-__c_'----------_ .. , ..
. -~-: .. ----.--.-,-' -------' --"'"'-..................... --------- ·f ------:~'*Sc'f'e_en Otl~ts

.! .
';"-.~~--. ..: ~- ---- ... • !. t ,., '.-- .. -- .-~.~ .. -.. ..-- -:---- --.. -_ ... --. - .. ---..-------""--_._.-.-

=·:·~~~.=;=~r_'--i~··"; -.:.~ ~~~~u~:~i~--~[~'i~-·~~~::::iO~.~:~~:~:·~~ ~,~:~~= __ -, __ ~.~.~~~._.l
i . t . . J ! . t· I: i

..... _;.._ ... _L._ . ..:. : .1 .\ j _ .. __ ._ •. _!.-.~ __ ... i '..-r ... ~, _ _.~ .. _____ ___ •... " --: .. -.~'.~ - .- .. -;" -;- "'r .. ,_.- . _,
' , '..... ..,... --; --i - .. _ .. - •. - _ ... __ :.-____ --.... ___ _._ .

.... .1. .. 2]..7 .• ,. ' .. , _ _ _. -.. ..--., ~--.-......

I
I

~ .. _ _- -. - - .. .

----- . __ ... _---_.- .---... -_ .. - ,-_ .. ----- -.. --. --_. - -

-.-'---:-.----.~.- ..-.:.:··-·----:-·-wo'Fa·--··--·--:--·--~-. -._----.;.- -.. -- - .. '.---.-.. ~-.----..
.. - _._-_._ .. - -' ---.-------------
--.. -.. ----~. -"_._--'-'-----0-'---.- ------x Or'igIn. -- ~------

--~ __ ._ _. --... - - .. --.~----...... ---:- ~.---- ..,.-.--....... ---~ ---: - ---
.-........ - -.-~-.-.-. -:._ ... - .. '--'--"--Y-DT'igin-'~--'~" .-.. -----..

. . _ .•. _._ .. _. ----_._---------------.--. - ""-------------------.....
... -- ... __ _ _:..-

.. _ .. -.- __ . _________ . . ____ ._---.--'-_._ _..:.. ___ .(.G.l.ob.a.L...co.o.r dinat e

. ,-_. ___ .~_ .. ~ .. _ .. _-S.¥s.te:m.-unit.s.).

_ __ . ____ ... _~. _______ . __ .. _ .. _ _. ___ __ ._~ ... ,,'_0 __ '. __ . ______ .. _._; __ .~ ..

-._ ... ~ ___ . __ .. ___ ~. ___ :._ ._EiguI.e_.E. .. .3..1.'~ 4 .. __ Qr.igin .B.l.oc.k

- -.-._ _ -- -_ .. , - ... - ... ~ .. - ... '!'_._ ..

Word

. 0

. __ ,,_.,,_ •• f_

Scale:Factor

(Assumed binary point

between bits 7 & 8)

Figure E.3,.1-S Scale Block

218

- .

Scale and Origin blocks na'lebeen made independent of the main
conversion control block so that multiple display elements may
easily reflect new screen orientations.

The.o.t.heT control blocks shown in Figure E.3.l~1 (schedule,
element, etc.) are standard monitor structures. Most of the
various blocks can be established at assembly time.

E.!.2 Coordinate Conver~ions

In hopes of clarifying th.e operations involved in trans ..
forming a display element to refresh code, we review the equations
used by the monitor seTvice. Keep in mind that there a~e
essentially three domains which participate in the conversion
proCess. First, the display; second, the global sys tem; and
third, the local, system for th.e particular display element. We
define the following quantities:

xn; YO .. Loc~Lelement origin in ~lobal coordinate system
units (words 6& 7 of' elle element header)

ex, CY .. Local X, Y conversion factors for transforming units
in the local element space to glooalcoordinate
system units (words 8 & 9 of the element h.eader)

DXO,DYO ~ Display origin in global system units, i.e.,
po int 0, a 'on the display (center screen)
corresponds to DXa, DYO intne glooal coordinate
system (defined in . th~ origin Block)

CG 4 Glocal coordinate system conversion factor, this simply
acts to convert units in the global sp.ace to SC'l"een units
at SCALE (CSl #I 1.0. (from word 3 of the conversion
control clock)

CS .. The current, syst$m scale factor (from the scale clock)
Then, given some point (x, y) in the local coordinate system,

the corresponding screen pos ition (dx, dy) is determined by:

'(

(

I
ti
'("

t
··f,
(

I
I
I

, I,

r

H-li-OO 7

~) Ih~ V\1..t."""'~ ~t- lr~~~1 p\c...c.~ l

~ct. li>t..c..\ ~ 0--& ;r:lo~\ CoV\Ue..c'"S ttl "\

~~(:.:hH-:'S' .~ s ~e.(.:het t;t ~ ~ to...s ~~-.l,..~

~\--e... A~Svs+~+ e~ ~ue.
P"<-~ ~+~ l"So' \l\.e<:.Et.'S'>c:il't"i ~ V\ <:'<1Se.s

t....:> h ~ 'f'C. it.e. o,Qe., {Q. ~ + se.. \ ~t. ~ 0",," (L.c.. L ee,t,.\

lkh '7 ~ Z') &e~ ''''0+ f'V'o{ .. /',& '
C(.&~ou.c.-k &'i~o.~~ ~~~. ~e.. 4~{
If\. '"'" '-kt('- ~ LM ",0.""'7 P l c,.;.C, ~.:S t'"", ~e.
Sc.-. l~ ~Q,,~{o t" (c.s PlC ') c-.J...~~
~ lo~t c..() v.",e-rs~ O\l\.-f~ r (C~?'l.-c. 'j
~u..'S.+ e..6'u..o..l s.~ .x. +e~V\..

dx = (CS·CG·CX) ·x -+- (CS'CGJ' (XO - DXO)
dy = (CS.CG.CY) .y -+- (CS'CG)' (YO - DYO)

The various factors are cembined in advance so that each ce~
ordinate conversion consists of .one multiplication and .one
addi tion. (The clipping boundaries are cenverted to local
system units and applied prior to any ceordinate conversien).

E~3.3 Menitor Interface

The Display Element support reutine will operate as an entry
peint 'Ni thin the Moniter services sectien. The external code
will Simply be called in subroutine fashion from the moniter
area, after setting up relecation register twe,

E.3.4
(a)

(b)

(c)

EMT Cede: 13 CHex)
Parameter

Word
u­

I
2

Bleck:
Contents

ElementCentrel Blk Ytr.
Cenversien Contrel Blk Ptr.
Std. Format Disp. Elmt Ptr.

Status Return Codes:
o Request satis£ied
2 - Insufficient Memory

32 - Conversion Error

Notes
The transfermation reutine does not effect the status of
any schedule entries. Thus, if the element \'(as scheduled
when the call was' made, it will still 5e scheduled en
return.

The standard element centrol block will be filled in by the
transfarmation rautine. Once the refresh image exists, the
display element (refresh form) may be manipulated (enable,
disable, etc.) via any .of the standard moniter services.

Display elements subject te scalin~ should.be s~heduled
at x == 0, y == 0, since the cenverSlon routlne ~l~l apply
any .offset necessary ta effect a new screen orlgln.

2,20

[

I
(

I'
(

·1
1:
I~

f
(
)

{

I
f
t
I
I
I

o(

.'.
APPENDIX F

DEVICE HANDLER DESIGN

F.O Monitor 1/0 Structure Review
F.l Handler Entry Points
F.2 Interrupt Servicing
F.3 Inclusion of New Handlers

in System Image
F.4 Inter~processor Interfacing

F.O MONITOR I/O STRUCTURE REVIEW

The monitor I/O structure consists of an I/O supervisor
and a variable number of device handlers.. The I/O supervisor
receives all user task I/O requests and vectors the requests
to particular handlers. The specific handler is determined
by mapping the logical device number (contained in the user
specified I/O control block) into the task header physical
device list. The physical device number is then used to
fetch a particular handler address from table DEVADR in the
monitor supervisor module, MNTRSP. All other decoding/process­
ing of I/O control block entries is left to the handler.

The call to the handler is of the form "JSR PC, HNDLR";
thus an flRTS PC" should be used to exit the handler. On
entry to' the handler the following register configuration
exists:

a)

b)

c)

d)

e)

User task relocation registers are installed,

RO- Subfunction (entry) number, this is just
the low order hex digit of the EMT code,

Rl User I/O control block address,
R2 Status return code address (byte),
R3 - Unit number from the high order byte

of the user task header entry (of significance
only to multi-unit devices);'

The I/O control block is the parameter block for I/O
requests. The control block entries are discussed in Section
7.1.1. The I/O supervisor expects the logical unit number to
be in byte 0 of the second word. Other entries are handler
dependent but, in order to avoid confusion, new handlers
should use the assigned entries to the extent possible.

r
I '

I
I
I
I
f
f

I
I
, ,

(
"

J

I
I
-(

I

'I
i ,I
I

·f
i

{

\,

In summary, the I/O supervisor only serves to direct
the user request to a specific handler. This structure
yields maximum independence for each handler and consequent
efficient real time data reception. The following discussion
of device handler composition is not intended as a tutorial
on handler design but rather as a summary of considerations
relevant to existence in the monitor framework.

F.l HANDLER ENTRY POINTS

The basic handler entry points are outlined in Section
7.2. Of the various possible entry points, the standard
monitor structure requires two; initialization (0) and 1/0

purge (14). The ini tia.liza.tion entry is 'used during monitor
initialization to prepare the handler and device for I/O
operations. The I/O purge entry is used by Task Ma.nagement
on task exit or abort·'to ensure-that all-'outstanding I/O
operations aretOmplete or cancelled. If task loads are
to be done .through the handler then the RIAD (S) and rILE
QUERY (15) entries are also required. Other handler entry
points mayor may not be present depending on the particular
device requirements and user operating situation.

The logic required for each handler entry is not
generally easy to characterize due to the wide diversity of
basic device types and operating modes. Typically, the
devices presented are either simpl-eCkeyboards, etc.) or complex
(host interface). The resulting handler structures must
ultimately reflect this range of hardware complexity. In
spite of obvious device-to-device differences it is possible
to outline the usual handler logic flow. Figure F.l-l
presents a typical handler control section (the main entry
point called by the I/O supervisor). Figures F.l-2 thru
F.1-4 outline the basic logic necessary for several of the
standard entry points.

CENTER)
\ /

tvlAKE TABLE INDEX OF
SUBFUNCTION CODE

\/
CALL SUBFUNCTION

ENTRY POINT

RETURN TO
IIO

SUPERVISOR

:>

Figure F.l-l Handler Main Entry

224

Sub function n

f'
I '

I
(

I
I
('

f.
t
f'
(

I'
t)

I

ENTER

\l!

CLEAR HANDLER
FLAGS

'I

ESTABLISH INTERRUPT
VECTOR*

ENABLE
INTERRUPTS

V

RETURN

*Set PSW to priority 7 (!).

Figure F.1-2 Handler Initialization

225

ENTER

--- . .- ";"" , ...

(DEVICE UNAVAILA.BLE) ..
SEt ERROR

STATUS RETURN
(T$~[RST)

RETURN

(
,~--.-...;...:.. ~

(;
.. (,

I
.(

I
. "(

- .-, ._- --' . ---.-- I',

RECORD CALLER
ID (RR1. ..)

MARK a>\NDLER
A'l'TACHED

RETTJRN

," :

Figure F.1-3 At,tach Ent1"Y

226

(,

'1:
f
.(

I
~[
')

·1
)

-{

4
-,
·f

J

C __ E_N..,..T_ER __)

INITIATE I/O
TRANSFER

SET BUSY IN
USER I/O CONTROL

BLOCK FLAGS

MARK HANDLER
BUSY

Yes

Yes

Yes

Yes

I

RETURN

SET ERROR
STATUS RETURN

ESTABLISH
I/O TIMER

MARK·TASK
WAITING-FOR-I/O

s

REQUEST TASK
LIST SCAN

~ ______________ ~'~ RETURN

Figure F.1-4 Read Entry
Z2i

(DEVICE
UNAVAILABLE

F.Z INTERRUPT SERVICING

Interrupts indicate to the handler that an I/O transfer
has completed. The job of the handler in the interrupt
service routine is to check the final status of the transfer
and indicate I/O completion to the user task. These activities
are reviewed in Figure F.Z~I. The common requirements of
saving registers on interrupt are handled by two subroutines
in the supervisor module, lv'lNTRSP.

On interru-pt the handler service routine should
immediately call INTPSH to record the state of the interrupted
task. (JSR PC, INTPSH).* On return from INTPSH the processor
priority should be adjusted to allow, if appropriate, other
interrupts. Interrupt servicing should be terminated through
routine INTPOP. This is accomplished by: Jr.-lP @ it INTPOP .

*There are some circumstances in which the call to INTPSH
may nOt be necessary. For example, if the transfer always
involves two words then the first interrupt can simply
save the. first word in a temporary and then RTI. In any
case, the state of the interrupted process must be preserved.

2.2.8

I
I
I
I
I
I
I
I
I

.. ,

I
I
I
I
I
t,
1
f
1
1

J

.r

ENTER

CALL INTPSH

SET PROCESSOR
·PRIORITY

(Ignore Interrupt)

SET ERROR
Yes COMPLETION

CODE IN I/O
CONTROL BLOCK

No

. SET NORMAL
I/O COl-'IPLETION

CODE (ZERO)

CORRUPT RETURN
ADDRESS

~-'------~>~i~~--------------------------------~W
: Other device
I relevant processing.
I

cib
Figure F.2-1 Interrupt Servicing

(Page 1 of 2 Pages)
ZZ Cj

RESET TASK
STATUS "WAITING

FOR-I/O" BIT.

REQUEST A
TASK LIST

MARK HANDLER
NOT BUSY

JMP @iFINTPOP

Yes

No

CANCEL I/O
TINER

RESET BUSY BIT
IN I/O CONTROL

BLOCK

Figure F,Z"l Interrupt Servicing
(Page Z of 2 Pages)

2.30

I
f
(

I
l
I
I
I
I
r

I
I
(

I
I
i
I
l
(':

PARAL,LEL INTERFACE HANDLER

1.0 HANDL$R DESIGN OVERVIEW

The parallel interface to the host processor serves as the
primary medium for inter-processor exchange of programs, daca, <llle!
system status. This role results in the ne~essity for defining a
handler structur~ which goes somewhat beyond that required for the
garden-variety peripheral device. Several specific operational
characteristics yield requirements not generally encountered in
other device handlers. First, the interface is bi-directional.
This results in essentially two separate sections, one for input
and one for output. Secondly, che necessity of processing real
time data requires the provision of adequate buffering/queuing.
Third, inasmuch as the parallel interface is our aCCess to host mass
storage, a means must be prOVided for accessing external files,
Fina.lly, oUl"handler deSign provides a basic message distribution
faCility to ensure timely response to incident real time data. We
next discuss the handler implementation with regard to the overall
Graphic 7 Monitorframel"ork.

2.0 USER ACCESS TO THE PARALLEL INTERFACE

In the interest o'fcommonality andconse~uent ease of usage, the
communication mechanism betl,'een user tasks and the handler genera.lly
follaws that described in Section 7 of ~he User's Guide. To be
e:cact, the same I/O control block is being employed with some addi­
tions/amplifications as noted belot'" Also, the standardent1'Y point
assignmentS are m:lintained. Before proceeding to a discussion of
the speci£ic input/output mechanisms a brief reviel\' of our data
transfer assumptions.

All data on the inter-processor communiCation medium is trnns­
mitted in the form of a message. The standard message format to be
used --... 1S shown in Figure 2.0-1. The importan t
featu-ie--rs--fhe message type code. This code is fundamental to the
handler design, as described below.

2.1 PARALLEL INTERFACE - DATA INPUT

All messages directed to the Graphic 7 will be accompanied by
a message type code. The type code, one byte, is divided into
message class/sub-class fields. The class field serves to direct
the message to a particular task. This is accompLished by having
each task indicate to the handler, via the "attach" entTY, which
messages are of interest to that task. Thus, in regard to input
data, the parallel interface may be employed by a mul tiplici ty of
ac ti ve ta.s ks .

Figure F.4-1 Interface Discussion
(Page 1 of 5 Pages)

232

I
I
I
(

I
I
(

I
I

I
(

-(

I
,I'

i

l/
)

l

\

.Word

SENDER ~mSSAGE
0 ID . LENGTH

MESSAGE
1 'tYPE CODE FLAGS

I
'MESSAGE

DATA

I 1 I
I
I
I

n

Figure 2.0-1 Message Format

Figure F.4-1 Inter1ace Discussion
(Page 2 of S. Pages)

2.33

,

f

(

(

1
In addition to message distribution, the handler also prod des

message queuing (in the event that the task does net have a "rcad"
outstanding) and pointer mode. Pointer mode, indicated by setting -(
bit 13 of word 4 of the I/O control block before the attach c~ll.
allows the user task to process the message data directly [rom the
system buffer. In this mode the buffer pointer is placed in the
user's I/O control block (l'lord 2) instead of tl.'ansfnl'inl; the data I
to a user-specified buffer area. The pointer mode shOUld yield
significant savings in the processing of real time message data.

We reviow the procedure for accepting data from the parallel I
interface handleri

a. User selects his message class code* and claces such
in byte 1 of word 6 of the I/O control bl~ck. This
same I/O control block must be llsed for Subsequent
read requests .

. b. Usc'!' -selects pointer mode, if desired, by setting bit
13 oEword 4 in his riO control block. (~ote that
this must be selected prior to the "attach" call.)

c. The ATTACH entry (EMT 73) is used to ass.ign the
selected message class to the user task.

d. I/O read requests (EM! 75) are issued to fetch
each successive message. These requests may
utili,e the standard I/O features of wait/no-wait
and time out, For each message relayed to the
user task, the length is placed in word 7 and the
type code is inserted in byte 1 of word 6 of the
rio control block.

e. rf messages arrive for an attached class with no
outstanding read request then they are automntically
queued to a\-Iai t the next read request.

f. The DETACH entry will be used. to terminate the
acceptance of a particular message class. DeTACH
should ahJays be employed before a user task
exi ts the sys tern.

~Message class zero is a speci~l case and cannot be attached.

Figure F.~-l Interface Discussion
(Page 3 of 5 Pages)

234

f
I

~I

I
(

.(

.(

f

. ;

i

I

l

\

\ ~

2.2 PARALLEL INTERFACE - DATA OUTPUT

Data (messages) directed to the host processor ~ill be con­
veyed via the WRITE entry. With respect to output data, the
handler (parallel interface) represents a single device avail~hle

Ito all tasks. Queuing is provided to allow for normal interf~cc
availability delays. Wait/No-Wait and time out are not honored on
output since the data is transferred to a system buffer and control
is immediately returned to the call ing task. The following procedure
outlines the data output sequence:

a.

b.

User ins~r~s message (data) length in word 3
and buffer pointer in word 2 of his I/O
control block. (Note: the length here does
not necessarily correspond to the final,
actual message length. This is simply the
data pOTtion as depicted in Figure 2.0-1)

The message code for the receiving processor
is placed in word 7. This becomes the second
word of the message header (corresponding to
both the type code and flags ~yte).

c. A stan~ard WRITE request (EMT 76) is issued to
the parallel ~nterface handler.

The handler output service cannot be attached
or allocated.

2.3 PARALLEL INTERFACE - FILE ACCESS

It frequently becomes necessary to access data from the host
machine mass storage resource. Such data will typically include
task images, static display data or hardware diagnostics. The
Graphic 7 Monitor assumes that any device used for task loadine is

/ capable of processing a "File Query" request. Thus, the parallel
interface handler has beeri designed to include this feature using
the standard entry point assignment. The procedure for loading an
external disc file consists of first issuing the FILE QUERY (E~IT 7F)
and then a standard read request. The handler has been configured
to use message class zero for all file related transfers. Thus,
the procedure is:

a. User task configures a File Query block as
described in Section 7.2.11 of the monitor
user's guide. The File Query data block
is relaycd to the handler (HIT 7F) via an
I/O control block specifyingthc File Query
block as the I/O buffer. Obviously, the
most impor~ant entry in the File Query is
the file name.

Figure F.4-1 Interface Discussion
(Page 4 of 5 Pages)

235

b. The handler outputs the file query block to the
host processor where the file status, length
are filled in.

c. The Query Block is relayed hack to the r,r~rhic 7.
The handler returns the data block to the user
area.

d. If the USer wis~es to now input the file he issues
a standard read request for message class zero.
Since the file read mechanism must access the
File Query block we make the stipulation that the
File Query Block immediately follows the I/O
control block employed in the file read. Thus,
the read entry \.HI assume the Query Block is at
the address in RI plus 16 bytes.

3.0 USAGE NOTES

a. All parallel interface transfers consist of an even
number of bytes. User buffers should always begin on
a word boundry.

b. Error return address op~ion (word 5 of standard I/O
control block) is not supported in the parallel
interface handler.

Figure F.4-1 Interface Discussion
(Page S of S Pages)

236

I,
,

(i;

f
I
I
I
I
(

(
"

I)

I
I
I
I
I
I
t

)

-f

f

