Laroow T

I o A

- SAPDERS,
GRAPHIC 7 MONITOR

PRELIMINARY USER’S GUIDE

S'th Printing, May 1979 cory

Lo P ES———— o T~ T -

—

.

e——

SECTION
1.

w

10.
11.

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

APPENDIX F

0

GRAPHIC 7 MONITOR
PRELIMINARY USER'S GUIDE

TABLE OF CONTENTS

PAGE
INTRODUCTION
MONITOR SUPERVISOR
MEMORY MANAGEMENT
TASK MANAGEMENT
DISPLAY ELEMENT MANAGEMENT
DISPLAY SCHEDULING
INPUT/OUTPUT PROCESSING
TIMING SERVICES
DATA TRANSFER SERVICES
MONITOR SERVICES
PHOTOPEN SERVICES

MEMORY ADDRESSING
SYSTEM GENERATION
QUERY/RESPONSE AID
OPERATOR COMMUNICATIONS
DISPLAY DATA SUPPORT

DEVICE HANDLER DESIGN

ooy

GRAPHIC 7 MONITOR

1.0 INTRODUCTION

The Graphic 7 Monitor provides support for multi-task
application problems within the Graphic 7 Display Processor.
The monitor supplies most of those functions commonly associated
with 2 real-time system while emphasizing facilities associated
with display creation and management. Figure 1.0-1 presents the
overall monitor structure.

Fundamental to any monitor capability is the management of
system resources, with memory being perhaps the most important.
In the Graphic 7 monitor, memory must be shared among user tasks,
refresh code and the monitor itself. - In addition, the utilization
of the memory management hardware is left to the monitor. This
entails initialization of the mapping hardware prior to passing
control to -a user task.

Within the Graphic 7 monitor, user tasks represent demands
for various system resources. As in most real-time systems, each
task 1s assigned a priority which reflects its need for CPU
time in relation to other tasks. Once in execution, tasks may
issue requests for monitor services in the areas of I/0, display
management, timing, etc. These monitor services provide many
functions which would normally be left to the host machine or
application programmer.

.',. -\

Figure 1.0-1

GRAPHIC 7 MONLTOR FUNCTIONAL AREAS

MONITOR
SUPERVESOR
| INTTTALTZATTON, PARAMETERS
MEMORY TASK TIMING
HANAGEMENT MANAGEMENT SERVICES
/
' B DISPLAY
1/0 DATA TRANSFER ELEMENT MONITOR
CONTROL SERVICES ANAGEMENT SERVICES
| N
| DISPLAY
{ pEVICGE SCHEDULTNC
ZHANDLERS v
. | PHOTOPEN
CONTROL

0f these services, the Display Management area represents an
important advance over traditional implementations. Within Display
Management are the three functions of Display Element Maintenance,
Display Scheduling and Photopen servicing. Let us address these
individually. A Display Element consists of a set of refresh
instructions which define a particular display entity. Within the
monitor, these Display Elements are assigned a separate memory
area managed by the Monitor. Services within this domain include
Element Creation, deletion, enable and disable. In general,
Display Elements may be either passed from a user task area or
loaded directly from an external medium. Once defined to the
system, Display Elements mav be brought into the current image
via the Display Scheduler.

The Display Scheduler assumes responsibility for managing the
Graphic Controller. This consists of displaying all the currently
scheduled Elements according to attributes supplied by the user
tasks. These attributes consist of, for example, position, color,
intensity and line structure. Selective enable/disable of
individual schedule table entries is also provided. The Display
-Scheduler thus provides for considerable flexibility in the final
image with minimal refresh code manipulation.

The Photopen capability is included within the Display Manage-
" ment facilities because of the close association with the

display schedule table. In particular, users may selectively
sensitize individual display elements to be responsive to the
photopen. Furthermore, photopen input may be done in either wait

or no-wait mode. Thus, user tasks may, at their discretion, provide
for the typical photopen applications of object specification,

list selection, image editing, etc.

The last major monitor functional area comprises those functions
associated with data input-output. These activities include task/
display-element loading, data input, operator interaction and
any host communications. As in most computer operating systems, '
these functions consist principally of the various device handlers.
With respect to the Graphic 7 monitor, it should be noted that
considerable flexibility has been left to the individual device
handlers due to minimal centralized I/0 activities. 1In other
words, most of the processing associated with a user I/0 request
is done within the handler rather than having some functions
provided within an I/0 nucleus. The advantage of this approach
is maximum flexibility to the driver and relative ease of system
adaption to configuration changes. One possible disadvantage is I
greater memory usage. With regard to user task I/0, the approach
is fairly conventional with a standard control block structure |
and the usual transfer optiomns.

In summary, the Graphic 7 Monitor provides many of the functions
relevant to the real-time graphics problem. These capabilities
have the effect of relieving the host machine of burden-some
terminal management responsibilities and improving response

|
[
I.
|
l
|
|

to operator demands. ,
4

—

S
, e

GRAPHIC 7 MONITOR

MONITOR SUPERVISOR

2.0 MONITOR SUPERVISOR

2.1 SUPERVISOR 'IMPLEMENTATION

2.0 MONITOR SUPERVISOR

The Monitor Supervisor will be principally concerned with
coordinating the CPU resource. This includes selecting the
appropriate task for execution and fielding user-task-originated
requests for monitor functions. The communication medium
between the monitor and user tasks is the EMT instruction. This
instruction allows for passing an 8-bit variable code in the
instruction word to the EMT trap handler. Thi$ trap handler
represents the heart of the Monitor Supervisor.

The 8-bit variable field is utilized in two sections as
follows: The high order four bits indicate a particular monitor
functional area. Current assignments'for these four bits (i.e.
the major monitor functional areas) are listed in Figure 2.0-1.
The low order four bits of the EMT instruction word indicate
the particular sub-function (i;e. entry point) within the
indicated functional area. The Supervisor will simply pass this

entry code to the functional area where decisions regarding such

are handled on a localized basis. Specific sub-functions for
gach monitor functional area are outlined within the individual
functional area descriptions.

Many monitor functions require the specification of a list
of parameters which indicate the location of relevant data or
details regarding the service to be performed. This parameter
list, when required, will be supplied via a pointer in general
. register one. Thus, prior to executing the EMT instruction,
the user will typically load a parameter block address into
register one. Particular parameter'blbck structures are
indicated with each sub-function description.

The user may ascertain the success or failure of any
monitor request by testing the status return code which resides
in the task header (TSMRST). Success is generally indicated by
a zero in this byte. Non-zero return codes indicate an error

[—]

lg EMT INSTRUCTION CODE: 104000 — 104377 (octal)

T CODE (HEX) MONITOR FUNCTION
o 0x | Reserved
1x Monitor Services
,1» Zx Memory Management
“ﬁ 3x Task Management
j‘ 4x Display Element Management
Sx Display Management
'J - 6x PHOTOPEN Services
: 7x I1/0
J“ 8x Timing Services
3 ox Data Transfer Services
. Ax Unused*
J. Bx Unused®
: Cx Unused*
J, Dx Unused*
' Ex Unused*
_5 Fx Unused*
B
J *Reserved for future expansion

; :
FIGURE 2.0-1 MONITOR CALL CODES

-

in the parameter specifications or the unavailability of a

necessary system resource. Particular codes relevant to each

sub-function are listed with the function description.

The Monitor-Task communications mechanism is depicted in
Figure 2.0-2.

: N
e

R |

L—-— e ‘.L-—’:‘-

L~ L

=

[V

USER
e TASK

EMT xy ~

FIGURE 2.0-2

SUPERVISOR

N4

SAVE CALLING
TASK STATUS

v

PICK UP
FUNCTION CODE

3

CALL
FUNCTION X

-
L
—

SELECT HIGHEST
PRIORITY, NON-
SUSPENDED TASK
FOR CPU ALLO~-

CATION
¥

SURRENDER
CONTROL

S~

MONITOR
FUNCTION x

’SUBFUNCIIONQ

SUBFUNCTIONl

W - oo o O

EUBFUNCTION |
L e e o e e e e o pol}

TASK «-> MONITOR COMMUNICATIONS

2.1 SUPERVISOR IMPLEMENTATION
The Supervisor module includes the following components:

a) System constants and parameters
b) System initializaticn
- ¢c) EMT servicing -
d) InterTupt save-state/restore-state

The constants and parameters section includes those
quantities which describe the current system state. Some of
the parameters may require adjustment during system generation.
The system initialization section receives control when the
monitor image is initially loaded. In addition, this routine
Teceives control when no other task is active. The EMT
service routine will intercept monitor requests issued by
user tasks and direct them to the~appropriate monitor functional
area. During I/0 operations the respective interrupt handlers
will use the save/restore subroutines to record the system state
prior to interrupt servicing, and then restore that state after
servicing is completed. Inherent in these subroutines is the
CPU allocation algorithm which operates on the basis of task
priority and other task status conditions.

10

GRAPHIC 7 MONITOR

MEMORY MANAGEMENT

3.1 Memory Management Overview

w
.
[N

“Task Memory Management

3.3 Displéy Element Memory Management
3.4 Schedule Table Space

3.5 Global Common'Allocation

3.6 -System Generation Comnsiderations

<

1l

3.1 MEMORY MANAGEMENT OVERVIEW

The Memory Management section of the Graphic 7 Monitor
is responsible for maintaining the current status of the memory
resource. For this system, the memory resource is divided
into several classifications, with a management scheme tailored
to each. An important aspect of the memory structure is the
hardware memory management. The allocation of available
memory space is heavily dependent on the hardware flexibilities
provided. First, the resident monitor code must reside in
non-relocated (direct address) space as shown in Figure 3.1-1.

"This includes addresses 100000 thru 157777 (octal). The

remaining memory space is then divided into three distinct
regions as follows: Task space will include all 4K blocks in
relocated memory space, normally above octal address 160000.
Display Element memory space will ﬁormally-encompass-octal
addresses 20000 through 77777. This is indirect address space
dedicated to Graphic Controller refresh code. The remaining
4K block, addresses 0 through 17777, will bBe used for the
schedule table. This direct address space will be used to

control the display operation per directives issued from user

tasks. The following sections address each of the memory areas
in more detail and discuss the various monitor services available
for communicating with the memory management services. Users
should note that these services are available only via other

-monitor functions, i.e., user tasks do not directly issue

MemoTy management requests.

12

-~ g"; = -

TN

4K Block

| scrEpuLE TaBLE 0
1
- © DISPLAY -
ELEMENTS :
P : : —
3
4
MONITOR 5
6
7
8
TASK ?
- SPACE -
< <
n-1
n

Figure 3.1-1 Memory Allocation

13

3.2 TASK MEMORY MANAGEMENT

Task memory space will be allocated in 4K (words) sections
with up to three blocks per task. This limitation 1s based on
the hardware memory management scheme which provides three
relocation registers. For task memory then, the allocation
algorithm simply looks for available 4K blocks without regard
to continuity or actual location. As with the other memory
areas, the monitor routines are principally concerned with
available space rather than maintaining a list of allocated
space. The implication is that the space requestor 1s responsible
for returning the space when it is no longer rtequired. In the
case of task memory space, the status 1s maintained via a simple
bit map. Thus each 4K block has a corresponding bit which is
zero if the block is available. The initial bit map value is
determined at system generation time by setting bits corresponding
to those 4K blocks which are taken up by the other data types,
the monitor or global common blocks. The Bit map approach is
highly efficient and simple to implement but, of course, the 4K
block granularity results in some inefficiencies in allocation,
Readers expecting to use this system should also consult the
Appendix which discusses the hardware memory management scheme.*
Following are the monitor subfunctions associated with task
memory management,

#= In particular, note that user tasks should begin at address
20000 (octal) in order to properly activate the relocation
feature,

3.2.1 Allocate Task Memory Space

This service will be used by the Task Management area to
fetch memory space prior to task load. The requested area

length is rounded up to include whole 4K (word) blocks. Up

to three such blocks will be provided. The blocks are not
guaranteed to be contiguous.

EMT Code: 21 (Hex)
Parameter Block:

WORD CONTENTS

0 Start Address (returned)*®
1 - Reguired Length (bytes)
2 ' ‘Relocation Register 1 & 2
3 Relocation Register 3

Status Return Codes:

0 - Request satisfied
2 - Insufficient memory

* The Start Address 1s basically meaningless - it is always set
to the constant 20000 (8). The area start is effectively the
beginning of the 4K block pointed to by relocation register one.

3.2.2 Deallocate Tasktscace

Upon task exit or abort, the corresponding 4K blocks are
returned to the system pool. Respective bits in the allocation
map are cleared, The parameter block is of the same structure
as that used in the Allocate service, however, the first two
words are ignored. This service is employed only by the Task
Management monitor area.

EMT Code: 22 (Hex)

Parameter Block:

WORD CONTENTS
0 Ignored
1 Ignored
2 Relocation Register 1 & 2
3 Relocation Register 3

(A zero wvalue for a Relocation Register entry implies
no memory was associated with that offset, i.e., the
task image did not require all threse registers).

Status Return Codes:

0 - Reguest éatisfied

16

K

3.3 DISPLAY ELEMENT MEMORY MANAGEMENT

Display Elements represent jobs which are presented to
the Graphic Controller. These data blocks are stored together
in a common memory region managed by this monitor section.
Display element lengths can vary widely, thus these routines
must be able to optimize the allocation to achieve reasonable
memory usage. On deallocation, these routines will concatenate
adjacent areas when possible; Due to addressing complications,
allocated areas are prevented from crossing 4K (word) memory
boundaries. Available space in the display element area is
maintained by a 1list of free areas and a pointer to the next
available open space. On allocation, the list of free areas
is first searched to determine if an available space exists.
Otherwise, 'the space is taken in the open area. The list
of free areas 1s maintained via forward pointers and length
.fields, as depicted in Figure 3.3-1. Note that indirect
addressing will generally be necessary throughout the display
element area. The following two sections discuss the .relevant
Memory Management entry points.

17

. Address
I Low
_OPEN SPACE
— - — _ DETOP
ELEMENT n+1
e _ _ —
R A f
T T ELEMENT n e
“FREE 2.~
~ - -ELEMENT 2 -
— i o —_ i DELST
FREE 1
ELEMENT 1)
HIGH

Figure 3.3-1 Display Element Space Inventory

12

b dda

3.3.1 Allocate Display Element Space

This entry will be used by the Display Element Management
section to fetch space for element storage. The provided area
will be rounded up to include an even number of 4-word allo-
cation units. In addition, the routine will ensure that the
area does not cross a 4K memory block boundary. If available
"slots'" exist in the element region, such will be searched
for that which yields minimum residue.

EMT Code: 23 (Hex)

Parameter Block:

Start Address (returned)*

WORD CONTENTS
0
1 Required length (bytes)

Status Return Codes:

0 - Request satisfied
2 - Insufficient memory

* As per Figure 3.1-1, this is the actual physical address since

this area lies within the first 32K of core.

3.2.2 Deallccate Display Element Space

The Display Element Management monitor services will use
this entry to release display element space. Released space
will be combined with other "holes' to the extent possible
while prohibiting 4K boundary spans. Users should delete
display elements as soon as they are no longer required so
as to free space for other tasks' elements.

EMT Code: 24 (Hex)

Parameter Block:
WORD. e CONTENTS

Start Address
Length (bytes)

Status Return Codes:

0 - Request satisfied

20

3.4 SCHEDULE TABLE SPACE

The Schedule Table is used to control the operation of
the Graphic Controller Processor. This table is managed by
the Display Scheduler monitor services with calls to this and
the following subfunctions for fetch/releazse of table space.
The inventory of Schedule Table memory space is simplified
by the allocation of fixed length (12 word) blocks. As in the
other memory areas, the Memory Management function only
maintains the inventory of un-allocated space. This free
space 1s recorded by a linked list of free blocks and a pointer
tc the beginning of the open area. No attempt at concatenating
adjacent blocks is necessary since allocations are always -of
the same size. The system design assumes that the schedule
table space is contained within a direct addressing area, in
this case, octal addresses 1000 through 17777. Usage of the
direct .addressing area will allow more efficient schedule
table monitor services while also allowing users direct access
to their table entries, if desired. As shown in Figure 3.1-1,
the schedule table and the display elements build against each
other but, of course, the schedule table is not allowed to grow
out of the first 4K block. (Recall also that interrupt vectors
occupy the beginning of said 4K block.) The following two
monitor services provide for allocation/release of the schedule
table space.

21

3.4.1 Allocate Schedule Table Space

The Display Scheduler monitor service will use this entry
to fetch a 12-word block for construction of a new schedule
table entry. Since the length is fixed, only the start address
need be returned in the caller parameter block.

EMT Code: 25 (Hex)

Parameter Block:

WORD CONTENTS
0 Start Address (returned)

Status Return Codes:

0 - Request satisfied
2 - No space available

3.4.2 Deallocate Schedule Table Spacse

This service will be utilized when the user deletes a schedule
table entry. As with allocation, this entry is generally only
called by the Display Scheduler monitor services.

EMT Code: 26 (Hex)

Parameter Block:

WQORD CONTENTS
0 Start Address

(The length is assumed to be a fixed 12 words.)

Status Return Codes:

0 - Request satisfied

22

3.5 GLOBAL COMMON ALLOCATION

During system generation, up to four, 4K blocks may be
set aside as system global common areas. Depending on their
length, user tasks may have access to either one or two of
the four areas. Generally, the global common blocks will be
taken directly from available task space. However, if
demand on display element space 1s lax then it will be
possible to use a 4K block from this area.* In any case, user
tasks will need to indirectly map into the global common
area and thus cannot be using all three relocation registers
for task execution. The usage or format of the global common
area is entirely left to the particular applicational require-

ments. Obtaining access to a2 global common area, from within

a2 user task, is discussed in the Task Management section.

* It will not be possible to specify block 0 (zero).

23

e e e e e

5.6 MEMORY MANAGEMENT SYSTEM GENERATION CONSIDERATIONS

At system generation time the user may wish to tailor
the.membry'configuration to fit a particular application
requirement. Normally, the configuration shown in Figure 3.1-1
will be provided, with users specifying global common blocks
as necessary. However, users may wish to restrict the display
element space or schedule table space via manipulation of
-the associated bounds contained within the routine. In any
case, the bit map initial value (BMASK) will need to be
adjusted to account for which 4K blocks are available for task
execution. In particular, bits must be set to correspond
to those blocks which have been specified for global common
areas . (GBLCOM).

24

e~

N
GRAPHIC 7 MONITOR
TASK MANAGEMENT
4.0 Graphic 7 Task Definition
4.1 Task Memory Allocation
o -4.2 'Task-Mopitor Communication

4.2 Task Header Format
4.4 Task Loading
4.5 Task Management Monitor Services

4.6 Task Error Monitoring

oo

25

J

4.0 GRAPHIC 7 TASK DEFINITION

Within the Graphic 7 Operating System, user problems will

generally be solved by a group of inter-related "tasks''. To the
Monitor, a task represents the smallest entity which can be
allocated - the CPU resource. Beyond this and certain memory

allocation restrictions, the definition of '"tasks' is left entirely
up to the particular user application. Also, there is no maximum
number of tasks other than as restricted by the memory size.

The Task Management monitor section is responsible for
maintaining the current system status with respect to the task
population. In general, any activity which requires a task to
either enter or exit the system must be coordinated by this
Monitor section. In addition, should a task wish to suspend it-
self (timed or indefinite) the appropriate Task Management entry
will be employed. SR

Current system task status is maintained by means of a
linked list with pointers contained in the task headers. (Since
all task headers start on a 4K boundary, the pointers are simply
relocation register 1 values.) The task list is maintained in
priority order so that the highest priority task capable of
execution may easily be located. The task list header will be
located in monitor global variable TSKLST. Allocation of task
memory space with implications for system design is discussed
in the fcllowing.

26

T p—,

_«

S 4.1 TASK MEMORY ALLOCATION

As discussed under the Memory Management section, alloca-
tion of task space is in 4K word blocks. Furthermore, since
only three of eight 4K blocks within the 16 bit address space
are relocatable, task size is limited to 12K words.® This
restriction may make 1t necessary to divide tasks which would
otherwise be a logical, unified application area.

In addition to task execution space, it may also be
necessary to access a global common area or the Display Element
storage region.** For these actions, it will be necessary to
have available one of the three relocation registers to point to
the particular 4K block under consideration.*** Given that such
additional addressing is necessary, it is clear that user task
length will need to be held to 8K words. (Actually somewhat less
due to stack space requirements.)

The above discussed limitations will obviously make it
necessary to give careful consideration to task definition during
system design.

‘*For additional clarification on this point, please see the
Appendix which discusses the Memory Management hardware.

**Access to a global common area may be provided automatically
on task load. References into the Display Element reglon
must be arranged by the user.

*%**Relocation Register 1 may never be used for other than address-
ing into the first 4K block of task space.

27

(N

4.2 TASK-MONITOR COMMUNICATION

User tasks may issue a variety of requests to the
Graphic 7 Monitor. Such requests are communicated to the
Monitor by an EMT instructicn which contains a function code
in the -low order byte. The Monitor interprets this byte as
two hexadecimal digits, the first specifying the monitor
functional area and the second a particular subfunction.
Along with the EMT insStruction, most Monitor functions require
a list of parameters against which the function is applied.
The user supplies this parameter list by placing the start
address of such in Register 1 prior to the EMT.

Successful completion of the user request is indicated
by returning a status code to a dedicated location in the task
header. Generally, user tasks will need to check the status
code to verify pfoper command performance. Particular status
codes for each Monitor functiom are listed with the function
description. Normally, a zero status indicates successful
completion.

On issuing an EMT to the Monitor, the current task status
is saved either in the task header or on the user stack. Except
for I/0 operations which may be either wait or no-wait, the
user task 1s suspended while the request is satisfied.b On
Teturn from the subject Monitor functional area, the system
supervisor will normally perform a task scan to allocate the CPU
resource to the current highest priority task. Thus, as the
system environment changes, the various tasks can all have an
opportunity for execution.

28

i,

il :'i‘_, iz‘if“"‘“ - ﬂ

4.3 TASK HEADER FORMAT

Most of the information concerning a task's current
status is contained in the task header. This data block, out-
lined in Figure 4.3-1, will be pre-allocated by the user at
assembly time. Some of the parameters must be initialized at
assembly time while others are strictly reserved for Monitor
usage. The following sections address each of the individual
parameters. The various fields will normally be referred to
via their offset names which are of the form T$xxxx. Usage of
the offset definitions is recommended since some re-arrangement
of the header structure may be necessary as the system definition
matures. |

4.3.1 Task ID (T$ID)

The Task ID byte will contain the unique identification
for the task. Each task to be entered into the system must
have a unique ID to be used in conjunction with operator
communication or task-task/task-monitor data exchange. Generally,
this field will be-rteferred to as two hexadecimal digits. The
Task ID should be inserted at assembly time. User task ID's
are restricted to the range 10,¢ to FF16.

29

Word

[{>S

O 0 3 o W

10

11

12
13
14

13

16
17
18

19
20

22
23

24
25
26
27
28
29
30
31

Qffset

10

14
16
20
22

24

- 26

30
32
34
36

40
42
44

46
30
52
54
56
60
62
64
66
70
72
74

76

Forward Link TSFLNK

Byte 1 Byte 0
Priority TSPR _ID 731D
Status T3ST
Monitor Req.
Status TSMRST
Task List '

Relocation Reg.

Relocation Reg.

Two Save One Save TS$RR
Mémory Relocation Reg.
Extension TSEXTR Three Save
Stack Pointer Save | T$REG
Allocation Save TSALLC
Start Address T$STRT
Global Common Requests T§COM
Display Element Control |
Block List Header: ‘ T$ELS
Display Schedule Control '
Block List Header : T$SLS
Photopen Control o
Block List Header TSPPEN
Task Suspension T TSTIM
" " Control
- Private Timer T$PTI
Control
Logical Device 1 T$DEV
Logical Device 2 |
| Ingical Device J
logical Device 4
Logical Device §
Logical Device 6
Logical Device 7
Logical Device 8

Figure 4,3-1 Task

2a

Header‘Layouf

—
b

% da

4.3.2 Task Priority (T$PR)

The Task Priority will indicate the particular task's
requirements for CPU. time with respect to other tasks in the
system. The task list will be maintained in decreasing priority

order. Priority should be a positive integer between 1 (lowest)
and 127. This field should be defined at assembly time.

4.3.3 Task Status (T$ST)

The Task Status bits will indicate the current state of
the task with respect to various system-task interfaces. The low
order eight bits of the status word will be modifiable by other
tasks. The definition of the individual bits is as follows:

Bit ' On Implies
158 Task Disabled
14 Task Suspended
13 _ I/0 Wait
12 Timed Suspension
11 Photopen Wait

18 Waiting for Data

8
7-0 User Defined

(Externally Modifiable)

The user will normally set this word to zero at assembly
time, however, the Disable or Suspend bits may be used to effect
a particular initial task state. With regard to bits 0-7, user
tasks will usually establish usage conventions during system
design.

31

4.3.4 Monitor Request Status (T$MRST)

The Monitor Requeét Status Byte is used to return a
status code tc the user task following a.fequest for a monitor
service. Zero generally indicates successful request satis-
faction with other numbers defined :for each individual sub-
function. Initialization of this parameter is not necessary
however, of course, space allocation 1s necessary at assembly
time.

4,3.5 Task,List.Forward Link (T$PLNK)

The Forward Link simply serves to point to the next

‘lower priority task. If this is the lowest priority task, then

this parameter will be zero. This parameter is maintained by
the operating system and will generally be of no concern to the
user. (The actual contents will simply be relocation register
one of the next task.) (Backward links in the task list are not
currently being used.) ’

32

4.3.6 Relocation Register Save Area (T$RR)

The three bytes in this area will be used to store the
task relocation registers whenever control 1s passed to the
operating system. The user will not generally be concerned with
these entries. (These values must be saved on interrupt since
some tasks may use the relocation registers to access global
common areas or display element space.)

4.3.7 Extended Memory Allocation (T$EXTR)

A user task may request an additional memory allocation
above that required by the loaded task image. The extension
quantity, expressed at offset T$EXTR (byte), is in units of 256
bytes. Such memory .space is located at the end of the task
image. Remember that task space is normally allocated in 4K word
blocks so the memory extension may not actually Tesult in any
additional memory being :allocated. The purpose of this service
is to allow tasks to set aside space for data bases or other
usages without having to define this space at assembly time; the
result being a smdller load file.

33

4.3.8 Stack Pointer Save (TSREG)

This word will be used to save the task stack pointer
whenever the task surrenders control. Other general registers
will be saved on the stack. Note that the task relocation
registers will, in general, need to be installed to access stack
entries. The stack pointer save word need not be initialized by
the user at assembly time since the operating system will auto-

matically point R6 to the last word in the last 4K block allocated.

(In allocating space for the user task, the system will request
32 words greater than the task length.)

4.3.9 Allocation Save (TSALLC)

The Allocation Save word will be used to record the initial
values of the task relocation registers. This serves to indicate
which 4K memory blocks were allocated so that such can be de-
allocated on task exit. This pafameter»is of no concern to user
tasks but, of course, space must be allocated for the word at
assembly time.

34

4.3.10 Start Address (T$STRT)

The Start Address word will contain the desired start
address for user task execution. This will be defined at assembly
time; typically the first word following the task header.

4.3.11 Giobal Common Requests (T$COM)

User tasks which do not require all three relocation
registers for execution addressing may access one or two global
common areas. The operating system may have defined to it, at
system generation time, up to four 4K blocks to be used for global
common areas. For user tasks of less than 8X words, the third
relocation register (RR3) may be used to reference one of the four
global common blocks. (Addresses would be of the form: 6xxxx
where 1/0xxxx is the offset into the 4K block.) This may be
indicated at assembly time by placing a binary 1-4 at T$COM.

The correct relocation register value, to correspond to -the
common block selected, will be inserted at task load time.
Similarly, -~for user tasks of less than 4K words, relocation
register two may be pointed to a global common area by placing a
binary 1-4 at T§CPM+1. (Clearly it would not make much sense to
have the same number in both T$COM bytes.) If global common
access is not desired, then these bytes should be set to zero at
assembly time. Inability to satisfy global common requests will
result in task load failure.

4.%3.12 Display Element Contral Block List Header (T$ELS)

A linked list of Display Element Control Blocks is main-
tained within each user task. This list is updated whenever the
user task references the Display Element Management monitor
services. Subject word is simply the list header (i.e., pointer
to first entry). Users should set this word to zero at assembly
time.

35

<:>

4,3;13 SchedulevControl Block List Header (T$SLS)

User Schedule Control Blocks are maintzined on a linked
list for -which T$§SLS is the list header. This list is updated
by the Display Scheduler Monitor sub-functions. Users should
set this word to zero at assembly time.

4.3.14 Photopen Control Block List Header (TSPPEN)

Requests for Photopen input will be linked together within
each user task. This word serves as the linked list header. The
Photopen monitor services maintain the control block list. Users
should set this word to zero at assembly time.

4.3.15 Task Suspension Control (TS$TIM)

Words at T$TIM and T$TIM+2 will be used to maintain the
task'suspension,timer on timed suspension. .The first word is used

for linking with the second wordAcontaining_the actual timer value.

These words are manipulated only by. the operating system. They
should be set to zero at assembly time.

4.3.16 Private Timer Control (T$PTI)

Users issuing private timer requests will have such main-
tained on linked lists within their task areas. The two words at
TSPTI are used for linking. The first word essentially links the
various tasks currently having outstanding private timers. The
second word is the list header for the individual task's timers.
These words are maintained by the Timing Services monitor section
and are not manipulated by the user task. Both words .should be
set to zero at assembly time.

36

- el

4.3.17 Logical Device Association (T$DEV)

The eight words at T§DEV will serve to connect the user
specified logical devices (1-8) with any eight physical device/
unit combinations. The logical device specification (contained
in the second word of the I/0 control block) will simply serve
as an index into this table. The low order byte should contain
the physical device number (1-) with the high order byte the
unit number. These specifications will normally be made at
assembly time. All eight entries must be defined; unused entries
set to zero. The correspondence between physical device number
and respective handler will be set up during system generation.

37

TN

4.4 TASK LOADING

Tasks will generally be brought into the system from some
external, bulk storage medium. The task load monitor request
allows for the specification of a file name to be communicated to
the host or external medium contreoller. The load process involves
first issuing a "File Query' to the subject handler. This request
specifies the target file name and should return the file length.
The length information is then used to allocate task space. After
the memory space has been successfully allocated, the task image
is input using a standard read request.*

Two points should be emphasized regarding the above
described procedure. First, the specified handler must be able to
accept a "File Query' request, as described in the I/0 section.

Secondly, when building user task images on the host storage medium, -

the length information must be made readily available. For paper
tape oriented input, this information is already included in the
absolute load format. '

Following the task image input, the task is linked into
the current task list and made eligible for execution beginning
at the user specified start address.

*Note that contiguous 4K memory blocks are not guaranteed by
the memory allocation section. This has possible implications
for DMA transfers.

38

v

.

4.5 TASK MANAGEMENT MONITOR SERVICES

User tasks will access the various Task Management
monitor functions via EMT codes of the form 3x (Hex). The
services available are as follows:

4.5.1 Load Task

This service will be used to bring a new task into the
system. Specified input device (logical unit number) must
be able to accept a "File Query" request.

EMT Code: 31 (Hex)

Parameter Block:

Word Contents
0 Task ID (low order byte)
1 . Logical Device Number"
2-6 Source File Name

(ASCTI, terminated by a null)

Status Return Codes:

0 - Request Satisfied

2 - Insufficient Memory
32 - I/0 Failure
33 - Invalid Device Code
34 - Task ID Mis-Match
35 - Device Unavailable

36 - File Not Found
37 - Unable to Satisfy Global Common Requests

4.5.2 Load Overlay

This service is not currently supported.

39

R

4.5.3 Enable Task

This entry may be used to reset the task disabled bit
and thus make the task eligible for execution. The Enable/
Disable services should not normally be used on an inter-task
basis. -

EMT Code: 33 (Hex)

Parameter Block:

Word Contents
0] Task ID (low order byte)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task Found

4.5.4 Disable Task

This service will set the Disabled bit in the task header

status bits (T$ST). Task is then ineligible for execution.

EMT Code: 34 (Hex)

Parameter Block:

Word Contents

0 Task ID (low order byte)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task Found

e e A e s

{ ‘ 4.5.5 Task Suspend

This service may be used to suspend the calling task for
a timed or indefinite interval. If timed, then the Timing
Services section will be notified to set up a2 timer. Tasks can
: only suspend themselves.

EMT Code: 35 (Hex)

Parameter Block:

Word Contents
0 Time Qut Value in 1/10 Seconds,

Zero implies indefinite suspension

Status Return Codes:

— 0 - Request Satisfied

V‘s ~4,5.6 Task Continue

Continue will remove a task from a timed or indefinite
suspension state. This service may be directed from/to .any task
in the system.

EMT Code: 36 (Hex)

Parameter Block:

Word ' Contents
r 0 Task ID (low order byte)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task Found

41

4.5.7 Task Exit

A task leaves the system and thereby relinquishes system
resources by issuing the Exit EMT. All I/0 must have been completed 1
prior to issuing this request. It is also recommended, though
not necessary, to delete all schedule table entries, display
elements and private timers.

EMT Code: 37 (Hex)
Parameter Block: Nome (Only the calling task may Exit)

Status Return Codes: N/A

4.5.8 Fetch Tésk Status

The current task status is maintained in word T$ST in the
task header. This service will allow any task to check the status
- of any other task. ‘

EMT Code: 38 (Hex)

Parameter Block:

Word : Contents
0 Task ID (low order byte)
1 , Returned Task Status

Status Return Codes:

0 - Request Satisfied
32 - No Such Task

42

4.5.9 Update Task Status

This service allows for the modification of bit 0-7
in the subject task's status word. The supplied bits are logically
ored with the current status word contents. Users may wish to
Testrict, by definition, some of these bits to be read or write
only.

EMT Code: 39 (Hex)

Parameter Block:

Word Contents
0 Task ID (low order byte)
1 New Status Bits (Byte Q)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task

4,5.10 Abort Task

The Abort entry may be used to cause the involuntary.
termination of a user task. This entry is included primarily
for operator communications usage.

EMT Code: 3A (Hex)
Parameter Block:

Word Contents
0 Task ID (Low Order Byte)

Status Return Codes:

0 - Request satisfied
32 - No such task found

4,5.,11 Search for Task

The Search function will allow the caller to locate the
beginning of any user task in the system. The returned value is
essentially the 4K block number which becomes the relocation
register value if access to the subject task is required.

EMT Code: 3B (Hex)
Parameter Block:

Word Contents

Task ID (low order byte)
1 4X block number (returned)

Status Return Codes:

0 - Request satisfied
32 - No such task found

4.5.12 Continue Task & Suspend

Inter-task execution control may be aided by the
ability to, in 2 single monitor request, continue a2 given
task and suspend oneself. The suspension provided by this
service is non-timed.

EMT Code: 3C (Hex)
Parameter Block:

Word ' Contents
0 Task ID of task to be continued

(low order byte)

Status Return Codes:

0 - Request satisfied
32 - No such task found

45

4.6 TASX ERROR MONITORING

The monitor generally performs no error processing for
user tasks. Thus, mistakes in the preparation of the various
cont