
RIDGE

9050 #4.

ROS programmer's
Guide

ROS Programmer's Guide

First Edition: (9050) (AUG 84)

Ridge Computers
2451 Mission College Blvd.

Santa Clara, CA 95054

(9050) -i-

© Copyright 1984, Ridge Computers.
All rights reserved.
Printed in the U .SA.

PUBLICATION HISTORY

Manual TItle: ROS Programmer's Guide

First Edition: (9050) (AUG 84)

NOTICE

No part of this document may be translated, reproduced, or copied in any form or by any means
without the written permission of Ridge Computers. The information contained in this document is
subject to change without notice. Ridge Computers shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the use of this material.

ACKNOWLEDGEMENT

This software and documentation is based in part on the fourth Berkeley Software Distribution, under
license from the regents of the University of California. We acknowledge the following individuals
for their part in its development: Ken Arnold, Jim Kleckner, Bill Joy, Mark Horton, Rick Blau, Eric
Shienbrood, John Foderaro, Geoffrey Peck, Robert P. Corbett, and Randy King.

These tutorial guides are based on documents created at Bell Laboratories to describe UNIX System
software, and at the University of California, Berkeley, to describe the Berkeley Software Distribution.
Credits are given on the first page of each document contained in this volume. Some text has been
changed to more accurately describe Ridge Computers' implementation of the software. Inappropriate
material has been deleted.

UNIX is a trademark of Bell Laboratories.
VAX, PDP-II, and DEC are trademarks of Digital Equipment Corporation.
MC68000 is a trademark of Motorola Inc.
Z8000 is a trademark of Zilog Inc.
NSl6000 is a trademark of National Semh:onductor Inc.

-ii- (9050)

PREFACE

The ROS Programmer's Guide (manual 9050) is a collection of tutorial documents related to
programming languages and language preprocessors. Except for the PROG section, which explains
programming in general, each section contains the detailed information that is omitted from the page
of the same name in the ROS Reference Manual (manual 9010).

The topics in the Table of Contents are not the only ones related to programming. The ROS
Reference Manual has many entries that are fully explained within. Typically, the user will see a
program in the ROS Reference Manual, and if one of these ,tutorials is mentioned under the SEE
ALSO heading, he/she will turn to this Programmer's Guide for help. After the reader is familiar
with a topic, he/she might refer to the ROS Reference Manual only.

Tab
Label

PROG
LINT
MAKE
LEX
YACC
F77
FORTRAN
functions

RATFOR
C
PASCAL
AS
SHELL

DEBUG

TABLE OF CONTENTS

.. ROS Programming

.. a C program checker

.. for maintaining computer programs

.. a lexical analyzer

.. a compiler of compilers

.. the FORTRAN 77 compiler

.. FORTRAN library functions

.. a FORTRAN preprocessor

.. the C programming language

.. the Pascal programming language

.. the Ridge assembly language

.. the interactive command interpreter

.. the Ridge de bugger

(9050)

ROB Reference
Manual Page

lint(1)
make(1)
lex(1)
yacc(1)
f77(1)

section(3f)

ratfor(1)
cc(1)
pp(1)
as(1)
sh(l)

debug(l)

.. iii ..

-iv- (9050)

ROS Programming

This document is based on a paper by Brian W. Kernighan and Dennis M. Ritchie of Bell
Laboratories.

1. INTRODUCTION

This paper describes how to write programs that interface with the ROS operating system in
a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt to catch interrupts and other signals during execu
tion.

This part of the Programmer's Guide summaraizes other material in the ROS Programmer's
Guide and the ROS Reference Manual. The reader should have a basic understanding of C
(see B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.)

2. BASICS

2. 1. Program Arguments

When a C program is run like a shell command, the shell arguments are passed to the main
function in an argument count argc and an array argv of pointers to character strings that con~
tain the arguments themselves . .Ar gv[0] points to the command name itself.

The following program lIBi n demonstrates this mechanism. It declares the type of the
count variable and pointer array and echos all arguments to the output. (This is similar to the
code of echo(1)) .

nai o(argc, argyl
i ot argc;
char "'argv[];
{

i ot i;

/'" echo arguDEots "'/

for (i =1; i < argc; i-H)
printf("%s %c", argv[i], (i<argc-l)? '\0' : '\o'};

}

Argv is an array of pointers to character arrays. Each of those character arrays are terminated by
the null character \0 so they can be treated as strings.

If you want to maintain copies of argc and argv for use by other routines, copy them to
external variables.

2. 2. The "Standard Input" and "Standard Output"'

The simplest input mechanism is to read the "standard input," which is generally the
user's terminal. The function get char returns the next input character each time it is called.
A file may be substituted for the terminal by using the < convention: if prog uses get char,
then the command line

prog <1'i Ie

causes prog to read fi I e instead of the terminal. prog itself need know nothing about
where· its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog I prog

provides the standard input for pr og from the standard output of ot her pr og.

(9050) -1-

Programmer s Guide ROS Programming

get char returns the value E<F when it encounters the end of file (or an error) on what
ever you are reading. The value of E<F is normally defined to be - 1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar(c) puts the character c on the "standard output," which is also by
default the terminal. The output can be captured on a file by using the> character; if prog
uses put char,

prog >outfi Ie

writes the stalldard output on out f i I e instead of the terminal. out f i I e is created if it
doesn't exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

prog I otherprog

puts the standard output of prog into the standard input of otherprog.

The function pri ntf, which formats output in various ways, uses the same mechanism as
put char does, so calls to pri ntf and put char may be intermixed in any order; the output
will appear in the order of the calls.

Similarly, the function s c anf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. s canf uses the same
,,;mechanism as get char, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always
enough to get started. This is particularly true if the pipe facility is used to connect the output
of one program to the input of the next. For example, the following program strips out all ascii
control characters from its input (except for newline and tab).

#1. ncl ude <stdi o. h>

rmi n()
{

/* ccstrip: strip non-graphic characters */

}

i nt c;
~ile ((c ==getchar(» !==ECF)

if ((c >=' , &&c < 0177) II c ====' \t' II c ==' \n')
put char (c) ;

exi t (0);

The line

#1. ncl ude <stdi o. h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usrfinclude/stdio.h) of standard routines and symbols that includes the definition of E<F.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat filel file2 .•• I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exi t a.t the
end is not necessary to make the program work properly, but it assures that any caller of the
program will see a normal termination status (conventionally 0) from the program when it com
pletes. Part 6 discusses status returns in more detail.

3. THE STANDARD I/O LIBRARY

The "Standard I/O Library" is a collection of routines intended to provide efficient and
portable I/O services for most C programs.

The standard I/O library is documented in detail in section (3S) of the ROB Reference Manual.

-2- (9050)

Programmer s Guide ROS Programming

The standard I/O library is available on each system that supports C, so programs that confine
their system interactions to its facilities can be transported from one system to another essen
tially without change.

This section briefiy discusses the basics of the standard I/O library. The appendix contains
a more complete ??? description of its capabilities.

3. 1. File Access

The programs written so far have all read the standard input and written the standard outr
put, which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

\\C x.c y.c

prints the number of lines, words and characters in x. e and y. e and the totals.

The question is how to arrange for the named files to be read - that is, how to connect the
file system names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the stan
dard library function f open(3S). f open takes an external name (like x. e or y. e), does
some housekeeping and negotiation with the operating system, and returns an internal name
which must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don't need to know the
details, because part of the standard I/O definitions obtained by including st di o. h is a struc
ture definition called FI LE. The only declaration needed for a file pointer is exemplified by

FlLE .fp, .fopen();

This says that f p is a pointer to a FI LE, and f ope n returns a pointer to a FI LE. FI LE is a
type name, like i nt, not a structure tag.

The actual call to fopen in a program is

fp =fopen(Dar., m>de);

The first argument of f open is the name of the file, as a character string. The second argu
ment is the mode, also as a character string, which indicates how you intend to use the file.
See the fopen(3S) page of the ROS reference manual for a listing of the allowable file access
modes, such as read ("r "), write ("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if possible).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is any error, fopen will return the null
poin ter value NJLL (which is defined as zero in s t di o. h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which get e and put e are the simplest. get e returns the next character from
a file; it needs the file pointer to tell it what file. Thus

c =getc(fp)

places in e the next character from the file referred to by fp; it returns EXF when it reaches
end of file. pute is the inverse of gete:

putc(c, fp)

puts the character e on the file f p and returns e. get e and put e return EXF on error.

When a program is started, three files are opened automatically, and file pointers are

(9050) -3-

Programmer s Guide ROS Programming

provided for them. These files are the standard input, the standard output, and the standard
error output; the corresponding file pointers are called stdi n, stdout, and stderr. Nor
mally these are all connected to the terminal, but may be redirected to files or pipes as
described in Part 2.2. stdi n, stdout and stderr are pre-defined in the I/O library as the
standard input, output and error files; they may be used anywhere an object of type FI LE •
can be. They are constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

=fI1. ncl ude <stdi o. h>
rrain(argc, argyl /* ~: count lines, ~rds, chars */
i nt argc;
char *argv[];
{

}

i nt c, i, i nw>rd;
FILE *fp, *fopen();
long linect, ~rdct, charct;
long tlinect ==0, t~rdct ==0, tcharct ==0;
i . 1;
fp =stdin;
do {

if (argc > 1 8t& (f p=4open(argv[i], "r "» ==NLL) {
fprintf(stderr, "~: can't open %s\n", argv[i]);
cooti nue;

}
Ii nect =~rdct ==charct ==i n~rd =0;
\\bile ((c ==getc(fp» !==EXF) {

charct+f1

}

if (c ====' \n')
Ii nect+k

if (c ===' , II c ==' \t' II c ==' \n')
i n~rd ==0;

else i f (i n~rd ===0) {
i n~rd ==1;
w>rdct+t;

}

printr("%7Id %71d %7Id", linect, ~rdct, charct);
printf(argc >1! "%s \n": "\0", argv[i]);
f c I os e (f p) ;
t line c t += line c t ;
t~rdct +=~rdct;

tcharct +=charct;
} \\hi I e (-Hi < ar gc) ;
if (argc > 2)

printf("%7Id %71d %71d total \0", tlinect, t~rdct, tcharct);
exit(O);

The function f pr i nt f is identical to pr i nt f , save that the first ~gument is a file pointer that
specifies the file to be written.

The function f c 1 os e is the inverse of f open; it breaks the connection between the file
pointer and the external name that was established by f open, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul
taneously, it's a good idea to free things when they are no longer needed. There is also another
reason to call f close on an output file - it fiushes the buffer in which put c is collecting

-4- (9050)

Programmers Guide ROS Programming

output. (f close is called automatically for each open file when a program terminates nor
mally.)

3. 2. Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdi n and stdout are. Output
written on s t der r appears on the user's terminal even if the standard output is redirected. we
writes its diagnostics on s t de r r instead of s t dout so that if one of the files can't be accessed
for some reason, the message finds its way to the user's terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exi t to terminate
program execution. The argument of exi t is available to whatever process called it (see Part
6), so the success or failure of the program can be tested by another program that uses this one
as a sub-process. By convention, a return value of 0 signals that all is well; non-zero values sig
nal abnormal situations.

exi t itself calls f cl os e for each open output file, to fiush out any buffered output, then
calls a routine named _exi t. The function _exi t causes immediate termination without any
buffer fiushing; it may be called directly if desired.

3. 3. Miscellaneous I/O Functions

The standard I/O library provides several other I/O functions besides those we have illus
trated above.

Normally output with put c, etc., is buffered (except to s t derr); to force it out immedi
ately, use ffl ush(fp) .

f s c anf is identical to s c anf, except that its first argument is a file pointer (as with
f pr i nt f) that specifies the file from which the input comes; it returns E<F at end of file.

The functions sscanf and spri ntf are identical to fscant and tpri ntt, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscant and into it for spri ntt.

tgets(but, si ze, fp) copies the next line from tp, up to and including a newline,
into but; at most s i ze-l characters are copied; it returns NJLL at end of file.
tputs(but, tp) writes the string in but onto file tp.

The function ungetc(c, fp) ··pushes back" the character c onto the input stream fp; a
subsequent call to get c, fs canf, etc., will encounter c. Only one character of pushback per
file is permitted.

4. LOW-LEVEL I/O

This section describes the bottom-level of I/O on the Ridge Operating System. The lowest
level of I/O provides no buffering or any other services; it is a direct entry into the operating
system. You are entirely on your own, but you have the most control over what happens.
Because the calls and usage are simple, this isn't as bad as it sounds.

4. 1. File Descriptors

All input and output is done by reading or writing files, because all peripheral devices, even
the user's terminal, are treated as flIes in the file system. This means that a single, homogene
ous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the sys
tem of your intent to do so, a process called "opening" the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a [de descriptor. Whenever I/O is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(5, ...) and

(9050) -5-

Programmer s Guide ROS Programming

WRlTE(6, ...) in Fortran.) All information about an open file is maintained by the system; the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the "shell") runs a program, it
opens three files, with file descriptors 0, 1, and 2, called the standard input, the standard out
put, and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O
without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

prog <i nfi Ie >outfi Ie

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and 1 and 2 for output ..

4. 2. Read and Write

All input and output is done by two functions called read and wri teo For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read ==read(rd, bur, n);

n_~itten ==~ite(rd, bur, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and - 1 indicates an error of some sort. Fpr writing, the returned value is
the number of bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes transferred per READ or WRITE operation is arbitrary. It can be 1
(reads and writes are performed one character at a time "unbuffered"), 512, 1024, or 4096

(used by Ridge for efficiency) often corresponding to the physical blocksize on peripheral dev
ices.

With these facts, we can write a program to copy its input to its output file. This program
copies any file device to any other because its input or output files can be redirected in any way.

-6- (9050)

Programmer'S Guide ROS Programming

#defi ne aFSI ZE 4096 1* best si ze for H dge 32 RC8 *1

nai n{)
.{

1* copy input to output *1

}

char bur [BlFSI ~ ;
i nt n;

\\hi Ie ({ n =read(0, bur, aFSI ZE}) > 0)
wri te(1, bur, n);

exi t (0);

If the file size is not a multiple of BUFSI ZE, some read will return a smaller number of bytes
to be written by '\\!'i te; the next call to read after that will return zero.

It is instructive to see how read and '\\!' it e can be used to construct higher level routines
like get char, put char, etc. For example, here is a version of get char which does
unbuffered input.

#define CM\SK 0377 1* for naking char's> 0 *1

getchar() 1* unbuffered single character input *1
{

char c;

return((read{ 0, 8£, 1) > 0) ? c & CM\SK: EXF);
}

c must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension on
some machines may make it negative. (The constant 0377 is appropriate for the PDP-II and
VAX, but not necessarily for other machines.) The Ridge 32 does not need to mask characters
because they are treated as unsigned characters. For portability, however, masking is a good
idea for Ridge programs.

The second version of get char does input in big chunks, and hands out the characters
one at a time.

#define
#defi ne

CM\SK 0377 1* for naking char's> 0 *1
BlFSI ZE 4096

getchar{) 1* burrered version *1
{

}

stati c char
stati c char
stati c i nt

buf [H.FSI ~ ;
*bufp =buf;
n =0;

if (n ==0) {/* buffer is enpty *1
n =read(O, buf, ElFSlZE};
burp =bur;

}
return{ (-- n >=0) ? *bufp++ & CM\SK: EIF);

4. 3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files
in order to read or write them. There are two system entry points for this, open and creat
[sic].

open is rather like the f open discussed in the previous section, except that instead of
returning a file pointer, it returns a file descriptor, which is just an i nt.

(9050) -7-

Programmers Guide ROS Programming

i nt f d;

fd =open(narre, rwrmde);

As with f open, the na~ argument is a character string corresponding to the external file
name. The access mode argument is different, however: rWIIDde is 0 for read, 1 for write, and
2 for read and write access. open returns - 1 if any error occurs; otherwise it returns a valid
file descriptor. The open call can take an optional parameter that offers more sophisticated
control of the open process; see open(2).

It is an error to try to open a file that does not exist. The entry point ereat is provided
to create new files, or to re-write old ones.

fd =creat{narre, pnode);

returns a file descriptor if it was able to create the file called nane, and - 1 if not. If the file
already exists, ereat will truncate it to zero length; it is not an error to ereat a file that
already exists.

If the file is brand new, ereat creates it with the protection mode specified by the pIIDde
argument. In the ROS file system, there are nine bits of protection information associated with
a file, controlling read, write and execute permission for the owner of the file, for the owner's
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the cp(l) command, a program which copies
one file to another. (The main simplification is that our version copies only one file, and does
not permit the second argument to be a directory.)

-8-

#define NLL 0
#de fi ne H..FSI ZE 40 9 6
#defi ne P.MlE 0644 /* RWfor owner, R for group, others */

nain{argc, argy)
int argc;

/* cp: copy fl to f2 */

char *argy[];
{

}

i ot fl, f2, n;
char buf [aFSI ~ ;

if (argc !=3)
error{"lBage: cp fromto", NLL);

if ({ f 1 =opeo{ argy[1], 0» ==- 1)
error{ "cp: can't open ~ ", argy[1]);

if ({f2 ==creat{argY[2], ~) ==-1)
error("cp: can't crea.te %", argY[2]);

\\bile ((0 =read(fl, buf, aFSlZE) >0)
if (w-ite(f2, buf, n) !=n)

error("cp: w-ite error", NLL);
exit(O);

(9050)

Programmer s Guide ROS Programming

error(sl, s2) j* print error nEssage and die *j
char *sl, *s 2;
{

}

printf(sl, s2);
printf("O);
exi t (1) ;

With ROS, up to 64 files can be open at one time. Any program which intends to process
more than 64 must be prepared to re-use file descriptors. The routine c I os e breaks the con
nection between a file descriptor and an open file, and frees the file descriptor for use with
some other file. Termination of a program via exi t or return from the main program closes
all open files.

Th~ function unl i nk(f i I enane) removes the file f i I enane from the file system.

4. 4. Random Access - Seek and Lseek

File I/O is normally sequential: each read or wr i t e takes place at a position in the file
right after the previous one. If necessary, however, a file can be read or written in any order.
The system calli seek provides a way to move around in a file without reading or writing:

Iseek(fd, offset, ori gi n);

forces the current position in the file f d to move to position offs et, which is relative to the
location specified by or i gi n. Subsequent reading or writing will begin at that position.

offset is a long; fd and ori gi n are i nt's. (Longs and ints are the same size on ROS.)
or i gi n can be 0, 1, or 2 to specify that off set is to be measured from the beginning, from
the current position, or from the end of the file respectively. For example, to append to a file,
seek to the end before writing:

lseek(fd, OL, 2);

To move to the beginning of (or "rewind") the file,

lseek(fd, OL, 0);

The OL argument could also be written as (long) O. With ROS, the file contents are long by
default, but it is needed for portability to l6-bit machines. ???

With I seek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi
trary place in a file.

get(fd, pos, buf, n) j* read n bytes from position pos *j
i nt f d, n;
long pos;
char *buf;
{

}

Iseek(fd, pos, 0); j* get to pos *j
return{read{fd, buf, n»;

Older versions of the UNIX System used a called named seek; lseek is so named to avoid
confusion with the other.

4. 5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of - 1.
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines,
when appropriate, leave an error number in the external cell errno. The meanings of the

(9050) -9-

Programmer s Guide ROS Programming

various error numbers are listed in the intro(2) pages of the ROS Reference Manual, so your
program can, for example, determine if an attempt to open a file failed because it did not exist
or because the user lacked permission to read it.

Frequently, you may want to print the reason for failure. The routine perror will print a
message associated with the value of err no; more generally, sys _errno is an array of char
acter strings which can be indexed by errno and printed by your program.

Use of perror or sys_errno requires the program to contain the code: #include error.h. ???

5. PROCESSES

It is often easier to use a program written by someone else than to invent one's own. This
section describes how to execute a program from within another.

5. 1. The ··System" Function

The easiest way to execute a program from another is to use the standard library routine
system system takes one argument, a command string exactly as typed at the terminal
(except f()r the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

rrai n()
{

systen("date");
/* rest of processing */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of
s pr i nt f may be useful.

Remember than get c and put c normally buffer their input; terminal I/O will not be prop
erly synchronized unless this buffering is defeated. For output, use ff 1 us h; for input, see
set buf in the appendix.

5. 2. Low-Level Process Creation - Execl and Execv

If you're not using the standard library, or if you need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan
dard library's systemroutine is based on.

The most basic operation is to execute another program without returning, by using the rou
tine e xe c l. To print the date as the last action of a running program, use

exeel ("/bi n/ date", "da.te", NLL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NLL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can't be "found or is not executable. If you don't
know where dat e is located, say

-10- (9050)

Programmer s Guide

execl ("/bi n/date", "date", NLL);
execl("/usr/bin/date", "date", NLL);
fpri ntf(stderr, "Soneone stol e 'date' \n");

ROS Programming

Execv; is a variation of execl that it is used when you don't know how many arguments
there will be:

execv(filenane, argp);

where ar gp is an array of pointers to the arguments. The last pointer in the array must be
N..JLL so e xe c v can tell where the list ends. As with e xe c I , f i I e nallE is the file in which
the program is found, and argp[0] is the name of the program. (This arrangement is identi
cal to the argv array for program arguments.)

For other variations of exec, see exec(2).

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, ., ? , and [] in the argu
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commndl i ne that contains the complete command as it would have been
typed at the terminal, then say

execl("/bin/sh", "sh", "-c", commndline, NLL);

The shell is assumed to be at a fixed place, fbi n/ s h. Its argument - c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con
structing the right information in cODDBndl i ne.

6. 3. Control of Processes - Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show how
to regain control after running a program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overlaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine called for k:

proc_i d =f or k();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_i d, the "process id." In one of these processes (the "child"),
proc_i d is zero. In the other (the "parent"), proc_i d is non-zero; it is the process number
of the child. Thus the basic way to call, and return from, another program is

if (fork() ==0)
execl ("/bi n/sh", "sh", "-c .. , cmI, NLL); / * inc hi I d * /

And in fact, except for handling errors, this is sufficient. The for k makes two copies of the
program. In the child, the value returned by fork is zero, so it calls execl which does the
commnd and then dies. In the parent, fork returns non-zero so it skips the exe c I. (If
there is any error, for k returns - 1).

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wai t :

i nt status;

if (fork() ==0)
execl (••.) ;

wai t (8M tat us) ;

This still doesn't handle any abnormal conditions, such as a failure of the execl or for k, or
the possibility that there might be more than one child running simultaneously. (The wai t
returns the process id of the terminated child, if you want to check it against the value returned

(9050) -11-

Programmers Guide ROS Programming

by for k.) Finally, this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in s t a.t us). Still, these three lines are the heart of the standard library's
systemroutine, which we'll show in a moment.

The stat us returned by wai t encodes in its low-order eight bits the system's idea of the
child's termination status; it is 0 for normal termination and non-zero to indicate various kinds
of problems. The next higher eight bits are taken from the argument of the call to exi t which
caused a normal termination of the child process. It. is good coding practice for all programs to
return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointr
ing at the right files, and all other possible file descriptors are available for use. When this pro
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei
ther for k nor the exe c calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must fiush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor
mation that has been read by the caller.

5. 4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn
chronizing the two processes. Most pipes are created by the shell, as in

Is I pr

which connects the standard output of 1 s to the standard input of pr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pi pe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

i nt r d[2] ;

stat =pipe(rd);
ir (stat =;==-1)

/* there ~s an error ••• */
r d is an array of two file descriptors, where r d[0] is the read ·side of the pipe and r d[1] is
for writing. These may be used in read, wri te and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cm:l, I1Dde) , which creates a process end (just as s ys t emdoes), and returns a file
descriptor that will either read or write that process, according to I1Dde. That is, the call

rout =popen("pr ", VR: 1E);

creates a process that executes the pr command; subsequent wr i t e calls using the file descrip
tor f out will send their data to that process through the pipe.

popen first creates the the pipe with a pi pe system call; it then r or ks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other side
of the pipe, then calls the shell (via exe c 1) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child that intends to read fails to close the write end of the
pipe, it will never see the end of the pipe file, just because there is one writer potentially active.

-12- (9050)

Programmer'5 Guide

#4 ncl ude <stdi 0.11>

#define
#define
#define
s t ati c

READ 0
VR1E 1
tst(a, b) (node ==READ! (b)
i nt popen-pi d;

popen(cnd, node)
char *cnd;
i nt node;
{

i nt p[2] ;

if (pipe(p) <0)
return(NIL);

if « popen_pi d =forkO) ==0) {
cl osee tst(p[VR ~, p[REAq »;
close(tst(O, 1»;

(a))

dup(tst(p[REAq, p[VR~ »;
close(tst(p[REAq, p[VR~ »;
execl("/bin/sh", "sh", "-c", cmi, 0);

ROS Programming

_exit(I); /* disaster has occurred if ~ get here *j

}

}
if (popen-pi d ==- 1)

return(NIL);
close(tst(p[REAq, p[Vf«~ »;
return(tst(p[VR ~, p[REAq »;

The sequence of e I os e s in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first e I os e closes the write side of the
pipe, leaving the read side open. The lines

close(tst(O, 1»;
dupe tst(p[REAq, p[vm ~ »;

are the conventional way to associate the pipe descriptor with· the standard input of the child.
The c I os e closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
to .-fronr the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pe 1 os e to close the pipe created by
popen. The main reason for using a separate function rather than el ose is that it is desirable
to wait for the termination of the child process. First, the return value from pel os e indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist,even if some of them have ter
minated; performing the wai t lays the child to rest. Thus:

(9050) -13-

Programmer s Guide

1ft nel ude <OJ i gnal . h>

pel osee fd)
i nt Cd;

/* close pipe Cd */

{

}

reg i s t err, (* hs tat) (), (* i s tat) (), (* qs tat) () ;
i nt stat us ;
extern i nt popeo_pi d;

el osee Cd);
i stat =si goal (SI G Nr, SI QJ Gi;
qs tat =si goal (SI <lJ.I T, SI QJ Gi ;
hstat =si goal (SI <lIP, SI QJ Gi;
\\hi Ie « r =Wt.i t(&status» ! =popeo-pi d && r ! =-1);
i C (r ==-1)

status =-1;
si goal (SIGNr, i stat);
s i goal (SI <lJ.I T, qs t at) ;
s i goal (SI GIP, hs t at) ;
ret ur o(s t at us) ;

ROS Programming

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen-pi d; it really should be an array indexed by file descrip
tor. A popen function, with slightly different arguments and return value is available as part
of the standard I/O library discussed below. As currently written, it shares the same limitation.

6. SIGNALS and INTERRUPTS

This section covers the graceful handling of signals from the outside world: interrupt, which
is sent when the DEL character is typed; quit, which is generated by the FS character; hangup,
which is caused by hanging up the phone; and tenn'lnate, which is generated by the kill com
mand. When one of these events occurs,· the signal is sent to all processes which were started
from the corresponding terminal. Unless other arrangements have been made, the signal ter
minates the process. In the case of quit, the debugger is then invoked automatically.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
oumber code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal. h gives names for the various arguments, and should always be included
when signals are used. Thus

1ft nel ude <OJ i gnal . h>

si goal (SI G Nr, SI QJ Gi;
causes interrupts to be ignored, while

signal (SI G Nr, SI G_IFL) ;

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to

allow the program to clean up unflnished business before terminating, for example to delete a
temporary file:

-14- (9050)

Programmer s Guide

#4 nc I ude <8 i gnal . h>

nai n()
{

}

i nt oni nt r () ;

if (si gnal (SIGNI', SIQl~ ! =SIQJUi
signal (SI G Nr, oni nt r) ;

/* Process ••• */

exi t (0) ;

onintr()
{

}

unlink(tenpfile);
exi t (1) ;

ROS Programming

Why the test and the double call to signal? Recall that signals like interrupt are sent to
. all processes started from a particular terminal. Accordingly, when a program is to be run non
interactively (started by ~, the shell turns off interrupts for it so it won't be stopped by inter
rupts intended for foreground processes. If this program began by announcing that all inter
rupts were to be sent to the oni nt r routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that signal returns the previous state of a particular signal. If signals were already being
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#4 ncl ude <s i gnal • h>
#4 ncl ude <setj np. h>
j np_buf sj buf;

nai n()
{

i nt (*i stat) (), oni ntr();

i st at =si gnal (SI a Nr, SI G_I ~; /* save ori gi nal stat us * /
setjnp(sjbur); /* save current stack position */
i r (i stat ! = SI Ql ~

si gnal (SIGNr, oni ntr);

/* nain processing loop */
}

oni nt r ()
{

pri ntf (.. \nI nterrupt \n");
I ongj np(sj bur); /* return to saved state */

}

The include file setj np. h declares the type j Dp_bur an object in which the state can be

(9050) -15-

Programmers Guide ROS Programming

saved. sj bur is such an object; it is an array of some sort. The setj IIp routine then saves
the state of things. When an inrerrupt occurs, a call is forced to the oni ntr routine, which
can print a message, set fiags, or whatever. I ongj IIp takes as argument an object stored into
by setj IIp, and restores control to the location after the call to setj IIp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a fiag and then returns instead of calling exi t or 1 ongj IIp, execution will continue at the
exact point it was interrupted. The interrupt fiag can then be tested later.

There is one diIDculty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this diIDculty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wai t, and pause.) A program whose oni ntr program just sets i ntf 1 ag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() ==EXF)
i f (i nt flag)

/* EOF caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like "!" in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() ==0)
execl (•••) ;

signal(SIGNr, SIQJ~; /* ignore interrupts */
~it(&status); /* until the child is done */
signal (SIGNr, oni ntr); /* restore interrupts */

Why is this? Again, it's not obvious but not really diIDcult. Suppose the program you call
cat<:hes its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively fiips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is refiected in the standard I/O library function system

-16- (9050)

Programmer s Guide

1# ncl ude <s i gnal . h>

systerr{s) /* run corrrrand string s */
char *s;
{

}

i nt stat us , pi d, W,

register int (*istat)(), (*qstat)();

i f « pi d =f or k() ==0) {

}

execl ("/bi n/sh", "sh", "-c", s, 0);
_exi t (127) ;

i stat =si gnal (SI GNf, SI QJ ~;
qstat =si gnal (SI ()J.J T, SI QI ~;
Wlile «w =wa.it(&status» !=pid &&'w !=-1)

;
if (w ==-1)

status =- 1;
signal (SI <I Nf, is t at) ;
signal (SI ()J.J T, qs t at);
return(status);

ROS Programming

As an aside on declarations, the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SI G_I G'l and SI G_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for ROS on the Ridge 32; the definitions are sufficiently ugly and unportable to
encourage use of the include file.

#define
#define

SIQIFL
SI QJ (]\J

(int (*)(»O
(i nt (*) ()) 1

(9050) -17-

Programming Guide ROS Programming

Appendix - The Standard I/O Library

1. General Usage

Each program using the library must have the line

~ nel ude <stdi o. h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

s t di n The name of the standard input file

s t dout The name of the standard output file

s t der r The name of the standard error file

ECF is actually - 1, and is the value returned by the read routines on end-of-file or error.

N.LL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _i ob and is a useful shorthand when declaring pointers to
streams.

BlFSI Z is a number (viz. 4096) of the size suitable for an I/O buffer supplied by the user.
See set buf, below.

gete, getehar, putc, put char , feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out
put flushing where appropriate. The names stdi n, stdout, and stderr are in effect con
stants and may not be assigned to.

2. Calls

FILE *fopen(fi 1 enane, type) char *fi I enaxre, *type;
opens the file and, if needed, allocates a buffer for it. f i 1 enane is a character string
specifying the name. type is a character string (not a single character). It may be -r",
"w", or "a" to indicate intent to read, write, or append. The value returned is a file
pointer. If it is N.JLL the attempt to open failed.

FILE *freopen(filenane, type, ioptr) char *filenane, *type; FILE *ioptr;
The stream named by i opt r is closed, if necessary, and then reopened as if by f open. If
the attempt to open fails, NLL is returned, otherwise i opt r , which will now refer to the
new file. Often the reopened stream is s t di n or s t dout .

i nt getc(i optr) FILE *i optr;
returns the next character from the stream named by i opt r, which is a pointer to a file
such as returned by f open, or the name s t di n. The integer E<F is returned on end-of-
flle or when an error occurs. The null character \0 is a legal character. .

i nt fgetc(i optr) FILE *i optr;
acts like get c but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE *ioptr;

-18-

put c writes the character c on the output stream named by i opt r, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value,
but ECF is returned on error.

(9050)

Programming Guide ROS Programming

fputc(c, i optr) FI LE *j optr;
acts like put c but is a genuine function, not a macro.

fcl osee i optr) FILE *i optr;
The file corresponding to i opt r is closed after any buffers are emptied. A buffer allocated
by the I/O system is freed. f close is automatic on normal termination of the program.

f f I us h(i opt r) FI LE * i opt r ;
Any buffered information on the (output) stream named by i opt r is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however,
s t der r always startsofJ unbuffered and remains so unless set buf is used, or unless it is
reopened.

ex i t (err code) ;
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls ffl ush for each output file. To terminate without fiush
ing, use _exi t.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(i optr) FILE *i optr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

get char() ;
is identical to get c(st di n) .

putchar(c);
is identical to put c(c, st dout) .

char *fgets(s, n, i optr) char *s; FILE *i optr;
reads up to n- 1 characters from the stream i optr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument, or NJLL if error or end-of-file
occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream i opt r. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument character c is pushed back on the input stream named by i opt r. Only one
character may be pushed back.

printf(fornat, ai, .•.) char *fornat;
fprintf(ioptr, fornat, ai, •••) FILE *ioptr; char *fornat;
sprintf(s, fornst, ai, .•.)char *s, *fornat;

pri ntf writes on the standard output. fpri ntf writes on the named output stream.
s pr i nt f puts characters in the character array (string) named by s. The specifications are
as described in the printf(3S) pages of the ROS Reference Manual.

scanf(fornat, ai, ••.) char *fornat;
fscanf(i optr, fornat, ai, .•.) FILE *i optr;char *forIIBt;
sscanf(s, forIIBt, ai, ...) char *s, *fornat;

s canf reads from the standard input. fs canf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string for nat , and a set of arguments, each of which m'U8t be a
pointer, indicating where the converted input should be stored.

s canf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, E<F is

(9050) -19-

Programming Guide ROS Programming

returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fread(ptr, sizeof(*ptr), niteIlB, ioptr) FILE *ioptr;
reads ni teIlB of data beginning at ptr from file i optr. No advance notification that binary
I/O is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the f open call.

fwrite(ptr, sizeof(*ptr), niteIIB, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewi nd(i optr) FI LE *i optr;
rewinds the stream named by i opt r. It is not very useful e~cept on input, since a rewound
output flle is still open only for output.

systen(string) char *string;
The s t ring is executed by the shell as if typed at the terminal.

get~ ioptr) FI LE *i optr;
returns the next word from the input stream named by i opt r. ECF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A "word"
is 16 bits on the PDP-ll.

put~w, ioptr) FILE *ioptr;
writes the integer won the named output stream.

set buf(i optr, buf) FI LE *i optr; char *buf;
set buf may be used after a stream has been opened but before I/O has started. If buf is
NJLL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

c ha.r bur [IIFSI Z] ;

fi I eno(i optr) FI LE *i optr;
returns the integer file descriptor associated with the flle.

fseek(ioptr, offset, ptrnane) FILE *ioptr; long offset;
The location of the next byte in the stream named by i opt r is adjusted: off s et is a long
integer. If ptrnane is 0, the offset is measured from the beginning of the file; if ptrnaIlE is
1, the offset is measured from the current read or write pointer; if ptrnaIlE is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When
this routine is used on non-UNIX systems, the offset must be a value returned from ftell and
the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to f see k, so as to position the file to the same place it was when
ftell was called.)

getp~ ui d, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array bur, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *nalloc(nurq;
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur
pose. NJLL is returned if no space is available.

char *call oc(nUIIl si ze);

-20- (9050)

Programming Guide ROS Programming

allocates space for numitems each of size size. The space is guaranteed to be set to 0 and the
pointer is sufflciently well aligned to be usable for any purpose. N.JLL is returned if no space is
available.

efree(ptr) ehar .ptr;
Space is returned to the pool used by call oe. Disorder can be expected if the pointer was not
obtained from e al I oe .

The following are macros whose definitions may be obtained by including <et ype. h>.

i sal pha(e) returns non-zero if the argument is alphabetic.

i supper (e) returns non-zero if the argument is upper-case alphabetic.

i s I o~r (e) returns non-zero if the argument is lower-case alphabetic.

i s di gi t (e) returns non-zero if the argument is a digit.

iss pac e (e) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab, form feed, space.

i spunet(e) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

i sal nun(e) returns non-zero if the argument is a letter or a digit.

i s pr i nt (e) returns non-zero if the argument is printable - a letter, digit, or punctuation
character.

i sent r I (e) returns non-zero if the argument is a control character.

i s as e i i (e) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.

t ouppe r (e) returns the upper-case character corresponding to the lower-case letter e.

t 01 o~r (e) returns the lower-case character corresponding to the upper-case letter e.

(9050) -21-

Lint, a C Program Checker

This document is based on a paper by S. C. Johnson of Bell Laboratories.

Lint examines C source programs and detects some bugs and obscurities that the C compiler
does not. It enforces the type rules of C more strictly than the C compiler. It may also be
used to enforce a number of portability restrictions involved in moving programs between
different machines and/or operating systems. Another option detects constructions which are
legal but wasteful or error-prone.

Lint accepts multiple input files and library specifications, and checks them for con
sistency.

Lint is separate from the C compiler for practical reasons. The C compiler works fast and
efficient, partly because it does not do sophisticated type checking, especially between
separately-compiled programs. Lint examines compatibilities more carefully.

This document discusses the use of l';nt, gives an overview of the implementation, and
gives some hints on the writing of machine-independent C code.

Introduction and Usage

Suppose there are two C source files, file1.c and file2.c, which are ordinarily compiled and
loaded together. Then the command

lint file I.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi
cal reasons) enforce them. The command

lint - p fileI.c file2.c

will produce, in addition to the above messages, additional messages which relate to the porta,..
bility of the programs to other operating systems and machines. Replacing the - p by - h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying - hp gets the whole works.

The next several sections describe the major messages; the document closes with sections
discussing the implementation and giving suggestions for writing portable C. See Iint{l) in the
ROS Reference Manual (9010) for a list of lint options.

Philosophy of Lint

Lint cannot ascertain every fact about a program, so it makes some assumptions. For
example, the input data may determine whether a given function is ever called, or whether a
specific exit condition will ever be reached.

Therefore, lint algorithms are a compromise. For example, if a function is defined but not
mentioned, lint flags an error, but if it is mentioned, lint assumes the program logic could lead
to it.

Lint reports messages in three categories: unused variables and functions, set/used infor
mation, and fiow of control.

(9050) -1-

Programmer s Guide Lint

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to func
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These "errors of commis
sion" rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari
ables and functions can occasionally serve to discover bugs; if·a function does a necessary job,
and is never called, something is wrong!

Lint complains about variables and functions which are defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern tloat sin();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they
can be discovered by adding the - x tlag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter
faces; frequently, some of the arguments may be unused in many of the calls. The - v option
is available to suppress the printing of complaints about unused arguments. When - v is in
effect, no messages are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undetlned, variables is more dis
tracting than helpful. This is when Iz"nt is applied to some, but not all, flIes out of a collection
which are to be loaded together. In this case, many of the functions and variables deflned may
not be used, and, conversely, many functions and variables deflned elsewhere may be used.
The - u flag may be used to suppress the spurious messages which might otherwise appear.

SetfUsedlnfonnauon

Lint attempts to detect variables that are used before set. This is difficult to do well; Lint
detects local variables (automatic and register storage classes) whose first use appears physically
earlier in the input file than the first assignment to the variable. It assumes that taking the
address of a variable constitutes a "use," since the actual use may occur at any later time, in a
daurdependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm sim
ple because the true flow of control need not be discovered. For this reason, Nnt may complain
about a program that is legal but in bad style (e.g.,might contain at least two goto's).

Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs.

Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will
complain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

-2- (9050)

Programmer s Guide Lint

Lint bas an important area of blindness in the fiow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usually complained about by lint; a break state
ment that cannot be reached causes no message. Programs generated by 'lace, and especially
lex, may have literally hundreds of unreachable break statements. The - 0 flag in the C com
piler will often eliminate the resulting object code inefficiency. Thus, these unreached state
ments are of little importance, there is typically nothing the user can do about them, and the
resulting messages would clutter up the lint output. If these messages are desired, l£nt can be
invoked with the - b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly
use function "values" which have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both

return(expr) ;

and

return;

statements is cause for alarm; lint will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) re turn (3);
g ();

}

Notice that, if a tests false, f will call g and then return with no deflned return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e .g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in "working" programs; the desired function value just happened to have been com
puted in the function return register!

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The addi
tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

(9050) -3-

Programmer s Guide Lint

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (? :), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
-> be a pointer to structure, the left operand of the. be a structure, and the right operand of
these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are =, ini
tialization, ==, !=, and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p = I;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char *) I ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The - e flag controls the
printing of comments about casts. When - e is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-II, characters are signed quantities, with a range from - 128 to 127. On
most other C implementations, including that on the Ridge 32, characters take on only positive
values. Thus, lint will flag certain comparisons and assignments as being illegal or nonportable.
For example, the fragment

char c;

if((c = getchar(» < 0)

works on the PD P-II, but will fail on machines where characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "nonportable character comparison".

A similar issue arises with bitftelds; when assignments of constant values are made to
bitftelds, the field may be too small to hold the value. On the Ridge 32, bitftelds are unsigned.
On some machines, bitftelds are considered as signed quantities. While it may seem unintuitive
to consider that a two-bit field declared of type int cannot hold the value 3, the problem disap
pears if the bitfield is declared to have type unsigned

-4- (9050)

Programmer s Guide Lint

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. C On the
Ridge 32, long and int values are the same size, so this problem does not exist.) This may hap
pen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the - a flag.

Strange Constructions

The - h flag enables checking for some legal but poor constructions. For example, in the
statement

*p++

the * does nothing; this provokes the message "null effect" from lint. The program fragment

unsigned x ;
ir(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test

if(x > 0)

is equivalent to

ifC x != 0)

which may not be the intended action. Lint will say "degenerate unsigned comparison" in
these cases. If one says

ifC 1 != 0)

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a con
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statements

ifC x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

The -h flag causes lint to complain about variables which are redeclared in inner blocks
different from their use in outer blocks. This is legal, but is bad style.

Ancient History

There are several forms of older syntax which are now considered errors by the C com
piler. These fall into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =- , ...) could cause ambiguous
expressions, such as

a =- 1;

which could be taken as either

a =- 1;

or

(9050) -5-

Programmer s Guide Lint

a = - I;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ =, - =, etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned opera
tors.

A similar issue arises with initialization. The older language allowed

int x I;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (- I) ;

looks somewhat like the beginning of a function declaration:

int x (y) { ...

and the compiler must read a fair ways past x in order to sure what the declaration really is ..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x = - I ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-II, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Ridge 32, double precision values must begin on even double-word boun
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possible
pointer alignment problem" results from this situation whenever either the - p or - h flags are
in effect.

Multiple Uses and Side Effects

For complicated expressions, the best evaluation order for sub-expressions is machine
dependent. On the Ridge 32, evaluation is left-to-right. Other machines use right-to-Ieft.
Function calls embedded as arguments of other functions mayor may not be treated like ordi
nary arguments. Similar issues arise with other operators which have side effects, such as the
assignment operators and the increment and decrement operators. if any variable is changed by
a side effect, and also used elsewhere in the same expression, the result is undefined.

Lint specifically checks for the special case where a simple scalar variable is affected. For
example, the statement

ali] = b[a+- +] ;

will draw the complaint:

warning: i evaluation order undefined

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable
C Compiler which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file
which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding

-6- (9050)

Programmer s Guide Lint

of the context in which it was seen (use, definition, declaration, etc.), a type specifier, and a
source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter
nal names is collected onto an intermediate file. After all the source files and library descrip
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability

This section describes some of the differences between various implementations, and
discusses the Unt features which encourage portability.

A difficulty arises from the amount of information retained about external names during
the loading process. On the ROS system, externally known names have unlimited characters,
with distinction between upper- and lowercase letters. On other systems, the number of
significant characters in a name may be less, or case distinction may be lost. This leads to
situations where programs run on the one system, but encounter loader problems on others.
Lint - p causes all external symbols to be mapped to one case and truncated to six characters,
providing a worst-case analysis.

Many differences arise in the area of character handling. Characters in most UNIX sys
tems are eight-bit ascii, but they are eight-bit ebcdic on the IBM, and nine bit ascii on
Honeywell GCOS. Also, character strings go from high to low bit positions (. 'left-to-right' ') on
many systems (Ridge, IBM, 68000, 3B20) and low to high ("right-to-left") on others (VAX,
PDP-II, Z8000, NSI6000). This means that code attempting to construct strings out of charac
ter constants, or attempting to use characters as indexes into arrays, must be looked at with
great suspicion. Lint is of little help here, except to fiag multi-character character constants.

Word sizes are different, but this causes less trouble than might be expected when moving
from 16-bit words to 32- or 36-bit words. The main problems are likely to arise in shifting or
masking. C now supports a bit-field facility, which can be used to write much of this code in a
reasonably portable way. Frequently, portability of such code can be enhanced by slight rear
rangements in coding style. Many of the incompatibilities seem to have the fiavor of writing

x &= 0177700 ;

to clear the low order six bits of x. This suffices on a 16-bit machine, but fails on 32- or 36-bit
machines. If the bit field feature cannot be used, the same effect can be obtained by writing

x &=,....., 077 ;

which will work on all these machines.

The right shift operator is arithmetic shift on the VAX 11/780 and PDP-II, and logical
shift on the Ridge 32 and most other machines. To obtain a logical shift on all machines, the
left operand can be typed unsigned Characters are considered signed integers on the VAX
PDP-II, and unsigned on the other machines. This persistence of the sign bit may be reason
ably considered a bug in the PDP-II hardware which has infiltrated itself into the C language.
If there were a good way to discover the programs which would be affected, C could be
changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIXt system utilities has been the inability to mimic essential UNIX system

tUNIX is a Trademark of Bell Laboratories.

(9050) -7-

Programmer s Guide Lint

functions on the other systems. On many systems other than Ridge, the inability to seek to a
random character position in a text file, or to establish a pipe between processes, has involved
more rewriting and debugging than any of the differences in C compilers. On the other hand,
I£nt has been very helpful in moving the UNIX operating system and associated utility programs
to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than lint. There may be valid rear
sons for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the fiow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob
lems.

What was finally done was to cause anum ber of words to be recognized by Unt when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with fiow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the
directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression. The - v
fiag can be turned on for one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by the
directive

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several argu
ments, and leave the later arguments unchecked. This can be done by following the
VARARGS keyword immediately with a digit giving the number of arguments which should be
checked; thus,

/* VARARGS2 */

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

-8- (9050)

Programmer ~ Guide Lint

Library Declaratlon Files

Lint accepts certain library directives, such as

-1m

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive

/* LINTLIBRARY */
which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and
ARGSUSED directives can be used to specify features of the library functions.

La'nt library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source file,
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which con
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p fiag is in effect, another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

Bu~, etc.

Lint was a difficult program to write, partially because it is closely connected with matters
of programming style, and partially because users usually don't notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if Unt incorrectly complains about some
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typed.ef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter
mined.

L,,'nt shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are
pressures to add even more of these options.

In conclusion, the use of two programs is efficient: the compiler turns the program source
into executable form, and lint concentrates on issues of portability, style, and efficiency.
Incorrectness and over-conservatism are only annoying, not fatal, so Lint can afford to be
wrong. The compiler can be fast since it knows that Unt will correct its deficiencies. Finally,
the programmer can concentrate at one stage of the programming process solely on the algo
rithms, data structures, and correctness of the program, and then later retrofit, with the aid of
Ia'nt, the desirable properties of universality and portability.

See the lint(1) page of the ROS Reference Manual (9010) for a summary of the lint
options.

(9050) -9-

Make -for Maintaining Computer Programs

This document is based on a paper by S.1. Feldman of Bell Laboratories, August, 1978.

Intzoduct.lon

Make mechanizes many activities of program development and maintenance. It is a
mechanism for maintaining an up-to-date version of all the component files of a small to
medium-size program.

Many files may exist as parts of a larger program. Some may require a macro procesor, others
may need compiling with special options by different language compilers, and others may
require processing by yace or lex. The output code from some steps may have to be loaded
with special libraries and tested by certain test scripts. Make records the interdependence of
files, mechanizes the procedure of figuring out which object modules need recompilation, and
memorizes the exact sequence of operations needed to make or exercise a new version of the
program.

Once the appropriate information has been established in a file, the simple command

make

is frequently sumcient to update the involved program files, regardless of the number that have
been edited since the last "make". The description file is easy to write and it changes infre
quently, making use of the make command easier than issuing one of the component com
mands by hand. The typical cycle of program development is:

think - edit - make - test ...

Make does not solve the problems of maintaining multiple source versions or of describ
ing huge programs.

Inttoduetory Examples

mak e updates a target file by ensuring that all of the flIes on which it depends exist and
are up to date, then creates the target if it has not been modified since its dependents were.
Make does a depth-first search of the graph of dependences. The date and time of file
modification is the key for make to determine if it needs updating.

To illustrate, let us consider a simple example: A program named prog is made by compil
ing" and loading three C-Ianguage files x.c, y. c, and z. c with the 1m library. By convention, the
output of the C compilations will be found in files named X.O, y.o, and z.o. Assume that the
files x.c and y.c share some declarations in a file named de/s, but that z.c does not. That is, X.C

and y. c have the line

#include "defs"

The following text describes the relationships and operations:

prog: x.o y.O z.O
cc x.o y.o z.o - 1m - 0 prog

x.o y.o: defs

If this information were stored in a file named makefile, the command

(9050) -1-

Programmer'S Guide Make

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.c, z.c, or de!s.

Make operates using three sources of information: a user-supplied description file (as
above), file names and "last-modified" times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three. ".0" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.o depend on the file de!s. From the file system, make discov
ers that there are three ". c" files corresponding to the needed ".0" files, and uses built-in
information on how to generate an object from a source file (i.e., issue a "cc - c" command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make's innate knowledge:

prog: x.o y.o z.o
cc x.o y.o z.o - IS -0 prog

x.o : x.c defs
cc - c x.c

y.o : y.c defs
cc - c y.c

z.o: z.c
cc - c z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this f~t and stop. If, however, the de!s file had been edited, x.c and y.c
(but not z.c) would be recompiled, and then prog would be created from the new" .0" files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or de!s had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not ~tually produce a file with that name.
These entries can take advantage of make's ability to generate flIes and substitute macros.
Thus, an entry "save" might be included to copy a certain set of flIes, or an entry "cleanup"
might be used to throwaway unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep tr~k of the time at which certain ~tions were performed. This
technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded
equal signs. A m~ro is invoked by preceding the name by a dollar sign; m~ro names longer
than one char~ter must be parenthesized. The name of the m~ro is either the single character
after the dollar sign or a name inside parentheses. The following are valid m~ro invocations:

-2- (9050)

Programmers Guide

$(CFLAGS)
$2
$(XY)
$Z
$(Z)

Make

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $ <. They will be discussed later. The following fragment
shows the use:

OBJECTS = x.o y.O Z.O
LIBES =
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) - 0 prog

The command

make

loads the three object files with the Ie library, which is automatically included by the cc(1) com
mand. The command

make "LIBES= - 11- 1m"

loads them with both the Lex ("- 11") and the Standard ("- lc") libraries, since macro
definitions on the command line override definitions in the description.

The following sections detail the form of description files and the command line, and dis
cuss options and builtrin rules in more detail.

Description Files and Sub:Jtitutions

A description file contains three types of information: macro definitions, dependency
information, and executable commands. There is also a comment convention: all characters
after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginn~ng with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
the last character of a line is a backslash, the backslash, newline, and following blanks and tabs
are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

2 = xyz
abc = - 11 - ly - IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

target! [target2 ... :[:] [dependentl ... [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters "*,, and "?" are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may

(9050) -3-

Programmer s Guide Make

appear either after a semicolon on a dependency line or on lines beginning with a tab immedi
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a com
mandsequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A builtrin rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com
mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @

sign) . Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the "- i" fiags has been specified on the make command line, if
the fake target name" .IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e .g., cd and Shell control commands) that have meaning only within a
single Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be "made". $? is set to the string of names that were found to be younger than the targ~. If

the command was generated by an implicit rule (see below), $ < is the name of the related file
that caused the action, and $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant builtrin rules, the
commands associated with the name" .DEFAULT" are used. If there is no such name, make
prints a message and stops.

Chmmand Usage

See the make(1) pages of the ROS Reference Manual for command syntax and options.

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to
supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

.0 Object file

.c C source file

.e Efi source file

.r Ratfor source file

.f Fortran source file

.S Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efi source grammar

.1 Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is

-4- (9050)

Programmer s Guide Make

named in the description.

.0

.C .r .e .f .8 .y .yr .ye .1 .d

.y.1 .yr .ye

If the file X.O were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x.l, that grammar would be run through Lex before compil
ing the result. However, if there were no x. c but there were an x.l, make would discard the
intermediate C-Ianguage file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the fiag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the Hnewcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional fiags. Thus,

make "CFLAGS=- 0"

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain
the make command itself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

(9050) -5-

Programmer s Guide Make

Description file for the Make command

FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES=
LINT = lint - p
CFLAGS = - 0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) - 0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@ size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $1 I$p

test:

touch print

make - dp I grep - v TIME > lzap
/usr Ibin/make - dp I grep - v TIME > 2zap
diff lzap 2zap
rm lzap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description file:

cc - c version.c
cc - c main.c
cc - c doname.c
cc - c misc.c
cc - c files.c
cc - c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc - c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o - 0 make
13188+ 3348+ 3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the "size make" command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing

-6- (9050)

Programmer'S Guide Make

of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print",
entry prints only the files that have been changed since the last "make print" command. A
zero-length file print is maintained to keep track of the time of the printing; the $1 macro in the
command line then picks up only the names of the files changed since print

Suggestions and Warnings

The most common dimculties arise from make's specific meaning of dependency. If file
z.e has a "#include "defs"" line, then the object file z.o depends on def8; the source file z.e
does not. (If def8 is changed, it is not necessary to do anything to the file x.c, while it is neces
sary to recreate x.o.)

To discover what make would do, the "- n" option is very useful. The command

make - n

orders make to print out the commands it would issue without actually taking the time to exe
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the "- t" (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, make updates the modification times on the affected file.
Thus, the command

make - ts

(• 'touch silently' ') causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of make and destroys all memory of the
previous relationships.

The debugging fiag ("- d") causes make to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

(9050) -7-

Programmer s Guide Make

Appendix. Suffixes and 'Ii-ansformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the "- r" fiag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a" .r"
file to a ".0" file is thus" .r.o". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule" .r.o" is used. If
a command is generated by using one of these suffixing rules, the macro $* is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for" .SUFFIXES" in his own description file;
the dependents will be added to the usual list. A ... SUFFIXES " line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

-8-

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .C .e .r .f .y .yr .ye .1 .s
YACC=yacc
YACCR=yacc - r
YACCE=yacc - e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.C.o:

$(CC) $(CFLAGS) - c $<
.e.o .r.o .f.o :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) - c $<
.s.o:

.y.o :

.y.c:

$(AS) - 0 $@ $<

$(y ACC) $(YFLAGS) $ <
$(CC) $(CFLAGS) - c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

(9050)

LEX - A Lexical Analyzer Generator

This document is based on a paper by M.E. LEsk
and E. Schmidt of Bell Laboratories. It supple
ments the lex(1) pages of the ROS Reference
Manual (9010).

Table of ContentS

1. Introduction. 1

2. Lex Source. 2

3. Lex Regular Expressions. 3

4. Lex Actions. 4

5. Ambiguous Source Rules. 6

6. Lex Source Definitions. 7

7. Usage. 8

8. Lex and Yacc. 8

9. Examples. 8

10. Left Context Sensitivity. 10

11. Character Set. 11

12. Summary of Source Form at. 11

13. Caveats and Bugs. 12

1. InUoduction.

Lex is a program generator designed for
lexical processing of character input streams. It
accepts a high-level, problem oriented
specification for character string matching, and
produces a program in a general purpose
language which recognizes regular expressions.
The regular expressions are specified by the user
in the source specifications given to Lex. The
Lex written code recognizes these expressions in
an input stream and partitions the input stream
into strings matching the expressions. At the
bound -aries between strings program sections
provided by the user are executed. The Lex
source file associates the regular expressions and
the program fragments. As each expression
appears in the input to the program written by
Lex, the corresponding fragment is executed.

The user supplies the additional code
beyond expression matching needed to complete
his tasks, possibly including code written by
other generators. The program that recognizes
the expressions is generated in the general pur
pose programming language employed for the
user's program fragments. Thus, a high level
expression language is provided to write the
string expressions to be matched while the user's
freedom to write actions is unimpaired. This
avoids forcing the user who wishes to use a
string manipulation language for input analysis to
write processing programs in the same and often
inappropriate string handling language.

Lex is not a complete language, but rather
a generator representing a new language feature
which can be added to different programming

languages, called "host languages." Just as gen
eral purpose languages can produce code to run
on different computer hardware, Lex can write
code in different host languages. The host
language is used for the output code generated
by Lex and also for the program fragments
added by the user. Compatible run-time libraries
for the different host languages are also pro
vided. This makes Lex adaptable to different
environments and different users. Each applica
tion may be directed to the com bination of
hardware and host language appropriate to the
task, the user's background, and the properties
of local implementations. At present, the only
supported host language is C.

Lex turns the user's expressions and
actions (called source) into the host general
purpose language; the generated program is
named yylex. The yylex program recognizes
expressions in a stream (called input) and per
forms the specified actions for each expression as
it is detected:

(9050)

Source - > lex - > yylex

Input-> yylex -> output

For a trivial example, consider a program
to delete from the input all blanks or tabs at the
ends of lines.

%%
[\tl+ $

is all that is required. The program contains a
%% delimiter to mark the beginning of the rules,
and one rule. This rule contains a regular
expression which matches one or more instances
of the characters blank or tab (written \t for visi
bility, in accordance with the C language conven
tion) just prior to the end of a line. The brackets
indicate the character class made of blank and
tab; the' + indicates "one or more ... "; and the $
indicates "end of line," as in QED. No action is
specified, so the program generated by Lex
(yylex) will ignore these characters. Everything
else will be copied. To change any remaining
string of blanks or tabs to a single blank, add
another rule:

%%
[\tl+ $
[\tl+ printf(" ");

The finite automaton generated for this source
will scan for both rules at once, observing at the
termination of the string of blanks or tabs

-1-

Programmer's Guide

whether or not there is a newline character, and
executing the des'ired rule action. The first rule
matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of
blanks or tabs.

Lex can be used alone for simple transfor
mations, or for analysis and statistics gathering
on a lexical leveL Lex can also be used with a
parser generator to perform the lexical analysis
phase; it is particularly easy to interface Lex and
Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a
large class of contextrfree grammars, but require
a lower level analyzer to recognize input tokens.
Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a
later parser generator, Lex is used to partition
the input stream, and the parser generator
assigns structure to the resulting pieces. The
flow of control in such a case (which might be
the first half of a compiler, for example) is:

lexical
rules

lex Yacc

grammar
rules

Input - > yylex - > yyparse - > parsed input

Additional programs, writren by other generators
or by hand, can be added easily to programs writr
ten by Lex.

Yacc users will realize that the name yylex
is what Yacc expects its lexical analyzer to be
named, so that the use of this name by Lex
simplifies interfacing.

Lex generates a deterministic finite auto
maton from the regular expressions in the source
[4]. The automaton is interpreted, rather than
compiled, in order to save space. The result is
still a fast analyzer. In particular, the time taken
by a Lex program to recognize and partition an
input stream is proportional to the length of the
input. The number of Lex rules or the complex
ity of the rules is not important in determining
speed, unless rules which include forward con
text require a significant amount of re-scanning.
What does increase with the number and com
plexity of rules is the size of the finite automa
ton, and therefore the size of the program gen
erated by Lex.

In the program written by Lex, the user's
fragments (representing the actions to be per
formed as each regular expression is found) are
gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportunity
is provided for the user to insert either declara
tions or additional statements in the routine con
taining the actions, or to add subroutines outside

-2-

Lex

this action routine.

Lex is not limited to source which can be
interpreted on the basis of one character
look-ahead. For example, if there are two rules,
one looking for ab and another for abcdefg, and
the input stream is abcdefh, Lex will recognize ab
and leave the input pointer just before cd. " "
Such backup is more costly than the processing
of simpler languages.

2. Lex Source.

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines
are often omitted. The second %% is optional,
but the first is required to mark the beginning of
the rules. The absolute minimum Lex program
is thus

%%

(no definitions, no rules) which translates into a
program which copies the input to the output
unchanged.

In the outline of Lex programs shown
above, the rules represent the user's control deci
sions; they are a table, in which the left column
contains regular expressions (see section 3) and
the right column contains actions, program frag
ments to be executed when the expressions are
recognized. Thus an individual rule might
appear

integer printf("found keyword INT');

to look for the string integer in the input stream
and print the message "found keyword INT"
whenever it appears. In this example, the host
procedural language is C, and the C library func
tion pM"ntf prints the string. The end of the
expression is indicated by the first blank or tab
character. If the action is merely a single C
expression, it can just be given on the right side
of the line; if it is compound, or takes more than
a line, it should be enclosed in braces. As a
slightly more useful example, suppose it is
desired to change anum ber of words from Britr
ish to American spelling. Lex rules such as

(9050)

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf("gas");

would be a start. These rules are not quite
enough, since the word petroleum would become

Programmer's Guide

gaseum; a way of dealing with this will be
described later.

3. Lex Regular Expressions.

The definitions of regular expressions are
very similar to those in QED [5]. A regular
expression specifies a set of strings to be
matched. It contains text characters (which
match the corresponding characters in the strings
being compared) and operator characters (which
specify repetitions, choices, and other features).
The letters of the alphabet and the digits are
always text characters; thus the regular expres
sion

integer

matches the string integer wherever it appears
and the expression

a57D

looks for the string a57D.

Operators. The operator characters are

,,\ [] _ - ? . * + I() $ / {} % < >

and if they are to be used as text characters, an
escape should be used. The quotation mark
operator (") indicates that whatever is contained
between a pair of quotes is to be taken as text
characters. Thus

xyz"++"

matches the string xyz+ + when it appears.
Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary
text character; the expression

"xyz+ +"

is the same as the one above. Thus by quoting
every non-alphanumeric character being used as
a text character, the user can avoid remembering
the list above of current operator characters, and
is safe should further extensions to Lex lengthen
the list.

An operator character may also be turned
into a text character by preceding it with \ as in

Xyz\+ \+

which is another, less readable, equivalent of the
above expressions. Another use of the quoting
mechanism is to get a blank into an expression;
normally, as explained above, blanks or tabs end
a rule. Any blank character not contained within
[] (see below) must be quoted. Several normal
C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use
\ \. Since newline is illegal in an expression, \n
must be used; it is not required to escape tab and

Lex

backspace. Every character but blank, tab, new
line and the list above is always a text character.

Character classes. Classes of characters can
be specified using the operator pair []. The con
struction r abc] matches a single character, which
may be a, b, or c. Within square brackets, most
operator meanings are ignored. Only three char
acters are special: these are \ - and A. The
character indicates ranges. For example,

[a-- zO- 9 < > J
indicates the character class containing all the
lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either
order. Using - between any pair of characters
which are not both upper case letters, both lower
case letters, or both digits is implementation
dependent and will get a warning message. (E.g.,
[0- z] in ASCII is many more characters than it
is in EBeD IC). If it is desired to include the
character - in a character class, it should be first
or last; thus

(9050)

[-+0-9]

matches all the digits and the two signs.

In character classes, the _ operator must
appear as the first character after the left bracket;
it indicates that the resulting string is to be com
plemented with respect to the computer character
set. Thus

matches all characters except a, b, or c, including
all special or control characters; or

[-a- zA- Z]

is any character which is not a letter. The \ char
acter provides the· usual escapes within character
class brackets.

Arbitrary character. To match almost any
character, the operator character

is the class of all characters except newline.
Escaping into octal is possible although non
portable:

[\40- \176]

matches all printable characters in the ASCII
character set, from octal 40 (blank) to octal 176
(tilde).

Optional expressions. The operator ? indi
cates an optional element of an expression.
Thus

ab?c

matches either ac or abc.

-3-

Programmer's Guide

Repeated expressions. Repetitions of classes
are indicated by the operators * and + .

a*

is any number of consecutive a characters,
including zero; while

a+

is one or more instances of a. For example,

[a- z]+

is all strings of lower case letters. And

[A- Za- z] [A- Za- zO- 9] *
indicates all alphanumeric strings with a leading
alphabetic ch~acter. This is a typical expression
for recognizing identifiers in computer languages.

Alternation and Grouping. The operator I
indicates alternation:

(ab Icd)

matches either ab or cd. Note that parentheses
are used for grouping, although they are not
necessary on the outside level;

ablcd

would have sufficed. Parentheses can be used
for more complex expressions:

(ab Icd+)?(ef)*

matches such strings as abefef, efefef, cdef, or
cddd; but not abc, abed, or abcdef

Context sensitivity. Lex will recognize a
small amount of surrounding context. The two
simplest operators for this are - and $. If the
first character of an expression is -, the expres
sion will only be matched at the beginning of a
line (after a newline character, or at the begin
ning of the input stream). This can never
conflict with the other meaning of -, complemen
tation of character classes, since that only applies
within the [] operators. If the very last character
is $, the expression will only be matched at the
end of a line (when immediately followed by
newline). The latter opera.tor is a special case of
the I operator character, which indicates trailing
context. The expression

abjcd

matches the string ab, but only if followed by cd.
Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions
as explained in section 10. If a rule is only to be
execu ted when the Lex automaton interpreter is

-4-

Lex

in start condition x, the rule should be prefixed
by

<x>

using the angle bracket operator characters. If
we considered "being at the beginning of a line"
to be start condition ONE, then the - operator
would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators
{} specify either repetitions (if they enclose
numbers) or definition expansion (if they
enclose a name). For example

{digit}

looks for a predefined string named digit and
inserts it at that pOint in the expression. The
definitions are given in the first part of the Lex
input, before the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the
separator for Lex source segments.

4. Lex Actions.

When an expression written as above is
matched, Lex executes the corresponding action.
This section describes some features of Lex
which aid in writing actions. Note that there is a
default action, which consists of copying the
input to the output. This is performed on all
strings not otherwise matched. Thus the Lex
user who wishes to absorb the entire input,
without producing any output, must provide
rules to match everything. When Lex is being
used with Yacc, this is the normal situation.
One may consider that actions are what is done
instead of copying the input to the output; thus,
in general, a rule which merely copies can be
omitted. Also, a character combination which is
omitted from the rules and which appears as
input'is likely to be printed on the output, thus
calling attention to the gap in the rules.

(9050)

One of the simplest things that can be
done is to ignore the input. Specifying a C null
statement, ; as an action causes this result. A
frequent rule is

I \t\n]

which causes the three spacing characters (blank,
tab, and newline) to be ignored.

Another easy way to avoid writing actions
is the action character ~ which indicates that the
action for this rule is the action for the next rule.

Programmer's Guide

The previous example could also have been writ
ten

,,\t"

"\n"
with the same result, although in different style.
The quotes around \n and \t are not required.

In more complex actions, the user will
often want to know the actual text that matched
some expression like [a- zj+. Lex leaves this
text in an external character array named yytext.
Thus, to print the name found, a rule like

[a- z]+ printf("%3", yytext);

will print the string in yytexto The C function
pnOnt/ accepts a format argument and data to be
printed; in this case, the format is "print string"
(% indicating data conversion, and s indicating
string type), and the data are the characters in
yytexto So this just places the matched string on
the output. This action is so common that it
may be written as ECHO:

[a- z]+ ECHO;

is the same as the above. Since the default
action is just to print the characters found, one
might ask why give a rule, like this one, which
merely specifies the default action? Such rules
are often required to avoid matching some other
rule which is not desired. For example, if the.re
is a rule which matches read it will normally
match the instances of read contained in bread or
readju8t, to avoid this, a rule of the form /a- zj+
is needed. This is explained further below.

Sometimes it is more convenient to know
the end of what has been found; hence Lex also
provides a count yyleng of the number of charac
ters matched. To count both the number of
words and the number 01 characters in words in
the input, the user might write

[a- zA- Z]+ {words+ + ; chars + = yyleng;}

which accumulates in chars the number of char
acters in the words recognized. The last charac
ter in the string matched can be accessed by

yytext[yyleng- I]

Occasionally, a Lex action may decide that
a rule has not recognized the correct span of
characters. Two routines are provided to aid
with this situation. First, yymore() can be called
to indicate that the next input expression recog
nized is to be tacked on to the end of this input.
Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n)
may be called to indicate that not all the charac
ters matched by the currently successful expres-

Lex

sion are wanted right now. The argument n indi
cates the number of characters in yytext to be
retained. Further characters previously matched
are returned to the input. This provides the
same sort of look-ahead offered by the / opera
tor, but in a different form.

Example: Consider a language which
defines a string as a set of characters between
quotation (") marks, and provides that to include
a " in a string it must be preceded by a \. The
regular expression which matches that is some
what confUSing, so that it might be preferable to
write

\"[-"] * {
if (yytext[yyleng- I] == '\ \')

yymore();
else

... normal user processing
}

which will, when faced with a string such as
"abc\"de/" first match the five characters "abc\;
then the call to yymore() will cause the next part
of the string, "de/, to be tacked on the end.
Note that the final quote term inating the string
should be picked up in the code labeled "normal
processing" .

(9050)

The function yyless() might be used to
reprocess text in various circumstances. Con
sider the C problem of distinguishing the am bi
guity of .. =- a". Suppose it is desired to treat
this as "=- a" but print a message. A rule
might be

=- [a- zA- Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng- 1);
... action for =-
}

which prints a message, returns the letter after
the operator to the input stream, and treats the
operator as . '=- ". Alternatively it might be
desired to treat this as "= - a". To do this,
just return the minus sign as well as the letter to
the input:

=- [a- zA- Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng- 2);
... action for = ...
}

will perform the other interpretation. Note that
the expressions for the two cases might more
easily be written

=- /[A- Za- z]

in the first case and

=/- [A- Za- z]

-5-

Programmer's Guide

in the second; no backup would be required in
the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity.
The possibil~ty of "=- 3", however, makes

=_/[A \t\nJ

a still better rule.

In addition to these routines, Lex also per
mits access to the I/O routines it uses. They are:

1) input() which returns the next input char
acter;

2) output(c) which writes the character c on
the output; and

3) unput(c) pushes the character c back onto
the input stream to be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and
supply private versions. These routines define
the relationship between external files and inter
nal characters, and must all be retained or
modified consistently. They may be redefined, to
cause input or output to be transmitted to or
from strange places, including other programs or
internal memory; but the character set used must
be consistent in all routines; a value of zero
returned by input must mean end of file; and the
relationship between unput and input must be
retained or the Lex look-ahead will not work.
Lex does not look ahead at all if it does not have
to, but every rule ending in + * ? or $ or con
taining / implies look-ahead. Look-ahead is also
necessary to match an expression that is a prefix
of another expression. See below for a discus
sion of the character set used by Lex. The stan
dard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user
will sometimes want to redefine is yywrap()
which is called whenever Lex reaches an end-of
file. If yywrap returns a 1, Lex continues with
the normal wrapup on end of input. Sometimes,
however, it is convenient to arrange for more
input to arrive from a new source. In this case,
the user should provide a yywrap which arranges
for new input and returns o. This instructs Lex
to continue processing. The default yywrap
always returns 1.

This routine is also a convenient place to
print tables, summaries, etc. at the end of a pro
gram. Note that it is not possible to write a nor
mal rule which recognizes end-of-file; the only
access to this condition is through yywrap. In
fact, unless a private version of input() is sup
plied a file containing nulls cannot be handled,
since a value of 0 returned by input is taken to be
end-of-file.

-6-

Lex

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.
When more than one expression can match the
current input, Lex chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same
num ber of characters, the rule given first
is preferred.

Thus, suppose the rules

integer
[a- zJ+

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is integers,
it is taken as an identifier, because (a- zj+
matches 8 characters while integer matches only
7. If the input is integer, both rules match 7
characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g.
int) will not match the expression integer and so
the identifier interpretation is used.

The principle of preferring the longest
match makes rules containing expressions like *
dangerous. For example,

'.*'
might seem a good way of recognizing a string in
single quotes. But it is an invitation for the pro
gram to read far ahead, looking for a distant sin
gle quote. Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better
rule is of the form

'[A'\nJ *'
which, on the above input, will stop after 'first.
The consequences of errors like this are miti
gated by the fact that the . operator will not
match newline. Thus expressions like .* stop on
the current line. Don't try to defeat this with
expressions like f. \nj + or equivalents; the Lex
generated program will try to read the entire
input file, cau·sing internal buffer overflows.

(9050)

Note that Lex is normally partitioning the
input stream, not searching for all possible
matches of each expression. This means that
each character is accounted for once and only
once. For example, suppose it is desired to
count occurrences of both she and he in an input
text. Some Lex rules to do this might be

she s+ +;
he h+ +;
\n I

Programmer's Guide

where the last two rules ignore everything
besides he and she. Remember that. does not
include newline. Since- she includes he, Lex will
normally not recognize the instances of he
included in she, since once it has passed a she
those characters are gone. .

Sometimes the user would like to override
this choice. The action REJECT means "go do
the next alternative." It causes whatever rule
was second choice after the current rule to be
executed. The position of the input pointer is
adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she
he
\n

{s+ + ; REJECT;}
{h + + ; REJECT;}

I

these rules are one way of changing the previous
example to do just that. After counting each
expression, it is rejected; whenever appropriate,
the other expression will then be counted. In
this example, of course, the user could note that
she includes he but not vice versa, and omit the
REJECT action on he; in other cases, however, it
would not be possible a priori to tell which input
characters were in both classes.

Consider the two rules

a[bc] +
a[cd] +

{ ... ; REJECT;}
{ ... ; REJECT;}

If the input is ab, only the first rule matches, and
on ad only the second matches. The input string
accb matches the first rule for four characters
and then the second rule for three characters. In
contrast, the input aced agrees with the second
rule for four characters and then the first rule for
three.

In general, REJECT is useful whenever
the purpose of Lex is not to partition the input
stream but to detect all examples of some items
in the input, and the instances of these items
may overlap or include each other. Suppose a
digram table of the input is desired; normally the
digrams overlap, that is the word the is con
sidered to contain both th and he. Assuming a
two-dimensional array named digram to be incre
mented, the appropriate source is

Lex

6. Lex Source Definitions.

Remem ber the format of the Lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The
user needs additional options, though, to define
variables for use in his program and for use by
Lex. These can go either in the definitions sec
tion or in the rules section.

Remem ber that Lex is turning the rules
into a program. Any source not intercepted by
Lex is copied into the generated program. There
are three classes of such things.

1)

2)

3)

Any line which is not part of a Lex rule or
action which begins with a blank or tab is
copied into the Lex generated program.
Such source input prior to the first %%
delimiter will be external to any function
in the code; if it appears immediately after
the first 0/0%, it appears in an appropriate
place for declarations in the function writ
um by Lex which contains the actions.
This material must look like program frag
ments, and should precede the first Lex
rule.

As a side effect of the above, lines which
begin with a blank or tab, and which con
tain a comment, are passed through to the
generated program. This can be used to
include comments in either the Lex source
or the generated code. The comments
should follow the host language conven
tion.

Anything included between lines contain
ing only %{ and %} is copied out as above.
The delimiters are discarded. This format
permits entering text like preprocessor
statements that must begin in column 1, or
copying lines that do not look like pro
grams.

Anything after the third %% delimiter,
regardless of formats, etc., is copied out
after the Lex output.

%%
[a- z][a- z]
\n

Definitions intended for Lex are given
{digram [yytext[o]][yytext[1]] + +; REJE~!,re the first %% delimiter. Any line in this
; section not contained between %{ and %}, and

where the REJECT is necessary to pick up a
letter pair beginning at every character, rather
than at every other character.

(9050)

begining in column 1, is assumed to define Lex
substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to
be associated with the name. The name and
translation must be separated by at least one

-7-

Programmer's Guide

blank or tab, and the name must begin with a
letter. The translation can then be called out by
the {name} syntax in a rule. Using {D} for the
digits and {E} for an exponent field, for example,
might abbreviate rules to recognize numbers:

D
E

%%
{D}+
{D}+ {D }*({E})?
{D }* {D}+ ({E})?
{D}+ {E}

[0- 9]
[DEde][- +]?{D}+

printf("integer");

I
I

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second
requires at least one digit after the decimal point.
To correctly handle the problem posed by a For
tran expression such as 95.EQ.I, which does not
contain a real number, a context-sensitive rule
such as

[0- 9] + /"."EQ printf("integer");

could be used in addition to the normal rule for
integers.

The definitions section may also contain
other commands, including the selection of a
host language, a character set table, a list of start
conditions, or adjustments to the default size of
arrays within Lex itse If for larger source pro
grams. These possibilities are discussed below
under "Summary of Source Format," section 12.

7. Usage.

There are two steps in compiling a Lex
source program. First, the Lex source must be
turned into a generated program in the host gen
eral purpose language. Then this program must
be compiled and loaded, usually with a library of
Lex subroutines. The generated program is on a
file named lex.yy. c. The I/O library is defined in
terms of the C standard library [6] .

The C programs generated by Lex are
slightly different on OS/370, because the OS
compiler is less powerful than the UNIX or
GCOS compilers, and does less at compile time.
C programs generated on GCOS and UNIX are
the same

UNIX The library is accessed by the
loader flag - ll. So an appropriate set of com
mands is

lex source cc lex.yy.c - II
The resulting program is placed on the us~al file
a. out for later execution. To use Lex with Yacc
see below. Although the default Lex I/O rou
tines use the C standard library, the Lex auto-

-8-

Lex

matathemselves do not do so; if private versions
of input, output and unput are given, the library
can be avoided.

8. Lex andYacc.

If you want to use Lex with Yacc, note
that what Lex writes is a program named yylex(),
the name required by Yacc for its analyzer. Nor
mally, the default main program on the Lex
library calls this routine, but if Yacc is loaded,
and its main program is used, Yacc will call
yylex(). In this case each Lex rule should end
with

return(token);

where the appropriate token value is returned.
An easy way to get access to Yacc's names for
tokens is to compile the Lex output file as part
of the Yacc output file by placing the line

include "lex.yy.c"

in the last section of Yacc input. If the grammar
were named' 'good" and the lexical rules were
named "better", the system command sequence
can be:

yacc good
lex better
cc y. tab.c - ly - II

The Yacc library (- ly) should be loaded before
the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex
and Yacc programs can be done in either order.

O. Examples.

As a trivial problem, consider copying an
input file while adding 3 to every positive
num ber divisible by 7. Here is a suitable Lex
source program

(9050)

%%

[0- 9]+
int k;
{
k = atoi(yytext);
if (k%7 == 0)

printf("o/~", k+ 3);
else

printf("o/~",k);
}

to do just that. The rule [0- 9] + recognizes
strings of digits; atoi converts the digits to binary
and stores the result in k. The operator %
(remainder) checks whether k is divisible by 7; if
it is, it is incremented by 3 as it is written out. It
may be objectionable that this program will alter
such input items as 4. 9. 69 or X7. Furthermore, it

Programmer's Guide

increments the absolute value of all negative
numbers divisible by 7. To avoid this, just add a
few more rules after the active one, as here:

%%
intk;

- 7[0- 9J+ {

Lex

An additional class recognizes white space:

W [\tJ*

The first rule changes "double precision" to
"real", or "DOUBLE PRECISION" to
"REAL".

k = atoi(yytext); {d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{cHi}{s}{i}{o}{n} {
printf("o/od", k%7 == O? k+3: k)printf(yytext[O]=='d'? "real": ''REAL'');
} }

- ?[O- 9.J+
[A-Za-z] [A-Za-zO-9] +

ECHO;
ECHO;

Numerical stcings containing a "." or preceded
by a letter will be picked up by one of the last
two rules, and not changed. The iJ- else has
been replaced by a C conditional expression to
save space; the form afb:c means "if a then b
else c".

For an example of statistics gathering, here
is a program which histograms the lengths of
words, where a word is defined as a string of
letters.

%%
[a-zJ+

\n
%%
yywrap()
{
int i;

int lengs[100J ;

lengs[yylengJ + + ;

I

printf("Length No."words\n");
fore i=O; i < 100; i+ +)

if (lengs[iJ > 0)
printf("o/05d%10d\n",i,lengs[i]);

return(1);
}

This program accumulates the histogram, while
producing no output. At the end of the input it
prints the table. The final statement return{l};
indicates that Lex is to perform wrapup. If
yywrap returns zero (false) it implies that further
input is available and the program is to continue
reading and processing. To provide a yywrap that
never returns true causes an infinite loop.

As a larger example, here are some parts
of a program written by N. L. Schryer to convert
double preCision Fortcan to single precision For
tran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by
defining a set of classes including both cases of
each letter:

a
b
c

z

[aAJ
[bB]
IcC]

[zZ]

Care is taken throughout this program to
pre'serve the case (upper or lower) of the original
program. The conditional operator is used to
select the proper form of the keyword. The next
rule copies continuation card indications to avoid
confusing them with constants:

"[A 0] ECHO;

In the regular expression, the quotes surround
the blanks. It is interpreted as "beginning of
line, then five blanks, then anything but blank or
zero." Note the two different meanings of A.

There follow some rules to change double preci
sion constants to ordinary floating constants.

(9050)

[0- 9]+ {W}{d}{W}[+-]?{W}[O- 9]+ I
[0- 9J+{W}"."{W}{d}{W}[+-]?{W}[O- 9J+ I
"."{W}[O- 9J+{W}{d}{W}[+- J?{W}[O- 9J+ {

/* convert constants */
for(p=yytext; *p != 0; p+ +)

{
if (*p == 'd' I*p == '0')

*p=+ 'e'- 'd';
ECHO;
}

After the floating point constant is recognized, it
is scanned by the for loop to find the letter d or
D. The program than adds 'e- 'd', which con
verts it to the next letter of the alphabet. The
modified constant, now single-precision, is writ
ten out again. There follow a series of names .
which must be respelled to remove their initial d.
By using the array yytext the same action suffices
for all the names (only a sample of a rather long
list is given here).

{d Hs HiHn}
{dHc Ho Hs}
{d}{s }{qHr Ht}
{d}{a}{tHaHn}

{d}{f}{l}{o }{aHt} printf("o/cS",yytext+ 1);

Another list of names must have initial d
changed to initial a:

{d}{IHo Hg}
{d}{IHo Hg}10
{dHm}{i}{n}l
{d}{m}{a}{x}l

I
I
I
{
yytext[OJ =+ 'a! - 'd';

-9-

Programmer's Guide

ECHO;
}

And one routine must have initial d changed to
initial r:

{d}l{m}{a}{c}{h} {yytext[O] =+ IT' - Id';

To avoid such names as dsinz being detected as
instances of dsin, some final rules pick up longer
words as identifiers and copy some surviving
characters:

[A- Zar- z] [A- Zar- zO- 9] *
[0- 9]+

\n

I
I
I
ECHO;

Note that this program is not complete; it does
not deal with the spacing problems in Fortran or
with the use of keywords as identifiers.

10. Left Context Sensitivity.

Sometimes it is desirable to have several
sets of lexical rules to be applied at different
times in the input. For example, a compiler
preprocessor might distinguish preprocessor
statements and analyze them differently from
ordinary statements. This requires sensitivity to
prior context, and there are several ways of han
dling such problems. The ~ operator, for exam
ple, . is a prior context operator, recognizing
immediately preceding left context just as $
recognizes immediately following right context.
Adjacent left context could be extended, to pro
duce a facility similar to that for adjacent right
context, but it is unlikely to be as useful, since
often the relevant left context appeared some
time earlier, such as at the beginning of a line.

This section describes three means of deal
ing with different environments: a simple use of
flags, when only a few rules change from one
environment to another, the use of start condi
tions on rules, and the possibility of making mUl
tiple lexical analyzers all run together. In each
case, there are rules which recognize the need to
change the environment in which the following
input text is analyzed, and set some parameter to
reflect the change. This may be a flag explicitly
tested by the user's action code; such a flag is
the simplest way of dealing with the problem,
since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the
flags'l" as initial conditions on the rules. Any rule
may be associated with a start condition. It will
only be recognized when Lex is in that start con
dition. The current start condition may be
changed at any time. Finally, if the sets of rules

-10-

Lex

for the different environments are very dissimi
lar, clarity may be best achieved by writing
several distinct lexical analyzers, and swi-whing
from one to another as desired.

Consider the foliowing problem: copy the
input to the output, changing the word magic to
fir8t on every line which began with the letter a,
changing magic to second on every line which
began with the letter b, and changing magic to
third on every line which began with the letter c.
All other words and all other lines are left
unchanged.

These rules are so simple that the easiest
way to do this job is with a flag:

int flag;
%%
-a {flag = 'at; ECHO;}
-b {flag = 'b/; ECHO;}
-c {flag = IC/; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{
case 'a/: printf("flrst"); break;
case 'b/: printf("second"); break;
case 'C/ : printf("third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start
conditions, each start condition must be intro
duced to Lex in the definitions section with a
line reading

o/~tart namel name2 ...

where the conditions may be named in any
order. The word Start may be abbreviated to 8 or
S. The conditions may be referenced at the head
of a rule with the < > brackets:

(9050)

<namel > expression

is a rule which is only recognized when Lex is in
the start condition namel. To enter a start con
dition, execute the action statement

BEGIN namel;

which changes the start condition to namel. To
resume the normal state,

BEGIN 0;

resets the initial condition of the Lex automaton
interpreter. A rule may be active in several start
conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the

Programmer's Guide

< > prefix operator is always active.

The same example as before can be writ-
ten:

o/oSTART AA BB CC
%%
Aa
Ab
AC

\n
<AA> magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN o;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the pre
vious method of handling the problem, but Lex
does the work rather than the user's code.

11. Character Set.

The programs generated by Lex handle
character I/O only through the routines input,
output, and unput. Thus the character representar
tion provided in these routines is accepted by
Lex and employed to return values in yytext. For
internal use a character is represented as a small
integer which, if the standard library is used, has
a value equal to the integer value of the bit pat
tern representing the character on the host com
puter. Normally, the letter a is represented as
the same form as the character constant' a'. If
this interpretation is changed, by providing I/O
routines which translate the characters, Lex must
be told about it, by giving a translation table.
This table must be in the definitions section, and
must be bracketed by lines containing only
"%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each
character. Thus the next example

%T
1 Aa
2 Bb

26
27
28
29
30
31

Zz

\n
+

o
1

39 9
%T

Sample character table.
maps the lower and upper case letters together
into the integers 1 through 26, newline into 27,
+ and - into 28 and 29, and the digits into 30

(9050)

Lex

through 39. Note the escape for newline. If a
table is supplied, every character that is to appear
either in the rules or in any valid input must be
included in the tal;>le. No character may be
assigned the number 0, and no character may be
assigned a bigger number than the size of the
hardware character set.

12. Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a com bination of

1)

2)

3)

4)

5)

6)

Definitions, in the form "name space
translation" .

Included code, in the form "space code".

Included code, in the form

%{
code
%}

Start conditions, given in the form

o/c:S namel name2 ...

Character set tables, in the form

%T
num ber space character-string

%T

Changes to internal array sizes, in the
form

%x nnn

where nnn is a decimal integer representing
an array size and x selects the parameter as
follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form
"expression action" where the action may be
continued on succeeding lines by using braces to
delimit it.

Regular expressions in Lex use the follow
ing operators:

x the character "x"

-11-

Programmer's Guide

\x
[xy]
[x- z]
[~x]

-x

<y>x
x$
x'?

x*
x+
xy
(x)

an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a, line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y. xjy

{xx}
x{m,n}

the translation of xx from the definitions section.
m through n occurrences of x

13. Caveat8 and Bugs.

There are pathological expressions which
produce exponential growth of the tables when
converted to deterministic machines; fortunately,
they are rare.

REJECT does not rescan the input; instead
it remembers the results of the previous scan.
This means that if a rule with trailing context is
found, and REJECT executed, the user must not
have used unput to change the characters forth
coming from the input stream. This is the only
restriction on the user's ability to manipulate the
not-yet-processed input.

-12- (9050)

Lex

y ace: Yet Another Compiler-Compiler
This document is based on a paper by Stephen C. Johnson of Bell Laboratories.

0: Introduction

Yacc is a general tool for imposing structure on the input to a computer program. The
Yacc user prepares a specification of the input process; this includes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do
the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stl'eam. These tokens are organized according to

the input structure rules, called grammar ",Ies; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in C, and many of its syntax conventions follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day '.' year

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma"," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon serve as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nontenninal sym
bol. To avoid confusion, terminal symbols are usually called tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name
month_name

'J" 'a' 'n'
F' 'e"b'

might be used in the above example. The lexical analyzer would only need to recognize indivi
dual letters, and month_name would be a nontermlnal symbol. Such low-level rules tend to

waste time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters such as .. , If must also be passed through the lexical analyzer, and are
also considered tokens.

(9050) -1-

ProgrammerS-Guide Yacc

Specification files are very flexible. It is easy to add to the above example the rule

date : month "I" day "I"year

allowing

7 I 4 I 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as possible with a left-to-right scan; thus, not only is the chance of reading and
computing with bad input data reduced, but the bad data can be found more quickly. Error
handling, provided as part of the input specifications, permits the reentry of bad data, or the
continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; the constructions which are difficult for Yacc
are often difficult for humans. Some users have reported that the discipline of formulating
valid Yacc specifications for their input revealed errors of conception or design early in the pro
gram development.

The theory underlying Yacc has been described elsewhere. [Aho Johnson Surveys LR
Parsing] [Aho Johnson Ullman Ambiguous Grammars] [Aho Ullman Principles Compiler
Design] Yacc has been extensively used in numerous practical applications, including I'int [John
son Lint], the Portable C Compiler [Johnson Portable Compiler Theory] and a system for
typesetting mathematics [Kernighan Cherry typesetting system CACM].

The next several sections describe the basic process of preparing a Yacc specification: Sec
tion 1 preparation of grammar rules, Section 2 preparation of the user-supplied actions associ
ated with these rules, and Section 3 preparation of lexical analyzers. Section 4 operation of the
parser. Section 5 reasons why Yacc may be unable to produce a parser from a specification,
and what to do about it. Section 6 a simple mechanism for handling operator precedences in
arithmetic expressions. Section 7 error detection and recovery. Section 8 the operating
environment and special features of the parsers Yacc produces. Section g suggestions to
improve the style and efficiency of specifications. Section 10 advanced topics, and Section 11
acknowledgements. Appendix A a brief example, Appendix B a summary of the Yacc input
syntax. Appendix C an example using advanced features of Yacc. Appendix D mechanisms
and syntax no longer actively supported, but provided for historical continuity with older ver
sions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols.Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)
rules, and programs. The sections are separated by double perc"ent "%%" marks. (The percent
"%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

-2- (9050)

PrograIHlIler s Guide

declarations
%%
rules
%%
programs

Ya.cc

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in /* ... */, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot".", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes" ... •. As in C, the backslash "\,,
is an escape character within literals, and all the C escapes are recognized. Thus

\n'
\r'
\"
\\,
\t'
\b'
\f'
'\xxx'

newline
return
single quote "
backslash "\,,
tab
backspace
form feed
"xxx" in octal

For a number of technical reasons, the NUL character (\0' or 0) should never be used in gram
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to Yacc as

A

BCD
E F
G

BCD
E F
G

It is not necessary that all grammar rules with the same left side appear together in the gram
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

(90.50) -3-

Programmer'S Guide Yacc

empty:

Names representing tokens must be declared; this is most simply done by writing

o/otoken name1 name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the 9tstart key
word:

9tstart sym bo I

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it accept8 the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri
ate; see section 3, below. Usually the endmarker represents some reasonably obvious I/O
status, such as "end-of-file" or "end-of-record".

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro
grams, and alter external vectors and variables. An action is specified by one or more state
ments, enclosed in curly braces "{" and "}". For example,

A 1'" B } '"

{ hello(1, "abc") ; }

and

:xxx yyy ZZZ
{ printf("a message\n");

fiag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state
ments are altered slightly. The symbol "dollar sign" "$" is used as &. signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

-4- (9050)

Programmers Guide Yacc

A BCD

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr "{ ~ expr ') ~ ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr "{ ~ expr ') ~ { $$ = $2; }

By default, the value of a rule is the value of the flrst element in it ($1). Thus, grammar
rules of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y = $3; }

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

$ACT /* empty */
{ $$ = 1; }

A B $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before outr
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, n1, n2)

creates a node with label L, and descendants n1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

expr expr ~+ ~ expr
{ $$ = node(~+ ~, $1, $3); }

in the speciflcation.

(9050) -5-

Programmer~ Guide Yacc

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "%{,, and "%}".
These declarations and definitions have global scope, so they are known to the action state
ments and the lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yy/
val.

The parser and the lexical analyzer must agree on these token numbers in order for com
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the .'# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc speclfication file. The relevant portion of
the lexical analyzer might look like:

yylex() {
extern int yylval;
int c;

c = getcharO;

switch(c) {

case '0-:
case 1. ':

case 1) ':

yylval = c- t>';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difflculties when the lexical analyzer is compiled. The token name error is reserved for error
handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char
acter is the numerical value of the character in the local character set. Other names are

-6- (9050)

Programmer'S Guide Yacc

assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the dec/arab·ons section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
o or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk. Lesk Lex These lexical analyzers are designed to work in close harmony with Yacc
parsers. The specifications for these lexical analyzers use regular expressions instead of gram
mar rules. Lex can be easily used to produce quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) which do not fit any theoretical framework, and
whose lexical analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parSer is
also capable of reading and remembering the next input token (called the /ookahead token).
The current state is alw3¥s the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called sh'lt, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yy/ex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This m3¥ result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu
ally it is not; in fact, the default action (represented by a ". to) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

(9050) -1-

Programmer S G~ide 'Yacc

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of sym
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
:E, 'II, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter
nal variable 'IIylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no .
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

o/otoken DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When Yacc is invoked with the - v option, a file called y.output is produced, with a
human-readable description of the parser. The y. output file corresponding to the above

-8- (9050)

Programmer s Guide

grammar (with some statistics stripped off the end) is:

state 0

state 1

state 2

state 3

state 4

state 5

state 6

$accept : _rhyme Send

DING shift 3

. error

rhyme goto 1
sound goto 2

$accept: rhyme_Send

Send accept
. error

rhyme : soundJ>lace

DELL shift 5
error

place goto 4

sound : DINGJ)ONG

DONG shift 6
error

rhyme : sound place_

reduce 1

place DELL - (3)

reduce 3

(1)

sound DING DONG_ (2)

reduce 2

Yacc

In addition to the actions for each state, there is a description of the parsing rules being pro
cessed in each state. The _ character indicates what has been seen, and what is yet to come, in
each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state o. The parser needs to refer to the input in order to
decide between the actions available in state 0, 50 the first token, DING, is read, .becoming the
lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the

(9050) -9-

Programmers Guide Yacc

stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is
"shift 6" ,so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING ,DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped otT of the
stack, uncovering state o. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped otT,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by "$end" in the y. output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguou8 if there is some input string that can be structured in
two or more ditTerent ways. For example, the grammar rule

expr expr ~ ~ expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association) .

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to

consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the g"rammar rule above. The parser could reduce the input by

-10- (9050)

Programmer s Guide Yacc

applying this rule; after applying the rule; the input is reduced to expr(the left side of the rUle).
The parser would then read the flnal part of the input:

expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a 8hift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conft-ict Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/red,uce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a. choice. A rule describing which
choice to make in a given situation is called a "da'sambiguat'lngrule"

Yacc invokes two "disambiguating" rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence) ~

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized; In these cases, the application of "disambiguating" rules is
inappropriate, and leads to an incorrect parser. For this reason, Yacc always reports the number
of shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply "disambiguating" rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of "disambiguating" rules, consider a fragment from a pro
gramming language involving an "if-then-else" construction:

stat IF 1" cond)" stat
IF 1" cond)" stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional

(9050) -11-

Programmer ~ Guide Yacc

(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-i/rule. and the second the iI-else rule.

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) 81 EL8E 82

can be structured according to these rules in two ways:

IF (Cl) {
IF (C2) 81
}

EL8E 82

or

IF (Cl) {
IF (C2 81
EL8E 82
}

The second interpretation is the one given in most programming languages having this con
struct. Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example, con
sider the situation where the parser has seen

IF (Cl) IF (C2) 81

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

EL8E 82

and reduce

IF (Cl) stat EL8E 82

by the if-else rule. This leads to the flrst of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (Cl) IF (C2) 81 EL8E 82

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of "disambiguating" rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) 81

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (- v) option
output flle. For example, the output corresponding to the above conflict state might be:

-12- (9050)

Programmer 5 Guide

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

ELSE

IF
IF

cond
cond

shift 45
reduce 18

stat_ (18)
stat_ELSE stat

Yacc

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ... ", is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF 1" cond '" stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references Aho Johnson Surveys Parsing Aho
Johnson Ullman Deterministic Ambiguous Aho Ullman Principles Design might be consulted;
the services of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con
structions for arithmetic expressions can be naturally described by the notion of precedence lev
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with app~opriate "disambiguating" rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As "disambiguating" rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is

(9050) -13-

Programmer s Guide Yacc

sumcient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: meft, %,ight, or o/dlonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind
ing strength. Thus,

meft "+" ':.- '
'?aeft '*" "/"

describes the precedence and associativity of the four arithmetic operators. The '+', "-', '*'.
and 'I' are all left associative, but '+. and "-' have lower precedence than '*' and 'I'. The key
word %,ight describes right associative operators, and the keyword o/cnonassoc describes opera
tors, like the operator .LT. in Fortran, that may not associate with themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword o/cnonassoc in
Yacc. As an example of the behavior of these declarations, the description

%,ight "-"
'?aeft "+" ~ ,
'?aeft '*" "/"

%%

expr expr - expr
expr "+" expr
expr ~ expr
expr '*" expr
expr "/" expr
NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a=(b=(«c*d)- e) - (f*g»)

When this mechanism is used, unary operators must, in general, be given a precedence. Some
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary ~ "; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, o/q)rec, changes the precedence level associated with a particular
grammar rule. o/q)rec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre
cedence of the grammar rule to become that of the following token name or literal. For exam
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

-14- (9050)

Programm er s Guide

~eft '+,. ":.- '
«meft. '*, '/,.

%%

expr expr '+,. expr
expr ":.- ' expr
expr '*" expr
expr ,oJ" expr
~ ,. expr o/a>re c '* ,.
NAME

Yacc

A token declared by 9i(left, %-ight, and o/cnonassoc need not be, but may be, declared by
o/ctoken as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to "disambiguating" rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the o/cI>rec construc
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
"disambiguating" rules given at the beginning of the section are used, and the conflicts
are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the speciflcation of pre
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The 1/. output flle is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difflcult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to flnd further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token "error" is

(9050) -15-

Programmers Guide Ya.cc

legal. It then behaves as if the token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
It no special error rules have b~dl specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat error ~; ~

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ~;'. All tokens after the error and before the next ~;' cannot be shifted, and
are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associ
ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error \n' { printf("Reenter last line: "); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state
ment

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input error \n'
{ yyerrok;

printf("Reenter last line: "); }
input

{ $$ - $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some

-16- (9050)

Programmer s Guide

sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
{ resynch() ;

yyerrok ;
yyclearin;· }

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yace Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y. tab. c on most systems (due to local file system conventions, the names may differ from instal
lation to installation). The function produced by Yacc is called vyparse; it is an integer valued
function. When it is called, it in turn repeatedly calls YV/ex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yypar8e returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the value o.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparBe. In addition, a routine called yye"or prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini
tial effort of using Yacc, a library has been provided with default versions of main and yye"or.
The name of this library is system dependent; on many systems the library is accessed by a - ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

mainO{
return(yyparse());
}

and

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr, "%\n", s);
}

The argument to yye"or is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value,
the pars_er will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ
ment, it may be possible to set this variable by using a debugging system.

(9050) -17-

Programmer s Guide Yacc

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name

These rules frequently arise when writing specifications of sequences and lists:

list item
list

,. ,.
item ,

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overfiowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

-18- (9050)

Programmers Guide

seq /* empty */
seq item

Yacc

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to

decide wbich empty sequence it has seen, when it hasn't. se·en enough to know!

Lexical TIe-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara
tions, followed by 0 or more statements. Consider:

0/0{
int dflag;

%}
other declarations ...

%%

prog decls stats

decls /* empty */
{ dflag = 1; }

decls declaration

stats /* empty */
{ dflag = 0; }

stats statement

other rules ...

The fiag dflag is now 0 when reading statements, and 1 when reading declarations, except for th e
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like "if", which are normally
reserved, as label or variable names~ provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is
a keyword, and that instance is a variable". The user can make a stab at it, using the mechan
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are

(9050) -19-

Programmers Guide Yacc

powerful stylistic reasons for preferring this, anyway.

Appendix A: A Simple Example

This example gives the complete Ya.cc specification for a small desk calculator; the desk
calculator has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made
up of the operators +, - , *, I, % (mod operator), & (bitwise and), I (bitwise or), and assign
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

~tart list

o/otoken DIG IT LEITER

meft 11
meft 1& I
meft 1+ I _
meft '* I II I %1
meft UMINUS 1* supplies precedence for unary minus *1

%% 1* beginning of rules section *1

list 1* empty *1
list stat \n I
list error \n I

{ yyerrok; }

stat expr
{ printf("O/cd\n", $1); }

LETTER - expr
{ regs[$I] = $3; }

expr '(I expr ') I

{ $$ $2; }
expr 1+ I expr

{ $$ $1 + $3; }

-20- (9050)

Programmers Guide

expr '- ' expr
{ $$ $1 $3; }

expr '*' expr
{ $$ $1 * $3; }

expr '/' expr
{ $$ $1 / $3; }

expr '%' expr
{ $$ $1 % $3; }

expr '&' expr
{ $$ $1 & $3; }

expr l' expr
{ $$ $1 I $3; }

-:.... ' expr o/cf)rec UMINUS
{ $$ - $2; }

LETTER
{ $$ regs[$I] ; }

number

number: DIGIT
{ $$ = $1; base ($I==O)? 8 10;}

number DIGIT
{ $$ = base * $1 + $2; }

%% /* start of programs * /

yylex() { /* lexical analysis routine * /
/* returns LETTER for a lower case letter, yylval = 0 through 25 * /
/* return DIGIT for a digit, yylval = 0 through 9 * /
/* all other characters axe returned immediately */

int c;

while((c=getchar(» == ") {/* skip blanks * / }

/* c is now nonblank */

if(islower(c)) {
yylval = c - 'a';
return (LETTER);
}

if(isdigit(c)) {
yylval = c - t> ';
return(DIGIT); } .

return(c);
}

(9050)

Yace

-21-

Programmer s Guide Yacc

Appendix B: Yace Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part comes when all. identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_ID ENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities */
o/etaken IDENTIFIER /* includes identifiers and literals */
o/etaken C_IDENTIFIER /* identifier (but not literal) followed by colon */
o/etaken NUMBER /* [0-9] + */

/* reserved words: %iype => TYPE, 9aeft => LEFT, etc. */

o/etaken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

o/etaken MARK /* the %% mark * /
o/etaken LCURL /* the 0/0{ mark */
o/etaken RCURL /* the %} mark * /

/* ascii character literals stand for themselves */

%start spec

%%

spec

tail

defs

deC

rword

-22-

defs MARK rules tail

MARK { In this action, eat up the rest of the file }
/* empty: the second MARK is optional * /

/* empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT

(9050)

Programmer s Guide Yacc

tag

nlist

nmno

rules

rule

rbody

act

prec

NONASSOC
TYPE

/* empty: union tag is optional */
~< ~ IDENTIFIER~> ~

nmno
nUst nmno
nlist ~, ~ nmno

IDENTIFIER
IDENTIFIER NUMBER

/* rules section * /

/* NOTE: literal illegal with %type */
/* NOTE: illegal with %ype */

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
, I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

~{~ { Copy action, translate $$, etc. } ~}~

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec ~; ~

(9050) -23-

Programmers Guide Ya.cc

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does fioating point interval arithmetic. The calculator understands fioating point
constants, the arithmetic operations +, - , *, /. unary - , and = (assignment), and has 26
fioating point variables, "a" through "z". Moreover, it also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z"
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (fioating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double's.
This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact. many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 ReducejReduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and.

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the confiicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atof performs the actual conversion from a char
acter string to a double precision value. If the lexical analyzer detects an error, it responds by
returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.

-24- (9050)

Programmers Guide

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double 10, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

dou ble atof();

dou ble dreg[26];
INTERVAL vreg[26];

%}

o/d)tart lines

o/oUnion {
int ival;
double dval;
INTERVAL vval;
}

o/ctoken <ival> DREG VREG /* indices into dreg, vreg arrays * /

o/ctoken <dval> CONST /* floating point constant * /

%type <dval> dexp /* expression * /

o/&,ype <vval> vexp /* interval expression * /

%eft
%eft
%eft

%%

lines

line

/* precedence information about the operators * /

1+ I ~ I
,*1 'll
UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp \n
l

{
vexp \n I

{

printf(

printf(
DREG - I dexp \n I

{ dreg[$1]
VREG • I vexp \n I

"%l5.8f\n", $1) ; }

"(o/ol5.8f , o/o15.8f)\n",

- $3; }

(9050)

$1.10, $l.hi

Yacc

) ; }

-25-

Programmer s Guide

dexp

vexp

-26-

{ vreg[$l] $3;}
error \n 1

{ yyerrok; }

CONST
DREG

{ $$ dreg[$l]; }
dexp 1+ " dexp

{ $$ $1 + $3; }
dexp -:.... " dexp

{ $$ $1 - $3; }
dexp '*" dexp

{ $$ $1 * $3; }
dexp "/" dexp

{ $$ $1 / $3; }
-:.... " dexp o/cPrec UMINUS

{ $$ - $2; }
1" dexp j"

{ $$ = $2; }

dexp
{ $$.hi = $$.10 $1;}

l' dexp ',' dexp j'
{
$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi){

printf("interval out of order\n");
YYERROR;
}

}
VREG

{ $$ = vreg[$l]; }
vexp '+ 1 vexp

{ $$.hi - $1.hi + $3.hi;
$$.10 - $1.10 + $3.10; }

dexp '+ " vexp
{ $$.hi - $1 + $3.hi;

$$.10 - $1 + $3.10; }
vexp -:.... 1 vexp

{ $$.hi - $l.hi - $3.10;
$$.10 - $1.10 - $3.hi; }

dexp -:.... 1 vexp

{ $$.hi $1 - $3.10;
$$.10 - $1 - $3.hi; }

vexp '*, vexp

{ $$ = vmul($1.10, $l.hi, $3) ; }
dexp '*, vexp

{ $$ = vmul($1, $1, $3) ; }
vexp '/" vexp

{ if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3 ,); }

(9050)

Yacc

Programmer s Guide Yacc

%%

dexp '/' vexp
{ if(dcheck($3)) YYERROR;

-=- ' vexp
{

t' vexp ')'

$$ = vdiv($1, $1, $3); }
o/oPrec UMINUS
$$.hi = - $2.10; $$.10 = - $2.hi;

{ $$ = $2; }

}

deflne BSZ 50 /* buffer size for floating point numbers */

/* lexical analysis * /

yylex() {
register c;

while ((c=getcharO) , ,) { /* skip over blanks */ }

if(isupper(c)) {
yylvaJ.ivaJ = c - ~ ';
re turn (VREG) ;
}

if(islower(c)) {
yylvaJ.ivaJ = c - 'a';
return(DREG) ;
}

if(isdigit(c) II c=='.') { .
/* gobble up digits, points, exponents * /

char buf[BsZ+ 1], *cp = buf;
int dot = 0, exp = 0;

fore ; (cp- buf) <BSZ ; + + cp,c=getcharO) {

*cp = c;
ir(isdigit(c)) continue;
ir(c '.') {

ir(dot+ + II exp) return('.'); /* will cause syntax error * /
continue;
}

ir(c e') {
ir(exp+ +) return('e'); /* will cause syntax error * /
continue;
}

/* end of number */
break;
}

*cp = \0';
if((cp- buf) >= BSZ) printf("constant too long: truncated\n");

(9050) -27-

Programmers Guide Yace

else ungetc(c, stdin); /* push back last char read * /
yylval.dval = atof(buf);
return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines * /
INTERVAL v;

if(a>b) { v.hi = a; v.lo b;}
else { v.hi b; v.lo = a; }

if(c >d) {
if(c>v.hi) v.hi c;
if(d<v.lo) v.lo d;
}

else {
if(d>v.hi) v.hi - d;
if(c<v.lo) v.lo - c;
}

return(v) ;
}

INTERVAL vrnuI(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi >= O. && v.lo <= O.){

printf("divisor interval contains o.\n");
return (1);
}

return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

-28- (9050)

Programmer s Guide Yacc

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con
tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes """.

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or -' the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\,, may be used. In particular, \ \ is the same as
%% \left the same as meft, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%>inary and 0/02 are the same as o/cnonassoc
0/& and o/cterm are the same as o/otoken
0/0== is the same as o/cPrec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.

(9050) -29-

f77 on the Ridge

This document is based on a paper by S.1. Feldman and P.J. Weinberger of Bell Laboratories, and a
paper by David L. Wasley of the University of California, Berkeley.

TABLE OF CONTENTS

I. Running the f77 Compiler 1
II. Language Extensions 2

III. f77 Compiler Exceptions to Standard 6
IV. Inter-Procedure Interface 7
V. f77 Runtime Environment 11
VI. Example of Calling C from FORTRAN 15
VII. FORTRAN File I/O 16
VIII. I/O System Exceptions to Standard 23

IX. f77 I/O System Error Messages 24

RUNNING THE f77 COMPILER

f77{ 1) is a general purpose command for compiling and loading FORTRAN and FORTRAN-related
files into an executable module. Based on the suffix of the input files, f77(1) will translate EFL com
piler or Ratfor preprocessor source files into FORTRAN, or invoke the C compiler to translate C
source files, or the AS{ 1) assembler to translate assembler source files. Object files will be link
edited.

USAGE

To run the compiler:
r 77 flags file . ..
The following file name suffixes are understood:

· f FORTRAN source file
.F FORTRAN source file
.e EFL source file
.r Ratfor source file

• c C source file

• s Assembler source file
.0 Object file

Arguments whose names end with • f are taken to be FORTRAN 77 source programs; they are com
piled, and each object program is left on the file in the current directory whose name is that of the
source with .0 substituted for • f.

Arguments whose names end with • F are also taken to be FORTRAN 77 source programs; these are
first processed by the C preprocessor before being compiled by f77.

Arguments whose names end with • r or • e are taken to be Ratfor or EFL source programs, respec
tively; these are first transformed by the appropriate preprocessor, then compiled by f77.

Argumen ts whose names end with • r or • e are taken to be Ratfor or EFL source programs, respec
tively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with • c or • s are taken to be C or assembly source
programs and are compiled or assembled, producing a .0 file.

(9050) -1-

Programmers Guide f77

For a description of the f77eonpiler options, see the f77(1) page in
the ROS Reference ~nual •

This compiler has several more features than the FORTRAN 77 American National Standard. Some
enhancements are to the language, and others allow easier communication with C procedures or per
mit compilation of old (1966 Standard) programs.

Double COmplex Data TYpe

The new type doubl e compl ex is added. each datum is represented by a pair of double precision
real variables. A double complex version of every campI ex built-in function is provided.

Internal Fi I es

The FORTRAN 77 American National Standard introduces "internal files" (memory arrays), but res
tricts their use to formatted sequential I/O statements. This I/O system also permits internal files to
be used in formatted direct reads and writes.

Implicit Undefined Statement

FORTRAN 66 has a rule that the type of a variable that does not appear in a type statement is
integer if its first letter is i, j, k, I, mor n, and real otherwise. FORTRAN 77 has an
impl i cit statement for overriding this rule. An additional type, undefined, is permitted. The
statement

irrplicit undefined(a-z}
turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each vari
able that is used but does not appear in a type statement.. Specifying the - u compiler flag is
equivalent to beginning each procedure with this statement.

Recursion

Procedures may call themselves, directly or through a chain of other procedures.

Automatic Storage

Two new keywords are stati c and autanati c. These keywords may appear as "types" in type
statements and in impl i cit statements. Local variables are static by default; there is exactly one
copy of the datum, and its value is retained between calls. There is one copy of each variable
declared aut ana tic for each invocation of the procedure. Automatic variables may not appear in
equi val ence , data, or s ave statements. Generally, recursive subroutines should use
automatic local variables.

Variable Length Input Lines

The Standard expects input to the compiler to be in 72-column format: except in comment lines, the
first five characters are the statement number, the next is the continuation character, and the next 66

are the body of the line. (If there are fewer than 72 characters on a line; the compiler pads it with
blanks; characters after the seventy-second are ignored.)

To make it easier to type FORTRAN programs, this compiler also accepts input in variable length
lines. An ampersand" &" in the first position of a line indicates a continuation line; the remaining
characters form the body of the line. A tab eharacter in one of the first six positions of a line signals
the end of the statement number and continuation part of the line; the remaining characters form the

-2- (9050)

Programmer s Guide f77

body of the line. A tab elsewhere on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters - FORTRAN is a one-case language. Consistent with ordi
nary UNIX system usage, this compiler expects lower case input. By default, the compiler converts all
upper case characters to lower case except those inside character constants. However, if the - U com
piler flag is specified, upper case letters are not transformed. In this mode, it is possible to specify
external names with upper case letters in them, and to have distinct variables differing only in case.
Regardless of the setting of the flag, keywords will only be recognized in lower case.

Include State~nt

The statement
include 'stuff'

is replaced by the contents of the file stuff. inc I ude statements may be nested to a reasonable
depth, currently ten.

Binary Initialization COnstants

A I ogi cal, real or integer variable may be initialized in a data statement by a binary con
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is binary, and only
zeroes and ones are permitted. If the letter is 0, the string is octal, with digits 0- 7. If the letter is
z or x, the string is hexadecimal, with digits 0- 9, a- f. Thus, the statements

integer a(3)
data a / b'1010', 0'12', z'a' /

initialize all three elements of a to ten.

Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n
\t
\b
\f
\0
\'
\"
\\
\x

newline
tab
backspace
form feed
null
apostrophe (does not terminate a string)
quotation mark (does not terminate a string)

\
x, where x is any other character

FORTRAN 77 only has one quoting character, the apostrophe. This compiler and I/O system recog
nize both the apostrophe " , " and the double-quote " "". If a string begins with one variety of
quote mark, the other may be embedded within it without using the repeated quote or backslash
escapes.

Every unequivalenced scalar local character variable and every character string constant is aligned on
an integer word boundary. Each character string constant appearing outside a data statement is
followed by a null character to ease communication with C routines.

(9050) -3-

Programmers Guide f77

Hollerith

FORTRAN 77 does not have the old Hollerith "nh" notation, though the new Standard recommends
implementing the old Hollerith feature in order to improve compatibility with old programs. In this
compiler, Hollerith data may be used in place of character string constants, and may also be used to
initialize non-character variables in data statements.

Equivalence Statements

This compiler permits single subscripts in equi val ence statements, under the interpretation that
all missing subscripts are equal to 1. A warning message is printed for each such incomplete sub
script.

One-Trip DO Loops

The FORTRAN 77 Standard requires that the range of a do loop not be performed if the initial value
is already past the limit value, as in

do 10 i = 2, 1
The 1966 Standard stated that the effect of such a statement was undefined, but it was common prac
tice that the range of a do loop would be performed at least once. In order to accommodate old pro
grams, though they were in violation of the 1966 Standard, the - one tr i p compiler fiag causes non
standard loops to be generated.

COmmas in Fo~tted Input

The I/O system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in the
input record, overriding the field lengths given in the format statement. Thus, the format

(il0, f20.10, i4)
will read the record

- 345, . 05e- 3, 12
correctly.

Short Integers

integer*2 is a declaration of a 2-byte (1 halfword) integer. integer*4 (which is the default) is
a declaration of a 4-byte (word) integer. (Ordinary integers follow the FORTRAN rules about occu~
pying the same space as a REAL variable; they are assumed to be of C type "1 ong in t" ; half
word integers are of C type "shor tin t" .) An expression involving only objects of type
integer*2 is of that type. Generic functions return short or long integers depending on the actual
types of their arguments. If a procedure is compiled using the - i 2 fiag, all small integer constants
will be of type integer*2. If the precision of an integer-valued intrinsic function is not deter
mined by the generic function rules, one will be chosen that returns the prevailing length
(i ntege r * 2 when the - i 2 command flag is in effect). When the - i 2 option is in effect, all quan
tities of type I ogi cal will be short. Note that these short integer and logical quantities do not obey
the standard rules for storage association.

-4 .. (9050)

Programmer s Guide f77'

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the FORTRAN 77 Standard.

All FOR~ functions are are doc~nted behind the F77 Functions tab of
this vol~ •.

F77 ClMPILER EXCEPTICNS 'ID '!HE STANJARD

Double Precision Alig~nt

The FORTRAN Standards (both 1966 and 1977) permit Ca:IIIK>n or equi val ence statements to

force a double precision quantity onto an odd word boundary, as in the following example:
real a(4)
double precision b,c
equivalence (&(1), b), (&(4) ,c)

The Ridge 32 requires that double precision quantities be on double word boundaries; other machines
run inefficiently if this alignment rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on the Ridge, it would be necessary
to use separate operations to move the upper and lower halves into the halves of an aligned tem
porary, then to load that double precision temporary; the reverse would be needed to store a result.
We have chosen to require that all double precision real and complex quantities fallon even word
boundaries, and to issue a diagnostic if the source code demands a violation of the rule.

~ Procedure Arg~nts

If any argument of a procedure is of type character, all dummy procedure arguments of that pro
cedure must be declared in an ex terna I statement. A warning is printed if a dummy procedure is
not declared external. Code is correct if there are no character arguments.

T and TL Fo~ts

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed. The imple
mentation uses seeks, so if the unit is not one which allows seeks, such as a terminal, the program is
in error. A benefit of the implementation chosen is that there is no upper limit on the length of a
record, nor is it necessary to pre-declare any record lengths except where specifically required by
FORTRAN or the operating system.

INIER-PRO:E:XJRE IN1EBF ACE

To be able to write C procedures that call or are called by FORTRAN procedures, it is necessary to
know the conventions for procedure names, data representation, return values, and argument lists
that the compiled code obeys.

(9050) -5-

Programmer s Guide f77

Procedure Names

On this system, the name of a common block or a FORTRAN procedure has an underscore prefix and
suffix added to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name (example: _name_). FORTRAN library procedure names have embedded
underscores to avoid clashes with user-assigned subroutine names.

Data~presentations

The following is a table of corresponding FORTRAN and C declarations:

FORTRAN
integer*2 x
integer x
logical x
real x
dou ble precision x
complex x
double complex x
character*6 x

C language
short int x;
long int x;
long int x;
float x;
double x;
struct { float r, i; } x;
struct { double dr, di; } x;
char x[6];

(By the rules of FORTRAN, integer, I ogi cal, and real data occupy the same amount of
memory, except with the - i 2 option which makes integers and logicals into short (2-byte) types.

Return Values

A function of type integer, I ogi cal, real, or doubl e prec i s i on declared as a C func
tion returns the corresponding type. A compl ex or doubl e canpl ex function is equivalent to a
C routine with an additional initial argument that points to the place where the return value is to be
stored. Thus,

corrpl ex funct i on f(• • .)
is equivalent to

f_(terq>, ...)
struct { float r, i; } *terrp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g(...)
is equivalent to

g_(result, length, •••)
char *result;
int length;

and could be invoked in C by
char chars [15] ;

g_{chars, 15, ..•);

-6- (9050)

Programmer s Guide

Alternate Returns and COmputed Gatos

The following program illustrates alternate return labels.
c a I I n ret (A, * 1 0 , * 2 0 , * 30)
code

10 code
20 code
30 code

stop
end

subroutine nret (A, *, *, *)
code
return 1

code
return 2

code
return 3

return
end

f77

In the subroutine, a numbered return is executed. Its number is mapped to the dummy with its
ordinal value in the parameter list, and that parameter is used as a goto label in the calling program.
If return 2 were executed in nret, processing would continue at label 20 in the calling program.

A computed goto causes branching to the label in the ordinal position that is equal to an integer
value:

goto (12, 16, 19), K
goes to 12, 16, or 19 if K equals I, 2, or 3, respectively.

Actually, subroutines are invoked as if they were integer-valued functions whose value specifies
which alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has no
entry points with alternate return arguments, the returned value is undefined.) In other words, the
statement

call nret (A, *10, *20, *30)
is treated exactly as if it were the computed goto

goto (10, 20, 30), nret(A)
(Both statements cause a eanputed goto based on the integer value returned by the function.)

Argmnent Lists

All FORTRAN arguments are passed by address. In addition, for every argument that is of type char
acter or that is a dummy procedure, an argument giving the length of the value is passed. (The string
lengths are int quantities passed by value.) The order of arguments is then:

EXtra arguments for complex and character functions
Address for each datwn or function
A long in t for each character or procedure argument

Thus, the call in
ex ternal f
character s
integer b(3)

ca.II s~f, b(2), s)
is equivalent to that in

int fO;
cha.r s[7];
long in t b [3] ;

(0050) -7-

Progr8lIIru r'8 G.d de f77

88ITL(f, &b[l], 8, OL, 7L);
Note that the first element of a C array always has subscript zero, but FOR'IRAN arrays begin at 1 by
default. FORTRAN arrays are stored in column-major order, C arrays are stored in row-major order.

-8- (9050)

Programmer's Guide

COde and Data Se~nts

The separate data and code segments are arranged as follows:

f}\.TA SEXMNr
F'F'FFl'l'l'F' \- \

\ \

FFFFFOOO\ argUITEnt page \

\------------------------ \

FFFFEX>OO \ env i ronm::m t page \

\------------------------ \

FFFFDOOO\user rrvnitor CaTIn. page \

\------------------------ \

\ 0 \
\ - - - - - - - - - - --\

+-->1 enviroDITEnt pointers 1
1------------------------ 1
1 0 1

1 1 - - - - - - - - - - - - 1
+---->1 argUITEnt pointers 1
1 \ 1------------------------ 1
1 +--- \ env \
1 1- ---- ---I

+- - - - - 1 a r gv 1

1- ---- ---I
1 argc 1

1- ------ -I
1 1
1 initial 1

1 stack rrame 1

1 1

\------------------------ 1

\ \

\ 1

1 1
\ expansion area 1

\ I
1 1

1 1

\------------------------ 1
1 user-allocable space 1

\ (v i a SIlK an d 11K 1

\ system calls) 1

1------------------------ 1
1 s tati c 1

1 uninitialized 1

1 data 1

\------------------------ 1

1 static 1

1 initialized 1

1 data 1

00000000\------------------- _____ 1

/lib/crtO.o, which is
linked at the beginning
of every f77 progrmn, gets
the a rgurren ts and en-
vi ronrrent from the user
rrvnitor process, builds
the argurrcnt and cnvi
ronrrcnt pointers,
stacks the first three
program par81TC tc rs (env,
argv, and argc), builds
the initial stack frrumc,
and initializes R14 and
R15. /1 ib/crtO.o also
moves the data initial
izers fran the code seg-
rrent into the data seg
rrent and clears the
static unitialized data
area in the data seg
rrent. /lib/mcrtO.o is
the version of crtO used
when prori ling.

R15 aDE SEXMNr
highl---------------------

rrerrvry \
1 initialized data
\

1---------------------
R14 1

1

1 code
1

1

1

1

I
1--------------------- I
1 I

I code 1

1 f i lei
1 header 1

I [see a.out(4)] I
I 1

000000001--------------------- 1

(n050)

f77

-9-

Programmer s Guide

Use of ~neraI Registers

RO through R5 - scratch registers
R6 through Rl3 - register variables
Rl4 - top-of-stack pointer
Rl5 - current frame pointer

Stack Frames

1'77

With each procedure call, the current runtime environment is recorded and pushed onto the data
stack in a structure called the stack frame. The stack frame is arranged as follows:

1--------------------------
1

1 par8lreters

1

1

. pann3
pann2

1 parmI

1--------------------------
1 return structure length
1 return structure address
l#of par~ passed to procdr
1 old register 15
1 (unused)
1 return address

1--------------------------
1 R6
1 regi s ter R7
1 sa.ve R8
1 area R9
1 RIO
1 RII
1 R12
1 RI3
1--------------------------
1

1

1

1

1

1

1

varl
var2
var3
var4
var5

I----~---------------------

-10-

R15 + 40
R15 + 32
R15 + 24

R15 + 20
R15 + 16

Par8lreters are aligned on
8-byte boundaries .

R15 + 12 (if -g option is used)
R15 + 8
R15 + 4
R15

R15 - 4
R15 - 8
R15 -12
R15 -16
R15 -20
R15 -24
R15 -28
R15 -32

R15 -36
R15 -40
R15 -44

R14 ('RF-CF - S'.D\Q()

(9050)

Programmer's Guide f77

C passes parameters by value, so a C parameter looks like this:

the 8-byte C pann

+-------------------+ +-------------------+
hi , , , , I hi , I I I I

+- -- -+- ---+- - --+- ---+ +- ---+- ---+- -- -+- - - -+
I I I ,GIARllow I I NTEGER ,low

+-------------------+ +-------------------+
+-------------------+ +-------------------+

hi , , , I , , , I I ,
+- ---+- ---+- - --+- ---+ +- -- D 0 U B L E - - -+
I , ,Sl-IRT II ow , , I I I

+-------------------+ +-------------------+

FORTRAN always passes parameters by address, so a FORTRAN parameter always looks like:

the 8-byte f77 pann

+-------------------+
hi I , , , I

+- -- -+- ---+- ---+- ---+
, add res s Ilow

+- - - - - - ,.. - - - - - - - - - - - -+

(9050) -11-

Programmer s Guide f7"l

A stack of environments, therefore, has the form:

DATA SEnlENT'
JiFliliFl1liF' 1- (h i gh rrerrvry)

1

FFFFFOOOI argument page

I--------------~-----------
FFFFEOOOI environrrent page

1--------------------------
FFFFDOOO 1 us e r IIDn i tor page

1=========
1

1 par~ters

1--------------------------
1 return structure length
1 return structure address

1 1 (used for debugger)
+-- 1 old register 15

1 (unused)
+->1 return address

1--------------------------
1 register save area

1--------------------------
1 locals and terrporar i es
1

I
1 par~ters 1

1-------------------------- I
1 return structure length 1

1 return structure address 1

1 (used (or debugger) 1

+--1 old register 15 1
1 (unused) 1

+-> 1 return address 1
1-------------------------- I
1 register save area 1

1-------------------------- 1
I locals and terrporaries 1

1 1

1

1 parWIT£ters 1

1--------------------------
1 return structure length
1 return structure address
1 (used (or debugger)

+- - 1 0 I d reg i s t e r 15
1 (unused)
1 return address

1--------------------------
1 register save area

1--------------------------
1 locals and tcrrporaries
1 (low rrerrvry)

-12- (9050)

Programmers Guide

Example of calling C from FOR'IRAN
and FORmAN from C

f77

Here is a FORTRAN program (named f.f) that calls a C subroutine. The C subroutine calls a
subroutine in the FORTRAN program. The variable "i" starts with the value 10, and gets 5 subtracted
from it and 3 added to it.

program FandC
i = 10
print *, 'FandC: i= ',i
call csub5(i)
end

subroutine fadd3(i)
c Fortran routine to AD D 3

i = i + 3
print *, 'fadd3: i= ',i
return
end

Here is the C program (named e.e) that calls and is called by the f77 program f.f. Notice that f77
routines must have a '_' character appended to them in a C program, and that f77 passes variables by
address.

csub5_(X)
/* C program that SUBtracts 5 */
int *x;

{

}

*x = *x - 5;
prin tf(" csu b5: i= ") ;
printf("o/cd\n", *x);
fadd3_{X) ;

Now the programs are compiled with the f77(1) command. By default, the executable output file is
named LOut .

$ f77 f.f C.c

$ a.out

FandC: i= 10
csub5: i= 5
fadd3: i= 8

(9050) -13-

Programmers Guide f77

FORTRAN FILE I/O

The f77 I/O Library implements ANSI 77 FORTRAN standard input and output with a few minor
exceptions. Where the standard is vague, we have tried to provide ft.exibility within the constraints of
the UNIX operating system.

The f77 I/O library, libI77.a, includes routines to perform all of the standard types of FORTRAN
input and output. Several enhancements and extensions to FORTRAN I/O have been added. The
f77 library routines use the C stdio library routines to provide efficient buffering for file I/O.

FORTRAN I/O

The requirements of the Standard impose significant overhead on programs that do large amounts of
I/O. Formatted I/O can be very "expensive" while direct access binary I/O is usually very efficient.
Because of the complexity of FORTRAN I/O, some general concepts deserve clarification.

Types of I/O

There are three forms of I/O: formatted, unformatted, and list-directed List-directed is related to
formatted but does not obey all the rules for formatted I/O. There are two modes of access to
external and internal files: direct and sequential. The definition of a logical record depends upon the
combination of I/O form and mode specified by the FORTRAN I/O statement.

Direct access

A logical record in a direct access external file is a string of bytes of a length specified when the file is
opened. Read and write statements must not specify logical records longer than the original record
size definition. Shorter logical records are allowed. Unformatted direct writes leave the unfilled part
of the record undefined. Form.atted direct writes cause the unfilled record to be padded with blanks.

Sequential access

Logical records in sequentially accessed external files may be of arbitrary and variable length.
Logical record length for unformatted sequential files is determined by the size of items in the iolist.
The requirements of this form of I/O cause the external physlcal record size to be somewhat larger
than the logical record size .. For formatted write statements, logical record length is determined by
the format statement interacting with the iolist at execution time. The "newline" character is the
logical record delimiter. Formatted sequential access causes one or more logical records ending with
"newline" characters to be read or written.

List-directed I/O

Logical record length for list-directed I/O is relatively meaningless. On output, the record length is
dependent on the magnitude of the data items. On input, the record length is determined by the data
types and the file contents.

-14- (9050)

Programmer'S Guide f77

Internal I/O

The logical record length for an internal read or write is the length of the character variable or array
element. Thus a simple character variable is a single logical record. A character variable array is
similar to a fixed length direct access file, and obeys the same rules. Unformatted I/O is not allowed
on "internal" files.

I/O execution

Note that each execution of a FORTRAN unformatted I/O statement causes a single logical record to
be read -or written. Each execution of a FORTRAN formatted I/O statement causes one or more
logical records to be read or written.

A slash, "/", will terminate assignment of values to the input list during list-directed input and the
remainder of the current input line is skipped. The standard is rather vague on this point but seems
to require that a; new external logical record be found at the start of any formatted input. Therefore
data following the slash is ignored and may be used to comment the data file.

"Direct access list-directed" I/O is not allowed. "Unformatted internal" I/O is not allowed. Both the
above will be caught by the compiler. All other fiavors of I/O are allowed, although some are not part
of the Standard.

Any error detected during I/O processing will cause the program to abort unless alternative action has
been provided specifically in the program. Any I/O statement may include an err= clause (and
iostat= clause) to specify an alternative branch to be taken on errors (and return the specific error
code). Read statements may include end to branch on end-of-file. File position and the value of
I/O list items is undefined following an error.

Implementation details

Some details of the current implementation may be useful in understanding constraints on
FORTRAN I/O.

Number of logical units

A program may reference logical units in the range 0 - 999, but only 20 may be open at one time.

Standard logical units

By default, logical units 0, 5, and 6 are opened to "stderr", "stdin", and "stdout" respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an error to
close logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to close the
unit first. Redefining the standard units may impair normal console I/O. An alternative is to use
shell re-direction to externally re-define the above units. To re-define default blank control or format
of the standard input or output files, use the open statement specifying the unit number and no file
name.

The standard units, 0, 5, and 6, are named internally "stderr", "stdin", and "stdout" respectively.
These are not actual file names and cannot be used for opening these units. Inquire will not return
these names and will indicate that the above units are not named unless they have been opened to
real files. The names are meant to make error reporting more meaningful.

(9050) -15-

Programmer s Guide f7't

Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for sequential access
with "form = 'print'". Control codes "0" and "1" are replaced in the output file with "\n" and
"\f" respectively. The control character "+ " is not implemented and, like any other character in the
first position of a record written to a "print" file, is dropped. No vertical format control is recognized
for "direct formatted" output or "list-directed" output.

The open statement

An open statement need not specify a file name. If it refers to a logical unit that is already open, the
blank= and form= specifiers may be redefined without affecting the current file position. Otherwise,
if "status = 'scratch'" is specified, a temporary file with a name of the form "tmp.FXXXXXX" will
be opened, and, by default, will be deleted when closed or during termination of program execution.
Any other status= specifier without an associated file name results in opening a file named "fort.N'·
where N is the specified logical unit number.

It is an error to try to open an existing file with "status = 'new'". It is an error to try to open a
nonexistent file with "status = 'old'". By default, "status = 'unknown'" will be assumed, and a file
will be created if necessary.

By default, files are positioned at their beginning upon opening, but see ioa"na"t{ 3f) for alternatives.
Existing files are never truncated on opening. Sequentially accessed external files are truncated to the
current file position on close, backspace, or rewind only if the last access to the file was a write. An
endfile always causes such files to be truncated to the current file position.

Formatin~retation

Formats are parsed at the beginning of each execution of a formatted I/O statement. Upper as well as
lower case characters are recognized in format statements and all the alphabetic arguments to the I/O
library routines.

If the external representation of a datum is too large for the field width specified, the specified field is
filled with asterisks (*). On Ew.dEe output, the exponent field will be filled with asterisks if the
exponent representation is too large. This will only happen if "e" is zero.

On output, a real value that is truly zero will display as "0." to distinguish it from a very small non
zero value. This occurs in F and G format conversions. This was not done for E and D since the
embedded blanks in the external datum causes problems for other input systems.

Non-destructive tabbing is implemented for both internal and external formatted I/O. Tabbing left or
right on output does not affect previously written portions of a record. Tabbing right on output
causes unwritten portions of a record to be filled with blanks. Tabbing right off the end of an input
logical record is an error. Tabbing left beyond the beginning of an input logical record leaves the
input pointer at the beginning of the record. The format specifier T must be followed by a positive
non-zero number. If it is not, it will have a different meaning.

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a terminal
or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can seek.
Otherwise tabbing right or spacing with X will write blanks on the output.

-16- (9050)

Programmers Guide f77

List-directed output

In formatting list-directed output, the I/O system tries to prevent output lines longer than 80
characters. Each external datum will be separated by two spaces. List-directed output of complex
values includes an appropriate comma. List-directed output distinguishes between real and "double
precision" values and formats them differently. Output of a character string that includes "\n" is
interpreted reasonably by the output system.

I/O errors

If I/O errors are not trapped by the user's program an appropriate error message will be written to
"stderr" before aborting. An error number will be printed in [] along with a brief error message
showing the logical unit and I/O state. Error numbers < 100 refer to ROS errors, and are described
in the introduction to chapter 2 of the ROS Programmer's ManUal. Error numbers ~ 100 come from
the I/O library, and are described further in the F77 I/O Error Messages section of this report. For
internal I/O, part of the string will be printed with "t, at the current position in the string. For
external I/O, part of the current record will be displayed if the error was caused during reading from a
file that can backspace.

Non-"ANSI Standard" extensions

Several extensions have been added to the I/O system to provide for functions omitted or poorly
defined in the standard. Programmers should be aware that these are non-portable.

Format specifiers

o is a data type specifier for octal numbers. 1205 is the format specification for 12 fields of
5- character octal numbers.

B is an acceptable edit control specifier. It causes return to the default mode of blank interpretation.
This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, o.

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e is allowed
but is not standard. The "e" field specifies the minimum number of digits or spaces in the exponent
field on output. If the value of the exponent is too large, the exponent notation e or d will be
dropped from the output to allow one more character position. If this is still not adequate, the "e"
field will be filled with asterisks (*). The default value for "e" is 2.

An additional form of tab control specification has been added. The Standard forms mn, 'll.,n, and
Tn are supported where n is a positive non-zero number. If Tor nT is specified, tabbing will be to
the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up without
counting.

A format control specifier has been added to suppress the newline at the end of the last record of a
formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same rules as the
colon (:). It is used typically for console prompts. For example:

write (*, "(,enter value for x: ',$)")
read (*, *) x

(9050) -17-

Programmer s Guide f77

Radices other than 10 can be specified for formatted" integer I/O conversion. The specifier is patterned
after P, the scale factor for fioating point conversion. It remains in effect until another radix is
specified or format interpretation is complete. The specifier is defined as [n] R where 2 ~ n ~ 36. If n
is omitted, the default decimal radix is restored.

In conjunction with the above, a sign control specifier has be~n added to cause integer values to be
interpreted as unsigned during output conversion. The specifier is SU and remains in effect until
another sign control specifier is encountered, or format interpretation is complete. Radix and
"unsigned" specifiers could be used to format a hexadecimal dump, as follows:

2000 format (SU, 16R, SIlO.S)

Note: Unsigned integer values greater than (2**31 - 1), I.e. any signed negative value, cannot be read
by FORTRAN input routines. All internal values will be output correctly.

Print files

The Standard is ambiguous regarding the definition of a "print" file. Since UNIX has no default
"print" file, an additional form= specifier is now recognized in the open statement. Specifying "form
= 'print'" implies formatted and enables vertical format control for that logical unit. Vertical format
control is interpreted only on sequential formatted writes to a "print" file.

The inquire statement will return print in the form= string variable for logical units opened as
"print" files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the blank= option
will do nothing but re-define those options. This instance of. the open statement need not include the
file name, and must not include a file name if unit= refers to a standard input or output. Therefore,
to re-define the standard output as a "print" file", use:

open (unit=6, form='print')

Scratch files

A close statement with "status = 'keep'" may be specified for temporary files. This is the default for
all other files. Remember to get the scratch file's real name, using inquire, if you want to re-open it
later.

List-directed I/O

List-directed read has been modified to allow input of a string not enclosed in quotes. The string must
not start with a digit, and cannot contain a separator (, or /) or blank (space or tab). A newline will
terminate the string unless escaped with \. Any string not meeting the above restrictions must be
enclosed in quotes (" or ').

Internal list-directed I/O has been implemented. During internal list reads, bytes are consumed until
the iolist is satisfied, or the 'end-or-file' is reached. During internal list writes, records are filled until
the iolist is satisfied. The length of an internal array element should be at least 20 bytes to avoid
logical record overfiow when writing double precision values. Internal list read was implemented to
make command line decoding easier. Internal list write should be avoided.

-18- (9050)

Programmers Guide f77

Running Oldel" programs

Traditional FORTRAN environments usually assume carriage control on all logical units, usually
interpret blank spaces on input as "0"5, and often provide attachment of global file names to logical
units at run time. There are several rou tines in the I/O library to provide these functions.

Traditional unit control parameters

If FORTRAN 66 carriage control features must be maintained, call the ioz"nz"t(SF) routine to specify
control parameters separately.

Preattachment of logical units

The z"£nit routine also can be used to attach logical units to specific files at run time. It will look for
names of a user-specified form in the environment and open the corresponding logical unit for
"sequential formatted" I/O. Names must be of the form PREFIXnn where PREFIX is specified in
the call to io£nz"t and nn is the logical unit to be opened. Unit numbers < 10 must include the leading
"0".

Ioinit should prove adequate for most programs as written. However, it is written in FORTRAN 77
specifically so that it may serve as an example for similar user-supplied routines. A copy may be
retrieved by "ar x /usr/lib/libI77.a ioinit.f".

Magnetic tape I/O

Because the I/O library uses stdio buffering, reading or writing magnetic tapes should be done with
great caution, or avoided if possible. A set of routines has been provided to read and write arbitrary
sized buffers to or from tape directly. The buffer must be a character object. Internal I/O can be
used to fill or interpret the buffer. These routines do not use normal FORTRAN I/O processing and
do not obey FORTRAN I/O rules. See tapeio(3f).

F77 I/O System Exceptions to the Standard

A few exceptions to the Standard remain.

1) Vertical format control

The "+ " carriage control specifier is not implemented. It would be difficult to implement it correctly
and still provide UNIX-like file I/O.

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage control
interpretation cannot be read again with the same characters in column 1.

An alternative to interpreting carriage control internally is to run the output file through a
"FORTRAN output filter" before printing [like asa(l) and fpr(l)]. These filters recognize a broader
range of carriage control.

2) Default files

Files created by default use of rewind or endfile statements are opened for "sequential formatted"
access. There is no way to redefine such a file to allow direct or unfonnatted access.

3) Lower case strings

(9050) -19-

Programmer s Guide 'f77

It is not clear if the Standard requires internally generated strings to be upper case or not. As
currently written, the inquire statement will return lower case strings for any alphanumeric data.

4) Exponent representation on Ew.dEe output

If the field width for the exponent is too small, the standard allows dropping the exponent character
but only if the exponent is > 99. This system does not enforce that restriction. Further, the standard
implies that the entire field, 'w', should be filled with asterisks if the exponent cannot be displayed.
This system fills only the exponent field in the above case since that is more informative.

F77 I/O System Error Messages

The following error messages are generated by the I/O library. The error numbers are returned in the
iostat= variable if the err= return is taken. Error numbers < 100 are generated by the ROS kernel.
See the introduction to chapter 2 of the ROS Programmers Manual for their description.

/* 100 */

/* 101 */

/* 102 */

/* 103 */

/* 104 */

/* 105 */

/* 106 */

/* 107 */

/* 108 */

-20-

"error in format"
See error message output for the location
of the error in the format. Can be caused
by more than 10 levels of nested (), or
an extremely long format statement.

"illegal unit number"
It is illegal to close logical unit o.
Negative unit numbers are not allowed.
The upper limit 999.

"formatted io not allowed"
The logical unit was opened for
unformatted I/O.

"unformatted io not allowed"
The logical unit was opened for
formatted I/O.

"direct io not allowed"
The logical unit was opened for sequential
access, or the logical record length was
specified as O.

"sequential io not allowed"
The logical unit was opened for direct
access I/O.

"can't backspace file"
The file associated with the logical unit
can't seek. May be a device or a pipe.

"off beginning of record"
The format specified a left tab beyond the
beginning of an internal input record.

"can 't stat file"

(9050)

Programmers Guide

/* 109 */

/* 110 */

/* 111 */

/* 112 */

/* 113 */

/* 114 */

/* 115 */

/* 116 */

/*117*/

/* 118 */

/* 119 */

/* 120 */

/* 121 */

The system can't return status information
about the file. Perhaps the directory is
unreadable.

"no * after repeat count"
Repeat counts in list-directed I/O must be
followed by an * with no blank spaces.

"off end of record"
A formatted write tried to go beyond the
logical end-of-record. An unformatted read
or write will also cause this.

"truncation failed"
The truncation of an external sequential file on
'close', 'backspace', 'rewind' or 'endfile' failed.

"incomprehensible list input"
List input has to be just right.

"out of free space"
The library dynamically creates buffers for
internal use. You ran out of memory for this.
Your program is too big!

"unit not connected"
The logical unit was not open.

"read unexpected character"
Certain format conversions can't tolerate
non-numeric data. Logical data must be
TorF.

"blank logical inpu t field"

"'new' file exists"
You tried to open an existing file with
"status='new'''.

"can't, fin d 'old' file"
You tried to open a non-existent file
with "status='old'''.

"unknown system error"
Shouldn't happen, but

"requires seek ability"
Direct access requires seek ability.
Sequential unformatted I/O requires seek
ability on the file due to the special
data structure required. Tabbing left
also requires seek ability.

"illegal argument"

(9050)

f77

-21-

Programmer s Guide

-22-

Certain arguments to 'open', etc. will be
checked for legitimacy. Often only non
default forms are looked for.

/* 122 */"negative repeat count"
The repeat count for list-directed input
must be a positive integer.

/* 123 */"illegal operation for unit"
An operation was requested for a device
associated with the logical unit which
was not possible. This error is returned
by the tape I/O routines if attempting to
read past end-of-tape, etc.

(9050)

f77

- 10,-

APPENDIX. Differences Between Fortran 66 and Fortran 77 .

The following is a very brief description of the differences . between the 1966 [21 and the
1977 [11 Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the "/92" document. This draft Standard is writ
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of "Hollerith" (n h) as data have been officially remove~ although our com
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very· restrictive and rarely-understood conditions, it is per
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss. .

2. Program Form

2.1. Blank Lines

Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program an external
name:

program work .

Block data procedures may also have names.

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro
gram. (This rule is not enforced by oursystemJ The Standard does not specify the effect
of· the program and block data names, but they· are clearly intended to aid conventional
loaders. . .

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick

- 1.1 -

of calling one entry point with a large number of arguments to cause the procedure to
"remember" the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our
implementation, since arguments are not. kept in static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double' precision types.
(The use of floating point do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the -do parameters. The statement

do 10i = I, u, d

performs max(O, [(u-OJ d 1> iterations. The do variable has a predictable value when
exiting a loop: the value at the time a -loto or return terminates the loop; otberwise the
value that failed the limit test.

2.S. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as _ in

subroutine s(a, *, b, .)

The meaning of the "alternate returns'.' is described in section S.2 of the Appendix.

3. Declarations

3.1. CHARACTER .Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character·I7 a, b(3,4)
character.(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time "by a statement like

character.(·) a

(There is an intrinsic function len that returns the actual length qf -a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac
terof the preceding element, without holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, J,
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit reaHa-c,g), complex(w-z), character*(17)(s)

declares that variables whose name begins with an a ,b, c, or 1 are real, those beginning
with .. , x, y, or z are assumed complex, aodso on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.

- 12 -

3.3. PARAMETER Statement

It is now possible to give a constant a sym.bolic name, as in

parameter (x= 17, y=x/3, pi=3.14159dO, s='hello')

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(-S:3, 7, m:n), b(n+l:2*n)

The upper bound on the last dimension of an array argument may be denoted by an aster
isk to indicate that the upper bound is not specified:

integer a(S, *), b(*), c(O:I, -2:·)

3.S. SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined. (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. Tbe declaration

save a, Ibl, c

leaves the values of the variables a arid c and all of the contents of common block b
unaffected by a return. The simple declaration

save

bas this effect on aU variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, "intrinsic func ..
tions", rather than being divided into "intrinsic" and "basic external" functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos
trophe is to be included in a constant, it is repeated:

'abc'
'ain"t'

- 13 -

There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, ", '" and " " ". . (See Section 2~9 in the main text.)

4.2. Concatenation

One new operator has been· added, character string·· concatenation, . marked by a double
· slash ("II"). The result of a concatenation is the string containing the characters of the
· left operand followed by the characters of the right operand. The strings

'ab'll 'cd'
'abed'

are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which
a character string declared adjustable with a ".(.)" modifier or a substring denotation
with nonconstant position values may appear are the right sides of aSsignments) .

4.3. Character String Assignment

The left and right sides of a character assigmnent may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a (i, j) (m:n)

is the string of (n- m + 1) characters· beginning at . the m Ih character of the character array
element oij. Results are undefined unless m~ n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

4.5. Exponentiation

· It is now permissible to raise real quantities to complex powerS,or complex quantities. to
real or complex powers. (The principal· part of the logarithm is used). Also, multiple
exponentiation is now defined:

a •• b •• c == a •• (b •• c)

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari
ables in B common ..

Subscripts may now be general integer expressions; the old cv ± c' rules have been
removed. do loop bounds may be general integer, real, or double precision expressions .

. Computed loto expressions and 110 unit numbers may be general integer expressions.

- 14'-

5. Executable Statements

5.1. IF-THEN-ELSE
At last, the if-then-else brartching structure has been added to Fortran. It is called a
"Block Ir'. A Block If begins with a statement of the form

if (...) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else ifC ..) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is· true, the statements fol
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elself
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster
isk, as in

call joe(j, *10, m, *2)

A return statement may have an integer expression, such as

return k

If the entry point has n alternate return (asterisk) arguments and if l~k~ n, the ret~n
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the caU is executed.

6. Input/Output

6.1. Format Variables
A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write(6, '(is)') x

- 15 -

6.2. END=,ERR=, and 10STAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses,asin

write(6, 101, err-=20, iostat-a(4»
read(5, 101, err~20,end=-30, iostat-x)

Here 5 and 6 are the units on which the 1/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during 110, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the 110 statement finishes~ (Yes,
the value is assigned to the name on the right side of. the equal sign'> This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output Character constants can
not be read into.

write(6,'(i2," isn""t ",il)') 7, 4

produces

7 isn't 4

Here the format is the character constant

02,' isn"t ',il)

and the· character constant

isn't

is copied into the output.

6.3.2. Positional Editing Codes

t, tl, tr, and x codes control where the next character ·is in the record trn or nx specifies
that the next character is n to the right of the current position. tIn specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon
sidered. t n says that the next character is to be character number . n in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the 1/0 operation if there are no more dataJtems in the
110 list, otherwise it has noetrect. In the fragment

x=-'("hello", :, " there", i4)'
write(6, x) 12
write(6, x)

the first write statement prints hello tbere 12, while the second only Prints hello.

6.3.4. Optional Plus SilOS

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the 110 system will not insert the optional plus signs, and
the s format code restores the default behavior of the 1/0 system. (Since we never put

- 16 -

out optional p'lus signs, 55 and' 5 codes have the same effect in our implementation'>

6.3.5. Blanks on Input
Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The. Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case i w. 0 is
special, in that if the value being printed is 0, the output field is entirely blank. iw.1 is
the same as i w.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a gw.dformat code which is the same
as ew.d and fw.d on input, but which chooses for e formats for output depending. on the
size of the number and of d. '

6.3.9. "A" Format Code

A codes are used for character values. a w use 8 field width of w .. while 8 plain a uses the
length of the character item.

6.4. Standard Units

There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli
citly specified by an asterisk, as in

read(*, 10) 8,b

Similarly, the standard output units is specified by a print statement or an asterisk unit:"

print 10
write(*, 10)

6.5. List-Directed Formatting

List-directed I/O is a kind of free form input for sequential 1/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c

- 17 -

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given .. astworeal constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 1/0 list is nOlcllanged.
Values may be preceded by repetition counts,as in

4*(3.,2.) 2*, 4.'hello'

which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are .chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 1/0

A file connected for direct access consists ofaset of equal-sized records each .,of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access I/O statements.

Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2, rec== 13,err==20) (aG),i == 1,203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access
files may be connected for. either formatted or unformatted 110.

6.7. ·Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted I/O on
internal files. (IIO is not a very precise term to use here, but internal files are dealt with
using read and write) . There is no list-directed I/O on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character*80 x
read(S,"(a)") x
read(x,"(j3,i4)") nl,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct 1/0 on internal files. This is like direct
110 on external files, except that the number of records in the file cannot bechangedJ

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used. to connect and disconnect units and files, and to gather infor
mation about units and files.

6.8.1. OPEN

The open statement· is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open (I ,file:ll: 'fort.junk')

open takes a variety of arguments with meanings described below.

- 18 -

unit== a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit== can be omitted.

iostat == is the same as in read or write.

err== is the same as in read or write.

file== a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status == scratch.

status== oQe of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn't exist, or truncated if it does. The meaning of unknown is processor depen
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen
tial or direct I/O.

form = formatted or unformatted.

recl = a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning.explained in section 5.1 of the text.

blank = null or zero. This parameter' has meaning only for formatted 1/0. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file. . .

6.8.2. CLOSE
close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status.
either keep or delete. Scratch files cannot be kept, otherwise keep· is the default. delete
means· the file will be removed. A simple example is

close(3, err = 17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (~"inquire by unit") or a file
("inquire by file"). Simple examples are:

inquire (unit = 3, namexx)
inquire (file = Junk', number == n, . exist - J)

file == a character variable specifies· the file the inquire is about. Trailing blanks in the file
name are ignored.

unit = an integer variable specifies the unit the inquire is about. Exactly one of file- or
unit== must be used.

iostat=, err= are as before.
exist= a logical variable. The logical variable is set to .true. if the file or unit exists and

is set to .false.otherwise.
opened = a logical variable. The logical variable is set to .true. if the file is connected to

a unit or if the unit is connected to a file, and it is set to .false. otherwise.

.. 19 ..

number== an integer variable to which is assigned the nurnberoLtheunitconnectedto
the file, if any.

named == a logical variable to which is assigned • true. if the file· has a· name, or .false.
otherwise.

name== a character variable to which is assigned the name of the file . (inquire by file) or
the name of the file connected to the· unit (inquire· by unit). The name will be the
full name of the file.

access== a character variable to which will be assigned the value 'sequential' if the con
nection is for sequential 110, 'direct' if the connection is for clirect 110. The value
becomes undefined if there is no connection.

sequential== a character variable to which is assigned the value 'yes' if the file could be
connected: for sequential 110, 'no' if the file could not be connected for sequential
I/O, and 'unknown' if we can't tell.

direct== a character variable· to which is assigned the value 'yes' if'the file could be con
nected for direct 1I0,'no' if the file could not be connected for direct I/O, and 'unk
nown' if we can't tell.

form == a character variable to which is assigned the value 'formatted' if the file is con
nected for formatted 110, or 'unformatted' if the file is connected for unformatted
110.

formatted== a charactervatiable to which is assigned the· value'yes' if the file could be
connected for formatted 110, 'no' if the file could not be connected for formatted
110, and 'unknown' if we can't tell.

unformatted == a character variable to which is assigned the value 'yes' if the file could be
connected for unformatted I/O, 'no' if the file could not be connected for unformat
ted 110, and 'unknown' if we can't tell.

reel == an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec== an integer variable to which is. assigned one more than the number of the the
last·record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null' if null·blank control is in
effect for the file connected for formatted 110, 'zero' if blanks are being converted to
zeros and the file is connected for formatted 110.

The gentle reader will remember that the people who wrote the standard probably weren't
thinking· of his . needs. Here is an example. The declarations are omitted.

open(1, file=-"/dev/console"}

On a UNIX system this statement opens the console for formatted sequential I/O. An inquire
statement for either unit 1 or file tt/dev/console" would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential I/O, could be connected
for sequential I/O, could not be connected for direct 110 (can't seek), is connected for format
ted 110, could be connected for formatted 110, could not be connected for unformatted 110
(can't seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err== parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.

f77 FORTRAN Functions

TABLE OF CONTENTS

For convenience, these FORTRAN function descriptions were removed from the ROS
Reference Manual section (3F) and organized here.

£17 FORTRAN Functions

abort
abs
access
acos
aimag
aint
alarm
asin
atan
atan2
bit

chdir
chmod
conjg
cos
cosh
etime
exp
fdate
fork
fseek
ftype
getarg

getc
getcwd

getenv
getlog
getpid
getuid
hostnm
idate

index
ioinit
kill
len
link
loc
log
10glO

max
mclock

terminate program
absolute value
determine accessability of a file
arccosine intrinsic function
imaginary part of complex argument
integer part intrinsic function
execute a subroutine after a specified time
arcsine intrinsic function
arctangent intrinsic function
arctangent intrinsic function
logical and shift bit functions

change default directory
change mode of a file
complex conjugate intrinsic function
cosine intrinsic function
hyperbolic cosine intrinsic function
return elapsed execution time
exponential intrinsic function
return date and time in an ASCII string
create a copy of this process
reposition a file on a logical unit
explicit type conversion
return command-line argument

get a character from a logical unit
get pathname of current working directory

return, environment variable
get user's login name
get process id
get user or group ID of the caller
get name of current host
return date or time in numerical form

return location of substring
change f77 I/O initialization
send a signal to a process
return length of string
make a link to an existing file
return the address of an object
natural logarithm intrinsic function
common logarithm intrinsic function
maximum-value functions
return time accounting

(9050) - 1 -

Programmer's Guide

- 2 -

min
mod
perror
putc
qsort
rand
rename
round
sign
signal
sin
sinh
sleep
sqrt
stat
system
tan
tanh
time
ttynam
unlink
wait

minimum-value functions
remaindering intrinsic functions
get system error messages
write a character to a fortran logical unit
quick sort
uniform random-number generator
rename a file
nearest integer functions
transfer-of-sign intrinsic function
specify action on receipt of system signal
sine intrinsic function
hyperbolic sine intrinsic function
suspend execution for an interval
square root intrinsic function
get file status
execute a system command
tangent intrinsic function
hyperbolic tangent intrinsic function
return system time
find name of a terminal port
remove a directory entry
wait for a process to terminate

(9050)

FOR TRAN Functions

ABORT(3F) (UNIX 5.0) ABORT(3F)

NAME
abort - terminate Fortran program

SYNTAX

call abort ()

DESCRIPTION
Abort terminates the program which calls it, closing all open files truncated to the current posi
tion of the flle pointer.

DIAGNOSTICS

When invoked, abort prints "Fortran abort routine called" on the standard error output.

SEE ALSO

abort(3C).

Pa.ge 1 (!)O[)O)

ABS(3F) (UNIX 5.0)

NAME
abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNTAX
integer iI, i2
real rI, r2
double precision dpI, dp2
complex exI, ex2
double complex dxl, dx2

r2 =abs(rI)

i2 = iabs(iI)
i2 = abseil)

dp2 = dabs(dpl)
dp2 = abs(dpl)

ex2 = cabs(exl)
ex2 = abs(cxI)

dx2 = zabs(dxI)
dx2 = abs(dxl)

DESCRIPTION
Abs returns the absolute value of its argument in the same type as its argument.

labs returns the integer absolute value of its integer argument.

Dabs returns the double-precision absolute value of its double-precision argument.

Cabs returns the complex absolute value of its complex argument.

Z abs returns the double-complex absolute value of its double-complex argument.

Abs works for any data type, but the various forms are for programming clarity.

SEE ALSO

floor(3M).

Pagel

ABS(3F)

(9050)

ACCESS(3F) (bsd 4.2) ACCESS(3F)

NAME

access - determine accessability of a file

SYNTAX

integer function access (name, mode)
character ... { ...) name, mode

D ESCRIPTI ON

FILES

Access checks the given file, name, for accessability with respect to the caller according to mode.
M ode may include in any order and in any com bination one or more of:

r test for read permission
w test for write permission
x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of
the specified modes. 0 is returned if the specified access would be successful.

/usr/lib/libU77.a

SEE ALSO

access(2}, perror(3F}

BUGS

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Page 1 (9050)

ACOS(3F) (UNIX 5.0)

NAME
acos, dacos - Fortran arccosine intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 = acos(rl)

dp2 = da.cos(dpl)
dp2 = acos(dpl)

DESCRIPTION

ACOS(3F)

Acos returns the arccosine of its argument, in real or double-precision that matches its argu
ment.

Dacos returns the double-precision arccosine of its double-precision argument.

Although Acos works for either data type, dacos is for clarity in programming.

SEE ALSO
trig(3M).

Page 1 (9050)

AIMAG(3F) (UNIX 5.0)

NAME
aimag, dimag - Fortran imaginary part of complex argument

SYNTAX

real r
complex exr
double precision dp
double complex cxd

r = aimag{ cxr)

dp = dimag{cxd)

DESCRIPTION
Aimag returns the imaginary part of its single-precision complex argument.

AIMAG(3F)

Dimag returns the double-precision imaginary part of its double-complex argument.

Pagel (9050)

AINT(3F) (UNIX 5.0) AINrr(!3F)

NAME
aint, dint - Fortran integer part intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2

r2 = aint{rl)

dp2 = dint(dpl)
dp2 = aint(dpl)

DESCRIPTION

Pagel

Aa'nt returns the truncated value of its argument, in real or double-precision that matches the
argument,

Dint returns the double-precision truncated value of its double precision argument,

Although Aint works for either data type, d'int is for clarity in programming,

(9050)

ALARM(3F) (bsd 4.2) ALARM(3F)

NAME
alarm - execute a subroutine after a specified time

SYNTAX

integer function alarm (time, proc)
integer time
external proc

DESCRIPTION

FILES

This routine arranges for subroutine proc to be called after time seconds. If time is "0", the
alarm is turned off and no routine will be called. The returned value will be the time remaining
on the last alarm.

/usr/lib/libU77.a

SEE ALSO

BUGS

Pagel

alarm (3 C), sle e p(3F), signal(3F)

Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the remaining alarm time or the sleep time.

(9050)

ASIN(3F) (UNIX 5.0)

NAME
asin, dasin - Fortran arcsine intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2

r2 = asin(rl)

dp2 = dasin(dpl)
dp2 = asin(dpl)

DESCRIPTION

ASIN(3F)

As£n returns the arcsine of its argument, in the real or double type that matches its argument.

Das£n returns the double-precision arcsine of its double-precision argument.

As£n works with real or double types, but Das£n is for programming clarity.

SEE ALSO

trig(3M) .

Page 1 (9050)

ATAN(3F) (UNIX 5.0) ATAN(3F)

NAME
atan, datan - Fortran arctangent intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2

r2 = atan(rl)

dp2 = datan(dpl)
dp2 = atan(dpl)

DESCRIPTION
Atan returns the arctangent of its argument, in real or double-precision type that matches the
argument.

Datan returns the double-precision arctangent of its double-precsion argument.

Although Atan works for either data type, datan is for clarity in programming.

SEE ALSO
trig(3M) .

Pagel (9050)

ATAN2(3F) (UNIX 5.0)

NAME
atan2, datan2 - Fortran arctangent intrinsic function

SYNTAX

real rl, r2, r3
double precision dpl, dp2, dp3

r3 = atan2(rl, r2)

dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION

ATAN2(3F)

Atan2 returns the arctangent of argl/arg2, in real or double-precision type that matches the
arguments.

Datan2 returns the double-precision arctangent of the double-precsion arguments argl/arg2.

Although Atan2 works for either data type, datan is for clarity in programming.

SEE ALSO

trig(3M).

Page 1 (9050)

BIT(3F) (bsd 4.2) BIT(3F)

NAME
bit - and, or, xor, not, rshift, Ishift bitwise functions

SYNTAX

(intrinsic) function and (wordl, word2)

(intrinsic) function or (word!, word2)

(intrinsic) function xor (word!, word2)

(intrinsic) function not (word)

(intrinsic) function rshift (word, nbits)

(intrinsic) function lshift (word, nbits)

DESCRIPTION

FILES

Pagel

These bitwise functions are built into the compiler and return the data type of their
argument(s). It is recommended that their arguments be integer values; inappropriate manipu
lation of real objects may cause unexpected results.

The bitwise combinatorial functions return the bitwise" and" (and), "or" (or), or "exclusive
or" (xor) of two operands. Not returns the bitwise complement of its operand.

Lshift, or rshift with a negative nbits, is a logical left shift with no end around carry. Rshift, or
Ishift with a negative nbits, is an arithmatic right shift with sign extension. No test is made for a
reasonable value of nb£ts.

These functions are generated in-:-line by the f77 compiler.

(9050)

CHDIR{3F) (bsd4.2) CHDIR{3F)

NAME

chdir - change default directory

SYNTAX

integer function chdir (dirname)
eharacl.er*(*) dirname

DESCRIPTJON

The default directory for creating and locating files will be changed to dirname. Zero is returned
if successful; an error code otherwise.

FILES

/usr/lib/libU77.a

SEE ALSO

BUGS

Pagel

chdir(2), cd(1), perror(3F)

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h >.
Use of this function may cause inquire by unit to fail.

(9050)

CHMOD(3F) (bsd 4.2) CHMOD(3F)

NAME

chmod - change mode of a file

SYNOPSIS

integer function chmod C name, mode)
eharacter*C *) name, mode

DESCRIPTION
This function changes the filesystem mode of file name. M ode can be any specification recog
nized by chmod(1). Name must be a single pathname.

FILES

The normal returned value is O. Any other value will be a system error number.

/usr/lib/libU77.a
/bin/chmod exec'ed to change the mode.

SEE ALSO

chmod(1)

BUGS

Pathnames can be no longer than MAXPATHLEN as defined in <sysjparam.h>.

Pagel (9050)

CONJG(3F) (UNIX 5.0) CONJG(3F)

NAME
conjg, dconjg - Fortran complex conjugate intrinsic function

SYNTAX
complex cxl, cx2
double complex dxl, dx2

cx2 = conjg(cxl)

dx2 = dconjg(dxl)

D ESCRIPTI ON
Gonjg returns the complex conjugate of its complex argument.

Dconjg returns the double-complex conjugate of its double-complex argument.

Pagel (9050)

COS(3F) (UNIX 5.0)

NAME
cos, dcos, ccos - Fortran cosine intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2
complex exl, cx2

r2 = cos(rl)

dp2 = deos(dpl)
dp2 = cos (dpl)

ex2 = ceas(exl)
ex2 = cos(exl)

DESCRIPTION

COS(3F)

COS returns the cosine of its argument, in the real, complex, or double-precision type of its
argument.

Dcos returns the double-precision cosine of its double-precision argument.

Ccos returns the complex cosine of its complex argument.

Although Cos works with any type, the other forms are used for clarity in programming.

SEE ALSO

trig(3M) .

Page 1 (9050)

COSH(3F) (UNIX 5.0)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 = cosh(rl)

dp2 = dcosh(dpl)
dp2 = cosh(dpl)

DESCRIPTION

COSH(3F)

Cosh returns the hyperbolic cosine of its argument, in the real or double-precsion type of its
argument.

Dcosh returns the double-precision hyperbolic cosine of its double-precision argument.

Although Cosh works for either data type, Dcosh is for clarity in programming.

SEE ALSO
sinh(3M).

Pagel (9050)

ETIME{3F) (bsd4.2) ETIME(3F)

NAME

etime, dtime - return elapsed execution time

SYNTAX

function etime (tarray)
real tarray(2)

function dtime (tarray)
real tarray(2)

DESCRIPTION

FILES

Etime returns in tarray(1) the elapsed user time for the calling process since start of execution,
and in tarray(2) the elapsed system time for the calling process since start of execution.

Dtime returns in tarray(1) the delta time for the calling process since the last call to dtime, and
in tarray(2) the delta system time for the calling process since the last call to dtime.

The return value of dtime and etime is the sum of the two tarray times they report.

The resolution of all timing is 1/60 of one millisecond.

/usr/lib/libU77.a

SEE ALSO

BUGS

Pagel

times(2)

The f77 compiler fails to convert the returned value to single precision from double precision,
so the return value .must be read as a double.

Doug, do you mean the values in the array, or the return value of the function?

(9050)

EXP(3F) (UNIX 5.0)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
complex cxl, ex2

r2 = exp(rl)

dp2 = dexp(dpl)
dp2 = exp(dpl)

ex2 = clog(exl)
ex2 = exp(exl)

DESCRIPTION

EXP(3F)

Exp returns the real exponential function e**arg for its argument, in the real, double-precision,
or complex type of the argument.

Dexp returns the double-precision exponential function of its double-precision argument.

Cexp returns the complex exponential function of its complex argument.

Although exp works with reals, doubles·, and complexes, the other forms are for clarity in pro
gramming.

SEE ALSO
exp(3M).

Page 1 (9050)

FDATE(3F) (bsd 4.2)

NAME
fdate - return date and time in an ASCII string

SYNOPSIS

subroutine fdate (string)
eharacter*(*) string

character*(*) function fdateO

DESCRIPTION

FDATE(3F)

Fdate returns the current date and time as a 24 character string in the format described under
ctime(3) . Neither 'newline' nor NULL will be included.

FILES

Fdate can be called either as a function or as a subroutine. If called as a function, the calling
routine must define its type and length. For example:

character*24 fdate
external fdate

write (*,*) fdateO

/usr/lib/libU77.a

SEE ALSO

ctime(3), time(3F), itime(3F), idate(3F), ltime(3F)

Pagel (9050)

FORK(3F) (bsd 4.2) FORK(3F)

NAME
fork - create a copy of this process

SYNTAX
integer function fork ()

D ESCRIPTI ON

FILES

Fork creates a copy of the calling process. The only distinction between the 2 processes is that
the value returned to one of them (referred to as the 'parent' process) will be the process id if
the copy. The copy is usually referred to as the 'child' process. The value returned to the
'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the con
tents of the I/O buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be per
formed using systemf.. 3F,).

/usr/lib/libU77.a

SEE ALSO
fork(2), wait(3F), kill(3F), perror(3F)

Pagel (9050)

FSEEK(3F) (bsd4.2) FSEEK(3F)

NAME
fseek, ftell - reposition a file on a logical unit

SYNTAX
integer function fseek (Iunit, offset, from)
integer offset, from

integer function ftell (Iunit)

DESCRIPTION

FILES

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by from. Valid values for from are:

o meaning 'beginning of the file'
I meaning 'the current position'
2 meaning 'the end of the file'

The value returned by fseek will be 0 if successful, a system error code otherwise. (See
perror(3F))

Ftell returns the current position of the file associated with the specified logical unit. The value
is an offset, in bytes, from the beginning of the file. If the value returned is negative, it indi
cates an error and will be the negation of the system error code. (See perror(3F»

/usr/lib/libU77.a

SEE ALSO
fseek(38), perror(3F)

Pagel (9050)

FTYPE(3F) (UNIX 5.0) FTYPE(3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char - explicit Fortran type conver

sion

SYNTAX
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character* 1 ch

i = int{r)
i =int{dp)
i =int{ex)
i =int{dcx)
i = ifix(r)
i = idint(dp)

r =real(i)
r =real(dp)
r =real(ex)
r = real (dcx)
r =float{i)
r =sngl(dp)

dp = dble(i)
dp = dble(r)
dp = dble(ex)
dp = dble(dcx)

ex = cmplx(i)
ex = cmplx(i, j)
ex = cmplx(r)
ex = cmplx(r, s)
ex = cmplx(dp)
ex = cmplx(dp, dq)
ex = cmplx(dcx)

dex = dcmplx(i)
dcx = dcmplx(i, j)
dex = dcmplx(r)
dex = dcmplx(r, s)
dex = dcmplx(dp)
dcx = dcmplx(dp, dq)
dex = dcmplx(ex)

i = ichar{ ch)
ch =char(i)

DESCRIPTION

Page 1

These functions perform conversion from one data type to another.

int converts to integer form its real, double precision, complex, or double complex argument. If
the argument is real or double precision, int returns the integer whose magnitude is the largest
integer that does not exceed the magnitude of the argument and whose sign is the same as the
sign of the argument (Le. truncation). For complex types, the above rule is applied to the real
part. ifix and idint convert only real and double precis-ion arguments respectively.

(9050)

FTYPE(3F) (UNIX 5.0) FTYPE(3F)

(9050)

real converts to real form an i·ideger, double precis£on, complex, or double complex argument. If
the argument is double precision or double complex, as much precision is kept as is possible. If
the argument is one of the complex types, the real part is returned. float and sngl convert
only integer and double precision arguments respectively.

dble converts any integer, real, complex, or double complex argument to double precision form. If
the argument is of a complex type, the real part is returned.

cmplx converts its integer, real, double precision, or double complex argument(s) to complex form.

dcmplx converts to double complex form its integer, real, double precision, or complex
argument(s) .

Either one or two arguments may be supplied to cmplx and dcmplx . If there is only one argu
ment, it is taken as the real part of the complex type and a imaginary part of zero is supplied. If
two arguments are supplied, the first is taken as the real part and the second as the imaginary
part.

ichar converts from a character to an integer depending on the character's position in the col
lating sequence.

char returns the character in the i,h position in the processor collating sequence where i is the
supplied argument.

For a processor capable of representing n characters,

ichar(char(i)) = i for 0 < = i < n, and

char(ichar(ch)) = ch for any representable character ch.

Page 2

GETARG{3F) (UNIX 5.0)

NAME

getarg - return Fortran command-line argument

SYNTAX

character*N e
integer i

getarg(i , e)

DESCRIPTION

·GETARG{ 3F)

Getarg returns the i-th command-line argument of the current process. Thus, if a program were
invoked via

foo argl arg2 arg3

getarg(2, c) would return the string "arg2" in the character variable c.

SEE ALSO

getopt(3C) .

Pagel (9050)

GETC(3F) (bsd 4.2) GETC(3F)

NAME
getc, fgetc - get a character from a logical unit

SYNTAX

integer function getc (char)
character char

integer function fgetc (lunit, char)
character char

DESCRIPTION

FILES

These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran I/O. Getc reads from logical unit 5, normally connected to the control
terminal input.

The value of each function is a system status code. Zero indicates no error occured on the read;
- 1 indicates end of file was detected. A positive value will be either a UNIX system error
code or an f77 I/O error code. See perror(3F).

/usr/lib/libU77.a

SEE ALSO
getc(3S), intro(2), perror(3F)

Pagel (9050)

GETCWD(3F) (bsd 4.2)

NAME
getcwd - get pathname of current working directory

SYNTAX
integer function getcwd (dirname)
character*(ale) dirname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in d£rname.
The value of the function will be zero if successful; an error code otherwise.

FILES

/usr/lib/libU77.a

SEE ALSO
chdir(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sysfparam.h>.

Page 1 (9050)

GETENV{3F) (UNIX 5.0) GE'lENV{ 3F)

NAME

getenv - return Fortran environment variable

SYNTAX

charact.er*N c

get.env("TMPDIR", c)

DESCRIPTION

Getenv returns the character-string value of the environment variable represented by its first
argument into the character variable of its second argument. If no such environment variable
exists, all blanks will be returned.

SEE ALSO

getenv(3C), environ(5).

Page 1 (9050)

GE'TLOG(3F)

NAME

getlog - get user's login name

SYNTAX

subroutine getlog (name)
character*(*) name

character*(*) function getlog()

DESCRIPTION

(bsd 4.2) GETLOG(3F)

Getlog will return the user's login name or all blanks if the process is running detached from a
terminal.

FILES

/usr/lib/libU77.a

SEE ALSO

getlogin(3)

Pagel (9050)

GETPID(3F) (bsd 4.2)

NAME
getpid - get process id

SYNTAX
integer function getpid()

DESCRIPTION
Getpid returns the process ID number of the current process.

FILES

/usr/lib/libU77.a

SEE ALSO
getpid(2)

Pagel

GETPID{3F)

(9(50)

GETUID{3F) (bsd4.2)

NAME
getuid, getgid - get user or group ID of the caller

SYNTAX

integer function getuidO

integer function getgid()

DESCRIPTION

These functions return the real user or group ID of the user of the process.

FILES

/usr/lib/libU77.a

SEE ALSO

getuid(2)

Page 1

GETUID{3F)

(9050)

HOSTNM(3F)

NAME
hostnm - get name of current host

SYNTAX

integer function hostnm (name)
character*{ *) name

DESCRIPTION

(bsd4.2) HOSTNM(3F)

This function puts the name of the current host into character string name. The return value
should be 0; any other value indicates an error.

FILES

/usr/lib/libU77.a

SEE ALSO

gethostname(2)

Page 1 (9050)

IDATE(3F) (bsd 4.2)

NAME
idate, itime - return date or time in numerical form

SYNTAX
subroutine idate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION

IDATE(3F)

Idate returns the current date in iarray. The order is: day, mon, year. Month will be in the
range 1-12. Year will be ~ 1969.

Itime returns the current time in iarray. The order is: hour, minute, second.

FILES

/usr/lib/libU77.a

SEE ALSO
ctime(3F), fdate(3F)

Pagel (9050)

INDEX(3F) (UNIX 5.0)

NAME

index - return location of Fortran substring

SYNTAX

character*Ni chi
character*N2 ch2
integer i

i = index(chi, ch2)

DESCRIPTION

INDEX(3F)

Index returns the location of substring ch2 in string chl. The value returned is the position at
which substring ch2 starts, or 0 if it is not present in string chl.

Pagel (0050)

IOINIT(3F) (bsd 4.2) IOINIT(3F)

NAME
ioinit - change f77 I/O initialization

SYNTAX
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cctl, bzro, apnd, vrbose
character*(*) prefix

DESCRIPTION

Pagel

This routine will initialize several global parameters in the f77 I/O system, and attach externally
defined files to logical units at run time. The effect of the flag arguments applies to logical
units opened after ioinit is called. The exception is the preassigned units, 5 and 6, to which cct!
and bzro will apply at any time. 10 in it is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cctl is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is • true. then
such blanks will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is some
times necessary or convenient to open at the END-OF-FILE so that a write will append to the
existing data. If apnd is .true. then files opened subsequently on any logical unit will be posi
tioned at their end upon opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when
a program is run. There is no such automatic association in f77. However, if the argument
prefix is a non-blank string, then names of the form prefixNN will be sought in the program
environment. The value associated with each such name found will be used to open logical unit
NN for formatted sequential access. For example, if f77 program myprogram included the call

call ioinit (.true., .false., .false., 'FORT, .false.)

then when the following C-Shell sequence:

% setenv FORTIn mydata
%setenv FORT12 myresults
% myprogram

or the following Bourne-Shell sequnece:

$ FORT01=mydata
$ FOR T02=myresults
$ export FORT01 FORT02
$ myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresu/ts.
Both files would be positioned at their beginning. Any formatted output would have column 1
removed and interpreted as carriage control. Embedded and trailing blanks would be ignored
on input.

If the argument vrbose is .true. then ioinitwill report on its activity.

The internal flags are stored in a labeled common block with the following definition:

integer*2 ieof, ictl, ibzr
common /ioiflg/ ieof, ictl, ibzr

(9050)

IOINIT(3F) (bsd4.2) IOINIT(3F)

FILES

/usr/lib/libI77.a f77 I/O library

SEE ALSO

BUGS

(9050)

getarg(3F), getenv(3F),

Prefix can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The "+ " carriage control does not work.

Pa.ge 2

KILL(3F)

NAME
kill - send a signal to a process

SYNTAX
function kill (pid, signwn)
integer pid, signmn

DESCRIPTION

(bsd 4.2) KlLL(3F)

P£d must be the process id of one of the user's processes. S£gnum must be a valid signal
number (see sigvec(2)). The returned value will be 0 if successful; an error code otherwise.

FILES

/usr/lib/libU77.a

SEE ALSO

kill(2), sigvec(2), signal(3F), fork(3F), perror(3F)

Pagel (9050)

LEN(3F)

NAME
len - return length of Fortran string

SYNTAX

character*N ch
integer i

i = len(ch)

DESCRIPTION
Len returns the length of string ch.

Pagel

(UNIX 5.0) LEN(3F)

(9050)

LINK(3F)

NAME
link - make a link to an existing file

SYNTAX

function link (namel, name2)
character*(*) namel, name2

(bsd 4.2)

integer function symlnk (namel, name2)
character*(*) namel, name2

D ESCRIPTI ON

LINK(3F)

Namel must be the pathname of an existing file. Name2 is a pathname to be linked to file
name1. Name2 must not already exist. The returned value will be 0 if successful; a system
error code otherwise.

Symlnk creates a symbolic link to name1.

FILES

/usr/lib/libU77.a

SEE ALSO

link(2), symlink(2), perror(3F), unlink(3F)

BUGS

Pathnames can be no longer than MAXPATHLENas defined in <sys/param.h>.

Page 1 (9050)

LOC(3F) (bsd4.2) LOC(3F)

NAME

Ioc - return the address of an object

SYNTAX

function Ioe (arg)

DESCRIPTION

The returned value will be the address of argo

FILES

/usr/lib/libU77.a

Pagel (9050)

LOG(3F) (UNIX 5.0) LOG(3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
complex exl, cx2

r2 = alog(rl)
r2 = log(rl)

dp2 = dlog(dpl)
dp2 =log(dpl)

ex2 = clog{ cxl)
ex2 = log(exl)

DESCRIPTION

Log return the natural logarithm of its argument, in the same type as the argument.

Alog returns the real natural logarithm of its real argument.

Dlog returns the double-precision natural logarithm of its double-precision argument.

Clog returns the complex logarithm of its complex argument.

Log works for different types, but the various forms are for programming clarity.

SEE ALSO
exp(3M).

Pagel (9050)

LOGIO(3F) (UNIX 5.0) LOGIO(3F)

NAME
loglO, aloglO, dloglO - Fortran common logarithm intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2

r2 = aloglO(rl)
r2 = loglO(rl)

dp2 = dloglO(dpl)
dp2 = loglO(dpl)

DESCRIPTION

Log1D returns the common logarithm of its argument, in real or double-precision type of the
argument.

Alog1D returns the real common logarithm of its real argument.

Dlog returns the double-precision common logarithm of i:ts double-precision argument.

Log works for real or double arguments, but the other forms are for programming clarity.

SEE ALSO

exp(3M).

Pagel (9050)

MAX(3F) (UNIX 5.0) MAX(3F)

NAME
max, maxO, amaxO, maxI, amaxl, dmaxl - Fortran maximum-value functions

SYNTAX

integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

I = max(i, j, k)
c =max(a, b)
dp = max (a, b, c)
k = maxO(i, j)
a = amaxO(i, j, k)
i = maxl(a, b)
d = amaxl(a, b, c)
dp3 = dmaxl(dpl, dp2)

DESCRIPTION

The maximum-value functions return the largest of their arguments (of which there may be
any number). Max is the generic form which can be used for all data types and takes its return
type from that of its arguments (which must all be of the same type). MaxO returns the
integer form of the maximum value of its integer arguments; amaxO, the real form of its
integer arguments; maxl, the integer form of its real arguments; amaxl, the real form of its
real arguments; and dmaxl, the double-precision form of its double-precision arguments.

SEE ALSO

min(3F).

Pagel (9050)

MCLOCK(3F) (UNIX 5.0)

NAME
mclock - return Fortran time accounting

SYNTAX
integer i

i = mclock()

DESCRIPTION

MCLOCK(3F)

M clock returns time accounting information about the current process and its child processes.
The value returned is the sum of the current process's user time and the user and system times
of all child processes.

SEE ALSO

times(2), clock(3C), system(3F).

Pagel (9050)

MIN(3F) (UNIX 5.0) MIN(3F)

NAME

min, minO, aminO, minI, aminI, dminI - Fortran minimum-value functions

SYNTAX

integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

I = min(i, j, k)
c =min(a, b)
dp = min(a, b, c)
k = minO(i, j)
a = aminO(i, j, k)
i = minl(a, b)
d = aminl(a, b, c)
dp3 = dminl(dpl, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their arguments (of which there may be
any number). Min is the generic form which can be used for all data types and takes its return
type from that of its arguments (which must all be of the same type). MinD returns the integer
form of the minimum value of its integer arguments; aminO, the real form of its integer argu
ments; minl, the integer form of its real arguments; aminl, the real form of its real arguments;
and dminl, the double-precision form of its double-precision arguments.

SEE ALSO

max(3F).

Pagel (9050)

MOD(3F) (UNIX 5.0) MOD(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNTAX

integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = mod(i, j)

r3 = amod(rl, r2)
r3 = mod(rl, r2)

dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)

DESCRIPTION

Pagel

Mod returns the integer remainder of its first argument divided by its second argument, in the
real or double-precision type of the arguments.

Amod and dmod return the real and double-precision whole number remainder of argl divided
byarg2.

mod works with real or double types, but the various forms are for programming clarity.

(9050)

PERROR(3F) (bsd 4.2) PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNTAX
subroutine perror (string)
character*(*) string

subroutine gerror (string)
character*(*) string

character*(*) function gerror()

function ierrno()

DESCRIPTION

FILES

Perror will write a message to fortran logical unit 0 appropriate to the last detected system error.
String will be written preceding the standard error message.

Gerror returns the syst,em error message in character variable string. Gerror may be called either
as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated
only when an error actually occurs. Most routines and I/O statements that might generate such
errors return an error code after the call; that value is a more reliable indicator of what caused
the error condition.

/usr/lib/libU77.a

SEE ALSO

BUGS

NOTES

Pagel

intro(2), perror(3)

String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

UNIX system error codes are described in intro(2). The f77 I/O error codes and their mean
ings are:

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

"error in format"
"illegal unit number"
"formatted io not allowed"
"unformatted io not allowed"
"direct io not allowed"
"sequential io not allowed"
"can't backspace file"
"off beginning of record"
"can't stat file"
"no * after repeat count"
"off end of record"
"truncation failed"
"incomprehensible list input"
"out of free space"
"unit not connected"
"read unexpected charact-er"
"blank logical. input field"

(9050)

PERROR(3F)

(9050)

117
118
119
120
121
122
123

(bsd4.2)

"'new' file exists"
"can't find 'old' file"
"unknown system error"
"requires seek ability"
"illegal argument"
"negative repeat count"
"illegal operation for unit"

PERROR(3F)

Page 2

PUTC(3F) (bsd 4.2) PUTC(3F)

NAME
putc, fputc - write a character 1;0 a fortran logical unit

SYNTAX
integer function putc (char)
character char

integer function fputc (lunit, char)
character char

DESCRIPTION

FILES

These funtions write a character to the file associated with a fortran logical unit bypassing nor
mal fortran I/O. Pute writes to logical unit 6, normally connected to the control terminal out
put.

The value of each function will be zero unless some error occurred; a system error code other
wise. See perror(3F).

/usr/lib/libU77.a

SEE ALSO

pu tc(3S), in tro(2), perror(3F)

Pagel (9050)

QSORT(3F) (bsd4.2) QSORT(3F)

NAME
qsort - quick sort

SYNTAX

subroutine qsort (array, len, isize, compar)
external compar
integer*2 compar

D ESCRIPTI ON

FILES

One dimensional array contains the elements to be sorted. len is the number of elements in the
array. ":s":ze is the size of an element, typically-

4 for integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer*2 function that will determine the sorting order.
This function will be called with 2 arguments that will be elements of array. The function must
return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

/usr/lib/libU77.a

SEE ALSO
qsort(3)

Pagel (9050)

RAND(3F) (UNIX 5.0)

NAME
srand, rand - Fortran uniform random-number generator

SYNTAX
integer i
double precision x, rand

call srand(i)
x = rand()

DESCRIPTION

RAND(3F)

Srand takes its integer argument as the seed of a random-number generator, the values of
which are returned through successive invocations of rand.

The value returned b~ rand are double-precision floating point numbers evenly distributed
between 0 and 1, exclusive of both 0 and 1.

SEE ALSO
rand{3C).

Pagel (9050)

RENAME(3F)

NAME

rename - rename a file

SYNTAX

integer function rename (from, to)
character*(*) from, to

DESCRIPTION

(bsd 4.2) RENAME(3F)

From must be the pathname of an existing file. To will become the new pathname for the file.
If to exists, then both from and to must be the same type of file, and must reside on the same
filesystem. If to exists, it will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES

/usr/lib/libU77.a

SEE ALSO

rename(2), perror(3F)

BUGS

Pathnames can be no longer than MAXPATHLEN as defined in <sysjparam.h>.

Page 1 (9050)

ROUND(3F) (UNIX 5.0) ROUND(3F)

NAME
anint, dnint, nint, idnint - Fortran nearest integer functions

SYNTAX
integer i
real rl, r2
double precision dpl, dp2

r2 = anint(rl)
i = nint(rl)

dp2 = anint(dpl)
dp2 = dnint(dpl)

i = nint(dpl)
i = idnint(dpl)

DESCRIPTION

Page 1

Nint returns the number that is nearest to its real or double-precision argument, in the type of
the argument.

Jdn£nt returns the integer that is nearest to its double-precision argument.

Anint returns the number nearest to its real or double-precision argument, in the type of the
argument.

Dnint returns the double real number nearest to its double argument.

The various forms are for programming clarity.

(9050)

SIGN(3F) (UNIX 5.0) SIGN(3F)

NAME

sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNTAX

integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = isign(i, j)
k = sign(i, j)

r3 = sign(rl, r2)

dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)

DESCRIPTION

Pagel

St'gn returns the magnitude of its first argument with the sign of its second argument, in the
integer, real, or double-precsion type of its arguments.

ISign returns the integer magnitude of its integer arguments.

Ds£gn returns the double magnitude of its double arguments.

Although s~'gn works for integers, reals, and doubles, the various forms are for programming
clarity.

(9050)

SIGNAL(3F) (bsd4.2) SIGNAL(3F)

NAME
signal - change the action for a, signal

SYNTAX
integer function signal(signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal(3C)) the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to signal is
the way this alternate action is specified to the system.

Signum is the signal number (see signal(3C)). If flag is negative, then proc must be the name
of the user signal handling routine. If flag is zero or positive, then proc is ignored and the
value of flag is passed to the system as the signal action definition. In particular, this is how
previously saved signal actions can be restored. Two possible values for flag have specific
meanings: 0 means "use the default action" (See NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the
address of a routine that was to have been called on occurrence of the given signal. The
returned value can be used in subsequent calls to signal in order to restore a previous action
definition. A negative returned value is the negation of a system error code. (See perror(3F))

/usr/lib/libU77.a

SEE ALSO

signal(3C), kill(3F), kill(1)

NOTES

If the user signal handler is called, it will be passed the signal number as an integer argument.

Page 1 (9050)

SIN(3F) (UNIX 5.0)

NAME

sin, dsin, csin - Fortran sine intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = sin(rl)

dp2 = d5in(dpl)
dp2 = sine dpl)

ex2 = csin(ex!)
ex2 = sine cxl)

DESCRIPTION

SIN(3F)

Sin returns the sine of its argument, in the real, double-precision, or complex type of its argu
ment.

Dsin returns the double-precision sine of its double-precision argument.

Csin returns the complex sine of its complex arguemnt.

Sin works with double, real, and complex types, but the various forms are for programming
clarity.

SEE ALSO

trig(3M) .

Pagel (9050)

SINH(3F) (UNIX 5.0) SINH(3F)

NAME

sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2

r2 = sinh(rl)

dp2 = dsinh(dpl)
dp2 = sinh(dpl)

DESCRIPTION

Sinh returns the hyperbolic sine of its argument, either real or double-precision, in the type of
its argument.

Dsinh returns the double-precision hyperbolic sine of its double-precision argument.

Sinh works with either type, but Dsinh is for programming clarity.

SEE ALSO

sinh(3M) .

Pagel (9050)

SLEEP(3F) (bsd 4.2)

NAME
sleep - suspend execution for an interval

SYNTAX
subroutine sleep (itime)

D ESCRIPTI ON

SLEEP(3F)

Sleep causes the calling process to be suspended for itimeseconds. The actual time can be up to
1 second less than itime due to granularity in system timekeeping.

FILES

/usr/lib/libU77.a

SEE ALSO
sleep(3)

Page 1 (901)0)

SQRT(3F) (UNIX 5.0) SQRT(3F)

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
complex exl, ex2

r2 = sqrt(rl)

dp2 = dsqrt(dpl)
dp2 = sqrt(dpl)

ex2 = csqrt(ex I)
ex2 = sqrt(ex I)

DESCRIPTION
Sqrt returns the square root of its argument, in the real, double-precision, or complex type of
its argument.

Dsqrt returns the double-precision square root of its double-precision arguement.

Gsqrt returns the complex square root of its complex argument.

Sqrt works with each type, but the other forms are available for programming clarity.

SEE ALSO
exp(3M).

Page 1 (9050)

STAT(3F) (bsd4.2) STAT(3F)

NAME
stat, Is tat, fstat - get file status

SYNTAX
integer function stat (name, statb)
characier*(*) name
integer statb(12)

integer function lstat (name, statb)
characl.er*(*) name
integer statb(12)

integer function fstat (lunit, stat b)
integer statb(12)

DESCRIPTION

FILES

These routines return detailed information about a file. Stat and /stat return information about
file name; !stat returns information about the file associated with fortran logical unit /unt't. The
order and meaning of the information returned in array statb is as described for the structure
8tat under state 2). The "spare" values are not included.

The value of either function will be zero if successful; an error code otherwise.

/usr/lib/libU77.a

SEE ALSO
stat(2), access(3F), perror(3F), time(3F)

BUGS

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Pagel (9050)

SYSTEM(3F) (UNIX 5.0)

NAME
system - issue a shell command from Fortran

SYNTAX

eharacter*N c

call system(c)

DESCRIPTION

SYSTEM(3F)

System causes its character argument to be given to sh(l) as input, as if the string had been
typed at a terminal. The current process waits until the shell has completed.

SEE ALSO

sh(I), exec(2), system (3S).

Pagel (9050)

TAN(3F) (UNIX 5.0)

NAME
tan, dtan - Fortran tangent intrinsic function

SYNTAX

real rl, r2
double precision dpl, d.p2

r2 =tan(rl)

dp2 = dta.n(d.pl)
dp2 = tan(dpl)

DESCRIPTION
Tan returns the tangent of its argument, in the type of its argument.

Dtan returns the double-precision tangent of its double-precision argument.

TAN(3F)

Tan works with real or double-precision arguments, but Dtan is for programming clarity.

SEE ALSO
trig(3M) .

Page 1 (H050)

TANH(3F) (UNIX 5.0) TANH(3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 =ta.nh(rl)

dp2 = dtanh(dpl)
dp2 = ta.nh(dpl)

D ESCRIPTI ON
Tanh returns the hyperbolic tangent of its argument, in the type of its argument.

Dtanh returns the dou9.}e-precision hyperbolic tangent of its double precision argument.

Tanh works with realdr dooble-precision arguments, but dtanh is for programming clarity.

SEE ALSO
·sinh(3M).

Pagel (9050)

TIME(3F)' (bsd 4.2) TIME{3F)

NAME
time, ctime, !time, gmtime - return system time

SYNTAX

integer function time()

character*(*) function ctime (stime)
integer stime

subroutine ltime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION

FILES

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the
value of the UNIX system clock.

Ctime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No 'newline' or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as
GMT. The order and meaning of each element returned· in tarray is described under ctime(3).

/usr/lib/libU77.a

SEE ALSO
ctime(3), itime(3F), idate(3F)., fdate(3F)

Page 1 (9050)

TTYNAM(3F) (bsd 4.2) TTYNAM(3F)

NAME
ttynam, isatty - find name of a terminal port

SYNOPSIS
character.(.) function ttynam (Iunit)

logical function isatty (Iunit)

DESCRIPTION

FILES

Ttynam returns a blank padded path name of the terminal device associated with logical unit
lun-it.

[salty returns .true. if lun-it is associated with a terminal device, .false. otherwise.

/dev/*
/usr/lib/libU77.a

DIAGNOSTICS

Page 1

Ttynam returns an empty string (all blanks) if /un-it is not associated with a terminal device in
directory • /dev'.

(9(50)

UNLINK{3F)

NAME
unlink - remove a directory entry

SYNTAX

integer function unlink (name)
character*(*) name

DESCRIPTION

(bsd 4.2) UNLINK{3F)

Unh"nk causes the directory entry specified by pathname name to be removed. If this was the
last link to the file, the contents of the file are lost. The returned value will be zero if success
ful; a system error code otherwise.

FILES

/usr /lib/libU77.a

SEE ALSO
unlink(2), link(3F), filsys(5), perror(3F)

BUGS

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Page 1 (U050)

WAIT(3F) (bsd 4.2) WAIT(3F)

NAME
wait - wait for a process to terminate

SYNTAX
integer function wait (status)
integer status

DESCRIPTION

FILES

Wait causes its caller to be suspended until a signal is received or one of its child processes ter
minates. If any child has terminated since the last wait, return is immediate; if there are no
children, return is immediate with an error code.

If the returned value is positive, it is the process ID of the child and status is its termination
status (see wait(2)). If the returned value is negative, it is the negation of a system error code.

/usr/lib/libU77.a

SEE ALSO

wait(2), signal(3F), kill(3F), perror(3F)

Page 1 (9050)

RATFOR -A Preprocessor for a Rational FORTRAN

This document is based on a paper by Brian W.
Kernighan of Bell Laboratories. It supplements
the ratfor(1) pages of the ROS Reference
Manual (gOIO).

1. INlliODUanON

Although often considered clumsy, FOR
TRAN is the closest thing to a universal pro
gramming language. FORTRAN is often the
most "efficient" language available, particularly
for programs requiring much computation. With
care, it is possible to write truly portable FOR
TRAN programs[1] .

FORTRAN's worst deficiency may be in
the control flow statements - conditional
branches and loops - which express the logic of
the program. The conditional statements in
FORTRAN are primitive. The Arithmetic IF

forces the user into at least two statement
numbers and two (implied) GOTO'S; it leads to
unintelligible code, and is eschewed by good pro
grammers. The Logical IF is better, in that the
test part can be stated clearly, but hopelessly res
trictive because the statement that follows the IF

can only be one FORTRAN statement (with
some further restrictions!). And of course there
can be no ELSE part to a FORTRAN IF: there is
no way to specify an alternative action if the IF is
not satisfied.

The FORTRAN DO restricts the user to
going forward in an arithmetic progression. It is
fine for" 1 to N in steps of 1 (or 2 or ...)", but
there is no direct way to go backwards, or even
(in ANSI FORTRAN[2]) to go from 1 to N-l.
And of course the DO is useless if one's problem
doesn't map into an arithmetic progression.

The result of these failings is that FOR
TRAN programs must be written with numerous
labels and branches. The resulting code is partic
ularly difficult to read and understand, and thus
hard to debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratror. (The preprocessor idea is of course not
new, and preprocessors for FORTRAN are espe
cially popular today. A recent listing [3] of
preprocessors shows more than 50, of which at
least half a dozen are widely available.)

-1-

2. LANGUAGE DESCRIPTION

Design

Ratfor attempt'5 to retain the merits of
FORTRAN (universality, portability, efficiency)
while hiding the worst FORTRAN inadequacies.
The language is FORTRAN except for two
aspects. First, since control flow is central to any
program, regardless of the speCific application,
the primary task of Ratfor is to conceal this part
of FORTRAN from the user, by providing
decent control flow structures. These structures
are sufficient 'and comfortable for structured pro
gramming in the narrow sense of programming
without GOTO'S. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the "cosmetic" deficiencies
of FORTRAN, and thus provide a language
which is easier and more pleasant to read and
write.

Beyond these two aspects - control' flow
and cosmetics - Ratfor does nothing about the
host of other weaknesses of FORTRAN.
Although it would be straightforward to extend it
to provide character strings, for example, they
are not needed by everyone, and of course the
preprocessor would be harder to implement.
Throughou t, the design principle which has
determined what should be in Ratfor and what
should not has been Ratfor doesn't know any
FOR TRAN. Any language feature which would
require tha.t Ratfor really understand FORTRAN
has been omitted. We will return to this point in
the section on implementation.

(9050)

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor
mal description of the Ratfor language. The con
trol flow aspects will be quite familiar to readers
used to languages like Algol, PL/I, Pascal, etc.,
and the cosmetic changes are equally straightfor
ward, We shall concentrate on showing what the
language looks like.

Starement Grouping

FOR TRAN provides no way to group
statements together, short of making them into a
subroutine. The standard construction "if a con
dition is true, do this group of things," for
example,

-1-

Programmer's Guide

if (x > 100)
{call error("x> 100"); err = 1; return }

cannot be written directly in FORTRAN.
Instead a programmer is forced to translate this
relatively clear thought into murky FORTRAN,
by stating the negative condition and branching
around the group of statements:

10

if (x .le. 100) goto 10
call error(5hx > 100)
err = 1

return

When the program doesn't work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces { and }.
This is true throughout the language: wherever a
single Rattor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have
FORTRAN meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character .. >" is clearer than ".GT.", so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many FOR
TRAN compilers permit character strings in
quotes (like "x> 100"), quotes are not allowed in
ANSI FORTRAN, so Rattor converts it into the
right number of H's: computers count better
than people do.

Rattor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi
colons. The example above could also be written
as

if (x > 100) {

}

call error("x > 100")
err = 1
return

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
ir is a single statement (Rattor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

RATFOR

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Rattor continues lines when it seems
obvious that they are not yet done. (The con
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The "else" Clause

Rattor provides an else statement to han
dle the construction "if a condition is true, do
this thing, otherwise do that thing."

if (a <= b)
{sw = 0; write(6, 1) a, b }

else
{sw = 1; write(6, 1) b, a}

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The FORTRAN equivalent of this code is
circuitous indeed:

if (a .gt. b) goto 10
sw = 0
write(6, 1) a, b
goto 20

10 sw = 1

write(6, 1) b, a
20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla
tion. To understand the FORTRAN version,
one must scan the entire program to make sure
that no other statement branches to statements
10 or 20 before one knows that indeed this is an
ir-else construction. With the Rattor version,
there is no question about how one gets to the
parts of the statement. The it-else is a single
unit, which can be read, understood, and ignored
if not relevant. The program says what it means.

As before, if the statement following an if
or an else is a Single statement, no braces are
needed:

-2- (9050) -2-

Programmer's Guide

if(a<=b)
sw = 0

else
sw = 1

The syntax of the if statement is

if (legal FOR TRAN condition)
R atfor statement

else
Ratfor statement

where the else part is optional. The legal FOR
TRAN condition is anything that can legally go
into a FORTRAN Logical IF. Ratfor does not
check this clause, since it does not know enough
FOR TRAN to know what is permitted. The R at
for statement is any Ratfor or FORTRAN state
men t, or any collection of them in braces.

Nested if's

Since the statement that follows an ir or an
else can be any Ratfor statement, this leads
immediately to the possibility of another ir or
else. As a useful example, consider this problem:
the variable r is to be set to - 1 if x is less than
zero, to + 1 if x is greater than 100, and to 0

otherwise. Then in Ratfor, we write

if(x<O)
f =-1

else if (x > 100)

f = + 1
else

f=O

Here the statement after the first else is another
ir-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver
sion written in straight FORTRAN will neces
sarily be indirect because FOR TRAN does not
let you say what you mean. And as always,
clever shortcuts may turn out to be too clever to
understand a year from now.

Following an else with an if is one way to
write a mUlti-way branch in Ratfor. In general
the structure

if (...)

else if (...)

else if (...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Rattor also provides
a switch statement which does the same job in

-3-

RATFOR

certain speCial cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is fol
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
"default" case, where none of the other condi
tions apply. If there is no default action, this
final else part is omitted:

if (x < 0)

x=o
else if (x > 100)

x = 100

ir-else ambiguity

There. is one thing to notice about compli
cated structures involving nested if's and else's.
Consider

(9050)

if (x > 0)
if (y > 0)

write(6, 1) x, Y
else

write(6, 2) Y

There are two if's and only one else. Which ir
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else'ed if. Thus in this case,
the else goes with the inner if, as we have indi
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

if (x > 0) {
if (y > 0)

write(6, 1) x, Y

else
write(6, 2) Y

}

which does not change the meaning, but leaves
no doubt in the reader's mind. If we want the
other asSOCiation, we must write

if (x > 0) {
if (y > 0)

write(6, 1) x, Y
}
else

write(6, 2) Y

-3-

Programmer's Guide

The "switch" Statement

The switch statement provides a clean way
to express mUlti-way branches which branch on
the value of some integer-valued expression.
The syntaxis

switch (expression) {

}

case exprl :
statements

case expr2, expr9 :
statements

default:
statements

Each case is followed by a list of comma
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn until
one matches, at which time the statements fol
lowing that case are executed. If no cases match
expression, and there is a default section, the
statements with it are done; if there is no
default, nothing is done. In all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behaVior is not the same as the C switch.)

The "do" Statement

The do statement in Ratfor is quite similar
to the DO statement in FORTRAN, except that it
uses no statement number. The statement
n urn ber, after all, serves only to mark the end of
the DO, and this can be done just as easily with
braces. Thus

do i = I, n {

}

xCi) = 0.0

YCi)=O.O
z(i) = 0.0

is the same as

10

do 10 i = I, n
xCi) = 0.0
YCi) = 0.0

z(i) = 0.0
continue

The syntax is:

do legal-FOR TRAN-DO-text
R at/or statement

The part that follows the keyword do has to be
something that can legally go into a FORTRAN
DO statement. Thus if a local version of FOR
TRAN allows DO limits to be expressions (which

-4-

RATFOR

is not currently permitted in ANSI FORTRAN),
they can be used in a Ratfor do.

The Rat/or statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

do i = I, n
xCi) = 0.0

Slightly more complicated,

do i = I, n
do j = I, n

m(i, j) = 0

sets the entire array m to zero, and

do i = I, n
do j = I, n

if (i < j)
m(i, j) = -1

else if (i == j)
m(i, j) = 0

else
m(i, j) = + 1

sets the upper triangle of m to - I, the diagonal
to zero, and the lower triangle to + 1. (The
operator == is "equals", that is, ".EQ.".) In
each case, the statement that follows the do is
logically a single statement, even though compli
cated, and thus needs no braces.

"break" and "next"

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example, this code skips over negative
values in an array:

(9050)

do i = I, n {

}

if (x(i) < 0.0)

next
process positive element

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically, mUlti-

-4-

Programmer's Guide

level break's and next's are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The "while" Statement

One of the problems with the FORTRAN
DO statement is that it genen:i.lly insists upon
being done once, regardless of its limits. If a
loop begins

DO 1= 2, 1

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

if (j <= k)
do i = j, k {

}

but this has to be a conscious act, and is· often
overlooked by programmers.

A more serious problem with the DO state
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
FORTRAN DO, it is that much harder to write
and understand.

To overcome these difficulties, Ratfor pro
vides a while statement, which is simply a loop:
"while some condition is true, repeat this group
of statements". It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two term ination criteria.

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - X**3/3! + x**5/5! -

sin ~ x
term = x

i=3
while (abs(term) >e & i< 100) {

}

term = -term * x**2 / float(i*(i-1))
sin = sin + term
i=i+ 2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be made

-5-

RATFOR

to compute x**3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears - the code works at one of its boun
daries. (The test i<100 is the other boundary
making sure the routine stops after some max
imum number of iterations.)

As an aside, a sharp character "#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line - one can make mar
ginal remarks, which is not possible with
FORTRAN's "C in column I" convention.
Blank lines are also permitted anywhere (they
are not in FORTRAN); they should be used to
emphasize the natural divisions of a program.

(9050)

The syntax of the while statement is

while (legal FOR TRAN condition)
Ratlor statement

As with the if, legal FOR TRAN condition is
something that can go into a FORTRAN Logical
IF, and R atlor statement is a single statement,
which may be multiple statements in braces.

The while encourages a style of coding not
normally practiced by FORTRAN programmers.
For example, suppose nextch is a function which
returns the next input character both as a func
tion value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in FORTRAN as

100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers (and a few
compilers) believe this line is illegal. The
language at one's disposal strongly influences
how one thinks about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop
body from reason-for-Iooping a step further than
the while. A for statement allows explicit initiali
zation and increment steps as part of the state
ment. For example, a DO loop is just

for (i = 1; i <= n; i = i + 1) ...

This is equivalent to

-5-

Programmer's Guide

i = 1

while (i <= n) {

i = i + 1

}

The initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ
ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+ 2) {
term = - term * x **2 / float(i*(i- 1»
sin = sin + term

}

The syntax of the for statement is

for (init; condition; increment)
R atfor statement

init is any single FORTRAN statement, which
gets done once before the loop begins. increment
is any single FORTRAN statement, which gets
done at the end of each pass through the loop,
before the test. condition is again anything that is
legal in a logical IF. Any of init, condition, and
increment may be omitted, although the semi
colons must always be present. A non-existent
condition is treated as always true, so for{;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with IF'S and GOTO'S.

For example, here is a backwards DO loop to find
the last non- blank character on a card:

for (i = 80; i > 0; i = i-I)
if (card(i) ! = blank)

break

("!=" is the same as ".NE."). The code scans
the columns from 80 through to 1. If a non
blank is found, the loop is immediately broken.
(break and next work in for's and while's just as
in do's). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular FORTRAN DO, since the loop must go
forward, and we must explicitly set up proper
conditions when we fall out of the loop. (For
getting this is a common error.) Thus:

-6-

DO 10 J = 1, 80
I = 81 - J

RATFOR

IF (CARD(I) .NE. BLANK) GO TO 11

10 CONTINUE
1=0

11

The version that uses the for handles the termi
nation condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding up elements
from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i»

sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The "repeat-until" statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ratfor statement

until (legal FOR TRAN condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

(9050)

As a matter of observed fact[8], the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre
ment step of a for.

-6-

Programmer's Guide

"return" Statement

The standard FORTRAN mechanism for
returning a value from a function uses the name
of the fUIlction as a variable which can be
assigned to; the last value stored in it is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value - 1.

equal _ compare strl to str2;
return 1 if equal, a if not

integer function equal(strl, str2)
integer strl(100), str2(100)
integer i

says

for (i = 1; strl(i) == str2(i); i = i + 1)
if (strl(i) == - 1) {

}
equal = a
return
end

equal = 1
return

In many languages (e.g., PL/I) one instead

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement - in a function F, return(expression)
is equivalent to

{ F = expression; return }

For example, here is equal again:

equal _ compare strl to str2;
return 1 if equal, a if not

integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == - 1)

return(0)
end

return(1)

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Glsmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accord
ingly, Rattor provides a number of cosmetic
facilities which may be used to make programs

-7-

RATl,'OR

more readable.

Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make
some reasonable guess about whether the state
ment ends there. Lines ending with any of the
characters

+ *
are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all
numeric field is assumed to be a FORTRAN
label, and placed in columns 1-5 upon output.
Thus

(9050)

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(5hhello)

Transla.tion Services

Text enclosed in matching single or double
quotes is converted to nH ••• but is otherwise
unaltered (except for formatting - it may get
split across card boundaries during the reformat
ting process) . Within quoted strings, the
backslash ,\, serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

"\\\'"
is a string containing a backslash and an apos
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character '%'
is left absolutely unaltered except for stripping
off the '%' and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (like an existing FOR TRAN pro
gram). Use '%' only for ordinary statements,
not for the condition parts of if, while, ek., or
the output may come out in an unexpected place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a '%'.

-7-

Programmer~s Guide

. eq .

> . gt.

< .It.
&, . and.

. not.

!=
>=

.ne .

.ge.
<= .Ie.
I .or .

.not .

In addition, the following translations are pro
vided for input devices with restricted character
sets.

[
$(

{
{

"define" Statement

I
$)

}
}

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define eOLS 50

dimension a{ROWS), b(ROWS, eOLS)

if (i > ROWS I j >" eOLS)

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym
bolic parameters for most constants, to help
make clear the function of what would otherwise
be mysteriOUS numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

define
define
define
define

YES
NO
EOS
ARB

1

o
-1

100

equal _ compare strl to str2;
return YES if equal, NO if not

integer function equal(str1, str2)
integer str1(ARB), str2(ARB)
integer i

for (i = 1; strl(i) == str2(i); i = i + 1)
if (strl(i) == EOS)

return(YES)
return(NO)
end

"include" Statement

The statement

include file

RATFOR

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed:

subroutine x
include commonblocks

end

suroutine y
include commonblocks

end

This ensures that all copies of the COMMON

blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Rattor catches certain syntax errors, such
as miSSing braces, else clauses without an it, and
most errors involving miSSing parentheses in
statements. Beyond that, since Rattor knows no
FORTRAN, any errors you make will be
reported by the FORTRAN compiler, so you will
from time to time have to relate a FORTRAN
diagnostic back to the Ratfor source.

Keywords are reserved - using if, else,
etc., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don't use the
Arithmetic IF.

The FORTRAN nH convention is not
recognized anywhere by Ratfor; use quotes
instead.

3. IMPLEMENTATION

Rattor was originally written in C on the
UNIX operating system. The language is
specified by a context-free grammar and the
compiler constructed using the YACC compiler
compiler.

The Ratfor grammar is simple and straight
forward, being essentially

-8- (9050) -8-

Programmer's Guide

prog : stat
I prog stat

stat : if (...) stat
I if (...) stat else stat
I while (...) stat
I for (... ; ... ; ...) stat
I do ... stat
I repeat stat
I repeat stat until (...)
I switch (...) {case ... : prog ...

I return
I break
I next
I digits stat
I {prog }

default: prog }

I anything unrecognizable

The observation that Ratfor knows no FOR
TRAN follows directly from the rule that says a
statement is "anything unrecognizable". In fact
most of FORTRAN falls into this category, since
any statement that does not begin with one of
the keywords is by definition "unrecognizable."

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+ 1

are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition» goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if's, of course), the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+ 1

L continue

In this latter case, the code

L+ 1 continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if (i > 0) x = a

should be left alone, not converted into

-9-

RATFOR

if (.not. (i .gt. 0» goto 100
x=a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of "inefficiency" will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by'%'.

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.

C compilers are not as widely available as
FORTRAN, however, so there is also a Ratfor
written in itself and originally bootstrapped with
the C version. The Ratfor version was written
so as to translate into the portable subset of
FORTRAN described in [1], so it is portable,
having been run essentially without change on at
least twelve distinct machines. (The main res
trictions of the portable subset are: only one
character per machine word; subscripts in the
form c*v± c; avoiding expressions in places like
DO loops; consistency in subroutine argument
usage, and in COMMON declarations. Ratfor itself
will not gratuitously generate non-standard FOR
TRAN.)

(9050)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of FORTRAN. This
expansion ratio is somewhat higher than average,
since the compiled code contains unnecessary
occurrences of COMMON declarations. The exe
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other parts of the transla
tion process is largely irrelevant.

4. EXPERIENCE

Gxxl Things

"It's so much better than FORTRAN" is
the most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosm etics converts FORTRAN from a bad
language into quite a reasonable one, assuming
that FORTRAN data structures are adequate for
the task at hand.

-9-

Programmer's Guide

Although there are no quantitative results,
users feel that coding in Rattor is at least twice
as fast as in FORTRAN. More important,
debugging and subsequent revision are much fas
ter than in FORTRAN. Partly this is simply
because the code can be read. The looping state
ments which test at the top instead of the bottom
seem to eliminate or at least reduce the
occurrence of a wide class of boundary errors.
And of course it is easy to do structured pro
gramming in Ratfor; this self-discipline also con
tributes markedly to reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of FORTRAN's clerical detail and
rigid input format, it is easy to write code that is
readable, even esthetically pleasing. For exam
ple, here is a Rattor implementation of the linear
table search discussed by Knuth [7]:

A(m+l) =X
for (i = 1; A(i) != x; i = i + 1)

if (i > m) {
m=i
B(i) = 1

}
else

B(i) = B(i) + 1

A large corpus (5400 lines) of Rattor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
FORTRAN syntax errors are not detected by
Rattor but by the local FORTRAN compiler.
The compiler then prints a message in terms of
the generated FORTRAN, and in a few cases
this may be difficult to relate back to the
offending Rattor line, especially if the implemen
tation conceals the generated FORTRAN. This
problem could be dealt with by tagging each gen
erated line with some indication of the source
line that created it, but this is inherently
implementation-dependent, so no action has yet
been taken. Error message interpretation is actu
ally not so arduous as might be thought. Since
Rattor generates no variables, only a simple pat
tern of IF'S and GOTO'S, data-related errors like
missing DIMENSION statements are easy to find in
the FORTRAN. Furthermore, there has been a
steady improvement in Ratfor's ability to catch
trivial syntactic errors like unbalanced
parentheses and quotes.

There are a number of implementation

-10-

RATFOR

weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved.
This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic
IF. A few standard FORTRAN constructions are
not accepted by Rattor, and this is perceived as a
problem by users wit.h a large corpus of existing
FORTRAN programs. Protecting every line with
a '%' is not really a complete solution,' although
it serves as a stop-gap. The best long-term solu
tion is provided by the program Struct [g], which
converts arbitrary FORTRAN programs into Rat
for.

Users who export programs often complain
that the generated FORTRAN is "unreadable"
because it is not tastefully formatted and con
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Rattor now has
an option to copy Rattor comments in to the gen
erated FORTRAN), but it has always seemed
that effort is better spent on the input language
than on the output esthetics.

One final problem is partly attributable to
success - since Rattor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

5. OONCLUSIONS

Rattor demonstrates that with modest
effort it is possible to convert FORTRAN from a
bad language into quite a good one. A prepro
cessor is clearly a useful way to extend or
ameliorate the facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possi
ble for a given effort. One must avoid throwing
in "features" - things which the user may trivi
ally construct within the eXisting framework.

(9050)

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pOintless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that refiects his thoughts.
It is much more important that the language pro
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.

AcknowledgementB

C. A. R. Hoare once said that "One thing
[the language designer] should not do is to
include untried ideas of his own." Rattor follows
this precept very closely - everything in it has

-10-

Programmer's Guide

been stolen from someone else. Most of the
control flow structures are taken directly from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran[10].

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He
also translated the C parse-tables and YACC

parser into FORTRAN for the first Ratfor ver
sion of Rattor.

References

[1] B. G. Ryder, "The PFORT Verifier,"
Software-Practice f3 Experience, October
1974.

[2] American National Standard FORTRAN.

[3J

American National Standards Institute,
New York, 1966.

For-word: FORTRAN Development
Newsletter, August 1975.

[4J B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall, Inc.,
1978.

[5J D. M. Ritchie and K. L. Thompson, "The
UNIX Time-sharing System." CACM, July
1974.

[6] S. C. Johnson, "YACC - Yet Another
Compiler-Compiler." Belt Laboratories
Computing Science Technical Report #32,
1978.

[7] D. E. Knuth, "Structured Programming
with goto Statements." Computing Surveys,
December 1974.

[8J B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, 1976.

[9] B. S. Baker, "Struct - A Program which
Structures FORTRAN", Bell Laboratories
internal memorandum, December 1975.

[10J A. D. Hall, "The Altran System for
Rational Function Manipulation - A Sur
vey." CACM, August 1971.

- 11-

RATFOR

(9050) -11-

Ridge C Programming Notes

This document was previously Ridge C Programming Notes, Second Edition: 9014.-B (FEB 84). It is
now a section of the ROS Programmer~s Guide, part 9050.

When programming in C on the Ridge 32, use this document to supplement the information found
in: Kernighan & Ritchie, The C Programming Language, Prentice Hall, Inc., 1978.

CHARAaJERISnCS OF C ON THE RIDGE 32

Data S1zuctures

The C compiler uses the following Ridge 32 data types to represent data:

C type data type bits

char character (unsigned) 8
int integer (signed) 32
unsigned int integer (unsigned) 32
unsigned short int short integer (unsigned) 16
short int short integer (signed) 16
unsigned long int long integer (unsigned) 32
long int long integer (signed) 32
float floating point 32 *
double double precision 64 *

* IEEE 754 standard representation of 32- and 64-bit floating point numbers

Ridge C data structures start on a 4-byte (I-word) boundary, except any structure containing a
double-precision number starts on an 8-byte (2-word) boundary. Most structures are an integral
number of 32-bit words in length. Structures that are members of other structures, however, start on
a 1-, 2-, 4-, or 8-byte boundary corresponding to the size of the largest type within. Therefore,
member structures that contain only I-byte chars or 2-byte shorts will not be an integral number of
32-bit words in length.

To load a signed short integer into a register, both LOAD and SEH (sign-extend halfword) are
required. All other data types can be loaded with one LOAD instruction.

(9050) -1-

Programmer s Guide C Notes

Bit Handling

Bit fields are considered unsigned. Bit fields are assigned left to right.

Up to 31 bits can be shifted by the shift operations. Left shifts are performed with logical shift
instructions. Right shifts are performed with arithmetic shift instructions, except in the case of a right
shift on an unsigned target, in which case the right shift is logical.

Variable Names

Ridge C variables contain any number of characters, all of which are significant. When passed to the
linker, an underscore" _" is added to the front of the name.

Thus, "ABCdef" becomes "_ABCdef". The following entry should be added to the table at the bottom
of page 179 in the standard text:

Ridge any number of characters, 2 cases

Although the compiler accepts any number of characters, the C preprocessor cpp(1) restricts #define
variable names to 128 characters.

Void Data Type

The void data type declares that a function has no return value, or that the return value is ignored. It
may be used in a cast or in a function declaration (unless the function returns a structure). Example:

void func ()

(void) prin tf ("hi");

/* declares a function */
/* with no return value */

/* indicates return value */
/* should be ignored */

ASM Statement Type

Asm is a statement type which allows the inclUSion of one line of up to 50 characters of Ridge
Assembler code in the C program. Multiple ASM statements are allowed in a C program. Example:

asm ("P2 LOAD Rl, varl");
asm (" LOAD R2, var2");
asm (" EADD Rl, R2");

The syntax of the included assembly statements must conform to the rules in the R£dge Assembler
Reference Manual (part 9005).

Traps

-2-

ba"t of the
"trapword"

16
17
18
19
20

trap enabled
by setting b£t

integer overfiow
integer divide-by-zero
real overfiow
real underfiow
real divide-by-zero

(9050)

Programmer s Guide C Notes

See signal(2) in the Ridge Operating System Reference Manual for a discussion on enabling, disa
bling, and ignoring traps.

Order or Evaluation

The ROS C compiler pushes arguments onto the stack from lef.t to right, except that any nested func
tion calls are performed first (with the results of the nested calls left in temporary variables). Exam
ple:

fun(a, f(a=3»;

can be thought of as:

temp = f(a=3);
fun (a, temp);

If the variable "a" were initially equal to 5, the result of this bad programming practice would be:

fun (3, temp);

not

fun (5, f(5»;

as might have been expected.

structure Assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison,
have not been implemented.

Structures that are Passed as Arguments

Structures that are passed as arguments are passed by value. The caller pushes the structure onto the
stack, then calls the function which uses the stacked copy of the structure.

Functions Returning Structures

Functions returning structures are completely interruptable. The calling function places the address
and the length of a local structure return area in the stack frame. Upon exit, the called function
copies the structure which it is returning into this space.

Predefined Names

"ridge" and "unix" are pre-defined to the value "1" by the C preprocessor cpp(1).

(9050) -3-

Programmers Guide C Notes

Enumeration Type

There is a new data type analogous to the scalar type of Pascal. Add the following to the type
specifiers in the syntax on page 193 of the standard text:

with syntax:

enum-specijier

enu m-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
structrspecifier; it names a particular enumeration. For example:

enum color {chartreuse, burgundy, claret, winedark };

enum color .cp, col;

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase
by 1 as the declaration is read from left to right. An enumerator with = gives the associated
identifier the value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are
drawn from the same set as the ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, and lint(1) fiags type mismatches. In the Ridge implementation, all enumeration variables are
treated as if they were into

-4- (9050)

Programmers Guide

C RUNTIME ENVIRONMENT

Code and Data Segments

The separate data and code segments are arranged as follows:

o«\"TA SEIMNr
F'F'FF'F'F'F'F' \- _ \

\ \

FFFFFOOO\ argUITEnt page \

\------------------------ \
F'F'FFEOOO\ environrrEnt page \

\------------------------ \
FFFFOoOO\user nnnitor CanD. page \

\------------------------ \

\ 0 \
\ - - - - - - - - - - --\

+-->\ environrrent pointers \

\ \------------------------
\ \ 0

\ 1 - - - - - - - - - - - -
+---->\ argUITEnt pointers

\ \ 1------------------------
\ +--- 1 env
\ 1- ----

+- - - - - 1 ar gv
1 - - - - -

\ argc
\- ---------
1

1 initial
\ stack rrSITE
\

\------------------------
\

\

\

\ expansion area
\

\ \

\ \

\------------------------ \

\ user-allocable space \
\ (via SERK and ERK \
\ system calls) \

\------------------------ \

\ static \
\ uninitialized \
1 data \

1------------------------ 1
1 sta.tic \
1 initialized 1

1 da.ta 1

000000001-----------------------_ 1

/lib/crtO.o, which is
linked at the beginning
or every C progr~ gets
the arguments and en-
vi ronrrent frmn the user
rrDnitor process, builds
the argument and envi
rOnrrEnt pointers,
stacks the first three
progrmn pararreters (env,
argv, and argc) , builds
the initial stack rrSITE,
and initializes ~4 and
~5. /lib/crtO.o also
rrDves the data initial
izers frmn the code seg-
DEnt into the data seg
DEnt and clears the
static unitialized data
area in the data seg
DEnt. /lib/~rtO.o is
the version of crtO used
when profiling.

~5 <IDE SEIMNr
highl--------------------- \

DErrDryl 1

1 initialized data 1

1 1

1--------------------- 1
~4 1 \

\ 1

1 code 1

1 \

1 1

1 1

\ \

1 1

1--------------------- 1
1 1
1 code \
\ r i lei
\ header 1

\ [see a. out(4)] 1

\ \

000000001--------------------- 1

(9050)

C Notes

-5-

Programmers Guide

Use of ~neral Registers

RO through R5 - scratch registers
R6 through R13 - register variables
R14 - top-of-stack pointer
R15 - current frame pointer

Stack Frames

C Notes

With each procedure call, the current runtime environment is recorded and pushed onto the data
stack in a structure called the stack frame. The stack frame is arranged as follows:

1-------------------------- 1
1 1
1 parwrneters 1 Parwrneters are aligned on
1 panm3 1 RI5 + 40 8-byte boundaries.
1 pam:tl 1 RI5 + 32
1 parmJ. 1 RI5 + 24

1-------------------------- 1
1 return structure length 1 RI5 + 20
1 return structure address 1 RI5 + 16
l#of parll'ti passed to procdr 1 RI5 + 12 (i f cc - g opt i on is used)
1 old register 15 1 RI5 + 8
1 (unused) 1 RI5 + 4
1 return address RI5

1--------------------------
1 R6
1 register R7
1 save R8
1 area R9
1 RIO
1 RII
1 RI2
1 RI3

1--------------------------
1

1

1

1

1

1

varl
var2
var3
var4
var5

RI5
RI5
RI5
RI5
RI5
RI5
R15
RI5

- 4
- 8
-12
-16
-20
-24
-28
-32

R15 -36
RI5 -40
RI5 -44

1 1 RI4 (1tP-<F-STAQ()

1-------------------------- 1

-6- (9050)

Programmer s Guide C Notes

the 8-byte C paron

+- --------.- ---------+ +-------------------+
hi , I , , , hi , , , I ,

+----+----+----+----+ +----+----+----+----+
, , , ,0000!low , I NTEGER 'low

+-------------------+ +-------------------+
+-------------------+ +-------------------+

hi , , , , , , , , , ,
+- ---+- ---+- ---+- ---+ +- - - D 0 U B L E - - -+
, , 'SIDU !low , , , , ,

+-------------------+ +-------------------+

(9050) -7-

Programmers Guide C Notes

A stack of environments, therefore, has the form:

n\.TA SHMNr
FfFFFfff'I-------------------------- (high ITEITDry)

1

FFFFFooOI argument page

1--------------------------
FFFFEOoOI environrrent page

1--------------------------
FFFfiDOOO 1 user ITDni tor page

1=========
1

1 parmreters

1--------------------------
1 return structure length
1 return structure address

1 I#of parrrs passed to procdr
+-- 1 old register 15

1 (unused)
+->1 return address

1 1--------------------------
1 1 register save area

1 1--------------------------
1 1 locals and temporaries

1 1=================
1 1

1 1 parmre te rs

1 1--------------------------
1 1 return structure length
1 1 return structure address
1 l#of parrrs passed to procdr

+-- 1 old register 15
1 (unused)

+->1 return address

1 1--------------------------
1 1 register save area

1 1--------------------------
1 1 locals and temporar i es

1 1=================
1 1

1 1 parmreters

1 1--------------------------
1 1 return structure length
1 1 return structure address
1 I#of parrrs passed to procdr

+-- 1 old register 15
1 (unused)
1 return address

1--------------------------
1 register save area

1--------------------------
1 locals and temporaries

1 (low ITEITDry)

-8- (9050)

Programmer'S Guide C Notes

Up to eight variables per function can be defined to reside in a register. "Floats" and "doubles", how
ever, are defined as regular stack variables even if the programmer tries to define them as register
variables. If more than 8 variables are defined as register variables, only the first eight will actually be
stored in registers; the excess will become regular stack variables. When a procedure is called and the
current environment is stored on the stack frame, the registers containing variables also must be
stored. One of two conventions apply to the method of storing the register variables.

By default, C procedure calls are compiled as follows:

regreturn:

regsave:

store
store
ID>ve
laddr

Rll,R14,O
R15,R14,8
R15,R14
R14,R14,x

br regs ave

... code of the procedure ...

ID>ve
load
load
ret

R14,R15
R15,R14,8
Rll,R14,O
Rll,Rll

store R13,R15,-32
store R12,R15,-28
br regreturn

(9050)

;Store return address in R14.
;Save previous R15 in (R14 + 8).
;Point R15 to new stack frame.
;Add x to the top-of-stack pointer,
;where x equals number of bytes
;to represent new environment.
;Now the registers must be saved.

;Now it't time to return to caller.
;Restore previous Top-Of-Stack pointer.

. ;Restore previous frame pointer.
;Load Rll with return address.
;Return to calling function.

;Save register variables in register-save area
;Save another register variable.

-9-

Ridge Pascal
Reference Manual

TABLE of CONTENTS

PREFACE •• 5

SECTION 1: RIDGE PASCAL LANGUAGE NOTES •••••••••••• • • • • • • • • • • • • • • • • • 7
Introduction ••• 7
Listing of Differences ••••••••••••••••••••••••••••••••••••••• 9

Case Statements •••••••••••••••••••••••••••••••••••••• 9
Character Synonyms ••••••••••••••••••••••••••••••••••• 9
Comments. ••••••••••••••• 9
Compiler Options •••••••••••••••••••••••••••••••••••• lO
Declarations..................... • •••••••••••••••• 12
External Procedures and Functions •• • •• 12
Files ••
GOTO Statements •••••••••••••••••••••••••••••••••

• •• 13
•••• 15

Identifiers ••• 15
Mixed Mode Expressions •••••••••••••••••••••••••••••• lS
Numbers ••• 15
PACKED Type s. ••• 1 7
PACK and UNPACK....................... • ••••••••••• 17
Procedures and Functions as Parameters •••••••••••••• 17
Reserved Words •••••••••••••••••••••••••••••••••••••• 17
String Literals ••••••••••••••••••••••••••••••••••••• 17
str ings ••• 1 7
Types •••••••••••• ••• 19

SECTION 2: THE PASCAL RUNTIME ENVIRONMENT............ • •••••••••••• 21
Introduction •• 21
Data Segment Overview ••••••••••••••••••••••••••••••••••••••• 23

Data Segment Memory Diagrams •••••••••••••••••••••••• 23
Absolute Mode ••••••••••••••••••••••••••••••• 23
Relocatable Mode..... •••••••••• • •••••••• 25

Stack Diagrams............ •• •••• • •••••• 27
The Mark Stack Block •••••••••••••••••••••••••••••••• 30
The Display ••• 31
The Heap •• 33

Code Segment Overview ••••••••••••••••••••••••••••••••••••••• 33
Code Segment Memory Diagrams •••••••••••••••••••••••• 33
Preamble and Postamble Code ••••••••••••••••••••••••• 36

Procedure/Function Entry Code ••••••••••••••• 37
Procedure/Function Exit Code •••••••••••••••• 38
Program Entry Code..................... • •• 40
Program Exit Code ••••••••••••••••••••••••••• 41

Miscellaneous ••• 42
Register Use Conventions •••••••••••••••••••••••••••• 42
Procedure/Function Calling Conventions •••••••••••••• 42
Data Representation and Alignment Rules ••••••••••••• 43

(continued)

This manual used to be part 9003.
It is now incorporated into the ROS Programmer's Guide (9050).

-1, 2, 3-

Ridge Pascal Reference Manual

SECT ION 3: AN EXAMPLE ••• 47
Introduction •• 47
Command File •• 48
Pascal Source Listing ••••••••••••••••••••••••••••••••••••••• 48
Assembler Listing of Main Program ••••••••••••••••••••••••••• 49
Assembler Listing of Called Routines •••••••••••••••••••••••• 54

copyright 1983 Ridge Computers

-4-

Ridge Pascal Reference Manual

PREFACE

This manual documents the Ridge Pascal language, which is based on
the standard language as defined by Jensen and Wirth in the "Pascal
User Manual and Report." The Ridge language shares various
modifications to the base language, including traditional
improvements to case statements, character synonyms, comments, and
declarations, with other Pascal implementations. These and other
changes arose from the desire for performance trade-offs and the
need to meet implementation requirements, creating a language
suitable for production.

Since a knowledge of Pascal on the part of the reader is assumed,
the differences between the Jensen-Wirth language and the Ridge
language are documented in this manual but not the Pascal language
in its entirety.

This manual is divided into three sections:

• Ridge Pascal Language Notes

• The Pascal Runtime Environment

• An Example

The first section describes Ridge Pascal by listing the differences
between it and the Jensen-Wirth language. Topics are arranged
alphabetically.

The second section describes the Pascal runtime environment. Much
of this information is pictorial: memory diagrams are provided that
illustrate the relationships among the various components of a
Pascal user process running under the Ridge Operating System (ROS).

The third section gives an example of how to write an assembly
language routine that can be called by a Pascal program.

-5-

-6-

Ridge Pascal Reference Manual

SECTION 1

RIDGE PASCAL LANGUAGE NOTES

INTRODUCTION

This section describes the Ridge Pascal language by citing the
differences between it and standard Pascal (as defined in Kathleen
Jensen and Nicklaus Wirth's "Pascal User Manual and Report").

The reader is referred to the Jensen/Wirth book, second edition,
Springer-Verlag, 1975, for a detailed discussion of the base
language.

The following list gives an overview of where Ridge Pascal differs
from standard Pascal. The list is in alphabetical order for easy
reference, and each item is explained in detail in the remainder of
this section.

• Case Statements

• Character Synonyms

• Comments

• Compiler Options

• Declarations

• External Procedures and Functions

• Files

• EOF and EOLN

• File Manipulations

• OpenFile

• CloseFile

• FileStatus

• File Types

-7-

Ridge Pascal Reference Manual

• GET

• PUT

• READ

• RESET

• REWRITE

• Standard Predefined Files

• WRITE

• GOTO Statements

• Identifiers

• Mixed Mode Expressions

• Numbers

• Integers

• Reals

• PACKED Types

• PACK and UNPACK

• Procedures and Functions as Parameters

• Reserved Words

• String Literals

• Strings

• How to use

• NewString

• Types

-8-

Ridge Pascal Reference Manual

LISTING OF DIFFERENCES

Case Statements

In standard Pascal, if there is no case label equal to the value of
the case expression, the action of the case statement is undefined.
In Ridge Pascal, however, the statement immediately following the
case statement is selected for execution.

The case statement has an optional "otherwise" case label. The
reserved word "otherwise" may be affixed to the last case
alternative rather than a case label, causing control to be
transferred to this last alternative in the event of no prior match
with other case labels.

Character Synonyms

The following character synonyms are recognized by the Ridge Pascal
compiler:

• "I" can be substituted for "or".

• "&" can be sUbstituted for "and".

• "-" can be substituted for "not".

Comments

In Ridge Pascal, the symbols "(*" and "*)" may be used to delimit
comments; the standard symbols "In and "}" may also be used.
Comment delimiters must be matched; that is, if a command starts
with "In, then it must end with "}"; if it starts with "(*", then
it must end with "*)". Comments having the the same delimiters may
not be nested. All text appearing between delimiters is ignored by
the compiler; however, if the first symbol after the first
delimiter is "$", the comment is interpreted as a compiler option
(see Compiler Options).

-9-

Ridge Pascal Reference Manual

Compiler Options

Compiler options are communicated to the compiler via special
comments (see Comments). The following compiler options are
recognized by the Ridge Pascal compiler when they follow a "$" at
the beginning of a comment:

• The "E" (eject) option controls pagination of the source
listing. The effect is that the next source line will
appear at the top of a new page.

• The "G" option controls the starting address of the
global outer block variables. This option must appear
before the "program" declaration. The "G" option implies
absolute addressing as opposed to relocatable addressing
(see the "R" option).

• The form of the "G" option is "G<n)" where
"<n)" is a decimal integer. For example,
"Gl6384" would cause the compiler to start
allocating global variables at 16K.

• The default is "G4096".

• The "L" option is for source listing control.
option may appear anywhere in the source program.

• "L+" turns the listing on.

• "L-" turns the listing off.

• "L+" is the default.

This

• The "0" option instructs the compiler whether or not to
optimize the object code.

• "0+" produces optimized object code.

• "0-" produces unoptimized object code.

• "0+" is the default.

-10-

Ridge Pascal Reference Manual

• The UP" option controls the packing of data. It informs
the compiler that it should pack data closely, which
saves data space but increases execution time. See the
Runtime Environment section for information about the
layout of data and the effect of packing. This option
must appear before the "program" declaration.

• "P+" causes data to be tighty packed.

• "P_" causes nonpacking of data.

• "p+" is the default •

• The "R" option causes the compiler to generate code in
which the outer block variables are allocated in a
relocatable segment rather than being assigned to
absolute addresses. This option thus facilitates the
construction of a program consisting of a number of
separate compilations. With this type of construction,
the user will not be burdened with assigning starting
addresses for the separate compilations' outer block
variables since the linker will perform this task.

Accessing relocatable outer block variables generally
causes a slight performance decrease in comparison to
accessing absolute outer block variables. The reason for
the decrease is that an extra instruction must be
executed to determine the base of the separate
relocatable compilations' outer block variables.

The "R" option must appear before the "program"
declaration. Additionally, it is mutually exclusive with
the "G" (outer block variables starting address) and "S"
(string constant starting address) options. That is, if
the "R" is present, then neither a "G" nor US" option may
appear in the same compilation.

-11-

Ridge Pascal Reference Manual

• "R+" enables relocatable addressing of global
variables.

• "R-" disables relocatable addressing of global
variables, i.e., causes absolute addressing.

• "R-" is the default •

• The US" option controls the starting address from which
string constants will be allocated downwards (towards
lower addresses). The uSn option implies absolute
addressing as opposed to relocatable addressing (see the
"R" option). This option must appear before the
"program" declaration.

• The form of the "S" option is "S<n)" where
"<n)" is a decimal integer.

• "SO" is the default.

Declarations

LABEL, CONST, and TYPE declarations may appear in any order and may
be repeated. However, as in standard Pascal, they may not appear
after the first variable, procedure, or function declaration in the
current block.

External Procedures and Functions

The "external" attribute is supported for procedures and functions.
It is similar to the "forward" attribute in that it tells the
compiler that only a procedure heading appears at this point.
However, unlike the "forward" attribute which indicates that the
body will appear later in the compilation, the "external" attribute
indicates that the body has been compiled separately inside another
program and will not appear in this compilation. The name of the
"external" procedure will be passed on to the linker, which will
resolve the reference at link time.

The names of all procedures and functions are considered global and
may be referenced by other separately compiled programs.

-12-

Ridge Pascal Reference Manual

Files

• EOF(f) and EOLN(f). EOLN is defined as EOF or (f~ =
chr(13», where "chr(13)" is the ASCII carriage return.
Return characters are not, as in standard Pascal,
converted to blanks. Nor, unlike standard Pascal, is EOF
defined until after the first GET operation •

• File Initialization

All file variables except the predefined variables
"input", "output", and "stderr" must be explicitly
opened. There are three file manipulation routines for
this purpose, which, since they are not predefined, must
be declared as "external." For more information on these
routines, see the Ridge "Operating System Reference
Manual." The declarations for the routines are as
follows (the string type is described later):

Procedure OpenFile(
var f:Text ;
name:String ;
mode:Char

) ; External;
Function FileStatus(var f:Text):Integer;External;
Procedure CloseFile(var f:Text);External;

• The function of procedure "OpenFile" is to take
a Pascal file variable and bind it to the ROS
file indicated by the "name" argument. The
argument "mode" must be either "R" for read
access, "W" for write access, "A" for append
access (writing at the end of a file), or "U"
for update access (reading or writing).

• The function "FileStatus" returns the value
zero if no errors were encountered during any
input/output operation on the file; otherwise,
non-zero is returned.

• The function of procedure "CloseFile" is to
release the binding between the Pascal file
variable, "f", and the ROS file.

-13-

Ridge Pascal Reference Manual

• File Types. Only "Text" files (Text = File of Char) are
currently supported.

• GET must only be applied to open files, otherwise the
results are undefined. The Ridge Pascal GET differs from
standard Pascal in that the file buffer is not defined
until the first GET is performed. This facilitates
interfacing with interactive files.

• PAGE outputs an ASCII form-feed, i.e., chr(12).

• PUT must only be applied to open files. Ridge Pascal PUT
performs as in standard Pascal.

• READ(f, x) is defined as follows:

begin
get (f) ;
x := fl\ ;

end

while standard Pascal's READ(f, x) is defined as:

begin
x := fl\ ;
get(f) ;

end

• RESET is recognized by
operation at this time.

• REWRITE is recognized by
operation at this time.

the

the

• Standard Predefined Files.

compiler but performs

compiler but performs

no

no

The files "input", "output", and "stderr" are predefined
in the sense that if they appear in the "program"
declaration they will be opened automatically and bound
to ROS file entities. Specifically, it will appear as if
the following statements had been executed, in which
"inputName" is a string variable containing the
characters "input", "outputName" contains "output", and
"stderrName" contains "stderr".

-14-

Ridge Pascal

OpenFile(input, inputName, 'R') ;
penFile(output, outputName, 'WI) ;
OperiFile(stderr, stderrName, 'WI) ;

• WRITE performs as in standard Pascal.

Reference Manual

• WRITELN outputs an ASCII carriage return, i.e., chr(13).

GOTO Statements

GOTO statements may not transfer control out of the current block-
jumping out of procedures or functions is not permitted.

Identifiers

Identifiers may be of any length but only the first 16 characters
are significant: identifiers which differ only after the sixteenth
character position will be regarded as the same identifier.
Identifiers must start with an alphabetic character (a letter), but
thereafter may contain letters, digits, or underscores. Upper case
characters are not distinguished from lower case characters in
identifiers.

Mixed Mode Expressions

Ridge Pascal allows mixed mode expressions (e.g., INTEGER and
REAL); however, a "var" parameter must be of the same type as the
formal parameter.

Numbers

Integer constants in Ridge Pascal differ from standard Pascal in
two respects:

• The base (radix) may be specifed.

-15-

Ridge Pascal Reference Manual

• Embedded underscores
readability.

are allowed for improved

A BNF description of the allowable forms follows:

integer_number : : = integer I based_integer . I

integer · .- digit {[I_I] digit} . · .- I

based_integer : : = base I i I extended_digit {[I_I]
extended_digit} . I

base .. -· .- integer ; -- base must be in 2 •• 36

extended_digit · .- letter I digit . · .- I

Here are some examples to illustrate based integers and the use of
underscores to improve readability.

40_96
65_536
2_147_483_647
-2_147_483_648

(* MAXINT *)
(* MININT *)

2#11111111
2#1111_1111
8#377
16#ff
10#2_147_483_647

Ridge Pascal supports 32- and 64-bit real numbers, called REAL and
OREAL respectively. A double real (OREAL) number is denoted in a
fashion similar to the "E" notation except that a "0" or "d" is
used instead. For example:

pi = 3.141592653500
bignum = 1.0D250
maxrea1 = 6.8056464E38
minrea1 = 5.8774728E-39
maxdrea1 = 3.5953862697246300308
mindrea1 = 1.1125369292536010-308

-16-

Ridge Pascal Reference Manual

PACKED Types

In Ridge Pascal, the reserved word "PACKED" is accepted but has no
effect. To control storage allocation, the "P" compiler option is
used (see Compiler Options).

PACK and UNPACK

PACK and UNPACK are not currently supported by the Ridge compiler.

Procedures and Functions as Parameters

Ridge Pascal does not allow procedures or functions to be passed as
parameters.

Reserved Words

Ridge Pascal treats upper and lower case characters identically in
reserved words. The only nonstandard reserved word in Ridge Pascal
is "otherwise".

String Literals

Character string literals may be a maximum of 80 characters in
length.

Strings

Ridge Pascal does not have a predefined string type. However, the
Pascal runtime library supports a string type via routines (these
are more fully described in the Ridge "Operating System Reference
Manual"). The following example illustrates how strings are
currently manipulated.

The example opens a file called "data. x," does some processing, and
then closes the file. The procedures and functions in the Pascal
runtime library accept and return strings as defined in the type
declaration section in the program. The two-step method of
allocating an empty string, and then copying the characters

-17-

Ridge Pascal Reference Manual

one-by-one into the string, should be employed since string
constants cannot be assigned directly to the string.

Also, note that the procedures NewString, OpenFile, FileStatus, and
CloseFile are not predefined, and must be declared as external
procedures.

Program Example (stderr) ;

Type
StringBody = Record

length : Integer ;
chars Array[l •• l] of Char;

end ;

String = AStringBody ;

Var
CharArray : Array[1 •• 6] of Char;
dataFile : Text ;
fileName : String ;
i : Integer ;

Function NewString(length:Integer):String ; External;
Procedure OpenFile(var f:Text ; name:String ; mode:Char) ; External;
Procedure CloseFile(var f:Text) ; External;
Function FileStatus(var f:Text) ; Integer; External;

begin

{

}

charArray := 'data.x' ;
fileName := NewString(6) ;
for i := 1 to 6 do

fileNameA.chars[i] := charArray[i] ;
OpenFile(dataFile, fileName, 'R') ;

if FileStatus (dataFile)<>O then
Writeln(stderr,'cannot open data.x') ;

do some processing

CloseFile(dataFile) ;
end.

-18-

Ridge Pascal Reference Manual

Types

Ridge Pascal differs from standard Pascal with respect to types in
the following ways:

• DREAL (double REAL) is defined in addition to REAL •

• Sets. The maximum number of set elements is limited to
64. In addition, the following restriction applies to
set types: in "set of l •• u", "I" and nun (or ord(l) and
ord(u» must be in the range of zero to 63 inclusive.

The rules governing data allocation and storage alignment for
variables of the various types are heavily dependent on the context
of the runtime environment, as well as on the the "PH compiler
option. The section on the Runtime Environment provides complete
details on this subject.

-19-

Ridge Pascal Reference Manual

-20-

Ridge Pascal Reference Manual

SECTION 2

THE PASCAL RUNTIME ENVIRONMENT

INTRODUCTION

This section provides a fairly detailed picture of the environment
in which Pascal programs perform their computations. Enough
information is given for the user to perform debugging while a
program is executing.

The Ridge architecture maintains separate data and code spaces, and
this separation forms the basic division of information in this
section. The following topics are covered:

• Data Segment Overview

• Data Segment Memory Diagrams

• Absolute Mode

• Relocatable Mode

• Stack Diagrams

• The Mark Stack Block

• The Display

• The Heap

• Code Segment Overview

• Code Segment Memory Diagrams

• Preamble and Postamble Code

• Procedure/Function Entry Code

• Procedure/Function Exit Code

-21-

Ridge Pascal Reference Manual

• Program Entry Code

• Program Exit Code

• Miscellaneous

• Register Use Conventions

• Procedure/Function Calling Conventions

• Data Representation and Alignment "Rules

The following discussion assumes some familiarity with the Ridge
architecture. Information on this subject can be found in the
Ridge "Processor Reference Manual."

-22-

Ridge Pascal Reference Manual

DATA SEGMENT OVERVIEW

Data Segment Memory Diagrams

The following two subsections provide information regarding the
modes that affect memory storage: absolute and relocatable.

ABSOLUTE MODE. Figure 1 gives an overview of the data segment of a
Pascal user process when the compiler has been instructed to
generate absolute addressing code (see Compiler Options). The
blocks are not necessarily to scale--there is a very large gap
between the top of the stack and the bottom of the heap.

+--------------------------------+
FFFFFFFF I I
(or $S) I string constants I

growth
I
I
I
V

I I
I I
+--------------------------------+

heap

+--------------------------------+
I I
I I
I I
I I - -

(continued on next page)

-23-

Ridge Pascal Reference Manual

<--- R14
+--------------------------------+ (Stack Pointer)

, , ,
growth

$G or 4096

, I , ,
, stack , <--- R15
, I (Frame Pointer) , ,
+--------------------------------+ , ,
, outer block ,
, variables I
I ,
+--------------------------------+ , ,
- -

+--------------------------------+ , ,
, Pascal RTL ,
I data ,

280 ., ,
+--------------------------------+
I I - -
+--------------------------------+

144 1111111111111111 stderr file buf I "stderr A
" at 148

+--------------------------------+
136 111111111111111' output file buf I "output A

" at 140
+--------------------------------+

128 1111111111111111 input file buf I "input A
" at 132

+--------------------------------+
I I - -

+--------------------------------+
64 I heap pointer I

+--------------------------------+ 63 , ,
I display I

00000000 I I
+--------------------------------+

Figure.l. Data Segment: Absolute Mode

-24-

Ridge Pascal Reference Manual

RELOCATABLE MODE. Figure 2 gives an overview of the data segment
of a Pascal user process when the compiler has been instructed to
generate relocatable addressing code (see Compiler Options).

FFFFFFFF

growth
I
I
I
V

I
I
I

growth
$STACK

4096

+--------------------------------+
I I
I I
I I
I heap I
I I
I I
I I
+--------------------------------+
I I - -

<--- R14
+--------------------------------+ (Stack Pointer)
I I
I I
I stack I <--- RIS
I I (Frame Pointer)
I I
I I
+--------------------------------+
I I
I I
I $DATA and $STRING I
I sections I
I I
I I
+--------------------------------+
I I - -

(continued on next page)

-25-

Ridge Pascal Reference Manual

+--------------------------------+
I I
I Pascal RTL I
I data I

280 I I
+--------------------------------+
I I
I I - -

+--------------------------------+
144 1111111111111111 stderr file buf I "stderrA" at 148

+--------------------------------+
136 1111111111111111 output file buf I "output Afi at 140

+--------------------------------+
128 1111111111111111 input file buf I ninput An at 132

+--------------------------------+
I I - -
I I
+--------------------------------+

64 I heap pointer I
+--------------------------------+
I I - -

00000000

+--------------------------------+
Figure 2. Data Segment: Relocatable Mode

-26-

Ridge Pascal Reference Manual

Stack Diagrams

The Pascal runtime stack expands and contracts as procedures are
entered and exited. Each time a procedure is invoked, it allocates
a new piece of storage, called a stack frame, on top of the stack
for its local variables, context information, parameters, and
temporaries.

Figures 3 through 6 represent snapshots of the stack at four
significant times in a procedure:

• Normal execution of some arbitrary procedure, Up".

• Preparing for a call to another procedure, "q".

• Entering procedure "qUe

• Back in procedure Up".

,..

I
I ,

stack
growth

I
I
I

I I <--- Rl4
+--------------------------------+ (Stack Pointer)
I I
I local storage for I
I for "p" I
I ,
+----~---------------------------+
I mark stack block I
I for "p" , <--- R15
+--------------------------------+ (Frame Pointer)
111111111111111111111111111111111'
,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,
I111111111111111111111111111111111
, 1 - -

Figure 3. Normal Execution of a Procedure "p"

In Figure 3, some arbitrary procedure Up" is executing. R15, the
Frame Pointer, points to the start of the stack frame for procedure
Up". All of "pHS references to local data are based on the Frame
Pointer.

-27-

Ridge Pascal Reference Manual

Rl4 + 32

Rl4 + 24

I
I
I

stack
growth

I
I
I

I I
+--------------------------------+
I parameter y I
+--------------------------------+
I parameter x I
+--------------------------------+
11/1111111111111111111/11/11111111
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1 <--- Rl4
+--------------------------------+ (Stack Pointer)
I I
I local storage for I
I for "p" I
I I
+--------------------------------+
I mark stack block I
I for "pH I <--- Rl5
+--------------------------------+ (Frame Pointer)
11/1111/1111111111/111/11/11111111
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1
11/1111/11111111111111/11111111111
I I - -

Figure 4. Procedure "pH Preparing to Call Procedure "q"

In Figure 4, procedure "p" is now preparing to call procedure
"q(x, y)" by pushing the parameters onto the stack. The Stack
Pointer, R14, does not actually move at this time; rather, the
parameters are pushed starting at RI4+24, thus leaving a gap for
"q"s mark stack block.

-28-

Ridge Pascal Reference Manual

<--- Rl4
+--------------------------------+ (Stack Pointer)
I I
I I
I local storage for I
I for "q" I
I I
I I
+--------------------------------+

Rl5 + 32 I parameter y I
+--------------------------------+

Rl5 + 24 I parameter x I
+--------------------------------+
I mark stack block I
I for "q" I <--- Rl5
+--------------------------------+ (Frame Pointer)
I I
I local storage for I

A I for "p" I
I I I
I +--------------------------------+
I I mark stack block I

stack I for "p" I
growth +--------------------------------+

1111111111111111111111111111111111
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1
1111111111111111111111111111111111
I I - -
Figure 5. Entering Procedure "q"

Figure 5 shows procedure "q" immediately after it has performed its
entry code and the following events have taken place:

• R15 <-- R14

• R14 <-- R14 + <framesize)

• The mark stack block is filled in.

Notice that now "q" will refer to its parameters at "Rl5+24" and
"Rl5+32," while the caller referred to them at "R14+24" and
"R14+32."

-29-

Ridge Pascal Reference Manual

<--- Rl4
+--------------------------------+ (Stack Pointer)
I I
I local storage for I

" I for "p" I
I I I
I +--------------------------------+
I I mark stack block I

stack I for "p" I <--- RlS
growth +--------------------------------+ (Frame Pointer)

1////////////////////////////////1
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1
1////////////////////////////////1
I I - -
Figure 6. Return to Procedure "p"

Figure 6 shows the stack on return from "q". The stack has been
returned to the state it was in just prior to the call to "q" •

If "q" had been a Pascal function, then register RO (or the
register pair (RO, Rl» would contain the function value.

The Mark Stack Block

The function of the mark stack block is to store information
concerning procedure and function invocations. The mark stack
block, therefore, makes it possible to restore the runtime
environment when a procedure or function returns to its caller.

Figure 7 shows the format of the mark stack block.

-30-

Ridge Pascal

RIS + 20

RIS + 16

RIS + 12

RIS + 8

RIS + 4

RIS + 0

+--------------------------------+ I 2nd word of function result I
+--------------------------------+
lIst word of function result I
+--------------------------------+
1111111111111 unused 1111111111111
+--------------------------------+
I Old RIS (Dynamic Link) I
+--------------------------------+ I Old Static Link I
+--------------------------------+ I Old Rll (Return Address) I
+--------------------------------+

Figure 7. The Mark Stack Block Format

The Display

Reference Manual

<--- RIS
(Frame Pointer)

The display is a sixteen word block which starts at location zero.
Figure 8 shows the format for the display block.

+--------------------------------+
60 I Current Context for Level 17 I

+--------------------------------+
I I - -

+--------------------------------+
4 I Current Context for Level 3 I

+--------------------------------+ o I Current Context for Level 2 I
+--------------------------------+

Figure 8. The Display Block Format

When the compiler has been directed to generate absolute addressing
code, the display resides at absolute virtual location zero. If
the compiler is generating relocatable code, then the display
resides at location zero relative to the "$DATA" section.

-31-

Ridge Pascal Reference Manual

The Heap

In the case of relocatable addressing, the heap starts at the top
of the data segment and grows down towards the lower addresses; in
the case of absolute addressing, it starts near the top and grows
down. The allocation strategy can be described as follows:

• First, if the number of bytes asked for is "b", then
round up "b" to the nearest value such that (b mod 8) =
O. This ensures double word alignment for items that
follow it •

• Second, if (b mod 4096) = 0 (i.e., requesting a multiple
of pages), then align the allocated block on a page
boundary. If (b mod 4096) <> 0, then the requested block
will only be aligned on a double word boundry.

-32-

Ridge Pascal Reference Manual

CODE SEGMENT OVERVIEW

Code Segment Memory Diagrams

For the purposes of discussion we will assume the following
program, "test." A source program compiled by the Pascal compiler
is referred to as a "compilation unit."

Program test (•••) J

Procedure a (•••) ;
begin {of a }

• • •
end J {of a }

Procedure b (•••) J

Procedure c (•••

Procedure d(•••
begin { of d }

• • •
end . { of d } I

begin { of c }
• • •

end ; { of c }

begin { of b }
· . .

end . { of b } I

Procedure e (•••) ;
begin { of~e }

• • •
end J { of e }

begin { of test }
•••

end : { of test }

• I

• I

Figure 9 shows how the code segment corresponding to "test" would
look, and represents the output of one compilation. Execution
begins at location zero.

-33-

Ridge Pascal

00000000 +--------------------------------+
I Preamble Code to set up R14, I
/ RlS, and the Heap Pointer. I
I Branch to $MAINBLK. /
+--------------------------------+
/ /
I Code for a I
I /
+--------------------------------+
I I
/ Code for d /
I I
+--------------------------------+
/ /
/ Code for c /
/ /

+--------------------------------+ .
/ /
/ Code for b /
/ I
+--------------------------------+
/ I
I Code for e /
/ 1
+--------------------------------+

$MAINBLK: / /
/ 1
/ . Code for test /
/ I
/ /

+--------------------------------+
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1
1111111111111111111111111111111111
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1
/111111111111111111111111111111111

Figure 9. Code Segment

Reference Manual

The code segment of a running user process is usually composed of
several compilation units which have been consolidated by the
"link" program. Figure 10 shows the overall structure of the code
segment of a user process.

-34-

Ridge Pascal

+--------------------------------+
00000000 I preamble code I

+--------------------------------+
I I
I procedure/function code I
I I
+--------------------------------+

$MAINBLK: I "main" program code I
+================================+
I preamble code I
+--------------------------------+
I I
I procedure/function code I
I I
+--------------------------------+

$MAINBLK: I "main" program code I
+================================+
I preamble code I
+--------------------------------+
I I
I procedure/function code I
I I
+--------------------------------+

$MAINBLK: I "main" program code I
+--------------------------------+

\

\

\

\

/

\
\
>

/
/

\

/

\

\
\
>

/
/

\
\
>

/
/

/
/

Figure 10. Overall Code Segment Structure

Note the following points:

Reference Manual

from "filel"

from "file2"

from "file3"

• "link filel file2 file3" was the command used to produce
the illustrated process.

• Since the operating system passes control to the user
process at location zero, execution will start at the
"main" program in "filel."

• The preamble code for "file2" and "file3" is never
executed.

-35-

Ridge Pascal Reference Manual

Preamble and Postamble Code

The Pascal compiler generates code prior to the "begin" and after
the "end" of a program, procedure, or function. This code performs
such miscellaneous housekeeping tasks as stack adjustments and
parameter manipulations. This section explains this code.

The code which follows is meant to be interpreted as a "macro"
notation. The code in the boxes is generated per the Pascal-like
compile-time instructions. For example:

FOR I := 1 TO 3 DO
+------------------------+ I ADD RO,RO I -- double RO
+------------------------+

The above "macro" code would cause the instruction "ADD
be generated three times.

IF <condition> THEN
+------------------------+
I <some code> I
+------------------------+

ELSE
+------------------------+
I <some other code> I
+------------------------+

RO,RO" to

"<some code>" would be generated if "<condition>" were to evaluate
TRUE, otherwise, "<some other code>" would be generated.

In general, the "conditions" of the "macros" refer to attributes of
the current program, procedure, or function being compiled.

-36-

Ridge Pascal Reference Manual

PROCEDURE/FUNCTION ENTRY CODE. The following code is generated
when a "begin" for a procedure or function is encountered •.

IF there are calls THEN
+------------------------+
I STORE RIl,R14,O. I
+------------------------+

IF there are no calls or loops THEN
+------------------------+
I MOVE R12,R15 I
+------------------------+

ELSE
+------------------------+ I STORE RI5,RI4,8 I
+------------------------+

IF it's an intermediate level
procedure THEN

IF absolute mode addressing THEN

ELSE

+------------------------+
I LOAD RIO ,4*'(level-l) I
I STORE RIO,RI4,4 I
I STORE Rl4 ,4* (level-I) I
+------------------------+
+------------------------+
I LADDR R8,$DATA,L I
I LOAD RIO,R8,4*(level-l)
I STORE RlO,RI4,4 I
I STORE RI4,R8,4*(level-l)
+------------------------+

IF absolute addressing OR
static level is not I THEN
+------------------------+
I MOVE R15,Rl4 I
I LADDR R14,R14,size I
+------------------------+

-37-

-- store return address

save dynamic link
in Rl2

save dynamic link
in stack

update the display

load old static link
store it in the stack
store new static link

load address of $DATA
load old static link
store it in the stack
store new static link

allocate local stack
frame
Rl5 <-- frame pointer
allocate stack frame

Ridge Pascal

FOR i := 1 TO number_of_parameters DO
IF non-VAR array or record THEN

+------------------------+
I LADDR Rx,RIS,disp r
I LOAD Ry,RIS,disp I
I LADDR R8,-(byte_count) I
I LOADB R9,Ry,O I
I STOREB R9,Rx,O I
I ADDI Ry,l I
I ADDI Rx,l I
I LOOP R8,1,*-12 I
+------------------------+

Reference Manual

copy "value" para
meters into local
stack frame
load dst address
load src address
of bytes to copy
load a byte
store a byte
increment src pointer
increment dst pointer
increment and loop

In the code which manipulates the static link, the "level" refers
to the textual level number of this procedure. The main program is
considered level one; procedures which are declared at the program
level are at level two; procedures inside these are considered
level three; etc.

PROCEDURE/FUNCTION EXIT CODE.
an "end" for a procedure
compiler.

The following code is generated when
or function is encountered by the

IF it's a function THEN
+------------------------+
I LOAD RO,RlS,16 I
+------------------------+

IF it's a two word value THEN
+------------------------+
I LOAD RI,RlS,20 I
+------------------------+

IF it's an intermediate level
procedure THEN

IF absolute mode addressing THEN
+------------------------+
I LOAD RlO,RlS,4 I
I STORE RIO,4*(level-l) I
+------------------------+

ELSE
+--------------_._--------+
I LADDR R8,$DATA,L I
I LOAD RIO,RlS,4 I
I STORE RIO,R8,4*(level-1)
+------------------------+

-38-

load function value

load first word

-- load second word

restore the display

load old static link
store it in the display

load address of $DATA
load old static link
store into the display

Ridge Pascal Reference Manual

IF there were calls THEN
+------------------------+
I LOAD Rll,Rl5,O I -- load return address
+------------------------+

{ always do this}
+------------------------+
I MOVE Rl4,Rl5 I -- deallocate stack frame
+------------------------+

IF there were no (calls or loops) THEN restore old Rl5
+------------------------+
I MOVE Rl5,Rl2 I ••• from Rl2
+------------------------+

ELSE
+------------------------+
I LOAD Rl5,Rl5,8 I -- ••• from stack
+------------------------+

{ always do this }
+------------------------+
I RET Rll,Rll I -- return to caller
+------------------------+

For an explanation of "level" see the preceding section on
Procedure/Function Entry Code.

-39-

\ .

Ridge Pascal Reference Manual

PROGRAM ENTRY CODE. The first three boxes of code are generated
when the compiler encounters the nprogramn declaration. Then at
n$MAINBLKn, in response to the nbeginn of the main program, the
standard Procedure/Function Entry Code is generated, followed by
code which is particular to the main program.

IF absolute addressing mode THEN
+------------------------+

000000001 LADDR RIO,$HEAP I
1 STORE RIO,64 I
I MOVEI RI4,O 1

+------------------------+
ELSE

+------------------------+
I LADDR RI4,$STACK,L I
I MOVEI RIO,O I
I STORE RIO,64 I
+------------------------+

{ always do this }
+------------------------+
I MOV~I RIS,O 1
I BR $MAINBLK I
+------------------------+

load heap start address
store into heap pointer
initialize Rl4

initialize stack pointer
RIO <- 0
initialize heap pointer

initialize frame pointer
branch to main program

Code for all local procedures/functions goes here

$MAINBLK:
+------------------------+
I Proc/Func Entry Code 1

+------------------------+
IF absolute addressing mode THEN

+------------------------+
I MOVE RIS,Rl4 I
I LADDR RI4,Rl4,size I
+------------------------+

{ always do this }
+------------------------+ I CALL Rll,SYSENTRY I
+------------------------+

-40-

do the same as for
procedures

initialize frame pointer
allocate outer block
variables

-- initialize Pascal RTL

Ridge Pascal

IF standard "input" file present THEN
+------------------------+
I LADDR Rx,132 I
I STORE Rx,R14,24 I
I CALL Rll,FDF I
+------------------------+

IF standard "output" file present THEN
+--------~---------------+
I LADDR Rx,140 I
I STORE Rx,R14,24 I
I CALL Rll,FDF I
+------------------------+

IF standard "stderr" file present THEN
+------------------------+
I LADDR Rx,l48 I
I STORE Rx,R14,24 I
I CALL Rll,FDF I
+------------------------+

Reference Manual

load file buffer address
store file buffer address
open the file

load file buffer address
store file buffer address
open the file

load file buffer address
store file buffer address
open the file

PROGRAM EXIT CODE. The compiler generates the following code when
it encounters the "end" of a main program.

{ always do this }
+------------------------+
I MOVEI Rx,O I
I STORE Rx,Rl4,24 I
I CALL Rll,SYSEXIT I
+------------------------+

+------------------------+
I proc/func exit code I
+------------------------+

-41-

O=successful completion
store RO
program stops, SYSEXIT
doesn't return

same as standard exit
code

Ridge Pascal Reference Manual

MISCELLANEOUS

This section discusses miscellaneous runtime issues that do not fit
readily into one of the preceding categories. These include
register use conventions, procedure/function calling conventions,
and data representation and alignment rules.

Register Use Conventions

RO \
RI \
R2 \
R3 \ register stack to
R4 / evaluate expressions
R5 /
R6 /
R7 /

R8 \
R9 > scratch registers
RIO /

RII return address register

Rl2 \ "with" and "for" temporaries
Rl3 /

Rl4 Stack Pointer

Rl5 Frame Pointer

RO (or the register pair (RO, RI)) is also used to return the
result of a function call.

Procedure/Function Calling Conventions

The general rules for a procedure or function call are as follows:

p(pl, p2, ••• , pN)

-42-

Ridge Pascal Reference Manual

• Evaluate parameter 1. Store it at R14,24.

• Evaluate parameter 2. Store it at R14,32.

• Evaluate parameter N. store it at R14,24+(N-l)*8

The process of evaluating a parameter entails the following:

• Code is generated to evaluate the parameter expression.

• Depending on whether or not the corresponding formal
parameter is a "var", there are two cases:

• "var ". In this case the parameter's ADDRESS is
stored at R14,24+(j-l)*8, where j is the
parameter number, 1 <= j <= N •

• Non-"var". This case is broken down into two
subcases depending on whether the actual
parameter is an array or a record •

• The actual parameter is an array or a
record. Pass the ADDRESS as
described above •

• The actual parameter is neither an
array nor a record. The VALUE of the
parameter is passed.

If "p" is a Pascal function (as opposed to a procedure) then the
caller will expect to find the function value in either register RO
(or the register pair (RO,Rl).

Data Representat~on and Alignment Rules

The compiler packing option "P+" or "P_" controls the amount of
storage allocated to a variable of the following standard types:

• BOOLEAN: One byte if "P+", four bytes if "P_".

• CHAR: One byte always.

-43-

Ridge Pascal Reference Manual

• DREAL: Eight bytes always.

• Enumerated Types: the minimum number of bytes depends on
the number of identifiers in the type:

• One byte for l·to 255 elements.

• Two bytes for 256 to 65,535 elements.

• Four bytes for more than 65,535 elements.

• FILE or TEXT: Eight bytes always. The fifth byte is the
file variable "fA". The first four bytes are used as a
pointer to a data structure managed by the runtime
library routines.

• INTEGER: Four bytes always.

• POINTER: Four bytes always.

• REAL: Four bytes always.

• SET: Eight bytes always. Set elements are allocated one
bit each, starting with the most significant bit.

• Subranges:

• If the packing option is set to "P-" then all
subranges occupy four bytes.

• If the packing option is set to "p+" then the
m~n~mum number of bytes is used. This depends
on the lower and upper bounds of the subrange,
as the following explains:

• Negative lower bound always results
in four bytes •

• Lower bound of zero or more results
in the following:

• Upper bound of I to 255
results in I byte •

• Upper bound of 256 to
65,535 results in 2 bytes.

-44-

Ridge Pascal Reference Manual

• Upper bound of 256 to
65,535 results in 2 bytes •

• Upper bound that is more
than 65,535 results in four
bytes.

The rules for Ridge Pascal data alignment are as follows:

• Half-word items must be aligned on a half-word
boundary, i.e., their addresses must be evenly
divisible by two.

• Word items must be aligned on a word boundary,
i.e., their addresses must be evenly divisible
by four.

• Double-word items must be aligned on a
double-word boundary, i.e., their addresses
must be evenly divisible by eight.

To optimize use of space, the preceding rules should be observed.
For example, in declaring variables (or fields in a record) the
order of the items may have an impact on the total amount of
storage used.

ch . Char ; { 1 byte data } .
i Integer { 3 bytes padding, 4 bytes data }
b Boolean . { 1 byte data } ,
d Oreal . { 7 bytes padding, 8 bytes data } ,
k 1 •• 1000 . { 2 bytes data } ,

Storage would be used more efficiently if the items were arranged
as follows:

ch : Char ;
b Boolean;
k 1 •• 1000;
i Integer;
d Oreal;

{ 1 byte data }
{ 1 byte data }
{ 2 bytes data }
{ 4 bytes data }
{ 8 bytes data }

-45-

Ridge Pascal Reference Manual

Declarations of the following sort are also inefficient:

a : Array[I •• IOOOOO] of Integer;
ch : Char ;

• • • . . .
i : Integer ;

An improvement would be to declare the large array last, then short
offsets could be used in the code that accesses "ch", "in, and
other scalar variables. Refer to the "Ridge Processor Reference
Manual" for more information on this topic.

-46-

Ridge Pascal

INTRODUCTION

S~CTION 3

AN EXAMPLE

Reference Manual

This section illustrates how to write assembly language programs
that are Pascal callable. A program written in Ridge Pascal can be
compiled into an intermediate form called P-code by the Ridge
Pascal compiler, "pasc." The P-code can then be translated into an
object module by the translator, "ptrans,R and finally linked with
other object modules by the linker, Rlink." (For more information
on the compiling process, see the Ridge nOperating System Reference
Manual.")

Included in this section are the listings for four files:

• The command file which compiles, assembles, and links the
program.

• The Pascal source listing of the main program.

• The assembler listing of the compiler's generated code.

• The assembler listing of the called routines.

The key items to be observed are:

• how the assembler programs are declared in the Pascal
program as nexternal n functions,

• how the assembler programs access their parameters and
how they return their values,

• that Pascal compilation is performed with pp(l),
as documented in the ROS Reference Manual (9010).
See the EXAMPLE section of pp(l).

-47-

Ridge Pascal Reference Manual

To compile and link a set of assembly functions with
Pascal code:

rasm asmfuncs. s
pp -0 prog-name asmfuncs.o prog-name.p

prog-name.p is the Pascal source, asmfuncs.o is the
assembly object file created by rasm, and -0 prog-name
specifies the name of the resulting executable program.

{

}

PASCAL SOURCE LISTING

This program reads real numbers and computes
their square roots using Newton's method. Two assembler
language routines are called to manipulate parts of the
real numbers.

The routines are part of a suite of routines defined
in the book "Software Manual for the Elementary Functions"
by Cody and Waite, Prentice-Hall (1980).

program example(input, output) 7

var

{

}

z : real ;
iterations : integer ;

'intxp' returns the unbiased exponent of

function intxp(x : real) : integer ; external

{

, x' •

'setxp' returns a real number whose mantissa is
that of 'x' and.whose exponent is In'.

}
function setxp(x : real ; n integer): real ; external ;
{$E}
function sqroot(x : real) real;

label 99 7

-48-

Ridge Pascal

const
EPSILON = I.OE-30 ;

var
i : integer ;
yn, ynminusl : real ;

begin {******* begin of function sqroot *******}

iterations := 0 ;
if x = 0.0 then

sqroot := 0.0
else

begin
if x < 0.0 then

x := -x ;
ynminusl := setxp(x, intxp(x) div 2) ;
while TRUE do

begin
yn := (ynminusl + x/ynminusl) / 2.0 ;
iterations := iterations + I ;
if abs(yn - ynminusl) <= EPSILON then

goto 99 ;
ynminusl := yn ;

end ;
99: sqroot := yn ;

end ;
end; {******* end of function sqroot *******}

begin {******* begin of program example *******}

while not eof(input) do
begin

readln (input, z) ;

Reference Manual

writeln(output, Isqroot(l, z, I) = ., sqroot(z),
I, iterations = I, iterations) i

end ;

end. {******* end of program example *******}

ASSEMBLER LISTING OF MAIN PROGRAM

SOURCE LINE 4ISL=P, ABS_AD=T, $S=O

00000000
00000006
OOOOOOOA

DEAOFFFFFFFF
A6A00040
IIEO

LADDR
STORE
MOVE I

. -49-

RIO,-l
RIO,64
RI4,O

Ridge Pascal

OOOOOOOC lIFO MOVE I R15,0
OOOOOOOE 9BOOFFFFFFFF BR $MAINBLK

SQROOT:
00000014 A7BEOOOO STORE Rll,R14,0
00000018 A7FEOO08 STORE R15,R14,8
OOOOOOIC OIFE MOVE R15,R14
OOOOOOIE DFEEFFFFFFFF LAD DR R14,R14,-1
00000024 1100 MOVE I RO,O
00000026 A600l004 STORE RO,4100

SOURCE LINE 42
0000002A C7lFOO18 LOAD Rl,R15,24
0000002E 1120 MOVE I R2,0
00000030 8A12FFFF BR Rl<>R2,E3

SOURCE LINE 44
00000034 1130 MOVE I R3,0
00000036 A73FOOIO STORE R3,R15,16
0000003A 8BOOFFFF BR L4

E3:
SOURCE LINE 46

0000003E 1130 MOVE I R3,0
00000040 2A13 RCOMP Rl,R3
00000042 5510 TESTLT Rl,O
00000044 8EllFFFF BR Rl<>1,E5

SOURCE LINE 47
00000048 C74FOO18 LOAD R4 ,R15 ,24
0000004C 2254 RNEG R5,R4
0000004E A75FOO18 STORE R5,R15,24

E5:
L6:
SOURCE LINE 48

00000052 C70F0018 LOAD RO,R15,24
00000056 A70E0018 STORE RO,R14,24
0000005A CFEE0020 LADDR R14,R14,32
0000005E A70E0018 STORE RO,R14,24
00000062 93BOFFFFFFFF CALL Rll,INTXP
00000068 0180 MOVE R8,RO
0000006A 5580 TESTLT R8,0
0000006C 0308 ADD RO,R8
0000006E 7301 ASRI RO,l
00000070 A70EOOOO STORE RO,R14,0
00000074 CFEEFFEO LAD DR R14,R14,-32
00000078 93BOFFFFFFFF CALL Rll,SETXP
0000007E A70F0028 STORE RO,R15,40
00000082 OICO MOVE R12,RO

VARIABLE AT 2,40 ASSIGNED TO REGISTER 12
00000084 C7lF0018 LOAD Rl,R15,24
00000088 OlDl MOVE R13,Rl

VARIABLE AT 2,24 ASSIGNED TO REGISTER 13
W7:
SOURCE LINE 49
SOURCE LINE 51

0000008A OIOC MOVE RO~RI2

-50-

Reference Manual

Ridge Pascal Reference Manual

0OOOO08C OllD MOVE Rl,R13
0000008E 0120 MOVE R2,RO
00000090 2612 RDIV Rl,R2
00000092 2310 RADD R1,RO
00000094 DE3040000000 LAD DR R3, 107 3741824
0000009A 2613 RDIV R1,R3
0000009C A71F0024 STORE R1,R15,36

SOURCE LINE 52
OOOOOOAO C6401004 LOAD R4,4100
000000A4 1341 ADDI R4,1
OOOOOOA6 A6401004 STORE R4,4l00

SOURCE LINE 53
OOOOOOAA 2410 RSUB R1,RO
OOOOOOAC 7011 LSLI R1,1
OOOOOOAE 7111 LSRI R1,1
OOOOOOBO DE500DA24260 LAD DR R5,228737632
000000B6 2A15 RCOMP Rl,R5
000000B8 5CIO TESTLE R1,0
OOOOOOBA 8E11FFFF BR Rl<>1,E9

SOURCE LINE 54
OOOOOOBE A7CF0028 STORE RI2,R15,40
000000C2 A7DFOO18 STORE RI3,R15,24
000000C6 8BOOFFFF BR X2

E9:
LIO:
SOURCE LINE 55

OOOOOOCA C70F0024 LOAD RO,R15,36
OOOOOOCE OICO MOVE RI2,RO

SOURCE LINE 56
OOOOOODO 8BOOFFBB BR W7

L8:
OOOOOOD4 A7CF0028 STORE RI2,RI5,40
OOOOOOD8 A7DFOO18 STORE RI3,RI5,24

X2:
SOURCE LINE 57

OOOOOODC C70F0024 LOAD RO,R15,36
OOOOOOEO A70F0010 STORE RO,R15,16

L4:
SOURCE LINE 59

000000E4 C70F0010 LOAD RO,R1S,16
000000E8 C7BFOOOO LOAD Rll,R15,0
OOOOOOEC OlEF MOVE R14,R15
OOOOOOEE C7FFOO08 LOAD R15,R15,8
000000F2 57BB RET R1I,Rl1

SOURCE LINE 63
$MAINBLK:

000000F4 A7BEOOOO STORE Rll,R14,0
000000F8 A7FEOO08 STORE R15,R14,8
OOOOOOFC OIFE MOVE R15,R14
OOOOOOFE DFEEFFFF'FFFF LAD DR R14,R14,-1
00000104 93BOFFFFFFFF CALL Rll,SYSENTRY
OOOOOlOA CEOOO08C LADDR RO,140

-51-

Ridge Pascal Reference Manual

0000010E A70EOO18 STORE RO,R14,24
00000112 93BOFFFFFFFF CALL Rll,FDF
00000118 CEI00084 LAD DR Rl,132
0000011C A71EOO18 STORE Rl,R14,24
00000120 93BOFFFFFFF2 CALL Rl1,FDF

W4 :
00000126 CEOOO084 LAD DR RO,132
0000012A C710FFFC LOAD Rl,RO,-4
0000012E C7110000 LOAD Rl,Rl,O
00000132 7811 CSLI Rl,l
00000134 0181 MOVE R8,Rl
00000136 7811 CSLI Rl,l
00000138 0918 OR Rl,R8
0000013A IBll ANDI Rl,l
0000013C 8611FFFF BR Rl=1,L5

SOURCE LINE 65
00000140 CE200084 LAD DR R2,132
00000144 CE301000 LAD DR R3,4096
00000148 A72EOO18 STORE R2,R14,24
0000014C A73E0020 STORE R3,R14,32
00000150 93BOFFFFFFFF CALL R11,RDR
00000156 C70EOO18 LOAD RO,R14,24
0000015A A70EOO18 STORE RO,R14,24
0000015E 93BOFFFFFFFF CALL Rl1,RLN

SOURCE LINE 66
00000164 CEI0008C LAD DR R1,140
00000168 CE20FFF8 LAD DR R2,-8
0000016C DE807371726F LAD DR R8,1936814703
00000172 A680FFF8 STORE R8,-8
00000176 DE806F742827 LAD DR R8,1869883431
0000017C A680FFFC STORE R8,-4
00000180 1137 MOVE I R3,7
00000182 1147 MOVE I R4,7
00000184 A71EOO18 STORE R1,R14,24
00000188 A72E0020 STORE R2,R14,32
0000018C A73E0028 STORE R3,R14,40
00000190 A74E0030 STORE R4,R14,48
00000194 93BOFFFFFFFF CALL R11,WRS
0000019A C70EOO18 LOAD RO,R14,24
0000019E C6101000· LOAD R1,4096
000001A2 112E MOVE I R2,14
000001A4 1130 MOVE I R3,0
000001A6 A70EOO18 STORE RO,R14,24
000001AA A71E0020 STORE R1,R14,32
000001AE A72E0028 STORE R2,R14,40
000001B2 A73E0030 STORE R3,R14,48
000001B6 93BOFFFFFFFF CALL R11,WRR
000001BC C70EOO18 LOAD RO,R14,24
000001CO CE10FFF4 LAD DR R1,-12
0000OlC4 DE8029203D20 LAD DR R8,689978656
000001CA A680FFF4 STORE R8,-12
000001CE 1124 MOVE I R2,4

-52-

Ridge Pascal Reference Manual

000001DO 1134 MOVE I R3,4
000001D2 A70EOO18 STORE RO,R14,24
000001D6 A71E0020 STORE Rl,R14,32
OOOOOlDA A72E0028 STORE R2,R14,40
OOOOOlDE A73E0030 STORE R3,R14,48
000001E2 93BOFFFFFFB2 CALL Rll,WRS
000001E8 C70EOO18 LOAD RO,R14,24
OOOOOlEC A70EOOOO STORE RO,R14,0
OOOOOlFO 13E8 ADDI R14,8
000001F2 C6101000 LOAD Rl,4096
000001F6 A71EOO18 STORE Rl,R14,24
OOOOOlFA 83BOFEIB CALL Rll,SQROOT
OOOOOlFE 111E MOVE I Rl,14
00000200 1120 MOVE I R2,0
00000202 C73EFFF8 LOAD R3,R14,-8
00000206 14E8 SUBI R14,8
00000208 A73EOO18 STORE R3,R14,24
0000020C A70E0020 STORE RO,R14,32
00000210 A71E0028 STORE Rl,R14,40
00000214 A72E0030 STORE R2,R14,48
00000218 93BOFFFFFF9E CALL Rll,WRR
0000021E C70EOO18 LOAD RO,R14,24

SOURCE LINE 67
00000222 188F NOTI R8,15
00000224 CEIOFFE4 LAD DR Rl,-28
00000228 E7980024 LOADP R9,R8,36
0000022C B798FFFFFFF4 STORE R9,R8,-12
00000232 8784FFF7 LOOP R8,4,*-10
00000236 8BOOOO16 BR
0000024C 112F MOVE I R2,15
0000024E 113F MOVE I R3,15
00000250 A70EOO18 STORE RO,R14,24
00000254 A71E0020 STORE Rl,R14,32
00000258 A72E0028 STORE R2,R14,40
0000025C A73E0030 STORE R3,R14,48
00000260 93BOFFFFFF82 CALL Rll,WRS
00000266 C70EOO18 LOAD RO,R14,24
0000026A C6101004 LOAD Rl,4100
0000026E 112C MOVE I R2,12
00000270 A70EOO18 STORE RO,R14,24
00000274 A71E0020 STORE Rl,R14,32
00000278 A72E0028 STORE R2,R14,40
0000027C 93BOFFFFFFFF CALL Rll,WRI
00000282 C70EOO18 LOAD RO,R14,24
00000286 A70EOO18 STORE RO,R14,24
0000028A 93BOFFFFFFFF CALL Rll,WLN

SOURCE LINE 68
00000290 8BOOFE97 BR W4

L5:
SOURCE LINE 70

00000294 1100 MOVE I RO,O
00000296 A70EOO18 STORE RO,R14,24

-53-

Ridge Pascal Reference Manual

0000029A 93BOFFFFFFFF
000002AO C7BFOOOO
000002A4 OlEF
000002A6 C7FF0008
000002AA 57BB

NUMBER OF BYTES OF CODE

CALL
LOAD
MOVE
LOAD
RET

GENERATED

R11,SYSEXIT
R11,R15,O
R14,Rl5
R15,R15,8
R11,R11
= 684

ASSEMBLER LISTING OF CALLED ROUTINES

$HEXOUT
;
; function intxp(x : real) : integer ;
· , · ,
;

· , · , · , · ,
;

INTXP:

i

INTXP returns the unbiased exponent of the given
argument, i.e. returns (exponent - 127).

input :

output:

GLOBAL

LOAD
CSLI
LAD DR
AND
LADDR
SUB
RET

Rl4,24

RO

INTXP

RO,R14,24
RO,9
Rl,OFFH
RO,Rl
RO,127
RO ,Rl
Rll,Rll

-- x

the answer

iRQ <- REAL NUMBER, I.E., LOAD x
;SHIFT EXPONENT INTO POSITION
;LOAD MASK
iMASK OUT MANTISSA AND SIGN BIT
iLOAD EXPONENT BIAS
iUNBIAS EXPONENT
;RETURN TO CALLER

; function setxp(x : real in: integer) : real i
i
i SETXP returns the real whose mantissa is that of x
i and whose exponent is n.
i

· , · , · , · ,
;

SETXP:

input: Rl4,24
R14,32

output: RO

GLOBAL SETXP

LOAD
LADDR
AND
LOAD
LADDR

RO,R14,24
Rl,Q807FFFFFH,L
RO ,Rl
Rl,R14,32
R2,127

-- x
n, unbiased exponent

the answer

iRQ (- REAL NUMBER, I.E., LOAD x
iLOAD MASK
;CLEAR EXPONENT
iLOAD EXPONENT, I.E. LOAD n
iLOAD EXPONENT BIAS

-54-

Ridge Pascal

ADD
LADDR
AND
CSLI
CSLI
OR
RET . ,

i END OF

END

Rl,R2
R2,OFFH
Rl,R2
RI,15
RI,a
RO,Rl
RIl,Rll

SOURCE FILE

Reference Manual

;ADD IN EXPONENT BIAS
;LOAD MASK
;ISOLATE a-BIT EXPONENT
;SHIFT INTO POSITION
; ••• IN TWO SHIFTS
;'OR' IN NEW EXPONENT
;RETURN TO CALLER

-55-

Ridge Assembler Reference Manual
TABLE OF CONTENTS

CHAPTER 1: RIDGE 32-BIT PROCESSOR
Instruction Formats
Data Types
Syntax Conventions
Separate Code and Data
Compare and Branch Instructions
Branch Prediction
Kernel Mode and Privileged User Mode
Exceptions and Traps

CHAPTER 2: PROGRAM STRUCTURE
Code and Data Sections
Program Counter (PC)

CHAPTER 3: ASSEMBLY LANGUAGE SYNTAX
Labels
Comments
Constants
Expressions

CHAPTER 4: PSEUDO-INSTRUCTIONS
List of Pseudo-Instructions

CHAPTER 5: INSTRUCTIONS

GLOSSARY

ALPHABETIC INDEX

FUNCTIONAL INSTRUCTION LIST
Opcode Map

PUBLICATION HIS~RY

Manual Title: Ridge Assembler Reference Manual
First Edition: 9005 (OCT 83)
Second Edition: 9005-B (MAY 84)

1
1
2
3
3
3
3
4
4

7
7
8

9
9

10
10
10

13
13

27

99

101

103
105

This manual is now a section of the ROS Programmer's Guide (9050).

-i- (9050) -i-

-ii- (9050) -ii-

Chapter 1
Ridge 32-Bit Processor

The Ridge 32 is a general purpose computer with 16 32-bit
general registers and 16 32-bit special registers. The special
registers are used only by some privileged instructions for
process state information and instruction trap routines.

INSTRUCTION FORMATS

The instructions on the Ridge 32 fall into three instruction
formats:

instruction
format

<-operands->
4-bit

integer
Reg. or Reg.
number number

nregister"-> 18-bit opcodel 1st I 2nd I

"short" --> 18-bit opcodel 1st I 2nd I l6-bit address I

---... ---"long" --> 18-bit opcodel 1st I 2nd I 32-bit address

bits
-------------~------------------------------o 7 8 1 1

1 2
1 1
5 6

3
2

•••
4
7

The register format (or "half-word" format) is used for
instructions that operate on the contents of one or two
registers and do not address memory. The short and long format
instructions are used for memory-addressing instructions, such
as storing and loading. The short format (or "word" format) is
used for referencing addresses that can be specified in 16 bits,
and the long format (or ·word-and-a-half" format) is for
referencing addresses that must be specified in.32 bits.

All three instruction types consist of:

• An 8-bit opcode.
• Two 4-bit operand fields.

The first operand always specifies a register. This register is
often, but not always, used in calculating the result. The
result of the register format instruction is always stored in
the first operand register. The second operand field specifies a
register or a 4-bit integer (in the range 0 to 15).

-1-

Assembler Reference Manual Ridge 32-bit Processor

Any arithmetic or address operation can be
r'egister. (Registers are not specialized
indexing.)

DATA TYPES

performed on
for counting

any
or

Data is manipulated in 16 32-bit general registers.
Instructions exist for manipulating 3 32-bit data types
(unsigned integers, two's-complement integers, and reals), and 2
64-bit types (64-bit unsigned integers and 64-bit double
precision real numbers).

The basic addressable unit is the 8-bit byte. Instructions exist
for loading and storing 8-bit bytes, l6-bit halfwords, 32-bit
words, and 64-bit double-words.

Integers

Integers are represented in two's-complement form and are in the
range -2147,483,648 to 2,147,483,647, or unsigned in the range 0
to 4,294,967,295.

Real Numbers (Single Precision)

Real numbers (represented in floating-point form) consist of
three parts: a sign, a power-of-two exponent, and a mantissa.
The value of a real number is:

(-l)**s x 2** (exponent-127) x l.mantissa

Islexpon~ntl mantissa

For positive numbers, the sign bit (bit 0) is O. For negative
numbers, the sign bit is 1. The exponent of a real number is 8
bits long, and is biased by +127. The eight bits of the
exponent give a range of 0 through 255. Subtracting the bias
yields an exponent range of -127 through +128. The mantissa has
an implicit leading one, and is 23 bits long. Zero is
represented by all zeros.

bit 0 1 8 9 31

REAL--) I-s I exponent I mantissa

example: ftl"
example: ft-l0 II

=
=

Real Numbers (Double Precision)

o 01111111 00000000000000000000000 = 3F800000
1 10000010 01000000000000000000000 = Cl20 0000

Double rea1s are similar to reals, except that the mantissa is
52 bits, and the exponent is 11 bits. The exponent is biased by

-2-

Assembler Reference Manual Ridge 32-bit Processor

+1023. The eleven exponent bits give a range of 0 through 2047.

Subtracting the bias yields an exponent range of -1023 through
+1024.

bit o 1 11 12 63

lsi exponent mantissa

"1" = 0 01111111111 00000000000000 ••• 000000000000 = 3FFO 0000 0000 0000
"-10"= 1 10000000010 01000000000000 ••• 000000000000 = C024 0000 0000 0000

SYNTAX CONVENTIONS

In syntax statements, the 16 general registers are referred to
as Rx or Ry. Special registers are called SRx or SRy. In an
assembly program, general register 4 and special register 15
would be called R4 and SRlS, respectively.

Double words occupy register pairs. A register pair, RPx,
consists or Rx and R(x+1) mod 16. Rx holds the most significant
bits of RPx, and R(x+1) holds the least significant bits.
Example: RPS refers to RS and R6, with the most significant
bits of the pair in RS, and the least significant bits in R6.
RP1S refers to RIS and RO.

Bit 0 is the most significant bit of a data type. For 32-bit
data types, bit 31 is the least significant bit. For 64-bit
data types, bit 63 is the least significant bit.

Specific bits of a register or word are enclosed in brackets.
For example, bit 3 of a register is referred to as Rx[3], or
Ry[3]. The symbol n denotes a range of bits. For example,
consecutive bits 6 through 9 of a register are referred to as
Rx[6 •• 9], or Ry[6 •• 9]. Bits 28 through 34 of a register pair
are referred to as RPx[28 •• 34] or RPy[28 •• 34].

SEPARATE CODE AND DATA

Code and data reside in separate 4-gigabyte address segments,
and are manipulated with separate types of instructions. The
4-gigabyte code address space is called the code segment and the
4-gigabyte data address space is called the data segment.

COMPARE AND BRANCH INSTRUCTIONS

Comparison and conditional or unconditional branching are
performed within the single branch instruction BR.

-3-

Assembler Reference Manual Ridge 32-bit Processor

BRANCH PREDICTION

The instruction pipeline of the Ridge 32 is designed so that the
next instruction to execute is fetched from memory even while
the current instruction is being executed. If the prediction bit
of the branch instruction is set, the processor will fetch the
instruction specified by the destination bits while the test is
being performed. If the prediction bit is not set, the
processor fetches the next sequential instruction while the test
is being performed. If the programmer sets the prediction bit
according to the most likely and frequent result of the branch
test, a performance increase will be realized.

KERNEL MODE AND PRIVILEGED USER MODE

When operating in kernel mode, the processor uses real addresses
only, rather than virtual addressing, and interrupts are
disabled. The kernel mode code is entered at one of 256 entry
points by means of the KCALL instruction, or by means of an
exception or trap.

Privileged user mode allows the user to execute certain system
maintenance instructions without being in kernel mode (without
losing the benefit of virtual addressing and interrupts).
Privileged user mode is activated by setting bit 31 of the traps
word (see "Traps Word" under EXCEPTIONS and TRAPS).

EXCEPTIONS AND TRAPS

Exceptions

An exception is the abnormal execution of an instruction, like
an interrupt, a page fault, or some other unusual condition.
Possible exceptions for each instruction are explained in this
manual, including how the registers are affected and what action
is taken when they occur. Some exceptions can be enabled and
disabled under control of the "traps wordn--the traps word
determines which type of exceptions result in suspension of the
user program.

-4-

Assembler Reference Manual Ridge 32-bit Processor

Traps Word

o 15 16 17 18 19 20 31
---------------~---------------------~-------- ... -------

Itrap instr. bits I IO I DO I RO I RU I DZ I I PU I
----------------------------------~----------- ... -------

The trap instruction bits are the ones checked by the TRAP
instruction.

0 10 enables integer overflow trap
0 DO enables integer divide-by-zero trap
0 RO enables real overflow trap
0 RU enables real underflow trap
0 DZ enables real divide-by-zero trap
0 PU enables privileged user mode

without privileged user mode, a kernel violation trap occurs
upon executing the certain instructions that require that mode.

-5-

Assembler Reference Manual Ridge 32-bit Processor

-6-

Chapter 2
Program Sbucture

The Ridge assembler converts symbolic representations of Ridge
machine instructions into a relocatable object file that the
Ridge linker program (ld) accepts. This chapter describes the
system architecture that must be understood before writing a
program in Ridge assembly language.

SECTIONS

The Ridge 32 has two addressable memory spaces for each running
program: the code segment and the data segment. The data segment
is not created until the program is actually executed. An
executable program file contains the code segment portion and
information about creating the data segment at run time.

An assembly program is divided into any number of sections: Code
Sections and Data Sections, headed by the CSECT and DSECT,
pseudo-instructions, respectively.

Code Sections

Code sections contain program code and cannot be written into.
Code sections should be named by the CSECT pseudo-instruction.
If not specially named by this CSECT pseudo-instruction, the
mnemonics are assumed to fall in a code section named "code".

Disjointed code sections of the same name are assembled into one
contiguous section of the code segment.

Data Sections

Data sections contain program data initializers, such as the
SPACE, WORD, BYTE, DOUBLE, and HALFWORD pseudo-instructions.
Data sections must be headed, and should be given a name, by the
DSECT pseudo-instruction. If headed by DSECT but not
specifically named, a data section assumes the name "data". If
not headed by DSECT, the data initializers are assumed to fall
into a code section named "code," as described above.

If several unnamed data sections appear in a source file, they
are assembled contiguously into one section named "data".
Disjointed data sections of the same name are assembled in one
contiguous data segment of the given name.

-7-

Assembler Reference Manual Program Structure

PROGRAM COUNTER (PC)

Each of the various Code and Data sections has a location
counter associated with it. Within a section, the symbol "*"
evaluates to the current value of its counter. The counter for
each section starts at zero when the first CSECT or DSECT
pseudo-instruction defining that section is seen.

-8-

Chapter 3
Assembly Language Syntax

The instruction mnemonics in an AS program must be structured in
the following format:

label field
(starts in
column 1)

Label.

instruction
or pseudo
instruction
field

MOVE

operand
field

R6,R9

(blank(s) or tabes) may separate fields)

LABELS

comment
field •••

;Load R6 with R9

A label consists of any sequence of alphabetic characters,
numbers, "_", M$", and ".", which does not begin with a number.
When labels are compared, AS considers every character of the
name. Lower case and upper case characters are treated
distinctly. A colon (:) is required on the label if no
instruction appears on the line.

The following pseudo-instructions do not allow labels: CSECT,
DSECT, ORIGIN, COMMON, EXTERNAL, EXTERND, GLOBAL, ALIGN, and
LCOMM.

The following pseudo-instructions require labels: CODE, DATA,
and EQU.

Label Types

Labels provide reference points to code and data in an assembly
program. Labels start in column 1 of an assembly program. A
label is one of three types: code, data, or absolute.

• A code label is one which appears in a code section
(headed by the CSECT pseudo-instruction). Its value is the
section's PC at the time it is declared.

• A data label is one which appears in a data section
(headed by the DSECT pseudo-instruction). Its value is the
section's PC at the time it is declared.

• An absolute label assumes the value assigned to it by the
EQU pseudo-instruction.

A reference to a code or data label evaluates to the starting

-9-

Assembler Reference Manual Assembly Language Syntax

address of the section in which it appears, plus its own value
as determined by the pc. A reference to an absolute label
evaluates exactly to the address that was assigned to it.

COMMENTS

Any characters after a II; n on a line are ignored by AS. Use
comments liberally to document programs. Blank lines are allowed
and ignored.

CONSTANTS

AS recognizes base-IO (decimal) or base-16
integers, and single- and double-precision
constants. All constants can be preceded by an
("+" or "_").

(hexadecimal)
floating-point
optional sign

A decimal integer consists of the digits 0 to 9, and must be in
the range -2,147,483,648 to +2,147,483,647. Examples:

123 +123 -123 +2147483647

A hexadecimal integer consists of 0 to 9, and A to F (upper or
lowercase), begins with a digit, and ends with the letter "H" or
"h ". Examples:

80000000h 7FFFFh 80000000h 6F2Bh OC3h

A single- or double-precision floating-point constant starts
with one or more digits, must have a decimal point, optional
digits following the decimal point, and an optional exponent
following an liE" or "e". The exponent may be signed "+" or "_".
The optional exponent of a double-precision number is flagged
with "D" or "d". Examples:

123.45E+4 1. 1.3 1.3E-4

EXPRESSIONS

An expression consists of one or
location counter symbols ("*")
operators "+", "_a, "*a, or ,,/a.
of the expression that is itself
by parentheses.

1.3E+4 1.3E4 1.3D-4

more labels, constants, or
separated by the arithmetic

A sub-expression (a sub-part
an expression) may be enclosed

Expressions are arithmetically evaluated. A label in an
expression assumes the value of its location in the section.

The customary order of operator precedence applies to the
evaluation of expressions--multiplication and division first,
then addition and subtraction. Parenthesized sub-expressions are

-10-

Assembler Reference Manual Assembly Language Syntax

evaluated first.

Expressions have the same three types as data: code, data, and
absolute. The type is determined by the first non-absolute label
to be evaluated in an expression.

• Code expressions contain only code segment labels or absolute
labels. But if a code label is subtracted from another in the
expression, the expression becomes absolute.

• Data expressions contain only data segment labels or absolute
labels. But if a data label is subtracted from another in the
expression, the expression becomes absolute.

• Absolute expressions contain only absolute labels, or no
labels at all, or are the result of subtracting labels as
described above.

An expression preceded by "i" is always considered absolute,
regardless of its components.

Code and data labels cannot be mixed in one expression. The type
of all the non-absolute labels in an expression must match. A
general expression allows one external label or one forward
label (one which is defined later in the program).

-11-

Assembler Reference Manual Assembly Language Syntax

-12-

Cbapter4
Pseudo-Insbuctions

Pseudo-instructions are "commands" which help the assembler
organize code and data into a form that is recognized by the
Ridge linker.

LIST OF PSEUDO-INSTRUCTIONS

• ALIGN - align location counter
• BLOCK - assemble block of bytes
• BYTE - assemble strings or expressions
• CODE, DATA, EQU - assign type and value to a label
• COMMON - declare globally known block data
• CSECT, DSECT - assembly section headers
• EXTERNAL, EXTERND - declare external labels
• GLOBAL - make labels global
• LCOMM - declare locally known block data
• ORIGIN - set location counter
• SPACE - reserve bytes
• WORD, HALFWORD, DOUBLE - assemble expression into entity

-13-

Assembler Reference Manual Pseudo-Instructions

ALIGN
Align Location Counter

SYNTAX
ALIGN <alignval>

DESCRIPTION
ALIGN assembles dummy bytes so that the location counter ends
up on an integral multiple of the <alignval>. ALIGN 8, for
example, outputs dummy bytes so that the location counter
ends up on an integral multiple of 8 bytes. No pad bytes are
output if the location counter is already aligned.

<alignval> contains no forward or external label names, and
evaluates to a constant in the range 2 to 4096.

No label field is allowed on the ALIGN pseudo-instruction.

-14-

Assembler Reference Manual Pseudo-Instructions

BLOCK
Assemble Block of Bytes

SYNTAX
BLOCK <count>, <byteval>

DESCRIPTION
BLOCK assembles <count> bytes of the character <byteval> into
the current section.

<count> contains no forward or external label names, and
evaluates to any integer constant.

<byteval> contains no forward or external label names, and
evaluates to a constant in the range 0 to 255.

-15-

Assembler Reference Manual Pseudo-Instructions

BYTE
Assemble Strings or Expressions

SYNTAX
BYTE { <quoted string> I <byteval> }

[, { <quoted string> I <byteval> } •••]

DESCRIPTION
BYTE assembles the specified list of quoted strings and/or
expressions evaluating to a single byte into the current
section. Strings are delimited by single quotation marks (I)
and are assembled "as is." Certain special characters may be
included in a quoted string by entering a backslash followed
by a special character:

\b
\f
\n
\r
\t
\'
\\
\0

backspace
formfeed
newline
return
horiz tab
single quote
backslash itself

(08B)
(OcB)
(OaB)
(OdB)
(09B)

NULL (OOB)

-16-

same as linefeed
i.e., carriage return
control-I

Assembler Reference Manual

SYNTAX
<label> CODE <expression>
<label> DATA <expression>
<label> EQU <expression>

DESCRIPTION

Pseudo-Instructions

CODE, DATA, EQU
Assign Label Type and Value

CODE, DATA, and EQU assign a value and a type to a label.
There must be a label field with these pseudo-instructions.

CODE defines a code-section-relative label; the defining
expression must have code-section-relative or absolute type.

DATA defines a data-section-relative label; the defining
expression must have data-section-relative or absolute type.

EQU defines a label which assumes the type of the defining
expression; the defining expression may have any of the three
types.

<expression> contains no forward or externally defined
labels. If the CODE pseudo-instruction 1S used with an
expression that evaluates to an absolute type, then the label
is considered to have been declared relative to the default
code section "code". If the DATA pseudo-instruction is used
with an expression that evaluates to an absolute type, then
the label is considered to have been declared relative to the
default data section "data".

-17-

Assembler Reference Manual Pseudo-Instructions

COMMON
Declare Fixed Size External Data Label

SYNTAX
COMMON <name>, <size>

DESCRIPTION
COMMON defines globally known label to a data block of fixed
size. It is equivalent to declaring the label as an
external, except that the linker will allocate an area in the
data segment large enough to hold the-'specified number of
bytes. Other modules may also declare common blocks with the
same label; the linker guarantees that enough space is
allocated to satisfy the largest declaration.

<name> is label.

<size> indicates the number of bytes to reserve for storage.
If multiple modules declare the same label common with
differing sizes, the largest declared size is actually used.

No label field is allowed on the COMMON pseudo-instruction.

-18-

Assembler Reference Manual

SYNTAX
CSECT <section-name>
DSECT <section-name>

DESCRIPTION

Pseudo-Instructions

CSECT, DSECT
Assembly Section Headers

CSECT and DSECT declare to the assembler the section into
which it should assemble the instructions and data which
follow. CSECT heads a code segment section and DSECT heads a
data segment section.

<section-name> is a string of characters, delimited by
blanks, that indicates the name of the section. If the name
has already been encountered, assembly continues at the
location held in the location counter for that existing
section. If the name has not been seen, assembly starts in a
newly-created section with a location counter initialized to
zero. CSECT and DSECT do not allow a label field.

The assembler knows about two pre-defined sections: a code
segment-relative section called "code", and a data-segment
relative section called "data". Labels defined with the CODE
pseudo-instruction whose defining expression is absolute are
defined relative to section "code". Labels defined with the
DATA pseudo-instruction whose defining expression is absolute
are defined relative to section "data".

If no section declaration is given, AS assumes a code
section. If the code section is not given a name, AS assumes
the name "code".

-19-

Assembler Reference Manual

EXTERNAL,EXTERND
Declare External Labels

SYNTAX
EXTERNAL <labell> [,<labe12>
EXTERND <labell> [,<labe12>

DESCRIPTION

Pseudo-Instructions

. ..]
•••]

EXTERNAL and EXTERND declare one or more labels to be
external to the current assembly module. EXTERNAL declares a
code segment label; EXTERND declares a data segment label.
The operand field contains a list of <label>s, separated by
commas. No label is allowed with EXTERNAL or EXTERND.

-20-

Assembler Reference Manual Pseudo-Instructions

GLOBAL
Make Labels Global

SYNTAX
GLOBAL <labell> [,<labe12> •••]

DESCRIPTION
GLOBAL declares the labels listed in the operand field as
globally known. These labels will satisfy externals declared
in other modules. It is permissible to declare a global
prior to actually defining it.

No label field is allowed on a GLOBAL pseudo-instruction.

-21-

Assembler Reference Manual Pseudo-Instructions

LCOMM
Declare Local Data Block

SYNTAX
LCOMM <name>, <size>

DESCRIPTION
LCOMM reserves <size> bytes in the current data section.
<name> is not declared external, and is unknown outside of
the module.

No label field is allowed on an LCOMM pseudo-instruction.

-22-

Assembler Reference Manual Pseudo-Instructions

ORIGIN
Set Location Counter

SYNTAX
ORIGIN <loc ctr>

DESCRIPTION
ORIGIN sets the location counter of the current section equal
to the specified value.

<loc ctr> is an expression containing no forward or external
labels, and evaluates to an integer.

-23-

Assembler Reference Manual Pseudo-Instructions

SPACE
Reserve Bytes

SYNTAX
SPACE <count>

DESCRIPTION
SPACE reserves <count> bytes of space in the current section.
Data sections that are defined by only SPACE and ALIGN
pseudo-instructions are considered part of the uninitialized
data area. The linker concatenates all uninitialized data
sections together and merely notes their starting and ending
point in the code file header. The section formed by all
otherwise-un initialized common declarations is also
considered a part of the uninitialized data area. This area
is occasionally referenced to by the name bss.

A section that has actual information assembled into it by
instructions or a pseudo-instruction treats SPACE
differently. A SPACE pseudo-instruction in such a section
actually causes <count> bytes of zero to be assembled into
the section.

-24-

Assembler Reference Manual Pseudo-Instructions

WORD, HALFWORD, DOUBLE
Assemble Expression into Entity

SYNTAX
WORD <expression>
HALFWORD <expression>
DOUBLE <double constant>

DESCRIPTION
WORD and HALFWORD evaluate <expression> and assemble the
result into a 32-bit word or l6-bit halfWord, respectively.

DOUBLE converts <double constant> into a 64-bit double
prec1s1on floating-point number and assembles it into the
current section.

<expression> may evaluate to an absolute constant, a value
relative to a code or data segment, or a 32-bit floating
point value. Code-segment-relative and data-segment-relative
values are marked for later relocation by the linker.
Absolute values are assembled "as is." All expressions are
evaluated as 32-bit quantities, if the expression of a
BALFWORD value evaluates to a number greater than 32767 or
less than -32768, an error is printed.

-25-

Assembler Reference Manual Pseudo-Instructions

-26-

Assembler Reference Manual Instructions

Chapter 5
Instructions

Documentation on the Ridge assembly instructions assumes the
following format:

NAME
one-line explanation

SYNTAX

instruction syntax in an assembly program

FUNCTION

a description of how the symbols from
"SYNTAX" might be coded in a higher level language

DESCRIPTION

an explanation of the instruction

EXCEPTIONS

the special conditions under which a trap
can be generated by this instruction

INSTRUCTION FORMAT

a bit map showing the position of the opcode, operands,
and address parts of the assembled instruction

-27-

Assembler Reference Manual

ADD
Add

SYNTAX
ADD
ADD

FUNCTION

or

Rx, Ry
Rx, <smallval>

Rx := Rx + Ry

Rx := Rx + smallval

DESCRIPTION

Instructions

Add the contents of Rx and Ry, or the contents of Rx and
<smallval>, and put the result in Rx.

<smallval> is an- expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
If integer overflow occurs, the least significant 32 bits of
the result are placed in Rx, the most significant bits are
discarded, and the integer overflow trap is taken if enabled.

INSTRUCTION FORMAT

or

o 7 8
1 1
1 2

1
5

+---------+-----+-----+
03 Rx I Ry I

+---------+-----+-----+
+--------~+-----+-----+

13 Rx I val I
+---------+-----+-----+

-28-

Assembler Reference Manual Instructions

AND
Logical AND

SYNTAX
AND Rx, Ry
AND Rx, <smallval>

FUNCTION
Rx .-.- Rx AND Ry

or
Rx .-.- Rx AND smallval

DESCRIPTION
Perform logical AND with the contents of Rx and Ry, or Rx and
<smallval>, and put the result in Rx.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+ I OB I . Rx Ry I
+----------+------+------+

or
+----------+------+------+
I lB I Rx I val I
+----------+------+------+

-29-

Assembler Reference Manual

ASL
Arithmetic Shift Left

SYNTAX
ASL
ASL

FUNCTION

Rx, Ry
Rx, <smallval>

hold := Rx[O];
shift contents of Rx to left by n bits;
Rx[O] := hold;
Rx[3l-(n-l) •• 31] := 0

Instructions

where n = <smallval> or contents of Ry mod 32

DESCRIPTION
ASL shifts the bits in Rx to the left by the number of bits
specified in Ry or by <smallval>. ASL inserts 0 at the
right, but preserves the sign bit.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
If the initial Rx[O] does not equal the final Rx[O] (the sign
bit), an integer overflow trap is taken if enabled.

INSTRUCTION FORMAT
1 1 1

bit 0 7 8 1 2 5
+----------+------+------+
I 62 I Rx I Ry I
+----------+------+------+ or
+----------+------+---~--+

72 Rx I val
+----------+------+------+

-30-

Assembler Reference Manual

SYNTAX
ASR
ASR

FUNCTION

Rx, Ry
Rx, <smallval>

shift contents of Rx to right by n bits;
Rx [1 •• n] : = Rx [0]

Instructions

ASR
Arithmetic Shift Right

where n = <smallval> or contents of Ry mod 32

DESCRIPTION
ASR shifts the bits in Rx to the right by the number of bits
specified in Ry or by <smallval>.

ASR shifts all bits to the right, filling the left with
duplicates of the sign bit.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
63 Rx Ry

+--~-------+------+------+
or

+--------~-+------+------+
73 Rx I val

+----------+------+------+

-31-

Assembler Reference Manual Instructions

BR
Branch

SYNTAX
BR
BR
BR

FUNCTION

or

or

<label> [, L]
Rx <relop> Ry, <label> [1 j [, L]
Rx <relop> <smallval>, <label> [1] [,Lj

PC := label;

IF Rx <relop> Ry is true THEN- PC := label

IF Rx <relop> smallval is true THEN PC := label

DESCRIPTION
BR may conditionally or unconditionally transfer execution to
the code identified by the <label>.

If only a label appears in the operand field, BR branches
unconditionally to the code at that label.

If a relational operator (relop) appears with two register
names, or one register and a small value, BR makes a
comparison and branches to the label if true.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

<label> can contain label names, and must evaluate to a
code-relative value. <label> may be short (16 bits) or long
(32 bits). A long label must be flagged with [,Lj.

<relop> -is any of the relational operators <, <=, =, >, >=,
or <>.

[1] sets the branch prediction bit in the instruction.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT
1 1 1 1 3 3 <-prediction

bit 0 7 8 1 2 56 0 1 bit
+---~------+--~---+---------+-------------~---+-+ \
I opcode Rx IRy or vall short offset I I \
+----------+~-----+---------+-----------------+-+ 4 4 or 6 7
+----------+------+---------+-----------------------------+-+
I opcode Rx fRy or vall long offset I I
+----------+------+---------+-----~-----------------~-----+-+

-32-

Assembler Reference Manual

BR instruction
OPCODE

short long

BR
BR
On
BR
BR
On
BR
BR
BR
BR
BR
BR
BR

offset 8B
Rx > Ry, offset 80

"Rx<Ry" , "Ry>Rx" is
Rx = Ry, offset 82
Rx <= Ry, offset 88

"Rx>=Ry", "Ry<=Rx" is
Rx <> Ry, offset 8A
Rx > val, offset 84
Rx < val, offset 85
Rx = val, offset 86
Rx <= val, offset 8C
Rx >= val, offset 8D
Rx <> val, offset 8E

9B
90

assembled
92
98

assembled
9A
94
95
96
9C
9D
9E

-33-

Instructions

Use of the least significant
bit as the prediction bit
does not affect the inter
pretation of the offset bits
because the offset is always
a multiple of 2. The least
significant bit is not con
sidered in calculating the
offset.

The offset is calculated to
be the offset of the target
from the current PC, not an
absolute address of the tar
get. A short offset is sign
extended.

Assembler Reference Manual

CALL
Call Subroutine

SYNTAX
CALL Rx, <label> [,Ll

FUNCTION
Rx := PC + instruction size;
PC := label

DESCRIPTION
CALL transfers control to the location
from the current PC, saving the
instruction. CALL puts the address of
in Rx and branches to the code at the
as a return point from the subroutine.

Instructions

at a specific offset
address of the next
the next instruction
label. Rx can be used

<label> must evaluate to a code-relative value.

[,Ll indicates that <label> evaluates to a 32-bit offset. If
not specified, a short offset is assembled.

The offset is calculated to be the offset of the target from
the current PC, not an absolute address of the target.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT
+----------+------+------+-------------------+ I 83 I Rx I 0 I short offset I

(sign ex
tended)

or
+--------~-+------+------+-------------------+

+----------+------+------+-----~-------------------------+
93 Rx o long offset

+----------+------+------+----~--~-----------------------+
bit 0 7 8 1 2

1 1

-34-

5 6
1 1

1
3

4
7

Assembler Reference Manual

SYNTAX
CALLR

FUNCTION

Rx, Ry

Rx := PC + 2;
PC := PC + Ry

DESCRIPTION

Instructions

CALLR
Call Subroutine Register

CALLR puts the address of the next instruction in Rx and
branches to the code at PC + Ry. Rx can be used as a return
point from the subroutine.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I opcode Rx Ry
+----------+------+------+

-35-

Assembler Reference Manual

CBIT
Clear Bit

SYNTAX
CBIT

FUNCTION

Rx, Ry

In RPx, clear the bit specified in Ry.

DESCRIPTION

Instructions

CBIT clears the bit in RPx that is specified in Ry mod 64.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5'

+----------+------+------+
I OC I Rx I Ry I
+----------+------+------+

-36-

Assembler Reference Manual Instructions

CSL
Circular Shift Left

SYNTAX
CSL
CSL

FUNCTION

Rx, Ry
Rx, <smallval>

hold := Rx[O •• n-I]; {for n>O}
shift contents of Rx to left by n bits;
Rx[31-(n-l) •• 3l] := hold; {for n>O}

where n = <smallval> or contents of Ry mod 32

DESCRIPTION

The first Un" bits of the word
are carried around to bit 31,
then all bits are shifted left
by "nil bit positions, where
nn I. = <smallval> or the con
tents of Ry mod 32. No bits
are lost in the process.

f f t t t

o n-l 3
1

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain ,forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

or

bit 0 7 8
I 1
1 2

1
5

+----------+------+------+
68 Rx Ry

+----------+------+------+
+----------+------+------+

78 . I Rx I val
+----------+------+------+

-37-

]

Assembler Reference Manual Instructions

DCOMP
Double Register Compare

SYNTAX
DCOMP Rx, Ry

FUNCTION
IF RPx < RPy THEN Rx := -1;
IF RPx = RPy THEN Rx .-.- 0;
IF RPx > RPy THEN Rx := 1

DESCRIPTION
DCOMP compares the 64-bit integers in RPx and RPy. If RPx is
less than RPy, Rx is set to -1. If RPx equals RPy, Rx is set
,to O. If RPx is greater than RPy, Rx is set to 1.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+~---------+------+------+
38 I RPx I RPy

+----------+------+------+

-38-

Assembler Reference Manual Instructions

DFIXR
Double Real Round to Integer

SYNTAX
DFIXR

FUNCTION

Rx, Ry

Rx := int (RPy)

DESCRIPTION
DFIXR converts the double real number in RPy into an integer
in Rx. Fractions of .5 or larger are rounded up to the next
higher absolute value integer.

EXCEPTIONS
If integer overflow occurs, Rx is unmodified and an integer
overflow trap is taken if enabled.

INSTRUCTION FORMAT
III

bit 0 7 8 1 2 5
+----------+------+------+
I 31 I Rx I Ry I
+----------+------+------+

-39-

Assembler Reference Manual

DFIXT
Double Real Truncate to Integer

SYNTAX
DFIXT

FUNCTION

Rx, Ry

Rx := trunc (RPy)

DESCRIPTION

Instructions

DFIXT converts the double prec1s1on real number in RPy into
an integer in Rx. All bits to the right of the decimal point
are lost.

EXCEPTIONS
If integer overflow occurs, Rx is unmodified and an integer
overflow trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 I
I 2

1
5

+----------+------+------+
30 Rx Ry

+----------+------+------+

-40-

Assembler Reference Manual Instructions

DFLOAT
Integer to Double Real

SYNTAX
DFLOAT Rx, Ry

FUNCTION
RPx := float (Ry)

DESCRIPTION
DFLOAT converts the integer in Ry into a double precision
real number in RPx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
39 Rx Ry

+----------+------+------+

-41-

Assembler Reference Manual

DIV
Integer Divide

SYNTAX
DIV

FUNCTION

Rx, Ry

Rx := Rx/Ry

DESCRIPTION

Instructions

DIV divides the two's-complement integer in Rx by the two's
complement integer in Ry and puts the result in Rx.

EXCEPTIONS
Integer overflow can occur when the largest negative integer
is divided by -1. In this case, Rx is not modified, and an
integer· overflow trap is taken if enabled.

An attempt to divide by 0 leaves Rx unmodified, and a
divide-by-zero trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+-----"-----+------+------+
06 Rx Ry

+----------+------+-----~+

-42-

Assembler Reference Manual Instructions

DLSL
Double Logical Shift Left,

SYNTAX
DLSL
DLSL

FUNCTION

Rx, Ry
Rx, <smallval>

shift contents of RPx to left by n bits;
RPx[63-(n-l) •• 63] := 0

where n = <smallval> or the contents of Ry mod 64

DESCRIPTION

DLSL shifts all bits to
the left, inserting ·0"
on the right of R(x+1),
truncating bits on the
left of Rx, by the num
ber of bits specified
in Ry or <small val>.

t t t ·t
o n-1

II

•

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT
III

bit 0 7 8 1 2 5
+----------+------+------+
I 64 I Rx I Ry I
+----------+------+------+

or
+----------+------+------·t

74 Rx I val
+----------+------+------+

-43-

6
3

.-"0"

Assembler Reference Manual

DLSR
Double Logical Shift Right

SYNTAX
DLSR
DLSR

FUNCTION

Rx, Ry
Rx, <smallval>

shift contents of RPx to right by n bits;
RPx [0 •• n-l] : = 0

Instructions

where n = <smallval> or the contents of Ry mod 64

DESCRIPTION

DLSR shifts all bits to
the right, inserting
"0" on the left of Rx, ·0·-...
and truncating bits on
the right of R(x+l), by 0
the number of positions
contained in Ry or
<smallval>.

t t t t
I I

I 6
---------.. I 3

63-(n-l)

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no" exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
65 Rx Ry

+----------+------+------+ or
+----------+------+------+

75 Rx I val
+----------+------+------+

-44-

I

Assembler Reference Manual

SYNTAX
DRADD

FUNCTION

Rx, Ry

RPx := RPx + RPy

DESCRIPTION

Instructions

DRADD
Double Real Add

DRADD adds the double-real numbers in RPx and RPy and puts
the sum in RPx.

EXCEPTIONS
On overflow, RPx is set to the largest real number with the
appropriate sign bit. On real underflow, RPx is set to O. In
either case, an under- or overflow trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 33 I Rx I Ry I
+----------+------+------+

-45-

Assembler Reference Manual Instructions

DRCOMP
Double Register Compare

SYNTAX
DRCOMP Rx, Ry

FUNCTION
IF RPx < RPy then Rx .-.- -1;
IF RPx = RPy then Rx .-.- 0;
IF RPx > RPy then Rx .-.- 1

DESCRIPTION
DRCOMP compares the double-precision real numbers in RPx and
RPy, and sets Rx to -1, 0, or 1 depending on whether RPx is
less than, equal to, or greater than RPy, respectively.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 . 7 8
1 1
1 2

1
5

+----------+------+------+
3A Rx Ry

+----------+------+------+

-46-

Assembler Reference Manual Instructions

DRDIV
Double Precision Real Divide

SYNTAX
DRDIV

FUNCTION

Rx, Ry

RPx : = RPx/RPy

DESCRIPTION
DRDIV divides the double-precision real in RPx by the
double-precision real in RpY and puts the result in the RPx.

EXCEPTIONS
On overflow, RPx is set to the largest real number with the
appropriate sign bit. On real underflow, RPx is set to O. If
RPy is zero, RPx is set to the largest real number with the
appropriate sign bit. In any case, a real underflow,
overflow, or divide by zero trap is taken if enabled.

An attempt to divide by zero leaves RPx unmodified, and a
real divide by zero trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 36 I Rx I Ry I
+----------+------+------+

-47-

Assembler Reference Manual

DRMPY
Double Precision Real Multiply

SYNTAX
DRMPY

FUNCTION

Rx, Ry

RPx := RPx * RPy

DESCRIPTION

Instructions

DRMPY multiplies the double-precision real number in RPx by
the double-precision real in RPy and puts the product in the
RPx.

EXCEPTIONS
On overflow, RPx is set to the highest double real number
with the appropriate sign bit. On underflow, RPx is set to
O. In either case, a real under- or overflow trap is taken
if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 35 I Rx I Ry I
+----------+------+------+

-48-

Assembler Reference Manual Instructions

DRNEG
Double Precision Real Negate

SYNTAX
DRNEG

FUNCTION

Rx, Ry

RPx := - RPy

DESCRIPTION
DRNEG negates the double-precision real number in RPy and
puts the result in the RPx.

EXCEPTIONS
On overflow, RPx is set to the largest real number with the
appropriate sign bit. On real underflow, RPx is set to O.
In either case, an under- or overflow trap is taken if
enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
32 Rx Ry

+-----~---~+------+------+

-49-

Assembler Reference Manual Instructions

DRSUB
Double Precision Real Subtract

SYNTAX
DR SUB Rx, Ry

FUNCTION
RPx := RPx - RPy

DESCRI Pl' ION
DRSUB subtracts the double-precision real number in RPx from
the double-precision real in RPy and puts the difference in
RPx.

EXCEPTIONS
On overflow, RPx is set to the largest real number with the
appropriate sign bit. On real underflow, RPx is set to O.
In either case, an under- or overflow trap is taken if
enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 34 I Rx I Ry I
+----------+------+------+

-50-

Assembler Reference Manual

SYNTAX
EADD

FUNCTION

Rx, Ry

Rx := Rx + Ry + RO[3l];
RO [0 •• 2 9] : = 0;
RO[30] := overflow;
RO [31] : = carry

DESCRIPTION

Instructions

EADD
Extended Integer Add

EADD adds the two's-complement integers in Rx and Ry, and at
the same time adds the carry-in from RO bit 31, and puts the
low 32-bits of the sum in Rx. The carryout (most significant)
bit is put in RO bit 31. On overflow, RO bit 30 is set. The
upper 30 bits of RO are set to zero.

EADD can be used to implement multiple-word arithmetic.
Normally, this is done by setting RO[3l] to zero, EADDing the
least significant words, then the next least significant
words, and so on, until the most significant words have been
EADDed. Overflow can then be checked after the last EADD.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
2C Rx Ry

+----------+------+------+

-51-

Assembler Reference Manual

EDIV
Extended Divide

SYNTAX
EDIV

FUNCTION

Rx, Ry

Rx : = RPx/Ry ;
Ry := the remainder

DESCRIPTION

Instructions

EDIV divides the unsigned 64-bit contents of RPx by the
unsigned 32-bit contents of Ry, and puts the integer quotient
in Rx and the remainder'in Ry.

EXCEPTIONS
If integer overflow occurs (the result is greater than 32
bits), RPx is not modified and an integer overflow trap is
taken if enabled. If division by 0 is attempted, Rx is not
modified and a divide-by-zero trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+-----------+------+------+
2F Rx Ry

+----------+------+------+

-52-

Assembler Reference Manual

SYNTAX
EMPY

FUNCTION

Rx, Ry

RPx := Rx * Ry

DESCRIPTION

Instructions

EMPY
Extended Multiply

EMPY multiplies two unsigned 32-bit numbers and puts the
unsigned 64-bit product in RPx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+ I 2E Rx Ry
+----------+------+------+

-53-

Assembler Reference Manual

ESUB
Extended Subtract

SYNTAX
ESUB

FUNCTION

Rx, Ry

Rx := Rx - Ry + RO[3l] ;
RO [0 •• 2 9] : = 0;
RO[30] := overflow;
RO[31] := carry;

DESCRIPTION

Instructions

(onels complement subtraction)

ESUB one's-complement-subtracts the two's-complement integer
in Ry from the two's-complement integer in Rx, and at the
same time adds the carry-in from RO[3l], and puts the 32-bit
two's-complement difference in Rx. The carryout (most
significant) bit is put in RO[3l]. OVerflow is indicated in
RO[30]. The upper 30 bits of RO are set to zero.

ESUB can be used to implement multiple-word arithmetic.
Normally, this is done by setting RO[3l] to one, ESUBing the
least significant words, then the next least significant
words, and so on, until the most significant words have been
ESUBed. Overflow can then be checked after the last ESUB.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit . 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 2D I Rx I Ry I
+----------+------+------+

-54-

Assembler Reference Manual Instructions

FIXR
Round to Integer

SYNTAX
FIXR Rx, Ry

FUNCTION
Rx := round(Ry)

DESCRIPTION
FIXR converts the single-precision real contents of Ry into a
two's-complement integer in Rx. Fractions of .5 or more are
rounded up to the next higher absolute value integer.

EXCEPTIONS
If integer overflow occurs, Rx is not modified and an integer
overflow trap is taken if enabled.

INSTRUCTION FORMAT
1 1 1

bit 0 7 8 1 2 5
+----------+------+------+
I 21 I Rx I Ry I
+----------+------+------+

-55-

Assembler Reference Manual

FIXT
Truncate to Integer

SYNTAX
FIXT

FUNCTION

Rx, Ry

Rx := trunc(Ry)

DESCRIPTION

Instructions

FIXT converts the single-precision real number in Ry into a
32-bit integer in Rx. All bits to the right of the decimal
point are lost.

EXCEPTIONS
If integer overflow occurs, Rx is not modified and an integer
overflow trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
I I
I 2

1
5

+-------~--+---~--+------+
20 Rx Ry

+-------.---+------+------+

-56-

Assembler Reference Manual

SYNTAX
FLOAT

FUNCTION

Rx, Ry

Rx := float(Ry)

DESCRIPTION

Instructions

FLOAT
Convert Integer to Real

FLOAT converts the integer in Ry into a real number in Rx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
29 Rx Ry

+----------+------+------+

-57-

Assembler Reference Manual Instructions

LADDR
Load Data Segment Address

SYNTAX
LADDR Rx, Ry [,<constant> [,L]]
LAD DR Rx [,Ry] ,<constant> [,L]

FUNCTION
Rx .-.- constant

or
Rx .-.- (contents of Ry) + constant

or
Rx .-.- PC + constant

or
Rx .-.- PC + Ry + constant

DESCRIPTION
The load address instruction stores the effective address
into Rx. This instruction does not perform a memory
reference, but instead loads a constant from the instruction
stream into a register.

The LADDR instruction can be used to load two- or four-byte
immediate values and, in indexed mode, can be used to add a
constant to a register.

The operation of LADDR is varied by specifying Ry or a code
relative constant. If <constant> is data-relative, LADDR
either loads register Rx with <constant> or loads register Rx
with the sum of the contents of Ry and <constant>.

If the constant is code-relative, LADDR either loads register
Rx with PC + <constant> or loads register Rx with the sum of
the contents of By and PC + <constant>.

<constant> may be either a data-relative or a code-relative
expression. [,L] indicates that <constant> is a 32-bit
two's-complement integer. If no constant is specified, a
short offset of 0 is assembled.

EXCEPTIONS
There are no exceptions.

-58-

Assembler Reference Manual Instructions

INSTRUCTION FORMAT
Data Segment Address

+----------+------+------+-------------------+
I CE I Rx I 0 I short constant I (short
+----------+------+------+-------------------+ constants
+----------+------+------+-------------------+ I CF I Rx I Ry I short constant I

are sign
extended)

+----------+------+------+-------------------+ +----------+------+------+-------------------------------+ I DE I Rx I 0 I long constant I
+----------+------+------+-------------------------------+ +----------+------+------+-------------------------------+ I DF I Rx I Ry I long constant I
+----------+------+------+-------------------------------+

Code Segment Address
+----------+------+------+-------------------+
I EE I Rx I 0 I short constant I
+----------+------+------+-------------------+ +----------+------+------+-------------------+ I EF I Rx I Ry I short constant I
+----------+------+------+-------------------+

(short
constants
are sign
extended)

+----------+------+------+-------------------------------+
I FE I Rx I 0 I long constant I
+----------+------+------+-------------------------------+ +----------+----.--+------+-------------------------------+ I FF I Rx I Ry I long constant I
+----------+------+------+-------------------------------+

bits 0 7 8 III 1 3 4
1 2 5 6 1 7

-59-

Assembler Reference Manual Instructions

LCOMP
Logical Compare

SYNTAX
LCOMP Rx, Ry

FUNCTION
IF Rx < Ry THEN Rx .-.- -1;
IF Rx = Ry THEN Rx .-.- 0;
IF Rx > Ry THEN Rx .-.- 1

DESCRIPTION
LCOMP compares 32-bit unsigned integers in Rx and Ry and sets
Rx to 1, 0, or -1 if Rx is greater than, equal to, or less
than Ry, respectively.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 28 I Rx I Ry I
+----------+------+------+

-60-

Assembler Reference Manual Instructions

LOAD
Load Word from Data Segment

SYNTAX
LOAD Rx [,Ry] ,<address> [, L]
LOAD Rx, Ry [,<address> [,L]

FUNCTION
Rx .-.- contents of address

or
Rx .-.- contents of (Ry + address)

or
Rx .-.- contents of (PC + address)

or
Rx .-.- contents of (PC + Ry + address)

DESCRIPTION
The register Rx is loaded with the word at the effective
address. Each effective address for a memory reference
instruction is explained below.

Displacement. The memory address is the displacement
field from the instruction. All memory references are
32-bit virtual addresses. This form references data
space.

Ry + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

PC + displacement. Instructions that reference
space do so relative to the program counter (PC).
added to the displacement field and memory is read
this location.

code
PC is

from

PC + ~ + displacement. PC is added to the displacement
field, the result is added to the contents of Ry.
Memory is then read at this location.

LOAD will generate a load from the code segment if the
operand is code-relative (LOADP).

[,L] indicates that <address> is a 32-bit two's-complement
integer.

EXCEPTIONS
A data alignment trap may result from attempting to LOAD with
the effective address not on a word boundary.

-61-

Assembler Reference Manual Instructions

INSTRUCTION FORMAT
+----------+------+------+-------------------+

C6 Rx o short address
+----------+------+------+-------------------+ +----------+------+------+-------------------+

C7 Rx Ry short address
+----------+------+------+--------~----~----~+

(short
addresses
are sign
extended)

+----------+------+------+--------~---~~--------------~~~+
D6 Rx o long address

+----------+--~~--+------+------~~~~-----~-------~~~~----+
+----------+------+------+---------------------~---------+

D7 Rx Ry long address
+----------+------+------+--~----------------------------+ o 7 8 1 1

1 2

-62-

1 1
5 6

3
1

4
7

Assembler Reference Manual Instructions

LOADB
Load Byte from Data Segment

SYNTAX
LOADB Rx [,Ry] ,<address> [, L]
LOADB Rx, Ry [,<address> [, L]]

FUNCTION
Rx .-.- contents of address

or
Rx .-.- contents of (Ry + address)

or
Rx .-.- contents of (PC + address)

or
Rx .-.- contents of (PC + Ry+ address)

DESCRIPTION
The register Rx is loaded with the byte at the
address. Each effective address for a memory
instruction is explained below. The byte is stored
24 to 31 of Rx. Bits 0 to 23 are cleared.

effective
reference
in bits

Displacement. The memory address is the displacement
field from the instruction. All memory references are
32-bit virtual addresses. This· form references data
space.

~ + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

PC + displacement. Instructions that reference
space do so relative to the program counter (PC).
added to the displacement field and memory is read
this location.

code
PC is

from

PC + By + displacement. PC is added to the displacement
field, the result is added to the contents of Ry.
Memory is then read at this location.

LOADB will generate a load from the code segment if the
operand is code-relative (LOADBP).

[,Ll indicates that <address> is a 32-bit two's-complement
integer.

EXCEPTIONS
There are no exceptions.

-63-

Assembler Referenc~ Manual Instructions

INSTRUCTION FORMAT
+----------+------+------+----------~--------+ I CO I Rx I 0 I short address I (short
+----------+------+------+-------------------+ addresses +----------+------+------+-------------------+ are sign I Cl I Rx I Ry I short address I extended)
+----------+------+------+-------------------+ +----------+------+------+-------------,------------------+ I DO I Rx I 0 I long address I
+----------+------+------+-------------------------------+
+----------+------+------+-------------------------------+

Dl Rx Ry long address
+---~------+------+------+-------------------------------+ o 7 8 1 1

1 2

-64-

1 1
5 6

3
1

4
7

Assembler Reference Manual Instructions

LOADD
Load Double Word from Data Segment

SYNTAX
LOADD Rx [,Ry] ,(address> [, L]
LOADD Rx, Ry [,(address> [,L]]

FUNCTION
Rx .-.- contents of address

or
Rx .-.- contents of (Ry + address)

or
Rx .-.- contents of (PC + address)

or
Rx .-.- contents of (PC + Ry + address)

DESCRIPTION
The register Rx is loaded with the double word at the
effective address. Each effective address for a memory
reference instruction is explained below.

Displacement. The memory address is the displacement
field from the instruction. All memory references are
32-bit virtual addresses. This form references data
space.

i¥ + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

PC + displacement. Instructions that reference
space do so relative to the program counter (PC).
added to the displacement field and memory is read
this location.

code
PC is

from

PC + ~ + displacement. PC is added to the displacement
field, the result is added to the contents of Ry.
Memory is then read at this location.

LOADD will generate a load from the code segment if the
operand is code-relative (LOADDP).

[,L] indicates that (address> is a 32-bit two's-complement
integer.

EXCEPTIONS
A data alignment trap may result from attempting to LOAD with
the effective address not on a word boundary.

-65-

Assembler Reference Manual Instructions

INSTRUCTION FORMAT
+----------+------+------+-------------------+ I C8 I Rxl 0 I short address I (short
+----------+------+------+-------------------+ addresses
+----------+------+------+-------------------+ I C9 I Rx I Ry I short address I

are sign
extended)

+----------+------+------+-------------------+ +----------+------+------+-------------------------------+ I D8 I Rx I 0 I long address I
+----------+------+------+-------------------------------+
+----------+------+------+~------------------------------+ I D9 I Rx I Ry I long address I
+----------+------+------+-------------------------------+ 078 1 1 1 1 3 4

1 2 5 6 1 7

-66-

Assembler Reference Manual Instructions

LOADH
Load Half Word from Data Segment

SYNTAX
LOADH Rx [,Ry] ,(address> [, L]
LOADH Rx, Ry [,(address> [, L]]

FUNCTION
Rx .-.- contents of address

or
Rx .-.- contents of (Ry + address)

or
Rx .-.- contents of (PC + address)

or
Rx .-.- contents of (PC + Ry + address)

DESCRIPTION
The register Rx is loaded with the half word at the effective
address. Each effective address for a memory reference
instruction is explained below. The half word is stored in
bits 16 to 31 of Rx. Bits 0 to 15 are cleared.

Displacement. The memory address is the displacement
field from the instruction. All memory references are
32-bit virtual addresses. This form references data
space.

Ry + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

PC + displacement. Instructions that reference
space do so relative to the program counter (PC).
added to the displacement field and memory is read
this location.

code
PC is

from

PC + By + displacement. PC is added to the displacement
field, the result is added to the contents of Ry.
Memory is then read at this location.

LOADH will generate a load from the code segment if the
operand is code-relative (LOADHP).

[,L] indicates that <address> is a 32-bit two's-complement
integer.

EXCEPTIONS
A data alignment trap may result from attempting to LOAD with
the effective address not on a half word boundary.

-67-

Assembler Reference Manual Instructions

INSTRUCTION FORMAT
+----------+------+------+-------------------+ I C2 I Rx I 0 I short address I (short
+----------+------+------+-------------------+ addresses +----------+------+------+-------------------4 are sign
I C3 I Rx I Ry I short address I extended)
+----------+------+------+-------------------+ +----------+------+------+-------------------------------+
I D2 I Rx I 0 I long address I

+----------+------+------+-------------------------------+ +----------+------+------+-------------------------------+ I D3 I Rx I Ry I long address I
+----------+------+------+------------------~------------+ o 7 8 1 1

1 2

-68-

1 1
5 6

3
1

4
7

Assembler Reference Manual

SYNTAX
LOOP

FUNCTION

Rx, <smallval>, <label> [,Ll

Rx := Rx + smallval;
if Rx < 0 THEN branch to (PC + label)

DESCRIPTION

Instructions

LOOP
Increment and Branch

LOOP adds <smallval> to Rx, and if Rx is less than 0,
branches to the code <label> from the current location.

<label> can be short (16 bits) or long (32 bits). The long
form is indicated by following the label by [,Ll. <label>
must evaluate to a code-relative value.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

The loop format is similar to the branch format except that
no second register is allowed, only a value from 0 to 15,
inclusive.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1 1
5 6

3
1

+----------+-~----+------+-------------------+
87 Rx I val short offset

(sign
extend~d

+---~------+---~--+------+-------~~----------+

bit 0 7 8
1 1
1 2

1 1
5 6

4
7 +-_________ + ______ + ______ + _______________________________ f

97 Rx I val long offset
+----------+------+------+---.----------------------------,

-69-

Assembler Reference Manual

LSL
Logical Shift Left

SYNTAX
LSL
LSL

FUNCTION

Rx, Ry
Rx, <sma1Ival>

shift contents of Rx to left by n bits,
Rx [31- (n -1) •• 31] : = 0

Instructions

where n = <smallval> or contents of Ry mod 32

DESCRIPTION
LSL shifts all bits to the left, inserting 0 on the right,
and truncating bits on the left.

LSL expects two registers in the operand field, or one
register and an expression <smallval>.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

or

bit 0 7 8
1 I
1 2

1
5

+----------+------+------+
60 Rx Ry

+----------+-----~+------+

+----------+-~----+------+
I 70 I Rx I val I
+----------+------+------+

-70-

Assembler Reference Manual

SYNTAX
LSR
LSR

FUNCTION

Rx, Ry
Rx, <smallval>

shift contents of Rx to right by n bits;
Rx [0 •• n-l] : = 0;

Instructions

LSR
Logical Shift Right

where n = <smallval> or the contents of Ry mod 32

DESCRIPTION
LSR shifts all bits in Rx to the right by the number of bit
positions specified by <smallval> or contained in Ry. LSR
inserts 0 on the left of Rx and truncates bits on the right.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+~----~+
I 61 I Rx I Ry
+----------+------+------+

or
+----------+------+------+ I 71 I Rx I val I
+----------+------+------+

-71-

Assembler Reference Manual Instructions

MAKEDR
Round Double Real to Real

SYNTAX
MAKE DR Rx, Ry

FUNCTION
Rx := real (RPy)

DESCRIPTION
MAKEDR rounds the double-real number in RPy into a single
precision real number in Rx.

EXCEPTIONS
If real overflow or underflow occurs, a real overflow or
underflow trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 37 I Rx I Ry I
+----------+------+------+

-72-

Assembler Reference Manual Instructions

MAKERD
Convert Real to Long Real

SYNTAX
MAKERD Rx, Ry

FUNCTION
RPx := long (Ry)

DESCRIPTION
MAKERD convert the real number in Ry into a long real number
in register RPx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 27 I Rx I Ry I
+-----.-----+------+------+

-73-

Assembler Reference Manual

MOVE
Move Register

SYNTAX
MOVE
MOVE
MOVE
MOVE

FUNCTION

Rx, Ry
Rx, <smallval>
SRx, Ry
Rx, SRy

Rx := Ry
or

Rx := <smallval>
or

Special Register Rx := Ry
or

Rx := Special Register Ry

DESCRIPTION

Instructions

MOVE places a value in a register. There are four forms of
this instruction. The first two forms copy either the
contents of a register or a <smallval> into register Rx. The
second two forms· use one general register and one special
register. Either a general register is copied to a special
register, or a special register is copied to a general
register.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
If MOVE is attempted with SRx or SRy and not in kernel mode,
a kernel violation trap results.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+---------+------+
01 Rx Ry

+----------+---------+------+
or

+----------+---------+------+
11 Rx I val

+----------+-----------+------+
or

+----------+-------~~+---~~~+
I 46 I SRx I Ry
+----------+---------+------+

or
+----------+---~----~+~-----+

47 Rx I SRy
+----------+----------+-----.-+

-74-

Assembler Reference Manual

SYNTAX
MPY
MPY

FUNCTION
Rx :=

or
Rx :=

DESCRIPTION

Rx, Ry
Rx, <smallval>

Rx * Ry

Rx * smallval

Instructions

MPY
Integer Multiply

MPY multiplies the contents of Rx and Ry, or Rx and an
expression <smallval>, and puts the result in Rx.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
If integer overflow occurs, the least-significant 32 bits of
the result are placed in Rx, the most significant bits ar.e
discarded, and the integer overflow trap is taken if
enabled.

INSTRUCTION FORMAT

or

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
05 Rx Ry

+----------+------+------+
+----------+------+------+

15 Rx I val
+----------+------+------+

-75-

Assembler Reference Manual

NEG
Integer Negate

SYNTAX
NEG

FUNCTION

Rx, Ry

Rx := two's-complement(Ry)

DESCRIPTION
NEG negates the contents of Ry using
arithmetic, and puts the result in Rx.

EXCEPTIONS
NEG of -2**31 produces integer overflow.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 02 I Rx I Ry I
+----------+------+------+

-76-

Instructions

two's-complement

Assembler Reference Manual

SYNTAX
NOT
NOT

FUNCTION

or

Rx, Ry
Rx, <smallval>

Rx := one's-complement(Ry)

Rx := one's-complement(smallval)

DESCRIPTION

Instructions

NOT
Logical NOT

NOT complements the bits in Ry or <smallval> and puts the
result in Rx.

If <smallval> is specified, it is first loaded into bits 28
through 31 of Rx, and bits 0 through 27 are set to O. If Ry
is specified, its contents are first put in Rx.

Then, NOT complements each bit in Rx and leaves the result in
Rx.

<smallval> is an expression with a value in the range from 0
through 15. The expression 'cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

or

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+ I 08 I Rx I Ry I
+----------+------+------+
+----------+------+------+

18 Rx I val
+----------+------+------+

-77-

Assembler Reference Manual

OR
Logical OR

SYNTAX
OR

FUNCTION

Rx, Ry

Rx := Rx OR Ry

DESCRIPTION

Instructions

OR performs logical OR on the contents of Rx and Ry and puts
the result in Rx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 09 I Rx I Ry I
+----------+----~-+---~--+

-78-

Assembler Reference Manual

SYNTAX
RADD

FUNCTION

Rx, Ry

Rx := Rx + Ry

DESCRIPTION

Instructions

RADD
Real Add

RADD adds the 32-bit real numbers in Rx and Ry and puts their
sum in Rx.

EXCEPTIONS
On overflow, Rx is set to the highest real number with the
appropriate sign bit. On underflow, Rx is set to O. In either
case, a real under- or overflow trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
23 Rx Ry

+----------+------+------+

-79-

Assembler Reference Manual Instructions

RCOMP
Real Compare

SYNTAX
RCOMP Rx, Ry

FUNCTION
IF Rx < Ry then Rx .-.- -1;
IF Rx = Ry then Rx .-.- 0;
IF Rx > Ry then Rx .-.- 1

DESCRIPTION
RCOMP compares the real numbers in registers Rx and Ry using
sign magnitude form, and sets Rx to -1, 0, or 1 depending on
whether Rx is less then, equal to, or greater than Ry,
respectively.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT
III

bit 0 7 8 1 2 5
+----------+------+------+ I 2A I Rx I Ry I
+----------+------+------+

-80-

Assembler Reference Manual

SYNTAX
RDIV

FUNCTION

Rx, Ry

Rx := Rx/Ry

DESCRIPTION

Instructions

RDIV
Real Divide

RDIV divides the 32-bit real number in Rx by the 32-bit real
in Ry and puts the result in Rx.

EXCEPTIONS
On overflow, Rx is set to the largest real number with the
appropriate sign bit. On underflow, Rx is set to O. If Ry
is zero, Rx is set to the largest real number with the
appropriate sign bit set. In any case, a real underflow,
overflow, or divide by zero trap is taken if enabled.

An attempt to divide by zero leaves Rx unmodified, and a real
divide by zero trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 26 I Rx I Ry I
+----------+------+------+

-81-

Assembler Reference Manual

REM
Integer Remainder

SYNTAX
REM

FUNCTION

Rx, Ry

Rx := Rx - «Rx/Ry) * Ry)

DESCRIPTION

Instructions

REM divides the integer in Rx by the integer in Ry and puts
the remainder in Rx.

EXCEPTIONS
Integer overflow can occur when the largest negative integer
is divided by -1, and an integer overflow trap is taken if
enabled. An attempt to divide by 0 leaves Rx unmodified, and
a divide-by-zero trap is taken if enabled.

INSTRUCTION FORMAT
III

bit 0 7 8 1 2 5
+----------+------+------+
I 07 I Rx I Ry I
+----------+------+-~----+

-82-

Assembler Reference Manual

SYNTAX
RET

FUNCTION

Rx, Ry

Rx := PC + 2;
PC := Ry

DESCRIPTION

Instructions

RET
Return

RET puts the address of the next sequential instruction in Rx
and branches to the address held in Ry. This is commonly
used to return from a subroutine called by CALL or CALLR.
RET can also call a subroutine if its absolute address is
known.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+ I 57 I Rx I Ry I
+----------+------+------+

-83-

Assembler Reference Manual

RMPY
Real Multiply

SYNTAX
RMPY

FUNCTION

Rx, Ry

Rx := Rx * Ry

DESCRIPTION

Instructions

RMPY multiplies the 32-bit real numbers in Rx and Ry and puts
the product in Rx.

EXCEPTIONS
On overflow, Rx is set to the highest real number with the
appropriate sign bit. On underflow, Rx is set to O. In either
case, a real under- or overflow trap is taken if enabled.

INSTRUCTION FORMAT
1 1 1

bit 0 7 8 1 2 5
+----------+------+------+
I 25 I Rx I Ry I
+------.----+------+------+

-84-

Assembler Reference Manual

SYNTAX
RNEG

FUNCTION
Rx := -Ry

DESCRIPTION

Rx, Ry

Instructions

RNEG
Real Negate

RNEG negates the real number in Ry and puts the result in Rx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 22 I Rx I Ry I
+----------+------+------+

-85-

Assembler Reference Manual

RSUB
Real Subtract

SYNTAX
RSUB

FUNCTION

Rx, Ry

Rx := Rx - Ry

DESCRIPTION

Instructions

RSUB subtracts the real number in Ry from the real in Rx and
puts the difference in Rx.

EXCEPTIONS
If overflow occurs, Rx is set to the largest real number with
the appropriate sign bit, and the real overflow trap is taken
if enabled. If underflow occurs, Rx is set to 0, and the
real underflow trap is taken if enabled.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+-----.-+------+
I 24 I Rx I Ry I
+----------+------+------+

-86-

Assembler Reference Manual

SYNTAX
SBIT

FUNCTION

Rx, Ry

RPx [bit Ry mod 64] := 1

DESCRIPTION

Instructions

SBIT
Set Bit

SBIT sets the bit in RPx that is specified in Ry mod 64.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT
1 1 1

bit 0 7 8 1 2 5
+----------+------+------+
I OD I Rx I Ry I
+----------+------+------+

-87-

Assembler Reference Manual

SEB
,Sign Extend Byte

SYNTAX
SEB

FUNCTION

Rx, Ry

Rx [bits 0 •• 23] := Ry [bit 24] ;
Rx [b its 24 •• 31] : = Ry [b its 24 •• 31]

DESCRIPTION

Instructions

SEB converts a byte-size integer into a full-word integer.

SEB sets bits 0 to 23 of Rx to bit 24 of Ry, and copies bits
24 to 31 of Ry into bits 24 to 31 of Rx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 6A I Rx I Ry I
+----------+------+------+

-88-

Assembler Reference Manual

SYNTAX
SEH

FUNCTION

Rx, Ry

Rx [bits 0 •• 15] := Ry [bit 16] ;
Rx [bits 16 •• 31] : = Ry [bits 16 •• 31]

DESCRIPTION

Instructions

SEH
Sign Extend Half Word

SEH converts a half-word integer into a full-word integer.

SEH sets bits 0 to 23 of Rx to bit 24 of Ry, and copies bits
24 to 31 of Ry into bits 24 to 31 of Rx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I 7A I Rx I' Ry I
+----------+-------1-------+

-89-

Assembler Reference Manual Instructions

STORE
Store Word

SYNTAX
STORE Rx, <address> [, L]
STORE Rx, Ry [,<address> [, L]]

FUNCTION
store Rx at address

or
store Rx at (Ry + address)

DESCRIPTION
The register Rx is stored at the effective address. Each
effective address for a memory reference instruction is
explained below.

EXCEPTIONS

Displacement. The memory address is the displacement
field from the instruciton. All memory references are
32-bit virtual addresses. This form references data
space.

~ + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

<address> is a data-relative expression.

[,L] indicates that <address> is a 32-bit integer.

A data alignment trap may result from attempting to STORE
with the effective address not on a word boundary.

INSTRUCTION FORMAT
+----------+------+------+-------------------+
I A6 I Rx I 0 I short address I (short
+----------+------+------+-------------------+ addresses
+----------+------+------+-------------------+ are sign
I A7 I Rx I Ry I short address I extended)
+----------+------+-----_.+--------------------1-
+----------+------+------+-------------------------------+
I B6 I Rx I 0 I long address I

+----------+------+------+-------------------------------+
+----------+------+------+-------------------------~-----+
I B7 I Rx I Ry I long address I

+----------+------+------+-------------------------------+
078 I I I 1 3 4

I 2 5 6 1 7

-90-

Assembler Reference Manual Instructions

STOREB
Store Byte

SYNTAX
STOREB Rx, <address> [, L]
STOREB Rx, Ry [,<address> [, L]]

FUNCTION
store byte in Rx at address

or
store byte in Rx at (Ry + address)

DESCRIPTION
The byte in bits 24 to 31 of register Rx are stored at the
effective address. Each effective address for a memory
reference instruction is explained below.

Displacement. The memory address is the displacement
field from the instruciton. All memory references are
32-bit virtual addresses. This form references data
space.

By + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

<address> is a data-relative expression.

[,L] indicates that <address> is a 32-bit integer.

EXCEPTIONS
A data alignment trap may result from attempting to STOREB
with the effective address not on a word boundary.

INSTRUCTION FORMAT
+----------+------+------+-------------------+ I AO I Rx I 0 I short address I (short
+----------+------+------+-------------------+ addresses +----------+------+------+-----------------,-_ ...
I Al I Rx I Ry I short address I

are sign
extended)

+----------+------+------+-------------------+ +----------+------+------+-------------------------------+ I BO I Rx I 0 I long address I
+----------+------+------+-------------------------------+ +----------+------+------+-------------------------------+ I Bl I Rx I Ry I long address I
+----------+------+------+--------------------------------t.
078111134

1 2 5 6 1 7

-91-

Assembler Reference Manual Instructions

STORED
Store Double Word

SYNTAX
STORED Rx, <address> [, L]
STORED Rx, Ry [,<address> [, L]]

FUNCTION
store double word in Rx at address

or
store double word in Rx at (Ry + address)

DESCRIPTION
The double word in Rx and R(x+l) is stored at the effective
address. Each effective address for a memory reference
instruction is explained below.

EXCEPTIONS

Displacement. The memory address is the displacement
field from the instruciton. All memory references are
32-bit virtual addresses. This form references data
space.

Ry + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

<address> is a data-relative expression.

[,L] indicates that <address> is a 32-bit integer.

A data alignment trap may result from attempting to STORED
with the effective address not on a word boundary.

INSTRUCTION FORMAT
+----------+------+------+-------------------+
I AO I Rx I 0 I short address I (short
+----------+------+------+-------------------+ addresses
+----------+------+------+-------------------+
I Al I Rx I Ry I short address I

are sign
extended)

+----------+------+------+-------------------+
+----------+------+------+-------------------------------+
I BO I Rx I 0 I long address I
+----------+------+------+-------------------------------+
+----------+------+------.... -------------------------------+
I Bl I Rx I Ry I long address I
+----------+------+------+-------------------------------+
078 1 III 3 4

1 2 5 6 1 7

-92-

Assembler Reference Manual Instructions

STOREH
Store Half Word

SYNTAX
STOREH
STOREH

Rx, <address> [,L]
RXI Ry [, <address> [, L]]

FUNCTION
store half word in Rx at address

or
store half word in Rx at (Ry + address)

DESCRIPTION
The half word in bits 16 to 31 of register Rx are stored at
the effective address. Each effective address for a memory
reference instruction is explained below.

EXCEPTIONS

Displacement. The memory address is the displacement
field from the instruciton. All memory references are
32-bit virtual addresses. This form references data
space.

Ry + displacement. The contents
added to the displacement field.
written at this location.

of register Ry are
Memory is then read or

<address> is a data-relative expression.

[,L] indicates that <address> is a 32-bit integer.

A data alignment trap may result from attempting to STOREH
with the effective address not on a word boundary.

INSTRUCTION FORMAT
+----------+------+------+-------------------+
I A2 I Rx I 0 I short address I (short
+----------+------+------+-------------------+ addresses +----------+------+------+-------------------+ are sign
I A3 I Rx I Ry I short address I extended)
+----------+------+------+-------------------+ +----------+------+------+---------------------.----------+.
I B2 I Rx I 0 I long address I
+----------+------+------+-------------------------------+ +----------+------+------+-------------------------------+
I B3 I Rx I Ry I long address I
+----------+------+------+-------------------------------+
'0 7 8 1 1 1 1 3 4

1 2 5 6 1 7

-93-

Assembler Reference Manual

SUB
Integer Subtrad

SYNTAX
SUB
SUB

FUNCTION

or

Rx, Ry
Rx, <smallval>

Rx := Rx - Ry

Rx := Rx - smallval

DESCRIPTION

Instructions

SUB subtracts the integer in Ry, or the integer in
<smallval>, from the integer in Rx and puts the difference in
Rx.

SUB expects two registers in the operand field, or one
register and an expression <smallval>.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
If integer overflow occurs, the least significant 32 bits of
the result are placed in Rx, the most significant bits are
discarded, and the integer overflow trap is taken if
enabled.

INSTRUCTION FORMAT
1 1 1

bit 0 7 8 1 2 5
+----------+------+------+
I 04 I Rx I Ry I
+----------+------+------+

or
+----------+------+------+
I 14 I Rx I val I
+----------+------+------+

-94-

Assembler Reference Manual

SYNTAX
TBIT Rx, Ry

FUNCTION
Rx[31] := RPx[Ry mod 64];
Rx [0 •• 3 0] : = 0

DESCRIPTION

Instructions

TBIT
Test Bit

TBIT sets bit 31 of Rx to the bit of RPx that is specified by
Ry mod 64. Other bits of Rx are set to O. Ry contains an
integer from 0 to 63, inclusive.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I OE I Rx I Ry I
+----------+------+------+

-95-

Assembler Reference Manual

TEST
:Test Values

SYNTAX
TEST
TEST

FUNCTION

Rx <relop> Ry
Rx <relop> <smallval>

Instructions

tests the truth of expressions with relational operators

DESCRIPTION
TEST compares Rx with Ry, or Rx with a small value, and sets
Rx to 1 (true) or 0 (false).

A <relop> is any of the relational operators <, <=, =, >, >=,
or <>.

<smallval> is an expression with a value in the range from 0
through 15. The expression cannot contain forward or
external labels.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT
1 1 1 TEST instruction opcode

bit 0 7 8 1 2 5 ------~~-------- -------
+----------+------+-------l. TEST Rx > Ry 50
I opcode I Rx I Ry I TEST Rx < Ry 51
+----------+------+------f TEST Rx = Ry 52

or TEST Rx <= Ry 58
+----------+------+------+ TEST Rx >= Ry 59
I opcode I Rx I val I TEST Rx <> Ry SA
+----------+------+------+ TEST Rx > value 54

TEST Rx < value 55
TEST Rx = value 56
TEST Rx <= value 5C
TEST Rx >= value SD
TEST Rx <> value 5E

-96-

Assembler Reference Manual

SYNTAX
XOR

FUNCTION

Rx, Ry

Rx := Rx XOR Ry

DESCRIPTION

Instructions

XOR
Logical Exclusive OR

XOR performs a logical exclusive OR between the 32 bits of Rx
and Ry, and puts the result in Rx.

EXCEPTIONS
There are no exceptions.

INSTRUCTION FORMAT

bit 0 7 8
1 1
1 2

1
5

+----------+------+------+
I OA I Rx I Ry I
+----------+------+------+

-97-

Assembler Reference Manual Instructions

-98-

Glossary

code-relative expression - an expression containing global or
code segment labels.

code segment label - a label which is defined in a code section.

comment - a message in the program source code for organization and
clarity. In an AS program, any characters after a ";", in a line are
considered comments and are ignored by the assembler.

data-relative expression - an expression containing only
global or data segment labels.

exception - either an interrupt or kernel trap which can occur when
executing an instruction.

expression - a group of labels, operators, and/or numbers which can be
arithmetically evaluated to a single value.

forward label - a label that is declared in the code at some point
after the current location.

instruction - the assembled result of a mnemonic. An instruction
includes an opcode, operands, and optional address fields, as shown in
the instruction format diagrams.

label - one of three types: code, data, and absolute. A label
identifies a line of code or data and can be referenced in an
expression to calculate a location in a program. Labels consist of
any sequence of alphabetic characters, numbers, It ", "S", and It>",
but do not begin with a number.

least significant bits - the bits furthest from bit 0 in a word, shown
at the right-hand end of word diagrams.

long value - a value which is represented in 32 bits, flagged in some
instructions by ",L". Many assembler instruction formats have a long
or short address field in addition to the opcode and operand fields.

mod - "X mod Y" is the integer remainder value after dividing X by Y.
Examples: 10 mod 2 = 0; 15 mod 4 = 3; 17 mod 32 = 0; 65 mod 32 = 1;
(Ry mod 32 = x mod 32, where x is the contents of Ry).

most significant bits - the bits closest to bit 0 in a word, shown at
the left-hand end of word diagrams.

opcode - a two-digit hexadecimal code, occupying the most significant
8 bits of an instruction, which uniquely identifies the functionality
of an instruction to the Ridge processor. The assembler derives
opcodes from the mnemonic names.

-99-

Assembler Reference Manual Glossary

overflow - an attempt to calculate a number which is too large to be
represented.

program counter (PC) - the address of the instruction currently being
executed by the processor. The PC is incremented by the processor in
order to execute the instructions sequentially, and frequently
manipulated by the branch instructions in order to commence execution
in different parts of the code.

pseudo-instruction - an assembler "command" (used much like the
mnemonics) which helps the user organize and define data and code, but
does not generate opcodes.

RPx (register pair x) - The two registers Rx and R(x+l) mod 16. RP3
90nsists of R3 and R4; R15 consists of Rl5 and RO.

Rx, Ry - in syntax notation, Rx or Ry stand for one of general
registers 0 through 15, like R4 or R9.

section - of two types: code or data. A section is a
division of an assembly program which defines the runtime segment
into which the instructions in it will be assembled.

segment - the portion of a linked program file which contains either
code or data.

short value - a value which is represented in 16 bits. Many assembly
instruction formats have a long or short address field in addition to
the opcode and operand fields.

sign extended - when a value is sign-extended in an instruction
format, its sign bit is duplicated throughout the most significant
(lower numbered) bits of the constant field of the instruction.

small value (smallval) - in this AS manual, a small value is an expression
which evaluates to an integer in the range 0 to 15. A small value is often
assembled into the second 4-bit operand field of an instruction.

SRx - in syntax notation, SRx refers to one of special registers 0 to
15, like SR15 or SR6.

trap - When enabled, a trap detects the occurrence of a certain
exceptional condition and transfers control to the kernel. "Trap bits"
in SRIO determine which traps are enabled or disabled.

underflow (real) - an attempt to calculate a number which is too
small to be represented.

-100-

Alphabetic Index
ADD - Add 28
ALIGN Pseudo-Instruction - Align Location Counter 14
AND - Logical AND 29
ASL - Arithmetic Shift Left 30
ASR - Arithmetic Shift Right 31
BLOCK Pseudo-Instruction - Assemble Block Of Bytes 15
BR - Branch 32
BYTE Pseudo-Instruction - Assemble Strings Or Expressions 16
CALL - Call Subroutine 34
CALLR - Call Subroutine Register 35
CBIT - Clear Bit 36
CODE Pseudo-Instruction - Assign Value And Type "code" to a Label 17
COMMON Pseudo-Instruction - Declare External Data Label 18
CSECT Pseudo-Instruction - Code Section Header 19
CSL - Circular Shift Left 37
DATA Pseudo-Instruction - Assign Value And Type "data P to a Label 17
DCOMP - Double Register Compare 38
DFIXR - Double Real Round to Integer 39
DFIXT - Double Real Truncate to Integer 40
DFLOAT - Integer to Double Real 41
DIV - Integer Divide 42
DLSL - Double Logical Shift Left 43
DLSR - Double Logical Shift Right 44
DOUBLE Pseudo-Instruction - Assemble Expr. Into Double-Precision 25
DRADD - Double Real Add 45
DRCOMP - Double Real Compare 46
DRDIV - Double Real Divide 47
DRMPY - Double Real Multiply 48
DRNEG - Double Real Negate 49
DSECT Pseudo-Instruction - Data Section Header 19
DRSUB - Double Real Subtract 50
EADD - Extended Integer Add 51
EDIV - Extended Divide 52
EMPY - Extended Multiply 53
ESUB - Extended Subtract 54
EQU Pseudo-Instruction - Assign Type and Value to a Label 17
EXTERNAL Pseudo-Instruction - Declare External Code Segment Label 20
EXTERND Pseudo-Instruction - Declare External Data Segment Label 20
FIXR - Round Real to Integer 55
FIXT - Truncate Real to Integer 56
FLOAT - Convert Integer to Real 57
GLOBAL Pseudo-Instruction - Make Labels Global 21
HALFWORD Pseudo-Instruction - Assemble Expression Into HalfWord 25
LADDR - Load Data Segment Address 58
LCOMM Pseudo-Instruction - Declare Locally Known Data Block 22
LCOMP - Logical Compare 60
LOAD - Load Word From Data Segment 61
LOADB - Load Byte From Data Segment 63
LOADD - Load Double Word From Data Segment 65
LOADH - Load Half Word From Data Segment 67
LOOP - Increment And Branch 69
LSL - Logical Shift Left 70

-101-

Assembler Reference Manual

LSR - Logical Shift Right
MAKEDR - Round Double Real to Real
MAKERD - Convert Real to Double Real
MOVE - Move Register
MPY - Integer Multiply
NEG - Integer Negate
NOT - Logical NOT
OR - Logical OR

Alphabetic Index

ORIGIN Pseudo-Instruction - Set Location Counter
RADD - Real Add
RCOMP - Real Compare
RDIV - Real Divide
REM - Integer Remainder
RET - Return From Subroutine
RMPY - Real Multiply
RNEG - Real Negate
RSUB - Real Subtract
SBIT - Set Bit
SEB - Sign Extend Byte
SEH - Sign Extend Half Word
SPACE Pseudo-Instruction - Reserve Bytes
STORE - Store Word
STOREB - Store Byte
STORED - Store Double Word
STOREH - Store Half Word
SUB - Integer Subtract
TBIT - Test Bit
TEST - Test Values
WORD Pseudo-Instruction - Assemble Expression into Word
XOR - Logical Exclusive OR

-102-

71
72
73
74
75
76
77
78
23
79
80
81
82
83
84
85
86
87
88
89
24
90
91
92
93
94
95
96
25
97

Functional Instruction Ust

MEMORY REFERENCE INSTRUCTIONS
Load Instructions

LOAD, LOADB, LOADD, LOADH

Store Instructions
STORE, STOREB, STORED, STOREH

Load Address Instruction
LADDR

INTEGER ARITHMETIC INSTRUCTIONS
Single-Precision

ADD, DIV, NEG, MPY, REM, SUB

Extended-Precision
EADD, EDIV, EMPY, ESUB

REAL ARITHMETIC INSTRUCTIONS
Single-Precision

RNEG, RADD, RSUB, RMPY, RDIV, FLOAT, FIXR, FIXT, MAKERD

Double-Precision
DFIXR, DFIXT, DFLOAT, DRADD, DRDIV, DRMPY, DRNEG, DR SUB , MAKEDR

BIT MANIPULATION INSTRUCTIONS
ASL, ASR, CBIT, CSL, DLSL, DLSR, LSL, LSR, SBIT, TBIT

LOGICAL INSTRUCTIONS
AND, NOT, OR, XOR

TEST INSTRUCTION
TEST

DATA MOVEMENT INSTRUCTION
MOVE

COMPARISON INSTRUCTIONS
DCOMP, DRCOMP, LCOMP, RCOMP

SIGN EXTEND INSTRUCTIONS
SEB, SEH

BRANCH AND CALL INSTRUCTIONS
BR, CALL, CALLR, LOOP, RET

-103-

Assembler Reference Manual Functional Instruction List

-104-

INSTRUCTION FORMATS:

0 3 4

~

I OP+DE I
al 0 7 a 1112 15

-rot
...:I

s::
0 REGISTER FORMAT

-rot 0 78 1112 1511 31

~
0 Register ::s
~ MEMORY REFERENCE. SHORT FORMAT

Format

~ 7. 1112 15. 47
al I O~~~A~~S I s:: OPCODE OFFSET
H

r-I
MEMORY REFERENCE. LONG FORMAT

CU s::
0 '"

-rot
2-..

~ '8
U R
s:: 0

JC ::s Segment
..

tE.. ;.
Referenced Length ~

Zl

Code Short
Z

1 c
CIt

Code Long
u;

r-I ..
0

cU 2

::s
s:: Dala Shari A
CU ::e:
CU Data Long B

U Memory
s:: Reference
CU Format
~ Data Short C

CU
~
CU Data Long
~

0

...
CU Code
r-t

Short E

.Q
e
CU Code
al

Long

al
<

RIDGE OPCODE MAP

Least Significant Nibble (Hex). Opcode (4:7)

MOVE NEG ADO SUB MPY DIV REM NOT OR

NOP MOVE ADD SUB MPY NOT
Immed Immed Immect Immed Immect

FIXT FIXR RNEG RADD RSUB RMPY RDIY MAKERD LCOMP FLOAT

DfiXT DFIXR DRNEG DRADD DRSUB DRMPY DRDIY MAKEDR DCOMP DflOAT

MOVE

SUS lUS RUM lDREGS TRANS DIRT I

SA-R I A_SR

I TEST I CALLA TEST Immedlat. AET I TEST
I I I I I

> < = > < = < = >=

lSl lSA ASL ASA DlSL DLSR CSL

-
lSl LSR ASL ASR DlSL DLSA CSl

Immed Immed Immed Immect Immect Immect Immect

> = > I < I = < =
I I

- BR - - BR CAll - - BA Immedill'e - -- f-- lOOP f- 8R -

>
I

< I <= = > I = I
I

I I I I

I I I I
X X X X

I- - STOREB - - -- - STOREH -- - -- STORE - - - - STORED -

I I I I

I I I I

I X X X X
I I I

I I I I

I I I
I X I X I X I X

I I I
I I I I

I I
X X X X

>---LOAD8--- "--- lOADH --
____ lOAD ___

f---LOADD---

I I I I

I I I I

I X X I X I X

I l I

I I I I
I I I I

X _L X . X X

x = Indexed (I. •.• larget address Is 'urther off ... by • regls'.r named In the second operand 'laid).
Immedillte (Immed) = the second operand 'laId contain •• .,aI •.

A

XOR

RCOMP

DRCOMP

I

I

I
<>

SEB

'---

SEH

<>
- BR

<>

B

AND

AND
Immed

TRAP

KCALL

8A

C o E F

CBIT SBIT TBIT CHI{

CHK
Immect

EADD ESUB EMPY EDIY

MAINT READ WRITE

TEST Immediate

<=: > = I <>

< = I > = ! <>
I

- - 8R Immedia.. -- - -

< = I > = I
<> I I

X
LADDR -

!
X

!

X
- LADDRP -

:
X

I
Ll'l
o
r-I
I

Introduction to the Shell

This document is based on a paper from Bell Laboratories.

The Shell is the interactive and programmable command interpreter. This document covers the
syntax of RaS commands and shell program scripts. The reader should have a a basic
understanding of RaS and a high-level programming language.

1.1 Simple commands

A command consists of one or more words separated by blanks. The first word is the command
name; other words are arguments (or parameters) for that command.

who

is a command that prints the names of logged-in users. The command

Is - 1

prints a list of files in the user's directory. The argument - 1 tells Is to display special informa
tion about each file. Try entering Is without any arguments.

1.2 Bac.kgroWld command:;

Normally, the shell executes a command, waits for it to finish, then re-displays the command
prompt "$" for additional user input. A command execution process may be run in the "back
ground"; the system creates a separate "detached" process and immediately prompts the user
for additinal input:

cc pgm.c &

calls the C compiler to compile the file pgm..c. The trailing & character tells the shell not to
wait for the command to finish, but rather to create a background process for it and return
immediately to the system prompt. When a command is run in the background, RaS displays
its background process number for the user's information. A list of all currently active back
ground processes is available through the ps command.

1.3 Input output redirection

Most commands send output to the standard output device, normally the user's terminal. au~
put may be redirected to a different device or file by the" >" character:

Is - I > file

The output of Is - I is sent directly to file. If file does not exist at that time, the shell creates it.
If it exists, the shell overwrites it with the new output. The" > >" symbol tells the shell to
append output to file, but do not overwrite it:

Is - I > > file

In the example above, file will end up with the Is output at the end of whatever may have been
in it initially.

When command input is normally expected from the terminal, input may be respecified as
being from a file:

wc < file

The we ("wordcount") command reads its input from file and prints its output (the number of
characters, words and lines found) on the terminal. Input and output can both be redirected at
the saine time:

(9050) -1-

Programmer'S Guide The Shell

wc < infile > outfile

1.4 Pipes and filters

A particular set of data may need to be processed through several commands. Rather than
create several files, each containing permutations of the data in preparation for the next step,
the output of one command may be "piped" directly to the input of another by means of the
.. t' pipe operator:

Is - 1 wc

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is - I > file; wc < file

except that no file is used. See the sh(1) and pipe(2) pages of the ROS Reference Manual.
Pipes are unidirectional. Both the Is and we processes run in synchrony; Is is halted when the
pipe is full and it resumes when we is ready for more input.

A filter is a command that reads input, transforms it in some way, and outputs the result. One
such filter is grep, which prints all lines of an input file(s) that contain a particular string. For
example,

grep badword file52

prints all lines of file52 that contain the word badword.

Is grep badword

pipes the Is output (a list of the user's files) to grep badword, and prints all lines of all files that
contain the word badword In the case above, no files are modified, created, or destroyed; outr
put is to the terminal.

Another useful filter is sort. For example,

who sort

prints an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is grep old wc - 1

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,

Is - 1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is - 1 c

generates, as arguments to Is, all file names in the current directory that end in .c. The charac
ter is a pattern that will match any string including the null string. In general patterns are
specified as follows.

-2-

III

?

Matches any string of characters including the null string.

Matches any single character.

(9050)

Programmer"S Guide The Shell

[•••] Matches anyone of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example;

matches all names in the current directory beginning with one of the letters a through z.

/usr /fre d/test/?

matches all names in the directory /usr/fred/tR:st that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/ */core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo prints its argu
ments, separated by blanks.) This last feature can be expensive, requiring a scan of all sub
directories of /usr/fred.

There is one exception to the general rules given for patterns. The character'.' at the start of a
file name must be explicitly matched.

echo *

will therefore echo all file names in the current directory not beginning with '.' .

echo .*

will echo all those file names that begin with '.'. This avoids inadvertent matching of the
names '.' and • •• ' which mean 'the current directory' and 'the parent directory' respectively.
(Notice that 18 suppresses information for the files'.' and ' •• ' .)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > ale? &, are called metachar
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a \
is quoted and loses its special meaning, if any. The \ is elided so that

echo \?

will echo a single? , and

echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclosing
the string between single quotes. For example,

echo xx '**** xx

will echo

xx****xx

The quoted string may not contain a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

(9050) -3-

Programmer 15 Guide_ The Shell

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is '$, . It may be changed by saying, for example,

PSl=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed
then the shell will issue the prompt '> ' . Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following log£n (1) the shell is called to read and execute commands typed at the terminal. If
the user's login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1. 9 Sununary

• Is
Print the names of files in the current directory.

• Is >file
Put the output from Is into file.

• Is we - I
Print the number of files in the current directory.

• Is grep old
Print those file names containing the string old.

• Is grep old we - I
Print the number of files whose name contains 'the string old.

• eepgm.e&
Run cc in the background.

-4- (9050)

Programmer s Guide The Shell

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args •••]

calls the shell to read commands from file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in jile using the posi
tional parameters $1, $2, •••• For example, if the file wg contains

who grep $1

then

sh wg fred

is equivalent to

who grep fred

All files have three access attributes, read, write and execute. Each attribute mayor may not be
set, thus allowing or disallowing the action on the file. The command chmod (1) may be used
to set the execute status of a file and make it executable:

chmod +x wg

sets execute status for file wg. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $#. The name of the file being executed is available as $0.

A special shell parameter $. is used to substitute for all positional parameters except $0. A
typical use of this is to provide some default arguments, as in,

nroff - T450 - ms $ *
which simply prepends some arguments to those already given.

2.1 Con1rol flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, •••) executing
commands once for each argument. An example of such a procedure is tel that searches the file
/usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

(9050) -5-

Programmer s Guide The Shell

tel fred bert

prints those lines containing fred followed by those for bert.

The tor loop notation is recognized by the shell and has the general form

tor name in wl w2 •••
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and clone are only recognized fol
lowing a newline or semicolon. name is a shell variable that is set to the words wl w2 ••• in
turn each time the command-list following do is executed. If in wl w2 • •• is omitted then the
loop is executed once for each positional parameter; that is, in $ * is assumed.

Another example of the use of the for loop is the create command whose text is

for i do > $i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation > file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new
line) is required before clone.

2.2 Control flow - ease

A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
*) echo iIsage: append [from] to';;

esac

is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the end of file using the cat command.

append filel file2

appends the contents of fUel onto file 2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.

The general form of the ease command is

ease word in
pattern) command-list;;

esae

The shell attempts to match word with each pattern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the ease is com
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

-6- (9050)

Programmer s Guide

case $# in

esac

*) ••• "
*) ••• "

The Shell

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in

- [ocs]) ••• "
- *) echo "unknown flag $i" ;;
*.c) /lib/cO $i ••• ;;
*) echo "unexpected argument $i" ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a I. For example,

case $i in
-xl-y)

esac

is equivalent to

case $i in
- [xy1)

esac

The usual quoting conventions apply so that

case $i in
\?)

will match the character? •

2.3 Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/t.elnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep $i «~I

fred mh0123
bert mh0789

done

In this example the shell takes the lines between «! and! as the standard input for grep.
The string! is arbitrary, the document being terminated by a line that consists of the string fol
lowing «.

Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg.

(9050) -7-

Programmer'S Guide

The call

ed $3 «%
g/$l/S/ /$2/g
w
%

edg stringl string2 file

is then equivalent to the command

ed file «%
g/stringl/s/ /string2/g
w
%

The Shell

and changes all occurrences of stringl in file to string2. Substitution can be prevented using \ to
quote the special character $ as in

ed $3 «+
1, \$s/$1/$2/g
w

+
(This version of edg is equivalent to the first except that ed will print a? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i «\#

The document is presented without modification to grep. If parameter SUbstitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box=mOOO acct=mhOOOO

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null=

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b= /usr /fre d/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen
eral notation is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

-8- (9050)

Programmers Guide The Shell

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps to the file /txnp/psa, whereas,

ps a >$tmpa

would cause the value of the variable txnpa to be substituted.

Except for $1 the following are set initially by the shell. $1 is set after executing each com
mand.

$1 The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

$# The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a > /tmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the background (in decimal).

$- The current shell fiags, such as - x and - v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file • profile, in the user's
login directory. For example,

MAIL= /usr /mail/fred

$HOME The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a /, and is changed using the
cd command. For example,

cd /usr /fred/bin

makes the current directory /usr/fred/bin.

catwn

will print on the terminal the file wn in this directory. The command cd with no
argument is equivalent to

cd $HOME

This variable is also typically set in the the user's login profile.

$PATII A list of directories that contain commands (the search path). Each time. a com
mand is executed by the shell a list of directories is searched for an executable

(9050) -9-

Programmers Guide The Shell

$PSl

$PS2

$IFS

file. If $PA'IH is not set then the current directory, /bin, and /usr/bin are
searched by default. Otherwise $PATII consists of directory names separated by
•• For example,

PA TH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a / then
this directory search is not used; a single attempt is made to execute the com
mand.

The primary shell prompt string, by default, '$ '.

The shell prompt when further input is needed, by default, '> '
The set of characters used by blank interpretation (see section 3.4).

2.5 The test command

The test command, although not part of the shell, is intended for use by shell programs. For
example,

test - f file

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates
a predicate and returns the result as its exit status. Some of the more frequently used test argu
ments are given here, see test (1) for a complete specification.

test s
test - f file
test - r file
test - w file
test - d file

true if the argument 8 is not the null string
true if file exists
true if file is readable
true if file is writable
true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter
mined by the exit status returned by commands. A while loop has the general form

while command-listt
do command-list.
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-listl is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

is equivalent to

while test $1
do •••

shift
done

for i
do •••
done

shift is a shell command that renames the positional parameters $2, $3, ••• as $1, $2, ••• and
loses $1.

-10- (9050)

Programmer s Guide The Shell

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam
ple,

until test - f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if

Also available is a general conditional branch of the form,

if command-liBt
then
else
fi

command-liBt
command-list

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence of
a file as in

if test - f file
then process file
else do something else
fi

An example of the use of if, ease and for constructions is given in section 2.10.

A multiple test if command of the form

if •••
then
else if •••

then
else if •••

fi
fi

fi

may be written using an extension of the if notation as,

if •••
then
elif
then
elif

fi

The following example is the touch command which changes the 'last modified' time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

(9050) -11-

Programmer s Guide

flag=
for i
do case $i in

- c) flag=N;;
*) if test - f $i

esac
done

then In $i junk$$; rm junk$$
elif test $flag
then echo file \ '$iV does not exist
else >$i
fi

The Shell

The - e flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari
able flag is set to some non-null string if the - c argument is encountered. The commands

In ••• ; rm •••

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if command!
then command2
fi

may be written

command! && command2

Conversely,

command! I I command2

executes command2 only if commandl fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list; }

and

(comma nd-list)

In the first command-liBt is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes nn junk in the directory x without changing the current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

-12- (9050)

Programmers Guide The Shell

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The flrst
is invoked within the procedure as

set-v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh - v proc •••

where proc is the name of the shell procedure. This flag may be used in conjunction with the
- n fiag which prevents execution of subsequent commands. (Note that saying set - n at a ter
minal will render the terminal useless until an end-of-file is typed.)

The command

set-x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both fiags may be
turned off by saying

set -

and the current setting of the shell flags is available as $- .

2.10 The man command

The man command prints sections of the ROS manual. It is called, for example, as

man sh
man -t ed
man 2 fork

In the first line, the manual section for sh is printed. Since no section is specified, section 1 is
used. The second example will typeset (- t option) the manual section for ed. The last prints
the fork manual page from section 2.

(9050) -13-

Programmer s Guide

-14-

cd jusrjman

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s) ..
N=n s=1

for i
do case $i in

[1- 9] *) s=$i ;;

-t) N=t;;

-n) N=n ;;

- *) echo unknown flag \ '$i\' ;;

*) if test - f man$s j$i.$s

esac
done

then ${N}roff manOj${N}aa mansji.$s
else : look through all manual sections'

fl

found=no
for j in 1 2 3 4 5 6 7 8 9

do if test - f manjji.$j
then man $j $i

found=yes
fl

done
case $found in

no) echo '$i: manual page not found'
esac

Figure 1. A version of the man command

(9050)

The Shell

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred. The - k fiag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are some
times called keyword parameters. If any arguments remain they are available as positional
parameters $1, $2,

The set command may also be used to set positional parameters from within a procedure. For
example,

set- *
will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, -, ensures correct treatment when the first file name begins with a-

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the same as that of the export command,

readonly name •••

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari
able d is not set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and '.' otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d- '*'}

will echo * if the variable d is not set. Similarly

(9050) -15-

Programmer s Guide The Shell

echo ${d- $1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string'.'. (The notation $ { ••• = ••• } is
not available for positional parameters.)

If there is no sensible default then the notation

echo ${d? message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: $ {user? } $ {acct? } $ {bin? }

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acet or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command sulstitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command

d='pwd'

is equivalent to

d= /usr /fre d/bin

The entire string between grave accents (' ••• ') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a 'must be escaped using a \. For example,

Is 'echo "$1'"

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
"here" documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing"commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc command.

case $A in

*.c) B='basename $A .c'

esac

-16- (9050)

Programmers Guide

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

• for i in 'Is - t'; do •••
The variable i is set to the names of files in time order, most recent first.

• set 'date'; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The Shell

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com
mand is executed the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g. J>wd'

Only one evaluation occurs so that if, for example, the value of the variable X is the
string $y then

echo $X

will echo $y.

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose 'blanks' are the characters of the
string $IFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

echo ".

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null
string.

• file name generation

Each word is then scanned for the file pattern characters *, ? and [•••] and an alpha
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The eValuations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' ••• ' a third quoting mechan
ism is provided using double quo~s. Within double quotes parameter and command substitu
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

For example,

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $, " \

echo "$x"

(9050) -17-

Programmer s Guide

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 ••• "

The notation $@ is the same as $. except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" •••

The Shell

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter

\ $ *
n n n n n t
y n n t n n
y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may
be used. For example, if the variable X has the value $y, and if y has the value pqr then

eval echo $X

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

is equivalent to

wg= 'eval who I grep ,
$wg fred

who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con
nected to a terminal (as determined by gtty (2)). A shell invoked with the - i flag is also
interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be
created.

-18- (9050)

Programmers Guide . The Shell

• The command itself does not exist or cannot be executed ..

• The command terminates abnormally, for example, with a "bus error" or "memory fault".
See the signal(2) page of the ROS Reference Manual for a complete list of ROS signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter
minal. Such errors include the following.

• Syntax errors. e.g., if ••• then ••• done

• A signal such as interrupt. The shell waits for the current command, if any, to finish exe
cution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag - e causes the shell to terminate if any error is detected, such as:

1 hangup
2 interrupt
3 quit
4 illegal instruction
5 trace trap
12 bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock

Figure 3. SAMPLE list of ROS signals.
See signal(2) for a full list.

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam
ple,

trap ~rm /tmp/ps$$; exit~ 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com
mands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required; otherwise, after the trap has been taken, the shell will resume executing the pro
cedure at the place where it was interrupted.

Signals can be handled in one of three ways. They can be ignored, in which case the signal is
never sent to the process. They can be caught, in which case the process must decide what
action to take when the signal is received. Lastly, they can be left to cause termination of the
process without it having to take any further action. If a signal is being ignored on entry to the
shell procedure, for example, by invoking it in the background (see 3.7) then trap commands
(and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junk$$.

(9050) -19-

Programmer s Guide

fiag=
trap 'rm - f junk$$; exit~ 1 2 3 15
for i
do case $i in

- c) fiag=N ;;
*) if test - f $i

esac
done

then In $i junk$$; rm junk$$
elif test $fiag
then echo file \ '$i\' does not exist
else >$i
fi

Figure 4. The touch command

The Shell

The trap command appears before the creation of the temporary file; otherwise it would be pos
sible for the process to die without removing the file.

Since there is no signal 0, it is used by the shell to indicate the commands to be executed on
exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap n 1 2 3 15

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d= 'pwd ,

for i in *
do if test - d $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2

read x
do trap: 2; eval $x; done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in

-20- (9050)

the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap n 1 2 3 15
exec $

The trap turns off the signals specified so that they are ignored by subsequently created com
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo hello > *.C

writes the word "hello" into a file whose name is *.c .

Input/output specifications are evaluated left to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to. the file word which is created if it
does not already exist.

word

< word

word

<& digit

<&

>&-

The standard output is sent to file word. If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted, parameter and command substitu
tion occur and \ is used to quote the characters \ $.. and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

The standard input is duplicated from file descriptor digt't.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

2>file

runs a command with message output (file descriptor 2) directed to file.

2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as

list.c lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty

(9050) -21-

Programmer s Guide The Shell

file /dev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this rea
son, the ROS convention for a signal is that if it is set to 1 (ignored) then it is never changed
even for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the shell

The following fiags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

- e string
If the - e fiag is present then commands are read from 8tr":ng.

- s If the - s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

- i If the - i flag is present or if the shell input and output are attached to a terminal (as told
by gtty) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
in terruptable). In all cases QUIT is ignored by the shell.

$LIST$

-22- (9050)

Programmer s Guide

Appendix A - Grammar

item: word
input- output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list}
for name do command-list done
for name in word do command-list done·
while command-list do command-lzst done
until command-list do command-list done
ease word in case-part esae
if command-list then command-list else-part fi

pipeline: command
pipeline command

andor: pipeline.
andor && pz'peUne
andor pipeNne

command-list: andor

input-output:

file:

case-part:

pattern:

else-part:

empty:

word:

command-list;
command-list &:.
command-list; andor
command-list &:. andor

> file
< file
word
word

word
&:. digit
&:.-

pattern) command-list;;

word
pattern word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters

The Shell

name: a sequence of letters, digits or underscores starting with a letter

da'git: 0123456789

(9050) -23-

Programmer s Guide

Appendix B - Met.a-chara~rs and Reserved Words

a) syntactic

pipe symbol

&& 'andf' symbol

'orf'symbol

command separator

;; case delimiter

&. background commands

() command grouping

< input redirection

input from a here document

> output creation

output append

b) patterns

match any character(s) including none

? match any single character

[•••] match any of the enclosed characters

c) substitution

${ ••• } substitute shell variable

substitute command output

d) quoting

\ quote the next character

quote the enclosed characters except for '

quote the enclosed characters except for $.. \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }

(9050)

The Shell

PREFACE

This manual describes the Ridge Debug process. The first section
offers a short overall description of the process; the second
section describes the commands; and the third section contains a
tutorial.

Considerable familiarity with programming is assumed on the
reader's part; however, the tutorial contains specific information
on Ridge compilation and editing.

The reader is referred to the Ridge "Pascal Reference Manual" and
"FORTRAN Service Note 1" for details on the Ridge compilers for
these languages.

TABLE OF CONTENTS

PREF1\CE ••• 3

SECTION 1: INTRODUCTION ••••••••••••••••••••••••••••••••••••••• 5
O"ER"IE~ •• 5

SECTION 2: COMMAND SET
INTRODUCTION •• 7

Syntax Notation ••••••••••••••••••••••••••••••• 7
BREAKPOINT Command •••••••••••••••••••••••••••• 8
CLEAR BRE1\KPOINT Command •••••••••••••••••••••• 8
DISPL1\Y DATA Command •••••••••••••••••••••••••• 9
DISPLAY REGISTERS Command ••••••••••••••••••••• 9
EXIT Command ••••••••••••••••••••••••••••••••• lO
HELP Command ••••••••••••••••••••••••••••••••• lO
KILL Command ••••••••••••••••••••••••••••••••• lO
MODIFY Command ••••••••••••••••••••••••••••••• lO
PROCESS SET Command •••••••••••••••••••••••••• ll

SECTION 3: TUTORIAL •• 13
INTRODUCTION ••• 13
DEBUGGING 1\ PROGRAM •••••••••••••••••••••••••••••••••• 15
PRIME.L LISTING •••••••••••••••••••••••••••••••••••••• 19
PRIME.A LISTING •••••••••••••••••••••••••••••••••••••• 20
PRIME.MAP LISTING •••••••••••••••••••••••••••••••••••• 24

LISTING OF TABLES:
Table 1. Command Summary •••••••••••••••••••••••••••••• 7

LISTING OF FIGURES~
Figure 1. Compiling a Pascal Program ••••••••••••••••• 14

This manual used to be part 9006.
It is now incorporated into the ROS Programmer's Guide (9050).

-1, 2, 3, 4-

-blank-

Ridge Debug Users Manual

SECTION 1

INTRODUCTION

The Debug process provides on-line debugging of runtime errors for
both high level and assembly language programs. Debug capabilities
include 16 specifiable breakpoints, examination of registers and
data and code memory, and the ability to modify data. A help
facility lists the debug commands.

In the Ridge Operating System, processes are software entities that
perform computational tasks and which interact with other processes
to provide application-level functions or system services. The
Debug process is one of many processes managed by the User Monitor
associated with each active user. The Debug process can be used
interactively to examine and modify the state of all user processes
associated with a User Monitor.

When user processes are active, the Debug process remains
suspended. If a user process encounters an illegal instruction,
invalid memory reference, or other exception, the user process is
suspended and the Debug process is activated (indicated by the
Debug prompt, n:n).

The Debug process can also be activated from a command interpreter
as part of starting a user program. This is done by typing ndebug n
followed by the program name and any arguments.

Or, if a program is executing, the Debug process can be activated
by typing Control-\.

-5-

-6-

Ridge Debug Users Manual

SECTION 2

COMMAND SET

INTRODUCTION

This section defines the debug command set (summarized in Table 1).
In the debug process, values are output in hexadecimal and must be
input in hexadecimal. The user must wait for the debug prompt,
":", before entering a command, and, after entering a command, must
press RETURN.

Syntax Notation

In gen~ral, the first letter or two of a command's name is the
mnemon1C which must be used to invoke the command. Command
mnemonics can be written in either upper or lower case letters.
Required parameters are surrounded by "<" and ">". Options are
surrounded by "[" and "In.

SYNTAX

B [address]

CB <address>

D <address> [count]

DC <address> [count]

Table 1. Command Summary

COMMAND NAME AND DESCRIPTION

BREAK. Set a breakpoint or list all
existing breakpoints.

CLEAR BREAKPOINT. Clears specified
breakpoint.

DISPLAY DATA. Displays data at specified
memoryaddress(es).

DISPLAY CODE. Displays code at specified
memoryaddress(es).

(continued on next page)

-7-

Ridge Debug Users Manual

Table 1. Command Summary, Continued

SYNTAX COMMAND NAME AND DESCRIPTION

DR DISPLAY REGISTERS. Displays contents of
registers RO through R15 and PC.

E EXIT. Exit from debug process.

H HELP. Lists all debug commands.

K [pID] KILL. Terminates current (or specified)
process.

M <address>

P [pID]

BREAKPOINT Command

Syntax: B [address]

MODIFY. Change or verify sequential data
bytes.

PROCESS SET. Sets specified process
as current, or lists all processes.

This command sets a breakpoint at a virtual code location specified
(in hex). When the designated address is reached, the debug
process is activated and a banner with the current program counter
(PC) is displayed. After a breakpoint has been reached, it is
cleared.

A maximum of 16 breakpoints may be set. If an attempt is made to
set more than 16 breakpoints, "break full" is displayed. If no
address is specified, the Breakpoint command lists all currently
set breakpoints.

CLEAR BREAKPOINT Command

Syntax: CB <address>

This command allows a specified breakpoint to be eliminated. The
address must be in hex.

-8-

Ridge Debug Users Manual

DISPLAY DATA Command

Syntax: D <address> [count]

This command allows the user to view the contents of data memory in
hexadecimal and ASCII format. When only a memory address is
specified, 16 bytes of data are displayed. When a count is also
specified (in hex), that many bytes of memory are displayed
starting from the initial address. For .example:

:D 10 14

will cause l4H bytes of data, starting at location 10H, to be
displayed. ASCII characters are also displayed to the right of
each line1 "." represents characters that are nondisplayable.

DISPLAY CODE Command

Syntax: DC <address> [count]

This command allows the user to see the contents of code memory in
hexadecimal format. The assembly language for the code is also
shown, as are ASCII characters. Nondisplayable characters are
represented by".". When only a memory address is specified, the
single instruction (2 to 6 bytes) that starts at that address is
displayed. When a count is also specified (in hex), that many
bytes are displayed starting from the initial address.

DISPLAY REGISTERS Command

Syntax: DR

This command displays the status of the 16 registers for the
current process. A banner shows the process identification number
(pID) and the current program counter (PC). The next line provides
a representation of the registers RO through R7, from left to
right; the succeeding line shows registers R8 through RIS.

-9-

Ridge Debug Users Manual

EXIT Command

Syntax: E

This command causes the debug process to be suspended and program
execution to resume. It is used interactively with CTRL-\ to
start and stop the debug process: CTRL-\ suspends program
execution; any debug command(s) can then be used; Exit causes the
resumption of program execution.

HELP Command

Syntax: H

HELP displays an alphabetical listing, including syntax, of the
debug commands.

KILL Command

Syntax: K [pID]

This command kills the current (or specified) process and returns
control to the Shell command interpreter if there are no more
processes being debugged.

MODIFY Command

Syntax: M <address)

This command allows the user to alter data at a memory location
that is specified in hexadecimal. The command displays the first
byte of data from the starting address on the screen. The user can
then either enter new values, or retain the existing values by
pressing RETURN; in either case the debug process displays the next
byte on the screen for the user to retain or change. This sequence
continues indefinitely until the user breaks out of it by striking
a nonhexadecimal character.

-10-

Ridge Debug Users Manual

PROCESS SET Command

Sy"ntax: P [pIO]

This command sets the specified process pIO as the current process,
or, if no pIO is given, displays all process IDs of processes being
debugged.

-11-

-12-

Ridge Debug Users Manual

SECTION 3

TUTORIAL

INTRODUCTION

This section illustrates the basics of compiling and debugging a
sample Pascal program, "prime.s", that computes the first 1000
prime numbers. Once written, the following command file compiles,
assembles, and links such a source program:

pasc -1 prime.l prime.s
ptrans -1 prime.a prime.p
link -1 prime.map prime.o /lib/rtl.o

In the first line, the Pascal compiler ("pasc") compiles from the
source code ("prime.s") two output files: one is an intermediate
P-code file ("prime.p"); the second is an optional file invoked
with "_1" and named "prime.l". "prime.l" is a source code listing
that shows line numbers, syntax error messages, and the locations
of program and data code (P/D LC).

In the second line, the P-code translator ("ptrans") translates and
assembles the "prime.p" P-code file into a relocatable object code
file ("prime.o"). Another optional file invoked by "-1", named
"prime.a", provides an assembly language listing that shows source
code line numbers.

In the third line, the linker ("link") combines the "prime.o"
object file and the runtime library object file ("/lib/rtl.o") to
produce the final executable code file, "prime". An optional file
has also been invoked by "_1" to create a link map file
("prime.map") that shows the absolute addresses of procedures and
data.

Figure 1 shows a schematic overview of this compiling, assembling,
and linking process. The listings for "prime.l", "prime.a", and
"prime.map" appear at the end of this tutorial.

-13-

Ridge Debug

I"I file.g :

Compiled source,
with line numbers,
showing syntax errors

[-I file.a]

Assembly language
listing showing
source line numbers

[-I file.lI]

Link map showing
absolute addresses
of procedures
and data

Pascal source pr~_gram

Compilation: parsing,
intermediate -
code generation

P-code

Translation to relocatable
hex object code

Relocatable object code

Links object files

llib/rtl.o

Run-time library

Executable object code
with vi rtual add resses
starting with 0

NOTE: [] indicate an option. In this illustration, the
optional link map file, referred to in text as
"prime.map", is called "file.ll".

Figure 1. Compiling a Pascal Program

-14-

Users Manual

Ridge Debug Users Manual

DEBUGGING A PROGRAM

To begin the debug process as part of starting "prime", type after
the Shell prompt ($):

$ debug prime

A message is displayed on the screen, followed on the next line by
":", the debug prompt:

process 00001F60 suspended

The process identification number indicates the current process ID
number of the suspended program.

To examine the registers before program execution (the PC is 0),
use the Display Register command:

:dr

The contents of the registers and the PC are displayed, showing the
initial values of the registers:

PID: SS0SIF6H pc: HHHHHHHH
R0 Rl R2 R3
00HHgHHg Hg0SHHHH HgggHHgg HHgHHHHH
R8 R9 RIH Rl1
ZgHHgggg HggHgHgH ZHgHgZgg ZggZ0HgZ

R4
FFF77FF7
R12
gZZZHHgH

RS
FFF77FF7
RI3
E5DF57FF

R6
FFF77FF7
R14
IBBF6EFF

R7
FFF77FF7
R15
FEB7BI7F

To check that variables in a source code line, for example, line
22:

X := 11 INC := 41 LIM := 1; SQUARE := 9;

are being properly initialized and the correct values
the registers, first examine the "prime.l" listing.
for this line is as follows: .

LINE # P/D LC LVL

loaded . into
The listing

22 23 1) X := 11 INC := 41 LIM := 11 SQUARE·:= 9;

"LINE" refers to the source code line numbers 1 "LVL" indicates
nesting levell the "P/D LC" value represents the memory location of
program or data code in decimal (found in the P-code listing, which
isn't included in this tutorial).

Turning to the "prime.a" listing, we find the assembler listing

-15-

Ridge Debug Users Manual

shows the code for line 22 to be stored starting at memory location
64H. In this listing, the leftmost column shows the memory
location; the next, the machine code; the last two the assembler
source code:

SOURCE LINE 22
00000064 1111 MOVE I Rl,l
00000066 A6l0l008 STORE Rl,4l04
0000006A 1124 MOVE I R2,4
0000006C A620l00C STORE R2,4l08
00000070 1131 MOVE I R3,1
00000072 A630l010 STORE R3,4112
00000076 1149 MOVE I R4,9
00000078 A6401014 STORE R4,4116

According to the assembler, the decimal values 1, 4, 1, and 9 are
in fact being placed in registers Rl, R2, R3, and R4, respectively.
To examine these registers, breakpoints can be placed at
appropriate locations--such as immediately before and after a
MOVEI.

If it is desirable to first verify that the code looks exactly like
the listing, use the Display Code command in conjunction with the
first memory address by typing in:

:dc 64

This causes the following line to be displayed:

00000064: 1111 MOVE I Rl,l ••

The meaning of the columns is the same as that previously explained
for the "prime.a" listing, except for the last column on the right
which shows any ASCII characters; those that are nondisplayable are
represented by a".".

The assembler listing can be used to determine where to set
breakpoints within a program; for a procedure or function, however,
examining the "prime.map" listing is useful. "prime.map" shows the
locations for all procedures and functions, including the runtime
library routines. The lefthand column lists the routines in
alphabetical order with their assigned virtual addresses; the
righthand column is arranged by order of increasing memory
location.

To set a breakpoint before the MOVEI (which should move 1 into
register 1):

:b 64

Then, to set a breakpoint after the MOVEI to see the new status of
register 1, type:

-16-

Ridge Debug Users Manual

:b 66

Additional breakpoints (up to a total of 16) can be set to check
whether the other registers are being corrently loaded. Each
breakpoint must be set separately. To list all breakpoints that
have been set, type:

:b

To examine the registers, leave the debugger and start the "prime"
program, using 'the Exit command:

:e

When a breakpoint is encountered, a message is displayed on the
screen:

break at 00000064

To examine the register contents at this first breakpoint location,
use the Display Register command ("dr"). This causes the registers
to be displayed:

PlO: ggggIF6S pc: SSSSSS64
RS Rl R2 R3 R4 R5 R6 R7
SgSSgS02 ggg0Sg33 SSSSgS0l SS7FFE00 007FSSSS SSSSglFC HgS7FFES gSSgB1FF
RS ' R9 Rl. Rl1 R12 R13 R14 R15
.S ••• S61 •••• gg77 .e295S ••••• S4C7A SS •• 115. S •• S.SW2 •• 1115 • •••• S •••

Notice the 33 in register 1.

Use the Exit command again to go to the next breakpoint, and
display the registers using the Display Register command:

PIO: S00S1F6S PC:0SS.S.66
R. R1 R2 R3 R4 R5 R6 R7
•• SSS •• 2 .S.S.SSl ••• S ••• l .S7FFES. S07F.S ••• seS.1FC ••• 7FFES •••• SIFF
RS R9 R1. Rl1 R12 R13 R14 R15
•••• S.61 •••• SS77 •• 295S ••• SS.4C7A •••• 115S S.SS0S02 •• 1115 • •••• S •• 0

Register 1 now contains 1.

The instruction at location 66H stores register 1 into data address
100SH (4104 decimal), which is the variable "X". To verify that
the variable is actually being initialized, set a breakpoint at the
next instruction, and then exit the debugger:

:b 6A

followed by:

-17-

Ridge Debug Users Manual

:e

After the breakpoint is encountered, display the data location
using the Display Data command:

:d 100S

The debugger displays the 16 bytes starting at location 100SH:

~~~~lZZ8: Z~ ~~ ~~ ~1 7F ~~ ~~ ~~ ~z ~~ ~H ~~ 7F FF FF FF ' •.....••••.•...• 

Notice that the 32-bit value 1 has been set into the word (4 bytes) 
at location 100SH. Further breakpoints could be set and memory 
examined with the Display Data command or modified with t.he Modify 
Data command. 

Once the bugs in a program have been determined, the program's 
process can be terminated by the Kill command: 

:k 

Control of the terminal is then returned to the Shell. 

-lS-



Ridge Debug Users Manual 

PRIME.L LISTING 

LINE # P/D LC LVL < Ridge Pascal Compiler, Version of 29-0ct-82 > 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IS 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2JiJ 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3JiJ 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4JiJ 
41 
42 
43 
44 
45 
46 
47 

**** 
**** 
**** 

414.0' 
4144 
44JiJ8 
44JiJ8 
4424 

12 
12 
21 
23 
31 
4JiJ· 
4JiJ 
48 
52 
56 
7JiJ 
71 
75 
81 
85 

111 
116 
119 
122 
132 
136 
14JiJ 
142 
142 
149 
149 
156 
156 
174 

47 
178 

NO 

) {Sd-,A+} 
} (* Program "primes" computes the f1rst 1JiJJiJJiJ prime numbers, and *) 
} (* writes them in a table with 2JiJ numbers per line. This takes 1347 *) 
} (* msec. on the CDC 640JiJ (1061 msec. w1thout the range checking) *) 
) 
) 
} 
) 
} 
} 

1 ) 
1 ) 
1 ) 
1 } 
1) 

) 
) 
) 

1 } 
1 ) 
1 } 
1 > 
1 } 
1 } 
1 } 
1 > 
1 } 
1 } 
1 } 
1 } 
1 } 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1) 
1 ) 
1 } 
1 } 
1 } 
1 } 
1 ) 
1 ) 
1} 

(* Modified to lJiJ numbers per line. *) 

PROGRAM PRIMES{OUTPUT,input); 
CONST N = 1JiJJiJJiJ; Nl = 33; (*Nl = SQUARE ROOT OF N*) 
VAR I,K,X,INC,LIM,SQUARE,L,HI,LOW, q, 1terat10ns: INTEGER; 

PRIM: BOOLEAN; 
P,V: ARRAY[l .. NIJ OF INTEGER; 

SHITIME ,SLOWTIME, EHITIME, ELOWTIME: INTEGER; 
function runtime: integer; external; 
BEGIN 

1terat1ons := 5JiJ; 

for q := 1 to iterat10ns do beg1n 
{VRITE{2:6, 3:6};} L := 2; 

X := 1; INC:= 4; LIM:= 1; SQUARE:= 9; 
FOR I := 3 TO N DO 
BEGIN (*FIND NEXT PRIME*) 

REPEAT X := X+INC; INC:= 6-INC; 
IF SQUARE (=X THEN 

BEGIN LIM := LIM +1; 
V[LIM] := SQUARE; SQUARE:= SQR{P[LIM+IJ) 

END; 
K := 2; PRIM:= TRUE; 
WHILE PRIM AND {K(LIM} DO 
BEGIN K := K+l; 

END 

IF V[K] ( X THEN V[K] := V[K] + P[Kl*2; 
PRIM := X <> V[K] 

UNTIL PRIM; 
IF I (= N1 THEN PEl] := X; 

{WRITE(X:6};}L := L+l; 
IF L = 1JiJ THEN 

BEGIN {WRITELN;} L := 0; 
END 

END; 
{WRITELN;} 

end {for q}; 

wr1teln{ 'RUN TIME = ',runtime:1,' MILLISECONDS'); 
end. 

LINE{S) READ, 1 PROCEDURE{S) COMPILED, 
P_INSTRUCTIONS GENERATED 
SYNTAX ERROR{S) DETECTED. 

-19-



Ridge Debu9 Users Manual 

PRIME.A LISTING 

SOURCE LINE 18SL=P, ABS_AD=T, $S=B 

BBBBBSKJS DEASFFFFFFFF LADDR R1B,-1 
gggSBHg6 A6AgKJKJ4KJ STORE RIKJ,64 
RJRJIJRJIJKJIJA 1 1 ERJ MOVEI R14,RJ 
IJKJgKJKJKJIJC I1FKJ MOVEI R15,IJ 
RJRJIJRJIJRfIJE 9BRfRfFFFFFFFF BR $MAINBLK 

$MAINBLK: 
IJIJIJIJIJRJ14 A7BERJRJBB STORE R11,R14,Rf 
RJBBBBB18 A7FEgIJKJ8 STORE R15,R14,8 
IJBIJBIJRflC RJI FE MOVE R15,R14 
BIJgBBKJIE DFEEFFFFFFFF LADDR R14,R14,-1 
IJIJIJIJBRJ24 93BRfFFFFFFFF CALL R11,SYSENTRY 
IJBIJBBRf2A CEBRfIJIJ84 LADDR RB,132 
IJIJIJBSIJ2E A7BEIJB18 STORE RB,R14,24 
gBIJBKJKJ32 93BgFFFFFFFF CALL Rl1,FDF 
IJIJIJSBIJ38 CE1IJgKJ8C LADDR R 1 ,14RJ 
RfggKJgJ?J3C A71EJ?JJ?J18 STORE R1,R14,24 
SJ?JIJBSRf4IJ 93BIJFFFFFFF2 CALL R11,FDF 
IJBBBIJRf46 CE1BKJIJ32 LADDR R 1 ,5.0 
IJ.0IJB.0B4A A61B1.028 STORE R1,4136 

SOURCE LINE 2KJ 
SBBBBB4E 1121 MOVEI R2,1 
J?JB.0J?JBJ?J5g A62.01.024 STORE R2,4132 
.0.0.0BBBS4 1311 ADDI R 1 ,1 
.0J?JBBBB56 A61J?J1148 STORE Rl,4424 
BIJBB.0.05A 8812FFFF BR R1(=R2,L5 

F4: 
SOURCE LINE 21 

.0.0KJSBS5E 11.0'2 MOVEI R.0',2 

.0.0.0BBB6.0 A6.0.0'I.018 STORE R.0,412RJ 
SOURCE LINE 22 

.0.0IJBB.064 1111 MOVEI R 1 , 1 

.0.0'gSS.066 A61RJ1.0'.0'8 STORE R1,41.0'4 

.0.0.0B.0.06A 1124 MOVEI R2,4 
SRJ.0'RJ.0'KJ6C A62S1KJJ?JC STORE R2,41J?J8 
.0.0.0SBB7B 1131 MOVEI R3,1 
gBBSBB72 A63J?J1S1KJ STORE R3,4112 
BBBSBB76 1149 MOVEI R4,9 
.0SBSBS78 A64S1S14 STORE R4,4116 

SOURCE LINE 23 
BKJ.0'KJSS7C 1153 MOVEI R5,3 
IlJSIlJRJBS7E A6SS1SS.0 STORE R5,4S96 

-20-



Ridge Debug Users Manual 

88888882 CE6883E9 LADDR R6,1881 
88880886 A660114C STORE R6,4428 
8H080H8A 8865FFFF BR R6<=R5,L7 
0H80008E 01C1 MOVE R12,R1 

VARIABLE AT 1,4184 ASSIGNED TO REGISTER 12 
88808H90 H1D2 MOVE R13,R2 

VARIABLE AT 1,4188 ASSIGNED TO REGISTER 13 
88800H92 H1B6 MOVE R11,R6 

F6: 
R8: 
SOURCE LINE 25 

H080HH94 H1HC MOVE RH,R12 
H8000IJ96 8380 ADD RIJ,R13 
H0HHHIJ98 01C0 MOVE R12,R0 
H0000IJ9A 1116 MOVEI R 1,6 
H0f4f4f4f49C H12D MOVE R2,R13 
f40000IJ9E 8412 SUB R 1, R2 
00Hf4f4HA0 0101 MOVE R13,R1 

SOURCE LINE 26 
f400f4f48A2 C6381H14 LOAD R3,4116 
0000IJ8A6 803f4FFFF BR R3>R0, E9 

SOURCE LINE 27 
f4000f48AA C640101H LOAD R4,4112 
f4f4f40f48AE 1341 ADDI R4,1 
0f400HHB0 A64HIHIH STORE R4,4112 

SOURCE LINE 28 
0000HHB4 0154 MOVE R5,R4 
f40f4HH8B6 7H42 LSLI R4,2 
H0HHHHB8 A73418BIJ STORE R3,R4,4272 
f4Hf4HHHBC C7641H3.0' LOAD R6,R4,4144 
0HHf4HHCH H566 MPY R6,R6 

SOURCE LINE 29 
00HH0HC2 A66.0'lH14 STORE R6,4116 

E9: 
L 18: 
SOURCE LINE 3H 

0HHHH0C6 11.0'2 MOVEI RH,2 
0HHH0HC8 A6H01884 STORE RH,4188 
00.0'Hf40CC 1111 MOVEI R 1 , 1 
HHf4HHHCE A.0'101H2C STOREB R 1 ,414.0' 

\./11 : 
SOURCE LINE 31 

.0'H.0'.0'.0'0D2 C.0'.0'.0'l.0'2C LOADB RH,414.0' 
0000.0'.0'06 C6101.0'04 LOAD R1,41H0 
0.0'0.0'.0'0DA C62.0'1.0'1.0' LOAD R2,4112 
HgH0f4HDE 5112 TESTLT R 1 ,R2 
f4f4f400f4E0 HS10 AND R 1 ,R0 
00H000E2 8E11FFFF BR Rl<>I,L12 

SOURCE LINE 32 
8H0HHHE6 C63Hl.0'H4 LOAD R3,41HH 
HH0HH.0'EA 1331 ADDI R3,1 
HHHH00EC A63H1084 STORE R3,4188 

-21-



Ridge Debug Users Manual 

SOURCE LINE 32 
~0~~0~E6 C63.0'1.0'04 LOAD R3,41~~ 
~0~000EA 1331 ADDI R3,1 
~0~0~~EC A63.0'1~04 STORE R3,41.0'~ 

SOURCE LINE 33 
~~~0~~F~ ~143 MOVE R4,R3 
~fgfgfgfgfgF2 7fg32 LSLI R3,2
~~~~BBF4 C7531.0'BB LOAD R5,R3,4272 
fg0.0'000F8 .0'16C MOVE R6,R12 
.0'0B0B0FA 8865FFFF BR R6(=R5,E13 
fgfgfgfgfgfgFE C7731.0'B.0' LOAD R7,R3,4272 
B0B001B2 C7231.0'2C LOAD R2,R3,4140 
.0'fgfg~.0'1.0'6 7.0'21 LSLI R2,1 
00~001.0'8 0327 ADD R2,R7 
00~.0'~l.0'A A7231.0'B.0' STORE R2,R3,4272 

E13: 
L 14: 
SOURCE LINE 34 

.0'fg~0010E .0'10C MOVE R.0',R12 
B000011.0' C61.0'1.0'.0'4 LOAD R 1 , 41~.0' 
0.0'~.0'~114 .0'121 MOVE R2,R1 
.0'0.0'0.0'116 7012 LSLI R 1 ,2 
.0'00~0118 CF311.0'B~ LADDR R3,R1,4272 

SOURCE LINE 35 
.0'~00~11C C7430.0'.0'0 LOAD R4,R3,.0' 
0001lJ.0'12.0' 5A40 TESTNE R4,R.0' 
.0'001lJ1lJ122 AIlJ41lJ1.0'2C STOREB R4,414.0' 

SOURCE LINE 36 
.0'001lJfg126 8B0.0'FFAD BR \.111 

L12: 
.0'0.0'.0'012A C0.0'01B2C LOADB R0,414.0' 
1lJ001lJ1lJ12E 8EIlJ1FF67 BR RIlJ<>1,R8 

SOURCE LINE 37 
1lJIlJ.0'01lJ132 C6UH.0'.0'.0' LOAD R1,41lJ96 
00.0'00136 CE200021 LADDR R2,33 
0000013A 8012FFFF BR R1)R2,E15 
0000013E .0'131 MOVE R3,R1 
1lJ1lJ1lJ1lJ1lJ141lJ 71H2 LSLI R 1,2 
1lJ1lJ1lJ1lJ1lJ142 014C MOVE R4,R12 
1lJ1lJ~1lJ0144 A7411.0'2C STORE R4,R1,414.0' 

E15: 
L16: 
SOURCE LINE 38 

.0'IlJ01lJ.0'148 C60.0'l.0'18 LOAD R.0',412.0' 

.0'.0'.0'.0'014C 1301 ADDI R.0',1 
1lJIlJIlJ.0'.0'14E A60.0'l.018 STORE R.0',412.0' 

SOURCE LINE 39 
B.0'.0'0B152 8E.0'AFFFF BR R.0'<>1.0,E17 

SOURCE LINE 4.0' 
.01lJ.0'.0'.0'156 111.0' MOVEI R 1,.0' 
.0'IlJ.0'.0'.0'158 A61.0'l.0'18 STORE R 1 ,412.0' 

E17: 

-22-



Ridge Debug Users Manual 

00000162 A6001000 STORE R0,4096 
00000166 8A0BFF2F BR R0(>Rl1,F6 
0000016A A6C01008 STORE R12,4104 
0000016E A6D0100C STORE R13,4108 

L7: 
SOURCE LINE 44 

00000172 C6001024 LOAD R0,4132 
00000176 1301 ADDI R0,1 
0800IJ178 A60fJ1024 STORE R0,4132 
0000IJ17C C6101148 LOAD Rl,4424 
0001rJ1J180 8AlrJIFEDF BR RIrJ<>Rl,F4 

L5: 
SOURCE LINE 46 

1rJ0001rJ184 CE01rJ008C LADDR RIrJ,141rJ 
01rJ01rJ1rJ188 188B NOTI R8,11 
0fJfJlrJIJ18A CEllrJFFF4 LADDR Rl,-12 
IJlrJIJlrJIJ18E E79801rJ1E LOADP R9,R8,31rJ 
0fJ00IJ192 B798000IJ0fJ01rJ STORE R9,R8,fJ 
1rJ1rJ0fJIJ198 8784FFF7 LOOP R8,4,*-lfJ 
0IJ00fJ19C 8BlrJ01rJ1rJ10 BR 
IJlrJ01rJ1rJIAC 112B MOVEI R2,11 
001rJ1rJ01AE 113B MOVEI R3,11 
01rJ01J1rJIBfJ A7lrJElrJfJ18 STORE RIrJ,RI4,24 
IrJIrJfJlrJlrJIB4 A71ElrJ1rJ2fJ STORE R1,RI4,32 
01rJ0lrJfJIB8 A72ElrJ028 STORE R2,RI4,4fJ 
0lrJfJ0fJIBC A73ElrJfJ31rJ STORE R3,RI4,48 
IJfJfJlrJfJ 1 CIrJ 93BlrJFFFFFFFF CALL R 11 , 'WRS 
000fJfJIC6 C70ElrJfJ18 LOAD RfJ,R14,24 
1rJ00001CA A7lrJE0fJ0fJ STORE R0,RI4,fJ 
0001rJ01CE 13E8 ADD! R14,8 
1rJ0fJfJIJ 100 93BfJFFFFFFFF CALL R11,RUNTIME 
00fJfJ01 06 1111 MOVEI R 1,1 
fJfJfJlrJfJI08 C72EFFF8 LOAD R2,R14,-8 
fJfJ0fJfJIOC 14E8 SUBI R14,8 
IrJfJfJfJfJI0E A72EfJfJ18 STORE R2,R14,24 
IrJfJfJlrJfJIE2 A70EfJfJ20 STORE R0,R14,32 
1rJ1rJ0fJfJ1E6 A71EfJfJ28 STORE R1,RI4,41rJ 
IrJfJ0lrJfJ 1 EA 93BfJFFFFFFFF CALL R 11 , 'WR I 
fJlrJ0lrJfJl FfJ C7lrJEfJfJ18 LOAD RIrJ,RI4,24 
IJfJfJfJfJIF4 188F NOTI R8,15 
fJfJ01rJ1rJIF6 CE10FFE4 LADDR Rl,-28 
IrJfJIJlrJ01 FA E7980fJ22 LOADP R9,R8,34 
0lrJfJlrJfJIFE B798FFFFFFF4 STORE R9,R8,-12 
1rJ1rJ01rJ02fJ4 8784FFF7 LOOP R8,4,*-lfJ 
IrJfJIJ00208 8B0fJlrJ014 BR 
1rJ1rJ01rJ021C 1120 MOVEI R2,13 
001lJIJRJ21E 1130 MOVEI R3,13 
01rJ01rJ0221rJ A7lrJElrJlrJ18 STORE RIrJ,RI4,24 
01rJ0lrJRJ224 A71E0021rJ STORE R1,R14,32 
1lJ1rJ00RJ228 A72ElrJ028 STORE R2,R14,4fJ 
0001rJ022C A73E01rJ3fJ STORE R3,RI4,48 
01rJ01J0231rJ 93BfJFFFFFF9fJ CALL R 11 , WRS 

-23-



Ridge Debug 

HHBHB236 C7BEBB18 
BBBBB23A A7BEBB18 
BBBBB23E 93BBFFFFFFFF 

SOURCE LINE 47 
BBBBB244 I11B 
BBBBB246 A71EBB18 
BBBBB24A 93BBFFFFFFFF 
BBBBB25B C7BFHBBH 
BHBBRf254 RflEF 
BBBBB256 C7FFBBRf8 
BBBRfB25A 57BB 

NUMBER OF BYTES OF CODE 

LOAD 
STORE 
CALL 

MOVEI 
STORE 
CALL 
LOAD 
MOVE 
LOAD 
RET 

GENERATED 

R.0',RI4,24 
RB,R14,24 
R 11, WLN 

R1,H 
R1,R14,24 
R11,SYSEXIT 
Rll,RI5,H 
R14,R15 
R15,RI5,8 
Rll,Rll 
= 6H4 

PRIME.MAP LISTING 

Ridge Linker Version of 29-Dec-82 
Symbol table 
SHEAP 
SHEAP 
SHEAP 
SMAINBLK 
SMAINBLK 
SMAINBLK 
SMAINBLK 
ABORTCOMMAND 
ACQUIREDEVICE 
ACTIVATE 
ALLOC 
ALLOCINIT 
ARM 
ATN 
CHANGEDIR 
CHANGEFILESIZE 
CLOSE 
CLOSEFILE 
CLOSELINK 
CLOSEQUEUE 
CONCATSTRING 
CONVTTIMETOYMODH 
CONVYMODHMISTNTO 
COPYFIDTOINTS 
COPYINTSTOFID 
COPYOFSTRING 
COPYSUBSTRING 
COS 
CREATE 
CREATEEQUATE 
CREATEPIPE 
CREATE PROCESS 
CREATESPECIAL 
DAYOFWEEK 

BHH2H258 
BBH22E58 
HBH25178 
BIlJBHHHl4 
B.0'BH2E2E 
1lJIlJIlJ1lJ4C7A 
HBBH5764 
B.0'HHIHBH 
BRfBB5124 
1lJIlJIlJ1lJ4EE4 
B.0'HHB3AE 
IlJIlJIlJBIlJ274 
H.0'BRf4D72 
BBIlJB58DH 
H.0'HH1AHA 
IlJBBB161E 
H.0'BHHE1H 
IlJBBH2C6B 
1lJ.0'.0'H4F8H 
IlJHBB4F66 
HBSHH7DA 
HIlJHH523E 
BBBH547C 
HBHBBBAA 
BBHRfBBDA 
IlJIlJIlJBB75C 
BH.0'HB94E 
BHHB58lB 
.0'.0'.0'HBC9C 
HIlJBBIlJE78 
BBBBllAC 
1lJIlJIlJ1lJ4EA2 
.0'BBB168E 
BBBB5716 

Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 
Code 

-24-

SMAINBLK 
ALLOCINIT 
DISPOSE 
ALLOC 
NEWSTRING 
SUBSTRING 
OVERLAYSTRING 
COPYOFSTRING 
CONCATSTRING 
EQUALSTRING 
COPYSUBSTRING 
FILLSTRING 
SEARCHSTRING 
MSGINIT 
PUTMESSAGE 
GETMESSAGE 
COPYFIDTOINTS 
COPYINTSTOFID 
FETCHARGS 
CREATE 
OPEN 
CLOSE 
CREATEEQUATE 
DELETEEQUATE 
LOADCOMMAND 
ABORTCOMMAND 
STARTCOMMAND 
CREATEPIPE 
DELETE 
READBLOCK 
WRITEBLOCK 
READCHAR 
WRITECHAR 
CHANGEFILESIZE 

Users Manual 

BHBBHB14 Code 
HBHBB274 Code 
BHBBS2A4 Code 
BBBIlJS3AE Code 
HIlJH.0'B626 Code 
1lJIlJIlJIlJPJ65C Code 
BRfRfBRf6E6 Code 
BRfBBS75C Code 
BRfRfBRf7DA Code 
.0'.0'1lJ1lJ.0'8B6 Code 
HRfHHH94E Code 
.0'RfIlJIlJS9CB Code 
SSSIlJSAIA Code 
IlJB.0'IlJ.0'A92 Code 
RfRfHRfRfAD2 Code 
RfRfRfRf.0'B36 Code 
RfRfRfRfRfBAA Code 
RfIlJRfRfRfBDA Code 
RfRfRfRfRfCRf6 Code 
RfRfB0RfC9C Code 
RfRf.0'.0'RfD54 Code 
.0'Rf.0'0IlJEIB Code 
Rf.0'RfRfRfE78 Code 
BRf.0'RfRfF78 Code 
RfRf.0'RflRf14 Code 
1lJIlJIlJIlJl1lJBRJ Code 
RfRf.0'RfII18 Code 
BIlJRfIlJIIAC Code 
RfRfllJRfl1C4 Code 
BIlJIlJIlJ1258 Code 
RfllJRfRf136E Code 
IlJBIlJ0147A Code 
IlJRfRfRf154C Code 
BSRfRf161E Code 



Ridge Debug Users Manual 

DAYSECSNSECSTOTI BBBB57D2 Code CREATESPECIAL BBBB16BE Code 
DELETE BBBBIIC4 Code READDIRECTORY BBBB1732 Code 
DELETEEQUATE BBBBBF7B Code READLABEL .0'.0'B.0'lB12 Code 
DELETEMESSAGE B£1£1f:J 5.0'9 IiJ Code SPACEINFO £1£1£1£118AE Code 
DELETEPAGE BJ1inr4E3E Code LOOKUP NAME .0'B.0'.0'1952 Code 
DISARM .0'£1£1£14084 Code CHANGEOIR f:J£1£1fJIA£1A Code 
DISPOSE .0'.0'.0'flJflJ2A4 Code GETCURRENTDIR BfHH"flA9E Code 
EQUALSTRING B£1fJfJfJ8B6 Code GETARGS fJfJ£1ff1814 Code 
EXAMINEFRAME fJf:J.0'fJ4E58 Code GETTERMINALDEV B£1B£11BE8 Code 
EXAMINEPAGE £1B£1ff40A2 Code FILEINIT ffZZfflC48 Code 
EXP BBBB5A44 Code FILESEEK B.0'ZBICCC Code 
EXPO B£1B£136A4 Code FILECHANGESIZE Z£1£1fJ1FF2 Code 
FAULTCOMPLETE BBBff4E9B Code FILEOPEN tJZflJJf21 8[1 Code 
FOF BBBB4B34 Code FILECLOSE BffKJJfJ2588 Code 
FETCHARGS fffffffflOCZ6 Code FIB BffBf?f26A2 Code 
FIB Bffffff26A2 Code FLB £1£1ffff2892 Code 
FILECHANGESIZE £1Z£1£11FF2 Code GETC £1ff£1fJ2B2ff Code 
FILECLOSE ffB£1ff2588 Code PUTC BZZ.lJ2 B 8C Code 
FILEDELETED Bff£1ff5BA2 Code OPENFILE ffffBJ02C12 Code 
FILEINIT ff£1ffff1C48 Code CLOSEFILE ZffffB2C6fJ Code 
FILEOPEN BffffZ21810 Code FILESTATUS fffffJff2C96 Code 
FILESEEK ff£1Bff1CCC Code POSITIONFILE ZffffB2CF2 Code 
FILESTATUS ffffffB2C96 Code SETFILESIZE fJffZff2D3C Code 
FILLSTRING £1Z£1£1ff9C£1 Code SYSENTRY .0'ffZff2D7E Code 
FIX ffZfffJ5ffBC Code SYSEXIT fffJlOf92DA2 Code 
FLB BBfflO2892 Code $MAINBLK fffffJJfJ2E2E Code 
FLUSH BffBB5B6E Code WRC ZZBff2E74 Code 
FREE ffffffff5ffDE Code RDC ffflJllJ.(i'f2 F 82 Code 
GETARGS ffff£1ff1B14 Code WRI ffZJfJ.0'2FF8 Code 
GETC £1ZZff2B2ff Code RDI £1Z£1Z3232 Code 
GETCURRENTDIR ffffffff1A9E Code WRS Z,0'fff?f34 4 C Code 
GETMESSAGE ffZfJffffB36 Code RDS ff,0'£1fJ3 SA 8 Code 
GETSPECIALPID £1ZZff5156 Code EXPO flJ.'?!fMf'J 6A 4 C00-: 
GETTERMINALDEV ffffffZ1BE8 Code WRR flJ.0'Q'fJ3828 Code 
GETYMD ffff£1ff5 6A 4 Code POWEROFTEN £'~:'e.in F 94- C <")'~','-' 
INITQSEG ffffffff 4 FA 4 Code RDR ffRfffff4ZA4 Code 
INITTABLE £1£1£1ff5FBff Code WRB £1£1fJfJ467Z Code 
INSERTPAGE ffffffff4Eff8 Code RDB ffBfJZ4724 Code 
ISLEAP £1ffffff5198 Code RBW Zfff..'FJ,:: 358 Code 
KILL ZZffff4Fff8 Code PAG ffJH.'f1498C Code 
LEAPSTO ZliJZff51 DA Code WLN ffZRJff4AffA Code 
LOADCOMMAND fffffffflfJ14 Code RLN fffJKJff4A88 Code 
LOG fffffJff5AD2 Code RES ff09.'0' ,A, B 1 4 Code 
LOOKUPNAME ffffffff1952 Code REW Zffff.0' 4 B 2 4 Code 
MODIFYPAGE fJZ£1ff4DDA Code FDF ffffRrf14 B 3 4 Code 
MSGINIT fffffffJffA92 Code $MAINBLK flZP'i?f 4C 7 A Code 
MYID ffffffff4F9A Code SEND fJ:JJ/.Cf/-CBff Code 
NEWSTRING fffffffffJ626 Code RECEIVE ffff£;'/), 4 C D E Code 
OPEN £1£1fffffJD54 Code SENDPAGE ZZf{!!J f,DfJC Code 
OPENFILE ffZfJff2C12 Code RECEIVEPAGE £1ffprRf!· D 3A Code 
OPENLINK ffffZZ4F3C Code TEST ZfJJ:,t.:J ii· 0 6Z Code 
OPENQUEUE Zffffff4F1A Code ARM Zfff?Jf?f4D72 Code 
WRI IiJIiJIiJZ2FF8 Code EXP BBf1B5A44 Code 
WRITEBLOCK fJfJBliJ136E Code LOG BBZZ5AD2 Code 
WRITECHAR BB£1ff154C Code INITTABLE fffHff?f5 F 8f:J Code 
WRITEPROCESSSTAT ffffffff5112 Code $HEAP fH1f12B258 Code 
WRR Bffffff3828 Code $HEAP ffffff22E58 Code 
WRS BffBff344C Code $HEAP fJBfJ25178 Code 
Link Completed. Size of program: 24452. No errors detected. 
Output file is runnable object file 

-25-



• 

Ridge Computers 
Corporate Headquarters 

2451 Mission College Blvd. 
Santa Clara , California 95054 
Phone: (408) 986-8500 
Telex: 176956 


	000
	001
	002
	003
	004
	01_01
	01_02
	01_03
	01_04
	01_05
	01_06
	01_07
	01_08
	01_09
	01_10
	01_11
	01_12
	01_13
	01_14
	01_15
	01_16
	01_17
	01_18
	01_19
	01_20
	01_21
	02_01_Lint
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	03_01_Make
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	04_01_Lex
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	04_11
	04_12
	05_01_YACC
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	05_09
	05_10
	05_11
	05_12
	05_13
	05_14
	05_15
	05_16
	05_17
	05_18
	05_19
	05_20
	05_21
	05_22
	05_23
	05_24
	05_25
	05_26
	05_27
	05_28
	05_29
	06_001_f77
	06_002
	06_003
	06_004
	06_005
	06_006
	06_007
	06_008
	06_009
	06_010
	06_011
	06_012
	06_013
	06_014
	06_015
	06_016
	06_017
	06_018
	06_019
	06_020
	06_021
	06_022
	06_023
	06_024
	06_025
	06_026
	06_027
	06_028
	06_029
	06_030
	06_031
	06_032
	06_033
	06_034
	06_035
	06_036
	06_037
	06_038
	06_039
	06_040
	06_041
	06_042
	06_043
	06_044
	06_045
	06_046
	06_047
	06_048
	06_049
	06_050
	06_051
	06_052
	06_053
	06_054
	06_055
	06_056
	06_057
	06_058
	06_059
	06_060
	06_061
	06_062
	06_063
	06_064
	06_065
	06_066
	06_067
	06_068
	06_069
	06_070
	06_071
	06_072
	06_073
	06_074
	06_075
	06_076
	06_077
	06_078
	06_079
	06_080
	06_081
	06_082
	06_083
	06_084
	06_085
	06_086
	06_087
	06_088
	06_089
	06_090
	06_091
	06_092
	06_093
	06_094
	06_095
	06_096
	06_097
	06_098
	06_099
	06_100
	07_01_Ratfor
	07_02
	07_03
	07_04
	07_05
	07_06
	07_07
	07_08
	07_09
	07_10
	07_11
	08_01_C
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	08_08
	08_09
	09_01_Pascal
	09_04
	09_05
	09_06
	09_07
	09_08
	09_09
	09_10
	09_11
	09_12
	09_13
	09_14
	09_15
	09_16
	09_17
	09_18
	09_19
	09_20
	09_21
	09_22
	09_23
	09_24
	09_25
	09_26
	09_27
	09_28
	09_29
	09_30
	09_31
	09_32
	09_33
	09_34
	09_35
	09_36
	09_37
	09_38
	09_39
	09_40
	09_41
	09_42
	09_43
	09_44
	09_45
	09_46
	09_47
	09_48
	09_49
	09_50
	09_51
	09_52
	09_53
	09_54
	09_55
	10_0001_Assembler
	10_0002
	10_001
	10_002
	10_003
	10_004
	10_005
	10_006
	10_007
	10_008
	10_009
	10_010
	10_011
	10_012
	10_013
	10_014
	10_015
	10_016
	10_017
	10_018
	10_019
	10_020
	10_021
	10_022
	10_023
	10_024
	10_025
	10_026
	10_027
	10_028
	10_029
	10_030
	10_031
	10_032
	10_033
	10_034
	10_035
	10_036
	10_037
	10_038
	10_039
	10_040
	10_041
	10_042
	10_043
	10_044
	10_045
	10_046
	10_047
	10_048
	10_049
	10_050
	10_051
	10_052
	10_053
	10_054
	10_055
	10_056
	10_057
	10_058
	10_059
	10_060
	10_061
	10_062
	10_063
	10_064
	10_065
	10_066
	10_067
	10_068
	10_069
	10_070
	10_071
	10_072
	10_073
	10_074
	10_075
	10_076
	10_077
	10_078
	10_079
	10_080
	10_081
	10_082
	10_083
	10_084
	10_085
	10_086
	10_087
	10_088
	10_089
	10_090
	10_091
	10_092
	10_093
	10_094
	10_095
	10_096
	10_097
	10_098
	10_099
	10_100
	10_101
	10_102
	10_103
	10_104
	10_105
	11_01_Shell
	11_02
	11_03
	11_04
	11_05
	11_06
	11_07
	11_08
	11_09
	11_10
	11_11
	11_12
	11_13
	11_14
	11_15
	11_16
	11_17
	11_18
	11_19
	11_20
	11_21
	11_22
	11_23
	11_24
	12_01_Debug
	12_04
	12_05
	12_06
	12_07
	12_08
	12_09
	12_10
	12_11
	12_12
	12_13
	12_14
	12_15
	12_16
	12_17
	12_18
	12_19
	12_20
	12_21
	12_22
	12_23
	12_24
	12_25
	xBack

