
Bus Management for

Windows Programmer's

Reference Guide

07-0222-01

RadiSys® Corporation

15025 S.W. Koll Parkway

Beaverton, OR 97006

Phone: (503) 646-1800

FAX: (503) 646-1850

December 1994

Bus Management for Windows Programmer's Reference

EPC and RadiSys are registered trademarks and EPConnect is a trademark of RadiSys
Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and
Windows is a trademark of Microsoft Corporation.

IBM and PC/ AT are trademarks of International Business Machines Corporation.

May 1994

Copyright © 1994 by RadiSys Corporation

All rights reserved.

Page ii

Bus Management for Windows Programmer's Reference

Software License and Warranty
YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND
CONDITIONS BEFORE OPENING THE DISKETTE OR DISK UNIT PACKAGE.
BY OPENING THE PACKAGE, YOU INDICATE THAT YOU ACCEPT THESE
TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS
AND CONDITIONS, YOU SHOULD PROMPTLY RETURN THE UNOPENED
PACKAGE, AND YOU WILL BE REFUNDED.

LICENSE

You may:

I. Use the product on a single computer;

2. Copy the product into any machine-readable or printed form for backup or
modification purposes in support of your use of the product on a single
computer;

3. Modify the product or merge it into another program for your use on the single
computer-any portion of this product merged into another program will
continue to be subject to the terms and conditions of this agreement;

4. Transfer the product and license to another party if the other party agrees to
accept the terms and conditions of this agreement-if you transfer the product,
you must at the same time either transfer all copies whether in printed or
machine-readable form to the same party or destroy any copy not transferred,
including all modified versions and portions of the product contained in or
merged into other programs.

You must reproduce and include the copyright notice on any copy, modification, or
portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PRODUCT OR
ANY COPY, MODIFICATION, OR MERGED PORTION, IN WHOLE OR IN
PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION, OR
MERGED PORTION OF THE PRODUCT TO ANOTHER PARTY, YOUR
LICENSE IS AUTOMATICALLY TERMINATED.

Page iii

Bus Management for Windows Programmer's Reference

TERM

The license is effective until terminated. You may terminate it at any time by
destroying the product and all copies, modifications, and merged portions in any
form. The license will also terminate upon conditions set forth elsewhere in this
agreement or if you fail to comply with any of the terms or conditions of this
agreement. You agree upon such termination to destroy the product and all copies,
modifications, and merged portions in any form.

LIMITED WARRANTY

RadiSys Corporation ("RadiSys") warrants that the product will perform in
substantial compliance with the documentation provided. However, RadiSys does
not warrant that the functions contained in the product will meet your requirements or
that the operation of the product will be uninterrupted or error-free.

RadiSys warrants the diskette(s) on which the product is furnished to be free of
defects in materials and workmanship under normal use for a period of ninety (90)
days from the date of shipment to you.

LIMITATIONS OF REMEDIES

RadiSys' entire liability shall be the replacement of any diskette that does not meet
RadiSys' limited warranty (above) and that is returned to RadiSys.

IN NO EVENT WILL RADISYS BE LIABLE FOR ANY DAMAGES,
INCLUDING LOST PROFITS OR SA VIN GS OR OTHER INCIDENT AL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY
TO USE THE PRODUCT EVEN IF RADISYS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

GENERAL

You may not sublicense the product or assign or transfer the license, except as
expressly provided for in this agreement. Any attempt to otherwise sublicense,
assign, or transfer any of the rights, duties, or obligations hereunder is void.

This agreement will be governed by the laws of the state of Oregon.

Page iv

Bus Management for Windows Programmer's Reference

If you have any questions regarding this agreement, please contact RadiSys by
writing to RadiSys Corporation, 15025 SW Koll Parkway, Beaverton, Oregon 97006.

YOU ACKNOWLEDGE THAT YOU HA VE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US WHICH
SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR
WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN US RELATING
TO THE SUBJECT MA 1TER OF THIS AGREEMENT.

Page v

Bus Management for Windows Programmer's Reference

NOTES

Page vi

Bus Management for Windows Programmer's Reference

Table of Contents
1. Introducing Bus Management for Windows .. 1-1

1.1 How This Manual is Organized .. 1-2
1.2 What is Bus Management for Windows? .. 1-2

1.2. l Bus Management Library and BusManager VxD 1-4
1.2.2 OLRM ... 1-4
1.2.3 Backward-Compatibility Library .. 1-4
1.2.4 SURM ... 1-5

1.3 Programming, Compiling and Linking ... 1-5
1.3. l Header Files ... 1-5
1.3.2 Programming Interface .. 1-7

Calling Bus Management for Windows from MS "C" and
QuickC ... 1-7
Calling Bus Management for Windows from Borland C 1-7
Calling Bus Management for Windows from Visual Basic 1-8

1.3.3 Compiling and Linking Applications .. 1-8
1.4 What to do Next. ... 1-9

2. Function Descriptions ... 2-1
2.1 Functions by Category .. 2-1

2.1. I Environment ... 2-2
2.1.2 Sessions .. 2-3
2.1.3 Locking ... 2-5
2.1.4 Memory Mapping ... 2-7
2.1.5 Byte Order .. 2-10
2.1.6 Events ... 2-10
2.1.7 EPC Configuration .. 2-13
2.1.8 Bus Lines .. 2-14
2.1.9 Watchdog Timer ... 2-16
2.1.10 Commander Support. .. 2-17
2.1.11 Servant Support .. 2-18

2.2 Functions By Name .. 2-19
EpcAssertlnterrupt ... 2-20
EpcC!oseSession .. 2-24
EpcCmdReceiveWSBuffer .. 2-27
EpcCmdSendWSBuffer ... 2-31
EpcCmdSendWSCommand ... 2-34
EpcCopyData ... 2-38
EpcDeassertlnterrupt ... 2-46
EpcGetBusAttributes ... 2-48
EpcGetBuslnterrupts .. 2-53

Page vii

Bus Management for Windows Programmer's Reference

EpcGetBusLines .. 2-55
EpcGetBusMODID .. 2-57
EpcGetB usTriggers .. 2-59
EpcGetEpclnterrupt ... 2-61
EpcGetEpcLines .. 2-63
EpcGetEpcMODID .. 2-65
EpcGetEpcTriggerMapping ... 2-67
EpcGetEpcTriggers .. 2-70
EpcGetErrorString ... 2-72
EpcGetEventEnableMask .. 2-7 4
EpcGetEventHandler ... 2-80
EpcGetLockingTimeout .. 2-83
EpcGetMappingAttributes ... 2-86
EpcGetMiscAttributes ... 2-90
EpcGetSessionData .. 2-94
EpcGetSlaveMapping .. 2-96
EpcGetULA ... 2-99
EpcLockSession ... 2-100
EpcMapBusMemory .. 2-102
EpcMapBusMemoryExt .. 2-106
EpcMapEpcTriggers .. 2-110
EpcMapSharedMemory ... 2-113
EpcOpenSession .. 2-116
EpcPopData ... 2-118
EpcPulseEpcLines ... 2-121
EpcPulseEpcTriggers ... 2-124
EpcPushData .. 2-126
EpcSetBusAttributes .. 2-130
EpcSetEpcLines ... 2-133
EpcSetEpcMODID .. 2-136
EpcSetEpcTriggers .. 2-138
EpcSetEventEnableMask ... 2-140
EpcSetEventHandler .. 2-143
EpcSetLockingTimeout ... 2-152
EpcSetMiscAttributes .. 2-153
EpcSetSessionData .. 2-157
EpcSetSlaveMapping ... 2-158
EpcSet ULA .. 2-160
EpcSrvEnableWSCommand .. 2-162 -
EpcSrvReceiveWSCommand .. 2-165
EpcSrvSendProtocolEvent. .. 2-170

Page viii

Bus Management for Windows Programmer's Reference

EpcSrvSendWSProtocolError .. 2-173
EpcSrvSendWSResponse .. 2-177
EpcSwap 16 .. 2-181
EpcSwap32 .. 2-182
EpcSwap48 .. 2-183
EpcSwap64 .. 2-184
EpcSwap80 .. 2-185
EpcSwapBuffer .. 2-186
EpcUnlockSession ... 2-190
EpcUnmapBusMemory ... 2-191
EpcUnmapSharedMemory .. 2-192
Epc ValidateB usMappi ng ... 2-193
EpcVerifyEnvironment .. 2-195
EpcWaitForEvent .. 2-202
EpcWatchdogTimer ... 2-207

3. On-Line Resource Manager .. 3-1
3.1 Functions By Name .. 3-2

OlrmGetArbAttr ... 3-3
OlrmGetBoolAttr ... 3-5
OlrmGetNmByGPA ... 3-9
OlrmGetNmByNA ... 3-11
OlrmGetNmByULA ... 3-13
OlrmGetNumAttr ... 3-15
OlrmGetStrAttr ... 3-20

4. Advanced Topics ..•.. 4-1
4.1 Byte Ordering and Data Representation .. .4-1

4.1. l Byte Swapping Functions .. 4-2
4.1.2 Correcting Data Structure Byte Ordering4-2

4.2 Event Handler Execution4-4
4.3 Event Handler Operations Under Windows .. 4-4
4.4 Event Handler Implementation ... 4-6
4.5 TTL Trigger Interrupts on an EPC-74-7
4.6 Backward-Compatibility Library .. 4-9

5. Support and Service ... 0-1
5.1 In North America .. 0-1

5.1. l Technical Support ... 0-1
6.1.2 Bulletin Board ... 0-1

5.2 Other Countries ... 0-2

Page ix

Bus Management for Windows Programmer's Reference

NOTES

Page x

1. Introducing Bus
Management for

Windows

This manual is intended for programmers using the Bus Management for Windows
programming interface to develop enhanced mode Windows applications that control
VO modules via the VXI expansion interface on an EPC or a VXLink card. You are
expected to have read the EPConnectNXI for DOS & Windows User's Guide for an
understanding of what is in EPConnect/VXI, how to install it, and how to use the
Start-Up Resource Manager (SURM). You are not expected to have in-depth
knowledge of Windows.

Bus Management for Windows is designed to execute under enhanced mode Windows
only. It will not execute properly under Windows standard mode. It is also designed to
execute on EPC-7 hardware or better. It will not execute properly on an EPC-2.

The Bus Management for Windows API provides a powerful interface for interacting
with the VXI expansion interface on an EPC or a VXLink card. The Bus Management
API offers considerable flexibility by providing a CIC++ dynamic link library (DLL)
interface that obeys the MS Pascal binding conventions. By observing the same
conventions, you can use EPConnect with other languages, such as Visual Basic.

This chapter introduces you to the RadiSys® Bus Management for Windows product.
In it you will find the following:

• What is in this manual and how to use it

• What is Bus Management for Windows?

• Programming, Compiling and Linking

• What to do next

1-1

Bus Management for Windows Programmer's Reference

1.1 How This Manual is Organized

This manual has five chapters:

Chapter 1, Introduction, introduces Bus Management for Windows and this manual.

Chapter 2, Function Descriptions, describes the major categories of functions and
gives complete descriptions of each function. The function descriptions also contain
supporting examples or references to an example that demonstrates use of the
function. Function descriptions are alphabetic by function name.

Chapter 3, Advanced Topics, provides information about byte swapping, interrupts,
and the backward-compatibility library.

Chapter 4, Support and Service, describes how to contact RadiSys Technical Support
for support and service.

1.2 What is Bus Management for Windows?

Bus Management for Windows consists of those portions of the EPConnect software
package that are required by CIC++ and Visual BASIC programmers developing VXI
control applications that execute in enhanced mode Windows. Figure 1-1 is a diagram
of the Bus Management for Windows software architecture that shows how the
architecture relates to the VXlbus hardware.

1-2

Start-Up
Resource Mgr

(SURM.EXE)

Bus
SICL

Monitor
(BUSMON.EXE) App lications

~ I
SICL

Introduction

Bus "New"
Probe Bus Management

BUSPROBE.EXE Applications

I 11' 'I' II-

(SICL16.DLL)

I
I TULIP vx

D
(RAD

river
VXl16.DLL)

II-J_ VJ

Configurator
(VXICONFG.EXE)

"Old"
Bus Manage

Applicatio
ment
ns

I jj_
Backwar

Compatibi
Library

d
lity

J.EPCDICW. DLL

I

l On-Line Resource Management Library(OLRMW16.DLL) J
y v

~

Bus Management Library (BMVXIW16.DLL)

BusManager v~ (EPCVXl.386)

VXI
Interface Hardware

Figure 1-1. EPConnect/VXI for Windows Software Architecture

1-3

I

Bus Management for Windows Programmer's Reference

1.2.1 Bus Management Library and BusManager VxD

The Bus Management library and BusManager VxD are at the foundation of
EPConnect. They provide the lowest level interface to the VXIbus hardware through
their function libraries. These functions allow you to:

• Control VXIbus word serial registers.

• Send word serial commands of all sizes.

• Transfer blocks of data to and from VXIbus devices, with BERR
detection.

• Control EPC Slave memory

• Query EPC driver, firmware, and hardware version or type.

The Bus Management DLL supports ANSI "C" compilers such as Microsoft CIC++
and Borland CIC++, as well as Visual Basic.

The Bus Management Library is fully re-entrant.

1.2.2 OLRM

The On-Line Resource Management library (0LRMW16.DLL) provides user
applications with access to results of the resource management process, as well as
retrieving status information from devices over the VXI bus. A CIC++ language
interface is provided to access OLRM functions. OLRM accesses the VXIbus through
the Bus Management library and the BusManager VxD.

1.2.3 Backward-Compatibility Library

The Backward-Compatibility Library (EPCDICW.DLL) maintains compatibility for
applications that were developed using previous versions of EPConnect. It provides a
CIC++ interface that is compatible with the Bus Management for DOS APL

1-4

Introduction

1.2.4 SURM

The Start-Up Resource Manager (SURM) determines the physical content of the
system and configures the devices. It is typically the first program to run after DOS
boots. The SURM is the EPConnect implementation of the resource manager defined
in the VXIbus specification. However, SURM extends the specification definition to
include non-VXIbus devices, such as GPIB instruments. The SURM uses the
DEVICES file to obtain device information not directly available from the devices.
SURM accesses VXIbus devices in the system directly.

1.3 Programming, Compiling and Linking

This section contains information about programming with Bus Management for
Windows. Included is a list of the header files provided, the programming interfaces,
and compiling and linking hints.

1.3.1 Header Files

Bus Management for Windows provides the following header files:

BMVXI.BAS A Microsoft Visual Basic (Professional Edition) header file
containing constant definitions and function declarations.

BUSMGR.H A "C" header file containing the constant definitions, macro
definitions, and function prototypes required to compile EPConnect
applications using any Microsoft or Borland "C" or C++ compiler.

BUSMGR.INC A copy of BUSMGR.H that's been converted so that it is suitable
for inclusion into an assembly language source file.

EPC_OBM.H A "C" header file containing the constant definitions, macro
definitions, structure definitions, and function prototypes required to
compile Bus Management applications for DOS. This header file
also provides backward compatibility for Bus Management for
Windows applications written for releases preceding revision 4.0.

EPC_OBM.H should never be included in a source file directly.
BUSMGR.H includes EPC_OBM.H.

EPC_OBM.INC A copy of EPC_OBM.H that has been converted so that it is
suitable for inclusion into an assembly language source file.

1-5

I

Bus Management for Windows Programmer's Reference

EPCSTD.H

EPC_OBM.INC should never be included in a source file directly.
BUSMGR.INC includes EPC_OBM.INC.

A "C" header file containing macro definitions to standardize non
ANSI, compiler-dependent keywords. By using the macros defined
here, an application can compile successfully using any revision of
Microsoft or Borland "C" or C++ compiler without modifying the
source file.

EPCSTD.H should never be included in a source file directly.
BUSMGR.H includes EPC_OBM.H.

EPCSTD.INC A copy of EPCSTD.H that has been converted so that it is suitable
for inclusion into an assembly language source file.

EPCSTD.INC should never be included in a source file directly.
BUSMGR.INC includes EPCSTD.INC.

OLRM.H A "C" header file containing the constant definitions, macro
definitions, and function prototypes required to compile OLRM
applications using any Microsoft or Borland CIC++ compiler.

OLRM.INC A copy of OLRM.H that has been converted so that it is suitable
for inclusion into an assembly language source file.

OBS_OLRM.H A "C" header file containing the constant definitions, macro
definitions, and function prototypes required to compile OLRM
applications for DOS. This header file also provides backward
compatibility for Bus Management for Windows applications
written for releases preceding revision 4.0.

OBS_OLRM.H should never be included in a source file directly.
OLRM.H includes OBS_OLRM.H.

OBS_OLRM.INC
A copy of OBS_OLRM.H that has been converted so that it is
suitable for inclusion into an assembly language source file.

VMEREGS.H A "C" header file containing constant and macro definitions for
accessing the EPC VMEbus control registers.

VMEREGS.INC

1-6

A copy of VMEREGS.H that has been converted so that it is
suitable for inclusion into an assembly language source file.

Introduction

All Bus Management for Windows header files contain an #if/#endif pair surrounding
the contents of the header file so that the file can be included multiple times without
causing compiler errors.

All Bus Management for Windows "C" header files also contain extern "C"{}
bracketing for C++ compilers. Because extern "C" is strictly a C++ keyword, it is
also bracketed and only visible when compiling under C++ and not standard "C."

1.3.2 Programming Interface

Bus Management for Windows functions are accessible through interfaces for "C" and
Visual BASIC languages. The following table shows the interface libraries and
header files for each of the language interfaces.

Language

MS"C"

Borland "C"

Visual Basic

Library files

IlMVXIW16.LIB
OLRMW16.LIB

IlMVXIW16.LIB
OLRMW16.LIB

BMVXIW16.LIB
OLRMW16.LIB

Header files

IlUSMGR.H
OLRM.H

IlUSMGR.H
OLRM.H

IlMVXI.BAS
OLRM.BAS

The use of these files is discussed in the following sections.

Calling Bus Management for Windows from MS "C" and QuickC

The "C" language interface is designed to work with Version 5.1 and later versions of
the Microsoft "C" compiler and libraries. The libraries are created for the large
memory model (far code and far data). This is sufficient for linking programs of any
model size, due to the prototyping of all library functions in the header files. The
include files provide strong type checking and convert near code and data to far code
and data for programs using the small (near code and near data), compact (near code
and far data), or medium (far code and near data) memory models.

Calling Bus Management for Windows from Borland C

1-7

Bus Management for Windows Programmer's Reference

Bus Management for Windows was designed to work with "C" compilers adhering to
the Microsoft "C" calling conventions. Both Microsoft and Borland "C" compilers
work equally well.

Calling Bus Management for Windows from Visual Basic

Calling Bus Management for Windows functions from Visual Basic requires using the
BMVXI.BAS and OLRM.BAS header files in your project.

To compile and link a program once your project is built, choose "Make .EXE File"
from the File Menu.

For more information about calling "C" DLLs from Visual Basic, refer to the
Microsoft Visual Basic Programming System for Windows Programmer's Guide.

1.3.3 Compiling and Linking Applications

NOTE: For specific compiler and/or linker options, refer to your vendor's
documentation.

The following examples assume that EPConnect software has been installed in the
C:\EPCONNEC directory.

When compiling applications, ensure that the Bus Management for Windows header
files are in the compiler search path by doing one of the following:

I. Specify the entire header file pathname when including the header file in the
source file.

2. Specify C:\EPCONNEC\INCLUDE as part of the header file search path
parameter on the compiler invocation line.

3. Specify C:\EPCONNEC\INCLUDE as part of the header file search path
environment variable.

1-8

Introduction

Also, ensure that Bus Management for Windows libraries are in the linker search path
by doing one of the following:

1. Specify the entire library pathname when linking object files.

2. Specify C:\EPCONNEC\LIB as part of the linker library search path.

1.4 What to do Next

To begin using Bus Management for Windows:

I. If Bus Management for Windows is not pre-installed on your system, install
and configure it using the procedures in Chapter 2 of the EPConnectNXI for
DOS & Windows User's Guide.

2. Refer to the function descriptions in Chapter 2 of this manual for details
about a function and/or its parameters to develop applications.

3. Refer to the sample code included with the Bus Management for Windows
software under the C:\EPCONNEC\SAMPLES\BUSMGR.W31 directory.

1-9

II

Bus Management for Windows Programmer's Reference

NOTES

1-10

2. Function Descriptions

This chapter lists the Bus Management for Windows library functions by category and
by name. It is for the programmer who needs a particular fact, such as what function
performs a specific task or what a function's arguments are.

The first section lists the functions categorically by the task each performs. It also
gives you a brief description of what each function does. The second section lists the
functions alphabetically and describes each function in detail.

2.1 Functions by Category

The categorical listing provides an overview of the operations performed by the
EPConnect functions. Included with each category is a description of the operations
performed, a listing of the functions in the category, and a brief description of each
function.

The categories of the Bus Management for Windows library functions include:

• Environment
• Bus Sessions

• Locking
• Memory Mapping
• Byte Order

• Events

• EPC Configuration

• Bus Control Lines
• Watchdog Timer
• Commander Support

• Servant Support

2-1

I

Bus Management for Windows Programmer's Reference

2.1.1 Environment

Bus Management for Windows provides support that allows an application to query
and verify the state of its environment.

The Bus Management for Windows library supplies two functions for environment
support:

2-2

Function

EpcGetErrorString

Description

Queries a null-terminated string corresponding
to an EPConnect return value.

EpcVerifyEnvironment Verifies and queries the EPConnect
environment.

2.1.2 Sessions

2.1.2 Sessions

Bus Management for Windows provides support for multiple simultaneous sessions.
A session encapsulates shared operating system and interface hardware state in an
environment where multiple applications may be accessing the interface hardware
simultaneously.

Each session contains a set of attributes that define how resources are managed.
Session attributes include:

• A locking timeout. A locking timeout defines how long the session will
wait for shared EPC hardware to become unlocked. See the Locking
section for more information.

• A list of memory mappings. A memory mapping defines where in the
EPC's address space an access takes place and how data is accessed. See
the Memory Mapping section for more information.

• An enabled event mask attribute. The enabled event mask attribute
defines the set of events that the session can receive when each of the
events' corresponding interrupt or error occurs. See the Events section
for more information.

• An event handler attribute array. The event handler attribute array
defines the functions that are called when the session receives events.
The session maintains one entry in the event handler attribute array for
each possible event. See the Events section for more information.

2-3

Bus Management for Windows Programmer's Reference

The Bus Management for Windows library supplies the following functions in support
of sessions:

Function

EpcCloseSession

EpcGetSessionData

EpcOpenSession

EpcSetSessionData

Description

Destroys an open session.

Queries a session's application-specified
data.

Creates a session

Defines a session's application-specified
data.

To use session functionality, an application must first call EpcOpenSession to create
a session. Once a session exists, an application can access and manage the bus using
any of the remaining Bus Management for Windows library functions. The
application can define and query application-specific data using EpcSetSessionData
and EpcGetSessionData. When the application is finished with a session, it should
call EpcCloseSession to destroy the session. Failing to destroy an existing session
before an application terminates may result in the loss of both virtual and physical
resources.

2-4

2.1.3 Locking

2.1.3 Locking

Bus Management for Windows provides support for locking. Locking gives a session
exclusive access to shared interface hardware. Locking is used in multithreaded
environments to prevent simultaneous, potentially conflicting hardware manipulation.

Locks can be nested. Bus Management for Windows maintains a global lock counter.
At most one session may "own" the lock counter. Initially, the lock counter is zero,
indicating that no session has locked the shared interface hardware. Locking acquires
and increments the lock counter for a session. Unlocking decrements the lock counter
for the same session. A non-zero lock counter indicates that shared interface hardware
is locked.

When an application calls a Bus Management for Windows library function that obeys
the locking paradigm, the function checks for an existing lock. If no lock exists or the
specified session "owns" the lock, the function proceeds. Otherwise, the function
suspends execution until the lock is released or the specified session's locking timeout
expires. If the existing lock is not released before the specified session's locking
timeout expires, the function returns EPC_LOCKED.

The Bus Management for Windows library supplies the following functions in support
of locking:

Function Description

EpcGetLockingTimeout Queries a session's locking timeout.

EpcLockSession Locks shared interface hardware for a
session.

Defines a session's locking timeout. EpcSetLockingTimeout

EpcUnlockSession Unlocks shared interface hardware for a
session.

To use locking functionality, an application must first call EpcOpenSession to create
a session. Once a session exists, an application can lock and unlock shared interface
hardware for the session using EpcLockSession and EpcUnlockSession, respectively.
When the application completes executing locked operations, it should unlock the
session. Failing to unlock a session before an application terminates, either explicitly
using EpcUnlockSession or implicitly using EpcCloseSession, may prevent other
applications from accessing shared interface hardware.

2-5

I

Bus Management for Windows Programmer1s Reference

An application can also query and define the session's locking timeout using
EpcGetLockingTimeout and EpcSetLockingTimeout.

Only Bus Management for Windows library functions that may make conflicting
hardware accesses obey the locking paradigm:

EpcAssertlnterrupt
EpcSetEpcLines

EpcCmdReceiveWSBuffer EpcSetEpcMODID

EpcCmdSendWSBuffer EpcSetEpcTriggers

EpcCmdSendWSCommand EpcSetMiscAttributes

EpcDeassertlntcrrupt EpcSetSlaveMapping

EpcLockScssion EpcSetULA

EpcMapBusMcmory EpcSrvEnableWsCommand

EpcMapEpcTriggcrs EpcSrvRcceiveWSCommand

EpcMapSharcdMemory EpcSrvSendProtocolEvcnt

EpcPulseEpcLines EpcSrvSendWSProtocolError

EpcPulscEpcTriggers EpcSrvSendWSResponse

EpcSctBusAttributcs EpcValidateBusMapping

Note that the ability to directly map bus memory allows an application to circumvent
the locking protections provided in Bus Management for Windows for VXlbus word
serial, byte transfer, and event protocols. Each application is responsible for ensuring
that it obeys all bus protocols when accessing bus memory directly.

Locking is not a substitute for a sound shared memory protocol. Locking does not
protect against multiple processors making simultaneous accesses to the same
memory.

2-6

2.1.4 Memory Mapping

2.1.4 Memory Mapping

EPConnect provides support for memory mappings. A memory mapping defines
where in the interface's physical address space a mapped access takes place and how
data is accessed. Each session contains a list of memory mappings.

A memory mapping can map either bus memory or shared memory. Bus memory is
VMEbus memory accessed using the interface's VMEbus hardware. Shared memory
is an area of local memory that has a fixed size and a fixed physical location and is
accessible via the VMEbus, thereby making it suitable for implementing shared
memory communication protocols in a multiple processor system.

Memory Mapping Attributes

Each memory mapping contains a set of attributes that define where and how memory
is accessed. Memory mapping attributes include:

• An address modifier attribute. The address modifier attribute defines
whether the memory mapping maps to bus memory or shared memory. If
the memory mapping maps to bus memory, the address modifier attribute
also defines the mapping's VMEbus address space and VMEbus access
mode.

• A byte ordering attribute. The byte ordering attribute defines whether
Motorola or Intel byte ordering is assumed when the memory mapping is
used to access data in widths greater than 8 bits. For a bus memory
mapping, the byte ordering attribute specifies either Motorola or Intel
byte ordering. For a shared memory mapping, the byte ordering attribute
always specifies Intel byte ordering.

• A base address attribute. The base address attribute defines where the
memory mapping begins. For a bus memory mapping, the base address
attribute is an address in one of the VMEbus address spaces. For a
shared memory mapping, the base address attribute is an address in the
local address space.

• A size attribute. The size attribute defines the extent of a memory
mapping, in bytes.

2-7

Bus Management for Windows Programmer's Reference

• A type attribute. The type attribute defines whether a mapping is a shared
memory mapping, a bus memory mapping that uses statically configured
bus window hardware, or a bus memory mapping that uses dynamically
configured bus window hardware.

Statically configured bus window hardware corresponds to a fixed
address modifier, byte ordering, and bus address range. A bus memory
mapping that uses statically configured bus window hardware can access
mapped bus memory at will.

Dynamically configured bus window hardware corresponds to a variable
address modifier, byte ordering, and bus address ramge. A bus memory
mapping that uses dynamically configured bus window hardware must
configure its bus window hardware before accessing mapped bus
memory.

The EPConnect Bus Management Library supplies the following functions in support
of memory mappings:

2-8

Function Description

EpcCopyData Copy a block of data from consecutive memory
locations to consecutive memory locations.

EpcGetMappingAttributes Query a memory mapping's attributes.

EpcMapBusMemory Create a bus memory mapping using a statically
configured bus window.

EpcMapBusMemoryExt Create a bus memory mapping using a
dynamically configured bus window.

EpcMapSharedMemory Create a shared memory mapping.

EpcPopData Pop a block of data from a single memory
location to consecutive memory locations.

EpcPushData Push a block of data from consecutive memory
locations to a single memory location.

EpcUnmapBusMcmory Destroy a bus memory mapping.

EpcUnmapSharcdMcmory Destroy a shared memory mapping.

EpcValidatcBusMapping Validate a bus memory mapping that uses a
dynamically configured bus window.

2.1.4 Memory Mapping

To use memory mapping functionality, an application must first call EpcOpcnSession
to open a bus session and either EpcMapBusMemory, EpcMapBusMemoryExt, or
EpcMapSharedMemory to create a memory mapping. Once a memory mapping
exists, an application can access the mapped memory either directly or by using
EpcCopyData, EpcPopData, or EpcPushData. When the application is finished
with a memory mapping, it should call either EpcUnmapBusMemory or
EpcUnmapSharedMemory to destroy the mapping. Failing to destroy an existing
memory mapping before an application terminates, either explicitly using
EpcUnmapBusMemory or EpcUnmapSharedMemory or implicitly using
EpcCloseSession, may result in the loss of both virtual and physical resources.

Direct access of mapped memory provides the maximum possible data transfer
performance, but it does not automatically detect and handle misaligned data,
potential bus errors, or hardware restrictions. Direct access requires that the
application guarantee data alignment and bus error avoidance. Direct access using a
bus memory mapping created with EpcMapBusMemoryExt requires using
EpcValidateBusMapping before an access to insure that the dynamically configured
bus window references the desired bus memory. Finally, direct access using a bus
memory mapping created with EpcMapBusMemoryExt in a preemptively scheduled
environment requires using EpcLockSession before EpcValidateBusMapping and
EpcUnlockSession after the direct access to ensure that the dynamically configured
bus window is not reconfigured by another thread during the direct access. Note that
EpcCopyData, EpcPopData, and EpcPushData copy blocks of data while taking
hardware restrictions, data alignment, and potential bus error considerations into
account.

An application can use EpcGetMappingAttributes to query an existing memory
mapping's attributes.

2-9

Bus Management for Windows Programmer's Reference

2.1.5 Byte Order

The Bus Management for Windows library provides support for converting data
between Intel and Motorola byte order through byte-swapping.

The Bus Management for Windows library supplies the following functions in support
of byte order conversion:

Function

EpcSwapBuffcr

EpcSwapl6

EpcSwap32

EpcSwap48

EpcSwap64

EpcSwapSO

Description

Byte-swaps a buffer of values.

Byte-swaps a 16-bit value.

Byte-swaps a 32-bit value.

Byte-swaps a 48-bit value.

Byte-swaps a 64-bit value.

Byte-swaps an 80-bit value.

2.1.6 Events

EPConnect provides support for events. An event is an interrupt or error that occurs
asynchronously with respect to normal program execution.

Each session contains a set of event attributes that define how the session handles
events. Event attributes include:

2-10

• An enabled event mask attribute. The enabled event mask attribute
defines the set of events that the session can receive when each of the
events' corresponding interrupt or error occurs.

• An array of event handlers. The event handler array defines the
functions that are called when the session receives events. The session
maintains one entry in the event handler array for each possible event.

2.1.6 Events

The EPConnect Bus Management Library supplies the following functions in support
of events:

Function

EpcGetEventEnableMask

EpcGetEventHandler

EpcSetEventEnablcMask

EpcSetEventHandler

EpcWaitForEvent

Description

Queries a session's enabled
event mask attribute.

Queries an entry in a session's
event handler array.

Defines a session's enabled
event mask attribute.

Defines an entry in a session's
event handler array.

Waits for an event to occur.

To use event functionality, an application must first call EpcOpenSession to create a
session. Once a session exists, an application can either wait for the desired events to
occur using EpcWaitForEvent or it can define handlers for the desired events using
EpcSetEventHandler. In either case, the application must enable reception of the
events using EpcSetEventEnableMask to receive them.

When the application is finished receiving events, it should disable reception of the
events. Failing to disable reception of events before an application terminates, either
explicitly using EpcSetEventEnableMask or implicitly using EpcCloseSession,
may result in a system crash the next time an event occurs.

An application can use EpcGetEventEnableMask and EpcGetEventHandler to
query a session's current event attributes.

The Bus Management for Windows library supports all possible VXlbus events. In
practice, however, event support is limited by the underlying interface hardware.

2-11

Bus Management for Windows Programmer's Reference

The table below describes the events:

2-12

EPC_MSG_INT

EPC_ VMEl_INT

EPC_ VME7 _INT

EPC_SIGNAL_INT

EPC_TTL_TRIGO_INT

EPC_TTL_TRIG7_INT

EPC_SYSRESET_ERR

EPC_ACFAIL_ERR

EPC_BERR_ERR

EPC_SYSF AIL_ERR

EPC_ WA TCHDOG_ERR

EPC_EXT_TRIGO_INT

EPC_EXT _TRIG l_INT

Description

Message interrupt (EPC-7 and
EPC-8 only)

VMEbus interrupt 1

VMEbus interrupt 7

VXlbus signal FIFO interrupt

VXlbus TTL Trigger 0
interrupt (EPC-7 only)

VXlbus TTL Trigger 7
interrupt (EPC-7 only)

VMEbus SYSRESET error

VMEbus power failure error

VMEbus access error

VMEbus SYSFAIL error

Watchdog timer expiration
error (EPC-7 and EPC-8 only)

External Trigger 0 interrupt
(VXLink only)

External Trigger 1 interrupt
(VXLink only)

2.1.7 EPC Configuration

2.1.7 EPC Configuration

Bus Management for Windows provides support for maintammg global interface
configuration attributes. The values of global interface configuration attributes affect
all the behavior of the interface hardware for all sessions.

The Bus Management for Windows library supplies the following functions in support
of interface configuration:

Function Description

EpcGetBusAttributes Queries the interface's bus
management attributes.

EpcGetMiscAttributes Queries the interface's
miscellaneous configuration
attributes.

EpcGetSlaveMapping Queries the interface's slave
memory mapping.

EpcGetULA

EpcSetBusAttributes

EpcSetMiscAttributes

EpcSetSlaveMapping

EpcSetULA

Queries the interface's unique
logical address.

Defines the interface's bus
management attributes.

Defines the interface's
miscellaneous configuration
attributes.

Defines the interface's slave
memory mapping.

Defines the interface's unique
logical address.

To use interface configuration functionality, an application must first call
EpcOpenSession to create a session. Once a session exists, an application can define
the global interface configuration attributes using EpcSetBusAttributes,
EpcSetSlaveMapping, and EpcSetULA. An application can query the global
interface configuration attributes using EpcGetBusAttributes,
EpcGetSlaveMapping, and EpcGetULA.

2-13

Bus Management for Windows Programmer's Reference

2.1.8 Bus Lines

Bus Management for Windows provides support for defining, querying, and pulsing
the interface line state. It also provides support for monitoring actual bus line state.

In general, interface line state reflects the state of bits in the interface's line drive
registers, while actual bus line state is an OR'd combination of the states of all devices
on the bus. If the interface asserts a line, the actual bus line transitions from
deasserted to asserted only if all other devices on the bus have previously deasserted
the line. Likewise, if the interface deasserts a line, the actual bus line transitions from
asserted to deasserted only if all devices on the bus have previously deasserted the
line.

The Bus Management for Windows library supplies the following functions in support
of bus lines:

2-14

Function

EpcAssertlnterrupt

EpcDeassertlntcrrupt

EpcGctBuslntcrrupts

EpcGctBusLincs

EpcGctBusMODID

EpcGctBusTriggcrs

EpcGctEpclntcrrupt

Description

Asserts a VME interrupt.

Deasserts a VME interrupt.

Queries actual bus VME interrupt line state.

Queries actual bus control line state.

Queries actual bus MODID line state.

Queries actual bus trigger line state.

Queries interface VME interrupt assertion
state.

EpcGctEpcLincs Queries interface control line state.

EpcGctEpcMODID Queries interface MODID line state.

EpcGctEpcTriggcrs Queries interface trigger line state.

EpcGctEpcTriggcrMapping Queries an interface trigger line mapping.

EpcMapEpcTriggcrs Maps one interface trigger line to another.

EpcPulscEpcLincs Pulses interface control lines.

EpcPulscEpcTriggcrs Pulses interface trigger lines.

EpcSctEpcLincs Defines the interface control line state.

EpcSctEpcMODID

EpcSctEpcTriggcrs

2.1.8 Bus Lines

Defines the interface MODID line state.

Defines the interface trigger line state.

To use bus control line functionality, an application must first call EpcOpcnScssion
to create a session. Once a session exists, an application can define interface line state
using EpcAssertlnterrupt, EpcDcasscrtlnterrupt, EpcSctEpcLincs,
EpcSctEpcMODID, or EpcSctEpcTriggcrs. An application can pulse interface
lines using EpcPulscEpcLincs or EpcPulscEpcTriggers. To query the interface line
state, an application can use EpcGctEpclntcrrupt, EpcGctEpcLines,
EpcGetEpcMODID, EpcGetEpcTriggers, or EpcGetEpcTriggerMapping. To
query actual bus line state, the application can use EpcGetBuslnterrupts,
EpcGetllusLines, EpcGetBusMODID, or EpcGctBusTriggers.

2-15

Bus Management for Windows Programmer's Reference

2.1.9 Watchdog Timer

Bus Management for Windows provides watchdog timer services that allow an
application to prevent interface lock-up under extraordinary circumstances.

If an EPC's watchdog timer is not reset within the current watchdog timer period,
either a system reset occurs or a watchdog timer error event occurs. In the latter case,
an application can enable the event and install an event handler to gracefully handle
the error.

The EPC's watchdog timer is typically reset in sections of code that execute frequently
and/or execute at regular time intervals.

The Bus Management for Windows library supplies a single function in support of the
watchdog timer:

Function Description

EpcWatchdogTimer Modifies EPC watchdog timer
configuration.

To use watchdog timer functionality, an application must first call EpcOpenSession
to create a session. Once a session exists, an application can configure the EPC's
watchdog timer using EpcWatchdogTimer.

An EPC's watchdog timer is a shared EPC hardware resource. However, Bus
Management for Windows provides no functionality for controlling shared access to
the watchdog timer. Multiple applications may simultaneously use watchdog timer
functionality. However, EPConnect software cannot guarantee the result.

The purpose of the watchdog timer hardware is to allow an application to prevent EPC
lock-up under extraordinary circumstances. Placing additional layers of software
between an application and the watchdog timer hardware to control sharing of the
resource would necessarily restrict an application's access to the watchdog timer,
thereby violating its original purpose.

By default, an EPC is configured to use a long watchdog timer period and to generate
a watchdog error event upon expiration. Assuming that no application attempts to
modify these default watchdog timer settings, any number of applications may use the
watchdog timer simultaneously.

2-16

2.1.10 Commander Support

VXLink does not contain a watchdog timer. This function is valid only on an EPC-7
and EPC-8.

2.1.10 Commander Support

EPConnect provides support for using an EPC or VXlink card as a commander device
in a VXIbus system.

The Bus Management for Windows library supplies the following functions in support
of using an EPC as a commander device:

Function

EpcCmdReceive WSBuffer

EpcCmdSendWSBuffer

EpcCmdSendWSCommand

Description

Receives a buffer of data from a
servant device.

Sends a buffer of data to a servant
device.

Sends a word serial command to a
servant device.

To use commander functionality, an application must first call EpcOpenSession to
create a session. Once a session exists, an application can send 16-bit, 32-bit, or
48-bit word serial commands and receive responses using
EpcCmdSendWSCommand. To quickly send multiple data bytes to a servant
device, an application should use EpcCmdSendWSBuffer. To quickly receive
multiple data bytes from a servant device, an application should use
EpcCmdReceiveWSBuffer.

2-17

I

Bus Management for Windows Programmer's Reference

2.1.11 Servant Support

Bus Management for Windows provides support for usi.ng an EPC as a servant device
in a VMEbus system.

The Bus Management for Windows library supplies the following functions in support
of using an EPC as a servant device:

Function

EpcSrv Enable WSCommand

EpcSrv Receive WSCommand

EpcSrvSendProtocolEvent

EpcSrvSendWSProtocoIError

EpcSrvSendWSResponse

Description

Enables word serial command
reception.

Receives a word serial
command from the commander
device.

Sends a protocol event to the
commander device.

Sends a word serial protocol
error to the commander device.

Sends a word serial command
response to the commander
device.

To use servant functionality, an application must first call EpcOpenSession to create
a session. Once a session exists, an application can receive 16-bit or 32-bit word
serial commands using EpcSrvEnableWSCommand and
EpcSrvReceiveWSCommand and send responses to received word serial commands
using EpcSrvScndWSRcsponse. An application can use EpcSrvScndProtocolEvent
to send events and/or responses to a commander device via the commander device's
signal register.

Servant functionality is supported on an EPC-7 and EPC-8 only. A VXLink interface
does not support servant functionality.

2-18

2.1.11 Servant Support

2.2 Functions By Name

This section contains an alphabetical listing of the Bus Management for Windows
library functions. Each listing describes the function, gives its invocation sequence
and arguments, discusses its operation, and lists its returned values. Where usage of
the function may not be clear, an example with comments is given.

2-19

I

Bus Management for Windows Programmer's Reference

EpcAssertl nterru pt

Description

C Synopsis

Asserts a VME interrupt.

#include "busmgr.h"

short FAR PASCAL
EpcAssertlnterrupt(unsigned long Session_ID, unsigned long
Event_Mask);

Session_/ D

Event_Mask

Session_ID specifies a session.

Event_Mask specifies a VME interrupt.

Visual Basic Synopsis

Remarks

2-20

Declare Function
EpcAssertlnterrupt% Lib "bmvxiwl6.dll" (ByVal Session_ID&,
ByVal Event_Mask&)

EpcAssertlnterrupt causes the interface to assert a VME interrupt.

Event_Mask specifies the VME interrupt to assert. Valid values are:

Event Mask Description

EPC_ VMEl_INT VMEbus interrupt 1.

EPC_ VME7 _INT VMEbus interrupt 7.

An interface acts as both a D08(0) and a DI6 interrupter. For D08
interrupt acknowledge cycles, the interface uses its unique logical
address as the status/ID value. For D16 interrupt acknowledge
cycles, the interface uses the upper 8 bits of its response register for
the upper 8 bits of the status/ID value and its unique logical address
as the lower 8 bits of the status/ID value.

EpcAssertlnterrupt

Return Value The function returns a Bus Management return value:

EPC_INV _ASSERT

EPC_INV _MASK

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The interface is already asserting a
VMEbus interrupt.

The parameter Event_Mask is invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present or there is a revision mismatch
between the Bus Management Library
and the BusManager VxD.

Shared interface hardware is locked by
another session.

The function completed successfully.

See Also EpcDeassertlnterrupt, EpcGetEpclnterrupt,
EpcSrvSendProtocolEvent.

Example
,.

• Copyright 1994 by RadiSys Corporation. All rights reserved.
*/

I•
• buslines.c -- Bus Management Library interface bus line functions sample code.
*/

#include "busmgr.h"

,.
• FUNCTION PROTOTYPES ...
*/

short FAR
BusLinesSample(void);

int FAR
WinPrintf(char FAR *Format_Ptr, ...) ;

/*
* CODE ,

short FAR
BusLinesSample(void)
{

char
short
unsigned long
unsigned long
unsigned long

err_string(ERROR_STRING_SZ);
err_num;
bus_int_mask;
bus_line_mask;
epc_int_mask;

2-21

Bus Management for Windows Programmer's Reference

unsigned long epc_line_mask;
unsigned long session_id;
struct EpcEnvirorunent environment;

/*

•Verify the interfaceonnect environment.
•/

if ((err_num = EpcVerifyEnvironment(&environment)) != EPC_SUCCESS)
{

/•

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironment() error

err_string,
err_nurn);

return (err_num);

• Open a session.
•/

%s (%d). \n",

if ((err_num = EpcOpenSession(&session_id)) != EPC_SUCCESS)
{

/•

EpcGetErrorString{err_nurn, err_string);
WinPrintf("FAILURE: EpcOpenSession() error

err_string,
err_num);

return (err_num);

%s (%d). \n",

Assert VMEbus interrupt #1, query bus and interface VMEbus interrupt
• assertions, deassert VMEbus interrupt #1, and query bus and interface

VMEbus
• interrupt assertions again.

•/

EpcAssertinterrupt(session_id, EPC_VMEl_INT);
EpcGetBusinterrupts(session_id, &bus_int_mask);
EpcGetEpcinterrupt(session_id, &epc_int_mask);
WinPrintf ("VMEbus interrupt l asserted. \n");

WinPrintf("Bus interrupt mask Ox%081X, interface interrupt mask
Ox%08 lX\n",

bus_int_rnask,
epc_int_mask);

EpcDeassertinterrupt(session_id);
EpcGetBusinterrupts(session_id, &bus_int_mask);
EpcGetEpcinterrupt(session_id, &epc_int_mask);
WinPrintf("VMEbus interrupt l deasserted.\n");

WinPrintf("Bus interrupt mask Ox%081X, interface interrupt mask
Ox%08 lX\n",

1•

bus_int_mask,
epc_int_mask) ;

•Assert SYSFAIL, query bus and interface line assertions, pulse SYSFAIL, and
- query bus and interface line assertions again.
•/

EpcSetEpcLines(session_id, EPC_SYSFAIL);
EpcGetBusLines(session_id, &bus_line_mask);
EpcGetEpcLines(session_id, &epc_line_mask);
WinPrintf("SYSFAIL asserted.\n");
WinPrintf("Bus line mask= Ox%081X, interface line mask

2-22

Ox%081X\n",

EpcAssertlnterrupt

bus_line_mask,
epc_line_mask);

EpcPulseEpcLines(session_id, EPC_SYSFAIL);
WinPrintf("SYSFAIL pulsed.\n");
WinPrintf("Bus line mask = Ox%081X, interface line mask

bus_line_mask,
epc_line_mask);

I•
* Close the session and return.
*/

EpcCloseSession(session_id);
WinPrintf("SUCCESS: BusLinesSample() complete.\n");
return (EPC_SUCCESS);

Ox%081X\n ·,

2-23

Bus Management for Windows Programmer's Reference

EpcCloseSession

Description

C Synopsis

Destroys an open session.

#include "busmgr.h"

short FAR PASCAL
EpcCioseSession(unsigned long Session_ID);

Session_ID Session_ID specifies an open session.

Visual Basic Synopsis

Remarks

2-24

Declare Function
EpcCioseSession% Lib "bmvxiwl6.dll" (ByVal Session_ID&)

EpcCioseSession closes an open session.

If the specified session has locked shared interface hardware, the
hardware is unlocked before the function destroys the session.

If the specified session has one or more enabled events, the events
are disabled before the function destroys the session. Also, all of
the session's defined event handlers are removed.

If the specified session contains one or more memory mappings, the
mappings are destroyed before the function destroys the session.

EpcCloseSession

Return Value The function returns a Bus Management return value:

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present or there is a revision mismatch
between the Bus Management Library
and the BusManager VxD.

EPC_INV _USAGE The session specified by Session_ID is
currently in use by another thread.

EPC_SUCCESS The function completed successfully.

See Also EpcOpenSession, EpcSetEventEnableMask, EpcUnlockSession,
EpcUnmapBusMemory, EpcUnmapSharcdMcmory.

Example
;•

• Copyright 1994 by RadiSys Corporation. All rights reserved.
•;

;•
* sessions.c -- Bus Management Library session functions sample code.
•;

#include "busmgr.h"

1•
•FUNCTION PROTOTYPES ...
•;

short FAR
SessionsSample(void);

int FAR
WinPrintf(char FAR *Format_Ptr, ...) ;

;•
• CODE ...
•/

short FAR
SessionsSample(void)
(

char err_string[ERROR_STRING_SZ];
short err_nwn;
unsigned long session_data;
unsigned long session_id;
struct EpcEnvironment environment;

,.
• Verify the EPConnect environment.
•/

if ((err_num = EpcVerifyEnvironment(&environment)) != EPC_SUCCESS)

2-25

Bus Management for Windows Programmer's Reference

, ..

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironrnent() error

err_string,
err_num>;

return (err_num);

••open a session.
•1

%s (%d).\n",

if ((err_num = EpcOpenSession(&session_idll != EPC_SUCCESS)
{

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcOpenSession() error %s (\d) .\n",

err_string,
err_numl;

return (err_num);

/*
••oefine the session's application-specific data.
*1

EpcSetSessionData(session_id, session_id);

1··
*"Query the session's application-specific data.
*/

EpcGetSessionData(session_id, &session_data);

,.
*"Close the session and return.
·1

EpcCloseSession(session_id);
WinPrintf("SUCCESS: SessionsSample() complete.\n");
return (EPC_SUCCESS);

2-26

EpcCmdReceiveWSBuffer

EpcCmdReceiveWSBuffer

Description

C Synopsis

Receives a buffer of data from a servant device.

#include "busmgr.h"

short FAR PASCAL
EpcCmdReceiveWSBuffer

Session_ID

ULA

Buffer_Ptr

Buffer _Size

(unsigned long Session_ID,
unsigned short ULA,
unsigned char FAR* Buffer _Ptr,
unsigned Jong Buffer _Size,
short Term_Clwracter,
unsigned long Timeout,
unsigned Jong FAR* Term_Reason_Ptr,
unsigned Jong FAR* Receive_Size_Ptr);

Session_ID specifies a session.

ULA specifies a servant device's
unique logical address.

Buffer _?tr specifies the location of
a buffer where the received data
will be placed.

Buffer _Size specifies the size of the
buffer where the received data will
be placed.

Term_ Character Term_ Character specifies a
termination character for the receive
operation.

Timeout Timeout specifies the number of
milliseconds to wait while receiving
a buffer of data.

2-27

El

Bus Management for Windows Programmer's Reference

Term_Reaso11_Ptr

Receive_Size_Ptr

Term_Reason_Ptr specifies a
location where a bit mask defining
the reason(s) for terminating the
receive operation will be placed.

Receive_Size_Ptr specifies a
location where the actual number of
bytes received will be placed.

Visual Basic Synopsis

Remarks

2-28

Declare Function
EpcCmdReceiveWSBuffer% Lib "bmvxiw16.dll"

(ByVal Session_ID&,
ByVal ULA%,
ByVal B11ffer_Ptr$,
ByVal Buffer_Size&,
ByVal Term_Character%,
ByVal Timeout&,
Term_Reason_Ptr&,
Receive_Size_Ptr&)

EpcCmdReceiveWSBuffer receives up to Buffer_Size bytes of data
from the servant device specified by ULA and places them in the
buffer pointed to by Buffer _Ptr.

Term_Character specifies an optional termination character for the
receive operation. Valid termination character values are -1 and 0
through 255. A termination character value of -1 specifies that no
termination character is defined. A termination character value of 0
through 255 specifies a termination character. If the function
detects a termination character while it's receiving data, it places the
termination character in the buffer and returns EPC_SUCCESS.

If Term_Reaso11_Ptr is non-null and the function returns
EPC_SUCCESS, the location pointed by Term_Reason_Ptr
contains a bit mask defining the reason(s) for terminating the
receive operation. The bit mask is an OR'd combination of the
following constants:

EpcCmd ReceiveWS Butter

Constant

EPC_TERM_CHAR

EPC_TERM_EOI

EPC_ TERM_FULL

Description

The function detected the specified
termination character.

The function received a data byte with
the EOI indicator set.

The specified buffer is full.

The value of the location pointed to by Term_Reason_Ptr is
undefined when the function does not return EPC_SUCCESS.

If Receive_Size_Ptr is non-null, the location it points to always
contains the number of data bytes actually received.

If the function detects a word serial protocol error while receiving
data, it returns EPC_ WS_PROTOCOL. To determine the
protocol error, use EpcCmdSendWSCommand to send a READ
PROTOCOL ERROR word serial command to the servant device
and receive its response.

EpcCmdReceiveWSiluffer is intended for use by a commander
device to quickly receive multiple data bytes from one of its
servants via word serial commands. A servant device should use
EpcSrvReceiveWSCommand to receive a word serial command
from its commander and EpcSrvSendWSResponse to send a word
serial command response to its commander.

Return Value The function returns a Bus Management return value:

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_INV _TERMCHR

The parameter Buffer _Ptr is invalid.

The specified Session_ID is invalid.

The BusManager device driver is
not present or there is a revision
mismatch between the Bus
Management Library and the
BusManager VxD.

The parameter Term_Cliaracter is
invalid.

2-29

Bus Management for Windows Programmer•s Reference

See Also

2-30

EPC_INV_ULA

EPC_LOCKED

The parameter ULA is invalid.

Shared interface hardware is locked
by another session.

EPC_RECV _DERR A bus error occurred receiving a
word serial command response.

EPC_RECV _TIMEOUT A timeout occurred receiving a word
serial command response.

EPC_SEND_BERR A bus error occurred sending a word
serial command.

EPC_SEND_TIMEOUT A timeout occurred sending a word
serial command.

EPC_SUCCESS The function completed
successfully.

EPC_ WS_PROTOCOL A word serial protocol error
occurred.

EpcCmdSendWSBuffer, EpcCmdSendWSCommand,
EpcOpenSession, EpcSrvReceiveWSCommand,
EpcSrvSendWSResponse.

EpcCmdSendWSBuffer

EpcCmdSendWSBuffer

Description

C Synopsis

Sends a buffer of data to a servant device.

#include "busmgr.h"

short FAR PASCAL
EpcCmdSendWSBuffcr(unsigned long

unsigned short
unsigned char
unsigned long
unsigned short
unsigned long
unsigned long

Session_ID,
ULA,

FAR* Buffer_Ptr,
Buffer _Size,
EOI_Flag,
Timeout,

FAR * Send_Size_Ptr);

Session_ID

ULA

Buffer_Ptr

Buffer _Size

EOI_Flag

Timeout

Send_Size_Ptr

Session_ID specifies a session.

ULA specifies a servant device's unique
logical address.

Buffer _Ptr specifies the location of a buffer
containing the data to be sent.

Buffer _Size specifies the number of bytes
to be sent.

EOl_Flag specifies whether the EOI
indicator should be set when the function
sends the last byte from the specified
buffer.

Timeout specifies the number of
milliseconds to wait while sending the
buffer of data.

Send_Size_Ptr specifies a location where
the actual number of bytes sent will be
placed.

2-31

Bus Management for Windows Programmer's Reference

Visual Basic Synopsis

Remarks

2-32

Declare Function
EpcCmdSendWSBuffer% Lib "bmvxiwl6.dll" (ByVal
Session_ID&,

ByVal ULA%,
ByVal Buffer_Ptr$,
By Val Buffer _Size&,
ByVal EOI_Flag%,
ByVal Timeout&,
Send_Size_Ptr&)

EpcCmdSendWSBuffer sends up to Buffer _Size bytes of data from
the buffer pointed to by Buffer _Ptr to the servant device specified
by ULA.

EOl_Flag specifies whether the EOI indicator should be set when
the function sends the last byte from the specified buffer. A non
zero EOl_Flag value causes the function to set the EOI indicator
when it sends the last byte from the buffer. A zero EOI_Flag value
causes the function to not set the EOI indicator when it sends the
last byte from the specified buffer.

If Send_Size_Ptr is non-null, the location it points to always
contains the number of data bytes actually sent.

If the function detects a word serial protocol error while sending
data, it returns EPC_ WS_PROTOCOL. To determine the
protocol error, use EpcCmdSendWSCommand to send a READ
PROTOCOL ERROR word serial command to the servant device
and receive its response.

EpcCmdSendWSBuffer is intended for use by a commander
device to quickly send multiple data bytes to one of its servants via
word serial commands. A servant device should use
EpcSrvReceiveWSCommand to receive a word serial command
from its commander and EpcSrvSendWSResponse to send a word
serial command response to its commander.

EpcCmdSendWSBuffer

Return Value The function returns a Bus Management return value:

See Also

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_INV _ULA

EPC_LOCKED

The parameter Buffer _Ptr is invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present or there is a revision
mismatch between the Bus
Management Library and the
BusManager VxD.

The parameter ULA is invalid.

Shared interface hardware is locked
by another session.

EPC_SEND_BERR A bus error occurred sending a word
serial command.

EPC_SEND_TIMEOUT A timeout occurred sending a word
serial command.

EPC_SUCCESS The function completed successfully.

EPC_ WS_PROTOCOL A word serial protocol error
occurred.

EpcCmdReceiveWSBuffer, EpcCmdSendWSCommand,
EpcOpenSession, EpcSrvReceiveWSCommand,
EpcSrvSendWSResponse.

2-33

El

Bus Management for Windows Programmer's Reference

EpcCmdSendWSCommand

Description

C Synopsis

2-34

Sends a word serial command to a servant device.

#include "busmgr.h"

short FAR PASCAL
EpcCmdSendWSCommand(unsigned long Session_ID,

unsigned short ULA,

Session_[D

ULA

Command_Ptr

Respo11se_Ptr

Size

Timeout

void FAR * Command_Ptr,
void FAR * Response_Ptr,
unsigned short Size,
unsigned long Timeout);

Session_ID specifies a session.

ULA specifies a servant device's unique
logical address.

Comma11d_Ptr specifies the location of a
word serial command.

Response_Ptr specifies a location where the
response to the word serial command will be
placed.

Size specifies the size of both the word serial
command and the optional word serial
command response.

Timeout specifies the number of milliseconds
to wait while sending the word serial
command and receiving the word serial
command response.

EpcCmdSendWSCommand

Visual Basic Synopsis

Remarks

Declare Function
EpcCrndSendWSCornrnando/o Lib "bmvxiwl6.dll" (ByVal
Session_ID&,

ByVal ULA%,
Comma11d_Ptr As Any,
Response_Ptr As Any,
ByVal Size%,
ByVal Timeout&)

EpcCrndSendWSCornrnand optionally sends a word serial
command, then optionally receives a word serial command
response. If Command_Ptr is not null, the function sends the word
serial command at the location pointed to by Command_Ptr to the
servant device specified by ULA. Otherwise, the function skips
sending a command. If Response_Ptr is not null, the function then
receives a word serial command response from the servant device
specified by ULA and places it in the location pointed to by
Respo11se_Ptr. Otherwise, the function returns without attempting
to receive a response.

Size specifies the size of both the word serial command and the
word serial command response:

Size

EPC_16_BIT

EPC_32_BIT

EPC_48_BIT

Description

Send a 16-bit word serial command
and receive a 16-bit word serial
command response.

Send a 32-bit long word serial
command and receive a 32-bit long
word serial command response.

Send a 48-bit extended long word
serial command and receive a 32-bit
long word serial command
response.

2-35

Bus Management for Windows Programmer's Reference

If the function detects a word serial protocol error while sending a
command or receiving a response, it returns
EPC_ WS_PROTOCOL. To determine the protocol error, use
EpcCmdSendWSCommand to send a READ PROTOCOL
ERROR word serial command to the servant device and receive its
response.

EpcCmdSendWSCommand is intended for use by a commander
device to send a word serial command to one of its servants and/or
to receive a word serial command response from one of its servants.
A servant device should use EpcSrvReceiveWSCommand to
receive a word serial command from its commander and
EpcSrvSendWSResponse to send a word serial command response
to its commander.

Return Value The function returns a Bus Management return value:

2-36

EPC_INV _SESSION

EPC_INV _SIZE

EPC_INV_SW

EPC_INV _ULA

EPC_LOCKED

The specified Session_!D is invalid.

The parameter Size is invalid.

The BusManager device driver is not
present.

The parameter ULA is invalid.

Shared interface hardware is locked
by another session.

EPC_RECV _BERR A bus error occurred receiving the
word serial command response.

EPC_RECV _TIMEOUT A timeout occurred receiving the
word serial command response.

EPC_SEND_BERR A bus error occurred sending the
word serial command.

EPC_SEND_TIMEOUT A timeout occurred sending the word
serial command.

EPC_SUCCESS The function completed successfully.

EPC_ WS_PROTOCOL A word serial protocol error
occurred.

See Also

EpcCmdSendWSCommand

EpcOpenSession, EpcSrvReceiveWSCommand,
EpcSrvSendWSResponse.

2-37

Bus Management for Windows Programmer's Reference

EpcCopyData

Description

C Synopsis

2-38

Copies a block of data.

#include "busmgr.h"

short FAR PASCAL
EpcCopyData(unsigned long Session_!D,

void HUGE* Source_Ptr,
void HUGE* Dest_Ptr,
unsigned long Size,
unsigned short Data_Width,
unsigned long FAR * Actual_Size_Ptr);

Session_!D Session_ID specifies a bus session.

Source_Ptr Source_Ptr specifies the address of a
data buffer from which data will be
copied.

Dest_Ptr

Size

Data_ Width

Actual_Size_Ptr

Dest_Ptr specifies the address of a
data buffer into which data will be
copied.

Size specifies the number of data
bytes to copy.

Data_ Width specifies the number of
data bits to copy per bus access.

Actual_Size_Ptr specifies a location
where the actual number of bytes
copied will be placed.

EpcCopyData

Visual Basic Synopses

Remarks

Declare Function
BasicCopyEpcToVMEo/o Lib "bmvxiwl6.dll" (ByVal
Session_ID&,

Declare Function

Source_Ptr As Any,
ByVal Dest_Ptr As Any,
ByVal Size&,
ByVal Data_Widtho/o,
Actual_Size_Ptr&)

IlasicCopyVMEToEpco/o Lib "bmvxiwl6.dll" (ByVal
Session_/ D&,

Declare Function

ByVal Source_Ptr As Any,
Dest_Ptr As Any,
ByVal Size&,
ByVal Data_Widtho/o,
Actual_Size_Ptr&)

IlasicCopyVMEToVMEo/o Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
ByVal Source_Ptr As Any,
ByVal Dest_Ptr As Any,
ByVal Size&,
ByVal Data_Widtho/o,
Actual_Size_Ptr&)

EpcCopyData efficiently copies blocks of data from consecutive
memory locations to consecutive memory locations using the
attributes of pointers Source_Ptr and Dest_Ptr. The intended use of
the function is copying large blocks of data to or from consecutive
bus locations.

The Size parameter should always express the number of bytes to be
copied, regardless of the specified Data_ Width parameter. Passing
a zero Size parameter results in no data being copied.

2-39

I

Bus Management for Windows Programmer's Reference

2-40

The following constants define valid values for the Data_Width
parameter:

Constant

EPC_8_BIT

EPC_8_BIT_ODD

EPC_16_BIT

EPC_32_BIT

EPC_FASTCOPY

Description

8-bit data width

8-bit data width, odd bytes only

I 6-bit data width

32-bit data width

To increase copy performance, don't check
for intermediate bus errors. This constant
cannot be used alone; it must be OR'd
with one of the preceding constants.

The function returns the actual number of bytes copied m the
location pointed to by Actual_Size_Ptr.

The function operates correctly using both unmapped pointers and
memory mapped pointers for Source_Ptr and Dest_Ptr.
EPC-to-EPC, EPC-to-VME, VME-to-EPC, and VME-to-VME
copies all execute properly.

For a 16-bit or 32-bit copy to complete, no individual data element
may span a segment boundary. Otherwise, the function returns an
EPC_INV _ALIGN error. For example, if Data_Width is
EPC_16_BIT and Size is greater than 64 Kbytes, both Source_Ptr
and Dest_Ptr must be aligned on a 16-bit boundary for the copy
operation to complete successfully

For a VME-to-VME copy to complete, both Source_Ptr and
Dest_Ptr must correspond to VMEbus addresses aligned on an
address boundary equivalent to the specified Data_ Width.
Otherwise, the function returns an EPC_INV _ALIGN error. For
example, if both Source_Ptr and Dest_Ptr correspond to VMEbus
memory and Data_Width is EPC_l6_BIT, then both Source_Ptr
and Dest_Ptr must correspond to VMEbus addresses aligned on a
16-bit boundary for the copy to complete successfully.

EpcCopyData

For EPC-to-VME, VME-to-EPC, and VME-to-VME copies to
complete when hardware byte-swapping occurs, Size must be a
multiple of the specified Data_Width and all VMEbus addresses
must be aligned on an address boundary equivalent to the specified
Data_Width. Otherwise, the function returns an EPC_INV _SWAP
error. For example, if Source_Ptr corresponds to EPC memory,
Dest_Ptr corresponds to VMEbus memory, and Data_Width is
EPC_16_BIT, Size must be a multiple of two and Dest_Ptr must
correspond to a VMEbus address aligned on a 16-bit boundary for
the copy to complete successfully.

To ensure that all accesses are the specified Data_Width, the
function handles non-aligned leading and trailing bytes as a special
case. When transferring data from a non-aligned address, the
function reads the nearest aligned chunk and extracts the
non-aligned bytes. When transferring data to a non-aligned address,
the function reads the nearest aligned chunk, copies the non-aligned
bytes into the chunk, and replaces the chunk. Note that, for
VMEbus transfers, this read-modify-write algorithm is executed in
software -- it is not a read-modify-write bus cycle.

2-41

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

2-42

EPC_BERR

EPC_INV _ALIGN

EPC_INV _PTR

EPC_INV _RANGE

EPC_INV _SESSION

EPC_INV_SW

EPC_INV _SW AP

EPC_INV _WIDTH

EPC_LOCKED

EPC_SUCCESS

A bus error occurred during the copy.

A 16-bit or 32-bit data element spans
a segment boundary or both
Source_Ptr and Dest_Ptr are mapped
to VMEbus addresses and they are not
aligned on equivalent VMEbus
address boundaries.

One or more of Source_Ptr, Dest_Ptr,
or Actual_Size_Ptr is invalid.

The address range defined by
Source_Ptr and Size and/or the
address range defined by Dest_Ptr
and Size contains bus addresses that
are not currently mapped.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

Source_Prr and/or Dest_Ptr are
mapped to the VMEbus so that
hardware byte-swapping will occur,
but Size is not a multiple of
Data_ Width and/or a VMEbus
address is misaligned.

The Data_ Width parameter is invalid.

Shared interface hardware is locked
by another session.

The function completed successfully.

EpcGctMappingAttributes, EpcMapBusMemory,
EpcMapSharedMemory, EpcOpcnSession,
EpcUnmapBusMemory, EpcUnmapSharedMemory.

EpcCopyData

Example
/*

• Copyright 1994 by RadiSys Corporation. All rights reserved.
*/

/*

• mapping.c -- Bus Management Library mapping functions sample code.
*/

#include "busmgr.h"

/*
• FUNCTION PROTOTYPES ...
*/

short FAR
MappingSample(void);

int FAR
WinPrintf(char FAR *Format_Ptr, ...) ;

I•
* CODE ...
*/

short FAR
MappingSample(void)
(

char err_string[ERROR_STRING_SZ];
short err_nwn;
unsigned short bus_add_rnod;
unsigned short bus_byte_order;
unsigned short ula;
unsigned long actual_size;
unsigned long bus_base;
unsigned long bus_size;
unsigned long session_id;
unsigned long shared_base;
unsigned long shared_size;
volatile void HUGE *bus_ptr;
volatile void HUGE *shared_ptr;
struct EpcEnvironment environment;

I•
* Verify the EPConnect environment.
*/

if ((err_num = EpcVerifyEnvironment(&environment)) != EPC_SUCCESS)
{

/*

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironment() error

err_string,
err_num);

return (err_num);

Open a session.
*/

%s (%d).\n',

if ((err_num = EpcOpenSession(&session_id)) != EPC_SUCCESS)
{

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcOpenSession() error %s (%dl. \n",

2-43

Bus Management for Windows Programmer's Reference

err_string,
err_nwn);

return (err_num);

,.
• Map all of A16 space using Motorola byte ordering.
*I

if ((err_num EpcMapBusMemory(session_id,
EPC_Al6S,
EPC_MBO,
OxOOOOOOOO,
OxOOOlOOOO,
&bus_ptrll != EPC_SUCCESS)

EpcCloseSession(session_id);
EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcMapBusMemory() error== \s (\dl.\n•,

err_string,
err_num);

return (err_num);

/*
• Query the bus mapping's attributes.
•/

EpcGetMappingAttributes(session_id,
bus_ptr,
&bus_add_mod,
&bus_byte_order,
&bus_base,
&bus_sizel;

I*
• Map the EPC's shared memory buffer . . ,

if ((err_num EpcMapSharedMemory(session_id,
&shared_base,
&shared_size,
&shared_ptr)) != EPC_SUCCESS)

EpcCloseSession(session_id);
EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcMapSharedMemory() error== \s (\d) .\n•.

err_string,
err_nwn);

return (err_numJ;

,.
• Copy the EPC's Al6 registers to the shared memory buffer in Motorola
• byte order . . ,

EpcGetULA(session_id, &ula);
EpcCopyData(session_id,

2-44

(void HUGE •) ((char HUGE •) bus_ptr + OxCOOO + (Ula << 6)),
(void HUGE •) shared_ptr,
Ox00000040,
EPC_l 6_BIT,
&actual_size) ;

,.
• Unmap A16 space.
~

EpcCopyD~a

EpcUnmapBusMemory(session_id, bus_ptr);

1•
• Unmap the shared memory buffer . . ,

EpcUnmapSharedMemory(session_id, shared_ptr);

1•
• Close the session and return.
•/

EpcCloseSession(session_id);
WinPrintf("SUCCESS: MappingSample() complete.\n");
return (EPC_SUCCESS);

I

2-45

El

Bus Management for Windows Programmer's Reference

EpcOeassertlnterrupt

Description

C Synopsis

Deasserts a VME interrupt.

#include "busmgr.h"

short FAR PASCAL
EpcDeassertlnterrupt(unsigned long Session_ID);

Session_ID Session_ID specifies a session.

Visual Basic Sy11opsis

Remarks

2-46

Declare Function
EpcDeassertlnterrupt% Lib "bmvxiwl6.dll" (ByVal
Session_ID&)

EpcDeassertlnterrupt deasserts a currently asserted VME
interrupt. If the interface is not currently asserting a VME interrupt,
the function has no effect.

When an asserted VME interrupt is acknowledged by a device on
the bus, it is automatically deasserted. No call to
EpcDeassertlntcrrupt is necessary to deassert the VME interrupt.

Warning:

Deasserting a VME interrupt without wa1tmg for interrupt
acknowledgment may cause certain hardware configurations to
"lock up." Deasserting a VME interrupt should be executed with
extreme care.

E pc Deassertl nterru pt

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The specified Session_ID is invalid.

The BusManager device driver is not
present.

Shared interface hardware is locked
by another session.

The function completed successfully.

EpcAssertlnterrupt, EpcGetEpclnterrupt.

See EpcAssertlnterrupt.

2-47

Bus Management for Windows Programmer's Reference

EpcGetBusAttributes

Description

C Synopsis

Queries the interface's bus management attributes.

#include "busmgr.h"

short FAR PASCAL
EpcGetBusAttributes

(unsigned long
unsigned short FAR *
unsigned short FAR *
unsigned short FAR *
unsigned short FAR *

Session_ID,
Bus _Enable_Ptr,
Bus_Arb_Mode_Ptr,
Bus_Arb_Priority_Ptr,
Bus_Release_Ptr);

Session_! D

Bus_Enable_Ptr

811s_Arb_Mode_Ptr

Bus_Arb_Priority_Ptr

Bus_Release_Ptr

Session_ID specifies a session.

Bus_Enable_Ptr specifies a location
where the interface's bus enable
attribute will be placed.

Bus_Arb_Mode_Ptr specifies a
location where the interface's bus
arbitration mode attribute will be
placed.

Bus_Arb_Priority_Ptr specifies a
location where the interface's bus
arbitration priority attribute will be
placed.

Bus_Release_Ptr specifies a location
where the interface's bus release
mode attribute will be placed.

Visual Basic Synopsis

2-48

Declare Function
EpcGetBusAttributes% Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
Bus_Enable_Ptr%,
Bus_Arb_Mode_Ptr%,
Bus_Arb_Priority_Ptr%,
Bus_Release_Ptr%)

Remarks

EpcGetBusAttributes

EpcGetBusAttributes queries the interface's bus management
attributes and places them in the locations pointed to by
Bus_Enable_Ptr, Bus_Arb_Mode_Ptr, Bus_Arb_Priority_Ptr, and
Bus_Release_Ptr.

The interface's bus enable attribute defines whether accesses made
by the interface reach the bus. Possible values placed at
Bus_Enable_Ptr are:

*Bus Enable Ptr Description

EPC_DISABLE_BUS Disable bus accesses for the
interface. (EPC-7 and EPC-8 only)

EPC_ENABLE_BUS Enable bus accesses for the interface.

The interface's bus arbitration mode defines how the interface
arbitrates bus collisions. The value placed at Bus_Arb_Mode_Ptr
only has meaning if the interface has been designated the VXIbus
slot-0 controller. Possible values placed at Bus_Arb_Mode_Ptr are:

*Bus Arb Mode Ptr Description

EPC_PRIORITY Priority bus arbitration.

EPC_ROUND_ROBIN Round-robin bus arbitration.

The interface's bus arbitration priority defines the priority level at
which the interface arbitrates for the bus. Possible values placed at
Bus_Arb_Priority_Ptr are:

*Bus Arb Priority Ptr Description

EPC_PRIORITYO Bus arbitration priority 0.

EPC_PRIORITYl Bus arbitration priority 1.

EPC_PRIORITY2 Bus arbitration priority 2.

EPC_PRIORITY3 Bus arbitration priority 3.

2-49

I

•

Bus Management for Windows Programmer's Reference

Return Value

See Also

Example

,.

The interface's bus release mode determines when the interface
requests and/or releases the bus. Possible values placed at
Bus_Release_Ptr are:

*Bus Release Ptr

EPC_ROR

EPC_RONR

Description

"Release On Request" bus release mode.

"Release On No Request" bus release
mode.

The function returns a Bus Management return value:

EPC_INV _PTR One or more of the parameters
Bus_Enable_Ptr, Bus_Arb_Mode_Ptr,
Bus_Arb_Priority_Ptr, and
Bus_Release_Ptr is invalid.

EPC_INV _SESSION The parameter Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcOpenSession, EpcSetBusAttributes.

- Copyright 1994 by RadiSys Corporation. All rights reserved.
-1

,.
• epccfg. c -- Bus Management Library interface configuration functions sample

code . . ,
linclude "busmgr.h"

,.
,. FUNCTION PROTOTYPES ...
•1

short FAR
EpcCfgSamplelvoid);

int FAR
WinPrintf(char FAR *Format_Ptr, ...);

,.
• C:ODE ..•

2-50

EpcGetBusAttributes

*/

short FAR
EpcCfgSarnple(void)
(

char
short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned long
unsigned long
unsigned long
struct EpcEnvirorunent

I*

err_string[ERROR_STRING_SZ];
err_num;
bus_enable;
bus_arb_rnode;
bus_arb_priority;
bus_release;
slave_space;
ula;
misc_mask;
session_id;
slave_base;
environment;

• Verify the EPConnect environment.
•/

if ((err_nurn = EpcVerifyEnvironrnent(&environrnent)) != EPC_SUCCESS)
(

1·

EpcGetErrorString(err_nurn, err_string);
WinPrintf{"FAILURE: EpcVerifyEnvironrnent() error

err_string,
err_num);

return (err_nurn);

• Open a session.
*/

%s (%d). \n",

if ((err_nurn = EpcOpenSession(&session_id)) != EPC_SUCCESS)
(

/*

EpcGetErrorString(err_nurn, err_string);
WinPrintf{"FAILURE: EpcOpenSession() error

err_string,
err_nurn);

return (err_nurn);

%s (%d).\n",

* Query the interface's current configuration settings.
*/

EpcGetBusAttributes(session_id,
&bus_enable,
&bus_arb_mode,
&bus_arb_priority,
&bus_release);

EpcGetSlaveMapping(session_id, &slave_space, &slave_base);
EpcGetULA(session_id, &ula);
EpcGetMiscAttributes(session_id, &rnisc_rnask);

I*
• Define the interface's configuration settings.
*I

EpcSetBusAttributes(session_id,
EPC_ENABLE_BUS,
EPC_PRIORITY,
EPC_PRIORITYO,

2-51

Bus Management for Windows Programmer's Reference

EPC_ROR);
EpcSetSlaveMapping(session_id, EPC_A24, Ox00400000);
EpcSetULA(session_id, OxFS);
EpcSetMiscAttributes(session_id, EPC_PASS I EPC_READY);

1·
• Restore the interface's original configuration settings . . ,

EpcSetBusAttributes{session_id,
bus_enable,
bus_arb_rnode,
bus_arb__priority,
bus_release);

EpcSetSlaveMapping(session_id, slave_space, slave_base);
EpcSetULA(session_id, ula);
EpcSetMiscAttributes(session_id. misc_mask);

1·
• Close the session and return . . ,

EpcCloseSession(session_id);
WinPrintf("SUCCESS: EpcCfgSample() complete.\n");
return (EPC_SUCCESS);

2-52

EpcGetBuslnterrupts

EpcGetBuslnterrupts

Description

C Synopsis

Queries actual bus VME interrupt line state.

#include "busmgr.h"

short FAR PASCAL
EpcGetiluslnterrupts(unsigned long Session_ID,

Session_! D

Event_Mask_Ptr

unsigned long FAR* Event_Mask_Ptr);

Session_ID specifies a session.

Evem_Mask_Ptr specifies a location
where the actual bus VME interrupt
line state will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGctilusAttributes% Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
Event_Mask_Ptr&)

EpcGetiluslnterrupts queries the actual bus VME interrupt line
state and places it in the location pointed to by Evem_Mdsk_Ptr.

The value pointed to by Event_Mask_Ptr is either zero or an OR'd
mask of the following constants. A set bit indicates that the
corresponding actual bus VME interrupt line is asserted. A clear bit
indicates that the corresponding actual bus VME interrupt line is
deasserted:

Constant Description

EPC_ VMEl_INT VME interrupt I.

EPC_ VME7 _INT VME interrupt 7.

2-53

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-54

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameter Event_Mask_Ptr is
invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

The function completed successfully.

EpcAssertlnterrupt, EpcDeassertlnterrupt,
EpcGetEpclnterrupt. EpcOpenSession.

See EpcAssertlnterrupt.

EpcGetBuslines

EpcGetBuslines

Description

C Synopsis

Queries actual bus control line state.

#include "busmgr.h"

short FAR PASCAL
EpcGetBusLines(unsigned long Session_ID,

Session_ID

Line_Mask_Ptr

unsigned long FAR* Line_Mask_Ptr);

Session_ID specifies a session.

Li11e_Mask_Ptr specifies a location where
the actual bus control line state will be
placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGetBusLines% Lib "bmvxiwl6.dll"

(ByVal Session_ID&, Line_Mask_Ptr&)

EpcGetBusLines queries the actual bus control line state and places
it in the location pointed to by Line_Mask_Ptr.

The value pointed to by Line_Mask_Ptr is either zero or an OR'd
mask of the following constants. A set bit indicates that the
corresponding actual bus control line is asserted. A clear bit
indicates that the corresponding actual bus control line is
deasserted:

Constant

EPC_ACFAIL

EPC_SYSF AIL

EPC_SYSRESET

Description

ACF AIL.

SYSFAIL.

SYSRESET. Supported on EPC-7
and VXLink only.

2-55

I

El

Bus Management for Windows Programmer•s Reference

The value pointed to by Line_Mask_Ptr reflects the actual bus
control line state, not the interface control line state. Use
EpcGetEpcLines to query the interface control line state.

Return Value The function returns a Bus Management return value:

See Also

Example

2-56

EPC_INV _PTR The parameter Line_Mask_Ptr is
invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcGctEpcLines, EpcOpenSession, EpcPulseEpcLines,
EpcSetEpcLines.

See EpcAssertinterrupt.

EpcGetBusMODID

EpcGetBusMODID

Description

C Synopsis

Queries the actual bus MODID line state.

#include "busmgr.h"

short
EpcGetBusMODID(unsigned long Sessio11_/D,

Session_ID

MODID_Mask_Ptr

unsigned long FAR* MODID_Mask_Ptr);

Session_ID specifies a session.

MODID_Mask_Ptr specifies a location
where the actual bus MODID line state
will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGetBusMODID%Lib"bmvxiwl6.dll" (ByVal
Session_!D&,MODID_Mask_Ptr&)

EpcGetBusMODID queries the actual bus MODID line state and
places it in the location pointed to by MODID_Mask_Ptr.

The value pointed to by MOD!D_Mask_Ptr is either zero or an
OR'd mask of the following constants. A set bit indicates that the
corresponding actual bus MODID line is asserted.

A clear bit indicates that the corresponding actual bus MODID line
is deasserted:

Constant Description

EPC_SLOT_MODID MOD ID line for the interface's bus slot.

The value pointed to by MODID_Mask_Ptr reflects the actual bus
MODID line state, not the interface MODID line state. Use
EpcGetEpcMODID to query the interface MO DID line state.

2-57

I

Bus Management for Windows Programmer's Reference

A device can always query the state of the MODID bus control line
corresponding to its bus slot. The *MODID_Mask_Ptr state bit
EPC_SLOT_MODID always contains valid data.

Return Value The function returns a EPConnect return value:

See Also

2-58

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameter MODID_Mask_Ptr is
invalid.

The specified Session_ID is invalid.

The Bus Manager device driver is
not present.

The function completed successfully.

EpcGetEpcMODID, EpcOpenSession, EpcSetEpcMODID.

EpcGetBusTriggers

EpcGetBusTriggers

Description

C Synopsis

Queries the actual bus trigger line state.

#include "busmgr.h"

short
EpcGetBusTriggers(unsigned long Sessio11_ID,

Sessio11_! D

Trigger _Mask_Ptr

unsigned long FAR* Trigger_Mask_Ptr);

Session_ID specifies a session.

Trigger _Mask_Ptr specifies a location
where the actual bus trigger line state will
be placed.

Visual Basic Sy11opsis

Remarks

Declare Function
EpcGetBusTriggers% Lib "bmvxiwl6.dll" (ByVal
Sessio11_/D&,Trigger _Mask_Ptr&)

EpcGetBusTriggers queries the actual bus trigger line state and
places it in the location pointed to by Trigger _Mask_Ptr.

The value pointed to by Trigger _Mask_Ptr is either zero or an OR'd
mask of the following constants. A set bit indicates that the
corresponding actual bus trigger line is asserted.

2-59

11

Bus Management for Windows Programmer's Reference

A clear bit indicates that the corresponding actual bus trigger line is
deasserted:

Constant

EPC_ECL_ TRIGO

EPC_ECL_ TRIG 1

EPC_TTL_TRIGO

EPC_TTL_TRIG7

Description

ECL trigger 0 (EPC-7 only).

ECL trigger 1 (EPC-7 only).

TIL trigger 0 (EPC-7 and VXLink
only).

TIL trigger 7 (EPC-7 and VXLink
only).

The value pointed to by Trigger _Mask_Ptr reflects the actual bus
trigger line state, not the interface trigger line state. Use
EpcGctEpcTriggcrs to query the interface trigger line state.

Return Value The function returns a EPConnect return value:

See Also

2-60

EPC_INV _PTR The parameter Trigger _Mask_Ptr is
invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The Bus Manager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcGetEpcTriggers, EpcOpenSession, EpcPulseEpcTriggers,
EpcSctEpcTriggers.

EpcGetEpclnterrupt

EpcGetEpclnterrupt

Description

C Synopsis

Queries the interface VME interrupt assertion state.

#include "busmgr.h"

short FAR PASCAL
EpcGetEpclnterrupt(unsigned long Session_ID,

Session_ID

Event_Mask_Ptr

unsigned long FAR* Event_Mask_Ptr);

Session_ID specifies a session.

Event_Mask_Ptr specifies a location where
the currently asserted VME interrupt will
be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGetEpclnterrupt% Lib "bmvxiwl6.dll" (ByVal Session_ID&,
Event_Mask_Ptr&)

EpcGetEpclnterrupt queries the VME interrupt currently asserted
by the interface and places a it in the location pointed to by
Evelll_Mask_Ptr.

The function places a constant at Event_Mask_Ptr specifying the
VME interrupt currently asserted by the interface. Possible values
are:

Constant

EPC_NO_INT

EPC_ VMEl_INT

Description

The interface is not currently asserting a
VME interrupt.

The interface is currently asserting VME
interrupt l.

2-61

Bus Management for Windows Programmer's Reference

Return Value

See Also

Example

2-62

EPC_ VME7 _INT The interface is currently asserting VME
interrupt 7.

The function returns a Bus Management return value:

EPC_INV _PTR The parameter Event_Mask_Ptr
invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcAssertlnterrupt, EpcDeassertlnterrupt,
EpcGetBuslnterrupts.

See EpcAssertlnterrupt.

is

EpcGetEpclines

EpcGetEpclines

Description

C Synopsis

Queries the interface control line state.

#include "busmgr.h"

short FAR PASCAL
EpcGetEpcLines(unsigned long Session_ID,

Session_ID

Line_Mask_Ptr

unsigned long FAR* Line_Mask_Ptr);

Sessio11_/D specifies a session.

Line_Mask_Ptr specifies a location
where the interface control line state
will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGetEpcLines% Lib "bmvxiwl6.dll" (ByVal Session_ID&,
Line_Mask_Ptr&)

EpcGetEpcLines queries the interface control line state and places
it in the location pointed to by Line_Mask_Ptr.

The value pointed to by Line_Mask_Ptr is either zero or an OR'd
mask of the following constants. A set bit indicates that the
corresponding interface control line is asserted. A clear bit
indicates that the corresponding interface control line is deasserted:

Constant

EPC_SYSF AIL

EPC_SYSRESET

Description

SYSFAIL.

SYSRESET.

The value pointed to by Line_Mask_Ptr reflects the interface
control line state, not the actual bus control line state. Use
EpcGetBusLines to query the actual bus control line state.

2-63

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-64

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameter Line_Mask_Ptr 1s
invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

The function completed successfully.

EpcGetBusLines, EpcOpenSession, EpcPulseEpcLines,
EpcSetEpcLines.

See EpcAssertlnterrupt.

EpcGetEpcMODI D

EpcGetEpcMODID

Description Queries the interface MODID line state.

C Synopsis

#include "busmgr.h"

short
EpcGetEpcMODID(unsigned long Session_ID,

unsigned long FAR* MODID_Mask_Ptr);

Session_ID Session_ID specifies a session.

MODID_Mask_Ptr MODID_Mask_Ptr specifies a
location where the interface
MODID line state will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGetEpcMODID% Lib "bmvxiwl6.dll" (ByVal
Sessio11_/D&,MODID_Mask_Ptr&)

EpcGetEpcMODID queries the interface MODID line state and
places it in the location pointed to by MODID_Mask_Ptr.

The value pointed to by MODID_Mask_Ptr is either zero or an
OR'd mask of the following constants. A set bit indicates that the
corresponding interface MODID line is asserted. A clear bit
indicates that the corresponding interface MODID line is
deasserted:

Constant

EPC_MODIDO

EPC_MODID12

Description

MOD ID line 0 (EPC-7 and
VXLink only).

MODID line 12 (EPC-7 and
VXLink only).

2-65

I

Bus Management for Windows Programmer's Reference

Return Value

See Also

2-66

The value pointed to by MODID_Mask_Ptr reflects the interface
MODID line state, not the actual bus MODID line state. Use
EpcGetBusMODID to query the actual bus MODID line state.

The function returns a EPConnect return value:

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameter MODID_Mask_Ptr
is invalid.

The specified Session_!D is
invalid.

The Bus Manager device driver is
not present.

The function completed
successfully.

EpcGctBusMODID, EpcOpcnSession, EpcSetEpcMODID.

EpcGetEpcTriggerMapping

EpcGetEpcTriggerMapping

Description

C Sy11opsis

Queries an interface trigger line mapping.

#include "busmgr.h"

short
EpcGetEpcTriggerMapping

Sessio11_ID

ln_Trigger _Mask

(unsigned long Sessio11_/D,
unsigned long /11_Trigger _Mask,
unsigned long FAR* Out_Trigger_Mask_Ptr);

Sessio11_ID specifies a session.

/11_Trigger _Mask specifies an
interface trigger line.

Out_Trigger _Mask_Ptr Out_Trigger _Mask_Ptr specifies a
location where a mask of interface
trigger lines will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcGetEpcTriggerMapping% Lib "bmvxiwl6.dll" (ByVal

Sessio11_/D&, ByVal In_Trigger_Mask&,
Out_Trigger _Mask_Ptr&)

EpcGetEpcTriggerMapping queries the interface trigger lines
mapped to the specified ln_Trigger_Mask and places a mask
identifying them in the location pointed to by
Out_Trigger _Mask_Ptr.

The parameter ln_Trigger _Mask is a constant specifying a single
interface trigger line. The value placed at the location pointed to by
Out_Trigger _Mask_Ptr is an OR'd mask of constants identifying the
interface trigger lines mapped to the specified input interface trigger
line. The table below enumerates possible trigger mapping
combinations for an EPC-7 interface:

2-67

I

Bus Management for Windows Programmer's Reference

2-68

In Trigger Mask *Out Trigger Mask Ptr Descri(!tion

EPC_EXT_TRIGO EPC_ TTL_ TRIGO External
trigger 0

EPC_TTL_TRIG7 mapped as
input to a
single TTL
trigger line.

EPC_ TTL_ TRIGO EPC_EXT_TRIGO A single TIL
trigger line

EPC_TTL_TRIG7 mapped as
input to
external
trigger 0.

The table below enumerates possible trigger mapping combinations
for a YXLink interface:

In Trir;ger Mask *Out Trigger Mask Ptr Descri(!tion

EPC_EXT_TRIGO OxOOOOOOOO External
trigger 0
unmapped.

EPC_EXT_TRIGO EPC_ TTL_ TRIGO External
trigger 0

EPC_TTL_TRIG7 mapped as
input to a
single TTL
trigger line.

EPC_TTL_TRIGO EPC_EXT_TRIGl A single TIL
trigger line

EPC_TTL_TRIG7 mapped as
input to
external
trigger 1.

EpcGetEpcTriggerMapping

When an external trigger line is mapped as input to one or more
interface trigger lines, asserting the external trigger line asserts all of
the mapped interface trigger lines. Likewise, deasserting the
external trigger line deasserts all of the mapped interface trigger
lines.

When one or more interface trigger lines are mapped as input to an
external trigger line, asserting one of the interface trigger lines
asserts the mapped external trigger line. Likewise, deasserting one
of the interface trigger lines deasserts the mapped external trigger
line.

An EPC-7 interface provides a single bi-directional external trigger.
The external trigger is always mapped; it cannot be unmapped.
Specifying a mapping for external trigger 0 overrides the previous
mapping. By default, TTL trigger 1 is mapped as an output to
external trigger 0.

A VXLink interface provides two unidirectional external triggers.
External trigger 0 is an input-only trigger and external trigger 1 is an
output-only trigger. The external triggers can be independently
mapped or unmapped. By default, both external triggers are
unmapped.

Return Value The function returns a EPConnect return value:

See Also

EPC_INV _MASK The parameter ln_Trigger _Mask is
invalid.

EPC_INV _PTR The parameter Out_Trigger _Mask_Ptr is
invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The Bus Manager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcMapEpcTriggers, EpcOpenSession.

2-69

Bus Management for Windows Programmer's Reference

EpcGetEpcTriggers

Description

C Synopsis

Query the interface trigger line state.

#include "busmgr.h"

short
EpcGetEpcTriggers

Session_ID

Trigger _Mask_Ptr

(unsigned long Session_ID,
unsigned long FAR * Trigger _Mask_Ptr);

Session_ID specifies a session.

Trigger _Mask_Ptr specifies a
location where the EPC trigger line
state will be placed.

Visual Basic Synopsis

Remarks

2-70

Declare Function
EpcGetEpcTriggers% Lib "bmvxiwl6.dll" (ByVal
Session_/ D&, Trigger _Mask_Ptr&)

EpcGetEpcTriggers queries the interface trigger line state and
places it in the location pointed to by Trigger _Mask_Ptr.

The value pointed to by Trigger_Mask_Ptr is either zero or an OR'd
mask of the following constants. A set bit indicates that the
corresponding interface trigger line is asserted.

EpcGetEpcTriggers

A clear bit indicates that the corresponding interface trigger line is
deasserted:

Constant

EPC_ECL_TRIGO

EPC_ECL_ TRIG 1

EPC_TTL_TRIGO

EPC_TTL_TRIG7

Description

ECL trigger 0 (EPC-7 only)

ECL trigger 1 (EPC-7 only)

TTL trigger 0 (EPC-7 and VXLink
only)

TTL trigger 7 (EPC-7 and VXLink
only)

The value pointed to by Trigger _Mask_Ptr reflects the interface
trigger line state, not the actual bus trigger line state. Use
EpcGetBusTriggers to query the actual bus trigger line state.

Return Value The function returns a EPConnect return value:

See Also

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameter Trigger _Mask_Ptr is
invalid.

The specified Session_ID is invalid.

The Bus Manager device driver is
not present.

The function completed successfully.

EpcGetBusTriggers, EpcOpenSession, EpcPulseEpcTriggers,
EpcSetEpcTriggers.

2-71

Bus Management for Windows Programmer's Reference

EpcGetErrorString

Description

C Synopsis

Queries a null-terminated string corresponding to a Bus
Management return value.

#include "busmgr.h"

short FAR PASCAL
EpcGctErrorString(short Return_ Value

Return_ Value

Buffer_Ptr

char FAR* Buffer_Ptr);

Return_ Value specifies a Bus Management
return value.

Buffer _Ptr specifies the location of a buffer
where the null-terminated string will be
placed.

Visual Basic Synopsis

Remarks

2-72

Declare Function
EpcGetErrorString% Lib "bmvxiw16.dll" (ByVal
Return_ Value&, Buffer _Ptr&)

EpcGetErrorString places a null-terminated ASCII character
string describing a Bus Management return value in the buffer
pointed to by Buffer _Ptr.

Return_ Value specifies a Bus Management return value. Specifying
an invalid value results in the function returning a pointer to the
string "Unknown EPConnect Return Value".

The buffer pointed to by Buffer _Ptr must be at least
ERROR_STRING_SZ bytes long.

EpcGetErrorStri ng

Return Value The function returns a Bus Management return value:

EPC_INV _PTR

EPC_SUCCESS

The parameter Buffer _Ptr is invalid.

The function completed successfully.

Example

/*
• Copyright 1994 by RadiSys Corporation. All rights reserved.
*/

/*
• environ.c -- Bus Management Library environment functions sample code.
*/

#include "busmgr.h"

/*
*FUNCTION PROTOTYPES ,

short FAR
EnvironmentSarnple(void);

int FAR
WinPrintf(char FAR *Format_Ptr, ...);

,.
* CODE ...
*/

short FAR
EnvironmentSample(void)
{

char
short

err_string[ERROR_STRING_SZ];
err_nwn;

struct EpcEnvironrnent environment;

/*
• Verify the EPConnect environment.
*/

if ((err_num = EpcVerifyEnvironment(&environment)) != EPC_SUCCESS)
{

}

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironment() error

err_string,
err_num);

return (err_num);

WinPrintf("SUCCESS: EnvironmentSample() complete.\n");
return (EPC_SUCCESS);

%s (%d).\n",

2-73

Bus Management for Windows Programmer's Reference

EpcGetEventEnableMask

Description

C Synopsis

Queries a session's enabled event mask attribute.

#include "busmgr.h"

short FAR PASCAL
EpcGetEventEnableMask

(unsigned long Session_ID,
unsigned long FAR* Event_Mask_Ptr);

Session_ID

Event_Mask_Ptr

Session_liJ specifies a session.

Event_Mask_Ptr specifies a location
where the enabled event mask
attribute of the specified session will
be placed.

Visual Basic Synopsis

Remarks

2-74

Declare Function
EpcGetEventEnableMasko/o Lib "bmvxiwl6.dll" (ByVal
Session_! D&, Event_Mask_Ptr&)

EpcGetEventEnableMask places the specified session's enabled
event mask attribute in the location pointed to by Event_Mask_Ptr.

An enabled event mask attribute is a bit mask where each bit
corresponds to an event. A zero in a bit position specifies that the
corresponding event's reception is disabled. A one in a bit position
specifies that the corresponding event's reception is enabled.

EpcGetEventEnableMask

The mask is either zero or an OR'd combination of the following
constants:

Description

EPC_MSG_INT Message interrupt (EPC-7 and
EPC-8 only)

EPC_ VMEl_INT VMEbus interrupt 1

EPC_ VME7 _INT VMEbus interrupt 7

EPC_SIGNAL_INT VXIbus signal FIFO interrupt

EPC_TTL_TRIGO_INT VXIbus TIL Trigger 0 interrupt
(EPC-7 only)

EPC_TTL_TRIG7_INT VXIbus TIL Trigger 7 interrupt
(EPC-7 only)

EPC_SYSRESET_ERR VMEbus SYSRESET error

EPC_ACFAIL_ERR VMEbus power failure error

EPC_BERR_ERR VMEbus access error

EPC_SYSFAIL_ERR VMEbus SYSFAIL error

EPC_ WATCHDOG_ERR Watchdog timer expiration error
(EPC-7 and EPC-8 only)

EPC_EXT_TRIGO_INT External trigger 0 interrupt
(VXLink only)

EPC_EXT_TRIGl_INT External trigger 1 interrupt
(VXLink only)

2-75

I

II

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

2-76

EPC_INV _PTR

EPC_INV _SESSION

EPC_SUCCESS

EPC_INV_SW

The parameter Event_Mask_Ptr is
invalid.

The specified Session_ID is invalid.

The function completed successfully.

The BusManager device driver is not
present.

EpcSetEventEnableMask, EpcOpenSession.

EpcGetEventEnableMask

Example

/*

• Copyright 1994 by RadiSys Corporation. All rights reserved.
*/

/*
• events.c -- Bus Management Library events functions sample code.
*/

#include "busmgr.h"

/*
• CONSTANTS ,

#define STACK_SIZE

/*
° FUNCTION PROTOTYPES ...
*/

short FAR
EventsSample(void);

void FAR LOADDS

4096

EventHandler(unsigned long Session_ID,
unsigned long Event_Mask,
unsigned long Event_Data);

int FAR
WinPrintf(char FAR *Format_Ptr, ...);

,.
* GLOBAL DATA ...
*/

unsigned char EventStack[STACK_SIZE]

I*
• CODE ...
*/

short FAR
EventsSample(void)
(

{ 0 } ;

char
short
unsigned long
unsigned long
unsigned long
void

err_string[ERROR_STRING_SZ];
err_nwn;

void

event_data;
event_mask;
session_id;

FAR •event_stack;
(FAR •event_handler) (unsigned long,

unsigned long,
unsigned long);

struct EpcEnvirorunent environment;

/*
• Verify the EPConnect environment.
*/

if ((err_num
{

EpcVerifyEnvironment(&environment)) !; EPC_SUCCESS)

I

2-77

Bus Management for Windows Programmer's Reference

,.

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironment() error

err_string,
err_num);

return (err_num);

• Open a session . . ,

'5 (%di. \n",

if ((err_num = EpcOpenSession(&session_id)) != EPC_SUCCESS)
(

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcOpenSession() error \s (\d).\n",

err_string,
err_num);

return (err_num);

,.
•Define the session's event handler for VMEbus interrupt 1 . . ,

EpcSetEventHandler(session_id,
EPC_VMEl_INT,
<void (FAR •)(unsigned long,

unsigned long,
unsigned long)) EventHandler,

(void FAR*) &EventStack[STACK_SIZE]);

,.
• Define the session's event enable mask to enable VMEbus interrupt 1 . . ,

EpcSetEventEnableMask(session_id, EPC_VMEl_INTI;

,.
•Query the session's event handler for VMEbus interrupt 1 . . ,

EpcGetEventHandler{session_id, EPC_VMEl_INT, &event_handler, &event_stack);

/*
•Query the session's event enable mask . . ,

EpcGetEventEnableMask(session_id, &event_mask);

,.
• Wait up to one second (1000 ms] for VMEbus interrupt l to occur . . ,

EpcWaitForEvent(session_id, 1000, EPC_VMEl_INT, &event_mask, &event_data);

* Close the session and return.

EpcCloseSession(session_id);
WinPrintf("SUCCESS: EventsSample() complete.\n");
return (EPC_SUCCESS);

void FAR LOADDS

2-78

EpcGetEventEnableMask

EventHandler(uns gned long Session_ID,
uns gned long Event_Mask,
uns gned long Event_Data)

,.
•Avoid compiler warnings . . ,

Session_ID
Event_Mask
Event_Data

Session_ID
Event_Mask
Event_Data

2-79

Bus Management for Windows Programmer's Reference

EpcGetEventHandler

Description

C Synopsis

Queries an entry in a session's event handler array.

#include "busmgr.h"

short FAR PASCAL
EpcGetEventHandler

(unsigned long
unsigned long
void (FAR* FAR*

void FAR* FAR*

Session_lD

Event_Mask

Eve11t_Ha11dler _Ptr

Stack_Ptr _Ptr

Session_ID,
Eve11t_Mask,
Event_Handler _Ptr)(unsigned long,

unsigned long, unsigned long),
Stack_Ptr _Ptr);

Session_f D specifies a session.

Event_Mask specifies an event.

Event_Handler _Ptr specifies a
location where the specified
session's specified event handler
will be placed.

Stack_Ptr _Ptr specifies a location
where the specified session's
specified event handler stack will
be placed.

Visual Basic Synopsis

Remarks

2-80

Declare Function
EpcGetEventHandler% Lib "bmvxiw16.dll"

(ByVal Session_ID&,
ByVal Event_Mask&,
Event_Handler_Ptr As Any,
Stack_Ptr _Ptr As Any)

EpcGetEventHandler places the specified session's specified event
handler address and event handler stack pointer in the locations
pointed to by Event_Handler _Ptr and Stack_Ptr _Ptr.

EpcGetEventHandler

The Event_Mask parameter is a bit mask where each bit
corresponds to an event. The Event_Mask parameter should be one
of the following constants:

EPC_MSG_INT

Description

Message interrupt (EPC-7 and
EPC-8 only)

EPC_ VMEl_INT VMEbus interrupt I

EPC_ VME7 _INT VMEbus interrupt 7

EPC_SIGNAL_INT VXIbus signal FIFO interrupt

EPC_TTL_TRIGO_INT VXIbus TTL Trigger 0
interrupt (EPC-7 only)

EPC_TTL_TRIG7_INT VXIbus TIL Trigger 7
interrupt (EPC-7 only)

EPC_SYSRESET _ERR VMEbus SYSRESET error

EPC_ACFAIL_ERR VMEbus power failure error

EPC_BERR_ERR VMEbus access error

EPC_SYSFAIL_ERR VMEbus SYSFAIL error

EPC_ WATCHDOG_ERR Watchdog timer expiration
error (EPC-7 and EPC-8 only)

EPC_EXT_TRIGO_INT External trigger 0 interrupt
(VXLink only)

EPC_EXT_TRIGl_INT External trigger I interrupt
(VXLink only)

If the session has no event handler defined for the specified event,
the function places NULL in the locations pointed to by
Event_Handler _Ptr and Stack_Ptr _Ptr.

2-81

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-82

EPC_INV _MASK

EPC_INV _PTR

EPC_INV _SESSION

EPC_SUCCESS

Event_Mask contains more than one
event or contains an event that is not
valid for this EPC.

One or both of the parameters
Event_Handler _Ptr and Stack_Ptr _Ptr
is invalid.

The specified Session_ID is invalid.

The function completed successfully.

EpcSetEventHandler, EpcOpenSession.

See EpcGetEventEnableMask.

EpcGetlockingTimeout

EpcGetlockingTimeout

Description

C Sy11opsis

Queries a session's locking timeout.

#include "busmgr.h"

short FAR PASCAL
EpcGetLockingTimeout(unsigned long Sessio11_/D,

Sessio11_ID

Timeout_Ptr

unsigned long FAR* Timeout_Ptr);

Sessio11_/D specifies a session.

Ti111eout_Ptr specifies a location where the
specified session's locking timeout will be
placed.

Visual Basic Sy11opsis

Remarks

Declare Function
EpcGetLockingTimeout% Lib "bmvxiw16.dll" (ByVal
Sessio11_ID&, Timeout_Ptr&)

EpcGetLockingTimeout queries the specified session's locking
timeout and places it in the location pointed to by Timeout_Ptr.

Upon successful function completion, Timeout_Ptr contains the
session's locking timeout, in milliseconds.

By default, a session has a locking timeout of zero milliseconds.
When the session encounters a locking conflict, an EPC_LOCKED
error is returned immediately.

Return Value The function returns a Bus Management return value:

See Also

EPC_INV _PTR

EPC_INV _SESSION

EPC_SUCCESS

The parameter Timeout_Ptr is invalid.

The specified Session_ID is invalid.

The function completed successfully.

EpcLockSession, EpcOpenSession, EpcSctLockingTimcou t.

2-83

Bus Management for Windows Programmer's Reference

Example
,.

• Copyright 1994 by RadiSys Corporation. All rights reserved • . ,
1•

• locking.c -- Bus Management Library locking functions sample code.
•1

tinclude "busmgr.h"

,.
° FUNCTION PROTOTYPES ,

short FAR
LockingSample(voidJ;

int FAR
WinPrintf(char FAR •Format_Ptr •...);

/*
• CODE ...
*/

short FAR
LockingSample(voidJ
(

char
short
unsigned long
unsigned long
unsigned long
struct EpcEnvironment

/*

err_string[ERROR_STRING_SZJ;
err_num;
session_idl;
session_id2;
timeout;
environment;

• Verify the EPConnect environment . . ,
if ((err_num = EpcVerifyEnvironment(&environment)) != EPC_SUCCESS)
(

,.

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironment() error

err_string,
err_num);

return (err_nurn);

• Open two sessions . . ,

'!Is ('lid). \n",

if ((err_num = EpcOpenSession(&session_idlll != EPC_SUCCESS I I
(err_num = EpcOpenSession(&session_id2)) != EPC_SUCCESS)

,.
2-84

EpcCloseSession(session_idll;
EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcOpenSession() error

err_string,
err_num);

return (err_num);

'lss ('lid). \n",

EpcGetlockingTimeout

*"Define the second session's locking timeout to be one second (1000 ms).
*/

EpcSetLockingTimeout(session_id2, 1000);

/*
~Query the second session's locking timeout.
*I

EpcGetLockingTimeout(session_id2, &timeout);

/*
• Lock shared interface hardware.

*"NOTES:
1. The EpcLockSession() call for the second session fails after a

one second (1000 ms) timeout, since shared interface hardware is
already locked by the first session.

*/

EpcLockSession(session_idl);
EpcLockSession(session_id2);

/*
*"Unlock shared interface hardware with both sessions.
*/

EpcUnlockSession(session_idl);

/*
.. Close the sessions and return.
*/

EpcClosesession(session_idl);
EpcCloseSession(session_id2);
WinPrintf("SUCCESS: LockingSample() complete.\n");
return (EPC_SUCCESS);

2-85

I

Bus Management for Windows Programmer's Reference

EpcGetMappingAttributes

Description

C Synopsis

2-86

Queries a memory mapping's attributes.

#include "busmgr.h"

short FAR PASCAL
EpcGetMappingAttributes

(unsigned long
volatile void
unsigned short
unsigned short
unsigned long
unsigned long

HUGE*
FAR*

Session_ID,
Mapped_Ptr,
Address_Mod_Ptr,
Byte_ Orderi ng_Ptr,
Base_Address_Ptr,
Size_Ptr);

Session_ID

Mapped_Ptr

Address_Mod_Ptr

Byte_Ordering_Ptr

Base_Address_Ptr

Size_Ptr

FAR*
FAR*
FAR*

Session_ID specifies a bus session.

Mapped_Ptr specifies a pointer to the
base of a memory mapping.

Address_Mod_Ptr specifies a
location where the address modifier
attribute of the specified memory
mapping will be placed.

Byte_Ordering_Ptr specifies a
location where the byte ordering
attribute of the specified memory
mapping will be placed.

Base_Address_Ptr specifies a
location where the base address
attribute of the specified memory
mapping will be placed.

Size_Ptr specifics a location where
the size attribute of the specified
memory mapping, in bytes, will be
placed.

EpcGetMappingAttributes

Visual Basic Synopsis

Remarks

Declare Function
EpcGetMappingAttributes% Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
ByVal Mapped_Ptr As Any,
Address_Mod_Ptro/o,
Byte_Orderi11g_Ptro/o,
Base_Address_Ptr&,
Size_Ptr&)

EpcGetMappingAttributes places the specified memory mapping's
attributes in the locations pointed to by Address_Mod_Ptr,
Byte_Ordering_Ptr, Base_Address_Ptr, and Size_Ptr, respectively.

2-87

Bus Management for Windows Programmer's Reference

2-88

The location pointed to by Address_Mod_Ptr can contain the
following values:

Constant Description

EPC_Al6N VMEbus Al6 non-supervisory address
modifier.

EPC_A16S VMEbus AI6 supervisory address modifier.

EPC_A24ND VMEbus A24 non-supervisory data address
modifier.

EPC_A24SD VMEbus A24 supervisory data address
modifier.

EPC_A24NP VMEbus A24 non-supervisory program
address modifier.

EPC_A24SP VMEbus A24 supervisory program address
modifier.

EPC_A32ND VMEbus A32 non-supervisory data address
modifier.

EPC_A32SD VMEbus A32 supervisory data address
modifier.

EPC_A32NP VMEbus A32 non-supervisory program
address modifier.

EPC_A32SP VMEbus A32 supervisory program address
modifier.

EPC_SHARED Shared memory address modifier.

The location pointed to by Byte_Ordering_Ptr can have the
following values:

Constant

EPC_IBO

EPC_MBO

Description

Intel (80X86) byte ordering.

Motorola (68XXX) byte ordering.

For shared memory mappings, the value in the location pointed to
by Byte_Ordering_Ptr is always EPC_IBO.

EpcGetMappingAttributes

The values in the locations pointed to by Base_Address_Ptr and
Size_Ptr define a range of addresses a, where:

*Base_Address_Ptr <=a<= *Base_Address_Ptr + *Size_Ptr- l;

For bus memory mappings, the value in the location pointed to by
Base_Address_Ptr specifies a physical VMEbus address.

For shared memory mappings, the value in the location pointed to
by Base_Address_Ptr specifies a physical PC address. To
determine the corresponding physical VMEbus address, the value
should be added to the base address of the interface's slave memory.
Use EpcGetSiaveMapping to determine the base address of the
interface's slave memory.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _MAP

EPC_INV _pTR

EPC_INV _SESSION

EPC_SUCCESS

The specified Mapped_Ptr is
invalid.

One or more of the parameters
Address_Mod_Ptr,
Byte_Ordering_Ptr,
Base_Address_Ptr, or Size_Ptr is
invalid.

The specified Session_ID i!:? invalid.

The function completed
successfully.

EpcGetSlaveMapping, EpcMapBusMemory,
EpcMapSharedMemory, EpcOpenSession.

See EpcCopyData.

2-89

I

Bus Management for Windows Programmer's Reference

EpcGetMiscAttributes

Description Queries the interface's miscellaneous configuration attributes.

C Synopsis

#include "busmgr.h"

short FAR PASCAL
EpcGetMiscAttributes(unsigned long Session_ID,

unsigned long FAR* Misc_Mask_Ptr);

Session_ID Session_ID specifies a session.

Misc_Mask_Ptr Misc_Mask_Ptr specifies a location where the
interface's miscellaneous configuration
attributes will be placed.

Visual Basic Synopsis

Remarks

2-90

Declare Function
EpcGetMiscAttributes% Lib "bmvxiwl6.dll" (ByVal
Session_ID&, Misc_Mask_Ptr&)

EpcGetMiscAttributes queries the interface's miscellaneous
configuration attributes and places them in the location pointed to
by Misc_Mask_Ptr.

The location pointed to by Misc_Mask_Ptr contains either a zero or
an OR'd bit mask of the following constants, where a set bit
indicates that the corresponding miscellaneous interface attribute is
asserted.

A clear bit indicates that the corresponding miscellaneous interface
attribute is deasserted:

Constant

EPC_DIR

Description

Word serial byte transfer protocol DIR
bit. Asserting the bit indicates that the
interface is ready to receive data from
its commander device. Supported on
EPC-7 and EPC-8 only.

EpcGetMiscAttributes

EPC_DOR

EPC_ERR

EPC_LOCK

EPC_MUL TIPLE_
LOCK

EPC_PASS

Word serial byte transfer protocol
DOR bit. Asserting the bit indicates
that the interface is ready to send data
to its commander device. Supported
on EPC-7 and EPC-8 only.

Word serial protocol ERR* bit.
Asserting the bit indicates to the
commander device that the interface
has detected a word serial protocol
error. Supported on EPC-7 and EPC-8
only.

VXIbus message-based device
LOCKED* bit. Asserting the bit
indicates that the commander has
locked access to the interface from
local sources (IEEE-488 local lockout).
Supported on EPC-7 and EPC-8 only.

Word serial protocol extension
multiple commander lock bit. When
asserted, the first commander to read
the asserted bit from interface's
Response register can safely send a
word serial command. Supported on
EPC-7 and EPC-8 only.

Device initialization PASSED bit.
Asserting the bit indicates that the
interface has passed self-test.

EPC_PIPELINE_BUSY Bus hardware pipeline busy bit. When
asserted, the bit indicates that the
interface is executing a pipelined write
to the bus.

EPC_READY Device initialization READY bit.
Asserting the bit indicates that the
interface is ready to begin normal
operation.

2-91

Bus Management for Windows Programmer's Reference

EPC_RRDY

EPC_RSRC_MGR

EPC_STICKY _BERR

EPC_SYSFAIL_OUT

EPC_SYSRESET _IN

EPC_ TTL_LA TCHO

EPC_ TTL_LA TCH7

EPC_ WATCHDOG

EPC_WRDY

2-92

Word serial protocol Read Ready bit.
Asserting the bit indicates to a
commander device that the interface
has a word serial response in its
message register. Supported on EPC-7
and EPC-8 only.

Resource manager execution bit.
Asserting the bit indicates that resource
manager execution is complete.

"Sticky" bus error bit. When asserted,
the bit indicates that a bus error has
occurred since the bit was last
deasserted.

SYSFAIL output enable bit. When
asserted, the interface can assert
SYSFAIL. When deasserted, the
interface cannot assert SYSFAIL.

SYSRESET input enable bit. When
asserted, asserting SYSRESET resets
the interface. When deasserted,
asserting SYSRESET does not reset
the interface.

TTL trigger latch bits. When asserted,
a bit indicates that the interface has
latched the corresponding TTL trigger
interrupt. Supported on EPC-7 only.

Watchdog timer expiration bit. When
asserted, the bit indicates that a
watchdog timeout error has occurred
since the watchdog timer was last reset.
Supported on EPC-7 and EPC-8 only.

Word serial protocol Write Ready bit.
Asserting the bit indicates to a
commander device that the interface is
ready to receive a word serial
command. Supported on EPC-7 and
EPC-8 only.

EpcGetMiscAttributes

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

';'he parameter Misc_Mask_Ptr is
invalid.

The parameter Session_ID is invalid.

The BusManager device driver is not
present.

The function completed successfully.

EpcOpenSession, EpcSetMiscAttributes.

See EpcGetilusAttributes.

2-93

Bus Management for Windows Programmer's Reference

EpcGetSessionData

Description

C Synopsis

Queries a session's application-specified data.

#include "busmgr.h"

short FAR PASCAL
EpcGetSessionData(unsigned long Session_ID,

Session_! D

Session_Data_Ptr

unsigned long FAR* Session_Data_Ptr);

Session_ID specifies an open session.

Session_Data_Ptr specifies a location
where the session's application-specified
data will be placed.

Visual Basic Synopsis

Remarks

2-94

Declare Function
EpcGetSessionData% Lib "bmvxiw16.dll" (ByVal Session_ID&,
Session_Data_Ptr&)

EpcGetSessionData queries the specified session's
application-specified data and places it in the location pointed to by
Session_Data_Ptr.

The application-specified data is a 4-byte quantity.

Typically, an application uses EpcSetSessionData to store a pointer
to one of its data structures. Later, the application uses
EpcGctScssionData to quickly retrieve the pointer during
performance-critical operations (like event handling).

EpcGetSessionData

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _SESSION

EPC_INV _PTR

EPC_SUCCESS

The specified Session_ID is invalid.

The Session_Data_Ptr parameter is
invalid.

The function completed successfully.

EpcOpenSession, EpcSetSessionData.

See EpcCloseSession.

2-95

Bus Management for Windows Programmer's Reference

EpcGetSlaveMapping

Description

C Synopsis

Queries the interface's slave memory mapping.

#include "busmgr.h"

short FAR PASCAL
EpcGetSiaveMapping

(unsigned long Session_ID,
unsigned short FAR * Addess_Space_Ptr,
unsigned long FAR * Base_Addess_Ptr);

Session_ID

Addess_Space_Ptr

Base_Addess_Ptr

Session_ID specifies a session.

Addess_Space_Ptr specifies a
location where the interface's slave
memory address space will be
placed.

Base_Addess_Ptr specifies a
location where the interface's slave
memory base address will be
placed.

Visual Basic Synopsis

Remarks

2-96

Declare Function
EpcGetSiaveMapping% Lib "bmvxiw16.dll"

(ByVal Session_ID&,
Address_Space_Ptr%,
Base_Address_Ptr&)

EpcGetSlaveMapping queries the mapping of the interface's slave
memory and places the result in the locations pointed to by
Addess_Space_Ptr and Base_Addess_Ptr.

EpcGetSlaveMapping

Possible values at Addess_Space_Ptr and Base_Addess_Ptr are
dependent on the interface type:

Interface *Addess Se.ace Ptr *Base Addess Ptr
~

EPC-4 EPC_DISABLED NIA

EPC_A24 OxOOOOOOOO, Ox00400000, ... ,
OxOOCOOOOO

EPC_A32 Ox 18000000, Ox 19000000, ... ,
OxlFOOOOOO

EPC-5 EPC_DISABLED NIA

EPC_A24 OxOOOOOOOO, Ox00400000, ... ,
OxOOCOOOOO

EPC_A32 Ox 18000000, Ox 19000000, ... ,
OxlFOOOOOO

EPC-7 EPC_DISABLED NIA

EPC_A24 OxOOOOOOOO, Ox00400000, ... ,
OxOOCOOOOO

EPC_A32 OxOOOOOOOO, OxOlOOOOOO, ... ,
OxFFOOOOOO

EPC-8 EPC_DISABLED NIA

VXLink EPC_DISABLED NIA

A24 base addresses are aligned on a 4 Mbyte boundary, and only
the first 4 Mbytes of the interface's slave memory is mapped to the
bus. A32 base addresses are aligned on a 16 Mbyte boundary, and
only the first 16 Mbytes of the interface's slave memory is mapped
to the bus.

2-97

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-98

EPC_INV _PTR One or more of the parameters
Addess_Space_Ptr and Base_Addess_Ptr
is invalid.

EPC_INV _SESSION The parameter Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcOpenSession, EpcSetSlaveMapping.

See EpcGetBusAttributes.

EpcGetULA

Description

C Synopsis

EpcGetULA

Queries the interface's unique logical address.

#include "busmgr.h"

short FAR PASCAL
EpcGetULA(unsigned long Session_ID, unsigned short FAR
*ULA_Ptr);

Session_ID

ULA_Ptr

Session_ID specifies a session.

ULA_Ptr specifies a location where
the interface's unique logical address
will be placed.

Visual Basic Synopsis

Declare Function
EpcGetULA% Lib "bmvxiw16.dll" (ByVal Session_ID&,
ULA_Ptr%)

Remarks EpcGetULA queries the interface's unique logical address and
places the result in the locations pointed to by ULA_Ptr. Possible
unique logical addresses are OxOO through OxFF.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameters ULA_Ptr is invalid.

The parameter Session_ID is invalid.

The BusManager device driver is not
present.

The function completed successfully.

EpcOpenSession, EpcSetULA.

See EpcGetBusAttributes.

2-99

Bus Management for Windows Programmer's Reference

EpclockSession

Description

C Synopsis

Locks shared interface hardware for a session.

#include "busmgr.h"

short FAR PASCAL
EpcLockSession(unsigned long Session_ID);

Session_ID Session_ID specifies a session.

Visual Basic Synopsis

Remarks

2-100

Declare Function
EpcLockSession% Lib "bmvxiw16.dll" (ByVal Session_ID&)

EpcLockSession locks shared interface hardware for the specified
Session_ID.

Locking gives a session exclusive access to shared interface
hardware. Locking is used in multithreaded environments to
prevent simultaneous, potentially conflicting hardware accesses.

Locks can be nested. EPConnect maintains a global lock counter.
The global lock counter can be "owned" by at most one session.
Initially, the lock counter is zero, indicating that no session has
locked shared interface hardware. EpcLockSession acquires and
increments the lock counter for a session. EpcUnlockSession
decrements the lock counter for the same session. A non-zero lock
counter indicates that shared interface hardware is locked.

When an application calls a Bus Management Bus Management
Library function that obeys the locking paradigm, the function
checks for an existing lock. If no lock exists or the specified session
"owns" the lock, the function proceeds. Otherwise, the function
suspends execution until the lock is released or the specified
session's locking timeout expires. If the existing lock is not released
before the specified session's locking timeout expires, the function
returns EPC_LOCKED.

EpclockSession

Use EpcGetLockingTimeout and EpcSctLockingTimeout to
query and define a session's locking timeout.

The following EPConnect Bus Management Library functions obey
locks:

EpcAssertlnterrupt

EpcCmdReceive WSBuffer

EpcSetEpcLines

EpcSetEpcMODID

EpcCmdSendWSBuffer EpcSetEpcTriggcrs

EpcCmdSendWSCommand EpcSctMiscAttributes

EpcDeassertlnterrupt EpcSetSlaveMapping

EpcLockSession EpcSetULA

EpcMapBusMemory EpcSrvEnableWsCommand

EpcMapEpcTriggers EpcSrv Receive WSCommand

EpcMapSharedMemory EpcSrvSendProtocolEvent

EpcPulseEpcLines EpcSrvSendWSProtocolError

EpcPulseEpcTriggers EpcSrvSendWSResponse

EpcSetBusAttributcs EpcValidateBusMapping

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The specified Session_ID is
invalid.

The BusManager device driver is
not present.

Shared interface hardware is
locked by another session.

The function completed
successfully.

EpcGetLockingTimeout, EpcOpenSession,
EpcSetLockingTimeout, EpcUnlockSession.

See EpcGetLockingTimeout.

2-101

I

Bus Management for Windows Programmer's Reference

EpcMapBusMemory

Description

C Synopsis

2-102

Creates a bus memory mapping using statically configured bus
window hardware.

#include "busmgr.h"

short FAR PASCAL
EpcMapBusMemory(unsigned long Session_ID,

Session_/ D

Address_Mod

Byte_Ordering

Base_Address

Size

Mapped_Ptr _Ptr

unsigned short Address_Mod,
unsigned short Byte_Ordering,
unsigned long Base_Address,
unsigned long Size,
void HUGE* FAR* Mapped_Ptr_Ptr);

Session_ID specifies a bus session.

Address_Mod specifies the address modifier
attribute of the desired memory mapping.

Byte_Ordering specifies the byte ordering
attribute of the desired memory mapping.

Base_Address specifies base address
attribute of the desired memory mapping.

Size specifies the size attribute of the
desired memory mapping, in bytes.

Mapped_Ptr _Ptr points to a location where
a pointer to the base of the desired memory
will be placed.

EpcMapBusMemory

Visual Basic Synopsis

·Remarks

Declare Function
EpcMapBusMemory% Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
ByVal Address_Modo/o,
ByVal Byte_Orderingo/o,
ByVal Base_Address&,
ByVal Size&,
Mapped_Ptr_Ptr As Any)

EpcMapBusMemory creates a memory mapping with the specified
attributes using statically configured bus window hardware and
places a pointer to the base of the memory in the location pointed to
by Mapped_Ptr_Ptr.

The following constants define valid values for the Address_Mod
parameter:

Constant

EPC_Al6N

EPC_Al6S

EPC_A24ND

EPC_A24SD

EPC_A24NP

EPC_A24SP

EPC_A32ND

EPC_A32SD

EPC_A32NP

EPC_A32SP

Description

VMEbus Al6 non-supervisory address modifier.

VMEbus Al6 supervisory address modifier.

VMEbus A24 non-supervisory data address
modifier.

VMEbus A24 supervisory data address modifier.

VMEbus A24 non-supervisory program address
modifier.

YMEbus A24 supervisory program address modifier.

VMEbus A32 non-supervisory data address
modifier.

VMEbus A32 supervisory data address modifier.

VMEbus A32 non-supervisory program address
modifier.

VMEbus A32 supervisory program address modifier.

The following constants define valid values for the Byte_Ordering
parameter:

2-103

I

Bus Management for Windows Programmer's Reference

Constant

EPC_IBO

EPC_MBO

Description

Intel (80X86) byte ordering.

Motorola (68000) byte ordering.

EPC hardware provides a number of statically configured bus windows. The table
below enumerates the bus memory mapping attributes supported by an EPC's
statically configured bus window hardware:

Address Mod By_te Odrering Base Address Range Si~e Range

EPC_A16S EPC_MBO OxOOtoOxOOOOFFFF Ox00010000to
EPC_IBO OxOl

EPC_A24SD EPC_MBO OxOOtoOxOOFFFFFF OxOIOOOOOOto
EPC_IBO OxOI

EPC_A32SD EPC_MBO OxOO to Ox3FFFFFFF Ox40000000to
EPC_IBO OxOl

The Base_Address and Size parameters define a range of addresses a, where:

Base_Address <=a<= Base_Address +Size - 1;

The function rounds the specified Base_Address down to the nearest 4-byte boundary.
The function also limits the size of the mapping according to the specified
Base_Address and the bus window's maximum accessible bus address.

EPC and VXLink hardware provides one or more dynamically configured bus
memory windows. Use EpcMapBusMemoryExt to map bus memory using
dynamically configured bus memory window hardware.

2-104

EpcMapBusMemory

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _ADDMOD

EPC_INV _BORDER

EPC_INV _PTR

EPC_INV _RANGE

EPC_INV _SESSION

EPC_INV_SW

The specified Address_Mod
parameter is invalid.

The specified Byte_Ordering
parameter is invalid.

The specified Mapped_Ptr _Ptr
parameter is invalid.

The specified Base_Address and Size
Parameters define a bus address
range that contains invalid addresses
for the specified Address_Mod
parameter and/or this interface.

The specified Sessio11_/D is invalid.

The BusManager device driver is not
present.

EPC_OS_ERROR An operating system error occurred.

EPC_OUT_OF _RSRCS The underlying operating system
currently contains insufficient
resources to create the specified
mapping.

EPC_SUCCESS The function completed successfully.

EpcCopyData, EpcGetMappingAttributes,
EpcMapBusMemoryExt, EpcOpenSession, EpcPopData,
EpcPushData, EpcUnmapBusMemory.

See EpcCopyData.

2-105

I

Bus Management for Windows Programmer's Reference

EpcMapBusMemoryExt

Description

C Synopsis

Creates a bus memory mapping using dynamically configured bus
window hardware.

short FAR PASCAL
EpcMapBusMemoryExt(unsigned long Session_lD,

unsigned short Address_Mod,
unsigned short Byte_Ordering,
unsigned long Base_Address,
volatile void HUGE* FAR*

Mapped_Ptr _Ptr);

Session_ID

Address_Mod

Byte_ Ordering

Base_Address

Mapped_Ptr _Ptr

Session_ID specifies a bus session.

Address_Mod specifies the address
modifier attribute of the desired
memory mapping.

Byte_Ordering specifies the byte
ordering attribute of the desired
memory mapping.

Base_Address specifies base address
attribute of the desired memory
mapping.

Mapped_Ptr _Ptr points to a location
where a pointer to the base of the
desired memory will be placed.

Visual Basic Synopsis

2-106

Declare Function
EpcMapBusMemoryExt% Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
ByVal Address_Modo/o,
ByVal Byte_Orderingo/o,
ByVal Base_Address&,
ByVal Size&,
Mapped_Ptr _Ptr As Any)

Remarks

EpcMapBusMemoryExt

EpcMapBusMemoryExt creates a memory mapping with the
specified attributes using statically configured bus window hardware
and places a pointer to the base of the memory in the location
pointed to by Mapped_Ptr_Ptr.

The following constants define valid values for the Address_Mod
parameter:

Constant

EPC_A16N

EPC_Al6S

EPC_A24ND

EPC_A24SD

EPC_A24NP

EPC_A24SP

EPC_A32ND

EPC_A32SD

EPC_A32NP

EPC_A32SP

Description

VMEbus Al6 non-supervisory address modifier.

VMEbus Al6 supervisory address modifier.

VMEbus A24 non-supervisory data address
modifier.

VMEbus A24 supervisory data address modifier.

VMEbus A24 non-supervisory program address
modifier.

VMEbus A24 supervisory program address modifier.

VMEbus A32 non-supervisory data address
modifier.

VMEbus A32 supervisory data address modifier.

VMEbus A32 non-supervisory program address
modifier.

VMEbus A32 supervisory program address modifier.

The following constants define valid values for the Byte_Ordering
parameter:

Constant

EPC_IBO

EPC_MBO

Description

Intel (80X86) byte ordering.

Motorola (68000) byte ordering.

2-107

I

Bus Management for Windows Programmer's Reference

EPC and VXLink hardware provide one or more 64-Kbyte dynamically configured
bus windows. The table below enumerates the bus memory mapping attributes
supported by the dynamically configured bus window hardware:

Address Mod By_te Ordering_ Base Address Range

EPC_A16N EPC_MBO OxOOOOOOOOO
EPC_A16S EPC_IBO

EPC_A24ND EPC_MBO OxOOOOOOOOO,
EPC_A24NP EPC_IBO OxOOOIOOOO, ... ,
EPC_A24SD OxOOFFOOOO
EPC_A24SP

EPC_A32ND EPC_MBO OxOOOOOOOOO,
EPC_A32NP EPC_IBO OxOOOIOOOO, ... ,
EPC_A32SD OxFFFFOOOO
EPC_A32SP

The function rounds the specified Base_Address down to the nearest bus window size
boundary (64 Kbytes) and sets the size of the mapping to the size of the bus window
(64 Kbytes). Mapping an address range larger than the bus window size requires
multiple mappings. Also, mapping an address range that spans a bus window size
boundary requires multiple mappings.

EPC hardware also provides a number of statically configured bus memory windows.
Use EpcMapilusMemory to map bus memory using statically configured bus
memory window hardware.

2-108

EpcMapBusMemoryExt

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _ADDMOD

EPC_INV _BORDER

EPC_INV _PTR

EPC_INV _SESSION

EPC_OS_ERROR

EPC_OUT_OF _RSRCS

EPC_SUCCESS

The specified Address_Mod
parameter is invalid.

The specified Byte_Ordering
parameter is invalid.

The specified Mapped_Ptr _Ptr
parameter is invalid.

The specified Session_ID is invalid.

An operating system error occurred.

The underlying operating system
currently contains insufficient
resources to create the specified
mapping.

The function completed successfully.

EpcCopyData, EpcGetMappingAttributes,
EpcMapBusMemory, EpcOpenSession, EpcPopData,
EpcPushData, EpcUnmapBusMemory.

See EpcCopyData.

2-109

I

Bus Management for Windows Programmer's Reference

EpcMapEpcTriggers

Description

C Synopsis

Maps one interface trigger line to another.

#include "busmgr.h"

short
EpcMapEpcTriggers(unsigned long Session_ID,

unsigned long ln_Trigger _Mask,
unsigned long Out_Trigger _Mask);

Session_ID

ln_Trigger _Mask

Out_Trigger _Mask

Session_ID specifies a session.

ln_Trigger_Mask specifies an input
interface trigger line.

Out_Trigger _Mask specifies output
interface trigger lines.

Visual Basic Synopsis

Remarks

2-110

Declare Function
EpcMapEpcTriggerso/o Lib "bmvxiw16.dll"

(ByVal Session_ID&,
ByVal ln_Trigger_Mask&,
ByVal Out_Trigger_Mask&)

EpcMapEpcTriggers maps the interface trigger lines specified by
Out_Trigger _Mask as outputs of the interface trigger line specified
by ln_Trigger_Mask.

The parameters ln_Trigger _Mask is a constant specifying an input
interface trigger line. The parameter Out_Trigger_Mask is an OR'd
mask of constants specifying output interface trigger lines.

EpcMapEpcTriggers

The table below enumerates valid trigger mapping combinations for
an EPC-7 interface:

In Trigger Mask Out Trigger Mask Description

EPC_EXT_TRIGO EPC_TTL_TRIGO Maps external
trigger 0 as input to

EPC_TTL_TRIG7 a single TTL trigger
line.

EPC_TTL_TRIGO EPC_EXT_TRIGO Maps a single TIL
trigger line as input

EPC_TTL_TRIG7 to external trigger 0.

The table below enumerates valid trigger mapping combinations for
a VXLink interface:

In Trieeer Mask Out Trieeer Mask Descri~tion

EPC_EXT_TRIGO OxOOOOOOOO Unmaps external
trigger 0.

EPC_EXT_TRIGO EPC_TTL_TRIGO Maps external
trigger 0 as input to

EPC_TTL_TRIG7 a single TTL trigger
line.

OxOOOOOOOO EPC_EXT_TRIG 1 Unmaps external
trigger 1.

EPC_TTL_TRIGO EPC_EXT_TRIG 1 Maps a single TIL
trigger line as input

EPC_TTL_TRIG7 to external trigger 0.

When an external trigger line is mapped as input to one or more
interface trigger lines, asserting the external trigger line asserts all of
the mapped interface trigger lines. Likewise, deasserting the
external trigger line deasserts all of the mapped interface trigger
lines.

2-111

I

Bus Management for Windows Programmer's Reference

When one or more interface trigger lines are mapped as input to an
external trigger line, asserting one of the interface trigger lines
asserts the mapped external trigger line. Likewise, deasserting one
of the interface trigger lines deasserts the mapped external trigger
line.

An EPC-7 interface provides a single bi-directional external trigger.
The external trigger is always mapped; it cannot be unmapped.
Specifying a mapping for external trigger 0 overrides the previous
mapping. By default, TTL trigger I is mapped as an output to
external trigger 0.

A VXLink interface provides two unidirectional external triggers.
External trigger 0 is an input-only trigger and external trigger I is an
output-only trigger. The external triggers can be independently
mapped or unmapped. By default, both external triggers are
unmapped.

Return Value The function returns a EPConnect return value:

See Also

2-112

EPC_INV _MASK Either ln_Trigger _Mask or
Out_Trigger _Mask is invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The Bus Manager device driver is not
present.

EPC_LOCKED

EPC_SUCCESS

Shared interface hardware is locked by
another session.

The function completed successfully.

EpcGetEpcTriggerMapping, EpcOpenSession.

EpcMapSharedMemory

EpcMapSharedMemory

Description

C Synopsis

Creates a shared memory mapping.

#include "busmgr.h"

short FAR PASCAL
EpcMapSharedMemory

(unsigned long
unsigned long FAR *
unsigned long FAR *
void HUGE* FAR*

Session_ID,
Base_Address_Ptr,
Size_Ptr,
Mapped_Ptr _Ptr);

Session_ID Session_ID specifies a bus session.

Base_Address_Ptr Base_Address_Ptr points to a location where
the base address attribute of the shared
memory mapping will be placed.

Size_Ptr Size_Ptr points to a location where the size
attribute of the shared memory mapping, in
bytes, will be placed.

Mapped_Ptr_Ptr Mapped_Ptr_Ptr points to a location where a
pointer to the base of the desired memory
will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcMapSharedMemory% Lib "bmvxiwl6.dll"

(ByVal Session_/D&,
Base_Address_Ptr&,
Size_Ptr&,
Mapped_Ptr _Ptr As Any)

EpcMapSharedMemory creates a shared memory mapping and
places the base address attribute of the memory mapping, the size
attribute of the memory mapping, and a pointer to the base of the
memory in the locations pointed to by Base_Address_Ptr, Size_Ptr,
and Mapped_Ptr _Ptr, respectively.

2-113

I

Bus Management for Windows Programmer's Reference

The values in the locations pointed to by Base_Address_Ptr and
Size_Ptr define a range of addresses ex, where:

*Base_Address_Ptr <=ex<= *Base_Address_Ptr + *Size_Ptr - 1;

The value in the location pointed to by Base_Address_Ptr specifies
a physical local address. To determine the corresponding physical
VMEbus address, the value should be added to the base address of
the slave memory. Use EpcGetSlaveMapping to determine the
base address of the slave memory.

A shared memory area is a global resource.
EpcMapSharedMemory and EpcUnmapSharedMemory map
and unmap the entire shared memory area. Once a session maps the
shared memory area, it cannot be mapped again until the original
session unmaps it.

An interface must contain dual-ported slave memory to support a
shared memory area. Only the EPC-7 supports shared memory area
functionality.

Return Value The function returns a Bus Management return value:

2-114

EPC_INV _PTR One or more of the Base_Address_Ptr,
Size_Ptr, and Mapped_Ptr _Ptr
parameters is invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_LOCKED Shared interface hardware is locked by
another bus session.

EPC_OS_ERROR An operating system error occurred.

EPC_OUT_OF _RSRCS The underlying operating system
currently contains insufficient
resources to create the specified
mapping.

EPC_SUCCESS The function completed successfully.

See Also

Example

EpcMapSharedMemory

EpcCopyData, EpcGetMappingAttributes, EpcGetSlaveMapping,
EpcOpenSession, EpcUnmapSharedMemory.

See EpcCopyData.

2-115

I

Bus Management for Windows Programmer's Reference

EpcOpenSession

Description

C Synopsis

Creates a session.

#include "busmgr.h"

short FAR PASCAL
EpcOpcnSession(unsigned long FAR *Session_ID_Ptr);

Session_ID_Ptr Session_ID_Ptr points to a location where
a handle to the session will be placed.

Visual Basic Synopsis

Remarks

Declare Function
EpcOpenScssion% Lib "bmvxiwl6.dll" (Session_ID_Ptr&)

EpcOpenScssion creates a session and places a handle to the
session in the location pointed to by Session_ID_Ptr.

By default, a newly created session does not lock shared interface
hardware and has no enabled events, installed event handlers, or
memory mappings.

Return Value The function returns a Bus Management return value:

See Also

2-116

EPC_INV _PTR

EPC_INV_SW

The specified Session_ID_Ptr
parameter is invalid.

The BusManager device driver is not
present.

EPC_OUT_OF _RSRCS The underlying operating system
currently contains insufficient
resources to open a session.

EPC_SUCCESS The function completed successfully.

EpcCioscScssion, EpcLockSession, EpcMapBusMcmory,
EpcMapSharcdMcmory, EpcSetEventEnablcMask,
EpcSctEventHandler.

EpcOpenSession

Example See EpcCloseSession.

2-117

Bus Management for Windows Programmer's Reference

EpcPopData

C Synopsis

Remarks

2-118

Pops a block of data from a single memory location to consecutive
memory locations.

#include "busmgr.h"

short FAR PASCAL
EpcPopData(unsigned long * Session_ID,

Source_ptr,
Dest_ptr,
Size,

Session_ID

Source_Ptr

Dest_Ptr

Size

Data_ Width

void HUGE*
void HUGE*
unsigned long
unsigned short
unsigned long FAR *

Data_ Width
Actual_Size_Ptr);

Session_ID specifies a bus location.

Source_Ptr specifies the address of a FIFO
queue from which data will be popped.

Dest_Ptr specifies the address of a data
buffer into which data will be popped.

Size specifies the number of data bytes to
pop.

Data_Width specifies the number of data
bits to pop per bus access.

Actual_Size_Ptr Actual_Size_Ptr specifies a location where
the actual number of bytes popped will be
placed.

EpcPopData efficiently pops blocks of data from a single memory
location to consecutive memory locations using the attributes of
pointes Source_Ptr and Dest_Ptr. The intended use of the function
is popping large blocks of data from a FIFO queue.

The Size parameter shouold always express the number of bytes to
be popped, regardless of the specified Data_Width parameter.
Passing a zero Size parameter results in no data being popped.

Remarks

EpcPopData

The following constants define valid values for the Data_Width
parameter:

Constant

EPC_S_BIT

EPC_8_BIT_ODD

EPC_16_BIT

EPC_32_BIT

EPC_FASTCOPY

Description

8-bit data width

8-bit data width, odd bytes only

16-bit data width

32-bit data width

To increase pop performance, don't
check for intermediate bus errors. This
constant can not be used alone; it must
be OR'd with one of the preceding
constants.

The function returns the actual number of bytes popped 10 the
location pointed to by Actual_Size_Ptr.

The function operates ocrrectly using both unmapped pointers and
memory mapped pointers for Source_Ptr and Dest_Ptr. Local-to
local, loca\-to-VME, VME-to-local, and VME-to-VME pops all
execute properly.

For a pop to complete, any Source_Ptr or Dest_Ptr that corresponds
to a VMEbus addresses must be aligned on an address boundary
equivalent to the specified Data_Width. Otherwise, the function
returns an EPC_INV _ALIGN error. For example, if both
Source_Ptr and Dest_Ptr correspond to VMEbus memory and
Data_Width is EPC_16_BIT, then both Source_Ptr and Dest_Ptr
must correspond to VMEbus addresses aligned on a I 6-bit boundary
for the pop to complete successfully.

For a 16-bit or 32-bit pop to complete under DOS or Windows, no
individual data element may span a segment boundary. Otherwise,
the function returns an EPC_INV _ALIGN error. For example, if
Data_Width is EPC_16_BIT and Size is greater than 64 Kbytes,
both Source_Ptr and Dest_Ptr must be aligned on a 16-bit boundary
for the pop operation to complete successfully.

2-119

Bus Management for Windows Programmer's Reference

Return Value The function returns an EPConnect return value:

I
EPC_BERR A bus error occurred during the pop.

EPC_INV _ALIGN Size is not a multiple of Data_ Width,
Source_Ptr is mapped to a VMEbus
address and is not aligned on a
Data_ Width boundary, Dest_Ptr is
mapped to a VMEbus address and is
not aligned on a Data_ Width
boundary, or a 16-bit or 32-bit data
element spans a segment boundary or.

EPC_INV _PTR One or more of Soi1rce_Ptr,
Dest_Ptr, or Actual_Size_Ptr is
invalid.

EPC_INV _RANGE The address range defined by
Source_Ptr and Data_ Width and/or
the address range defined by
Dest_Ptr and Size contains bus
addresses that are not currently
mapped.

EPC_INV _SESSION The specified Sessio11_/D is invalid.

EPC_INV_SW The BusManager device driver is not
present.

EPC_LOCKED Shared interface hardware is locked
by another session.

EPC_INV _WIDTH The Data_ Width parameter is invalid.

EPC_SUCCESS The function completed successfully.

See Also EpcCopyData, EpcGctMappingAttributes,
EpcMapBusMcmory, EpcMapSharedMcmory,
EpcOpcnScssion, EpcPushData, EpcUnmapBusMemory,
EpcUnmapSharcdMemory.

Example See EpcCopyData.

2-120

EpcPulseEpcLines

EpcPulseEpclines

Description

C Synopsis

Pulses EPC control lines.

#include "busmgr.h"

short FAR PASCAL
EpcPulseEpcLincs(unsigned long Session_ID, unsigned long
line_Mask);

Session_ID

Line_Mask

Session_ID specifies a session.

Line_Mask specifies a mask of EPC
control lines.

Visual Basic Synopsis

Remarks

Declare Function
EpcPulscEpcLincs% Lib "bmvxiwl6.dll" (ByVal Session_ID&,
ByVal Line_Mask&)

EpcPulseEpcLincs pulses (asserts and deasserts as an atomic
operation) the EPC control lines specified by Line_Mask.

Line_Mask is an OR'd mask of the following constants, where a set
bit indicates that the function should pulse the corresponding
interface control line:

Constant

EPC_SYSF AIL

EPC_SYSRESET

Description

SYSFAIL.

SYSRESET.

2-121

Bus Management for Windows Programmer's Reference

The function directly affects the interface control line state.
Interface control line state reflects the state of bits in the interface's
control line drive registers. Actual bus control line state is an OR'd
combination of the states all devices on the bus. If the interface
asserts a control line, the actual bus control line transitions from
deasserted to asserted only if all other devices on the bus have
previously deasserted the line. Likewise, if the interface deasserts a
control line, the actual bus control line transitions from asserted to
deasserted only if all devices on the bus have previously deasserted
the line.

When pulsing the SYSRESET interface control line, the function
leaves the line asserted for at least 200 milliseconds (in accordance
with bus specifications). Whether pulsing the SYSRESET actual
bus control line resets an EPC-7 or EPC-8 depends on the value of
the interface's EPC_SYSRESET_IN miscellaneous attribute bit
(see EpcSetMiscAttributes). (EPC-7 and EPC-8 only)

Whether pulsing the SYSFAIL interface control line pulses the
SYSFAIL actual bus control line depends on the value of the
interface's EPC_SYSFAIL_OUT miscellaneous attribute bit (see
EpcSetMiscAttributes).

To pulse SYSFAIL on an EPC-7, EPC-8, or VXLink interface, the
function deasserts then asserts the interface's EPC_PASS
miscellaneous attribute bit (see EpcSetMiscAttributes). After
pulsing SYSFAIL, the interface's EPC_PASS miscellaneous
attribute remains asserted.

Return Value The function returns a Bus Management return value:

2-122

EPC_INV _MASK The parameter Line_Mask is invalid.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_LOCKED Shared interface hardware is locked by
another session.

EPC_SUCCESS The function completed successfully.

See Also

Example

EpcPulseEpclines

EpcGetBusLines, EpcGctEpcLincs, EpcOpcnScssion,
EpcSctEpcLincs, EpcSctMiscAttributcs.

See EpcAssertlnterrupt.

2-123

Bus Management for Windows Programmer's Reference

EpcPulseEpcTriggers

Description Pulses interface trigger lines.

C Synopsis

#include "busmgr.h"

short
EpcPulseEpcTriggers(unsigned long Session_ID, unsigned long
Trigger _Mask);

Session_! D

Trigger _Mask

Session_ID specifies a session.

Trigger _Mask specifies a mask of
interface trigger lines.

Visual Basic Synopsis

Remarks

2-124

Declare Function
EpcPulseEpcTriggers% Lib "bmvxiwl6.dll"
(ByVal Session_ID&, ByVal Trigger_Mask&)

EpcPulscEpcTriggcrs pulses (asserts and deasserts as an atomic
operation) the interface trigger lines specified by Trigger _Mask.

Trigger _Mask is an OR'd mask of the following constants, where a
set bit indicates that the function should pulse the corresponding
interface trigger line:

Constant

EPC_ECL_ TRIGO

EPC_ECL_ TRIG 1

EPC_TTL_TRIGO

EPC_ TTL_ TRIG7

Description

ECL trigger 0 (EPC-7 only).

ECL trigger 1 (EPC-7 only).

TIL trigger 0 (EPC-7 and VXLink
only).

TIL trigger 7 (EPC-7 and VXLink
only).

EpcPulseEpcTriggers

The function directly affects the interface trigger line state.
Interface trigger line state reflects the state of bits in the interface's
trigger line drive registers. Actual bus trigger line state is an OR'd
combination of the states all devices on the bus. If the interface
asserts a trigger line, the actual bus trigger line transitions from
deasserted to asserted only if all other devices on the bus have
previously deasserted the line. Likewise, if the interface deasserts a
trigger line, the actual bus trigger line transitions from asserted to
deasserted only if all devices on the bus have previously deasserted
the line.

Return Value The function returns a EPConnect return value:

See Also

EPC_INV _MASK

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The parameter Trigger _Mask is invalid.

The specified Sessio11_/D is invalid.

The BusManagcr device driver is not
present.

Shared interface hardware is locked by
another session.

The function completed successfully.

EpcGetilusTriggcrs, EpcGetEpcTriggers, EpcOpcnSession,
EpcSetEpcTriggers.

2-125

El

Bus Management for Windows Programmer's Reference

EpcPushData

C Synopsis

Remarks

2-126

Pushes a block of data from consecutive memory locations to a
single memory location.

#include "busmgr.h"

short FAR PASCAL
EpcPushData(unsigned long

void HUGE*
void HUGE*

Session_ID,
Source_Ptr,
Dest_Ptr,

unsigned long Size,

Session_/ D

Source_Ptr

Dest_Ptr

Size

Data_ Width

unsigned short Data_ Width,
unsigned long FAR* Actual_Size_Ptr);

Session_ID specifies a bus session.

Source_Ptr specifies the address of a
data buffer from which data will be
pushed.

Dest_Ptr specifies the address of a
FIFO queue to which data will be
pushed.

Size specifies the number of data
bytes to push.

Data_ Width specifies the number of
data bits to push per bus access.

Actual_Size_Ptr Actual_Size_Ptr specifies a location
where the actual number of bytes
pushed will be placed.

EpcPushData efficiently pushes blocks of data from consecutive
memory locations to a single memory location using the attributes of
pointers Source_Ptr and Dest_Ptr. The intended use of the function
is pushing large blocks of data to a FIFO queue.

EpcPushData

The Size parameter should always express the number of bytes to be
pushed, regardless of the specified Data_ Width parameter. Passing
a zero Size parameter results in no data being pushed.

The following constants define valid values for the Data_Width
parameter:

Constant

EPC_8_BIT

EPC_8_BIT_ODD

EPC_16_BIT

EPC_32_BIT

EPC_FASTCOPY

Description

8-bit data width

8-bit data width, odd bytes only

16-bit data width

32-bit data width

To increase push performance, don't
check for intermediate bus errors.
This constant cannot be used alone;
it must be OR'd with one of the
preceding constants.

The function returns the actual number of bytes pushed in the
location pointed to by Actual_Size_Ptr.

The function operates correctly using both unmapped pointers and
memory mapped pointers for Source_Ptr and Dest_Ptr.
local-to-local, local-to-VME, VME-to-local, and VME-to-VME
pushes all execute properly.

For a push to complete, the specified Size must be aligned on a
boundary equivalent to the specified Data_Width. Otherwise, the
function returns an EPC_INV _ALIGN error. For example, if
Data_ Width is EPC_16_BIT, then Size must be a multiple of two
for the push to complete successfully. If Data_Width is
EPC_32_BIT, then Size must be a multiple of four for the push to
complete successfully.

2-127

I

Bus Management for Windows Programmer's Reference

For a push to complete, any Source_Ptr or Dest_Ptr that
corresponds to a VMEbus addresses must be aligned on an address
boundary equivalent to the specified Data_Width. Otherwise, the
function returns an EPC_INV _ALIGN error. For example, if both
Source_Ptr and Dest_Ptr correspond to VMEbus memory and
Data_Width is EPC_16_BIT, then both Source_Ptr and Dest_Ptr
must correspond to VMEbus addresses aligned on a 16-bit boundary
for the push to complete successfully.

For a I 6-bit or 32-bit push to complete under DOS or Windows, no
individual data element may span a segment boundary. Otherwise,
the function returns an EPC_INV _ALIGN error. For example, if
Data_ Width is EPC_16_IlIT and Size is greater than 64 Kbytes,
both Source_Ptr and Dest_Ptr must be aligned on a 16-bit boundary
for the push operation to complete successfully.

Return Value The function returns a EPConnect return value:

2-128

EPC_BERR

EPC_INV _ALIGN

EPC_INV _PTR

EPC_INV _RANGE

EPC_INV _SESSION

A bus error occurred during the push.

Size is not a multiple of Data_ Width,
Source_Ptr is mapped to a VMEbus
address and is not aligned on a
Data_ Width boundary, Dest_Ptr is
mapped to a VMEbus address and is
not aligned on a Data_ Width
boundary, or a 16-bit or 32-bit data
element spans a segment boundary.

One or more of Source_Ptr,
Dest_Ptr, or Actual_Size_Ptr is
invalid.

The address range defined by
Source_Ptr and Size and/or the
address range defined by Dest_Ptr
and Data_ Width contains bus
addresses that are not currently
mapped.

The specified Session_ID is invalid.

See Also

Example

EpcPushData

EPC_INV_SW

EPC_LOCKED

EPC_INV _WIDTH

EPC_SUCCESS

The BusManager device driver is not
present.

Shared interface hardware is locked
by another session.

The Dara_ Width parameter is invalid.

The function completed successfully.

EpcCopy Data, EpcGe tMap pingAttribu tes,
EpcMapllusMemory, EpcMapSharedMemory,
EpcOpcnScssion, EpcPopData, EpcUnmapllusMemory,
EpcUnmapSharcdMemory.

See EpcCopyData.

2-129

Bus Management for Windows Programmer's Reference

EpcSetBusAttributes

Description

C Synopsis

Defines the interface's bus management attributes.

#include "busmgr.h"

short FAR PASCAL
EpcSetBusAttributes(unsigned Jong Session_ID,

unsigned short Bus_Enable,
unsigned short Bus_Arb_Mode,
unsigned short Bus_Arb_Priority,
unsigned short Bus_Release);

Session_ID Session_!D specifies a session.

Bus_Enable Bus_Enable specifies the interface's bus
enable attribute.

Bus_Arb_Mode Bus_Arb_Mode specifies the interface's bus
arbitration mode.

Bus_Arb_Priority Bus_Arb_Priority specifies the interface's
bus arbitration priority.

Bus_Release Bus_Release specifies the interface's bus
release mode.

Visual Basic Synopsis

2-130

Declare Function
EpcSctilusAttributcs% Lib "bmvxiwl6.dll"

(ByVal Session_!D&,
ByVal Bus_Enableo/o,
ByVal Bus_Arb_Modeo/o,
ByVal Bus_Arb_Priorityo/o,
ByVal Bus_Releaseo/o)

Remarks

EpcSetBusAttributes

EpcSctBusAttributcs defines the interface's bus management
attributes.

Bus_E11able specifies the interface's bus enable attribute. The
interface's bus enable attribute determines whether accesses made
by the interface reach the bus. Valid Bus_E11able values are:

Bus Enable

EPC_DISABLE_BUS

EPC_ENABLE_BUS

Description

Disable bus accesses for the
interface (Supported on EPC-7 and
EPC-8 only).

Enable bus accesses for the
interface.

Bus_Arb_Mode specifies the interface's bus arbitration mode. The
interface's bus arbitration mode defines how the interface arbitrates
bus collisions. The interface's bus arbitration mode only affects bus
accesses if the interface has been designated the VMEbus slot-1
controller or VXIbus slot-0 controller. Valid Bus_Arb_Mode values
are:

Bus Arb Mode

EPC_pRIORITY

EPC_ROUND_ROilIN

Description

Priority bus arbitration.

Round-robin bus arbitration.

Bus_Arb_Priority specifies the interface's bus arbitration priority.
The interface's bus arbitration priority defines the priority level at
which the interface arbitrates for the bus. Possible values placed at
Bus_Arb_Priority are:

Bus Arb Priority

EPC_PRIORITYO

EPC_PRIORITYl

EPC_PRIORITY2

EPC_PRIORITY3

Description

Bus arbitration priority 0.

Bus arbitration priority 1.

Bus arbitration priority 2.

Bus arbitration priority 3.

2-131

Bus Management for Windows Programmer's Reference

Bus_Release specifies the interface's bus release mode. The
interface's bus release mode determines when the interface requests
and/or releases the bus. Valid Bus_Release values are:

Hus Release

EPC_ROR

EPC_RONR

Description

"Release On Request" bus release
mode.

"Request On No Request" bus release
mode.

Return Value The function returns a Bus Management return value:

See Also

Example

2-132

EPC_INV _ARB_MODE The parameter Bus_Arb_Mode 1s
invalid.

EPC_INV _ARB_PRIO The parameter Bus_Arb_Priority is
invalid.

EPC_INV _ENABLE The parameter Bus_Enable is
invalid.

EPC_INV _RELEASE The parameter Bus_Release is
invalid.

EPC_INV _SESSION The parameter Sessio11_/D is
invalid.

EPC_INV _SW The BusManager device driver is
not present.

EPC_INV _TIMEOUT An invalid timeout was encountered.

EPC_LOCKED Shared interface hardware is locked
by another session.

EPC_SUCCESS The function completed
successfully.

EpcGetBusAttributes, EpcOpenSession.

See EpcGetBusAttributes.

EpcSetEpclines

EpcSetEpclines

Description

C Synopsis

Defines the interface control line state.

#include "busmgr.h"

short FAR PASCAL
EpcSetEpcLines(unsigned long Session_ID, unsigned long
Line_Mask);

Sessio11_/D

Line_Mask

Sessio11_/D specifies a session.

Line__Mask specifies an interface
control line state.

Visual Basic Synopsis

Remarks

Declare Function
EpcSetEpcLineso/o Lib "bmvxiwl6.dll" (ByVal Session_ID&,
ByVal Li11e_Mask&)

EpcSetEpcLines defines the interface control line state as specified
by Line_Mask.

Line_Mask is either zero or an OR'd bit mask of the following
constants. A set bit indicates that the function should assert the
corresponding interface control line. A clear bit indicates that the
function should deassert the corresponding interface control line:

Constant

EPC_SYSF AIL

EPC_SYSRESET

Description

SYSFAIL.

SYS RESET.

2-133

Bus Management for Windows Programmer's Reference

The function directly affects the interface control line state.
Interface control line state reflects the state of bits in the interface's
control line drive registers. Actual bus control line state is an OR'd
combination of the states all devices on the bus. If the interface
asserts a control line, the actual bus control line transitions from
deasserted to asserted only if all other devices on the bus have
previously deasserted the line. Likewise, if the interface deasserts a
control line, the actual bus control line transitions from asserted to
deasserted only if all devices on the bus have previously deasserted
the line.

Whether asserting the SYSRESET actual bus control line resets the
interface on an EPC-7 or EPC-8 depends on the value of the
interface's EPC_SYSRESET_IN miscellaneous attribute bit (see
E pcSetMiscA ttri bu tes).

Whether asserting or deasserting the SYSFAIL interface control line
asserts or deasserts the SYSFAIL actual bus control line depends on
the value of the interface's EPC_SYSFAIL_OUT miscellaneous
attribute bit (see EpcSetMiscAttributes).

To assert or deassert SYSFAIL on an EPC-7, EPC-8, or VXLink
interface, the function deasserts or asserts the interface's
EPC_PASS miscellaneous attribute bit (see
EpcSctMiscAttributcs). After asserting SYSFAIL, the interface's
EPC_PASS miscellaneous attribute remains deasserted. Likewise,
after deasserting SYSFAIL, the interface's EPC_PASS
miscellaneous attribute remains asserted.

Return Value The function returns a Bus Management return value:

2-134

EPC_INV _MASK

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The parameter Line_Mask is invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

Shared interface hardware is locked by
another session.

The function completed successfully.

See Also

Example

EpcSetEpclines

EpcGctBusLines, EpcGctEpcLincs, EpcOpcnScssion,
EpcPulscEpcLincs, EpcSetMiscAttributcs.

See EpcAssertlnterrupt.

2-135

I

Bus Management for Windows Programmer's Reference

EpcSetEpcMODID

Description Defines interface MODID line state.

C Synopsis

#include "busmgr.h"

short
EpcSctEpcMODID(unsigned long Session_ID, unsigned long
MODID_Mask);

Session_ID

MODID_Mask

Sessio11_/D specifies a session.

MODID_Mask specifies
interface MODID line state.

an

Visual Basic Synopsis

Remarks

2-136

Declare Function
EpcSctEpcMODID% Lib "bmvxiwl6.dll"
(ByVal Sessio11_1D&, ByVal MODID_Mask&)

EpcSctEpcMODID defines the interface MODID line state as
specified by MODID_Mask.

MODID_Mask is either zero or an OR'd bit mask of the following
constants. A set bit indicates that the function should assert the
corresponding interface MODID line. A clear bit indicates that the
function should deassert the corresponding interface MODID line:

Constant

EPC_MODIDO

EPC_MODID12

Description

MODID line 0 (EPC-7 and
VXLink only).

MODID line 12 (EPC-7 and
VXLink only).

EpcSetEpcMODID

Only the VXIbus slot-0 controller device can assert or deassert the
actual bus MODID lines. When an interface is the VXIbus slot-0
controller, defining the interface MODID line state also defines the
actual bus MODID line state. When an interface is not the VXlbus
slot-0 controller, defining the interface MODID line state has no
effect on the actual bus MOD ID lines.

Return Value The function returns an EPConnect return value:

EPC_INV _MASK

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The parameter MODID_Mask is
invalid.

The specified Sessio11_ID is invalid.

The Bus Manager device driver is
not present.

Shared interface hardware is locked
by another session.

The function completed
successfully.

See Also EpcGetBusMODID, EpcOpcnScssion.

2-137

I

Bus Management for Windows Programmer's Reference

EpcSetEpcTriggers

Description Defines the interface trigger line state.

C Synopsis

#include "busmgr.h"

short
EpcSctEpcTriggers(unsigned long Session_ID, unsigned long
Trigger _Mask);

Sessio11_ID

Trigger _Mask

Session_ID specifies a session.

Trigger _Mask specifies an interface
bus control line state.

Visual Basic Synopsis

Remarks

2-138

Declare Function

EpcSctEpcTriggers% Lib "bmvxiwl6.dll" (ByVal Session_!D&,
ByVal Trigger _Mask&)

EpcSetEpcTriggers defines the interface trigger line state as
specified by Trigger _Mask.

Trigger _Mask is either zero or an OR'd bit mask of the following
constants. A set bit indicates that the function should assert the
corresponding interface trigger line.

EpcSetEpcTriggers

A clear bit indicates that the function should deassert the
corresponding interface trigger line:

Constant

EPC_ECL_ TRIGO

EPC_ECL_ TRIG 1

EPC_ TTL_ TRIGO

EPC_TTL_TRIG7

Description

ECL trigger 0 (EPC-7 only).

ECL trigger l (EPC-7 only).

TTL trigger 0 (EPC-7 and VXLink
only).

TIL trigger 7 (EPC-7 and VXLink
only).

The function directly affects the interface trigger line state.
interface trigger line state reflects the state of bits in the interface's
trigger line drive registers. Actual bus trigger line state is an OR'd
combination of the states all devices on the bus. If the interface
asserts a trigger line, the actual bus trigger line transitions from
deasserted to asserted only if all other devices on the bus have
previously deasserted the line. Likewise, if the interface deasserts a
trigger line, the actual bus control line transitions from asserted to
deasserted only if all devices on the bus have previously deasserted
the line.

Return Value The function returns a EPConnect return value:

See Also

EPC_INV _MASK

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The parameter Trigger _Mask is invalid.

The specified Session_ID is invalid.

The Bus Manager device driver is not
present.

Shared interface hardware is locked by
another session.

The function completed successfully.

EpcGetBusTriggers, EpcGetEpcTriggers, EpcOpenSession,
EpcPulseEpcTriggers.

2-139

I

I

Bus Management for Windows Programmer's Reference

EpcSetEventEnableMask

Description

C Synopsis

Defines a session's enabled event mask attribute.

#include "busmgr.h"

short
EpcSetEventEnableMask(unsigned long Session_ID, unsigned
Jong Event_Mask);

Session_/ D

Event_Mask

Session_ID specifies a session.

Event_Mask specifies a mask of
enabled events.

Visual Basic Synopsis

Remarks

2-140

Declare Function
EpcSetEventEnableMask% Lib "bmvxiwl6.dll" (ByVal
Session_ID&, ByVal Evetlt_Mask&)

EpcSetEventEnableMask sets the specified session's enabled event
mask attribute to Event_Mask.

The Event_Mask parameter is a bit mask where each bit
corresponds to an event. The Event_Mask parameter should be
either zero or an OR'd combination of the following constants:

EpcSetEventEnableMask

Event Description

EPC_MSG_INT Message interrupt (EPC-7 and
EPC-8 only)

EPC_ VMEl_INT VMEbus interrupt 1

EPC_ VME7 _INT VMEbus interrupt 7

EPC_SIGNAL_INT VXIbus signal FIFO interrupt

EPC_TTL_TRIGO_INT VXlbus TTL Trigger 0 interrupt
(EPC-7 only)

EPC_TTL_TRIG7_1NT VXlbus TTL Trigger 7 interrupt
(EPC-7 only)

EPC_SYSRESET_ERR VMEbus SYSRESET error

EPC_ACFAIL_ERR VMEbus power failure error

EPC_BERR_ERR VMEbus access error

EPC_SYSFAIL_ERR VMEbus SYSFAIL error

EPC_ WATCHDOG_ERR Watchdog timer expiration error
(EPC-7 and EPC-8 only)

EPC_EXT_TRIGO_INT External trigger 0 interrupt
(VXLink only)

EPC_EXT_TRIGl_INT External trigger 1 interrupt
(VXLink only)

2-141

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-142

EPC_INV _MASK Event_Mask contains enabled events
that are not valid for this interface.

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_INV _SW The BusManager device driver is not
present.

EPC_SUCCESS The function completed successfully.

EpcGctEvcntEnableMask, EpcOpenSession.

See EpcGetEventEnableMask.

EpcSetEventHandler

EpcSetEventHandler

Description

C Synopsis

Defines an entry in a session's event handler array.

#include "busmgr.h"

short FAR PASCAL
EpcSetEventHandler(unsigned long Session_ID,

unsigned long Event_Mask,
void (FAR* Event_Ha11dler)

(unsigned long,
unsigned long,
unsigned long),

void FAR* Stack_Ptr);

Session_ID Sessio11_/D specifies a session.

Event_Mask Event_Mask specifies an event.

Event_Handler Event_Ha11dler specifies an event
handler.

Stack_Ptr Stack_Ptr specifies an event handler
stack pointer.

Visual Basic Synopsis

Remarks

Declare Function
EpcSetEventHandlero/o Lib "bmvxiwl6.dll"

(ByVal Sessio11_ID&,
By Val Eve11t_Mask&,
Event_Handler As Any,
Stack_Ptr As Any);

EpcSetEventHandler sets the specified session's specified event
handler array entry to Eve11t_Ha11d/er and the event handler's stack
pointer to Stack_Ptr.

2-143

Bus Management for Windows Programmer's Reference

void FAR

The Event_Mask parameter is a bit mask where each bit
corresponds to an event. The Event_Mask parameter should be one
of the following constants:

Event Description

EPC_MSG_INT Message interrupt (EPC-7 and
EPC-8 only)

EPC_ VMEl_INT VMEbus interrupt 1

EPC_ VME7 _INT VMEbus interrupt 7

EPC_SIGNAL_INT VXIbus signal FIFO interrupt

EPC_ TTL_ TRIGO_INT VXlbus TrL Trigger 0 interrupt
(EPC-7 only)

EPC_TTL_TRIG7_INT VXIbus TrL Trigger 7 interrupt
(EPC-7 only)

EPC_SYSRESET_ERR VMEbus SYSRESET error

EPC_ACFAIL_ERR VMEbus power failure error

EPC_BERR_ERR VMEbus access error

EPC_SYSFAIL_ERR VMEbus SYSFAIL error

EPC_EXT_TRIGO_INT External trigger 0 interrupt
(VXLink only)

EPC_EXT _TRIG l_INT External trigger l interrupt
(VXLink only)

EPC_ WATCHDOG_ERR Watchdog timer expiration error
{EPC-7 and EPC-8 only)

The Event_Handler parameter is a pointer to an event handler
function with the following call semantics:

EventHandlerFunction(unsigned long Session_ID,
unsigned long Handler_Mask,
unsigned long Handler_Data) ;

2-144

EpcSetEventHandler

The event handler function should return to the caller using a
normal RET instruction. It should not attempt to return using an
IRET instruction.

The value passed in the event handler function's Session_ID
parameter specifies the session that received the event. The value
passed in the event handler function's Handler _Mask parameter
specifies the event that caused execution of the event handler
function.

Whether or not the event handler function receives a meaningful
Handler _Data parameter depends on the value of Handler _Mask:

Handler Mask Handler Data

0 EPC_MSG_INT

EPC_ VMEI_INT VMEbus interrupt status/id (zero
extended to 32 bits)

EPC_ VME7 _INT

EPC_SIGNAL_INT VXIbus signal data (zero extended
to 32 bits)

EPC_TTL_TRIGO_INT 0

EPC_TTL_TRIG7_INT

EPC_ACFAIL_ERR 0

EPC_BERR_ERR 0

EPC_SYSFAIL_ERR 0

EPC_ WATCHDOG_ERR 0

EPC_SYSRESET_ERR 0

EPC_EXT_TRIGO_INT 0

EPC_EXT_TRIGl_INT 0

The Stack_Ptr parameter is a pointer to the bottom of a block of
memory reserved for use as a stack.

2-145

I

Bus Management for Windows Programmer's Reference

2-146

Defining a NULL event handler and/or event handler stack pointer
effectively removes any previously assigned event handler and event
handler stack pointer.

Defining an event handler and an event handler stack pointer does
not enable or disable reception of the corresponding event. A
separate call to EpcSetEventEnableMask is required.

Bus Management for Windows calls an event handler exactly once
for each occurrence of its corresponding event and disables virtual
processor interrupts before an event handler is called. The table
below describes the algorithm used by EPConnectNXI in
processing each event type:

Event

EPC_MSG_INT

EPC_ VMEl_INT

EPC_ VME7 _INT

Algorithm

For each session with the event
enabled and a handler installed, the
IRQ handler disables the event and
calls the installed event handler.

To receive additional message
interrupt events, a session must
re-enable the event. To avoid
redundant message interrupt events,
a session should only re-enable the
event after receiving a word serial
command (using
EpcSrvReceiveWSCommand) or
sending a word serial command
response (using
EpcSrvSendWSResponse).

The IRQ handler acknowledges the
VMEbus interrupt and gets the
status/id data. For each session
with the event enabled and a
handler installed, the IRQ handler
calls the installed event handler.

Additional events occur whenever
additional VMEbus interrupts are
asserted on the bus.

EpcSetEventHandler

EPC_SIGNAL_INT

EPC_ TTL_TRIGO_INT

EPC_TTL_TRIG7_1NT

The IRQ handler gets the signal
data from the signal FIFO. For
each session with the event enabled
and a handler installed, the IRQ
handler calls the installed event
handler

Additional events occur whenever a
device writes to the interface's
signal FIFO.

For each session with the event
enabled and a handler installed, the
IRQ handler disables the event and
calls the installed event handler.

To receive additional TTL trigger
interrupt events for a specific TTL
trigger, a session must re-enable the
event. To ensure that a previous
TTL trigger assertion does not
cause redundant events, a session
should wait for the deassertion of
the corresponding TTL trigger latch
bit (using EpcGetMiscAttributes)
before re-enabling a TTL trigger
interrupt event.

2-147

I

Bus Management for Windows Programmer's Reference

EPC_A CF AIL_ERR

EPC_BERR_ERR

2-148

For each session with the event
enabled and a handler installed, the
IRQ handler disables the event and
calls the installed event handler.

To receive additional ACFAIL
error events, a session must
re-enable the event. To ensure that
the previous ACFAIL assertion
does not cause redundant events, a
session should wait for the
deassertion of the ACF AIL bus
control line (using
EpcGetBusLines) before
re-enabling the ACFAIL error
event.

The IRQ handler clears the BERR
condition. For each session with
the event enabled and a handler
installed, the IRQ handler calls the
installed event handler.

Additional BERR error events
occur whenever the interface makes
a bus access that terminates with a
BERR condition.

EpcSetEventHandler

EPC_SYSF AIL_ERR

EPC_ WA TCHDOG_ERR

For each session with the event
enabled and a handler installed, the
IRQ handler disables the event and
calls the installed event handler.

To receive additional SYSFAIL
error events, a session must
re-enable the event. To ensure that
the previous SYSFAIL assertion
does not cause a redundant event, a
session should wait for the
deassertion of the SYS FAIL bus
control line (using
EpcGetBusLines) before
re-enabling the SYSFAIL error
event.

For each session with the event
enabled and a handler installed, the
IRQ handler disables the event and
calls the installed event handler.

To receive additional watchdog
timer error events, a session must
re-enable the watchdog timer error
event. To ensure that the previous
watchdog timer expiration does not
cause redundant events, a session
should reset the watchdog timer
(using EpcWatchdogTimer)
before re-enabling the watchdog
timer error event.

2-149

I

Bus Management for Windows Programmer's Reference

2-150

EPC_SYSRESET_ERR

EPC_EXT _ TRIGO_INT
EPC_EXT _TRIG l_INT

The IRQ handler re-initializes the
hardware interface. For each
session with the event enabled and a
handler installed, the IRQ handler
disables the event and calls the
installed event handler.

To receive additional SYSRESET
error events, a session must
re-enable the event. To ensure that
the previous SYSRESET assertion
does not cause redundant events, a
session should wait for the
deassertion of the SYSRESET bus
control line (using
EpcGetBusLines) before re-
enabling the SYSRESET error
event.

For each session with the event
enabled and a handler installed, the
IRQ handler disables the event and
calls the installed event handler.

Additional events occur whenever
additional external trigger events
are detected.

EpcSetEventHandler

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _MASK

EPC_INV _SESSION

EPC_SUCCESS

Event_Mask contains more than one
event or contains an event that is not
valid for this EPC.

The specified Session_ID is invalid.

The function completed
successfully.

EpcGetBusLines, EpcGetEventHandler,
EpcGetMiscAttributes, EpcOpenSession,
EpcSetEventEnableMask, EpcSrvReceiveWSCommand,
EpcSrvSendWSResponse, EpcWatchdogTimer.

See EpcGetEventEnableMask.

2-151

Bus Management for Windows Programmer's Reference

EpcSetlockingTimeout

Description

C Synopsis

Defines a session's locking timeout.

#include "busmgr.h"

short FAR PASCAL
EpcSctLockingTimeout(unsigned long Session_ID, unsigned long
Timeo11t);

Session_ID

Timeout

Session_ID specifies a session.

Timeout specifies a locking timeout.

Visual Basic Synopsis

Remarks

Declare Function
EpcSetLockingTimeout% Lib "bmvxiwl6.dll" (ByVal
Session_ID&, ByVal Timeout&)

EpcSctLockingTimeout defines the specified session's locking
timeout.

Timeout specifies the session's locking timeout, in milliseconds.

By default, a session has a locking timeout of zero milliseconds.
When the session encounters a locking conflict, an EPC_LOCKED
error is returned immediately.

Return Value The function returns a Bus Management return value:

EPC_INV _SESSION The specified Session_ID is invalid.

EPC_SUCCESS The function completed successfully.

See Also EpcGctLockingTimcout, EpcLockScssion, EpcOpcnScssion.

Example See EpcGetLockingTimeout.

2-152

EpcSetMiscAttributes

EpcSetMiscAttributes

Description

C Synopsis

Defines the interface's miscellaneous configuration attributes.

#include "busmgr.h"

short FAR PASCAL
EpcSctMiscAttributcs(unsigned long Session_ID, unsigned long
Misc_Mask);

Session_! D

Misc_Mask

Session_ID specifies a session.

Misc_Mask specifies miscellaneous interface
configuration attributes.

Visual Basic Synopsis

Remarks

Declare Function
EpcSetMiscAttributes% Lib "bmvxiw16.dll" (ByVal
Session_ID&, By Val Misc_Mask&)

E pcSetMiscA ttri bu tes
configuration attributes.

defines miscellaneous interface

Misc_Mask is either zero or an OR'd bit mask of the following
constants, where a set bit indicates that the function should assert
the corresponding miscellaneous interface attribute bit. A clear bit
indicates that the function should deassert the corresponding
miscellaneous interface attribute bit:

Constant

EPC_DIR

Description

Word serial byte transfer protocol
DIR bit. Asserting the bit indicates
that the interface is ready to receive
data from its commander device.
Supported on EPC-7 and EPC-8
only.

2-153

I

Bus Management for Windows Programmer's Reference

2-154

EPC_DOR

EPC_ERR

EPC_LOCK

Word serial byte transfer protocol
DOR bit. Asserting the bit
indicates that the interface is ready
to send data to its commander
device. Supported on EPC-7 and
EPC-8 only.

Word serial protocol ERR* bit.
Asserting the bit indicates to the
commander device that the
interface has detected a word serial
protocol error. Supported on
EPC-7 and EPC-8 only.

Message-based device Locked* bit.
Asserting the bit indicates that the
commander device has locked
access to the interface from other
local sources. Supported on EPC-7
and EPC-8 only.

EPC_MULTIPLE_LOCK Word serial protocol extension
multiple commander lock bit.
When asserted, the first
commander to read the asserted bit
from the interface's Response
register can safely send a word
serial command. Supported on
EPC-7 and EPC-8 only.

EPC_PASS

EPC_READY

EPC_RESET

Device initialization PASSED bit.
Asserting the bit indicates that the
interface has passed self-test.

Device initialization READY bit.
Asserting the bit indicates that the
interface is ready to begin normal
operation.

Interface reset bit. Asserting the bit
places the interface in VXI "soft
reset" state.

EpcSetMiscAttributes

EPC_RRDY

EPC_RSRC_MGR

EPC_STICKY _BERR

EPC_SYSFAIL_OUT

EPC_SYSRESET _IN

EPC_WRDY

Word serial protocol Read Ready
bit. Asserting the bit indicates to a
commander device that the
interface has a word serial response
in its message register. Supported
on EPC-7 and EPC-8 only.

Interface resource manager
execution bit. Asserting the bit
indicates that resource manager
execution is complete.

"Sticky" bus error bit. When
asserted, the bit indicates that a bus
error has occurred since the bit was
last deasserted. This bit cannot be
asserted directly by software; it can
only be deasserted.

SYSFAIL output enable bit. When
asserted, the interface can assert
SYSFAIL. When deasserted, the
interface cannot assert SYSFAIL.

SYSRESET input enable bit.
When asserted, asserting
SYSRESET resets the interface.
When deasserted, asserting
SYSRESET does not reset the
interface.

Word serial protocol Write Ready
bit. Asserting the bit indicates to a
commander device that the
interface is ready to receive a word
serial command. Supported on
EPC-7 and EPC-8 only.

Deasserting EPC_PASS while asserting EPC_SYSFAIL_OUT
causes the interface to assert SYSFAIL on the bus.

2-155

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-156

EPC_INV _MASK

EPC_INV _SESSION

EPC_INV_SW

The parameter Misc_Mask is invalid.

The parameter Session_ID is invalid.

The BusManager device driver is not
present.

EPC_INV _TIMEOUT An invalid timeout was encountered.

EPC_LOCKED Shared interface hardware is locked by
another session.

EPC_SUCCESS The function completed successfully.

EpcGctMiscAttributes, EpcOpcnScssion.

See EpcGetBusAttributes.

EpcSetSessionData

EpcSetSessionData

Description

C Synopsis

Defines a session's application-specified data.

#include "busmgr.h"

short FAR PASCAL
EpcSctScssionData(unsigned long Session_ID,

unsigned long Session_Data);

Session_/ D

Session_Data

Sessio11_/D specifies an open
session.

Session_Data specifies the session's
application-specified data.

Visual Basic Synopsis

Remarks

Declare Function
EpcSctScssionData% Lib "bmvxiwl6.dll" (ByVal Session_/D&,
ByVal Session_Data&)

EpcSctScssionData defines the specified session's
application-specified data.

The application-specified data is a 4-byte quantity.

Typically, an application uses EpcSctScssionData to store a pointer
to one of its data structures. Later, the application uses
EpcGetScssionData to quickly retrieve the pointer during
performance-critical operations (like event handling).

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _SESSION

EPC_SUCCESS

The specified Sessio11_/D is invalid.

The function completed successfully.

EpcGctScssionData, EpcOpcnSession.

See EpcCloscScssion.

2-157

I

Bus Management for Windows Programmer's Reference

EpcSetSlaveMapping

Description

C Synopsis

Defines the interface's slave memory mapping.

#include "busmgr.h"

short FAR PASCAL
EpcSetSlaveMapping(unsigned long Session_ID,

unsigned short Address_Space,
unsigned long Base_Address);

Session_! D

Address_Space

Base_Address

Session_/D specifies a session.

Address_Space specifies a slave
memory address space.

Base_Address specifies a slave
memory base address.

Visual Basic Synopsis

Remarks

2-158

Declare Function
EpcSetSlaveMapping% Lib "bmvxiwl6.dll" (ByVal Session_ID&,

ByVal Address_Space%,
ByVal Base_Address&)

EpcSetSlaveMapping defines the mapping of the interface's slave
memory to the bus.

Address_Space specifies whether the interface's slave memory
appears on the bus, and if so, in which address space.
Base_Address specifies the base address of the interface's slave
memory in the given Address_Space.

EpcSetSlaveMapping

Valid combinations of Address_Space and Base_Address are
dependent on the interface type:

Interface Address Seace Base Address

~

EPC-7 EPC_DISABLED NIA

EPC_A24 Ox00000000,0x00400000,
... , OxOOCOOOOO

EPC_A32 OxOOOOOOOO,OxOIOOOOOO,
... , OxFFOOOOOO

EPC-8 EPC_DISABLED NIA

VXLink EPC_DISAilLED NIA

A24 base addresses are aligned on a 4 Mbyte boundary, and only
the first 4 Mbytes of the interface's slave memory is mapped to the
bus. A32 base addresses are aligned on a 16 Mbyte boundary, and
only the first 16 Mbytes of the interface's slave memory is mapped
to the bus.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _BASE

EPC_INV _SESSION

EPC_INV _SPACE

EPC_INV_SW

The parameter Base_Address is invalid.

The parameter Session_ID is .invalid.

The parameter Address_Space is
invalid.

The BusManager device driver is not
present.

EPC_INV _TIMEOUT An invalid timeout was encountered.

EPC_LOCKED Shared interface hardware is locked by
another session.

EPC_SUCCESS The function completed successfully.

EpcGetSlaveMapping, EpcOpenSession.

See EpcGetBusAttributcs.

2-159

Bus Management for Windows Programmer's Reference

EpcSetULA

Description

C Synopsis

Defines the interface's unique logical address.

#include "busmgr.h"

short FAR PASCAL
EpcSetULA(unsigned long Session_ID, unsigned short ULA);

Session_ID

ULA

Session_ID specifies a session.

ULA specifies the interface's
unique logical address.

Visual Basic Synopsis

Remarks

Declare Function
EpcSetULAo/o Lib "bmvxiwl6.d!l" (ByVal Session_ID&, ByVal
ULA%)

EpcSetULA defines the interface's unique logical address.

Valid unique logical address values are OxOO through OxFF.

Return Value The function returns a Bus Management return value:

2-160

EPC_INV _SESSION

EPC_INV _TIMEOUT

EPC_INV _ULA

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The parameter Session_ID is
invalid.

An invalid timeout was encountered.

The parameter ULA is invalid.

The BusManager device driver is
not present.

Shared interface hardware is locked
by another session.

The function completed
successfully.

See Also

Example

EpcSetULA

EpcGctULA, EpcOpcnScssion.

See EpcGctBusAttributcs.

2-161

I

Bus Management for Windows Programmer's Reference

EpcSrvEnableWSCommand

Description

C Synopsis

Enables word serial command reception.

#include "busmgr.h"

short FAR PASCAL
EpcSrvEnableWSCommand

(unsigned long Session_ID,
unsigned short Enable_Next_Command);

Session_ID

Enable_Next_Command

Session_ID specifies a session.

Enable_Next_Command specifies
the type of word serial command
reception to enable.

Visual Basic Synopsis

Remarks

2-162

Declare Function
EpcSrvEnablcWSCommand% Lib "bmvxiwl6.dll" (ByVal
Session_ID&, ByVal Enable_Next_Command%)

EpcSrvEnableWSCommand configures the interface hardware to
receive a word serial command.

The following constants specify valid values for the
Enable_Next_Command parameter:

EpcSrvEnableWSCommand

Constant Description

EPC_DISABLE_ALL Disable word serial command
reception.

EPC_ENABLE_ WRDY Enable word serial command
reception by asserting WRDY and
deasserting both DIR and DOR.

EPC_ENABLE_DIR

EPC_ENABLE_DOR

EPC_ENABLE_ALL

Enable word serial command
reception and data input by asserting
both WRDY and DIR and
deasserting DOR (EPC-7 and EPC-8
only).

Enable word serial command
reception and data output by
asserting both WRDY and DOR and
deasserting DIR (EPC-7 and EPC-8
only).

Enable word serial command
reception, data input, and data output
by asserting WRDY, DIR, and DOR
(EPC-7 and EPC-8 only).

Disabling word serial command reception when it is already enabled
and without receiving a word serial command can result in a word
serial protocol violation by allowing the commander device to write
an unexpected word serial command.

On an EPC-7, enabling word serial command reception when an
outgoing word serial command response remains unread in the
interface's message registers can result in a word serial protocol
violation by allowing the commander device to write over the word
serial command response.

2-163

I

I

Bus Management for Windows Programmer's Reference

Enabling word serial command reception when it is already enabled
can result in a word serial protocol violation. In particular, enabling
word serial command reception with DIR deasserted when word
serial command reception is already enabled with DIR asserted can
generate a DIR violation. Likewise, enabling word serial command
reception with DOR deasserted when word serial command
reception is already enabled with DOR asserted can generate a DOR
violation.

EPConnect does not support enabling word serial command
reception on a VXLink interface. Attempting to use the function on
a VXLink interface results in an EPC_INV _HW error.

Return Value The function returns a Bus Management return value:

See Also

2-164

EPC_INV _ENABLE

EPC_INV_HW

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_SUCCESS

The parameter Enable_Next_Command
is invalid.

The interface does not support enabling
word serial command reception.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

Shared interface hardware is locked by
another session.

The function completed successfully.

EpcOpcnScssion, EpcSrv Receive WSCommand.

EpcSrvReceiveWSCommand

EpcSrvReceiveWSCommand

Description

C Synopsis

Receives a word serial command from a commander device.

#include "busmgr.h"

short FAR PASCAL
EpcSrv Receive WSCommand

(unsigned long Session_ID,
void FAR* Command_Ptr,
unsigned short
unsigned short
unsigned long

Session_/ D

Command_Ptr

C ommand_S ize _Pt r

FAR * Command_Size_Ptr,
E11able_Next_Comma11d,
Timeout);

Session_ID specifies a session.

Command_Ptr specifies a location
where the word serial command will
be placed.

Command_Size_Ptr specifies a
location where the size of the word
serial command will be placed.

Enable_Next_Command Enable_Next_Command specifies
whether to enable the interface
hardware to receive the another word
serial command.

Timeout Timeout specifies the number of
milliseconds to wait for a word serial
command.

Visual Basic Synopsis
Declare Function
EpcSrvReceiveWSCommand% Lib "bmvxiw16.dll"

(ByVal Session_ID&,
Command_Ptr As Any,
Command_Size_Ptro/o,
ByVal E11able_Next_Comma11do/o,
ByVal Timeout&)

2-165

I

Bus Management for Windows Programmer's Reference

Remarks

2-166

EpcSrvRccciveWSCommand receives a word serial command and
places the command and its size in the locations pointed to by
Command_Ptr and Command_Size_Ptr, respectively. The function
then configures the interface hardware for future word serial
command reception.

Command_Size_Ptr points to a location where the function places
the size of the received word serial command:

*Command Size Ptr

EPC_16_BIT

EPC_32_BIT

Description

Received a 16-bit word serial
command.

Received a 32-bit long word serial
command (EPC-7 only).

The following constants specify valid values for the
Enable_Next_Command parameter:

EpcSrvReceiveWSCommand

Constant

EPC_DISABLE_ALL

EPC_ENABLE_ WRDY

EPC_ENABLE_DIR

EPC_ENABLE_DOR

EPC_ENABLE_ALL

Description

Disable word serial command
reception.

Enable word serial command
reception by asserting WRDY and
deasserting both DIR and DOR.

Enable word serial command
reception and data input by asserting
both WRDY and DIR and
deasserting DOR.

Enable word serial command
reception and data output by
asserting both WRDY and DOR and
deasserting DIR .

Enable word serial command
reception, data input, and data output
by asserting WRDY, DIR, and DOR.

Word serial command reception must be enabled before attempting
to receive a word serial command. Otherwise,
EpcSrvReceiveWSCommand returns invalid word serial command
data. Use EpcSrvEnableWSCommand to enable initial word
serial command reception.

Occasionally, it's useful to receive a word serial command without
destroying the contents of the interface's message registers. To
receive a word serial command without destroying the contents of
the interface's message registers, use EpcSrvReceiveWSCommand
with an Enable_Next_Command parameter value of
EPC_DISABLE_ALL. This allows a subsequent call to
EpcSrvReceiveWSCommand to receive the same word serial
command. Note that either enabling word serial command reception
or (on an EPC-7) sending a word serial command response
overwrites the contents of the interface's message registers,
destroying any data preserved there.

2-167

Bus Management for Windows Programmer's Reference

On an EPC-7 or EPC-8, the function returns EPC_DIR_ERR when
a Byte Available or Trigger word serial command is received and
the interface is not enabled for data input (e.g., interface's DIR bit is
clear). Likewise, on an EPC-7 or EPC-8, the function returns
EPC_DOR_ERR when a Byte Request word serial command is
received and the interface is not enabled for data output (e.g., the
interface's DOR bit is clear). Use EpcSrvSendWSProtocoIError
to send protocol errors to the commander device.

EPConnect does not support receiving a word serial command on a
VXLink interface. Attempting to use the function on a VXLink
interface results in an EPC_INV _HW error.

Return Value The function returns a Bus Management return value:

2-168

EPC_DIR_ERR

EPC_DOR_ERR

EPC_INV _ENABLE

EPC_INV_HW

EPC_INV _PTR

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

A word serial command protocol
DIR violation error occurred.

A word serial command protocol
DOR violation error occurred.

The parameter
E11able_Next_Command is invalid.

The interface does not support
enabling word serial command
reception.

One or more of parameters
Comma11d_Ptr and
Command_Size_Ptr is invalid.

The specified Sessio11_!D is invalid.

The BusManager device driver is not
present.

Shared interface hardware is locked
by another session.

EPC_RECV _TIMEOUT A timeout occurred waiting for a
word serial command.

EPC_SUCCESS The function completed successfully.

See Also

EpcSrvReceiveWSCommand

EpcOpenSession, EpcSrvEnable WSCommand,
EpcSrvSendWSResponse.

I

2-169

Bus Management for Windows Programmer's Reference

EpcSrvSendProtocolEvent

Description

C Synopsis

Sends a protocol event to the commander device.

#include "busmgr.h"

short FAR PASCAL
EpcSrvSendProtocolEvent(unsigned long

unsigned short
unsigned long
unsigned short

Session_ID,
ULA,
Method_Mask,
Protocol_Event);

Session_ID

ULA

Method_Mask

Protocol_Event

Session_ID specifies a session.

ULA specifies the unique logical
address of the commander device.

Method_Mask specifies the method to
use for sending the protocol event.

Protocol_Event specifies a protocol
event.

ULA is unused when Metlwd_Mask specifies a VMEbus interrupt.

Visual Basic Synopsis

Remarks

2-170

EpcSrvSendProtoco1Event% Lib "bmvxiw 16.dll"
(ByVal Session_ID&,
ByVal ULA%,
ByVal Method_Mask&,
ByVal Protocol_Evento/o)

EpcSrvSendProtocoIEvent sends the VMEbus protocol event
Protocol_Event to the commander device at unique logical address
ULA.

EpcSrvSendProtocolEvent

Method_Mask specifies the method to use for sending the protocol
event. Valid values are:

Metlzod Mask

EPC_ VMEl_INT

EPC_ VME7_INT

EPC_SIGNAL_REG

Description

VMEbus interrupt 1 (EPC-7 only).

VMEbus interrupt 7 (EPC-7 only).

Write to the commander device's
signal register.

The function always overwrites the lower eight bits of the specified
Protocol_Event parameter with the unique logical address of the
interface.

On an EPC-7, using a VMEbus interrupt to send a protocol event
requires the use of the EPC-7's message high register. Receiving 32-
bit long word serial commands also requires the use of the EPC-Ts
message high register. Therefore, using a VMEbus interrupt to send
a protocol event while simultaneously receiving 32-bit long word
serial commands can have unpredictable results. Note, however, that
no conflict occurs when using a VMEbus interrupt to send a
protocol event while simultaneously receiving 16-bit word serial
commands.

2-171

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

2-172

EPC_BERR

EPC_INV _ASSERT

EPC_INV _EVENT

EPC_INV _METHOD

EPC_INV _SESSION

EPC_INV_SW

EPC_INV _ULA

EPC_LOCKED

EPC_SUCCESS

EpcOpcnSession.

A bus error occurred writing the
protocol event into the commander
device's signal register.

The interface is already asserting a
VMEbus interrupt.

The parameter Protocol_Event is
invalid.

The parameter Method_Mask is invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

The parameter ULA is invalid.

Shared interface hardware is locked by
another session.

The function completed successfully.

EpcSrvSendWSProtocolError

EpcSrvSendWSProtocolError

Description

C Synopsis

Sends a word serial protocol error to the commander device.

#include "busmgr.h"

short
EpcSrvSendWSProtocolError

Session_ID

Protocol_Error

Enable_Next_Command

Timeout

(unsigned long Session_ID,
unsigned short Protocol_Error,
unsigned short £11able_Next_Comma11d,

unsigned long Timeout);

Session_ID specifies a session.

Protocol_Error specifies a Read
Protocol Error word serial command
response.

Enable_Next_Command specifies
whether to enable the interface
hardware to receive the another word
serial command.

Timeout specifies the number of
milliseconds to wait for a word serial
command. Timeout also specifies
the number of milliseconds to wait
for a commander to read a word
serial command response.

Visual Basic Synopsis

Declare Function
EpcSrvSendWSProtoco1Error% Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
ByVal Protocol_Error%,
ByVal Enable_Next_Command%,
ByVal Timeout&)

2-173

I

Bus Management for Windows Programmer's Reference

Remarks

2-174

EpcSrvSendWSProtocolError notifies a commander device that a
word serial protocol error has occurred by asserting the interface's
response register Write Ready and Err* bits. The function then
either:

• receives a READ PROTOCOL ERROR word serial
command, deasserts the interface's response register Err* bit,
sends the specified Protocol_Error response, and optionally
enables reception of the next word serial command, or

• receives an ABORT NORMAL OPERATION word serial
command, deasserts the interface's response register Err* bit,
and returns EPC_RECV _ANO.

• receives a CLEAR word serial command, deasserts the
interface's response register Err* bit, and returns
EPC_RECV _CLEAR.

• receives an END NORMAL OPERATION word serial
command, deasserts the interface's response register Err* bit,
and returns EPC_RECV _ENO.

All word serial commands received while the interface is waiting for
either a READ PROTOCOL ERROR word serial command, an
ABORT NORMAL OPERATION, a CLEAR, or an END
NORMAL OPERATION are discarded.

EpcSrvSendWSProtocolError

The following constants specify valid values
Enable_Next_Command parameter:

Constant

EPC_DISABLE_ALL

Description

Disable word serial command
reception.

for the

EPC_ENABLE_ WRDY Enable word serial command reception
by asserting WRDY and deasserting
both DIR and DOR.

EPC_ENABLE_DIR Enable word serial command reception
and data input by asserting both
WRDY and DIR and deasserting DOR.

EPC_ENABLE_DOR Enable word serial command reception
and data output by asserting both
WRDY and DOR and deasserting DIR.

EPC_ENABLE_ALL Enable word serial command
reception, data input, and data output
by asserting WRDY, DIR, and DOR.

On an EPC-7, any outgoing word serial command response must be
read from the interface's message registers by the interface's
commander device before attempting to notify a commander device
that a word serial protocol error has occurred. Otherwise, additional
word serial protocol violations can occur. Successful completion of
EpcSrvSendWSRcsponsc indicates that an outgoing word serial
command response has been read from the interface's message
registers.

EPConnect does not support sending a word serial protocol error on
VXLink interfaces. Attempting to use the function on an
unsupported interface results in an EPC_INV _HW error.

Return Value The function returns a EPConnect return value:

EPC_INV _ENABLE

EPC_INV _ERROR

The parameter
E11able_Next_Co111111a11d is invalid.

The parameter Protocol_Error is
invalid.

2-175

I

Bus Management for Windows Programmer's Reference

EPC_INV_HW

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_RECV _ANO

EPC_RECV _CLEAR

EPC_RECV _ENO

EPC_RECV _TIMEOUT

EPC_SEND_TIMEOUT

EPC_SUCCESS

The interface hardware does not
support sending a word serial
protocol error.

The specified Session_ID is invalid.

The Bus Manager device driver is
not present.

Shared interface hardware is locked
by another session.

The interface received an ABORT
NORMAL OPERATION
command.

The interface received a CLEAR
word serial command.

The interface received an END
NORMAL OPERATION word
serial command.

A timeout occurred receiving a
word serial command.

A timeout occurred sending a word
serial command response.

The function completed
successfully.

See Also EpcOpcnSession, EpcSrvSendWSResponse.

2-176

EpcSrvSendWSResponse

EpcSrvSendWSResponse

Description

C Synopsis

Sends a word serial command response to the commander device.

#include "busmgr.h"

short FAR PASCAL
EpcSrvScndWSRcsponse

(unsigned long
void FAR*
unsigned short
unsigned short
unsigned long

Session_ID

Response_Ptr

Response_Size

Enable_Next_ Command

Timeout

Session_ID,
Response_Ptr,
Response_Size,
E11able_Next_ Comma11d,
Timeout);

Session_ID specifies a session.

Response_Ptr specifies the location of a
word serial command response.

Response_Size specifies the size of the
word serial command response.

Enable_Next_Command specifies
whether to enable the interface
hardware to receive the another word
serial command.

Timeout specifies the number of
milliseconds to wait for a commander
to read the word serial command
response.

Visual Basic Synopsis

Declare Function
EpcSrvSendWSResponseo/o Lib "bmvxiwl6.dll"

(ByVal Session_ID&,
Response_Ptr As Any,
ByVal Respo11se_Size%,
ByVal E11able_Next_Comma11do/o,
ByVal Timeout&)

2-177

Bus Management for Windows Programmer's Reference

Remarks

2-178

EpcSrvSendWSResponse optionally sends the word serial
command response at the location pointer to by Response_Ptr to a
commander device. The function then configures the interface
hardware for future word serial command reception.

Response_Size specifies the size of the word serial command
response:

Response Size

EPC_16_BIT

EPC_32_BIT

Description

Send a 16-bit word serial command response.

Send a 32-bit long word serial command
response. (EPC-7 only)

The following constants specify valid values for the
Enable_Next_ Command parameter:

Constant

EPC_DISABLE_ALL

Description

Disable word serial command
reception.

EPC_ENABLE_ WRDY Enable word serial command
reception by asserting WRDY and
deasserting both DIR and DOR.

EPC_ENAilLE_DIR Enable word serial command
reception and data input by asserting
both WRDY and DIR and
deasserting DOR.

EPC_ENABLE_DOR

EPC_ENABLE_ALL

Enable word serial command
reception and data output by
asserting both WRDY and DOR and
deasserting DIR.

Enable word serial command
reception, data input, and data output
by asserting WRDY, DIR, and DOR.

EpcSrvSendWSResponse

On an EPC-7, sending a word serial command response while word
serial command reception is enabled can result in a word serial
protocol violation by allowing the commander device to write over
the word serial command response.

Occasionally, it is useful to ensure that a word serial response has
been read without destroying the contents of the interface's message
registers. To ensure that a word serial response has been read
without destroying the contents of the interface's message registers,
use EpcSrvSendWSResponse with a Response_Ptr parameter
value of null and an Enable_Next_Command parameter value of
EPC_DISABLE_ALL. Such a call tests that a word serial
command response has been read from the interface's message
registers without destroying the contents of the registers. Note that
either enabling word serial command reception or sending a word
serial command response overwrites the contents of the interface's
message registers, destroying any data preserved there.

The function returns EPC_MULTIPLE_ERR if the Response_Ptr
parameter is not null and previously sent response data remains
unread in the interface's message registers.

The function returns EPC_SEND_TIMEOUT if a commander
device does not read the word serial command response within the
specified timeout time. If this error occurs, the word serial
command response remains in the interface message register.

EPConnect does not support sending a word serial command
response on a VXLink interface. Attempting to use the function on a
VXLink interface results in an EPC_INV _HW error.

2-179

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

II
EPC_INV _ENABLE The parameter

Enable_Next_Command is invalid.

EPC_INV _SESSION The specified Session_!D is
invalid.

EPC_INV_HW The interface does not support
sending a word serial command
response.

EPC_INV _SIZE The parameter Response_Size is
invalid.

EPC_INV_SW The BusManager device driver is
not present.

EPC_LOCKED Shared interface hardware is locked
by another session.

EPC_MUL TIPLE_ERR A word serial protocol multiple
queries error occurred.

EPC_SEND_TIMEOUT A timeout occurred waiting for a
commander to read the word serial
command response.

EPC_SUCCESS The function completed
successfully.

See Also EpcOpcnScssion, EpcSrvEnablcWSCommand.

2-180

EpcSwap16

Description

C Synopsis

EpcSwap16

Byte-swaps a 16-bit value.

#include "busmgr.h"

short FAR PASCAL
EpcSwapl6(unsigned short FAR *Value_Ptr);

Value_Ptr Value_Ptr
containing
byte-swap.

specifies a location
a 16-bit value to

Visual Basic Synopsis
Declare Function
EpcSwapl6% Lib "bmvxiw16.dll" (Value_Ptro/o)

Remarks EpcSwap16 byte-swaps the 16-bit value in the location pointed to
by Value_Ptr.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _PTR

EPC_SUCCESS

The parameter Value_Ptr is invalid.

The function completed
successfully.

EpcSwapBuffer, EpcSwap32, EpcSwap48, EpcSwap64,
EpcSwap80.

See EpcSwapBuffer.

2-181

I

Bus Management for Windows Programmer's Reference

EpcSwap32

Description

C Synopsis

Byte-swaps a 32-bit value.

#include "busmgr.h"

short FAR PAS CAL
EpcSwap32(unsigned long FAR*Value_Ptr);

Va!t1e_Ptr Value_Ptr specifies a location
containing a 32-bit value to byte-swap.

Visual Basic Synopsis
Declare Function
EpcSwap32% Lib "bmvxiwl6.dll" (Value_Ptr&)

Remarks EpcSwap32 byte-swaps the 32-bit value in the location pointed to
by Value_Ptr.

Return Value The function returns a Bus Management return value:

See Also

Example

2-182

EPC_INV _PTR

EPC_SUCCESS

The parameter Value_Ptr is invalid.

The function completed successfully.

EpcSwapBuffer, EpcSwap16, EpcSwap48, EpcSwap64,
EpcSwapSO.

See EpcSwapBuffcr.

EpcSwap48

Description

C Synopsis

EpcSwap48

Byte-swaps a 48-bit value.

#include "busmgr.h"

short FAR PASCAL
EpcSwap48(void FAR*Value_Ptr);

Value_Ptr Value_Ptr specifies a location
containing a 48-bit value to
byte-swap.

Visual Basic Synopsis

Declare Function
EpcSwap48% Lib "bmvxiwl6.dll" (Value_Ptr As Any)

Remarks EpcSwap48 byte-swaps the 48-bit value in the location pointed to
by Value_Ptr.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _PTR

EPC_SUCCESS

The parameter Value_Ptr is invalid.

The function completed
successfully.

EpcSwapBuffer, EpcSwap16, EpcSwap32, EpcSwap64,
EpcSwap80.

See EpcSwapBuffer.

2-183

I

Bus Management for Windows Programmer's Reference

EpcSwap64

Description

C Synopsis

Byte-swaps a 64-bit value.

#include "busmgr.h"

short FAR PASCAL
EpcSwap64(void FAR*Value_Ptr);

Value_Ptr Value_Ptr specifies a location containing a 64-bit
value to byte-swap.

Visual Basic Synopsis

Declare Function
EpcSwap64% Lib "bmvxiwl6.dll" (Va/ue_Ptr As Any)

Remarks EpcSwap64 byte-swaps the 64-bit value in the location pointed to
by Value_Ptr.

Return Value The function returns a Bus Management return value:

See Also

Example

2-184

EPC_INV _PTR The parameter Value_Ptr is invalid.

EPC_SUCCESS The function completed successfully.

EpcSwapBuffer, EpcSwapl6, EpcSwap32, EpcSwap48,
EpcSwapSO.

See EpcSwapBuffer.

EpcSwap80

Description

C Synopsis

EpcSwap80

Byte-swaps an 80-bit value.

#include "busmgr.h"

short
EpcSwap80(void FAR*Value_Ptr);

Value_Ptr Value_Ptr specifies a location containing
a 80-bit value to byte-swap.

Visual Basic Synopsis
Declare Function
EpcSwap80% Lib "bmvxiwl6.dll" (Value_Ptr As Any)

Remarks EpcSwap80 byte-swaps the 80-bit value in the location pointed to
by Value_Ptr.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _PTR

EPC_SUCCESS

The parameter Value_Ptr is invalid.

The function completed successfully.

EpcSwapBuffcr, EpcSwap16, EpcSwap32, EpcSwap48,
EpcSwap64.

See EpcSwapBuffer.

2-185

Bus Management for Windows Programmer's Reference

EpcSwapBuffer

Description

C Synopsis

Byte-swaps a buffer of data.

#include "busmgr.h"

short FAR PASCAL
EpcSwapBuffer(void FAR * Buffer _Ptr,

unsigned long Buffer _Size,
unsigned short Width);

Buffer _Ptr

Buffer _Size

Width

Buffer _Ptr specifies the location of
a buffer of data elements to
byte-swap.

Buffer _Size specifies the size of the
specified data buffer, in bytes.

Width specifies the width of the
individual data elements in the
specified data buffer.

Visual Basic Synopsis

Remarks

2-186

Declare Function
EpcSwapBuffer% Lib "bmvxiw\6.dll" (Buffer_Ptr As Any, ByVal
Buffer_Size&, ByVal Width%)

EpcSwapBuffer byte-swaps the array of data elements at the
location pointed to by Buffer _Ptr.

EpcSwapBuffer

Width specifies the width of the individual data elements in the
specified data buffer, in bytes. Valid values arc:

EPC_8_BIT

EPC_16_BIT

EPC_32_BIT

EPC_48_BIT

EPC_64_BIT

EPC_80_IllT

Description

The specified buffer contains
Buffer _Size 8-bit data elements.

The specified buffer contains
Buffer _Size/2 16-bit data elements.

The specified buffer contains
Buffer _Size/4 32-bit data elements.

The specified buffer contains
Buffer _Size/6 48-bit data elements.

The specified buffer contains
Buffer _Size/8 64-bit data elements.

The specified buffer contains
Buffer _Size/I 0 80-bit data elements.

The function assumes that all of the data elements in the specified
buffer are the same size.

The function does not limit Buffer _Size to less than 64 Kbytes, nor
does it make any attempt to detect the end of the buffer segment.
The function wraps around to the beginning of the buffer segment if
Buffer _Size is too large.

Return Value The function returns a Bus Management return value:

See Also

EPC_INV _PTR

EPC_INV _SIZE

EPC_INV _WIDTH

EPC_SUCCESS

The parameter Buffer _Ptr is invalid.

The parameter Buffer _Size is not a
multiple of Width.

The parameter Width is invalid.

The function completed successfully.

EpcSwap16, EpcSwap32, EpcSwap48, EpcSwap64, EpcSwap80.

2-187

Bus Management for Windows Programmer's Reference

Example
1·

• Copyright 1994 by RadiSys Corporation. All rights reserved.
•1

1-
• byteord.c -- Bus Management Library byte order functions sample code.
•1

#include "busmgr.h"

1 •
.. FUNCTION PROTOTYPES ...
-1

short FAR
ByteOrdSample(void);

int FAR
WinPrintf (char FAR •Format_Ptr, ...) ;

1-
.. GLOBAL DATA ...
.. I

unsigned char Valuel6 [J
unsigned char Value32[]
unsigned char Value48[]
unsigned char Value64 [J
unsigned char Value80[)

1 •
.. CODE ...
•1

short FAR
ByteOrdSample(void)
(

I•

OxOO, Oxll
OxOO, Oxll,
OxOO, Oxll.
OxOO, Oxll.
OxOO, Oxll,
Ox55, Ox66,

};

Ox22, Ox33);
Ox22, Ox33, Ox44, Ox55 };
Ox22, Ox33, Ox44, Ox55, Ox66, Ox77
Ox22, Ox33, Ox44,
Ox77, Ox88, Ox99);

};

••Byte-swap a 16-bit value, then byte-swap it back to its original order.

••NOTES:

•1

1. For the sake of example, the code uses both EpcSwapl6() and
EpcSwapBuffer() to swap the data.

EpcSwap16((unsigned short FAR•) Valuel6);
EpcSwapBuffer((void FAR•) Valuel6, sizeof(Value16), EPC_16_BIT);

I••
••Byte-swap a 32-bit value, then byte-swap it back to its original order.

••NOTES:

·1

1. For the sake of example, the code uses both EpcSwap32() and
EpcSwapBuffer() to swap the data.

EpcSwap32((unsigned long FAR•) Value32);
EpcSwapBuffer((void FAR•) Value32, sizeof(Value32), EPC_32_BIT);

I•
••Byte-swap a 48-bit value, then byte-swap it back to its original order.

2-188

EpcSwapBuffer

' NOTES:

'I

1. For the sake of example, the code uses both EpcSwap48() and
EpcSwapBuffer() to swap the data.

EpcSwap48((void FAR') Value48);
EpcSwapBuffer((void FAR') Value48, sizeof(Value48), EPC_48_BIT);

I'
• Byte-swap a 64-bit value, then byte-swap it back to its original order.

0 NOTES:

•1

1. For the sake of example, the code uses both EpcSwap64() and
EpcSwapBuffer() to swap the data.

EpcSwap64({void FAR•) Value64);
EpcSwapBuffer((void FAR') Value64, sizeof(Value64), EPC_64_BIT);

1 •
Byte-swap a 80-bit value, then byte-swap it back to its original order.

• NOTES:

•I

1. For the sake of example, the code uses both EpcSwap80() and
EpcSwapBuffer() to swap the data.

EpcSwap80({void FAR•) ValueBOJ;
EpcSwapBuffer((void FAR•) Value80, sizeof(Value80), EPC_BO_BIT);
WinPrintf("SUCCESS: ByteOrdSample() complete.\n");
return (EPC_SUCCESS);

2-189

I

I

Bus Management for Windows Programmer's Reference

EpcUnlockSession

Description

C Synopsis

Unlocks shared interface hardware for a session.

#include "busmgr.h"

short FAR PASCAL
EpcUnlockSession(unsigned long Session_ID);

Session_!D Session_!D specifies a session.

Visual Basic Synopsis

Declare Function
EpcUnlockSession% Lib "bmvxiwl6.dll" (ByVal Session_!D&)

Remarks EpcUnlockScssion unlocks shared interface hardware for the
specified Session_!D.

Return Value The function returns a Bus Management return value:

See Also

Example

2-190

EPC_INV _SESSION

EPC_INV_SW

EPC_NOT _LOCKED

EPC_SUCCESS

The specified Session_!D is invalid.

The BusManager device driver is not
present.

Shared interface hardware is not locked
by the specified session.

The function completed successfully.

EpcLockScssion, EpcOpcnSession.

See EpcGetLockingTimcout.

EpcUnmapBusMemory

EpcUnmapBusMemory

Description

C Synopsis

Destroys a bus memory mapping.

#include "busmgr.h"

short FAR PASCAL
EpcUnmapBusMcmory(unsigned long Session_ID,

Session_/ D

Mapped_Ptr

volatile void HUGE *Mapped_Ptr);

Sessio11_/D specifies a bus session.

Mapped_Ptr specifies a pointer to
mapped bus memory.

Visual Basic Synopsis

Declare Function
EpcUnmapBusMcmory% Lib "bmvxiwl6.dll" (ByVal
Sessio11_1D&, ByVal Mapped_Ptr As Any)

Remarks EpcUnmapBusMcmory destroys a bus memory mapping.

Return Value The function returns a Bus Management return value:

See Also

Example

EPC_INV _MAP

EPC_INV _SESSION

EPC_INV _USAGE

EPC_OS_ERROR

EPC_SUCCESS

The specified Mapped_Ptr is invalid.

The specified Session_ID is invalid.

The mapping specified by
Mapped_Ptr is in use by another
thread.

An operating system error occurred.

The function completed successfully.

EpcMapBusMemory, EpcOpcnSession.

See EpcCopyData.

2-191

Bus Management for Windows Programmer's Reference

EpcUnmapSharedMemory

Description Destroys a shared memory mapping.

C Synopsis
#include "busmgr.h"

short FAR PASCAL
EpcUnmapSharedMemory(unsigned long Session_ID,

Session_! D

Mapped_Ptr

volatile void HUGE* Mapped_Ptr);

Session_ID specifies a bus session.

Mapped_Ptr specifies a pointer to
mapped shared memory.

Visual Basic Synopsis

Declare Function
EpcUnmapSharcdMemory% Lib "bmvxiwl6.dll" (ByVal
Session_ID&, By Val Mapped_Ptr As Any)

Remarks EpcUnmapSharcdMemory destroys a shared memory mapping.

Return Value The function returns a Bus Management return value:

See Also

Example

2-192

EPC_INV _MAP

EPC_INV _SESSION

EPC_INV_SW

EPC_INV _USAGE

EPC_OS_ERROR

EPC_SUCCESS

The specified Mapped_Ptr is
invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

The mapping specified by
Mapped_Ptr is in use by another
thread.

An operating system error occurred.

The function completed successfully.

EpcMapSharcdMemory, EpcOpcnScssion.

See EpcCopyData.

EpcValidateBusMapping

EpcValidateBusMapping

C Synopsis

Remarks

Validates a bus memory mapping that uses dynamically configured
bus window hardware.

#include "busmgr.h"

short FAR PASCAL
EpcValidateBusMapping(unsigned long Session_ID,

Session_! D

Mapped_Ptr

volatile void HUGE* Mapped_Ptr);

Session_ID specifies a bus session.

Mapped_Ptr specifies a pointer to
mapped bus memory.

EpcValidateBusMapping configures an interface's dynamically
configured bus window hardware with the attributes of the specified
bus memory mapping.

The function supports direct bus access for bus memory mappings
created using EpcMapBusMcmoryExt. The function is a no-op
for bus memory mappings created using EpcMapBusMemory.

Direct bus access using dynamically configured bus window
hardware requires using EpcValidateBusMapping before a group
direct bus accesses to ensure that the bus window references the
desired bus memory.

On an operating system that supports multiple processes or threads
(any non-DOS operating system), direct bus access using
dynamically configured bus windows also requires a mechanism for
protecting the bus window hardware from reconfiguration during
the bus accesses. In a non-preemptive environment (like Windows),
simply insuring that all direct bus accesses complete before giving
up the processor is sufficient.

2-193

I

Bus Management for Windows Programmer's Reference

Return Value

See Also

2-194

In an environment with a preemptive scheduling algorithm (like
LynxOS or OS/2), direct bus access using dynamically configured
bus window hardware also requires using EpcLockSession and
EpcValidateBusMapping before a group of direct bus accesses
and EpcUnlockSession after the direct bus access is complete.
Using EpcLockSession and EpcUnlockSession insures that another
thread does not reconfigure the dynamically configured bus window
hardware during the access.

The function returns a EPConnect return value:

EPC_INV _MAP

EPC_INV _SESSION

EPC_INV_SW

EPC_LOCKED

EPC_OS_ERROR

EPC_SUCCESS

The specified Mapped_Ptr is invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present.

Shared interface hardware is locked
by another bus session.

An operating system error occurred.

The function completed successfully.

EpcMapBusMemory, EpcMapBusMemoryExt,
EpcLockSession, EpcOpenSession, EpcUnlockSession.

EpcVerifyEnvironment

EpcVerifyEnvironment

Description

C Sy11opsis

Verifies and queries the EPConnect environment.

#include "busmgr.h"

short FAR PASCAL
EpcVerifyEnvironment(struct EpcEnvironment FAR
* Enviro11me11t_Ptr);

E11viro11ment_Ptr E11viron111e11t_Ptr specifies a location
where data describing the EPConnect
environment will be placed.

Visual Basic Sy11opsis

Remarks

Declare Function
Epc Verify Environment% Lib "bmvxiw 16.dll" (E11viro11ment_Ptr
As Any)

EpcVerifyEnvironment verifies the EPConnect environment and
places data describing the environment in the structure pointed to by
Enviro11ment_Ptr.

The returned EPConnect environment structure contains a complete
description of the underlying hardware and software. The structure
also contains a complete description of the Bus Management
Library features supported by the underlying software and
hardware:

struct EpcEnvironment

/* Hardware, firmware, and software revision attributes. */

unsigned char HWRevision;

unsigned char BIOSMajorRevision;
unsigned char BIOSMinorRevision;
unsigned char SWMajorRevision;
unsigned char SWMinorRevision;

/* Hardware revision number: */
1° EPC_7 */

1° EPC_B */
/* VXLink_ISA •/
I* BIOS major revision number. *I
/* BIOS minor revision number. */
/* Software major rev1s1on number.*/
/* Software minor revision number.*/

2-195

I

I

Bus Management for Windows Programmer's Reference

/* Memory mapping attributes. .,
unsigned char IsHWByteSwap; t• Is the interface

/* swapping?
/* TRUE

capable of hardware byte * /
*/ .,

unsigned short AddressMod;

unsigned short ByteOrder;

/* FALSE
/* Valid address modifiers (OR"d
/* combination of):
!* EPC_Al6S
!* EPC_A24SD
I* EPC_A32SD
/* Valid byte ordering values (OR'd
1• combination of):
I* EPC_IBO ,. EPC_MBO

., .,
•1 .,
•1
•1 ., ., ., .,

unsigned short DataWidth; /* Valid data widths (OR'd combination of): •t
I* EPC_B_BIT • t
I*
I*
I*
I*

unsigned short MinAl6Address; /*
unsigned short MaxAl6Addres•; /*
unsigned long MinA24Addreas; t •
unsigned long MaxA24Address; I*
unsigned long MinA32Addreaa; /*
unsigned long MaxA32Addreas; /*

t• Event attributes. •/

EPC_B_BIT_ODD
EPC_16_BIT
EPC_32_BIT
EPC_FASTCOPY

Minimum accessible
Maximum accessible
Minimum accessible
Maximum accessible
Minimum accessible
Maximum accessible

Al6 address.
Al6 address.
A24 address.
A24 address.
A32 address.
A32 address.

unsigned long EventMask; t• Valid events (OR"d combination of):
I* ,. ,.
I* ,.
I*
I*
/*
I*
I* ,. ,. ,.

EPC_MSG_INT
EPC_VMEl_INT

EPC_VME7_INT
EPC_SIGNAL_INT
EPC_TTL_TRIGO_INT

EPC_TTL_TRIG7_INT
EPC_ACFAIL_ERR
EPC_BERR_ERR
EPC_SYSFAIL_ERR
EPC_WATCHDOG_ERR
EPC_SYSRESET_ERR

*/
*/
*/
*I .,
*I
•1
• / .,
*!
*/
*/
*/

t• EPC bus configuration attributes. */

unsigned short

unsigned short

unsigned short

unsigned short

2-196

BusEnable; ,. Valid bus enable attributes (OR'd ,. combination of):
I* EPC_DISABLE_BUS ,. EPC_ENABLE_BUS

BusArbMode; ,. Valid bus arbitration mode attributes ,. (OR'd combination of):
1• EPC_PRIORITY
/* EPC_ROUND_ROBIN

BusArbPriority; /* Valid bus arb priority attributes
/* (OR'd combination of):
/* EPC_PRIORITYO
I*
/*
/*

EPC_PRIORITYl
EPC_PRIORITY2
EPC_PRIORITY3

BusRelease;/• Valid bus release attributes (OR'd
I* combination of):

*/

*/
*/
*/ .,
•1
•I
•1
·1
*/

*/

*/
*/
*/
*/ .,
*/
*I
*/ .,
*/
*/

*/
*I
*/
*/

•/

EpcVerifyEnvironment

/*
/*

EPC_ROR
EPC_RONR

/* Miscellaneous configuration attributes. */

unsigned char IaBERRAaaertion; /* Is software capable of asserting the
/* sticky BERR bit? •/
/* TRUE */
/* FALSE */

unsigned long GetMiacMaak; /* Miscellaneous attributes that can be */
/* queried (OR'd combination of): */

unsigned long SetMiacMaak;

I* EPC_DIR •I
I•
/*
/*
/*
/*
/*
/*

t•
/*
/*
/*
/*
1•
/*
t•

EPC_DOR
EPC_ERR
EPC_LOCK
EPC_PASS
EPC_PIPELINE_BUSY
EPC_READY
EPC_RRDY
EPC_RSRC_MGR
EPC_STICKY_BERR
EPC_SYSFAIL_OUT
EPC_SYSRESET_IN
EPC_TTL_LATCHO

EPC_TTL_LATCH7
EPC_WATCHDOG

/* EPC_WRDY
/* Miscellaneous attributes
/* defined (OR'd combination
/* EPC_DIR
/*
/*
/*
/*
/*

/*
/*
I•
/*
t•
/*
1•

EPC_DOR
EPC_ERR
EPC_LOCK
EPC_PASS
EPC_READY
EPC_RESET
EPC_RRDY
EPC_RSRC_MGR
EPC_STICKY_BERR
EPC_SYSFAIL_OUT
EPC_SYSRESET_IN
EPC_WRDY

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

•1
*/
*/

that can
of):

*/
*/
*/

*/
*/
*/
•t
*/

•1
•t
•t
*/
*/

be

/* Slave memory configuration attributes. */

unsigned char IaSelfAcceaa; /* Is the I/F capable of slave memory */
/*self-accesses (via the VMEbus)? */
/* TRUE *I
/* FALSE */

unsigned short SlaveSpace; /* Valid slave memory address spaces */
/* (OR'd combination of): •;
/* EPC_DISABLED */
/* EPC_A24 */
/* EPC_A32 */

unsigned short SlaveWidth; /* Valid slave memory access widths (OR'd*/

unsigned long MinA24Slave;

/* combination of): */
t• EPC_B_BIT */
/* EPC_l6_BIT
/* EPC_32_BIT
/* Minimum A24 slave memory base
/* address.

*/
*/
•/
*/

*/
*/

.,
*/

*/

2-197

I

I

Bus Management for Windows Programmer's Reference

unsigned long MaxA24Slave; /* Maximum A24 slave memory base *I
/* address. */

unsigned long A24SlaveBaseinc; I* A24 slave memory base increment•/
unsigned long MinA32S1ave; ,. Minimum A32 slave memory base */ ,. address. .,
unsigned long MaxA32Slave; /* Maximum A32 slave memory base */

/* address. */
unsigned long A32SlaveBaseinc; /* A32 slave memory base increment• I

I* unique logical address configuration attributes. */
*I
*/

unsigned char Minot.A; /* Minimum valid ULA.
unsigned char MaxUt.A; /* Maximum valid ULA.

/* Bus line attributes. */

unsigned long GetBusLineMask; /* Bus control lines that can be queried •/
/* (OR'd combination of): */
/* EPC_ACFAIL */
I* EPC_SYSFAIL */
/• EPC_SYSRESET •t

unsigned long GetBu•MODIDMask; /* Bus MODID lines that can be queried */
/* (OR'd combination of): */
/* EPC_SLO'l'_MODID */
/ • EPC_MODIDO
/*
/* EPC_MODID12

*/
*/

•1
unsigned long GetBU&TriggerMask;

/*
/* Bus trigger lines that
(OR'd combination of):

can be queried
*/

/• EPC line attributes. •/

unsigned long GetEpcLineMask;

unsigned long SetEpcLineMask;

unsigned long SetEpcMODIDMask;

/* ,. EPC_ECL_TRIGO
EPC_ECL_TRIG1

/* EPC_TTL_TRIGO
/*
/* EPC_TTL_TRIG7

/* I/f control lines
/* (OR'd combination
I* EPC_SYSFAIL
1• EPC_SYSRESET
/* I/f control lines
/* (OR'd combination
1• EPC_SYSFAIL
/* EPC_SYSRESET

that can be queried
of):

that can be defined
ofl:

,. I/f MODID lines that can be defined
/*
/* , .
/ *

(OR'd combination of):
EPC_MODIDO

EPC_MODID12

•1
*/
*/
*/
*/

.,
*/
*/

'"I
*/
*/ .. ,
*/
*/
*/ .. ,
*/

"'!

*/

unsigned long GetEpcTriggerMask;
I*
/* ,.

/* I/f trigger lines that can be queried */

/*
!*
/*

(OR• d combination of): .. I
EPC_ECL_TRIGO */
EPC_ECL_TRIG1
EPC_TTL_TRIGO

*/
*/
*/

EPC_TTL_TRIG7 */

unsigned long SetEpcTriggerMask; /* I/f trigger lines that can be queried •/

unsigned long InTriggerMask;

2-198

/ *
/*
/*
/*
/*

(OR'd combination of): */
EPC_ECL_TRIGO */

EPC_ECL_TRIGl */
EPC_TTL_TRIGO */ .,

I'" EPC_TTL_TRIG7 */
/ / I/f trigger lines used as an

EpcVerifyEnvironment

/* input trigger in a trigger mapping */
/* operation (OR'd combination of): */
/* EPC_TTL_TRIGO */
/* */
/* EPC_TTL_TRIG7 */

unsigned long OUtTriggerMaak[EPC_TRIGGER_CNT];
/* I/f trigger lines that can be used as */
/* output triggers in a trigger mapping */
/* operation (one array element for each */

/* potential input trigger; each entry is an */
t• OR'd combination of): */
/ 0 EPC_TTL_TRIGO */

I* *I ,. EPC_TTL_TRIG7 */

/* Watchdog timer attributes. */

unsigned short WatcbdogCfg; ,. ,. ,. ,. ,. ,.
/* Servant attributes. */

/* Valid watchdog timer configuration
constants (OR'd combination of):

EPC_WDT_RESET
EPC_WDT_FAST_ERROR
EPC_WDT_FAST_RESET
EPC_WDT_SLOW_ERROR
EPC_WDT_SLOW_RESET

*/

*I
*/
*/
*/ .,
*/

unsigned char IaProtocolError; /* Is the EPC capable of signaling a */

unsigned short WSSize;

/* protocol error to its commander? */
I* TRUE • /
/ 0 FALSE
/* Valid word serial command/response
/* sizes (OR'd combination of):
/ 0 EPC_l6_BIT
/* EPC_32_BIT
/ 0 EPC 48_BIT

unsigned short EnableNextCommand; /* Valid word serial command enable
/* constants (OR'd combination of):

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/ ., unsigned long MethodMask;

unsigned
unsigned
unsigned
unsigned

short IRQ;
short IOBase;
long WindowBase;
long WindowSize;

/ 0 EPC_DISABLE_ALL
/ 0 EPC_ENABLE_WRr•Y ,.
/* ,.

EPC_ENABLE_DIR
EPC_ENABLE_OOR
EPC_ENABLE_ALL

/* Valid methods for sending protocol
/* events (OR'd combination of):
/* EPC_VMEl INT
/*
/* EPC_VME7 INT
/* EPC_SIGNAL_REG
/* PC-AT IRQ used.
/* I/O base address.
/* Bus window base address.
/* Bus window size, in bytes.

., ., .,
*/
•I
*/ .,
*/

2-199

I

} ;

Bus Management for Windows Programmer's Reference

/* Dynamic memory mapping attributes. */

unsigned char IsHWByteSwapExt; /* Is the interface capable of hardware */
/* byte swapping? */
I* TRUE *I
t• FALSE •/

unsigned short AddressModExt; /* Valid address modifiers (OR'd .. /

unsigned short

/* combination of): */
/*
/*
/*

/*
/*
I*
/*
/*

I*

EPC_Al6N *I
EPC_Al6S *I
EPC_A24ND •t
EPC_A2 4NP */
EPC_A24SD *I
EPC_A24SP *I
EPC_A32ND *I
EPC_A32NP *I
EPC_A32SD .. /

/* EPC_A32SP */
ByteOrderExt, /* Valid byte ordering values (OR'd

1• combination of): */
EPC_IBO *I
EPC_MBO *I

*"/

unsigned short
*I

/*
/*

DataWidthExt; /* Valid data widths (OR'd combination of):

I* EPC_B_BIT *I
I* EPC_B_BIT_ODD ,./
I* EPC_l 6_BIT *I
I* EPC_3 2_BIT *I
I** EPC_FASTCOPY *I

unsigned short MinA16AddressExt; /* Minimum accessible Al6 address.*/
unsigned short MaxA16AddressExt; /* Maximum accessible Al6 address.*/
unsigned long MinA24AddressExt; /* Minimum accessible A24 address. */
unsigned long MaxA24AddressExt; /* Maximum accessible A24 address. */
unsigned long MinA32AddressExt; /* Minimum accessible A32 address. */
unsigned long MaxA32AddressExt; /* Maximum accessible A32 address. */

unsigned long Reserved[6]; I• Reserved area (for future expansion) . •I

2-200

EpcVerifyEnvironment

Return Value The function returns a Bus Management return value:

Example

EPC_INV _HW EPConnect does not support this revision of
interface hardware.

EPC_INV _PTR The parameter Environment_Ptr is invalid.

EPC_INV _SW The BusManager device driver is not present
or there is a revision mismatch between the
Bus Management Library and the
BusManager VxD.

EPC_SUCCESS The function completed successfully.

See EpcGetErrorString.

2-201

Bus Management for Windows Programmer's Reference

EpcWaitForEvent

Description

C Synopsis

Wait for an event to occur.

#include "busmgr.h"

short FAR PASCAL
EpcWaitForEvent(unsigned long Session_ID,

unsigned long Timeout,
unsigned long Wait_Mask,
unsigned long FAR * Event_Mask_Ptr,
unsigned long FAR * Event_Data_Ptr);

Session_ID Session_ID specifies a session.

Timeout Timeout specifies the number of
milliseconds to wait for an enabled
event to occur.

Wait_Mask

Evellt_Mask_Ptr

Evem_Data_Ptr

Wait_Mask specifies the events to
await.

Event_,Mask_Ptr specifies a location
where an event mask that specifies
the occurring event will be placed.

Event_Data_Ptr specifies a location
where event data from the occurring
event will be placed.

Visual Basic Synopsis

2-202

Declare Function
EpcWaitForEvcnt% Lib "bmvxiwl6.dll"

(ByVal Sessio11_1D&,
ByVal Timeout&,
ByVal Wait_Mask&,
Event_Mask_Ptr&,
Evem_Data_Ptr&)

Remarks

EpcWaitForEvent

EpcWaitForEvcnt waits at least Timeout milliseconds for one of
the events specified by Wait_Mask to occur, then places an event
mask identifying the event and the event's data in the locations
pointed to by Event_Mask_Ptr and Evem_Data_Ptr, respectively.

The Wait_Mask parameter is a bit mask where each bit corresponds
to an event. The Wait_Mask parameter should be an OR'd
combination of the following constants:

Event Description

EPC_MSG_INT Message (EPC-7 and EPC-8
only)

EPC_ VMEl_INT VMEbus interrupt I

EPC_ VME7 _INT VMEbus interrupt 7

EPC_SIGNAL_INT VXIbus signal FIFO interrupt

EPC_TTL_TRIGO_INT VXlbus TTL Trigger 0
interrupt (EPC-7 only)

EPC_TTL_TRIG7_INT VXIbus TTL Trigger 7
interrupt (EPC-7 only)

EPC_SYSRESET_ERR VMEbus SYSRESET error

EPC_ACFAIL_ERR VMEbus power failure error

EPC_BERR_ERR VMEbus access error

EPC_SYSFAIL_ERR VMEbus SYSFAIL error

EPC_ WATCHDOG_ERR Watchdog timer expiration
error (EPC-7 and EPC-8 only)

EPC_EXT_TRIGO_INT External trigger 0 interrupt
(VXLink only)

EPC_EXT_TRIGl_INT External trigger I interrupt
(VXLink only)

2-203

I

Bus Management for Windows Programmer's Reference

2-204

The value that EpcWaitForEvent places in the location pointed to
by Event_Mask_Ptr can be one the following constants:

*Event Mask Ptr

EPC_MSG_INT

EPC_ VMEl_INT

Description

Message interrupt (EPC-7 and
EPC-8 only)

VMEbus interrupt 1

EPC_ VME7 _INT VMEbus interrupt 7

EPC_SIGNAL_INT VXIbus signal FIFO interrupt

EPC_TTL_TRIGO_INT VXIbus TTL Trigger 0
interrupt (EPC-7 only)

EPC_TTL_TRIG7_INT VXIbus TTL Trigger 7
interrupt (EPC-7 only)

EPC_SYSRESET_ERR VMEbus SYSRESET error

EPC_ACFAIL_ERR VMEbus power failure error

EPC_IlERR_ERR VMEbus access error

EPC_SYSFAIL_ERR VMEbus SYSFAIL error

EPC_ WATCHDOG_ERR Watchdog timer expiration
error (EPC-7 and EPC-8 only)

EPC_EXT_TRIGO_INT External trigger 0 interrupt
(VXLink only)

EPC_EXT_TRIGl_INT External trigger I interrupt
(VXLink only)

EpcWaitForEvent

Whether the value that EpcWaitForEvent places in the location
pointed to by Event_Data_Ptr is meaningful depends on the event:

*Event Mask Ptr

EPC_MSG_INT

EPC_ VMEl_INT

EPC_ VME7 _INT
EPC_SIGNAL_INT

EPC_ TTL_ TRIGO_INT

EPC_TTL_TRIG7_INT

EPC_SYSRESET_ERR

EPC_ACFAIL_ERR

EPC_BERR_ERR

EPC_SYSF AIL_ERR

EPC_ WATCHDOG_ERR

EPC_EXT _ TRIGO_INT

EPC_EXT_ TRIG l_INT

*Event Data Ptr

0

VMEbus interrupt

status/id

(zero-extended to 32 bits)
VXIbus signal data

(zero-extended to 32 bits)

0

0

0

0

0

0

0

0

0

0

When the specified timeout expires before an event occurs, the
locations pointed to by Event_Mask_Ptr and Event_Data_Ptr
contain undefined values.

If a session has an event handler and event handler stack pointer
defined for an enabled event, an occurrence of the event satisfies the
wait condition and invokes the event handler. The order of
execution of the two threads is undefined.

Waiting for an event does not enable reception of the corresponding
event. A separate, preceding call to EpcSetEventEnablcMask is
required.

2-205

I

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

Example

2-206

EPC_INV _MASK

EPC_INV _PTR

EPC_INV _SESSION

EPC_SUCCESS

EPC_TIMEOUT

Wait_Mask contains an event that is
not valid for this interface.

One or more of the parameters
Event_Mask_Ptr and Event_Data_Ptr
is invalid.

The specified Session_ID is invalid.

The function completed successfully.

The specified timeout period expired
before an enabled event occurred.

EpcOpenSession, EpcSetEventEnableMask.

See EpcGetEventEnableMask.

EpcWatchdogTimer

EpcWatchdogTimer

Description

C Synopsis

Modifies the interface's watchdog timer configuration.

#include "busmgr.h"

short FAR PASCAL
EpcWatchdogTimer(unsigned long Session_ID, unsigned short
WatchdogCfg);

Session_ID

WatchdogCfg

Session_/ D specifies a session.

WatchdogCfg specifies a watchdog
timer configuration.

Visual Basic Synopsis

Remarks

Declare Function
EpcWatchdogTimer% Lib "bmvxiwl6.dll" (ByVal Session_ID&,
ByVal Watchdog_Cfg%)

EpcWatchdogTimer modifies the configuration of the interface's
watchdog timer.

WatchdogCfg specifies the configuration of the interface's watchdog
timer.

2-207

I

Bus Management for Windows Programmer's Reference

2-208

Valid values are:

Constant Description

EPC_ WDT_RESET Reset the watchdog timer
without modifying either the
watchdog timer period or the
operation that occurs upon
watchdog timer expiration
expiration (EPC-7 and EPC-8
only).

EPC_WDT_FAST_ERROR Reset the watchdog timer, use
the short watchdog timer
period, and generate a
watchdog timer error event
upon watchdog timer
expiration expiration (EPC-7
and EPC-8 only).

EPC_ WDT_FAST _RESET Reset the watchdog timer, use
the short watchdog timer
period, and reset the EPC upon
watchdog timer expiration
expiration (EPC-7 and EPC-8
only).

EPC_WDT_SLOW_ERROR Reset the watchdog timer, use
the long watchdog timer
period, and generate a
watchdog timer error event
upon watchdog timer
expiration expiration (EPC-7
and EPC-8 only).

EPC_ WDT_SLOW _RESET Reset the watchdog timer, use
the long watchdog timer
period, and reset the EPC upon
watchdog timer expiration
expiration (EPC-7 and EPC-8
only).

The actual length of an interface's watchdog timer period varies
depending on the type of the interface:

EpcWatchdogTimer

Interface Short Watchdog
~ Timer Period

EPC-7 210 milliseconds

EPC-8 128 milliseconds

Long Watchdog
Timer Period

6.7 seconds

8.2 seconds

If an interface's watchdog timer is not reset within the current
watchdog timer period, a watchdog timer error event occurs. An
application can enable the event (using EpcSetEventEnableMask)
and install an event handler (using EpcSetEventHandler) to
gracefully handle the error.

The interface's watchdog timer is typically reset in sections of code
that execute frequently and/or execute at regular time intervals.
Note that other bus operations may reset the watchdog timer as a
side-effect of their execution.

By default, an interface's watchdog timer is configured to use the
long watchdog timer period and generate a watchdog error event
upon expiration.

EPC-5 and VXLink hardware do not include watchdog timer
support. Attempting to use the function on an EPC-5 or VXLink
interface results in an EPC_INV _CFG error.

Return Value The function returns a Bus Management return value:

See Also

EPC_INV _CFG

EPC_INV _SESSION

EPC_INV_SW

EPC_SUCCESS

The parameter WatchdogCfg is invalid.

The specified Session_ID is invalid.

The BusManager device driver is not
present or there is a revision mismatch
between the Bus Management Library
and the BusManager VxD.

The function completed successfully.

EpcOpenSession, EpcSetEventEnableMask,
EpcSetEventHandler.

2-209

Bus Management for Windows Programmer's Reference

Example

/*

• Copyright 1994 by RadiSys Corporation. All rights reserved.
*/

/*
• watchdog.c Bus Management Library EPC watchdog timer functions sample

code.
*/

#include "busmgr.h"

/*
° FUNCTION PROTOTYPES ...
*/

short FAR
WatchdogSample(voidJ;

int FAR
WinPrintf(char FAR *Format_Ptr, ...) ;

/*
° CODE ,

short FAR
WatchdogSample(void)
(

char
short
unsigned long
unsigned long
unsigned long
struct EpcEnvironment

I*

err_string[ERROR_STRING_SZ];
err_num;
event_data;
event_mask;
session_id;
environment;

• Verify the EPConnect environment.
*I

if ((err_num = EpcVerifyEnvironment (&environment)) ! = EPC_SUCCESS)
(

,.

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcVerifyEnvironment() error

err_string,
err_num);

return (err_num);

• Open a session.
•/

%s (%d). \n",

if ((err_num = EpcOpenSession(&session_id)) != EPC_SUCCESS)
(

EpcGetErrorString(err_num, err_string);
WinPrintf("FAILURE: EpcOpenSession() error

err_string,
err_num);

return (err_num);

%s (%d). \n",

,.
• If watchdog timer functionality is supported on this EPC, configure the

2-210

EpcWatchdogTimer

• EPC to generate a watchdog timer error event using a short timeout, then
• wait for up to one second (1000 ms) for the event to occur.
•/

if ((environment.WatchdogCfg & EPC_WDT_FAST_ERROR) != 0 &&
(environment.WatchdogCfg & EPC_WDT_SLOW_ERROR) != 0)

1·

EpcWatchdogTimer(session_id, EPC_WDT_FAST_ERROR);
EpcWaitForEvent(session_id,

1000,
EPC_WATCHDOG_ERR,
&event_mask,
&event_data);

if ((event_mask & EPC_WATCHDOG_ERR) == 0)
{

else
(

WinPrintf("Watchdog timer event DID NOT occurred.\n');

WinPrintf('Watchdog timer event occurred.\n");

EpcWatchdogTimer(session_id, EPC_WDT_SLOW_ERROR);

• Close the session and return.
·1

EpcCloseSession(session_id);
WinPrintf('SUCCESS: WatchdogSample() complete.\n");
return (EPC_SUCCESS);

2-211

3. On-Line Resource
Manager

EPConnect provides an On-Line Resource Manager (OLRM) interface for querying
configuration and state information about an instrument system and devices within
that instrument system. Configuration information is typically static (i.e., established
by a Start-Up Resource Manager (SURM) at system initialization time, and not
changed thereafter). Device state information is typically dynamic (i.e., reflects the
run-time state changes of a device as it is used by an executing application).

The following OLRM functions are available:

Function

OlrmGetArbAttr

OlrmGetBoolAttr

OlrmGetNmByGPA

OlrmGetNmByNA

OlrmGetNmByULA

OlrmGetNumAttr

OlrmGetStrAttr

Description

Queries an arbitrary string attribute.

Queries a boolean attribute.

Queries the device name
corresponding to a GPIB address.

Queries the device name
corresponding to a network address.

Queries the device name
corresponding to a VXIbus unique
logical address.

Queries a numeric attribute.

Queries a string attribute.

3-1

I

Bus Management for Windows Programmer's Reference

To use OLRM to query a specific device's attributes, an application must first know
the name of the device. An application can use OlrmGetNmByGPA,
OlrmGctNmllyNA, or OlrmGetNmllyULA to query a device's name from its
address. Once the application knows the device's name, it can use OlrmGetArbAttr,
OlrmGctiloolAttr, OlrmGctNumAttr, and OlrmGetStrAttr to query individual
device attributes.

3.1 Functions By Name

This section contains an alphabetical listing of the OLRM library functions. Each
listing describes the function, gives its invocation sequence and arguments, discusses
its operation, and lists its returned values. Where usage of the function may not be
clear, an example with comments is given.

3-2

OLRM Functions

OlrmGetArbAttr

Description

C Synopsis

Queries an arbitrary string attribute.

#include "busmgr.h"
#include "olrm.h"

short
OlrmGetArbAttr(charFAR * Name_Ptr,

Name_Ptr

Arb_Attribute_Ptr

Arb_Result_Ptr

char FAR* Arb_Attribllle_Ptr,
charFAR * Arb_Result_Ptr);

Name_Ptr specifies a device name.

Arb_Attribute_Ptr specifies an arbitrary
string attribute.

Arb_Result_Ptr specifies the location of a
buffer where the specified string attribute
will be placed.

Visual Basic Synopsis

Remarks

Declare Function
OlrmGetNmByGPA% Lib "olrmwl6.lib"

(ByVal Primary%,
ByVal Secondary%
ByVal Name_Ptr$)

OlrmGetArbAttr queries an arbitrary string attribute of the
specified device and places the result in the buffer pointed to by
Arb_Result_Ptr. The function allows an application to obtain
attribute information that is not accessible via the standard set of
integer search keys, particularly attribute information about non
GPIB/non-VME devices.

Name_Ptr is a null-terminated ASCII string specifying a device
name.

Arb_Attribute_Ptr is a null-terminated ASCII string specifying the
string attribute to query.

3-3

I

Bus Management for Windows Programmer's Reference

Arb_Result_Ptr specifies the location a buffer where the function

places the result of the arbitrary string attribute query. The buffer
must be at least A TTRIBUTE_SZ bytes long.

The result of an arbitrary string attribute query is always a
null-terminated ASCII character string. Depending on the specified
string attribute, the result string may represent a decimal number, a
hexadecimal number, a binary number, a bit mask, or a string of
characters. It is the responsibility of the application to interpret the
result string.

Return Value The function returns a Bus Management return value:

See Also

3-4

EPC_INV _A TTR

EPC_INV _NAME

EPC_INV _PTR

EPC_OS_ERROR

EPC_SUCCESS

The parameter Arb_Attribute_Ptr is
invalid.

A device with the specified name does not
exist.

One or more of the parameters Name_Ptr
and Arb_Result_Ptr is invalid.

The resource manager database file could
not be read.

The function completed successfully.

OlrmGctBoolAttr, OlrmGetNumAttr, OlrmGetStrAttr.

OLRM Functions

OlrmGetBoolAttr

Description

C Synopsis

Queries a boolean attribute.

#include "busmgr.h"
#include "olrm.h"

short
OlrmGetBoolAttr(char FAR * Name_Ptr,

short Bool_Attribute,

Name_Ptr

Bool_Attribute

Bool_Result_Ptr

unsigned short FAR * Bool_Result_Ptr);

Name_Ptr specifies a device name.

Bool_Attribute specifies a boolean
attribute.

Bool_Result_Ptr specifies a location
where the specified boolean attribute will
be placed.

Visual Basic Synopsis

Remarks

Declare Function
OlrmGetBoolAttr% Lib "olrmwl6.dll"

(ByVal Name_Ptr$$,
(ByVal Bool_Attribute%
Bool_Result_Ptr%)

OlrmGetBoolAttr queries a boolean attribute of the specified
device and places the result in the location pointed to by
Bool_Result_Ptr.

Name_Ptr is a null-terminated ASCII string specifying a device
name.

3-5

I

Bus Management for Windows Programmer's Reference

3-6

Bool_Attribute specifies the boolean attribute to query. Valid
values for VXIbus devices are:

Boo/ Attribute

VXI_ISMEMA CT

VXI_ISMODID

VXI_ISREADY

VXI_ISPASSED

VXI_MEM_ISNONPRIV

VXI_MEM_ISBLKTR

VXI_MEM_ISNONVOL

VXI_MEM_ISELPROG

VXI_MEM_ISD32TR

VXI_MPR_ISCMD R

VXI_MPR_ISSIG

VXI_MPR_ISMSTR

VXI_MPR_ISINTR

VXI_MPR_ISFHS

VXI_MPR_ISSHMEM

VXI_MRP _ISRG

*Boo/ Result Ptr

Memory active (accessible).

MODID line asserted.

Ready for normal operation.

Passed self test.

Non-privileged access capability
(memory devices only).

Block transfer capability
(memory devices only).

Non-volatile RAM memory
(memory devices only).

EPROM memory (memory
devices only).

D32 transfer capability (memory
devices only).

Commander capability
(message-based devices only).

Signal register present
(message-based devices only).

VXIbus master capability
(message-based devices only).

Interrupter capability
(message-based devices only).

FHS capability (message-based
devices only).

Shared memory protocol
capability (message-based
devices only).

Response generation capability
(message-based devices only).

OLRM Functions

VXI_MRP _ISEG

VXI_MRP _ISPI

VXI_MRP _ISPH

VXI_MRP _ISTRG

VXI_MRP _ISI4

VXI_MRP _ISINST

VXI_MRP _ISEL W

VXI_MRP _ISL W

VXI_MRR_ISDOR

VXI_MRR_ISDIR

VXI_MRR_ISERR

VXI_MRR_ISRRDY

VXI_MRR_ISWRDY

VXI_MRR_ISFHSACT

Event generation capability
(message-based devices only).

Programmable interrupter
capability (message-based
devices only).

Programmable handler
capability (message-based
devices only).

Supports word serial Trigger
command (message-based
devices only).

Supports IEEE 488.2 instrument
protocol (message-based
devices only).

Supports VXIbus instrument
protocol (message-based
devices only).

Extended long word serial
capability (message-based
devices only).

Long word serial capability
(message-based devices only).

DOR asserted (message-based
devices only).

DIR asserted (message-based
devices only).

Word serial protocol error
detected (message-based devices
only).

Read Ready asserted
(message-based devices only).

Write Ready asserted
(message-based devices only).

FHS protocol active
(message-based devices only).

3-7

I

Bus Management for Windows Programmer's Reference

VXI_MRR_ISLOCKED Local lockout active
(message-based devices only).

No valid Bool_Attribute values are defined for GPIB network
devices.

If the requested boolean attribute is false, the function places a zero
at the location pointed to by Bool_Result_Ptr. Otherwise, the
function places a non-zero value at the location.

Return Value The function returns a Bus Management return value:

See Also

3-8

EPC_INV _A TTR

EPC_INV _NAME

EPC_INV _PTR

EPC_NO_DATA

EPC_SUCCESS

The parameter Bool_.Attribute is
invalid.

A device with the specified name
does not exist.

One or more of the parameters
Name_Ptr and Bool_Res1dt_Ptr is
invalid.

The resource management database
does not contain the requested
attribute.

The function completed
successfully.

OlrmGetArbAttr, OlrmGetNumAttr, OlrmGetStrAttr.

OLRM Functions

OlrmGetNmByGPA

Description

C Synopsis

Queries the device name corresponding to a GPIB address.

#include "busmgr.h"
#include "olrm.h"

short
OlrmGetNmByGPA(short Primary, short Secondary, char FAR
*Name_Ptr);

Primary

Seco11dary

Name_Ptr

Primary specifies a GPIB primary address.

Secondary specifies a GPIB secondary
address.

Name_Ptr specifies the location of a buffer
where the name of the device corresponding
to the specified GPIB address will be placed.

Visual Basic Synopsis

Remarks

Declare Function
OlrmGetNmByGPA% Lib "olrmw16.dll"

(By Val Primary%,
ByVal Seco11dary%,
ByVal Name_Ptr$)

OlrmGetNmByGPA queries the name of the device corresponding
to the specified GPIB address and places the name in the buffer
pointed to by Name_Ptr.

Primary specifies a GPIB primary address. Valid values are 0
through 30, inclusive.

Secondary specifies a GPIB secondary address. Valid values are -1
and 0 through 30, inclusive. If Secondary is -1, the function
searches for a GPIB device with the specified primary address and
no secondary address. Otherwise, the function searches for a GPIB
device with the specified primary address and the specified
secondary address.

3-9

I

I

Bus Management for Windows Programmer's Reference

Name_Ptr specifies the location of a buffer where a device's name
will be placed. The buffer must be at least DEVNAME_SZ byte
long.

Return Value The function returns a Bus Management return value:

See Also

3-10

EPC_INV _GPA

EPC_INV _pTR

EPC_NO_DEVICE

EPC_SUCCESS

One or more of the parameters
Primary and Secondary is invalid.

The parameter Name_Ptr is invalid.

A device corresponding to the
specified GPIB address does not
exist.

The function completed successfully.

OlrmGetNmByNA, OlrmGetNmByULA.

OLRM Functions

OlrmGetNmByNA

Description

C Synopsis

Queries the device name corresponding to a network address.

#include "busmgr.h"
#include "olrm.h"

short
OlrmGetNmByNA(char FAR *Net_Address_Ptr, char FAR
*Name_Ptr);

Net_Address_Ptr

Name_Ptr

Net_Address_Ptr specifies a network
address string.

Name_Ptr specifies the location of a
buffer where the name of the device
corresponding to the specified network
address will be placed.

Visual Basic Synopsis

Remarks

Declare Function
OlrmGetNmByNA% Lib "olrmwl6.dll"

(ByVal Net_Address_Ptr$,
ByVal Name_Ptr$)

OlrmGetNmByNA queries the name of the device corresponding
to the specified network address and places the name in the buffer
pointed to by Name_Ptr.

Net_Address_Ptr specifies the location of a null-terminated ASCII
string representing a network address.

Name_Ptr specifies the location of a buffer where a device's name
will be placed. The buffer must be at least DEVNAME_SZ byte
long.

3-11

I

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

3-12

EPC_INV _PTR

EPC_NO_DEVICE

EPC_SUCCESS

One or more of the parameters
Net_Address_Ptr and Name_Ptr is
invalid.

A device corresponding to the specified
network address does not exist.

The function completed successfully.

OlrmGetNmByGPA, OlrmGetNmByULA.

OLRM Functions

OlrmGetNmByULA

Description

C Synopsis

Queries the device name corresponding to a VXlbus unique logical
address.

#include "busmgr.h"
#include "olrm.h"

short
OlrmGetNmByULA(unsigned short ULA, char FAR *Name_Ptr);

ULA

Name_Ptr

ULA specifies a VXIbus unique logical address.

Name_Ptr specifies the location of a buffer
where the name of the device corresponding to
the specified VXIbus unique logical address will
be placed.

Visual Basic Synopsis

Remarks

Declare Function
OlrmGetNmByULA% Lib "olrmw16.dll"

(ByVal ULA%,
ByVal Name_Ptr$)

OlrmGetNmByULA queries the name of the device corresponding
to the specified VXIbus unique logical address and places the name
in the buffer pointed to by Name_Ptr.

ULA specifies a VXlbus unique logical address. Valid values are 0
through 255, inclusive.

Name_Ptr specifies the location of a buffer where a device's name
will be placed. The buffer must be at least DEVNAME_SZ byte
long.

3-13

I

I

Bus Management for Windows Programmer's Reference

Return Value The function returns a Bus Management return value:

See Also

3-14

EPC_INV _PTR The parameter Name_Ptr is invalid.

EPC_NO_DEVICE A device corresponding to the specified
VMEbus unique logical address does not
exist.

EPC_SUCCESS The function completed successfully.

OlrmGetNmByGPA, OlrmGetNmByNA.

OLRM Functions

Olrm GetNumAttr

Description

C Synopsis

Queries a numeric attribute.

#include "busmgr.h"

#include "olrm.h"

short
OlrmGetNumAttr(char FAR* Name_Ptr,

short Num_Attribute,

Name_Ptr

N11111_Attrib11te

N11111_Result_Ptr

unsigned Jong FAR* Num_Result_Ptr);

Name_Ptr specifies a device name.

Num_Attribute specifies a numeric attribute.

Num_Result_Ptr specifies a location where
the specified numeric attribute will be placed.

Visual Basic Synopsis

Remarks

Declare Function
OlrmGetNumAttr% Lib "olrmwl6.dll"

(By Val Name_Ptr$$,
ByVal Num_Attribute%,
ByVal Num_Result_Ptr&)

OlrmGetNumAttr queries a numeric attribute of the specified
device and places the result in the location pointed to by
Num_Result_Ptr.

Name_Ptr is a null-terminated ASCII string specifying a device
name.

3-15

El

Bus Management for Windows Programmer's Reference

3-16

Num_Attribute specifies the numeric attribute to query. Valid
values for VXIbus devices are:

Nwn Attribute

VXI_ULA

VXI_IDREG

VXI_DTREG

VXI_STREG

VXI_OFFREG

VXI_MNFID

VXI_MODCOD

VXI_DEVCLASS

VXI_ADRSP

VXI_A16BASE

VXI_A24IlASE

VXI_A24SIZE

VXI_A32BASE

VXI_A32SIZE

VXI_STATDD

VXI_IlUSNUM

VXI_SLOTNUM

VXI_CMDRLA

*Num Result Ptr

Unique logical address.

ID register.

Device type register.

Status register.

Offset register.

Manufacturer ID.

Model code.

Device class. O==memory,)==extended,
2=message-based, 3=register-based.

Address space. 0=A16/A24,
l=Al6/A32, 3=A16 only.

A 16 memory base.

A24 memory base (Al6/A24 devices
only).

A24 memory size, in bytes (Al6/A24
devices only).

A32 memory base (Al6/A32 devices
only).

A32 memory size, in bytes (Al6/A32
devices only).

Status register device dependent bits.
Defined and reserved bits are masked
to zero.

Bus mainframe number.

Slot number.

Unique logical address of commander
device.

OLRM Functions

VXI_SOLA

VXI_SVARSZ

VXI_HDLRMAPI

VXI_HDLRMAP7

VXI_INTRMAPI

VXI_INTRMAP7

VXI_MEM_A TTREG

VXI_MEM_ TYPE

VXI_MEM_SPEED

VXI_MEM_DD

VXI_SDC_REG

VXl_SBC_RES

VXl_SBC_MNFID

VXI_SBC_MFSBC

VXI_MSG_PTOREG

VXI_MSG_RSPREG

VXI_MSG_DHIREG

Unique logical address of slot-0
device.

Servant area size.

Interrupt line assigned to handlers I
through 7. A zero result indicates the
handler is not assigned for the device.

Interrupt line assigned to interrupters I
through 7. A zero result indicates the
interrupter is not assigned for the
device.

Attribute register (memory devices
only).

Memory type (memory devices only).
I = ROM, 2 = other, 3 = RAM.

Minimum memory access time, in
nanoseconds (memory devices only).

Attribute register device dependent
bits (memory devices only). Defined
and reserved bits are masked to zero.

Subclass register {extended devices
only)

Reserved subclass ID (extended
devices only).

Subclass manufacturer ID (extended
devices only).

Manufacturer subclass (extended
devices only).

Protocol register (message-based
devices only).

Response register (message-based
devices only).

Data high register (message-based
devices only). Warning: querying this
register may modify device state.

3-17

I

Bus Management for Windows Programmer's Reference

3-18

VXI_MSG_DLOREG

VXI_MSG_PRDD

VXI_MSG_RDPR

VXI_MSG_RDPRDD

VXI_MSG_RRDD

Data low register (message-based
devices only). Warning: querying this
register may modify device state.

Protocol register device dependent bits
(message-based devices only).
Defined and reserved bits are masked
to zero.

Word serial Read Protocol command
response (message-based devices
only).

Word serial Read Protocol command
response device dependent bits
(message-based devices only) Defined
and reserved bits are masked to zero.

Response register device dependent
bits (message-based devices only)
Defined and reserved bits are masked
to zero.

No valid Num_Attribute values are defined for GPIB network
devices.

OLRM Functions

Return Value The function returns a Bus Management return value:

See Also

EPC_INV _ATTR

EPC_INV _NAME

EPC_INV _PTR

EPC_NO_DATA

EPC_SUCCESS

The parameter Num_Attribute is
invalid.

A device with the specified name does
not exist.

One or more of the parameters
Name_Ptr and Num_Result_Ptr is
invalid.

The resource management database
does not contain the requested attribute.

The function completed successfully.

OlrmGetArbAttr, OlrmGetBoolAttr, OlrmGetStrAttr.

3-19

I

I

Bus Management for Windows Programmer's Reference

OlrmGetStrAttr

Description

C Synopsis

Queries a string attribute.

#include "busmgr.h"
#include "olrm.h"

short
OlrmGetStrAttr(char FAR* Name_Ptr,

short Str _Attribute,

Name_Ptr

Str _Attribute

Str _Result_Ptr

char FAR * Str _Result_Ptr);

Name_Ptr specifies a device name.

Str _Attribute specifies a string attribute.

Str _Result_Ptr specifies the location of a
buffer where the specified string attribute will
be placed.

Visual Basic Synopsis

Remarks

3-20

Declare Function
OlrmGetStrAttr% Lib "olrmwl6.dll"

(ByVal Name_Ptr$,
ByVal Str_Attribute%,
ByVal Str _Result_Ptr$)

OlrmGetStrAttr queries a string attribute of the specified device
and places the result in the buffer pointed to by Str _Res1ilt_Ptr.

Name_Ptr is a null-terminated ASCII string specifying a device
name.

OLRM Functions

Str_Attribute specifies the string attribute to query. Valid values for
VXIbus devices are:

Str Attribute

VXI_CMDRNM

VXI_MFNM

VXI_MODNM

VXI_SONM

*Str Result Ptr

Name of commander device.

Manufacturer name.

Model name.

Name of slot-0 device.

Valid Str _Attribute values for network devices are:

Str Attribute *Str Result Ptr

NET_ADDRESS Network address.

No valid Str _Attribute values are defined for GPIB devices.

Str _Result_Ptr specifies the location a buffer where the function
places the result of the string attribute query. The buffer must be at
least A TTRIBUTE_SZ bytes long.

Return Value The function returns a Bus Management return value:

See Also

EPC_INV _A TTR

EPC_INV _NAME

EPC_INV _PTR

EPC_NO_DATA

EPC_SUCCESS

The parameter Str _Attribute is invalid.

A device with the specified name does
not exist.

One or more of the parameters Name_Ptr
and Str _Result_Ptr is invalid.

The resource management database does
not contain the requested attribute.

The function completed successfully.

OlrmGetArbAttr, OlrmGetBoolAttr, OlrmGetNumAttr.

3-21

I

Bus Management for Windows Programmer's Reference

NOTES

I

3-22

4. Advanced Topics

This chapter discusses topics of interest to advanced application programmers.
Topics include:

• Byte Ordering and Data Representation

• Handler Operations

• Event Handler Execution Under Windows

• Event Handler Implementation

• TTL Trigger Interrupt Handling on an EPC-7

• Using the backward-compatibility library

4.1 Byte Ordering and Data Representation

Byte ordering adds complexity to the VXIbus interface. Many VXIbus devices use
the data formats of Motorola microprocessors. Others, including RadiSys EPC
controllers, use the data format of Intel microprocessors. Although the Motorola and
Intel microprocessors use the same data types, the hardware representations of these
data types differ.

Figure 4-1 shows how the same sequence of bytes in memory is interpreted by Intel
and Motorola microprocessors. Memory value 11 is at the lowest address and
memory value AA is at the highest address. The data widths shown correspond to the
data operand sizes found on both microprocessors.

4-1

Bus Management for Windows Programmer's Reference

Memory Intel Data Motorola
Value Order Width Order

11 11 8 bits 11

22 2211 16 bits 1122

33

44 44332211 32 bits 11223344

55

66 665544332211 48 bits 112233445566

77

88 8877665544332211 64 bits 112233445566778~

99
AA AA9988776655443322 I l 80 bits 1122334455667788AAi

Figure 4-1. Byte Order Example.

4.1.1 Byte Swapping Functions

The EpcSwap* functions convert 16-bit, 32-bit, 48-bit, 64-bit and 80-bit data
between Intel and Motorola byte orders (8-bit data does not require conversion).

4.1.2 Correcting Data Structure Byte Ordering

Even if byte-swapping occurs during a transfer, byte ordering problems occur when
data is copied between Motorola and Intel memory using a different data width than
the width of the operand itself. This situation occurs when a data structure containing
mixed-type fields is copied in a single operation.

4-2

Advanced Topics

The following code fragment illustrates how to use the EpcSwap* functions to correct
the byte order in the local copy of the data structure:

struct DataStructure
{

char Field8;
char Fieldl6[2];
char Field32[4];
char Field48[6];
char Field64[8];
char FieldBO[lOJ;

data;

/* Copy the data structure to EPC memory from the VXIbus. */

(void) EpcCopyData(Session_ID,
(void HUGE *) Mapped_Ptr,
(void HUGE *) &data,
sizeof(struct DataStructure),
EPC_8_BIT,
&Actual_Size) ;

/* Byte-swap the individual structure fields (data.FieldB */
/* is an 8-bit field, so it is already correct). •/

(void) EpcSwapl6((unsigned short FAR •) data.Field16);
(void) EpcSwap32((unsigned long FAR*) data.Field32);
(void) EpcSwap48((void FAR*) data.Field48);
(void) EpcSwap64((void FAR*) data.Field64);
(void) EpcSwap80((void FAR*) data.Field80);

In the above example, the data structure was copied from VXIbus memory one byte at
a time. To copy data from EPC memory to Motorola-ordered VXIbus memory,
byte-swap the fields of the structure in local memory (using the above byte swapping
functions) and copy the data using the EpcCopyData function.

It is sometimes more efficient to copy blocks of data using data transfer width greater
than the expected data width. If you use a greater data transfer width to copy data
structures containing mixed-type fields to/from Motorola-order memory, do not use
the EPC's hardware byte-swapping feature. Swap the data structure fields
individually.

4-3

I

II

Bus Management for Windows Programmer's Reference

4.2 Event Handler Execution

These conditions must be true before an application's event handlers can execute:

• The application must use EpcSctEventHandler to install an error
handler.

• The application must call EpcSetEventEnableMask to enable event
reception.

• An event must occur.

The Bus Management API discards all events that occur before the application installs
an event handler.

When an application installs an event handler and enables event reception, the event
handler processes events as soon as they are received. The installed event handler
executes as part of an interrupt thread, with virtual processor interrupts disabled, and
using the installed event handler stack.

4.3 Event Handler Operations Under
Windows

Event handlers can execute as part of an interrupt thread under Windows. This feature
implies that an event handler can only call fully reentrant Bus Management, "C"
library, Windows, DOS, and BIOS support functions.

4-4

Advanced Topics

Bus Management Library and ORLM library functions are fully reentrant and may be
called from an event handler or any application code that executes as part of an
interrupt thread. Note, however, that when called reentrantly, EPConnect Bus
Management Library functions cannot yield the processor to other tasks while in a
timing loop.

The following "C" library functions are reentrant under Microsoft "C" Version 6.0,
and may be called from an event handler or any application code that executes as part
of an interrupt thread (it is likely that this list is different for other releases of the
Microsoft "C" compiler and for compilers from other vendors):

abs memccpy strct strnset
atoi memchr strchr strrchr
atol memcmp strcmp strrev
bsearch memcpy strcmpi strset
chdir memicmp strcpy strstr
getpid mcmmove stricmp strupr
haJloc memset strlen swab
hfree mkdir strlwr tolower
itoa movedata strncat toupper
labs putch strncmp
lfind rmdir strncpy
lsearch segread strnicmp

No Windows functions are fully reentrant. As such, none of the Windows functions
should be called from an event handler.

Not all DOS and BIOS functions are fully reentrant. However, mechanisms exist (the
"InDos" and "CriticalError" flags) for avoiding DOS reentrancy by delaying
background processing until DOS is not in use.

4-5

I

Bus Management for Windows Programmer's Reference

4.4 Event Handler Implementation

An event handler is called as part of an interrupt thread with its own stack. Care must
be taken during implementation to avoid several pitfalls.

Since an event handler function is called as part of an interrupt thread, the event
handler function must reload the data segment register (DS) with its data segment
upon entry. Any of the following three methods will correctly load the data segment
register for an event handler function:

I. Explicitly declare the event handler function to be an exported function in the
EXPORTS section of the application's module definition (.DEF) file.

2. Explicitly declare the event handler function to be an exported function using the
"C" language "_export" function declaration.

3. Explicitly declare that the event handler function reloads the data segment
register upon entry using the "C" language "_loadds" function declaration.

Since an event handler function is called using the installed event handler stack, an
event handler function written in "C" must be compiled with the assumption that the
data segment is not equivalent to the stack segment (OS != SS). Otherwise, a
catastrophic failure can occur when the event handler function is called. For Microsoft
compilers, use the "/Alfw" memory model parameter. For Borland compilers, use the
"-ml" memory model parameter.

Since an event handler function is called using the installed event handler stack, an
event handler function written in "C'' must be compiled with automatic stack checking
disabled. Otherwise, a catastrophic failure will occur when the event handler is called.
For Microsoft compilers, use the "/Gs" parameter. For Borland compilers, avoid using
the "-N" parameter.

Since an event handler function is generally performance-critical, its code and data
segments should be carefully defined for maximum performance. For maximum
performance, define the event handler function's code and data segments to be
PRELOAD, FIXED, and NONDISCARDABLE in the application's module definition
(.DEF) file.

4-6

Advanced Topics

4.5 TTL Trigger Interrupts on an EPC-7

Receiving and processing TL trigger interrupts on an EPC-7 requires software
intervention. EPC-7 hardware generates a TTL trigger interrupt when all of the
following conditions are true:

• A bit in the TTL trigger interrupt enable register is set. The Bus
Management Library function EpcSetEventEnableMask sets and/or
clears the register's bits.

• The corresponding bit in the TTL trigger latch register is clear.

• The corresponding TTL trigger line is asserted for at least 30
nanoseconds.

The main complication in this scenario is that a bit in the TTL trigger latch register
cannot be cleared until the corresponding TTL trigger line is deasserted. In order to
clear a bit in the register, the register must be read while the corresponding TTL
trigger line is deasserted. TTL trigger line assertion is not necessarily under EPC
control.

The operation of the EPC-7 TTL trigger latch register has three potential side effects
for software:

• If a TTL trigger interrupt remains enabled after receiving the initial
interrupt and clearing the TTL trigger latch register, the CPU can be
monopolized by redundant TTL trigger interrupts.

• If a TTL trigger latch register bit is not cleared before enabling the
corresponding TTL trigger interrupt, it is possible to receive an interrupt
for a TTL trigger that was asserted, latched, and deasserted long before
the TTL trigger interrupt was enabled.

• If a TTL trigger latch register bit is not cleared after receiving the
corresponding TTL trigger interrupt, the EPC will not latch subsequent
TTL trigger line assertions and, therefore, will miss subsequent TTL
trigger interrupts.

4-7

I

I

Bus Management for Windows Programmer's Reference

To avoid the first side effect, the Bus Management for Windows implementation
globally disables a ITL trigger interrupt upon reception. In addition, the Bus Manager
Library implementation provides sufficient functionality to avoid the other two side
effects.

To avoid the side effect of receiving extraneous TTL trigger interrupts, execute
EpcGetMiscAttributcs before calling EpcGetEventEnableMask and
EpcSetEventEnableMask to enable TTL trigger interrupts for a session.

For example:

void FAR PASCAL
EnableTTLTriggerinterrupts(unsigned long Session_ID, unsigned
long Event_Mask}
(

unsigned long rnaskl;
unsigned long rnask2;

/*
* Wait for corresponding TTL trigger latch register
* bits to clear, then enable the TTL trigger
* interrupts.
*/

rnaskl = Event_Mask << 4;
for (;;)
{

}

EpcGetMiscAttributes(Session_ID, &rnask2);
if ({rnaskl & rnask2) == 0)
{

break;

EpcGetEventEnableMask{Session_ID, &rnaskl);
EpcSetEventEnableMask(Session_ID, rnaskl I Event_Mask);

To avoid the side effect of missing multiple TTL trigger interrupts from the same TTL
trigger, re-enable the interrupt immediately after receiving a TTL trigger interrupt,
preferably as part of the event handler function itself. For example:

4-8

void FAR
TTLTriggerinterruptHandler(unsigned long Session_ID,

unsigned long Event_Mask,
unsigned long Event_Data)

/*
*Re-enable the TTL trigger interrupt.

Advanced Topics

*/

EnableTTLTriggerinterrupts(Session_ID,Event_Mask;

/*
•Execute other event handler tasks ...

4.6 Backward-Compatibility Library

The Backward Compatibility Library (EPCDICW.DLL) and its corresponding
import library (EPCDICW.LIB) provide a level of compatibility between the
Windows and DOS programming interfaces. Most of the functions available in the
DOS Bus Management Library are available in the Windows Backward-Compatibility
Library with identical calling conventions. However, the functionality the two
libraries provide is not strictly identical. Differences between the Windows
Backward-Compatibility Library and the DOS Bus Management Library include the
following:

• No Message Delivery System (MDS) functionality is available in the
Windows Backward-Compatibility Library. If using MDS support under
Windows, the application should be ported to SICL. If MDS support
under Windows is a requirement, users should not upgrade beyond
EPConnect/VXI for DOS version 3.11.

• The Windows Backward Compatibility Library supports A16S, A24SD,
A24S, A32SD, and A32S VMEbus address modifiers only. Attempting
to use other VMEbus address modifiers (A16N, A16U, A24ND,
A24NP, A24N, A24U, A24SP, A32ND, A32NP, A32N, A32U and
A32SP) under Windows results in an ERR_FAIL error and/or a null
mapped pointer.

• The Windows Backward Compatibility Library can access the first
gigabyte of A32 space only (addresses OxOOOOOOOO through
Ox3FFFFFFF). Attempting to map higher A32 space addresses under
Windows results in an ERR_FAIL error and/or a null mapped pointer.

• The Windows Backward Compatibility Library automatically disables
persistent interrupt and error events when they are received. Automatic
disabling of persistent events prevents the generation of multiple,

4-9

I

Bus Management for Windows Programmer's Reference

4-10

redundant events. Persistent events include EPC_MSG_INTR,
EPC_TTL_TRIG* _INTR, EPC_SYSFAIL_ERR,
EPC_ACFAIL_ERR, and EPC_WATCHDOG_ERR. Under
Windows, when one of these persistent events occurs, it must be
re-enabled by the application before it will be received again.

• The Windows Backward Compatibility Library supports standard
servant word serial communications only. The RadiSys-specific
protocol for multiple-commander word serial communications is not
supported. Under Windows, the multiple-commander arming codes
(EPC_ WSRCV _DISARM, EPC_ WSRCV _ARM, and
EPC_ WSRCV _ARMandENABLE) and the single-commander arming
codes (EPC_ WSRCV _FDISARM, EPC_ WSRCV _FARM, and
EPC_ WSRCV _FARMandENABLE) are equivalent.

5. Support and Service

5.1 In North America

5.1.1 Technical Support

RadiSys maintains a technical support phone line at (503) 646-1800 that is staffed
weekdays (except holidays) between 8 AM and 5 PM Pacific time. If you have a
problem outside these hours, you can leave a message on voice-mail using the same
phone number. You can also request help via electronic mail or by FAX addressed to
RadiSys Technical Support. The RadiSys FAX number is (503) 646-1850. The
RadiSys E-mail address on the Internet is support@radisys.com. If you are sending
E-mail or a FAX, please include information on both the hardware and software
being used and a detailed description of the problem, specifically how the problem
can be reproduced. We will respond by E-mail, phone or FAX by the next business
day.

Technical Support Services are designed for customers who have purchased their
products from RadiSys or a sales representative. If your RadiSys product is part of a
piece of OEM equipment, or was integrated by someone else as part of a system,
support will be better provided by the OEM or system vendor that did the integration
and understands the final product and environment.

6.1.2 Bulletin Board

RadiSys operates an electronic bulletin board (BBS) 24 hours per day to provide
access to the latest drivers, software updates and other information. The bulletin board
is not monitored regularly, so if you need a fast response please use the telephone or
FAX numbers listed above.

The BBS operates at up to 14400 baud. Connect using standard settings of eight data
bits, no parity, and one stop bit (8, N, 1). The telephone number is (503) 646-8290.

5-1

I

EPConnecWXI for Windows Programmer's Reference

5.2 Other Countries

Contact the sales organization from which you purchased your RadiSys product for
service and support.

5-2

Index

A
advanced application programming
topics, 4-1
application development

compiling, paths, 1-8
Assembly language, 1-7
asynchronous event processing, 4-4

B
Borland Turbo C, 1-7
Bus Lines, 2-14
Bus Management Library, 2-10, 2-11,
2-16, 2-18
Bus Manager, 1-4

foundation of EPConnect, 1-4
Bus Protocols

Obeying, 2-6
busmgr.h, 1-5
Byte order, 2-10
Byte ordering, 4- I
byte swapping functions, 4-2
byte-swapping, 2-10, 4-2

with greater data transfer widths,
4-3

c
Commander support, 2-17
Compact memory model, 1-7
compiling under C++, 1-7
compiling, applications, 1-8

D
data structure

byte ordering, 4-3

data widths, 4-1
Definition files, 1-7

E
Environment, 2-2
Environment functionality, 2-2
Environment Support

two functions supplied, 2-2
epc_obm.h, l-5
EpcAssertlnterrupt, 2-6
EpcC!oseSession, 2-4, 2-11
EpcCmdReceiveWSBuffer, 2-6, 2-17
EpcCmdSendWSBuffer, 2-6, 2-17
EpcCmdSendWSCommand, 2-6, 2-
17, 2-32
EpcCopyData, 4-3
EpcDeassertlnterrupt, 2-6
EpcGetBusAttributes, 2-13
EpcGetEpclnterrupt, 2-61
EpcGetEventEnableMask, 2-11
EpcGetLocking Timeout, 2-5
EpcGetLockingTimeout, 2-10 I
EpcGetMiscAttributes, 2-13
EpcGetSessionData, 2-4, 2-157
EpcGetSlaveMapping, 2-13, 2-89
EpcGetULA, 2-13
EpcLineState, 2-14
EpcLockSession, 2-5, 2-6
EpcMapBusMemory, 2-6
EpcMapSharedMemory, 2-6
EPConnect functions, 1-7
EPConnect/VME for Windows,
description, 1-2
EpcOpenSession, 2-4, 2-11, 2-13, 2-
16, 2-17, 2-18
EpcPulseEpcLines, 2-6
EpcSetBusAttributes, 2-6, 2-13
EpcSetEpcLines, 2-6
EpcSetEventEnableMask, 2-1 I, 2-
146, 2-205, 2-209, 4-4
EpcSetEventHandler, 2-11, 2-209, 4-4

1-1

II EpcSetLockingTirneout, 2-5, 2-101
EpcSetMiscAttributes, 2-6, 2-13
EpcSetSessionData, 2-4
EpcSetSlaveMapping, 2-6, 2-13
EpcSetULA, 2-6, 2-13
EpcSrvEnableWSCornrnand, 2-6, 2-
18
EpcSrvReceiveWSCommand, 2-6, 2-
18, 2-29, 2-32, 2-36
EpcSrvSendProtocolEvent, 2-6, 2-18
EpcSrvSendWSProtocolError, 2-6
EpcSrvSendWSResponse, 2-6, 2-18,
2-29, 2-32, 2-36, 2-179
epcstd.h, 1-6
EpcSwap* functions, 4-3
EpcSwapl6, 2-10
EpcSwap32, 2-10
EpcSwap48, 2-10
EpcSwap64, 2-10
EpcSwap80, 2-10
EpcSwapBuffer, 2-10
EpcUnlockedSession, 2-100
EpcUnlockSession, 2-5
EpcWaitForEvent, 2-11
Epc Watchdog, 2- 16
event attributes

array of event handlers, 2-10
enabled event mask attribute, 2-
10

event handler, 2-3
Event handlers as part of interrupt
thread, 4-4
Events, 2-10

F
Function description

by category, 2-1, 2-2
By Category, Bus Lines, 2-14
By Category, Byte Order, 2-10
By Category, Commander
Support, 2-17

Index

By Category, Environment, 2-2
By Category, Events, 2-10
By Category, Servant Support, 2-
18
By Category, Watchdog timer, 2-
16
By Name, 2-19

G
global configuration attributes, 2-13
global lock counter, 2-5

H
handlers

SRQ, execution, 4-4
header files, 1-5
High-level programming languages, 1-
7

Intel and Motorola byte orders, 4-2
Intel byte ordering, 2-88, 4- 1
Interface library, 1-7

L
Large memory model, 1-7
library files, I-7
Locking

not a substitute for protocol, 2-6
locking timeout, 2-3
Locks, 2-5
locks, nested, 2-5

M
Manual organization, 1-2
Medium memory model, 1-7
memory mapping, 2-3
Motorola byte ordering, 2-88, 4-1
MSC and QuickC, 1-7
MS Pascal binding conventions, 1-1
multiple simultaneous sessions, 2-3

I-2

EPConnect/VME for Windows Programmer's Reference

multithreaded environments, 2-5

N
nested locks, 2-5

0
OLRM

capabilities, I -4
organization of this manual, 1-2

p
Prototyping, 1-7

R
RadiSys EPC controllers, 4-1

s
servant support, 2-18
Session attributes, 2-3
session functionality, 2-4
Small memory model, 1-7
SRQ

handler execution, 4-4
Strong type checking, 1-7
SURM

capabilities, 1-5

T
Techncial Support

electronic bulletin board (BBS),
0-1

Technical Support, 0-1
E-mail, 0-1
E-mail address, 0-1
FAX, 0-1

Turbo C, 1-7

v
VMEbus devices, 4-1
vmeregs.h, 1-6
vmeregs.inc, 1-6

w
watchdog timer, 2-16, 2-207

I-3

Index

NOTES

I-4

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	I-01
	I-02
	I-03
	I-04

