

15
5,241,546

16
In factored form, equation 26a is rewritten:

G EDO(X) = (x+alpha°l(x+ alpha I08)(x +alpha 147) (26b)

It is apparent by inspection that these alpha coefficients 5
are not consecutive. This code will generate three error
detection bytes. Since the syndrome generator depicted
in FIG. 4 already has the alpha87 multiplier logic, that
logic is available for use in the error detection process.

For drives not employing embedded servo sectors 10
which interrupt data fields of data sectors (and in which
the data ID sectors do not contain byte counts) a two
byte error detection code has been determined to be
sufficient. One example of an ID field employing a two
byte error detection code is depicted in FIG. 3B. In the 15
example given in FIG. 3B, the ID field includes a nine
byte preamble, an ID field address mark byte, a cylinder
high byte, a cylinder low byte, a head byte, a sector
byte, and two error detection code (EDC) bytes: EDC
1 and EDC 2. These EDC bytes are followed by a two 20
byte pad, and by a gap 2 byte before reaching the data
field which continues uninterrupted until the next data
sector •. which may be preceded by an embedded servo
sector S.

A presently most preferred two byte EDC code may 25
be generated by the following generalized relationship:

(27)

where b is unequal to one. A more specific form of this
relationship is: 30

GEDC2(X)=x2+x+alpha18 (27a)

logic gate 13, a data extender latch 14 passes the serial
data on the bus 12 onto an internal ECC bus 16. The bus
16 leads to a byte-wide exclusive OR (herein XOR) gate
array 18 wherein each incoming byte is exclusive-ORed
(herein XORed) with a byte exiting the ECC portion of
the circuit 10 on an outflow bus 63. The resultant sum is
passed by the gate 18 onto a bus 20 which leads through
a zeroer circuit 22 to another bus 24. The zeroer circuit
22 is used to force bus 20 to zero when appending ECC
or EDC bytes to data fields, such as during data writing
to disk operations or disk format operations, for exam­
ple.

The bus 24 leads into a three byte register 26, the
output of which leads to an XOR gate array 28. The bus
24 also leads to a bi-coefficient multiplier which gener­
ates and puts out an alphal8product on a bus 32 and
which also generates and puts out an alpha87 product on
a bus 34. The alpha IS product is XORed with the output
from the shift register 26 in the byte-wide exclusive OR
gate array 28, with the resultant sum then passed
through another three byte shift register 36. The al­
pha87 product on the bus 34 is then XORed with the
output from the register 36 in another byte-wide XOR
gate array 38. An output sum of the XOR array 38
passes through another three byte shift register 40 and,
the alpha87 product on the bus 32 is XORed with the
output from the shift register 40 and yields an output
sum on a bus 43.

The output sum on the bus 43 is then selectively
passed through a multiplexer 44 to a single byte register
46. The multiplexer 44 operates in conjunction with the
EDC process, explained hereinafter. An output from
the single byte register 46 is then XORed with the al-

In factored form, equation 27a is:

GEDC2(X)=(x+alpha22)(x+alpha251) (27b)

With this code, only one multiplier circuit is required:
alphalS, which circuit is already present in the FIG. 4

35 pha87 product on a bus 54. In this regard, the alpha87
product on the bus 34 passes through a multiplexer SO
and a zeroer circuit S2 to reach the bus S4. An output on
a bus SS from an XOR gate array 48 then passes through

ECC syndrome generator circuit. 40
Other EDC codes are known to be available for de­

tecting errors within the ID field of a data block. How­
ever, each of the following algorithms require an addi­
tional multiplier term, and therefore are slightly more
complicated to implement than the algorithms (26) and 45
(27) given above.

A presently less preferred three byte EDC code may
be generated by the following relationship:

G£DO(X) = x3 + alpha81.x2 + alpha87.x + alpha18.
= (x + alpha5)(x + alpha6)(x + alpha 7)

(28) 50
(28a)

a multiplexer S6 to reach a second single byte shift
register S8. The multiplexers SO and S6 are used to select
between ID fields having either two EDC bytes, or
three EDC bytes.

An output of the register S8 is then XO Red with the
alpha87 coefficient on the bus 54 in an XOR gate array
60. A resultant sum put out by the XOR array 60 is then
passed into and through a single byte shift register 62
which leads directly to the output bus 63. It is apparent
that the last register group comprising registers 46, S8
and 62 are split up by the XOR gate arrays 48 and 60 so
that the EDC function can be carried out on either two
or three EDC bytes. In this manner a Reed-Solomon
error detection code of either two bytes or three bytes
for checking data sector ID fields may readily be real­
ized and implemented within the existing ECC syn-

A presently less preferred two byte EDC code may
be generated by the following relationship:

55 drome generator io with minimal additional circuitry.

GEDQ(X) = x2 + alpha81.x + alpha81.
= (x + alpha J05)(x + alpha23 I)

(29)
(29a)

With reference to FIG. 4, an ECC syndrome genera­
tor circuit 10 simultaneously implements circuitry for 60
performing the ECC function for the data fields, the
cross checking function for the data fields, and the EDC
function for the data block ID fields. These multiple
functions carried out within a single, simplified circuit
10 facilitate on-the-fly error correction in accordance 65
with the present invention. The FIG. 4 ECC circuit 10
includes an incoming serial data bus 12 carrying serial­
by-byte data. In accordance with the output state of a

During normal ECC operations, the zeroer circuit S2
presents zero coefficients, in lieu of either an incoming
byte value (two byte EDC) or the alpha87 product
(three byte EDC). Thus, during normal ECC opera­
tions, the XOR gate arrays 48 and 60 are functionally
inoperative in the paths between the registers 46, S8 and
62. The multiplexer S6 places the alpha87 product into
the register S8 during a two byte EDC operation.

The output bus 63 from the last register 62 leads
through a multiplexer 64 to an ECC output bus 66
which enables the circuit 10 to generate and clock out in
proper time twelve ECC syndrome bytes which are
appended into the ECC check byte positions of each

17
5,241,546

data field, as depicted in FIG. 1. Two control signals: a
byte clock signal BYTCLKA, and an ECC enable oper­
ation signal ECCENOP are combined in the AND gate
13, and its output then provides a master clock signal for
clocking bytes progressively through the latch 14, and 5
the shift registers 26, 36, 40, 46, 58 and 62. The shift
registers 26, 36, 40, 46, 58 and 62 are initialized with
predetermined initial values by assertion of an initializa­
tion control signal CTLIEC. The values may be arbi­
trarily selected, but are repeated at each initialization of 10
the shift registers.

As noted hereinabove a syndrome remainder latch 68
is provided within the syndrome generator circuit 10.
This latch 68 receives and stores a number of rcmaipder
bytes. Three remainder bytes are received from the 15
register 26 including a first byte over a bus 70. Three
more remainder bytes arc received from the shift regis­
ter 36 including a fourth byte over a bus 72. Three more
remainder bytes arc received from the shift register 40
including a seventh byte over a bus 74. A tenth remain- 20
der byte is received from the single byte shift register 46
over a bus 76; and an eleventh remainder byte is re­
ceived from the shift register 58 over a bus 77; while a
twelfth remainder byte is received over a bus 79.

The remainder latch 68 is controlled by three control 25
signals. First, a five bit control signal LADD[4:0] com­
prises the five least significant address bits of the mi­
crocontroller cycle currently in operation. These five
address bits are used by the microcontroller in order to
fetch a particular latched remainder byte for processing 30
by the microcontroller 196 during an on-the-fly ECC
operation. Second, a syndrome latch close control
SYNLCLS signal is used to operate the remainder latch
68 to latch a particular (e.g. non-zero) remainder for
on-the-fly ECC operations. The remainder latch 68 is 35
normally in the transparent mode. Upon detection of an
error as at the output line 80, the data sequencer 100
asserts this signal asynchronously to latch the remainder
bytes from the shift registers 26, 36, 40, 46, 58 and 62.
This operation is carried out before a reinitialization 40
which occurs for the next data sector. Thus, the twelve
byte ECC syndrome remainder provides the informa­
tion from which the error location(s) and error value(s)
can be determined by the microcontroller 196 and cor­
rected while the next data sector is being circulated 45
through the syndrome generator circuit 10 and its re­
mainder bytes are being recovered. Third, a syndrome
latch open control SYNLOPE signal must be the oppo­
site of the syndrome latch close control signal. This
SYNLOPE signal is true when the syndrome remainder 50
latch 68 is in its transparent mode, and low when the
syndrome latch 68 is latched.

The byte values on the buses 70, 72, 74, 76, and 77 are
passed to the zero detect circuit 60 and checked to see
if they are zero. Since syndrome bytes progressively SS
clock through the shift register groups 26, 36 40 and the
last group of individual shift registers 46, 58 and 62 in
three interleaves, only those bytes from the first one of
each of the four groups of syndrome registers need to be
input to the zero detect circuitry for ECC syndrome 60
zero checking. This arrangement saves logic elements.
A parity with zero during data read operations indicates
no errors have been detected within the present data
block.

Five control values enter the zero detect circuit 78: 6S

the ECC enable operation control ECCENOP; an error
detection operation control CRCOP; an error correc­
tion operation control ECCOP; the byte clock signal

18
BYTCLKA, and a no cross check operation control
NOXC. These control signals progressively enable the
zero detect circuit 78 to determine whether a particular
ECC syndrome, cross check syndrome or EDC syn­
drome is zero, thereby facilitating on-the-fly correction.

A single bit remainder output control value is pres­
ented on a line 80. This line will be at one logical state
when the remainder bytes being checked are equal to
zero, and it will be at another logical state when there is
no parity with zero, as determined by the zero detect
circuit 78. An on-the-fly service routine is called by the
microcontroller 196, and as part of the execution
thereof, the syndrome byte values actually latched by
the syndrome latch 68 are put out over a syndrome data
bus 82 to the microcontroller 196 of the disk file when­
ever the single bit syndrome value on the line 80 indi­
cates non-zero parity. Such a condition could arise from
checking the twelve ECC bytes appended onto each
data field. Another error condition microcontroller
intervention could arise from checking either a three
byte ID check field, or a two byte ID check field, dur­
ing an error detection code (EDC) operation, for exam­
ple.

Once the microcontroller 196 locates and corrects an
error burst in a sector on-the-fly, the possibility of a
miscorrection having occurred is then tested by having
the microcontrollcr 196 determine the impact of the
correction of data upon the cross check remainder bytes
which are also held in the remainder latch 68 and read
by the microcontroller 196 as needed.

In order to obtain the cross check remainder bytes,
the data block on the ECC data bus 16 is passed through
an exclusive OR gate 84. An output from the gate 84 is
passed through a multiplier 86 which calculates and
puts out an alpha! product on a bus 88. The alpha!
product is then latched into two byte cross check shift
registers 90a and 90b. An output from the shift register
90b feeds back to the XOR gate array 84 and also pro­
vides another input to the multiplexer 64, so that the
cross check bytes can be appended to the data field as
shown in FIG. 1.

An output bus 94 from the register 90a enables the
first cross check byte to be latched into the syndrome
latch 68 and also to be checked by the zero detect cir­
cuit 78. Similarly, an output bus 96 from the register 90b
enables the second cross check byte to be latched into
the remainder latch 68 as well as checked for zero par­
ity by the zero detect circuit 78.

When an ECC remainder byte value is determined
not to be zero and the twelve ECC remainder bytes are
latched into the remainder latch, the two cross check
remainder bytes then present in the registers 90a and
90b are also latched into the remainder latch 68. The
cross check remainder bytes are then converted into
partial syndrome bytes XCl and XC2. After an ECC
operation following calculation of an error burst cor­
rection by the microcontroller 196, it then calculates the
impact of the correction upon the partial syndrome
bytes XCl and XC2. If those bytes, after correction of
the data error, are not zero, an error which cannot be
corrected by on-the-fly error correction is determined
to be present, the data stream is stopped, and retries may
then be handled in accordance with conventional ECC
procedures, invoked in accordance with e.g. the SCSI
interface convention, as one example. Ultimately, if the
cross check remainder bytes are not zero after a correc­
tion, the error is determined to be uncorrectable, and
the disk drive stops and informs the host equipment that

19
5,241,546

20
an uncorrectable error has occurred. If the cross check late the syndrome while it is being clocked out by the
bytes are zero after error correction, a possibility of a byte clock BYTCLKA.
miscorrection of data is thereby determined to be signif- CRC2B · EDC Two Byte Format: When asserted
icantly reduced. true, this control signal selects a two byte format for the

The cross check shift registers 90a and 90b are initial- 5 EDC on the data ID field. In this case, the same syn-
ized by the initialization control signal CTLIEC which drome generator is used for two byte EDC. When deas-
sets them to a known state, and are clocked by the byte serted, this line selects a three byte EDC syndrome
clock signal BYTCLKA and by a signal indicating that process.
ECC and cross check operations are being performed SYNDO Remainder Equals Zero: This control signal
(instead of an ID field error detection operation), as 10 put out by the zero detect circuit 78 is used for detecting
determined by a control gate 89. errors. On two byte EDC formats, this signal will be

The following description summarizes the various asserted following the rising edges of BTYCLKA if
control and data signals whose labels appear in FIG. 4. both EDC remainder bytes are equal to zero. With.
Timing for these signals is provided in the timing graphs ,three byte EDC formats and during ECC operations,
set forth in FIG. 5. 15 this control signal will indicate a.zero EDC remainder

SYNLDAT[7:0] Syndrome Latched Data: A byte of byte condition if, following the final three rising edges
syndrome data is read out from the selected latched of the byt~ clock BY'fCLKA, this si~~ is asserted
syndrome byte position as determined by the address on true. That is to say, if, on .the last two nsmg edges of
the five bit latched address (LADD) bus. This byte is ~1;'TCLKA, ECCENAB IS asserted true, and on the
passed over a microcontroller address/data bus during a 20 nsmg e~g~ afte~ BYTCLKA after ECCE~AB deas-
microcontroller read operation. This data is strobed by serts this signal IS true, then the ECC remamder bytes
a RSECC control signal. are equal to zero. . . .

LADD[4·0] L t h d Add B . Th fi l t SERDOUT[7:1] Senal/Desenal Data Out: This bus . a c e ress us. e 1ve eas 12 . · d b h ECC · · 10 cames m ata ytes to t e c1rcu1try upon
s1gmficant address bits of the m1crocontroller address 25 h. h d · t be t d D ta t b

1 . . . w 1c a syn rome 1s o compu e . a mus e
c.yc e currently m operatlo~ are mput to address a par- valid on the rising edge of BYTCLKA. On data se-
tJcular one of the byte registers of the syndrome latch d t" ECCIN d ta f th . . h. quencer rea opera ions, a comes rom e
68. These five address bit.s are used to determm.e w 1ch serializer/deserializer SERDES 106, as more fully ex-
latched syndro~e byte. will be read out to the m1c~ocon- plained in the previously referenced, commonly as-
troller 196 durmg a m1crocontroller read o~era~1on. . 30 signed U.S. Pat. No. 4,675,652 to Machado. All of the

SYNLCLS Syndrome Latch Close: This signal 1s data bytes, cross check bytes and ECC bytes are
used to .close the syndrome latch 68 f?r on-the-fly. error clocked in synchronism with BYTCLKA. On data
correction. The syndrome l~tch 68 is no~ally m the sequencer write operations, ECCIN data comes from
transparent mode. On detect1~n o!' an error .m the ECC the FIFO buffer memory; all data bytes are clocked in
syndrome, a data sequencer c1rcu1t 100 (FIG. 6) asserts 35 synchronism with BYTCLKA and the cross check
this signal asynchrono~sly to. latch .the data from the bytes and the syndrome bytes 'are calculated and ap-
syndrome generator shift registers mto the syndrome pended to the data stream. Following the final data
latch 68. so that the synd~ome da!a indicative of the byte, ECCIN must be connected to ECCOUT, so that
error will not be lost. This assertion by the data se- the ECC syndrome may be calculated on the cross
quencer 100 is done prior to a reinitialization that occurs 40 check bytes.
f?r the next data sector via the initializatio~ .control ECCDOUT[7:0] ECC Data Out: This bus 66 carries
signal CTLIEC. Thus, the syndrome contammg the data out of the ECC circuit 10. Data is valid on the
encoded error location can be d~coded by the m!- rising edge ofBYTCLKA. ECC syndrome data is avail-
cr~controller 196, and corrected while the next ~ector.1s able at this port in byte serial format while W~GA TE
bemg read and passed through the syndrome shift reg1s- 45 and ECCOP control lines are asserted true. EDC syn­
ter sets 26, 36, 40 and the last group of registers 44, 58 drome data is available while WRGA TE and CR COP
and 62.

SYNLOPE Syndrome Latch Open: This control
signal must be the opposite of the Syndrome Latch
Close control signal. It is true when the syndrome latch 50
68 is in its transparent mode (latch output=syndrome)
and false when the syndrome latch 68 is latched and
static.

ECCCRCN ECC/CRC Control: This signal indi­
cates what type of syndrome the ECC generator 10 is to 55
calculate. When true, this control line indicates that
ECC and a cross check are to be computed on data
bytes. When false, this line indicates that EDC is to be
computed on the bytes of an ID field.

CTLIEC Control Interrupt ECC: When true, this 60
control line asynchronously sets all syndrome bytes of
both the ECC generator and the cross check generator
to a predefined initialization value, which may be an
invariant, yet arbitrary pattern of ones and zeros.

WRGA TE Write Gate: This control signal is used 65
while either CRCOP (error detection of ID field) or
ECCOP (ECC operation) are asserted true in order to
stop the syndrome generator from continuing to calcu-

control lines are asserted true.
BYTCLKA Byte Clock A: This signal represents the

basic clocking signal for all ECC and EDC operations.
ECCENOP ECC Enable Operations: This control

line indicates which BYTCLKA edges contain data for
the ECC circuit 10. The BYTCLKA signal is gated
internally with this signal in the AND gate 13 so that
any transient errors will not occur while BYTCLKA is
true.

CRCOP EDC and Cross Check Control: This con­
trol line indicates which bytes are EDC bytes, and
which bytes are cross check bytes. This signal must be
asserted true on the rising edge of BYTCLKA on
which an EDC or cross check byte will be clocked into
the ECC generator block 10.

ECCOP ECC Operation Control: This control line
indicates which bytes are ECC bytes. This signal must
be asserted true on the rising edge of BYTCLKA dur­
ing which an ECC byte will be clocked into the ECC
syndrome generator 10.

With reference to the timing diagrams of FIG. 5, the
upper group of timing signals along a common horizon-

21
5,241,546

22
ta! time base represent the various logical conditions of
the listed control signals during an EDC check upon an
ID field. The lower group of timing signals in FIG. 5
represent the various logical conditions of the listed
control signals during an ECC and cross check opera- 5
ti on.

Turning now to FIG. 6, it is to be seen that the ECC
syndrome generator circuit 10 is but one functional
element within the data sequencer 100 of an overall disk
drive architecture 160, as shown in FIG. 7 and dis- 10
cussed in greater detail hereinafter. The data sequencer
100 includes a data field address mark detector 102
which receives incoming data directly from a pulse
detector. The detector 102 looks for a sequence of high
frequency flux transitions, and when such is detected, 15

the PLL 188 is then locked to the sequence and the
recovered digital run length encoded data is checked
for the presence of the address mark sequence. In this
regard, the address mark detector 102 monitors the data
stream in order to detect a unique bit sequence which is 20

not consistent with the 1,7 encoding rules and which is
predetermined to represent an address mark. The ad­
dress mark detector 102 generates the byte clock signal
BYTCLKA from the raw data stream as well as an

25 address mark found control signal whenever a bit se­
quence representing an address mark is found in the raw
data stream.

A 1,7 run length limited encoder/decoder 104 en­
-codes and decodes serial data into and from a 1,7 run 30
length limited (RLL) code, and the serializer/deserial­
izer (SERDES) 106 bundles and unbundles data bytes
into and from serial bit-by-bit format. The encoder/de­
coder 104 and SERDES 106 are substantially as de­
scribed in the referenced Machado U.S. Pat. No. 35
4,675,652 noted above. A FIFO byte register 108 ena­
bles data bytes to be asynchronously transferred be­
tween the sequencer 100 and an external cache buffer
memory array 214, clocked by an external crystal clock
standard (as opposed to the BYTCLKA which is syn- 40
chronized with the raw data stream read back from the
disk). A multiplexer 110 regulates bidirectional data
flow through the serializer/deserializer 106 and en­
coder/decoder 104 so that ECC syndrome bytes gener­
ated by the ECC generator 10 may be appended to data 45
blocks flowing to the storage surface, and so that data
values present on a writable control store (WCS) bus
134 may also be sent to the disk for storage.

Reference data sector (i.e. physical sector and trans­
ducer head) identification bytes read from data ID fields 50
are passed through a comparison multiplexer 112 to a
comparison circuit 114. The comparison circuit 114
compares actual data sector identification bytes re­
ceived from the SERDES 106 with the reference identi­
fication bytes held in a sector counter 116. If a corre- 55
spondence exists, the desired sector location has been
reached, and a Compare=O control signal is put out by
the comparison circuit 114 to a jump control multi­
plexer circuit 132.

A writable control store (WCS) 116 provides the dual 60
function of storing control words which control all of
the operational states of the sequencer 110, and which
may be loaded with information directly read and writ­
ten by the microcontroller 196 at locations thereof con­
trolled by addresses decoded by a microcontroller ad- 65
dress decoder 118. During one half of the BYTCLKA
clock cycle, a multiplexer 120 enables direct access by
the microcontroller 196 to the control store 116.

During the other half of the BYTCLKA cycle, ad­
dresses from a sequence controller 122 are used to ad­
dress the control store memory area 116. The controller
122 includes a sequence control decoder block 124
which enables the controller 122 to jump to a plurality
of predetermined states, a sequence address multiplexer
which selects between various addresses, a last address
register 128 for holding the last sequencer address for
application to the control store 116 via the multiplexer
120, and a writable control store multiplexer 130 which
selectively feeds back the last address held in the regis­
ter 128 to the sequence address multiplexer 126.

The sequence controller 122 is directly controlled by
a jump control multiplexer 132 which generates a jump
control signal from a plurality of logical inputs as indi­
cated in FIG. 6. A 28 bit wide writable control store
(WCS) data bus 134 directly communicates with the
writable control store memory 116 and enables the
values held therein to circulate throughout the se­
quencer 100 along the paths shown in FIG. 6. An op­
code bus 136 leads to an opcode decoder 138 which
decodes each five bit op code into a plurality of logical
conditions on the control lines shown coming out of the
opcode decoder 138. The ECC/CRC SEL line, the
ECCOP line, and the CRCOP line directly connect to
the ECC syndrome generator 10, as previously ex­
plained. A PUSH SEL line extends to a Push multi­
plexer 140 which enables e.g. data field count bytes C3,
Cl and Cl to be pushed directly onto the top of a four
byte register stack 142. A top of stack (TOS) bus and a
next of stack (NOS) bus connect the stack 142 to a byte
sequence counter 146 via a multiplexer 144 which also
has the ability to load the sequence counter 146 with
"1" values. The byte sequence counter 146 maintains
the present byte count (remaining field length in bytes
within a block) within the sequencer 100. When the
presently loaded byte count increments to zero, the end
of a particular field is reached, and the sequence counter
146 puts out a SCNT=O value to the jump control
multiplexer 132, so that a next state may then be in­
voked.

A control decoder 148 receives primary control
bytes, secondary control bytes, and count select bytes
from the writable control store 116 and decodes these
values into specific logical control values which are put
out over the control lines shown coming out of the
decoder 148 in FIG. 6, including the write gate signal
WRGA TE and an initialize ECC signal IECC which
directly control the ECC syndrome generator 10.

A loop counter 150 is preset with a number of loops
to be made during a particular data block transfer trans­
action (each loop nominally represents the states re­
quired to transfer a data block), and generates a
LOOPCNT=O control value when the count reaches
zero. This control value signifying that the required
number of data blocks has been transferred is also pro­
vided to the jump control multiplexer 132. An index
timeout counter 152 keeps track of the beginning of
each track by generating an index timeout value
INXCNT=O which is used to control the sequence
controller 124. A once per revolution raw index signal
stored in the first one of the servo sectors S is detected
by the servo control circuit 180 and used to clock the
index counter 152. Other inputs to the sequence control­
ler are the jump value from the jump control multi­
plexer 132, the address mark found value AMFOUND
from the address mark detector 102, and the byte se-

23
5,241,546

24
quence counter SCNT=O value from the sequence
counter 146.

Referring to FIG. 7, a fixed disk drive data storage
subsystem 160 includes at least one rotating data storage
disk 162 which may be a 3.5 inch diameter, or more 5
preferably a 2.5 inch diameter storage disk, for example,
(although this invention will work to advantage in con­
junction with any practical disk diameter, whether
larger or smaller) and which is rotated at a substantially
constant angular velocity, such as 3600 RPM, by a 10
spindle motor 164, such as a direct drive brushless DC
spindle motor which is formed in conjunction with a
disk spindle hub to which the disk 162 is secured. The
motor 164 is driven by a motor driver circuit 166 which
is controlled by a motor control circuit 168 contained 15
within a VLSI circuit chip also containing the se­
quencer 100, the ENDEC 104, a servo controller 180
and PWM output 178, a microcontroller interface 202
and a buffer memory controller 210.

The motor control circuit 168 is directly responsive 20

to the servo control circuit 180 which supplies a raw
index pulse read from e.g. the first one of the plural
servo sectors S. The raw index pulse is timed against the
reference frequency, and the servo control circuit 180

25 .delivers speed up or slow down commands to the motor
driver 166, as may be indicated from time to time.

A plurality of e.g. thin film data transducer heads
170a and 170b are respectively associated with opposite
major data storage surfaces of the at least one data 30
storage disk 162. The data transducer heads are prefera­
bly, although not necessarily, mounted to in-line aligned
load beams which in turn are attached to vertically
aligned arms of an arm assembly 171 ofa mass balanced
rotary voice coil actuator 172. The heads 170a and 170b 35
operate conventionally in a contact-start-stop relation­
ship with respect to the data surface, and they "fly"
above the surface during operations upon an air bearing
as is conventional with Winchester fixed disk technol-
ogy, for example. 40

A coil of the actuator 172 is driven by a servo driver
circuit 174 which develops bidirectional driving current
in response from low pass filtered width-modulated
pulses received from a filter 176. The filter 176 is con­
nected to the servo pulse width modulator 178 within 45
the servo control circuit 180. Servo pulses which are
shaped by a pulse detector 184 and peak detected by a
peak detector 192 are converted to digital values in an
analog to digital converter 194 and delivered directly to
the microcontroller 196. Coarse head position informa- 50
tion read by the head 170 from the embedded servo
sectors S is directly decoded by the servo control cir­
cuit 180 in a manner which is independent of the PLL
188, ENDEC 104 and sequencer 100. The servo control
circuit 180 is implemented with a master state machine 55
which establishes timing for the various fields compris­
ing each servo sector, including a track identification
field which is decoded by a data reader of the circuit
180 and fine position offset signals. The amplitudes of
the fine position offset signals are sampled and held in 60
the peak detect circuit 192 and processed by the mi­
crocontroller 196 during a servo phase of its time shared
operations. Further details of the servo arrangement
presently preferred for the drive 160 are to be found in
a commonly assigned U.S. patent application Ser. No. 65
07/569,065, filed on Aug. 17, 1990, now U.S. Pat. No.
5,170,299, the disclosure of which is hereby incorpo­
rated by reference.

Each data head 170a or 170b, for example, is selected
by head select circuitry contained within a pream­
plifier /select/write driver circuit 182, such as a type
SSI 32R4610R 2 or 4 channel thin-film head read/write
device made by Silicon Systems, Inc, Tustin, Calif., or
equivalent. The analog flux transition signals trans­
duced by the selected head are preamplified in a pream­
plifier portion of the circuit 182 which is preferably
mounted to a thin, flexible plastic substrate (Mylar tm)
carrying multiple conductive traces within a hermeti­
cally sealed head and disk assembly and in close proxim­
ity to the data transducer heads 170a and 170b in order
to increase the signal to noise ratios of the analog signals
recovered from the storage surfaces.

The recovered analog data is then passed through a
pulse detector 184 which transforms the analog flux
transitions into digital logic edges as is conventional. A
write precompensation circuit 186 precompensates data
to be written to the disk received from the sequencer
100. The precompensated write data is supplied directly
to the head select/preamplifier circuit 182 for delivery
to the selected head transducer. A phase locked loop
circuit 188 operates to separate the digital edges into
data bit pairs (encoded data) and delivers those data bit
pairs to the encoder/decoder 104 which is illustrated in
FIG. 5 as being a part of the sequencer 100. A fre­
quency synthesizer 190 enables a variety of reference
frequencies to be synthesized in order to provide for
zoned bit recording as described hereinabove. The syn­
thesizer 190 operates directly under the control of a
programmed microcontroller 196. The pulse detector
184, write precompensation circuit 186, PLL 188, fre­
quency synthesizer 190 and servo burst peak detector
192 are all preferably contained within a single VLSI
integrated circuit package, such as a type DP8491 made
by National Semiconductor Corporation, or equivalent.

A microcontroller address/data bus 198 and a high
order address bus 200 extend directly from the mi­
crocontroller 196 to a microcontroller interface 202
which directly communicates with the sequencer 100,
encoder/decoder 1104, motor control 168, servo con­
trol circuit 180 and a buffer memory controller 210. As
mentioned, these circuits are preferably, although not
necessarily, embodied within a single VLSI application
specific CMOS circuit, as suggested by the single block
for these circuits in FIG. 6. An address bus 204 extends
from the microcontroller interface 202 to a program
memory 206. Certain of the address bit positions for
addressing the program memory 206 are generated and
put out directly to the program memory 206 by the
microcontroller 196 over an address bus 208.

The buffer memory controller 210 generates buffer
addresses and puts them out over a bus 212 to a buffer
memory 214 which may preferably be configured as a
data cache. In the present example the buffer memory
214 is arranged as an 8 kilobit by 8 bit array (64 kilobit).
-Data blocks are transferred to and from the FIFO regis­
ter 108 within the sequencer 100 and the buffer memory
214 via a buffer data bus 216. This bus 216 also extends
to an interface control circuit 218 which receives data
blocks and command values via an interface bus 220
connected to a host system and stores the values and
blocks in the memory 214, and which returns status
values and data blocks from the memory 214 via the
interface bus 220 to the host. The interface circuit may
implement industry standard host-subsystem bus level
interfaces, such as the SCSI interface standard, or it
may implement the IDE interface standard (IBM AT

25
5,241,546

26
bus), as is conventionally known in the art. For exam­
ple, an NCR type 5380 SCSI interface controller is a
suitable interface control circuit 218 for implementing
the SCSI bus convention standard.

A direct memory access path exists between the mi- 5
crocontroller 196 and the buffer memory 214 via the
micro interface 202 and the buffer control 210. With this
path, it is practical for the microcontroller to access
particular byte locations of the buffer memory 214 in
order to withdraw an erroneous byte from an error 10
location, XOR the erroneous byte with a correction
value, and write the correction value to the error loca­
tion, in order to implement an on-the-fly error correc­
tion method of the present invention.

As noted repeatedly hereinabove, the disk drive 160 l5
is a presently preferred subsystem or environment for
utilization of the on-the-fly error correction techniques
of the present invention. As will be appreciated by those
skilled in the art, many of the low level repetitive syn­
drome generating and checking tasks are carried out in 20

the syndrome generator hardware shown in FIG. 4 and
described in conjunction therewith. The high level task
of calculating error correction values is carried out as
needed by the m~crocont.roller 1~ in accordance with

25 the error correction service routme program accompa­
nying this specification by way of microfiche disclosure
incorporated herein by reference.

Preferably although not necessarily, the microcon­
troller 196 is a single monolithic microcontroller such as

30
the NEC 78322, or equivalent, operating in a two-phase
time divided arrangement per servo sector wherein a
first time interval upon the arrival of each servo sector
is devoted to servo control operations for head position­
ing, with a second and following time interval devoted 35
to other tasks, including supervision of data block trans­
fers and error correction operations, for example. An
overview of this form of disk drive architecture is pro­
vided in commonly assigned U.S. Pat. No. 4,669,004 to
Moon et al., the disclosure of which is hereby incorpo- 40
rated by reference. A hierarchical system for managing
the tasks performed by the microcontroller 196 during
the second and following time interval is disclosed in
commonly assigned U.S. patent application Ser. No.
07/192,353, filed on May 10, 1988, now U.S. Pat. No. 45
5,005,089, the disclosure of which is hereby incorpo­
rated by reference. The error correction functions of
the exemplary microcontroller 196 could readily be
carried out by one or more microcontrollers in a multi­
ple microcontroller architecture, with improved real 50
time performance, but at higher cost of implementation.

In overview, the error correction process for a data­
read-from-disk operation includes during the data read­
ing back process (and after each data block has had
syndrome bytes and cross check bytes appended thereto ss
during a previous data writing operation) the following
steps:

1. Preset the shift registers of the syndrome generator
10 to a predetermined known state, which may be a
recurrent pattern of arbitrarily ordered ones and zeros. 60

2. Generate syndrome remainder bytes and cross
check syndrome remainder bytes for a data block (data
sector) from the stream of data bytes read from the disk
by passing those bytes through the syndrome generator
10. 65

3. Check to see if the remainder bytes for each inter­
leave are equal to zero as the last byte interleave is
clocked into the syndrome generator 10.

a. If the remainder bytes for each interleave are equal
to zero, wait until the next block or sector, as no
correction is required.

b. If one or more remainder bytes for an interleave
are not equal to zero and if the syndrome latch is
available to hold the syndrome, proceed to step 4.

c. If the remainder bytes are not equal to zero and if
the syndrome latch is not presently available to
hold the syndrome (meaning that remainder bytes
from the last data block remains latched therein
during an already-commenced on-the-fly error
correction operation), stop data flow; on-the-fly
error correction cannot continue to be performed.

4. Latch the remainder bytes for each interleave into
the syndrome latch 68. These remainder bytes have the
form RO, Rl, R2 and R3 (for each interleave) wherein:

R(x)=R3x3+R2x2+Rlx+RO (30)

After the remainder bytes Ri for a present data block
are latched into the syndrome latch 68, the syndrome
generator 10 then continues to decode remainder bytes
for the next data block. A pair of non-zero remainder
bytes from adjacent data blocks will effectively shut
down the presently described implementation of on-the­
fly error correction process as the microcontroller 196
presently employed lacks sufficient random access
memory space to receive and store remainder bytes
from successive data blocks on-the-fly. However, there
is no reason that increased random access memory
space may be used to- hold these bytes and thereby
enable continuing on-the-fly error correction for multi­
ple successive data blocks. The potential for shut-down
is also dependent upon the time required by the mi­
crocontroller 196 to correct the first error and test the
correction with the cross-check syndrome. A further
limitation resides in the size of the block buffer memory
214. Also, the syndrome generator 10 may be modified
by provision of additional circuitry for directly calcu­
lating and putting out partial syndrome bytes to the
microcontroller 196 via the syndrome latch in order to
speed up error correction.

5. Cause the microcontroller 196 to call and execute
the error correction service routine and begins execut­
ing that routine. As is known by those skilled in the art,
this step may be implemented through interrupt or pol­
ling techniques.

6. Transfer remainder bytes from the remainder latch
68 to the microcontroller 196 on an as needed basis
during execution of the error correction algorithm. The
firmware then converts remainder bytes R(x) to partial
syndrome bytes S(x) if any of the remainder bytes are
unequal to zero, in accordance with:

Si _ R(x) mod (x + alphai+ 126)
- alpbaCi+ 126)"4

(Sc)

where i=O, l, 2 and 3
[wherein the plus symbol in the exponent indicates
arithmetic addition, rather than an exclusive OR opera­
tion] so that partial syndromes SO, Sl, S2 and S3 are
obtained. We must go through this conversion process
because the syndrome generator circuit 10 is also used
during data readback to provide the remainder bytes Ri
in order to more optimally minimize the amount of
required hardware.

27
5,241,546

28
7. For each interleave, convert the remainder bytes to b. If the cross check partial syndrome is unequal to

partial syndrome bytes within an interleave of three: zero, on-the-fly error correction is stopped, and
SO=Data modulo (X+alphal26) step 11 is performed.
SI= Data modulo (X +alpha 127) 11. One or more retries are then undertaken, until a
Sl=Data modulo (X+alphal28) S correction is achieved, or the error is determined to be
S3=Data modulo (X+alpha129). much larger than originally contemplated, in which
a. On-The-Fly Single Burst Error Correction. For case an uncorrectable error is flagged to the host. When

on-the-fly single-burst error correction, let LI a retry is commanded by programming at the microcon-
equal the error location and el equal the error troller 196, the retry is performed by the microcon- ·
value. 10 troller off line in the sense that this process is carried out
(1) If (SO=O), or (Sl=O) or (Sl=O) or (S3=0), after data flow has been interrupted. An error message

then go to the double burst error correction may be generated and sent to the host, and the retry
algorithm. process may continue for e.g. eight retries, as is standard

(2) If (Sl/SO=Sl/Sl =S3/Sl) then continue, oth- at the interface.
erwise go to the double burst error correction IS Thus, on-the-fly ECC occurs essentially in the back-
algorithm. ground as a part of the read channel process by which

(3) Perform: Ll=Log [SI/SO] and el=Sl data is transferred from the disk to the host in a manner
(SO/SJ)127 transparent to the host machine. If the transparent on-

(4) If LI is outside of a predetermined range, (i.e. the-fly ECC methods described herein are unable to
0-175 for interleave I; 0-174 for interleaves l 20 correct the error or errors to a user-acceptable confi-
and 3), then go to double burst correction, else dence level, then more conventional error recovery
proceed to step 8 below. activities and procedures may occur in the foreground

b. Double Burst Error Correction. For double burst at the interface with the host, as· per the conventional
error correction, let LI and Ll equal the error 2S SCSI error correction standard, for example.
locations; and, let el and el equal the error values Error detection processes for checking the ID fields
at the respective locations. are carried out entirely within the sequencer 100, so that
(1) Calculate <f>l and <f>l in accordance with equa- if an error is detected in the ID field, repeats are made

tions (16) and (17) above. until either the sector is declared to be inaccessible, or it
(2) If the denominator or numerator of <f>l or <f>l is 30 is accessed.

equal to zero, then flag an uncorrectable error to With reference to the Microfiche Appendix accom-
the host. panying the application for this patent, a few changes

(3) Find the roots of the quadratic equation (18) made at the time of filing of the application resulting in
given above and output the resultant XI and Xl this Patent should be noted in the disclosure thereof: the
values. 3s code at line 1171 was deleted and reinserted at line 1166;

(4) If <f>(x) has no solution, flag an uncorrectable the code at line 1183 was deleted and reinserted at line
error to the host. 1177; and, the code at line 1181 was deleted.

(5) Calculate error locations LI and Ll in accor- Having thus described an embodiment of the inven-
dance with equations (19) and (20) above. If tion, it will now be appreciated that the objects of the
either LI or Ll has a value located beyond the 40 invention have been fully achieved, and it will be under-
predetermined permissible range of values, then stood by those skilled in the art that many changes in
flag an uncorrectable error to the host. construction and widely varying embodiments and ap-

(6) Calculate error values el and el in accordance plications of the invention will suggest themselves with-
with the equations (21) and (22) given above. If out departing from the spirit and scope of the invention.
either el or el equal zero, then flag an uncorrect- 45 The disclosures and the description herein are purely
able error to the host, else proceed to step 8 illustrative and are not intended to be in any sense limit-
below. ing.

8. The microcontroller 196 then computes the effect What is claimed is:
of the changed byte upon the cross check partial syn- 1. In a data handling system comprising a first data
drome and saves this computed value and repeats this so source apparatus for sending and receiving a sequence
process for each of the other two interleaves of the data of data blocks, a block buffer means for temporary
block. storage of sequences of data blocks, a second data

9. If the correction passes the cross check checking source apparatus for sending and receiving a sequence
step 8, the microcontroller 196 then corrects the error of code blocks wherein each code block includes user
using its DMA channel to the buffer memory l14 lead- SS bytes contained in a corresponding data block and addi-
ing through the micro interface lOl and buffer control tionally contains error correction syndrome bytes re-
llO by withdrawing the erroneous byte from the error lated to the user bytes, an interface circuit between the
location within the block, XORing the erroneous byte first data source apparatus and the block buffer means,
with a correction value to yield a corrected byte, and an encoder/sequencer between the block buffer means
writing the corrected byte back to the error location. 60 and the second data source apparatus for encoding the

10. Taking the error correction into account: data blocks in code blocks and for sequencing the code
a. If the cross check partial syndrome is equal to zero, blocks to a data destination ·apparatus, and a pro-

the error correction process is determined to be grammed microcontroller for supervising block transfer
within the probability of miscorrection and is operations of the interface circuit and the encoder/-
therefore completed; the syndrome latch 68 is re- 65 sequencer, Reed-Solomon error correction apparatus
leased, and the data block in the memory buffer l14 for performing on-the-fly error correction upon a data
containing the corrected error is then released for block within the sequence, the error correction appara-
transfer to the host. tus further including:

29
5,241,546

30
Galois Field syndrome generator and remainder re­

covery circuit means connected to the encoder/­
sequencer to receive and process each code block
from the second data source apparatus for recover­
ing error correction remainder bytes for said code 5
block while the user bytes thereof are transferred
into the block buffer means as said data block, said
error correction remainder bytes being related to
the syndrome bytes appended to the code block,

the generator and remainder recovery circuit means 10
including comparing means for comparing prede­
termined ones of said recovered error correction
remainder bytes with a nominal value, and latch
means for latching recovered plural error correc­
tion remainder bytes in response to a non-equiva- 15
lcnce as determined by said comparing means,
thereby freeing the generator and remainder recov­
ery circuit means for recovering error correction
remainder bytes from a next one of the code blocks
of the sequence without significant interruption of 20
data block flow in the system,

the microcontroller being responsive to a said non­
equivalence for calling and executing an error cor­
rection service program routine and thereupon
selectively obtaining the recovered error correc- 25
tion remainder bytes from the latch means, and
including calculation means responsive to the se­
lectively obtained error correction remainder bytes
for performing an error correction calculation by
calculating at least one error location and a corre- 30
sponding error value and for generating corrected
data to replace erroneous data of the block, and
further including direct access means for directly
accessing the block buffer means for substituting
the corrected data for the erroneous data before 35
the block is transferred by the interface circuit to
the first data source apparatus.

2. The apparatus set forth in claim 1 wherein the
generator and recovery circuit means further comprises
Reed-Solomon cross check syndrome generator means 40
for recovering cross checking syndrome information
appended to each data block by the encoder/sequencer
and for storing said recovered cross checking syndrome
information in said latch means, and wherein the mi­
crocontroller means upon executing the error correc- 45
tion service program routine further verifies the accu­
racy of an error correction calculation with the recov­
ered cross checking syndrome information.

3. The apparatus set forth in claim 2 wherein the
recovered cross checking information is related to 50
Recd-Solomon cross check syndrome information in
accordance with a polynomial, G(s)=x2+a, where a is
unequal to one.

4. The apparatus set forth in claim 3 wherein the
Reed-Solomon cross check syndrome information is in 55
accordance with a polynomial;

G(x} = x2 + alpha I where alpha I is unequal to one.

5. The apparatus set forth in claim 1 wherein each 60
said code block includes a data identification field, and
the generator and recovery circuit means further com­
prises error detection means for recovering and check­
ing error detection syndrome information previously
appended to said data identification field of each code 65
block.

6. The apparatus set forth in claim 5, wherein the
error detection means detects an error in said data ID

field having error detection information appended
thereto in accordance with a two byte syndrome gener­
ated in accordance with a polynomial:

GEDC2(x)=x2+ax+b, where bis a constant which
is unequal to one.

7. The apparatus set forth in claim 6 wherein the error
detection means detects an error in said data ID field
having error detection information appended thereto in
accordance with the two byte syndrome generated in
accordance with a polynomial:

G£DC2(x)=x2+x+alpha18.

8. The apparatus set forth in claim 6 wherein the error
detection means detects an error in said data ID field
having error detection information appended thereto in
accordance with a two byte syndrome generated in
accordance with a polynomial:

GEDC2(x}=x2+aJpha81.x+alpha81.

9. The apparatus set forth in claim 5, wherein the
error detection means detects an error in a said data ID
field having error detection information appended
thereto in accordance with a three bytes syndrome
generated in accordance with a polynomial:

GEDC3(x)=x3+ax2+bx+c.

10. The apparatus set forth in claim 9 wherein the
error detection means detects an error in said data ID
field having error detection information appended
thereto in accordance with a three byte syndrome gen­
erated in accordance with a polynomial:

GEDC3(x)=x3+alpha87.x2+alpha87.x+ I.

11. The apparatus set forth in claim 9 wherein the
error detection means detects an error in said data ID
field having error detection information appended
thereto in accordance with a three byte syndrome gen­
erated in accordance with a polynomial:

GEDC3(x)=x3+alpha81.x2+alpha87.x+alpha18.

12. The apparatus set forth in claim 5 wherein the
Galois Field syndrome generator and remainder recov­
ery circuit means calculates error correction coding
syndrome information in accordance with a Galois field
(28) generated by a field generator polynomial having
the form xS+x4+x3+x2+1 and wherein the first term
of the field is x5+x3+x+ 1 (which is 00101011 binary),
each error correction syndrome being of the form
G(x)=x4+(alpha 18).x3+(alpha87).x2+(alphal8).xl + 1.

13. The apparatus set forth in claim 12 wherein the
error detection means generates a two byte syndrome in
accordance with a polynomial:

GEDC2(x)=x2+ax+b, where bis unequal to one.
14. The apparatus set forth in claim 13 wherein the

error detection means generates a two byte syndrome in
accordance with a polynomial:

G£DC2(x)=x2+x+alpha18.

15. The apparatus set forth in claim 13 wherein the
error detection means generates a two byte syndrome in
accordance with a polynomial:

G£DC2(x)=x2+alpha81.x+alpha81.

31
5,241,546

32

16. The apparatus set forth in claim 12 wherein the
error detection means generates a three byte syndrome
in accordance with a polynomial:

clock period as the feedback byte to the summing
junction.

23. Reed-Solomon error correction apparatus for
performing on-the-fly error correction within a disk

G£DC3(x)=x3+ax2+bx+c.

17. The apparatus set forth in claim 16 wherein the
error detection means generates a three byte syndrome
in accordance with a polynomial:

5 drive storage subsystem including at least one rotating
data storage disk, at least one data transducer head
which is controllably positioned for writing data to the
disk and for reading data from the disk, head positioner
means for positioning the data transducer head, a read/-

G£DCJ(x)=x3+aJpha87.x2+a!pha87 . .x+ I.

10 write data channel, sequencer means for encoding
blocks of data into code blocks and for sequencing the
code blocks from a block buffer memory means serially
onto the disk via the read/write channel and data trans-

18. The apparatus set forth in claim 16 wherein the
error detection means generates a three byte syndrome 15
in accordance with a polynomial:

G£DC3(x)=x3+alpha81 . .x2+alpha87.x+alphal8.

19. The apparatus set forth in claim 1 wherein the 20
generator and recovery circuit means generates error
correction coding syndrome information in accordance
with a Galois field (28) generated by a field generator
polynomial having the form xB+x4+x3+x2+ 1 and
wherein the first term of the field is xs+x3+x+ 1 25
(which is 00101011 binary), each error correction syn­
drome polynomial being of the form G(x)=x4+(al­
phal8).x3+(alpha87).x2+(alpha18).x I+ 1.

20. The apparatus set forth in claim 19 wherein the
generator and recovery circuit means further comprises 30
Reed-Solomon cross check syndrome generator means
for recovering cross checking syndrome information
appended to each code block and wherein said latch
means also stores recovered cross checking syndrome
information, and further wherein the microcontroller 35
means verifies the accuracy of an error correction cal­
culation with the recovered cross checking syndrome
information, the Reed-Solomon cross check syndrome
generator means for calculating cross checking syn­
drome information in accordance with a polynomial; 40

G(x)=x2+b, where bis unequal to one.
21. The apparatus set forth in claim 20 wherein the

cross check syndrome generator means calculates cross
checking syndrome information in accordance with a
polynomial; 45

G(x)=x2+alpha 1.

22. The apparatus set forth in claim 20 wherein the
cross check syndrome generator means comprises 50

an input connected to the encoder/sequencer for
receiving an incoming block as a clocked data
stream of serial bytes,

first summing junction means for summing each byte
of the clocked data stream with a feedback byte to 55
produce a sum byte,

first multiplier means for multiplying the sum byte by
alpha! to yield a first product byte, ·

first clocked latch stage means connected to the first
multiplier means for storing the first product byte 60
during a first byte clock period and for storing
subsequent product bytes during subsequent byte
clock periods,

second clocked latch stage means connected to the
first clocked latch stage means for storing the first 65
product byte during a second byte clock period,
the second clocked latch stage means for feeding
back the first product byte during the second byte

ducer head during data writing operations and for de:
coding and sequencing serial data code blocks into data
blocks for delivery to the block buffer memory means
during data reading operations, the block buffer mem­
ory means being capable of storing a plurality of contig­
uous ones of said data blocks, an interface controller for
transferring data blocks between a host computer and
the block buffer memory means, and programmed mi-
croprocessor means for supervising the head positioner
means and for controlling operations of the data se­
quencer means, the block buffer memory means and the
interface controller, the error correction apparatus fur­
ther including:

Galois Field syndrome generator and remainder re-
covery circuit means connected to the sequencer
means to receive and process each data block for
generating plural partial error correction syn­
drome bytes for said data block, said bytes being
appended to the data block to form a correspond­
ing code block to be written to the disk during data
writing operations, said generator and recovery
circuit means for detecting errors by recovering
plural error correction remainder bytes from each
code block read from the disk during data reading
operations,

the generator and recovery circuit means including
comparing means for comparing predetermined
ones of said regenerated plural error correction
remainder bytes with a nominal value, and latch
means for latching recovered error correction re­
mainder bytes in response to a non-equivalence as
determined by said comparing means, ·

the programmed microprocessor means being re­
sponsive to a said non-equivalence for calling and
executing an error correction service program
routine and thereupon selectively obtaining recov­
ered error correction remainder bytes from the
latch means, and including calculation means for
calculating at least one error location and at least
one error value from the obtained regenerated
error correction remainder bytes, the calculation
means for generating a corrected value to replace
the error value, and the microprocessor means
controlling direct access means for directly access­
ing the block buffer memory means for substituting
the corrected value for the error value of a data
block stored therein including the error location
before the data block is transferred by the interface
controller to the host computer and without signifi­
cantly stopping flow of data blocks to the host
computer.

24. The apparatus set forth in claim 23 wherein the
generator and recovery circuit means further comprises
Reed-Solomon cross check syndrome generator means
for calculating and appending cross checking syndrome

33
5,241,546

34

33. The apparatus set forth in claim 32 wherein the
error detection means generates a three byte syndrome
in accordance with a polynomial:

G£DC3(x)=x3 +alpha87.x2+alpha87.x+ I.

information to the code block during data writing, and
wherein the cross check syndrome generator means
recovers cross checking remainder bytes from each
code block read from the disk, and wherein the latch
means additionally latches the recovered cross check 5
remainder bytes, and further wherein the error correc­
tion service program routine causes the microprocessor
means to verify the accuracy of a proposed error cor­
rection in relation to the recovered cross check remain­
der bytes prior to substitution of the corrected value for

34. The apparatus set forth in claim 32 wherein the
error detection means generates a three byte syndrome

10 in accordance with a polynomial:
the error value within the data block. •

25. The apparatus set forth in claim 23 wherein each
said code block further includes a data identification
(ID) field therein, and wherein the generator and reeov­
ery circuit means further comprises error detection 15
means for recovering and checking error detection
remainder bytes of the data ID field of each said code
block.

26. The apparatus set forth in claim 23 wherein the
generator and recovery circuit means error correction 20
coding syndrome information in accordance with a
Galois field (28) generated by a field generator polyno­
mial having the form x8+x4+x3+x2+ l and wherein
the first term of the field is x5+x3+x+ l (which is
00101011 binary), each error correction syndrome 25
being in accordance with a polynomial:

G(x)=x4+(alpha18).x3 +{alpha87).x2 +(al­
pha 18J.x +I.

27. The apparatus set forth in claim 26 wherein the
30

generator and recovery circuit means further comprises
Reed-Solomon cross check syndrome generator means
for calculating checking syndrome information in ac­
cordance with a polynomial: 35

G(x)=x2+a, where a is unequal to one.

G£DC3{x)=x3+aJpha81.x2+aJpha87.x+alpha18.

35. The apparatus set forth in claim 23 wherein the
programmed microprocessor means comprises a single
microprocessor.

36. The apparatus set forth in claim 35 wherein the
programmed microprocessor devices its functional ac­
tivities between head position control and data flow
supervision including execution of said error correction
service program routine.

37. The apparatus set forth in claim 23 further com-
prising a head positioner means for positioning said data
transducer head among a multiplicity of concentric data
tracks, and a servo control loop for controlling the head
positioner, the servo control loop further including the
programmed microprocessor means.

38. The apparatus set forth in claim 37 wherein the
disk includes prerecorded servo information for the
servo control loop embedded within the multiplicity of
concentric data tracks, and wherein the servo control
loop includes servo data recovery means for recovering
the embedded servo information read by the data trans­
ducer head.

39. The apparatus set forth in claim 37 wherein the
multiplicity of data tracks are arranged as a plurality of
contiguous zones, each said zone having a data transfer
rate determined in relation to radial offset of the said
zone from an axis of rotation of the disk, and wherein

28. The apparatus set forth in claim 27 wherein the
cross check syndrome generator means calculates
checking syndrome information in accordance with a
polynomial:

G(x)=x2+alphal where alphal is unequal to ~:me.
40 the sequencer means sequences data blocks from the

disk to the block buffer memory means at a first prede­
termined data transfer rate fixed in relation to radial
offset of the said zone from an axis of rotation of the

29. The apparatus set forth in claim 26 wherein the
generator and recovery circ1:1it means further comprises
error detection means for detecting an error in a data
identification field of each said block by generating a 45
two byte syndrome in accordance with a polynomial:

GEDC2(x)=x2+ax+b, where bis unequal to one.
30. The apparatus set forth in claim 29 wherein the

error detection means generates a two byte syndrome in
accordance with a polynomial:

G£DC2{x)=x2+x+alphal8.

disk, and further wherein the interface controller means
controls transfer of data blocks from the block buffer
memory means to the host computer at a second data
transfer rate.

40. The apparatus set forth in claim 23 wherein the
sequencer means encodes the data blocks into run

50 length limited code values incident to generation of
code blocks during data writing operations, and
wherein the sequencer means decodes the code blocks
from run length limited code values into unencoded 31. The apparatus set forth in claim 29 wherein the

generator and recovery circuit means further comprises
error detection means for detecting an error in a data 55

ID field of each said code block by generating a two
byte syndrome in accordance with a polynomial:

data blocks during data reading operations.
41. The apparatus set forth in claim 40 wherein the

sequencer encodes the data blocks, and decodes the
code blocks, in accordance with a 1,7 run length limited
code.

G£DC2{x)=x2+alpha81.x+alpha81. 42. An on-the-fly error correction apparatus in a data
60 storage system for a host computer, the system includ-

32. The apparatus set forth in claim 26 wherein the ing an interface to the host computer, an interface con-
generator and recovery circuit means further comprises troller for controlling data block transfers of the inter-
error detection means for detecting an error in a data face, a data block buffer memory for temporarily stor-
identification field of each said code block by generat- ing a string of data blocks, a magnetic data storage
ing a three byte syndrome in accordance with a polyno- 65 medium for storing sequences of code blocks, a mag­
mial: netic data transducer for writing code blocks to the

GEDC3(x)=x3+ax2+bx+c.

medium, a read/write channel connected to the mag­
netic data transducer for processing code blocks read

35
5,241,546

36
from the medium by the data transducer, a data se­
quencer connected to the data block buffer memory and
to the read/write channel for converting data blocks
into code blocks during data writing, and for convert­
ing code blocks to data blocks during data reading, a 5
block buffer memory controller storage operations in
the data block buffer memory, and a programmed mi­
crocontroller for controlling the interface controller,
the data sequencer, and the block buffer memory con­
troller, and having a direct access path to the data block 10

buffer memory, the on-the-fly error correction appara­
tus comprising:

Galois Field syndrome generator and remainder re­
covery circuit means connected to the sequencer 15
means to receive and process each data block for
generating plural partial error correction syn­
drome bytes for said data block, said bytes being
appended to the data block incident to formation of
a corresponding code block to be written to the 20
disk during data writing, said generator and recov­
ery circuit means for detecting errors by recover­
ing plural error correction remainder bytes from
each block read from the disk during data reading,

the generator and remainder recovery circuit means 25
including comparing means for comparing prede­
termined ones of said regenerated plural error cor­
rection remainder bytes with a nominal value,

the generator and remainder recovery circuit means
further including cross check generator and recov- 30
ery circuit means for calculating and appending
cross checking syndrome information to the code
block during data writing, and for recovering cross
checking remainder bytes from each code block
read from the disk, 35

the generator and remainder recovery circuit also
including latch means for latching recovered error
correction remainder bytes and recovered cross
check remainder bytes in response to a non-equiva-
lence as determined by said comparing means, 40

45

50

55

60

65

the programmed microcontroller being responsive to
a said non-equivalence for calling and executing an
error correction service program routine and
thereupon selectively obtaining recovered error
correction remainder bytes and the recovered
cross check remainder bytes from the latch means,
and including calculation means for calculating at
least one error location and at least one error value
from the recovered error correction remainder
bytes, the calculation means for generating a cor­
rected value to replace the error value, the mi­
.crocontroller thereupon verifying accuracy of the
corrected value in relation to the recovered cross
check remainder bytes, and the microcontroller
thereupon controlling the block buffer memory
controller and substituting the corrected value for
the error value of a data block stored therein in­
cluding the error location before the data block is
transferred by the interface controller to the host
computer and without significantly stopping flow
of data blocks to the host computer.

43. The apparatus set forth in claim 42 wherein the
generator and recovery circuit means generates Reed
Solomon error correction coding syndrome informa­
tion in accordance with a Galois field (28) generated by
a field generator polynomial having the form
x8+x4+x3+x2+ 1 and wherein the first term of the
field is x5+x3+x+ 1 (which is 00101011 binary), each
error correction syndrome being in accordance with a
polynomial:

G(x) =x4 +(alpha I 8).x3 +(alpha87).x2 +(al­
pha 18).x +I;

and wherein the cross check generator and recovery
means generates Reed Solomon cross checking syn­
drome information in accordance with a polynomial:

G(x)=x2+alpha1.

* * * * •

