IPLEXIUS

SysS5 UNIX Support Tools Guide

98-05081.1 Ver. B

Sys5 UNIX Support Tools Guide

98-05081.1 Ver. B May, 1986

PLEXUS COMPUTERS, INC.
3833 North First Street
San Jose, CA 95134
408/943-9433

Copyright 1986
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may
be reproduced, transmitted,
transcribed, stored in a
retrieval system, or translated
into any language, in any form
or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained
herein is subject to change
without notice. Therefore,
Plexus Computers, Inc.
assumes no responsibility for
the accuracy of the information
presented in this document
beyond its current release
date.

Printed in the United States of America

,//

2. MAKE

CONTENTS

~
(1. INTRODUCTION

BaSiC FEAtUresccooeiiiiiic e 2-4
Description Files and Substitutionsccc...ccccccciiiiin 2-7
CoMMANA USAGE ...ttt bbb 2-9
Suffixes and Transformation Rules....................cccoooiiiiii 2-10
IMPHCIt RUIBS ... s 2-11
Suggestions and Warnings.................ccccovvenenirenicncnens . e 2-13

3. AUGMAKE

(’ 4. SCCS

The Environment Variables.....................ccoooiiiiiiii e
Recursive Makefiles....................cccccoeceenninns
Format of Shell Commands Within make
ArChive LIDParI@Sc..coooiiiiiiiiiieie ettt st re e s
SCCS File Names: The Tilde..............c.ccoooiiiiiiiiecee e
The Null Suffix.........................

Include Files
Invisible SCCS Makefiles
Dynamic Dependency Paramteres
Extensions of $*, $@, and $<
OUtPUt TrANSIAtIONS ..o s

SCCS fOr BEGINNEISocooveiiiieecieeienee et e eseasten e bbb e 4-2
Delta NUMEEING ...t 4-7
SCCS Command Conventlons
SCCS COMMANGSoooviiieiiiiieeiieenteies e b s bbb seses b eseberesesasrers 4-12
SCCS FlESoovineeiieeeeeeee ettt ettt er e bt e saese bt rane s sb e st ersbeseesen 4-37
An SCCS Interface Program..............c.ccoiuiiiniiiiiniiini e 4-40

5. MACROS

6. AWK

Defining MacCroS ...
Arguments

Arithmetic Built-ins
File Manipulation ...

System Command ...

Conditionals

String Manipulation
PrINtING ..o

Program Structure.......
Lexical Convention.........
Primary Expressions......
Termsccoecvvveeenennns
EXPressions............c.coceevvereneenne.
using awk ...
Input: Records and Fields

Plexus Sys5 UNIX -1- May 1986

CONTENTS

Input: From the Command LiNeccocovvininnniniine s 6-18
Output: Printing

Output: To Different Files...
Output: To Pipes.................
Comments
Patterns....

Built In Functions .
FIOW Of CONION ..ottt sae et sae s eneenaeenas
Report Generation ..ot e
Cooperation With the Shell ...
Miscellaneous HintS................cccooiiiiiiiiiii e et

7. LINK EDITOR

Using the Link Editor......................
Link Editor Command Language
Notes and Special Considerations .
EITON MESSAGScoovoviiiiiiiiiieiieie ettt sttt ettt tesee e b eee s ses e eat et eneseansens

Syntax Diagram for Input Directivesc.c.coevvririeivneice s 7-34

8. THE COMMON OBJECT FILE FORMAT

10.

. BC

Definitions and Conventionsc.cccoe i 8-2
File Header..............cccccovvvennnnn.

Optional Header INformation.................cccooceiiiiiinccecee et 8-7
Section Headers8-11
Sectionsc..ccocevvemenn.8-15
Relocation Information ... 8-16
Line Numbers.........

Symbol Table

String Ttable............
ACCESS ROULINESccooviiiiiiiiiiicc ettt se s st sb e s s sna 8-50

Subscripted Variables..................c.ocooiiiiiinii e 9-6
Control Statements .

Additional Features
APPENIX 9.1 . s 9-11

DC COMMANGScooiiiiiiiiece ettt e et ea e e ae et aetaaeas
Internal Representation of Numbers ..
TR AHOCATOF ..o et a e ee e b st ssnaeseeanbes
Internal Arithmetic..................ocooiiiiii e
Addition and Subtraction ...
Multiplication.................
DIVISION ...ttt e e e e ae b san et eraeernaenaes
ReMAINAET ...ttt et st b e sttt
Square Root........
Exponentiation......................
Input Conversion and Basec.cceceoviinncienncneceene

May 1986 -2- Plexus Svs5 UNIX

CONTENTS

Output Commands et ene 10-8
Output Format and Base10-8
Internal Registers................. ...10-8

Stack Commands.......................... ...10-8
Subroutine Definitions and Calls10-9
Internal Registers-Programming DC10-9
Pushdown Registers and Arrays........ ...10-9
Miscellaneous COMMANGS...............cccoovueririirieeinrei e 10-10
DESIGN ChOICE...........c.ciiieiiiiicit et s as e 10-10
11. LEX
LEX SOUFCE..........c.oiuiiimiiiiieiietititrt ettt bttt ettt ettt n e st 11-4
LEX Regular Expressions .. 11-5
LEX Actions.....................e... .11-9
Ambiguous Source Rules .. 11412
LEX Source Definitionsccoeiiniiiiiiicc e 11-15
USAQC ...ttt ettt ettt 11-16
LEX QN YACC ...ttt ettt sttt 11-17
EXAMPIES ... s 1117
Left Content Sensitivityc.ccorriiii e 11-19
Character Set...............ccooviiiiiiii e bbb 11-21
Summary of Source FOrmat ..o 11-22
Caveats and BUGScccocoviiiiiiiicci e 11-23
12. YACC
BasiC SPecCificationscccc.cociiieeiiiii e 12-3
Actions12-6

Lexical Analysis12-9
Parser Operation12-10
Ambiguity and Conflicts................ccoviviiiic e 12-15
PrecedencCe e 12-20
Error Handling............cccoooiiiiiiiii s 12-23
The yacc ENVIFONMENT.............c.cocoiiiiiiiicc s 12-25
Hints for Proparing Specifications ... e 12-27
AAVANCEA TOPICS.........c.ooiiiiiiiiieieiece ettt ettt et sbaebtreeaeenn 12-30
APPENAIX T2.1 ..ot e e e e e brens 12-34

APPENAIX 12.2 ... e e e eee 12-38
APPENAIX 12.3 ... e e b 12-41
APPENAIX 12.4 ..o e ee 12-51
13. RJE
14. UUCP
The UUCP NetWOIK.............couviiiiiieieiinicrcccne ettt ssas e 141
Network Usage.................14-8
Utilities that Use UUCKP ... 14-14

Plexus Sys5 UNIX -3- May 1986

INTRODUCTION CHAPTER 1

1. INTRODUCTION

The SUPPORT TOOLS volume is a description of the various software
“tools” that aid the UNIX operating system user. The user should have at
least 2 years of specialized training in computer-related fields such as
programming or use the UNIX system primarily for software system
development. The following paragraphs contain a brief description of each
chapter.

The chapter A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make) describes a software tool for maintaining, updating, and regenerating
groups of computer programs. The many activities of program development
and maintenance are made simpler by the make program.

The chapter AUGMENTED VERSION OF “make" describes the
madifications made to handle many of the problems within the original make
program.

The chapter SOURCE CODE CONTROL SYSTEM (SCCS) USER'S GUIDE
describes the collection of SCCS programs under the UNIX operating

system. The SCCS programs act as a “custodian” over the UNIX system
files.

The chapter M4 MACRO PROCESSOR describes a general purpose macro
processor that may be used as a front end for rational Fortran, C, and other
programming languages.

The chapter "awk” PROGRAMMING LANGUAGE describes a software tool
designed to make many common information retrieval and text maniputation
tasks easy to state and to perform.

The chapter LINK EDITOR describes a software tool (ld) that creates load
files by combining object files, performing relocation, and resolving internal
references.

The chapter COMMON OBJECT FILE FORMAT (COFF) describes the
output file produced on some UNIX systems by the assembler and the link
editor.

The chapter ARBITRARY PRECISION DESK CALCULATOR LANGUAGE
(BC) describes a compiler for doing arbitrary precision arithmetic on the
UNIX operating system.

The chapter INTERACTIVE DESK CALCULATOR (DC) describes a
program implemented on the UNIX operating system to do arbitrary-
precision integer arithmetic.

The chapter LEXICAL ANALYZER GENERATOR (Lex) describes a software
tool that lexically processes character input streams.

Sys5 UNIX 1-1

.CHAPTER 1 INTRODUCTION

The chapter YET ANOTHER COMPILER-COMPILER (yacc) describes the
yacc program. The yacc program provides a general tool for imposing
structure on the input to a computer program.

The chapter REMOTE JOB ENTRY (RJE) describes a subsystem that
supports remote job entries from a UNIX operating system to an IBM/360 or
/370 host computer. The RJE uses a set of background processes to
support remote job entries.

The chapter UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP) describes a
network that provides information exchange (between UNIX systems) over
the direct distance dialing network.

The support tools provide an added dimension to the basic UNIX software
commands. The “tools” described enable the user to fully utilize the UNIX
operating system.

1-2 Sys5 UNIX

MAKE CHAPTER 2

2. MAKE

In a programming project, a common practice is to divide large programs
into smaller pieces that are more manageable. The pieces may require
several different treatments such as being processed by a macro processor
or sophisticated program generators (e.g., Yacc or Lex). The project
continues to become more complex as the output of these generators are
compiled with special options and with certain definitions and declarations. A
sequence of code transformations develops which is difficult to remember.
The resulting code may need further transformation by loading the code with
certain libraries under control of special options. Related maintenance
activities also complicate the process further by running test scripts and
installing validated modules. Another activity that complicates program
development is a long editing session. A programmer may lose track of the
files changed and the object modules still valid especially when a change to
a declaration can make a dozen other files obsolete. The programmer must
also remember to compile a routine that has been changed or that uses
changed declarations.

The "make" is a software tool that maintains, updates, and regenerates
groups of computer programs.

A programmer can easily forget
o Files that are dependent upon other files.
¢ Files that were modified recently.

o Files that need to be reprocessed or recompiled after a change in the
source.

e The exact sequence of operations needed to make an exercise a new
version of the program.

The many activities of program development and maintenance are made
simpler by the make program.

The make program provides a method for maintaining up-to-date versions of
programs that result from many operations on a number of files. The make
program can keep track of the sequence of commands that create certain
files and the list of files that require other files to be current before the
operations can be done. Whenever a change is made in any part of a
program, the make command creates the proper files simply, correctly, and
with a minimum amount of effort. The make program also provides a simple
macro substitution facility and the ability to encapsulate commands in a
single file for convenient administration.

Sys5 UNIX 2.1

CHAPTER 2 MAKE

The basic operation of make is to
o Find the name of the needed target file in the description.
e Ensure that all of the files on which it depends exit and are up to date.

o Create the target file if it has not been modified since its generators
were modified.

The descriptor file really defines the graph of dependencies. The make
program determines the necessary work by performing a depth-first search
of the graph of dependencies.

If the information on interfile dependencies and command sequences is
stored in a file, the simple command

make

is frequently sufficient to update the interesting files regardless of the
number edited since the last make. In most cases, the description file is
easy to write and changes infrequently. It is usually easier to type the make
command than to issue even one of the needed operations, so the typical
cycle of program development operations becomes

think — edit — make — test . . .

The make program is most useful for medium-sized programming projects.
The make program does not solve the problems of maintaining multiple
source versions or of describing huge programs.

As an example of the use of make, the description file used to maintain the
make command is given. The code for make is spread over a number of C
language source files and a Yacc grammar. The description file contains:

Description file for the Make command

p=1lp
FILES = Makefile version.c defs main.c doname.c misc.c
files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o
dosys.o gram.o

LIBES= -IS
LINT = lint —p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) —0 make
size make

2-2 Sys5 UNIX

MAKE CHAPTER 2

$(OBJECTS): defs
gram.o: lex.c

cleanup:
—-rm *.0 gram.c
—du

install:
(@size make /usr/bin/make
cp make /ust/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? | $P
touch print

test:
make —dp | grep —v TIME >1zap
/usr/bin/make —dp | grep —v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c
gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c
version.c gram.c

arch:
ar uv /sys.source/s2/make.a $(FILES)
The make program usually prints out each command before issuing it.

The following output results from typing the simple command make in a
directory containing only the source and description files:

Sys5 UNIX 2-3

CHAPTER 2 MAKE

cc -0 — version.c

cc —O —c main.c

cc —O —c doname.c

cc -0 —c misc.c

cc O —cfiles.c

cc -0 —c dosys.c

yacc gram.y

mv y.tab.c gram.c

cc -0 —c gram.c

cc version.o main.o doname.o misc.o files.o dosys.o
gram.o —IS —0 make

13188+ 3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in
the description file, make found them using its suffix rules and issued the
needed commands. The string of digits results from the size make
command. The printing of the command line itself was suppressed by an @
sign. The @ sign on the size command in the description file suppressed
the printing of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance
sequences. The “print” entry prints only the files changed since the last
make print command. A zero-length file print is maintained to keep track of
the time of the printing. The $? macro in the command line then picks up
only the names of the files changed since print was touched. The printed
output can be sent to a different printer or to a file by changing the definition
of the P macro as follows:

make print "P = cat >zap"
2.1 Basic Features

The basic operation of make is to update a target file by ensuring that all of
the files on which the target file depends exist and are up to date. The
target file is created if it has not been modified since the dependents were
modified. The make program does a depth-first search of the graph of
dependencies. The operation of the command depends on the ability to find
the date and time that a file was last modified.

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c, y.c, and z.c with
the IS library. By convention, the output of the C language compilations will
be found in files named x.0, y.o0, and z.0. Assume that the files x.c and y.c
share some declarations in a file named defs, but that z.c does not. That is,
x.c and y.c have the line

#include "defs"”

2.4 Sys5 UNIX

MAKE CHAPTER 2

The following text describes the relationships and operations:

prog: x.0 y.0 z.0
cc x.0 y.0 z.o -IS —o prog

Xx.0 y.0o: defs
If this information were stored in a file named makefile, the command
make

would perform the operations needed to recreate prog after any changes
had been made to any of the four source files x.c, y.c, z.c, or defs.

The make program operates using the following three sources of
information:

o A user-supplied description file
e File names and “last-modified” times from the file system
e Built-in rules to bridge some of the gaps.

In the example, the first line states that prog depends on three “.0” files.
Once these object files are current, the second line describes how to load
them to create prog. The third line states that x.0 and y.o depend on the
file defs. From the file system, make discovers that there are three “.c”
files corresponding to the needed “.0" files and uses built-in information on
how to generate an object from a source file (i.e., issue a “cc —”
command).

By not taking advantage of make's innate knowledge, the following longer
descriptive file results.

prog . x.0 y.0 z.0
cc x.0 y.0 z.0 —-IS -0 prog
X.0: x.Cc defs
cc —€ x.C
y.0: y.c defs
cc —C y.C
z.0: z2.C
cc —C z.¢

If none of the source or object files have changed since the last time prog
was made, all of the files are current, and the command

make

announces this fact and stops. If, however, the defs file has been edited,
x.c and y.c (but not z.c) is recompiled; and then prog is created from the
new “.0" files. If only the file y.c had changed, only it is recompiled; but it is

Sys5 UNIX 2-5

CHAPTER 2 MAKE

still necessary to reload prog. If no target name is given on the make
command line, the first target mentioned in the description is created;
otherwise, the specified targets are made. The command

make x.0
would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file’'s time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further
decisions. A method, often useful to programmers, is to include rules with
mnemonic names and commands that do not actually produce a file with
that name. These entries can take advantage of make’s ability to generate
files and substitute macros. Thus, an entry “save” might be included to
copy a certain set of files, or an entry “cleanup” might be used to throw
away unneeded intermediate files. In other cases, one may maintain a
zero-length file purely to keep track of the time at which certain actions were
performed. This technique is useful for maintaining remote archives and
listings.

The make program has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by command
arguments or description file lines with embedded equal signs. A macro is
invoked by preceding the name by a dollar sign. Macro names longer than
one character must be parenthesized. The name of the macro is either the
single character after the dollar sign or a name inside parentheses. The
following are valid macro invocations:

$(CFLAGS)

The last two invocations are identical. A $$ is a dollar sign.

The $*, $@, $?, and $< are four special macros which change values
during the execution of the command. (These four macros are described in
the part “DESCRIPTION FILES AND SUBSTITUTIONS".) The following
fragment shows assignment and use of some macros:

OBJECTS = x.0y.0z.0
LIBES = -IS
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) —o prog

2-6 Sys5 UNIX

MAKE CHAPTER 2

The make command loads the three object files with the IS library. The
command

make "LIBES= -l -IS"

loads them with both the Lex (-ll) and the standard (-IS) libraries since
macro definitions on the command line override definitions in the description.
Remember to quote arguments with embedded blanks in UNIX software
commands.

2.2 Description Files and Substitutions

A description file contains the following information:
e macro definitions
e dependency information
e executable commands.

The comment convention is that a sharp (#) and all characters on the same
line after a sharp are ignored. Blank lines and lines beginning with a sharp
(#) are totally ignored. If a noncomment line is too long, the line can be
continued by using a backslash. |If the last character of a line is a
backslash, then the backslash, the new line, and all following blanks and
tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon
or a tab. The name (string of letters and digits) to the left of the equal sign
(trailing blanks and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are stripped). The
following are valid macro definitions:

2 = xyz
abc = -l -ly IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as the macro’s value.

Macro definitions may also appear on the make command line while other
lines give information about target files. The general form of an entry is

target1 [target2 . .] :[:] [dependent1 . .] [; commands] [# . .]
[(tab) commands] [# . . .]

ltems inside brackets may be omitted. Targets and dependents are strings
of letters, digits, periods, and slashes. Shell metacharacters such as “*"
and “?” are expanded. Commands may appear either after a semicolon on
a dependency line or on lines beginning with a tab immediately following a

Sys5 UNIX 2-7

CHAPTER 2 MAKE

dependency line. A command is any string of characters not including a
sharp (#) except when the sharp is in quotes or not including a new line.

A dependency line may have either a single or a double colon. A target
name may appear on more than one dependency line, but all of those lines
must be of the same (single or double colon) type. For the usual single-
colon case, a command sequence may be associated with at most one
dependency line. If the target is out of date with any of the dependents on
any of the lines and a command sequence is specified (even a null one
following a semicolon or tab), it is executed; otherwise, a default creation
rule may be invoked. In the double-colon case, @ command sequence may
be associated with each dependency line; if the target is out of date with any
of the files on a particular line, the associated commands are executed. A
built-in rule may also be executed. This detailed form is of particular value in
updating archive-type files.

If a target must be created, the sequence of commands is executed.
Normally, each command line is printed and then passed to a separate
invocation of the shell after substituting for macros. The printing is
suppressed in the silent mode or if the command line begins with an (@ sign.
Make normally stops if any command signals an error by returning a
nonzero error code. Errors are ignored if the —i flags have been specified
on the make command line, if the fake target name “.IGNORE" appears in
the description file, or if the command string in the description file begins
with a hyphen. Some UNIX software commands return meaningless status.
Because each command line is passed to a separate invocation of the shell,
care must be taken with certain commands (e.g., ¢d and shell control
commands) that have meaning only within a single shell process. These
results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are set.
The $« macro is set to the full target name of the current target. The $@
macro is evaluated only for explicitly named dependencies. The $? macro is
set to the string of names that were found to be younger than the target.
The $? macro is evaluated when explicit rules from the makefile are
evaluated. If the command was generated by an implicit rule, the $< macro
is the name of the related file that caused the action; and the $* macro is
the prefix shared by the current and the dependent file names. If a file must
be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name “.DEFAULT"” are used. If there is no
such name, make prints a message and stops.

2.3 Command Usage

The make command takes macro definitions, flags, description file names,
and target file names as arguments in the form:

2-8 Sys5 UNIX

MAKE CHAPTER 2

make [flags] [macro definitions | [targets]

The following summary of command operations explains how these
arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs)
are analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the flag
arguments are examined. The permissible flags are as follows:

—i Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
“.IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before
executing. This mode is also entered if the fake target
name “.SILENT" appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not
execute them. Even lines beginning with an “(" sign
are printed.

-t Touch the target files (causing them to be up to date)

rather than issue the usual commands.

-q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up to date.

-p Print out the complete set of macro definitions and
target descriptions.

-d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument is assumed
to be the name of a description file. A file name of
“~" denotes the standard input. If there are no “—f"
arguments, the file named makefile or Makefile in the
current directory is read. The contents of the
description files override the built-in rules if they are
present.

Finally, the remaining arguments are assumed to be the names of targets to
be made, and the arguments are done in left-to-right order. If there are no
such arguments, the first name in the description files that does not begin
with a period is “made”.

Sys5 UNIX 2-9

CHAPTER 2 MAKE

2.4 Suffixes and Transformation Rules

The make program does not know what file name suffixes are interesting or
how to transform a file with one suffix into a file with another suffix. This
information is stored in an internal table that has the form of a description
file. If the —r flag is used, the internal table is not used.

The list of suffixes is actually the dependency list for the name
“.SUFFIXES”. The make program searches for a file with any of the
suffixes on the list. If such a file exists and if there is a transformation rule
for that combination, make transforms a file with one suffix into a file with
another suffix. The transformation rule names are the concatenation of the
two suffixes. The name of the rule to transform a .r file to a .o file is thus
.r.o. If the rule is present and no explicit command sequence has been
given in the user's description files, the command sequence for the rule .r.o
is used. If a command is generated by using one of these suffixing rules,
the macro $* is given the value of the stem (everything but the suffix) of the
name of the file to be made; and the macro $< is the name of the
dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it
is used. If new names are to be appended, the user can add an entry for
“.SUFFIXES" in his own description file. The dependents are added to the
usual list. A “.SUFFIXES" line without any dependents deletes the current
list. It is necessary to clear the current list if the order of names is to be
changed. The following is an excerpt from the default rules file:

2-10 Sys5 UNIX

MAKE CHAPTER 2

SUFFIXES: 0.c.erf.y.yrye.l.s
YACC = yacc
YACCR = yacc —r
YACCE = yacc —e
YFLAGS =
LEX = lex
LFLAGS =
CC =cc
AS = as -
CFLAGS =
RC = ec
RFLAGS =
EC = ec
EFLAGS =
FFlags =
.0
$(CC) $(CFLAGS) — $<
.e.0.ro fo:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) —< $<
8.0 :
$(AS) —o0 $($<
y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) — y.tab.c
rm y.tab.c
mv y.tab.o $@
y.c:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

2.5 Implicit Rules

The make program uses a table of interesting suffixes and a set of
transformation rules to supply default dependency information and implied
commands. The default suffix list is as follows:

.0 Object file

.c C source file

.e Efl source file

I Ratfor source file
f Fortran source file

Sys5 UNIX 2-11

CHAPTER 2 MAKE

.8 Assembler source file

.y Yacc-C source grammar

yr Yacc-Ratfor source grammar
.ye Yacc-Efl source grammar

A Lex source grammar.

Figure 2.1 summarizes the default transformation paths. If there are two
paths connecting a pair of suffixes, the longer one is used only if the
intermediate file exists or is named in the description.

.r .e £ .s .y .yr .ye .1 .d

.c
.y .1

Figure 2-1. Summary of Default Transformation Path

yr .ye

If the file x.0 were needed and there were an x.c in the description or
directory, the x.o file would be compiled. If there were also an x./, that
grammar would be run through Lex before compiling the resuit. However, if
there were no x.c but there were an x./, make would discard the
intermediate C language file and use the direct link as shown in Figure 2.1.

it is possible to change the names of some of the compilers used in the
default or the flag arguments with which they are invoked by knowing the
macro names used. The compiler names are the macros AS, CC, RC, EC,
YACC, YACCR, YACCE, and LEX. The command

make CC =newcc

will cause the newec command to be used instead of the usual C language
compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with optional
flags. Thus

2-12 Sys5 UNIX

MAKE CHAPTER 2

make "CFLAGS=-O"
causes the optimizing C language compiler to be used.
2.6 Suggestions and Warnings

The most common difficulties arise from make’'s specific meaning of
dependency. If file x.c has a “#include "defs™ line, then the object file x.o0
depends on defs; the source file x.c does not. If defs is changed, nothing
is done to the file x.c while file x.o must be recreated.

To discover what make would do, the —n option is very useful. The
command

make -n

orders make to print out the commands which make would issue without
actually taking the time to execute them. If a change to a file is absolutely
certain to be mild in character (e.g., adding a new definition to an include
file), the -t (touch) option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the maodification times
on the affected file. Thus, the command

make —ts

(“touch silently”) causes the relevant files to appear up to date. Obvious
care is necessary since this mode of operation subverts the intention of
make and destroys all memory of the previous relationships.

The debugging flag (-d) causes make to print out a very detailed description
of what it is doing including the file times. The output is verbose and
recommended only as a last resort.

Sys5 UNIX 2-13

AUGMAKE CHAPTER 3

3. AUGMAKE

This section describes an augmented version of the make command of the
UNIX operating system. The augmented version is upward compatible with
the old version. This section describes and gives examples of only the
additional features. Further possible developments for make are also
discussed. Some justification will be given for the chosen implementation,
and examples will demonstrate the additional features.

The make command is an excellent program administrative tool used
extensively in at least one project for over 2 years. However, make had the
following shortcomings:

e Handling of libraries was tedious.

e Handling of the Source Code Control System (SCCS) file name format
was difficult or impossible.

e Environment variables were completely ignored by make.
e The general lack of ability to maintain files in a remote directory.

These shortcomings hindered large scale use of make as a program support
tool.

The AUGMENTED VERSION OF make is modified to handle the above
problems. The additional features are within the original syntactic
framework of make and few if any new syntactical entities are introduced. A
notable exception is the include file capability. Further, most of the
additions result in a “Don't know how to make ...”" message from the old
version of make.

The following paragraphs describe with examples the additional features of
the make program. In general, the examples are taken from existing
makefiles. Also, the illustrations are examples of working makefiles.

3.1 The Environment Variables

Environment variables are read and added to the macro definitions each
time make executes. Precedence is a prime consideration in doing this
properly. The following describes make's interaction with the environment.
A new macro, MAKEFLAGS, is maintained by make. The new macro is
defined as the collection of all input flag arguments into a string (without
minus signs). The new macro is exported and thus accessible to further
invocations of make. Command line flags and assignments in the makefile
update MAKEFLAGS. Thus, to describe how the environment interacts with
make, the MAKEFLAGS macro (environment variable) must be considered.

Sys5 UNIX 3-1

CHAPTER 3 AUGMAKE

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input
flag argument and is processed as such. (The only exceptions are
the —f, —p, and -r flags.)

2. Read and set the input flags from the command line. The command
line adds to the previous settings from the MAKEFLAGS environment
variable.

" 3. Read macro definitions from the command line. These are made not
resettable. Thus, any further assignments to these names are
ignored.

4. Read the internal list of macro definitions. These are found in the file
rules.c of the source for make. Figures 3-1 thru 3-4 contains the
complete makefile that represents the internally defined macros and
rules of the current version of make. Thus, if make —r ... is typed
and a makefile includes the makefile in Figures 3-1 thru 3-4, the
results would be identical to excluding the —r option and the include
line in the makefile. The Figures 3-1 thru 3-4 output can be
reproduced by the following:

make —fp — < dev.null 2>.dev null

The output appears on the standard output.
They give default definitions for the C language compiler
(CC=cc), the assembler (AS = as), etc.

5. Read the environment. The environment variables are treated as
macro definitions and marked as exported (in the shell sense).
However, since MAKEFLAGS* is not an internally defined variable (in
rules.c), this has the effect of doing the same assignment twice. The
exception to this is when MAKEFLAGS is assigned on the command
line. (The reason it was read previously was to turn the debug flag on
before anything else was done.)

6. Read the makefile(s). The assignments in the makefile(s) overrides
the environment. This order is chosen so that when a makefile is read

:MAKEFLAGS are read and set again.

3-2 Sys5 UNIX

AUGMAKE CHAPTER 3

(and executed, you know what to expect. That is, you get what is seen
unless the —e flag is used. The —e is an additional command line flag
which tells make to have the environment override the makefile
assignments. Thus, if make -e ... is typed, the variables in the
environment override the definitions in the makefilet. Also
MAKEFLAGS override the environment if assigned. This is useful for

further invocations of make from the current makefile.

LIST OF SUFFIXES

SUFFIXES: 0o.c.cc.y.y Il s.s
.sh.sh™ .h .h~

PRESET VARIABLES

MAKE =make
e, YACC=yacc
(. YFLAGS=
LEX=lex
LFLAGS=
LD=Id
LDFLAGS =
CC=cc
CFLAGS=-0
AS =as
ASFLAGS =
GET=get
GFLAGS=

Figure 3-1. Example of Internal Definitions (Sheet 1 of 4)

t There is no way to override the command line assignments.

Sys5 UNIX 3-3

CHAPTER 3

3-4

SINGLE SUFFIX RULES
.C:
$(CC) -n -0 $< -0 $(@
.c:
$(GET) $(GFLAGS) -p $< > $*.c
$(CC)-n-0% .c-0%"
-rm -f $*.c
.sh:
cp $< W
.sh™;
$(GET) &(GFLAGS) -p $< > .sh
cp $.sh $*
-rm -f $* .sh
DOUBLE SUFFIX RULES
.C.0:
$(CC) $(CFLAGS) -c $<
.c.o:

AUGMAKE

Figure 3-2. Example of Internal Definitions (Sheet 2 of 4)

Sys5 UNIX

(

AUGMAKE

$(GET) $(CFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $".c

$(GET) $(GFLAGS) -p $< >$".c

.S.0!:

$(AS) $(ASFLAGS) -0 $«@ $<

$(GET) $(GFLAGS) -p $< > $"s
$(AS) $(ASFLAGS) -0 $* .0 $" s
-rm -f $*.s

.y.0:

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.o$@

$(GET) $(GFLAG) -p $< > $".y
$(YACC) $(YFLAGS) $".y
$(CC) $(CFLAG) -c y.tab.c

rm -f y.tab $*.y

mv y.tab.o $".0

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c

mv lex.yy.o $«

CHAPTER 3

Figure 3-3. Example of Internal Definitions (Sheet 3 of 4)

Sys5 UNIX

3-5

CHAPTER 3 AUGMAKE

I".0:
$(GET) $(GFLAGS) -p $< > $*.I
$(LEX) $(GFLAG) $".I
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1
mv lex.yy.o $*.0
$(YACC) $(YFLAGS) $<
mv y.tab.c $@
y.c:
$(GET) $(GFLAGS) -p $< > $"y
$(YACC) $(YFLAGS) $".y
mv -f $*.c
-rm -f $".y
d.c:
$(LEX) $<
mv lex.yy.c$@
.c.a:
$(CC) -¢c $(FLAGS) $<
arrv $@ $".0
rm -f $*.0
c.a:
$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -¢ $(CFLAGS) $".c
arrv $@ $".0
s’.a:
$(GET) $(GFLAGS) -p $< > $*s
$(AS) $(ASFLAGS) -0 $".0%".s
arrv $« $".0
-rm -f $* [s0]
.h".h
$(GET) $(GFLAGS) -p $< > $".h

Figure 3-4. Example of Internal Definitions (Sheet 4 of 4)

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1. internal definitions (from rules.c)

2. environment

3-6 Sys5 UNIX

AUGMAKE CHAPTER 3

3. makefile(s)
4. command line.

The —e flag has the effect of changing the order to:

1. internal definitions (from rules.c)
2. makefile(s)

3. environment

4. command line.

This order is general enough to allow a programmer to define a makefile or
set of makefiles whose parameters are dynamically definable.

3.2 Recursive Makefiles

Another feature was added to make concerning the environment and
recursive invocations. If the sequence “$(MAKE)" appears anywhere in a
shell command line, the line is executed even if the —n flag is set. Since the
-n flag is exported across invocations of make (through the MAKEFLAGS
variable), the only thing that actually gets executed is the make command
itself. This feature is useful when a hierarchy of makefile(s) describes a set
of software subsystems. For testing purposes, make -n ... can be
executed and everything that would have been done will get printed out
including output from lower level invocations of make.

3.3 Format of Shell Commands - make

The make program remembers embedded newlines and tabs in shell
command sequences. Thus, if the programmer puts a for loop in the
makefile with indentation, when make prints it out, it retains the indentation
and backslashes. The output can still be piped to the shell and is readable.
This is obviously a cosmetic change; no new function is gained.

3.4 Archive Libraries

The make program has an improved interface to archive libraries. Due to a
lack of documentation, most people are probably not aware of the current
syntax of addressing members of archive libraries. The previous version of
make allows a user to name a member of a library in the following manner:

lib(object.o)
or
lib((_localtime))

where the second method actually refers to an entry point of an object file
within the library. (Make looks through the library, locates the entry point,
and translates it to the correct object file name.)

Sys5 UNIX 3-7

CHAPTER 3 AUGMAKE

To use this procedure to maintain an archive library, the following type of
makefile is required:

lib:: lib(ctime.o)
$(CC) —¢ —O ctime.c
ar rv lib ctime.o
rm ctime.o
lib:: lib(fopen.o)
$(CC) — -0 fopen.c
ar rv lib fopen.o
rm fopen.o
...and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for
adding a C language file to a library are the same for each invocation; the
file name being the only difference each time. (This is true in most cases.)

The current version gives the user access to a rule for building libraries.
The handle for the rule is the “.a” suffix. Thus, a “.c.a” rule is the rule for
compiling a C language source file, adding it to the library, and removing the
“.0" cadaver. Similarly, the “.y.a", the “.s.a”, and the “.l.a” rules rebuild
YACC, assembler, and LEX files, respectively. The current archive rules
defined internally are “.c.a”, “.c{.a”, and “.s{.a". [The tilde (") syntax will be
described shortly.] The user may define in makefile other rules needed.

The above 2-member library is then maintained with the following shorter
makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual “.c.a” rules are as follows:

.c.a:
$(CC) — $(CFLAGS) $<
ar rv $@ $+.0
rm —f $+.0

Thus, the $@ macro is the “.a" target (lib); the $< and $+ macros are set to
the out-of-date C language file; and the file name scans the suffix,
respectively (ctime.c and ctime). The $< macro (in the preceding rule)
could have been changed to $+.c.

It might be useful to go into some detail about exactly what make does
when it sees the construction

3-8 Sys5 UNIX

AUGMAKE CHAPTER 3

lib: lib(ctime.o)
(wecho lib up-to-date

Assume the object in the library is out-of-date with respect to ctime.c. Also,
there is no ctime.o file.

Do lib.
To do lib, do each dependent of /ib.
Do lib(ctime.o).

A

To do lib(ctime.o), do each dependent of lib(ctime.o). (There are
none.)

5. Use internal rules to try to build lib(ctime.o). (There is no explicit
rule.) Note that /lib(ctime.o) has a parenthesis in the name to identify
the target suffix as “.a". This is the key. There is no explicit “.a" at
the end of the /ib library name. The parenthesis forces the ".a”
suffix. In this sense, the “.a" is hard wired into make.

6. Break the name lib(ctime.o) up into lib and ctime.o. Define two
macros, $« (=lib) and $+ (=ctime).

7. Look for a rule “.X.a" and a file $+«.X. The first “.X" (in the
.SUFFIXES list) which fulfills these conditions is “.c” so the rule is
“.c.a”, and the file is ctime.c. Set $< to be ctime.c and execute the
rule. In fact, make must then do ctime.c. However, the search of
the current directory yields no other candidates, and the search ends.

8. The library has been updated. Do the rule associated with the “lib:"
dependency; namely:

echo lib up-to-date

It should be noted that to let ctime.o have dependencies, the following
syntax is required:

lib(ctime.o): $(INCDIR)/stdio.h

Thus, explicit references to .o files are unnecessary. There is also a new
macro for referencing the archive member name when this form is used.
The $% macro is evaluated each time $(@ is evaluated. If there is no
current archive member, $% is null. If an archive member exists, then $%
evaluates to the expression between the parenthesis.

An example makefile for a larger library is given in Figures 3-5 thru 3-7.

Sys5 UNIX 3-9

CHAPTER 3 AUGMAKE

(«w(#)/usr/src/cmd/make/make.tm 3.2
LIB =Isxlib
PR=Ip
INSDIR = /rliflopO/
INS = eval
Isx: $(LIB) low.0 mch.o
Id -x low.o mch.o $(LIB)
mv a.out Isx
(wsize Isx
Here, $(INS) as either "." or "eval".
Isx:

$(INS)'cp Isx $(INSDIR)Isx . .
strip $(INSDIR)Isx . .
Is -| $(INSDIR)Isx’

print:

$(PR) header.slow.smch.s*.h*.c Makefile

Figure 3-5. Example of Library Makefile (Sheet 1 of 3)

3-10 Sys5 UNIX

AUGMAKE CHAPTER 3

$(LIB):
$(LIB)(CLOCK.0)
$(LIB)(main.o)
$(LIB)(tty.o)
$(LIB)(trap.0)
$(LIB)(sysent.o)
$(LIB)(sys2.0)
$(LIB)(syn3.0)
$(LIB)(syn4.0)
$(LIB)(sys1.0)
$(LIB)(sig.0)
$(LIB)(fio.0)
$(LIB)(kl.0)
$(LIB)(alloc.o)
$(LIB)(nami.o)
$(LIB)(iget.o)
$(LIB)(rdwri.0)
$(LIB)(subr.o0)

Figure 3-6. Example of Library Makefile (Sheet 2 of 3)

Sys5 UNIX 3-11

CHAPTER 3 AUGMAKE

$(LIB)(bi0.0)

$(LIB)(decfd.o)

$(LIB)(sip.0)

$(LIB)(space.o)
$(LIB)(puts.0)

(wecho $(LIB) now up to date.

.S.0.

as -0 $*.0 header.s $*.s

.0.a:

arrv $@ $<
m -f $<

.S.a:

as -0 $*.0 header.s $*.s

arrv $@ $*.0

m -f $*.0
PRECIOUS:$(LIB)

Figure 3-7. Example of Library Makefile (Sheet 3 of 3)

The reader will note also that there are no lingering “+.0" files left around.
The result is a library maintained directly from the source files (or more
generally from the SCCS files).

3.5 Source Code Control System File Names:The Tilde

The syntax of make does not directly permit referencing of prefixes. For
most types of files on UNIX operating system machines, this is acceptable
since nearly everyone uses a suffix to distinguish different types of files.
The SCCS files are the exception. Here, “s.” precedes the file name part of
the complete pathname.

To allow make easy access to the prefix “s.” requires either a redefinition of
the rule naming syntax of make or a trick. The trick is to use the tilde (7) as
an identifier of SCCS files. Hence, “.c’.0” refers to the rule which
transforms an SCCS C language source file into an object. Specifically, the
internal rule is
.c.o:

$(GET) $(GFLAGS) —p $< > $+.c

$(CC) $(CFLAGS) — $+.c

—rm —f $=.c

Thus, the tilde appended to any suffix transforms the file search into an
SCCS file name search with the actual suffix named by the dot and all

3-12 Sys5 UNIX

AUGMAKE CHAPTER 3

characters up to (but not including) the tilde.

The following SCCS suffixes are internally defined:

.sh”
.h°

The following rules involving SCCS transformations are internally defined:

Obviously, the user can define other rules and suffixes which may prove
useful. The tilde gives him a handle on the SCCS file name format so that
this is possible.

3.6 The Null Suffix

In the UNIX system source code, there are many commands which consist
of a single source file. It was wasteful to maintain an object of such files for
make. The current implementation supports single suffix rules (a null suffix).
Thus, to maintain the program cat, a rule in the makefile of the following
form is needed:

.C:
$(CC) -n -0 $< -0 $w

In fact, this “.c:” rule is internally defined so no makefile is necessary at all.
The user only needs to type

make cat dd echo date

(these are notable single file programs) and all four C language source files
are passed through the above shell command line associated with the “.c:”
rule. The internally defined single suffix rules are

Sys5 UNIX 3-13

CHAPTER 3 AUGMAKE

.c:
.
.sh:
.sh™:

Others may be added in the makefile by the user.
3.7 Include Files

The make program has an include file capability. If the string include
appears as the first seven letters of a line in a makefile and is followed by a
blank or a tab, the string is assumed to be a file name which the current
invocation of make will read. The file descriptors are stacked for reading
include files so that no more than about 16 levels of nested includes are
supported.

3.8 Invixible SCCS Makefiles

The SCCS makefiles are invisible to make. That is, if make is typed and
only a file named s.makefile exists, make will do a get on the file, then read
and remove the file. Using the -f, make will get, read, and remove
arguments and include files.

3.9 Dynamic Dependancy Parameters

A new dependency parameter has been defined. The parameter has
meaning only on the dependency line in a makefile. The $$« refers to the
current “thing” to the left of the colon (which is $«). Also the form $$(«F)
exists which allows access to the file part of $«. Thus, in the following:

cat: 9$%w.c

the dependency is translated at execution time to the string “cat.c”. This is
useful for building a large number of executable files, each of which has only
one source file. For instance, the UNIX software command directory could
have a makefile like:

CMDS = cat dd echo date cc cmp comm ar |d chown

$(CMDS): $$.c
$(CC) -0 $? —o $w

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makefile is made.
For any particular file that has a peculiar compilation procedure, a specific
entry must be made in the makefile.

The second useful form of the dependency parameter is $$(«F). It
represents the file name part of $$@@. Again, it is evaluated at execution
time. Its usefulness becomes evident when trying to maintain the

3-14 Sys5 UNIX

AUGMAKE CHAPTER 3

lusrlinclude directory from a makefile in the /usr/src/head directory. Thus,
the /usr/src/head/makefile would look like

INCDIR = /usr/include

INCLUDES =\
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCIDR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

This would completely maintain the /usr/include directory whenever one of
the above files in /usr/src/head was updated.

3.10 Extensions of $*, $@, AND $<

The internally generated macros $+, $«, and $< are useful generic terms
for current targets and out-of-date relatives. To this list has been added the
following related macros: $(«@D), $(«F), $(+D), $(*F), $(<D), and $(<F).
The “D" refers to the directory part of the single letter macro. The “F" refers
to the file name part of the single letter macro. These additions are useful
when building hierarchical makefiles. They allow access to directory names
for purposes of using the cd command of the shell. Thus, a sheil command
can be

cd $(<D); $(MAKE) $(<F)
The following command forces a complete rebuild of the operating system:
FRC=FRC make —f 70.mk

where the current directory is ucb. The FRC is a convention for FORCing
make to completely rebuild a target starting from scratch.

3.11 Output Trtanslations

Macros in shell commands can now be translated when evaluated. The
form is as follows:

$(macro:string1 =string2)

The meaning of $(macro) is evaluated. For each appearance of string? in
the evaluated macro, string2 is substituted. The meaning of finding string1
in $(macro) is that the evaluated $(macro) is considered as a bunch of
strings each delimited by white space (blanks or tabs). Thus, the
occurrence of string? in $(macro) means that a regular expression of the

Sys5 UNIX 3-15

CHAPTER 3 AUGMAKE

following form has been found:
x<string1>[TAB|BLANK]

This particular form was chosen because make usually concerns itself with
suffixes. A more general regular expression match could be implemented if
the need arises. The usefulness of this type of translation occurs when
maintaining archive libraries. Now, all that is necessary is to accumulate the
out-of-date members and write a shell script which can handle all the C
language programs (i.e., those files ending in “.c”). Thus, the following
fragment optimizes the executions of make for maintaining an archive
library:

$(LIB): $(LIB)(a.0) $(LIB)(b.0) $(LIB)c.0)
$(CC) — $(CFLAGS) $(?:.0=.c)
ar rv $(LiB) $?
rm $?

A dependency of the preceding form is necessary for each of the different
types of source files (suffices) which define the archive library. These
translations are added in an effort to make more general use of the wealth
of information which make generates.

3-16 : Sys5 UNIX

C

-

SCCS CHAPTER 4

4. SCCS

The Source Code Control System (SCCS) is a collection of the UNIX
software commands that help individuals or projects control and account for
changes to files of text. The source code and documentation of software
systems are typical examples of files of text to be changed. The SCCS is a
collection of programs that run under the UNIX operating system. It is
convenient to conceive of SCCS as a custodian of files. The SCCS
provides facilities for

e Storing files of text

e Retrieving particular versions of the files
e Controlling updating privileges to files

e |dentifying the version of a retrieved file

o Recording when, where, and why the change was made and who made
each change to a file.

These types of facilities are important when programs and documentation
undergo frequent changes because of maintenance and/or enhancement
work. It is often desirable to regenerate the version of a program or
document as it existed before changes were applied to it. This can be done
by keeping copies (on paper or other media), but this method quickly
becomes unmanageable and wasteful as the number of programs and
documents increases. The SCCS provides an attractive solution because
the original file is stored on disk. Whenever changes are made to the file,
the SCCS stores only the changes. Each set of changes is called a “delta”.

This chapter, together with relevant portions of the Sys5 UNIX User
Reference Manual is a complete user’s guide to SCCS. The following topics
are covered:

e SCCS for Beginners: How to make an SCCS file, how to update it, and
how to retrieve a version thereof.

e How Deltas Are Numbered: How versions of SCCS files are numbered
and named.

e SCCS Command Conventions: Conventions and rules generally
applicable to all SCCS commands.

e SCCS Commands: Explanation of all SCCS commands with
discussions of the more useful arguments.

Sys5 UNIX 4-1

CHAPTER 4 SCCS

e SCCS Files: Protection, format, and auditing of SCCS files including a
discussion of the differences between using SCCS as an individual and
using it as a member of a group or project. The role of a “project
SCCS administrator” is introduced.

Neither the implementation of SCCS nor the installation procedure for SCCS
is described in this section.

Throughout this section, each reference of the form name (1M), name (7), or
name(8) refers to entries in the Sys5 UNIX Administrator Reference
Manual. All other references to entries of the form name(N), where “N” is a
number (1 through 6) possibly followed by a letter, refer to entry name in
section N of the Sys5 UNIX User Reference Manual.

4.1 SCCS For Beginners

It is assumed that the reader knows how to log onto a UNIX system, create
files, and use the text editor. A number of terminal-session fragments are
presented. All of them should be tried since the best way to learn SCCS is
to use it.

To supplement the material in this section, the detailed SCCS command
descriptions in the Sys5 UNIX User Reference Manual should be consulted.

4.1.1 A. Terminology

Each SCCS file is composed of one or more sets of changes applied to the
null (empty) version of the file, with each set of changes usually depending
on all previous sets. Each set of changes is called a “delta” and is assigned
a name, called the SCCS /D entification string (SID). The SID is composed
of at most four components. The first two components are the “release”
and “level” nhumbers which are separated by a period. Hence, the first delta
(for the original file) is called “1.1”, the second “1.2", the third “1.3", etc.
The release number can also be changed allowing, for example, deltas
“2.17, “38.1", etc. The change in the release number usually indicates a
major change to the file.

Each delta of an SCCS file defines a particular version of the file. For
example, delta 1.5 defines version 1.5 of the SCCS file, obtained by
applying to the null (empty) version of the file the changes that constitute
deitas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

4-2 Sys5 UNIX

SCCS CHAPTER 4

4.1.2 B. Creating an SCCS File via ‘““admin”

Consider, for example, a file called /ang that contains a list of programming
languages.

c

pli
fortran
cobol
algol

Custody of the lang file can be given to SCCS. The following admin
command (used to “administer” SCCS files) creates an SCCS file and
initializes delta 1.1 from the file lang:

admin —ilang s.lang

All SCCS files must have names that begin with “s.”, hence, s.lang. The —i
keyletter, together with its value /ang, indicates that admin is to create a
new SCCS file and “initialize” the new SCCS file with the contents of the file
lang. This initial version is a set of changes (delta 1.1) applied to the null
SCCS file.

The admin command replies
No id keywords (cm7)

This is a warning message (which may also be issued by other SCCS
commands) that is to be ignored for the purposes of this section. Its
significance is described under the get command in the part “SCCS
COMMANDS.” In the following examples, this warning message is not
shown although it may actually be issued by the various commands. The
file lang should now be removed (because it can be easily reconstructed
using the get command) as follows:

rm lang

4.1.3 C. Retrieving a File via “‘get”
The lang file can be reconstructed by using the following get command:

get s.lang

Sys5 UNIX 4-3

CHAPTER 4 SCCS

The command causes the creation (retrieval) of the latest version of file
s.lang and prints the following messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of
five lines of text. The retrieved text is placed in a file whose name is formed
by deleting the “s.” prefix from the name of the SCCS file. Hence, the file
lang is created.

The “get s.ang” command simply creates the file /ang (read-only) and
keeps no information regarding its creation. On the other hand, in order to
be able to subsequently apply changes to an SCCS file with the delta
command, the get command must be informed of your intention to do so.
This is done as follows:

get —e s.lang

The —e keyletter causes get to create a file lang for both reading and writing
(so it may be edited) and places certain information about the SCCS file in
another new file. The new file, called the p-file, will be read by the delta
command. The get command prints the same messages as before except
that the SID of the version to be created through the use of delta is also
issued. For example,

get —e s.lang
1.1

new delta 1.2
5 lines

The file lang may now be changed, for example, by

ed lang
27

$a
snobol
ratfor

w

41

q

4-4 Sys5 UNIX

SCCS CHAPTER 4

4.1.4 D. Recording Changes via ‘‘delta”

In order to record within the SCCS file the changes that have been applied
to lang, execute the following command:

delta s.lang
Delta prompts with
comments?

The response should be a description of why the changes were made. For
example,

comments? added more languages

The delta command then reads the p-file and determines what changes
were made to the file lang. The delta command does this by doing its own
get to retrieve the original version and by applying the diff(1) command to
the original version and the edited version.

When this process is complete, at which point the changes to /lang have
been stored in s.lang, delta outputs

1.2

2 inserted

0 deleted

5 unchanged

The number “1.2” is the name of the delta just created, and the next three
lines of output refer to the number of lines in the file s./ang.

4.1.5 E. Additional information About “get”’
As shown in the previous example, the command
get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done by
starting with the original version of the file and successively applying deltas
(the changes) in order until all have been applied.

In the example chosen, the following commands are all equivalent:

get s.lang
get —r1 s.lang
get —r1.2 s.lang

Sys5 UNIX 4-5

CHAPTER 4 SCCS

The numbers following the —r keyletter are SIDs. Note that omitting the
level number of the SID (as in “get —r1 s.lang”) is equivalent to specifying
the highest level number that exists within the specified release. Thus, the
second command requests the retrieval of the latest version in release 1,
namely 1.2. The third command specifically requests the retrieval of a
particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that
change is usually indicated by changing the release number (first
component of the SID) of the delta being made. Since normal automatic
numbering of deltas proceeds by incrementing the level number (second
component of the SID), the user must indicate to SCCS the need to change
the release number. This is done with the get command.

get —e —r2 s.lang

Because release 2 does not exist, get retrieves the latest version before
release 2. The get command also interprets this as a request to change the
release number of the delta which the user desires to create to 2, thereby
causing it to be hamed 2.1, rather than 1.3. This information is conveyed to
delta via the p-file. The get command then outputs

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the
version delta will create. If the file is now edited, for example, by

ed lang
41
/cobol/d
w

35

q
and delta executed

delta s.lang
comments? deleted cobol from list of languages

the user will see by delta’s output that version 2.1 is indeed created.

2.1

0 inserted

1 deleted

6 unchanged

4-6 Sys5 UNIX

SCCS CHAPTER 4

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another
new release may be created in a similar manner. This process may be
continued as desired.

4.1.6 F. The “help” Command

If the command

get abc

is executed, the following message will be output:
ERROR [abc]: not an SCCS file (co1)

The string “co1” is a code for the diagnostic message and may be used to
obtain a fuller explanation of that message by use of the help command.

help coi
This produces the following output:

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any doubt about
the meaning of an SCCS message. Detailed explanations of almost all
SCCS messages may be found in this manner.

4.2 Delta Numbering

It is convenient to think of the deltas applied to an SCCS file as the nodes of
a tree in which the root is the initial version of the file. The root delta (node)
is normally named “1.1” and successor deltas (nodes) are “1.2", “1.3", etc.
The components of the hames of the deltas are called the “release” and the
“level” numbers, respectively. Thus, normal naming of successor deltas
proceeds by incrementing the level number, which is performed
automatically by SCCS whenever a delta is made. The user may also wish
to change the release number when making a delta to indicate that a major
change is being made. When this is done, the release number also applies
to all successor deltas unless specifically changed again.

Such a structure may be termed the “trunk” of the SCCS tree. Figure 4-1
represents the normal sequential development of an SCCS file in which
changes that are part of any given delta are dependent upon all the
preceding deltas.

Sys5 UNIX 4-7

CHAPTER 4 SCCS

1.1 1.2 1.3 2.1 2.2

O—O—O—0O |~
O—CO0O— 00

1.4
RELEASE 1 : RELEASE 2

Figure 4-1. Evolution of an SCCS File

However, there are situations in which it is necessary to cause a branching
in the tree in that changes applied as part of a given delta are not
dependent upon all previous deltas. As an example, consider a program
which is in production use at version 1.3 and for which development work on
release 2 is already in progress. Thus, release 2 may already have some
deltas precisely as shown in Figure 4-1. Assume that a production user
reports a problem in version 1.3 and that the nature of the problem is such
that it cannot wait to be repaired in release 2. The changes necessary to
repair the trouble will be applied as a delta to version 1.3 (the version in
production use). This creates a new version that will then be released to the
user but will not affect the changes being applied for release 2 (i.e., deltas
1.4, 2.1, 2.2, etc.).

The new delta is a node on a branch of the tree. Its name consists of four
components; the release number and the level number (as with trunk deltas)
plus the “branch” number and the “sequence” number. The delta hame
appears as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a
particular trunk delta with the first such branch being 1, the next one 2, etc.
The sequence number is assigned, in order, to each delta on a particular
branch. Thus, 1.3.1.2 identifies the second delta of the first branch that
derives from delta 1.3. This is shown in Figure 4-2.

The concept of branching may be extended to any delta in the tree. The
naming of the resulting deltas proceeds in the manner just illustrated.

4-8 Sys5 UNIX

SCCS CHAPTER 4

1.3.1.2
BRANCH 1

Figure 4-2. Tree Structure With Branch Deltas

Two observations are of importance with regard to naming deltas. First, the
names of trunk deltas contain exactly two components, and the names of
branch deltas contain exactly four components. Second, the first two
components of the name of branch deltas are always those of the ancestral
trunk delta, and the branch component is assigned in the order of creation of
the branch independently of its location relative to the trunk delta. Thus, a
branch delta may always be identified as such from its name. Althouah the
ancestral trunk delta may be identified from the branch delta’s name, it is
not possible to determine the entire path leading from the trunk delta to the
branch delta. For example, if delta 1.3 has one branch emanating from it,
all deltas on that branch will be named 1.3.1.n. If a delta on this branch
then has another branch emanating from it, all deltas on the new branch will
be named 1.3.2.n (see Figure 4-3). The only information that may be
derived from the name of delta 1.3.2.2 is that it is the chronologically second
delta on the chronologically second branch whose trunk ancestor is delta
1.3. In particular, it is not possible to determine from the name of delta
1.3.2.2 all the deltas between it and trunk ancestor 1.3.

It is obvious that the concept of branch deltas allows the generation of
arbitrarily complex tree structures. Although this capability has been
provided for certain specialized uses, it is strongly recommended that the
SCCS tree be kept as simple as possible because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

Sys5 UNIX 4-9

CHAPTER 4 SCCS

1.3.1.2
BRANCH 1

. N
Y U) O
. 1.4 2.1 2.2

Figure 4-3. Extending the Branching Concept
4.3 SCCS Command Conventions

This part discusses the conventions and rules that apply to SCCS
commands. These rules and conventions are generally applicable to all
SCCS commands with exceptions indicated. The SCCS commands accept
two types of arguments:

o Keyletter arguments
e File arguments.

Keyletter arguments (hereafter called simply “keyletters”) begin with a minus
sign (-), followed by a lowercase alphabetic character, and in some cases,
followed by a value. These keyletters control the execution of the command
to which they are supplied.

File arguments (names of files and/or directories) specify the file(s) that the
given SCCS command is to process. Naming a directory is equivalent to
naming all the SCCS files within the directory. Non-SCCS files and
unreadable files [because of permission modes via chmod(1)] in the named
directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the
name “-" (a lone minus sign) is specified as an argument to a command,
the command reads the standard input for lines and takes each line as the
name of an SCCS file to be processed. The standard input is read until
end-of-file. This feature is often used in pipelines with, for example, the
find(1) or Is(1) commands. Again, names of non-SCCS files and of
unreadable files are silently ignored.

4-10 Sys5 UNIX

SCCS CHAPTER 4

All keyletters specified for a given command apply to all file arguments of
that command. All keyletters are processed before any file arguments with
the result that the placement of keyletters is arbitrary (i.e., keyletters may be
interspersed with file arguments). File arguments, however, are processed
left to right. Somewhat different argument conventions apply to the help,
what, sccsdiff, and val commands.

Certain actions of various SCCS commands are controlled by flags
appearing in SCCS files. Some of these flags are discussed in this part.
For a complete description of all such flags, see admin(1) section in the
Sys5 UNIX User Reference Manual.

The distinction between the real user [see passwd(1)] and the effective user
of a UNIX system is of concern in discussing various actions of SCCS
commands. For the present, it is assumed that both the real user and the
effective user are one and the same (i.e., the user who is logged into a
UNIX system). This subject is discussed further in “SCCS FILES.”

All SCCS commands that modify an SCCS file do so by writing a temporary
copy, called the x-file. This file ensures that the SCCS file is not damaged if
processing should terminate abnormally. The name of the x-file is formed
by replacing the “s.” of the SCCS file name with “x.”. When processing is
complete, the old SCCS file is removed and the x-file is renamed to be the
SCCS file. The x-file is created in the directory containing the SCCS file,
given the same mode [see chmod(1)] as the SCCS file, and owned by the
effective user.

To prevent simultaneous updates to an SCCS file, commands that modify
SCCS files create a lock-file, called the z-file, whose name is formed by
replacing the “s.” of the SCCS file name with “z.”. The z-file contains the
process number of the command that creates it, and its existence is an
indication to other commands that the SCCS file is being updated. Thus,
other commands that modify SCCS files do not process an SCCS file if the
corresponding z-file exists. The z-file is created with mode 444 (read-only)
in the directory containing the SCCS file and is owned by the effective user.
This file exists only for the duration of the execution of the command that
creates it. In general, users can ignore x-files and z-files. The files may be
useful in the event of system crashes or similar situations.

The SCCS commands produce diagnostics (on the diagnostic output) of the
form:

ERROR [name-of-file-being-processed]: message text (code)

Sys5 UNIX 4-11

CHAPTER 4 SCCS

The code in parentheses may be used as an argument to the help
command to obtain a further explanation of the diagnostic message.
Detection of a fatal error during the processing of a file causes the SCCS
command to terminate processing of that file and to proceed with the next
file, in order, if more than one file has been named.

4.4 SCCS Commands

This part describes the major features of all the SCCS commands. Detailed
descriptions of the commands and of all their arguments are given in the
Sys5 UNIX User Reference Manual and should be consuited for further
information. The discussion below covers only the more common
arguments of the various SCCS commands.

The commands follow in approximate order of importance. The following is
a summary of all the SCCS commands and of their major functions:

get Retrieves versions of SCCS files.

delta Applies changes (deltas) to the text of SCCS files,
i.e., creates new versions.

admin Creates SCCS files and applies changes to
parameters of SCCS files.

prs Prints portions of an SCCS file in user specified
format.

help Gives explanations of diagnostic messages.

rmdel Removes a delta from an SCCS file; allows the
removal of deltas that were created by mistake.

cdc Changes the commentary associated with a delta.

what Searches any UNIX system file(s) for all occurrences

of a special pattern and prints out what follows it; is
useful in finding identifying information inserted by the
get command.

scesdiff Shows the differences between any two versions of
an SCCS file.
comb Combines two or more consecutive deltas of an

SCCS file into a single delta; often reduces the size
of the SCCS file.

val Validates an SCCS file.

4-12 Sys5 UNIX

SCCS CHAPTER 4

4.4.1 A. The “get” Command

The get command creates a text file that contains a particular version of an
SCCS file. The particular version is retrieved by beginning with the initial
version and then applying deltas, in order, until the desired version is
obtained. The created file is called the g-file. The g-file name is formed by
removing the “s.” from the SCCS file name. The g-file is created in the
current directory and is owned by the real user. The mode assigned to the
g-file depends on how the get command is invoked.

The most common invocation of get is
get s.abc

which normally retrieves the latest version on the trunk of the SCCS file tree
and produces (for example) on the standard output

1.3
67 lines
No id keywords (cm7)

which indicates that
1. Version 1.3 of file “s.abc” was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text.
3. No ID keywords were substituted in the file.

The generated g-file (file “abc”) is given mode 444 (read-only). This
particular way of invoking get is intended to produce g-files only for
inspection, compilation, etc. It is not intended for editing (i.e., not for making
deltas).

In the case of several file arguments (or directory-name arguments), similar
information is given for each file processed, but the SCCS file name
precedes it.

Sys5 UNIX 4-13

CHAPTER 4 SCCSs

For example,
get s.abc s.def
produces

s.abc:

1.3

67 lines

No id keywords (cm7)

s.def:

1.7

85 lines

No id keywords (cm7)

4.4.1.1 1D Keywords

In generating a g-file to be used for compilation, it is useful and informative
to record the date and time of creation, the version retrieved, the module's
name, etc. within the g-file. This information appears in a load module when
one is eventually created. The SCCS provides a convenient mechanism for
doing this automatically. Identification (ID) keywords appearing anywhere in
the generated file are replaced by appropriate values according to the
definitions of these ID keywords. The format of an ID keyword is an
uppercase letter enclosed by percent signs (%). For example,

5.1

is defined as the ID keyword that is replaced by the SID of the retrieved
version of a file. Similarly, 5/30/83 is defined as the ID keyword for the
current date (in the form “mm/dd/yy”), and sccs1 is defined as the name of
the g-file. Thus, executing get on an SCCS file that contains the PL/I
declaration,

DCL ID CHAR(100) VAR INIT('sccs1 5.1 5/30/83');
gives (for example) the following:
DCL ID CHAR(100) VAR INIT("MODNAME 2.3 07/07/77');

When no ID keywords are substituted by get, the following message is
issued:

No id keywords (cm7)

4-14 Sys5 UNIX

SCCS CHAPTER 4

This message is normally treated as a warning by get, although the
presence of the i flag in the SCCS file causes it to be treated as an error.
For a complete list of the approximately 20 ID keywords provided, see
get(1) in the Sys5 UNIX User Reference Manual.

4.4.1.2 Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default
version of an SCCS file. Normally, the default version is the most recent
delta of the highest-numbered release on the trunk of the SCCS file tree.
However, if the SCCS file being processed has a d (default SID) flag, the
SID specified as the value of this flag is used as a default. The default SID
is interpreted in exactly the same way as the value supplied with the —r
keyletter of get.

The —r keyletter is used to specify a SID to be retrieved, in which case the d
(default SID) flag (if any) is ignored. For example,

get —r1.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the
standard output

1.3
64 lines

A branch delta may be retrieved similarly,
get —r1.5.2.3 s.abc
which produces (for example) on the standard output

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the —r keyletter
(as above) and the particular version does not exist in the SCCS file, an
error message results. Omission of the level number, as in

get —r3 s.abc

causes retrieval of the trunk delta with the highest level number within the
given release if the given release exists. Thus, the above command might
output,

3.7
213 lines

Sys5 UNIX 4-15

CHAPTER 4 SCCS

If the given release does not exist, get retrieves the trunk delta with the
highest level number within the highest-numbered existing release that is
lower than the given release. For example, assuming release 9 does not
exist in file s.abc and that release 7 is actually the highest-numbered
release below 9, execution of

get —19 s.abc
might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the tatest version of file s.abc below
release 9. Similarly, omission of the sequence number, as in

get —r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number
on the given branch if it exists. (If the given branch does not exist, an error
message results.) This might result in the following output:

43.2.8
89 lines

The -t keyletter is used to retrieve the latest (top) version in a particular
release (i.e., when no —r keyletter is supplied or when its value is simply a
release number). The latest version is defined as that delta which was
produced most recently, independent of its location on the SCCS file tree.
Thus, if the most recent delta in release 3 is 3.5,

get -3 —t s.abc
might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after deita
3.5), the same command might produce

3.2.1.5
46 lines

4.4.1.3 Retrieval With Intent to Make a Deita

Specification of the —e keyletter to the get command is an indication of the
intent to make a delta, and as such, its use is restricted.

4-16 Sys5 UNIX

SCCS CHAPTER 4

The presence of this keyletter causes get to check

1. The user list (a list of login names and/or group IDs of users allowed
to make deltas) to determine if the login name or group ID of the user
executing get is on that list. Note that a null (empty) user list behaves
as if it contained all possible login names.

2. The release (R) of the version being retrieved satisfies the relation:

floor is < or = to R which is
< or = to ceiling

to determine if the release being accessed is a protected release. The
“floor” and “ceiling” are specified as flags in the SCCS file.

3. The R is not locked against editing. The “lock” is specified as a flag
in the SCCS file.

4. Whether or not multiple concurrent edits are allowed for the SCCS file
as specified by the j flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the
corresponding SCCS file to terminate.

If the above checks succeed, the —e keyletter causes the creation of a g-file
in the current directory with mode 644 (readable by everyone, writable only
by the owner) owned by the real user. If a writable g-file already exists, get
terminates with an error. This is to prevent inadvertent destruction of a g-
file that already exists and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by get (when the
—e keyletter is specified) because the generated g-file is subsequently used
to create another delta. Replacement of ID keywords cause them to be
permanently changed within the SCCS file. In view of this, get does not
need to check for the presence of ID keywords within the g-file, so the
message

No id keywords (cm7)
is never output when get is invoked with the —e keyletter.

In addition, the —e keyletter causes the creation (or updating) of a p-file
which is used to pass information to the delta command.

Sys5 UNIX 4-17

CHAPTER 4 SCCS

The following is an example of the use of the —e keyletter:
get —e s.abc
which produces (for example) on the standard output

1.3
new delta 1.4
67 lines

If the —r and/or -t keyletters are used together with the —e keyletter, the
version retrieved for editing is as specified by the —r and/or -t keyletters.

The keyletters —i and ~x may be used to specify a list [see get(1) in the
Sys5 UNIX User Reference Manual for the syntax of such a list] of deltas to
be included and excluded, respectively, by get. Including a delta means
forcing the changes that constitute the particular delta to be included in the
retrieved version. This is useful if one wants to apply the same changes to
more than one version of the SCCS file. Excluding a delta means forcing it
not to be applied. This may be used to undo (in the version of the SCCS file
to be created) the effects of a previous delta. Whenever deltas are included
or excluded, get checks for possible interference between such deltas and
those deltas that are normally used in retrieving the particular version of the
SCCS file. Two deltas can interfere, for example, when each one changes
the same line of the retrieved g-file. Any interference is indicated by a
warning that shows the range of lines within the retrieved g-file in which the
problem may exist. The user is expected to examine the g-file to determine
whether a problem actually exists and to take whatever corrective measures
(if any) are deemed necessary (e.g., edit the file).

Warning: The —i and —x keyletters should be used with extreme care.

The -k keyletter is provided to facilitate regeneration of a g-file that may
have been accidentally removed or ruined subsequent to the execution of
get with the —e keyletter or to simply generate a g-file in which the
replacement of ID keywords has been suppressed. Thus, a g-file generated
by the —k keyletter is identical to one produced by get and executed with the
—e keyletter. However, no processing related to the p-file takes place.

4.4.1.4 Concurrent Edits of Different SID

The ability to retrieve different versions of an SCCS file allows a number of
deltas to be “in progress” at any given time. This means that a number of
get commands with the —e keyletter may be executed on the same file
provided that no two executions retrieve the same version (unless multiple
concurrent edits are allowed).

4-18 Sys5 UNIX

«

SCCS CHAPTER 4

The p-file (created by the get command invoked with the —e keyletter) is
named by replacing the “s.” in the SCCS file name with “p.”. It is created in
the directory containing the SCCS file, given mode 644 (readable by
everyone, writable only by the owner), and owned by the effective user. The
p-file contains the following information for each delta that is still “in
progress’”:

e The SID of the retrieved version.

e The SID that is given to the new delta when it is created.

e The login name of the real user executing get.

The first execution of get —e causes the creation of the p-file for the
corresponding SCCS file. Subsequent executions only update the p-file with
a line containing the above information. Before updating, however, get
checks to assure that no entry (already in the p-file) specifies that the SID
(of the version to be retrieved) is already retrieved (unless multiple
concurrent edits are allowed).

If both checks succeed, the user is informed that other deltas are in
progress and processing continues. If either check fails, an error message
results. It is important to note that the various executions of get should be
carried out from different directories. Otherwise, only the first execution
succeeds since subsequent executions would attempt to overwrite a writable
g-file, which is an SCCS error condition. In practice, such multiple
executions are performed by different users so that this problem does not
arise since each user normally has a different working directory. See
“Protection” under the part “SCCS FILES” for a discussion of how different
users are permitted to use SCCS commands on the same files.

Figures 4-4 thru 4-6 show, for the most useful cases, the version of an
SCCS file retrieved by get, as well as the SID of the version to be
eventually created by delta, as a function of the SID specified to get.

Sys5 UNIX 4-19

CHAPTER 4 SCCS

SID —b KEY- OTHER SID SID OF
SPECI- LETTER CONDI- RETRI- DATA
FIED* USEDfY TIONS EVED TO BE
CREATED
nonet no R default mRmL mR(mL+1)
to mR
nonei yes R default mRmL mRmL.(mB+1)
to mR
R no R > mR mRmL R.1§
R no R==mR mRmL mR.(mL+1)
R yes R > mR mRmL mR.mL.(mB+1).1
R yes ==mR mR.mL mRmL(mB+1).1
R - R<mR
R - R< mR hR.mL*™ hR.mL.(mB+1).1
and
does
not
exist
R — Trunk R.mL R.mL.(mB+1).1
successor
in release
> R and
R exists

See footnotes on sheet 3 of 3.

Figure 4-4. Determination of New SID (Sheet 1 of 3)

4-20 Sys5 UNIX

C

SCCS CHAPTER 4
SID —b KEY- OTHER SID SID OF
SPECI LETTER CONDI- RETRI- DATA
FIED* USEDY TIONS EVED TO BE

CREATED

R.L. no No trunk R.L R.(L+1)
successor

R.L. yes Notrunks R.L R.L.(mB+1).1
successor

R.L - Trunk R.L R.L.(mS+1).1
in release
>=R

R.Lb no No branch R.L.B.mS R.LB.(mS+1)
successor

R.L.B yes No branch R.L.B.mS R.L(mB+1).1
successor

R.LB.S no No branch R.L.B.S R.L.B.(S+1)
successor

R.LB.S no Nobranch R.L.B.S R.L.(mB+1).1
successor

R.LBS - Branch R.L.B.S R.L.(mB+1).1
successor

See footnotes on sheet 3 of 3.

Figure 4-5. Determination of New SID (Sheet 2 of 3)

Sys5 UNIX

CHAPTER 4 SCCS

Footnotes:

* "R", "L", "B", and "S" are "release", "level", "branch”, and "sequence"
components of the SID, respectively; "m" means "maximum”. Thus, for
example, "R.mL"means “the maximum level number within release R";
"R.L.(mB+1).1" means "the first sequence number on the (i.e., maximum
branch number plus 1) of level L within release R". Also note that if the SID
specified is of the form "R.L", "R.L.B", or "R.L.B.S", each of the specified
components must exist.

t The —b keyletter is effective only if the b flag [see admin(1)] is present in
the file. In this state, an entry of "—" means "irrelevant".

i This case applies if the d (default SID) flag is not present in the file. If the
d flag is present in the file, the SID obtained from the d flag is interrupted
as if it had been specified on the command line. Thus, one of the other
cases in this figure applies.

§ This case is used to force the creation of the first delta in the new release.

=% "hR" is the highest existing release that is lower than the specified,
nonexisting, release R.

Figure 4-6. Determination of New SID (Sheet 3 of 3)

4.4.1.5 Concurrent Edits of Same SID

Under normal conditions, gets for editing (—e keyletter is specified) based on
the same SID are not permitted to occur concurrently. That is, delta must
be executed before a subsequent get for editing is executed at the same
SID as the previous get. However, multiple concurrent edits (defined to be
two or more successive executions of get for editing based on the same
retrieved SID) are allowed if the j flag is set in the SCCS file. Thus:

get —e s.abc
1.1

new delta 1.2
5 lines

may be immediately followed by

get —e s.abc
1.1

new delta 1.1.1.1
5 lines

4-22 Sys5 UNIX

SCCS CHAPTER 4

without an intervening execution of deita. In this case, a delta command
corresponding to the first get produces delta 1.2 [assuming 1.1 is the latest
(most recent) trunk delta], and the delta command corresponding to the
second get produces delta 1.1.1.1.

4.4.1.6 Keyletters That Affect Output

Specification of the —p keyletter causes get to write the retrieved text to the
standard output rather than to a g-file. In addition, all output normally
directed to the standard output (such as the SID of the version retrieved and
the number of lines retrieved) is directed instead to the diagnostic output.
This may be used, for example, to create g-files with arbitrary names.

get —p s.abc > arbitrary-file-name

The —p keyletter is particularly useful when used with the “!I" or “$”
arguments of the send(1C) command. For example,

send MOD=s.abc REL=3 compile
given that file compile contains

//plicomp job job-card-information
/lstep1 exec plickc

//pli.sysin dd =

-S

get —p —rREL MOD

[

I

will send the highest level of release 3 of file s.abc. Note that the line “"—s”
(that causes send to make ID keyword substitutions before detecting and
interpreting control lines) is necessary if send is to substitute “s.abc” for
MOD and “3” for REL in the line “"!get —p —rREL MOD".

The -s keyletter suppresses all output that is normally directed to the
standard output. Thus, the SID of the retrieved version, the number of lines
retrieved, etc., are not output. This does not, however, affect messages to
the diagnostic output. This keyletter is used to prevent nondiagnostic
messages from appearing on the user’'s terminal and is often used in
conjunction with the —p keyletter to “pipe” the output of get, as in

get —p —s s.abc | nroff

The —g keyletter is supplied to suppress the actual retrieval of the text of a
version of the SCCS file. This may be useful in a number of ways.

Sys5 UNIX 4-23

CHAPTER 4 SCCS

For example, to verify the existence of a particular SID in an SCCS file, one
may execute

get —-g —r4.3 s.abc

This outputs the given SID if it exists in the SCCS file or it generates an
error message if it does not. Another use of the —g keyletter is in
regenerating a p-file that may have been accidentally destroyed.

get —e —g s.abc

The ~I keyletter causes the creation of an /-file, which is named by replacing
the “s.” of the SCCS file name with “l.”. This file is created in the current
directory with mode 444 (read-only) and is owned by the real user. It
contains a table [whose format is described in get(1) in the Sys5 UNIX User
Reference Manual] showing the deltas used in constructing a particular
version of the SCCS file. For example,

get —r2.3 - s.abc

generates an /-file showing the deltas applied to retrieve version 2.3 of the
SCCS file. Specifying a value of “p” with the —I keyletter, as in

get -Ip —r2.3 s.abc

causes the generated output to be written to the standard output rather than
to the /file. The —g keyletter may be used with the —I keyletter to suppress
the actual retrieval of the text.

The —m keyletter is of use in identifying, line by line, the changes applied to
an SCCS file. Specification of this keyletter causes each line of the
generated g-file to be preceded by the SID of the delta that caused that line
to be inserted. The SID is separated from the text of the line by a tab
character. ' ~

The —n keyletter causes each line of the generated g-file to be preceded by
the value of the sccs1 ID keyword and a tab character. The —n keyletter is
most often used in a pipeline with grep(1). For example, to find all lines that
match a given pattern in the latest version of each SCCS file in a directory,
the following may be executed:

get -p —n —s directory | grep pattern

If both the —m and -n keyletters are specified, each line of the generated
g-file is preceded by the value of the sccs1 ID keyword and a tab (this is
the effect of the ~n keyletter) and followed by the line in the format
produced by the —m keyletter. Because use of the —m keyletter and/or the
—-n keyletter causes the contents of the g-file to be modified, such a g-file
must not be used for creating a deita. Therefore, neither the —m keyletter
nor the —n keyletter may be specified together with the —e keyletter.

4-24 Sys5 UNIX

SCCS CHAPTER 4

See get(1) in the Sys5 UNIX User Reference Manual for a full description of
additional get keyletters.

4.4.2 B. The ‘‘delta’ Command

The delta command is used to incorporate the changes made to a g-file into
the corresponding SCCS file, i.e., to create a delta, and therefore, a new
version of the file.

Invocation of the delta command requires the existence of a p-file. The
delta command examines the p-file to verify the presence of an entry
containing the user's login name. If none is found, an error message
results. The delta command performs the same permission checks that get
performs when invoked by the —e keyletter. If all checks are successful,
delta determines what has been changed in the g-file by comparing it via
diff(1) with its own temporary copy of the g-file as it was before editing.
This temporary copy of the g-file is called the d-file (its name is formed by
replacing the “s.” of the SCCS file name with “d.”) and is obtained by
performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user
executing delta because the user who retrieved the g-file must be the one
who creates the delta. However, if the login name of the user appears in
more than one entry, the same user has executed get with the —e keyletter
more than once on the same SCCS file. The -r keyletter must then be used
with delta to specify the SID that uniquely identifies the p-file entry. This
entry is the one used to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is

delta s.abc

which prompts on the standard output (but only if it is a terminal)
comments?

to which the user replies with a description of why the delta is being made,
terminating the reply with a newline character. The user’s response may be
up to 512 characters long with newlines (not intended to terminate the
response) escaped by backslashes “\".

If the SCCS file has a v flag, delta first prompts with
MRs? (Modification Requests)

on the standard output. (Again, this prompt is printed only if the standard
output is a terminal.)

Sys5 UNIX 4-25

CHAPTER 4 SCCS

The standard input is then read for MR numbers, separated by blanks
and/or tabs, terminated in the same manner as the response to the prompt
“comments?”. In a tightly controlled environment, it is expected that deltas
are created only as a result of some trouble report, change request, trouble
ticket, etc., collectively called [MRs]. It is desirable (or necessary) to record
such MR number(s) within each delta.

The -y and/or —m keyletters may be used to supply the commentary
(comments and MR numbers, respectively) on the command line rather than
through the standard input.

delta —y"descriptive comment” —m"mrnum1 mrnum2" s.abc

In this case, the corresponding prompts are not printed, and the standard
input is not read. The —m keyletter is allowed only if the SCCS file has a v
flag. These keyletters are useful when deita is executed from within a shell
procedure [see sh(1) in the Sys5 UNIX User Reference Manual].

The commentary (comments and/or MR numbers), whether solicited by
delta or supplied via keyletters, is recorded as part of the entry for the delta
being created and applies to all SCCS files processed by the same
invocation of delta. This implies that (if delta is invoked with more than one
file argument and the first file named has a v flag) all files named must have
this flag. Similarly, if the first file named does not have this flag, then none
of the files named may have it. Any file that does not conform to these rules
is not processed.

When processing is complete, delta outputs (on the standard output) the
SID of the created delta (obtained from the p-file entry) and the counts of
lines inserted, deleted, and left unchanged by the delta. Thus, a typical
output might be

1.4

14 inserted

7 deleted

345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or
unchanged by delta do not agree with the user's perception of the changes
applied to the g-file. The reason for this is that there usually are a number
of ways to describe a set of such changes, especially if lines are moved
around in the g-file, and delta is likely to find a description that differs from
the user's perception. However, the total number of lines of the new delta
(the number inserted plus the number left unchanged) should agree with the
number of lines in the edited g-file.

4-26 Sys5 UNIX

SCCS CHAPTER 4

If (in the process of making a delta) delta finds no ID keywords in the edited
g-file, the message

No id keywords (cm7)

is issued after the prompts for commentary but before any other output.
This indicates that any ID keywords that may have existed in the SCCS file
have been replaced by their values or deleted during the editing process.
This could be caused by creating a delta from a g-file that was created by a
get without the —e keyletter (recall that ID keywords are replaced by get in
that case). This could also be caused by accidentally deleting or changing
the ID keywords during the editing of the g-file. Another possibility is that
the file had no ID keywords. In any case, it is left up to the user to
determine what remedial action is necessary. However, the delta is made
unless there is an i flag in the SCCS file indicating that this should be
treated as a fatal error. In this last case, the delta is not created.

After the processing of an SCCS file is complete, the corresponding p-file
entry is removed from the p-file. All updates to the p-file are made to a
temporary copy, the g-file, whose use is similar to the use of the x-file which
is described in the part “SCCS COMMAND CONVENTIONS". If there is
only one entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file unless the —n keyletter is
specified. Thus:

delta —n s.abc
will keep the g-file upon completion of processing.

The —s (silent) keyletter suppresses all output that is normally directed to the
standard output, other than the prompts “comments?” and “MRs?". Thus,
use of the —s keyletter together with the —y keyletter (and possibly, the —m
keyletter) causes delta neither to read the standard input nor to write the
standard output.

The differences between the g-file and the d-file (see above), constitute the
delta and may be printed on the standard output by using the —p keyletter.
The format of this output is similar to that produced by diff(1).

4.4.3 C. The “admin” Command

The admin command is used to administer SCCS files, that is, to create
new SCCS files and to change parameters of existing ones. When an
SCCS file is created, its parameters are initialized by use of keyletters or are
assigned default values if no keyletters are supplied. The same keyletters
are used to change the parameters of existing files.

Sys5 UNIX 4-27

CHAPTER 4 SCCS

Two keyletters are supplied for use in conjunction with detecting and
correcting “corrupted” SCCS files (see “Auditing” in part “SCCS FILES").
Newly created SCCS files are given mode 444 (read-only) and are owned
by the effective user. Only a user with write permission in the directory
containing the SCCS file may use the admin command upon that file.

4.4.3.1 Creation of SCCS Files
An SCCS file may be created by executing the command
admin —ifirst s.abc

in which the value “first” of the —i keyletter specifies the name of a file from
which the text of the initial delta of the SCCS file s.abc is to be taken.
Omission of the value of the —i keyletter indicates that admin is to read the
standard input for the text of the initial delta. Thus, the command

admin —i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not
contain ID keywords, the message

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the
command also sets the i flag (not to be confused with the —i keyletter), the
message is treated as an error and the SCCS file is not created. Only one
SCCS file may be created at a time using the —i keyletter.

When an SCCS file is created, the release number assigned to its first delta
is normally “1”, and its level number is always “1”. Thus, the first delta of
an SCCS file is normally “1.1”. The -r keyletter is used to specify the
release number to be assigned to the first delta. Thus:

admin —ifirst —r3 s.abc

indicates that the first delta should be named “3.1" rather than “1.1".
Because this keyletter is only meaningful in creating the first delta, its use is
only permitted with the —i keyletter.

4.4.3.2 Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may choose to supply commentary
stating the reason for creation of the file. This is done by supplying
comments (~y keyletter) and/or MR numbers (-m keyletter) in exactly the
same manner as for delta. The creation of an SCCS file may sometimes be
the direct result of an MR.

4-28 Sys5 UNIX

SCCS CHAPTER 4

If comments (—y keyletter) are omitted, a comment line of the form
date and time created YY/MM/DD HH:MM:SS by logname
is automatically generated.

If it is desired to supply MR numbers (—m keyletter), the v flag must also be
set (using the —f keyletter described below). The v flag simply determines
whether or not MR numbers must be supplied when using any SCCS
command that modifies a “delta commentary” [see sccsfile(4) in the Sys5
UNIX User Reference Manual] in the SCCS file. Thus:

admin —ifirst —-mmrnum1 —fv s.abc

Note that the —y and —-m keyletters are only effective if a new SCCS file is
being created.

4.4.3.3 Initialization and Modification of SCCS File Parameters

The portion of the SCCS file reserved for descriptive text may be initialized
or changed through the use of the —t keyletter. The descriptive text is
intended as a summary of the contents and purpose of the SCCS file.

When an SCCS file is being created and the ~t keyletter is supplied, it must
be followed by the name of a file from which the descriptive text is to be
taken. For example, the command

admin —ifirst —tdesc s.abc
specifies that the descriptive text is to be taken from file desc;.

When processing an existing SCCS file, the -t keyletter specifies that the
descriptive text (if any) currently in the file is to be replaced with the text in
the named file. Thus:

admin —tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the
contents of desc; omission of the file name after the ~t keyletter as in

admin -t s.abc
causes the removal of the descriptive text from the SCCS file.

The flags of an SCCS file may be initialized, changed, or deleted through
the use of the —f and —d keyletters, respectively. The flags of an SCCS file
are used to direct certain actions of the various commands. See admin(1)
in the Sys5 UNIX User Reference Manual for a description of all the flags.
For example, the i flag specifies that the warning message (stating that
there are no ID keywords contained in the SCCS file) should be treated as
an error. Also the d (default SID) flag specifies the default version of the

Sys5 UNIX 4-29

CHAPTER 4 SCCS

SCCS file to be retrieved by the get command. The —f keyletter is used to
set a flag and, possibly, to set its value. For example,

admin —ifirst —fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value “modname”
specified for the m flag is the value that the get command will use to replace
the sces2 ID keyword. (In the absence of the m flag, the name of the g-file
is used as the replacement for the sccs2 ID keyword.) Note that several —f
keyletters may be supplied on a single invocation of admin and that —f
keyletters may be supplied whether the command is creating a new SCCS
file or processing an existing one.

The —d keyletter is used to delete a flag from an SCCS file and may only be
specified when processing an existing file. As an example, the command

admin —dm s.abc

removes the m flag from the SCCS file. Several —d keyletters may be
supplied on a single invocation of admin and may be intermixed with —f
keyletters.

The SCCS files contain a list (user list) of login names and/or group IDs of
users who are allowed to create deltas. This list is empty by default which
implies that anyone may create deltas. To add login names and/or group
IDs to the list, the —a keyletter is used. For example,

admin —axyz —awqgl —a1234 s.abc

adds the login names “xyz" and “wql" and the group ID “1234" to the list.
The —a keyletter may be used whether admin is creating a new SCCS file
or processing an existing one and may appear several times. The -e
keyletter is used in an analogous manner if one wishes to remove (erase)
login names or group IDs from the list.

4.4.4 D. The “prs’’ Command

The prs command is used to print on the standard output all or parts of an
SCCS file in a format, called the output “data specification,” supplied by the
user via the —d keyletter. The data specification is a string consisting of
SCCS file data keywords (not to be confused with get ID keywords)
interspersed with optional user text.

Data keywords are replaced by appropriate values according to their
definitions. For example,

4-30 Sys5 UNIX

N

SCCS CHAPTER 4

is defined as the data keyword that is replaced by the SID of a specified
delta. Similarly, :F: is defined as the data keyword for the SCCS file name
currently being processed, and :C: is defined as the comment line
associated with a specified delta. All parts of an SCCS file have an
associated data keyword. For a complete list of the data keywords, see
prs(1) in the Sys5 UNIX User Reference Manual .

There is no limit to the number of times a data keyword may appear in a
data specification. Thus, for example,

prs —d":l: this is the top delta for :F: :I:" s.abc
may produce on the standard output
2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of
that delta using the —r keyletter. For example,

prs —d":F:: :l: comment line is: :C:" —r1.4 s.abc
may produce the following output:
s.abc: 1.4 comment line is: THIS IS A COMMENT

If the —r keyletter is not specified, the value of the SID defaults to the most
recently created delta.

In addition, information from a range of deltas may be obtained by
specifying the -l or —e keyletters. The -e keyletter substitutes data
keywords for the SID designated via the —r keyletter and all deltas created
earlier. The -l keyletter substitutes data keywords for the SID designated
via the —r keyletter and all deltas created later. Thus, the command

prs —d:l: -r1.4 —e s.abc
may output

1.4
1.3
1.2.11
1.2
1.1

and the command
prs —d:I: —r1.4 - s.abc
may produce

Sys5 UNIX 4-31

CHAPTER 4 SCCS

3.3
3.2
3.1
2.2.11
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be
obtained by specifying both the —e and —I keyletters.

4.4.5 E. The “help”” Command

The help command prints explanations of SCCS commands and of
messages that these commands may print. Arguments to help, zero or
more of which may be supplied, are simply the names of SCCS commands
or the code numbers that appear in parentheses after SCCS messages. |If
no argument is given, help prompts for one. The help command has no
concept of keyletter arguments or file arguments. Explanatory information
related to an argument, if it exists, is printed on the standard output. If no
information is found, an error message is printed. Note that each argument
is processed independently, and an error resulting from one argument will
not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the
command. For example,

help ge5 rmdel
produces

ge5:

"nonexistent sid"

The specified sid does not exist in the
given file.

Check for typos.

rmdel:
rmdel —SID name ...

4.4.6 F. The ‘‘rmdel” Command

The rmdel command is provided to allow removal of a delta from an SCCS
file. Its use should be reserved for those cases in which incorrect global
changes were made a part of the delta to be removed.

4-32 Sys5 UNIX

SCCS CHAPTER 4

The delta to be removed must be a “leaf” delta. That is, it must be the
latest (most recently created) delta on its branch or on the trunk of the
SCCS file tree. In Figures 4-3 thru 4-6, only deltas 1.3.1.2, 1.3.2.2, and 2.2
can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 can be
removed, etc.

To be allowed to remove a delta, the effective user must have write
permission in the directory containing the SCCS file. In addition, the real
user must either be the one who created the delta being removed or be the
owner of the SCCS file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete SID of
the delta to be removed (i.e., it must have two components for a trunk delta
and four components for a branch delta). Thus:

rmdel —r2.3 s.abc

specifies the removal of (trunk) delta “2.3" of the SCCS file. Before removal
of the delta, rmdel checks that the release number (R) of the given SID
satisfies the relation.

floor <= R <= ceiling

The rmdel command also checks that the SID specified is not that of a
version for which a get for editing has been executed and whose associated
delta has not yet been made. In addition, the login name or group ID of the
user must appear in the file's “user list”, or the “user list” must be empty.
Also, the release specified cannot be locked against editing. That is, if the |
flag is set [see admin(1) in the Sys5 UNIX User Reference Manual], the
release specified must not be contained in the list. If these conditions are
not satisfied, processing is terminated, and the delta is not removed. After
the specified delta has been removed, its type indicator in the “delta table”
of the SCCS file is changed from “D" (“delta”) to “R” (“removed”).

4.4.7 G. The “‘cdc” Command

The ede command is used to change a delta's commentary that was
supplied when that delta was created. Its invocation is analogous to that of
the rmdel command, except that the delta to be processed is not required to
be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the SCCS file is to be
changed.

Sys5 UNIX 4-33

CHAPTER 4 SCCS

The new commentary is solicited by cdc in the same manner as that of
delta. The old commentary associated with the specified delta is kept, but it
is preceded by a comment line indicating that it has been changed (i.e.,
superseded), and the new commentary is entered ahead of this comment
line. The “inserted” comment line records the login name of the user
executing cdc and the time of its execution.

The cdc command also allows for the deletion of selected MR numbers
associated with the specified delta. This is specified by preceding the
-selected MR numbers by the character “!”. Thus:

cdc —r1.4 s.abc

MRs? mrnum3 !mrnum1

comments? deleted wrong MR number and inserted
correct MR number

inserts “mrnum3” and deletes “mrnum1” for delta 1.4.

4.4.8 H. The “what’’” Command

The what command is used to find identifying information within any UNIX
system file whose name is given as an argument to what. Directory names
and a name of "~ (a lone minus sign) are not treated specially as they are
by other SCCS commands and no keyletters are accepted by the command.

The what command searches the given file(s) for all occurrences of the
string “@(#)", which is the replacement for the @(#) ID keyword [see
get(1)], and prints (on the standard output) the balance following that string
until the first double quote ("), greater than (>), backslash (\), newline, or
(nonprinting) NUL character. For example, if the SCCS file s.prog.c (a C
language program) contains the following line:

char id[] "@(#)sccs2:5.1";

and then the command

get —r3.4 s.prog.c

is executed, the resulting g-file is compiled to produce “prog.0” and “a.out”.

4-34 Sys5 UNIX

SCCS CHAPTER 4

Then the command
what prog.c prog.o a.out
produces

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an ID keyword of
get; it may be inserted in any convenient manner.

4.49 |. The ‘“scesdiff’ Command

The scesdiff command determines (and prints on the standard output) the
differences between two specified versions of one or more SCCS files. The
versions to be compared are specified by using the -r keyletter, whose
format is the same as for the get command. The two versions must be
specified as the first two arguments to this command in the order they were
created, i.e., the older version is specified first. Any following keyletters are
interpreted as arguments to the pr(1) command (which actually prints the
differences) and must appear before any file names. The SCCS files to be
processed are named last. Directory names and a name of “-" (a lone
minus sign) are not acceptable to sccsdiff.

The differences are printed in the form generated by diff(1). The following
is an example of the invocation of sccsdiff:

scesdiff —r3.4 —r5.6 s.abc

4.4.10 J. The ‘“‘comb” Command

The comb command generates a “shell procedure” [see sh(1) in the Sys5
UNIX User Reference Manual] which attempts to reconstruct the named
SCCS files so that the reconstructed files are smaller than the originals.
The generated shell procedure is written on the standard output. Named
SCCS files are reconstructed by discarding unwanted deltas and combining
other specified deltas. The SCCS files that contain deltas no longer useful
should be discarded. It is not recommended that comb be used as a matter
of routine; its use should be restricted to a very small number of times in the
life of an SCCS file.

Sys5 UNIX 4-35

CHAPTER 4 SCCS

In the absence of any keyletters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the “shape” of
the SCCS file tree. The effect of this is to eliminate middle deltas on the
trunk and on all branches of the tree. Thus, in Figures 4-3 thru 4-6, deltas
1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are
summarized as follows:

The —p keyletter specifies the oldest delta that is to be preserved in the
reconstruction. All older deltas are discarded.

The —c keyletter specifies a list [see get(1) in the Sys5 UNIX User
Reference Manual for the syntax of such a list] of deltas to be preserved.
All other deltas are discarded.

The —s keyletter causes the generation of a shell procedure, which when
run, produces only a report summarizing the percentage space (if any) to
be saved by reconstructing each named SCCS file. It is recommended
that comb be run with this keyletter (in addition to any others desired)
before any actual reconstructions.

It should be noted that the shell procedure generated by comb is not
guaranteed to save space. In fact, it is possible for the reconstructed file to
be larger than the original. Note, too, that the shape of the SCCS file tree
may be altered by the reconstruction process.

4.4.11 K. The “val” Command

The val command is used to determine if a file is an SCCS file meeting the
characteristics specified by an optional list of keyletter arguments. Any
characteristics not met are considered errors.

The val command checks for the existence of a particular delta when the
SID for that delta is explicitly specified via the -r keyletter. The string
following the —y or —m keyletter is used to check the value set by the t orm
flag, respectively [see admin(1) in the Sys5 UNIX User Reference Manual
for a description of the flags].

The val command treats the special argument “~" differently from other
SCCS commands. This argument allows val to read the argument list from
the standard input as opposed to obtaining it from the command line. The
- standard input is read until end of file. This capability allows for one
invocation of val with different values for the keyletter and file arguments.

4-36 Sys5 UNIX

SCCS CHAPTER 4

For example,

val —
—yc —mabc s.abc
-mxyz —ypl1 s.xyz

first checks if file s.abc has a value “c” for its “type” flag and value “abc” for
the “module name” flag. Once processing of the first file is completed, val
then processes the remaining files, in this case, s.xyz, to determine if they
meet the characteristics specified by the keyletter arguments associated
with them.

The val command returns an 8-bit code; each bit set indicates the
occurrence of a specific error [see val(1) for a description of possible errors
and the codes]. In addition, an appropriate diagnostic is printed unless
suppressed by the —s keyletter. A return code of “0" indicates all named
files met the characteristics specified.

4.5 SCCS Files

This part discusses several topics that must be considered before extensive
use is made of SCCS. These topics deal with the protection mechanisms
relied upon by SCCS, the format of SCCS files, and the recommended
procedures for auditing SCCS files.

4.5.1 A. Protection

The SCCS relies on the capabilities of the UNIX software for most of the
protection mechanisms required to prevent unauthorized changes to SCCS
files (i.e., changes made by non-SCCS commands). The only protection
features provided directly by SCCS are the “release lock” flag, the “release
floor” and “ceiling” flags, and the “user list".

New SCCS files created by the admin command are given mode 444
(read-only). It is recommended that this mode remain unchanged as it
prevents any direct modification of the files by non-SCCS commands. It is
further recommended that the directories containing SCCS files be given
mode 755 which allows only the owner of the directory to modify its
contents.

The SCCS files should be kept in directories that contain only SCCS files
and any temporary files created by SCCS commands. This simplifies
protection and auditing of SCCS files. The contents of directories should
correspond to convenient logical groupings, e.g., subsystems of a large
project.

Sys5 UNIX 4-37

CHAPTER 4 SCCS

The SCCS files must have only one link (name) because the commands
that modify SCCS files do so by creating a copy of the file (the x-file, see
"SCCS COMMAND CONVENTIONS"). Upon completion of processing,
remove the old file and rename the x-file. If the old file has more than one
link, this would break such additional links. Rather than process such files,
SCCS commands produce an error message. All SCCS files must have
names that begin with “s.”.

When only one user uses SCCS, the real and effective user IDs are the
same; and the user ID owns the directories containing SCCS files.
Therefore, SCCS may be used directly without any preliminary preparation.

However, in those situations in which several users with unique user IDs are
assigned responsibility for one SCCS file (e.g., in large software
development projects), one user (equivalently, one user ID) must be chosen
as the “owner” of the SCCS files and be the one who will “administer” them
(e.g., by using the admin command). This user is termed the “SCCS
administrator” for that project. Because other users of SCCS do not have
the same privileges and permissions as the SCCS administrator, they are
not able to execute directly those commands that require write permission in
the directory containing the SCCS files. Therefore, a project-dependent
program is required to provide an interface to the get, delta, and if desired,
rmdel and cdc commands.

The interface program must be owned by the SCCS administrator and must
have the “set user ID on execution” bit “on” [see chmod(1) in the Sys5
UNIX User Reference Manual]. This assures that the effective user ID is
the user ID of the administrator. This program invokes the desired SCCS
command and causes it to inherit the privileges of the interface program for
the duration of that command’s execution. Thus, the owner of an SCCS file
can modify it at will. Other users whose login names or group IDs are in the
“user list” for that file (but are not the owner) are given the necessary
permissions only for the duration of the execution of the interface program.
Other users are thus able to modify the SCCS files only through the use of
delta and, possibly, rmdel and cdc. The project-dependent interface
program, as its name implies, must be custom-built for each project.

4.5.2 B. Formatting

The SCCS files are composed of lines of ASCII text arranged in six parts as
follows:

Checksum A line containing the “logical” sum of all the
characters of the file (not including this checksum
itself).

4-38 Sys5 UNIX

C

SCCS CHAPTER 4

Delta Table Information about each delta, such as type, SID, date
and time of creation, and commentary.

User Names List of login names and/or group IDs of users who are
allowed to modify the file by adding or removing
deltas.

Flags Indicators that control certain actions of various
SCCS commands.

Descriptive Text Arbitrary text provided by the user; usually a
summary of the contents and purpose of the file.

Body Actual text that is being administered by SCCS,
intermixed with internal SCCS control lines.

Detailed information about the contents of the various sections of the file
may be found in sccsfile(5). The checksum is the only portion of the file
that is of interest below.

It is important to note that because SCCS files are ASCI! files they may be
processed by various UNIX software commands, such as ed(1), grep(1),
and cat(1). This is very convenient in those instances in which an SCCS file
must be modified manually (e.g., when the time and date of a delta was
recorded incorrectly because the system clock was set incorrectly) or when
it is desired to simply look at the file.

Caution: Extreme care should be exercised when modifying SCCS files
with non-SCCS commands.

4.5.3 C. Auditing

On rare occasions, perhaps due to an operating system or hardware
malfunction, an SCCS file or portions of it (i.e., one or more “blocks”) can
be destroyed. The SCCS commands (like most UNIX software commands)
issue an error message when a file does not exist. In addition, SCCS
commands use the checksum stored in the SCCS file to determine whether
a file has been corrupted since it was last accessed [possibly by having lost
one or more blocks or by having been modified with ed(1)]. No SCCS
command will process a corrupted SCCS file except the admin command
with the —h or -z keyletters, as described below.

It is recommended that SCCS files be audited for possible corruptions on a
regular basis. The simplest and fastest way to perform an audit is to
execute the admin command with the —h keyletter on all SCCS files.

Sys5 UNIX 4-39

CHAPTER 4 SCCS

admin —h s.file1 s.file2 ...
or
admin —h directory1 directory2 ...

If the new checksum of any file is not equal to the checksum in the first line
of that file, the message

corrupted file (cob6)

is produced for that file. This process continues until all the files have been
examined. When examining directories (as in the second example above),
the process just described will not detect missing files. A simple way to
detect whether any files are missing from a directory is to periodically
execute the Is(1) command on that directory and compare the outputs of the
most current and the previous executions. Any file whose name appears in
the previous output but not in the current one has been removed by some
means.

Whenever a file has been corrupted, the manner in which the file is restored
depends upon the extent of the corruption. If damage is extensive, the best
solution is to contact the local UNIX system operations group and request
that the file be restored from a backup copy. In the case of minor damage,
repair through use of the editor ed(1) may be possible. In the latter case
after such repair, the following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into agreement
with the actual contents of the file. After this command is executed on a file,
any corruption that existed in the file will no longer be detectable.

4.6 An SCCS Interface Program

4.6.1 A. General

In order to permit UNIX system users [with different user identification
numbers (user IDs)] to use SCCS commands upon the same files, an SCCS
interface program is provided. It temporarily grants the necessary file access
permissions to these users. This part discusses the creation and use of
such an interface program. The SCCS interface program may also be used
as a preprocessor to SCCS commands since it can perform operations upon
its arguments.

4-40 Sys5 UNIX

SCCS CHAPTER 4

4.6.2 B. Function

When only one user uses SCCS, the real and effective user IDs are the
same; and that user's ID owns the directories containing SCCS files.
However, there are situations (e.g., in large software development projects)
in which it is practical to allow more than one user to make changes to the
same set of SCCS files. In these cases, one user must be chosen as the
“owner” of the SCCS files and be the one who will “administer” them (e.g.,
by using the admin command). This user is termed the “SCCS
administrator” for that project. Since other users of SCCS do not have the
same privileges and permissions as the SCCS administrator, the other users
are not able to execute directly those commands that require write
permission in the directory containing the SCCS files. Therefore, a project-
dependent program is required to provide an interface to the get, delta, and
if desired, rmdel, cdc, and unget commands. Other SCCS commands
either do not require write permission in the directory containing SCCS files
or are (generally) reserved for use only by the administrator.

The interface program
e Must be owned by the SCCS administrator
e Must be executable by the new owner

e Must have the “ set user on execution” bit “on” [see chmod (1) in the
Sys5 UNIX Users Manuall.

Then when executed, the effective user ID is the user ID of the
administrator. This program's function is to invoke the desired SCCS
command and to cause it to inherit the privileges of the SCCS administrator
for the duration of that command’s execution. In this manner, the owner of
an SCCS file (the administrator) can modify it at will. Other users whose
login names are in the user list for that file (but who are not its owners) are
given the necessary permissions only for the duration of the execution of the
interface program. They are thus able to modify the SCCS files only
through the use of delta and, possibly, rmdel and cdc.

4.6.3 C. Basic Program

When a UNIX system program is executed, the program is passed as
argument 0, which is the name that invoked the program, and followed by
any additional user-supplied arguments. Thus, if a program is given a
number of links (names), the program may alter its processing depending
upon which link invokes the program. This mechanism is used by an SCCS
interface program to determine the SCCS command it should subsequently
invoke [see exec(2) in the Sys5 UNIX User Reference Manual].

Sys5 UNIX 4-41

CHAPTER 4 SCCS

A generic interface program (inter.c, written in C language) is shown in
Figure 4-7. Note the reference to the (unsupplied) function “filearg”. This is
intended to demonstrate that the interface program may also be used as a
preprocessor to SCCS commands. For example, function “filearg” could be
used to modify file arguments to be passed to the SCCS command by
supplying the full pathname of a file, thus avoiding extraneous typing by the
user. Also, the program could supply any additional (default) keyletter
arguments desired.

4.6.4 D. Linking and Use

In general, the following demonstrates the steps to be performed by the
SCCS administrator to create the SCCS interface program. It is assumed,
for the purposes of the discussion, that the interface program inter.c resides
in directory “/x1/xyz/sccs”. Thus, the command sequence

cd /x1/xyz/sccs
cC ... inter.c —o inter ...

compiles inter.c to produce the executable module inter (the
represents other arguments that may be required). The proper mode and
the “set user ID on execution” bit are set by executing

chmod 4755 inter
For example, new links are created by

In inter get
In inter delta
In inter rmdel

The names of the links may be arbitrary if the interface program is able to
determine from them the names of SCCS commands to be invoked.
Subsequently, any user whose shell parameter PATH [see sh(1) in the Sys5
UNIX User Reference Manual] specifies directory “/x1/xyz/sccs” as the one
to be searched first for executable commands may execute, e.g.

get —e /x1/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link “get”). The
interface program then executes “/usr/bin/get” (the actual SCCS get
command) upon the named file. As previously mentioned, the interface
program could be used to supply the pathname “/x1/xyz/sccs” so that the
user would only have to specify

get —e s.abc

to achieve the same results.

4-42 Sys5 UNIX

SCCS CHAPTER 4

~—- main(argc, argv)
(int argc;
char *argv[];

register int i;
char cmdstr{LENGTH]
/ﬁ
Process file arguments (those that don't begin with ‘—).
*/
for (i = 1;i < argc; i++)
if (argv[i][0] != —)
argv[i] = filearg(argv(il);
/t
Get ‘simple name’ of name used to invoke this program
(i.e., strip off directory-name prefix, if any).
*/
argv[0] = sname(argv[0));
/t
(- Invoke actual command, passing arguments.
*/

sprintf(cmdstr, "/usr/bin/%s", argv[0]);
execv(cmdstr, argv);

Figure 4-7. SCCS Interface Program inter.c

¢

Sys5 UNIX 4-43

MACROS CHAPTER 5

(“ - 5. Macros

The M4 macro processor is a front end for rational Fortran (Ratfor) and the
C programming languages. The “#define” statement in C language and the
analogous “define” in Ratfor are examples of the basic facility provided by
any macro processor.

At the beginning of a program, a symbolic name or symbolic constant can
be defined as a particular string of characters. The compiler will then
replace later unquoted occurrences of the symbolic name with the
corresponding string. Besides the straightforward replacement of one string
of text by another, the M4 macro processor provides the following features:

e arguments

e arithmetic capabilities

o file manipulation

e conditional macro expansion
e string and substring functions.

The basic operation of M4 is to read every alphanumeric token (string of
letters and digits) input and determine if the token is the name of a macro.
" The name of the macro is replaced by its defining text, and the resulting
(string is pushed back onto the input to be rescanned. Macros may be called
with arguments. The arguments are collected and substituted into the right

places in the defining text before the defining text is rescanned.

The user also has the capability to define new macros. Built-ins and user-
defined macros work exactly the same way except that some of the built-in
macros have side effects on the state of the process. A list of 21 built-in
macros provided by the M4 macro processor can be found in Figures 5-1
thru 5-4.

C

Sys5 UNIX ' 5-1

CHAPTER §

Macro
Name

Function

changequote

Restores original
characters or
makes new quote
characters the
left and right
brackets.

changescom

Changes left and right
comment markers from
the default # and new
line. »

deer

Returns the value of
its argument decremented
by 1.

define

Defines new macros.

defn

Returns the quoted
definition of its
argument(s).

divert

Diverts output to
1-out-of-10
diversions.

Figure 5-1. Built-in Macros (Sheet 1 of 4)

MACROS

Sys5 UNIX

MACROS CHAPTER 5

(» g Macro Function
Name
divnum Returns the number

of the currently
active diversion.

dnl Reads and discards
characters up to
and including the
next new line.

dumpdef Dumps the current
names and definitions
of items named as
arguments.

errprint Prints its arguments
on the standard
error file.

eval Prints arbitrary
arithmetic on

(integers.

L ifdef Determines if a
macro is currently
defined.

ifelse Performs arbitrary
conditional testing.

include Returns the contents
of the file named
in the argument. A
fatal error occurs
if the file name
cannot be accessed.

Figure 5-2. Built-in Macros (Sheet 2 of 4)

.

Sys5 UNIX 5-3

CHAPTER 5

5-4

Macro
Name

Function

iner

Returns the value of
its argument
incremented by 1.

index

Returns the position
where the second
argument begins in
the first argument
pf index.

len

Returns the number of
characters that makes
its argument.

mdexit

Causes immediate
exit from M4.

m4wrap

Pushes the exit code
back at final EOF.

maketemp

Facilitates making
unique file names.

popdef

Removes current
definition of its
argument(s)

exposing any previous
definitions.

pushdef

Defines new macros
but saves any
previous definition.

Figure 5-3. Built-in Macros (Sheet 3 of 4)

MACROS

Sys5 UNIX

MACROS

Macro
Name

Function

shift

Returns all arguments
of shift except the
first argument.

sinclude

Returns the contents
of the file named

in the arguments.
The macro remains
silent and continues
if the file is
inaccessible.

substr

Produces substrings
of strings.

syscmd

Executes the Sys5 UNIX
command given in
the first argument.

traceoff

Turns macro trace off.

traceon

Turns the macro trace on.

translit

Performs character
transliteration.

undefine

Removes user-defined
or built-in macro
definitions.

undivert

Discards the diverted
text.

Figure 5-4. Built-in Macros (Sheet 4 of 4)
To use the M4 macro processor, input the following command:

m4 [optional files]

CHAPTER 5

Each argument file is processed in order. If there are no arguments or if an
argument is “—", the standard input is read at that point. The processed
text is written on the standard output which may be captured for subsequent
processing with the following input:

m4 [files] >outputfile

Sys5 UNIX

5-5

CHAPTER 5 MACROS

5.1 Defining Macros

The primary built-in function of M4 is define. Define is used to define new
macros. The following input:

define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences
of name will be replaced by stuff. Name must be alphanumeric and must
begin with a letter (the underscore counts as a letter). Stuff is any text that
contains balanced parentheses. Use of a slash may stretch stuff over
multiple lines. Thus, as a typical example,

define(N, 100)
if (i > N)
defines N to be 100 and uses the symbolic constant N in a later if

statement.

The left parenthesis must immediately follow the word define to signal that
define has arguments. If a user-defined macro or built-in name is not
followed immediately by “(", it is assumed to have no arguments. Macro
calls have the following general form:

name(arg1,arg2,...argn)

A macro name is only recognized as such if it appears surrounded by
nonalphanumerics. Using the following example:

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N even
though the variable contains a lot of Ns.

Macros may be defined in terms of other names. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100. If N is redefined and subsequently
changes, M retains the value of 100 not N.

The M4 macro processor expands macro names into their defining text as
soon as possible. The string N is immediately replaced by 100. Then the

5-6 Sys5 UNIX

MACROS CHAPTER 5

string M is also immediately replaced by 100. The overall result is the same
as using the following input in the first place:

define(M, 100)
The order of the definitions can be interchanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is requested
later, the result is the value of N at that time (because the M will be replaced
by N which will be replaced by 100).

The more general solution is to delay the expansion of the arguments of
define by quoting them. Any text surrounded by left and right single quotes
is not expanded immediately but has the quotes stripped off. The value of a
quoted string is the string stripped of the quotes. If the input is

define(N, 100)

define(M, ‘N’)

the quotes around the N are stripped off as the argument is being collected.
The results of using quotes is to define M as the string N, not 100. The
general rule is that M4 always strips off one level of single quotes whenever
it evaluates something. This is true even outside of macros. If the word
define is to appear in the output, the word must be quoted in the input as
follows:

‘define’ = 1;

Another example of using quotes is redefining N. To redefine N, the
evaluation must be delayed by quoting

define(N, 100)
define('N’, 200)

In M4, it is often wise to quote the first argument of a macro. The following
example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is equivalent
to the following statement:

Sys5 UNIX 5-7

CHAPTER 5 MACROS

define(100, 200)

This statement is ignored by M4 since only things that look like names can
be defined.

If left and right single quotes are not convenient for some reason, the quote
characters can be changed with the following built-in macro:

changequote([, 1)

The built-in changequote makes the new quote characters the left and right
brackets. The original characters can be restored by using changequote
without arguments as follows:

changequote

There are two additional built-ins related to define. The undefine macro
removes the definition of some macro or built-in as follows:

undefine('N’)

The macro removes the definition of N. Built-ins can be removed with
undefine, as follows:

undefine(‘define’)

But once removed, the definition cannot be reused.

The built-in ifdef provides a way to determine if a macro is currently defined.
Depending on the system, a definition appropriate for the particular machine
can be made as follows:

ifdef('pdp11’, ‘define(wordsize,16)’)
ifdef('u3b’, ‘define(wordsize,32))

Remember to use the quotes.

The ifdef macro actually permits three arguments. |If the first argument is
defined, the value of ifdef is the second argument. If the first argument is
not defined, the value of ifdef is the third argument. If there is no third
argument, the value of ifdef is null. If the name is undefined, the value of
ifdef is then the third argument, as in

ifdef(‘'unix’, on UNIX, not on UNIX)

5-8 Sys5 UNIX

N

N

-

MACROS CHAPTER 5

5.2 Arguments

So far the simplest form of macro processing has been discussed which is
replacing one string by another (fixed) string. User-defined macros may
also have arguments, so different invocations can have different results.
Within the replacement text for a macro (the second argument of its define),
any occurrence of $n is replaced by the nth argument when the macro is
actually used. Thus, the macro bump defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1. The ‘bump(x)’ statement is
equivalent to ‘x = x + 1.’

A macro can have as many arguments as needed, but only the first nine are
accessible ($1 through $9). The macro name is $0 although that is less
commonly used. Arguments that are not supplied are replaced by null
strings, so a macro can be defined which simply concatenates its arguments
like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus, ‘cat(x, y, z)' is equivalent to ‘xyz’. Arguments $4 through $9 are null
since no corresponding arguments were provided. Leading unquoted
blanks, tabs, or newlines that occur during argument collection are
discarded. All other white space is retained. Thus:

define(a, b ¢)

defines ‘a’'tobe b ¢

Arguments are separated by commas; however, when commas are within
parentheses, the argument is not terminated nor separated. For example,

define(a, (b,c))

has only two arguments. The first argument is a. The second is literally
{b,c). A bare comma or parenthesis can be inserted by quoting it.

5.3 Arithmetic Built-ins

The M4 provides three built-in functions for doing arithmetic on integers
(only). The simplest is incr which increments its numeric argument by 1.
The built-in decr decrements by 1. Thus to handle the common
programming situation where a variable is to be defined as “one more than
N”, use the following:

Sys5 UNIX 5-9

CHAPTER 5 MACROS

define(N, 100)
define(N1, ‘incr(N)’)

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called eval which is
capable of arbitrary arithmetic on integers. The operators in decreasing
order of precedence are

unary + and —

** or " (exponentiation)

* |/ % (modulus)

== < <= > >=
! (not)

& or && (logical and)
loril (logical or).

I+

Parentheses may be used to group operations where needed. All the
operands of an expression given to eval must ultimately be numeric. The
numeric value of a true relation (like 1>0) is 1 and false is 0. The precision
in eval is 32 bits under the UNIX operating system.

As a simple example, define M to be “2==N+1" using eval as follows:

define(N, 3)
define(M, ‘eval(2==N+1)’)

The defining text for a macro should be quoted unless the text is very
simple. Quoting the defining text usually gives the desired result and is a
good habit to get into.

5.4 File Manipulation

A new file can be included in the input at any time by the built-in function
include. For example,

include(filename)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. The value of include
(include’'s replacement text) is the contents of the file. If needed, the
contents can be captured in definitions, etc.

A fatal error occurs if the file named in include cannot be accessed. To get
some control over this situation, the alternate form sinclude can be used.
The built-in sinclude (silent include) says nothing and continues if the file

5-10 ' Sys5 UNIX

MACROS CHAPTER 5

named cannot be accessed.

The output of M4 can be diverted to temporary files during processing, and
the collected material can be output upon command. The M4 maintains
nine of these diversions, numbered 1 through 9. If the built-in macro

divert(n)

is used, all subsequent output is put onto the end of a temporary file
referred to as n. Diverting to this file is stopped by the divert or divert(0)
command which resumes the normal output process.

Diverted text is normally output all at once at the end of processing with the
diversions output in numerical order. Diversions can be brought back at any
time by appending the new diversion to the current diversion. Output
diverted to a stream other than 0 through 9 is discarded. The built-in
undivert brings back all diversions in numerical order. The built-in undivert
with arguments brings back the selected diversions in the order given. The
act of undiverting discards the diverted text (as does diverting) into a
diversion whose number is not between 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore, the diverted
material is not rescanned for macros. The built-in divhum returns the
number of the currently active diversion. The current output stream is zero
during normal processing.

5.5 System Command

Any program in the local operating system can be run by using the syscmd
built-in. For example,

syscmd(date)

on the UNIX system runs the date command. Normally, syscmd would be
used to create a file for a subsequent include. To facilitate making unique
file names, the built-in maketemp is provided with specifications identical to
the system function mktemp. The maketemp macro fills in a string of
XXXXX in the argument with the process id of the current process.

5.6 Conditionals

Arbitrary conditional testing is performed via built-in ifelse. In the simplest
form

ifelse(a, b, ¢, d)

compares the two strings a and b. If a and b are identical, ifelse returns
the string c. Otherwise, string d is returned. Thus, a macro called compare

Sys5 UNIX 5-11

CHAPTER 5 - MACROS

can be defined as one which compares two strings and returns “yes” or
“no” if they are the same or different as follows:

define(compare, ‘ifelse($1, $2, yes, no)’)

Note the quotes which prevents evaluation of ifelse occurring too early. If
the fourth argument is missing, it is treated as empty.

The built-in ifelse can actually have any number of arguments and provides
a limited form of multiway decision capability. In the input

ifelse(a, b, ¢, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the
same as e, the result is f. Otherwise, the result is g. If the final argument is
omitted, the result is null, so

ifelse(a, b, ¢)

is ¢ if @a matches b, and null otherwise.
5.7 String Manipulation

The built-in len returns the length of the string (number of characters) that
makes up its argument. Thus:

len(abcdef)

is 6, and len({(a,b)) is 5.

The built-in substr can be used to produce substrings of strings. Using
input, substr(s, i, n) returns the substring of s that starts at the ith position
(origin zero) and is n characters long. If n is omitted, the rest of the string is
returned. Inputting

substr(‘'now is the time’,1)

returns the following string:

ow is the time.

If i or n are out of range, various actions occur.

The built-in index(s1, s2) returns the index (position) in s7 where the string
s2 occurs or —1 if it does not occur. As with substr, the origin for strings is
0.

5-12 Sys5 UNIX

MACROS CHAPTER 5

The built-in translit performs character transliteration and has the general
form

translit(s, f, t)

which modifies s by replacing any character found in f by the corresponding
character of t. Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f,
characters that do not have an entry in t are deleted. As a limiting case, if t
is not present at all, characters from f are deleted from s. So

translit(s, aeiou)

would delete vowels from s.

There is also a built-in called dnl that deletes all characters that follow it up
to and including the next new line. The dnl macro is useful mainly for
throwing away empty lines that otherwise tend to clutter up M4 output.
Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of the definition.
So the new line is copied into the output where it may not be wanted. If the
built-in dnl is added to each of these lines, the newlines will disappear.
Another method of achieving the same resuilts is to input

divert(—1)
define(...)
divert.

5.8 Printing

The built-in errprint writes its arguments out on the standard error file. An
example would be

errprint(‘fatal error’)

The built-in dumpdef is a debugging aid that dumps the current names and
definitions of items named as arguments. If no arguments are given, all
current names and definitions are printed (don't forget to quote names).

Sys5 UNIX 5-13

AWK CHAPTER 6

6. AWK

The awk is a file-processing programming language designed to make many
common information and retrieval text manipulation tasks easy to state and
perform. The awk:

o Generates reports

e Matches patterns

e Validates data

¢ Filters data for transmission.
6.1 Program Structure

The awk program is a sequence of statements of the form

pattern {action}
pattern {action}

The awk program is run on a set of input files. The basic operation of awk is
to scan a set of input lines, in order, one at a time. In each line, awk
searches for the pattern described in the awk program, then if that pattern is
found in the input line, a corresponding action is performed. In this way,
each statement of the awk program is executed for a given input line. When
all the patterns are tested, the next input line is fetched; and the awk
program is once again executed from the beginning.

In the awk command, either the pattern or the action is omitted, but not
both. If there is no action for a pattern, the matching line is simply printed. If
there is no pattern for an action, then the action is performed for every input
line. The null awk program does nothing. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from
patterns.

For example, this awk program
i {print}

prints every input line that has an "x" in it.

An awk program has the following structure:

Sys5 UNIX 6-1

CHAPTER 6 AWK

— a <BEGIN> section
— a <record> or main section
— an <END> section.

The <BEGIN> section is run before any input lines are read, and the
<END> section is run after all the data files are processed. The <record>
section is data driven. That is, it is the section that is run over and over for
each separate line of input.

Values are assigned to variables from the awk command line. The
<BEGIN> section is run before these assignments are made.

The words "BEGIN" and "END" are actually patterns recognized by awk.
These are discussed further in the pattern section of this guide.

6.2 Lexical Conventions

All awk programs are made up of lexical units called tokens. In awk there
are eight token types:

numeric constants
string constants
keywords

identifiers

record and file tokens

1

2

3

4

5. operators
6

7. comments
8

separators.

6.2.1 Numeric Constants

A numeric constant is either a decimal constant or a floating constant. A
decimal constant is a nonnull sequence of digits containing at most one
decimal point as in 12, 12., 1.2, and .12. A floating constant is a decimal
constant followed by e or E followed by an optional ~ or — sign followed by
a nonnull sequence of digits as in 12e3, 1.2e3, 1.2e—3, and 1.2E+3. The
maximum size and precision of a numeric constant are machine dependent.

6.2.2 String Constants

A string constant is a sequence of zero or more characters surrounded by

double quotes as in “," "a", "ab", and "12". A double quote is put in a string
by proceeding it with \ as in "He said, \ Sit! \"". A newline is put in a string by

6-2 Sys5 UNIX

AWK CHAPTER 6

using \n in its place. No other characters need to be escaped. Strings can
be (almost) any length.

6.2.3 Keywords

Strings used as keywords are shown in Figure 6-1.

Keywords

begin break length
end close log
FILENAME | continue | next
FS close number
NF exit print
NR exp printf
OFS for split
ORS getline sprintf
OFMT if sqrt
RS in string

index substr

int while

Figure 6-1. Strings Used as Keywords
6.2.4 Identifiers

Identifiers in awk serve to denote variables and arrays. An identifier is a
sequence of letters, digits, and underscores, beginning with a letter or an
underscore Uppercase and lowercase letters are different.

6.2.5 Operators

The awk has assignment, arithmetic, relational, and logical operators similar
to those in the C programming language and regular expression pattern
matching operators similar to those in the UNIX operating system program
egrep and lex.

Sys5 UNIX 6-3

CHAPTER 6

Assignment operators are shown in Figure 6-2.

AWK

Assignment Operators

Symbol Usage Description
= assignment
+= plus-equals X + =Y is similar
toX = X+Y
-= minus-equals | X-=Y is similar
to X = X-Y
*= times-equals | X *= Y is similar
to X = X*Y
/= divide-equals | X = Y is similar
to X = X/Y
%= mod-equals X %= Y is similar
to X = X%Y
++ prefix and ++ X and FBX+ + are similar
postfix to X=X+1
increments
- prefix and — and X similar
postfix toX=X-1
decrements

Figure 6-2. Symbols and Descriptions for Assignment Operators

Sys5 UNIX

AWK CHAPTER 6

Arithmetic operators are shown in Figure 6-3.

Arithmetic Operators

Symbol Description
.R

+ unary binary plus

- unary and binary minus
* multiplication

/ division

% modulus

(--) grouping

Figure 6-3. Symbols and Descriptions for Arithmetic Operators

Relational operators are shown in Figure 6-4.

Relational Operators

Symbol Description

less than

less than or equal to
equal to

not equal to

greater than or equal to
greater than

=0A A
Il [t

V Vv

Figure 6-4. Symbols and Descriptions for Relational Operators

Sys5 UNIX 6-5

CHAPTER 6

Logical operators are shown in Figure 6-5.

Logical Operators

Symbol | Description
&& and

L or

! not

AWK

Figure 6-5. Symbols and Descriptions for Logical Operators

Regular expression matching operators are shown in the Figure 6-6.

6-6

Regular Expression Pattern Matching Operators

Symbol

Description

matches
does not match

Figure 6-6. Symbols and Descriptions for Regular Expression Pattern

Sys5 UNIX

AWK CHAPTER 6

6.2.6 Record and Field Tokens

The $0 is a special variable whose value is that of the current input record.
The $1, $2... are special variables whose values are those of the first field,
the second field , . . . , respectively, of the current input record. The
keyword NF (Number of Fields) is a special variable whose value is the
number of fields in the current input records. Thus $NF has, as its value,
the value of the last field of the current input records. Notice that the field of
each record is numbered 1 and that the number of fields can vary from
record to record. None of these variables is defined in the action associated
with a BEGIN or END pattern, where there is no current input record.

The keyword NR (Number of Records) is a variable whose value is the
number of input records read so far. The first input record read is 1.

6.2.7 Record Separators

The keyword RS (Record Separators) is a variable whose value is the
current record separator. The value of RS is initially set to newline,
indicating that adjacent input records are separated by a newline. Keyword
RS is changed to any character ¢ by including the assignment statement RS
= "¢"in an action.

6.2.8 Field Separator

The keyword FS (Field Separator) is a variable indicating the current field
separator. Initially, the value of FS is a blank, indicating that fields are
separated by white space, i.e., any nonnull sequence of blanks and tabs.
Keyword FS is changed to any single character ¢ by including the
assignment statement F = "“¢” in an action or by using the optional
command line argument —Fc. Two values of ¢ have special meaning, space
and t. The assignment statement FS = " " makes white space in field
separator; and on the command line, —Ft makes tab the field separator.

If the field operator is not a blank, then there is a field in the record on each
side of the separator. For instance, if the field separator is 1, the record
1XXX1 has three fields. The first and last are null. If the field separator is
blank, then fields are separated by white space, and none of the NF fields
are null.

6.2.9 Multiline Records

The assignment RS = " " makes an empty line the record separator and
makes a nonnull sequence (consisting of blanks, tabs, and possibly a
newline) the field separator. With this setting, none of the first NF fields of
any record are null.

Sys5 UNIX 6-7

CHAPTER 6 AWK

6.2.10 Output Record and Field Separators

The value of OFS (Output Field Separator) is the output field separator. It is
put between fields by print. The value of ORS (Output Record Separators) is
put after each record by print. Initially , ORS is set to a newline and OFS to
a space. These values may change to any string by assignments such as
ORS = "abc" and OFS = "xyz".

6.2.11 Comments

A comment is introduced by a # and terminated by a newline. For example:
part of the line is a comment

A comment can be appended to the end of any line of an awk program.
6.2.12 Separators and Brackets

Tokens in awk are usually separated by nonnull sequences of blank, tabs,
and newlines, or by other punctuation symbols such as commas and
semicolons. Braces {...} surround actions, slashes /.../ surround regular
expression patterns, and double quotes "..." surround strings.

6.3 Primary Expressions

In awk, patterns and actions are made up of expressions. The basic
building blocks of expressions are the primary expressions:

numeric constants
string constant
var

function

Each expression has both a numeric and a string value, one of which is
usually preferred. The rules for determining the preferred value of an
expression are explained below.

6.3.1 Numeric Constants

The format of a numeric constant was defined previously in LEXICAL
CONVENTIONS. Numeric values are stored as floating point numbers.
Both the numeric and string value of a numeric constant is the decimal
number represented by the constant. The preferred value is the numeric
value.

6-8 Sys5 UNIX

AWK CHAPTER 6

Numeric values for string constants are in Figure 6-7.

Numeric Constants

Numeric | Numeric | String
Constant | Value Value

0
1 1 1
.5 0.5 .5
.5e2 50 50

Figure 6-7. Numeric Values for String Constants
6.3.2 String Constants

The format of a string constant was defined previously in LEXICAL
CONVENTIONS. The numeric value of a string constant is 0 unless the
string is a numeric constant enclosed in double quotes. In this case, the
numeric value is the number represented. The preferred value of a string
constant is its string value. The string value of a string constant is always
the string itself.

String values for string constants are in Figure 6-8.

String Constants
String Numeric String
Constant | Value Value
0 empty space
“a" 0 a
"XYz" 0 Xyz
‘0" 0 0
" 1 1
".5" 0.5 .5
".5e2" 0.5 .5e2a

Figure 6-8. String Values for String Constants

Sys5 UNIX 6-9

CHAPTER 6 AWK

6.3.3 Vars
A var is one of the following:

identifier
identifier{expression}
$term

The numeric value of any uninitialized var is 0, and the string value is the
empty string.

An identifier by itself is a simple variable. A var of the form identifier
{expression} represents an element of an associative array named by
identifier. The string value of expression is used as the index into the array.
The preferred value of identifier or identifier {expression} is determined by
context.

The var $0 refers to the current input record. Its string and numeric values
are those of the current input record. If the current input record represents a
number, then the numeric value of $0 is the number and the string value is
the literal string. The preferred value of $0 is string unless the current input
record is a number. The $0 cannot be changed by assignment.

The var $1, $2, . . . refer to fields 1, 2, . . . of the current input record. The
string and numeric value of $i for 1<=i<=NF are those of the ith field of
the current input record. As with $0, if the ith field represents a number, then
the numeric value of $i is the number and the string value is the literal
string. The preferred value of $i is string unless the ith field is a number. The
$i is changed by assignment. The $0 is then changed accordingly.

In general, $term refers to the input record if term has the numeric value 0
and to field i if the greatest integer in the numeric value of term is i. If i<0
or if i>>=100, then accessing $i causes awk to produce an error diagnostic.
If NF<i<=100, then $i behaves like an uninitialized var. Accessing $i for i
> NF does not change the value of NF.

6.3.4 Function

The awk has a number of built-in functions that perform common arithmetic
and string operations.

6-10 Sys5 UNIX

AWK CHAPTER 6

(= The arithmetic functions are in Figure 6-9.

Functions

exp (expression)
int (expression)
log (expression)
sqrt (expression)

Figure 6-9. Built-in Functions for Arithmetic and String Operations

These functions (exp, int, log, and sqrt) compute the exponential, integer
part, natural logarithm, and square root, respectively, of the numeric value of
expression. The (expression) may be omitted; then the function is applied
to $0. The preferred value of an arithmetic function is numeric.

String functions are shown in Figure 6-10.

String Functions

substr

getline
index (expression1, expression2)
length | (expression)
split (expression, identifier, expression2)
split (expression, identifier)
sprintf | (format, expression1, expression2...)
substr | (expressioni, expression2)
(

expression1, expression2, expression3d)

Figure 6-10. Expressions for String Functions

The function getline causes the next input record to replace the current
record. It returns 1 if there is a next input record or a 0 if there is no next
input record. The value of NR is updated.

The function index (e1,e2) takes the string value of expressions e1 and e2
and returns the first position of where €2 occurs as a substring in e1. If e2
does not occur in e1, index returns 0. For example, index ("abc", “bc")=2
and index ("abc", "ac"”)=0.

Sys5 UNIX 6-11

CHAPTER 6 AWK

The function length without an argument returns the number of characters in
the current input record. With an expression argument, length (e) returns the .
number of characters in the string value of e. For example, length
("abc”)=3 and length (17)=2.

The function split (e array, sep) splits the string value of expression e into
fields that are then stored in array [1], array [2],..., array [n] using the string
value of sep as the field separator. Split returns the number of fields found
in e. The function split (e, array) uses the current value of FS to indicate
the field separator. For example, after invoking n = split ($0), a[l], a[2,...,
a[n] is the same sequence of values as $I, $2 . . ., $NF.

The function splitf (f, e1, e2 . . .) produces the value of expressions el, e2 .
. . in the format specified by the string value of the expression f. The format
control conventions are those of the printf statement in the C programming
language [KR].

The function substr (string, pos) returns the suffix of string starting at
position pos. The function substr (string, pos, length) returns the substring
of string that begins at position pos and is length characters long. If pos +
length is greater than the length of string then substr (string, pos, length) is
equivalent to substr (string, pos). For example, substr ("abc”, 2, 1) = "b",
substr ("abc”, 2, 2) = "be", and subtr ("abc”, 2, 3) = "bc”. Positions less
than 1 are taken as 1. A negative or zero length produces a null result.

The preferred value of sprintf and substr is string. The preferred value of the
remaining string functions is numeric.

6.4 Terms

Various arithmetic operators are applied to primary expressions to produce
larger syntactic units called terms. All arithmetic is done in floating point. A
term has one of the following forms:

primary expression
term binop term
unop term
incremented var
(term)

6.4.1 Binary Terms
In a term of the form

term1
binop
term2

*

binop can be one of the five binary arithmetic operators +, -, (
(multiplication), /(division), % (modulus). The binary operator is applied to - -

6-12 Sys5 UNIX

AWK CHAPTER 6

the numeric value of the operand term? and term2, and the result is the
usual numeric value. This numeric value is the preferred value, but it can be
interpreted as a string value (see Numeric Constants). The operators *, /,
and % have higher precedence than + and —. All operators are left
associative.

6.4.2 Unary Term
In a term of the form
unop term

unop can be unary + or —. The unary operator is applied to the numeric
value of term, and the result is the usual numeric value which is preferred.
However, it can be interpreted as a string value. Unary + and — have
higher precedence than *, /, and %

6.4.3 Incremented Vars

An incremented var has one of the forms

+ + var
- — var
var + +
var — —
The + + var has the value var + 7 and has the effect of var = var + 1.
Similarly, — — var has the value var — 7 and has the effect of var = var —
1. Therefore, var + + has the same value as var and has the effect of var
= var + 1. Similarly, var — — has the same value as var and has the effect

of var = var — 1. The preferred value of an incremented var is numeric.
6.4.4 Parenthesized Terms

Parentheses are used to group terms in the usual manner.

6.5 Expressions

An awk expression is one of the following:

term
term term ...
var asgnop expression

6.5.1 Concatenation of Terms

In an expression of the form term1 term2 ..., the string value of the terms
are concatenated. The preferred value of the resulting expression is a string
value that can be interpreted as a numeric value. Concatenation of terms
has lower precedence than binary + and — For example, 1+2 3=4 has the
string (and numeric) value 37.

Sys5 UNIX 6-13

CHAPTER 6 AWK

6.5.2 Assignment Expressions

An assignment expression is one of the forms

var asgnop expression

where asgnop is one of the six assignment operators:

I+
i

*»

%=
The preferred value of var is the same as that of expression.

In an expression of the form

var = 'expression

the numeric and string value of var becomes those of expression.
var op = expression

is equivalent to

var = var op expression

where op is one of; +, —, *, /, %. The asgnops are right associative and
have the lowest precedence of any operator. Thus, a += b "= c-2 is
equivalent to the sequence of assignments

b=Db"(0-2)
a=a+2
6.6 Using awk

There are two ways in which to present your awk program of pattern-action
statements to awk for processing:

1. If the program is short (a line or two), it is often easiest to make the
program the first argument on the command line:

awk ' program ' files

where “files” is an optional list of input files and "program" is your awk
program. Note that there are single quotes around the program in
order for the shell to accept the entire string (program) as the first
argument to awk. For example, write to the shell

awk ' /x/ {print } ' files
to run the awk script /x/ {print} on the input file "files". If no input files
6-14 Sys5 UNIX

AWK CHAPTER 6

are specified, awk takes input from the standard input stdin. You can
also specify that input comes from stdin by using "-" (the hyphen) as
one of the files. The pattern-action statement

awk ‘program’ files -

looks for input from “files" and from stdin and processes first from
"files” and then from stdin.

2. Alternately, if your awk program is long, it is more convenient to put
the program in a separate file, awkprog, and tell awk to fetch it from
there. This is done by using the "—f" option after the awk command
as follows:

awk —f awkprog files

where "files” is an optional list of input files that may include stdin as
is indicated by a hyphen (-).

For example:
awk ' BEGIN {
print "hello, world"
exit
1
!
prints

hello, world

on the standard output when given to the shell. Recall that the word
"BEGIN" is a special pattern indicating that the action following in braces is
run before any data is read. Words "print" and "exit" are both discussed in
later sections.

This awk program could be run by putting

BEGIN {
print "hello, world"
exit
h

in a file named awkprog , and then the command
awk —f awkprog

given to the shell. This would have the same effect as the first procedure.

Sys5 UNIX 6-15

CHAPTER 6 AWK

6.7 Input: Records and Files

The awk reads its input one record at a time unless changed by you. A
record is a sequence of characters from the input ending with a newline
character or with an end of file. Thus, a record is a line of input. The awk
program reads in characters until it encounters a newline or end of file. The
string of characters, thus read, is assigned to the variable $0. You can
change the character that indicates the end of a record by assigning a new
character to the special variable RS (the record separator). Assignment of
values to variables and these special variables such as RS are discussed
later.

Once awk has read in a record, it then spiits the record into “fields". A field
is a string of characters separated by blanks or tabs, unless you specify
otherwise. You may change field separators from blanks or tabs to whatever
characters you choose in the same way that record separators are changed.
That is, the special variable FS is assigned a different value.

As an example, let us suppose that the file "countries” contains the area in
thousands of square miles, the population in millions, and the continent for
the ten largest countries in the world. (Figures are from 1978; Russia is
placed in Asia.)

Sample Input File "countries":

Russia 8650 262 Asia
Canada 3852 24 North America

China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia

India 1269 637 Asia

Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide spaces are tabs in the original input and a single blank separates
North and South from America. We use this data as the input for many of
the awk programs in this guide since it is typical of the type of material that
awk is best at processing (a mixture of words and numbers separated into
fields or columns separated by blanks and tabs).

Each of these lines has either four or five fields if blanks and/or tabs
separate the fields. This is what awk assumes unless told otherwise. In the
above example, the first record is

6-16 Sys5 UNIX

AWK CHAPTER 6
Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable $0. If you
want to refer to this entire record, it is done through the variable, $0.

For example, the following input:
{print $0}

prints the entire record. Fields within a record are assigned to the variables
$1, $2, $3, and so forth; that is, the first field of the present record is
referred to as $1 by the awk program. The second field of the present
record is referred to as $2 by the awk program. The ith field of the present
record is referred to as $i by the awk program. Thus, in the above example
of the file countries, in the first record;

$1 is equal to the string "Russia”
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string "Asia”
$5 is equal to the null string

... and so forth.

To print the continent, followed by the name of the country, followed by its
population, use the following awk script:

{print $4, $1, $3}

Note that awk does not require type declarations.
6.8 Input: From the Command Line

It is possible to assign values to variables from within an awk program.
Because you do not declare types of variables, a variable is created simply
by referring to it. An example of assigning a value to a variable is:

X=5
This statement in an awk program assigns the value 5 to the variable x. It is
also possible to assign values to variables from the command line. This

provides another way to supply input values to awk programs.

Sys5 UNIX 6-17

CHAPTER 6 AWK

For example
awk '{print x }' x=5 —

will print the value 5 on the standard output. The minus sign at the end of
this command is necessary to indicate that input is coming from stdin
instead of a file called "x=>5". Similarly if the input comes from a file named
“file", the command is

awk {print x}' file

It is not possible to assign values to variables used in the BEGIN section in
this way.

If it is necessary to change the record separator and the field separator, it is
useful to do so from the command line as in the following example:

awk —f awk.program RS=":"file
Here, the record separator is changed to the character ":". This causes your
program in the file "awk.program" to run with records separated by the colon
instead of the newline character and with input coming from the file, "file". It
is similarly useful to change the field separator from the command line.

This operation is so common that there is yet another way to change the
field separator from the command line. There is a separate option "—Fx"
that is placed directly after the command awk. This changes the field
separator from blank or tab to the character "x".

For example
awk -F: —f awk.program file

changes the field separator FS to the character ":". Note that if the field
separator is specifically set to a tab, (that is, with the —F option or by
making a direct assignment to FS) then blanks are recognized by awk as
separating fields. However, even if the field separator is specifically set to a
blank, tabs are STILL recognized by awk as separating fields.

An exercise:

Using the input file ("countries" described earlier) write an awk script that
prints the name of a country followed by the continent that it is on. Do this in
such a way that continents composed of two words (e. g., North America)
are processed as only one field and not two.

6-18 Sys5 UNIX

AWK CHAPTER 6

6.9 Output: Printing

An action may have no pattern; in this case, the action is executed for all
lines as in the simple printing program

{print}

This is one of the simplest actions performed by awk. It prints each line of
the input to the output. More useful is to print one or more fields from each
line. For instance, using the file "countries", that was used earlier,

awk { print $1, $3 }' countries

prints the name of the country and the population:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

Note that the use of a semicolon at the end of statements in awk programs
is optional. Awk accepts

{print $1 }

and

{print $1; }
equally and takes them to mean the same thing. If you want to put two awk
statements on the same line of an awk script, the semicolon is necessary.
For example, the following semicolon is necessary if you want the number 5
printed:

{x=5; print x }

Parentheses are also optional with the print statement.

Sys5 UNIX 6-19

CHAPTER 6 AWK

print $3, $2
is the same as
print ($3, $2)

ltems separated by a comma in a print statement are separated by the
current output field separators (normally spaces, even though the input is
separated by tabs) when printed. The OFS is another special variable that
can be changed by you. These special variables are summarized in a later
section.

An exercise:

Using the input file, "countries”, print the continent followed by the country
followed by the population for each input record. Then pipe the output to the
UNIX operating system command "sort" so that all countries from a given
continent are printed together.

Print also prints strings directly from your programs with the awk script
{print "hello, world" }

from an earlier section.

An exercise:

Print a header to the output of the previous exercise that says "Population of
Largest Countries" followed by headers to the columns that follow describing
what is in that column, for example, Country or Population.

As we have already seen, awk makes available a number of special
variables with useful values, for example, FS and RS. We now introduce
another special variable in the next example. NR and NF are both integers
that contain the number of the present record and the number of fields in the
present record, respectively. Thus,

{print NR, NF, $0}

prints each record number and the number of fields in each record followed
by the record itself. Using this program on the file, "countries" yields:

6-20 Sys5 UNIX

AWK CHAPTER 6

1 4 Russia 8650 262 Asia
2 5 Canada 3852 24 North America

3 4 China 3692 866 Asia

4 5 USA 3615 219 North America
5 5 Brazil 3286 116 South America
6 4 Australia 2968 14 Australia

7 4 India 1269 637 Asia

8 5 Argentina 1072 26 South America
9 4 Sudan 968 19 Africa
10 4 Algeria 920 18 Africa

and the program
{print NR, $1 }

prints

1 Russia

2 Canada
3 China

4 USA

5 Brazil

6 Australia
7 India

8 Argentina
9 Sudan
10 Algeria

This is an easy way to supply sequence numbers to a list. Print, by itself,
prints the input record. Use

print "

to print the empty line.

Awk also provides the statement printf so that you can format output as
desired. Print uses the default format "%.6g" for each variable printed.

printf format, expr, expr, ...
formats the expressions in the list according to the specification in the string,
format, and prints them. The format statement is exactly that of the printf in
the C library. For example,

{ printf "%10s %6d0, $1, $2, $3 }

Sys5 UNIX 6-21

CHAPTER 6 AWK

prints $1 as a string of 10 characters (right justified). The second and third
fields (6-digit numbers) make a neatly columned table.

Russia 8650 262
Canada 3852 244

China 3692 866
USA 3615 219
Brazil 3286 116
Australia 2968 14

India 1269 637

Argentina 1072 26
Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced automatically.
You must add them as in this example. In the C library version of printf, the
various escape characters "\n", "t", "b" (backspace) and "\r" (carriage
return) are valid with the awk printf.

There is a third way that printing can occur on standard output when a
pattern is specified but there is no action to go with it. In this case, the entire
record $0 is printed. For example, the program

] X/

prints any record that contains the character "x".

There are two special variables that go with printing, OFS and ORS. These
are by default set to blank and the newline character, respectively. The
variable OFS is printed on the standard output when a comma occurs in a
print statement such as

{ x="hello"; y="world"
print x,y

1

f

which prints
hello world

However, without the comma in the print statement as

6-22 Sys5 UNIX

P

AWK CHAPTER 6

{ x="hello"; y="world"
print x y
}

you get
helloworld

To get a comma on the output, you can either insert it in the print statement
as in this case

{ x="hello"; y="world"
print x"," y

}

or you can change OFS in a BEGIN section as in

BEGIN {OFS=", "}
{ x="hello"; y="world"
print x, y

}

both of these last two scripts yields
hello, world

Note that the output field separator is not used when $0 is printed.
6.10 Outout: To Different Files

The UNIX operating system shell allows you to redirect standard output to a
file. The awk program also lets you direct output to many different files from
within your awk program. For example, with our input file "countries”, we
want to print all the data from countries of Asia in a file called "ASIA", all the
data from countries in Africa in a file called "AFRICA", and so forth. This is
done with the following awk program:

Sys5 UNIX 6-23

CHAPTER 6 AWK

{if ($4 == "Asia") print > "ASIA"
if (34 == "Europe") print > "EUROPE"
if ($4 == "North") print -> "NORTH_AMERICA"
if ($4 == "South") print > "SOUTH_AMERICA"
if ($4 == "Australia”) print > "AUSTRALIA"
if ($4 == "Africa”) print > "AFRICA"

}

The flow of control statements (for example, "if") are discussed later.
In general, you may direct output into a file after a print or a printf statement
by using a statement of the form

print > "FILE"
where FILE is the name of the file receiving the data, and the print
statement may have any legal arguments to it.

Notice that the file names are quoted. Without quotes, the file names are
treated as uninitialized variables and all output then goes to the same file.

if > is replaced by >>, output is appended to the file rather than
overwriting it.

Users should also note that there is an upper limit to the number of files that
are written in this way. At present it is ten.

6.11 Output: To Pipes

It is also possible to direct printing into a pipe instead of a file. For example,

if ($2 == "XX") print | "mail mary"

[——

where "mary" is someone’s login name, any record is sent (with the second
field equal to "XX") to the user, mary, as mail. Awk waits until the entire
program is run before it executes the command that was piped to, in this
case the "mail" command.

For example:
{
print $1 | "sort"

h

takes the first field of each input record, sorts these fields, and then prints
6-24 Sys5 UNIX

AWK CHAPTER 6

them. The command in parentheses is any UNIX operating system
command.

An exercise:
Write an awk script that uses the input file to
e List countries that were used previously
o Print the name of the countries
e Print the population of each country
o Sort the data so that countries with the largest population appear first
o Mail the resulting list to yourself.
Another example of using a pipe for output is the following idiom which
guarantees that its output always goes to your terminal:

print ... | "cat —u > /dev/tty"

Only one output statement to a pipe is permitted in an awk program. In all
output statements involving redirection of output, the files or pipes are
identified by their names but they are created and opened only once in the
entire run.

6.12 Comments

Comments are placed in awk programs; they begin with the character # and
end with the end of the line as in

print x, Y # this is a comment
6.13 Patterns

A pattern in front of an action acts as a selector that determines if the action
is to be executed. A variety of expressions are used as patterns:

e Regular expressions
e Arithmetic relational expressions
e String valued expressions
o Combinations of these.
6.13.1 BEGIN and END

The special pattern, BEGIN, matches the beginning of the input before the
first record is read. The pattern, END, matches the end of the input after the
last line is processed. BEGIN and END thus provide a way to gain control

Sys5 UNIX 6-25

CHAPTER 6 AWK

before and after processing for initialization and wrapping up. 7
An example: p—

As you have seen, you can use BEGIN to put column headings on the
output

BEGIN {print "Country", "Area", "Population”, "Continent"}
{print}

which produces

Country Area Population Continent

Russia 8650 262 Asia

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazii 3286 116 South America
Australia 2968 14 Australia

India 1269 637 Asia

Argentina 1072 26South America
Sudan 968 19 Africa

Algeria 920 18 Africa TN

Formatting is not very good here; printf would do a better job and is usually
mandatory if you really care about appearance.

Recall also, that the BEGIN section is a good place to change special
variables such as FS or RS.

Example:

BEGIN { FS="
print "Countries", "Area", "Population”, "Continent"”

}
{print}
END {print "The number of records is", NR}

In this program, FS is set to a tab in the BEGIN section and as a result all
records (in the file countries) have exactly four fields.

Note that if BEGIN is present it is the first pattern; END is the last if it is
used.

6-26 Sys5 UNIX

AWK CHAPTER 6

6.13.2 Relational Expressions

An awk pattern is any expression involving comparisons between strings of
characters or numbers. For example, if you want to print only countries with
more than 100 million population, use

$3 >100

This tiny awk program is a pattern without an action so it prints each line
whose third field is greater than 100 as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
India 1269 637 Asia

To print the names of the countries that are in Asia, type
$4 == "Asia" {print $1}
which produces

Russia
China
India

The conditions tested are <<, <=, ==, |=, >=, and >. In such relational
tests if both operands are numeric, a numerical comparison is made.
Otherwise, the operands are compared as strings. Thus,

$1 >="8"
selects lines that begin with S, T, U, and so forth which in this case is

USA 3615 219 North America
Sudan 968 19 Africa

In the absence of other information, fields are treated as strings, so the

Sys5 UNIX 6-27

CHAPTER 6 AWK

program '

compares the first and fourth fields as strings of characters and prints the
single line

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done numerically.
6.13.3 Regular Expressions

Awk provides more powerful capabilities for searching for strings of
characters than were illustrated in the previous section. These are regular
expressions. The simplest regular expression is a literal string of characters
enclosed in slashes.

/Asia/
This is a complete awk program that prints all lines which contain any
occurrence of the name "Asia". If a line contains "Asia" as part of a larger

word like "Asiatic”, it is also printed (but there are no such words in the
countries file.)

Awk regular expressions include
e Regular expression forms found in the text editor
¢ ed and the pattern finder
e grep in which certain characters have special meanings.

For example, we could print all lines that begin with A with
I"A

or all lines that begin with A, B, or C with

/"[ABCY/

or all lines that end with "ia" with

6-28 Sys5 UNIX

AWK CHAPTER 6

lia$/

In general, the circumflex (°) indicates the beginning of a line. The dollar sign
($) indicates the end of the line and characters enclosed in brackets ,{},
match any one of the characters enclosed. In addition, awk allows
parentheses for grouping, the pipe () for alternatives, + for "one or more"
occurrences, and ? for “zero or one” occurrences. For example,

Ixy/ {print}

[

prints all records that contain either an "x" or a "y".

/ax+b/ {print}

prints all records that contain an "a" followed by one or more "x’s" followed
by a "b". For example, axb, Paxxxxxxxb, QaxxbR.

/ax?b/ {print}

prints all records that contain an "a" followed by zero or one "x" followed by
a "b". For example: ab, axb, yaxbPPP, CabD.

ke

The two characters "." and have the same meaning as they have in ed:
namely, "." can stand for any character and "' means zero or more
occurrences of the character preceding it. For example,

/a.b/

matches any record that contains an "a" followed by any character followed
by a "b". That is, the record must contain an "a" and a "b" separated by
exactly one character. For example, ‘a.b/ matches axb, aPb and
xxxxaXbxx, but NOT ab, axxb.

/ab*c/

matches a record that contains an "a" followed by zero or more "b"s
followed by a "c". For example, it matches

Sys5 UNIX 6-29

CHAPTER 6 AWK

ac
abc
pgrabbbbbbbbbbc901

Just as in ed, it is possible to turn off the special meaning of these
metacharacters such as """ and ™" by preceding these characters with a
backslash. An example of this is the pattern

1.1

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regular expression
(or does not match it) by using the operators or . For example, with the
input file countries as before, the program

$1 /ia%/ {print $1}

prints all countries whose name ends in "ia":

Russia
Australia
India
Algeria

that is indeed different from lines which end in "ia".
6.13.4 Combinations of Patterns

A pattern is made up of similar patterns combined with the operators | (OR),
&& (AND), ! (NQOT), and parentheses. For example,

$2 >= 3000 && $3 >=100
selects lines where both area AND population are large. For example,

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America

while

6-30 Sys5 UNIX

AWK CHAPTER 6

$4 == "Asia"|$4 == "Africa”

selects lines with Asia or Africa as the fourth field. An alternate way to write
this last expression is with a regular expression:

$1 /" (AsialAfrica))$/

&& and | guarantee that their operands are evaluated from left to right;
evaluation stops as soon as truth or falsehood is determined.

6.13.5 Pattern Ranges

The "pattern” that selects an action may also consist of two patterns
separated by a comma as in

patterni, pattern2 {...}

In this case, the action is performed for each line between an occurrence of
pattern1 and the next occurrence of pattern2 (inclusive). As an example with
no action

/Canada;,:Brazil/

prints all lines between the one containing “Canada” and the line containing
"Brazil". For example,

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America
while

does the action for lines 2 through 5 of the input. Different types of patterns
are mixed as in

Sys5 UNIX 6-31

CHAPTER 6 AWK

/Canada/, $4 == "Africa”

and prints all lines from the first line containing "Canada” up to and including
the next record whose fourth field is "Africa".

Users should note that patterns in this form occur OUTSIDE of the action
parts of the awk programs (outside of the braces that define awk actions). If
you need to check patterns inside an awk action (inside the braces), use a
flow of control statement such as an "if" statement or a "while" statement.
Flow of control statements are discussed in the part "BUILT-IN
FUNCTIONS".

6.14 Actions

An awk action is a sequence of action statements separated by newlines or
semicolons. These action statements do a variety of bookkeeping and string
manipulating tasks.

6.14.1 Variables, Expressions, and Assignments

The awk provides the ability to do arithmetic and to store the results in
variables for later use in the program. However, variables can also store
strings of characters. You cannot do arithmetic on character strings, but you
can stick them together and pull them apart as shown. As an example,
consider printing the population density for each country in the file countries.

{print $1, (1000000 * $3)/($2 * 1000) }

(Recall that in this file the population is in milions and the area in
thousands.) The result is population density in people per square mile.

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is bad; so using printf instead gives the program

{printf "%10s %6.1f0, $1, (1000000 * $3)/($2 * 1000) }

6-32 Sys5 UNIX

(

AWK CHAPTER 6

and the output

Russia 30.3
Canada 6.2
China 234.6
USA 60.6
Brazil 35.3
Australia 4.7
India 502.0
Argentina 24.3
Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators are +.
—, ",/ and % (mod or remainder).

To compute the total population and number of countries from Asia, we
could write

/Asia/ {pop = pop + $3;n=n+ 1}
END {print "total population of ", n, "Asian countries is", pop }

which produces total population of three Asian countries is 1765.

Actually, no experienced programmer would write
{pop = pop + $3;n=n+ 1}

since both assignments are written more clearly and concisely. The better
way is

{pop += $3; ++n}

Indeed, these operators, ++, ——, —=, /=, =, + =, and %= are available
in awk as they are in C. Operator x + = y has the same effectas x = x ~ y
but + = is shorter and runs faster. The same is true of the + + operator; it
adds one to the value of a variable. The increment operators + + and — —
(as in C) is used as prefix or as postfix operators. These operators are also
used in expressions.

Sys5 UNIX 6-33

CHAPTER 6 AWK

6.14.2 Initialization of Variables

In the previous example, we did not initialize pop nor n; yet, everything
worked properly. This is because (by default) variables are initialized to the
null string which has a numerical value of 0. This eliminates the need for
most initialization of variables in BEGIN sections. We can use default
initialization to advantage in this program which finds the country with the
largest population.

maxpop < $3 {

maxpop = $3
country = $1
}

END {print country, maxpop}
which produces

China 866

6.14.3 Field Variables

Fields in awk share essentially all of the properties of variables. They are
used in arithmetic and string operations and may be assigned to and
initialized to the null string. Thus, divide the second field by 1000 to convert
the area to millions of square miles by

{ $2 /= 1000; print }
or process two fields into a third with

BEGIN {FS="
{$4 = 1000 ~ $3 / $2; print }

or assign strings to a field as in
/USA/ {$1 = "United States" ; print }

which replaces USA by United States and prints the effected line

6-34 Sys5 UNIX

N/

AWK CHAPTER 6

United States 3615 219 North America

Fields are accessed by expressions; thus, $NF is the last field and $(NF—1)
is the second to the last. Note that the parentheses are needed since
$NF -1 is 1 less than the values in the last field.

6.14.4 String Concatenation

Strings are concatenated by writing them one after the other as in the
following example:

{ x = "hello"
x = x ", world"
print x

}

prints the usual
hello, world

With input from the file "countries”, the following program:

N {s=s""%$1}
END { print s }

prints
Australia Argentina Algeria

Variables, string expressions, and numeric expressions may appear in
concatenations; the numeric expressions are treated as strings in this case.

6.14.5 Special Variables

Some variables in awk have special meanings. These are detailed here and
the complete list given.

NR Number of the current record.
NF Number of fields in the current record.
FS Input field separator, by default it is set to a blank or tab.

Sys5 UNIX 6-35

CHAPTER 6 AWK

RS " Input record separator, by default it is set to the newline
character.

$i The ith input field of the current record.

$0 The entire current input record.

OFS Output field separator, by default it is set to a blank.

ORS Output record separator, by default it is set to the newline
character.

OFMT The format for printing numbers, with the print statement,
by default is "%.6g".

FILENAME The name of the input file currently being read. This is
useful because awk commands are typically of the form

awk —f program file1 file2 file3 ...
6.14.6 Type
Variables (and fields) take on numeric or string values according to context.
For example, in
pop += $3
pop is presumably a number, while in
country = $1
country is a string. In
maxpop < $3
the type of maxpop depends on the data found in $3. It is determined when
the program is run.
In general, each variable and field is potentially a string or a number or both
at any time. When a variable is set by the assignment

= expr

its type is set to that of expr. (Assignment also includes +=, +-+, —=, and

6-36 Sys5 UNIX

AWK ' CHAPTER 6

so forth.) An arithmetic expression is of the type, "number”; a concatenation
of strings is of type “string". If the assignment is a simple copy as in

vl = v2

then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to strings if necessary and
the comparison is made on strings.

The type of any expression is coerced to numeric by subterfuges such as
expr + 0

and to string by

expr "

This last expression is string concatenated with the null string.

6.14.7 Arrays

As well as ordinary variables, awk provides 1-dimensional arrays. Array
elements are not declared; they spring into existence by being mentioned.
Subscripts may have any non-null value including non-numeric strings.

As an example of a conventional numeric subscript, the statement
x[NR] = $0

assigns the current input line to the NRth element of the array x. In fact, it is
possible in principle (though perhaps slow) to process the entire input in a
random order with the following awk program:

{ x[NR] = $0 }
END {... program ... }

The first line of this program records each input line into the array x. In
particular, the following program

Sys5 UNIX 6-37

CHAPTER 6 AWK

{xINR] = $1}
(when run on the file countries) produces an array of elements with

x[1] = "Russia"
x[2] = "Canada”
x[3] = "China"
. and so forth.

Arrays are also indexed by non-numeric values that give awk a capability
rather like the associative memory of Snobol tables. For example, we can
write

/Asia/ {pop[“Asia”] += $3}
/Africa/{pop[Africa] + = $3 }
END print "Asia=" pop["Asia"}], "Africa="pop["Africa"] }

which produces
Asia=1765 Africa=37 N

Notice the concatenation. Also, any expression can be used as a subscript
in an array reference. Thus,

area[$1] = $2

uses the first field of a line (as a string) to index the array area.
6.15 Built-In Functions
The function-

length

is provided by awk to compute the length of a string of characters. The
following program prints each record preceded by its length:

{print length, $0 }

In this case (the variable) length means length($0), the length of the present N

6-38 Sys5 UNIX

AWK CHAPTER 6

record. In general, length(x) will return the length of x as a string.

Example:

With input from the file countries, the following awk program will print the
longest country name:

length($1) > max {max = length($1); name = $1}
END {print name}

The function
split

split (s, array) assigns the fields of the string "s" to successive elements of
the array, "array".

For example;
split("Now is the time", w)

assigns the value "Now" to w[1], "is" to w[2], "the" to w[3] and "time" to w[4].
All other elements of the array w(], if any, are set to the null string. It is
possible to have a character other than a blank as the separator for the
elements of w. For this, use split with three elements.

n = split(s, array, sep)

This splits the string s into array[1], ..., array[n]. The number of elements
found is returned as the value of split. If the sep argument is present, its
first character is used as the field separator; otherwise, FS is used. This is
useful if in the middle of an awk script, it is necessary to change the record
separator for one record.

Also provided by the awk are the

Math Functions

sqrn,
log,
exp
int,

They provide the square root function, the base e logarithm function,

Sys5 UNIX 6-39

CHAPTER 6 AWK

exponential and integral part functions. This last function returns the
greatest integer less than or equal to its argument. These functions are the
same as those of the C library (int corresponds to the libc floor function) and
so they have the same return on error as those in libc. (See Sys5 UNIX
Users Reference Manual.)

The subtract function
substr

substr(s,m,n) produces the substring of s that begins at position m and is at
most n characters long. If the third argument (n in this case) is omitted, the
substring goes to the end of s. For example, we could abbreviate the
country names in the file countries by

{ $1 = substr($1, 1, 3); print }
which produces

Rus 8650 262 Asia

Can 3852 24 North America
Chi 3692 866 Asia

USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia

Ind 1269 637 Asia

Arg 1072 26 South America
Sud 968 19 Africa

Alg 920 18 Africa

if s is a number, substr uses its printed image;
substr(123456789,3,4) =3456.

The function

index:

index (s1,s2) returns the leftmost position where the string s2 occurs in s1
or zero if s2 does not occur in s1.

The function

6-40 Sys5 UNIX

AWK CHAPTER 6

sprintf

formats expressions as the printf statement does but will assign the resulting
expression to a variable instead of sending the results to stdout. For
example,

x = sprintf("%10s %6d ", $1, $2)

sets x to the string produced by formatting the values of $1 and $2. The x is
then used in subsequent computations.
The function

getline

immediately reads the next input record. Fields NR and $0 are all set but
control is left at exactly the same spot in the awk program. Getline returns 0
for the end of file and a 1 for a normal record.

6.16 Flow of Control

The awk provides the basic flow of control statements
o if-else
o while/fR

o for

with statement grouping as in C language.

The if statement is used as follows:
if (condition) statement1 else statement2

The condition is evaluated; and if it is true, statementl is executed;
otherwise, statement2 is executed. The else part is optional. Several
statements enclosed in braces ({,}) are treated as a single statement.
Rewriting the maximum population computation from the pattern section with
an if statement results in

Sys5 UNIX 6-41

CHAPTER 6 AWK

{ if (maxpop < $3) {

maxpop= $3
country= $1
ool

END { print country, maxpop }
There is also a while statement in awk.
while (condition) statement

The condition is evaluated; if it is true, the statement is executed. The
condition is evaluated again, and if true, the statement is executed. The
cycle repeats as long as the condition is true. For example, the following
prints all input fields one per line:

{ i=1
while (i <= NF) {
pint $i
+ +i

}

Another example is the Euclidean algorithm for finding the greatest common
divisor of $1 and $2:

{printf "the greatest common divisor of " $1 "and ", $2, "is"
while ($1 1= $2) {
if (1 > $2) $1 = $1 - $2
else $2 = $2- %1

}
printf $1 "0

}

The for statement is like that of C.
for (expression1 ; condition ; expression2) statement

has the same effect as

6-42 Sys5 UNIX

AWK CHAPTER 6

expression1

while (condition) {
statement
expression2

}

SO

{ for (i=1;i<= NF;i++)
print $i

is another awk program that prints all input fields one per line.

This is an alternate form of the or statement that is suited for accessing the
elements of an associative array as is in awk.

for (i in array) statement

executes statement with the variable i set in turn to each subscript of array.
The subscripts are each accessed once but in random order. Chaos will
ensue if the variable i is altered or if any new elements are created within
the loop. For example, you could use the "for" statement to print the record
number followed by the record of all input records after the main program is
executed.

{ x[NR] = $0 }
END {for(iin x) { print i, x[i] }

A more practical example is the following use of strings to index arrays to
add the populations of countries by continents:

BEGIN {FS=""
{population[$4] =+ $3}
END {for(i in population)
print i, population(i]
1

In this program, the body of the for loop is executed for i equal to the string
"Asia”, then for i equal to the string "North America"“, and so forth until all the

Sys5 UNIX 6-43

CHAPTER 6 AWK

possible values of i are exhausted; that is, until all the strings of names of
countries are used. Note, however, the order the loops are executed is not
specified. If the loop associated with “Canada” is executed before the loop
associated with the string "Russia”, such a program produces

South America 26
Africa 16

Asia 637

Australia 14

North America 219

Note that the expression in the condition part of an if, while, or, for
statement can include relational operators like <, <=, >, >=, ==, and !=;
it can include regular expressions that are used with the "matching”
operators and ! ; it can include the logical operators |, &&, and !; and it also
include parentheses for grouping.

The break statement (when it occurs within a while or for loop) causes an
immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for loop) causes
the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip immediately to
the next record and begin scanning patterns from the top of the program.
(Note the difference between getline and next. Getline does not skip to the
top of the awk program.)

If an exit statement occurs in the BEGIN section of an awk program, the
program stops executing and the END section is not executed (if there is
one).

An exit that occurs in the main body of the awk program causes execution
of the main body of the awk program to stop. No more records are read,
and the END section is executed.

An exit in the END section causes execution to terminate at that point.
6.17 Report Generation

The flow of control statements in the last section are especially useful when
awk is used as a report generator. Awk is .useful for tabulating,
summarizing, and formatting information. We have seen an example of awk
tabulating in the last section with the tabulation of populations. Here is
another example of this. Suppose you have a file "prog.usage" that contains
lines of three fields; name, program, and usage:

6-44 Sys5 UNIX

AWK CHAPTER 6

Smith draw 3
Brown eqgn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

The first line indicates that Smith used the draw program three times. If you
want to create a program that has the total usage of each program along
with the names in alphabetical order and the total usage, use the following
program, called list.a:

{ use[$1 ™ $2] + = $3}
END {for (np in use)
print np " " use[np] |"sort +0 +2nr"}

This program produces the following output when used on the input file,
prog.usage.

Brown egn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff 1

If you would like to format the previous output so that each name is printed
only once, pipe the output of the previous awk program into the following
program, called "format.a:

{ if ($1 != prev) {
print $1 "
rev = $1

}
print " " $2 " " $3

The variable prev prints the unique values of the first field. The command

Sys5 UNIX 6-45

CHAPTER 6 AWK

awk —f list.a prog.usage | awk —f format.a

gives the output

Brown:
egn 1
spell 9
Jones:
nroff 4
spell 5
Smith:
draw 9
nroff 1

It is often useful to combine different awk scripts and other shell commands
such as sort as was done in the last script.

6.18 Cooperation With the Shell
Normally, an awk program is either contained in a file or enclosed within

single quotes as in

awk '{print $1}' ...

Awk uses many of the same characters that the shell does, such as $ and
the double quote. Surrounding the program by ' ... ' ensures that the shell
passes the awk program to awk intact.

Consider writing an awk program to print the nth field, where n is a
parameter determined when the program is run. That is, we want a program
called field such that

field n
runs the awk program
awk '{print $n}’

How does the value of n get into the awk program?

There are several ways to do this. One is to define field as follows:

6-46 Sys5 UNIX

¢

AWK CHAPTER 6

awk {print $'$1'}

Spaces are critical here: as written there is only one argument, even though
there are two sets of quotes. The $1 is outside the quotes, visible to the
shell, and therefore substituted properly when field is invoked.

Another way to do this job relies on the fact that the shell substitutes for $
parameters within double quotes.

awk "{print $1}"

Here the trick is to protect the first $ with a \\; the $1 is again replaced by
the number when field is invoked.

This kind of trickery is extended in remarkable ways, but it is hard to
understand quickly.

6.19 Miscellaneous Hints

You can simulate the effect of multidimensional arrays by creating your own
subscripts. For example,

for(i=1;i<=10;i++)
for(j=1;j<=10;j++)
multfi "," j] = . ..

creates an array whose subscripts have the form i,j; that is, 1,1; 1,2; and so
forth and thus simulate a 2-dimensional array.

Sys5 UNIX 6-47

N
N :

LINK EDITOR CHAPTER 7

7. LINK EDITOR

The link editor [/d(1)*] is a UNIX system support tool. The /d creates
executable object files by combining object files, performing relocation, and
resolving external references. The /d also processes symbolic debugging
information. The inputs to /d are relocatable object files produced either by
the compiler [cc(1)], the assembler [as(1)], or by a previous Id run. The Id
combines these object files to form either a relocatable or an absolute (i.e.,
executable) object file.

The /d also supports a command language that allows users to control the /d
process with great flexibility and precision. The UNIX system /d shares most
of its source with other Ids in-use on other processors and operating
systems. Therefore, the UNIX system Id provides many powerful features
that may or may not be useful on a UNIX system.

Although the link edit process is controlled in detail through use of the /d
command language described later, most users do not require this degree of
flexibility, and the manual page obtained by typing

man Id

is sufficient instruction in the use of Id.

The command language (described later) supports the ability to
o Specify the memory configuration of the machine
o Combine object file sections in particular fashions

e Cause the files to be bound to specific addresses or within specific
portions of memory

o Define or redefine global symbols at link edit time.

There are several concepts and definitions with which you should familiarize
yourself before proceeding further.

7.0.1 Memory Configuration

The virtual memory of the target machine is, for purposes of allocation,
partitioned into configured and unconfigured memory. The default condition
is to treat all memory as configured. It is common with microprocessor
applications, however, to have different types of memory at different
addresses. For example, an application might have 3K of PROM

* Part 1 of the UNIX User Manual

Sys5 UNIX 7.1

CHAPTER 7 LINK EDITOR

(Programmable Read-Only Memory) beginning at address 0, and 8K of RAM
(Read-Only Memory) starting at 20K. Addresses in the range 3K to 20K-1
are then not configured. Unconfigured memory is treated as “reserved” or
“unusable” by the Id. Nothing can ever be linked into unconfigured
memory. Thus, specifying a certain memory range to be unconfigured is
one way of marking the addresses (in that range) “illegal” or “nonexistent”
with respect to the linking process. Memory configurations other than the
default must be explicitly specified by you (the user).

Unless otherwise specified, all discussion in this document of memory,
addresses, etc. are with respect to the configured sections of the address
space.

7.0.2 Section

A section of an object file is the smallest unit of relocation and must be a
contiguous block of memory. A section is identified by a starting address
and a size. Information describing all the sections in a file is stored in
“section headers” at the start of the file. Sections from input files are
combined to form output sections that contain executable text, data, or a
mixture of both. Although there may be “holes” or gaps between input
sections and between output sections, storage is allocated contiguously
within each output section and may not overlap a hole in memory.

7.0.3 Addresses

The physical address of a section or symbol is the relative offset from
address zero of the address space. The physical address of an object is
not necessarily the location at which it is placed when the process is
executed. For example, on a system with paging, the address is with
respect to address zero of the virtual space, and the system performs
another address translation.

7.0.4 Binding

It is often necessary to have a section begin at a specific, predefined
address in the address space. The process of specifying this starting
address is called “binding”, and the section in question is said to be "bound
to” or “bound at” the required address. While binding is most commonly
relevant to output sections, it is also possible to bind global symbols with an
assignment statement in the /d command language.

7.0.5 Object File

Object files are produced both by the assembler (typically as a result of
calling the compiler) and by the Id. The /d accepts relocatable object files as
input and produces an output object file that may or may not be relocatable.
Under certain special circumstances, the input object files given to the /d
can also be absolute files.

7-2 Sys5 UNIX

LINK EDITOR CHAPTER 7

Files produced from the compiler/assembler always contain three sections,
called .text, .data, and .bss. The .text section contains the instruction text
(for example, executable instructions), .data contains initialized data
variables, and .bss contains uninitialized data variables. For example, if a C
program contains the global (that is, not inside a function) declarations
called .text, .data and .bss; the .text section contains the instruction text
(e.g., executable instructions), .data contains initialized data variables, and
.bss contains uninitialized data variables. For example, if a C program
contained the global (i.e., not inside a function) declarations

inti = 100;

char abc[200];

and the assignment
abc[i] = 0;

then compiled code from the C assignment is stored in .text. The variable i
is located in .data, and abc is located in .bss. There is an exception to the
rule however; both initialized and uninitialized statics are allocated into the
.data section. The value of an uninitialized static in a .data section is zero.

7.1 Using the Link Editor
The I/d is called by the command
Id [options] filename1 filename2 . . .

Files passed to the /d must be object files, archive libraries containing object
files, or text source files containing /d directives. The I/d uses the “magic
number” (in the first two bytes of the file) to determine which type of file is
encountered. If the /d does not recognize the magic number, it assumes the
file is a text file containing /d directives and attempts to parse it.

Input object files and archive libraries of object files are linked together to
form an output object file. If there are no unresolved references, this file is
executable on the target machine. An input file containing directives is
referred to as an ifile in this document. Obiject files have the form “name.o”
throughout the examples in this chapter. The names of actual input object
files need not follow this convention.

If you merely want to link the object files file1.0 and file2.0, the following
command is sufficient:

Id filel.o file2.0

No directives to the /d are needed. If no errors are encountered during the
link edit, the output is left on the default file a.out. The sections of the input
files are combined in order. That is, if filel.0 and file2.0 each contain the
standard sections .text, .data, and .bss, the output object file also contains

Sys5 UNIX 7-3

CHAPTER 7 LINK EDITOR

these three sections. The output .text section is a concatenation of .text
from filel.0 and .text from file2.0. The .data and .bss sections are formed
similarly. The output .text section is then bound at address 0X000000.
The output .data and .bss sections are link edited together into contiguous
addresses (the particular address depending on the particular processor).

Instead of entering the names of files to be link edited (as well as /d options
on the /d command line), this information can be placed into an ifile, and just
the ifile passed to Id. For example, if you are going to frequently link the
object files file1.0, file2.0, and file3.0 with the same options f1 and 2, then
enter the command

Id —f1 —f2 filel.o file2.0 file3.0

each time it is necessary to invoke Id. Alternatively, an ifile containing the
statements

—1
—f2
file1.0
file2.0
file3.0

could be created, and then the following UNIX system command would
serve:

Id ifilename

Note that it is perfectly permissible to specify some of the object files to be
link edited in the ifile and others on the command line—as well as some
options in the ifile and others on the command line. Input object files are
link edited in the order they are encountered, whether this occurs on the
command line or in an ifile. As an example, if a command line were

id filel.o fifile file2.0
and the ifile contained

file3.0
filed.o

then the order of link editing would be: file1.0, file3.0, file4.0, and file2.0.
Note from this example that an ifile is read and processed lmmedlately
upon being encountered in the command line.

Options may be interspersed with file names both on the command line and
in an ifile. The ordering of options is not significant, except for the “I” and
“L"” options for specifying libraries. The “I" option is a shorthand notation for
specifying an archive library, and an archive library is just a collection of
object files. Thus, as is the case with any object file, libraries are searched

7-4 Sys5 UNIX

LINK EDITOR CHAPTER 7

as they are encountered. The “L" specifies an alternative directory for
searching for libraries. Therefore, to be effective, a “—L" option must
appear before any “—1" options.

All options for Id must be preceded by a hyphen (-) whether in the ifile or on
the Id command line. Options that have an argument (except for the “—1I"
and “—L" options) are separated from the argument by white space (blanks
or tabs). The following options (in alphabetical order) are supported, though
not all options are available on each processor.

—ess Defines the primary entry point of the output file to be the symbol
given by the argument “ss”. See "Changing the Entry Point" in
"NOTES AND SPECIAL CONSIDERATIONS" for a discussion of
how the option is used.

—fbb Sets the default fill value. This value is used to fill “holes”
formed within output sections. Also, it is used to initialize input
.bss sections when they are combined with other non—.bss
input sections. The argument “bb"” is a 2-byte constant. If the
“—f" option is not used, the default fill value is zero.

—Ix Specifies a UNIX system archive library file as /d input. The
argument is a character string (less than 10 characters)
immediately following the “—I" without any intervening white
space. As an example, —Ic refers to libc.a, —IC to libC.a, etc.
The given archive library must contain valid object files as its
members.

-m Produces a map or listing of the input/output sections (including
“holes”) on the standard output.

-0 name Names the output object file. The argument “name” is the name
of the UNIX system file to be used as the output file. The default
output object file name is “a.out”. The “name” can be a full or
partial UNIX system pathname.

-r Retains relocation entries in the output object file. Relocation
entries must be saved if the output file is to be used as an input
file in a subsequent /d call. If the —r option is used, unresolved
references do not prevent the creation of an output object file.

-S Strips line number entries and symbol table information from the
output object file. Relocation entries (“—r" option) are
meaningless without the symbol table, hence use of “-s”
precludes the use of “—r”. All symbols are stripped, including
global and undefined symbols.

~t Disables checking that all instances of a multiply defined symbol
are the same size.

Sys5 UNIX 7-5

CHAPTER 7 LINK EDITOR

—usym Introduces an unresolved external symbol into the output file's
symbol table. The argument “sym” is the name of the symbol.
This is useful for linking entirely from a library, since initially the
symbol table is empty and an unresolved reference is needed to
force the linking of an initial routine from the library.

—X Does not preserve any local (non-global) symbols in the output
symbol table; enter external and static symbols only. This option
saves some space in the output file.

—H Changes the type of all global symbols to “static”. This option
can be used to “hide” symbols since static symbols have
different accessing rules from global symbols.

—Ldir Changes the algorithm for searching for libraries to look in dir
before looking in the default location. This option is for Id
libraries as the —1 option is for compiler #include files. The “—L”"
option is useful for finding libraries that are not in the standard
library directory. To be useful, this option must appear before
the “—1" option.

-M Prints a warning message for all external variables that are
multiply defined.

-N Places the data section immediately following the text section in
memory and stores the magic number 0407 in the UNIX system
header. This prevents the text from being shared (the default).

-S Requests a “silent” /d run. All error messages resulting from
errors that do not immediately stop the /d run are suppressed.

-V Prints, on the standard error output a “version id" identifying the
Id being run.

—VS num Takes num as a decimal version number identifying the a.out file
that is produced. The version stamp is stored in the UNIX
system header.

7.2 Link Editor Command Language
7.2.1 Expressions

Expressions may contain global symbols, constants, and most of the basic
C language operators. (See Figures 7-2 thru 7-5, "SYNTAX DIAGRAM FOR
INPUT DIRECTIVES".) Constants are as in C with a number recognized as
decimal unless preceded with “0” for octal or “Ox” for hexadecimal. All
numbers are treated as long ints. Symbol names may contain uppercase or
lowercase letters, digits, and the underscore ('_). Symbols within an
expression have the value of the address of the symbol only. The /d does
not do symbol table lookup to find the contents of a symbol, the

7-6 Sys5 UNIX

LINK EDITOR CHAPTER 7

dimensionality of an array, structure elements declared in a C program, etc.

The Id uses a lex-generated input scanner to identify symbols, numbers,
operators, etc. The current scanner design makes the following names
reserved and unavailable as symbol names or section names:

ALIGN DSECT MEMORY PHY SECTIONS
ASSIGN GROUP NOLOAD RANGE SPARE
BLOCK LENGTH ORIGIN REGION TV

align group length origin spare
assign | 0 phy
block len org range

The operators that are supported, in order of precedence from high to low,
are shown in Figure 7-1:

symbol

I"—(UNARY Minus)

| %

+ -(BINARY Minus)
>> <<

=l= > < <= >=

Figure 7-1. Symbols and Functions of Operators

The above operators have the same meaning as in the C language.
Operators on the same line have the same precedence.

7.2.2 Assignment Statements

External symbols may be defined and assigned addresses via the
assignment statement. The syntax of the assignment statement is

symbol = expression;

or

Sys5 UNIX 7-7

CHAPTER 7 LINK EDITOR

symbol op= expression;
where op is one of the operators +, — *, or /.
Assignment statements must be terminated by a semicolon.

All assignment statements (with the exception of the one case described in
the following paragraph) are evaluated after allocation has been performed.
This occurs after all input-file-defined symbols are appropriately relocated
but before the actual relocation of the text and data itself. Therefore, if an
assignment statement expression contains any symbol name, the address
used for that symbol in the evaluation of the expression reflects the symbol
address in the output object file. References within text and data (to
symbols given a value through an assignment statement) access this latest
assigned value. Assignment statements are processed in the same order in
which they are input to Id.

Assignment statements are normally placed outside the scope of section-
definition directive (see "Section Definition Directive” under "LINK EDITOR
COMMAND LANGUAGE"). However, there exists a special symbol, called
“.”, that can occur only within a section-definition directive. This symbol
refers to the current R address of the Id’s location counter. Thus,
assignment expressions involving *.”’ are evaluated during the allocation
phase of Id. Assigning a value to the “.” symbol within a section-definition
directive increments/resets Id's location counter and can create “holes”
within the section, as described in "Section Definition Directives”. Assigning
the value of the “.” symbol to a conventional symbol permits the final

allocated address (of a particular point within the link edit run) to be saved.

Align is provided as a shorthand notation to allow alignment of a symbol to
an n-byte boundary within an output section, where n is a power of 2. For
example, the expression

align(n)
is equivalent to
(+n=1)&((n-1)

Link editor expressions may have either an absolute or a relocatable value.
When the I/d creates a symbol through an assignment statement, the
symbol's value takes on that type of expression. That type depends on the
following rules:

e An expression with a single relocatable symbol (and zero or more
constants or absolute symbols) is relocatable. The value is in relation
to the section of the referenced symbol.

e All other expressions have absolute values.

7-8 Sys5 UNIX

LINK EDITOR CHAPTER 7

7.2.3 Specifying a Memory Configuration
MEMORY directives are used to specify
a. The total size of the virtual space of the target machine.

b. The configured and unconfigured areas of the virtual space.

If no directives are supplied, the /d assumes that all memory is configured.
The size of the default memory is dependent upon the target machine.

By means of MEMORY directives, an arbitrary name of up to eight
characters is assigned to a virtual address range. Output sections can then
be forced to be bound to virtual addresses within specifically named
memory areas. Memory names may contain uppercase or lowercase
letters, digits, and the special characters '$’, '.’, or '_’. Names of memory
ranges are used by /d only and are not carried in the output file symbol table

or headers.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Unconfigured memory
is not used in the Id's allocation process, and hence nothing can be link
edited, bound, or assigned to any address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with a
named memory area. This restricts the memory areas (with specific
attributes) to which an output section can be bound. The attributes
assigned to output sections in this manner are recorded in the appropriate
section headers in the output file to allow for possible error checking in the
future. For example, putting a text section into writable memory is one
potential error condition. Currently, error checking of this type is not
implemented.

The attributes currently accepted are

a. R :readable memory.

b. W : writable memory.

c. X :executable, i.e. instructions may reside in this memory.

d. | :initializable, i.e. stack areas are typically not initialized.
Other attributes may be added in the future if necessary. If no attributes are

specified on a MEMORY directive or if no MEMORY directives are supplied,
memory areas assume the attributes of W, R, |, and X.

The syntax of the MEMORY directive is

Sys5 UNIX 7-9

CHAPTER 7 LINK EDITOR

MEMORY

{
name1 (attr) : origin = n1, length = n2
name2 (attr) : origin = n3, length = n4
etc.

h

The keyword “origin” (or “org” or “0”) must precede the origin of a memory
range, and “length” (or “len” or “I") must precede the length as shown in the
above prototype. The origin operand refers to the virtual address of the
memory range. Origin and length are entered as long integer constants in
either decimal, octal, or hexadecimal (standard C syntax). Origin and length
specifications, as well as individual MEMORY directives, may be separated
by white space or a comma.

By specifying MEMORY directives, the I/d can be told that memory is
configured in some manner other than the default. For example, if it is
necessary to prevent anything from being linked to the first 0x10000 words
of memory, a MEMORY directive can accomplish this.

MEMORY
{

}

7.2.4 Section Definition Directives

valid : org = 0x10000, len = OxFE0000

The purpose of the SECTIONS directive is to describe how input sections
are to be combined, to direct where to place output sections (both in relation
to each other and to the entire virtual memory space), and to permit the
renaming of output sections.

in the default case where no SECTIONS directives are given, all input
sections of the same name appear in an output section of that name. For
example, if a number of object files from the compiler are linked, each
containing the three sections .text, .data, and .bss, the output object file
also contains three sections, .text, .data, and .bss. If two object files are
linked (one that contains sections s1 and s2 and the other containing
sections s3 and s4), the output object file contains the four sections s1, s2,
s3, and s4. The order of these sections would depend on the order in which
the link editor sees the input files.

The basic syntax of the SECTIONS directive is

7-10 Sys5 UNIX

LINK EDITOR CHAPTER 7

(SECTIONS
{
secnamei :
{

file_specifications,
assignment_statements

}
secname2 :
{
file_specifications,
assignment_statements
}
etc.
ki

The various types of section definition directives are discussed in the
remainder of this section.

7.2.4.1 File Specifications

Within a section definition, the files and sections of files to be included in the
output section are listed in the order in which they are to appear in the
(output section. Sections from an input file are specified by

filename (secname)
or

filename (secnam1 secnam2.. . .)

Sections of an input file are separated either by white space or commas as
are the file specifications themselves.

If a file name appears with no sections listed, then all sections from the file
are linked into the current output section. For example,

SECTIONS

{
outseci:
{

filel.0 (sect)
file2.0
file3.0 (sec1, sec2)

1
(A The order in which the input sections appears in the output section

Sys5 UNIX 7-11

CHAPTER 7 LINK EDITOR

“outsec1” is given by

Section sec1 from file file1.0
All sections from file2.0, in the order they appear in the file

c. Section sec1 from file file3.0, and then section sec2 from file
file3.0

If there are any additional input files that contained input sections also
named “outsec1”, these sections are linked following the last section named
in the definition of “outsec1”. If there are any other input sections in file1.0
or file3.0, they will be placed in output sections with the same names as the
input sections.

7.2.4.2 Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is accomplished by
an /d option as shown on the following SECTIONS directive example:

SECTIONS
{

outsec addr:

{
}

etc.

}

The “addr” is the bonding address expressed as a C constant. If “outsec”
does not fit at “addr” (perhaps because of holes in the memory configuration
or because “outsec” is too large to fit without overlapping some other output
section), Id issues an appropriate error message.

So long as output sections do not overlap and there is enough space, they
can be bound anywhere in configured memory. The SECTIONS directives
defining output sections need not be given to /d in any particular order.

The /d does not ensure that each section's size consists of an even number
of bytes or that each section starts on an even byte boundary. The
assembler ensures that the size (in bytes) of a section is evenly divisible by
4. The /d directives can be used to force a section to start on an odd byte
boundary although this is not recommended. If a section starts on an odd
byte boundary, the section’s contents are either accessed incorrectly or are
not executed properly. When a user specifies an odd byte boundary, the Id
issues a warning message.

7-12 Sys5 UNIX

LINK EDITOR CHAPTER 7

7.2.4.3 Aligning an Output Section

It is possible to request that an output section be bound to a virtual address
that falls on an n-byte boundary, where n is a power of 2. The ALIGN
option of the SECTIONS directive performs this function, so that the option

ALIGN(n)

is equivalent to specifying a bonding address of
(.+n-1)&(n-1)

For example

SECTIONS

{
outsec ALIGN(0x20000) :

{
}

etc.

}

The output section “outsec” is not bound to any given address but is linked
to some virtual address that is a multiple of 0x20000 (e.g., at address 0x0,
0x20000, 0x40000, 0x60000, etc.).

7.2.4.4 Grouping Sections Together
The default allocation algorithm for Id

a. Links all input .text sections together into one output section.
This output section is called .text and is bound to an address
of 0x0.

b. Links all input .data sections together into one output section.
This output section is called .data and is bound to an address
aligned to a machine dependent constant.

c. Links all input .bss sections together into one output section.
This output section is called .bss and is allocated so as to
immediately follow the output section .data. Note that the
output section .bss is not given any particular address
alignment.

Specifying any SECTIONS directives results in this default allocation not
being performed.

The default allocation of /d is equivalent to supplying the following directive:

Sys5 UNIX 7-13

CHAPTER 7 LINK EDITOR

SECTIONS
{
dext :{}
GROUP ALIGN(align_value) :
{
data :{}
bss {}
¥
h

where align_value is a machine dependent constant. The GROUP
command ensures that the two output sections, .data and .bss, are
allocated (e.g., “grouped”) together. Bonding or alignment information is
supplied only for the group and not for the output sections contained within
the group. The sections making up the group are allocated in the order
listed in the directive.

If .text, .data, and .bss are to be placed in the same segment, the following
SECTIONS directive is used:

SECTIONS
{
GROUP
{
text {}
.data {1}
.bss {}
i
t

Note that there are still three output sections (.text, .data, and .bss), but
now they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting address or
aligned simply by adding a field to the GROUP directive. To bind to
0xC0000, use '

GROUP 0xC0000 : {
To align to 0x10000, use
GROUP ALIGN(0x10000) : {

With this addition, first the output section .text is bound at 0xC0000 (or is
aligned to 0x10000); then the remaining members of the group are
allocated in order of their appearance into the next available memory
locations.

7-14 Sys5 UNIX

TN

N

o

J

LINK EDITOR CHAPTER 7

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS

{
text :{}
.data ALIGN(0x20000) : {}
bss :{}

}

The .text section starts at virtual address 0x0 and the .data section at a
virtual address aligned to 0x20000. The .bss section follows immediately
after the .text section if there is enough space. If there is not, it follows the
.data section.

The order in which output sections are defined to the Id cannot be used to
force a certain allocation order in the output file.

7.2.4.5 Creating Holes Within Output Sections

The special symbol dot (.) appears only within section definitions and
assignment statements. When it appears on the left side of an assignment
statement, “."” causes the Id's location counter to be incremented or reset
and a “hole” left in the output section. “Holes” built into output sections in
this manner take up physical space in the output file and are initialized using
a fill character (either the default fill character (0x00) or a supplied fill
character). See the definition of the "—f" option in "USING THE LINK
EDITOR" and the discussion of filling holes in "Initialized Section Holes or
.bss Sections"” under "LINK EDITOR COMMAND LANGUAGE".

Consider the following section definition:

outsec:

{
. += 0x1000;
f1.0 (.text)
. += 0x100;
f2.0 (.text)
. = align (4);
f3.0 (.text)

1

The effect of this command is as follows:

a. A 0x1000 byte hole, filled with the default fill character, is left
at the beginning of the section. Input file f1.0(.text) is linked
after this hole.

Sys5 UNIX 7-15

CHAPTER 7 LINK EDITOR

b. The text of input file f2.0 begins at 0x100 bytes following the
end of f1.0(.text).

c. The text of f3.0 is linked to start at the next full word
boundary following the text of f2.0 with respect to the
beginning of “outsec”.

For the purposes of allocating and aligning addresses within an output
section, the Id treats the output section as if it began at address zero. As a
result, if, in the above example, “outsec” ultimately is linked to start at an
odd address, then the part of “outsec” built from f3.0(.text) also starts at an
odd address—even though f3.0(.text) is aligned to a full word boundary.
This is prevented by specifying an alignment factor for the entire output
section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the sections it
generates to a full word length making explicit alignment specifications
unnecessary. This also holds true for the compiler.

Expressions that decrement “.” are illegal. For example, subtracting a value
from the location counter is not allowed since overwrites are not allowed.
The most common operators in expressions that assign a value to “.” are
“+="and “align”.

7.2.4.6 Creating and Defining Symbols at Link-Edit Time

The assignment instruction of the /d can be used to give symbols a value
that is link-edit dependent. Typically, there are three types of assignments:
a. Use of “." to adjust Id's location counter during allocation
b. Use of “." to assign an allocation-dependent value to a symbol

¢. Assigning an allocation-independent value to a symbol.

Case a) has already been discussed in the previous section.

Case b) provides a means to assign addresses (known only after allocation)
to symbols. For example

7-16 Sys5 UNIX

LINK EDITOR CHAPTER 7

SECTIONS
{
outsct:{...}
outsc2:
{
file1.0 (s1)
s2_start = . ;
file2.0 (s2)
s2_end = .—-1;
}
!

The symbol “s2_start” is defined to be the address of file2.0(s2), and
“s2_end" is the address of the last byte of file2.0(s2).

Consider the following example:

SECTIONS
{
outsci:
{
file1.o0 (.data)
mark = _;
.+t = 4

file2.0 (.data)

——

}

In this example, the symbol “mark” is created and is equal to the address of
the first byte beyond the end of filel.o's .data section. Four bytes are
reserved for a future run-time initialization of the symbol mark. The type of
the symbol is a long integer (32 bits).

Assignment instructions involving “.” must appear within SECTIONS
definitions since they are evaluated during allocation. Assignment
instructions that do not involve *.” can appear within SECTIONS definitions
but typically do not. Such instructions are evaluated after allocation is
complete. Reassignment of a defined symbol to a different address is
dangerous. For example, if a symbol within .data is defined, initialized, and
referenced within a set of object files being link-edited, the symbol table
entry for that symbol is changed to reflect the new, reassigned physical
address. However, the associated initialized data is not moved to the new
address. The [d issues warning messages for each defined symbol that is
being redefined within an ifile. However, assignments of absolute values to
new symbols are safe because there are no references or initialized data
associated with the symbol.

Sys5 UNIX 7-17

CHAPTER 7 LINK EDITOR

7.2.4.7 Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere) within a
specific named memory (as previously specified on a MEMORY directive).
(The “>" notation is borrowed from the UNIX system concept of “redirected
output”.)

For example

MEMORY

{
mem1: 0=0x000000 [=0x10000
mem2 (RW): 0=0x020000 |=0x40000
mem3 (RW): 0=0x070000 |=0x40000

mem1: 0=0x120000 1=0x04000
}
SECTIONS
{
outseci: { f1.0(.data) } > mem1
outsec2: { f2.0(.data) } > mem3
1

This directs /d to place “outsec1” anywhere within the memory area named
“mem1” (i.e., somewhere within the address range O0x0-OxFFFF or
0x120000-0x123FF). The “outsec2” is to be placed somewhere in the
address range 0x70000-OxAFFFF.

7.2.4.8 Initialized Section Holes or BSS Sections

When “holes” are created within a section (as in the example in "LINK
EDITOR COMMAND LANGUAGE"), the Id normally puts out bytes of zero
as “fill". By default, .bss sections are not initialized at all; that is, no
initialized data is generated for any .bss section by the assembler nor
supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set such
“holes” or output .bss sections to an arbitrary 2-byte pattern. Such
initialization options apply only to .bss sections or “holes”. As an example,
an application might want an uninitialized data table to be initialized to a
constant value without recompiling the “.0" file or a “hole” in the text area to
be filled with a transfer to an error routine.

Either specific areas within an output section or the entire output section
may be specified as being initialized. However, since no text is generated
for an uninitialized .bss section, if part of such a section is initialized, then
the entire section is initialized. In other words, if a .bss section is to be
combined with a .text or .data section (both of which are initialized) or if part

7-18 Sys5 UNIX

k)

LINK EDITOR CHAPTER 7

of an output .bss section is to be initialized, then one of the following will
hold:

a. Explicit initialization options must be used to initialize all .bss
sections in the output section.

b. The Id will use the default fill value to initialize all .bss
sections in the output section.

Consider the following /d ffile:

SECTIONS
{
secl:
{
f1.0
. =+ 0x200;
f2.0 (.text)
} = OxDFFF
sec2:
{
f1.0 (.bss)
f2.0 (.bss) = 0x1234
t
sec3:
{
f3.0 (.bss)
} = OXFFFF

secd: { f4.0 (.bss) }
}

In the example above, the 0x200 byte “hole” in section “sec1” is filled with
the value OxDFFF. In section “sec2”, f1.0(.bss) is initialized to the default fill
value of 0x00, and f2.0(.bss) is initialized to 0x1234. All .bss sections within
“sec3” as well as all “holes” are initialized to OxFFFF. Section “sec4” is not
initialized; that is, no data is written to the object file for this section.

7.3 Notes and Special Considerations
7.3.1 Changing the Entry Point

The a.out header contains a field for the (primary) entry point of the file.
This field is set using one of the following rules (listed in the order they are
applied):

“

a. The value of the symbol specified with the
present, is used.

—e" option, if

Sys5 UNIX 7-19

CHAPTER 7 LINK EDITOR

b. The value of the symbol “_start”, if present, is used.
c. The value of the symbol “main”, if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field
through the “—e” option or by using an assignment instruction in an ifile of
the form

_start = expression;

If the Id is called through cc(1), a startup routine is automatically linked in.
Then, when the program is executed, the routine exit(1) is called after the
main routine finishes to close file descriptors and do other cleanup. The
user must therefore be careful when calling the Id directly or when changing
the entry point. The user must supply the startup routine or make sure that
the program always calls exit rather than falling through the end. Otherwise,
the program will dump core.

7.3.2 Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object file
typically consisting of the standard three sections: .text, .data, and .bss.
Archive libraries are created through the use of the UNIX system “ar”
command from object files generated by running the cc or as.

An archive library is always processed using selective inclusion: Only those
members that resolve existing undefined-symbol references are taken from
the library for link editing.

Libraries can be placed both inside and outside section definitions. In both
cases, a member of a library is included for linking whenever

a. There exists a reference to a symbol defined in that member.

b. The reference is found by the /d prior to the actual scanning
of the library.

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the member are included in the
output section being defined. When a library member is included by
searching the library outside of a SECTIONS directive, all input sections
from the member are included into the output section with the same name.
That is, the .text section of the member goes into the output section named
text, the .data section of the member into .data, the .bss section of the
member into .bss, etc. If necessary, new output sections are defined to
provide a place to put the input sections. Note, however, that

7-20 Sys5 UNIX

LINK EDITOR CHAPTER 7

a. Specific members of a library cannot be referenced explicitly
in an ffile.

b. The default rules for the placement of members and sections
cannot be overridden when they apply to archive library
members.

The “—I" option is a shorthand notation for specifying an input file coming
from a predefined set of directories and having a predefined name. By
convention, such files are archive libraries. However, they need not be so.
Furthermore, archive libraries can be specified without using the “—I" option
by simply giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a member to be
extracted from the library it must satisfy a reference that is known to be
unresolved at the time the library is searched. Archive libraries can be
specified more than once. They are searched every time they are
encountered. Archive files have a symbol table at the beginning of the
archive. The /d will cycle through this symbol table until it has determined
that it cannot resolve any more references from that library.

Consider the following example:

a. The input files file1.0 and file2.0 each contain a reference to
the external function FCN.

Input file1.0 contains a reference to symbol ABC.
Input file2.0 contains a reference to symbol XYZ.

Library liba.a, member 0, contains a definition of XYZ.

® a o T

Library libc.a, member 0, contains a definition of ABC.

-

Both libraries have a member 1 that defines FCN.

If the /d command were entered as
Id filel.0 —la file2.o -lc

then the FCN references are satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ remains undefined (since the library liba.a
is searched before file2.0 is specified). If the [d command were entered as

Id filel.o0 file2.o —la —c

then the FCN references is satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ is obtained from liba.a, member 0. If the /d
command were entered as

Id filel.o file2.o —lc —la

Sys5 UNIX 7-21

CHAPTER 7 LINK EDITOR

then the FCN references is satisfied by libc.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ is obtained from liba.a, member 0.

The “—u” option is used to force the linking of library members when the link
edit run does not contain an actual external reference to the members. For
example,

Id —u rout1 —la

creates an undefined symbol called “rout1” in the Id's global symbol table. If
any member of library liba.a defines this symbol, it (and perhaps other
members as well) is extracted. Without the “—u” option, there would have
been no “trigger” to cause Id to search the archive library.

7.3.3 Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured areas exist
in the virtual memory, each application or user must assume the
responsibility of forming output sections that will fit into memory. For
example, assume that memory is configured as follows:

MEMORY
{
memi: o = 0x00000 | = 0x02000
mem2: o = 0x40000 | = 0x05000
mema3: o = 0x20000 | = 0x10000
h
Let the files f1.0, f2.0, . . . fn.0 each contain the standard three sections

.text, .data, and .bss, and suppose the combined .text section is 0x12000
bytes. There is no configured area of memory in which this section can be
placed. Appropriate directives must be supplied to break up the .text output
section so Id may do allocation. For example,

7-22 Sys5 UNIX

LINK EDITOR CHAPTER 7

SECTIONS

{
txt1:

f1.0 (.text)
f2.0 (.text)
f3.0 (.text)

f4.0 (.text)
f5.0 (.text)
6.0 (.text)

etc.

}
7.3.4 Allocation Algorithm

An output section is formed either as a result of a SECTIONS directive or by
combining input sections of the same name. An output section can have
zero or more input sections comprising it. After the composition of an output
section is determined, it must then be allocated into configured virtual
memory. Ld uses an algorithm that attempts to minimize fragmentation of
memory, and hence increases the possibility that a link edit run will be able
to allocate all output sections within the specified virtual memory
configuration. The algorithm proceeds as follows:

a. Any output sections for which explicit bonding addresses
were specified are allocated.

b. Any output sections to be included in a specific named
memory are allocated. In both this and the succeeding step,
each output section is placed into the first available space
within the (named) memory with any alignment taken into
consideration.

c. Output sections not handled by one of the above steps are
allocated.

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in the
order they appear to the Id, normally .text, .data, .bss. Otherwise, output
sections are allocated in the order they were defined or made known to the
Id into the first available space they fit.

Sys5 UNIX 7-23

CHAPTER 7 LINK EDITOR

7.3.5 Incremental Link Editing \'/m\\:
As previously mentioned, the output of the Id can be used as an input file to 7
subsequent /d runs providing that the relocation information is retained ("
option). Large applications may find it desirable to partition their C programs
into “subsystems”, link each subsystem independently, and then link edit the
entire application. For example,
Step 1:
Id —r —o outfile1 fifile1
/* ifilel ¥/
SECTIONS
{
ssi:
{
f1.0
f2.0
fn.o
'
H e
Step 2: (
Id —r —o outfile2 ifile2
/™ ifile2
SECTIONS
{
ss2:
{
gl.o
g2.0
gn.o
H
}
Step 3:
Id —a —m —o final.out outfile1 outfile2
By judiciously forming subsystems, applications may achieve a form of
“incremental link editing” whereby it is necessary to relink only a portion of
the total link edit when a few programs are recompiled.
To apply this technique, there are two simple rules (/ h
\

7-24 Sys5 UNIX

LINK EDITOR CHAPTER 7

a. Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation of
output sections from input files and input sections. No
binding of output sections should be done in these runs.

b. All allocation and memory directives, as well as any
assignment statements, are included only in the final Id call.

7.3.6 DSECT, COPY, and NOLOAD Sections

Sections may be given a “type” in a section definition as shown in the
following example:

SECTIONS

{
name1 0x200000 (DSECT) :{file1.0}
name2 0x400000 (COPY) 1 {file2.0 }
name3 0x600000 (NOLOAD) :{file3.o }

1
!

The DSECT option creates what is called a “dummy section”. A “dummy
section” has the following properties:

a. It does not participate in the memory allocation for output
sections. As a result, it takes up no memory and does not
show up in the memory map (the “—m’ option) generated by
the Id.

b. It may overlay other output sections and even unconfigured
memory. DSECTs may overlay other DSECTs.

c. The global symbols defined within the “dummy section” are
relocated normally. That is, they appear in the output file's
symbol table with the same value they would have had if the
DSECT were actually loaded at its virtual address. DSECT-
defined symbols may be referenced by other input sections.
Undefined external symbols found within a DSECT cause
specified archive libraries to be searched and any members
which define such symbols are link edited normally (i.e., not
in the DSECT or as a DSECT).

d. None of the section contents, relocation information, or line
number information associated with the section is written to
the output file.

In the above example, none of the sections from file1.o0 are allocated, but all
symbols are relocated as though the sections were link edited at the
specified address. Other sections could refer to any of the global symbols

Sys5 UNIX 7-25

CHAPTER 7 LINK EDITOR

and they are resolved correctly.

A “copy section” created by the COPY option is similar to a “dummy
section”. The only difference between a “copy section” and a “dummy
section” is that the contents of a “copy section” and all associated
information is written to the output file.

A section with the “type” of NOLOAD differs in only one respect from a
normal output section: its text and/or data is not written to the output file. A
NOLOAD section is allocated virtual space, appears in the memory map,
etc.

7.3.7 Output File Blocking

The BLOCK option (applied to any output section or GROUP directive) is
used to direct /d to align a section at a specified byte offset in the output file.
It has no effect on the address at which the section is allocated nor on any
part of the link edit process. It is used purely to adjust the physical position
of the section in the output file.

SECTIONS
{
.text BLOCK(0x200) : { }
.data ALIGN(0x20000) BLOCK(0x200) : { }

}

With this SECTIONS directive, Id assures that each section, .text and .data,
is physically written at a file offset which is a multiple of 0x200 (e.g., at an
offset of 0, 0x200, 0x400.,..., etc. in the file).

7.3.8 Nonrelocatable Input Files

If a file produced by the /d is intended to be used in a subsequent Id run, the
first Id run has the “—r” option set. This preserves relocation information
and permits the sections of the file to be relocated by the subsequent Id run.

When the /d detects an input file (that does not have relocation or symbol
table information), a warning message is given. Such information can be
removed by the I/d (see the “—a" and “—s" options in the part USING THE
LINK EDITOR) or by the strip(1) program. However, the link edit run
continues using the nonrelocatable input file. '

For such a link edit to be successful (i.e., to actually and correctly link edit
all input files, relocate all symbols, resolve unresolved references, etc.), two
conditions on the nonrelocatable input files must be met.

a. Each input file must have no unresolved external references.
b. Each input file must be bound to the exact same virtual
address as it was bound to in the /d run that created it.

7-26 Sys5 UNIX

LINK EDITOR CHAPTER 7

Note that if these two conditions are not met for all nonrelocatable input
files, no error messages are issued. Because of this fact, extreme care
must be taken when supplying such input files to the Id.

7.4 Error Messages
7.4.1 Corrupt Input Files

The following error messages indicate that the input file is corrupt,
nonexistent, or unreadable. The user should check that the file is in the
correct directory with the correct permissions. If the object file is corrupt, try
recompiling or reassembling it.

e Can't open name

e Can't read archive header from archive name

o Can't read file header of archive name

e Can't read 1st word of file name

o Can't seek to the beginning of file name

¢ Fail to read file header of name

¢ Fail to read Inno of section sect of file name

¢ Fail to read magic number of file name

o Fail to read section headers of file name

o Fail to read section headers of library name member number
¢ Fail to read symbol table of file name

e Fail to read symbol table when searching libraries

o Fail to read the aux entry of file name

e Fail to read the field to be relocated

o Fail to seek to symbol table of file name

o Fail to seek to symbol table when searching libraries
e Fail to seek to the end of library name member number
o Fail to skip aux entries when searching libraries

¢ Fail to skip the mem of struct of name

o lllegal relocation type

¢ No reloc entry found for symbol

e Reloc entries out of order in section sect of file name

Sys5 UNIX 7-27

CHAPTER 7 LINK EDITOR

e Seek to name section sect failed

o Seek to name section sect Inno failed

o Seek to name section sect reloc entries failed

¢ Seek to relocation entries for section sect in file name failed.
7.4.2 Errors During Output

These errors occur because the Id cannot write to the output file. This
usually indicates that the file system is out of space.

o Cannot complete output file name. Write error.
e Fail to copy the rest of section num of file name
¢ Fail to copy the bytes that need no reloc of section num of file
e name |/O error on output file name.
7.4.3 Internal Errors

These messages indicate that something is wrong with the /d internally.
There is probably nothing the user can do except get help.

o Attempt to free nonallocated memory

o Attempt to reinitialize the SDP aux space

o Attempt to reinitialize the SDP slot space

o Default allocation did not put .data and .bss into the same region
¢ Failed to close SDP symbol space

e Failure dumping an AIDFNxxx data structure

e Failure in closing SDP aux space

Failure to initialize the SDP aux space

Failure to initialize the SDP slot space

Internal error: audit_groups, address mismatch

Internal error: audit_group, finds a node failure

Internal error: fail to seek to the member of name

Internal error: in allocate lists, list confusion (num num)

Internal error: invalid aux table id

Internal error: invalid symbol table id

Internal error: negative aux table /d

7-28 Sys5 UNIX

7N

N

LINK EDITOR CHAPTER 7

e Internal error: negative symbol table id

¢ Internal error: no symtab entry for DOT

e Internal error: split_scns, size of sect exceeds its new displacement.
7.4.4 Allocation Errors

These error messages appear during the allocation phase of the link edit.
They generally appear if a section or group does not fit at a certain address
or if the given MEMORY or SECTION directives in some way conflict. If you
are using an ffile, check that MEMORY and SECTION directives allow
enough room for the sections to ensure that nothing overlaps and that
nothing is being placed in unconfigured memory. For more information, see
"LINK EDITOR COMMAND LANGUAGE" and "NOTES AND SPECIAL
CONSIDERATIONS".

¢ Bond address address for sect is not in configured memory

e Bond address address for sect overlays previously allocated section
sect at address

e Can't allocate output section sect, of size num
¢ Can't allocate section sect into owner mem
e Default allocation failed: name is too large
o GROUP containing section sect is too big
e Memory types name1 and name2 overlap
o Output section sect not allocated into a region
e Sect at address overlays previously allocated section sect at address
e Sect, bonded at address, won't fit into configured memory
e Sect enters unconfigured memory at address
o Section sect in file name is too big.
7.4.5 Misuse of Link Editor Directives

These errors arise from the misuse of an input directive. Please review the
appropriate section in the manual.

¢ Adding name(sect) to muiltiple output sections.
The input section is mentioned twice in the SECTION directive.
o Bad attribute value in MEMORY directive: c.

An attribute must be one of “R”, “W", “X", or “I".

Sys5 UNIX 7-29

CHAPTER 7 LINK EDITOR

e Bad flag value in SECTIONS directive, option.

Only the “—I” option is allowed inside of a SECTIONS directive
e Bad fill value.

The fill value must be a 2-byte constant.
e Bonding excludes alignment.

The section will be bound at the given address regardless of the alignment
of that address.

e Cannot align a section within a group
¢ Cannot bond a section within a group
e Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be aligned or
bound to an address, but the sections making up the group may not be
handled individually.

e DSECT sect can't be given an owner
e DSECT sect can't be linked to an attribute.

Since dummy sections do not participate in the memory allocation, it is
meaningless for a dummy section to be given an owner or an attribute.

¢ Region commands not allowed
The UNIX system link editor does not accept the REGION commands.
e Section sect not built.
The most likely cause of this is a syntax error in the SECTIONS directive.
e Semicolon required after expression
e Statement ignored.
Caused by a syntax error in an expression.
e Usage of unimplemented syntax.
The UNIX system I/d does not accept all possible Id commands.
7.4.6 Misuse of Expressions

These errors arise from the misuse of an input expression. Please review
the appropriate section in the manual.

e Absolute symbol name being redefined.

An absolute symbol may not be redefined.

7-30 Sys5 UNIX

LINK EDITOR CHAPTER 7

¢ ALIGN illegal in this context.
Alignment of a symbol may only be done within a SECTIONS directive.
o Attempt to decrement DOT
o lllegal assignment of physical address to DOT.
o lllegal operator in expression
¢ Misuse of DOT symbol in assignment instruction.

The DOT symbol (“.”) cannot be used in assignment statements that are
outside SECTIONS directives.

e Symbol name is undefined.

All symbols referenced in an assignment statement must be defined.
o Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment statement.
e Undefined symbol in expression.

7.4.7 Misuse of Options

These errors arise from the misuse of options. Please review the
appropriate section of the manual.

o Both —r and —s flags are set. —s flag turned off.
Further relocation requires a symbol table.
o Can't find library libx.a
e —| path too long (string)
e —o file name too large (>128 char), truncated to (string)
e Too many —L options, seven allowed.

Some options require white space before the argument, some do not; see
"USING THE LINK EDITOR". Including extra white space or not including
the required white space is the most likely cause of the following messages.

option flag does not specify a number

option is an invalid flag

—e flag does not specify a legal symbol name name

—f flag does not specify a 2-byte number

No directory given with —L

—o flag does not specify a valid file name: string

Sys5 UNIX 7-31

CHAPTER 7 LINK EDITOR

o the - flag (specifying a default library) is not supported
¢ —u flag does not specify a legal symbol name: name.
7.4.8 Space Restraints

The following error messages may occur if the /d attempts to allocate more
space than is available. The user should attempt to decrease the amount of
space used by the Id. This may be accomplished by making the ifile less
complicated or by using the “—r” option to create intermediate files.

¢ Fail to allocate num bytes for slotvec table
¢ Internal error: aux table overflow
e Internal error: symbol table overflow
e Memory allocation failure on num-byte 'calloc’ call
e Memory allocation failure on realloc call
e Run is too large and complex.
7.4.9 Miscellaneous Errors

These errors occur for many reasons. Refer to the error message for an
indication of where to look in the manual.

e Archive symbol table is empty in archive name, execute 'ar ts name’ to
restore archive symbol table .

On systems with a random access archive capability, the link editor requires
that all archives have a symbol table. This symbol table may have been
removed by strip.

¢ Cannot create output file name .

The user may not have write permission in the directory where the output
file is to be written.

¢ File name has no relocation information.
See "NOTES AND SPECIAL CONSIDERATIONS".
o File name is of unknown type, magic number = num
o Ifile nesting limit exceeded with file name.
Ifiles may be nested 16 deep.
¢ Library name, member has no relocation information.
e Line nbr entry (num num) found for nonrelocatable symbol:

Section sect, file name

7-32 Sys5 UNIX

LINK EDITOR CHAPTER 7

This is generally caused by an interaction of yacc(1) and cc(1). Re-yacc
the offending file with the "—I" option of yacc.

See the part "NOTES AND SPECIAL CONSIDERATIONS".
e Multiply defined symbol sym, in name has more than one size.

A multiply defined symbol may not have been defined in the same manner
in all files.

e name(sect) not found.

An input section specified in a SECTIONS directive was not found in the
input file.

e Section sect starts on an odd byte boundary!

This will happen only if the user specifically binds a section at an odd
boundary.

e Sections .text, .data, or .bss not found. Optional header may be
useless.

The UNIX system a.out header uses values found in the .fext, .data, and
.bss section headers.

e Undefined symbol sym first referenced in file name .

Unless the —r option is used, the /d requires that all referenced symbols are -
defined.

e Unexpected EOF (End Of File).
Syntax error in the ffile.
7.5 Syntax Diagram for Input Directives
A syntax diagram for input directives is found in Figures 7-2 thru 7-5.

Sys5 UNIX 7-33

LINK EDITOR

CHAPTER 7
directives -> expanded directives
<file> > | { <emd> }
<cmd> -> | <memory>
-> | <sections>>
-> | <assignment>
-> | <filename>
-> | <flags>
<memory -> | MEMORY { <memory_spec>>
{] <memory_spec> }}
<memory_spec> | -> | <name> [<attributes>] :
<origin_spec> [,] <length_spec:>
<attributes> > | ({RIWIX]1})
<origin_spec> -> | <origin> = <long>
<lenth_spec> -> | <length> = <long>
<origin> -> | ORIGIN |o|org|origin
<length> -> | LENGTH|I|len |length
<sections>- -> | SECTIONS {{ <sec_or_group> }}
<sec_or_group:> -> | <section:> | <group> | <library>
<group> -> | GROUP <group_options> : {
< section_list> } [<mem_spec>]
<section_list> -> | <section> {[,] <section> }

7-34

Figure 7-2. Syntax Diagram for input Directives (Sheet 1 of 4)

Sys5 UNIX

N

N

//'\x .

“\»_/"/

LINK EDITOR : CHAPTER 7

directives -> expanded directives

<section> -> | <name> <sec_options> : {
<statement_list> }
[<fill>] [<mem_spec>]

<group_options> | -> | [<addr>] [<align_option>]

< sec_options>> -> | [<addr>] [<align_option>]
[<block_option>] [<type_option>]
<addr> -> | <long>
< align_option> -> | <align> (<long>)
<align> -> | ALIGN |align
< block_option>> -> | <block> (<long>)
<block> -> | BLOCK |block
<type_option> -> | (DSECT)|(NOLOAD) |(COPY)
<fill> -> | = <long>
<mem_spec> -> | > <name>
-> | > <attributes>
<statement> -> | <file_name> [(<name_list>)]

[<fill>] <library> <assignment>

<name_list> -> | <name> {[,] <name> }
<library> -> | -l<name>
<assignment> -> | <Iside> < assign_op> <expr> <end:>
<lIside> -> | <name>|.
< assign_op> > | =l+=l=]*=) =
<end> > |,
<expr> -> | <expr> <binary_op>> <expr>
> | <term>
<binary_op> > | *1/|%
>+

> | >> <<

Figure 7-3. Syntax Diagram for Input Directives (Sheet 2 of 4)

Sys5 UNIX 7-35

LINK EDITOR

CHAPTER 7
directives - expanded directives

> | ==1=]><]<=]|>=
> | &
> ||
> | &&
> |

<term> -> | <long>
-> | <name>
-> | <align> (<term>)
> | (<expr)
-> | <unary_op> <term>

<unary_op> | -> | |-

<flags> -> | -e<wht_space><name>
-> | -f<wht_space><long>
-> | -h<wht_space><long>
-> | <I<name>
-> | -m
-> | -o<wht_space> <filename>
> | er
> | -s
> | -t
-> | -u<wht_space><name>
> | -z
-> | -H
-> | -F
-> | -L<pathname>-
> | -M
-> | -N
-> | -8
> | -V
-> | -VS<wht_space><long>
-> | -a
> | =X

7-36

Figure 7-4. Syntax Diagram for Input Directives (Sheet 3 of 4)

Sys5 UNIX

LINK EDITOR

CHAPTER 7

(_ directives

-> expanded directives

<name> -> | Any valid symbol name
<long> -> | Any valid long integer constant
<wht_space> | -> | Blanks, tabs, and newlines
<filename> -> | Any valid UNIX operating system

filename. This may include a

full or partial pathname.
<pathname> -> | Any valid UNIX operating system

pathname (full or partial)

Figure 7-5. Syntax Diagram for Input Directives (Sheet 4 of 4)

Sys5 UNIX

7-37

THE COMMON OBJECT FILE FORMAT CHAPTER 8

(8. THE COMMON OBJECT FILE FORMAT

This Chapter describes the Common Object File Format (COFF) used on
several processors and operating systems. The COFF is simple enough to
be easily incorporated into existing projects, yet flexible enough to meet the
needs of most projects. The COFF is the output file produced on some
UNIX systems by the assembler (as) and the link editor (/d). This format is
also used by other operating systems; hence, the word common is both
descriptive and widely recognized. Currently, this object file format is used
for the Some key features of COFF are

e Applications may add system-dependent information to the object file
without causing access utilities to become obsolete.

e Space is provided for symbolic information used by debuggers and
other applications

e Users may make some modifications in the object file construction at
compile time.

The object file supports user-defined sections and contains extensive
information for symbolic software testing. An object file contains

e A file header
(e Optional header information
o A table of section headers
e Data corresponding to the section header
e Relocation information
e Line numbers
e A symbol table
e A string table.

Figure 8-1 shows the overall structure.

(

Sys5 UNIX 8-1

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

FILE HEADER
Optional Information
Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n
Relocation Info for Sect. 1

Relocation Info for Sect. n
Line Numbers for Sect. 1

Line Numbers for Sect. n
SYMBOL TABLE
STRING TABLE

Figure 8-1. Object File Format

The last four sections (relocation, line numbers, symbol table, and the string
table) may be missing if the program is linked with the —s option of the
UNIX system link editor or if the line number information, symbol table, and
string table are removed by the strip command. The line number
information does not appear unless the program is compiled with the —g
option of the compiler (CC) command. Also, if there are no unresolved
external references after linking, the relocation information is no longer
needed and is absent. The string table is also absent if the source file does
not contain any symbols with names longer than eight characters.

An object file that contains no errors or unresolved references can be
executed on the target machine.

8.1 Definitions and Conventions

Before proceeding further, you should become familiar with the following
terms and conventions:

8.1.1 Sections

A section is the smallest portion of an object file that is relocated and treated
as one separate and distinct entity. In the default case, there are three
sections named .text, .data, and .bss. Additional sections accommodate

8-2 Sys5 UNIX

N
\;\\ B //’

THE COMMON OBJECT FILE FORMAT CHAPTER 8

multiple text or data segments, shared data segments, or user-specified
sections. However, the UNIX operating system loads only the .text, .data,
and .bss into memory when the file is executed.

8.1.2 Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that section or
symbol from address zero of the address space. The term physical address
as used in COFF does not correspond to the general usage. The physical
address of an object is not necessarily the address at which the object is
placed when the process is executed. For example, on a system with
paging, the address is located with respect to address zero of virtual
memory and the system performs another address translation. The section
heading contains two address fields, a physical address, and a virtual
address; but in all versions of COFF on UNIX systems, the physical address
is equivalent to the virtual address.

8.2 File Header

The file header contains the 20 bytes of information shown in Figure 8-2 and
8-3. The last 2 bytes are flags that are used by /d and object file utilities.

Sys5 UNIX 8-3

CHAPTER 8 THE COMMON OBJECT FILE FORMAT
Bytes Declaration Name Description

0-1 unsigned short | f_magic | Magic number,
see Figure 8-3.

2-3 unsigned short | f_nscns | Number of
section
headers
(equals the
number of

- sections)

4-7 long int f_timdat | Time and date
stamp
indicating
when the file
was created
relative to the
number of
elapsed
seconds since
00:00:00 GMT,
January 1,
1970.

Figure 8-2. File Header Contents (Sheet 1 of 2)
8-4

Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes Declaration Name Description
8-11 long int f_symptr | File pointer
containing the
starting
address of the
symbol table
12-15 long int f_nsyms | Number of
entries in the
symbol table
16-17 | unsigned short | f_opthdr | Number of
bytes in the
optional
header

18-19 | unsigned short f_flags Flags (see
Figure 8-5 and
8-6.)

Figure 8-3. File Header Contents (Sheet 2 of 2)

The size of optional header information (f_opthdr) is used by all referencing
programs that seek to the beginning of the section header table. This
enables the same utility programs to work correctly on files targeted for
different systems.

8.2.1 Magic Numbers

The magic number specifies the target machine on which the object file is
executable. The currently defined magic numbers are in Figure 8-4.

Mnemonic | Magic Number System

FBOMAGIC 0560 WE-32 (Forward
Byte Ordering)

RBOMAGIC 0565 WE-32 (Reverse
Byte Ordering)

Figure 8-4. Magic Numbers
8.2.2 Flags

The last 2 bytes of the file header are flags that describe the type of the
object file. The currently defined flags are given in Figure 8-5 and 8-6.

Sys5 UNIX 8-5

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Mnemonic Flag Meaning

F_RELFLG | 00001 | Relocation
information
stripped from the
file

F_EXEC 00002 | File is executable
(i.e. no unresolved
external
references)
F_LNNO 00004 | Line numbers
stripped from the
file

F_LSYMS 00010 | Local symbols
stripped from the
file

F_MINMAL | 00020 | Not used by UNIX
F_UPDATE | 00040 | Not used by UNIX
F_SWABD 00100 | Not used by UNIX
F_AR16WR | 00200

Figure 8-5. File Header Flags (Sheet 1 of 2)

Mnemonic Flag Meaning
F_AR32WR | 00400
F_PATCH 02000 | Not used by UNIX

Figure 8-6. File Header Flags (Sheet 2 of 2)
8.2.3 File Header Declaration

The C structure declaration for the file header is given in Figure 8-5. This
declaration may be found in the header file filehdr.h.

Trademark of Digital Equip ment Corp oration

8-6 | Sys5 UNIX

(;

THE COMMON OBJECT FILE FORMAT CHAPTER 8

struct filehdr {
unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of section *

long f_timdat; /* time and data stamp /*
long f_symptr; /* file ptr to symbol table */
long f-nsyms; /* number entries in the symbol table */

unsigned short f_opthdr; /* size of optional header */

unsigned short f_flags; /* flags */

5

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

Figure 8-7. File Header Declaration
8.3 Optional Header Information

The template for optional information varies among different systems that
use the COFF. Applications place all system-dependent information into this
record. This allows different operating systems access to information that
only that operating system uses without forcing all COFF files to save space
for that information. General utility programs (for example, the symbol table
access library functions, the disassembler, etc.) are made to work properly
on any common object file. This is done by seeking past this record using
the size of optional header information in the file header f_opthdr.

8.3.1 Standard SysS UNIX a.out Header

By default, files produced by the link editor for a UNIX system always have a
standard UNIX System a.out header in the optional header field. The UNIX
system a.out header is 28 bytes. The extra 8 bytes represent unused fields
that are present for historical reasons. Therefore, the two formats contain
functionally equivalent information. The fields of the optional header are
described in Figure 8-8 and 8-9.

Sys5 UNIX 8-7

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

Bytes | Declaration | Name Description
0-1 short magic Magic number
2-3 short vstamp Version stamp
4-7 long int tsize Size of text
in bytes
8-11 long int dsize Size of initialized
data in bytes
12-15 | long int bsize Size of uninitialized
data in bytes
16-19 | long int dumi1 Unused dummy field
20-23 | long int dum2 Unused dummy field
24-27 | long int entry Entry point
27-31 | long int text_start | Base address of text
32-35 | long int data_start | Base address of data
Figure 8-8. Optional Header Contents
Bytes | Declaration | Name Description
0-1 | short magic Magic number
2-3 | short vstamp Version stamp
4-7 | long int tsize Size of text in bytes
8-11 | long int dsize Size of initialized
data in bytes
12-15 | long int bsize Size of uninitialized
data in bytes
16-19 | long int entry Entry point
20-23 | long int text_start | Base address
of text
24-37 | longint data_start | Base address of data

Figure 8-9. Optional Header Contents

The magic number in the optional header supplies operating system
dependent information about the object file. Whereas, the magic number in
the file header specifies the machine on which the object file runs. The

8-8 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

magic number in the optional header supplies information telling the
operating system on that machine how that file should be executed.

The magic numbers recognized by the UNIX operating system are given in
Figure 8-10.

Value Meaning

0407 | The text segment is not
write-protected or
sharable; the data
segment is contiguous
with the text segment.
0410 | The data segment starts
at the next segment
following the text
segment and the text
segment is write
protected.

Figure 8-10. UNIX Magic Numbers

8.3.2 Optional Header Declaration

The C language structure declaration currently used for the UN/X system
a.out file header is given in Figure 8-11. This declaration may be found in
the header file aouthdr.h.

Sys5 UNIX ' ' 8-9

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

typedef struct aouthdr {

short magic; /* magic number */
short vstamp; /* version stamp */
long tsize; /* text size in bytes, padded */

/* to full word boundry */

long dsize; /* initialized data size */

long bsize; /* uninitialized data size */
#if u3b

long dumi,; /* unused dummy field */

long dum2; /* unused dummy field */
#endif ,

long entry; /* entry point */

long text_start; .* base of text for this file */
long data_start -~ base of data for this file */
} AGUTHDR;

Figure 8-11. Aouthdr Declaration
8.4 Section Headers

Every object file has a table of section headers to specify the layout of data
within the file. The section header table consists of one entry for every
section in the file. The information in the section header is described in
Figure 8-12.

8-10 Sys5 UNIX

TN

THE COMMON OBJECT FILE FORMAT CHAPTER 8
Bytes | Declaration | Name Description
0-7 | char s_name 8-char null
padded section
name
8-11 | long int S_paddr Physical
address of section
12-15 | long int s_vaddr Virtual
address of section
16-19 | long int s_size Section
size in bytes
20-23 | long int s_scnptr | File pointer
to raw data
24-27 | long int s_relptr File ptr to
relocation
entries
28-31 | long int s_Innoptr | File ptr to line
number entries
32-33 | unsigned s_nreloc | Number of
short entries
34-35 | unsigned s_ninno Number of line
short number entries
36-39 | long int s_flags Flags (see
Figure 8-13 and 8-14)

Figure 8-12. Section Header Contents

The size of a section is padded to a multiple of 4 bytes.

File pointers are byte offsets that can be used to locate the start of data,
relocation, or line number entries for the section. They can be readily used
with the UNIX system function fseek(3S).

8.4.1 Flags

The lower 4 bits of the flag field indicate a section type. The flags are
described in Figure 8-13 and 8-14.

Sys5 UNIX

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

Mnemonic

Flag

Meaning

STYP_REG

0x00

Regular section
(allocated,

relocated, loaded)

STYP_DSECT

0x01

Dummy section
(not allocated,
relocated, not
loaded)

STYP_NOLOAD

0x02

Noload section
(allocated,
relocated, not

loaded)

Figure 8-13. Section Header Flags (Sheet 1 of 2)

Sys5 UNIX

THE COMMON OBJECT FILE FORMAT

Mnemonic

Fla

Meaning

STYP_GROUP

0x04

Grouped section
(formed from input
sections)

STYP_PAD

0x08

Padding section
(not allocated, not
relocated, loaded)

STYP_COPY

0x10

Copy section (for a
decision function
used in updating
fields; not
allocated, not
relocated, loaded,
relocation and line
number entries
processed
normally)

STYP_TEXT

0x20

Section contains
executable text

STYP_DATA

0x40

Section contains
initialized data

STYP_BSS

0x80

Section contains
only uninitialized
data

Figure 8-14. Section Header Flags (Sheet 2 of 2)

8.4.2 Section Header Declaration

CHAPTER 8

The C structure declaration for the section headers is described in Figure 8-

15. This declaration may be found in the header file scuhdr.h.

Sys5 UNIX

8-13

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

struct scnhdr {

char s_name{8]; /* section name */

long s_paddr; /* physical address */

long s_vaddr, /* virtual address */

long s_size; /* section size */

long s_scnptr; /* file ptr to section raw data */

long s_relptr; /* file ptr to relocation */

long s_lnnoptr; /* file ptr to line number */
unsigned short s_nreloc; /* number of relocation entries */
unsigned short s_ninno; /* number of line number entries */

long s_flags; /* flags */

|

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Figure 8-15. Section Header Declaration
8.4.3 .bss Section Header

The one deviation from the normal rule in the section header table is the
entry for uninitialized data in a .bss section. A .bss section has a size and
symbols that refer to it, and symbols that are defined in it. At the same
time, a .bss section has no relocation entries, no line number entries, and
no data. Therefore, a .bss section has an entry in the section header table
but occupies no space elsewhere in the file. In this case, the number of
relocation and line number entries, as well as all file pointers in a .bss
section header, are zero.

8.5 Sections

Figure 8-1 shows that section headers are followed by the appropriate
number of bytes of text or data. The raw data for each section begins on a
full word boundary in the file.

Files produced by the cc and the as always contain three sections, called
.text, .data, and .bss. The .text section contains the instruction text (i.e.,

8-14 Sys5 UNIX

SN

AN

"/

THE COMMON OBJECT FILE FORMAT CHAPTER 8

executable code), the .data section contains initialized data variables, and
the .bss section contains uninitialized data variables.

The link editor “SECTIONS directives” (see Chapter 7) allows users to
¢ Describe how input sections are to be combined.
o Direct the placement of output sections.
e Rename output sections.

If no SECTIONS directives are given, each input section appears in an
output section of the same name. For example, if a number of object files
from the "cc" are linked together (each containing the three sections .text,
.data, and .bss), the output object file contains three sections, .text, .data,
and .bss.

8.6 Relocation Information

Object files have one relocation entry for each relocatable reference in the
text or data. The relocation information consists of entries with the format
described in Figure 8-16.

Bytes | Declaration Name Description

0-3 long int r_symndx | (Virtual)
address
of reference
4-7 long int r_symndx | symbol
table
index

8-9 unsigned short | r_type Relocation
type

Figure 8-16. Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text or data to
which this entry applies. The next field is the index, counted from 0, of the
symbol table entry that is being referenced. The type field indicates the type
of relocation to be applied.

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated.

Sys5 UNIX 8-15

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

The currently recognized relocation types are given in Figures 8-17 through

8-19.

8-16

Mnemonic | Flag | Meaning
R_ABS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.
R_DIR24 04 Direct 24-bit
reference to the
symbol’s virtual
address.
R_REL24 05 A “PC-relative”

24-bit reference to
the symbol's
virtual address.
Actual address is
calculated by
adding a constant
to the PC value.

Figure 8-17. Computers Relocation Types

Sys5 UNIX

TN

\\,‘t J/

NS

THE COMMON OBJECT FILE FORMAT

Sys5 UNIX

Mnemonic | Flag Meaning
R_BS 0 | Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored. ‘
R_DIR32 06 | Direct 32-bit
reference to the
symbol’s virtual
address
R_DIR32S | 012 | Direct 32-bit

reference to the
symbol’s virtual
address, with the
32-bit value stored
in the reverse
order in the object
file.

Figure 8-18. Relocation Types

CHAPTER 8

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

Mnemonic

Flag

Meaning

R_ABS

Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R_RELBYTE

017

Direct 8-bit
reference to the
symbol's virtual
address.

R_RELWORD

020

Direct 16-bit
reference to the
symbol's virtual
address.

R_RELLONG

021

Direct 32-bit
reference to the
symbol's virtual
address.

R_PCRBYTE

022

A "PC_relative” 8-
bit reference to the
symbol's virtual
address.

R_PCRWORD

023

A "PC_relative”
16-bit reference to
the symbol's
virtual address.

R_PCRLONG

024

A "PC_relative"
32-bit reference to
the symbol's
virtual address.

Figure 8-19. Relocation Types

Relocation of a symbol index of —1 indicates that the amount by which the
section is being relocated is added to the relocatable address.

The as automatically generates relocation entries which are then used by
the link editor. The link editor uses this information to resolve external

references in the file.

8-18

Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

8.6.1 Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 8-23. This
declaration may be found in the header file reloc.h.

struct reloc {
long r_vaddr; /* virtual address of reference */

long r_symndx; /*index into symbol table */

unsigned short r_type; /* relocation type */

5
#define RELOC struct reloc

#define RELSZ 10
0

Figure 8-20. Relocation Entry Declaration
8.7 Line Numbers

When invoked with the —g option, UNIX system ccs (cc, f77) generates an
entry in the object file for every C language source line where a breakpoint
can be inserted. You can then reference line numbers when using a
software debugger like sdb. All line numbers in a section are grouped by
function, as shown in Figure 8-24 and 8-25.

symbol index 0
physical address | line number
physical address | line number

symbol index 0
physical address | line number
physical address | line number

Figure 8-21. Line Number Grouping

The first entry in a function grouping has line number 0 and has, in place of
the physical address, an index into the symbol table for the entry containing
the function name. Subsequent entries have actual line numbers and
addresses of the text corresponding to the line numbers. The line number

Sys5 UNIX 8-19

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

entries appear in increasing order of address.
8.7.1 Line Number Declaration

The structure declaration currently used for line number entries is given in
Figure 8-22.

struct lineno {
union

{

long |_symndx; /* symtbl index of func name */

long |_paddr; /* paddr of line number */
} |_addr;
unsigned short I_Inno; /* line number */
|3
#define LINENO struct lineno

#define LINESZ 6
0

Figure 8-22. Line Number Entry Declaration
8.8 Symbol Table

Because of symbolic debugging requirements, the order of symbols in the
symbol table is very important. Symbols appear in the sequence shown in
Figure 8-23.

8-20 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

file name 1
function 1

local symbols
for function 1

function 2

local symbols
for function 2

statics

file name 2
function 1

local symbols
for function 1

statics

defined global
symbols
undefined global
symbols

Figure 8-23. COFF Global Symbol Table

The word “statics™ in Figure 8-23 means symbols defined in the C language
storage class static outside any function. The symbol table consists of at
least one fixed-length entry per symbol with some symbols followed by
auxiliary entries of the same size. The entry for each symbol is a structure
that holds the value, the type, and other information.

8.8.1 Special Symbols

The symbol table contains some special symbols that are generated by the
“cc”, "as", and other tools. These symbols are given in Figure 8-24 and 8-
25.

Sys5 UNIX 8-21

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Symbol Meaning

file file name

text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

ef address of end of function

.target | pointer to the structure or
union returned by a function

.xfake dummy tag name for
structure, union, or enumeran

Figure 8-24. Special Symbols in the Symbol Table (Sheet 1 of 2)

Symbol Meaning

.e0s end of members of
structure, union, or
enumeration

_etext,etext next available address
after the end of the
output section .text
_edata,edata | next available address
after the end of the
output section .data
_end,end next available address
after the end of the
output section .bss.

Figure 8-25. Special Symbols in the Symbol Table (Sheet 2 of 2)

Six of these special symbols occur in pairs. The .bb and .eb symbols
indicate the boundaries of inner bilocks. A .bf and .ef pair brackets each
function; and a .xfake and .eos pair names and defines the limit of
structures, unions, and enumerations that were not named. The .eos
symbol also appears after named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the “cc” invents
a name to be used in the symbol table. The name chosen for the symbol

8-22 Sys5 UNIX

A

THE COMMON OBJECT FILE FORMAT CHAPTER 8

table is .x.fake, where “x” is an integer. If there are three unnamed
structures, unions, or enumerations in the source, their tag names are
“.0fake”, “.1fake”, and “.2fake".

Each of the special symbols has different information stored in the symbol
table entry as well as the auxiliary entry.

8.8.1.1 Inner Blocks

The C language defines a block as a compound statement that begins and
ends with braces ({ and }). An inner block is a block that occurs within a
function (which is also a block).

For each inner block that has local symbols defined, a special symbol .bb is
put in the symbol table immediately before the first local symbol of that
block. Also a special symbol, .eb is put in the symbol table immediately
after the last local symbol of that block. The sequence is shown in Figure
8-26.

-.bb

local symbols
for that block

.eb

Figure 8-26. Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. See Figure 8-24.

Sys5 UNIX 8-23

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

{ /* block 1 */
int i;
char c;
{ /* block 2 */
long a;
{ /* block 3 */
int x;
} /* block 3 */
} /* block 2 */
{ /* block 4 */
long i;
} /* block 4 */
} /* block 1 */

Figure 8-27. Nested blocks

The symbol table would look like Figure 8-28.

8-24 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

.bb for block 1
i
c

.bb for block 2
a

.bb for block 3
X

.eb for block 3

.eb for block 2

.bb for block 4
|

.bb for block 4

.eb for block 1

Figure 8-28. Example of the Symbol Table
8.8.2 Symbols and Functions

For each function, a special symbol .bf is put between the function name
and the first local symbol of the function in the symbol table. Also, a special
symbol .ef is put immediately after the last local symbol of the function in
the symbol table. The sequence is shown in Figure 8-29.

function name
.bf
local signal
.ef

Figure 8-29. Symbols for Functions

If the return value of the function is a structure or union, a special symbol
target is put between the function name and the .bf. The sequence is
shown in Figure 8-30.

Sys5 UNIX 8-25

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

function name
target
.bf
local symbols
.ef

Figure 8-30. The Special Symbol .Target

The cc invents .target to store the function-return structure or union. The
symbol .target is an automatic variable with “pointer” type. Its value field in
the symbol is always O.

8.8.3 Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for
their entries in the symbol table. The symbol table entries each contain the
18 bytes of information. The meaning of each of the fields in the symbol
table entry is described in Figure 8-31.

It should be noted that indices for symbol table entries begin at zero and
count upward. Each auxiliary entry also counts as one symbol.

8-26 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes Declaration Name Description

0-7 | (seetextbelow) | _n These eight
bytes contain
either the
name of a
pointer or the
name of a
symbol.

8-11 | longint n_value Symbol value;
storage class
dependent

12-13 | short n_scnum Section
number of
symbol

14-15 | unsigned short n_type Basic and
derived type
specification

16 | char n_sclass Storage class
of symbol

17 | char n_numaux | Number of
auxiliary
entries.

Figure 8-31. Symbol Table Entry Format
8.8.3.1 Symbol Names

The first 8 bytes in the symbol table entry are a union of a character array
and two longs. If the symbol name is eight characters or less, the (null-
padded) symbol name is stored there. If the symbol name is longer than
eight characters, then the entire symbol name is stored in the string table.
In this case, the 8 bytes contain two long integers, the first is zero, and the
second is the offset (relative to the beginning of the string table) of the name
in the string table. Since there can be no symbols with a null name, the
zeroes on the first 4 bytes serve to distinguish a symbol table entry with an
offset from one with a name in the first 8 bytes as shown in Figure 8-32.

Sys5 UNIX 8-27

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

Bytes

Declaration

Name

Description

0-7

char

n_name

8-character
null-padded
symbol name

0-3

long

n_zeroes

zero in this
field indicates
the name is in
the string table

4-7

long

n_offset

offset of the
name in the
string table

Figure 8-32. Name Field

Some special symbols are generated by the "cc” and link editor as
discussed in "special symbols". The "cc" prepends an underscore (‘_') to all
the user defined symbols it generates.

8.8.3.2 Storage Classes

The storage class field has one of the values described in Figure 8-33 and

8-34. These "defines” may be found in the header file storclass.h.

8-28

Sys5 UNIX

’/f(‘ ‘\\\

NS

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Mnemonic Value Storage Class
C_EFCN -1 physical end of a function
C_NULL 0 -

C_AUTO 1 automatic variable
C_EXT 2 external symbol
C_STAT 3 static

C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label

C_ULABEL 7 undefined label
C_MOS 8 member of structure
C_ARG 9 | function argument
C_STRTAG 10 structure tag
C_MOU 11 member of union
C_UNTAG 12 union tag

C_TPDEF 13 type definition
C_USTATIC 14 uninitialized static
C_ENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C_FIELD 18 bit field

Figure 8-33. Storage Classes (Sheet 1 of 2)

Sys5 UNIX 8-29

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Mnemonic | Value Storage Class

C_BLOCK 100 beginning and end of block

C_FCN 101 beginning and end of function
C_EOS 102 end of structure

C_FILE 103 | file name

C_LINE 104 | used only by utility programs

C_ALIAS 105 | duplicated tag

C_HIDDEN 106 like static, used to avoid
name conflicts

Figure 8-34. Storage Classes (Sheet 2 of 2)

All of these storage classes except for C_ALIAS and C-HIDDEN are
generated by the "cc” or "as". The compress utility, cprs, generates the
C_ALIAS mnemonic. This utility (described in the UNIX System Reference
Manual) removes duplicated structure, union, and enumeration definitions
and puts ALIAS entries in their places. The storage class C-HIDDEN is not
used by any UNIX system tools.

Some of these storage classes are used only internally by the "cc” and the
“as". These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

8.8.3.3 Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They are
given in Figure 8-35.

8-30 ~ Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Special Symbol Storage Class
file C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

target C_AUTO

.xfake C_STRTAG, C_UNTAG, C_ENTAG
.e0s C_EOS

text C_STAT

.data C_STAT

.bss C_STAT

Figure 8-35. Storage Class by Special Symbols

Also some storage classes are used only for certain special symbols. They
are summarized in Figure 8-36.

Storage Class | Special Symbol

C_BLOCK .bb, .eb
C_FCN .bf, .ef
C_EOS .e0s
C_FILE file

Figure 8-36. Restricted Storage Classes

8.8.3.4 Symbol Value Field

The meaning of the “value” of a symbol depends on its storage class. This
relationship is summarized in Figure 8-37.

Sys5 UNIX 8-31

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

Storage Class Meaning
C_AUTO stack offset in bytes
C_EXT relocatable address
C_STAT relocatable address
C_REG register number
C_LABEL relocatable address
C_MOS offset in bytes
C_ARG stack offset in bytes
C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE enumeration value
C_REGPARM | register number
C_FIELD bit displacement
C_BLOCK relocatable address
C_FCN relocatable address
C_EOS size

C_FILE (see text below)
C_ALIAS tag index
C_HIDDEN relocatable address

Figure 8-37. Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries
form a 1-way linked list in the symbol table. If there are no more .file
entries in the symbol table, the value of the symbol is the index of the first
global symbol. ’

Relocatable symbols have a value equal to the virtual address of that
symbol. When the section is relocated by the link editor, the value of these
symbols changes.

8.8.3.5 Section Number Field

Section numbers are listed in Figure 8-38.

8-32 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Mnemonic | Section Number Meaning

N_DEBUG -2 special symbolic
debugging symbol

N_ABS -1 absolute symbol

N_UNDEF 0 undefined external
symbol

N_SCNUM 1-077777 section number
where symbol was
defined

Figure 8-38. Section Number

A special section number (—2) marks symbolic debugging symbols,
including structure/union/enumeration tag names, typedefs, and the name of
the file. A section number of —1 indicates that the symbol has a value but
is not relocatable. Examples of absolute-valued symbols include automatic
and register variables, function arguments, and .eos symbols. The .text,
.data, and .bss symbols default to section numbers 1, 2, and 3,
respectively.

With one exception, a section number of 0 indicates a relocatable external
symbol that is not defined in the current file. The one exception is a multiply
defined external symbol (i.e., FORTRAN common or an uninitialized variable
defined external to a function in C). In the symbol table of each file where
the symbol is defined, the section number of the symbol is 0 and the value
of the symbol is a positive number giving the size of the symbol. When the
files are combined, the link editor combines all the input symbols into one
symbol with the section number of the .bss section. The maximum size of
all the input symbols with the same name is used to allocate space for the
symbol and the value becomes the address of the symbol. This is the only
case where a symbol has a section number of 0 and a non-zero value.

8.8.3.6 Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain section
numbers. They are summarized in Figure 8-39.

Sys5 UNIX 8-33

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Storage Class Section Number
C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM
C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N_SCNUM
C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

C_MOouU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG

C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM | N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

Figure 8-39. Section Number and Storage Class

8.8.3.7 Type Entry

The type field in the symbol table entry contains information about the basic
and derived type for the symbol. This information is generated by the "cc".
The "cc" generates this information only if the —g option is used. Each
symbol has exactly one basic or fundamental type but can have more than
one derived type. The format of the 16-bit type entry is

d6 | d5 | d4 | d3 | d2 | d1 | typ

8-34 ‘ Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bits 0 through 3, called “typ”, indicate one of the fundamental types given in
Figure 8-40.

Mnemonic | Value Type
T_NULL 0 type not assigned
T_CHAR 2 character
T_SHORT 3 short integer
T_INT 4 integer

T_LONG 5 long integer
T_FLOAT 6 floating point
T_DOUBLE 7 double word
T_STRUCT 8 structure
T_UNION 9 union ,
T_ENUM 10 enumeration
T_MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T_USHORT 13 unsigned short
T_UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 8-40. Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked “d1” through “d6.”
These “d” fields represent levels of the derived types given in Figure 8-41.

Mnemonic | Value Type
DT_NON 0 no derived type
DT_PTR 1 pointer
DT_FCN 2 function
DT_ARY 3 array

Figure 8-41. Derived Types
The following examplés demonstrate the interpretation of the symbol table
entry representing type.
char *func();

Here func is the name of a function that returns a pointer to a character.
The fundamental type of func is 2 (character), the d1 field is 2 (function),

Sys5 UNIX - 8-35

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

and the d2 field is 1 (pointer). Therefore, the type word in the symbol table
for func contains the hexadecimal number 0x62, which is interpreted to
mean “function that returns a pointer to a character.”

short *tabptr[10][25][3];

Here tabptr is a 3-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the d1, d2, and d3 fields
each contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type
entry in the symbol table contains the hexadecimal number 0x7f3 indicating
a “3-dimensional array of pointers to short integers.”

8.8.3.8 Type Entries and Storage Classes

Figures 8-42 and 8-43 show the type entries that are legal for each storage
class.

Storage emeemmeaeatd’’ @NtrY-eeeee--- “typ”’ entry

Class Function? | Array? | Pointer? | Basic Type

C_AUTO no yes yes Any except
T_MOE

C_EXT yes yes yes Any except
T_MOE

C_STAT yes yes yes Any except
T_MOE

C_REG no no yes Any except
T_MOE
C_LABEL no no no T_NULL

C_MOS no yes yes Any except
T_MOE

C_ARG yes no yes Any except
T_MOE

C_STRTAG | no no no T_STRUCT

C_Mou no yes yes Any except
T_MOE
C_UNTAG no no no T_UNION

Figure 8-42. Type Entries by Storage Class (Sheet 1 of 2)

8-36 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Storage | = =-mm-eee- “d” entry---------- “typ” entry
Class Function? | Array? | Pointer? | Basic Type
C_TPDEF no yes yes Any except
T_MOE
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM | no no yes Any except
T_MOE
C_FIELD no no no T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG
C_BLOCK no no no T_NULL
C_FCN no no no T_NULL
C_EQOS no no no T_NULL
C_FILE no no no T_NULL
C_ALIAS no no no T_STRUCT,
T_UNION<,
T_ENUM

Figure 8-43. Type Entries by Storage Class (Sheet 2 of 2)

Conditions for the “d” entries apply to d1 through d6, except that it is
impossible to have two consecutive derived types of “function.”

Although function arguments can be declared as arrays, they are changed
to pointers by default. Therefore, no function argument can have “array” as
its first derived type.

8.8.3.9 Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is given in
Figure 8-44. This declaration may be found in the header file syms.h.

Sys5 UNIX 8-37

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

struct syment

{

union
{
char _n_name[SYMNMLEN];
/* symbol name™;
struct
{
long _n_zeroes;
/* symbol name *
long _n_offset;
/* location in string table */
f_n_n;
char _n_nptr(2];
/* allows overlaying "/
}on
long n_value;
/* value of symbol */
short n_scnum;

.* section number */

unsigned short n_type;
" type and derived */

char n_sclass;
-~ storage class */

char n_numaux;
i* number of aux entries

#define n_name _n._n_name
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr{1]

#define SYMNMLEN 8
#define SYMESZ 18 " size of a symbol table entry */

Figure 8-44. Symbol Table Entry Declaration
8.8.4 Auxiliary Table Entries

Currently, there is at most one auxiliary entry per symbol. The auxiliary
table entry contains the same number of bytes as the symbol table entry.
However, unlike symbol table entries, the format of an auxiliary table entry
of a symbol depends on its type and storage class. They are summarized in
Figure 8-45.

8-38 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8
Name Storage Type Entry Aucxiliary
Class d1 typ Entry Format
file C_FILE DT_NON | T_NULL file name
.text,.data, C_STAT DT_NON | T_NULL section
.bss
tagname C_STRTAG | DT_NON | T_NULL tag name
C_UNTAG
C_ENTAG
.eos C_EOS DT_NON | T_NULL end of
structure
fcname C_EXT DT_FCN (Note 1) function
C_STAT
arrname (Note 2) DT_ARY | (Note 1) array
.bb C_BLOCK | DT_NON | T_NULL beginning
of block
.eb C_BLOCK DT_NON | T_NULL end of block
.bf,.ef C_FCN DT_NON | T_NULL beginning
and end of
function
name related | (Note 2) DT_PTR T_STRUCT, | name related
to structure DT_ARR, | T_UNION, to structure,
union, DT_NON | T_ENUM union,
enumeration enumeration
Notes:

1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

Figure 8-45. Auxiliary Symbol Table Entries

In Figure 8-45, “tagname” means any symbol name including the special
symbol . xfake, and “fcname” and “arrname” represent any symbol name.

Any symbol that satisfies more than one condition in Figure 8-39 should
have a union format in its auxiliary entry. Symbols that do not satisfy any of
the above conditions should NOT have any auxiliary entry.

Sys5 UNIX

8-39

CHAPTER 8

8.8.4.1 File Names

THE COMMON OBJECT FILE FORMAT

Each of the auxiliary table entries for a file name contains a 14-character file
name in bytes 0 through 13. The remaining bytes are 0, regardless of the

size of the entry.
8.8.4.2 Sections

The auxiliary table entries for sections have the format as shown in Figure

8-.

Bytes | Declaration Name Description

0-3 long int x_scnlen | section
length

4-6 unsigned short | x_nreloc | number of
relocation
entries

6-7 unsigned short | x_nlinno | number of
line numbers

8-17 - - unused (filled
with zeroes)

Figure 8-46. Format for Auxiliary Table Entries

8.8.4.3 Tag Names

The auxiliary table entries for tag names have the format shown in Figure

8-41.

8-40

Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8
Bytes | Declaration Name Description
0-5 - - unused (filled

with zeros)
6-7 unsigned short | x_size size of strucrt,
union,and
enumeration
8-11 - - unused (filled
with zeroes)
12-15 | long int x_endndx | index of next
entry beyond
this structure,
union, or
enumeration
16-17 | - - unused (filled
with zeroes)

8.8.4.4 End of Structures

The auxiliary table entries for the end of structures

Figure 8-47. Tag Names Table Entries

have the format shown in

Figure 8-48:

Bytes | Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled
with zeroes)

6-7 unsigned short | x_size size of struct,
union, or
enumeration

8-17 - - unused (filled
with zeroes)

Figure 8-48. Table Entries for End of Structures

Sys5 UNIX

8-41

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

8.8.4.5 Functions TN

The auxiliary table entries for functions have the format shown in Figure 8- NS
49:

Bytes | Declaration Name Description

0-3 long int x_tagndx | tag index
4-7 long int x_fsize size of
function

: (in bytes)
8-11 long int x-Innoptr | file pointer
to line number
12-15 | long int x_endndx | index of
next entry
beyond this
point
16-17 | unsigned short | x_tvndx index of the
function’s address
in the transfer
vector table (not
used in UNIX system)

Figure 8-49. Table Entries for Functions

8.8.4.6 Arrays

The auxiliary table entries for arrays have the format shown in Figure 8-50:

8-42 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes | Declaration Name Description

0-3 long int x_tagndx tag index

4-5 unsigned short | x_Inno line number of
declaration

6-7 unsigned short | x_size | size of array

8-9 unsigned short | x_dimen[0] | first dimension

10-11 | unsigned short | x_dimen[1] | second dimension
12-13 | unsigned short | x_dimen[2] | third dimension
14-15 | unsigned short | x_dimen[3] | fourth dimension

16-17 | - - unused (filled
with zeroes)

Figure 8-50. Table Entries for Arrays
8.8.4.7 End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have the
format shown in Figure 8-51:

Bytes Declaration Name | Description

0-3 - - used (filled
, with zeroes)
4-5 unsigned short | x_Inno | C-source line
‘ number
6-17 - - unused (filled

with zeroes)

Figure 8-51. End of Block and Function Entries

8.8.4.8 Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have the
format shown in Figure 8-52:

Sys5 UNIX 8-43

CHAPTER 8

THE COMMON OBJECT FILE FORMAT

Bytes | Declaration Name Description

0-3 - - unused (filled
with zeroes)

4-5 unsigned short | x_Inno C-source line
number

6-11 - - unused (filled
with zeroes)

12-15 | long int x_endndx | index of next
entry past
this block

16-17 | - - unused (filled
with zeroes)

Figure 8-52. Format for Beginning of Block and Function

8.8.4.9 Names Related to Structures, Unions, and Enumerations
The auxiliary table entries for structure, union, and enumerations symbols

have the format shown in Figure 8-53:

Bytes | Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled
with zeroes)

6-7 unsigned short | x_size size of the
structure, union,
or numeration

8-17 - - unused (filled
with zeroes)

Figure 8-53. Entries for Structures, Unions, and Numerations

Names defined by “typedef” may or may not have auxiliary table entries.

For example,

8-44

Sys5 UNIX

o/

THE COMMON OBJECT FILE FORMAT CHAPTER 8

typedef struct people STUDENT,;

struct people {
char name[20];
long id;
|3

typedef struct people EMPLOYEE;

The symbol “EMPLOYEE" has an auxiliary table entry in the symbol table
but symbol “STUDENT" will not.

8.8.4.10 Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is

given in Figure 8-54. This declaration may be found in the header file
syms.h.

Sys5 UNIX 8-45

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

union auxent {

struct {
long x_tagndx;
union {
struct {
unsigned short x_Inno;
unsigned short x_size;
} x_Insz;
long x_fsize;
} x_misc;
union {
struct {
long x_Innoptr;
long x_endndx;
} x_fen;
struct {
unsigned short x_dimen[DIMNUM];
} x_ary;
} x_fenary;
unsigned short x_tvndx;
} x_sym;
struct {
char x_fname[FILNMLEN];
1 x_file;
struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
} x_scn;
struct {
long x_tvfill;
unsigned short x_tvilen;
unsigned short x_tvran[2];
}x_tv;

}
#define FILNMLEN 14

#define DIMNUM 4
#define AUXENT union auxent
#define AUXESZ 18

Figure 8-54. Auxiliary Symbol Table Entry
8.9 String Table

Symbol table names longer than eight characters are stored contiguously in
the string table with each symbol name delimited by a null byte. The first

8-46 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

four bytes of the string table are the size of the string table in bytes; offsets
into the string table therefore are greater than or equal to four.

For example, given a file containing two symbols (with names longer then
eight characters, long_name_1 and another_one) the string table has the
format as shown in Figure 8-55:

28
q ‘o’ n' .g:
1_ ‘n ‘q’ ‘m’
Ae' i_ ll t\ol
la' in‘ loi lt
‘W ‘e’ v 1_
‘0’ ‘n ‘e \Q'

Figure 8-55. String Table

The index of long_name_1 in the string table is 4 and the index of
another_one is 16.

8.10 Access Routines

Supplied with every standard UNIX system release is a set of access
routines that are used for reading the various parts of a common object file.
Although the calling program must know the detailed structure of the parts of
the object file it processes, the routines effectively insulate the calling
program from the knowledge of the overall structure of the object file. In this
way, you can concern yourself with the section you are interested in without
knowing all the object file details.

The access routines can be divided into four categories:

1. Functions that open or close an object file.

Sys5 UNIX 8-47

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Functions that read header or symbol table information.

Functions that position an object file at the start of a particular section
of the object file.

4. A function that returns the symbol table index for a particular symbol.

These routines can be found in the library libld.a and are listed in section 3
of the Sys5 UNIX Programmer Reference Manual. A summary of what is
available can be found in the Sys5 UNIX Programmer Reference Manual
under LDFCN(4).

8-48 Sys5 UNIX

s

BC CHAPTER 9

9. BC

The arbitrary precision desk calculator language (BC) is a language and
compiler for doing arbitrary precision arithmetic under the UNIX operating
system. The output of the compiler is interpreted and executed by a
collection of routines that can input, output, and do arithmetic on infinitely
large integers and on scaled fixed-point numbers. These routines are based
on a dynamic storage allocator. Overflow does not occur until all available
core storage is exhausted.

The BC language has a complete control structure as well as immediate-
mode operation. Functions can be defined and saved for later execution. A
small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

The BC compiler was written to make conveniently available a collection of
routines (called DC) that are capable of doing arithmetic on integers of
arbitrary size. The compiler is not intended to provide a complete
programming language. It is a minimal language facility.

Some of the uses of this compiler are:
o Compile large integers
e Compute accurately to many decimal places
e Convert numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation.
Provision is also made for input and output in bases other than decimal.
Numbers can be converted from decimal to octal by simply setting the
output base to equal eight.

The actual limit on the number of digits that can be handled depends on the
amount of core storage available. This is possible even on the smallest
versions of the UNIX operating system.

The syntax of BC is very similar to that of the C language. This enables
users who are familiar with C language to easily work with BC.

The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, if you type in the addition of two numbers (with the +
operator) such as

142857 + 285714

the program responds immediately with the sum

Sys5 UNIX 9-1

CHAPTER 9 BC

428571.

The operators —, *, /, %, and ~ can also be used. They indicate
subtraction, multiplication, division, remaindering, and integer result
truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that
it is to be negated (the unary minus sign). The expression

7+-3
is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in power, then %, %, and /, and finally, + and —.
Contents of parentheses are evaluated before material outside the
parentheses. Exponentiations are performed from right to left and the other
operators from left to right.

a’b’c and a‘(b'c)
are equivalent as are the two expressions
a*b=xc and (a+b)=c.

However, BC shares with Fortran and C language the undesirable
convention that

a’b=c is equivalent to (a/b)=c.

Internal storage registers to hold numbers have single lowercase letter
names. The value of an expression can be assigned to a register in the
usual way. The statement

XxX=x+3

has the effect of increasing by three the value of the contents of the register
named x. When, as in this case, the outermost operator is an “=", the
assignment is performed; but the result is not printed. Only 26 of these
named storage registers are available.

There is a built-in square root function whose result is truncated to an
integer (see the part on “SCALING"). Entering the lines

x = sqrt(191)
X

produces the printed resuit
13

9-2 Sys5 UNIX

|
“

/

e

N

N

BC CHAPTER 9

9.1 Bases

There are two special internal quantities; ibase (input base) and obase
(output base). The contents of ibase, initially set to 10 (decimal),
determines the base used for interpreting numbers read in. For example,
the input lines

ibase = 8
11

produces the output line
9

and the system is ready to do octal to decimal conversions. Beware,
however, of trying to change the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement has no effect.
For dealing in hexadecimal notation, the characters A through F are
permitted in numbers (regardless of what base is in effect) and are
interpreted as digits having values 10 through 15, respectively. The
statement

ibase = A

changes the base to decimal regardless of what the current input base is.
Negative and large positive input bases are permitted but are useless. No
mechanism has been provided for the input of arbitrary numbers in bases
less than 1 and greater than 16.

The content of obase, initially 10 (decimal), is used as the base for output
numbers. The input lines

obase = 16

1000

produces the output line
3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large
output bases are permitted and are sometimes useful. For example, large
numbers can be output in groups of five digits by setting obase to 100000.
Strange output bases (i.e., 1, 0, or negative) are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines
which are continued end with a backslash (\). Decimal output conversion is
practically instantaneous, but output of very large numbers (i.e., more than
100 digits) with other bases is rather slow. Nondecimal output conversion of
a 100-digit number takes about 3 seconds.

Sys5 UNIX 9-3

CHAPTER 9 BC

The ibase and obase have no effect on the course of internal computation
or on the evaluation of expressions. They only affect input and output
conversions, respectively.

9.2 Scaling

A third special internal quantity called scale is used to determine the scale
of calculated quantities. The number of digits after the decimal point of a
number is referred to as its scale. Numbers may have up to 99 decimal
digits after the decimal point. This fractional part is retained in further
computations. ‘

The contents of scale must be no greater than 99 and no less than 0. It is
initially set to 0. However, appropriate scaling can be arranged when more
than 99 fraction digits are required.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules:

e Addition and subtraction—The scale of the result is the larger of the
scales of the two operands. In this case, there is never any truncation
of the result.

o Multiplication—The scale of the result is never less than the maximum
of the two scales of the operands and never more than the sum of the
scales of the operands. Subject to those two restrictions, the scale of
the result is set equal to the contents of the internal quantity scale.

e Division—The scale of a quotient is the contents of the internal quantity
scale. The scale of a remainder is the sum of the scales of the
quotient and the divisor.

e Exponentiation—The result of an exponentiation is scaled as if the
implied multiplications were performed. An exponent must be an
integer.

e Square root—The scale of a square root is set to the maximum of the
scale of the argument and the contents of scale.

All of the internal operations are actually carried out in terms of integers with
digits being discarded when necessary. In every case where digits are
discarded, truncation and not rounding is performed.

The internal quantities scale, ibase, and obase can be used in expressions
just like other variables. The input line

scale = scale + 1

increases the value of scale by one, and the input line

9-4 Sys5 UNIX

BC CHAPTER 9

scale
causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase or obase are not equal to
10. The internal computations (which are still conducted in decimal
regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal, octal, or any other kind of digits.

9.3 Functions

The name of a function is a single lowercase letter. Function names are
permitted to coincide with simple variable names. Twenty-six different
defined functions are permitted in addition to the 26 variable names. The
input line

define a(x){

begins the definition of a function with one argument. This line must be
followed by one or more statements which make up the body of the function
ending with a right brace (}). The general form of a function is

define a(x) {

return
h
Return of control from a function occurs when a return statement is

executed or when the end of the function is reached. The return statement
can take either of the two forms:

return
return(x)

In the first case, the value of the function is 0; and in the second, the value
of the function is the expression in parentheses.

Variables used in the function can be declared as automatic by a statement
of the form

auto x,y,z

There can be only one auto statement in a function, and it must be the first
statement in the definition. These automatic variables are allocated space
and initialized to zero on entry to the function and thrown away on return
(exit). The values of any variables with the same names outside the
function are not disturbed. Functions may be called recursively and the
automatic variables at each level of call are protected. The parameters
named in a function definition are treated in the same way as the automatic

Sys5 UNIX 9-5

CHAPTER 9 BC

variables of that function with the single exception that they are given a
value on entry to the function. An example of a function definition is

define a(x,y}{
auto z
Z = Xxy
return(z)

}

The value of this function a, when called, is the product of its two

"~ arguments, “x” and “y".

A function is called by the appearance of its name followed by a string of
arguments enclosed in parentheses and separated by commas. The result
is unpredictable if the wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with
nothing between them: ().

If the function a above has been defined, then the line
a(7,3.14)

causes the result 21.98 to be printed, and the line

z = a(a(3,4),5)

causes the result 60 to be printed.

9.4 Subscripted Variables

A single lowercase letter variable name followed by an expression in
brackets is called a subscripted variable (an array element). The variable
name is called the array name, and the expression in brackets is called the
subscript. Only 1-dimensional arrays are permitted. The names of arrays
are permitted to coincide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use.
Subscripts must be greater than or equal to 0 and less than or equal to
2047. Their variables may be used in expressions, in function calls, and in
return statements.

An array name may be used as an argument to a function or may be
declared as automatic in a function definition by the use of empty brackets:

f(a(l)
define f(a[])
auto af]

When an array name is so used, the whole contents of the array are copied
for the use of the function and thrown away on exit from the function. Array
names that refer to whole arrays cannot be used in any other contexts.

9-6 Sys5 UNIX

BC CHAPTER 9

9.5 Control Statements

The if, while, and for statements may be used to alter the flow within
programs or to cause iteration. The range of each of them is a statement or
a compound statement consisting of a collection of statements enclosed in
braces. They are written in the following way:

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

or

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form
x>y

where two expressions are related by one of the following six relational
operators:

< less than

> greater than

<= less than or equal to
>= greater than or equal to

== equalto

= not equal to

Beware of using “=" instead of "“==" as a relational operator.
Unfortunately, both of these are legal, so there will be no diagnostic
message, but “=" will not do a comparison.

The if statement causes execution of its range if and only if the relation is
true. Then control passes to the next statement in sequence.

The while statement causes execution of its range repeatedly as long as
the relation is true. The relation is tested before each execution of its range;
and if the relation is false, control passes to the next statement beyond the
range of the while statement.

The for statement begins by executing expression1. Then the relation is
tested; and if true, the statements in the range of the for are executed.
Then expression2 is executed. The relation is then tested, etc. The typical
use of the for statement is for a controlled iteration, as in the statement

for(i=1; i<=10; i=i+1)i

Sys5 UNIX 9-7

CHAPTER 9 BC

which prints the integers from one to ten. The following are some examples
of the use of the control statements:

define f(n}{

auto i, x

x=1

for(i=1; i<=n; i=i+1) x=x=i
return(x)

}

The input line
f(a)

prints “a” factorial if “a” is a positive integer. The following is the definition
of a function that computes values of the binomial coefficient (m and n are
assumed to be positive integers):

define b(n,m){

auto x, j

x=1

for(j=1; j<=m; j=j+1) x=x*(n—j+1)/j
return(x)

}

The following function computes values of the exponential function by
summing the appropriate series without regard for possible truncation errors:

scale = 20
define e(x){
autoa,b,c,d, n

a=1

b=1

c=1

d=0

n=1

while(1==1){
a = a*Xx
b = b*n
c=c+ ahb
n=n+1
if(c==d) return(c)
d=c¢

9-8 Sys5 UNIX

BC CHAPTER 9

9.6 Additional Features
There are some additional language features that every user should know.

Normally, statements are typed one to a line. It is also permissible,
however, to type several statements on a line by separating the statements
by semicolons.

If an assignment statement is parenthesized, it then has a value; and it can
be used anywhere that an expression can. For example, the input line

(x=y+17)
not only makes the indicated assignment, but also prints the resulting value.

The following is an example of a use of the value of an assignment
statement even when it is not parenthesized. The input line

x = gli=i+1]

causes a value to be assigned to x and also increments i before it is used
as a subscript.

The following constructs work in BC in exactly the same manner as they do
in the C language. Refer to Appendix 7.1 or the C language programming
documents for more details.

x=y=2z is the same as x=(y=2)

X =+Y X = Xty

X ==Y b X = X—Yy

X =#y " X = Xy

X =y " X = XY

X =%Y " X = X%y

X ="y " X =Xy

X+ + " (x=x+1)—1
X—— " (x=x—1)+1
++X " = x-1
——X " X =x-1

In some of these constructions, spaces are
significant. There is a real difference between
x=—y and x= —y. The first replaces x by
x—y and the second by —vy.

The following are three important things to remember when using BC
programs:

e To exit a BC program, type quit.

e There is a comment convention identical to that of the C language.
Comments begin with /+ and end with =/.

Sys5 UNIX 9-9

CHAPTER 9 BC

e There is a library of math functions that may be obtained by typing at
command level:

bc -1

This command loads a set of library functions that includes sine (s), cosine
(c), arctangent (a), natural logarithm (1), exponential (e), and Bessel
functions of integer order [j(n,x)]. The library sets the scale to 20, but it can
be reset to another value.

If you type
bc file ...

the BC program reads and executes the named file or files before accepting
commands from the keyboard. In this way, programs and function
definitions are loaded.

9-10 Sys5 UNIX

BC CHAPTER 9

9.7 Appendix 9.1
9.7.1 Notation

In the following pages, syntactic categories are in italics and literals are in
bold. Material in brackets “[]” is optional.

9.7.2 Tokens

Tokens consist of keywords, identifiers, constants, operators, and
separators. Token separators may be blanks, tabs, or comments. Newline
characters or semicolons separate statements.

Comments are introduced by the characters /+ and terminated by =/.

There are three kinds of identifiers-ordinary, array, and function. All three
types consist of single lowercase letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript.
Arrays are singly dimensioned and may contain up to 2048 elements.
Indexing begins at zero so an array may be indexed from O to 2047.
Subscripts are truncated to integers. Function identifiers are followed by
parentheses, possibly enclosing arguments. The three types of identifiers
do not conflict. A program can have a variable named x, an array named x,
and a function named x; all of which are separate and distinct.

The following are reserved keywords:

ibase if
obase = break
scale define

sqrt auto
length return
while quit
for

Constants consist of arbitrarily long numbers with an optional decimal point.
The hexadecimal digits A through F are also recognized as digits with values
10 through 15, respectively.

9.7.3 Expressions

The value of an expression is printed unless the main operator is an
assignment. Precedence is the same as the order of presentation here with
highest appearing first. Left or right associativity, where applicable, is
discussed with each operator.

9.7.3.1 Named Expressions

Named expressions are places where values are stored. Simply stated,
named expressions are legal on the left side of an assignment. The value of
a named expression is the value stored in the place named.

Sys5 UNIX 9-11

CHAPTER 9 BC

9.7.3.2 identifiers

Simple identifiers are named expressions. They have an initial value of
zero.

9.7.3.3 array-name[expression]
Array elements are named expressions. They have an initial value of zero.
9.7.3.4 scale, ibase, and obase

The internal registers scale, ibase, and obase are all named expressions.
The scale register is the number of digits after the decimal point to be
retained in arithmetic operations. It has an initial value of zero. The ibase
and obase registers are the input and output number radix, respectively.
Both ibase and obase have initial values of ten.

9.7.3.5 Function Calls
9.7.3.6 function name ([expression[,expression..]])

A function call consists of a function name followed by parentheses
containing a comma-separated list of expressions, which are the function
arguments. A whole array passed as an argument is specified by the array
name followed by empty square brackets. All function arguments are
passed by value. As a result, changes made to the formal parameters have
no effect on the actual arguments. If the function terminates by executing a
return statement, the value of the function is the value of the expression in
the parentheses of the return statement or is zero if no expression is
provided or if there is no return statement.

9.7.3.7 sqrt(expression)

The result is the square root of the expression. The result is truncated in
the least significant decimal place. The scale of the result is the scale of the
expression or the value of scale, whichever is larger.

9.7.3.8 length(expression)

The result is the total number of significant decimal digits in the expression.
The scale of the result is zero.

9.7.3.9 scale(expression)
The result is the scale of the expression. The scale of the result is zero.
9.7.3.10 Constants

Constants are primitive expressions.

9-12 Sys5 UNIX

BC CHAPTER 9

9.7.3.11 Parentheses

An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter the normal precedence.

The unary operators bind right to left.
9.7.3.12 —expression

The result is the negative of the expression.
9.7.3.13 + +named-expression

The named expression is incremented by one. The result is the value of the
named expression after incrementing.

9.7.3.14 — —named-expression

The named expression is decremented by one. The result is the value of
the named expression after decrementing.

9.7.3.15 named-expression+ +

The named expression is incremented by one. The result is the value of the
named expression before incrementing.

9.7.3.16 named-expression— —

The named expression is decremented by one. The result is the value of
the named expression before decrementing.

The exponentiation operator binds right to left.
9.7.3.17 expression ~ expression

The result is the first expression raised to the power of the second
expression. The second expression must be an integer. If a is the scale of
the left expression and b is the absolute value of the right expression, then
the scale of the result is

min(axb,max(scale,a))

The operators *, /, and % bind left to right.

9.7.3.18 expression = expression

The result is the product of the two expressions. If a and b are the scales
of the two expressions, then the scale of the result is

min(a+b,max(scale,a,b))

Sys5 UNIX 9-13

CHAPTER 9 BC

9.7.3.19 expression / expression

The result is the quotient of the two expressions. The scale of the result is
the value of sc