
IPILIEXIU~

(

SysS UNIX Support Tools Guide

98-05081.1 Ver. B May, 1986

PLEXUS COMPUTERS, INC.

3833 North First Street

San Jose, CA 95134

408/943-9433

Copyright 1986
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may
be reproduced, transmitted,
transcribed, stored in a
retrieval system, or translated
into any language, in any form
or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained
herein is subject to change
without notice. Therefore,
Plexus Computers, Inc.
assumes no responsibility for
the accuracy of the information
presented in this document
beyond its current release
date.

Printed in the United States of America

CONTENTS

1. INTRODUCTION

2. MAKE

Basic Features ... 2-4
Description Flies and Substitutions ... 2-7
Command Usage ... 2-9
Suffixes and Transformation Rules .. 2-10
Implicit Rules ... 2-11
Suggestions and Warnings .. 2-13

3. AUGMAKE

The Environment Variables ... 3-1
Recursive Makefiles .. 3-7
Format of Shell Commands Within make .. 3-7
Archive Libraries ... 3-7
SCCS File Names: The Tilde .. 3-13
The Null Suffix .. 3-14
Include Files ... 3-15
Invisible SCCS Makefiles ... 3-15
Dynamic Dependency Paramteres ... 3-15
Extensions of$*,$@, and$< ... 3-16
Output Translations .. 3-17

4. SCCS

SCCS for Beginners .. 4-2
Delta Numering .. 4-7
SCCS Command Conventions ... 4-10
SCCS Commands .. 4-12
SCCS Files .. 4-37
An SCCS Interface Program .. 4-40

5. MACROS

Defining Macros ... 5-6
Arguments .. 5-9
Arithmetic Built-lns .. 5-9
File Manipulation ... 5-10
System Command ... 5-11
Conditionals ... 5-11
String Manipulation ... 5-12
Printing .. 5-14

6. AWK

Program Structure ... 6-1
Lexical Convention .. 6-2
Primary Expressions ... 6-8
Terms .. 6-13
Expressions .. 6-14
Using awk ... 6-15
Input: Records and Fields .. 6-17

Plexus Sys5 UNIX - 1 - May 1986

CONTENTS

Input: From the Command Line .. 6-18
Output: Printing ... 6-20
Output: To Different Files ... 6-24 .

\'· Output: To Pipes .. 6-25
Comments .. 6-26
Pattems ... 6-26
Actions .. 6-31
BuiH In Functions .. 6-37
Row of Control .. 6-39
Report Generation ... 6-42
Cooperation With the Shell .. 6-43
Miscellaneous Hints .. 6-44

7. LINK EDITOR

Using the Link Editor .. 7-3
Link Editor Command Language .. 7-7
Notes and Special Considerations ... 7-20
Error Messages ... 7-28
Syntax Diagram for Input Directives .. 7-34

8. THE COMMON OBJECT FILE FORMAT

Definitions and Conventions ... 8-2
File Header .. 8-3
Optional Header lnformation .. 8-7
Section Headers .. 8-11
Sections .. 8-15
Relocation Information ... 8-16
Line Numbers ... 8-20
Symbol Table ... 8-22
String Ttable ... 8-50
Access Routines .. 8-50

9. BC

Bases ... 9-2
Scaling ... 9-4
Functions .. 9-5
Subscripted Variables ... 9-6
Control Statements ... 9-7
Additional Features ... 9-9
Appendix 9.1 .. 9-11

10. DC

DC Commands ... 10-1
Internal Representation of Numbers .. 10-3
The Allocator .. 10-4
Internal Arithmetic ... 10-5
Addition and Subtraction ... 10-5
Multiplication .. 10-6
Division ... 10-6
Remainder .. 10-7
Square Root. ... 10-7
Exponentiation ... 10-7
Input Conversion and Base ... 10-7

May 1986 - 2 - Plexus Svs5 UNIX

CONTENTS

Output Commands .. 10-8

(Output Format and Base .. 10-8
Internal Registers .. 10-8
Stack Commands .. 10-8
Subroutine Definitions and Calls .. 10-9
Internal Registers-Programming DC .. 10-9
Pushdown Registers and Arrays .. 10-9
Miscellaneous Commands ... 10-1 O
Design Choice .. 10-10

11. LEX

LEX Source ... 11-4
LEX Regular Expressions .. 11-5
LEX Actlons : ... 11-9
Ambiguous Source Rules .. 11-12
LEX Source Definitions .. 11-15
Usage .. 11-16
LEX and YACC ... 11-17
Examples .. 11-17
Left Content Sensitivity .. 11-19
Character Set ... 11-21
Summary of Source Format .. 11-22
Caveats and Bugs ... 11-23

12. YACC

Basic Specifications ... 12-3
Actions .. 12-6
Lexical Analysis .. 12-9
Parser Operation ... 12-10
Ambiguity and Conflicts ... 12-15
Precedence ... 12-20
Error Handling .. 12-23
The yacc Environment... ... 12-25
Hints for Proparing Specifications ... 12-27
Advanced Topics ... 12-30
Appendix 12.1 .. 12-34
Appendix 12.2 .. 12-38
Appendix 12.3 .. 12-41
Appendix 12.4 .. 12-51

13. RJE

14. UUCP

The UUCP Network .. 14-1
Network Usage ... 14-8
Utilities that Use UUCP .. 14-14

Plexus Sys5 UNIX - 3 - May 1986

(

INTRODUCTION CHAPTER 1

1. INTRODUCTION

The SUPPORT TOOLS volume is a description of the various software
"tools" that aid the UNIX operating system user. The user should have at
least 2 years of specialized training in computer-related fields such as
programming or use the UNIX system primarily for software system
development. The following paragraphs contain a brief description of each
chapter.

The chapter A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make) describes a software tool for maintaining, updating, and regenerating
groups of computer programs. The many activities of program development
and maintenance are made simpler by the make program.

The chapter AUGMENTED VERSION OF "make" describes the
modifications made to handle many of the problems within the original make
program.

The chapter SOURCE CODE CONTROL SYSTEM (SCCS) USER'S GUIDE
describes the collection of SCCS programs under the UNIX operating
system. The SCCS programs act as a "custodian'" over the UNIX system
files.

The chapter M4 MACRO PROCESSOR describes a general purpose macro
processor that may be used as a front end for rational Fortran, C, and other
programming languages.

The chapter "awk" PROGRAMMING LANGUAGE describes a software tool
designed to make many common information retrieval and text manipulation
tasks easy to state and to perform.

The chapter LINK EDITOR describes a software tool (Id) that creates load
files by combining object files, performing relocation, and resolving internal
references.

The chapter COMMON OBJECT FILE FORMAT (COFF) describes the
output file produced on some UNIX systems by the assembler and the link
editor.

The chapter ARBITRARY PRECISION DESK CALCULATOR LANGUAGE
(BC) describes a compiler for doing arbitrary precision arithmetic on the
UNIX operating system.

The chapter INTERACTIVE DESK CALCULATOR (DC) describes a
program implemented on the UNIX operating system to do arbitrary­
precision integer arithmetic.

The chapter LEXICAL ANALYZER GENERATOR (Lex) describes a software
tool that lexically processes character input streams.

Sys5 UNIX 1-1

CHAPTER 1 INTRODUCTION

The chapter YET ANOTHER COMPILER-COMPILER (yacc) describes the
yacc program. The yacc program provides a general tool for imposing
structure on the input to a computer program.

The chapter REMOTE JOB ENTRY (RJE) describes a subsystem that
supports remote job entries from a UNIX operating system to an IBM/360 or
1370 host computer. The RJE uses a set of background processes to
support remote job entries.

The chapter UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP) describes a
network that provides information exchange (between UNIX systems) over
the direct distance dialing network.

The support tools provide an added dimension to the basic UNIX software
commands. The "tools" described enable the user to fully utilize the UNIX
operating system.

1-2 Sys5 UNIX

.. (· .

MAKE CHAPTER 2

2. MAKE

In a programming project, a common practice is to divide large programs
into smaller pieces that are more manageable. The pieces may require
several different treatments such as being processed by a macro processor
or sophisticated program generators (e.g., Yacc or Lex). The project
continues to become more complex as the output of these generators are
compiled with special options and with certain definitions and declarations. A
sequence of code transformations develops which is difficult to remember.
The resulting code may need further transformation by loading the code with
certain libraries under control of special options. Related maintenance
activities also complicate the process further by running test scripts and
installing validated modules. Another activity that complicates program
development is a long editing session. A programmer may lose track of the
files changed and the object modules still valid especially when a change to
a declaration can make a dozen other files obsolete. The programmer must
also remember to compile a routine that has been changed or that uses
changed declarations.

The "make" is a software tool that maintains, updates, and regenerates
groups of computer programs.

A programmer can easily forget

• Files that are dependent upon other files.

• Files that were modified recently.

• Files that need to be reprocessed or recompiled after a change in the
source.

• The exact sequence of operations needed to make an exercise a new
version of the program.

The many activities of program development and maintenance are made
simpler by the make program.

The make program provides a method for maintaining up-to-date versions of
programs that result from many operations on a number of files. The make
program can keep track of the sequence of commands that create certain
files and the list of files that require other files to be current before the
operations can be done. Whenever a change is made in any part of a
program, the make command creates the proper files simply, correctly, and
with a minimum amount of effort. The make program also provides a simple
macro substitution facility and the ability to encapsulate commands in a
single file for convenient administration.

SysS UNIX 2-1

CHAPTER 2 MAKE

The basic operation of make is to

• Find the name of the needed target file in the description.

• Ensure that all of the files on which it depends exit and are up to date.

• Create the target file if it has not been modified since its generators
were modified.

The descriptor file really defines the graph of dependencies. The make
program determines the necessary work by performing a depth-first search
of the graph of dependencies.

If the information on interfile dependencies and command sequences is
stored in a file, the simple command

make

is frequently sufficient to update the interesting files regardless of the
number edited since the last make. In most cases, the description file is
easy to write and changes infrequently. It is usually easier to type the make
command than to issue even one of the needed operations, so the typical
cycle of program development operations becomes

think - edit - make - test ...

The make program is most useful for medium-sized programming projects.
The make program does not solve the problems of maintaining multiple
source versions or of describing huge programs.

As an example of the use of make, the description file used to maintain the
make command is given. The code for make is spread over a number of C
language source files and a Yacc grammar. The description file contains:

2-2

Description file for the Make command

p =Ip
FILES = Makefile version.c defs main.c doname.c misc.c

files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.a files.o

dosys.o gram.o
LIBES= -IS
LI NT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) --0 make
size make

Sys5 UNIX

I

J

/

MAKE CHAPTER 2

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm ·.o gram.c
-{ju

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES)
pr$?l$P
touch print

print recently changed files

test:
make -{jp lgrep -v TIME >1zap
/usr/bin/make -{jp I grep -v TIME >2zap
diff 1 zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c
gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c
version.c gram.c

ar uv 1sys,sourceis2/make.a $(FILES)

The make program usually prints out each command before issuing it.

The following output results from typing the simple command make in a
directory containing only the source and description files:

Sys5 UNIX 2-3

CHAPTER 2

cc -0 -c version.c
cc -0 -c main.c
cc -0 -c doname.c
cc -0 -c misc.c
cc -0 -c files.c
cc -0 -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o

gram.o -IS --0 make
13188+3348+3044 = 19580b = 046174b

MAKE

Although none of the source files or grammars were mentioned by name in
the description file, make found them using its suffix rules and issued the
needed commands. The string of digits results from the size make
command. The printing of the command line itself was suppressed by an@
sign. The @ sign on the size command in the description file suppressed
the printing of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance
sequences. The "print" entry prints only the files changed since the last
make print command. A zero-length file print is maintained to keep track of
the time of the printing. The $? macro in the command line then picks up
only the names of the files changed since print was touched. The printed
output can be sent to a different printer or to a file by changing the definition
of the P macro as follows:

make print "P = cat >zap"

2.1 Basic Features

The basic operation of make is to update a target file by ensuring that all of
the files on which the target file depends exist and are up to date. The
target file is created if it has not been modified since the dependents were
modified. The make program does a depth-first search of the graph of
dependencies. The operation of the command depends on the ability to find
the date and time that a file was last modified.

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c, y.c, and z.c with
the IS library. By convention, the output of the C language compilations will
be found in files named x.o, y.o, and z.o. Assume that the files x.c and y.c
share some declarations in a file named defs, but that z.c does not. That is,
x.c and y.c have the line

#include "defs"

2-4 Sys5 UNIX

(:

(~

MAKE CHAPTER 2

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -<> prog

x.o y.o : defs

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes
had been made to any of the four source files x.c, y.c, z.c, or defs.

The make program operates using the following three sources of
information:

• A user-supplied description file

• File names and "last-modified" times from the file system

• Built-in rules to bridge some of the gaps.

In the example, the first line states that prog depends on three ".o" files.
Once these object files are current, the second line describes how to load
them to create prog. The third line states that x.o and y.o depend on the
file defs. From the file system, make discovers that there are three ".c"
files corresponding to the needed ".o" files and uses built-in information on
how to generate an object from a source file (i.e., issue a "cc -c"
command).

By not taking advantage of make's innate knowledge, the following longer
descriptive file results.

prog : x.o y.o z.o
cc x.o y.o z.o -IS -<> prog

x.o : x.c defs
cc -c x.c

y.o : y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files have changed since the last time prog
was made, all of the files are current, and the command

make

announces this fact and stops. If, however, the defs file has been edited,
x.c and y.c (but not z.c) is recompiled; and then prog is created from the
new ".o" files. If only the file y.c had changed, only it is recompiled; but it is

Sys5 UNIX 2-5

CHAPTER 2 MAKE

still riecessary to reload prog. If no target name is given on the make
command line, the first target mentioned in the description is created;
otherwise, the specified targets are made. The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file's time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further
decisions. A method, often useful to programmers, is to include rules with
mnemonic names and commands that do not actually produce a file with
that name. These entries can take advantage of make's ability to generate
files and substitute macros. Thus, an entry "save" might be included to
copy a certain set of files, or an entry "cleanup" might be used to throw
away unneeded intermediate files. In other cases, one may maintain a
zero-length file purely to keep track of the time at which certain actions were
performed. This technique is useful for maintaining remote archives and
listings.

The make program has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by command
arguments or description file lines with embedded equal signs. A macro is
invoked by preceding the name by a dollar sign. Macro names longer than
one character must be parenthesized. The name of the macro is either the
single character after the dollar sign or a name inside parentheses. The
following are valid macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. A $$ is a dollar sign.

The $*, $@, $?, and $< are four special macros which change values
during the execution of the command. (These four macros are described in
the part "DESCRIPTION FILES AND SUBSTITUTIONS".) The following
fragment shows assignment and use of some macros:

OBJECTS = x.o y.o z.o
LIBES =-IS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) --0 prog

2-6 Sys5 UNIX

/

(~

(

MAKE CHAPTER 2

The make command loads the three object files with the IS library. The
command

make "LIBES= -II -IS"

loads them with both the Lex (-11) and the standard (-IS) libraries since
macro definitions on the command line override definitions in the description.
Remember to quote arguments with embedded blanks in UNIX software
commands.

2.2 Description Files and Substitutions

A description file contains the following information:

• macro definitions

• dependency information

• executable commands.

The comment convention is that a sharp (#) and all characters on the same
line after a sharp are ignored. Blank lines and lines beginning with a sharp
(#) are totally ignored. If a noncomment line is too long, the line can be
continued by using a backslash. If the last character of a line is a
backslash, then the backslash, the new line, and all following blanks and
tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon
or a tab. The name (string of letters and digits) to the left of the equal sign
(trailing blanks and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are stripped). The
following are valid macro definitions:

2 = xyz
abc = -II -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as the macro's value.

Macro definitions may also appear on the make command line while other
lines give information about target files. The general form of an entry is

target1 [target2 ..] :[:] [dependent1 ..] [;commands][# ..]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are strings
of letters, digits, periods, and slashes. Shell metacharacters such as "*"

and ''?" are expanded. Commands may appear either after a semicolon on
a dependency line or on lines beginning with a tab immediately following a

SysS UNIX 2-7

CHAPTER 2 MAKE

dependency line. A command is any string of characters not including a
sharp(#) except when the sharp is in quotes or not including a new line.

A dependency line may have either a single or a double colon. A target
name may appear on more than one dependency line, but all of those lines
must be of the same (single or double colon) type. For the usual single­
colon case, a command sequence may be associated with at most one
dependency line. If the target is out of date with any of the dependents on
any of the lines and a command sequence is specified (even a null one
following a semicolon or tab), it is executed; otherwise, a default creation
rule may be invoked. In the double-colon case, a command sequence may
be associated with each dependency line; if the target is out of date with any
of the files on a particular line, the associated commands are executed. A
built-in rule may also be executed. This detailed form is of particular value in
updating archive-type files.

If a target must be created, the sequence of commands is executed.
Normally, each command line is printed and then passed to a separate
invocation of the shell after substituting for macros. The printing is
suppressed in the silent mode or if the command line begins with an (it sign.
Make normally stops if any command signals an error by returning a
nonzero error code. Errors are ignored if the -i flags have been specified
on the make command line, if the fake target name ".IGNORE" appears in
the description file, or if the command string in the description file begins /
with a hyphen. Some UNIX software commands return meaningless status.
Because each command line is passed to a separate invocation of the shell,
care must be taken with certain commands (e.g., cd and shell control
commands) that have meaning only within a single shell process. These
results are forgotten before the next line is executed .

. Before issuing any command, certain internally maintained macros are set.
The $(d macro is set to the full target name of the current target. The $((L)
macro is evaluated only for explicitly named dependencies. The $? macro is
set to the string of names that were found to be younger than the target.
The $? macro is evaluated when explicit rules from the makefile are
evaluated. If the command was generated by an implicit rule, the$< macro
is the name of the related file that caused the action; and the $* macro is
the prefix shared by the current and the dependent file names. If a file must
be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ".DEFAULT" are used. If there is no
such name, make prints a message and stops.

2.3 Command Usage

The make command takes macro definitions, flags, description file names,
and target file names as arguments in the form:

2-8 SysS UNIX

MAKE CHAPTER 2

(. make [flags] [macro definitions] [targets]

(~

The following summary of command operations explains how these
arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs)
are analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the flag
arguments are examined. The permissible flags are as follows:

-i

-s

-r

-n

-t

-q

-p

-d

-f

Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
".IGNORE" appears in the description file.

Silent mode. Do not print command lines before
executing. This mode is also entered if the fake target
name ''.SILENT" appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not
execute them. Even lines beginning with an "(a" sign
are printed.

Touch the target files (causing them to be up to date)
rather than issue the usual commands.

Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up to date.

Print out the complete set of macro definitions and
target descriptions.

Debug mode. Print out detailed information on files
and times examined.

Description file name. The next argument is assumed
to be the name of a description file. A file name of
"-" denotes the standard input. If there are no ·'-f"
arguments, the file named makefile or Makefile in the
current directory is read. The contents of the
description files override the built-in rules if they are
present.

Finally, the remaining arguments are assumed to be the names of targets to
be made, and the arguments are done in left-to-right order. If there are no
such arguments, the first name in the description files that does not begin
with a period is "made".

SysS UNIX 2-9

CHAPTER 2 MAKE

2.4 Suffixes and Transformation Rules

The make program does not know what file name suffixes are interesting or
how to transform a file with one suffix into a file with another suffix. This
information is stored in an internal table that has the form of a description
file. If the -r flag is used, the internal table is not used.

The list of suffixes is actually the dependency list for the name
".SUFFIXES". The make program searches for a file with any of the
suffixes on the list. If such a file exists and if there is a transformation rule
for that combination, make transforms a file with one suffix into a file with
another suffix. The transformation rule names are the concatenation of the
two suffixes. The name of the rule to transform a .r file to a .o file is thus
.r.o. If the rule is present and no explicit command sequence has been
given in the user's description files, the command sequence for the rule .r.o
is used. If a command is generated by using one of these suffixing rules,
the macro $* is given the value of the stem (everything but the suffix) of the
name of the file to be made; and the macro $< is the name of the
dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it
is used. If new names are to be appended, the user can add an entry for
".SUFFIXES" in his own description file. The dependents are added to the
usual list. A ".SUFFIXES" line without any dependents deletes the current
list. It is necessary to clear the current list if the order of names is to be
changed. The following is an excerpt from the default rules file:

2-10 Sys5 UNIX

',

)

(

(

MAKE

.SUFFIXES : .o .c .e .r .f .y .yr .ye .I .s
YACC= yacc
Y ACCR = yacc -r
Y ACCE = yacc -e
YFLAGS =
LEX= lex
LFLAGS =
cc= cc
AS= as -
CFLAGS =
RC= ec
RFLAGS =
EC= ec
EFLAGS =
FFlags =

.c.o :
$(CC) $(CFLAGS) -c $<

.e.o .r.o .f.o:

.s.o :

.y.o :

.y.c :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) ---o $(a $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $(i1)

$(YACC) $(YFLAGS) $<
mv y.tab.c $(a:'

2.5 Implicit Rules

CHAPTER 2

The make program uses a table of interesting suffixes and a set of
transformation rules to supply default dependency information and implied
commands. The default suffix list is as follows:

.0 Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

Sys5 UNIX 2-11

CHAPTER 2

.s

.y

.yr

.ye

.I

Assembler source file

Yacc-C source grammar

Yacc-Ratfor source grammar

Yacc-Efl source grammar

Lex source grammar.

MAKE

Figure 2.1 summarizes the default transformation paths. If there are two
paths connecting a pair of suffixes, the longer one is used only if the
intermediate file exists or is named in the description .

. o

.c .r .e . f

A
.s .y .yr .ye .1 .d

.y .1 .yr .ye

Figure 2-1. Summary of Default Transformation Path

If the file x.o were needed and there were an x.c in the description or
directory, the x.o file would be compiled. If there were also an x.I, that
grammar would be run through Lex before compiling the result. However, if
there were no x.c but there were an x.I, make would discard the
intermediate C language file and use the direct link as shown in Figure 2.1.

It is possible to change the names of some of the compilers used in the
default or the flag arguments with which they are invoked by knowing the
macro names used. The compiler names are the macros AS, CC, RC, EC,
YACC, YACCR, YACCE, and LEX. The command

make CC= newcc

will cause the newcc command to be used instead of the usual C language
compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with optional
flags. Thus

2-12 SysS UNIX

(~

MAKE

make "CFLAGS=-0"

causes the optimizing C language compiler to be used.

2.6 Suggestions and Warnings

CHAPTER 2

The most common difficulties arise from make's specific meaning of
dependency. If file x.c has a "#include "defs"" line, then the object file x.o
depends on defs; the source file x.c does not. If defs is changed, nothing
is done to the file x.c while file x.o must be recreated.

To discover what make would do, the -n option is very useful. The
command

make -n

orders make to print out the commands which make would issue without
actually taking the time to execute them. If a change to a file is absolutely
certain to be mild in character (e.g., adding a new definition to an include
file), the -t (touch) option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the modification times
on the affected file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious
care is necessary since this mode of operation subverts the intention of
make and destroys all memory of the previous relationships.

The debugging flag (-d) causes make to print out a very detailed description
of what it is doing including the file times. The output is verbose and
recommended only as a last resort.

Sys5 UNIX 2-13

(

AUG MAKE CHAPTER 3

3. AUGMAKE

This section describes an augmented version of the make command of the
UNIX operating system. The augmented version is upward compatible with
the old version. This section describes and gives examples of only the
additional features. Further possible developments for make are also
discussed. Some justification will be given for the chosen implementation,
and examples will demonstrate the additional features.

The make command is an excellent program administrative tool used
extensively in at least one project for over 2 years. However, make had the
following shortcomings:

• Handling of libraries was tedious.

• Handling of the Source Code Control System (SCCS) file name format
was difficult or impossible.

• Environment variables were completely ignored by make.

• The general lack of ability to maintain files in a remote directory.

These shortcomings hindered large scale use of make as a program support
tool.

The AUGMENTED VERSION OF make is modified to handle the above
problems. The additional features are within the original syntactic
framework of make and few if any new syntactical entities are introduced. A
notable exception is the include file capability. Further, most of the
additions result in a "Don't know how to make ... " message from the old
version of make.

The following paragraphs describe with examples the additional features of
the make program. In general, the examples are taken from existing
makefiles. Also, the illustrations are examples of working makefiles.

3.1 The Environment Variables

Environment variables are read and added to the macro definitions each
time make executes. Precedence is a prime consideration in doing this
properly. The following describes make's interaction with the environment.
A new macro, MAKEFLAGS. is maintained by make. The new macro is
defined as the collection of all input flag arguments into a string (without
minus signs). The new macro is exported and thus accessible to further
invocations of make. Command line flags and assignments in the makefile
update MAKEFLAGS. Thus, to describe how the environment interacts with
make, the MAKEFLAGS macro (environment variable) must be considered.

Sys5 UNIX 3-1

CHAPTER 3 AUGMAKE

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input
flag argument and is processed as such. (The only exceptions are
the -f, -p, and -r flags.)

2. Read and set the input flags from the command line. The command
line adds to the previous settings from the MAKEFLAGS environment
variable.

3. Read macro definitions from the command line. These are made not
resettable. Thus, any further assignments to these names are
ignored.

4. Read the internal list of macro definitions. These are found in the file
rules.c of the source for make. Figures 3-1 thru 3-4 contains the
complete makefile that represents the internally defined macros and
rules of the current version of make. Thus, if make -r ... is typed
and a makefile includes the makefile in Figures 3-1 thru 3-4, the
results would be identical to excluding the -r option and the include
line in the makefile. The Figures 3-1 thru 3-4 output can be
reproduced by the following:

make -fp - < dev null 2>dev null

The output appears on the standard output.
They give default definitions for the C language compiler
(CC=cc), the assembler (AS= as), etc.

5. Read the environment. The environment variables are treated as
macro definitions and marked as exported (in the shell sense).
However, since MAKEFLAGS* is not an internally defined variable (in
rules.c), this has the effect of doing the same assignment twice. The
exception to this is when MAKEFLAGS is assigned on the command
line. (The reason it was read previously was to turn the debug flag on
before anything else was done.)

6. Read the makefile(s). The assignments in the makefile(s) overrides
the environment. This order is chosen so that when a makefile is read

:MAKEFLAGS are read and set again.

3-2 Sys5 UNIX

AUG MAKE CHAPTER 3

and executed, you know what to expect. That is, you get what is seen
unless the -e flag is used. The -e is an additional command line flag
which tells make to have the environment override the makefile
assignments. Thus, if make -e ... is typed, the variables in the
environment override the definitions in the makefilet. Also
MAKEFLAGS override the environment if assigned. This is useful for
further invocations of make from the current makefile.

LIST OF SUFFIXES

.SUFFIXES: .o .c .c- ~.'£.I .r .s .s-
.sh .sh- .h .h-

PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=ld
LDFLAGS=
CC=cc
CFLAGS=-o

AS-=- as
ASFLAGS=
GET=_g_et
GFLAGS=

Figure 3-1. Example of Internal Definitions (Sheet 1 of 4)

t There is no way to override the command line assignments.

SysS UNIX 3-3

CHAPTER 3 AUG MAKE

SINGLE SUFFIX RULES

.c:
$(CC) -n -o $< -o $Cd

.c-:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -n -o $* .c -o $*
-rm -f $*.c

.sh:
cp $< (ii

.sh-:

$(GET) &(GFLAGS) -p $< > .sh
cp $*.sh$*
-rm -f $* .sh

DOUBLE SUFFIX RULES

.c.o:

$(CC) $(CFLAGs) -c $<
.c-.o:

Figure 3-2. Example of Internal Definitions (Sheet 2 of 4)

3-4 SysS UNIX

AUG MAKE CHAPTER 3

$(GET) $(CFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $" .c

.c- .c:

$(GET) $(GFLAGS) -p $< >$*.c ----- _ __,

.s.o:
$(AS) $(ASFLAGS) -o $(il $<

.s- .o:

$(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $* .o $* .s
-rm -f $*.s

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.o$(d

f.o:
$(GET) $(GFLAG) -p $< > $".y
$(YACC) $(YFLAGS) $".y
$(CC) $(CFLAG) -c y.tab.c
rm -f y.tab $*.y
mv y.tab.o $".o

.l.o:
--------1

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $Cu

Figure 3-3. Example of Internal Definitions (Sheet 3 of 4)

SysS UNIX 3-5

CHAPTER 3 AUG MAKE

.r.o:
$(GET) $(GFLAGS) -p $< >$*.I
$(LEX) $(GFLAG) $*.I
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.I
mv lex.yy.o $*.o

$(YACC) $(YFLAGS) $<
mv .1:tab.c $@

:'£_.c:

$(GET) $(GFLAGS) -p $< > $* .y
$(YACC) $(YFLAGS) $*.y
mv -f $*.c
-rm -f $* :Y

.l.c:

(LEX)<
mv lex. ~_.c$(<~'

.c.a:

$(CC) -c $(FLAGS)$<
ar rv $(d $* .o
rm -f $*.o --

.c-.a:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
ar rv $rli $* .o

.s·.a:

$(GET) $(GFLAGS) -p $< > $* .s
$(AS) $(ASFLAGS) -o $* .o $*.s
ar rv $(d $*.o
-rm -f $*.[so)

.h-.h

$(GET) $(GFLAGS) -p $< > $*.h

Figure 3-4. Example of Internal Definitions (Sheet 4 of 4)

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1. internal definitions (from ru/es.c)

2. environment

3-6 Sys5 UNIX

(

AUG MAKE CHAPTER 3

3. makefile(s)

4. command line.

The -e flag has the effect of changing the order to:

1. internal definitions (from rules.c)

2. makefile(s)

3. environment

4. command line.

This order is general enough to allow a programmer to define a makefile or
set of makefiles whose parameters are dynamically definable.

3.2 Recursive Makefiles

Another feature was added to make concerning the environment and
recursive invocations. If the sequence "$(MAKE)" appears anywhere in a
shell command line, the line is executed even if the -n flag is set. Since the
-n flag is exported across invocations of make (through the MAKEFLAGS
variable), the only thing that actually gets executed is the make command
itself. This feature is useful when a hierarchy of makefile(s) describes a set
of software subsystems. For testing purposes, make -n ... can be
executed and everything that would have been done will get printed out
including output from lower level invocations of make.

3.3 Format of Shell Commands - make

The make program remembers embedded newlines and tabs in shell
command sequences. Thus, if the programmer puts a for loop in the
makefile with indentation, when make prints it out, it retains the indentation
and backslashes. The output can still be piped to the shell and is readable.
This is obviously a cosmetic change; no new function is gained.

3.4 Archive Libraries

The make program has an improved interface to archive libraries. Due to a
lack of documentation, most people are probably not aware of the current
syntax of addressing members of archive libraries. The previous version of
make allows a user to name a member of a library in the following manner:

lib(object.o)
or

lib((_localtime))

where the second method actually refers to an entry point of an object file
within the library. (Make looks through the library, locates the entry point,
and translates it to the correct object file name.)

Sys5 UNIX 3-7

CHAPTER 3 AUG MAKE

To use this procedure to maintain an archive library, the following type of
makefile is required:

lib:: lib(ctime.o)
$(CC) --c -0 ctime.c
ar rv lib ctime.o
rm ctime.o

lib:: lib(fopen.o)
$(CC) --c -0 fopen.c
ar rv lib fopen.o
rm fopen.o

... and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for
adding a C language file to a library are the same for each invocation; the
file name being the only difference each time. (This is true in most cases.)

The current version gives the user access to a rule for building libraries.
The handle for the rule is the ".a" suffix. Thus, a ".c.a" rule is the rule for
compiling a C language source file, adding it to the library, and removing the
".o" cadaver. Similarly, the ".y.a", the ".s.a", and the ".La" rules rebuild
YACC, assembler, and LEX files, respectively. The current archive rules
defined internally are ".c.a", ".c{.a'', and ".s{.a". [The tilde C) syntax will be
described shortly.] The user may define in makefile other rules needed.

The above 2-member library is then maintained with the following shorter
makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual ".c.a" rules are as follows:

.c.a:
$(CC) --c $(CFLAGS) $<
ar rv $(ii $*.O
rm -f $*.O

Thus, the $ccc macro is the ".a" target (lib); the$< and$* macros are set to
the out-of-date C language file; and the file name scans the suffix,
respectively (ctime.c and ctime). The $< macro (in the preceding rule)
could have been changed to $*.C.

It might be useful to go into some detail about exactly what make does
when it sees the construction

3-8 SysS UNIX

c
AUG MAKE CHAPTER 3

lib: lib(ctime.o)
(decho lib up-to-date

Assume the object in the library is out-of-date with respect to ctime.c. Also,
there is no ctime.o file.

1. Do lib.

2. To do lib, do each dependent of lib.

3. Do lib(ctime.o).

4. To do lib(ctime.o), do each dependent of lib(ctime.o). (There are
none.)

5. Use internal rules to try to build lib(ctime.o). (There is no explicit
rule.) Note that lib(ctime.o) has a parenthesis in the name to identify
the target suffix as ".a". This is the key. There is no explicit ".a" at
the end of the lib library name. The parenthesis forces the ".a"
suffix. In this sense, the ".a" is hard wired into make.

6. Break the name lib(ctime.o) up into lib and ctime.o. Define two
macros,$((((=lib) and$* (=clime).

7. Look for a rule ".X.a" and a file $0•.X. The first "X' (in the
.SUFFIXES list) which fulfills these conditions is ".c" so the rule is
".c.a'', and the file is ctime.c. Set$< to be ctime.c and execute the
rule. In fact, make must then do ctime.c. However, the search of
the current directory yields no other candidates, and the search ends.

8. The library has been updated. Do the rule associated with the ·'lib:"
dependency; namely:

echo lib up-to-date

It should be noted that to let ctime.o have dependencies, the following
syntax is required:

lib(ctime.o): $(INCDIR)1stdio.h

Thus, explicit references to .o files are unnecessary. There is also a new
macro for referencing the archive member name when this form is used.
The $% macro is evaluated each time $Ci(is evaluated. If there is no
current archive member, $% is null. If an archive member exists, then $%
evaluates to the expression between the parenthesis.

An example makefile for a larger library is given in Figures 3-5 thru 3-7.

Sys5 UNIX 3-9

CHAPTER 3 AUG MAKE

Cit(#)/usr1src1cmd/make/make. tm 3.2

LIB =lsxlib

PR=lp

INSDIR = /rl1flop01

INS= eval --
lsx: $(LIB) low.o mch.o

Id -x low.o mch.o $(LIB)
mv a.out lsx
(dsize lsx

Here, $(INS) as either"." or "eval".

lsx:

$(1NS)'cp lsx $(1NSDIR)lsx ..
strip $(1NSDIR)lsx ..
Is -I $(1NSDIR)lsx'

print:
$(PR) header.slow.smch.s*.h*.c Makefile

Figure 3-5. Example of Library Makefile (Sheet 1 of 3)

3-10 SysS UNIX

AUG MAKE CHAPTER 3

$(LIB):
$(LIB)(CLOCK.o)
$(LIB)(main.o)

$(LIB)(tty.o)
$(LIB)(trap.o)
$(LIB)(sysent.o)
$(LIB)(sys2.o)

$(LIB)(syn3.o)

$(LIB)(~n4.o)

$(LIB)(sys1 .o)
$(LIB)(sig.o)

$(LIB)(fio.o)
$(LIB)(kl.o)
$(LIB)(alloc.o)

$(LIB)(nami.o)

$(LIB)(ig_et.o)
$(LIB)(rdwri.o)
$(LIB)(subr.o)

Figure 3-6. Example of Library Makefile (Sheet 2 of 3)

(
Sys5 UNIX 3-11

CHAPTER 3 AUG MAKE

$(LIB)(bio.o)
$(LIB)(decfd.o)
$(LIB)(sip.o)
$(LIB)(space.aj_
$(LIB)(puts.o)
Ci1'echo $(LIB) now u_J:>_ to date .

. s.o:
as -o $*.o header.s $~.s

.o.a:
ar rv $((1: $<
rm -f $<

.s.a:
as -o $* .o header.s $* .s
ar rv $(4' $*.o
rm -f $*.o

.PRECIOUS:$(LIB)

Figure 3-7. Example of Library Makefile (Sheet 3 of 3)

The reader will note also that there are no lingering "*.o" files left around.
The result is a library maintained directly from the source files (or more
generally from the SCCS files).

3.5 Source Code Control System File Names:The Tilde

The syntax of make does not directly permit referencing of prefixes. For
most types of files on UNIX operating system machines, this is acceptable
since nearly everyone uses a suffix to distinguish different types of files.
The SCCS files are the exception. Here, "s." precedes the file name part of
the complete pathname.

To allow make easy access to the prefix "s." requires either a redefinition of
the rule naming syntax of make or a trick. The trick is to use the tilde n as
an identifier of SCCS files. Hence, ".c-.o" refers to the rule which
transforms an SCCS C language source file into an object. Specifically, the
internal rule is

.c-.o:
$(GET) $(GFLAGS) -p $< > $*.C
$(CC) $(CFLAGS) --<: $*.C
-rm -f $*.C

Thus, the tilde appended to any suffix transforms the file search into an
SCCS file name search with the actual suffix named by the dot and all

3-12 Sys5 UNIX

AUG MAKE CHAPTER 3

(-.,; characters up to (but not including) the tilde.
~/

The following SCCS suffixes are internally defined:

.C-

f
.s-
.sh­
.h-

The following rules involving SCCS transformations are internally defined:

.c-:

.sh-:

.c-.o:

.s-.o:

.y-.o:

.r.o:

.y-.c:

.c-.a:

.s-.a:

.h-.h:

Obviously, the user can define other rules and suffixes which may prove
useful. The tilde gives him a handle on the SCCS file name format so that
this is possible.

3.6 The Null Suffix

In the UNIX system source code, there are many commands which consist
of a single source file. It was wasteful to maintain an object of such files for
make. The current implementation supports single suffix rules (a null suffix).
Thus, to maintain the program cat, a rule in the makefile of the following
form is needed:

.c:
$(CC) -n -0 $< -o $ril

In fact, this ".c:" rule is internally defined so no makefile is necessary at all.
The user only needs to type

make cat dd echo date ·

(these are notable single file programs) and all four C language source files
are passed through the above shell command line associated with the ".c:"
rule. The internally defined single suffix rules are

Sys5 UNIX 3-13

CHAPTER 3

.c:

.c-:

.sh:

.sh-:

Others may be added in the makefile by the user.

3.7 Include Files

AUG MAKE

The make program has an include file capability. If the string include
appears as the first seven letters of a line in a makefile and is followed by a
blank or a tab, the string is assumed to be a file name which the current
invocation of make will read. The file descriptors are stacked for reading
include files so that no more than about 16 levels of nested includes are
supported.

3.8 lnvixible SCCS Makefiles

The SCCS makefiles are invisible to make. That is, if make is typed and
only a file named s.makefile exists, make will do a get on the file, then read
and remove the file. Using the -f, make will get, read, and remove
arguments and include files.

3.9 Dynamic Dependancy Parameters

A new dependency parameter has been defined. The parameter has
meaning only on the dependency line in a makefile. The $$Ca refers to the
current "thing" to the left of the colon (which is $<ii). Also the form $$(CdF)
exists which allows access to the file part of $<ic Thus, in the following:

cat: $$(it.c

the dependency is translated at execution time to the string .;cat.c". This is
useful for building a large number of executable files, each of which has only
one source file. For instance, the UNIX software command directory could
have a makefile like:

CMOS = cat dd echo date cc cmp comm ar Id chown

$(CMOS): $$Cll .c
$(CC) -0 $? --0 $Cd

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makefile is made.
For any particular file that has a peculiar compilation procedure, a specific
entry must be made in the makefile.

The second useful form of the dependency parameter is $$(CfrF). It
represents the file name part of $$(it. Again, it is evaluated at execution
time. Its usefulness becomes evident when trying to maintain the

3-14 Sys5 UNIX

AUG MAKE CHAPTER 3

lusrlinclude directory from a makefile in the lusrlsrc!head directory. Thus,
the /usrlsrclheadlmakefile would look like

INCDIR = /usr/include

INCLUDES=\
$(1NCDIR)/stdio.h \
$(1NCDIR)/pwd.h \
$(1NCIDR)/dir.h \
$(1NCDIR)/a.out.h

$(INCLUDES): $$((il'F)
cp $? $@
chmod 0444 $(1i

This would completely maintain the !usrlinclude directory whenever one of
the above files in lusr/srclhead was updated.

3.10 Extensions of$*, $((ii, AND $<

The internally generated macros S*, $(it', and $< are useful generic terms
for current targets and out-of-date relatives. To this list has been added the
following related macros: $(@0), $(Ca;F), $(*0), $(*F), $(<0), and $(<F).
The "D" refers to the directory part of the single letter macro. The "F" refers
to the file name part of the single letter macro. These additions are useful
when building hierarchical makefiles. They allow access to directory names
for purposes of using the cd command of the shell. Thus, a sheil command
can be

cd $(<D); $(MAKE) $(<F)

The following command forces a complete rebuild of the operating system:

FRC=FRC make -f 70.mk

where the current directory is ucb. The FRC is a convention for FoRCing
make to completely rebuild a target starting from scratch.

3.11 Output Trtanslations

Macros in shell commands can now be translated when evaluated. The
form is as follows:

$(macro:string 1 = string2)

The meaning of $(macro) is evaluated. For each appearance of string1 in
the evaluated macro, string2 is substituted. The meaning of finding string1
in $(macro) is that the evaluated $(macro) is considered as a bunch of
strings each delimited by white space (blanks or tabs). Thus, the
occurrence of string1 in $(macro) means that a regular expression of the

SysS UNIX 3-15

CHAPTER 3

following form has been found:

.*<String1 >[TABIBLANK]

AUG MAKE

This particular.form was chosen because make usually concerns itself with
suffixes. A more general regular expression match could be implemented if
the need arises. The usefulness of this type of translation occurs when
maintaining archive libraries. Now, all that is necessary is to accumulate the
out-of-date members and write a shell script which can handle all the C
language programs (i.e., those files ending in ".c"). Thus, the following
fragment optimizes the executions of make _for maintaining an archive
library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)c.o)
$(CC) -c $(CFLAGS) $(?:.o= .c)
ar rv $(LIB) $?
rm$?

A dependency of the preceding form is necessary for each of the different
types of source files (suffices) which define the archive library. These
translations are added in an effort to make more general use of the wealth
of information which make generates.

3-16 Sys5 UNIX

/

(_

secs CHAPTER 4

4. secs
The Source Code Control System (SCCS) is a collection of the UNIX
software commands that help individuals or projects control and account for
changes to files of text. The source code and documentation of software
systems are typical examples of files of text to be changed. The SCCS is a
collection of programs that run under the UNIX operating system. It is
convenient to conceive of SCCS as a custodian of files. The SCCS
provides facilities for

• Storing files of text

• Retrieving particular versions of the files

• Controlling updating privileges to files

• Identifying the version of a retrieved file

• Recording when, where, and why the change was made and who made
each change to a file.

These types of facilities are important when programs and documentation
undergo frequent changes because of maintenance and/or enhancement
work. It is often desirable to regenerate the version of a program or
document as it existed before changes were applied to it. This can be done
by keeping copies (on paper or other media), but this method quickly
becomes unmanageable and wasteful as the number of programs and
documents increases. The SCCS provides an attractive solution because
the original file is stored on disk. Whenever changes are made to the file,
the SCCS stores only the changes. Each set of changes is called a "delta".

This chapter, together with relevant portions of the Sys5. UNIX User
Reference Manual is a complete user's guide to SCCS. The following topics
are covered:

• SCCS for Beginners: How to make an SCCS file, how to update it, and
how to retrieve a version thereof.

• How Deltas Are Numbered: How versions of SCCS files are numbered
and named.

• SCCS Command Conventions: Conventions and rules generally
applicable to all secs commands.

• SCCS Commands: Explanation of all SCCS commands with
discussions of the more useful arguments.

Sys5 UNIX 4-1

CHAPTER 4 SCCS

• SCCS Files: Protection, format, and auditing of SCCS files including a
discussion of the differences between using SCCS as an individual and
using it as a member of a group or project. The role of a "project
SCCS administrator" is introduced.

Neither the implementation of SCCS nor the installation procedure for SCCS
is described in this section.

Throughout this section, each reference of the form name (1 M), name (7), or
name (8) refers to entries in the Sys5 UNIX Administrator Reference
Manual. All other references to entries of the form name(N), where "N" is a
number (1 through 6) possibly followed by a letter, refer to entry name in
section N of the Sys5 UNIX User Reference Manual.

4.1 SCCS For Beginners

It is assumed that the reader knows how to log onto a UNIX system, create
files, and use the text editor. A number of terminal-session fragments are
presented. All Of them should be tried since the best way to learn SCCS is
to use it.

To supplement the material in this section, the detailed SCCS command
descriptions in the Sys5 UNIX User Reference Manual should be consulted.

4.1.1 A. Terminology

Each SCCS file is composed of one or more sets of changes applied to the
null (empty) version of the file, with each set of changes usually depending
on all previous sets. Each set of changes is called a "delta" and is assigned
a name, called the SCCS IDentification string (SID). The SID is composed
of at most four components. The first two components are the "release"
and "level" numbers which are separated by a period. Hence, the first delta
(for the original file) is called "1.1 ", the second "1.2", the third "1.3", etc.
The release number can also be changed allowing, for example, deltas
"2. 1 ", "3. 1 ", etc. The change in the release number usually indicates a
major change to the file.

Each delta of an SCCS file defines a particular version of the file. For
example, delta 1.5 defines version 1.5 of the SCCS file, obtained by
applying to the null (empty) version of the file the changes that constitute
deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

4-2 Sys5 UNIX
\

SCCS CHAPTER 4

4.1.2 B. Creating an SCCS File via "admin"

Consider, for example, a file called fang that contains a list of programming
languages.

c
pl/i
fort ran
cobol
a Igo I

Custody of the fang file can be given to SCCS. The following admin
command (used to "administer" SCCS files) creates an SCCS file and
initializes delta 1 .1 from the file fang:

admin -ilang s.lang

All SCCS files must have names that begin with "s.", hence, s.fang. The -i
keyletter, together with its value fang, indicates that admin is to create a
new SCCS file and "initialize" the new SCCS file with the contents of the file
fang. This initial version is a set of changes (delta 1.1) applied to the null
SCCS file.

The admin command replies

No id keywords (cm7)

This is a warning message (which may also be issued by other SCCS
commands) that is to be ignored for the purposes of this section. Its
significance is described under the get command in the part "SCCS
COMMANDS." In the following examples, this warning message is not
shown although it may actually be issued by the various commands. The
file fang should now be removed (because it can be easily reconstructed
using the get command) as follows:

rm lang

4.1.3 C. Retrieving a File via "get"

The fang file can be reconstructed by using the following get command:

get s.lang

Sys5 UNIX 4-3

CHAPTER 4 SCCS

The command causes the creation (retrieval) of the latest version of file
s.lang and prints the following messages:

1.1
5 lines

This means that get retrieved version 1. 1 of the file, which is made up of
five lines of text. The retrieved text is placed in a file whose name is formed
by deleting the "s." prefix from the name of the SCCS file. Hence, the file
fang is created.

The "get s.lang" command simply creates the file fang (read-only) and
keeps no information regarding its creation. On the other hand, in order to
be able to subsequently apply changes to an SCCS file with the delta
command, the get command must be informed of your intention to do so.
This is done as follows:

get -e s.lang

The -e keyletter causes get to create a file fang for both reading and writing
(so it may be edited) and places certain information about the SCCS file in
another new file. The new file, called the p-fi/e, will be read by the delta
command. The get command prints the same messages as before except
that the SID of the version to be created through the use of delta is also
issued. For example,

get -e s.lang
1.1
new delta 1.2
5 lines

The file fang may now be changed, for example, by

ed tang
27
$a
snobol
ratfor

w
41
q

4-4 SysS UNIX

secs CHAPTER 4

4.1.4 D. Recording Changes via "delta"

In order to record within the SCCS file the changes that have been applied
to Jang, execute the following command:

delta s.lang

Delta prompts with

comments?

The response should be a description of why the changes were made. For
example,

comments? added more languages

The delta command then reads the p-file and determines what changes
were made to the file fang. The delta command does this by doing its own
get to retrieve the original version and by applying the diff(1) command to
the original version and the edited version.

When this process is complete, at which point the changes to fang have
been stored ins.fang, delta outputs

1.2
2inserted
O deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next three
lines of output refer to the number of lines in the files.fang.

4.1.5 E. Additional Information About "get"

As shown in the previous example, the command

get s.lang

retrieves the latest version (now 1.2) of the file s.fang. This is done by
starting with the original version of the file and successively applying deltas
(the changes) in order until all have been applied.

In the example chosen, the following commands are all equivalent:

get s.lang
get -r1 s.lang
get -r1 .2 s.lang

Sys5 UNIX 4-5

CHAPTER 4 SCCS

The numbers following the -r keyletter are SIDs. Note that omitting the
level number of the SID (as in "get -r1 s.lang") is equivalent to specifying
the highest level number that exists within the specified release. Thus, the
second command requests the retrieval of the latest version in release 1,
namely 1.2. The third command specifically requests the retrieval of a
particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that
change is usually indicated by changing the release number (first
component of the SID) of the delta being made. Since normal automatic
numbering of deltas proceeds by incrementing the level number (second
component of the SID), the user must indicate to SCCS the need to change
the release number. This is done with the get command.

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before
release 2. The get command also interprets this as a request to change the
release number of the delta which the user desires to create to 2, thereby
causing it to be named 2. 1, rather than 1.3. This information is conveyed to
delta via the p-file. The get command then outputs

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the
version delta will create. If the file is now edited, for example, by

ed lang
41
/cobol/d
w
35
q

and delta executed

delta s.lang
comments? deleted cabal from list of languages

the user will see by delta's output that version 2.1 is indeed created.

2.1
Oinserted
1 deleted
6 unchanged

4-6 Sys5 UNIX

SCCS CHAPTER 4

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another
new release may be created in a similar manner. This process may be
continued as desired.

4.1.6 F. The "help" Command

If the command

get abc

is executed, the following message will be output:

ERROR [abc]: not an SCCS file (co1)

The string "co1" is a code for the diagnostic message and may be used to
obtain a fuller explanation of that message by use of the help command.

help co1

This produces the following output:

co1:
"not an secs file"
A file that you think is an SCCS file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any doubt about
the meaning of an SCCS message. Detailed explanations of almost all
SCCS messages may be found in this manner.

4.2 Delta Numbering

It is convenient to think of the deltas applied to an SCCS file as the nodes of
a tree in which the root is the initial version of the file. The root delta (node)
is normally named "1.1" and successor deltas (nodes) are "1.2'', "1.3'', etc.
The components of the names of the deltas are called the "release" and the
"level" numbers, respectively. Thus, normal naming of successor deltas
proceeds by incrementing the level number, which is performed
automatically by SCCS whenever a delta is made. The user may also wish
to change the release number when making a delta to indicate that a major
change is being made. When this is done, the release number also applies
to all successor deltas unless specifically changed again.

Such a structure may be termed the "trunk" of the SCCS tree. Figure 4-1
represents the normal sequential development of an SCCS file in which
changes that are part of any given delta are dependent upon a// the
preceding deltas.

SysS UNIX 4-7

CHAPTER.4

1.1 1.2

RELEASE 1
1.3 1.4 2.1

RELEASE 2

Figure 4·1. Evolution of an SCCS File

SCCS

2.2

However, there are situations in which it is necessary to cause a branching
in the tree in that changes applied as part of a given delta are not
dependent upon all previous deltas. As an example, consider a program
which is in production use at version 1.3 and for which development work on
release 2 is already in progress. Thus, release 2 may already have some
deltas precisely as shown in Figure 4-1. Assume that a production user \
reports a problem in version 1.3 and that the nature of the problem is such)
that it cannot wait to be repaired in release 2. The changes necessary to
repair the trouble will be applied as a delta to version 1.3 (the version in
production use). This creates a new version that will then be released to the
user but will not affect the changes being applied for release 2 (i.e., deltas
1.4, 2.1, 2.2, etc.).

The new delta is a node on a branch of the tree. Its name consists of four
components; the release number and the level number (as with trunk deltas)
plus the "branch" number and the "sequence" number. The delta name
appears as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a
particular trunk delta with the first such branch being 1, the next one 2, etc.
The sequence number is assigned, in order, to each delta on a particular
branch. Thus, 1.3.1.2 identifies the second delta of the first branch that
derives from delta 1.3. This is shown in Figure 4-2.

The concept of branching may be extended to any delta in the tree. The
naming of the resulting deltas proceeds in the manner just illustrated.

4-8 SysS UNIX

(/

secs CHAPTER 4

1. 1 1.2 1.3 1.4 2.1 2.2

Figure 4-2. Tree Structure With Branch Deltas

Two observations are of importance with regard to naming deltas. First, the
names of trunk deltas contain exactly two components, and the names of
branch deltas contain exactly four components. Second, the first two
components of the name of branch deltas are always those of the ancestral
trunk delta, and the branch component is assigned in the order of creation of
the branch independently of its location relative to the trunk delta. Thus, a
branch delta may always be identified as such from its name. Althouqh the
ancestral trunk delta may be identified from the branch delta's name, it is
not possible to determine the entire path leading from the trunk delta to the
branch delta. For example, if delta 1 .3 has one branch emanating from it,
all deltas on that branch will be named 1.3.1.n. If a delta on this branch
then has another branch emanating from it, all deltas on the new branch will
be named 1.3.2.n (see Figure 4-3). The only information that may be
derived from the name of delta 1.3.2.2 is that it is the chronologically second
delta on the chronologically second branch whose trunk ancestor is delta
1.3. In particular, it is not possible to determine from the name of delta
1.3.2.2 all the deltas between it and trunk ancestor 1.3.

It is obvious that the concept of branch deltas allows the generation of
arbitrarily complex tree structures. Although this capability has been
provided for certain specialized uses, it is strongly recommended that the
SCCS tree be kept as simple as possible because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

Sys5 UNIX 4-9

CHAPTER 4

1. 1 1.2 1.3 1.4 2.1 2.2

Figure 4-3. Extending the Branching Concept

4.3 SCCS Command Conventions

SCCS

1.3.2.2

This part discusses the conventions and rules that apply to SCCS
commands. These rules and conventions are generally applicable to all
SCCS commands with exceptions indicated. The SCCS commands accept
two types of arguments:

• Keyletter arguments

• File arguments.

Keyletter arguments (hereafter called simply "keyletters") begin with a minus
sign (-), followed by a lowercase alphabetic character, and in some cases.
followed by a value. These keyletters control the execution of the command
to which they are supplied.

File arguments (names of files and/or directories) specify the file(s) that the
given SCCS command is to process. Naming a directory is equivalent to
naming all the SCCS files within the directory. Non-SCCS files and
unreadable files [because of permission modes via chmod(1)] in the named
directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the
name "-" (a lone minus sign) is specified as an argument to a command,
the command reads the standard input for lines and takes each line as the
name of an SCCS file to be processed. The standard input is read until
end-of-file. This feature is often used in pipelines with, for example, the
find(1) or ls(1) commands. Again, names of non-SCCS files and of
unreadable files are silently ignored.

4-10 SysS UNIX

(

(

(.---,

/

SCCS CHAPTER 4

All keyletters specified for a given command apply to all file arguments of
that command. All keyletters are processed before any file arguments with
the result that the placement of keyletters is arbitrary (i.e., keyletters may be
interspersed with file arguments). File arguments, however, are processed
left to right. Somewhat different argument conventions apply to the help,
what, sccsdiff, and val commands.

Certain actions of various SCCS commands are controlled by flags
appearing in SCCS files. Some of these flags are discussed in this part.
For a complete description of all such flags, see admin(1) section in the
Sys5 UNIX User Reference Manual.

The distinction between the real user [see passwd(1)] and the effective user
of a UNIX system is of concern in discussing various actions of SCCS
commands. For the present, it is assumed that both the real user and the
effective user are one and the same (i.e., the user who is logged into a
UNIX system). This subject is discussed further in "SCCS FILES."

All SCCS commands that modify an SCCS file do so by writing a temporary
copy, called the x-file. This file ensures that the SCCS file is not damaged if
processing should terminate abnormally. The name of the x-file is formed
by replacing the "s." of the SCCS file name with "x.". When processing is
complete, the old SCCS file is removed and the x-file is renamed to be the
SCCS file. The x-file is created in the directory containing the SCCS file,
given the same mode [see chmod(1)] as the SCCS file, and owned by the
effective user.

To prevent simultaneous updates to an SCCS file, commands that modify
secs files create a lock-fife, called the z-file, whose name is formed by
replacing the "s." of the SCCS file name with "z. ". The z-file contains the
process number of the command that creates it, and its existence is an
indication to other commands that the SCCS file is being updated. Thus,
other commands that modify SCCS files do not process an SCCS file if the
corresponding z-file exists. The z-file is created with mode 444 (read-only)
in the directory containing the SCCS file and is owned by the effective user.
This file exists only for the duration of the execution of the command that
creates it. In general, users can ignore x-files and z-files. The files may be
useful in the event of system crashes or similar situations.

The SCCS commands produce diagnostics (on the diagnostic output) of the
form:

ERROR [name-of-file-being-processed]: message text (code)

Sys5 UNIX 4-11

CHAPTER 4 SCCS

The code in parentheses may be used as an argument to the help
command to obtain a further explanation of the diagnostic message.
Detection of a fatal error during the processing of a file causes the SCCS
command to terminate processing of that file and to proceed with the next
file, in order, if more than one file has been named.

4.4 SCCS Commands

This part describes the major features of all the SCCS commands. Detailed
descriptions of the commands and of all their arguments are given in the
Sys5 UNIX User Reference Manual and should be consulted for further
information. The discussion below covers only the more common
arguments of the various SCCS commands.

The commands follow in approximate order of importance. The following is
a summary of all the SCCS commands and of their major functions:

get

delta

admin

prs

help

rmdel

cdc

what

sccsdiff

comb

val

4-12

Retrieves versions of SCCS files.

Applies changes (deltas) to the text of SCCS files,
i.e., creates new versions.

Creates SCCS files and applies changes to
parameters of secs files.

Prints portions of an SCCS file in user specified
format.

Gives explanations of diagnostic messages.

Removes a delta from an SCCS file; allows the
removal of deltas that were created by mistake.

Changes the commentary associated with a delta.

Searches any UNIX system file(s) for all occurrences
of a special pattern and prints out what follows it; is
useful in finding identifying information inserted by the
get command.

Shows the differences between any two versions of
an SCCS file.

Combines two or more consecutive deltas of an
SCCS file into a single delta; often reduces the size
of the SCCS file.

Validates an SCCS file.

Sys5 UNIX

(/

SCCS CHAPTER 4

4.4.1 A. The "get" Command

The get command creates a text file that contains a particular version of an
SCCS file. The particular version is retrieved by beginning with the initial
version and then applying deltas, in order, until the desired version is
obtained. The created file is called the g-file. The g-file name is formed by
removing the "s." from the SCCS file name. The g-file is created in the
current directory and is owned by the real user. The mode assigned to the
g-fi/e depends on how the get command is invoked.

The most common invocation of get is

get s.abc

which normally retrieves the latest version on the trunk of the secs file tree
and produces (for example) on the standard output

1.3
67 lines
No id keywords (cm7)

which indicates that

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file.

The generated g-file (file "abc") is given mode 444 (read-only). This
particular way of invoking get is intended to produce g-files only for
inspection, compilation, etc. It is not intended for editing (i.e., not for making
deltas).

In the case of several file arguments (or directory-name arguments), similar
information is given for each file processed, but the SCCS file name
precedes it.

SysS UNIX 4-13

CHAPTER 4

For example,

get s.abc s.def

produces

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm 7)

4.4.1.1 ID Keywords

SCCS

In generating a g-file to be used for compilation, it is useful and informative
to record the date and time of creation, the version retrieved, the module's
name, etc. within the g-file. This information appears in a load module when
one is eventually created. The SCCS provides a convenient mechanism for
doing this automatically. Identification (ID) keywords appearing anywhere in
the generated file are replaced by appropriate values according to the
definitions of these ID keywords. The format of an ID keyword is an
uppercase letter enclosed by percent signs (%). For example,

5.1

is defined as the ID keyword that is replaced by the SID of the retrieved
version of a file. Similarly, 5/30/83 is defined as the ID keyword for the
current date (in the form "mm/dd/yy"), and sccs1 is defined as the name of
the g-file. Thus, executing get on an SCCS file that contains the PUI
declaration,

OCL ID CHAR(100) VAR INIT('sccs1 5.1 5/30/83');

gives (for example) the following:

DCL ID CHAR(100) VAR INIT('MODNAME 2.3 07/07/77');

When no ID keywords are substituted by get, the following message is
issued:

No id keywords (cm7)

4-14 Sys5 UNIX

SCCS CHAPTER 4

This message is normally treated as a warning by get, although the
presence of the i flag in the SCCS file causes it to be treated as an error.
For a complete list of the approximately 20 ID keywords provided, see
get(1) in the SysS UNIX User Reference Manual.

4.4.1.2 Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default
version of an SCCS file. Normally, the default version is the most recent
delta of the highest-numbered release on the trunk of the SCCS file tree.
However, if the SCCS file being processed has a d (default SID) flag, the
SID specified as the value of this flag is used as a default. The default SID
is interpreted in exactly the same way as the value supplied with the -r
keyletter of get.

The -r keyletter is used to specify a SID to be retrieved, in which case the d
(default SID) flag (if any) is ignored. For example,

get -r1 .3 s.abc

retrieves version 1.3 of file s.abc and produces (tor example) on the
standard output

1.3
64 lines

A branch delta may be retrieved similarly,

get -r1 .5.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the -r keyletter
(as above) and the particular version does not exist in the SCCS file, an
error message results. Omission of the level number, as in

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the
given release if the given release exists. Thus, the above command might
output,

3.7
213 lines

Sys5 UNIX 4-15

CHAPTER 4 SCCS

If the given release does not exist, get retrieves the trunk delta with the
highest level number within the highest-numbered existing release that is
lower than the given release. For example, assuming release 9 does not /
exist in file s.abc and that release 7 is actually the highest-numbered
release below 9, execution of

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below
release 9. Similarly, omission of the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number
on the given branch if it exists. (If the given branch does not exist, an error
message results.) This might result in the following output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest (top) version in a particular
release (i.e., when no -r keyletter is supplied or when its value is simply a '
release number). The latest version is defined as that delta which was ,;
produced most recently, independent of its location on the SCCS file tree.
Thus, if the most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta
3.5), the same command might produce

3.2.1.5
46 lines

4.4.1.3 Retrieval With Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication of the
intent to make a delta, and as such, its use is restricted.

4-16 Sys5 UNIX

/ \

\ /

(~.
,/

SCCS CHAPTER 4

The presence of this keyletter causes get to check

1. The user list (a list of login names and/or group IDs of users allowed
to make deltas) to determine if the login name or group ID of the user
executing get is on that list. Note that a null (empty) user list behaves
as if it contained all possible login names.

2. The release (R) of the version being retrieved satisfies the relation:

floor is < or = to R which is
< or = to ceiling

to determine if the release being accessed is a protected release. The
"floor" and "ceiling" are specified as flags in the secs file.

3. The R is not locked against editing. The "lock" is specified as a flag
in the SCCS file.

4. Whether or not multiple concurrent edits are allowed for the SCCS file
as specified by the j flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the
corresponding SCCS file to terminate.

If the above checks succeed, the -e keyletter causes the creation of a g-file
in the current directory with mode 644 (readable by everyone, writable only
by the owner) owned by the real user. If a writable g-file already exists, get
terminates with an error. This is to prevent inadvertent destruction of a g­
fi/e that already exists and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by get (when the
-e keyletter is specified) because the generated g-file is subsequently used
to create another delta. Replacement of ID keywords cause them to be
permanently changed within the SCCS file. In view of this, get does not
need to check for the presence of ID keywords within the g-file, so the
message

No id keywords (cm 7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a p-file
which is used to pass information to the delta command.

Sys5 UNIX 4-17

CHAPTER 4

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output

1.3
new delta 1.4
67 lines

secs

If the -r and/or -t keyletters are used together with the -e keyletter, the
version retrieved for editing is as specified by the -r and/or -t keyletters.

The keyletters -i and -x may be used to specify a list [see get(1) in the
Sys5 UNIX User Reference Manual for the syntax of such a list] of deltas to
be included and excluded, respectively, by get. Including a delta means
forcing the changes that constitute the particular delta to be included in the
retrieved version. This is useful if one wants to apply the same changes to
more than one version of the SCCS file. Excluding a delta means forcing it
not to be applied. This may be used to undo (in the version of the SCCS file
to be created) the effects of a previous delta. Whenever deltas are included
or excluded, get checks for possible interference between such deltas and
those deltas that are normally used in retrieving the particular version of the
SCCS file. Two deltas can interfere, for example, when each one changes
the same line of the retrieved g-file. Any interference is indicated by a
warning that shows the range of lines within the retrieved g-file in which the
problem may exist. The user is expected to examine the g-file to determine
whether a problem actually exists and to take whatever corrective measures
(if any) are deemed necessary (e.g., edit the file).

Warning: The -i and -x keyletters should be used with extreme care.

The -k keyletter is provided to facilitate regeneration of a g-fi/e that may
have been accidentally removed or ruined subsequent to the execution of
get with the -e keyletter or to simply generate a g-file in which the
replacement of ID keywords has been suppressed. Thus, a g-fi/e generated
by the -k keyletter is identical to one produced by get and executed with the
-e keyletter. However, no processing related to the p-file takes place.

4.4.1.4 Concurrent Edits of Different SID

The ability to retrieve different versions of an SCCS file allows a number of
deltas to be "in progress" at any given time. This means that a number of
get commands with the -e keyletter may be executed on the same file
provided that no two executions retrieve the same version (unless multiple
concurrent edits are allowed).

4-18 Sys5 UNIX

(

(

SCCS CHAPTER 4

The p-file (created by the get command invoked with the -e keyletter) is
named by replacing the "s." in the SCCS file name with "p.". It is created in
the directory containing the SCCS file, given mode 644 (readable by
everyone, writable only by the owner), and owned by the effective user. The
p-tile contains the following information for each delta that is still "in
progress":

• The SID of the retrieved version.

• The SID that is given to the new delta when it is created.

• The login name of the real user executing get.

The first execution of get -e causes the creation of the p-file for the
corresponding SCCS file. Subsequent executions only update the p-file with
a line containing the above information. Before updating, however, get
checks to assure that no entry (already in the p-file) specifies that the SID
(of the version to be retrieved) is already retrieved (unless multiple
concurrent edits are allowed).

If both checks succeed, the user is informed that other deltas are in
progress and processing continues. If either check fails, an error message
results. It is important to note that the various executions of get should be
carried out from different directories. Otherwise, only the first execution
succeeds since subsequent executions would attempt to overwrite a writable
g-tile, which is an SCCS error condition. In practice, such multiple
executions are performed by different users so that this problem does not
arise since each user normally has a different working directory. See
"Protection" under the part "SCCS FILES" for a discussion of how different
users are permitted to use SCCS commands on the same files.

Figures 4-4 thru 4-6 show, for the most useful cases, the version of an
SCCS file retrieved by get, as well as the SID of the version to be
eventually created by delta, as a function of the SID specified to get.

SysS UNIX 4-19

CHAPTER 4 SCCS

SID -b KEY- OTHER SID SIDOF
SPECI- LETTER CONDI- RETRI- DATA
FIED* USEDt TIONS EVED TOBE

CREATED

no net no R default mRmL mR(mL+1)
to mR

none:j: yes R default mRmL mRmL.(mB+1)
to mR

R no R > mR mRmL R.1§
R no R == mR mRmL mR.(mL+1)
R yes R > mR mRmL mR.mL.(mB+ 1).1
R yes R == mR mR.mL mR.mL.(mB+ 1).1
R R<mR

R R< mR hR.mL** hR.mL.(mB+ 1).1
and
does
not
exist

R Trunk A.ml R.mL.(mB+ 1).1
successor
in release
>Rand
R exists

See footnotes on sheet 3 of 3.

Figure 4-4. Determination of New SID (Sheet 1 of 3)

4-20 Sys5 UNIX

SCCS CHAPTER 4

(/ SID -b KEY- OTHER SID SIDOF
SPECI LETTER CONDI- RETRI- DATA
FIED* USEDt TIONS EYED TOBE

CREATED

R.L no No trunk R.L R.(L+1)
successor

R.L yes No trunks R.L R.L(mB+ 1).1
successor

R.L Trunk R.L R.L(mS+1).1
in release
>= R

A.Lb no No branch A.LB.ms R.LB.(mS+ 1)
successor

A.LB yes No branch A.LB.ms R.L(mB+ 1).1
(-~, successor

R.LB.S no No branch R.LB.S R.LB.(S + 1)
successor

R.LB.S no No branch R.LB.S R.L(mB+ 1).1
successor

R.L.B.S Branch R.L.B.S R.L.(mB+1).1
successor

See footnotes on sheet 3 of 3.

Figure 4-5. Determination of New SID (Sheet 2 of 3)

c
Sys5 UNIX 4-21

CHAPTER 4 SCCS

Footnotes:

* "R", "L", "B", and "S" are "release", "level", "branch", and "sequence"
components of the SID, respectively; "m" means "maximum". Thus, for
example, "R.ml"means "the maximum level number within release R";
"R.L.(mB+ 1).1" means ''the first sequence number on the (i.e., maximum
branch number plus 1) of level L within release A". Also note that if the SID
specified is of the form "R.L", "A.LB", or "R.L.B.8'', each of the specified
components must exist.

t The -b keyletter is effective only if the b flag [see admin(1)] is present in
the file. In this state, an entry of " - " means "irrelevant".

:j: This case applies if the d (default SID) flag is not present in the file. If the
d flag is present in the file, the SID obtained from the d flag is interrupted
as if it had been specified on the command line. Thus, one of the other
cases in this figure applies.

§ This case is used to force the creation of the first delta in the new release.

** "hR" is the highest existing release that is lower than the specified,
nonexisting, release A.

Figure 4-6. Determination of New SID (Sheet 3 of 3)

4.4.1.5 Concurrent Edits of Same SID

Under normal conditions, gets for editing (-e keyletter is specified) based on
the same SID are not permitted to occur concurrently. That is, delta must
be executed before a subsequent get for editing is executed at the same
SID as the previous get. However, multiple concurrent edits (defined to be
two or more successive executions of get for editing based on the same
retrieved SID) are allowed if the j flag is set in the SCCS file. Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

get -e s.abc
1.1
new delta 1 . 1.1. 1
5 lines

4-22 Sys5 UNIX

(

SCCS CHAPTER 4

without an intervening execution of delta. In this case, a delta command
corresponding to the first get produces delta 1.2 [assuming 1.1 is the latest
(most recent) trunk delta], and the delta command corresponding to the
second get produces delta 1.1.1.1.

4.4.1.6 Keyletters That Affect Output

Specification of the -p keyletter causes get to write the retrieved text to the
standard output rather than to a g-file. In addition, all output normally
directed to the standard output (such as the SID of the version retrieved and
the number of lines retrieved) is directed instead to the diagnostic output.
This may be used, for example, to create g-files with arbitrary names.

get -p s.abc > arbitrary-file-name

The -p keyletter is particularly useful when used with the "!" or "$"
arguments of the send(1 C) command. For example,

send MOD=s.abc REL=3 compile

given that file compile contains

llplicomp job job-card-information
llstep1 exec plickc
llpli.sysin dd *
-s
!get -p -rREL MOD

I*
II

will send the highest level of release 3 of file s.abc. Note that the line "--s"
(that causes send to make ID keyword substitutions before detecting and
interpreting control lines) is necessary if send is to substitute "s.abc" for
MOD and "3" for REL in the line ""!get -p -rREL MOD''.

The -s keyletter suppresses all output that is normally directed to the
standard output. Thus, the SID of the retrieved version, the number of lines
retrieved, etc., are not output. This does not, however, affect messages to
the diagnostic output. This keyletter is used to prevent nondiagnostic
messages from appearing on the user's terminal and is often used in
conjunction with the -p keyletter to "pipe" the output of get, as in

get -p -s s.abc I nroff

The -g keyletter is supplied to suppress the actual retrieval of the text of a
version of the SCCS file. This may be useful in a number of ways.

Sys5 UNIX 4-23

CHAPTER 4 SCCS

For example, to verify the existence of a particular SID in an SCCS file, one
may execute

get -g -r4.3 s.abc

This outputs the given SID if it exists in the SCCS file or it generates an
error message if it does not. Another use of the -g keyletter is in
regenerating a p-file that may have been accidentally destroyed.

get -e -g s.abc

The -1 keyletter causes the creation of an I-file, which is named by replacing
the "s." of the SCCS file name with "I.". This file is created in the current
directory with mode 444 (read-only) and is owned by the real user. It
contains a table [whose format is described in get(1) in the Sys5 UNIX User
Reference Manual] showing the deltas used in constructing a particular
version of the SCCS file. For example,

get -r2.3 -I s.abc

generates an I-file showing the deltas applied to retrieve version 2.3 of the
SCCS file. Specifying a value of "p" with the -I keyletter, as in

get -Ip -r2.3 s.abc

causes the generated output to be written to the standard output rather than
to the I-file. The -g keyletter may be used with the -I keyletter to suppress
the actual retrieval of the text.

The -m keyletter is of use in identifying, line by line, the changes applied to
an SCCS file. Specification of this keyletter causes each line of the
generated g-file to be preceded by the SID of the delta that caused that line
to be inserted. The SID is separated from the text of the line by a tab
character.

The -n keyletter causes each line of the generated g-file to be preceded by
the value of the sccs1 ID keyword and a tab character. The -n keyletter is
most often used in a pipeline with grep(1). For example, to find all lines that
match a given pattern in the latest version of each secs file in a directory,
the following may be executed:

get -p -n -s directory I grep pattern

If both the -m and -n keyletters are specified, each line of the generated
g-file is preceded by the value of the sccs1 ID keyword and a tab (this is
the effect of the -n keyletter) and followed by the line in the format
produced by the -m keyletter. Because use of the -m keyletter and/or the
-n keyletter causes the contents of the g-file to be modified, such a g-file
must not be used for creating a delta. Therefore, neither the -m keyletter
nor the -n keyletter may be specified together with the -e keyletter.

4-24 SysS UNIX

(~/

SCCS CHAPTER 4

See get(1) in the Sys5 UNIX User Reference Manual for a full description of
additional get keyletters.

4.4.2 B. The "delta" Command

The delta command is used to incorporate the changes made to a g-file into
the corresponding SCCS file, i.e., to create a delta, and therefore, a new
version of the file.

Invocation of the delta command requires the existence of a p·file. The
delta command examines the p-file to verify the presence of an entry
containing the user's login name. If none is found, an error message
results. The delta command performs the same permission checks that get
performs when invoked by the -e keyletter. If all checks are successful,
delta determines what has been changed in the g-file by comparing it via
diff(1) with its own temporary copy of the g-file as it was before editing.
This temporary copy of the g-file is called the d-file (its name is formed by
replacing the "s." of the SCCS file name with "d.") and is obtained by
performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user
executing delta because the user who retrieved the g-file must be the one
who creates the delta. However, if the login name of the user appears in
more than one entry, the same user has executed get with the -e keyletter
more than once on the same SCCS file. The -r keyletter must then be used
with delta to specify the SID that uniquely identifies the p-fi/e entry. This
entry is the one used to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is

delta s.abc

which prompts on the standard output (but only if it is a terminal)

comments?

to which the user replies with a description of why the delta is being made,
terminating the reply with a newline character. The user's response may be
up to 512 characters long with newlines (not intended to terminate the
response) escaped by backslashes ''\".

If the SCCS file has a v flag, delta first prompts with

MRs? (Modification Requests)

on the standard output. (Again, this prompt is printed only if the standard
output is a terminal.)

Sys5 UNIX 4-25

CHAPTER 4 SCCS

The standard input is then read for MR numbers, separated by blanks
and/or tabs, terminated in the same manner as the response to the prompt
"comments?". In a tightly controlled environment, it is expected that deltas
are created only as a result of some trouble report, change request, trouble
ticket, etc., collectively called [MRs]. It is desirable (or necessary) to record
such MR number(s) within each delta.

The -y and/or -m keyletters may be used to supply the commentary
(comments and MR numbers, respectively) on the command line rather than
through the standard input.

delta -y"descriptive comment" -m"mrnum1 mrnum2" s.abc

In this case, the corresponding prompts are not printed, and the standard
input is not read. The -m keyletter is allowed only if the SCCS file has a v
flag. These keyletters are useful when delta is executed from within a shell
procedure [see sh(1) in the Sys5 UNIX User Reference Manual].

The commentary (comments and/or MR numbers), whether solicited by
delta or supplied via keyletters, is recorded as part of the entry for the delta
being created and applies to all SCCS files processed by the same
invocation of delta. This implies that (if delta is invoked with more than one
file argument and the first file named has a v flag) all files named must have
this flag. Similarly, if the first file named does not have this flag, then none
of the files named may have it. Any file that does not conform to these rules
is not processed.

When processing is complete, delta outputs (on the standard output) the
SID of the created delta (obtained from the p-file entry) and the counts of
lines inserted, deleted, and left unchanged by the delta. Thus, a typical
output might be

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or
unchanged by delta do not agree with the user's perception of the changes
applied to the g-file. The reason for this is that there usually are a number
of ways to describe a set of such changes, especially if lines are moved
around in the g-file, and delta is likely to find a description that differs from
the user's perception. However, the total number of lines of the new delta
(the number inserted plus the number left unchanged) should agree with the
number of lines in the edited g-file.

4-26 Sys5 UNIX

SCCS CHAPTER 4

If (in the process of making a delta) delta finds no ID keywords in the edited
g-file, the message

No id keywords (cm 7)

is issued after the prompts for commentary but before any other output.
This indicates that any ID keywords that may have existed in the SCCS file
have been replaced by their values or deleted during the editing process.
This could be caused by creating a delta from a g-tile that was created by a
get without the -e keyletter (recall that ID keywords are replaced by get in
that case). This could also be caused by accidentally deleting or changing
the ID keywords during the editing of the g-file. Another possibility is that
the file had no ID keywords. In any case, it is left up to the user to
determine what remedial action is necessary. However, the delta is made
unless there is an i flag in the SCCS file indicating that this should be
treated as a fatal error. In this last case, the delta is not created.

After the processing of an SCCS file is complete, the corresponding p-file
entry is removed from the p-file. All updates to the p-file are made to a
temporary copy, the q-file, whose use is similar to the use of the x-file which
is described in the part "SCCS COMMAND CONVENTIONS". If there is
only one entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file unless the -n keyletter is
specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s (silent) keyletter suppresses all output that is normally directed to the
standard output, other than the prompts "comments?" and "MRs?". Thus,
use of the -s keyletter together with the -y keyletter (and possibly, the -m
keyletter) causes delta neither to read the standard input nor to write the
standard output.

The differences between the g-file and the d-file (see above), constitute the
delta and may be printed on the standard output by using the -p keyletter.
The format of this output is similar to that produced by diff(1).

4.4.3 C. The "admin" Command

The admin command is used to administer SCCS files, that is, to create
new SCCS files and to change parameters of existing ones. When an
SCCS file is created, its parameters are initialized by use of keyletters or are
assigned default values if no keyletters are supplied. The same keyletters
are used to change the parameters of existing files.

Sys5 UNIX 4-27

CHAPTER 4 SCCS

Two keyletters are supplied for use in conjunction with detecting and
correcting "corrupted" SCCS files (see "Auditing" in part "SCCS FILES").
Newly created SCCS files are given mode 444 (read-only) and are owned
by the effective user. Only a user with write permission in the directory
containing the SCCS file may use the admin command upon that file.

4.4.3.1 Creation of SCCS Files

An SCCS file may be created by executing the command

admin -ifirst s.abc

in which the value "first" of the -i keyletter specifies the name of a file from
which the text of the initial delta of the SCCS file s.abc is to be taken.
Omission of the value of the -i keyletter indicates that admin is to read the
standard input for the text of the initial delta. Thus, the command

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not
contain ID keywords, the message

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the
command also sets the i flag (not to be confused with the -i keyletter), the
message is treated as an error and the SCCS file is not created. Only one
SCCS file may be created at a time using the -i keyletter.

When an SCCS file is created, the release number assigned to its first delta
is normally "1 ", and its level number is always "1 ". Thus, the first delta of
an SCCS file is normally "1.1 ". The -r keyletter is used to specify the
release number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1 ".
Because this keyletter is only meaningful in creating the first delta, its use is
only permitted with the -i keyletter.

4.4.3.2 Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may choose to supply commentary
stating the reason for creation of the file. This is done by supplying
comments (-y keyletter) and/or MR numbers (-m keyletter) in exactly the
same manner as for delta. The creation of an SCCS file may sometimes be
the direct result of an MR.

4-28 Sys5 UNIX

(...

(

SCCS CHAPTER 4

If comments (-y keyletter) are omitted, a comment line of the form

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v flag must also be
set (using the -f keyletter described below). The v flag simply determines
whether or not MR numbers must be supplied when using any SCCS
command that modifies a "delta commentary" [see sccsfile(4) in the Sys5
UNIX User Reference Manual} in the SCCS file. Thus:

admin -ifirst -mmrnum1 -fv s.abc

Note that the -y and -m keyletters are only effective if a new SCCS file is
being created.

4.4.3.3 Initialization and Modification of SCCS File Parameters

The portion of the SCCS file reserved for descriptive text may be initialized
or changed through the use of the -t keyletter. The descriptive text is
intended as a summary of the contents and purpose of the SCCS file.

When an SCCS file is being created and the -t keyletter is supplied, it must
be followed by the name of a file from which the descriptive text is to be
taken. For example, the command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc;.

When processing an existing SCCS file, the -t keyletter specifies that the
descriptive text (if any) currently in the file is to be replaced with the text in
the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the
contents of desc; omission of the file name after the -t keyletter as in

admin -t s.abc

causes the removal of the descriptive text from the SCCS file.

The flags of an SCCS file may be initialized, changed, or deleted through
the use of the -f and -d keyletters, respectively. The flags of an SCCS file
are used to direct certain actions of the various commands. See admin(1)
in the Sys5 UNIX User Reference Manual for a description of all the flags.
For example, the i flag specifies that the warning message (stating that
there are no ID keywords contained in the SCCS file) should be treated as
an error. Also the d (default SID) flag specifies the default version of the

Sys5 UNIX 4-29

CHAPTER 4 SCCS

SCCS file to be retrieved by the get command. The -f keyletter is used to
set a flag and, possibly, to set its value. For example,

admin -ifirst -ti -fmmodname s.abc

sets the i flag and the m (module name) flag. The value "modname"
specified for the m flag is the value that the get command will use to replace
the sccs2 ID keyword. (In the absence of them flag, the name of the g-fife
is used as the replacement for the sccs2 ID keyword.) Note that several -f
keyletters may be supplied on a single invocation of admin and that -f
keyletters may be supplied whether the command is creating a new SCCS
file or processing an existing one.

The -d keyletter is used to delete a flag from an SCCS file and may only be
specified when processing an existing file. As an example, the command

admin -dm s.abc

removes the m flag from the SCCS file. Several -d keyletters may be
supplied on a single invocation of admin and may be intermixed with -f
key letters.

The SCCS files contain a list (user list) of login names and/or group IDs of
users who are allowed to create deltas. This list is empty by default which
implies that anyone may create deltas. To add login names and/or group
IDs to the list, the -a keyletter is used. For example,

admin -axyz -awql -a1234 s.abc

adds the login names "xyz" and "wql" and the group ID "1234" to the list.
The -a keyletter may be used whether admin is creating a new SCCS file
or processing an existing one and may appear several times. The -e
keyletter is used in an analogous manner if one wishes to remove (erase)
login names or group IDs from the list.

4.4.4 D. The "prs" Command

The prs command is used to print on the standard output all or parts of an
SCCS file in a format, called the output "data specification," supplied by the
user via the -d keyletter. The data specification is a string consisting of
SCCS file data keywords (not to be confused with get ID keywords)
interspersed with optional user text.

Data keywords are replaced by appropriate values according to their
definitions. For example,

:I:

4-30 SysS UNIX

(

SCCS CHAPTER 4

is defined as the data keyword that is replaced by the SID of a specified
delta. Similarly, :F: is defined as the data keyword for the SCCS file name
currently being processed, and :C: is defined as the comment line
associated with a specified delta. All parts of an SCCS file have an
associated data keyword. For a complete list of the data keywords, see
prs(1) in the Sys5 UNIX User Reference Manual.

There is no limit to the number of times a data keyword may appear in a
data specification. Thus, for example,

prs ~":I: this is the top delta for :F: :I:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of
that delta using the -r keyletter. For example,

prs ~":F:: :I: comment line is: :C:" -r1.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID defaults to the most
recently created delta.

In addition, information from a range of deltas may be obtained by
specifying the -I or -e keyletters. The -e keyletter substitutes data
keywords for the SID designated via the -r keyletter and all deltas created
earlier. The -I keyletter substitutes data keywords for the SID designated
via the -r keyletter and all deltas created later. Thus, the command

prs ~:I: -r1.4 -e s.abc

may output

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs ~:I: -r1 .4 -I s.abc

may produce

SysS UNIX 4-31

CHAPTER 4

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

secs

Substitution of data keywords for all deltas of the SCCS file may be
obtained by specifying both the -e and -1 keyletters.

4.4.5 E. The "help" Command

The help command prints explanations of SCCS commands and of
messages that these commands may print. Arguments to help, zero or
more of which may be supplied, are simply the names of SCCS commands
or the code numbers that appear in parentheses after SCCS messages. If
no argument is given, help prompts for one. The help command has no
concept of keyletter arguments or file arguments. Explanatory information
related to an argument, if it exists, is printed on the standard output. If no
information is found, an error message is printed. Note that each argument
is processed independently, and an error resulting from one argument will
not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the
command. For example,

help ge5 rmdel

produces

ge5:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ...

4.4.6 F. The "rmdel" Command

The rmdel command is provided to allow removal of a delta from an SCCS
file. Its use should be reserved for those cases in which incorrect global
changes were made a part of the delta to be removed.

4-32 Sys5 UNIX

j

SCCS CHAPTER 4

The delta to be removed must be a "leaf" delta. That is, it must be the
latest (most recently created) delta on its branch or on the trunk of the
SCCS file tree. In Figures 4-3 thru 4-6, only deltas 1.3.1.2, 1.3.2.2, and 2.2
can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 can be
removed, etc.

To be allowed to remove a delta, the effective user must have write
permission in the directory containing the SCCS file. In addition, the real
user must either be the one who created the delta being removed or be the
owner of the SCCS file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete SID of
the delta to be removed (i.e., it must have two components for a trunk delta
and four components for a branch delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the SCCS file. Before removal
of the delta, rmdel checks that the release number (R) of the given SID
satisfies the relation.

floor < = R < = ceiling

The rmdel command also checks that the SID specified is not that of a
version for which a get for editing has been executed and whose associated
delta has not yet been made. In addition, the login name or group ID of the
user must appear in the file's "user list", or the "user list" must be empty.
Also, the release specified cannot be locked against editing. That is, if the I
flag is set [see admin(1) in the SysS UNIX User Reference Manual], the
release specified must not be contained in the list. If these conditions are
not satisfied, processing is terminated, and the delta is not removed. After
the specified delta has been removed, its type indicator in the "delta table"
of the SCCS file is changed from "D" ("delta") to "R" ("removed").

4.4.7 G. The "cdc" Command

The cdc command is used to change a delta's commentary that was
supplied when that delta was created. Its invocation is analogous to that of
the rmdel command, except that the delta to be processed is not required to
be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the SCCS file is to be
changed.

Sys5 UNIX 4-33

CHAPTER 4 secs

The new commentary is solicited by cdc in the same manner as that of
delta. The old commentary associated with the specified delta is kept, but it
is preceded by a comment line indicating that it has been changed (i.e.,
superseded), and the new commentary is entered ahead of this comment
line. The "inserted" comment line records the login name of the user
executing cdc and the time of its execution.

The cdc command also allows for the deletion of selected MR numbers
associated with the specified delta. This is specified by preceding the
selected MR numbers by the character ''!". Thus:

cdc -r1 .4 s.abc
MRs? mrnum3 !mrnum1
comments? deleted wrong MR number and inserted

correct MR number

inserts "mrnum3" and deletes "mrnum1" for delta 1.4.

4.4.8 H. The "what" Command

The what command is used to find identifying information within any UNIX
system file whose name is given as an argument to what. Directory names
and a name of "-" (a lone minus sign) are not treated specially as they are
by other SCCS commands and no keyletters are accepted by the command.

The what command searches the given file(s) for all occurrences of the
string "@(#)", which is the replacement for the @(#) ID keyword [see
get(1)], and prints (on the standard output) the balance following that string
until the first double quote ("), greater than (>), backslash (\), newline, or
(nonprinting) NUL character. For example, if the SCCS file s.prog.c (a C
language program) contains the following line:

char id[] "@(#)sccs2:5.1 ";

and then the command

get -r3.4 s.prog.c

is executed, the resulting g-fi/e is compiled to produce "prog.o" and "a.out".

4-34 Sys5 UNIX

SCCS

Then the command

what prog.c prog.o a.out

produces

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

CHAPTER 4

The string searched for by what need not be inserted via an ID keyword of
get; it may be inserted in any convenient manner.

4.4.9 I. The "sccsdiff" Command

The sccsdiff command determines (and prints on the standard output) the
differences between two specified versions of one or more SCCS files. The
versions to be compared are specified by using the -r keyletter, whose
format is the same as for the get command. The two versions must be
specified as the first two arguments to this command in the order they were
created, i.e., the older version is specified first. Any following keyletters are
interpreted as arguments to the pr(1) command (which actually prints the
differences) and must appear before any file names. The SCCS files to be
processed are named last. Directory names and a name of "-" (a lone
minus sign) are not acceptable to sccsdiff.

The differences are printed in the form generated by diff(1). The following
is an example of the invocation of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

4.4.10 J. The "comb" Command

The comb command generates a "shell procedure" [see sh(1) in the Sys5
UNIX User Reference Manual] which attempts to reconstruct the named
SCCS files so that the reconstructed files are smaller than the originals.
The generated shell procedure is written on the standard output. Named
SCCS files are reconstructed by discarding unwanted deltas and combining
other specified deltas. The SCCS files that contain deltas no longer useful
should be discarded. It is not recommended that comb be used as a matter
of routine; its use should be restricted to a very small number of times in the
life of an SCCS file.

Sys5 UNIX 4-35

CHAPTER 4 SCCS

In the absence of any keyletters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the "shape" of
the SCCS file tree. The effect of this is to eliminate middle deltas on the
trunk and on all branches of the tree. Thus, in Figures 4-3 thru 4-6, deltas
1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are
summarized as follows:

The -p keyletter specifies the oldest delta that is to be preserved in the
reconstruction. All older deltas are discarded.

The -c keyletter specifies a list [see get(1) in the SysS UNIX User
Reference Manual tor the syntax of such a list] of deltas to be preserved.
All other deltas are discarded.

The -s keyletter causes the generation of a shell procedure, which when
run, produces only a report summarizing the percentage space (if any) to
be saved by reconstructing each named SCCS file. It is recommended
that comb be run with this keyletter (in addition to any others desired)
before any actual reconstructions.

It should be noted that the shell procedure generated by comb is not
guaranteed to save space. In fact, it is possible for the reconstructed file to
be larger than the original. Note, too, that the shape of the SCCS file tree
may be altered by the reconstruction process.

4.4.11 K. The "val" Command

The val command is used to determine if a file is an SCCS file meeting the
characteristics specified by an optional list of keyletter arguments. Any
characteristics not met are considered errors.

The val command checks for the existence of a particular delta when the
SID for that delta is explicitly specified via the -r keyletter. The string
following the -y or -m keyletter is used to check the value set by the t or m
flag, respectively [see admin(1) in the SysS UNIX User Reference Manual
for a description of the flags].

The val command treats the special argument "-" differently from other
SCCS commands. This argument allows val to read the argument list from
the standard input as opposed to obtaining it from the command line. The
standard input is read until end of file. This capability allows for one
invocation of val with different values for the keyletter and file arguments.

4-36 SysS UNIX

(/

(.

SCCS

For example,

val -
-ye -mabc s.abc
-mxyz -ypl1 s.xyz

CHAPTER 4

first checks if file s.abc has a value "c" for its "type" flag and value "abc" for
the "module name" flag. Once processing of the first file is completed, val
then processes the remaining files, in this case, s.xyz, to determine if they
meet the characteristics specified by the keyletter arguments associated
with them.

The val command returns an 8-bit code; each bit set indicates the
occurrence of a specific error [see val(1) for a description of possible errors
and the codes]. In addition, an appropriate diagnostic is printed unless
suppressed by the -s keyletter. A return code of "O" indicates all named
files met the characteristics specified.

4.5 SCCS Files

This part discusses several topics that must be considered before extensive
use is made of SCCS. These topics deal with the protection mechanisms
relied upon by SCCS, the format of SCCS files, and the recommended
procedures for auditing SCCS files.

4.5.1 A. Protection

The SCCS relies on the capabilities of the UNIX software for most of the
protection mechanisms required to prevent unauthorized changes to SCCS
files (i.e., changes made by non-SCCS commands). The only protection
features provided directly by SCCS are the "release lock" flag, the "release
floor" and "ceiling" flags, and the "user list".

New SCCS files created by the admin command are given mode 444
(read-only). It is recommended that this mode remain unchanged as it
prevents any direct modification of the files by non-SCCS commands. It is
further recommended that the directories containing SCCS files be given
mode 755 which allows only the owner of the directory to modify its
contents.

The SCCS files should be kept in directories that contain only SCCS files
and any temporary files created by SCCS commands. This simplifies
protection and auditing of SCCS files. The contents of directories should
correspond to convenient logical groupings, e.g., subsystems of a large
project.

Sys5 UNIX 4-37

CHAPTER 4 secs

The SCCS files must have only one link (name) because the commands
that modify SCCS files do so by creating a copy of the file (the x-file, see
"SCCS COMMAND CONVENTIONS"). Upon completion of processing,
remove the old file and rename the x-fi/e. If the old file has more than one
link, this would break such additional links. Rather than process such files,
SCCS commands produce an error message. All SCCS files must have
names that begin with "s.".

When only one user uses SCCS, the real and effective user IDs are the
same; and the user ID owns the directories containing SCCS files.
Therefore, SCCS may be used directly without any preliminary preparation.

However, in those situations in which several users with unique user IDs are
assigned responsibility for one SCCS file (e.g., in large software
development projects), one user (equivalently, one user ID) must be chosen
as the "owner" of the SCCS files and be the one who will "administer" them
(e.g., by using the admin command). This user is termed the "SCCS
administrator" for that project. Because other users of SCCS do not have
the same privileges and permissions as the SCCS administrator, they are
not able to execute directly those commands that require write permission in
the directory containing the SCCS files. Therefore, a project-dependent
program is required to provide an interface to the get, delta, and if desired,
rmdei and cdc commands.

The interface program must be owned by the SCCS administrator and must
have the "set user ID on execution" bit "on" [see chmod(1) in the Sys5
UNIX User Reference Manual]. This assures that the effective user ID is
the user ID of the administrator. This program invokes the desired SCCS
command and causes it to inherit the privileges of the interface program for
the duration of that command's execution. Thus, the owner of an SCCS file
can modify it at will. Other users whose login names or group IDs are in the
"user list" for that file (but are not the owner) are given the necessary
permissions only for the duration of the execution of the interface program.
Other users are thus able to modify the SCCS files only through the use of
delta and, possibly, rmdel and cdc. The project-dependent interface
program, as its name implies, must be custom-built for each project.

4.5.2 B. Formatting

The SCCS files are composed of lines of ASCII text arranged in six parts as
follows:

Checksum

4-38

A line containing the "logical" sum of all the
characters of the file (not including this checksum
itself).

Sys5 UNIX

('

___ /

SCCS

Delta Table

User Names

Flags

Descriptive Text

Body

CHAPTER 4

Information about each delta, such as type, SID, date
and time of creation, and commentary.

List of login names and/or group IDs of users who are
allowed to modify the file by adding or removing
deltas.

Indicators that control certain actions of various
SCCS commands.

Arbitrary text provided by the user; usually a
summary of the contents and purpose of the file.

Actual text that is being administered by SCCS,
intermixed with internal SCCS control lines.

Detailed information about the contents of the various sections of the file
may be found in sccsfile(S). The checksum is the only portion of the file
that is of interest below.

It is important to note that because SCCS files are ASCII files they may be
processed by various UNIX software commands, such as ed(1), grep(1),
and cat(1). This is very convenient in those instances in which an SCCS file
must be modified manually (e.g., when the time and date of a delta was
recorded incorrectly because the system clock was set incorrectly) or when
it is desired to simply look at the file.

Caution: Extreme care should be exercised when modifying SCCS files
with non-SCCS commands.

4.5.3 C. Auditing

On rare occasions, perhaps due to an operating system or hardware
malfunction, an SCCS file or portions of it (i.e., one or more "blocks") can
be destroyed. The SCCS commands (like most UNIX software commands)
issue an error message when a file does not exist. In addition, SCCS
commands use the checksum stored in the secs file to determine whether
a file has been corrupted since it was last accessed [possibly by having lost
one or more blocks or by having been modified with ed(1)]. No SCCS
command will process a corrupted SCCS file except the admin command
with the -h or -z keyletters, as described below.

It is recommended that SCCS files be audited for possible corruptions on a
regular basis. The simplest and fastest way to perform an audit is to
execute the admin command with the -h keyletter on all SCCS files.

SysS UNIX 4-39

CHAPTER 4 SCCS

admin -h s.file1 s.file2 ...
or

admin -h directory1 directory2

If the new checksum of any file is not equal to the checksum in the first line
of that file, the message

corrupted file (co6)

is produced for that file. This process continues until all the files have been
examined. When examining directories (as in the second example above),
the process just described will not detect missing files. A simple way to
detect whether any files are missing from a directory is to periodically
execute the ls(1) command on that directory and compare the outputs of the
most current and the previous executions. Any file whose name appears in
the previous output but not in the current one has been removed by some
means.

Whenever a file has been corrupted, the manner in which the file is restored
depends upon the extent of the corruption. If damage is extensive, the best
solution is to contact the local UNIX system operations group and request
that the file be restored from a backup copy. In the case of minor damage,
repair through use of the editor ed(1) may be possible. In the latter case
after such repair, the following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into agreement
with the actual contents of the file. After this command is executed on a file,
any corruption that existed in the file will no longer be detectable.

4.6 An SCCS Interface Program

4.6.1 A. General

In order to permit UNIX system users [with different user identification
numbers (user IDs)] to use SCCS commands upon the same files, an SCCS
interface program is provided. It temporarily grants the necessary file access
permissions to these users. This part discusses the creation and use of
such an interface program. The SCCS interface program may also be used
as a preprocessor to SCCS commands since it can perform operations upon
its arguments.

4-40 Sys5 UNIX

\
)

\.

(

SCCS CHAPTER 4

4.6.2 B. Function

When only one user uses SCCS, the real and effective user IDs are the
same; and that user's ID owns the directories containing SCCS files.
However, there are situations (e.g., in large software development projects)
in which it is practical to allow more than one user to make changes to the
same set of SCCS files. In these cases, one user must be chosen as the
"owner" of the SCCS files and be the one who will "administer" them (e.g.,
by using the admin command). This user is termed the "SCCS
administrator" for that project. Since other users of SCCS do not have the
same privileges and permissions as the SCCS administrator, the other users
are not able to execute directly those commands that require write
permission in the directory containing the SCCS files. Therefore, a project·
dependent program is required to provide an interface to the get, delta, and
if desired, rmdel, cdc, and unget commands. Other SCCS commands
either do not require write permission in the directory containing SCCS files
or are (generally) reserved for use only by the administrator.

The interface program

• Must be owned by the SCCS administrator

• Must be executable by the new owner

• Must have the " set user on execution" bit "on" [see chmod (1) in the
Sys5 UNIX Users Manuan.

Then when executed, the effective user ID is the user ID of the
administrator. This program's function is to invoke the desired SCCS
command and to cause it to inherit the privileges of the SCCS administrator
for the duration of that command's execution. In this manner, the owner of
an SCCS file (the administrator) can modify it at will. Other users whose
login names are in the user list for that file (but who are not its owners) are
given the necessary permissions only for the duration of the execution of the
interface program. They are thus able to modify the SCCS files only
through the use of delta and, possibly, rmdel and cdc.

4.6.3 C. Basic Program

When a UNIX system program is executed, the program is passed as
argument 0, which is the name that invoked the program, and followed by
any additional user-supplied arguments. Thus, if a program is given a
number of links (names), the program may alter its processing depending
upon which link invokes the program. This mechanism is used by an SCCS
interface program to determine the SCCS command it should subsequently
invoke [see exec(2) in the Sys5 UNIX User Reference Manual}.

Sys5 UNIX 4-41

CHAPTER 4 secs

A generic intertace program (inter.c, written in C language) is shown in
Figure 4-7. Note the reference to the (unsupplied) function "filearg". This is
intended to demonstrate that the intertace program may also be used as a
preprocessor to SCCS commands. For example, function "filearg" could be
used to modify file arguments to be passed to the SCCS command by
supplying the full pathname of a file, thus avoiding extraneous typing by the
user. Also, the program could supply any additional (default) keyletter
arguments desired.

4.6.4 D. Linking and Use

In general, the following demonstrates the steps to be pertormed by the
SCCS administrator to create the SCCS intertace program. It is assumed,
for the purposes of the discussion, that the intertace program inter.c resides
in directory "/x1/xyz/sccs". Thus, the command sequence

cd /x1/xyz/sccs
cc ... inter.c -o inter ...

compiles inter.c to produce the executable module inter (the " ... "
represents other arguments that may be required). The proper mode and
the "set user ID on execution" bit are set by executing

chmod 4 755 inter

For example, new links are created by

In inter get
In inter delta
In inter rmdel

The names of the links may be arbitrary if the intertace program is able to
determine from them the names of SCCS commands to be invoked.
Subsequently, any user whose shell parameter PATH [see sh(1) in the Sys5
UNIX User Reference Manual] specifies directory "/x1/xyz/sccs" as the one
to be searched first for executable commands may execute, e.g.

get --e /x1/xyz/sccs/s.abc

from any directory to invoke the intertace program (via its link "get"). The
intertace program then executes "/usr/bin/get" (the actual SCCS get
command) upon the named file. As previously mentioned, the intertace
program could be used to supply the pathname "/x1 /xyz/sccs" so that the
user would only have to specify

get --e s.abc

to achieve the same results.

4-42 Sys5 UNIX

('

SCCS

main(argc, argv)
int argc;
char *argv[];
{

register int i;
char cmdstr[LENGTH)

/*

CHAPTER 4

Process file arguments (those that don't begin with '-').
*/
for (i = 1; i < argc; i++)

if (argv[i][O] != '-')
argv[i] = filearg(argv[i]);

/*
Get 'simple name' of name used to invoke this program
(i.e., strip off directory-name prefix, if any).

*/
argv[O] = sname(argv[O]);

/*
Invoke actual command, passing arguments.

*/
sprintf(cmdstr, "/usr/bin/%s", argv[O]);
execv(cmdstr, argv);

Figure 4-7. SCCS Interface Program inter.c

SysS UNIX 4-43

MACROS CHAPTER 5

5. Macros

The M4 inacro processor is a front end for rational Fortran (Ratfor) and the
C programming languages. The "#define" statement in C language and the
analogous "define" in Ratfor are examples of the basic facility provided by
any macro processor.

At the beginning of a program, a symbolic name or symbolic constant can
be defined as a particular string of characters. The compiler will then
replace later unquoted occurrences of the symbolic name with the
corresponding string. Besides the straightforward replacement of one string
of text by another, the M4 macro processor provides the following features:

•arguments

• arithmetic capabilities

• file manipulation

• conditional macro expansion

• string and substring functions.

The basic operation of M4 is to read every alphanumeric token (string of
letters and digits) input and determine if the token is the name of a macro.
The name of the macro is replaced by its defining text, and the resulting
string is pushed back onto the input to be rescanned. Macros may be called
with arguments. The arguments are collected and substituted into the right
places in the defining text before the defining text is rescanned.

The user also has the capability to define new macros. Built-ins and user­
defined macros work exactly the same way except that some of the built-in
macros have side effects on the state of the process. A list of 21 built-in
macros provided by the M4 macro processor can be found in Figures 5-1
thru 5-4.

Sys5 UNIX 5-1

CHAPTER 5 MACROS

/

Macro Function
Name

changequote Restores original
characters or
makes new quote
characters the
left and right
brackets.

changescom Changes left and right
comment markers from
the default # and new
line.

deer Returns the value of
its argument decremented
~1.

define Defines new macros.

defn Returns the quoted
definition of its
a~umen!.(_s).

divert Diverts output to
1-out-of-10
diversions.

Figure 5-1. Built-in Macros (Sheet 1 of 4)

5-2 SysS UNIX

MACROS CHAPTER 5

(
Macro Function
Name

divnum Returns the number
of the currently
active diversion.

dnl Reads and discards
characters up to
and including the
next new line.

dumpdef Dumps the current
names and definitions
of items named as
arguments.

errprint Prints its arguments
on the standard
error file.

eval Prints arbitrary
arithmetic on

(integers.

ifdef Determines if a
macro is currently
defined.

if else Performs arbitrary
conditional testing.

include Returns the contents
of the file named
in the argument. A
fatal error occurs
if the file name
cannot be accessed.

Figure 5-2. Built-in Macros (Sheet 2 of 4)

SysS UNIX 5-3

CHAPTER 5 MACROS

Macro Function
Name

iner Returns the value of
its argument
incremented ~ 1.

index Returns the position
where the second
argument begins in
the first argument
.£!index.

len Returns the number of
characters that makes
its argument.

··-
m4exit Causes immediate

exit from M4. --
m4wrap Pushes the exit code

back at final EOF.

maketemp Facilitates making
unique file names.

popdef Removes current
definition of its
argument(s)
exposing any previous
definitions.

pushdef Defines new macros
but saves any
previous definition.

Figure 5-3. Built-in Macros (Sheet 3 of 4)

5-4 Sys5 UNIX

(

MACROS

Macro Function
Name

shift Returns all arguments
of shift except the
first arg_ument.

sinclude Returns the contents
of the file named
in the arguments.
The macro remains
silent and continues
if the file is
inaccessible.

substr Produces substrings
of strin_g_s.

syscmd Executes the SysS UNIX
command given in

I--'---
the first ainument.

traceoff Turns macro trace off.

traceon Turns the macro trace on.
translit Performs character

transliteration.
~· ---1

undefine Removes user-defined
or built-in macro
definitions.

t---·
undivert Discards the diverted

text.

Figure 5-4. Built-in Macros (Sheet 4 of 4)

To use the M4 macro processor, input the following command:

m4 [optional files]

CHAPTER 5

Each argument file is processed in order. If there are no arguments or if an
argument is "-", the standard input is read at that point. The processed
text is written on the standard output which may be captured for subsequent
processing with the following input:

m4 [files] >outputfile

SysS UNIX 5-5

CHAPTER 5 MACROS

5.1 Defining Macros

The primary built-in function of M4 is define. Define is used to define new "~J
macros. The following input:

define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences
of name will be replaced by stuff. Name must be alphanumeric and must
begin with a letter (the underscore counts as a letter). Stuff is any text that
contains balanced parentheses. Use of a slash may stretch stuff over
multiple lines. Thus, as a typical example,·

define(N, 100)

if (i > N)

defines N to be 100 and uses the symbolic constant N in a later if
statement.

The left parenthesis must immediately follow the word define to signal that
define has arguments. If a user-defined macro or built-in name is not
followed immediately by "(", it is assumed to have no arguments. Macro
calls have the following general form:

name(arg1 ,arg2, ... argn)

A macro name is only recognized as such if it appears surrounded by
nonalphanumerics. Using the following example:

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N even
though the variable contains a lot of Ns.

Macros may be defined in terms of other names. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100. If N is redefined and subsequently
changes, M retains the value of 100 not N.

The M4 macro processor expands macro names into their defining text as
soon as possible. The string N is immediately replaced by 100. Then the

5-6 SysS UNIX

\
./

(

MACROS CHAPTER 5

string M is also immediately replaced by 100. The overall result is the same
as using the following input in the first place:

define(M, 100)

The order of the definitions can be interchanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is requested
later, the result is the value of N at that time (because the M will be replaced
by N which will be replaced by 100).

The more general solution is to delay the expansion of the arguments of
define by quoting them. Any text surrounded by left and right single quotes
is not expanded immediately but has the quotes stripped off. The value of a
quoted string is the string stripped of the quotes. If the input is

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is being collected.
The results of using quotes is to define M as the string N, not 100. The
general rule is that M4 always strips off one level of single quotes whenever
it evaluates something. This is true even outside of macros. If the word
define is to appear in the output, the word must be quoted in the input as
follows:

·define' c. 1;

Another example of using quotes is redefining N. To redefine N, the
evaluation must be delayed by quoting

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first argument of a macro. The following
example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is equivalent
to the following statement:

SysS UNIX 5-7

CHAPTER 5 MACROS

define(100, 200)

This statement is ignored by M4 since only things that look like names can
be defined.

If left and right single quotes are not convenient for some reason, the quote
characters can be changed with the following built-in macro:

changequote([,])

The built-in changequote makes the new quote characters the left and right
brackets. The original characters can be restored by using changequote
without arguments as follows:

changequote

There are two additional built-ins related to define. The undefine macro
removes the definition of some macro or built-in as follows:

u ndefine('N ")

The macro removes the definition of N. Built-ins can be removed with
undefine, as follows:

undefine('define')

But once removed, the definition cannot be reused.

The built-in ifdef provides a way to determine if a macro is currently defined.
Depending on the system, a definition appropriate for the particular machine
can be made as follows:

ifdef('pdp11 ', 'define(wordsize, 16)')
ifdef('u3b', 'define(wordsize,32) ')

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first argument is
defined, the value of ifdef is the second argument. If the first argument is
not defined, the value of ifdef is the third argument. If there is no third
argument, the value of ifdef is null. If the name is undefined, the value of
ifdef is then the third argument, as in

ifdef('unix", on UNIX, not on UNIX)

5-8 Sys5 UNIX

(

MACROS CHAPTER 5

5.2 Arguments

So far the simplest form of macro processing has been discussed which is
replacing one string by another (fixed) string. User-defined macros may
also have arguments, so different invocations can have different results.
Within the replacement text for a macro (the second argument of its define),
any occurrence of $n is replaced by the nth argument when the macro is
actually used. Thus, the macro bump defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1. The 'bump(x)' statement is
equivalent to 'x = x + 1.'

A macro can have as many arguments as needed, but only the first nine are
accessible ($1 through $9). The macro name is $0 although that is less
commonly used. Arguments that are not supplied are replaced by null
strings, so a macro can be defined which simply concatenates its arguments
like this:

define(cat, $1 $2$3$4$5$6$7$8$9)

Thus, 'cat(x, y, z)' is equivalent to 'xyz'. Arguments $4 through $9 are null
since no corresponding arguments were provided. Leading unquoted
blanks, tabs, or newlines that occur during argument collection are
discarded. All other white space is retained. Thus:

define(a, b c)

defines 'a' to be 'b c'.

Arguments are separated by commas; however, when commas are within
parentheses, the argument is not terminated nor separated. For example,

define(a, (b,c))

has only two arguments. The first argument is a. The second is literally
(b,c). A bare comma or parenthesis can be inserted by quoting it.

5.3 Arithmetic Built-Ins

The M4 provides three built-in functions for doing arithmetic on integers
(only). The simplest is incr which increments its numeric argument by 1.
The built-in deer decrements by 1. Thus to handle the common
programming situation where a variable is to be defined as "one more than
N", use the following:

Sys5 UNIX 5-9

CHAPTER 5

define(N, 100)
define(N1, 'incr(N)')

Then N1 is defined as one more than the current value of N.

MACROS

The more general mechanism for arithmetic is a built-in called eval which is
capable of arbitrary arithmetic on integers. The operators in decreasing
order of precedence are

unary+ and -
** or · (exponentiation)
* I % (modulus)
+ -
== != < <= > >=

(not)
& or && (logical and)
1 or 11 (logical or).

Parentheses may be used to group operations where needed. All the
operands of an expression given to eval must ultimately be numeric. The
numeric value of a true relation (like 1 >0) is 1 and false is 0. The precision
in eval is 32 bits under the UNIX operating system.

As a simple example, define M to be "2 = = N + 1" using eval as follows:

define(N, 3)
define(M, 'eval(2==N+1)')

The defining text for a macro should be quoted unless the text is very
simple. Quoting the defining text usually gives the desired result and is a
good habit to get into.

5.4 File Manipulation

A new file can be included in the input at any time by the built-in function
include. For example,

include(filename)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. The value of include
(include's replacement text) is the contents of the file. If needed, the
contents can be captured in definitions, etc.

A fatal error occurs if the file named in include cannot be accessed. To get
some control over this situation, the alternate form sinclude can be used.
The built-in sinclude (silent include) says nothing and continues if the file

5-10 Sys5 UNIX

(

(

MACROS CHAPTER 5

named cannot be accessed.

The output of M4 can be diverted to temporary files during processing, and
the collected material can be output upon command. The M4 maintains
nine of these diversions, numbered 1 through 9. If the built-in macro

divert(n)

is used, all subsequent output is put onto the end of a temporary file
referred to as n. Diverting to this file is stopped by the divert or divert(O)
command which resumes the normal output process.

Diverted text is normally output all at once at the end of processing with the
diversions output in numerical order. Diversions can be brought back at any
time by appending the new diversion to the current diversion. Output
diverted to a stream other than 0 through 9 is discarded. The built-in
undivert brings back all diversions in numerical order. The built-in undivert
with arguments brings back the selected diversions in the order given. The
act of undiverting discards the diverted text (as does diverting) into a
diversion whose number is not between 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore, the diverted
material is not rescanned for macros. The built-in divnum returns the
number of the currently active diversion. The current output stream is zero
during normal processing.

5.5 System Command

Any program in the local operating system can be run by using the syscmd
built-in. For example,

syscmd(date)

on the UNIX system runs the date command. Normally, syscmd would be
used to create a file for a subsequent include. To facilitate making unique
file names, the built-in maketemp is provided with specifications identical to
the system function mktemp. The maketemp macro fills in a string of
XXXXX in the argument with the process id of the current process.

5.6 Conditionals

Arbitrary conditional testing is performed via built-in ifelse. In the simplest
form

ifelse(a, b, c, d)

compares the two strings a and b. If a and b are identical, ifelse returns
the string c. Otherwise, string dis returned. Thus, a macro called compare

Sys5 UNIX 5-11

CHAPTER 5 MACROS

can be defined as one which compares two strings and returns "yes" or
"no" if they are the same or different as follows:

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotes which prevents evaluation of ifelse occurring too early. If
the fourth argument is missing, it is treated as empty.

The built-in ifelse can actually have any number of arguments and provides
a limited form of multiway decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the
same as e, the result is f. Otherwise, the result is g. If the final argument is
omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

5.7 String Manipulation

The built-in len returns the length of the string (number of characters) that
makes up its argument. Thus:

len(abcdef)

is 6, and len{{a,b)) is 5.

The built-in substr can be used to produce substrings of strings. Using
input, substr(s, i, n) returns the substring of s that starts at the ith position
(origin zero) and is n characters long. If n is omitted, the rest of the string is
returned. Inputting

substr('now is the time', 1)

returns the following string:

ow is the time.

If i or n are out of range, various actions occur.

The built-in index(s1, s2) returns the index (position) in s1 where the string
s2 occurs or -1 if it does not occur. As with substr, the origin for strings is
o.

5-12 Sys5 UNIX

/ .
' \

)

(

MACROS CHAPTER 5

The built-in translit performs character transliteration and has the general
form

translit(s, f, t)

which modifies s by replacing any character found in f by the corresponding
character of t. Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f,
characters that do not have an entry in t are deleted. As a limiting case, if t
is not present at all, characters from fare deleted from s. So

translit(s, aeiou)

would delete vowels from s.

There is also a built-in called dnl that deletes all characters that follow it up
to and including the next new line. The dnl macro is useful mainly for
throwing away empty lines that otherwise tend to clutter up M4 output.
Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of the definition.
So the new line is copied into the output where it may not be wanted. If the
built-in dnl is added to each of these lines, the newlines will disappear.
Another method of achieving the same results is to input

divert(-1)
define(...)

divert.

5.8 Printing

The built-in errprint writes its arguments out on the standard error file. An
example would be

errprint('fatal error')

The built-in dumpdef is a debugging aid that dumps the current names and
definitions of items named as arguments. If no arguments are given, all
current names and definitions are printed (don't forget to quote names).

Sys5 UNIX 5-13

/,,,----"'·

_ __)

(-

AWK CHAPTER 6

6. AWK

The awk is a file-processing programming language designed to make many
common information and retrieval text manipulation tasks easy to state and
perform. The awk:

• Generates reports

• Matches patterns

• Validates data

• Filters data for transmission.

6.1 Program Structure

The awk program is a sequence of statements of the form

pattern {action}
pattern {action}

The awk program is run on a set of input files. The basic operation of awk is
to scan a set of input lines, in order, one at a time. In each line, awk
searches for the pattern described in the awk program, then if that pattern is
found in the input line, a corresponding action is performed. In this way,
each statement of the awk program is executed for a given input line. When
all the patterns are tested, the next input line is fetched; and the awk
program is once again executed from the beginning.

In the awk command, either the pattern or the action is omitted, but not
both. If there is no action for a pattern, the matching line is simply printed. If
there is no pattern for an action, then the action is performed for every input
line. The null awk program does nothing. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from
patterns.

For example, this awk program

x1 {print}

prints every input line that has an "x" in it.

An awk program has the following structure:

Sys5 UNIX 6-1

CHAPTER 6 AWK

- a <BEGIN> section
- a <record> or main section
- an <END> section.

The <BEGIN> section is run before any input lines are read, and the
<END> section is run after all the data files are processed. The <record>
section is data driven. That is, it is the section that is run over and over for
each separate line of input.

Values are assigned to variables from the. awk command line. The
<BEGIN> section is run before these assignments are made.

The words "BEGIN" and "END" are actually patterns recognized by awk.
These are discussed further in the pattern section of this guide.

6.2 Lexical Conventions

All awk programs are made up of lexical units called tokens. In awk there
are eight token types:

1. numeric constants

2. string constants

3. keywords

4. identifiers

5. operators

6. record and file tokens

7. comments

8. separators.

6.2.1 Numeric Constants

A numeric constant is either a decimal constant or a floating constant. A
decimal constant is a nonnull sequence of digits containing at most one
decimal point as in 12, 12., 1.2, and .12. A floating constant is a decimal
constant followed by e or E followed by an optional ..,... or - sign followed by
a nonnull sequence of digits as in 12e3, 1.2e3, 1.2e-3, and 1.2E+3. The
maximum size and precision of a numeric constant are machine dependent.

6.2.2 String Constants

A string constant is a sequence of zero or more characters surrounded by
double quotes as in ''," "a", "ab", and "12". A double quote is put in a string
by proceeding it with \ as in "He said, \ Sit! \"". A newline is put in a string by

6-2 SysS UNIX

I\
\ '-...___,)

(

(

AWK CHAPTER 6

using \n in its place. No other characters need to be escaped. Strings can
be (almost) any length.

6.2.3 Keywords

Strings used as keywords are shown in Figure 6·1.

Keywords

begin break length
end close log
FILENAME continue next
FS close number
NF exit print
NR exp printf
OFS for split
ORS getline sprintf
OFMT if sqrt
RS in string

index substr
int while

Figure 6-1. Strings Used as Keywords

6.2.4 Identifiers

Identifiers in awk serve to denote variables and arrays. An identifier is a
sequence of letters, digits, and underscores, beginning with a letter or an
underscore Uppercase and lowercase letters are different.

6.2.5 Operators

The awk has assignment, arithmetic, relational, and logical operators similar
to those in the C programming language and regular expression pattern
matching operators similar to those in the UNIX operating system program
egrep and lex.

Sys5 UNIX 6-3

CHAPTER 6 AWK

Assignment operators are shown in Figure 6-2.

Assignment Operators
Symbol Usage Description

= assignment
+= plus-equals X + = V is similar

to X = X+V
-= minus-equals X- = V is similar

to X = X-V
*- times-equals X *= Vis similar

to X = X*V
I= divide-equals X = V is similar

to X = X/V
O/o= mod-equals X%=V is similar

to X = X%V
++ prefix and + + X and FBX + + are similar

postfix to X=X+1
increments

- prefix and - and X similar
postfix to X = X - 1
decrements

Figure 6-2. Symbols and Descriptions for Assignment Operators

6-4 Sys5 UNIX

AWK CHAPTER 6

{ _ Arithmetic operators are shown in Figure 6-3.

(

Arithmetic Operators

Symbol Description
.R

+ unary binary plus
- unary and binary minus
* multiplication
I division
O/o modulus
(...) grouping

--Figure 6-3. Symbols and Descriptions for Arithmetic Operators

Relational operators are shown in Figure 6-4.

Relational Operators

Symbol

<
<=

!=
>=
>

Description

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than

Figure 6-4. Symbols and Descriptions for Relational Operators

Sys5 UNIX 6-5

CHAPTER 6

Logical operators are shown in Figure 6-5.

Logical Operators

Symbol Description

&& and
! ! or
! not

Figure 6-5. Symbols and Descriptions for Logical Operators

Regular expression matching operators are shown in the Figure 6-6.

Regular Expression Pattern Matching Operators

Symbol Description

- matches
!- does not match

AWK

Figure 6-6. Symbols and Descriptions for Regular Expression Pattern

6-6 Sys5 UNIX

(/

(

AWK CHAPTER 6

6.2.6 Record and Field Tokens

The $0 is a special variable whose value is that of the current input record.
The $1, $2 ... are special variables whose values are those of the first field,
the second field , ... , respectively, of the current input record. The
keyword NF (Number of Fields) is a special variable whose value is the
number of fields in the current input records. Thus $NF has, as its value,
the value of the last field of the current input records. Notice that the field of
each record is numbered 1 and that the number of fields can vary from
record to record. None of these variables is defined in the action associated
with a BEGIN or END pattern, where there is no current input record.

The keyword NR (Number of Records) is a variable whose value is the
number of input records read so far. The first input record read is 1.

6.2. 7 Record Separators

The keyword RS (Record Separators) is a variable whose value is the
current record separator. The value of RS is initially set to newline,
indicating that adjacent input records are separated by a newline. Keyword
RS is changed to any character c by including the assignment statement RS
= "c" in an action.

6.2.8 Field Separator

The keyword FS (Field Separator) is a variable indicating the current field
separator. Initially, the value of FS is a blank, indicating that fields are
separated by white space, i.e., any nonnull sequence of blanks and tabs.
Keyword FS is changed to any single character c by including the
assignment statement F ~- "c·· in an action or by using the optional
command line argument - Fe. Two values of c have special meaning, space
and t. The assignment statement FS = .. " makes white space in field
separator; and on the command line, -Ft makes tab the field separator.

If the field operator is not a blank, then there is a field in the record on each
side of the separator. For instance, if the field separator is 1, the record
1XXX1 has three fields. The first and last are null. If the field separator is
blank, then fields are separated by white space, and none of the NF fields
are null.

6.2.9 Multiline Records

The assignment RS = " " makes an empty line the record separator and
makes a nonnull sequence (consisting of blanks, tabs, and possibly a
newline) the field separator. With this setting, none of the first NF fields of
any record are null.

Sys5 UNIX 6-7

CHAPTER 6 AWK

6.2.1 O Output Record and Field Separators

The value of OFS (Output Field Separator) is the output field separator. It is
put between fields by print. The value of ORS (Output Record Separators) is
put after each record by print. Initially , ORS is set to a newline and OFS to
a space. These values may change to any string by assignments such as
ORS = "abc" and OFS = "xyz".

6.2.11 Comments

A comment is introduced by a # and terminated by a newline. For example:
part of the line is a comment

A comment can be appended to the end of any line of an awk program.

6.2.12 Separators and Brackets

Tokens in awk are usually separated by nonnull sequences of blank, tabs,
and newlines, or by other punctuation symbols such as commas and
semicolons. Braces { ... } surround actions, slashes / .. ./ surround regular
expression patterns, and double quotes " ... " surround strings.

6.3 Primary Expressions

In awk, patterns and actions are made up of expressions. The basic
building blocks of expressions are the primary expressions:

numeric constants
string constant
var
function

Each expression has both a numeric and a string value, one of which is
usually preferred. The rules for determining the preferred value of an
expression are explained below.

6.3.1 Numeric Constants

The format of a numeric constant was defined previously in LEXICAL
CONVENTIONS. Numeric values are stored as floating point numbers.
Both the numeric and string value of a numeric constant is the decimal
number represented by the constant. The preferred value is the numeric
value.

6-8 Sys5 UNIX

(/

AWK

Numeric values for string constants are in Figure 6-7.

Numeric Constants

Numeric Numeric String
Constant Value Value

0 0 0
1 1 1
.5 0.5 .5
.5e2 50 50

Figure 6-7. Numeric Values for String Constants

6.3.2 String Constants

CHAPTER 6

The format of a string constant was defined previously in LEXICAL
CONVENTIONS. The numeric value of a string constant is 0 unless the
string is a numeric constant enclosed in double quotes. In this case, the
numeric value is the number represented. The preferred value of a string
constant is its string value. The string value of a string constant is always
the string itself.

String values for string constants are in Figure 6-8.

String Constants

String Numeric String
Constant Value Value

"" 0 empty space
"a" 0 a
"XYZ" 0 xyz
"o" 0 0
"1" 1 1
".5" 0.5 .5
".5e2" 0.5 .5e2a

Figure 6-8. String Values for String Constants

Sys5 UNIX 6-9

CHAPTER 6

6.3.3 Vars

A var is one of the following:

identifier
identifier {expression}
$term

AWK

The numeric value of any uninitialized var is 0, and the string value is the
empty string.

An identifier by itself is a simple variable. A var of the form identifier
{expression} represents an element of an associative array named by
identifier. The string value of expression is used as the index into the array.
The preferred value of identifier or identifier {expression} is determined by
context.

The var $0 refers to the current input record. Its string and numeric values
are those of the current input record. If the current input record represents a
number, then the numeric value of $0 is the number and the string value is
the literal string. The preferred value of $0 is string unless the current input
record is a number. The $0 cannot be changed by assignment.

The var $1, $2, ... refer to fields 1, 2, ... of the current input record. The
string and numeric value of $i for 1 < = i< =NF are those of the ith field of 1 -"-,
the current input record. As with $0, if the ith field represents a number, then ·

\'--/
the numeric value of $i is the number and the string value is the literal
string. The preferred value of $i is string unless the ith field is a number. The
$i is changed by assignment. The $0 is then changed accordingly.

In general, $term refers to the input record if term has the numeric value 0
and to field i if the greatest integer in the numeric value of term is i. If i<O
or if i> = 100, then accessing $i causes awk to produce an error diagnostic.
If NF<i<=100, then $i behaves like an uninitialized var. Accessing $i for i
> NF does not change the value of NF.

6.3.4 Function

The awk has a number of built-in functions that perform common arithmetic
and string operations.

6-10 SysS UNIX

(/

AWK CHAPTER 6

The arithmetic functions are in Figure 6-9.

Functions

exp (expression)
int (expression)
log (expression)
sqrt (expression)

L--~-'-~~~~-___J

Figure 6-9. Built-in Functions for Arithmetic and String Operations

These functions (exp, int, log, and sqrt) compute the exponential, integer
part, natural logarithm, and square root, respectively, of the numeric value of
expression. The (expression) may be omitted; then the function is applied
to $0. The preferred value of an arithmetic function is numeric.

String functions are shown in Figure 6-10.

String Functions

get line
index (expression1, expression2)
length (expression)
split (expression, identifier, expression2)
split (expression, identifier)
sprintf (format, expression1, expression2 ...)
substr (expression1, expression2)
substr (expression1, expression2, expression3)

Figure 6-10. Expressions for String Functions

The function getline causes the next input record to replace the current
record. It returns 1 if there is a next input record or a O if there is no next
input record. The value of NR is updated.

The function index (e1 ,e2) takes the string value of expressions e1 and e2
and returns the first position of where e2 occurs as a substring in e1. If e2
does not occur in e 1, index returns 0. For example, index ("abc", "be")= 2
and index ("abc'', "ac") = 0.

SysS UNIX 6-11

CHAPTER 6 AWK

The function length without an argument returns the number of characters in
the current input record. With an expression argument, length (e) returns the
number of characters in the string value of e. For example, length
("abe")=3 and length (17)=2.

The function split (e array, sep) splits the string value of expression e into
fields that are then stored in array [1], array [2], ... , array [n] using the string
value of sep as the field separator. Split returns the number of fields found
in e. The function split (e, array) uses the current value of FS to indicate
the field separator. For example, after invoking n = split ($0), a[I], a[2, ... ,
a[n] is the same sequence of values as $1, $2 ... , $NF.

The function splitf (f, e1, e2 ...) produces the value of expressions e1, e2 .
• . in the format specified by the string value of the expression f. The format
control conventions are those of the printf statement in the C programming
language [KR].

The function substr (string, pos) returns the suffix of string starting at
position pos. The function substr (string, pos, length) returns the substring
of string that begins at position pos and is length characters long. If pos +
length is greater than the length of string then substr (string, pos, length) is
equivalent to substr (string, pos). For example, substr ("abe'', 2, 1) = "b",
substr ("abe", 2, 2) = "be", and subtr ("abc", 2, 3) = "be". Positions less
than 1 are taken as 1. A negative or zero length produces a null result.

The preferred value of sprintf and substr is string. The preferred value of the
remaining string functions is numeric.

6.4 Terms

Various arithmetic operators are applied to primary expressions to produce
larger syntactic units called terms. All arithmetic is done in floating point. A
term has one of the following forms:

primary expression
term binop term
unop term
incremented var
(term)

6.4.1 Binary Terms

In a term of the form

term1
binop
term2

binop can be one of the five binary arithmetic operators +, - , •
(multiplication), /(division), % (modulus). The binary operator is applied to

6-12 SysS UNIX

(

(

AWK CHAPTER 6

the numeric value of the operand term1 and term2, and the result is the
usual numeric value. This numeric value is the preferred value, but it can be
interpreted as a string value (see Numeric Constants). The operators * , !,
and % have higher precedence than + and - . All operators are left
associative.

6.4.2 Unary Term

In a term of the form

unop term

unop can be unary + or - . The unary operator is applied to the numeric
value of term, and the result is the usual numeric value which is preferred.
However, it can be interpreted as a string value. Unary + and - have
higher precedence than ·, /, and%

6.4.3 Incremented Vars

An incremented var has one of the forms

++var
- - var
var++
var - -

The + + var has the value var + 1 and has the effect of var = var + 1.
Similarly, - - var has the value var - 1 and has the effect of var = var -
1. Therefore, var + + has the same value as var and has the effect of var
= var + 1. Similarly, var - - has the same value as var and has the effect
of var = var - 1. The preferred value of an incremented var is numeric.

6.4.4 Parenthesized Terms

Parentheses are used to group terms in the usual manner.

6.5 Expressions

An awk expression is one of the following:

term
term term ...
var asgnop expression

6.5.1 Concatenation of Terms

In an expression of the form term1 term2 ... , the string value of the terms
are concatenated. The preferred value of the resulting expression is a string
value that can be interpreted as a numeric value. Concatenation of terms
has lower precedence than binary + and-. For example, 1 +2 3=4 has the
string (and numeric) value 37.

SysS UNIX 6-13

CHAPTER 6

6.5.2 Assignment Expressions

An assignment expression is one of the forms

var asgnop expression

where asgnop is one of the six assignment operators:

+=

*=

I=
o/o=

The preferred value of var is the same as that of expression.

In an expression of the form

var = expression

the numeric and string value of var becomes those of expression.

var op = expression

is equivalent to

var = var op expression

AWK

where op is one of; +, -, *, /, %. The asgnops are right associative and
have the lowest precedence of any operator. Thus, a + = b *= c-2 is
equivalent to the sequence of assignments

b = b * (0-2)
a= a+2

6.6 Using awk

There are two ways in which to present your awk program of pattern-action
statements to awk tor processing:

1. If the program is short (a line or two), it is often easiest to make the
program the first argument on the command line:

awk ' program ' files

where "files" is an optional list of input files and "program" is your awk
program. Note that there are single quotes around the program in
order for the shell to accept the entire string (program) as the first
argument to awk. For example, write to the shell

awk ' /xi {print } ' files

to run the awk script /x; {print} on the input file "files". If no input files

6-14 SysS UNIX

!/" \

··'-j

(

AWK CHAPTER 6

are specified, awk takes input from the standard input stdin. You can
also specify that input comes from stdin by using .. _ .. (the hyphen) as
one of the files. The pattern-action statement

awk 'program' files -

looks for input from "files" and from stdin and processes first from
"files" and then from stdin.

2. Alternately, if your awk program is long, it is more convenient to put
the program in a separate file, awkprog, and tell awk to fetch it from
there. This is done by using the "-f" option after the awk command
as follows:

awk -f awkprog files

where "files" is an optional list of input files that may include stdin as
is indicated by a hyphen(-).

For example:

awk' BEGIN {

prints

hello, world

print "hello, world"
exit

on the standard output when given to the shell. Recall that the word
"BEGIN" is a special pattern indicating that the action following in braces is
run before any data is read. Words "print" and "exit" are both discussed in
later sections.

This awk program could be run by putting

BEGIN {
print "hello, world"
exit

in a file named awkprog , and then the command

awk -f awkprog

(- ' given to the shell. This would have the same effect as the first procedure.

SysS UNIX 6-15

CHAPTER 6 AWK

6.7 Input: Records and Files

The awk reads its input one record at a time unless changed by you. A
record is a sequence of characters from the input ending with a newline
character or with an end of file. Thus, a record is a line of input. The awk
program reads in characters until it encounters a newline or end of file. The
string of characters, thus read, is assigned to the variable $0. You can
change the character that indicates the end of a record by assigning a new
character to the special variable RS (the record separator). Assignment of
values to variables and these special variables such as RS are discussed
later.

Once awk has read in a record, it then splits the record into "fields". A field
is a string of characters separated by blanks or tabs, unless you specify
otherwise. You may change field separators from blanks or tabs to whatever
characters you choose in the same way that record separators are changed.
That is, the special variable FS is assigned a different value.

As an example, let us suppose that the file "countries" contains the area in
thousands of square miles, the population in millions, and the continent for
the ten largest countries in the world. (Figures are from 1978; Russia is
placed in Asia.)

Sample Input File "countries":

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia
India 1269 637 Asia
Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide spaces are tabs in the original input and a single blank separates
North and South from America. We use this data as the input for many of
the awk programs in this guide since it is typical of the type of material that
awk is best at processing (a mixture of words and numbers separated into
fields or columns separated by blanks and tabs).

Each of these lines has either four or five fields if blanks and/or tabs
separate the fields. This is what awk assumes unless told otherwise. In the
above example, the first record is

6-16 SysS UNIX

(

(

AWK CHAPTER 6

Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable $0. If you
want to refer to this entire record, it is done through the variable, $0.

For example, the following input:

{print $0}

prints the entire record. Fields within a record are assigned to the variables
$1, $2, $3, and so forth; that is, the first field of the present record is
referred to as $1 by the awk program. The second field of the present
record is referred to as $2 by the awk program. The ith field of the present
record is referred to as $i by the awk program. Thus, in the above example
of the file countries, in the first record;

$1 is equal to the string "Russia"
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string "Asia"
$5 is equal to the null string

... and so forth.

To print the continent, followed by the name of the country, followed by its
population, use the following awk script:

{print $4, $1, $3}

Note that awk does not require type declarations.

6.8 Input: From the Command Line

It is possible to assign values to variables from within an awk program.
Because you do not declare types of variables, a variable is created simply
by referring to it. An example of assigning a value to a variable is:

x=5

This statement in an awk program assigns the value 5 to the variable x. It is
also possible to assign values to variables from the command line. This
provides another way to supply input values to awk programs.

Sys5 UNIX 6-17

CHAPTER 6 AWK

For example

awk ' {print x }' x= 5 -

will print the value 5 on the standard output. The minus sign at the end of
this command is necessary to indicate that input is coming from stdin
instead of a file called "x=5". Similarly if the input comes from a file named
"file", the command is

awk '{print x}' file

It is not possible to assign values to variables used in the BEGIN section in
this way.

If it is necessary to change the record separator and the field separator, it is
useful to do so from the command line as in the following example:

awk -f awk.program RS=":" file

Here, the record separator is changed to the character ":". This causes your
program in the file "awk.program" to run with records separated by the colon
instead of the newline character and with input coming from the file, "file". It
is similarly useful to change the field separator from the command line.

This operation is so common that there is yet another way to change the
field separator from the command line. There is a separate option " - Fx"
that is placed directly after the command awk. This changes the field
separator from blank or tab to the character "x".

For example

awk -F: -f awk.program file

changes the field separator FS to the character ":". Note that if the field
separator is specifically set to a tab, (that is, with the - F option or by
making a direct assignment to FS) then blanks are recognized by awk as
separating fields. However, even if the field separator is specifically set to a
blank, tabs are STILL recognized by awk as separating fields.

An exercise:

Using the input file ("countries" described earlier) write an awk script that
prints the name of a country followed by the continent that it is on. Do this in
such a way that continents composed of two words (e. g., North America)
are processed as only one field and not two.

6-18 Sys5 UNIX

(

(

AWK CHAPTER 6

6.9 Output: Printing

An action may have no pattern; in this case, the action is executed for all
lines as in the simple printing program

{print}

This is one of the simplest actions performed by awk. It prints each line of
the input to the output. More useful is to print one or more fields from each
line. For instance, using the file "countries", that was used earlier,

awk '{ print $1, $3 }'countries

prints the name of the country and the population:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

Note that the use of a semicolon at the end of statements in awk programs
is optional. Awk accepts

{print $1 }

and

{print $1; f

equally and takes them to mean the same thing. If you want to put two awk
statements on the same line of an awk script, the semicolon is necessary.
For example, the following semicolon is necessary if you want the number 5
printed:

{x=S; print x}

(- Parentheses are also optional with the print statement.

Sys5 UNIX 6-19

CHAPTER 6 AWK

print $3, $2

is the same as

print ($3, $2)

Items separated by a comma in a print statement are separated by the
current output field separators (normally spaces, even though the input is
separated by tabs) when printed. The OFS is another special variable that
can be changed by you. These special variables are summarized in a later
section.

An exercise:

Using the input file, "countries'', print the continent followed by the country
followed by the population for each input record. Then pipe the output to the
UNIX operating system command "sort" so that all countries from a given
continent are printed together.

Print also prints strings directly from your programs with the awk script

{print "hello, world" }

from an earlier section.

An exercise:

Print a header to the output of the previous exercise that says "Population of
Largest Countries" followed by headers to the columns that follow describing
what is in that column, for example, Country or Population.

As we have already seen, awk makes available a number of special
variables with useful values, for example, FS and RS. We now introduce
another special variable in the next example. NR and NF are both integers
that contain the number of the present record and the number of fields in the
present record, respectively. Thus,

{print NR, NF, $0}

prints each record number and the number of fields in each record followed
by the record itself. Using this program on the file, "countries" yields:

6-20 SysS UNIX

(" :

,. -·

AWK CHAPTER 6

1 4 Russia 8650 262 Asia
2 5 Canada 3852 24 North America
3 4 China 3692 866 Asia
45USA 3615 219 North America
5 5 Brazil 3286 116 South America
6 4 Australia 2968 14 Australia
7 4 India 1269 637 Asia
8 5 Argentina 1072 26 South America
9 4 Sudan 968 19 Africa
10 4 Algeria 920 18 Africa

and the program
{print NA, $1 }

prints

1 Russia
2 Canada
3 China
4USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

This is an easy way to supply sequence numbers to a list. Print, by itself,
prints the input record. Use

print""

to print the empty line.

Awk also provides the statement printf so that you can format output as
desired. Print uses the default format "%.6g" for each variable printed.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the string,
format, and prints them. The format statement is exactly that of the printf in
the C library. For example,

{ printf "% 1 Os %6d0, $1, $2, $3 }

Sys5 UNIX 6-21

CHAPTER 6 AWK

prints $1 as a string of 10 characters (right justified). The second and third
fields (6-digit numbers) make a neatly columned table.

Russia 8650 262
Canada 3852 244
China 3692 866
USA 3615 219
Brazil 3286 116
Australia 2968 14
India 1269 637
Argentina 1072 26
Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced automatically.
You must add them as in this example. In the C library version of printf, the
various escape characters '\n", '\t", '\b" (backspace) and '\r" (carriage
return) are valid with the awk printf.

There is a third way that printing can occur on standard output when a
pattern is specified but there is no action to go with it. In this case, the entire
record $0 is printed. For example, the program

Ix;

prints any record that contains the character "x".

There are two special variables that go with printing, OFS and ORS. These
are by default set to blank and the newline character, respectively. The
variable OFS is printed on the standard output when a comma occurs in a
print statement such as

{ x="hello"; y="world"
print x,y
}

which prints

hello world

However, without the comma in the print statement as

6-22 Sys5 UNIX

(

(

AWK CHAPTER 6

{ x= "hello"; y= "world"
print x y
}

you get

helloworld

To get a comma on the output, you can either insert it in the print statement
as in this case

{ x=- "hello"; y= "world"
print x"," y
}

or you can change OFS in a BEGIN section as in

BEGIN {OFS=", "}
{ x="hello"; y="world"
print x, y
}

both of these last two scripts yields

hello, world

Note that the output field separator is not used when $0 is printed.

6.10 Cutout: To Different Files

The UNIX operating system shell allows you to redirect standard output to a
file. The awk program also lets you direct output to many different files from
within your awk program. For example, with our input file "countries", we
want to print all the data from countries of Asia in a file called "ASIA", all the
data from countries in Africa in a file called "AFRICA"', and so forth. This is
done with the following awk program:

SysS UNIX 6-23

CHAPTER 6

{ if ($4 = = "Asia") print > "ASIA"

}

if ($4 = = "Europe") print > "EUROPE"
if ($4 = = "North") print > "NORTH_AMERICA"
if ($4 = = "South") print > "SOUTH_AMERICA"
if ($4 = = "Australia") print > "AUSTRALIA"
if ($4 = = "Africa") print > "AFRICA"

AWK

The flow of control statements (for example, "if") are discussed later.

In general, you may direct output into a file after a print or a printf statement
by using a statement of the form

print > "FILE"

where FILE is the name of the file receiving the data, and the print
statement may have any legal arguments to it.

Notice that the file names are quoted. Without quotes, the file names are
treated as uninitialized variables and all output then goes to the same file.

If > is replaced by > >, output is appended to the file rather than
overwriting it.

Users should also note that there is an upper limit to the number of files that
are written in this way. At present it is ten.

6.11 Output: To Pipes

It is also possible to direct printing into a pipe instead of a file. For example,

if ($2 = = "XX") print I "mail mary"

where "mary" is someone·s login name, any record is sent (with the second
field equal to "XX") to the user, mary, as mail. Awk waits until the entire
program is run before it executes the command that was piped to, in this
case the "mail" command.

For example:
{
print $1 I "sort"
}

takes the first field of each input record, sorts these fields, and then prints

6-24 Sys5 UNIX

/---~-..."

(

AWK CHAPTER 6

them. The command in parentheses is any UNIX operating system
command.

An exercise:

Write an awk script that uses the input file to

• List countries that were used previously

• Print the name of the countries

• Print the population of each country

• Sort the data so that countries with the largest population appear first

• Mail the resulting list to yourself.

Another example of using a pipe for output is the following idiom which
guarantees that its output always goes to your terminal:

print ... I "cat -u > /dev/tty"

Only one output statement to a pipe is permitted in an awk program. In all
output statements involving redirection of output, the files or pipes are
identified by their names but they are created and opened only once in the
entire run.

6.12 Comments

Comments are placed in awk programs; they begin with the character # and
end with the end of the line as in

print x, Y # this is a comment

6.13 Patterns

A pattern in front of an action acts as a selector that determines if the action
is to be executed. A variety of expressions are used as patterns:

• Regular expressions

• Arithmetic relational expressions

• String valued expressions

• Combinations of these.

6.13.1 BEGIN and END

The special pattern, BEGIN, matches the beginning of the input before the
first record is read. The pattern, END, matches the end of the input after the
last line is processed. BEGIN and END thus provide a way to gain control

SysS UNIX 6-25

CHAPTER 6

before and after processing for initialization and wrapping up.

An example:

AWK

As you have seen, you can use BEGIN to put column headings on the
output

BEGIN {print "Country", "Area", "Population", "Continent"}
{print}

which produces

Country Area Population Continent

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Formatting is not very good here; printf would do a better job and is usually
mandatory if you really care about appearance.

Recall also, that the BEGIN section is a good place to change special
variables such as FS or RS.

Example:

BEGIN { FS= " "
print "Countries", "Area", "Population", "Continent"
}
{print}

END {print 'The number of records is", NR}

In this program, FS is set to a tab in the BEGIN section and as a result all
records (in the file countries) have exactly four fields.

Note that if BEGIN is present it is the first pattern; END is the last if it is
used.

6-26 Sys5 UNIX

(

AWK CHAPTER 6

6.13.2 Relational Expressions

An awk pattern is any expression involving comparisons between strings of
characters or numbers. For example, if you want to print only countries with
more than 100 million population, use

$3 >100

This tiny awk program is a pattern without an action so it prints each line
whose third field is greater than 100 as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
India 1269 637 Asia

To print the names of the countries that are in Asia, type

$4 = = "Asia" {print $1}

which produces

Russia
China
India

The conditions tested are <, < =, = =, ! =, > =, and >. In such relational
tests if both operands are numeric, a numerical comparison is made.
Otherwise, the operands are compared as strings. Thus,

$1 > = "S"

selects lines that begin with S, T, U, and so forth which in this case is

USA 3615 219 NorthAmerica
Sudan 968 19 Africa

In the absence of other information, fields are treated as strings, so the

Sys5 UNIX 6-27

CHAPTER 6 AWK

program

$1 == $4

compares the first and fourth fields as strings of characters and prints the
single line

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done numerically.

6.13.3 Regular Expressions

Awk provides more powerful capabilities for searching for strings of
characters than were illustrated in the previous section. These are regular
expressions. The simplest regular expression is a literal string of characters
enclosed in slashes.

/Asia/

This is a complete awk program that prints all lines which contain any
occurrence of the name "Asia". If a line contains "Asia" as part of a larger
word like "Asiatic", it is also printed (but there are no such words in the
countries file.)

Awk regular expressions include

• Regular expression forms found in the text editor

• ed and the pattern finder

• grep in which certain characters have special meanings.

For example, we could print all lines that begin with A with

rAI

or all lines that begin with A, B, or C with

r[ABC]/

or all lines that end with "ia" with

6-28 Sys5 UNIX

(

(

AWK CHAPTER 6

/ia$/

In general, the circumflex C) indicates the beginning of a line. The dollar sign
($) indicates the end of the line and characters enclosed in brackets ,{},
match any one of the characters enclosed. In addition, awk allows
parentheses for grouping, the pipe (b for alternatives, + for "one or more"
occurrences, and ? for "zero or one" occurrences. For example,

Ix~/ {print}

prints all records that contain either an "x" or a "y".

lax+ bl {print}

prints all records that contain an "a" followed by one or more "x's" followed
by a "b". For example, axb, Paxxxxxxxb, QaxxbR.

/ax?b/ {print}

prints all records that contain an "a" followed by zero or one "x" followed by
a "b". For example: ab, axb, yaxbPPP, CabD.

The two characters "."and "*"have the same meaning as they have in ed:
namely, "." can stand for any character and "*" means zero or more
occurrences of the character preceding it. For example,

la.bi

matches any record that contains an "a" followed by any character followed
by a "b". That is, the record must contain an "a" and a "b" separated by
exactly one character. For example, ia.bl matches axb, aPb and
xxxxaXbxx, but NOT ab, axxb.

/ab*c/

matches a record that contains an "a" followed by zero or more "b"'s
followed by a "c". For example, it matches

Sys5 UNIX 6-29

CHAPTER 6

ac
abc
pqrabbbbbbbbbbc901

AWK

Just as in ed, it is possible to turn off the special meaning of these
metacharacters such as '"" and "*" by preceding these characters with a
backslash. An example of this is the pattern

II. *II

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regular expression
(or does not match it) by using the operators or !'. For example, with the
input file countries as before, the program

$1 1ia$/ {print $1}

prints all countries whose name ends in "ia":

Russia
Australia
India
Algeria

that is indeed different from lines which end in "ia".

6.13.4 Combinations of Patterns

A pattern is made up of similar patterns combined with the operators I (OR),
&& (AND), ! (NOT), and parentheses. For example,

$2 > = 3000 && $3 > = 100

selects lines where both area AND population are large. For example,

Russia
China
USA
Brazil

while

6-30

8650 262
3692 866
3615 219
3286 116

Asia
Asia
North America
South America

Sys5 UNIX

AWK CHAPTER 6

(_/ $4 = = "Asia" I $4 = = "Africa"

selects lines with Asia or Africa as the fourth field. An alternate way to write
this last expression is with a regular expression:

$1 r(AsialAtrica))$/

&& and I guarantee that their operands are evaluated from left to right;
evaluation stops as soon as truth or falsehood is determined.

6.13.5 Pattern Ranges

The "pattern" that selects an action may also consist of two patterns
separated by a comma as in

pattern1, pattern2 { ... }

In this case, the action is performed for each line between an occurrence of
pattern1 and the next occurrence of pattern2 (inclusive). As an example with
no action

/Canad Cl! ,1 Brazil/

prints all lines between the one containing "Canada" and the line containing
"Brazil". For example,

Canada
China
USA
Brazil

while

3852
3692
3615
3286

24
866
219
116

NA = = 2, NA = = 5 { ... }

North America
Asia
North America
South America

does the action for lines 2 through 5 of the input. Different types of patterns
are mixed as in

SysS UNIX 6-31

CHAPTER 6 AWK

/Canada/, $4 = = "Africa"

and prints all lines from the first line containing "Canada" up to and including
the next record whose fourth field is "Africa".

Users should note that patterns in this form occur OUTSIDE of the action
parts of the awk programs (outside of the braces that define awk actions). If
you need to check patterns inside an awk action (inside the braces), use a
flow of control statement such as an "if" statement or a "while" statement.
Flow of control statements are discussed in the part "BUILT-IN
FUNCTIONS".

6.14 Actions

An awk action is a sequence of action statements separated by newlines or
semicolons. These action statements do a variety of bookkeeping and string
manipulating tasks.

6.14.1 Variables, Expressions, and Assignments

The awk provides the ability to do arithmetic and to store the results in
variables for later use in the program. However, variables can also store
strings of characters. You cannot do arithmetic on character strings, but you
can stick them together and pull them apart as shown. As an example,
consider printing the population density for each country in the file countries.

{print $1, (1000000 * $3)/($2 * 1000)}

(Recall that in this file the population is in millions and the area in
thousands.) The result is population density in people per square mile.

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4. 71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is bad; so using printf instead gives the program

{printf "%10s %6.1f0, $1, (1000000 * $3)/($2 * 1000)}

6-32 Sys5 UNIX

(

(

AWK CHAPTER 6

and the output

Russia 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators are _,__.
-, •,I and% (mod or remainder).

To compute the total population and number of countries from Asia, we
could write

/Asia/
END

{ pop = pop + $3; n = n + 1 }
{print "total population of", n, "Asian countries is", pop}

which produces total population of three Asian countries is 1765.

Actually, no experienced programmer would write

{pop = pop + $3; n = n + 1 }

since both assignments are written more clearly and concisely. The better
way is

{pop + = $3; + + n }

Indeed, these operators, + +, - - , - =, / =, • =, + =, and % = are available
in awk as they are in C. Operator x + = y has the same effect as x = x y
but + = is shorter and runs faster. The same is true of the + + operator; it
adds one to the value of a variable. The increment operators + + and - -
(as in C) is used as prefix or as postfix operators. These operators are also
used in expressions.

Sys5 UNIX 6-33

CHAPTER 6 AWK

6.14.2 Initialization of Variables

In the previous example, we did not initialize pop nor n; yet, everything
worked properly. This is because (by default) variables are initialized to the
null string which has a numerical value of 0. This eliminates the need for
most initialization of variables in BEGIN sections. We can use default
initialization to advantage in this program which finds the country with the
largest population.

maxpop < $3 {
maxpop = $3
country = $1
}

END {print country, maxpop}

which produces

China 866

6.14.3 Field Variables

Fields in awk share essentially all of the properties of variables. They are
used in arithmetic and string operations and may be assigned to and
initialized to the null string. Thus, divide the second field by 1000 to convert
the area to millions of square miles by

{ $2 I= 1000; print}

or process two fields into a third with

BEGIN { FS = " "}
{ $4 = 1000 * $3 I $2; print}

or assign strings to a field as in

/USA/ { $1 = "United States" ; print }

which replaces USA by United States and prints the effected line

6-34 Sys5 UNIX

('.

AWK CHAPTER 6

United States 3615 219 North America

Fields are accessed by expressions; thus, $NF is the last field and $(NF-1)
is the second to the last. Note that the parentheses are needed since
$NF-1 is 1 less than the values in the last field.

6.14.4 String Concatenation

Strings are concatenated by writing them one after the other as in the
following example:

{ x = "hello"

}

x = x ", world"
print x

prints the usual

hello, world

With input from the file "countries", the following program:

IA/ {s=s""$1}
END { print s }

prints

Australia Argentina Algeria

Variables, string expressions, and numeric expressions may appear in
concatenations; the numeric expressions are treated as strings in this case.

6.14.5 Special Variables

Some variables in awk have special meanings. These are detailed here and
the complete list given.

NA Number of the current record.

NF Number of fields in the current record.

FS Input field separator, by default it is set to a blank or tab.

Sys5 UNIX 6-35

CHAPTER 6

RS

$i

$0

OFS

ORS

OFMT

AWK

Input record separator, by default it is set to the newline
character.

The ith input field of the current record.

The entire current input record.

Output field separator, by default it is set to a blank.

Output record separator, by default it is set to the newline
character.

The format for printing numbers, with the print statement,
by default is "%.6g".

FILENAME The name of the input file currently being read. This is
useful because awk commands are typically of the form

awk -f program file1 file2 file3 ...

6.14.6 Type

Variables (and fields) take on numeric or string values according to context.
For example, in

pop+= $3

pop is presumably a number, while in

country = $1

country is a string. In

maxpop < $3

the type of maxpop depends on the data found in $3. It is determined when
the program is run.

In general, each variable and field is potentially a string or a number or both
at any time. When a variable is set by the assignment

v = expr

its type is set to that of expr. (Assignment also includes + =, + +, - =, and

6-36 Sys5 UNIX

(

(

AWK CHAPTER 6

so forth.) An arithmetic expression is of the type, "number"; a concatenation
of strings is of type "string". If the assignment is a simple copy as in

v1 = v2

then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to strings if necessary and
the comparison is made on strings.

The type of any expression is coerced to numeric by subterfuges such as

expr + o

and to string by

expr ""

This last expression is string concatenated with the null string.

6. 14. 7 Arrays

As well as ordinary variables, awk provides 1-dimensional arrays. Array
elements are not declared; they spring into existence by being mentioned.
Subscripts may have any non-null value including non-numeric strings.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to the NRth element of the array x. In fact, it is
possible in principle (though perhaps slow) to process the entire input in a
random order with the following awk program:

{ x[NR] = $0}
END { ... program ... }

The first line of this program records each input line into the array x. In
particular, the following program

SysS UNIX 6-37

CHAPTER 6 AWK

{ x[NR] = $1}

(when run on the file countries) produces an array of elements with

x[1] = "Russia"
x[2) = "Canada"
x[3] = "China"

. . . and so forth.

Arrays are also indexed by non-numeric values that give awk a capability
rather like the associative memory of Snobol tables. For example, we can
write

/Asia/ {pop["Asia"] + = $3 }
/Africa/{pop[Africa] + = $3 }
END print "Asia=" pop["Asia"], "Africa="pop["Africa'1}

which produces

Asia= 1765 Africa= 37

Notice the concatenation. Also, any expression can be used as a subscript
in an array reference. Thus,

area[$1] = $2

uses the first field of a line (as a string) to index the array area.

6.15 Built-In Functions

The function·

length

is provided by awk to compute the length of a string of characters. The
following program prints each record preceded by its length:

{print length, $0 }

In this case (the variable) length means length($0), the length of the present

6-38 Sys5 UNIX

,/~\

__ _ _,)

(~".

~_)

AWK CHAPTER 6

(record. In general, length(x) will return the length of x as a string.

Example:

With input from the file countries, the following awk program will print the
longest country name:

length($1) > max {max = length($1); name = $1 }
END {print name}

The function

split

split (s, array) assigns the fields of the string "s" to successive elements of
the array, "array".

For example;

split("Now is the time", w)

assigns the value "Now" to w[1], "is" to w[2], "the" to w[3] and "time" to w[4].
All other elements of the array w[], if any, are set to the null string. It is
possible to have a character other than a blank as the separator for the
elements of w. For this, use split with three elements.

n = split(s, array, sep)

This splits the string s into array[1], ... , array[n]. The number of elements
found is returned as the value of split. If the sep argument is present, its
first character is used as the field separator; otherwise, FS is used. This is
useful if in the middle of an awk script, it is necessary to change the record
separator for one record.

Also provided by the awk are the

Math Functions

sqrt,
log,
exp
int,

They provide the square root function, the base e logarithm function,

Sys5 UNIX 6-39

CHAPTER 6 AWK

exponential and integral part functions. This last function returns the
greatest integer less than or equal to its argument. These functions are the
same as those of the C library (int corresponds to the libc floor function) and
so they have the same return on error as those in libc. (See Sys5 UNIX
Users Reference Manual.)

The subtract function

substr

substr(s,m,n) produces the substring of s that begins at position m and is at
most n characters long. If the third argument (n in this case) is omitted, the
substring goes to the end of s. For example, we could abbreviate the
country names in the file countries by

{ $1 = substr($1, 1, 3); print }

which produces

Aus 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

If s is a number, substr uses its printed image;
substr(123456789,3,4) = 3456.

The function

index:

index (s1 ,s2) returns the leftmost position where the string s2 occurs in s1
or zero if s2 does not occur in s1.

The function

Sys5 UNIX

AWK CHAPTER 6

(sprintf

(

formats expressions as the printf statement does but will assign the resulting
expression to a variable instead of sending the results to stdout. For
example,

x = sprintf("%10s %6d ", $1, $2)

sets x to the string produced by formatting the values of $1 and $2. The xis
then used in subsequent computations.

The function

getline

immediately reads the next input record. Fields NR and $0 are all set but
control is left at exactly the same spot in the awk program. Getline returns O
for the end of file and a 1 for a normal record.

6.16 Flow of Control

The awk provides the basic flow of control statements

• if-else

• while/fR

•for

with statement grouping as in C language.

The if statement is used as follows:

if (condition) statement1 else statement2

The condition is evaluated; and if it is true, statement1 is executed;
otherwise, statement2 is executed. The else part is optional. Several
statements enclosed in braces ({,}) are treated as a single statement.
Rewriting the maximum population computation from the pattern section with
an if statement results in

SysS UNIX 6-41

CHAPTER 6

{ if (maxpop < $3) {
maxpop= $3
country= $1
} }

END { print country, maxpop }

There is also a while statement in awk.

while (condition) statement

AWK

The condition is evaluated; if it is true, the statement is executed. The
condition is evaluated again, and if true, the statement is executed. The
cycle repeats as long as the condition is true. For example, the following
prints all input fields one per line:

{ i = 1
while (i < = NF) {

pint $i
++i
}

}

Another example is the Euclidean algorithm for finding the greatest common
divisor of $1 and $2:

{printf "the greatest common divisor of" $1 "and", $2, "is"
while ($1 ! = $2) {

printf $1 "O
}

The for statement is like that of C.

if ($1 > $2) $1 = $1 - $2
else $2 = $2 - $1
}

for (expression1 ; condition ; expression2) statement

has the same effect as

6-42 SysS UNIX

(

(

(

AWK

expression1
while (condition) {

statement
expression2
}

so

{ for (i=1; i <=NF; i++)
print $i

is another awk program that prints all input fields one per line.

CHAPTER 6

This is an alternate form of the or statement that is suited for accessing the
elements of an associative array as is in awk.

for (i in array) statement

executes statement with the variable i set in turn to each subscript of array.
The subscripts are each accessed once but in random order. Chaos will
ensue if the variable i is altered or if any new elements are created within
the loop. For example, you could use the "for" statement to print the record
number followed by the record of all input records after the main program is
executed.

{ x[NR] = $0}
END { for(i in x) { print i, x[i] }

A more practical example is the following use of strings to index arrays to
add the populations of countries by continents:

BEGIN {FS= "''}
{population[$4] = + $3}

END {for(i in population)
print i, population[i]

}

In this program, the body of the for loop is executed for i equal to the string
"Asia", then for i equal to the string "North America", and so forth until all the

Sys5 UNIX 6-43

CHAPTER 6 AWK

possible values of i are exhausted; that is, until all the strings of names of
countries are used. Note, however, the order the loops are executed is not
specified. If the loop associated with "Canada" is executed before the loop
associated with the string "Russia", such a program produces

South America 26
Africa 16
Asia 637
Australia 14
North America 219

Note that the expression in the condition part of an if, while, or, for
statement can include relational operators like <, < =, >, > =, = =, and ! =;
it can include regular expressions that are used with the "matching"
operators and ! ; it can include the logical operators l &&, and '; and it also
include parentheses for grouping.

The break statement (when it occurs within a while or for loop) causes an
immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for loop) causes
the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip immediately to
the next record and begin scanning patterns from the top of the program.
(Note the difference between getline and next. Getline does not skip to the
top of the awk program.)

If an exit statement occurs in the BEGIN section of an awk program, the
program stops executing and the END section is not executed (if there is
one).

An exit that occurs in the main body of the awk program causes execution
of the main body of the awk program to stop. No more records are read,
and the END section is executed.

An exit in the END section causes execution to terminate at that point.

6.17 Report Generation

The flow of control statements in the last section are especially useful when
awk is used as a report generator. Awk is useful for tabulating,
summarizing, and formatting information. We have seen an example of awk
tabulating in the last section with the tabulation of populations. Here is
another example of this. Suppose you have a file "prog.usage" that contains
lines of three fields; name, program, and usage:

6-44 SysS UNIX

/ --- --

(~

(

AWK CHAPTER 6

Smith draw 3
Brown eqn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

The first line indicates that Smith used the draw program three times. If you
want to create a program that has the total usage of each program along
with the names in alphabetical order and the total usage, use the following
program, called list.a:

{ use[$1 "" $2] + = $3}
END {for (np in use)

print np " " use[np] I "sort + 0 + 2nr" }

This program produces the following output when used on the input file,
prog.usage.

Brown eqn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff

If you would like to format the previous output so that each name is printed
only once, pipe the output of the previous awk program into the following
program, called "format.a:

{ if ($1 != prev) {

}

print $1 ":"
rev = $1
}

print " " $2 " " $3

The variable prev prints the unique values of the first field. The command

Sys5 UNIX 6-45

CHAPTER 6 AWK

awk -f list.a prog.usage I awk -f format.a

gives the output

Brown:
eqn 1
spell 9

Jones:
nroff 4
spell 5

Smith:
draw 9
nroff 1

It is often useful to combine different awk scripts and other shell commands
such as sort as was done in the last script.

6.18 Cooperation With the Shell

Normally, an awk program is either contained in a file or enclosed within
single quotes as in

awk '{print $1}' ...

Awk uses many of the same characters that the shell does, such as $ and
the double quote. Surrounding the program by · ... ' ensures that the shell
passes the awk program to awk intact.

Consider writing an awk program to print the nth field, where n is a
parameter determined when the program is run. That is, we want a program
called field such that

field n

runs the awk program

awk '{print $n}'

How does the value of n get into the awk program?

There are several ways to do this. One is to define field as follows:

6-46 Sys5 UNIX

(

(

AWK CHAPTER 6

awk '{print $'$1 '}'

Spaces are critical here: as written there is only one argument, even though
there are two sets of quotes. The $1 is outside the quotes, visible to the
shell, and therefore substituted properly when field is invoked.

Another way to do this job relies on the fact that the shell substitutes for $
parameters within double quotes.

awk "{print $1}"

Here the trick is to protect the first $ with a \\; the $1 is again replaced by
the number when field is invoked.

This kind of trickery is extended in remarkable ways, but it is hard to
understand quickly.

6.19 Miscellaneous Hints

You can simulate the effect of multidimensional arrays by creating your own
subscripts. For example,

for(i= 1;i<= 10;i++)
for (j = 1 ; j < = 1 O; j + +)

mult[i "," j) = ...

creates an array whose subscripts have the form i,j; that is, 1, 1; 1,2; and so
forth and thus simulate a 2-dimensional array.

Sys5 UNIX 6-47

(

LINK EDITOR CHAPTER 7

7. LINK EDITOR

The link editor [ld(1)*] is a UNIX system support tool. The Id creates
executable object files by combining object files, performing relocation, and
resolving external references. The Id also processes symbolic debugging
information. The inputs to Id are relocatable object files produced either by
the compiler [cc(1)], the assembler [as(1)], or by a previous Id run. The Id
combines these object files to form either a relocatable or an absolute (i.e.,
executable) object file.

The Id also supports a command language that allows users to control the Id
process with great flexibility and precision. The UNIX system Id shares most
of its source with other Ids in-use on other processors and operating
systems. Therefore, the UNIX system Id provides many powerful features
that may or may not be useful on a UNIX system.

Although the link edit process is controlled in detail through use of the Id
command language described later, most users do not require this degree of
flexibility, and the manual page obtained by typing

man Id

is sufficient instruction in the use of Id.

The command language (described later) supports the ability to

• Specify the memory configuration of the machine

• Combine object file sections in particular fashions

• Cause the files to be bound to specific addresses or within specific
portions of memory

• Define or redefine global symbols at link edit time.

There are several concepts and definitions with which you should familiarize
yourself before proceeding further.

7.0.1 Memory Configuration

The virtual memory of the target machine is, for purposes of allocation,
partitioned into configured and unconfigured memory. The default condition
is to treat all memory as configured. It is common with microprocessor
applications, however, to have different types of memory at different
addresses. For example, an application might have 3K of PROM

• Part 1 of the UNIX User Manual

Sys5 UNIX 7-1

CHAPTER 7 LINK EDITOR

(Programmable Read-Only Memory) beginning at address 0, and SK of RAM
(Read-Only Memory) starting at 20K. Addresses in the range 3K to 20K-1
are then not configured. Unconfigured memory is treated as "reserved" or
"unusable" by the Id. Nothing can ever be linked into unconfigured
memory. Thus, specifying a certain memory range to be unconfigured is
one way of marking the addresses (in that range) "illegal" or "nonexistent"
with respect to the linking process. Memory configurations other than the
default must be explicitly specified by you (the user).

Unless otherwise specified, all discussion in this document of memory,
addresses, etc. are with respect to the configured sections of the address
space.

7.0.2 Section

A section of an object file is the smallest unit of relocation and must be a
contiguous block of memory. A section is identified by a starting address
and a size. Information describing all the sections in a file is stored in
"section headers" at the start of the file. Sections from input files are
combined to form output sections that contain executable text, data, or a
mixture of both. Although there may be "holes" or gaps between input
sections and between output sections, storage is allocated contiguously
within each output section and may not overlap a hole in memory.

7 .0.3 Addresses

The physical address of a section or symbol is the relative offset from
address zero of the address space. The physical address of an object is
not necessarily the location at which it is placed when the process is
executed. For example, on a system with paging, the address is with
respect to address zero of the virtual space, and the system performs
another address translation.

7.0.4 Binding

It is often necessary to have a section begin at a specific, predefined
address in the address space. The process of specifying this starting
address is called "binding", and the section in question is said to be "bound
to" or "bound at" the required address. While binding is most commonly
relevant to output sections, it is also possible to bind global symbols with an
assignment statement in the Id command language.

7.0.5 Object File

Object files are produced both by the assembler (typically as a result of
calling the compiler) and by the Id. The Id accepts relocatable object files as
input and produces an output object file that may or may not be relocatable.
Under certain special circumstances, the input object files given to the Id
can also be absolute files.

7-2 Sys5 UNIX

(

(

LINK EDITOR CHAPTER 7

Files produced from the compiler/assembler always contain three sections,
called .text, .data, and .bss. The .text section contains the instruction text
(for example, executable instructions), .data contains initialized data
variables, and .bss contains uninitialized data variables. For example, if a C
program contains the global (that is, not inside a function) declarations
called .text, .data and .bss; the .text section contains the instruction text
(e.g., executable instructions), .data contains initialized data variables, and
.bss contains uninitialized data variables. For example, if a C program
contained the global (i.e., not inside a function) declarations

inti = 100;
char abc[200];

and the assignment

abc[i] = O;

then compiled code from the C assignment is stored in .text. The variable i
is located in .data, and abc is located in .bss. There is an exception to the
rule however; both initialized and uninitialized statics are allocated into the
.data section. The value of an uninitialized static in a .data section is zero.

7.1 Using the Link Editor

The Id is called by the command

Id [options] filename1 filename2 ...

Files passed to the Id must be object files, archive libraries containing object
files, or text source files containing Id directives. The Id uses the "magic
number" (in the first two bytes of the file) to determine which type of file is
encountered. If the Id does not recognize the magic number, it assumes the
file is a text file containing Id directives and attempts to parse it.

Input object files and archive libraries of object files are linked together to
form an output object file. If there are no unresolved references, this file is
executable on the target machine. An input file containing directives is
referred to as an ifile in this document. Object files have the form "name.a"
throughout the examples in this chapter. The names of actual input object
files need not follow this convention.

If you merely want to link the object files file1 .o and file2.o, the following
command is sufficient:

Id file1 .o file2.o

No directives to the Id are needed. If no errors are encountered during the
link edit, the output is left on the default file a.out. The sections of the input
files are combined in order. That is, if file1 .o and file2.o each contain the
standard sections .text, .data, and .bss, the output object file also contains

Sys5 UNIX 7-3

CHAPTER 7 LINK EDITOR

these three sections. The output .text section is a concatenation of .text
from file1 .o and .text from file2.o. The .data and .bss sections are formed
similarly. The output .text section is then bound at address OXOOOOOO.
The output .data and .bss sections are link edited together into contiguous
addresses (the particular address depending on the particular processor).

Instead of entering the names of files to be link edited (as well as Id options
on the Id command line), this information can be placed into an ifile, and just
the ifile passed to Id. For example, if you are going to frequently link the
object files file1 .o, file2.o, and file3.o with the same options f1 and f2, then
enter the command

Id -f1 -f2 file1 .o file2.o file3.o

each time it is necessary to invoke Id. Alternatively, an ifile containing the
statements

-f1
-f2
file1 .o
file2.o
file3.o

could be created, and then the following UNIX system command would
serve:

Id ifilename

Note that it is perfectly permissible to specify some of the object files to be
link edited in the ifile and others on the command line-as well as some
options in the ifile and others on the command line. Input object files are
link edited in the order they are encountered, whether this occurs on the
command line or in an ifile. As an example, if a command line were

Id file1 .o ifile file2.o

and the ifile contained

file3.o
file4.o

then the order of link editing would be: file1 .o, file3.o, file4.o, and file2.o.
Note from this example that an ifile is read and processed immediately
upon being encountered in the command line.

Options may be interspersed with file names both on the command line and
in an ifile. The ordering of options is not significant, except for the "I" and
"L" options for specifying libraries. The "I" option is a shorthand notation for
specifying an archive library, and an archive library is just a collection of
object files. Thus, as is the case with any object file, libraries are searched

7-4 Sys5 UNIX

LINK EDITOR CHAPTER 7

as they are encountered. The "L" specifies an alternative directory for
searching for libraries. Therefore, to be effective, a "-L" option must
appear before any "-I" options.

All options for Id must be preceded by a hyphen (-) whether in the ifile or on
the Id command line. Options that have an argument (except for the "-I"
and "-L" options) are separated from the argument by white space (blanks
or tabs). The following options (in alphabetical order) are supported, though
not all options are available on each processor.

-ess

-f bb

-Ix

Defines the primary entry point of the output file to be the symbol
given by the argument "ss". See "Changing the Entry Point" in
"NOTES AND SPECIAL CONSIDERATIONS" for a discussion of
how the option is used.

Sets the default fill value. This value is used to fill "holes"
formed within output sections. Also, it is used to initialize input
.bss sections when they are combined with other non-.bss
input sections. The argument "bb" is a 2-byte constant. If the
"-f" option is not used, the default fill value is zero.

Specifies a UNIX system archive library file as Id input. The
argument is a character string (less than 10 characters)
immediately following the "-I" without any intervening white
space. As an example, -le refers to libc.a, -IC to libC.a, etc.
The given archive library must contain valid object files as its
members.

- m Produces a map or listing of the input' output sections (including
"holes") on the standard output.

-o name Names the output object file. The argument "name" is the name
of the UNIX system file to be used as the output file. The default
output object file name is "a.out". The "name" can be a full or
partial UNIX system pathname.

-r Retains relocation entries in the output object file. Relocation
entries must be saved if the output file is to be used as an input
file in a subsequent Id call. If the - r option is used, unresolved
references do not prevent the creation of an output object file.

-s Strips line number entries and symbol table information from the
output object file. Relocation entries ("-r" option) are
meaningless without the symbol table, hence use of "-s"
precludes the use of "-r". All symbols are stripped, including
global and undefined symbols.

-t

Sys5 UNIX

Disables checking that all instances of a multiply defined symbol
are the same size.

7-5

CHAPTER 7 LINK EDITOR

-u sym Introduces an unresolved external symbol into the output file's
symbol table. The argument "sym" is the name of the symbol.
This is useful for linking entirely from a library, since initially the
symbol table is empty and an unresolved reference is needed to
force the linking of an initial routine from the library.

-x Does not preserve any local (non-global) symbols in the output
symbol table; enter external and static symbols only. This option
saves some space in the output file.

-H Changes the type of all global symbols to "static". This option
can be used to "hide" symbols since static symbols have
different accessing rules from global symbols.

- Ldir Changes the algorithm for searching for libraries to look in dir
before looking in the default location. This option is for Id
libraries as the - I option is for compiler #include files. The " - L"
option is useful for finding libraries that are not in the standard
library directory. To be useful, this option must appear before
the "-I" option.

-M Prints a warning message for all external variables that are
multiply defined.

-N Places the data section immediately following the text section in
memory and stores the magic number 0407 in the UNIX system
header. This prevents the text from being shared (the default).

-S Requests a "silent" Id run. All error messages resulting from
errors that do not immediately stop the Id run are suppressed.

-V Prints, on the standard error output a "version id" identifying the
Id being run.

-VS num Takes num as a decimal version number identifying the a.out file
that is produced. The version stamp is stored in the UNIX
system header.

7.2 Link Editor Command Language

7.2.1 Expressions

Expressions may contain global symbols, constants, and most of the basic
C language operators. (See Figures 7-2 thru 7-5, "SYNTAX DIAGRAM FOR
INPUT DIRECTIVES".) Constants are as in C with a number recognized as
decimal unless preceded with "O" for octal or "Ox" for hexadecimal. All
numbers are treated as long ints. Symbol names may contain uppercase or
lowercase letters, digits, and the underscore ('_'). Symbols within an
expression have the value of the address of the symbol only. The Id does
not do symbol table lookup to find the contents of a symbol, the

7-6 Sys5 UNIX

LINK EDITOR CHAPTER 7

dimensionality of an array, structure elements declared in a C program, etc.

The Id uses a lex-generated input scanner to identify symbols, numbers,
operators, etc. The current scanner design makes the following names
reserved and unavailable as symbol names or section names:

ALIGN DSECT MEMORY
ASSIGN GROUP NOLOAD
BLOCK LENGTH ORIGIN

align group
assign I
block len

length origin
0 phy
org range

PHY
RANGE

REGION

spare

SECTIONS
SPARE

TV

The operators that are supported, in order of precedence from high to low,
are shown in Figure 7-1:

symbol

!- -(UNARY Minuaj_
* / 0/o

+ -(BINARY Minus)

>> <<
== != > < <= >=
&

&&

= + = -= *= /=

Figure 7-1. Symbols and Functions of Operators

The above operators have the same meaning as in the C language.
Operators on the same line have the same precedence.

7.2.2 Assignment Statements

External symbols may be defined and assigned addresses via the
assignment statement. The syntax of the assignment statement is

symbol= expression;

or

Sys5 UNIX 7-7

CHAPTER 7 LINK EDITOR

symbol op= expression;

where op is one of the operators +, -, *, or/.

Assignment statements must be terminated by a semicolon.

All assignment statements (with the exception of the one case described in
the following paragraph) are evaluated after allocation has been performed.
This occurs after all input-file-defined symbols are appropriately relocated
but before the actual relocation of the text and data itself. Therefore, if an
assignment statement expression contains any symbol name, the address
used for that symbol in the evaluation of the expression reflects the symbol
address in the output object file. References within text and data (to
symbols given a value through an assignment statement) access this latest
assigned value. Assignment statements are processed in the same order in
which they are input to Id.

Assignment statements are normally placed outside the scope of section­
definition directive (see "Section Definition Directive" under "LINK EDITOR
COMMAND LANGUAGE"). However, there exists a special symbol, called
".", that can occur only within a section-definition directive. This symbol
refers to the current R address of the Id's location counter. Thus,
assignment expressions involving "." are evaluated during the allocation
phase of Id. Assigning a value to the "." symbol within a section-definition
directive increments/resets Id's location counter and can create "holes"
within the section, as described in "Section Definition Directives". Assigning
the value of the "." symbol to a conventional symbol permits the final
allocated address (of a particular point within the link edit run) to be saved.

Align is provided as a shorthand notation to allow alignment of a symbol to
an n-byte boundary within an output section, where n is a power of 2. For
example, the expression

align(n)

is equivalent to

(. + n-1)&-(n-1)

Link editor expressions may have either an absolute or a relocatable value.
When the Id creates a symbol through an assignment statement, the
symbol's value takes on that type of expression. That type depends on the
following rules:

• An expression with a single relocatable symbol (and zero or more
constants or absolute symbols) is relocatable. The value is in relation
to the section of the referenced symbol.

• All other expressions have absolute values.

7-8 Sys5 UNIX

LINK EDITOR CHAPTER 7

7.2.3 Specifying a Memory Configuration

MEMORY directives are used to specify

a. The total size of the virtual space of the target machine.

b. The configured and unconfigured areas of the virtual space.

If no directives are supplied, the Id assumes that all memory is configured.
The size of the default memory is dependent upon the target machine.

By means of MEMORY directives, an arbitrary name of up to eight
characters is assigned to a virtual address range. Output sections can then
be forced to be bound to virtual addresses within specifically named
memory areas. Memory names may contain uppercase or lowercase
letters, digits, and the special characters'$', '.',or'_'. Names of memory
ranges are used by Id only and are not carried in the output file symbol table
or headers.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Unconfigured memory
is not used in the Id's allocation process, and hence nothing can be link
edited, bound, or assigned to any address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with a
named memory area. This restricts the memory areas (with specific
attributes) to which an output section can be bound. The attributes
assigned to output sections in this manner are recorded in the appropriate
section headers in the output file to allow for possible error checking in the
future. For example, putting a text section into writable memory is one
potential error condition. Currently, error checking of this type is not
implemented.

The attributes currently accepted are

a. R : readable memory.

b. W : writable memory.

c. X : executable, i.e. instructions may reside in this memory.

d. I : initializable, i.e. stack areas are typically not initialized.

Other attributes may be added in the future if necessary. If no attributes are
specified on a MEMORY directive or if no MEMORY directives are supplied,
memory areas assume the attributes of W, R, I, and X.

The syntax of the MEMORY directive is

SysS UNIX 7-9

CHAPTER 7

MEMORY
{

}

name1 (attr) :
name2 (attr) :
etc.

origin = n1, length = n2
origin = n3, length = n4

LINK EDITOR

The keyword "origin" (or "org" or "o") must precede the origin of a memory
range, and "length" (or "len" or "I") must precede the length as shown in the
above prototype. The origin operand refers to the virtual address of the
memory range. Origin and length are entered as long integer constants in
either decimal, octal, or hexadecimal (standard C syntax). Origin and length
specifications, as well as individual MEMORY directives, may be separated
by white space or a comma.

By specifying MEMORY directives, the Id can be told that memory is
configured in some manner other than the default. For example, if it is
necessary to prevent anything from being linked to the first Ox10000 words
of memory, a MEMORY directive can accomplish this.

MEMORY
{

valid : org = Ox10000, len = OxFEOOOO
}

7.2.4 Section Definition Directives

The purpose of the SECTIONS directive is to describe how input sections
are to be combined, to direct where to place output sections (both in relation
to each other and to the entire virtual memory space), and to permit the
renaming of output sections.

In the default case where no SECTIONS directives are given, all input
sections of the same name appear in an output section of that name. For
example, if a number of object files from the compiler are linked, each
containing the three sections .text, .data, and .bss, the output object file
also contains three sections, .text, .data, and .bss. If two object files are
linked (one that contains sections s1 and s2 and the other containing
sections s3 and s4), the output object file contains the four sections s1, s2,
s3, and s4. The order of these sections would depend on the order in which
the link editor sees the input files.

The basic syntax of the SECTIONS directive is

7-10 Sys5 UNIX

LINK EDITOR

SECTIONS
{

secname1 :

etc.
}

{

}

file_specifications,
assignment_statements

secname2:
{

}

file_specifications,
assignment_ statements

CHAPTER 7

The various types of section definition directives are discussed in the
remainder of this section.

7.2.4.1 File Specifications

Within a section definition, the files and sections of files to be included in the
output section are listed in the order in which they are to appear in the
output section. Sections from an input file are specified by

filename (secname)

or

filename (secnam 1 secnam2 ...)

Sections of an input file are separated either by white space or commas as
are the file specifications themselves.

If a file name appears with no sections listed, then all sections from the file
are linked into the current output section. For example,

SECTIONS
{

}

outsec1:
{

}

file1 .o (sec1)
file2.o
file3.o (sec1, sec2)

The order in which the input sections appears in the output section

Sys5 UNIX 7-11

CHAPTER 7 LINK EDITOR

"outsec1" is given by

a. Section sec1 from file file1 .o

b. All sections from file2.o, in the order they appear in the file

c. Section sec1 from file file3.o, and then section sec2 from file
file3.o

If there are any additional input files that contained input sections also
named "outsec1 ", these sections are linked following the last section named
in the definition of "outsec1 ". If there are any other input sections in file1 .0
or file3.0, they will be placed in output sections with the same names as the
input sections.

7.2.4.2 Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is accomplished by
an Id option as shown on the following SECTIONS directive example:

SECTIONS
{

outsec addr:
{

}
etc.

}

The "addr" is the bonding address expressed as a C constant. If "outsec"
does not fit at "addr'' (perhaps because of holes in the memory configuration
or because "outsec" is too large to fit without overlapping some other output
section), Id issues an appropriate error message.

So long as output sections do not overlap and there is enough space, they
can be bound anywhere in configured memory. The SECTIONS directives
defining output sections need not be given to Id in any particular order.

The Id does not ensure that each section's size consists of an even number
of bytes or that each section starts on an even byte boundary. The
assembler ensures that the size (in bytes) of a section is evenly divisible by
4. The Id directives can be used to force a section to start on an odd byte
boundary although this is not recommended. If a section starts on an odd
byte boundary, the section's contents are either accessed incorrectly or are
not executed properly. When a user specifies an odd byte boundary, the Id
issues a warning message.

7-12 Sys5 UNIX

(

(

LINK EDITOR CHAPTER 7

7.2.4.3 Aligning an Output Section

It is possible to request that an output section be bound to a virtual address
that falls on an n·byte boundary, where n is a power of 2. The ALIGN
option of the SECTIONS directive performs this function, so that the option

ALIGN(n)

is equivalent to specifying a bonding address of

(. + n - 1) &-(n - 1)

For example

SECTIONS
{

outsec ALIGN(Ox20000) :
{

etc.

The output section "outsec" is not bound to any given address but is linked
to some virtual address that is a multiple of Ox20000 (e.g., at address OxO,
Ox20000, Ox40000, Ox60000, etc.).

7.2.4.4 Grouping Sections Together

The default allocation algorithm for Id

a. Links all input .text sections together into one output section.
This output section is called .text and is bound to an address
of OxO.

b. Links all input .data sections together into one output section.
This output section is called .data and is bound to an address
aligned to a machine dependent constant.

c. Links all input .bss sections together into one output section.
This output section is called .bss and is allocated so as to
immediately follow the output section .data. Note that the
output section .bss is not given any particular address
alignment.

Specifying any SECTIONS directives results in this default allocation not
being performed.

The default allocation of Id is equivalent to supplying the following directive:

Sys5 UNIX 7-13

CHAPTER 7

SECTIONS
{

.text : {}

}

GROUP ALIGN(align_value) :
{

}

.data : {}

.bss : {}

LINK EDITOR

where align_value is a machine dependent constant. The GROUP
command ensures that the two output sections, .data and .bss, are
allocated (e.g., "grouped") together. Bonding or alignment information is
supplied only for the group and not for the output sections contained within
the group. The sections making up the group are allocated in the order
listed in the directive.

If .text, .data, and .bss are to be placed in the same segment, the following
SECTIONS directive is used:

SECTIONS
{

GROUP
{

.text : {}

.data : {}

.bss : {}

}

Note that there are still three output sections (.text, .data, and .bss), but
now they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting address or
aligned simply by adding a field to the GROUP directive. To bind to
OxCOOOO, use

GROUP OxCOOOO: {

To align to Ox10000, use

GROUP ALIGN(Ox10000) : {

With this addition, first the output section .text is bound at OxCOOOO (or is
aligned to Ox10000); then the remaining members of the group are
allocated in order of their appearance into the next available memory
locations.

7-14 Sys5 UNIX

(

LINK EDITOR CHAPTER 7

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS
{

}

.text : { }

.data ALIGN(Ox20000) : { }

.bss : {}

The .text section starts at virtual address OxO and the .data section at a
virtual address aligned to Ox20000. The .bss section follows immediately
after the .text section if there is enough space. If there is not, it follows the
.data section.

The order in which output sections are defined to the Id cannot be used to
force a certain allocation order in the output file.

7.2.4.5 Creating Holes Within Output Sections

The special symbol dot (.) appears only within section definitions and
assignment statements. When it appears on the left side of an assignment
statement, "." causes the Id's location counter to be incremented or reset
and a "hole" left in the output section. "Holes" built into output sections in
this manner take up physical space in the output file and are initialized using
a fill character (either the default till character (OxOO) or a supplied fill
character). See the definition of the "-f" option in "USING THE LINK
EDITOR" and the discussion of filling holes in "Initialized Section Holes or
.bss Sections" under "LINK EDITOR COMMAND LANGUAGE".

Consider the following section definition:

outsec:
{

}

. + = Ox1000;
f1 .o (.text)
. + = Ox100;
f2.o (.text)
. = align (4);
f3.o (.text)

The effect of this command is as follows:

a. A Ox1000 byte hole, filled with the default fill character, is left
at the beginning of the section. Input file t1 .o(.text) is linked
after this hole.

Sys5 UNIX 7-15

CHAPTER 7 LINK EDITOR

b. The text of input file f2.o begins at Ox100 bytes following the
end of f1.o(.text).

c. The text of f3.o is linked to start at the next full word
boundary following the text of f2.o with respect to the
beginning of "outsec".

For the purposes of allocating and aligning addresses within an output
section, the Id treats the output section as if it began at address zero. As a
result, if, in the above example, "outsec" ultimately is linked to start at an
odd address, then the part of "outsec" built from f3.o(.text) also starts at an
odd address-even though f3.o(.text) is aligned to a full word boundary.
This is prevented by specifying an alignment factor for the entire output
section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the sections it
generates to a full word length making explicit alignment specifications
unnecessary. This also holds true for the compiler.

Expressions that decrement "." are illegal. For example, subtracting a value
from the location counter is not allowed since overwrites are not allowed.
The most common operators in expressions that assign a value to "." are
"+ =" and "align".

7.2.4.6 Creating and Defining Symbols at Link-Edit Time

The assignment instruction of the Id can be used to give symbols a value
that is link-edit dependent. Typically, there are three types of assignments:

a. Use of"." to adjust Id's location counter during allocation

b. Use of "."to assign an allocation-dependent value to a symbol

c. Assigning an allocation-independent value to a symbol.

Case a) has already been discussed in the previous section.

Case b) provides a means to assign addresses (known only after allocation)
to symbols. For example

7-16 Sys5 UNIX

(

LINK EDITOR

SECTIONS
{

}

outsc1: { ... }
outsc2:
{

}

file1.o (s1)
s2_start = . ;
file2.o (s2)
s2_end = . - 1 ;

CHAPTER 7

The symbol "s2_start" is defined to be the address of file2.o(s2), and
"s2_end" is the address of the last byte of file2.o(s2).

Consider the following example:

SECTIONS
{

}

outsc1:
{

}

file1 .o (.data)
mark=.;
. += 4;
file2.o (.data)

In this example, the symbol "mark"' is created and is equal to the address of
the first byte beyond the end of file1 .o's .data section. Four bytes are
reserved for a future run-time initialization of the symbol mark. The type of
the symbol is a long integer (32 bits).

Assignment instructions involving "." must appear within SECTIONS
definitions since they are evaluated during a/location. Assignment
instructions that do not involve "." can appear within SECTIONS definitions
but typically do not. Such instructions are evaluated after allocation is
complete. Reassignment of a defined symbol to a different address is
dangerous. For example, if a symbol within .data is defined, initialized, and
referenced within a set of object files being link-edited, the symbol table
entry for that symbol is changed to reflect the new, reassigned physical
address. However, the associated initialized data is not moved to the new
address. The Id issues warning messages for each defined symbol that is
being redefined within an ifile. However, assignments of absolute values to
new symbols are safe because there are no references or initialized data
associated with the symbol.

Sys5 UNIX 7-17

CHAPTER 7 LINK EDITOR

7.2.4.7 Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere) within a
specific named memory (as previously specified on a MEMORY directive).
(The ">" notation is borrowed from the UNIX system concept of "redirected
output".)

For example

MEMORY
{

mem1: o=OxOOOOOO l=Ox10000
mem2 (AW): o=Ox020000 l=Ox40000
mem3 (AW): o=Ox070000 l=Ox40000
mem 1 : o =Ox 120000 I= Ox04000

}

SECTIONS
{

}

outsec1: { f1.o(.data)} > mem1
outsec2: { f2.o(.data)} > mem3

This directs Id to place "outsec1" anywhere within the memory area named
"mem1" (i.e., somewhere within the address range OxO-OxFFFF or
Ox120000-0x123FF). The "outsec2" is to be placed somewhere in the
address range Ox70000-0xAFFFF.

7.2.4.8 Initialized Section Holes or BSS Sections

When "holes" are created within a section (as in the example in "LINK
EDITOR COMMAND LANGUAGE"), the Id normally puts out bytes of zero
as "fill". By default, .bss sections are not initialized at all; that is, no
initialized data is generated for any .bss section by the assembler nor
supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set such
"holes" or output .bss sections to an arbitrary 2-byte pattern. Such
initialization options apply only to .bss sections or "holes". As an example,
an application might want an uninitialized data table to be initialized to a
constant value without recompiling the ".o" file or a "hole" in the text area to
be filled with a transfer to an error routine.

Either specific areas within an output section or the entire output section
may be specified as being initialized. However, since no text is generated
for an uninitialized .bss section, if part of such a section is initialized, then

'
;f.

the entire section is initialized. In other words, if a .bss section is to be
combined with a .text or .data section (both of which are initialized) or if part ~)

7-18 Sys5 UNIX

LINK EDITOR CHAPTER 7

of an output .bss section is to be initialized, then one of the following will
hold:

a. Explicit initialization options must be used to initialize all .bss
sections in the output section.

b. The Id will use the default fill value to initialize all . bss
sections in the output section.

Consider the following Id ifile:

SECTIONS
{

sec1:
{

f1.o
. =+ Ox200;
f2.o (.text)

} = OxOFFF
sec2:
{

f1 .o (.bss)
f2.o (.bss) == Ox1234

sec3:
{

f3.o (.bss)

} == OxFFFF
sec4: { f4.o (.bss) }

In the example above, the Ox200 byte "hole" in section "sec1" is filled with
the value OxDFFF. In section "sec2", f1 .o(.bss) is initialized to the default fill
value of OxOO, and f2.o(.bss) is initialized to Ox1234. All .bss sections within
"sec3" as well as all "holes" are initialized to OxFFFF. Section "sec4" is not
initialized; that is, no data is written to the object file for this section.

7 .3 Notes and Special Considerations

7.3.1 Changing the Entry Point

The a.out header contains a field for the (primary) entry point of the file.
This field is set using one of the following rules (listed in the order they are
applied):

a. The value of the symbol specified with the "-e" option, if
present, is used.

Sys5 UNIX 7-19

CHAPTER 7 LINK EDITOR

b. The value of the symbol "_start", if present, is used.

c. The value of the symbol "main", if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field
through the "-e" option or by using an assignment instruction in an ifile of
the form

_start = expression;

If the Id is called through cc(1), a startup routine is automatically linked in.
Then, when the program is executed, the routine exit(1) is called after the
main routine finishes to close file descriptors and do other cleanup. The
user must therefore be careful when calling the Id directly or when changing
the entry point. The user must supply the startup routine or make sure that
the program always calls exit rather than falling through the end. Otherwise,
the program will dump core.

7.3.2 Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object file
typically consisting of the standard three sections: .text, .data, and .bss.
Archive libraries are created through the use of the UNIX system "ar"
command from object tiles generated by running the cc or as.

An archive library is always processed using selective inclusion: Only those
members that resolve existing undefined-symbol references are taken from
the library tor link editing.

Libraries can be placed both inside and outside section definitions. In both
cases, a member of a library is included tor linking whenever

a. There exists a reference to a symbol defined in that member.

b. The reference is found by the Id prior to the actual scanning
of the library.

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the member are included in the
output section being defined. When a library member is included by
searching the library outside of a SECTIONS directive, all input sections
from the member are included into the output section with the same name.
That is, the .text section of the member goes into the output section named
.text, the .data section of the member into .data, the .bss section of the
member into .bss, etc. It necessary, new output sections are defined to
provide a place to put the input sections. Note, however, that

7-20 SysS UNIX

(

(

LINK EDITOR CHAPTER 7

a. Specific members of a library cannot be referenced explicitly
in an ifile.

b. The default rules for the placement of members and sections
cannot be overridden when they apply to archive library
members.

The " - I" option is a shorthand notation for specifying an input file coming
from a predefined set of directories and having a predefined name. By
convention, such files are archive libraries. However, they need not be so.
Furthermore, archive libraries can be specified without using the "-I" option
by simply giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a member to be
extracted from the library it must satisfy a reference that is known to be
unresolved at the time the library is searched. Archive libraries can be
specified more than once. They are searched every time they are
encountered. Archive files have a symbol table at the beginning of the
archive. The Id will cycle through this symbol table until it has determined
that it cannot resolve any more references from that library.

Consider the following example:

a. The input files file1 .o and file2.o each contain a reference to
the external function FCN.

b. Input file1 .o contains a reference to symbol ABC.

c. Input file2.o contains a reference to symbol XYZ.

d. Library liba.a, member 0, contains a definition of XYZ.

e. Library libc.a, member 0, contains a definition of ABC.

f. Both libraries have a member 1 that defines FCN.

If the Id command were entered as

Id file1 .o -la file2.o -le

then the FCN references are satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ remains undefined (since the library liba.a
is searched before file2.o is specified). If the Id command were entered as

Id file1 .o file2.o -la -le

then the FCN references is satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ is obtained from liba.a, member 0. If the Id
command were entered as

Id file1 .o file2.o -le -la

SysS UNIX 7-21

CHAPTER 7 LINK EDITOR

then the FCN references is satisfied by libc.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ is obtained from liba.a, member 0.

The "-u" option is used to force the linking of library members when the link
edit run does not contain an actual external reference to the members. For
example,

Id -u rout1 -la

creates an undefined symbol called "rout1" in the Id's global symbol table. If
any member of library liba.a defines this symbol, it (and perhaps other
members as well) is extracted. Without the "-u" option, there would have
been no "trigger" to cause Id to search the archive library.

7.3.3 Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured areas exist
in the virtual memory, each application or user must assume the
responsibility of forming output sections that will fit into memory. For
example, assume that memory is configured as follows:

MEMORY
{

mem1:
mem2:
mem3:

o = OxOOOOO
o = Ox40000
o = Ox20000

I= Ox02000
I = Ox05000
I = Ox10000

Let the files f1 .o, f2.o, ... fn.o each contain the standard three sections
.text, .data, and .bss, and suppose the combined .text section is Ox12000
bytes. There is no configured area of memory in which this section can be
placed. Appropriate directives must be supplied to break up the .text output
section so Id may do allocation. For example,

7-22 Sys5 UNIX

(

LINK EDITOR

SECTIONS
{

txt1:
{

}
txt2:
{

}
etc.

f1 .o (.text)
f2.o (.text)
f3.o (.text)

f4.o (.text)
f5.o (.text)
f6.o (.text)

7.3.4 Allocation Algorithm

CHAPTER 7

An output section is formed either as a result of a SECTIONS directive or by
combining input sections of the same name. An output section can have
zero or more input sections comprising it. After the composition of an output
section is determined, it must then be allocated into configured virtual
memory. Ld uses an algorithm that attempts to minimize fragmentation of
memory, and hence increases the possibility that a link edit run will be able
to allocate all output sections within the specified virtual memory
configuration. The algorithm proceeds as follows:

a. Any output sections for which explicit bonding addresses
were specified are allocated.

b. Any output sections to be included in a specific named
memory are allocated. In both this and the succeeding step,
each output section is placed into the first available space
within the (named) memory with any alignment taken into
consideration.

c. Output sections not handled by one of the above steps are
allocated.

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in the
order they appear to the Id, normally .text, .data, .bss. Otherwise, output
sections are allocated in the order they were defined or made known to the
Id into the first available space they fit.

Sys5 UNIX 7-23

CHAPTER 7 LINK EDITOR

7.3.5 Incremental Link Editing

As previously mentioned, the output of the Id can be used as an input file to
subsequent Id runs providing that the relocation information is retained ("-r"
option). Large applications may find it desirable to partition their C programs
into "subsystems", link each subsystem independently, and then link edit the
entire application. For example,

Step 1:
Id -r --o outfile1 ifile1

!* ifile1 */
SECTIONS
{

ss1:
{

}

Step 2:

f1 .o
f2.o

fn.o

Id -r --o outf ile2 ifile2

I* ifile2 *1

SECTIONS
{

ss2:
{

}

Step 3:

g1.o
g2.o

gn.o

Id -a -m --o final.out outfile1 outfile2

By judiciously forming subsystems, applications may achieve a form of
"incremental link editing" whereby it is necessary to relink only a portion of
the total link edit when a few programs are recompiled.

To apply this technique, there are two simple rules

7-24 Sys5 UNIX

(

('

LINK EDITOR CHAPTER 7

a. Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation of
output sections from input files and input sections. No
binding of output sections should be done in these runs.

b. All allocation and memory directives, as well as any
assignment statements, are included only in the final Id call.

7.3.6 DSECT, COPY, and NOLOAD Sections

Sections may be given a "type" in a section definition as shown in the
following example:

SECTIONS
{

name1 Ox200000 (DSECT)
name2 Ox400000 (COPY)
name3 Ox600000 (NOLOAD)

: { file1.o}
: { file2.o }

: { file3.o}

The DSECT option creates what is called a "dummy section". A "dummy
section" has the following properties:

a. It does not participate in the memory allocation for output
sections. As a result, it takes up no memory and does not
show up in the memory map (the "-m" option) generated by
the Id.

b. It may overlay other output sections and even unconfigured
memory. DSECTs may overlay other DSECTs.

c. The global symbols defined within the ·'dummy section" are
relocated normally. That is, they appear in the output file's
symbol table with the same value they would have had if the
DSECT were actually loaded at its virtual address. DSECT­
defined symbols may be referenced by other input sections.
Undefined external symbols found within a DSECT cause
specified archive libraries to be searched and any members
which define such symbols are link edited normally (i.e., not
in the DSECT or as a OSECT).

d. None of the section contents, relocation information, or line
number information associated with the section is written to
the output file.

In the above example, none of the sections from file1 .o are allocated, but all
symbols are relocated as though the sections were link edited at the
specified address. Other sections could refer to any of the global symbols

Sys5 UNIX 7-25

CHAPTER 7 LINK EDITOR

and they are resolved correctly.

A "copy section" created by the COPY option is similar to a "dummy
section". The only difference between a "copy section" and a "dummy
section" is that the contents of a "copy section" and all associated
information is written to the output file.

A section with the "type" of NOLOAD differs in only one respect from a
normal output section: its text and/or data is not written to the output file. A
NOLOAD section is allocated virtual space, appears in the memory map,
etc.

7.3.7 Output File Blocking

The BLOCK option (applied to any output section or GROUP directive) is
used to direct Id to align a section at a specified byte offset in the output file.
It has no effect on the address at which the section is allocated nor on any
part of the link edit process. It is used purely to adjust the physical position
of the section in the output file.

SECTIONS
{

.text BLOCK(Ox200) : { }

.data ALIGN(Ox20000) BLOCK(Ox200) : { }
}

With this SECTIONS directive, Id assures that each section, .text and .data,
is physically written at a file offset which is a multiple of Ox200 (e.g., at an
offset of 0, Ox200, Ox400, ... , etc. in the file).

7.3.8 Nonrelocatable Input Files

If a file produced by the Id is intended to be used in a subsequent Id run, the
first Id run has the "-r" option set. This preserves relocation information
and permits the sections of the file to be relocated by the subsequent Id run.

When the Id detects an input file (that does not have relocation or symbol
table information), a warning message is given. Such information can be
removed by the Id (see the "-a" and "-s" options in the part USING THE
LINK EDITOR) or by the strip(1) program. However, the link edit run
continues using the nonrelocatable input file.

For such a link edit to be successful (i.e., to actually and correctly link edit
all input files, relocate all symbols, resolve unresolved references, etc.), two
conditions on the nonrelocatable input files must be met.

7-26

a. Each input file must have no unresolved external references.

b. Each input file must be bound to the exact same virtual
address as it was bound to in the Id run that created it.

Sys5 UNIX

(

LINK EDITOR CHAPTER 7

Note that if these two conditions are not met for all nonrelocatable input
files, no error messages are issued. Because of this tact, extreme care
must be taken when supplying such input files to the Id.

7 .4 Error Messages

7.4.1 Corrupt Input Files

The following error messages indicate that the input file is corrupt,
nonexistent, or unreadable. The user should check that the file is in the
correct directory with the correct permissions. If the object file is corrupt, try
recompiling or reassembling it.

• Can't open name

• Can't read archive header from archive name

• Can't read file header of archive name

• Can't read 1st word of file name

• Can't seek to the beginning of file name

• Fail to read file header of name

• Fail to read lnno of section sect of file name

• Fail to read magic number of file name

• Fail to read section headers of file name

• Fail to read section headers of library name member number

• Fail to read symbol table of file name

• Fail to read symbol table when searching libraries

• Fail to read the aux entry of file name

• Fail to read the field to be relocated

• Fail to seek to symbol table of file name

• Fail to seek to symbol table when searching libraries

• Fail to seek to the end of library name member number

• Fail to skip aux entries when searching libraries

• Fail to skip the mem of struct of name

• Illegal relocation type

• No reloc entry found tor symbol

• Reloc entries out of order in section sect of file name

Sys5 UNIX 7-27

CHAPTER 7 LINK EDITOR

• Seek to name section sect failed

• Seek to name section sect lnno failed

• Seek to name section sect reloc entries failed

• Seek to relocation entries for section sect in file name failed.

7.4.2 Errors During Output

These errors occur because the Id cannot write to the output file. This
usually indicates that the file system is out of space.

• Cannot complete output file name. Write error.

• Fail to copy the rest of section num of file name

• Fail to copy the bytes that need no reloc of section num of file

• name 1/0 error on output file name.

7.4.3 Internal Errors

These messages indicate that something is wrong with the Id internally.
There is probably nothing the user can do except get help.

• Attempt to free nonallocated memory

• Attempt to reinitialize the SOP aux space

• Attempt to reinitialize the SOP slot space

• Default allocation did not put .data and .bss into the same region

• Failed to close SOP symbol space

• Failure dumping an AIDFNxxx data structure

• Failure in closing SOP aux space

• Failure to initialize the SOP aux space

• Failure to initialize the SOP slot space

• Internal error: audit_groups, address mismatch

• Internal error: audit_group, finds a node failure

• Internal error: fail to seek to the member of name

• Internal error: in allocate lists, list confusion (num num)

• Internal error: invalid aux table id

• Internal error: invalid symbol table id

• Internal error: negative aux table Id

7-28 SysS UNIX

(

(

LINK EDITOR CHAPTER 7

• Internal error: negative symbol table id

• Internal error: no symtab entry for DOT

• Internal error: split_scns, size of sect exceeds its new displacement.

7.4.4 Allocation Errors

These error messages appear during the allocation phase of the link edit.
They generally appear if a section or group does not fit at a certain address
or if the given MEMORY or SECTION directives in some way conflict. If you
are using an ifile, check that MEMORY and SECTION directives allow
enough room for the sections to ensure that nothing overlaps and that
nothing is being placed in unconfigured memory. For more information, see
"LINK EDITOR COMMAND LANGUAGE" and "NOTES AND SPECIAL
CONSIDERATIONS".

• Bond address address for sect is not in configured memory

• Bond address address for sect overlays previously allocated section
sect at address

• Can't allocate output section sect, of size num

• Can't allocate section sect into owner mem

• Default allocation failed: name is too large

• GROUP containing section sect is too big

• Memory types name 1 and name2 overlap

• Output section sect not allocated into a region

• Sect at address overlays previously allocated section sect at address

• Sect, bonded at address, won't fit into configured memory

• Sect enters unconfigured memory at address

• Section sect in file name is too big.

7.4.5 Misuse of Link Editor Directives

These errors arise from the misuse of an input directive. Please review the
appropriate section in the manual.

• Adding name(sect) to multiple output sections.

The input section is mentioned twice in the SECTION directive.

• Bad attribute value in MEMORY directive: c.

An attribute must be one of "R", "W", "X", or "I".

Sys5 UNIX 7-29

CHAPTER 7 LINK EDITOR

• Bad flag value in SECTIONS directive, option.

Only the "-I" option is allowed inside of a SECTIONS directive

• Bad fill value.

The fill value must be a 2-byte constant.

• Bonding excludes alignment.

The section will be bound at the given address regardless of the alignment
of that address.

• Cannot align a section within a group

• Cannot bond a section within a group

• Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be aligned or
bound to an address, but the sections making up the group may not be
handled individually.

• DSECT sect can't be given an owner

• DSECT sect can't be linked to an attribute.

Since dummy sections do not participate in the memory allocation, it is
meaningless for a dummy section to be given an owner or an attribute.

• Region commands not allowed

The UNIX system link editor does not accept the REGION commands.

• Section sect not built.

The most likely cause of this is a syntax error in the SECTIONS directive.

• Semicolon required after expression

• Statement ignored.

Caused by a syntax error in an expression.

• Usage of unimplemented syntax.

The UNIX system Id does not accept all possible Id commands.

7.4.6 Misuse of Expressions

These errors arise from the misuse of an input expression. Please review
the appropriate section in the manual.

• Absolute symbol name being redefined.

An absolute symbol may not be redefined.

7-30 SysS UNIX

/

LINK EDITOR CHAPTER 7

• ALIGN illegal in this context.

Alignment of a symbol may only be done within a SECTIONS directive.

• Attempt to decrement DOT

• Illegal assignment of physical address to DOT.

• Illegal operator in expression

• Misuse of DOT symbol in assignment instruction.

The DOT symbol (".") cannot be used in assignment statements that are
outside SECTIONS directives.

• Symbol name is undefined.

All symbols referenced in an assignment statement must be defined.

• Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment statement.

• Undefined symbol in expression.

7.4.7 Misuse of Options

These errors arise from the misuse of options. Please review the
appropriate section of the manual.

• Both-rand -s flags are set. -s flag turned off.

Further relocation requires a symbol table.

• Can't find library libx.a

• -L path too long (string)

• -o file name too large (>128 char), truncated to (string)

• Too many -L options, seven allowed.

Some options require white space before the argument, some do not; see
"USING THE LINK EDITOR". Including extra white space or not including
the required white space is the most likely cause of the following messages.

• option flag does not specify a number

• option is an invalid flag

• -e flag does not specify a legal symbol name name

• -f flag does not specify a 2-byte number

• No directory given with -L

• -o flag does not specify a valid file name: string

Sys5 UNIX 7-31

CHAPTER 7

• the -I flag (specifying a default library) is not supported

• -u flag does not specify a legal symbol name: name.

7.4.8 Space Restraints

LINK EDITOR

The following error messages may occur if the Id attempts to allocate more
space than is available. The user should attempt to decrease the amount of
space used by the Id. This may be accomplished by making the ifile less
complicated or by using the "-r" option to create intermediate files.

• Fail to allocate num bytes for slotvec table

• Internal error: aux table overflow

• Internal error: symbol table overflow

• Memory allocation failure on num-byte 'canoe' call

• Memory allocation failure on realloc call

• Run is too large and complex.

7.4.9 Miscellaneous Errors

These errors occur for many reasons. Refer to the error message for an
indication of where to look in the manual.

• Archive symbol table is empty in archive name, execute 'arts name' to
restore archive symbol table .

On systems with a random access archive capability, the link editor requires
that all archives have a symbol table. This symbol table may have been
removed by strip.

• Cannot create output file name .

The user may not have write permission in the directory where the output
file is to be written.

• File name has no relocation information.

See "NOTES AND SPECIAL CONSIDERATIONS".

• File name is of unknown type, magic number = num

• lfile nesting limit exceeded with file name.

lfiles may be nested 16 deep.

• Library name, member has no relocation information.

• Line nbr entry (num num) found for nonrelocatable symbol:

Section sect, file name

7-32 SysS UNIX

(

(

LINK EDITOR CHAPTER 7

This is generally caused by an interaction of yacc(1) and cc(1). Re-yacc
the offending file with the "-I" option of yacc.

See the part "NOTES AND SPECIAL CONSIDERATIONS".

• Multiply defined symbol sym, in name has more than one size.

A multiply defined symbol may not have been defined in the same manner
in all files.

• name(sect) not found.

An input section specified in a SECTIONS directive was not found in the
input file.

• Section sect starts on an odd byte boundary!

This will happen only if the user specifically binds a section at an odd
boundary.

• Sections .text, .data, or .bss not found. Optional header may be
useless.

The UNIX system a.out header uses values found in the .text, .data, and
.bss section headers.

• Undefined symbol sym first referenced in file name .

Unless the -r option is used, the Id requires that all referenced symbols are
defined.

• Unexpected EOF (End Of File).

Syntax error in the ifile.

7.5 Syntax Diagram for Input Directives

A syntax diagram for input directives is found in Figures 7-2 thru 7-5.

SysS UNIX 7-33

CHAPTER 7 LINK EDITOR

directives -> expanded directives

<file> -> { <cmd>}
<cmd> -> <memory>

-> <sections>
-> <assignment>
-> <filename>
-> <flags>

<memory -> MEMORY { <memory_spec>
{ [,] <memory_spec> }}

<memory _spec> -> <name> [<attributes>] :
<origin_spec> [,] <length_spec>

<attributes> -> ({RIWIXll})
<origin_spec> -> <origin> = <long>
<lenth_spec> -> <length> = <long>
<origin> -> ORIGIN Io I org I origin
<length> -> LENGTH I 11 len I length

<sections> -> SECTIONS { { <sec_or_group>}}
<sec_or_group> -> <section> I <group> I <library>
<group> -> GROUP <group_options> : {

<section_list>} [<mem_spec>]

< section_list> -> <section> { [,] <section> }

Figure 7-2. Syntax Diagram for Input Directives (Sheet 1 of 4)

7-34 Sys5 UNIX

LINK EDITOR CHAPTER 7

(
directives -> expanded directives

<section> -> <name> <sec_options> : {
<statement_list> }
[<fill>] [< mem_spec>]

<group_options> -> [<addr>] [<align_option>]

< sec_options> -> [<addr>] [<align_option>]
[<block_option>] [<type_option>]

<addr> -> <long>
<align_option> -> <align> (<long>)
<align> -> ALIGN I align
<block_ option> -> <block> (<long>)
<block> -> BLOCK I block
<type_option> -> (DSECT) I (NOLOAD) I (COPY)
<fill> -> =<long>
<mem_spec> -> ><name>

-> > <attributes>
<statement> -> <file_name> [(<name_list>)]

[<fill>] <library> <assignment>

< name_list> -> <name> {[,]<name> }
<library> -> -I< name>

<assignment> -> <lside> <assign_op> <expr> <end>
<lside> -> <name> I.
<assign_op> -> =1+=1-=l*=V=
<end> -> ; I,
<expr> -> <expr> <binary_op> <expr>

-> <term>
<binary_op> -> *111%

-:> +I-
-> >>I<<

Figure 7-3. Syntax Diagram for Input Directives (Sheet 2 of 4)

Sys5 UNIX 7-35

CHAPTER 7 LINK EDITOR

directives -> expanded directives

-> ==It= I> I< I<= I>=
-> &
-> I
-> &&
-> I

<term> -> <long>
-> <name>
-> <align> (<term>)
-> (<expr)
-> <unary_op> <term>

<unary_op> ->
,,_

<flags> -> -e<wht_space><name>
-> -f<wht_space> <long>
-> -h< wht_space ><long>
-> -I< name>
-> -m
-> -o<wht_space> <filename>
-> -r
-> -s
-> -t
-> -u < wht_space ><name>
-> -z
-> -H
-> -F
-> -L <pathname>
-> -M
... > -N
.. > -s
-> -V
-> -VS< wht_space ><long>
-> -a
-> -x

Figure 7-4. Syntax Diagram for Input Directives (Sheet 3 of 4)

7-36 Sys5 UNIX

LINK EDITOR CHAPTER 7

directives ·> expanded directives

<name> -> Any valid symbol name
<long> -> Any valid long integer constant
< wht_space > -> Blanks, tabs, and newlines

<filename> -> Any valid UNIX operating system
filename. This may include a
full or partial pathname.

<pathname> -> Any valid UNIX operating system
pathname (full or partial)

Figure 7-5. Syntax Diagram for Input Directives (Sheet 4 of 4)

(

Sys5 UNIX 7-37

/.

(-

(_

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

8. THE COMMON OBJECT FILE FORMAT

This Chapter describes the Common Object File Format (COFF) used on
several processors and operating systems. The COFF is simple enough to
be easily incorporated into existing projects, yet flexible enough to meet the
needs of most projects. The COFF is the output file produced on some
UNIX systems by the assembler (as) and the link editor (Id). This format is
also used by other operating systems; hence, the word common is both
descriptive and widely recognized. Currently, this object file format is used
for the Some key features of COFF are

• Applications may add system-dependent information to the object file
without causing access utilities to become obsolete.

• Space is provided for symbolic information used by debuggers and
other applications

• Users may make some modifications in the object file construction at
compile time.

The object file supports user-defined sections and contains extensive
information for symbolic software testing. An object file contains

• A file header

• Optional header information

• A table of section headers

• Data corresponding to the section header

• Relocation information

• Line numbers

• A symbol table

• A string table.

Figure 8-1 shows the overall structure.

Sys5 UNIX 8-1

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

FILE HEADER
Optional Information

Section 1 Header
...

Section n Header
Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1
...

Relocation Info for Sect. n
Line Numbers for Sect. 1

...
Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

Figure 8-1. Object File Format

The last four sections (relocation, line numbers, symbol table, and the string
table) may be missing if the program is linked with the -s option of the
UNIX system link editor or if the line number information, symbol table, and
string table are removed by the strip command. The line number
information does not appear unless the program is compiled with the -g
option of the compiler (CC) command. Also, if there are no unresolved
external references after linking, the relocation information is no longer
needed and is absent. The string table is also absent if the source file does
not contain any symbols with names longer than eight characters.

An object file that contains no errors or unresolved references can be
executed on the target machine.

8.1 Definitions and Conventions

Before proceeding further, you should become familiar with the following
terms and conventions:

8.1.1 Sections

A section is the smallest portion of an object file that is relocated and treated
as one separate and distinct entity. In the default case, there are three
sections named .text, .data, and .bss. Additional sections accommodate

8-2 Sys5 UNIX

(

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

multiple text or data segments, shared data segments, or user-specified
sections. However, the UNIX operating system loads only the .text, .data,
and .bss into memory when the file is executed.

8.1.2 Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that section or
symbol from address zero of the address space. The term physical address
as used in COFF does not correspond to the general usage. The physical
address of an object is not necessarily the address at which the object is
placed when the process is executed. For example, on a system with
paging, the address is located with respect to address zero of virtual
memory and the system performs another address translation. The section
heading contains two address fields, a physical address, and a virtual
address; but in all versions of COFF on UNIX systems, the physical address
is equivalent to the virtual address.

8.2 File Header

The file header contains the 20 bytes of information shown in Figure 8-2 and
8-3. The last 2 bytes are flags that are used by Id and object file utilities.

SysS UNIX 8-3

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Bxtes Declaration Name Descr~tion

0-1 unsigned short f_magic Magic number,
see F!g_ure 8-3.

2-3 unsigned short f_nscns Number of
section
headers
(equals the
number of

· sections)

4-7 long int f_timdat Time and date
stamp
indicating
when the file
was created
relative to the
number of
elapsed
seconds since
00:00:00 GMT,
January 1,
1970.

Figure 8-2. File Header Contents (Sheet 1 of 2)

8·4 SysS UNIX

(

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes Declaration Name Description
8-11 long int f_symptr File pointer

containing the
starting
address of the
symbol table ----12-15 long int f_nsyms Number of
entries in the
symbol table

16-17 unsigned short f_opthdr Number of
bytes in the
optional
header

18-19 unsigned short f_flags Flags (see
Figure 8-5 and
8-6.)

Figure 8-3. File Header Contents (Sheet 2 of 2)

The size of optional header information (f_opthdr) is used by all referencing
programs that seek to the beginning of the section header table. This
enables the same utility programs to work correctly on files targeted for
different systems.

8.2.1 Magic Numbers

The magic number specifies the target machine on which the object file is
executable. The currently defined magic numbers are in Figure 8-4.

Mnemonic Magic Number System

FBOMAGIC 0560 WE-32 (Forward
Byte Orderin_g)

RBOMAGIC 0565 WE-32 (Reverse
Byte Ordering)

Figure 8-4. Magic Numbers

8.2.2 Flags

The last 2 bytes of the file header are flags that describe the type of the
object file. The currently defined flags are given in Figure 8-5 and 8-6.

Sys5 UNIX 8-5

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Mnemonic Flag Meanin__g_

F_RELFLG 00001 Relocation
information
stripped from the
file

F_EXEC 00002 File is executable
(i.e. no unresolved
external
references)

F_LNNO 00004 Line numbers
stripped from the
file

F_LSYMS 00010 Local symbols
stripped from the
file

F_MINMAL 00020 Not used by UNIX
F_UPDATE 00040 Not used by. UNIX
F_SWABD 00100 Not used ~UNIX
F_AR16WR 00200

Figure 8-5. File Header Flags (Sheet 1 of 2)

Mnemonic FIC!9_ Meanin_g
F_AR32WR 00400
F_PATCH 02000 Not used by UNIX

Figure 8-6. File Header Flags (Sheet 2 of 2)

8.2.3 File Header Declaration

The C structure declaration for the file header is given in Figure 8-5. This
declaration may be found in the header file filehdr.h.

• Trademark of Digital Equipment Corporation

8-6 SysS UNIX

THE COMMON OBJECT FILE FORMAT

struct filehdr {
unsigned short f_magic; 1* magic number*/
unsigned short f_nscns; I* number of section •

long f_timdat; I* time and data stamp I*

long f_symptr; /* file ptr to symbol table •I

CHAPTER 8

long f-nsyms; /*number entries in the symbol table*/

unsigned short f_opthdr; I* size of optional header*/

unsigned short f_flags; /*flags */
};

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

Figure 8-7. File Header Declaration

8.3 Optional Header Information

The template for optional information varies among different systems that
use the COFF. Applications place all system-dependent information into this
record. This allows different operating systems access to information that
only that operating system uses without forcing all COFF files to save space
for that information. General utility programs (for example, the symbol table
access library functions, the disassembler, etc.) are made to work properly
on any common object file. This is done by seeking past this record using
the size of optional header information in the file header f_opthdr.

8.3.1 Standard SysS UNIX a.out Header

By default, files produced by the link editor for a UNIX system always have a
standard UNIX System a.out header in the optional header field. The UNIX
system a.out header is 28 bytes. The extra 8 bytes represent unused fields
that are present for historical reasons. Therefore, the two formats contain
functionally equivalent information. The fields of the optional header are
described in Figure 8-8 and 8-9.

Sys5 UNIX 8-7

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

B~es Declaration Name Description

0-1 short m'!9!c M~c number
2-3 short vstam_.e. Version stamp
4-7 long int tsize Size of text

in b_Y!_es
8-11 long int dsize Size of initialized

data in ~es
12-15 long int bsize Size of uninitialized

data in bytes

16-19 lo~int dum1 Unused dummy field

20-23 lo~int dum2 Unused dummy field

24-27 lo~int entry Entry point

27-31 lo~int text_ start Base address of text

32-35 long int data_ start Base address of data

Figure 8-8. Optional Header Contents

BE es Declaration Name Description

0-1 short m~c M~c number
2-3 short vstamp Version stamp

4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized
data in t>ytes

12-15 long int bsize Size of uninitialized
data in bytes

16-19 lo~int en!_ry_ E n!_ry__.e.oi nt

20-23 long int text_ start Base address
of text

24-37 long int data_ start Base address of data

Figure 8-9. Optional Header Contents

The magic number in the optional header supplies operating system
dependent information about the object file. Whereas, the magic number in
the file header specifies the machine on which the object file runs. The '--, /

8-8 Sys5 UNIX

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

magic number in the optional header supplies information telling the
operating system on that machine how that file should be executed.

The magic numbers recognized by the UNIX operating system are given in
Figure 8-1 O.

Value Meaning_

0407 The text segment is not
write-protected or
sharable; the data
segment is contiguous
with the text se_g_ment.

0410 The data segment starts
at the next segment
following the text
segment and the text
segment is write
protected.

Figure 8-10. UNIX Magic Numbers

8.3.2 Optional Header Declaration

The C language structure declaration currently used for the UNIX system
a.out file header is given in Figure 8-11. This declaration may be found in
the header file aouthdr.h.

Sys5 UNIX 8-9

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

typedef struct aouthdr {
short magic;
short vstamp;
long tsize;

!* magic number*/
/* version stamp ·;

I* text size in bytes, padded •I

/* to full word boundry */

long

long

#if u3b
long
long

#endif

dsize;

bsize;

dum1;
dum2;

/* initialized data size */

I* uninitialized data size ·i

/* unused dummy field • !
I* unused dummy field •;

long entry; , • entry point ·I
long text_start; , • base of text for this file •;

long data_start · • base of data for this file ·I

} AOUTHDR;

Figure 8-11. Aouthdr Declaration

8.4 Section Headers

Every object file has a table of section headers to specify the layout of data
within the file. The section header table consists of one entry for every
section in the file. The information in the section header is described in
Figure 8-12.

8-10 Sys5 UNIX

(

(<

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes Declaration Name Descr~tion

0-7 char s_name 8-char null
padded section
name

8-11 long int s_paddr Physical
address of section

12-15 long int s_vaddr Virtual
address of section

16-19 long int s_size Section
size in bytes

20-23 long int s_scnptr File pointer
to raw data

24-27 long int s_relptr File ptr to
relocation
entries

28-31 long int s_lnnoptr File ptr to line
number entries

32-33 unsigned s_nreloc Number of
short entries

34-35 unsigned s_nlnno Number of line
short number entries

36-39 long int s_flags Flags (see
Figure 8-13 and 8-14)

Figure 8-12. Section Header Contents

The size of a section is padded to a multiple of 4 bytes.

File pointers are byte offsets that can be used to locate the start of data,
relocation, or line number entries for the section. They can be readily used
with the UNIX system function fseek(3S).

8.4.1 Flags

The lower 4 bits of the flag field indicate a section type. The flags are
described in Figure 8-13 and 8-14.

Sys5 UNIX 8-11

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Mnemonic Fla_g_ Meani"!.9_

STYP_REG OxOO Regular section
(allocated,
relocated, loaded)

STYP_DSECT Ox01 Dummy section
(not allocated,
relocated, not
loaded)

STYP_NOLOAD Ox02 No load section
(allocated,
relocated, not
loaded)

Figure 8-13. Section Header Flags (Sheet 1 of 2)

8-12 Sys5 UNIX

(

(

THE COMMON OBJECT FILE FORMAT

Mnemonic Fl<!9_ Meaning

STYP_GROUP Ox04 Grouped section
(formed from input
sections)

STYP_PAD Ox OS Padding section
(not allocated, not
relocated, loaded)

STYP_COPY Ox10 Copy section (for a
decision function
used in updating
fields; not
allocated, not
relocated, loaded,
relocation and line
number entries
processed
normally)

STYP_TEXT Ox20 Section contains
executable text

STYP_DATA Ox40 Section contains
initialized data

STYP_BSS Ox80 Section contains
only uninitialized
data

Figure 8-14. Section Header Flags (Sheet 2 of 2)

8.4.2 Section Header Declaration

CHAPTER 8

The C structure declaration for the section headers is described in Figure 8-
15. This declaration may be found in the header file scuhdr.h.

Sys5 UNIX 8-13

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

struct scnhdr {
char s_name[8];
long s_paddr;
long s_vaddr;
long s_size;
long s_scnptr;

long s_relptr;

long s_lnnoptr;

unsigned short s_nreloc;

/* section name *I
/* physical address ·I
I* virtual address *I

1• section size */
!* file ptr to section raw data ·I

!* file ptr to relocation */

/* file ptr to line number *I

!* number of relocation entries ·1

unsigned short s_nlnno; /* number of line number entries • /

long s_flags; I* flags */

};

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Figure 8-15. Section Header Declaration

8.4.3 .bss Section Header

The one deviation from the normal rule in the section header table is the
entry for uninitialized data in a .bss section. A .bss section has a size and
symbols that refer to it, and symbols that are defined in it. At the same
time, a .bss section has no relocation entries, no line number entries, and
no data. Therefore, a .bss section has an entry in the section header table
but occupies no space elsewhere in the file. In this case, the number of
relocation and line number entries, as well as all file pointers in a .bss
section header, are zero.

8.5 Sections

Figure 8·1 shows that section headers are followed by the appropriate
number of bytes of text or data. The raw data for each section begins on a
full word boundary in the file.

Files produced by the cc and the as always contain three sections, called
.text, .data, and .bss. The .text section contains the instruction text (i.e.,

8-14 Sys5 UNIX

(

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

executable code), the .data section contains initialized data variables, and
the .bss section contains uninitialized data variables.

The link editor "SECTIONS directives" (see Chapter 7) allows users to

• Describe how input sections are to be combined.

• Direct the placement of output sections.

• Rename output sections.

If no SECTIONS directives are given, each input section appears in an
output section of the same name. For example, if a number of object files
from the "cc" are linked together (each containing the three sections .text,
.data, and .bss), the output object file contains three sections, .text, .data,
and .bss.

8.6 Relocation Information

Object files have one relocation entry for each relocatable reference in the
text or data. The relocation information consists of entries with the format
described in Figure 8-16.

~es Declaration Name Description

0-3 long int r_symndx (Virtual)
address
of reference

4-7 long int r_symndx symbol
table
index

1-----
8-9 unsigned short r_type Relocation

type

Figure 8-16. Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text or data to
which this entry applies. The next field is the index, counted from 0, of the
symbol table entry that is being referenced. The type field indicates the type
of relocation to be applied.

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated.

SysS UNIX 8-15

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

The currently recognized relocation types are given in Figures 8-17 through 1"'~

8-19. \,~j

Mnemonic Fla_g_ Meanin_g_

R_ABS 0 Reference is
absolute; no
relocation is
necessary. The
entry wm be
~nored.

R_DIR24 04 Direct 24-bit
reference to the
symbol's virtual
address.

R_REL24 05 A "PC-relative"
24-bit reference to
the symbol's
virtual address.
Actual address is
calculated by /--~

adding a constant
to the PC value.

Figure 8-17. Computers Relocation Types

8·16 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Mnemonic ~ Meaning

R_BS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
!g_nored.

R_DIR32 06 Direct 32-bit
reference to the
symbol's virtual
address

R_DIR32S 012 Direct 32-bit
reference to the
symbol's virtual
address, with the
32-bit value stored
in the reverse
order in the object
file.

Figure 8-18. Relocation Types

(
SysS UNIX 8-17

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Mnemonic Flag Meani'!9_

R_ABS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
_!g_nored.

R_RELBYTE 017 Direct 8-bit
reference to the
symbol's virtual
address.

R_RELWORD 020 Direct 16-bit
reference to the
symbol's virtual
address. -

R_RELLONG 021 Direct 32-bit
reference to the
symbol's virtual
address. -

R_PCRBYTE 022 A "PC_relative" 8-
bit reference to the
symbol's virtual
address.

R_PCRWORD 023 A "PC_relative"
16-bit reference to
the symbol's
virtual address.

R_PCRLONG 024 A "PC_relative"
32-bit reference to
the symbol's
virtual address.

Figure 8-19. Relocation Types

Relocation of a symbol index of -1 indicates that the amount by which the
section is being relocated is added to the relocatable address.

The as automatically generates relocation entries which are then used by
the link editor. The link editor uses this information to resolve external
references in the file.

8-18 SysS UNIX

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

8.6.1 Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 8-23. This
declaration may be found in the header file reloc.h.

struct reloc {
long r_vaddr; /*virtual address of reference */

long r_symndx; 1* index into symbol table*/

unsigned short r_type; !* relocation type */
};

#define RELOC struct reloc

#define RELSZ 10
0

Figure 8-20. Relocation Entry Declaration

8.7 Line Numbers

When invoked with the -g option, UNIX system ccs (cc, f77) generates an
entry in the object file for every C language source line where a breakpoint
can be inserted. You can then reference line numbers when using a
software debugger like sdb. All line numbers in a section are grouped by
function, as shown in Figure 8-24 and 8-25.

--,--

symbol index 0
physical address line number

physical address line number

symbol index 0
physical address line number

physical address line number

Figure 8-21. Line Number Grouping

The first entry in a function grouping has line number O and has, in place of
the physical address, an index into the symbol table for the entry containing
the function name. Subsequent entries have actual line numbers and
addresses of the text corresponding to the line numbers. The line number

SysS UNIX 8-19

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

entries appear in increasing order of address.

8.7.1 Line Number Declaration

The structure declaration currently used for line number entries is given in
Figure 8-22.

struct lineno {
union

};

{
long l_symndx; /* symtbl index of tune name*/

long l_paddr; /* paddr of line number •I
} l_addr;
unsigned short Unno; /* line number*/

#define LINENO struct lineno

#define LINESZ 6
0

Figure 8-22. Line Number Entry Declaration

8.8 Symbol Table

Because of symbolic debugging requirements, the order of symbols in the
symbol table is very important. Symbols appear in the sequence shown in
Figure 8-23.

8-20 Sys5 UNIX

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

file name 1
function 1

local symbols
for function 1

function 2
local symbols
for function 2

statics

file name 2
function 1

local symbols
for function 1

statics

defined global
symbols

undefined global
symbols

I

Figure 8-23. COFF Global Symbol Table

The word .. statics" in Figure 8-23 means symbols defined in the C language
storage class static outside any function. The symbol table consists of at
least one fixed-length entry per symbol with some symbols followed by
auxiliary entries of the same size. The entry for each symbol is a structure
that holds the value. the type, and other information.

8.8.1 Special Symbols

The symbol table contains some special symbols that are generated by the
"cc", ··as", and other tools. These symbols are given in Figure 8-24 and 8-
25.

SysS UNIX 8-21

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

S_ymbol Meaning

.file file name
.text address of .text section
.data address of .data section
.bss address of .bss section
.bb address of start of inner block
.eb address of end of inner block
.bf address of start of function
.ef address of end of function
.target pointer to the structure or

union returned b_y a function

.xfake dummy tag name for
structure, union, or enumeran

Figure 8-24. Special Symbols in the Symbol Table (Sheet 1 of 2)

S_ymbol Meanin__g_

.eos end of members of
structure, union, or
enumeration

_etext,etext next available address
after the end of the
output section .text

_edata,edata next available address
after the end of the
ou!Q_ut section .data

_end,end next available address
after the end of the
output section .bss.

Figure 8-25. Special Symbols in the Symbol Table (Sheet 2 of 2)

Six of these special symbols occur in pairs. The .bb and .eb symbols
indicate the boundaries of inner blocks. A .bf and .ef pair brackets each
function; and a .xfake and .eos pair names and defines the limit of
structures, unions, and enumerations that were not named. The .eos
symbol also appears after named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the "cc" invents
a name to be used in the symbol table. The name chosen for the symbol

8-22 Sys5 UNIX

(

c-

THE COMMON OBJECT FILE FORMAT CHAPTER 8

table is .x.fake, where "x" is an integer. If there are three unnamed
structures, unions, or enumerations in the source, their tag names are
".Ofake", ".Hake", and ".2fake".

Each of the special symbols has different information stored in the symbol
table entry as well as the auxiliary entry.

8.8.1.1 Inner Blocks

The C language defines a block as a compound statement that begins and
ends with braces ({ and }). An inner block is a block that occurs within a
function (which is also a block).

For each inner block that has local symbols defined, a special symbol .bb is
put in the symbol table immediately before the first local symbol of that
block. Also a special symbol, .eb is put in the symbol table immediately
after the last local symbol of that block. The sequence is shown in Figure
8-26.

.bb
local symbols
for that block
.eb

Figure 8-26. Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. See Figure 8-24.

Sys5 UNIX 8-23

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

{

{

}
}

0

inti;
char c;

{
long a;

{

!* block 1 •;

!* block 2 */

I* block 3 */
int x;

} I* block 3 */
} I* block 2 ·;

/*block 4 */
long i;

r block 4 ·1
/* block 1 */

Figure 8-27. Nested blocks

The symbol table would look like Figure 8-28.

8-24 SysS UNIX

(

(

(

THE COMMON OBJECT FILE FORMAT

.bb for block 1

i

c
.bb for block 2

a
.bb for block 3

x

.eb for block 3

.eb for block 2

.bb for block 4

i

.bb for block 4

.eb for block 1

Figure 8-28. Example of the Symbol Table

8.8.2 Symbols and Functions

CHAPTER 8

For each function, a special symbol .bf is put between the function name
and the first local symbol of the function in the symbol table. Also, a special
symbol .ef is put immediately after the last local symbol of the function in
the symbol table. The sequence is shown in Figure 8-29.

function name

.bf

local s!g_nal
.ef

Figure 8-29. Symbols for Functions

If the return value of the function is a structure or union, a special symbol
.target is put between the function name and the .bf. The sequence is
shown in Figure 8-30.

SysS UNIX 8-25

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

function name
.target

.bf

local symbols

.ef

Figure 8-30. The Special Symbol .Target

The cc invents .target to store the function-return structure or union. The
symbol .target is an automatic variable with "pointer" type. Its value field in
the symbol is always 0.

8.8.3 Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for
their entries in the symbol table. The symbol table entries each contain the
18 bytes of information. The meaning of each of the fields in the symbol
table entry is described in Figure 8-31.

It should be noted that indices for symbol table entries begin at zero and
count upward. Each auxiliary entry also counts as one symbol.

8-26 SysS UNIX

A{ ..

(

(

(~

THE COMMON OBJECT FILE FORMAT CHAPTER 8

B_lf!_es Declaration Name Descr~tion

0-7 (see text below) - n These eight
bytes contain
either the
name of a
pointer or the
name of a
s_y_mbol.

8-11 long int n_value Symbol value;
storage class
dependent

12-13 short n_scnum Section
number of
symbol

14-15 unsigned short n_type Basic and
derived type
specification

16 char n_sclass Storage class
of symbol

17 char n_numaux Number of
auxiliary
entries.

Figure 8-31. Symbol Table Entry Format

8.8.3.1 Symbol Names

The first 8 bytes in the symbol table entry are a union of a character array
and two longs. If the symbol name is eight characters or less, the (null­
padded) symbol name is stored there. If the symbol name is longer than
eight characters, then the entire symbol name is stored in the string table.
In this case, the 8 bytes contain two long integers, the first is zero, and the
second is the offset (relative to the beginning of the string table) of the name
in the string table. Since there can be no symbols with a null name, the
zeroes on the first 4 bytes serve to distinguish a symbol table entry with an
offset from one with a name in the first 8 bytes as shown in Figure 8-32.

Sys5 UNIX 8-27

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Bytes Declaration Name Description

0-7 char n_name a-character
null-padded
symbol name

0-3 long n_zeroes zero in this
field indicates
the name is in
the stri~ table

4-7 long n_offset offset of the
name in the
string table

Figure 8-32. Name Field

Some special symbols are generated by the "cc" and link editor as
discussed in "special symbols". The "cc" prepends an underscore ('_') to all
the user defined symbols it generates.

8.8.3.2 Storage Classes

/

The storage class field has one of the values described in Figure 8-33 and "· /
8-34. These "defines" may be found in the header file storclass.h.

8-28 Sys5 UNIX

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Mnemonic Value Storage Class

C_EFCN -1 _2_hysical end of a function
C_NULL 0 -
C_AUTO 1 automatic variable
C_EXT 2 external symbol
C_STAT 3 static
C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label
C_ULABEL 7 undefined label

C_MOS 8 member of structure
C_ARG 9 function argument

-------!
C_STRTAG 10 structure tag

C_MOU 11 member of union
C_UNTAG 12 union tag _ ___,
C_TPDEF 13 type definition
C_USTATIC 14 uninitialized static
C_ENTAG 15 enumeration tag

··-1
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C_FIELD 18 bit field

Figure 8-33. Storage Classes (Sheet 1 of 2)

SysS UNIX 8-29

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Mnemonic Value Storage Class

C_BLOCK 100 b~nnin_g_ and end of block
C_FCN 101 be~nnin_g_ and end of function
C_EOS 102 end of structure
C_FILE 103 file name
C_LINE 104 used on~~ utility programs
C ALIAS 105 duplicated tag
C_HIDDEN 106 like static, used to avoid

name conflicts

Figure 8-34. Storage Classes (Sheet 2 of 2)

All of these storage classes except for C_ALIAS and C-HIDDEN are
generated by the "cc" or "as". The compress utility, cprs, generates the
C_ALIAS mnemonic. This utility (described in the UNIX System Reference
Manual) removes duplicated structure, union, and enumeration definitions
and puts ALIAS entries in their places. The storage class C-HIDDEN is not
used by any UNIX system tools.

Some of these storage classes are used only internally by the "cc" and the
"as". These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

8.8.3.3 Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They are
given in Figure 8-35.

8-30 Sys5 UNIX

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Special Symbol Storage Class

.file C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.ta~et C_AUTO

.xfake C_STRTAG,C_UNTAG,C_ENTAG

.eos C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Figure 8-35. Storage Class by Special Symbols

Also some storage classes are used only for certain special symbols. They
are summarized in Figure 8-36.

Storage Class Special Symbol

C_BLOCK .bb, .eb
C_FCN .bf, .ef
C_EOS .eos
C_FILE .file

Figure 8-36. Restricted Storage Classes

8.8.3.4 Symbol Value Field

The meaning of the "value" of a symbol depends on its storage class. This
relationship is summarized in Figure 8-37.

Sys5 UNIX 8-31

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Storage Class Meaning

C_AUTO stack offset in b_ytes
C_EXT relocatable address
C_STAT relocatable address
C_REG re__gister number
C_LABEL relocatable address
C_MOS offset in b_ytes
C_ARG stack offset in bytes
C_STRTAG 0
C_MOU 0
C_UNTAG 0
C_TPDEF 0
C_ENTAG 0
C_MOE enumeration value
C_REGPARM register number
C_FIELD bit di~acement
C_BLOCK relocatable address
C_FCN relocatable address
C_EOS size
C_FILE (see text below)
C_ALIAS tag index
C_HIDDEN relocatable address

Figure 8-37. Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries
form a 1-way linked list in the symbol table. If there are no more .file
entries in the symbol table, the value of the symbol is the index of the first
global symbol.

Relocatable symbols have a value equal to the virtual address of that
symbol. When the section is relocated by the link editor, the value of these
symbols changes.

8.8.3.5 Section Number Field

Section numbers are listed in Figure 8-38.

8-32 Sys5 UNIX

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Mnemonic Section Number Meaning

N_DEBUG -2 special symbolic
debuggi~ symbol

N_ABS -1 absolute s_ymbol
N_UNDEF 0 undefined external

s_ymbol
N_SCNUM 1-077777 section number

where symbol was
defined

Figure 8-38. Section Number

A special section number (-2) marks symbolic debugging symbols,
including structure/union/enumeration tag names, typedefs, and the name of
the file. A section number of -1 indicates that the symbol has a value but
is not relocatable. Examples of absolute-valued symbols include automatic
and register variables, function arguments, and .eos symbols. The .text,
.data, and .bss symbols default to section numbers 1, 2, and 3,
respectively.

With one exception, a section number of 0 indicates a relocatable external
symbol that is not defined in the current file. The one exception is a multiply
defined external symbol (i.e., FORTRAN common or an uninitialized variable
defined external to a function in C). In the symbol table of each file where
the symbol is defined, the section number of the symbol is 0 and the value
of the symbol is a positive number giving the size of the symbol. When the
files are combined, the link editor combines all the input symbols into one
symbol with the section number of the .bss section. The maximum size of
all the input symbols with the same name is used to allocate space for the
symbol and the value becomes the address of the symbol. This is the only
case where a symbol has a section number of 0 and a non-zero value.

8.8.3.6 Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain section
numbers. They are summarized in Figure 8-39.

Sys5 UNIX 8-33

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Storage Class Section Number

C_AUTO N_ABS

C_EXT N_ABS,N_UNDEF,N_SCNUM

C_STAT N_SCNUM

C_REG N_ABS

C LABEL N_UNDEF, N_SCNUM

C_MOS N_ABS

C_ARG N_ABS
C_STRTAG N_DEBUG

C_MOU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG
C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

Figure 8-39. Section Number and Storage Class

8.8.3. 7 Type Entry

The type field in the symbol table entry contains information about the basic
and derived type for the symbol. This information is generated by the "cc".
The "cc" generates this information only if the -g option is used. Each
symbol has exactly one basic or fundamental type but can have more than
one derived type. The format of the 16-bit type entry is

8-34 Sys5 UNIX

(

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bits O through 3, called "typ", indicate one of the fundamental types given in
Figure 8-40.

Mnemonic Value T_YE..e
T_NULL 0 !}'_pe not assigned

T_CHAR 2 character

T_SHORT 3 short inte__g_er

T_INT 4 inte__g_er

T_LONG 5 lon__g_ inte__g_er --
T_FLOAT 6 floati~ point

T_DOUBLE 7 double word

T_STRUCT 8 structure

T_UNION 9 union

T_ENUM 10 enumeration

T_MOE 11 member of enumeration

T_UCHAR 12 unsigned character

T_USHORT 13 uns_!g_ned short

T_UINT 14 unsigned integer

T_ULONG 15 unsigned long

Figure 8-40. Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked "d1" through "d6."
These Hd" fields represent levels of the derived types given in Figure 8-41.

Mnemonic Value Type
DT_NON 0 no derived type

DT_PTR 1 pointer

DT_FCN 2 function

DT_ARY 3 array

Figure 8-41. Derived Types

The following examples demonstrate the interpretation of the symbol table
entry representing type.

char •tune();

Here tune is the name of a function that returns a pointer to a character.
The fundamental type of tune is 2 (character), the d1 field is 2 (function),

Sys5 UNIX 8-35

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

and the d2 field is 1 (pointer). Therefore, the type word in the symbol table
for tune contains the hexadecimal number Ox62, which is interpreted to
mean "function that returns a pointer to a character."

short *tabptr[10j[25J[3];

Here tabptr is a 3-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the d1, d2, and d3 fields
each contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type
entry in the symbol table contains the hexadecimal number Ox7f3 indicating
a "3-dimensional array of pointers to short integers."

8.8.3.8 Type Entries and Storage Classes

Figures 8-42 and 8-43 show the type entries that are legal for each storage
class.

Storage ----------"d" entry---------- "typ" entry

Class Function? I Array? I Pointer? Basic Type

C_AUTO no yes yes Any except
T_MOE

C_EXT yes yes yes Any except
T_MOE

C_STAT yes yes yes Any except
T_MOE

C_REG no no yes Any except
T_MOE

C_LABEL no no no T_NULL
C_MOS no yes yes Any except

T_MOE
C_ARG yes no yes Any except

T_MOE
C_STRTAG no no no T_STRUCT

C_MOU no yes yes Any except
T_MOE

C_UNTAG no no no T_UNION

Figure 8-42. Type Entries by Storage Class (Sheet 1 of 2)

8-36 Sys5 UNIX

(

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Storage ----------"d" entry---------- "typ" entry

Class Function? I Array? I Pointer? Basic Type

C_TPDEF no yes yes Any except
T_MOE

C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM no no yes Any except

T_MOE
C_FIELD no no no T_ENUM,

T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

C_BLOCK no no no T_NULL
C_FCN no no no T_NULL
C_EOS no no no T_NULL
C_FILE no no no T_NULL
C_ALIAS no no no T_STRUCT,

T_UNION<,
T_ENUM

Figure 8-43. Type Entries by Storage Class (Sheet 2 of 2)

Conditions for the "d" entries apply to d1 through d6, except that it is
impossible to have two consecutive derived types of "function.··

Although function arguments can be declared as arrays, they are changed
to pointers by default. Therefore, no function argument can have "array" as
its first derived type.

8.8.3.9 Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is given in
Figure 8-44. This declaration may be found in the header file syms.h.

Sys5 UNIX 8-37

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

struct syment
{

I.· ,,

union
{

char _n_name[SYMNMLEN];
;• symbol name·.

struct
{

long _n_zeroes;
;* symbol name • ..

long _n_offset;
;· location in string table */

} _n_n;
char _n_nptr(2];

/*allows overlaying ·1

} _n;
long n_value;

/* value of symbol ·;

short n_scnum;
,•section number ·1

unsigned short n_type;
• • type and derived "i

char n_sclass;
• storage class ·,

char n_numaux;
,· number of aux entries ·;

#define n_name
#define n_zeroes
#define n_offset
#define n_nptr

_n._n_name
_n. _n_n ._n _zeroes

_n._n_n._n_offset
_n._n_nptr(1]

#define SYMNMLEN 8
#define SYMESZ 18 • size of a symbol table entry *i

Figure 8-44. Symbol Table Entry Declaration

8.8.4 Auxiliary Table Entries

Currently, there is at most one auxiliary entry per symbol. The auxiliary
table entry contains the same number of bytes as the symbol table entry.
However, unlike symbol table entries, the format of an auxiliary table entry
of a symbol depends on its type and storage class. They are summarized in
Figure 8-45.

8-38 SysS UNIX

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Name
Storage Type Entry Auxiliary
Class d1 typ Entry Format

.file C_FILE DT_NON T_NULL file name
.text, .data, C_STAT DT_NON T_NULL section
.bss
tagname C_STRTAG DT_NON T_NULL tag name

C_UNTAG
C_ENTAG

.eos C_EOS DT_NON T_NULL end of
structure

fcname C_EXT DT_FCN (Note 1) function
C_STAT

arrname (Note 2) DT_ARY (Note 1) array
.bb C_BLOCK DT_NON T_NULL beginning

of block

.eb C_BLOCK DT_NON T_NULL end of block

.bf,.ef C_FCN DT_NON T_NULL beginning
and end of
function

name related (Note 2) DT_PTR T_STRUCT, name related
to structure DT_ARR, T_UNION, to structure,
union, DT_NON T_ENUM union,
enumeration enumeration

Notes:
1. Any except T _MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

Figure 8-45. Auxiliary Symbol Table Entries

In Figure 8-45, "tagname" means any symbol name including the special
symbol .xfake, and "fcname" and "arrname" represent any symbol name.

Any symbol that satisfies more than one condition in Figure 8-39 should
have a union format in its auxiliary entry. Symbols that do not satisfy any of
the above conditions should NOT have any auxiliary entry.

SysSUNIX 8-39

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

8.8.4.1 File Names

Each of the auxiliary table entries for a file name contains a 14-character file
name in bytes 0 through 13. The remaining bytes are 0, regardless of the
size of the entry.

8.8.4.2 Sections

The auxiliary table entries for sections have the format as shown in Figure
8-.

Bytes Declaration Name Description

0-3 long int x_scnlen section
length

4-6 unsigned short x_nreloc number of
relocation
entries

6-7 unsigned short x_nlinno number of
line numbers

8-17 - - unused (filled
with zeroes)

Figure 8-46. Format for Auxiliary Table Entries

8.8.4.3 Tag Names

The auxiliary table entries for tag names have the format shown in Figure
8-41.

8-40 SysS UNIX

(

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes Declaration Name Description

0-5 - - unused (filled
with zeros)

6-7 unsigned short x_size size of strucrt,
union, and
enumeration

8-11 - - unused (filled
with zeroes)

12-15 long int x_endndx index of next
entry beyond
this structure,
union, or
enumeration

16-17 - - unused (filled
with zeroes)

Figure 8-47. Tag Names Table Entries

8.8.4.4 End of Structures

The auxiliary table entries for the end of structures have the format shown in
Figure 8-48:

.---"

Bytes Declaration Name Description

0-3 lo~int x_tC!9_ndx tag index
4-5 - - unused (filled

with zeroes)
6-7 unsigned short x_size size of struct,

union, or
enumeration

8-17 - - unused (filled
with zeroes)

Figure 8-48. Table Entries for End of Structures

Sys5 UNIX 8-41

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

8.8.4.5 Functions

The auxiliary table entries for functions have the format shown in Figure 8-
49:

Bytes Declaration Name Description

0-3 long int x t~ndx t~index

4-7 long int x_fsize size of
function
(in ~es)

8-11 long int x-lnnoptr file pointer
to line number

12-15 long int x_endndx index of
next entry
beyond this

_Q_oint

16-17 unsigned short x_tvndx index of the
function's address
in the transfer
vector table (not
used in UNIX system)

Figure 8-49. Table Entries for Functions

8.8.4.6 Arrays

The auxiliary table entries for arrays have the format shown in Figure 8-50:

8-42 Sys5 UNIX

(~

THE COMMON OBJECT FILE FORMAT CHAPTER 8

Bytes Declaration Name Description

0-3 lo~int x_t'!9_ndx ta...9._index
4-5 unsigned short x_lnno line number of

declaration
6-7 unsigned short x_size size of arra~
8-9 uns!g_ned short x_dimen[O] first dimension
10-11 uns!g_ned short X...;.dimen[1] second dimension
12-13 unsigned short x_dimen[2] third dimension
14-15 uns!g_ned short x_dimen[3] fourth dimension
16-17 - - unused (filled

with zeroes)

Figure 8-50. Table Entries for Arrays

8.8.4. 7 End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have the
format shown in Figure 8-51:

Bytes Declaration Name Description

0-3 - - used (filled
with zeroes)

4-5 unsigned short x_lnno C-source line
number

6-17 - - unused (filled
with zeroes)

Figure 8-51. End of Block and Function Entries

8.8.4.8 Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have the
format shown in Figure 8-52:

Sys5 UNIX 8-43

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

Bytes Declaration Name Description

0-3 - - unused (filled
with zeroes)

4-5 unsigned short x_lnno C-source line
number

6-11 - - unused (filled
with zeroesl

12-15 long int x_endndx index of next
entry past
this block

16-17 - - unused (filled
with zeroes)

Figure 8-52. Format for Beginning of Block and Function

8.8.4.9 Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumerations symbols
have the format shown in Figure 8-53:

Bytes Declaration Name Description

0-3 lon_g_int x ta_g_ndx t~index

4-5 - - unused (filled
with zeroes)

6-7 unsigned short x_size size of the
structure, union,
or numeration

8-17 - - unused (filled
with zeroes)

Figure 8-53. Entries for Structures, Unions, and Numerations

Names defined by "typedef" may or may not have auxiliary table entries.
For example,

8-44 Sys5 UNIX

1
/

THE COMMON OBJECT FILE FORMAT CHAPTER 8

(. typedef struct people STUDENT;

(

(

struct people {
char name[20];
long id;
};

typedef struct people EMPLOYEE;

The symbol "EMPLOYEE" has an auxiliary table entry in the symbol table
but symbol "STUDENT" will not.

8.8.4.10 Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is
given in Figure 8-54. This declaration may be found in the header file
syms.h.

Sys5 UNIX 8-45

CHAPTER 8

union auxent {
struct {

}

union {
struct {

} x_lnsz;

} x_misc;
union {

struct {

} x_fcn;
struct {

} x_ary;
} x_fcnary;

} x_sym;
struct {

} x_file;
struct {

} x_scn;
struct {

} x_tv;

THE COMMON OBJECT FILE FORMAT

long x_tagndx;

unsigned short x_lnno;
unsigned short x_size;

long x_fsize;

long x_lnnoptr;
long x_endndx;

unsigned short x_dimen(DIMNUM];

unsigned short x_tvndx;

char x_fname(FILNMLEN];

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran(2];

#define FILNMLEN 14
#define DIMNUM 4
#define AUXENT union auxent
#define AUXESZ 18

Figure 8-54. Auxiliary Symbol Table Entry

8.9 String Table

Symbol table names longer than eight characters are stored contiguously in
the string table with each symbol name delimited by a null byte. The first

8-46 SysS UNIX

(

THE COMMON OBJECT FILE FORMAT CHAPTER 8

four bytes of the string table are the size of the string table in bytes; offsets
into the string table therefore are greater than o.r equal to four.

For example, given a file containing two symbols (with names longer then
eight characters, long _name_ 1 and another _one) the string table has the
format as shown in Figure 8-55:

28

'I' 'o' 'n' 'g'

' - ' 'n' 'a' 'm'

'e' ' - 'I' '\O'

'a' 'n' 'o' 't'

'h' 'e' 'r' ' -

'o' 'n' 'e' '\O'

Figure 8-55. String Table

The index of long_name_1 in the string table is 4 and the index of
another _one is 16.

8.10 Access Routines

Supplied with every standard UNIX system release is a set of access
routines that are used for reading the various parts of a common object file.
Although the calling program must know the detailed structure of the parts of
the object file it processes, the routines effectively insulate the calling
program from the knowledge of the overall structure of the object file. In this
way, you can concern yourself with the section you are interested in without
knowing all the object file details.

The access routines can be divided into four categories:

1. Functions that open or close an object file.

Sys5 UNIX 8-47

CHAPTER 8 THE COMMON OBJECT FILE FORMAT

2. Functions that read header or symbol ta.ble information. ,~

3. Functions that position an object file at the start of a particular section _cj
of the object file.

4. A function that returns the symbol table index for a particular symbol.

These routines can be found in the library /ibid.a and are listed in section 3
of the Sys5 UNIX Programmer Reference Manual. A summary of what is
available can be found in the Sys5 UNIX Programmer Reference Manual
under LDFCN(4).

8-48 Sys5 UNIX

(

BC CHAPTER 9

9. BC

The arbitrary precision desk calculator language (BC) is a language and
compiler for doing arbitrary precision arithmetic under the UNIX operating
system. The output of the compiler is interpreted and executed by a
collection of routines that can input, output, and do arithmetic on infinitely
large integers and on scaled fixed-point numbers. These routines are based
on a dynamic storage allocator. Overflow does not occur until all available
core storage is exhausted.

The BC language has a complete control structure as well as immediate­
mode operation. Functions can be defined and saved for later execution. A
small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

The BC compiler was written to make conveniently available a collection of
routines (called DC) that are capable of doing arithmetic on integers of
arbitrary size. The compiler is not intended to provide a complete
programming language. It is a minimal language facility.

Some of the uses of this compiler are:

• Compile large integers

• Compute accurately to many decimal places

• Convert numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation.
Provision is also made for input and output in bases other than decimal.
Numbers can be converted from decimal to octal by simply setting the
output base to equal eight.

The actual limit on the number of digits that can be handled depends on the
amount of core storage available. This is possible even on the smallest
versions of the UNIX operating system.

The syntax of BC is very similar to that of the C language. This enables
users who are familiar with C language to easily work with BC.

The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, if you type in the addition of two numbers (with the +
operator) such as

142857 + 285714

the program responds immediately with the sum

Sys5 UNIX 9-1

CHAPTER 9 BC

428571.

The operators - *, I, %, and · can also be used. They indicate
subtraction, multiplication, division, remaindering, and integer result
truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that
it is to be negated (the unary minus sign). The expression

7+-3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in power, then *, %, and /, and finally, + and - .
Contents of parentheses are evaluated before material outside the
parentheses. Exponentiations are performed from right to left and the other
operators from left to right.

a"b"c and a"(b"c)

are equivalent as are the two expressions

a*b*C and (a*b)*C.

However, BC shares with Fortran and C language the undesirable
convention that

a/b*C is equivalent to (alb)*C.

Internal storage registers to hold numbers have single lowercase letter
names. The value of an expression can be assigned to a register in the
usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register
named x. When, as in this case, the outermost operator is an "=", the
assignment is performed; but the result is not printed. Only 26 of these
named storage registers are available.

There is a built-in square root function whose result is truncated to an
integer (see the part on "SCALING"). Entering the lines

x = sqrt(191)
x

produces the printed resuU

13

9-2 SysS UNIX

(

BC CHAPTER 9

9.1 Bases

There are two special internal quantities; ibase (input base) and obase
(output base). The contents of ibase, initially set to 10 (decimal),
determines the base used for interpreting numbers read in. For example,
the input lines

ibase = 8
11

produces the output line

9

and the system is ready to do octal to decimal conversions. Beware,
however, of trying to change the input base back to decimal by typing

ibase = 10

Because the number 1 O is interpreted as octal, this statement has no effect.
For deaiing in hexadecimal notation, the characters A through F are
permitted in numbers (regardless of what base is in effect) and are
interpreted as digits having values 10 through 15, respectively. The
statement

ibase =A

changes the base to decimal regardless of what the current input base is.
Negative and large positive input bases are permitted but are useless. No
mechanism has been provided for the input of arbitrary numbers in bases
less than 1 and greater than 16.

The content of obase, initially 10 (decimal), is used as the base for output
numbers. The input lines

abase = 16
1000

produces the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large
output bases are permitted and are sometimes useful. For example, large
numbers can be output in groups of five digits by setting obase to 100000.
Strange output bases (i.e., 1, 0, or negative) are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines
which are continued end with a backslash (\). Decimal output conversion is
practically instantaneous, but output of very large numbers (i.e., more than
100 digits) with other bases is rather slow. Nondecimal output conversion of
a 100-digit number takes about 3 seconds.

Sys5 UNIX 9-3

CHAPTER 9 BC

The ibase and obase have no effect on the course of internal computation
or on the evaluation of expressions. They only affect input and output
conversions, respectively.

9.2 Scaling

A third special internal quantity called scale is used to determine the scale
of calculated quantities. The number of digits after the decimal point of a
number is referred to as its scale. Numbers may have up to 99 decimal
digits after the decimal point. This fractional part is retained in further
computations.

The contents of scale must be no greater than 99 and no less than 0. It is
initially set to 0. However, appropriate scaling can be arranged when more
than 99 fraction digits are required.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules:

• Addition and subtraction-The scale of the result is the larger of the
scales of the two operands. In this case, there is never any truncation
of the result.

• Multiplication-The scale of the result is never less than the maximum
of the two scales of the operands and never more than the sum of the
scales of the operands. Subject to those two restrictions, the scale of
the result is set equal to the contents of the internal quantity scale.

• Division-The scale of a quotient is the contents of the internal quantity
scale. The scale of a remainder is the sum of the scales of the
quotient and the divisor.

• Exponentiation-The result of an exponentiation is scaled as if the
implied multiplications were performed. An exponent must be an
integer.

• Square root-The scale of a square root is set to the maximum of the
scale of the argument and the contents of scale.

All of the internal operations are actually carried out in terms of integers with
digits being discarded when necessary. In every case where digits are
discarded, truncation and not rounding is performed.

The internal quantities scale, ibase, and obase can be used in expressions
just like other variables. The input line

scale = scale + 1

increases the value of scale by one, and the input line

9-4 Sys5 UNIX

\~ /

BC CHAPTER 9

(- scale

(

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase or obase are not equal to
10. The internal computations (which are still conducted in decimal
regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal, octal, or any other kind of digits.

9.3 Functions

The name of a function is a single lowercase letter. Function names are
permitted to coincide with simple variable names. Twenty-six different
defined functions are permitted in addition to the 26 variable names. The
input line

define a(x){

begins the definition of a function with one argument. This line must be
followed by one or more statements which make up the body of the function
ending with a right brace (}). The general form of a function is

define a(x) {

return
}

Return of control from a function occurs when a return statement is
executed or when the end of the function is reached. The return statement
can take either of the two forms:

return
return(x)

In the first case, the value of the function is O; and in the second, the value
of the function is the expression in parentheses.

Variables used in the function can be declared as automatic by a statement
of the form

auto x,y,z

There can be only one auto statement in a function, and it must be the first
statement in the definition. These automatic variables are allocated space
and initialized to zero on entry to the function and thrown away on return
(exit). The values of any variables with the same names outside the
function are not disturbed. Functions may be called recursively and the
automatic variables at each level of call are protected. The parameters
named in a function definition are treated in the same way as the automatic

Sys5 UNIX 9-5

CHAPTER 9 BC

variables of that function with the single exception that they are given a
value on entry to the function. An example of a function definition is

define a(x,y){

}

auto z
z = X*Y
return(z)

The value of this function a, when called, is the product of its two
arguments, "x" and "y".

A function is called by the appearance of its name followed by a string of
arguments enclosed in parentheses and separated by commas. The result
is unpredictable if the wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with
nothing between them:().

If the function a above has been defined, then the line

a(7,3.14)

causes the result 21.98 to be printed, and the line

z = a(a(3,4),5)

causes the result 60 to be printed.

9.4 Subscripted Variables

A single lowercase letter variable name followed by an expression in
brackets is called a subscripted variable (an array element). The variable
name is called the array name, and the expression in brackets is called the
subscript. Only 1-dimensional arrays are permitted. The names of arrays
are permitted to coincide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use.
Subscripts must be greater than or equal to O and less than or equal to
2047. Their variables may be used in expressions, in function calls, and in
return statements.

An array name may be used as an argument to a function or may be
declared as automatic in a function definition by the use of empty brackets:

f(a[])
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied
for the use of the function and thrown away on exit from the function. Array r"'
names that refer to whole arrays cannot be used in any other contexts. 1"-. ./

9-6 SysS UNIX

(

BC CHAPTER 9

9.5 Control Statements

The if, while, and for statements may be used to alter the flow within
programs or to cause iteration. The range of each of them is a statement or
a compound statement consisting of a collection of statements enclosed in
braces. They are written in the following way:

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

or

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the following six relational
operators:

< less than
> greater than
< = . less than or equal to
> = greater than or equal to
== equal to
! = not equal to

Beware of using "=" instead of "= =" as a relational operator.
Unfortunately, both of these are legal, so there will be no diagnostic
message, but"=" will not do a comparison.

The if statement causes execution of its range if and only if the relation is
true. Then control passes to the next statement in sequence.

The while statement causes execution of its range repeatedly as long as
the relation is true. The relation is tested before each execution of its range;
and if the relation is false, control passes to the next statement beyond the
range of the while statement.

The for statement begins by executing expression 1. Then the relation is
tested; and if true, the statements in the range of the for are executed.
Then expression2 is executed. The relation is then tested, etc. The typical
use of the for statement is for a controlled iteration, as in the statement

for(i=1; i<=10; i=i+1) i

Sys5 UNIX 9-7

CHAPTER 9 BC

which prints the integers from one to ten. The following are some examples
of the use of the control statements:

define f(n){
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
return(x)
}

The input line

f(a)

prints "a" factorial if "a" is a positive integer. The following is the definition
of a function that computes values of the binomial coefficient (m and n are
assumed to be positive integers):

define b(n,m){
auto x, j
x=1
for(j=1; j<=m; j=j+1) x=x*(n-j+1)/j
return(x)
}

The following function computes values of the exponential function by
summing the appropriate series without regard for possible truncation errors:

scale= 20
define e(x){

}

9-8

auto a, b, c, d, n
a= 1
b = 1
c = 1
d=O
n = 1
while(1==1){

a = a*X
b = b*n
c=c+aib
n = n + 1
if(c= =d) retum(c)
d = c

SysS UNIX

(

(

(

BC CHAPTER 9

9.6 Additional Features

There are some additional language features that every user should know.

Normally, statements are typed one to a line. It is also permissible,
however, to type several statements on a line by separating the statements
by semicolons.

If an assignment statement is parenthesized, it then has a value; and it can
be used anywhere that an expression can. For example, the input line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

The following is an example of a use of the value of an assignment
statement even when it is not parenthesized. The input line

x=a[i=i+1)

causes a value to be assigned to x and also increments i before it is used
as a subscript.

The following constructs work in BC in exactly the same manner as they do
in the C language. Refer to Appendix 7.1 or the C language programming
documents for more details.

x=y=z is the same as x=(y=z)
x = + y x = x+y
x = - y x = x-y
x =* y
x =,' y
x=%y
x =· y
x++
x-­
++x
--x

x = X*Y
x = x/y

x = x%y
x = x·y
(x=x+ 1)-1
(x=x-1)+1
x = x-1
x = x-1

In some of these constructions, spaces are
significant. There is a real difference between
x= -y and x= -y. The first replaces x by
x-y and the second by -y.

The following are three important things to remember when using BC
programs:

• To exit a BC program, type quit.

• There is a comment convention identical to that of the C language.
Comments begin with r~ and end with */.

SysS UNIX 9-9

CHAPTER 9 BC

• There is a library of math functions that may be obtained by typing at
command level:

bc-1

This command loads a set of library functions that includes sine (s), cosine
(c), arctangent (a), natural logarithm (I), exponential (e), and Bessel
functions of integer order U{n,x)]. The library sets the scale to 20, but it can
be reset to another value.

If you type

be file ...

the BC program reads and executes the named file or files before accepting
commands from the keyboard. In this way, programs and function
definitions are loaded.

9-10 SysS UNIX

(

BC

9. 7 Appendix 9.1

9.7.1 Notation

CHAPTER 9

In the following pages, syntactic categories are in italics and literals are in
bold. Material in brackets "[]" is optional.

9.7.2 Tokens

Tokens consist of keywords, identifiers, constants, operators, and
separators. Token separators may be blanks, tabs, or comments. Newline
characters or semicolons separate statements.

Comments are introduced by the characters I* and terminated by */.

There are three kinds of identifiers-ordinary, array, and function. All three
types consist of single lowercase letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript.
Arrays are singly dimensioned and may contain up to 2048 elements.
Indexing begins at zero so an array may be indexed from 0 to 2047.
Subscripts are truncated to integers. Function identifiers are followed by
parentheses, possibly enclosing arguments. The three types of identifiers
do not conflict. A program can have a variable named x, an array named x,
and a function named x; all of which are separate and distinct.

(- The following are reserved keywords:

(

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants consist of arbitrarily long numbers with an optional decimal point.
The hexadecimal digits A through F are also recognized as digits with values
1 O through 15, respectively.

9.7.3 Expressions

The value of an expression is printed unless the main operator is an
assignment. Precedence is the same as the order of presentation here with
highest appearing first. Left or right associativity, where applicable, is
discussed with each operator.

9.7.3.1 Named Expressions

Named expressions are places where values are stored. Simply stated,
named expressions are legal on the left side of an assignment. The value of
a named expression is the value stored in the place named.

SysS UNIX 9-11

CHAPTER 9 BC

9.7.3.2 identifiers

Simple identifiers are named expressions. They have an initial value of
zero.

9. 7 .3.3 array-name[expression)

Array elements are named expressions. They have an initial value of zero.

9.7.3.4 scale, ibase, and obase

The internal registers scale, ibase, and obase are all named expressions.
The scale register is the number of digits after the decimal point to be
retained in arithmetic operations. It has an initial value of zero. The ibase
and obase registers are the input and output number radix, respectively.
Both ibase and obase have initial values of ten.

9.7.3.5 Function Calls

9.7.3.6 function name ([expression[,expression ..)))

A function call consists of a function name followed by parentheses
containing a comma-separated list of expressions, which are the function
arguments. A whole array passed as an argument is specified by the array
name followed by empty square brackets. All function arguments are
passed by value. As a result, changes made to the formal parameters have
no effect on the actual arguments. If the function terminates by executing a
return statement, the value of the function is the value of the expression in
the parentheses of the return statement or is zero if no expression is
provided or if there is no return statement.

9.7.3.7 sqrt(expression)

The result is the square root of the expression. The result is truncated in
the least significant decimal place. The scale of the result is the scale of the
expression or the value of scale, whichever is larger.

9.7.3.8 length(expression)

The result is the total number of significant decimal digits in the expression.
The scale of the result is zero.

9.7.3.9 scale(expression)

The result is the scale of the expression. The scale of the result is zero.

9.7.3.10 Constants

Constants are primitive expressions.

9-12 SysS UNIX

(

BC CHAPTER 9

9. 7 .3.11 Parentheses

An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter the normal precedence.

The unary operators bind right to left.

9. 7 .3.12 - expression

The result is the negative of the expression.

9.7.3.13 ++named-expression

The named expression is incremented by one. The result is the value of the
named expression after incrementing.

9.7.3.14 - -named-expression

The named expression is decremented by one. The result is the value of
the named expression after decrementing.

9.7.3.15 named-expression++

The named expression is incremented by one. The result is the value of the
named expression before incrementing.

(~ 9. 7.3.16 named-expression- -

The named expression is decremented by one. The result is the value of
the named expression before decrementing.

The exponentiation operator binds right to left.

9. 7 .3.17 expression · expression

The result is the first expression raised to the power of the second
expression. The second expression must be an integer. If a is the scale of
the left expression and b is the absolute value of the right expression, then
the scale of the result is

min(ax b,max(scale,a))

The operators *, I, and % bind left to right.

9.7.3.18 expression* expression

The result is the product of the two expressions. If a and b are the scales
of the two expressions, then the scale of the result is

min(a+b,max(scale,a,b))

Sys5 UNIX 9-13

CHAPTER 9 BC

9.7.3.19 expression I expression

The result is the quotient of the two expressions. The scale of the result is
the value of scale.

9.7.3.20 expression% expression

The % operator produces the remainder of the division of the two
expressions. More precisely, a%b is a -alb*b.

The scale of the result is the sum of the scale of the divisor and the value of
scale.

The additive operators bind left to right.

9.7.3.21 expression + expression

The result is the sum of the two expressions. The scale of the result is the
maximum of the scales of the expressions.

9.7.3.22 expression - expression

The result is the difference of the two expressions. The scale of the result is
the maximum of the scales of the expressions.

The assignment operators bind right to left.

9.7.3.23 named-expression = expression

This expression results in assigning the value of the expression on the right
to the named expression on the left.

named-expression = + expression
named-expression = - expression
named-expression = • expression
named-expression =, expression
named-expression =%expression
named-expression = · expression

The result of the above expressions is equivalent to "named expression
named expression OP expression", where OP is the operator after the
sign.

9.7.4 Relational Operators

Unlike all other operators, the relational operators are only valid as the
object of an if or while statement or inside a for statement.

9-14 Sys5 UNIX

/ ---

(

BC

expression < expression
expression > expression
expression < = expression
expression > = expression
expression = = expression
expression ! = expression

9. 7 .5 Storage Classes

CHAPTER 9

There are only two storage classes in BC-global and automatic (local). Only
identifiers that are to be local to a function need be declared with the auto
command. The arguments to a function are local to the function. All other
identifiers are assumed to be global and available to all functions. All
identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning
from the function. They therefore do not retain values between function
calls. The auto arrays are specified by the array name followed by empty
square brackets.

Automatic variables in BC do not work in exactly the same way as in C
language. On entry to a function, the old values of the names that appear
as parameters and as automatic variables are pushed onto a stack. Until
return is made from the function, reference to these names refers only to
the new values.

9.7.6 Statements

Statements must be separated by a semicolon or newline. Except where
altered by control statements, execution is sequential.

When a statement is an expression unless the main operator is an
assignment, the value of the expression is printed followed by a newline
character.

Statements may be grouped together and used when one statement is
expected by surrounding them with braces { }.

The following statement prints the string inside the quotes.

"any string"

if (relation)statement

The substatement is executed if the relation is true.

while (relation)statement

The while statement is executed while the relation is true. The test occurs
before each execution of the statement.

SysS UNIX 9-15

CHAPTER 9

for(expression; relation; expression)statement

The for statement is the same as

first-ex press ion
while(relation) {

}

statement
last-expression

All three expressions must be present.

break

BC

The break statement causes termination of a for or while statement.

auto identifier[,identifier]

The auto statement causes the values of the identifiers to be pushed down.
The identifiers can be ordinary identifiers or array identifiers. Array
identifiers are specified by following the array name with empty square
brackets. The auto statement must be the first statement in a function
definition.

define ([parameter[,parameter ...]]){
statements}

The define statement defines a function. The parameters may be ordinary
identifiers or array names. Array names must be followed by empty square
brackets.

return
return (expression)

The return statement causes the following:

• Termination of a function

• Popping of the auto variables on the stack

• Specifies the results of the function.

The first form is equivalent to return(O). The result of the function is the
result of the expression in parentheses.

The quit statement stops execution of a BC program and returns control to
the UNIX system software when it is first encountered. Because it is not
treated as an executable statement, it cannot be used in a function definition
or in an if, for, or while statement.

9-16 Sys5 UNIX

(

(

(

DC CHAPTER 10

10. DC

The DC program is an interactive desk calculator program implemented on
the UNIX operating system to do arbitrary-precision integer arithmetic. It
has provisions for manipulating scaled fixed-point numbers and for input and
output in bases other than decimal.

The size of numbers that can be manipulated by DC is limited only by
available core storage. On typical implementations of the UNIX system, the
size of numbers that can be handled varies from several hundred on the
smallest systems to several thousand on the largest.

The DC program works like a stacking calculator using reverse Polish
notation. Ordinarily, DC operates on decimal integers; but an input base,
output base, and a number of fractional digits to be maintained can be
specified.

A language called BC has been developed which accepts programs written
in the familiar style of higher-level programming languages and compiles the
output which is interpreted by DC. Some of the commands described below
were designed for the compiler interface and are not easy for a human user
to manipulate.

Numbers that are typed into DC are put on a pushdown stack. The DC
commands work by taking the top number or two off the stack, performing
the desired operation, and pushing the result on the stack. If an argument is
given, input is taken from that file until its end, then it is taken from the
standard input.

10.1 DC Commands

Any number of commands are permitted on a line. Blanks and new-line
characters are ignored except within numbers and in places where a register
name is expected.

The following constructions are recognized:

number (e.g. 244)

The value of a number is pushed onto the stack. A number is an unbroken
string of digits O through 9 and uppercase letters A through F (treated as
digits with values 1 O through 15, respectively). The number may be
preceded by an underscore U to input a negative number and numbers
may contain decimal points.

The top two values on the stack are added (-r), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated n by using

Sys5 UNIX 10-1

CHAPTER 10 DC

+ - *I %

The two entries are popped off the stack, and the result is pushed on the
stack in their place. The result of a division is an integer truncated toward
zero. An exponent must not have any digits after the decimal point.

sx

The top of the main stack is popped and stored in a register named x
(where x may be any character). Ifs is uppercase, x is treated as a stack;
and the value is pushed onto it. Any character, even blank or newline, is a
valid register name.

The value of register x is pushed onto the stack. Register x is not altered. If
the I in

Ix

is uppercase, register x is treated as a stack, and its top value is popped
onto the main stack. All registers start with empty value which is treated as
a zero by the command I and is treated as an error by the command L.

The following characters perform the stated tasks:

d

The top value on the stack is duplicated.

p

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

x

Treats the top element of the stack as a character string, removes it from
the stack, and executes it as a string of DC commands.

[... I
Puts the bracketed character string onto the top of the stack.

q

Exits the program. If executing a string, the recursion level is popped by
two. If q is uppercase, the top value on the stack is popped; and the string
execution level is popped by that value.

<x >x =x !<x !>x 1=x

The top two elements of the stack are popped and compared. Register x is
executed if they obey the stated relation. Exclamation point is negation.

10-2 SysS UNIX

(

(

(

DC CHAPTER 10

v

Replaces the top element on the stack by its square root. The square root
of an integer is truncated to an integer.

Interprets the rest of the line as a UNIX software command. Control returns
to DC when the command terminates.

c

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for
further input. If i is uppercase, the value of the input base is pushed onto
the stack. No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 or greater than 16.

0

The top value on the stack is popped and used as the number radix for
further output. If o is uppercase, the value of the output base is pushed
onto the stack.

k

The top of the stack is popped, and that value is used as a scale factor that
influences the number of decimal places that are maintained during
multiplication, division, and exponentiation. The scale factor must be greater
than or equal to zero and less than 100. If k is uppercase, the value of the
scale factor is pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

?

A line of input is taken from the input source (usually the console) and
executed.

10.2 Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers
are kept in the form of a string of digits to the base 100 stored one digit per
byte (centennial digits). The string is stored with the low-order digit at the
beginning of the string. For example, the representation of 157 is 57, 1.
After any arithmetic operation on a number, care is taken that all digits are
in the range O to 99 and that the number has no leading zeros. The number
zero is represented by the empty string.

SysS UNIX 10-3

CHAPTER 10 DC

Negative numbers are represented in the 1 OOs complement notation, which
is analogous to twos complement notation for binary numbers. The high­
order digit of a negative number is always -1 and all other digits are in the
range O to 99. The digit preceding the high-order -1 digit is never a 99.
The representation of -157 is 43,98,-1. This is called the canonical form of
a number. The advantage of this kind of representation of negative
numbers is ease of addition. When addition is performed digit by digit, the
result is formally correct. The result need only be modified, if necessary, to
put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice
that large, addition can be carried out and the handling of carries done later
when it is convenient.

An additional byte is stored with each number beyond the high-order digit to
indicate the number of assumed decimal digits after the decimal point. The
representation of .001 is 1,3 where the scale has been italicized to
emphasize the fact that it is not the high-order digit. The value of this extra
byte is called the scale factor of the number.

10.3 The Allocator

The DC program uses a dynamic string storage allocator for all of its internal
storage. All reading and writing of numbers internally is through the
allocator. Associated with each string in the allocator is a 4-word header
containing pointers to the beginning of the string, the end of the string, the
next place to write, and the next place to read. Communication between the
allocator and DC is via pointers to these headers.

The allocator initially has one large string on a list of free strings. All
headers except the one pointing to this string are on a list of free headers.
Requests for strings are made by size. The size of the string actually
supplied is the next higher power of two. When a request for a string is
made, the allocator first checks the free list to see if there is a string of the
desired size. If none is found, the allocator finds the next larger free string
and splits it repeatedly until it has a string of the right size. Leftover strings
are put on the free list. If there are no larger strings, the allocator tries to
combine smaller free strings into larger ones. Since all strings are the result
of splitting large strings, each string has a neighbor that is next to it in core
and, if free, can be combined with it to make a string twice as long.

If a string of the proper length cannot be found, the allocator asks the
system for more space. The amount of space on the system is the only
limitation on the size and number of strings in DC. If the allocator runs out
of headers at any time in the process of trying to allocate a string, it also
asks the system for more space.

10-4 Sys5 UNIX

(

(.

(

DC CHAPTER 10

There are routines in the allocator for reading, writing, copying, rewinding,
forward spacing, and backspacing strings. All string manipulation is done
using these routines.

The reading and writing routines increment the read pointer or write pointer
so that the characters of a string are read or written in succession by a
series of read or write calls. The write pointer is interpreted as the end of
the information-containing portion of a string and a call to read beyond that
point returns an end of string indication. An attempt to write beyond the end
of a string causes the allocator to allocate a larger space and then copy the
old string into the larger block.

10.4 Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand)
needed for the operation are popped from the main stack and their scale
factors stripped off. Zeros are added or digits removed as necessary to get
a properly scaled result from the internal arithmetic routine. For example, if
the scale of the operands is different and decimal alignment is required, as it
is for addition, zeros are appended to the operand with the smaller scale.
After performing the required arithmetic operation, the proper scale factor is
appended to the end of the number before 'it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic
operations. The scale register limits the number of decimal places retained
in arithmetic computations. The scale register may be set to the number on
the top of the stack truncated to an integer with the k command. The K
command may be used to push the value of scale on the stack. The value
of scale must be greater than or equal to 0 and less than 100. The
descriptions of the individual arithmetic operations includes the exact effect
of scale on the computations.

10.5 Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied
to the number with the lower scale to give both numbers the same scale.
The number with the smaller scale is multiplied by 1 O if the difference of the
scales is odd. The scale of the result is then set to the larger of the scales
of the two operands.

Subtraction is performed by negating the number to be subtracted and
proceeding as in addition.

The addition is performed digit by digit from the low-order end of the
number. The carries are propagated in the usual way. The resulting
number is brought into canonical form, which may require stripping of
leading zeros, or for negative numbers, replacing the high-order
configuration 99,-1 by the digit -1. In any case, digits that are not in the

SysS UNIX 10-5

CHAPTER 10 DC

range O through 99 must be brought into that range, propagating any carries
or borrows that result. \. __ j

10.6 Multiplication

The scales are removed from the two operands and saved. The operands
are both made positive. Then multiplication is performed in a digit by digit
manner that exactly follows the hand method of multiplying. The first
number is multiplied by each digit of the second number, beginning with its
low-order digit. The intermediate products are accumulated into a partial
sum which becomes the final product. The product is put into the canonical
form and its sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two
operands. If that scale is larger than the internal register scale and also
larger than both of the scales of the two operands, then the scale of the
result is set equal to the largest of these three last quantities.

10.7 Division

The scales are removed from the two operands. Zeros are appended, or
digits are removed from the dividend to make the scale of the result of the
integer division equal to the internal quantity scale. The signs are removed
and saved.

Division is performed much as it would be done by hand. The difference of
the lengths of the two numbers is computed. If the divisor is longer than the
dividend, zero is returned. Otherwise, the top digit of the divisor is divided
into the top two digits of the dividend. The result is used as the first (high­
order) digit of the quotient. If it turns out to be one unit too low, the next trial
quotient is larger than 99; and this is adjusted at the end of the process.
The trial digit is multiplied by the divisor, the result subtracted from the
dividend, and the process is repeated to get additional quotient digits until
the remaining dividend is smaller than the divisor. At the end, the digits of
the quotient are put into the canonical form with propagation of carry as
needed. The sign is set from the sign of the operands.

10.8 Remainder

The division routine is called, and division is performed exactly as described.
The quantity returned is the remains of the dividend at the end of the divide
process. Since division truncates toward zero, remainders have the same
sign as the dividend. The scale of the remainder is set to the maximum of
the scale of the dividend and the scale of the quotient plus the scale of the
divisor.

10-6 SysS UNIX

(

(

(

DC CHAPTEA10

10.9 Square Root

The scale is removed from the operand. Zeros are added if necessary to
make the integer result have a scale that is the larger of the internal quantity
scale and the scale of the operand. The method used to compute the
square root is Newton's method with successive approximations by the rule.

Xn 11 =(Xn + y !Xn>

The initial guess is found by taking the integer square root of the top two
digits.

10.10 Exponentiation

Only exponents with O scale factor are handled. If the exponent is 0, then
the result is 1. If the exponent is negative, then it is made positive; and the
base is divided into 1. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly
squared, and the result is obtained as a product of those powers of the base
that correspond to the positions of the one-bits in the binary representation
of the exponent. Enough digits of the result are removed to make the scale
of the result the same as if the indicated multiplication had been performed.

10.11 Input Conversion and Base

Numbers are converted to the internal representation as they are read in.
The scale stored with a number is simply the number of fractional digits
input. Negative numbers are indicated by preceding the number with an
underscore (_). The hexadecimal digits A through F correspond to the
numbers 10 through 15 regardless of input base. The i command can be
used to change the base of the input numbers. This command pops the
stack, truncates the resulting number to an integer, and uses it as the input
base for all further input. The input base (ibase) is initialized to 10 (decimal)
but may, for example, be changed to 8 or 16 for octal or hexadecimal to
decimal conversions. The command I pushes the value of the input base on
the stack.

10.12 Output Commands

The command p causes the top of the stack to be printed. It does not
remove the top of the stack. All of the stack and internal registers are
output by typing the command f. The o command is used to change the
output base (obase). This command uses the top of the stack truncated to
an integer as the base for all further output. The output base in initialized to
10 (decimal). It works correctly for any base. The command 0 pushes the
value of the output base on the stack.

Sys5 UNIX 10-7

CHAPTER 10 DC

10.13 Output Format and Bases

The input and output bases only affect the interpretation of numbers on ·_ .. /
input and output; they have no effect on arithmetic computations. Large
numbers are output with 70 characters per line; a backslash (\} indicates a
continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000,
which has the effect of grouping digits in fives. Bases of 8 and 16 are used
for decimal-octal or decimal-hexadecimal conversions.

10.14 Internal Registers

Numbers or strings may be stored in internal registers or loaded on the
stack from registers with the commands s and I. The command sx pops
the top of the stack and stores the result in register x. The x can be any
character. The command Ix puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s
command, however, is destructive.

10.15 Stack Commands

The command c clears the stack. The command d pushes a duplicate of
the number on the top of the stack onto the stack. The command z pushes
the stack size on the stack. The command X replaces the number on the
top of the stack with its scale factor. The command Z replaces the top of
the stack with its length. " .

10.16 Subroutine Definitions and Calls

Enclosing a string in brackets "[]" pushes the ASCII string on the stack.
The q command quits or (in executing a string) pops the recursion levels by
two.

10.17 Internal Registers-Programming DC

The load and store commands, together with "[]" to store strings, the x
command to execute, and the testing commands(<, >, =, !<, !>, !=),
can be used to program DC. The x command assumes the top of the stack
is a string of DC commands and executes it. The testing commands
compare the top two elements on the stack and, if the relation holds,
execute the register that follows the relation. For example, to print the
numbers 0 through 9,

[lip1 + si li10>a)sa
Osi lax

10-8 SysS UNIX

(

(

DC CHAPTER 10

10.18 Pushdown Registers and Arrays

These commands are designed for use by a compiler, not directly by
programmers. They involve pushdown registers and arrays. In addition to
the stack that commands work on, DC can be thought of as having
individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the
stack for the register x. Lx pops the stack for register x and puts the result
on the main stack. The commands s and I also work on registers but not
as pushdown stacks. The command I does not affect the top of the register
stack, buts destroys what was there before.

The commands to work on arrays are : and ; . The command :x pops the
stack and uses this value as an index into the array x. The next element on
the stack is stored at this index in x. An index must be greater than or
equal to O and less than 2048. The command ;x loads the main stack from
the array x. The value on the top of the stack is the index into the array x
of the value to be loaded.

10.19 Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX software command
and passes it to the UNIX operating system to execute. One other compiler
command is Q. This command uses the top of the stack as the number of
levels of recursion to skip.

10.20 Design Choices

The real reason for the use of a dynamic storage allocator is that a general
purpose program can be used for a variety of other tasks. The allocator has
some value for input and for compiling (i.e., the bracket [...] commands)
where it cannot be known in advance how long a string will be. The result is
that at a modest cost in execution time:

• All considerations of string allocation and sizes of strings are removed
from the remainder of the program.

• Debugging is made easier.

• The allocation method used wastes approximately 25 percent of
available space.

The choice of 100 as a base for internal arithmetic seemingly has no
compelling advantage. Yet the base cannot exceed 127 because of
hardware limitations and at the cost of 5 percent in space debugging was
made a great deal easier, and decimal output was made much faster.

The reason for a stack·type arithmetic design was to permit all DC
commands from addition to subroutine execution to be implemented in
essentially the same way. The result was a considerable degree of logical

Sys5 UNIX 10-9

CHAPTER 10 DC

separation of the final program into modules with very little communication
between modules.

The rationale for the lack of interaction between the scale and the bases is
to provide an understandable means of proceeding after a change of base
or scale (when numbers had already been entered). An earlier
implementation which had global notions of scale and base did not work out
well. If the value of scale is interpreted in the current input or output base,
then a change of base or scale in the midst of a computation causes great
confusion in the interpretation of the results. The current scheme has the
advantage that the value of the input and output bases are only used for
input and output, respectively, and they are ignored in all other operations.
The value of scale is not used for any essential purpose by any part of the
program. It is used only to prevent the number of decimal places resulting
from the arithmetic operations from growing beyond all bounds.

The rationale for the choices for the scales of the results of arithmetic is that
in no case should any significant digits be thrown away if, on appearances,
the user actually wanted them. Thus, if the user wants to add the numbers
1.5 and 3.517, it seemed reasonable to give them the result 5.017 without
requiring to unnecessarily specify rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with
many more digits than their operands. It seemed reasonable to give as a
minimum the number of decimal places in the operands but not to give more
than that number of digits unless the user asked for them by specifying a
value for scale. Square root can be handled in just the same way as
multiplication. The operation of division gives arbitrarily many decimal
places, and there is simply no way to guess how many places the user
wants. In this case only, the user must specify a scale to get any decimal
places at all.

The scale of remainder was chosen to make it possible to recreate the
dividend from the quotient and remainder. This is easy to implement; no
digits are thrown away.

10-10 Sys5 UNIX

(

(

LEX CHAPTER 11

11. LEX

The Lex is a program generator that produces a program in a general
purpose language that recognizes regular expressions. It is designed for
lexical processing of character input streams. It accepts a high-level,
problem oriented specification for character string matching. The regular
expressions are specified by you (the user) in the source specifications
given to Lex. The Lex program generator source is a table of regular
expressions and corresponding program fragments. The table is translated
to a program that reads an input stream, copies the input stream to an
output stream, and partitions the input into strings that match the given
expressions. As each such string is recognized, the corresponding program
fragment is executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex. The program fragments
written by you are executed in the order in which the corresponding regular
expressions occur in the input stream.

The user supplies the additional code beyond expression matching needed
to complete the tasks, possibly including codes written by other generators.
The program that recognizes the expressions is generated in the general
purpose programming language employed for your program fragments.
Thus, a high-level expression language is provided to write the string
expressions to be matched while your freedom to write actions is
unimpaired.

The Lex written code is not a complete language, but rather a generator
representing a new language feature which can be added to different
programming languages, called "host languages". Just as general purpose
languages can produce code to run on different computer hardware, Lex
can write code in different host languages. The host language is used for
the output code generated by Lex and also for the program fragments
added by the user. Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to different
environments and different users. Each application may be directed to the
combination of hardware and host language appropriate to the task, the
user's background, and the properties of local implementations. At present,
the only supported host language is the C language, although Fortran (in the
form of Ratfor) has been available in the past. The Lex generator exists on
the UNIX operating system, but the codes generated by Lex may be taken
anywhere the appropriate compilers exist.

The Lex program generator turns the user's expressions and actions (called
source) into the host general purpose language; the generated program is
named yylex. The yylex program recognizes expressions in a stream
(called input) and performs the specified actions for each expression as it is

SysS UNIX 11-1

CHAPTER 11

Source- G-yyle1

Input- I yyle1 I- Output

Figure 11-1. Overview of Lex

detected. See Figure 11-1.

LEX

For example, consider a program to delete from the input all blanks or tabs
at the ends of lines.

01o0/o
[\t] + $

is all that is required. The program contains a %% delimiter to mark the
beginning of the rules. This rule contains a regular expression that matches
one or more instances of the characters blank or tab (written for visibility, in
accordance with the C language convention) and occurs prior to the end of
a line. The brackets indicate the character class made of blank and tab; the
... indicates ·'one or more ... "; and the$ indicates ''end of line," as in QED.
No action is specified. so the program generated by Lex yylex() ignores
these characters. Everything else is copied. To change any remaining
string of blanks or tabs to a single bla!1k, add another rule.

[\t] ... $
[\tj-r printf(" ");

The coded instructions (generated for this source) scans for both rules at
once, observes (at the termination of the string of blanks or tabs) whether or
not there is a newline character, and then executes the desired rule action.
The first rule matches all strings of blanks or tabs at the end of lines, and
the second rule matches all remaining strings of blanks or tabs.

The Lex program generator can be used alone for simple transformations or
for analysis and statistics gathering on a lexical level. The Lex generator
can also be used with a parser generator to perform the lexical analysis
phase; it is particularly easy to interface Lex and yacc. The Lex program
recognizes only regular expressions; yacc writes parsers that accept a large
class of context free grammars but requires a lower level analyzer to

11-2 SysS UNIX

(

LEX CHAPTER 11

recognize input tokens. Thus, a combination of Lex and yacc is often
appropriate. When used as a preprocessor for a later parser generator, Lex
is used to partition the input stream; and the parser generator assigns
structure to the resulting pieces. The flow of control in such a case is
shown in Figure 11.2. Additional programs, written by other generators or
by hand, can be added easily to programs written by Lex. You will realize
that the name yylex is what yacc expects its lexical analyzer to be named,
so that the use of this name by Lex simplifies interfacing.

lexical graanar
rules rules

! !

G Yace

! !
Input- I yylex 1-1 yyparse I - Parsed input

Figure 11-2. Lex With Yacc

In the program written by Lex, the user's fragments (representing the
actions to be performed as each regular expression is found) are gathered
as cases of a switch. The automaton interpreter directs the control flow.
Opportunity is provided for the user to insert either declarations or additional
statements in the routine containing the actions or to add subroutines
outside this action routine.

The Lex program generator is not limited to a source that can be interpreted
on the basis of one character look-ahead. For example, if there are two
rules, one looking for ··ab" and another for "abcdefg" and the input stream is
''abcdefh," Lex recognizes ·'ab" and leaves the input pointer just before "cd
... ". Such backup is more costly than the processing of simpler languages.

11.1 LEX Source

The general format of Lex source is

Sys5 UNIX 11-3

CHAPTER 11

{definitions}
O/oO/o

{rules}
%%
{user subroutines}

LEX

where the definitions and the user subroutines are often omitted. The first
%% is required to mark the beginning of the rules, but the second %% is
optional. The absolute minimum Lex program is

%%

(no definitions, no rules) which translates into a program that copies the
input to the output unchanged.

In the outline of Lex programs shown above, the rules represent your
control decisions. They are in a table containing

• A left column with regular expressions

• A right column with actions and program fragments to be executed
when the expressions are recognized.

Thus an individual rule might be

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message
"found keyword INT" whenever it appears. In this example, the host
procedural language is C, and the C language library function printf is used
to print the string. The end of the expression is indicated by the first blank
or tab character. If the action is merely a single C language expression, it
can just be given on the right side of the line; if it is compound or takes
more than a line, it should be enclosed in braces. As a more useful
example, suppose you desire to change a number of words from British to
American spelling. The Lex rules such as:

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not sufficient since the word "petroleum"
would become "gaseum".

11.2 LEX Regular Expressions

The definitions of regular expressions are very similar to those in QED. A
regular expression specifies a set of strings to be matched. It contains text
characters (which match the corresponding characters in the strings being
compared) and operator characters (which specify repetitions, choices, and __ j

11-4 Sys5 UNIX

(

(

(

LEX CHAPTER 11

other features). The letters of the alphabet and the digits are always text
characters; the regular expression

integer

matches the string "integer" wherever it appears, and the expression

a57D

looks for the string "a57D".

11.2. 1 Operators

The operator characters are

"\[] '-?. * + 1()$/{}%< >

and if they are to be used as text characters, an escape should be used.
The quotation mark operator " indicates that whatever is contained between
a pair of quotes is to be taken as text characters. Thus:

xyz"+ +"

matches the string xyz + + when it appears. Note that a part of a string
may be quoted. It is harmless, but unnecessary, to quote an ordinary text
character; the expression

"xyz+ +"

is equivalent to the one above. Thus, by quoting every nonalphanumeric
character being used as a text character, the user can avoid remembering
the list above of current operator characters and is safe should further
extensions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding
it with a backslash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above expressions.
Another use of the quoting mechanism is to get a blank into an expression;
normally, as explained above, blanks or tabs end a rule. Any blank
character not contained within [] (see below) must be quoted. Several
normal C language escapes with \ are recognized: \n is newline, \t is tab,
and \b is backspace. To enter\ itself, use\\. Since newline is illegal in an
expression, \n must be used; it is not required to escape tab and
backspace. Every character except blank, tab, newline, and the list of
operator characters above is always a text character.

11.2.2 Character Classes

Classes of characters can be specified using the operator pair []. The
construction [abc] matches a single character which may be "a", "b", or "c".

Sys5 UNIX 11-5

CHAPTER 11 LEX

Within square brackets, most operator meanings are ignored. Only three
characters are special; these are \, -, and •. The - character indicates
ranges. For example,

[a-z0-9<> _]

indicates the character class containing all the lowercase letters, the digits,
the angle brackets, and underline. Ranges may be given in either order.
Using - between any pair of characters which are not both uppercase. letters,
both lowercase letters, or both digits is implementation dependent and gets
a warning message (e.g., [0-z] in ASCII is many more characters than is in
EBCDIC). If it is desired to include the character - in a character class, it
should be first or last; thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the · operator must appear as the first character after
the left bracket to indicate that the resulting string is complemented with
respect to the computer character set. Thus:

['abc]

matches all characters except "a", ''b", or "c", including all special or control
characters; or

["a-zA-Z]

is any character that is not a letter. The \ character provides the usual
escapes within character class brackets.

11.2.3 Arbitrary Character

To match almost any character, the operator character (dot)

is the class of all characters except newline. Escaping into octal is possible
although nonportable.

[\40-\176]

matches all printable ASCII characters from octal 40 (blank) to octal 176
(tilde).

11.2.4 Optional Expressions

The operator? indicates an optional element of an expression. Thus:

ab?c

matches either "ac" or "abc".

11-6 SysS UNIX

(

LEX CHAPTER 11

11.2.5 Repeated Expressions

Repetitions of classes are indicated by the operators * and +. For example,

a*

is any number of consecutive "a" characters, including zero; while

a+

is one or more instances of "a". For example,

[a-z]+

is all strings of lowercase letters. And

[A-Za-z][A-Za-z0-9]*

indicates all alphanumeric strings with a leading alphabetic character. This
is a typical expression for recognizing identifiers in computer languages.

11.2.6 Alternation and Grouping

The operator I indicates alternation

(abk:d)

matches either "ab" or ·'cd". Note that parentheses are used for grouping;
although they are not necessary on the outside level,

abk:d

would have sufficed. Parentheses can be used for more complex
expressions.

(abbd+)?(ef)*

matches such strings as "abefef", "efefef", "cdef", or "cddd"; but not "abc",
"abed", or "abcdef".

11.2. 7 Context Sensitivity

The Lex program recognizes a small amount of surrounding context. The
two simplest operators for this are · and $. If the first character of an
expression is ·, the expression is only matched at the beginning of a line
(after a newline character or at the beginning of the input stream). This
never conflicts with the other meaning of · (complementation of character
classes) since that only applies within the [] operators. If the very last
character is $, the expression is only matched at the end of a line (when
immediately followed by newline). The latter operator is a special case of
the I operator character which indicates trailing context. The expression

ab/cd

SysS UNIX 11-7

CHAPTER 11

matches the string "ab" but only if followed by "cd". Thus:

ab$

is the same as

ab/\n

LEX

Left context is handled in Lex by "start conditions" as explained later. If a
rule is only to be executed when the Lex automaton interpreter is in start
condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered "being at the
beginning of a line" to be start condition ONE, then the · operator would be
equivalent to

<ONE>

Start conditions are explained more fully later.

11.2.8 Repetitions and Definitions

The operators {} specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example,

{digit}

looks for a predefined string named "digit" and inserts it at that point in the -, __
expression. The definitions are given in the first part of the Lex input before
the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of "a".

Finally, initial% is special being the separator for Lex source segments.

11.3 LEX Actions

When an expression written as above is matched, Lex executes the
corresponding action. This part describes some features of Lex that aid in
writing actions. Note that there is a default action that consists of copying
the input to the output. This is performed on all strings not otherwise
matched. Thus, the Lex user who wishes to absorb the entire input, without
producing any output, must provide rules to match everything. When Lex is
being used with yacc, this is the normal situation. One may consider that
actions are what is done instead of copying the input to the output; thus, in
general, a rule that merely copies can be omitted. Also, a character
combination that is omitted from the rules and that appears as input is likely
to be printed on the output, thus calling attention to the gap in the rules. ,.-- ~,

"----/

11-8 Sys5 UNIX

(

(

LEX CHAPTER 11

One of the simplest things that can be done is to ignore the input.
Specifying a C language null statement, ; as an action causes this result. A
frequent rule is

[\t\n]

which causes the three spacing characters (blank, tab, and newline) to be
ignored.

Another easy way to avoid writing actions is the action character I which
indicates that the action for this rule is the action for the next rule. The
previous example could also have been written

I
'\t" I
'\n"

with the same result although in different style. The quotes around \n and \t
are not required.

In more complex actions, you may often want to know the actual text that
matched some expression like "[a-z)+ ". The Lex program leaves this text
in an external character array. Thus, to print the name found, a rule like

[a-z]+ printf("%s", yytext);

prints the string in yytext[j. The C language function printf accepts a
format argument and data to be printed; in this case, the format is "print
string·· (% indicating data conversion, and s indicating string type), and the
data are the characters in yytext[j. This places the matched string on the
output. This action is so common that it may be written as ECHO.

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the
characters found, one might ask why give a rule like this one which merely
specifies the default action. Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that
matches read, it normally matches the instances of read contained in bread
or readjust. To avoid this, a rule of the form "[a-z] +" is needed. This is
explained further below.

Sometimes it is more convenient to know the end of what has been found;
hence, Lex also provides a count yyleng of the number of characters
matched. To count both the number of words and the number of characters
in words in the input, write

[a-zA-Z]+ {words++; chars + = yyleng;}

which accumulates in chars the number of characters in the words
recognized. The last character in the string matched can be accessed by

Sys5 UNIX 11-9

CHAPTER 11 LEX

yytext[yyleng-1]

Occasionally, a Lex action may decide that a rule has not recognized the
correct span of characters. Two routines are provided to aid with this
situation. First, yymore() can be called to indicate that the next input
expression recognized is to be tacked on to the end of this input. Normally,
the next input string would overwrite the current entry in yytext. Second,
yyless(n) may be called to indicate that not all the characters matched by
the currently successful expression are wanted right now. The argument
"n" indicates the number of characters in yytext to be retained. Further
characters previously matched are returned to the input. This provides the
same sort of look ahead offered by the I operator but in a different form.

Example:

Consider a language that defines a string as a set of characters between
quotation (") marks and provides that to include a (") in a string it must be
preceded by a \. The regular expression which matches that is somewhat
confusing, so that it might be preferable to write

\T"1* {
if (yytext[yyleng-1) = = '\\')

yymore();
else

... normal user processing
}

will, when faced with a string such as "abc\"def", first match the five
characters "abc\; then the call to yymore() will cause the next part of the
string "def to be tacked on the end. Note that the final quote terminating the
string should be picked up in the code labeled "normal processing".

The function yyless() might be used to reprocess text in various
circumstances. Consider the C language problem of distinguishing the
ambiguity of "= - a ". Suppose it is desired to treat this as "= - a" but also
to print a message: a rule might be

= -[a-zA-Z] {
printf("Operator (= -) ambiguous\n");
yyless(yyleng-1);
... action for = - ...

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as "=- ". Alternatively, it might be desired
to treat this as "=-a ". To do this, just return the minus sign as well as the
letter to the input.

11-10 SysS UNIX

LEX

= - [a-zA-Z] {
printf("Operator (= -) ambiguous\n");
yyless(yyleng-2);
... action for = ...

}

CHAPTER 11

performs the other interpretation. Note that the expressions for the two
cases might more easily be written

= -/[A-Za-z]

in the first case, and

=/-{A-Za-z]

in the second; no backup is required in the rule action. It is not necessary to
recognize the whole identifier to observe the ambiguity. The possibility of
"= -3'', however, makes

= -/[" \t\n]

a still better rule.

In addition to these routines, Lex also permits access to the l;O routines it
uses. They are as follows:

1. input() returns the next input character.

2. output(c) writes the character ,;c" on the output.

3. unput(c) pushes the character "c" back onto the input stream to be
read later by input().

By default, these routines are provided as macro definitions; but the user
can override them and supply private versions. These routines define the
relationship between external files and internal characters and must all be
retained or modified consistently. They may be redefined to cause input or
output to be transmitted to or from strange places including other programs
or internal memory. The character set used must be consistent in all
routines and a value of zero returned by input must mean end of file. The
relationship between unput and input must be retained or the Lex look
ahead will not work. The Lex program does not look ahead at all if it does
not have to, but every rule ending in + , *, ? , or $ or containing I implies
look ahead. Look ahead is also necessary to match an expression that is a
prefix of another expression. The standard Lex library imposes a 100-
character limit on backup.

Another Lex library routine that you may sometimes want to redefine is
yywrap() which is called whenever Lex reaches an end of file. If yywrap
returns a 1, Lex continues with the normal wrap up on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive

SysS UNIX 11-11

CHAPTER 11 LEX

from a new source. In this case, the user should provide a yywrap which
arranges for new input and returns 0. This instructs Lex to continue
processing. The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc., at
the end of a program. Note that it is not possible to write a normal rule that
recognizes end of file; the only access to this condition is through yywrap.
In fact, unless a private version of input() is supplied, a file containing nulls
cannot be handled since a value of O returned by input is taken to be end of
file.

11.4 Ambiguous Source Rules

The Lex program can handle ambiguous specifications. When more than
one expression can match the current input, Lex chooses as follows:

1 . The longest match is preferred.

2. Among rules that matched the same number of characters, the rule
given first is preferred.

Thus, suppose the rules

integer
[a-z]+

keyword action ... ;
identifier action ... ;

are to be given in that order. If the input is "integers", it is taken as an
identifier because

"[a-z] +"

matches eight characters while "integer" matches only seven. If the input is
''integer", both rules match seven characters; and the keyword rule is
selected because it was given first. Anything shorter (e.g., "int") does not
match the expression "integer" and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing
expressions like.* dangerous. For example:
...

might appear to be a good way of recognizing a string in single quotes.
However, it is an invitation for the program to read far ahead looking for a
distant single quote. Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

11-12 Sys5 UNIX

(

(

LEX CHAPTER 11

T'\n]*'

which, on the above input, stops after ('first'). The consequences of errors
like this are mitigated by the fact that the dot (.) operator does not match
newline. Thus expressions like . * stop on the current line. Do not try to
defeat this with expressions like [.\n]+ or equivalents; the Lex generated
program tries to read the entire input file causing internal buffer overflows.

Note that Lex is normally partitioning the input stream not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to
count occurrences of both "she" and "he" in an input text. Some Lex rules
to do this might be

she s++;
he h+ +;
\n I

where the last two rules ignore everything besides "he" and "she".
Remember that dot (.)does not include newline. Since "she" includes "he",
Lex normally does not recognize the instances of "he" included in "she"
since once it has passed a "she" those characters are gone.

Sometimes the user desires to override this choice. The action REJECT
means "go do the next alternative". It causes whatever rule was second
choice after the current rule to be executed. The position of the input
pointer is adjusted accordingly.. Suppose you really want to count the
included instances of "he". Use the following rule to change the previous
example to accomplish the task.

she {s+ +; REJECT;}
he {h+ +; REJECT;}
\n I

After counting each expression, it is rejected; whenever appropriate, the
other expression is then counted. In this example, you could note that "she"
includes "he" but not vice versa and omit the REJECT action on "he". In
other cases, it is not possible to state which input characters are in both
classes.

Consider the two rules

a[bc]+
a[cd]+

{ ... ; REJECT;}
{ ... ; REJECT;}

If the input is ·'ab", only the first rule matches, and on "ad" only the second
matches. The input string "accb" matches the first rule for four characters

Sys5 UNIX 11-13

CHAPTER 11 LEX

and then the second rule for three characters. In contrast, the input "aced"
agrees with the second rule for four characters and then the first rule for
three.

In general, REJECT is useful whenever the purpose of Lex is not to partition
the input stream but to detect all examples of some items in the input, and
the instances of these items may overlap or include each other. Suppose a
digram table of the input is desired; normally, the digrams overlap, that is
the word "the" is considered to contain both "th" and "he". Assuming a 2-
dimensional array named digram{] to be incremented, the appropriate
source is

O/oO/o

[a-z][a-z] {digram[yytext[O])[yytext[1]] + +; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every
character rather than at every other character.

The action REJECT does not rescan the input; instead it remembers the
results of the previous scan. This means that if a rule with trailing context is
found and REJECT executed the user must not have used unput to change
the characters forthcoming from the input stream. This is the only restriction
on the user's ability to manipulate the not-yet-processed input.

11.5 LEX Source Definitions

Recalling the format of the Lex source,

{definitions}
O/oO/o

{rules}
%0/o
{user routines}

So far, only the rules have been described. You need additional· options to
define variables for use in the program and for use by Lex. Variables can
go either in the definitions section or in the rules section.

Remember Lex is generating the rules into a program. Any source not
intercepted by Lex is copied into the generated program. There are three
classes of such things.

1. Any line not part of a Lex rule or action that begins with a blank or
tab is copied into the Lex generated program. Such source input
prior to the first %% delimiter is external to any function in the code; if

11-14 SysS UNIX

,;-··~

/:ill'

LEX CHAPTER 11

it appears immediately after the first %%, it appears in an appropriate
place for declarations in the function written by Lex which contains
the actions. This material must look like program fragments and
should precede the first Lex rule.

Lines that begin with a blank or tab and that contain a comment are
passed through to the generated program. This can be used to include
comments in either the Lex source or the generated code; the comments
should follow the host language convention.

2. Anything included between lines containing only %{ and %} is copied
out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column
1 or copying lines that do not look like programs.

3. Anything after the third o/oo/o delimiter, regardless of formats, etc., is
copied out after the Lex output.

Definitions intended for Lex are given before the first o/oo/o delimiter. Any line
in this section not contained between o/o{ and %} and beginning in column 1
is assumed to define Lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the
name. The name and translation must be separated by at least one blank
or tab, and the name must begin with a letter. The translation can then be
called out by the {name} syntax in a rule. Using {D} for the digits and {E} for
an exponent field, for example, abbreviate rules to recognize numbers

D
E
O/oO/o

[0-9]
[DEde][-~]?{D}+

{D}+ printf("integer");
{D }+ ". "{D}*({E})?
{D}*"."{D}+ ({E})?
{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field. The first requires at least one digit
before the decimal point, and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by a Fortran
expression such as "35.EQ.I", which does not contain a real number, a
context-sensitive rule such as:

[0-9] + /". "EQ printf("integer");

could be used in addition to the normal rule for integers.

Sys5 UNIX 11-15

CHAPTER 11 LEX

The definitions section may also contain other commands including the
selection of a host language, a character set table, a list of start conditions,
or adjustments to the default size of arrays within Lex itself for larger source
programs. These possibilities are discussed later.

11.6 Usage

There are two steps in compiling a Lex source program. First, the Lex
source must be turned into a generated program in the host general purpose
language. Then this program must be compiled and loaded usually with a
library of Lex subroutines. The generated program is on a file named
lex.yy.c. The 1/0 library is defined in terms of the C language standard
library.

On the UNIX operating system, the library is accessed by the loader flag -II.
So an appropriate set of commands is

lex source
cc lex.yy.c -II

The resulting program is placed on the usual file a.out for later execution.
To use Lex with yacc, see part "LEX AND YACC". Although the default
Lex 1/0 routines use the C language standard library, the Lex automata
themselves do not do so; if private versions of input, output, and unput are
given, the library is avoided.

11.7 LEX and YACC

To use Lex with yacc, observe that Lex writes a program named yylex()
(the name required by yacc for its analyzer). Normally, the default main
program on the Lex library calls this routine; but if yacc is loaded and its
main program is used, yacc calls yylex(). In this case, each Lex rule ends
with

return(token);

where the appropriate token value is returned. An easy way to get access
to yacc's names for tokens is to compile the Lex output file as part of the
yacc output file by placing the line

include "lex.yy.c"

in the last section of yacc input. If the grammer is to be named "good" and
the lexical rules are to be named "better", the UNIX software command
sequence could be

yacc good
lex better
cc y.tab.c -ly -II r-,

11-16 Sys5 UNIX

LEX CHAPTER 11

The yacc library (-ly) should be loaded before the Lex library to obtain a
main program that invokes the yacc parser. The generations of lex and
yacc programs can be done in either order.

11.8 Examples

As a problem, consider copying an input file while adding three to every
positive number divisible by seven. A suitable Lex source program follows:

°lo0/o
int k;

[0-9]+ {
k = atoi(yytext);
if (k%7 = = 0)

printf("%d", k+3);
else

printf("%d'',k);
}

The rule "[0-9] +" recognizes strings of digits; atoi() converts the digits to
binary and stores the result in "k". The operator% (remainder) is used to
check whether "k" is divisible by seven; if it is, "k" is incremented by three
as it is written out. It may be objected that this program alters such input
items as "49.63" or "X7". Furthermore, it increments the absolute value of
all negative numbers divisible by seven. To avoid this, add a few more rules
after the active one, as here:

O/oO/o

-?[0-9]+
int k;

{
k = atoi(yytext);
printf("%d", k%7 = = 0 ? k+3 : k);

-?[0-9.]+ ECHO;
[A-Za-z][A-Za-z0-9] + ECHO;

Numerical strings containing a dot (.) or preceded by a letter will be picked
up by one of the last two rules and not changed. The "if-else" has been
replaced by a C language conditional expression to save space; the form
"a?b:c" means "if a then b else c".

For an example of statistics gathering, here is a program that histograms the
lengths of words, where a word is defined as a string of letters:

SysS UNIX 11-17

CHAPTER 11

%%
[a-z]+

\n
O/oO/o

yywrap()
{
inti;

int lengs[100];

lengs[yyleng] + + ;

printf("Length No. words\n");
for(i=O; i<100; i+ +)

if (lengs[i] > O)
printf("%5d% 1 Od\n'',i, lengs[i]);

return(1);
}

LEX

This program accumulates the histogram while producing no output. At the
end of the input, it prints the table. The final statement "return(1);" indicates
that Lex is to perform wrap up. If yywrap returns zero (false), it implies that
further input is available and the program is to continue reading and
processing. Providing a yywrap (that never returns true) causes an infinite
loop.

11.9 Left Context Senxitivity

Sometimes it is desirable to have several sets of lexical rules to be applied
at different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The ' operator, for example, is a
prior context operator recognizing immediately preceding left context just as
$ recognizes immediately following right context. Adjacent left context could
be extended to produce a facility similar to that for adjacent right context,
but it is unlikely to be as useful since often the relevant left context
appeared some time earlier such as at the beginning of a line.

This part describes three means of dealing with different environments: a
simple use of flags (when only a few rules change from one environment to
another), the use of "start conditions" on rules, and the possibility of making
multiple lexical analyzers all run together. In each case, there are rules that
recognize the need to change the environment in which the following input
text is analyzed and that set a parameter to reflect the change. This may be
a flag explicitly tested by the user's action code; this is the simplest way of
dealing with the problem since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as initial conditions
on the rules. Any rule may be associated with a start condition. It is only "

11-18 Sys5 UNIX

LEX CHAPTER 11

recognized when Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules for the different
environments are very dissimilar, clarity may be best achieved by writing
several distinct lexical analyzers and switching from one to another as
desired.

Consider the following problem: copy the input to the output, changing the
word "magic" to "first" on every line which began with the letter "a", changing
"magic" to "second" on every line which began with the letter "b", and
changing "magic" to "third" on every line which began with the letter "c". All
other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag.

int flag.
O/oO/o
'a {flag = 'a'; ECHO;}
'b {flag = 'b'; ECHO;}
'c {flag = 'c'; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

}

switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}

should be adequate.

To handle the same problem with start conditions, each start condition must
be introduced to Lex in the definitions section with a line reading

%Start name1 name2 ...

where the conditions may be named in any order. The word "Start" may be
abbreviated to "s" or "S". The conditions may be referenced at the head of
a rule with < > brackets;

<name1 >expression

is a rule that is only recognized when Lex is in the start condition name1.
To enter a start condition, execute the action statement

BEGIN name1;

which changes the start condition to name1. To resume the normal state

SysS UNIX 11-19

CHAPTER 11 LEX

BEGIN O;

resets the initial condition of the Lex automaton interpreter. A rule may be
active in several start conditions.

< name1 ,name2,name3 >

is a legal prefix. Any rule not beginning with the < > prefix operator is
always active.

The same example as before can be written as follows:

%START AA BB CC
o;oo/o
'a {ECHO; BEGIN AA;}
'b {ECHO; BEGIN BB;}
'c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA> magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");

where the logic is exactly the same as in the previous method of handling
the problem, but Lex does the work rather than the user's code.

11.1 O Character Set

The programs generated by Lex handle character 1/0 only through the
routines input(), output(), and unput(). Thus, the character representation
provided in these routines is accepted by Lex and used to return values in
yytext(). For internal use, a character is represented as a small integer
which, if the standard library is used, has a value equal to the integer value
of the bit pattern representing the character on the host computer.
Normally, the letter a is represented in the same form as the character
constant 'a'. If this interpretation is changed by providing 1/0 routines that
translate the characters, Lex must be given a translation table that is in the
definitions section and must be bracketed by lines containing only % T; the
translation table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.

11.11 Summary of Source Format

The general form of a Lex source file is

11-20 Sys5 UNIX

(

(

LEX

{definitions}
O/oO/o

{rules}
O/oO/o

{user subroutines}

The definitions section contains a combination of

1. Definitions in the form "name space translation".

2. Included code in the form "space code".

3. Included code in the form:

%{
code
%}

4. Start conditions given in the form:

%S name1 name2 ...

5. Character set tables in the form:

%T
number space character-string

%T

6. Changes to internal array sizes in the form:

%x nnn

CHAPTER 11

where "nnn" is a decimal integer representing an array size and "a·· selects
the parameter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form "expression action" where the
action may be continued on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

SysS UNIX 11-21

CHAPTER 11

x
"x"
\X

[xy]
[x-z]
['x]

·x
<y>x
x$
x?
X*
x+
x~
(x)
x/y
{xx}

x{m,n}

the character "x".
an "x", even if x is an operator.
an "x", even if xis an operator.
the character x or y.
the characters x, y, or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0, 1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from
the definitions section.
m through n occurrences of x.

11.12 Caveats and Bugs

LEX

There are pathological expressions that produce exponential growth of the
tables when converted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the
previous scan. This means that if a rule with trailing context is found and
REJECT executed, the user must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction on
the user's ability to manipulate the not-yet-processed input.

11-22 Sys5 UNIX

(

('

YACC CHAPTER 12

12. YACC

The yacc program provides a general tool for imposing structure on the
input to a computer program. The yacc user prepares a specification of the
input process. This includes rules describing the input structure, code to be
invoked when these rules are recognized, and a low-level routine to do the
basic input. The yacc program then generates a function to control the
input process. This function, called a parser, calls the user-supplied low­
level input routine (the lexical analyzer) to pick up the basic items (called
tokens) from the input stream. These tokens are organized according to the
input structure rules, called grammar rules. When one of these rules has
been recognized, then user code (supplied for this rule, an action) is
invoked. Actions have the ability to return values and make use of the
values of other actions.

The yacc program is written in a portable dialect of the C language, and the
actions and output subroutine are in the C language as well. Moreover,
many of the syntactic conventions of yacc follow the C language.

The heart of the input specification is a collection of grammar rules. Each
rule describes an allowable structure and gives it a name. For example, one
grammar rule might be

date : month_name day ',' year ;

where "date", "month_name", "day'', and ··year" represent structures of
interest in the input process; presumably, "month name", "day'', and "year"
are defined elsewhere. The comma is enclosed in single quotes. This
implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule and have no significance
in controlling the input. With proper definitions, the input

July 4, 1776

might be matched by the rule.

An important part of the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizes the lower-level
structures, and communicates these tokens to the parser. For historical
reasons, a structure recognized by the lexical analyzer is called a "terminal
symbol", while the structure recognized by the parser is called a
"nonterminal symbol". To avoid confusion, terminal symbols will usually be
referred to as "tokens".

There is considerable leeway in deciding whether to recognize structures
using the lexical analyzer or grammar rules. For example, the rules

SysS UNIX 12-1

CHAPTER 12

month_name : 'J' 'a' 'n'
month_name : 'F' 'e' 'b'

month_name : 'D' 'e' 'c'

YACC

might be used in the above example. The lexical analyzer only needs to
recognize individual letters, and "month name" is a nonterminal symbol.
Such low-level rules tend to waste time and space and may complicate the
specification beyond the ability of yacc to deal with it. Usually, the lexical
analyzer recognizes the month names and returns an indication that a
"month name" is seen. In this case, "month name" is a "token".

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

date : month '/' day '!' year

allowing

7 I 4 I 1776

as a synonym for

July 4, 1776

• on input. In most cases, this new rule could be "slipped in" to a working
system with minimal effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input
errors are detected as early as is theoretically possible with a left-to-right
scan. Thus, not only is the chance of reading and computing with bad input
data substantially reduced, but the bad data can usually be quickly found.
Error handling, provided as part of the input specifications, permits the
reentry of bad data or the continuation of the input process after skipping
over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-contradictory, or
they may require a more powerful recognition mechanism than that available
to yacc. The former cases represent design errors; the latter cases can
often be corrected by making the lexical analyzer more powerful or by
rewriting some of the grammar rules. While yacc cannot handle all possible
specifications, its power compares favorably with similar systems.
Moreover, the constructions which are difficult for yacc to handle are also
frequently difficult for human beings to handle. Some users have reported

12-2 Sys5 UNIX

(

(

YACC CHAPTER 12

that the discipline of formulating valid yacc specifications for their input
revealed errors of conception or design early in the program development.

The yacc program has been extensively used in numerous practical
applications, including lint, the Portable C Compiler, and a system for
typesetting mathematics.

The remainder of this document describes the following subjects as they
relate to yacc

• Basic process of preparing a yacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedences in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the parsers yacc
produces

• Suggestions to improve the style and efficiency of the specifications

• Advanced topics.

In addition, there are four appendices. Appendix 12.1 is a brief example,
and Appendix 12.2 is a summary of the yacc input syntax. Appendix 12.3
gives an example using some of the more advanced features of yacc, and
Appendix 12.4 describes mechanisms and syntax no longer actively
supported but provided for historical continuity with older versions of yacc.

12.1 Basic Specifications

Names refer to either tokens or nonterminal symbols. The yacc program
requires token names to be declared as such. In addition, it is often
desirable to include the lexical analyzer as part of the specification file. It
may be useful to include other programs as well. Thus, every specification
file consists of three sections: the declarations, (grammar) rules, and
programs. The sections are separated by double percent (%%) marks.
(The percent symbol is generally used in yacc specifications as an escape
character.)

In other words, a full specification file looks like

declarations
O/oO/o

rules
O/oO/o

programs

Sys5 UNIX 12-3

CHAPTER 12 YACC

when each section is used.

The declaration section may be empty, and if the programs section is
omitted, the second %% mark may also be omitted. The smallest legal
yacc specification is

O/oO/o

rules

since the other two sections may be omitted.

Blanks, tabs, and newlines are ignored, but they may not appear in names
or multicharacter reserved symbols. Comments may appear wherever a
name is legal. They are enclosed in/* ... */, as in C language.

The rules section is made up of one or more grammar rules. A grammar
rule has the form

A : BODY ;

where "A" represents a nonterminal name, and "BODY" represents a
sequence of zero or more names and literals. The colon and the semicolon
are yacc punctuation.

Names may be of arbitrary length and may be made up of letters, dots,
underscores, and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule may represent
tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ('). As in C
language, the backslash (\) is an escape character within literals, and all the
C language escapes are recognized. Thus:

\n' newline
\r' return
'\'' single quote (')
\\' backslash (\)
\t' tab
\b' backspace
\f' form feed
\xxx' "xxx·· in octal

are understood by yacc. For a number of technical reasons, the NUL
character ('\O' or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the vertical
bar (b can be used to avoid rewriting the left-hand side. In addition, the
semicolon at the end of a rule can be dropped before a vertical bar. Thus
the grammar rules

12-4 Sys5 UNIX

(

(

YACC

A
A
A

B C D
E F ;
G ;

can be given to yacc as

A : B C D
IE F
IG

CHAPTER 12

by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section although it
makes the input much more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated by

empty: ;

which is understood by yacc.

Names representing tokens must be declared. This is most simply done by
writing

%token name1 name2 ...

in the declarations section. Every name not defined in the declarations
section is assumed to represent a nonterminal symbol. Every nonterminal
symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular importance.
The parser is designed to recognize the start symbol. Thus, this symbol
represents the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left-hand side of the
first grammar rule in the rules section. It is possible and desirable to declare
the start symbol explicitly in the declarations section using the %start
keyword

%start symbol

to define the start symbol.

The end of the input to the parser is signaled by a special token, called the
end-marker. If the tokens up to but not including the end-marker form a
structure that matches the start symbol, the parser function returns to its
caller after the end-marker is seen and accepts the input. If the end-marker
is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually the end-marker represents some reasonably
obvious 1/0 status, such as "end of file" or "end of record".

SysS UNIX 12-5

CHAPTER 12 YACC

12.2 Actions

With each grammar rule, the user may associate actions to be performed
each time the rule is recognized in the input process. These actions may
return values and may obtain the values returned by previous actions.
Moreover, the lexical analyzer can return values for tokens if desired.

An action is an arbitrary C language statement and as such can do input
and output, call subprograms, and alter external vectors and variables. An
action is specified by one or more statements enclosed in curly braces ({)
and (}). For example:

A : '(' B ')'
{

hello(1, "abc");
}

and

xxx : yyy zzz
{

}

printf("a message\n");
flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the
action statements are altered slightly. The dollar sign symbol ($) is used as
a signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable$$ to some
value. For example, the action

{$$=1;}

does nothing but return the value of one.

To obtain the values returned by previous actions and the lexical analyzer,
the action may use the pseudo-variables $1, $2, ... , which refer to the
values returned by the components of the right side of a rule, reading from
left to right. If the rule is

A : BCD ;

then $2 has the value returned by C, and $3 the value returned by D.

The rule

expr : '(' expr ')'

12-6 Sys5 UNIX

(

YACC CHAPTER 12

provides a more concrete example. The value returned by this rule is
usually the value of the "expr" in parentheses. This can be indicated by

expr : '(' expr ')'
{

$$=$2;
}

By default, the value of a rule is the value of the first element in it ($1).
Thus, grammar rules of the form

A : B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of rules.
Sometimes, it is desirable to get control before a rule is fully parsed. The
yacc permits an action to be written in the middle of a rule as well as at the
end. This rule is assumed to return a value accessible through the usual $
mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{

$$ =1;
}
c

{
x = $2;
y = $3;

}

the effect is to set x to 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name and a new rule matching
this name to the empty string. The interior action is the action triggered off
by recognizing this added rule. The yacc program actually treats the above
example as if it had been written

SysS UNIX 12-7

CHAPTER12 YACC

$ACT I* empty*/
{

$$ = 1;
}

A B $ACT C
{

x = $2;
y = $3;

}

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse trees are
particularly easy to construct given routines to build and maintain the tree
structure desired. For example, suppose there is a C function node written
so that the call

node(L, n1, n2)

creates a node with label L and descendants n1 and n2 and returns the
index of the newly created node. Then parse tree can be built by supplying
actions such as

expr : expr '+ ' expr
{

$$ = node('+', $1, $3);
}

in the specification.

The user may define other variables to be used by the actions. Declarations
and definitions can appear in the declarations section enclosed in the marks
%{ and %} . These declarations and definitions have global scope, so they
are known to the action statements and the lexical analyzer. For example:

%{ int variable = O; %}

could be placed in the declarations section making "variable" accessible to
all of the actions. The yacc parser uses only names beginning with yy.
The user should avoid such names.

In these examples, all the values are integers. A discussion of values of

'

other types is found in the part "ADVANCED TOPICS". ,< ,

12-8 SysS UNIX

YACC CHAPTER 12

12.3 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical
analyzer is an integer-valued function called yylex. The function returns an
integer, the token number, representing the kind of token read. If there is a
value associated with that token, it should be assigned to the external
variable yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers
symbolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the yacc specification file. The
relevant portion of the lexical analyzer might look like

yylex()
{

extern int yylval;
int c;

c = getchar();

switch(c)
{

case 'O':
case ·1 ·:

case '9':

}

yylval = c-·o·;
return(DIGIT);

to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is
placed in the programs section of the specification file, the identifier DIGIT is
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only
pitfall to avoid is using any token names in the grammar that are reserved or
significant in C language or the parser. For example, the use of token

Sys5 UNIX 12·9

CHAPTER 12 YACC

names if or while will almost certainly cause severe difficulties when the
lexical analyzer is compiled. The token name error is reserved for error
handling and should not be used naively.

As mentioned above, the token numbers may be chosen by yacc or the
user. In the default situation, the numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character in
the local character set. Other names are assigned token numbers starting
at 257.

To assign a token number to a token (including literals), the first appearance
of the token name or literal in the declarations section can be immediately
followed by a nonnegative integer. This integer is taken to be the token
number of the name or literal. Names and literals not defined by this
mechanism retain their default definition. It is important that all token
numbers be distinct.

For historical reasons, the end-marker must have token number O or
negative. This token number cannot be redefined by the user. Thus, all
lexical analyzers should be prepared to return O or a negative number as a
token upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex program.
These lexical analyzers are designed to work in close harmony with yacc
parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce
quite complicated lexical analyzers, but there remain some languages (such
as FORTRAN) which do not fit any theoretical framework and whose lexical
analyzers must be crafted by hand.

12.4 Parser Operation

The yacc program turns the specification file into a C language program,
which parses the input according to the specification given. The algorithm
used to go from the specification to the parser is complex and will not be
discussed here. The parser itself, however, is relatively simple and
understanding how it works will make treatment of error recovery and
ambiguities much more comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the look-ahead token). The current state is always the one on the
top of the stack. The states of the finite state machine are given small
integer labels. Initially, the machine is in state 0 (the stack contains only
state 0) and no look-ahead token has been read.

The machine has only four actions available-shift, reduce, accept, and
error. A step of the parsor is done as follows:

12-10 SysS UNIX

(

YACC CHAPTER 12

1. Based on its current state, the parser decides if it needs a look-ahead
token to choose the action to be taken. If it needs one and does not
have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This may result in
states being pushed onto the stack or popped off of the stack and in
the look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a look-ahead token. For example, in
state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56)
is pushed down on the stack, and state 34 becomes the current state (on
the top of the stack). The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right-hand side of a
grammar rule and is prepared to announce that it has seen an instance of
the rule replacing the right-hand side by the left-hand side. It may be
necessary to consult the look-ahead token to decide whether to reduce or
not (usually it is not necessary). In fact, the default action (represented by a
dot) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar
rules are also given small integer numbers, and this leads to some
confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule

A : x y z

is being reduced. The reduce action depends on the left-hand symbol (A in
this case) and the number of symbols on the right-hand side (three in this
case). To reduce, first pop off the top three states from the stack. (In
general, the number of states popped equals the number of symbols on the
right side of the rule.) In effect, these states were the ones put on the stack
while recognizing x, y, and z and no longer serve any useful purpose. After
popping these states, a state is uncovered which was the state the parser
was in before beginning to process the rule. Using this uncovered state and

Sys5 UNIX 12-11

CHAPTER 12 YACC

the symbol on the left side of the rule, perform what is in effect a shift of A.
A new state is obtained, pushed onto the stack, and parsing continues.
There are significant differences between the processing of the left-hand
symbol and an ordinary shift of a token, however, so this action is called a
goto action. In particular, the look-ahead token is cleared by a shift but is
not affected by a goto. In any case, the uncovered state contains an entry
such as

A goto 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action "turns back the clock" in the parse popping the
states off the stack to go back to the state where the right-hand side of the
rule was first seen. The parser then behaves as if it had seen the left side
at that time. If the right-hand side of the rule is empty, no states are popped
off of the stacks. The uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions
and values. When a rule is reduced, the code supplied with the rule is
executed before the stack is adjusted. In addition to the stack holding the
states, another stack running in parallel with it holds the values returned
from the lexical analyzer and the actions. When a shift takes place, the
external variable "yylval" is copied onto the value stack. After the return
from the user code, the reduction is carried out. When the goto action is
done, the external variable "yyval" is copied onto the value stack. The
pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the look-ahead token is the
end-marker and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it
has seen (together with the look-ahead token) cannot be followed by
anything that would result in a legal input. The parser reports an error and
attempts to recover the situation and resume parsing. The error recovery (as
opposed to the detection of error) will be discussed later.

Consider:

12-12 Sys5 UNIX

(

(_-

YACC CHAPTER 12

%token DING DONG DELL
O/oO/o
rhyme sound place

sound DING DONG

place DELL

as a yacc specification.

When yacc is invoked with the -v option, a file called y.output is produced
with a human-readable description of the parser. The y.output file
corresponding to the above grammar (with some statistics stripped off the
end) is

SysS UNIX 12-13

CHAPTER 12

state O
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept rhyme_$end

$end accept
. error

state 2
rhyme sound_place

DELL shift 5
. error

place goto 4

state 3
sound DING_DONG

DONG shift 6
. error

state 4
rhyme sound place_ (1)

reduce 1

state 5
place DELL_ (3)

reduce 3

state 6
sound DING DONG_ (2)

. reduce 2

12-14

YACC

Sys5 UNIX

(

YACC CHAPTER 12

where the actions for each state are specified and there is a description of
the parsing rules being processed in each state. The _ character is used to
indicate what has been seen and what is yet to come in each rule. The
following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the current state
is state 0. The parser needs to refer to the input in order to decide between
the actions available in state 0, so the first token, DING, is read and
becomes the look-ahead token. The action in state O on DING is shift 3,
state 3 is pushed onto the stack, and the look-ahead token is cleared. State
3 becomes the current state. The next token, DONG, is read and becomes
the look-ahead token. The action in state 3 on the token DONG is shift 6,
state 6 is pushed onto the stack, and the look-ahead is cleared. The stack
now contains 0, 3, and 6. In state 6, without even consulting the look­
ahead, the parser reduces by

sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering
state 0. Consulting the description of state O (looking for a goto on sound),

sound goto 2

{ is obtained. State 2 is pushed onto the stack and becomes the current state.

(

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
look-ahead token is cleared. In state 5, the only action is to reduce by rule
3. This has one symbol on the right-hand side. so one state, 5, is popped
off, and state 2 is uncovered. The goto in state 2 on place (the left side of
rule 3) is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only
action is to reduce by rule 1 . There are two symbols on the right, so the top
two states are popped off, uncovering state O again. In state 0, there is a
goto on rhyme causing the parser to enter state 1. In state 1, the input is
read and the end-marker is obtained indicated by $end in they.output file.
The action in state 1 (when the end-marker is seen) successfully ends the
parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, etc. A few minutes spent with this and other simple examples
is repaid when problems arise in more complicated contexts.

12.5 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can
be structured in two or more different ways. For example, the grammar rule

SysS UNIX 12-15

CHAPTER12 YACC

expr : expr ·-· expr

is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign
between them. Unfortunately, this grammar rule does not completely
specify the way that all complex inputs should be structured. For example,
if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called "left association", the second "right association".)

The yacc program detects such ambiguities when it is attempting to build
the parser. Given the input

expr - expr - expr

consider the problem that confronts the parser. When the parser has read
the second expr, the input seen

expr - expr

matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying the rule, the input is reduced
to "expr" (the left side of the rule). The parser would then read the final part
of the input

- expr

and again reduce. The effect of this is to take the left associative
interpretation.

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue reading the
input until

expr - expr - expr

is seen. It could then apply the rule to the rightmost three symbols reducing
them to "expr" which results in

expr - expr

12-16 Sys5 UNIX

(~

(

YACC CHAPTER 12

being left. Now the rule can be reduced once more. The effect is to take the
right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It has no
way of deciding between them. This is called a "shift/reduce conflict". It
may also happen that the parser has a choice of two legal reductions. This
is called a "reduce/reduce conflict". Note that there are never any shift/shift
conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a
choice. A rule describing the choice to make in a given situation is called a
"disambiguating rule".

The yacc program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred in favor of shifts when there is a
choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduceireduce conflicts should be avoided when
possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc
can construct. The use of actions within rules can also cause conflicts if the
action must be done before the parser can be sure which rule is being
recognized. In these cases, the application of disambiguating rules is
inappropriate and leads to an incorrect parser. For this reason, yacc always
reports the number of shiftreduce and reduce/reduce conflicts resolved by
Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce
a correct parser, it is also possible to rewrite the grammar rules so that the
same inputs are read but there are no conflicts. For this reason, most
previous parser generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat unnatural and
produces slower parsers. Thus, yacc will produce parsers even in the
presence of conflicts.

As an example of the power of disambiguating rules, consider

Sys5 UNIX 12-17

CHAPTER12 YACC

stat : IF '(' cond ')' stat
I IF '(' cond ')' stat ELSE stat

which is a fragment from a programming language involving an "if-then-else"
statement. In these rules, "IF" and "ELSE" are tokens, "cond" is a
nonterminal symbol describing conditional (logical) expressions, and "stat" is
a nonterminal symbol describing statements. The first rule will be called the
"simple-if" rule and the second the "if-else" rule.

These two rules form an ambiguous construction since input of the form

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways

IF (C1)
{

}

IF (C2)
S1

ELSE
S2

or

IF (C1)
{

IF (C2)
S1

ELSE
S2

}

where the second interpretation is the one given in most programming
languages having this construct. Each "ELSE" is associated with the last
preceding "un-ELSE'd" IF. In this example, consider the situation where the
parser has seen

IF (C1) IF (C2) 81

and is looking at the ''ELSE". It can immediately reduce by the simple-if
rule to get

IF (C1) stat

and then read the remaining input

ELSE 82

12-18 Sys5 UNIX

YACC CHAPTER 12

and reduce

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the "ELSE" may be shifted, "S2" read, and then the
right-hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input which is usually desired.

Once again, the parser can do two valid things-there is a shift/reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, "ELSE", and particular inputs, such as

IF (C1) IF (C2) S1

have already been seen. In general, there may be many conflicts, and each
one will be associated with an input symbol and a set of previously read
inputs. The previously read inputs are characterized by the state of the
parser.

The conflict messages of yacc are best understood by examining the
verbose (-v) option output file. For example, the output corresponding to
the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF
stat IF

cond
cond

ELSE shift 45
reduce 18

stat (18)
stat_ELSE stat

where the first line describes the conflict-giving the state and the input
symbol. The ordinary state description gives the grammar rules active in the
state and the parser actions. Recall that the underline marks the portion of
the grammar rules which has been seen. Thus in the example, in state 23
the parser has seen input corresponding to

SysS UNIX 12-19

CHAPTER12 YACC

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can
do two possible things. If the input symbol is "ELSE", it is possible to shift
into state 45. State 45 will have, as part of its description, the line

stat : IF (cond) stat ELSE_stat

since the "ELSE" will have been shifted in this state. In state 23, the
alternative action [describing a dot(.)] is to be done if the input symbol is not
mentioned explicitly in the actions. In this case, if the input symbol is not
"ELSE'', the parser reduces to

stat : IF '(' cond ')' stat

by grammar rule 18.

Once again, notice that the numbers following "shift" commands refer to
other states, while the numbers following "reduce" commands refer to
grammar rule numbers. In the y.output file, the rule numbers are printed
after those rules which can be reduced. In most one states, there is reduce
action possible in the state and this is the default command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at
the verbose output to decide whether the default actions are appropriate.

12.6 Precedence

There is one common situation. where the rules given above for resolving
conflicts are not sufficient. This is in the parsing of arithmetic expressions.
Most of the commonly used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to
create parsers that are faster and easier to write than parsers constructed
from unambiguous grammars. The basic notion is to write grammar rules of
the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts. As disambiguating rules, the user
specifies the precedence or binding strength of all the operators and the
associativity of the binary operators. This information is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these rules and
construct a parser that realizes the desired precedences and associativities.

12-20 Sys5 UNIX

1-'-\
I

"--j

(

(

(

YACC CHAPTER 12

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning with a yacc
keyword: %left, %right, or o/ononassoc, followed by a list of tokens. All of
the tokens on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of increasing precedence
or binding strength. Thus:

%left '+ · ·-·
%left ·•· '/'

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative and have lower precedence than star
and slash, which are also left associative. The keyword %right is used to
describe right associative operators, and the keyword o/ononassoc is used
to describe operators, like the operator .LT. in FORTRAN, that may not
associate with themselves. Thus:

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described with the
keyword o/ononassoc in yacc. As an example of the behavior of these
declarations, the description

%right '='

%left '+' ·-·
%left

O/oO/o

ex pr
I
I
I
I
I

1;1

/

: expr - expr
expr '-.- ' expr
expr '-· expr
ex pr ex pr
expr '/' expr
NAME

might be used to structure the input

a = b = c'd - e - f*g

as follows

a = (b = (((c*d)--e) - (f*g)))

in order to perform the correct precedence of operators. When this
mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the
same symbolic representation but different precedences. An example is

SysS UNIX 12-21

CHAPTER 12 YACC

unary and binary "-". Unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level
associated with a particular grammar rule. The keyword %prec appears
immediately after the body of the grammar rule, before the action or closing
semicolon, and is followed by a token name or literal. It causes the
precedence of the grammar rule to become that of the following token name
or literal. For example, the rules

%left · + · ·-·
%left ·•· '!'

O/oO/o

expr : expr · + · expr
I expr ·-· expr
I expr ·•· expr
I expr '/' expr
I ·-· expr %prec
I NAME

might be used to give unary minus the same precedence as multiplication.

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts. They give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens
and literals that have them.

2. A precedence and associativity is associated with each grammar rule.
It is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules given
at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with

12-22 Sys5 UNIX

,,/ --

(

(

(

YACC CHAPTER 12

them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences
are the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This means that
mistakes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them in
an essentially "cookbook" fashion until some experience has been gained.
The y.output file is very useful in deciding whether the parser is actually
doing what was intended.

12.7 Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary
to reclaim parse tree storage, delete or alter symbol table entries, and,
typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is
more useful to continue scanning the input to find further syntax errors. This
leads to the problem of getting the parser "restarted" after an error. A
general class of algorithms to do this involves discarding a number of tokens
from the input string and attempting to adjust the parser so that input can
continue.

To allow the user some control over this process, yacc provides a simple,
but reasonably general feature. The token name "error" is reserved for
error handling. This name can be used in grammar rules. In effect, it
suggests places where errors are expected and recovery might take place.
The parser pops its stack until it enters a state where the token "error" is
legal. It then behaves as if the token "error" were the current look-ahead
token and performs the action encountered. The look-ahead token is then
reset to the token that caused the error. If no special error rules have been
specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting
an error, remains in error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in error
state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

means that on a syntax error the parser attempts to skip over the statement
in which the error is seen. More precisely, the parser scans ahead, looking

Sys5 UNIX 12-23

CHAPTER 12 YACC

for three tokens that might legally follow a statement, and start processing at /-~

the first of these. If the beginnings of statements are not sufficiently
distinctive, it may make a false start in the middle of a statement and end up
reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general but difficult to control. Rules
such as

stat : error ';'

are somewhat easier. Here, when there is an error, the parser attempts to
skip over the statement but does so by skipping to the next semicolon. All
tokens after the error and before the next semicolon cannot be shifted and
are discarded. When the semicolon is seen, this rule will be reduced and
any "cleanup" action associated with it performed.

Another form of error rule arises in interactive applications where it may be
desirable to permit a line to be reentered after an error. The following
example

input : error \n'

{

}

{
printf("Reenter last line: ");

}
input

$$ = $4;

is one way to do this. There is one potential difficulty with this approach.
The parser must correctly process three input tokens before it admits that it
has correctly resynchronized after the error .. If the reentered line contains
an error in the first two tokens, the parser deletes the offending tokens and
gives no message. This is clearly unacceptable.. For this reason, there is a
mechanism that can force the parser to believe that error recovery has
been accomplished. The statement

yyerrok;

in an action resets the parser to its normal mode. The last example can be
rewritten as

12-24 Sys5 UNIX

··"'·- ~/

YACC

input

}

error '\n'
{

yyerrok;
printf("Reenter last line: ");

}
input

$$ = $4;

which is somewhat better.

CHAPTER 12

As previously mentioned, the token seen immediately after the "error"
symbol is the input token at which the error was discovered. Sometimes,
this is inappropriate; for example, an error recovery action might take upon
itself the job of finding the correct place to resume input. In this case, the
previous look-ahead token must be cleared. The statement

yyclearin;

in an action will have this effect. For example, suppose the action after
error were to call some sophisticated resynchronization routine (supplied by
the user) that attempted to advance the input to the beginning of the next
valid statement. After this routine is called, the next token returned by yylex
is presumably the first token in a legal statement. The old illegal token must
be discarded and the error state reset. A rule similar to

stat : error
{

}

resynch();
yyerrok ;
yyclearin;

could perform this.

These mechanisms are admittedly crude but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can
get control to deal with the error actions required by other portions of the
program.

12.8 The YACC Environment

When the user inputs a specification to yacc, the output is a file of C
language programs, called y.tab.c on most systems. (Due to local file
system conventions, the names may differ from installation to installation.)
The function produced by yacc is called yyparse(); it is an integer valued

Sys5 UNIX 12-25

CHAPTER 12 YACC

function. When it is called, it in turn repeatedly calls yylex(), the lexical
analyzer supplied by the user (see "LEXICAL ANALYSIS"), to obtain input
tokens. Eventually, an error is detected, yyparse() returns the value 1, and
no error recovery is possible, or the lexical analyzer returns the end-marker
token and the parser accepts. In this case, yyparse() returns the value 0.

The user must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C language
program, a program called main() must be defined that eventually calls
yyparse(). In addition, a routine called yyerror() prints a message when a
syntax error is detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of main() and yyerror(j. The name of this library is system
dependent; on many systems, the library is accessed by a -ly argument to
the loader. The source codes

main()
{

return (yyparse());
}

and

#include <stdio.h>

yyerror(s)

{

}

char *s;

fprintf(stderr, "%s\n'', s);

show the triviality of these default programs. The argument to yyerror() is a
string containing an error message, usually the string "syntax error". The
average application wants to do better than this. Ordinarily, the program
should keep track of the input line number and print it along with the
message when a syntax error is detected. The external integer variable
yychar contains the look-ahead token number at the time the error was
detected. This may be of some interest in giving better diagnostics. Since
the main() program is probably supplied by the user (to read arguments,
etc.), the yacc library is useful only in small projects or in the earliest stages
of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a
nonzero value, the parser will output a verbose description of its actions
including a discussion of the input symbols read and what the parser actions
are. Depending on the operating environment, it may be possible to set this

12-26 Sys5 UNIX

(,

(

YACC

variable by using a debugging system.

12.9 Hints for Preparing Specifications

CHAPTER 12

This part contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more or
less independent.

12.9.1 Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters
for nonterminal names. This rule comes under the heading of
"knowing who to blame when things go wrong".

2. Put grammar rules and actions on separate lines. This allows either
to be changed without an automatic need to change the other.

3. Put all rules with the same left-hand side together. Put the left-hand
side in only once and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand side and
put the semicolon on a separate line. This allows new rules to be
easily added.

5. Indent rule bodies by two tab stops and action bodies by three tab
stops.

The example in Appendix 12. 1 is written following this style, as are the
examples in this section (where space permits). The user must make up his
own mind about these stylistic questions. The central problem, however, is
to make the rules visible through the morass of action code.

12.9.2 Left Recursion

The algorithm used by the yacc parser encourages so called "left recursive"
grammar rules. Rules of the form

name : name rest_of_rule ;

match this algorithm. These rules such as

list item
list ',' item

and

SysS UNIX 12-27

CHAPTER12

seq
I

: item
seq item

YACC

frequently arise when writing specifications of sequences and lists. In each
of these cases, the first rule will be reduced for the first item only; and the
second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item
I item seq

the parser is a bit bigger; and the items are seen and reduced from right to
left. More seriously, an internal stack in the parser is in danger of
overflowing if a very long sequence is read. Thus, the user should use left
recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any meaning,
and if so, consider writing the sequence specification as

seq : I* empty */
I seq item

using an empty rule. Once again, the first rule would always be reduced
exactly once before the first item was read, and then the second rule would
be reduced once for each item read. Permitting empty sequences often
leads to increased generality. However, conflicts might arise if yacc is
asked to decide which empty sequence it has seen when it hasn't seen
enough to know!

12.9.3 Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally but not within quoted strings,
or names might be entered into a symbol table in declarations but not in
expressions.

One way of handling this situation is to create a global flag that is examined
by the lexical analyzer and set by actions. For example,

12·28 SysS UNIX

(_,

(c

(

YACC CHAPTER 12

%{
int dflag;

%}
. .. other declarations ...

%%

prog decls stats

decls I* empty*/
{

dflag = 1;
}
I decls declaration

stats : I* empty"/
{

dflag = O;
}
I stats statement

... other rules ...

specifies a program that consists of zero or more declarations followed by
zero or more statements. The flag "dflag" is now 0 when reading
statements and 1 when reading declarations, except for the first token in the
first statement. This token must be seen by the parser before it can tell that
the declaration section has ended and the statements have begun. In many
cases, this single token exception does not affect the lexical scan.

This kind of "back-door" approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult if
not impossible to do otherwise.

12.9.4 Reserved Words

Some programming languages permit you to use words like "if", which are
normally reserved as label or variable names, provided that such use does
not conflict with the legal use of these names in the programming language.
This is extremely hard to do in the framework of yacc. It is difficult to pass
information to the lexical analyzer telling it "this instance of if is a keyword
and that instance is a variable". The user can make a stab at it using the

SysS UNIX 12-29

CHAPTER 12 YACC

mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it
is better that the keywords be reserved, i.e., forbidden for use as variable
names. There are powerful stylistic reasons for preferring this.

12.10 Advanced Topics

This part discusses a number of advanced features of yacc.

12.10.1 Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by
use of macros VY ACCEPT and YYERROR. The VY ACCEPT macro
causes yyparse() to return the value O; YYERROR causes the parser to
behave as if the current input symbol had been a syntax error; yyerror() is
called, and error recovery takes place. These mechanisms can be used to
simulate parsers with multiple end-markers or context sensitive syntax
checking.

12.10.2 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current
rule. The mechanism is simply the same as with ordinary actions, a dollar
sign followed by a digit.

12-30 Sys5 UNIX

(

(_

YACC CHAPTER 12

sent adj noun verb adj noun
{

look at the sentence ...
}

adj THE
{

$$=THE;
}
I YOUNG
{

$$=YOUNG;
}

noun DOG
{

$$=DOG;
}
I CRONE
{

if($0 = = YOUNG)
{

printf("what?\n");
}
$$=CRONE;

}

In this case, the digit may be O or negative. In the action following the word
CRONE, a check is made that the preceding token shifted was not YOUNG.
Obviously, this is only possible when a great deal is known about what might
precede the symbol "noun" in the input. There is also a distinctly
unstructured flavor about this. Nevertheless, at times this mechanism
prevents a great deal of trouble especially when a few combinations are to
be excluded from an otherwise regular structure.

12.10.3 Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are
integers. The yacc. program can also support values of other types
including structures. In addition, yacc keeps track of the types and inserts
appropriate union member names so that the resulting parser is strictly type
checked. The yacc value stack is declared to be a union of the various

SysS UNIX 12-31

CHAPTER12 YACC

types of values desired. The user declares the union and associates union
member names to each token and nonterminal symbol having a value.
When the value is referenced through a $$ or $n construction, yacc will
automatically insert the appropriate union name so that no unwanted
conversions take place. In addition, type checking commands such as lint
is far more silent.

There are three mechanisms used to provide for this typing. First, there is a
way of defining the union. This must be done by the user since other
programs, notably the lexical analyzer, must know about the union member
names. Second, there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for describing the
type of those few values where yacc cannot easily determine the type.

To declare the union, the user includes

%union
{

body of union ...
}

in the declaration section. This declares the yacc value stack and the
external variables yylval and yyval to have type equal to this union. If yacc
was invoked with the -d option, the union declaration is copied onto the
y.tab.h file. Alternatively, the union may be declared in a header file, and a
typedef used to define the variable YYSTYPE to represent this union. Thus,
the header file might have said

typedef union
{

body of union ...
}
YYSTYPE;

instead. The header file must be included in the declarations section by use
of%{ and%}.

Once YYSTYPE is defined, the union member names must be associated
with the various terminal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the
keywords %token, %left, %right, and %nonassoc, the union member
name is associated with the tokens listed. Thus, saying

%left <optype> · + · ·-·

causes any reference to values returned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used to

12-32 SysS UNIX

(

(

YACC CHAPTER 12

associate union member names with nonterminals. Thus, one might say

%type < nodetype > expr stat

to associate the union member nodetype with the nonterminal symbols
"expr" and "stat".

There remains a couple of cases where these mechanisms are insufficient.
If there is an action within a rule, the value returned by this action has no a
priori type. Similarly, reference to left context values (such as $0) leaves
yacc with no easy way of knowing the type. In this case, a type can be
imposed on the reference by inserting a union member name between <
and > immediately after the first $. The example

rule : aaa

{

}

{
$<intval>$ = 3;

}
bbb

fun($<intva1>2, $<other>O);

shows this usage. This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in Appendix 12.3. The facilities in this
subsection are not triggered until they are used. In particular, the use of
%type will turn on these mechanisms. When they are used, there is a fairly
strict level of checking. For example, use of $n or $$ to refer to something
with no defined type is diagnosed. If these facilities are not triggered, the
yacc value stack is used to hold int's, as was true historically.

Sys5 UNIX 12-33

CHAPTER12

12.11 Appendix 12.1

12.11.1 A Simple Example

YACC

This example gives the complete yacc applications for a small desk
calculator; the calculator has 26 registers labeled "a" through "z" and
accepts arithmetic expressions made up of the operators +, -, *,!,% (med
operator), & (bitwise and), I (bit wise or), and assignments. If an expression
at the top level is an assignment, the value is printed; otherwise, the
expression is printed. As in C language, an integer that begins with O (zero)
is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a resonable
job of showing how precedence and ambiguties are used and demonstrates
simple recovery. The major oversimplications are that the lexical analyzer is
much simpler for most applications, and the output is produced immediately
line by line. Note the way that decimal and octal integers are read in by
grammar rules. This job is probably better done by the lexical analyzer.

%{
includes<stdio.h>
includes<ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left 'I'
%left·&'
%left'+··-·
0/oleft '*' '/' '010°

%left UMINUS /* supplies precedence for unary minus */

% % ;•beginning of rule section*/

list /* empty • !
I list stat \n'
I list error \n'

{

12-34 Sys5 UNIX

YACC CHAPTER12

(yyerrork;

}

stat : expr
{

printf("%dn", $1);
}
I LETTER'=' expr
{

regs[$1] = $3
}

expr '(' expr ')'
{

$$ = $2;
}
I expr '+ · expr
{

(,- $$ = $1 + $3
}
I expr ·-· expr
{

$$ = $1 - $3
{
I expr expr
{

$$ = $1 .. $3;
}
I expr '/' expr
{

$$ = $1/$3;
}
I exp'%' expr
{

$$ = $1 % $3
}
I expr '&' expr

<~ $$ = $1 & $3;
}

Sys5 UNIX 12-35

CHAPTER12

number

I expr t expr
{

$$ = $11$3
}
I '-' expr %prec UMINUS
{

$$ = - $2;
}
I LETTER
{

$$ = reg[$1];
}
I number

: DIGIT
{

$$ = $1; base = ($1 = =O) ? 8; 10;
}
I number DIGIT
{

$$ = bas * $1 + $2

%% /* start of program *

yylex()
{

12-36

,-* lexical analysis routine·;
1* return LETTER for lowercase letter,

yylval = 0 through 25·;

* returns DIGIT for digit, yylval = 0 through 9*/
· * all other characters are returned immediately ·1

int c;
/*skip blanks*/

while (c=getchar()) = = ;>)

I* c is now nonblank *I

if(islower(c))
{

yylval = c- 'a';

YACC

Sys5 UNIX

YACC

}

return(LETTER);
}
if(isdigit(c))
}

}

yylval = c-'O';
return(DIGIT);

return(c);

SysS UNIX

CHAPTER 12

12-37

CHAPTER 12

12.12 Appendix 12.2

12.12.1 YACC Input Syntax

YACC

This appendix has a description of the yacc input systax as a yacc
specification. Contex dependencies, etc. are not considered. Ironically, the
yacc input specification language is most naturally specified as an LR(2)
grammar; the sticky part comes when an identifier is seen in a rule
immediately following an action. If this identifier is followed by a colon, it is
the start of the next rule; otherwise, it is a continuation of the current rule
which just happens to have an action embedded in it. As implemented, the
lexical analyzer looks ahead after seeing an identifier and decides whether
the next token (skipping blanks, newlines, and comments, etc.) is a colon. If
so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS but never as
part of C_IDENTIFIERs.

I* grammar for the input to yacc*/

;* basic entries *;
%token IDENTIFIER I* includes identifiers and literals */
%token C_IDENTIFIER /*identifier (but not literal)

followed by a colon *I
%token NUMBER /* [0·9]+ */

/* reserved words: %type=> TYPE %left=>LEFT,etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token
%token
%token

MARK !*the%% mark*/
LCURL I* the% {mark*/
RCURL /" the % } mark •

/* ASCII character literals stand for themselves */

%token spec

%%

spec defs MARK rules tail

tail MARK

12-38 Sys5 UNIX

YACC CHAPTER 12

({
In this action, eat up the rest of the file

}

I I* empty: the second MARK is optional*/

defs I* empty*/
I defs def

defs START IDENTIFIER
I UNION
{

Copy union definition to output
}
I LCURL
{

Copy C code to output file
RCURL

}

(~ I ndefs rword tag nlist

rword TOKEN
I LEFT
I RIGHT
I NONASSOC
I TYPE

tag I* empty: union tag is optional ·I
'<'IDENTIFIER'>'

nlist : nmno
I nlist nmno
I nlist','nmno

nm no : IDENTIFIER /*Note: literal illegal with% type.,.

(I IDENTIFIER NUMBER I* Note: illegal with% type*/

Sys5 UNIX 12-39

CHAPTER 12

I* rule section *I

rules : C_IDENTIFIER rbody proc
I rules rule

rule : C_IDENTIFIER rbody prec
I t rbody prec

rbody : /* empty *I
I rbody IDENTIFIER
I rbody act

act : '{'
{

Copy action translate $$' etc.
}

'}'

Bprec : I* empty * 1

I PREC IDENTIFIER
I PREC IDENTIFIER act
I prec';'

12-40

YACC

Sys5 UNIX

(

YACC CHAPTER 12

12.13 Appendix 12.3

12.13.1 An Advanced Example

This appendix gives an example of a grammar using some of the advanced
features. The desk calculator example in Appendix 12.1 is modified to
provide a desk calculator that does floating point interval arithmetic. The
calculator understands floating point constants; the arithmetic operations +,
- *, /, unary - "a" through "z". Moreover, it also understands intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued variables
"A" through "Z" that may also be used. The usage is similar to that in
Appendix 12.1; assignments returns no value and prints nothing while
expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C
language. Intervals are represented by a structure consisting of the left and
right endpoint values stored as doubles. This structure is given a type name,
INTERVAL, by using typedef. The yacc value stack can also contain
floating point scalars and integers (used to index into the arrays holding the
variable values). Notice that the entire strategy depends strongly on being
able to assign structures and unions in C language. In fact, many of the
actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions­
division by an interval containing O and an interval presented in the wrong
order. The error recovery mechanism of yacc is used to throw away the rest
of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (for
example, scalar or interval) of intermediate expressions. Note that scalar
can be automatically promoted to an interval if the context demands an
interval value. This causes a large number of conflicts when the grammar is
run through yacc-18 Shift/Reduce and 26 Reduce/Reduce. The problem
can be seen by looking at the two input lines.

2.5+ (3.5-4.)

and

2.5 + (3.5,4)

Notice that the 2.5 is to be used in an interval value expression in the
second example, but this fact is not known until the comma is read. By this
time,, 2.5 is finished, and the parser cannot go back and change its mind.
More generally, it might be necessary to look ahead an arbitrary number of

Sys5 UNIX 12-41

CHAPTER 12 YACC

tokens to decide whether to convert a scalar to an interval. This problem is 1'.- ~

evaded by having two rules for each binary interval valued operator-one \"'-----/
when the left operand is a scalar and one when the left operand is an
interval. In the second case, the right operand must be an interval, so the
conversion will be applied automatically. Despite this evasion, there are still
many cases where the conversion may be applied or not, leading to the
above conflicts. They are resolved by listing the rules that yield scalars first
in the specification file; in this way, the conflict will be resolved in the
direction of keeping scalar valued expressions scalar valued until they are
forced to become intervals.

This way of handling multiple types is very instructive but not very general. If
there were many kinds of expression types instead of just two, the number
of rules needed would increase dramatically and the conflicts even more
dramatically. Thus, while this example is instructive, it is better practice in a
more normal programming language environment to keep the type
information as part of the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C language library routine atof() is
used to do the actual conversion from a character string to a double
precision value. If the lexical analyzer detects an error, it responds by
returning a token that is illegal in the grammar provoking a syntax error in
the parser and thence error recovery.

%{

#include<stdio.h>
#include< ctype. h>

typedef struct interval
{

double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%}

%start line

12-42 SysS UNIX

/ ---,

,!f-~-

i
''--·

(

YACC

%union
{

}

int ival;
double dval;
INTERVAL wal;

CHAPTER 12

%token <ival> DREG VREG /*indices into dreg, vreg arrays •;

%token <dval> CONST I* floating point constant •;

%type <dval> dexp /*expression*/

%type <vval> vexp I* interval expression */

/* precedence information about the operators •;

0/oleft '+' '-'
0/oleft '*' '/'
%left UMINUS I* precedence for unary minus */

O/o %

lines : I* empty ·I
I lines line

line dexp '\.n'
{

printf("%15.8f\n".$1);
}
I vexp '\n'

printf("(%15.8f, %15.8f)0,$1.1o,$1.hi);

}
I DREG '=' '\n'
{

dreg[$1] = $3;

}
I VREG '=' vexp '\n'

SysS UNIX 12-43

CHAPTER12 YACC

{

vreg[$1] = $3;

}
I error '\n'
{

yyerrork;

}

dexp : CONST
I DREG
{

$$ = dreg[$1]

}
I dexp '+' dexp
{

$$ = $1 + $3

}
I dexp ·-· dexp
{

$$ = $1 - $3
}
I dexp '*' dexp
{

$$ = $1 * $3

}
I dexp '," dexp
{

$$ = $1 i $3

}
I ·-· dexp %prec UMINUS \., ... /

12-44 Sys5 UNIX

YACC CHAPTER12

({

$$ =- $2

}
I '(' dexp')'
{

$$ = $2

}

vex pp : dexp
{

$$.hi = $$.lo = $1;

}
I '(' dexp',' dexp')'
{

($$.lo= $2;
$$.hi= $4;
If($$.lo> $$.hi)
{

printf("interval out of order n");
YYERROR;

}
I VREG
{

$$ = vreg[$1]

}
I vexp '+' vexp
{

$$.hi = $1.hi ..,.. $3.hi;
$$.lo = $1.lo + $3.lo

(c• }
I dexp ·+' vexp

Sys5 UNIX 12-45

CHAPTER 12

}

$$.hi =- $1 + $3.hi;
$$.lo = $1 + $3.lo

I vexp '=' vexp
{

}

$$.hi = $1.hi - $3.lo;
$$.lo = $1.lo - $3.hi

I dvep ·-· vdep

}

$$.hi = $1 - $3.lo;
$$.lo = $1 - $3.hi

I vexp '*' vexp
{

$$ = vmul($1.lo,$.hi,$3)

}
I dexp ·•· vexp
{

$$ = vmul($1, $1, $3)

}
I vexp '/' vexp
{

}

if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3)

I dexp ·r vexp

12-46

if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3)

YACC

Sys5 UNIX

(

(

YACC

%%

I '-' vexp %prec UMINUS
{

$$.hi= -$2.lo;$$.lo =-$2.hi
}
I '(' vexp ')'
}

$$ = $2
}

#define BSZ 50 /*buffer size for floating point number*/

/* lexical analysis */

yylex()
{

register c;

!* skip over blanks */

if(isupper(c))
{

}

yylval.ival = c - 'A'
return(VREG);

if(islower(c))
{

}

yylval.ival = c - 'a',
return(DREG);

:·gobble up digits. points, exponents ·;
if(idigit(c) le=='.')
{

char buf[BSZ + 1], *cp = but;
int dot = 0, exp = O;

for(; (cp-buf)<BSZ; + +cp,c=getchar())

SysS UNIX

CHAPTER 12

12-47

CHAPTER 12 YACC

{

'"· /

*cp = c;
if(isdigit(c))

continue;
if(c = ='.'

{
if(dot++ I exp)

return(·:);/* will cause syntax error*/
continue;

}
if(c = = 'e')
{

if(exp++)
return('e'); */will cause syntax error*/

continue;
}

I* end of number */
break;

}
*cp = '\O';
if(cp-buff) > = BSZ)

printcf("constant too long truncated\n");
else

ungetc(c, stdin); I* push back last char read */
yylval.dval = atof(but);
return(CONST) ;
}
return(c);

}

INTERVAL
hilo(a, b, c, d)

double a, b, c, d;
{

/* returns the smallest interval containing a, b, c, and d * !

/* used by * ,1 routine *I
INTERVAL v;

if(a>b)
{ ·~..__

12-48 SysS UNIX

YACC CHAPTER 12

(. v.hi =a;
v.lo = b;

}
else
{

v.hi = b;
v.lo = a;

}
if(c>d)
{

if(c>v.hi)
v.hi = c;

if(d<v.lo)
v.lo = d;

}
else
}

if(d>v.hi)
v.hi = d;

if(c<v.lo)
v.lo = c;

(_~ }
return(v);

}
INTERVAL vmul(a, b, v)

double a, b;
INTERVAL v;

return(hilo(a*v.hi, a*v,lo, b*v.hi, b*v.lo));
}
dcheck(v)

INTERVAL v;
{

if(v.hi > =O.&& v.to < =O.)
{

printf("divisor internal contains O.\n");
return(1);

}
return(O);

{

INTERVAL vdiv(a, b, v)

(double a, b;
INTERVAL v;

SysS UNIX 12-49

CHAPTER 12 YACC

{
return(hilo(a/v.hi, a/v,lo, b/v.hi, b/v.lo));

}

12-50 Sys5 UNIX

(

(

(

YACC CHAPTER 12

12.14 Appendix 12.4

12.14.1 Old Features Supported But Not Encouraged

This appendix mentions synonyms and features that are supported for
historical continuity but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes.

2. Literals may be more that one character long. If all the characters are
alphabetic, numeric, or_, the type number of the literal is defined just
as if the literal did not have the quotes around it. Otherwise, it is
difficult to find the value for such literal.

The use of multicharacter literals is likely to mislead those unfimiliar
with yacc since it suggests that yacc is doing a job which must be
actually done by the lexical analyzer.

3. Most places where % is legal, backslash '\" may be used. In
particular,\\ is the same as%%, \left the same as% left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Action may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C
language statement.

6. The C language code between %{ and %} use to be permitted at the
head of the rules section as well as in the declaration section.

Sys5 UNIX 12-51

(

RJE CHAPTER 13

13. RJE

This chapter contains an overview of the Plexus implementation of the SysS
UNIX Remote Job Entry (RJE) and the Plexus Batch 2780/3780. For
detailed information on RJE please reference the Plexus publication Plexus
RJE/HASP Release Notice. For detailed information on Batch, consult the
Plexus publication Plexus Batch Release Notice.

RJE is the communal name for a collection of programs and a file
organization that allows a UNIX system, equipped with the appropriate
hardware and associated Virtual Protocol Machine (VPM) software, to
communicate with IBM's Job Entry Subsystems by mimicking an IBM 360
remote work station.

Similarly, Batch is the communal name for a group of programs and a file
organization that allows an appropriately equipped UNIX system to
communicate with IBM's Job Entry Subsystems by mimicking a 2780 or
3780 remote work station.

While active, RJE and Batch run in the background and require no human
supervision. They quietly transmit to the IBM system, jobs that have been
queued, and operator requests. They receive from the IBM system, print
and punch data sets and message output. They enter the data sets into the
proper UNIX system directory and notify the appropriate user of their arrival.
They store the message output and make these messages available for
public inspection.

In order to use RJE or Batch you need to be familiar with a subset of basic
commands. You must understand the directory structure of the file system,
and you should know something about the attributes of files. You must
know how to enter, edit, and examine text files, and how to communicate
with other users and with the system.

RJE and Batch are designed to be autonomous facilities that do not require
manual supervision. RJE and Batch may be initiated automatically by the
UNIX reboot procedures and continue in execution until the sytem is shut
down.

Whether you use RJE or Batch 2780/3780 depends on the protocol of the
IBM system you wish to communicate to.

SysS UNIX 13-1

UUCP CHAPTER 14

14. UUCP

The uucp network has provided a means of information exchange between
UNIX systems over the direct distant dialing network for several years. This
chapter provides you with the background to make use of the network.

The first half of the document discusses concepts. Understanding these
basic principles helps the user make the best possible use of the uucp
network. The second half explains the use of the user level interface to the
network and provides numerous examples.

There are several major uses of the network. Some of the uses are:

• Distribution of software

• Distribution of documentation

• Personal communication (mail)

• Data transfer between closely sited machines

• Transmission of debugging dumps and data exposing bugs

• Production of hard copy output on remote printers.

14.1 The UUCP Network

The uucp(1) network is a network of UNIX systems that allows file transfer
and remote execution to occur on a network of UNIX systems. The extent
of the network is a function of both the interconnection hardware and the
controlling network software. Membership in the network is tightly controlled
via the software to preserve the integrity of all members of the network.
You cannot use the uucp facility to send files to systems that are not part of
the uucp network. The following parts describe the topology, services,
operating rules, etc., of the network to provide a framework for discussing
use of the network.

14.1.1 Network Hardware

The uucp was originally designed as a dialup network so that systems in the
network could use the DDD network to communicate with each other. The
three most common methods of connecting systems are:

1. Connecting two UNIX systems directly by cross-coupling (via a null
modem) two of the computers ports. This means of connection is
useful for only short distances (several hundred feet can be achieved
although the RS232 standard specifies a much shorter distance) and
is usually run at high speed (9600 baud). These connections run on
asynchronous terminal ports.

Sys5 UNIX 14-1

CHAPTER 14 UUCP

2. Using a modem (a private line or a limited distance modem) to (
directly connect processors over a private line (using 103- or 212-type "'_/
data sets).

3. Connecting a processor to another system through a modem, an
automatic calling unit (ACU), and the DOD network. This is by far the
most common interconnection method, and it makes available the
largest number of connections.

The uucp could be extended to use higher speed media (e.g.,
HYPERchannel*, Ethernett, etc.), and this possibility is being explored for
future UNIX system releases. Some sites already support local
modifications to uucp to allow the use of Datakit, X.25 (permanent virtual
circuits), and calling through data switches.

14.1.2 Network Topology

A large number of connections between systems are possible via the ODD
network. The topology of the network is determined by both the hardware
connections and the software that control the network. The next two parts
deal with how that topology is controlled.

14.1.2.1 Hardware Topology

As discussed earlier, it is possible to build a network using permanent or dial
up connections. In Figure 14-1, a group of systems (A, B, C, 0, and E) are ·."
shown connected via hard-wired lines. All systems are assumed to have
some answer-only data sets so that remote users or systems can be
connected.

A few systems have automatic calling units (K, 0, F, and G) and one system
(H) has no capability for calling other systems. Users should be aware that
the network consists of a series of point-to-point connections (A-8, 8-C, O­
B, E-8) even though it appears in Figure 14-1 that A and C are directly
connected through B. The following observations are made:

1 . System H is isolated. It can be made part of the network by arranging
for other systems to poll it at fixed intervals. This is an important
concept to remember since transfers from systems that are polled do
not leave the system until that system is called by a polling system.

2. Systems K, F, G, and D easily reach all other systems since they have
calling units.

• Trademark of Network Systems Corporation.

t Trademark of Xerox Corporation.

14-2 SYsS UNIX

(

(

UUCP

Al-------t

LEGEND

~ - AUTOMATIC CALLING UNIT

0 - COMPUTER SYSTEM

Figure 14-1. UUCP Nodes

CHAPTER 14

®

3. If system A (E or G) wishes to send a file to H (K, F, or G), it must first
send it to D (via system B) since D is the only system with a calling
unit.

14.1.2.2 Software Topology

The hardware capability of systems in the network defines the maximum
number of connections in the network. The software at each node restricts
the access by other systems and thereby defines the extent of the network.
The systems of Figure 14-1 can be configured so that they appear as a
network of systems that have equal access to each other or some
restrictions can be applied. As part of the security mechanism used by
uucp, the extent of access that other systems have can be controlled at
each node. Figures 14-2 and 14-3 show how the network might appear at
one node.

Access is available from all systems in Figure 14-2, however, in Figure 14-3
some of the systems have been configured to have greater or less access
privileges than others (i.e., systems C, E, and G have one set of access
privileges, systems F and B have another set, etc.).

Sys5 UNIX 14-3

CHAPTER14 UUCP

0
0 0

0 0
0 © 0

Figure 14·2. UUCP Network Excluding One Node

Figure 14-3. UUCP Network With Several Levels of Permissions

The uucp uses the UNIX system password mechanism coupled with a
system file (iusnlib!uucp!L.sys) and a file system permission file
(!usrllibluucpiUSERFILE) to control access between systems. The
password file entries for uucp (usually, luucp, nuucp, uucp, etc.) allow only
those remote systems that know the passwords for these IDs to access the
local system. (Great care should be taken in revealing the password for
these uucp logins since knowing the password allows a system to join the
network.) The system file (!usrllib;uucp;L.sys) defines the remote systems
that a local host knows about. This file contains all information needed for a
local host to contact a remote system (including system name, password,
login sequence, etc.) and as such is protected from viewing by ordinary

14-4 SYsS UNIX

'"""~--

·"-··'

(-.--
/

UUCP CHAPTER 14

users.

In summary, while the available hardware on a network of systems
determines the connectivity of the systems, the combination of password
file entries and the uucp system files determine the extent of the network.

14.1.3 Forwarding

One of the recent additions to uucp (for UNIX system 5.0) is a limited
forwarding capability whereby systems that are part of the network can
forward files through intermediate nodes. For example, in Figure 14-1, it is
possible to send a file between node A and C through intermediate node B.
For security reasons, when forwarding, files may only be transmitted to the
public area or fetched from the remote systems public area.

14.1.4 Security

The most critical feature of any network is the security that it provides.
Users are familiar with the security that UNIX system provides in protecting
files from access by other users and in accessing the system via
passwords. In building a network of processors, the notion of security is
widened because access by a wider community of users is granted.· Access
is granted on a system basis (that is, access is granted to all users on a
remote system). This follows from the fact that the process of sending
(receiving) a file to (from) another system is done via daemons that use one
special user ID(s). This user ID(s) is granted (denied) access to the system
via the uucp system file (lusrllibluucp1L.sys) and the areas that the system
has access to is controlled by another file (!usr1ibluucp 1USERFILE). For
example, access can be granted to the entire file system tree or limited to
specific areas.

14.1.5 Software Structure

The uucp network is a batch network. That is, when a request is made, it is
spooled for later transmission by a daemon. This is important to users
because the success or failure of a command is only known at some later
time via mail(1) notification. For most transfers, there is little trouble in
transmitting files between systems, however, transmissions are occasionally
delayed or fail because a remote system cannot be reached.

14.1.6 Rules of the Road

There are several rules by which the network runs. These rules are
necessary to provide the smooth flow of data between systems and to
prevent duplicate transmissions and lost jobs. The following chapters
outline these rules and their influence on the network.

Sys5 UNIX 14-5

CHAPTER 14 UUCP

14.1.6.1 Queuing

Jobs submitted to the network are assigned a sequence number for ·· ... ~
transmission. Jobs are represented by a file (or files) in a common spool
directory (lusrlspoolluucp). When a file transfer daemon (uucico) is
started to transmit a job, it selects a system to contact and then transmits
all jobs to that system. Before breaking off the conversation, any jobs to be
received from that remote system are accepted. The system selected as
the one to contact is randomly selected if there is work for more than one
system. In releases of uucp prior to UNIX system 5.0, the first system
appearing in the spool directory is selected so preference is given to the
most recently spawned jobs. Uucp may be sending to or receiving from
many systems simultaneously. The number of incoming requests is only
limited by the number of connections on the system, and the number of
outgoing transfers is limited by the number of ACUs (or direct connections).

14.1.6.2 Dialing and the DOD Network

In order to transfer data between processors that are not directly connected,
an auto dialer is used to contact the remote system. There are several
factors that can make contacting a remote system difficult.

1. All lines to the remote system may be busy. There is a mechanism
within uucp that restricts contact with a remote system to certain times
of the day (week) to minimize this problem.

2. The remote system may be down.

3. There may be difficulty in dialing the number (especially if a large
sequence of numbers involving access through PBXs is involved).
The dialing algorithm tries dialing a number twice and the algorithm
used to dial remote systems is not perfect, particularly when
intermediate dial tones are involved.

14.1.6.3 Scheduling and Polling

When a job is submitted to the network, an attempt to contact that system is
made immediately. Only one conversation at a time can exist between the
same two systems.

Systems that are polled can do nothing to force immediate transmission of
data. Jobs will only be transmitted when the system is polled (hourly, daily,
etc.) by a remote system.

14.1.6.4 Retransmissions and Hysterisis

The uucp network is fairly persistent in its attempt to contact remote
systems to complete a transmission. To prevent uucp from continually
calling systems that are unavailable, hysterisis is built into the algorithm
used to contact other systems. This mechanism forces a minimum fixed

SYsS UNIX

(

(

UUCP CHAPTER 14

delay (specifiable on a per system basis) to occur before another
transmission can take place to that system.

14.1.6.5 Purging and Cleanup

Transfers that cannot be completed after a defined period of time (72 hours
is the value that is set when the system is distributed) are deleted and the
user is notified.

14.1.7 Special Places: The Public Area

In order to allow the transfer of files to a system for which a user does not
have a login on, the public directory (usually kept in lusrlspool!uucppublic)
is available with general access privileges. When receiving files in the
public area, the user should dispose of them quickly as the administrative
portion of uucp purges this area on a regular basis.

14.1.8 Permissions

14.1.8.1 File Level Protection

In transferring files between systems, users should make sure that the
destination area is writable by uucp. The uucp daemons preserve execute
permission between systems and assign permission 0666 to transferred
files.

14.1.8.2 System Level Protection

The system administrator at each site determines the global access
permissions for that processor. Thus, access between systems may be
confined by the administrator to only some sections of the file system.

14.1.8.3 Forwarding Permissions

The forwarding feature is a new addition to the uucp package. You should
be aware that

1. When forwarding is attempted through a node that is running an old
version of uucp, the transmission fails.

2. Nodes that allow forwarding can restrict the forwarding feature in
several ways.

a. Forwarding is allowed for only certain users.

b. Forwarding to certain destination nodes (e.g., Australia) should
be avoided.

c. Forwarding for selected source nodes is allowed.

3. The most important restriction is that forwarding is allowed only for
files sent to or fetched from the public area.

Sys5 UNIX 14-7

CHAPTER 14 UUCP

14.2 Network Usage

The following parts discuss the user interface to the network and give
examples of command usage.

14.2.1 Name Space

In order to reference files on remote systems, a syntax is necessary to
uniquely identify a file. The notation must also have several defaults to
allow the reference to be compact. Some restrictions must also be placed
on pathnames to prevent security violations. For example, pathnames may
not include " .. " as a component because it is difficult to determine whether
the reference is to a restricted area.

14.2.1.1 Naming Conventions

Uucp uses a special syntax to build references to files on remote systems.
The basic syntax is

system-name!pathname

where the system-name is a system that uucp is aware of.
part of the name may contain any of the following:

1. A fully qualified pathname such as

mhtsa!/usr/yowfile

The pathname may also be a directory name as in

mhtsa !/usr;yowdirectory

The pathname

2. The login directory on a remote may be specified by use of the ·
character. The combination ·user references the login directory of a
user on the remote system. For example,

mhtsa!"adm,file

would expand to

m htsa !/ usr/ sys1 adm1file

if the login directory for user adm on the remote system is
!usrlsysladm.

3. The public area is referenced by a similar use of the prefix ·1user
preceding the pathname. For example,

mhtsa!-/yowfile

would expand to

mhtsa!/usr/spool/uucp;you,file

14-8 SYs5 UNIX

c

UUCP CHAPTER 14

if lusr/spool!uucp is used as the spool directory.

4. Pathnames not using any of the combinations or prefixes discussed
above are prefixed with the current directory (or the login directory on
the remote). For example,

mhtsa!file

would expand to

mhtsa!/usr/you/file

The naming convention can be used in reference to either the source or
destination file names.

14.2.2 Forwarding Syntax

The newest feature of uucp is the ability to allow files to be passed between
systems via intermediate nodes. This is done via a variation of the bang (!)
syntax that describes the path to be taken to reach that file. For example, a
user on system a wishing to transmit a file to system e might specify the
transfer as

uucp file b!c!d!e!-/youifile

if the user desires the request to be sent through b, c, and d before reaching
e. Note that the pathname is the path that the file would take to reach node
e. Note also that the destination must be specified as the public area.
Fetching a file from another system via intermediate nodes is done similarly.
For example,

uucp b!c!d!enyouifile x

fetches file from system e and renames it x on the local system. The
forwarding prefix is the path from the local system and not the path from
the remote to the local system. The forwarding feature may also be used in
conjunction with remote execution. For example,

uux mhtsa!uucp mhtsb!mhrtc!/usr/spool/uucppublic1file x

sends a request to mhtsa to execute the uucp command to copy a file from
mhrtc to x on mhtsa.

14.2.3 Types of Transfers

Uucp has a very flexible command syntax for file transmission. The
following chapters give examples of different combinations of transfers.

14.2.3.1 Transmissions of Files to a Remote

Any number of files can be transferred to a remote system via uucp. The
syntax supports the*, ? and[••] metacharacters. For example,

Sys5 UNIX 14-9

CHAPTER 14 UUCP

uucp *.[ch] mhtsa!dir

transfers all files whose name ends in c or h to the directory dir in the users
login directory on mhtsa.

14.2.3.2 Fetching Files From a Remote

Files can be fetched from a remote system in a similar manner. For
example,

uucp mhtsa!*.[ch] dir

will fetch all files ending in c or h from the users login directory on mhtsa
and place the copies in the subdirectory dir on the local system.

14.2.3.3 Switching

Transmission of files can be arranged in such a way that the local system
effectively acts as a switch. For example,

uucp mhtsb!files mhtsa!filed

will fetch files from the users login directory on mhtsb, rename it as filed,
and place it in the login directory on mhtsa.

14.2.3.4 Broadcasting

Broadcast capability (that is, copying a file to many systems) is not
supported by uucp, however, it can be simulated via a shell script as in "- -

for i in mhtsa mhtsb mhtsd
do

· uucp file $i!broad
done

Unfortunately, one uucp command is spawned for each transmission so that
it is not possible to track the transfer as a single unit.

14.2.4 Remote Executions

The remote execution facility allows commands to be executed remotely.
For example,

uux "!diff mhtsa!/etc/passwd mhtsd!ietc1passwd > !pass.diff"

will execute the command diff(1) on the password file on mhtsa and mhtsd
and place the result in pass.diff.

14.2.5 Spooling

To continue modifying a file while a copy is being transmitted across the
network, the -c option should be used. This forces a copy of the file to be
queued. The default for uucp is not to queue copies of the files since it is
wasteful of both Central Processing Unit time and storage. For example,

14-10 SYsS UNIX

(

(

(~

UUCP CHAPTER 14

the following command forces the file work to be copied into the spool
directory before it is transmitted.

uucp -c work mhtsa!"/you/work

14.2.6 Notification

The success or failure of a transmission is reported to users asynchronously
via the mail(1) command. A new feature of uucp is to provide notification to
the user in a file (of the users choice). The choices for notification are:

1. Notification returned to the requesters system (via the -m option).
This is useful when the requesting user is distributing files to other
machines. Instead of logging onto the remote machine to read mail,
mail is sent to the requester when the copy is finished.

2. A variation of the -m option is to force notification in a file (using the
-mfi/e option where file is a file name). For example,

uucp -mans /etc/passwd mhtsb!/dev/null

sends the file !etc! passwd to system mhtsb and place the file in the
bit bucket (!dev!null). The status of the transfer is reported in the file
ans as,

uucp job 0306 (8/20-23:08:09) (0:31 :23) etc,passwd copy succeeded

3. Uux(1) always reports the exit status of the remote execution unless
notification is suppressed (via the -n option). Notification can be sent
to a different user on the remote system via the - nuser option.

14.2.7 Tracking and Status

The most pervasive change to the uucp package is revising the internal
formatting of jobs so that each invocation of uucp or uux(1) corresponds to
a single job. It is now possible to associate a single job number with each
command execution so that the job can be terminated or its status obtained.

14.2.7.1 The Job ID

The default for the uucp and uux command is not to print the job number
for each job. This was done for compatibility with previous versions of uucp
and to prevent the many shell scripts built around uucp from printing job
numbers. If the following environment variable

JOBNO=ON

is made part of the users environment and exported, uucp and uux prints
the job number. Similarly, if the user wishes to turn the job numbers off, the
environment variable is set as follows:

JOBNO=OFF

Sys5 UNIX 14-11

CHAPTER14 UUCP

If you wish to force printing of job numbers without using the environment
mechanism, use the -j option. For example,

uucp -j /etc/passwd mhtsb!/dev/null
uucp job 282

forces the job number (282) to be printed. If the -j option is not used, the
IDs of the jobs (belonging to the user) are found by using the uustat(1)
command. This provides the job number. For example,

uustat
0282 tom mhtsb 08/20-21 :47 08/20-21 :47 JOB IS QUEUED
0272 tom mhtsb 08/20-21 :46 08/20-21 :46 JOB IS QUEUED

shows that the user has two jobs (282 and 272) queued.

14.2.8 Job Status

The uustat command allows a user to check on one or all jobs that have
been queued. The ID printed when a job is queued is used as a key to
query status of the particular job. An example of a request for the status of
a given job is

uustat -j0711

0711 tom mhtsb 07;30-02:18 07•30-02:18 JOB IS QUEUED

There are several status messages that may be printed for a given job; the
most frequent ones are JOB IS QUEUED and JOB COMPLETED
(meanings are obvious). The manual page for uustat lists the other status
messages.

14.2.9 Network Status

The status of the last transfer to each system on the network is found by
using the uustat command. For example,

uustat -mall

reports thP status of the last transfer to all of the systems known to the local
system. The outµut might appear as

14-12

mhb5c
resear
minimo
austra
ucbvax

08/10-12:35
08/20-17:01
07122-16:31
08/20-18 :36
08/20-20:37

CONVERSATION SUCCEEDED
CONVERSATION SUCCEEDED
DIAL FAILED
WRONG TIME TO CALL
LOGIN FAILED

SYs5 UNIX

(

(

UUCP CHAPTER 14

where the status indicates the time and state of the last transfer to each
system. When sending files to a system that has not been contacted
recently, it is a good idea to use uustat to see when the last access
occurred (because the remote system may be down or out of service).

14.2.10 Job Control

With the unique job ID generated for each uucp or uux command, it is
possible to control jobs in the following ways.

14.2.10.1 Job Termination

A job that consists of transferring many files from several different systems
can be terminated using the - k option of uustat. If any part of the job has
left the system, then only the remaining parts of the job on the local system
is terminated.

14.2.10.2 Requeuing a Job

The uucp package clears out its working area of jobs on a regular basis
(usually every 72 hours) to prevent the buildup of jobs that cannot be
delivered. The -r option is used to force the date of a job to be changed to
the current date, thereby lengthening the time that uucp attempts to
transmit the job. It should be noted that the -r option does not impart
immortality to a job. Rather, it only postpones deleting the job during
housekeeping functions until the next cleanup.

14.2.10.3 Network Names

Users may find the names of the systems on the network via the uuname(1)
command. Only the names of the systems in the network are printed.

14.3 Utilities That Use UUCP

There are several utilities that rely on uucp or uux(1) to transfer files to
other systems. The following parts outline the more important of these
functions. This increases awareness of the extent of the use of the network.

14.3.1 The Stockroom

The UNIX system stockroom is a facility whereby a library of source can be
maintained at a central location for distribution of source or bug fixes.
Access to and distribution of library entries is controlled by shell scripts that
use uucp.

14.3.2 Mail

The mail(1) command uses uux to forward mail to other systems. For
example, when a user types

mail mhtsa!tom

Sys5 UNIX 14-13

CHAPTER 14 UUCP

the mail command invokes uux to execute rmail on the remote system
(rmail is a link to the mail command). Forwarding mail through several
systems (e.g., mail a!b!tom) does not use the uucp forwarding feature but is
simulated by the mail command itself.

14.3.3 Netnews

The netnews(1) command that is locally supported on many systems uses
uux in much the same way that mail does to broadcast network mail to
systems subscribing to news categories.

14.3.4 Uuto

The uuto(1) command uses the uucp facility to send files while allowing the
local system to control the file access. Suppose your login is emsgene and
you are on system aaaaa. You have a friend (David) on system bbbbb with
a login name of w1 dmc. Also assume that both systems are networked to
each other [See uuname(1)]. To send files using uuto, enter the following:

uuto filename aaaaa!w1dmc

where filename is the name of a file to be sent. The files are sent to a public
directory defined in the uucp source. In this example, David will receive the
following mail:

From nuucp Tue Jan 25 11 :09:55 1983
/usr/spool/uucppublic/receive/w1 dmc/aaaaa\
//filename from aaaaa!emsgene arrived

See uuto(1) for more details.

14.3.5 Other Applications

The Office Automation System (OAS) uses uux to transmit electronic mail
between systems in a manner similar to the standard mail command.
Some sites have replaced utilities such as lpr(1), opr(1), etc., with shell
scripts that invoke uux or uucp. Other sites use the uucp ne. work as a
backup for higher speed networks (e.g., PCL, NSC HYPERchannel, etc.).

14-14 SYs5 UNIX

