

CHAPTER 11

braces
parentheses
other

{ }
()

' ' = <
. + - * I
> & I $

EFL

Letter case (upper or lower) is ignored except within strings, so "a" and "A"
are treated as the same character. All of the examples below are printed in
lower case. An exclamation mark (''!'') may be used in place of a tilde (" ").
Square brackets (''(" and ")") may be used in place of braces ("{" and "}").

11.1.2 Lines
EFL is a line-oriented language. Except in special cases (discussed below),
the end of a line marks the end of a token and the end of a statement. The
trailing portion of a line may be used for a comment. There is a mechanism
for diverting input from one source file to another, so a single line in the
program may be replaced by a number of lines from the other file.
Diagnostic messages are labeled with the line number of the file on which
they are detected.

11.1.2.1 White Space
Outside of a character string or comment, any sequence of one or more
spaces or tab characters acts as a single space. Such a space terminates
a token.

11.1.2.2 Comments
A comment may appear at the end of any line. It is introduced by a sharp
(#) character, and continues to the end of the line. (A sharp inside of a
quoted string does not mark a comment.) The sharp and succeeding
characters on the line are discarded. A blank line is also a comment.
Comments have no effect on execution.

11.1.2.3 Include Files
It is possible to insert the contents of a file at a point in the source text, by
referencing it in a line like

include joe

No state_ment or comment may follow an include on a line. In effect, the
include line is replaced by the lines in the named file, but diagnostics refer
to the line number in the included file. Includes may be nested at least ten
deep.

11.1.2.4 Continuation
Lines may be continued explicitly by using the underscore (_) character. If
the last character of a line (after comments and trailing white space have
been stripped) is an underscore, the end of a line and the initial blanks on /
the next line are ignored. Underscores are ignored in other contexts (except
inside of quoted strings). Thus

11-2 Sys5 UNIX

(

c·

EFL

1_000_000_
000

9 equals 10.

CHAPTER 11

There are also rules for continuing lines automatically: the end of line is
ignored whenever it is obvious that the statement is not complete. To be
specific, a statement is continued if the last token on a line is an operator,
comma, left brace, or left parenthesis. (A statement is not continued just
because of unbalanced braces or parentheses.) Some compound
statements are also continued automatically; these points are noted in the
sections on executable statements.

11.1.2.5 Multiple Statements on a Line
A semicolon terminates the current statement. Thus, it is possible to write
more than one statement on a line. A line consisting only of a semicolon, or
a semicolon following a semicolon, forms a null statement.

11.1.3 Tokens
A program is made up of a sequence of tokens. Each token is a sequence
of characters. A blank terminates any token other than a quoted string.
End of line also terminates a token unless explicit continuation (see above)
is signaled by an underscore.

11.1.3.1 Identifiers
An identifier is a letter or a letter followed by letters or digits. The following
is a list of the reserved words that have special meaning in EFL. They will
be discussed later.

SysS UNIX 11-3

CHAPTER 11 EFL

array exit precision
automatic external procedure
break false read
call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while
end next write
equivalence option writebin

The use of these words is discussed below. These words may not be used
for any other purpose.

11. 1.3.2 Strings
A character string is a sequence of characters surrounded by quotation
marks. If the string is bounded by single-quote marks ('), it may contain
double quote marks ("), and vice versa. A quoted string may not be
broken across a line boundary.

'hello there'
"ain't misbehavin'"

11.1.3.3 Integer Constants
An integer constant is a sequence of one or more digits.

0
57
123456

11.1.3.4 Floating Point Constants
A floating point constant contains a dot and/or an exponent field. An
exponent field is a letter d or e followed by an optionally signed integer
constant. If I and J are integer constants and E is an exponent field, then a
floating constant has one of the following forms:

11-4 Sys5 UNIX

(/

EFL

.I
I.
l.J
IE
l.E
.IE
l.JE

11.1.3.5 Punctuation

CHAPTER 11

Certain characters are used to group or separate objects in the language.
These are

parentheses ()
braces { }
comma
semicolon
colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither
blank nor continued.

11.1.3.6 Operators
The EFL operators are written as sequences of one or more non­
alphanumeric characters.

+ - * I **
< <= > >=
&& II & I
+= -=
&&= II=
-> . $

I= **=
&= I=

A dot(".") is an operator when it qualifies a structure element name, but not
when it acts as a decimal point in a numeric constant. There is a special
mode (see "ATAVISMS") in which some of the operators may be
represented by a string consisting of a dot, an identifier, and a dot (e.g., .It.
).

11.1.4 Macros
EFL has a simple macro substitution facility. An identifier may be defined to
be equal to a string of tokens; whenever that name appears as a token in
the program, the string replaces it. A macro name is given a value in a
define statement like

define count n + = 1

Any time the name count appears in the program, it is replaced by the

Sys5 UNIX 11-5

CHAPTER 11

statement

n+=1

A define statement must appear alone on a line; the form is

define name rest-of-line

Trailing comments are part of the string.

11.2 PROGRAM FORM

11.2.1 Files

EFL

A file is a sequence of lines. A file is compiled as a single unit. It may
contain one or more procedures. Declarations and options that appear
outside of a procedure affect the succeeding procedures on that file.

11.2.2 Procedures
Procedures are the largest grouping of statements in EFL Each procedure
has a name by which it is invoked. (The first procedure invoked during
execution, known as the main procedure, has the null name.) Procedure
calls and argument passing are discussed in "PROCEDURES."

11.2.3 Blocks
Statements may be formed into groups inside of a procedure. To describe
the scope of names, it is convenient to introduce the ideas of block and of
nesting level. The beginning of a program file is at nesting level zero. Any
options, macro definitions, or variable declarations are also at level zero.
The text immediately following a procedure statement is at level 1. After
the declarations, a left brace marks the beginning of a new block and
increases the nesting level by 1 ; a right brace drops the level by 1. (Braces
inside declarations do not mark blocks.) (See "Blocks" under
"EXECUTABLE STATEMENTS.") An end statement marks the end of the
procedure, level 1, and the return to level 0. A name (variable or macro)
that is defined at level K is defined throughout that block and in all deeper
nested levels in which that name is not redefined or redeclared. Thus, a
procedure might look like the following:

11-6 SysS UNIX

EFL

block o
procedure george
real x
x=2

if(x > 2)
{ #new block
integer x # a different variable
do x = 1,7

write(,x)

} # end of block
end II end of procedure, return to block 0

11.2.4 Statements

CHAPTER 11

A statement is terminated by end of line or by a semicolon. Statements are
of the following types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The
include, define, and end statements have been described above; they may
not be followed by another statement on a line. Each procedure begins with
a procedure statement and finishes with an end statement; these are
discussed in "PROCEDURES". Declarations describe types and values of
variables and procedures. Executable statements cause specific actions to
be taken. A block is an example of an executable statement; it is made up
of declarative and executable statements.

11.2.5 Labels
An executable statement may have a label which may be used in a branch
statement. A label is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal("bad input")

Sys5 UNIX 11-7

CHAPTER 11 EFL

11.3 DATA TYPES AND VARIABLES

EFL supports a small number of basic ·(scalar) types. The programmer may
define objects made up of variables of basic type; other aggregates may
then be defined in terms of previously defined aggregates.

11.3.1 Basic Types
The basic types are

logical
integer
field(m :n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer
may take on any whole number value in some machine-dependent range. A
field quantity is an integer restricted to a particular closed interval ([m :n]). A
"real" quantity is a floating point approximation to a real or rational number.
A long real is a more precise approximation to a rational. (Real quantities
are represented as single precision floating point numbers; long reals are
double precision floating point numbers.) A complex quantity is an
approximation to a complex number, and is represented as a pair of reals.
A character quantity is a fixed-length string of n characters.

11.3.2 Constants
There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by
a plus or minus sign, as in

17
-94
+6
0

A long real ("double precision") constant is a floating point constant
containing an exponent field that begins with the letter d. A real ("single
precision") constant is any other floating point constant. A real or long real
constant may be preceded by a plus or minus sign. The following are valid
real constants:

11-8 Sys5 UNIX

/

-~- _,/

(

EFL

17.3
-.4
7.9e-6 (= 7.9x 10 6)

14e9 (= 1.4X 1010

The following are valid long real constants

7.9d-6 (= 7.9X 10 6)

5d3

A character constant is a quoted string.

11.3.3 Variables

CHAPTER 11

A variable is a quantity with a name and a location. At any particular time
the variable may also have a value. (A variable is said to be undefined
before it is initialized or assigned its first value, and after certain indefinite
operations are performed.) Each variable has certain attributes:

11.3.3.1 Storage Class
The association of a name and a location is either transitory or permanent.
Transitory association is achieved when arguments are passed to
procedures. Other associations are permanent (static). (A future extension
of EFL may include dynamically allocated variables.)

11.3.3.2 Scope of Names
The names of common areas are global, as are procedure names: these
names may be used anywhere in the program. All other names are local to
the block in which they are declared.

11.3.3.3 Precision
Floating point variables are either of normal or long precision. This attribute
may be stated independently of the basic type.

11.3.4 Arrays
It is possible to declare rectangular arrays (of any dimension) of values of
the same type. The index set is always a cross-product of intervals of
integers. The lower and upper bounds of the intervals must be constants for
arrays that are local or common. A formal argument array may have
intervals that are of length equal to one of the other formal arguments. An
element of an array is denoted by the array name followed by a
parenthesized comma-separated list of integer values, each of which must
lie within the corresponding interval. (The intervals may include negative
numbers.) Entire arrays may be passed as procedure arguments or in
input/output lists, or they may be initialized; all other array references must
be to individual elements.

11.3.5 Structures
It is possible to define new types which are made up of elements of other
types. The compound object is known as a structure; its constituents are

SysS UNIX 11-9

CHAPTER 11 EFL

called members of the structure. The structure may be given a name, which
acts as a type name in the remaining statements within the scope of its "­
declaration. The elements of a structure may be of any type (including
previously defined structures), or they may be arrays of such objects. Entire
structures may be passed to procedures or be used in input/output lists;
individual elements of structures may be referenced. The uses of structures
will be detailed below. The following structure might represent a symbol
table:

struct tableentry
{
character(S) name
integer hashvalue
integer numberofelements
field(0:1) initialized, used, set
field{0:10) type
}

11.4 EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression may have
any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have equal
precedence and have higher precedence than operators on later lines. The
meanings of these operators are described in ''Unary Operators" and "Binary
Operators" under "EXPRESSIONS".

->

**
* I unary + - + + -
+ -
< <= > >= ==
& &&
I II
$
= += -= *= I= **= &= I= &&= II=

Examples of expressions are

a<b && b<c
-(a + sin(x)) I (5+cos(x))**2

11-10 Sys5 UNIX

EFL CHAPTER 11

11.4.1 Primaries
Primaries are the basic elements of expressions. They include constants,
variables, array elements, structure members, procedure invocations,
input/output expressions, coercions, and sizes.

11.4.1.1 Constants
Constants are described in "Constants" under "DATA TYPES AND
VARIABLES".

11.4.1.2 Variables
Scalar variable names are primaries. They may appear on the left or the
right side of an assignment. Unqualified names of aggregates (structures or
arrays) may appear only as procedure arguments and in input/output lists.

11.4.1.3 Array Elements
An element of an array is denoted by the array name followed by a
parenthesized list of subscripts, one integer value for each declared
dimension:

a(5)
b{6,-3,4)

11.4.1.4 Structure Members
A structure name followed by a dot followed by the name of a member of
that structure constitutes a reference to that element. If that element is itself
a structure, the reference may be further qualified.

a.b
x(3).y(4).z(5)

11.4.1.5 Procedure Invocations
A procedure is invoked by an expression of one of the forms

procedurename {)
procedurename {expression)
procedurename (expression-1, ... , expression-n)

The procedurename is either the name of a variable declared external or it
is the name of a function known to the EFL compiler (see "Known Functions"
under "PROCEDURES"), or it is the actual name of a procedure, as it
appears in a procedure statement. If a procedurename is declared
external and is an argument of the current procedure, it is associated with
the procedure name passed as actual argument; otherwise it is the actual
name of a procedure. Each expression in the above is called an actual
argument. Examples of procedure invocations are

Sys5 UNIX

CHAPTER 11

f(x)
work()
g(x, y+3, 'xx')

EFL

When one of these procedure invocations is to be performed, each of the
actual argument expressions is first evaluated. The types, precisions, and
bounds of actual and formal arguments should agree. If an actual argument
is a variable name, array element, or structure member, the called
procedure is permitted to use the corresponding formal argument as the left
side of an assignment or in an input list; otherwise it may only use the value.
After the formal and actual arguments are associated, control is passed to
the first executable statement of the procedure. When a return statement is
executed in that procedure, or when control reaches the end statement of
that procedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by the attributes
of the procedurename that are declared or implied in the calling procedure,
which must agree with the attributes declared for the function in its
procedure. In the special case of a generic function, the type of the result is
also affected by the type of the argument. See "PROCEDURES".

11.4.1.6 Input/Output Expressions
The EFL input/output syntactic forms may be used as integer primaries that
have a non-zero value if an error occurs during the input or output. See
"Input/Output Statements" under "EXECUTABLE STATEMENTS".

11.4.1. 7 Coercions
An expression of one precision or type may be converted to another by an
expression of the form

attributes (expression)

At present, the only attributes permitted are prec1s1on and basic types.
Attributes are separated by white space. An arithmetic value of one type
may be coerced to any other arithmetic type; a character expression of one
length may be coerced to a character expression of another length; logical
expressions may not be coerced to a nonlogical type. As a special case, a
quantity of complex or long complex type may be constructed from two
integer or real quantities by passing two expressions (separated by a
comma) in the coercion. Examples and equivalent values are

integer(S.3) = 5
long real(S) = 5.0dO
complex(S,3) = 5+ 3i

Most conversions are done implicitly, since most binary operators permit
operands of different arithmetic types. Explicit coercions are of most use
when it is necessary to convert the type of an actual argument to match that
of the corresponding formal parameter in a procedure call.

11-12 SysS UNIX

('

\ /

/
\

(/

EFL CHAPTER 11

11.4.1.8 Sizes
There is a notation which yields the amount of memory required to store a
datum or an item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or
structure member. The value of sizeof is an integer, which gives the size in
arbitrary units. H the size is needed in terms of the size of some specific
unit, this can be computed by division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal
sizeof because certain data types require final padding on some machines.
The lengthof operator gives this larger value, again in arbitrary units. The
syntax is

lengthof (leftside)
lengthof (attributes)

11.4.2 Parentheses
An expression surrounded by parentheses is itself an expression. A
parenthesized expression must be evaluated before an expression of which
it is a part is evaluated.

11.4.3 Unary Operators
All of the unary operators in EFL are prefix operators. The result of a unary
operator has the same type as its operand.

11.4.3.1 Arithmetic
Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator + + adds one to its operand. The prefix operator -
subtracts one from its operand. The value of either expression is the result
of the addition or subtraction. For these two operators, the operand must be
a scalar, array element, or structure member of arithmetic type. (As a side
effect, the operand value is changed.)

11.4.3.2 Logical
The only logical unary operator is complement (). This operator is defined
by the equations

true= false
false= true

Sys5UNIX 11-13

CHAPTER 11 EFL

11.4.4 Binary Operators I
Most EFL operators have two operands, separated by the operator. \. ,/
Because the character set must be limited, some of the operators are
denoted by strings of two or three special characters. All binary operators
except exponentiation are left associative.

11.4.4.1 Arithmetic
The binary arithmetic operators are

+

*
I

**

addition
subtraction

multiplication
division
exponentiation

Exponentiation is right associative: a**b**C = a**(b**C) = a<b.l The
operations have the conventional meanings: 8+2 = 10, 8-2 = 6,
8*2 = 16, 8/2 = 4, 8**2 = 82 = 64.

The type of the result of a binary operation A op B
types of its operands:

Type of B

T of A r I r

i
r

I r
c
le

i r
r r
I r I r
c c
le le

i =integer
r = real
I r = long real
c =complex

I r
I r
I r
le
le

I c = long complex

c

c
c
le
c
le

is determined by the

le

le
le
le
le
le

If the type of an operand differs from the type of the result, the calculation is
done as if the operand were first coerced to the type of the result. If both
operands are integers, the result is of type integer, and is computed exactly.
(Quotients are truncated toward zero, so 813=2.)

11-14 Sys5 UNIX

/

(

EFL CHAPTER 11

11.4.4.2 Logical
The two binary logical operations in EFL, and and or, are defined by the
truth tables:

A
false
false
true
true

B
false
true
false
true

A and B A or B
false false
false true
false true
true true

Each of these operators comes in two forms. In one form, the order of
evaluation is specified. The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is false
and b is not evaluated; otherwise, the expression has the value of b. The
expression

a 11 b

is evaluated by first evaluating a; if it is true then the expression is true and
b is not evaluated; otherwise, the expression has the value of b. The other
forms of the operators (& for and and I for or) do not imply an order of
evaluation. With the latter operators, the compiler may speed up the code
by evaluating the operands in any order.

11.4.4.3 Relational Operators
There are six relations between arithmetic quantities. These operators are
not associative.

EFL Oeerator Meaning

< < less than
<= ::5 less than or equal to

equal to
not equal to

> > greater than
>= ::;:: greater than or equal

Since the complex numbers are not ordered, the only relational operators
that may take complex operands are = = and = . The character collating
sequence is not defined.

11.4.4.4 Assignment Operators
All of the assignment operators are right associative. The simple form of
assignment is

Sys5 UNIX 11-15

CHAPTER 11 EFL

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure
member of basic type. This statement computes the expression on the right
side, and stores that value (possibly after coercing the value to the type of
the left side) in the location named by the left side. The value of the
assignment expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary
arithmetic and logical operator. In each case, a op= b is equivalent to
a = a op b . (The operator and equal sign must not be separated by
blanks.) Thus, n+ =2 adds 2 ton. The location of the left side is evaluated
only once.

11.4.5 Dynamic Structures
EFL does not have an address (pointer, reference) type. However, there is
a notation for dynamic structures,

leftside -> structurename

This expression is a structure with the shape implied by structurename but
starting at the location of leftside. In effect, this overlays the structure
template at the specified location. The leftside must be a variable, array,
array element, or structure member. The type of the leftside must be one of
the types in the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) -> st.elt

refers to the elt member of the st structure starting at the ;th element of the
array place.

11.4.6 Repetition Operator
Inside of a list, an element of the form

integer-constant-expressiQn $constant-expression

is equivalent to the appearance of the expression a number of times equal
to the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

11.4. 7 Constant Expressions
If an expression is built up out of operators (other than functions) and
constants, the value of the expression is a constant, and may be used
anywhere a constant is required.

11-16 SysS UNIX

EFL CHAPTER 11

(11.5 DECLARATIONS

(

Declarations statement describe the meaning, shape, and size of named
objects in the EFL language.

11.5. 1 Syntax
A declaration statement is made up of attributes and variables. Declaration
statements are of two forms:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes.
In the second, each name in the declarations also has the specified
attributes. A variable name may appear in more than one variable list, so
long as the attributes are not contradictory. Each name of a nonargument
variable may be accompanied by an initial value specification. The
declarations inside the braces are one or more declaration statements.
Examples of declarations are

integer k=2

long real b(7 ,3)

common(cname)
{
integer i
long real array(S,0:3) x, y
character(7) ch
}

11.5.2 Attributes

11.5.2.1 Basic Types
The following are basic types in declarations

logical
integer
field(m :n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant
expressions with the properties k >O and n >m.

11.5.2.2 Arrays
The dimensionality may be declared by an array attribute

Sys5 UNIX 11-17

CHAPTER 11 EFL

Each of the b; may either be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lowe.r
and an upper bound; the singfe expression is an upper bound with an
implied lower bound of 1. The number of dimensions is equal to n. the
number of bounds. All of the integer expressions must be constants. An
exception is permitted only if all of the variables associated with an array
declarator are formal arguments of the procedure; in this case, each bound
must have the property that upper -lower+ 1 is equal to a formal argument
of the procedure. (The compiler has limited ability to simplify expressions,
but it will recognize important cases such as (O:n-1). The upper bound for
the last dimension (bn) may be marked by an asterisk (•) if the size of the
array is not known. The following are legal array attributes:

array(5)
array(5, 1 :5, -3:0)
array(5, •)
array(O:m-1, m)

11.5.2.3 Structures
A structure declaration is of the form

struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were the name of a
type in the rest of its scope. Each name that appears. inside the
declarations is a member of the structure, and has a special meaning when
used to qualify any variable declared with the structure type. A name may
appear as a member of any number of structures, and may also be the
name of an ordinary variable, since a structure member name is used only
in contexts where the parent type is known. The following are valid
structure attributes

struct xx
{
integer a, b
real x(5)
}

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three xx' s and a
character string.

11.5.2.4 Precision
Variables of floating point (real or complex) type may be declared to be
long to ensure they have higher precision than ordinary floating point / ,
variables. The default precision is short.

11-18 Sys5 UNIX

EFL CHAPTER 11

11.5.2.5 Common
Certain objects called common areas have external scope, and may be
referenced by any procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute
are in the same block; the order in which they are declared is significant.
Declarations for the same block in differing procedures must have the
variables in the same order and with the same types, precision, and shapes,
though not necessarily with the same names.

11.5.2.6 External
If a name is used as the procedure name in a procedure invocation, it is
implicitly declared to have the external attribute. If a procedure name is to
be passed as an argument, it is necessary to declare it in a statement of the
form

external [name D

If a name has the external attribute and it is a formal argument of the
procedure, then it is associated with a procedure identifier passed as an
actual argument at each call. If the name is not a formal argument, then
that name is the actual name of a procedure, as it appears in the
corresponding procedure statement.

11.5.3 Variable List
The elements of a variable list in a declaration consist of a name, an
optional dimension specification, and an optional initial value specification.
The name follows the usual rules. The dimension specification is the same
form and meaning as the parenthesized list in an array attribute. The initial
value specification is an equal sign (=) followed by a constant expression.
If the name is an array, the right side of the equal sign may be a
parenthesized list of constant expressions, or repeated elements or lists; the
total number of elements in the list must not exceed the number of elements
of the array, which are filled in column-major order.

11.5.4 The Initial Statement
An initial value may also be specified for a simple variable, array, array
element, or member of a structure using a statement of the form

initial [var = val D

The var may be a variable name, array element specification, or member of
structure. The right side follows the same rules as for an initial value
specification in other declaration statements.

Sys5 UNIX 11-19

CHAPTER 11 EFL

11.6 EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements, otherwise it
would not do anything and would not need to be run. Statements are fre­
quently made up of other statements. Blocks are the most obvious case,
but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can
be broken without an explicit continuation. A square (o) in the syntax
represents a point where the end of a line will be ignored.

11.6.1 Expression Statements

11.6.1.1 Subroutine Call
A procedure invocation that returns no value is known as a subroutine call.
Such an invocation is a statement. Examples are

work(in, out)
run()

Input/output statements (see "Input/Output Statements" under
"EXECUTABLE STATEMENTS") resemble procedure invocations but do not
yield a value. If an error occurs the program stops.

11.6.1.2 Assignment Statements
An expression that is a simple assignment (=) or a compound assignment
(+ = etc.) is a statement:

a=b
a = sin(x)/6
x *= y

11.6.2 Blocks
A block is a compound statement that acts as a statement. A block begins
with a left brace, optionally followed by declarations, optionally followed by
executable statements, followed by a right brace. A block may be used
anywhere a statement is permitted. A block is not an expression and does
not have a value. An example of a block is

{
integer i # this variable is unknown

outside the braces

big= 0
do i = 1,n

if(big < a(i))
big= a(i)

}

11-20 SysS UNIX

(

EFL CHAPTER 11

11.6.3 Test Statements
Test statements permit execution of certain statements conditional on the
truth of a predicate.

11.6.3.1 If Statement
The simplest of the test statements is the if statement, of form

if (logical-expression) o statement

The logical expression is evaluated; if it is true, then the statement is
executed.

11.6.3.2 If-Else
A more general statement is of the form

if (logical-expression) o statement-1 o
else o statement-2

If the expression is true then statement-1 is executed, otherwise,
statement-2 is executed. Either of the consequent statements may itself be
an if-else so a completely nested test sequence is possible:

if(x<y)
if(a<b)

k=1
else

k=2
else

if(a<b)
m = 1

else
m = 2

An else applies to the nearest preceding un-elsed if. A more common use
is as a sequential test:

if(x==1)
k=1

else if(x= =3 I x= =5)
k=2

else
k=3

11.6.3.3 Select Statement
A multiway test on the value of a quantity is succinctly stated as a select
statement, which has the general form

select(expression) o block

Inside the block two special types of labels are recognized. A prefix of the

Sys5 UNIX 11-21

CHAPTER 11 EFL

form

case [constant I :
marks the statement to which control is passed if the expression in the
select has a value equal to one of the case constants. If the expression
equals none of these constants, but there is a label default inside the
select, a branch is taken to that point; otherwise the statement following the
right brace is executed. Once execution begins at a case or default label, it
continues until the next case or default is encountered. The else-if
example above is better written as

select(x)
{
case 1:

k = 1
case 3,5:

k=2
default:

k=3
}

Note that control does not "fall through" to the next case.

11.6.4 Loops
The loop forms provide the best way of repeating a statement or sequence
of operations. The simplest (while) form is theoretically sufficient, but it is
very convenient to have the more general loops available, since each
expresses a mode of control that arises frequently in practice.

11.6.4.1 While Statement
This construct has the form

while (logical-expression) o statement

The expression is evaluated; if it is true, the statement is executed, and then
the test is performed again. If the expression is false, execution proceeds to
the next statement.

11.6.5 For Statement
The for statement is a more elaborate looping construct. It has the form

for (initial-statement , o logical-expression ,
o iteration-statement) o body-statement

Except for the behavior of the next statement (see "Branch Statement"
under "EXECUTABLE STATEMENTS"), this construct is equivalent to

11-22 Sys5 UNIX

EFL CHAPTER 11

initial-statement
while (logical-expression)

{
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations, and for various pointer­
type operations. The sum of the integers from 1 to 100 can be computed by
the fragment

n=O
for(i = 1, i < = 100, i + = 1)

n += i

Alternatively, the computation could be done by the single statement

for({ n = 0 ; i = 1 }, i< = 100 , { n + = i ; + + i })

Note that the body of the for loop is a null statement in this case. An
example of following a linked list will be given later.

11.6.5.1 Repeat Statement
The statement

repeat o statement

executes the statement, then does it again, without any termination test.
Obviously, a test inside the statement is needed to stop the loop.

11.6.5.2 Repeat ... Until Statement
The while loop performs a test before each iteration. The statement

repeat o statement o until (logical-expression)

executes the statement, then evaluates the logical; if the logical is true the
loop is complete; otherwise, control returns to the statement. Thus, the
body is always executed at least once. The until refers to the nearest
preceding repeat that has not been paired with an until. In practice, this
appears to be the least frequently used looping construct.

11.6.5.3 Do Loop
The simple arithmetic progression is a very common one in numerical
applications. EFL has a special loop form for ranging over an ascending
arithmetic sequence

do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is

Sys5 UNIX 11-23

CHAPTER 11 EFL

executed, then expression-3 is added to the variable. The loop is repeated
until the variable exceeds expression-2. If expression-3 and the preceding
comma are omitted, the increment is taken to be 1. The loop above is
equivalent to

t2 = expression-2
t3 = expression-3
for(variable=expression-1, variable< =t2, variable+ =t3)

statement

(The compiler translates EFL do statements into Fortran DO statements,
which are in turn usually compiled into excellent code.) The do variable may
not be changed inside of the loop, and expression-1 must not exceed
expression-2. The sum of the first hundred positive integers could be
computed by

n=O
do i = 1, 100

n += i

11.6.6 Branch Statements
Most of the need for branch statements in programs can be averted by
using the loop and test constructs, but there are programs where they are
very useful.

11.6.6.1 Goto Statement
The most general, and most dangerous, branching statement is the simple
unconditional

goto label

After executing this statement, the next statement performed is the one
following the given label. Inside of a select the case labels of that block
may be used as labels, as in the following example:

select(k)
{
case 1:

error(7)

case 2:
k=2
goto case 4

case 3:
k=S
goto case 4

11-24 Sys5 UNIX

(

EFL

case 4:

default:

}

fixup(k)
goto default

prmsg("ouch")

CHAPTER 11

(If two select statements are nested, the case labels of the outer select are
not accessible from the inner one.)

11.6.6.2 Break Statement
A safer statement is one which transfers control to the statement following
the current select or loop form. A statement of this sort is almost always
needed in a repeat loop:

repeat
{
do a computation
if (finished)

break
}

More general forms permit controlling a branch out of more than one
construct.

break 3

transfers control to the statement following the third loop and/or select
surrounding the statement. It is possible to specify which type of construct
(for, while, repeat, do, or select) is to be counted. The statement

break while

breaks out of the first surrounding while statement. Either of the
statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

11.6.6.3 Next Statement
The next statement causes the first surrounding loop statement to go on to
the next iteration: the next operation performed is the test of a while, the
iteration-statement of a for, the body of a repeat, the test of a
repeat •.. until, or the increment of a do. Elaborations similar to those for
break are available:

Sys5 UNIX 11-25

CHAPTER 11

next
next3
next 3 for
next for 3

A next statement ignores select statements.

11.6.6.4 Return

EFL

The last statement of a procedure is followed by a return of control to the
caller. If it is desired to effect such a return from any other point in the
procedure, a

return

statement may be executed. Inside a function procedure, the function value
is specified as an argument of the statement:

return (expression)

11.6. 7 Input/Output Statements
EFL has two input statements (read and readbin), two output statements
(write and writebin), and three control statements (endfile, rewind, and
backspace). These forms may be used either as a primary with a integer
value or as a statement. If an exception occurs when one of these forms is
used as a statement, the result is undefined but will probably be treated as a
fatal error. If they are used in a context where they return a value, they
return zero if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. The input/output part of
EFL very strongly reflects the facilities of Fortran.

11.6. 7 .1 Input/Output Units
Each 1/0 statement refers to a "unit," identified by a small positive integer.
Two special units are defined by EFL, the standard input unit and the
standard output unit. These particular units are assumed if no unit is
specified in an 1/0 transmission statement.

The data on the unit are organized into records. These records may be
read or written in a fixed sequence, and each transmission moves an
integral ~umber of records. Transmission proceeds from the first record
until the end of file.

11.6.7.2 Binary Input/Output
The readbin and writebin statements transmit data in a machine-dependent
but swift manner. The statements are of the form

writebin(unit , binary-output-list)
readbin(unit, binary-input-list)

Each statement moves one unformatted record between storage and the
device. The unit is an integer expression. A binary-output-list is an iolist

11-26 SysS UNIX

EFL CHAPTER 11

(see below) without any format specifiers. A binary-input-list is an iolist
without format specifiers in which each of the expressions is a variable
name, array element, or structure member.

11.6. 7.3 Formatted Input/Output
The read and write statements transmit data in the form of lines of
characters. Each statement moves one or more records (lines). Numbers
are translated into decimal notation. The exact form of the lines is
determined by format specifications, whether provided explicitly in the
statement or implicitly. The syntax of the statements is

write(unit , formatted-output-list)
read(unit , formatted-input-list)

The lists are of the same form as for binary 1/0, except that the lists may
include format specifications. If the unit is omitted, the standard input or
output unit is used.

11.6. 7 .4 lolists
An iolist specifies a set of values to be written or a set of variables into
which values are to be read. An iolist is a list of one or more ioexpressions
of the form

expression
{ iolist}
do-specification { iolist }

For formatted 1/0, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect:
the values in the braces are transmitted repeatedly until the do execution is
complete.

11.6.7.5 Formats
The following are permissible format-specifiers. The quantities w, d, and k
must be integer constant expressions.

i(w)
f(w,d)

e(w,d)

l(w)

Sys5 UNIX

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.
floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked
with the letter e
logical field of width w characters,
the first of which is t or f

11-27

CHAPTER 11

c

c(w)
s(k)
x(k)
"

(the rest are blank on output, ignored on input)
standing for true and false respectively
character string of width equal to
the length of the datum
character string of width w
skip k lines
skip k spaces
use the characters inside the
string as a Fortran format

EFL

If no format is specified for an item in a formatted input/output statement, a
default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a
sequence of elements, each with its own format. The elements are
transmitted in column-major order, the same order used for array
initializations.

11.6. 7 .6 Manipulation Statements
The three input/output statements

backspace(unit)
rewind(unit)
endfile(unit)

look like ordinary procedure calls, but may be used either as statements or
as integer expressions which yield non-zero if an error is detected.
backspace causes the specified unit to back up, so that the next read will
re-read the previous record, and the next write will over-write it. rewind
moves the device to its beginning, so that the next input statement will read
the first record. endfile causes the file to be marked so that the record
most recently written will be the last record on the file, and any attempt to
read past is an error.

11.7 PROCEDURES

Procedures are the basic unit of an EFL program, and provide the means of
segmenting a program into separately compilable and named parts.

11.7.1 Procedures Statement
Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([name B)

The first case specifies the main procedure, where execution begins. In the
two other cases, the attributes may specify precision and type, or they may

11-28 SysS UNIX

EFL CHAPTER 11

be omitted entirely. The prec1s1on and type of the procedure may be
declared in an ordinary declaration statement. If no type is declared, then
the procedure is called a subroutine and no value may be returned for it.
Otherwise, the procedure is a function and a value of the declared type is
returned for each call. Each name inside the parentheses in the last form
above is called a formal argument of the procedure.

11.7.2 End Statement
Each procedure terminates with a statement

end

11.7.3 Argument Association
When a procedure is invoked, the actual arguments are evaluated. If an
actual argument is the name of a variable, an array element, or a structure
member, that entity becomes associated with the formal argument, and the
procedure may reference the values in the object, and assign to it.
Otherwise, the value of the actual is associated with the formal argument,
but the procedure may not attempt to change the value of that formal
argument.

If the value of one of the arguments is changed in the procedure, it is not
permitted that the corresponding actual argument be associated with
another formal argument or with a common element that is referenced in
the procedure.

11.7.4 Execution and Return Values
After actual and formal arguments have been associated, control passes to
the first executable statement of the procedure. Control returns to the
invoker either when the end statement of the procedure is reached or when
a return statement is executed. If the procedure fs a function (has a
declared type), and a return(va/ue) is executed, the value is coerced to the
correct type and precision and returned.

11.7.5 Known Functions
A number of functions are known to EFL, and need not be declared. The
compiler knows the types of these functions. Some of them are generic;
i.e., they name a family of functions that differ in the types of their
arguments and return values. The compiler chooses which element of the
set to invoke based upon the attributes of the actual arguments.

11.7.5.1 Minimum and Maximum Functions
The generic functions are min and max. The min calls return the value of
their smallest argument; the max calls return the value of their largest
argument. These are the only functions that may take different numbers of
arguments in different calls. If any of the arguments are long real then the
result is long real. Otherwise, if any of the arguments are real then the
result is real; otherwise all the arguments and the result must be integer.

Sys5 UNIX 11-29

CHAPTER 11

Examples are

min{5, x, -3.20)
max{i, z)

11.7.5.2 Absolute Value

EFL

The abs function is a generic function that returns the magnitude of its
argument. For integer and real arguments the type of the result is identical
to the type of the argument; for complex arguments the type of the result is
the real of the same precision.

11.7.5.3 Elementary Functions
The following generic functions take arguments of real, long real, or
complex type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

sine function
cosine function

exponential function (ex).
natural (base e) logarithm
common (base 10) l°-9arithm

square root function (v' x).

In addition, the following functions accept only real or long real arguments:

atan atan (x) =tan 1 x

atan2 atan2(x ,y)=tan 1~

y
11. 7 .5.4 Other Generic Functions
The sign functions takes two arguments of identical type;
sign(x ,y) = sgn (y)lx I. The mod function yields the remainder of its first
argument when divided by its second. These functions accept integer and
real arguments.

11.8 ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of
old Fortran or Ratfor programs to EFL.

11.8.1 i;scape Lines
In order to make use of nonstandard features of the local Fortran compiler, it
is occasionally necessary to pass a particular line through to the EFL
compiler output. A line that begins with a percent sign ("%") is copied
through to the output, with the percent sign removed but no other change.
Inside of a procedure, each escape line is treated as an executable
statement. If a sequence of lines constitute a continued Fortran statement,
they should be enclosed in braces.

11-30 Sys5 UNIX

('

EFL CHAPTER 11

11.8.2 Call Statement
A subroutine call may be preceded by the keyword call.

calljoe
call work(17)

11.8.3 Obsolete Keywords
The following keywords are recognized as synonyms of EFL keywords:

Fortran

double precision
function
subroutine

11.8.4 Numeric Labels

EFL

long real
procedure
procedure (untyped)

Standard statement labels are identifiers. A numeric (positive integer
constant) label is also permitted; the colon is optional following a numeric
label.

11.8.5 Implicit Declarations
If a name is used but does not appear in a declaration, the EFL compiler
gives a warning and assumes a declaration for it. If it is used in the context
of a procedure invocation, it is assumed to be a procedure name; otherwise
it is assumed to be a local variable defined at nesting level 1 in the current
procedure. The assumed type is determined by the first letter of the name.
The association of letters and types may be given in an implicit statement,
with syntax

implicit (letter-list) type

where a letter-fist is a list of individual letters or ranges (pair of letters
separated by a minus sign). If no implicit statement appears, the following
rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

11.8.6 Computed Goto
Fortran contains an indexed multi-way branch; this facility may be used in
EFL by the computed GOTO:

goto ([label B), expression

The expression must be of type integer and be positive but be no larger than
the number of labels in the list. Control is passed to the statement marked
by the label whose position in the list is equal to the expression.

Sys5 UNIX 11-31

CHAPTER 11 EFL

11.8. 7 Goto Statement
In unconditional and computed goto statements, it is permissible to separate
the go and to words, as in

go to xyz

11.8.8 Dot Names
Fortran uses a restricted character set, and represents certain operators by
multi-character sequences. There is an option (dots=on; see "COMPILER
OPTIONS") which forces the compiler to recognize the forms in the second
column below:

< .It.
<= .le.
> .gt.
>= .ge •

. eq .

. ne •
& • and.
I .or .
&& • andand.
II .oror •

• not •
true • true.
false .false.

In this mode, no structure element may be named It, le, etc. The readable
forms in the left column are always recognized.

11.8.9 Complex Constants
A complex constant may be written as a parenthesized list of real quantities,
such as

(1.5, 3.0)

The preferred notation is by a type coercion,

complex(1.5, 3.0)

11.8.1 O Function Values
The preferred way to return a value from a function in EFL is the
return(va/ue) construct. However, the name of the function acts as a
variable to which values may be assigned; an ordinary return statement
returns the last value assigned to that name as the function value.

11.8.11 Equivalence
A statement of the form

equivalence v 1' v 2• ... ' v n

11-32 Sys5 UNIX

EFL CHAPTER 11

declares that each of the v; starts at the same memory location. Each of
the V; may be a variable name, array element name, or structure member.

11.8.12 Minimum and Maximum Functions
There are a number of non-generic functions in this category, which differ in
the required types of the arguments and the type of the return value. They
may also have variable numbers of arguments, but all the arguments must
have the same type.

Function
amino
amin1
minO
min1
dmin1

amaxO
amax1
maxo
max1
dmax1

11.9 COMPILER OPTIONS

Argument Type
integer
real
integer
real
long real

integer
real
integer
real
long real

Result Type
real
real
integer
integer
long real

real
real
integer
integer
long real

A number of options can be used to control the output and to tailor it for
various compilers and systems. The defaults chosen are conservative, but
it is sometimes necessary to change the output to match peculiarities of the
target environment.

Options are set with statements of the form

option (opt I
where each opt is 9f one of the forms

optionname
optionname = optionvalue

The optionva/ue is either a constant (numeric or string) or a name
associated with that option. The two names yes and no apply to a number
of options.

11.9.1 Default Options
Each option has a default setting. It is possible to change the whole set of
defaults to those appropriate for a particular environment by using the
system option. At present, the only valid values are system= unix and
system =gcos.

Sys5 UNIX 11·33

CHAPTER,11 EFL

11.9.2 Input Language Options
The dots option determines whether the compiler recognizes .It. and similar \ ___ .--/
forms. The default setting is no.

11.9.3 Input/Output Error Handling
The ioerror option can be given three values: none means that none of the
1/0 statements may be used in expressions, since there is no way to detect
errors. The implementation of the ibm form uses ERR= and END=
clauses. The implementation of the fortrann form uses IOSTAT= clauses.

11.9.4 Continuation Converitions .
By default, continued Fortran statements are indicated by a character in
column 6 (Standard Fortran). The option continue=column1 puts an
ampersand(&) in the first column of the continued lines instead.

11.9.5 Default Formats
If no format is specified for a datum in an iolist for a read or write
statement, a default is provided. The default formats can be changed by
setting certain options

Option
iformat
rformat
dformat
·zformat
zdformat
!format

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option rformat=f22.6

11.9.6 Alignments and Sizes
In order to implement character variables, structures, and the sizeof and
lengthof operators, it is necessary to know how much space various Fortran
data types require, and what boundary alignment properties they demand.
The relevant options are

Fortran Type
integer
real
long real
complex
logical

Size Option
isize
rsize
dsize
zsize
I size

Alignment Option
ialign
ralign
dalign
zalign
lalign

The sizes are given in terms of an arbitrary unit; the alignment is given in
the same units. The option charperint gives the number of characters per
integer variable.

11-34 Sys5 UNIX

'- J

(--.·.·

/

(

EFL CHAPTER 11

11.9.7 Default Input/Output Units
The options ftnin and ftnout are the numbers of the standard input and
output units. The default values are ftnin=S and ftnout=6.

11.9.8 Miscellaneous Output Control Options
Each Fortran procedure generated by the compiler will be preceded by the
value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if hollincall =no
is specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is
possible to change the increment value by using the deltastno option.

11.10 EXAMPLES

In order to show the flavor or programming in EFL, we present a few
examples. They are short, but show some of the convenience of the
language.

11.10.1 File Copying
The following short program copies the standard input to the standard
output, provided that the input is a formatted file containing lines no longer
than a hundred characters.

procedure # main program
character(100) line

while(read(, line) = = O)
write(, line)

end

Since read returns zero until the end of file (or a read error), this program
keeps reading and writing until the input is exhausted.

11.10.2 Matrix Multiplication
The following procedure multiplies the m x n matrix a by the n x p matrix b
to give the m x p matrix c. The calculation obeys the formula
C;i = 2,a;kbki"

Sys5 UNIX 11-35

CHAPTER 11

procedure matmul{a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a{m,n), b{n,p), c(m,p)

do i = 1,m
do j = 1,p

end

{
c{i,j) = O
do k = 1,n

}
c(i,j) + = a(i,k) • b(k,j)

11.10.3 Searching a Linked List

EFL

Assume we have a list_ of pairs of numbers (x ,y). The list is stored as a
linked list sorted in ascending order of x values. The following procedure
searches this list for a particular value of x and returns the corresponding y
value.

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
} list(•)

integer first, p; arg

for(p = first , p =LAST && list(p).x< = x ,
p = list(p).nextindex)

if(list(p).x = = x)

return(NOTFOUND)
end

return(list(p).y)

The search is a single for loop that begins with the head of the list and
examines items until either the list is exhausted (p= =LAST) or until it is
known that the specified value is not on the list (list(p).x > x). The two tests
in the conjunction must be performed in the specified order to avoid using

11-36 Sys5 UNIX

(

(

EFL CHAPTER 11

an invalid subscript in the list(p) reference. Therefore, the && operator is
used. The next element in the chain is found by the iteration statement
p= list(p).nextindex.

11.10.4 Walking a Tree
As an example of a more complicated problem, let us imagine we have an
expression tree stored in a common area, and that we want to print out an
infix form of the tree. Each node is either a leaf (containing a numeric
value) or it is a binary operator, pointing to a left and a right descendant. In
a recursive language, such a tree walk would be implement by the following
simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit
stack to keep track of the current state of the computation. The following
procedure calls a procedure outch to print a single character and a
procedure outval to print a value.

Sys5 UNIX 11-37

CHAPTER 11

procedure walk(first) # print an expression tree

in~eger first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

struct

{
character(1) op
integer leftp, rightp
real val
} tree(100) # array of structures

{
integer nextstate
integer nodep
} stackframe(100)

define NODE tree(currentnode)
define STACK stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

11-38

EFL

Sys5 UNIX

c:

(

EFL

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep =first

while(stackdepth > 0)

end

{
currentnode = STACK.nodep
select(STACK.nextstate)

}

{
case DOWN:

if(NODE.op = = " '1 # a leaf
{
outval(NODE.val)
stackdepth -= 1
}

else { # a binary operator node
outch("(")
STACK.nextstate = LEFT
stackdepth + = 1
STACK.nextstate = DOWN
STACK.nodep = NODE.leftp
}

case LEFT:
outch(NODE.op)
STACK.nextstate =RIGHT
stackdepth + = 1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:

}

outch(")")
stackdepth -= 1

11.11 PORTABILITY

CHAPTER 11

One of the major goals of the EFL language is to make it easy to write
portable programs. The output of the EFL compiler is intended to be
acceptable to any Standard Fortran compiler (unless the fortrann option is
specified).

Sys5 UNIX 11-39

CHAPTER 11 EFL

11.11.1 Primitives
Certain EFL operations cannot be implemented in portable Fortran, so a few
machine-dependent procedures must be provided in each environment.

11.11.1. 1 Character String Copying
The subroutine ef1asc is called to copy one character string to another. If
the target string is shorter than the source, the final characters are not
copied. If the target string is longer, its end is padded with blanks. The
calling sequence is

subroutine ef1asc(a, la, b, lb)
integer a(*), la, b(*), lb

and it must copy the first lb characters from b to the first la characters of a.

11.11.1.2 Character String Comparisons
The function ef1cmc is invoked to determine the order of two character
strings. The declaration is

integer function ef1 cmc(a, la, b, lb)
integer a(*), la, b(*), lb

The function returns a negative value if the string a of length la precedes the
string b of length lb. It returns zero if the strings are equal, and a positive
value otherwise. If the strings are of differing length, the comparison is
carried out as if the end of the shorter string were padded with blanks.

11.12 DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratfor and EFL, since EFL is a
defined language while Ratfor is the union of the special control structures
and the language accepted by the underlying Fortran compiler. Ratfor
running over Standard Fortran is almost a subset of EFL Most of the
features described in the "ATAVISMS" are present to ease the conversion of
Ratfor programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly
different in the two languages: the three clauses are separated by
semicolons in Ratfor, but by commas in EFL. (The initial and iteration
statements may be compound statements in EFL because of this change).
The input/output syntax is quite different in the two languages, and there is
no FORMAT statement in EFL. There are no ASSIGN or assigned GOTO
statements in EFL

The major linguistic additions are character data, factored declaration
syntax, block structure, assignment and sequential test operators, generic
functions, and data structures. EFL permits more general forms for
expressions, and provides a more uniform syntax. (One need not worry

11-40 Sys5 UNIX

EFL CHAPTER 11

about the Fortran/Ratfor restrictions on subscript or DO expression forms,
for example.)

11.13 COMPILER

11.13.1 Current Version
The current version of the EFL compiler is a two-pass translator written in
portable C. It implements all of the features of the language described
above except for long complex numbers.

11.13.2 Diagnostics
The EFL compiler diagnoses all syntax errors. It gives the line and file name
(if known) on which the error was detected. Warnings are given for
variables that are used but not explicitly declared.

11.13.3 Quality of Fortran Produced
The Fortran produced by EFL is quite clean and readable. To the extent
possible, the variable names that appear in the EFL program are used in the
Fortran code. The bodies of ·loops and test constructs are indented.
Statement numbers are consecutive. Few unneeded GOTO and
CONTINUE statements are used. It is considered a compiler bug if
incorrect Fortran is produced (except for escaped lines). The following is
the Fortran procedure produced by the EFL compiler for the matrix
multiplication example (See "EXAMPLES".)

Sys5 UNIX 11-41

CHAPTER 11

subroutine matmul{a, b, c, m, n, p)
integer m, n, p
double precision a{m, n), b{n, p), c(m, p)
integer i, j, k
do 3 i = 1, m

do 2 j = 1, p
c{i, j) = o
do 1 k = 1, n

c{i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

The following is the procedure for the tree walk:
.subroutine walk(first)
integer first
common /nodes/ tree
integer tree{4, 100)
real tree1{4, 100)
integer staame(2, 100), stapth, curode
integer const1 (1)
equivalence (tree(1, 1); tree1(1,1))
data const1(1)/4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = 1
staame(1, stapth) = 1
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)
goto 7

2 if (tree(1, curode) .ne. const1(1)) goto 3

c a leaf
call outval(tree1(4, curode))

stapth = stapth-1
goto 4

3 call outch(1h()
c a binary operator node

11-42

staame(1, stapth) 2
stapth = stapth+ 1
staame(1, stapth) = 1

EFL

Sys5 UNIX

EFL

staame(2, stapth) = tree(2, curode)
4 goto 8
5 call outch(tree(1, curoc:le))

staame(1, stapth) = 3
stapth = stapth+ 1
staame(1, stapth) 1
staame(2, stapth) = tree(3, curode)
goto 8

6 call outch(1 h))
stapth = stapth-1
goto 8

7 if (staame(1, stapth) .eq. 3) goto 6
if (staame(1, stapth) .eq. 2) goto 5
if (staame(1, stapth) .eq. 1) goto 2

8 continue
goto 1

9 continue
end

11.14 CONSTRAINTS ON EFL

CHAPTER 11

Although Fortran can be used to simulate any finite computation, there are
realistic limits on the generality of a language that can be translated into
Fortran. The design of EFL was constrained by the implementation strategy.
Certain of the restrictions are petty (six character external names), but
others are sweeping (lack of pointer variables). The following paragraphs
describe the major limitations imposed by Fortran.

11.14.1 External Names
External names (procedure and COMMON block names) must be no longer
than six characters in Fortran. Further, an external name is global to the
entire program. Therefore, EFL can support block structure within a
procedure, but it can have only one level of ·external name if the EFL
procedures are to be compilable separately, as are Fortran procedures.

11.14.2 Procedure Interface
The Fortran standards, in effect, permit arguments to be passed between
Fortran procedures either by reference or by copy-in/copy-out. This
indeterminacy of specification shows through into EFL A program that
depends on the method of argument transmission is illegal in either
language.

There are no procedure-valued variables in Fortran: a procedure name may
only be passed as an argument or be invoked; it cannot be stored. Fortran
(and EFL) would be noticeably simpler if a procedure variable mechanism
were available.

SysS UNIX 11-43

CHAPTER 11 EFL

11.14.3 Pointers
The most grievous problem with Fortran is its lack of a pointer-like data type.
The implementation of the compiler would have been far easier if certain
hard cases could have been handled by pointers. Further, the language
oould have been simplified considerably if pointers were accessible in
Fortran. (There are several ways of simulating pointers by using subscripts,
but they founder on the problems of external variables and initialization.)

11.14.4 Recursion
Fortran procedures are not recursive, so it was not practical to permit EFL
procedures to be recursive. (Recursive procedures with arguments can be
simulated only with great pain.)

11.14.5 Storage Allocation
The definition of Fortran does not specify the lifetime of variables. It would
be possible but cumbersome to implement stack or heap storage disciplines
by using COMMON blocks.

11-44 Sys5 UNIX

(

('

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

12. CURSES AND TERMINFO PACKAGE

This chapter is an introduction to curses(3X) and terminfo(4). It is intended
for the programmer who must write a screen-oriented program using the
curses package. Several example programs are discussed. The example
programs can be found in Chapter 13. This chapter also documents each
curses function. It is intended as a reference.

For curses to be able to produce terminal dependent output, it has to know
what kind of terminal you have. The UNIX system convention for this is to
put the name of the terminal in the variable TERM in the environment.
Thus, a user on a DEC VT100 would set TERM=vt100 when logging in.
Curses uses this convention.

12.0.1 Output
A program using curses always starts by calling initscrO. (See Figure 12-
1.) Other modes can then be set as needed by the program. Possible
modes include cbreakO, and idlok(stdscr, TRUE). These modes will be
explained later. During the exeeution of the program, output to the screen is
done with routines such as addch(ch) and printw(fmt,args). (These
routines behave just like putchar and printf except that they go through
curses.) The cursor can be moved with the call move(row,col). These
routines only output to a data structure called a window, not to the actual
screen. A window is a representation of a CRT screen, containing such
things as an array of characters to be displayed on the screen, a cursor, a
current set of video attributes, and various modes and options. You don't
need to worry about windows unless you use more than one of them, except
to realize that a window is buffering your requests to output to the screen.

To send all accumulated output, it is necessary to call refresh(). (This can
be thought of as a flush.) Finally, before the program exits, it should call
endwinO, which restores all terminal settings and positions the cursor at the
bottom of the screen.

Sys5 UNIX 12-1

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

#include <curses.h>

initscrO; I* Initialization */

cbreakO;/* Various optional mode settings*/
nonlO;
noecho();

while (!done) { /* Main body of program */ ··

}

I* Sample calls to draw on screen */
move(row, col);
addch(ch);
printw("Formatted print with value %d\n'', value);

/*Flush output*/
refresh();

endwinO; /*Clean up*/
exit(O);

Figure 12·1. Framework of a Curses Program

See the program scatter in Chapter 13 for an example program. This
program reads a file, and displays the file in a random order on the screen.
Some programs assume all screens are 24 lines by 80 columns. It is
important to understand that many are not. The variables LINES and COLS
are defined by initscr with the current screen size. Programs should use
them instead of assuming a 24x80 screen.

No output to the terminal actually happens until refresh is called. Instead,
routines such as move and addch draw on a window data structure called
stdscr (standard screen). Curses always keeps track of what is on the
physical screen, as well as what is in stdscr.

When refresh is called, curses compares the two screen images and sends
a stream of characters to the terminal that will turn the current screen into
what is desired. Curses considers many different ways to do this, taking
into account the various capabilities of the terminal, and similarities between
what is on the screen and what is desired. It usually outputs as few

12-2 Sys5 UNIX

\

(

(~.

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

characters as is possible. This function is called cursor optimization and is
the source of the name of the curses package.

NOTE: Due to the hardware scrolling of terminals, writing to the lower
righthand character position is impossible.

12.0.2 Input
Curses can do more than just draw on the screen. Functions are also
provided for input from the keyboard. The primary function is getch() which
waits for the user to type a character on the keyboard, and then returns that
character. This function is like getchar except that it goes through curses.
Its use is recommended for programs using the cbreak() or noecho()
options, since several terminal or system dependent options become
available that are not possible with getchar.

Options available with getch include keypad which allows extra keys such
as arrow keys, function keys, and other special keys that transmit escape
sequences, to be treated as just another key. (The values returned for
these keys are listed below.) KEY _LEFT in curses.h. The values for these
keys are over octal 400, so they should be stored in a variable larger than a
char.) nodelay mode causes the value -1 to be returned if there is no input
waiting. Normally, getch will wait until a character is typed. Finally, the
routine getstr(str) can be called, allowing input of an entire line, up to a
newline. This routine handles echoing and the erase and kill characters of
the user. Examples of the use of these options are in later example
programs.

The following function keys might be returned by getch if keypad has been
enabled. Note that notall of these are currently supported, due to lack of
definitions in term info or the terminal not transmitting a unique code when
the key is pressed.

Name Value Key name
KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+ left arrow)
KEY_BACKSPACE 0407 Backspace (unreliable)
KEY_FO 0410 Function keys. Space for

64 keys is reserved.
KEY_F(n) (KEY _FO+ (n)) Formula for fn.
KEY_DL 0510 Delete line
KEY_IL 0511 Insert line
KEY_DC 0512 Delete character

Sys5 UNIX 12-3

CHAPTER 12

KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

THE CURSES AND TERMINFO PACKAGE

Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)
Soft (partial) reset (unreliable)
Reset or hard reset (unreliable)
Print or copy
Home down or bottom
(lower left)

See the program show in Chapter 13 for an example use of getch. Show
pages through a file, showing one screen full each time the user presses the
space bar. By creating an input file for show made up of 24 line pages,
each segment. varying slightly from the previous page, nearly any exercise
for curses can be created. Such input files are called show scripts.

In the show program, cbreak is called so that the user can press the space
bar without having to hit return. The noecho function is called to prevent
the space from echoing in the middle of a refresh, messing up the screen.
The nonl function is called to enable more. screen optimization. The idlok
function is called to allow insert and delete line, since many show scripts are
constructed to duplicate bugs caused by that feature. The clrtoeol and
clrtobot functions clear from the cursor to the end of the line and screen,
respectively.

12.0.3 Highlighting
The function addch always draws two things on a window. In addition to
the character itself, a set of attributes is associated with the character.
These attributes cover various forms of highlighting of the character. For
example, the character can be put in reverse video, bold, or be underlined.
You can think of the attributes as the color of the ,ink used to draw the
character.

A window always has a set of current attributes associated with it. The
current attributes are associated with each character as it is written to the
window. The current attributes can be changed with a call to attrset(attrs).
(Think of this as dipping the window's pen in a particular color ink.) The

12-4 Sys5 UNIX

\,, ---

(_

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

names of the attributes are A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_INVIS, and A_UNDERLINE. For example, to put a word in bold,
the code in Figure 12-2 might be used. The word "boldface" will be shown
in bold.

printw("A word in');
attrset(A_BOLD);
printw(''boldface');
attrset(O);
printw(" really stands out.\n');

refresh();

Figure 12-2. Use of attributes

Not all terminals are capable of displaying all attributes. If a particular
terminal cannot display a requested attribute, curses will attempt to find a
substitute attribute. If none is possible, the attribute is ignored.

One particular attribute is called standout. This attribute is used to make
text attract the attention of the user. The particular hardware attribute used
for standout varies from terminal to terminal, and is chosen to be the most
visually pleasing attribute the terminal has. Standout is typically
implemented as reverse video or bold. Many programs don't really need a
specific attribute, such as bold or inverse video, but instead just need to
highlight some text. For such applications, the A_STANDOUT attribute is
recommended. Two convenient functions, standout() and standend() turn
on and off this attribute.

Attributes can be turned on in combination. Thus, to turn on blinking bold
text, use attrset(A_BLINKIA_BOLD). Individual attributes can be turned on
and off with attron and attroff without affecting other attributes.

For an example program using attributes, see highlight. The program
takes a text file as input and allows embedded escape sequences to control
attributes. In this example program, \U turns on underlining, \B turns on
bold, and \N restores normal text. Note the initial call to scrollok. This
allows the terminal to scroll if the file is longer than one screen. When an
attempt is made to draw past the bottom of the screen, curses will
automatically scroll the terminal up a line and call refresh.

Highlight comes about as close to being a filter as is possible with curses.
It is not a true filter, because curses must "take over" the CRT screen. In

Sys5 UNIX 12-5

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

order to determine how to update the screen, it must know what is on the
screen at all times. This requires curses to clear the screen in the first call
to refresh, and to know the cursor position and screen contents at all times.

12.0.4 Multiple Windows
A window is a data structure representing all or part of the CRT screen. It
has room for a two dimensional array of characters, attributes for each
character (a total of 16 bits per character: 7 for text and 9 for attributes) a
cursor, a set of current attributes, and a number of flags. Curses provides a
full screen window, called stdscr, and a set of functions that use stdscr.
Another window is provided called curscr, representing the physical screen.

It is important to understand that a window is only a data structure. Use of
more than one window does not imply use of more than one terminal, nor
does it involve more than one process. A window is merely an object which
can be copied to all or part of the terminal screen. The current
implementation of curses does not allow windows which are bigger than the
screen.

The programmer . can create additional windows with the function
newwin(lines, cols, begin_row, begin_col) will return a pointer to a newly
created window. The window will be lines by cols, and the upper left corner
of the window will be at screen position (begin_row, begin_col). All
operations that affect stdscr have corresponding functions that affect an
arbitrary named window. Generally, these functions have names formed by
putting a "w" on the front of the stdscr function, and the window name is
added as the first parameter. Thus, waddch(mywin, c) would write the
character c to window mywin. The wrefresh(win) function is used to flush
the contents of a window to the screen.

Windows are useful for maintaining several different screen images, and
alternating the user among them. Also, it is possible to subdivide the screen
into several windows, refreshing each of them as desired. When windows
overlap, the contents of the screen will be the more recently refreshed
window.

In all cases, the non-w version of the function calls the w version of the
function,· using stdscr as the additional argument. Thus, a call to addch(c)
results in a call to waddch(stdscr, c).

The program window is an example of the use of multiple windows. The
main display is kept in stdscr. When the user temporarily wants to put
something else on the screen, a new window is created covering part of the
screen. A call to wrefresh on that window causes the window to be written
over stdscr on the screen. Calling refresh on stdscr results in the· original
window being redrawn on the screen. Note the calls to touchwin before
writing out an overlapping window. These are necessary to defeat an

12-6 SysS UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

optimization in curses. If you have trouble refreshing a new window which
overlaps an old window, it may be necessary to call touchwin on the new
window to get it completely written out.

For convenience, a set of "move" functions are also provided for most of the
common functions. These result in a call to move before the other function.
For example, mvaddch(row, col, c) is the same as move(row, col);
addch(c). Combinations, e.g. mvwaddch(row, col, win, c) also exist.

12.0.5 Multiple Terminals
Curses can produce output on more than one terminal at once. This is
useful for single process programs that access a common database, such
as multi-player games. Output to multiple terminals is a difficult business,
and curses does not solve all the problems for the programmer. It is the
responsibility of the program to determine the file name of each terminal
line, and what kind of terminal is on each of those lines. The standard
method, checking $TERM in the environment, does not work, since each
process can only examine its own environment. Another problem that must
be solved is that of multiple programs reading from one line. This situation
produces a race condition and should be avoided. Nonetheless, a program
wishing to take over another terminal cannot just shut off whatever program
is currently running on that line. (Usually, security reasons would also make
this inappropriate. However, for some applications, such as an inter­
terminal communication program, or a program that takes over unused tty
lines, it would be appropriate.) A typical solution requires the user logged in
on each line to run a program that notifies the master program that the user
is interested in joining the master program, telling it the notification
program's process id, the name of the tty line and the type of terminal being
used. Then the program goes to sleep until the master program finishes.
When done, the master program wakes up the notification program, and all
programs exit.

Curses handles multiple terminals by always having a current terminal. All
function calls always affect the current terminal. The master program
should set up each terminal, saving a reference to the terminals in its own
variables. When it wishes to affect a terminal, it should set the current
terminal as desired, and then call ordinary curses routines.

References to terminals have type struct screen *. A new terminal is
initialized by calling newterm(type, fd). newterm returns a screen
reference to the terminal being set up. type is a character string, naming
the kind of terminal being used. fd is a stdio file descriptor to be used for
input and output to the terminal. (If only output is needed, the file can be
open for output only.) This call replaces the normal call to initscr, which
calls newterm(getenv{"TERM"), stdout).

Sys5 UNIX 12-7

CHAPTER12 THE CURSES AND TERMINFO PACKAGE

To change the current terminal, call "set_term(sp)" where sp is the screen
reference to be made current. set_term returns a reference to the previous ',
terminal.

It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newterm.
Options such as cbreak and noecho must be set separately for each
terminal. The functions endwin and refresh must be called separately for
each terminal. See Figure 12-3 for a typical scenario to output a message
to each terminal.

for (i=O; i<nterm; i++) {
set_term(terms[i]);

}

mvaddstr(O, 0, "Important message");
refresh();

Figure 12-3. Sending a message to several terminals

See the sample program two for a full example. This program pages
through a file, showing one page to the first terminal and the next page to
the second terminal. It then waits for a space to be typed on either terminal,
and shows the next page to the terminal typing the space. Each terminal
has to be separately put into nodelay mode. Since no standard multiplexor
is available in current versions of the UNIX system, it is necessary to either
busy wait, or call sleep_(1);, between each check for keyboard input. This
program sleeps for a second between checks.

The two program is just a simple example of two terminal curses. It does
not handle notification, as described above, instead it requires the name and
type of the second terminal on the command line. As written, the command
sleep 100000 must be typed on the second terminal to put it to sleep while
the program runs, and the first user must have both read and write
permission on the second terminal.

12.0.6 Low Level Terminfo Usage
Some programs need to use lower level primitives than those offered by
curses. For such programs, the terminfo level interface is offered. This
interface does not manage your CRT screen, but rather gives you access to
strings and capabilities which you can use yourself to manipulate the
terminal.

12-8 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

Programmers are discouraged from using this level. Whenever possible, the
higher level curses routines should be used. This will make your program
more portable to other UNIX systems and to a wider class of terminals.
Curses takes care of all the glitches and misfeatures present in physical
terminals, but at the terminfo level you must deal with them yourself. Also, it
cannot be guaranteed that this part of the interface will not change or be
upward compatible with previous releases.

There are two circumstances when it is proper to use terminfo. The first is
when you are writing a special purpose tool that sends a special purpose
string to the terminal, such as programming a function key, setting tab
stops, sending output to a printer port, or dealing with the status line. The
second situation is when writing a filter. A typical filter does one
transformation on the input stream without clearing the screen or addressing
the cursor. If this transformation is terminal dependent and clearing the
screen is inappropriate, use of terminfo is indicated.

A program writing at the terminfo level uses the framework shown in Figure
12-4.

#include <curses.h>
#include <term.h>

setupterm(O, 1, O);

putp(clear _screen);

reset_shell_mode();
exit(O);

Figure 12-4. Terminfo level framework

Initialization is done by calling setupterm. Passing the values 0, 1, and O
invoke reasonable defaults. If setupterm can't figure out what kind of
terminal you are on, it will print an error message and exit. The program
should call reset_shell_mode before it exits.

Global variables with names like clear _screen and cursor _address are
defined by the call to setupterm. They can be output using putp, or also
using tputs, which allows the programmer more control. These strings
should not be directly output to the terminal using printf since they contain
padding information. A program that directly outputs strings will fail on
terminals that require padding, or that use the xon/xoff flow control protocol.

SysS UNIX 12-9

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

In the terminfo level, the higher level routines described previously are not
available. It is up to the programmer to output whatever is needed. For a
list of capabilities and a description of what they do, see terminfo(4).

The example program termhl shows simple use of terminfo. It is a version
of highlight that uses terminfo instead of curses. This version can be used
as a filter. The strings to enter bold and underline mode, and to turn off au
attributes, are used.

This program is more complex than it need be in order to illustrate some
properties of terminfo. The routine vidattr coulQ have been used instead of
directly outputting enter _bold_mode, enter _underline_mode, and
exit_attribute_mode. In fact, the program would be more robust if it did
since there are several ways to change video attribute modes. This
program was written to illustrate typical use of terminfo.

The function tputs(cap, affcnt, outc) applies padding information. Some
capabilities contain strings like $<20>, which means to pad for 20
milliseconds. tputs generates enough pad characters to delay for the
appropriate time. The first parameter is the string capability to be output.
The second is the number of lines affected by the capability. (Some
capabilities may require padding that depends . on the number of lines
affected. For example, insert_line may have to copy all lines below the
current line, and may require time proportional to the number of lines copied.
By convention affcnt is 1 if no lines are affected. The value 1 is used,
rather than 0, for safety, since affcnt is multiplied by the amount of time per
item, and anything multiplied by O is 0.) The third parameter is a routine to
be called with each character.

For many simple programs, affcnt is always 1 and outc always just calls
putchar. For these programs, the routine putp(cap) is a convenient
abbreviation. termhl could be simplified by using putp.

Note also the special check for the underline_char capability. Some
terminals, rather than having a code to start underlining and a code to stop
underlining, have a code to underline the current character. termhl keeps
track of the current mode, and if the current character is supposed to be
underlined, will output underline_char if necessary. Low level details such
as this are precisely why the curses level is recommended over the terminfo
level. Curses takes care of terminals with different methods of underlining
and other CRT functions. Programs at the terminfo level must handle such
details themselves.

12.0. 7 A Larger Example
For a final example, see the program editor. This program is a very simple
screen editor, patterned after the vi editor. The program illustrates how to
use curses to write a screen editor. This editor keeps the buffer in stdscr

12-10 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

to keep the program simple - obviously a real screen editor would keep a
separate data structure. Many simplifications have been made here - no
provision is made for files of any length other than the size of the screen, for
lines longer than the width of the screen, or for control characters in the file.

Several points about this program are worth making. The routine to write
out the file illustrates the use of the mvinch function, which returns the
character in a window at a given position. The data structure used here
does not have a provision for keeping track of the number of characters in a
line, or the number of lines in the file, so trailing blanks are eliminated when
the file is written out.

The program uses built-in curses functions insch, delch, insertln, and
deleteln. These functions· behave much as the similar functions on
intelligent terminals behave, inserting and deleting a character or line.

The command interpreter accepts not only ASCII characters, but also
special keys. This is important - a good program will accept both. (Some
editors are modeless, using nonprinting characters for commands. This is
largely a matter of taste - the point being made here is that both arrow keys
and ordinary ASCII characters should be handled.) It is important to handle
special keys because this makes it easier for a new user to learn to use
your program if he can use the arrow keys, instead of having to memorize
that "h" means left, "j" means down, "k" means up, and "I" means right. On
the other hand, not all terminals have arrow keys, so your program will be
usable on a larger class of terminals if there is an ASCII character which is
a synonym for each special key. Also, experienced users dislike having to
move their hands from the "home row" position to use special keys, since
they can work faster with alphabetic keys.

Note the call to mvaddstr in the input routine. addstr is roughly like the C
fputs function, which writes out a string of characters. Like fputs, addstr
does not add a trailing newline. It is the same as a series of calls to addch
using the characters in the string. mvaddstr is the mv version of addstr,
which moves to the given location in the window before writing.

The control-L command illustrates a feature most programs using curses
should add. Often some program beyond the control of curses has written
something to the screen, or some line noise has messed up the screen
beyond what curses can keep track of. In this case, the user usually types
control-L, causing the screen to be cleared and redrawn. This is done with
the call to clearok(curscr), which sets a flag causing the next refresh to
first clear the screen. Then refresh is called to force the redraw.

Note also the call to flash(), which flashes the screen if possible, and
otherwise rings the bell. Flashing the screen is intended as a bell
replacement, and is particularly useful if the bell bothers someone within

Sys5 UNIX 12-11

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

earshot of the user. The routine beep() can be called when a real beep is ·
desired. (If for some reason the terminal is unable to beep, but able to
flash, a call to beep will flash the screen.)

Another important point is that the input command is terminated by control­
D, not escape. It is very tempting to use escape as a command, since
escape is one of the few special keys which is available on every keyboard.
(Return and break are the only others.) However, using escape as a
separate key introduces an ambiguity. Most terminals use sequences of
characters beginning with escape ("escape sequences") to control the
terminal, and have special keys that send escape sequences to the
computer. If the computer sees an escape coming from the terminal, it
cannot tell for sure whether the user pushed the escape key, or whether a
special key was pressed. Curses handles the ambiguity by waiting for up to
one second. If another character is received during this second, and if that
character might be the beginning of a special key, more input is read
(waiting for up to one second for each character) until either a full special
key is read, one second passes, or a character is received that could not
have been generated by a special key. While this strategy works most of
the time, it is not foolproof. It is possible for the user to press escape, then
to type another key quickly, which causes curses to think a special key has
been pressed. Also, there is a one second pause until the escape can be
passed to the user program, resulting in slower response to the escape key.
Many existing programs use escape as a fundamental command, which
cannot be changed without infuriating a large class of users. Such
programs cannot make use of special keys without dealing with this
ambiguity, and at best must resort to a timeout solution. The moral is clear:
when designing your program, avoid the escape key.

12.1 LIST OF ROUTINES

This section describes all the routines available to the programmer in the
curses package. The routines are organized by function. For an
alphabetical list, see curses(3X) .

. 12.1.1 · Structure
All programs using curses should include the file <curses.h>. This file
defines several curses functions as macros, and defines several global
variables and the datatype WINDOW. References to windows are always of
type WINDOW *. Curses also defines WINDOW * constants stdscr (the
standard screen, used as a default to routines expecting a window), and
curscr (the current screen, used only for certain low level operations like
clearing and redrawing a garbaged screen). Integer constants LINES and
COLS are defined, containing the size of the screen. Constants TRUE and
FALSE are defined, with values 1 and 0, respectively. Additional constants
which are values returned from most curses functions are ERR and OK.

12-12 SysS UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

OK is returned if the function could be properly completed, and ERR is
returned if there was some error, such as moving the cursor outside of a
window.

The include file <curses.h> automatically includes <stdio.h> and an
appropriate tty driver interface file, currently either <sgtty.h*> or
<termio.h>. Including <stdio.h> again is harmless but wasteful, including
<sgtty.h> again will usually result in a fatal error.

A program using curses should include the loader option -lcurses in the
makefile. This is true for both the terminfo level and the curses level. The
compilation flag -DMINICURSES can be included if you restrict your
program to a small subset of curses concerned primarily with screen output
and optimization. The routines possible with mini-curses are listed in 'Mini·
Curses" under "OPERATION DETAILS."

12.1.2 Initialization
These functions are called when initializing a program.

initscr()
The first function called should always be initscr. This will determine the
terminal type and initialize curses data structures. initscr also arranges
that the first call to refresh will clear the screen.

endwin()
A program should always call endwin before exiting. This function will
restore tty modes, move the cursor to the lower left corner of the screen,
reset the terminal into the proper non-visual mode, and tear down all
appropriate data structures.

newterm(type, fd)
A program which outputs to more than one terminal should use newterm
instead of initscr. newterm should be called once for each terminal. It
returns a variable of type SCREEN * which should be saved as a reference
to that terminal. The arguments are the type of the terminal (a string) and a
stdio file descriptor (FILE*) for output to the terminal. The file descriptor
should be open for both reading and writing if input from the terminal is
desired. The program should also call endwin for each terminal being used
(see set_term below). If an error occurs, the value NULL is returned.

• The driver interface <sgtty.h> is a tty driver interface used in other versions of the UNIX
system.

Sys5 UNIX 12-13

CHAPTER12 THE CURSES AND TERMINFO PACKAGE

set_term(new)
This function is used to switch to a different terminal. The screen reference
new becomes the new current terminal. The previous terminal is returned
by the function. All other calls affect only the current terminal.

longname()
This function returns a pointer to a static area containing a verbose
description of the current terminal. It is defined only after a call to initscr,
newterm, or setupterm.

12.1.3 Option Setting .
These functions set options within curses. In each case, win is the window
affected, and bf is a boolean flag with value TRUE or FALSE indicating
whether to enable or disable the option. All options are initially FALSE. It is
not necessary to turn these options off before calling endwin.

clearok(win,bf)
If set, the next call to wrefresh with this window will clear the screen and
redraw the entire screen. If win is curscr, the next call to wrefresh with
any window will cause the screen to be cleared. This is useful when the
contents of the screen are uncertain, or in some cases for a more pleasing
visual effect. ·

idlok(win,bf)
If enabled, curses will consider using the hardware insert/delete line feature
of terminals so equipped. If disabled, curses will never use this feature.
The insert/delete character feature is always considered. Enable this option
only if your application needs insert/delete line, for example, for a screen
editor. It is disabled by default because insert/delete line tends to be
visually annoying when used in applications where it isn't really needed. If
insert/delete line cannot be used, curses will redraw the changed portions of
all lines that do not match the desired line.

keypad(win,bf)
This option enables the keypad of the users terminal. If enabled, the user
can press a function key (such as an arrow key) and getch will return a
single value representing the function key. If disabled, curses will not treat
function· keys specially. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option will
turn on the terminal keypad.

leaveok(win,bf)
Normally, the hardware cursor is left at the location of the window cursor
being refreshed. This option allows the cursor to be left wherever the

12-14 SysS UNIX

(~

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

update happens to leave it. It is useful for applications where the cursor is
not used, since it reduces the need for cursor motions. If possible, the
cursor is made invisible when this option is enabled.

meta(win,bf)
If enabled, characters returned by getch are transmitted with all 8 bits,
instead of stripping the highest bit. The value OK is returned if the request
succeeded, the value ERR is returned if the terminal or system is not
capable of 8-bit input.

Meta mode is useful for extending the non-text command set in applications
where the terminal has a meta shift key. Curses takes whatever measures
are necessary to arrange for 8-bit input. On other versions of UNIX
systems, raw mode will be used. On our systems, the character size will be
set to 8, parity checking disabled, and stripping of the 8th bit turned off.

Note that 8-bit input is a fragile mode. Many programs and networks only
pass 7 bits. If any link in the chain from the terminal to the application
program strips the 8th bit, 8-bit input is impossible.

nodelay(win,bf)
This option causes getch to be a non-blocking call. If no input is ready,
getch will return -1. If disabled, getch will hang until a key is pressed.

intrflush(win,bf)
If this option is enabled when an interrupt key is pressed on the keyboard
(interrupt, quit, suspend), all output in the tty driver queue will be flushed,
giving the effect of faster response to the interrupt but . causing curses to
have the wrong idea of what is on the screen. Disabling the option prevents
the flush. The default is for the option to be enabled. This option depends
on support in the underlying teletype driver.

typeahead(fd)
Sets the file descriptor for typeahead check. fd should be an integer
returned from open or fileno. Setting typeahead to -1 will disable
typeahead check. By default, file descriptor O (stdin) is used. Typeahead is
checked independently for each screen, and for multiple interactive
terminals it should probably be set to the appropriate input for each screen.
A call to typeahead always affects only the current screen.

scrollok(win,bf)
This option controls what happens when the cursor of a window is moved off
the edge of the window, either from a newline on the bottom line, or typing
the last character of the last line. If disabled, the cursor is left on the bottom
line. If enabled, wrefresh is called on the window, and then the physical
terminal and window are scrolled up one line. Note that in order to get the
physical scrolling effect on the terminal, it is also necessary to call idlok.

SysS UNIX 12-15

CHAPTER 12

setscrreg{t,b)
wsetscrreg(win,t,b)

THE CURSES AND TERMINFO PACKAGE

These functions allow the user to set a software scrolling region in a window
win or stdscr. t and b are the line numbers of the top and bottom margin of
the scrolling region. (Line O is the top line of the window.) If this option and
scrollok are enabled, an attempt to move off the bottom margin line will
cause all lines in the scrolling region to scroll up one line. Note that this has
nothing to do with use of a physical scrolling region capability in the terminal,
like that in the VT100. Only the text of the window is scrolled. If idlok is
enabled and the terminal has either a scrolling region or insert/delete line
capability, they will probably be used by the output routines.

12.1.4 Terminal Mode Setting
These functions are used to set modes in the tty driver. The initial mode
usually depends on the setting when the program was called: the initial
modes documented here represent the normal situation.

cbreak()
nocbreak()
These two functions put the terminal into and out of CBREAK mode. In this
mode, characters typed by the user are immediately available to the
program. When out of this mode, the teletype driver will buffer characters
typed until newline is typed. Interrupt and flow control characters are
unaffected by this mode. Initially the terminal is not in CBREAK mode.
Most interactive programs using curses will set this mode.

echo()
noecho()
These functions control whether characters typed by the user are echoed as
typed. Initially, characters typed are echoed by the teletype driver. Authors
of many interactive programs prefer to do their own echoing in a controlled
area of the screen, or not to echo at all, so they disable echoing.

nl()
non I()
These functions control whether newline is translated into carriage return
and linefeed on output, and whether return is translated into newline on
input. Initially, the translations do occur. By disabling these translations,
curses is able to make better use of the linefeed capability, resulting in
faster cursor motion.

raw()
noraw()
The terminal is placed into or out of raw mode. Raw mode is similar to
cbreak mode in that characters typed are immediately passed through to the
user program. The differences are that in RAW mode, the interrupt, quit,
and suspend characters are passed through uninterpreted instead of

12-16 Sys5 UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER12

generating a signal. RAW mode also causes 8 bit input and output. The
behavior of the BREAK key may be different on different systems.

resetty()
savetty()
These functions save and restore the state of the tty modes. savetty saves
the current state in a buffer, resetty restores the state to what it was at the
last call to savetty.

12.1.5 Window Manipulation
newwin(num_lines, num_cols, beg_row, beg_col)
Create a new window with the given number of lines and columns. The
upper left corner of the window is at line beg_row column beg_col. If either
num_lines or num_cols is zero, they will be defaulted to LINES-beg_row
and COLS-beg_col. A new full-screen window is created by calling
newwin(0,0,0,0).

newpad(num_lines, num_cols)
Creates a new pad data structure. A pad is like a window, except that it is
not restricted by the screen size, and is not associated with a particular part
of the screen. Pads can be used when a large window is needed, and only
a part of the window will be on the screen at one time. Automatic refreshes
of pads (e.g. from scrolling or echoing of input) do not occur. It is not legal
to call refresh with a pad as an argument, the routines prefresh or
pnoutrefresh should be called instead. Note that these routines require
additional parameters to specify the part of the pad to be displayed and the
location on the screen to be used for display.

subwin(orig, num_lines, num_cols, begy, begx)
Create a new window with the given number of lines and columns. The
window is at position (begy, begx) on the screen. (It is relative to the
screen, not orig.) The window is made in the middle of the window orig, so
that changes made to one window will affect both windows. When using
this function, often it will be necessary to call touchwin before calling
wrefresh.

delwin(win)
Deletes the named window, freeing up all memory associated with it. In the
case of overlapping windows, subwindows should be deleted before the
main window.

mvwin(win, br, be)
Move the window so that the upper left corner will be at position {br, be). If
the move would cause the window to be off the screen, it is an error and the
window is not moved.

Sys5 UNIX 12-17

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

touchwin(win)
Throw away all optimization information about which parts of the window
have been touched, by pretending the entire window has been drawn on.
This is sometimes necessary when using overlapping windows, since a
change to one window will affect the other window, but the records of which
lines have been changed in the other window will not reflect the change.

overlay(win1, win2)
overwrite(win1, win2)
These functions overlay win1 on top of win2; that is, all text in win1 is
copied into win2. The difference is that overlay is nondestructive (blanks
are not copied) while overwrite is destructive.

12.1.6 Causing Output to the Terminal
refresh()
wrefresh(win)
These functions must be called to get any output on the terminal, as other
routines merely manipulate data structures. wrefresh copies the named
window to the physical terminal screen, taking into account what is already
there in order to do optimizations. refresh is the same, using stdscr as a
default screen. Unless leaveok has been enabled, the physical cursor of
the terminal is left at the location of the window's cursor.

doupdate()
wnoutrefresh(win)
These two functions allow multiple updates with more efficiency than
wrefresh. To use them, it is important to understand how curses works. In
addition to all the window structures, curses keeps two data structures
representing the terminal screen: a physical screen, describing what is
actually on the screen, and a virtual screen, describing what the
programmer wants to have on the screen. wrefresh works by first copying
the named window to the virtual screen (wnoutrefresh), and then calling the
routine to update the screen (doupdate). If the programmer wishes to
output several windows at once, a series of calls to wrefresh will result in
alternating calls to wnoutrefresh and doupdate, causing several bursts of
output to the screen. By calling wnoutrefresh for each window, it is then
possible· to call doupdate once, resulting in only one burst of output, with
probably fewer total characters transmitted.

prefresh{pad,pminrow,pmincol,sminrow,smincol,smaxrow,smaxcol)
pnoutrefresh{pad,pminrow,pmincol,sminrow,smincol,smaxrow,smaxcol)
These routines are analogous to wrefresh and wnoutrefresh except that
pads, instead of windows, are involved. The additional parameters are
needed to indicate what part of the pad and screen are involved. pminrow
and pmincol specify the upper left corner, in the pad, of the rectangle to be
displayed. sminrow, smincol, smaxrow, and smaxcol specify the edges,

12-18 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

on the screen, of the rectangle to be displayed in. The lower right corner in
the pad of the rectangle to be displayed is calculated from the screen
coordinates, since the rectangles must be the same size. Both rectangles
must be entirely contained within their respective structures.

12.1.7 Writing on Window Structures
These routines are used to "draw" text on windows. In all cases, a missing
win is taken to be stdscr. y and x are the row and column, respectively.
The upper left corner is always (0,0), not (1, 1). The mv functions imply a
call to move before the call to the other function.

12.1.7.1 Moving the Cursor
move{y, x)
wmove(win, y, x)
The cursor associated with the window is moved to the given location. This
does not move the physical cursor of the terminal until refresh is called.
The position specified is relative to the upper left corner of the window.

12.1.7.2 Writing One Character
addch{ch)
waddch(win, ch)
mvaddch{y, x, ch)
mvwaddch(win, y, x, ch)
The character ch is put in the window at the current cursor position of the
window. If ch is a tab, newline, or backspace, the cursor will be moved
appropriately in the window. If ch is a different control character, it will be
drawn in the ·x notation. The position of the window cursor is advanced. At
the right margin, an automatic newline is performed. At the bottom of the
scrolling region, if scrollok is enabled, the scrolling region will be scrolled up
one line.

The ch parameter is actually an integer, not a character. Video attributes
can be combined with a character by or-ing them into the parameter. This
will result in these attributes also being set. (The intent here is that text,
including attributes, can be copied from one place to another with inch and
addch.)

12.1.7.3 Writing a String
addstr(str)
waddstr(win,str)
mvaddstr{y,x,str)
mvwaddstr(win,y,x,str)
These functions write all the characters of the null terminated character
string str on the given window. They are identical to a series of calls to
addch.

Sys5 UNIX 12-19

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

12.1. 7.4 Clearing Areas of the Screen
erase()
werase(win)
These functions copy blanks to every position in the window.

clear()
wclear(win)
These functions are like erase and werase but they also call clearok,
arranging that the screen will be cleared on the next call to refresh for that
window.

clrtobot()
wclrtobot(win)
All lines below the cursor in this window are erased. Also, the current line to
the right of the cursor is erased.

clrtoeol()
wclrtoeol(win)
The current line to the right of the cursor is erased.

12.1. 7.5 Inserting and Deleting Text
de I ch()
wdelch(win)
mvdelch{y,x)
mvwdelch{win, y ,x)
The character under the cursor in the window is deleted. All characters to
the right on the same line are moved to the left one position. This does not
imply use of the hardware delete character feature.

deleteln()
wdeleteln(win)
The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. This does not imply use of the hardware delete line feature.

insch(c)
winsch(win, c)
mvinsch{y,x,c)
mvwinsch(win,y,x,c)
The character c is inserted before the character under the cursor. All
characters to the right are moved one space to the right, possibly losing the
rightmost character on the line. This does not imply use of the hardware
insert character feature.

12-20 Sys5 UNIX

(

(

THE CURSES AND TERMINFO PACKAGE

insertln()
winsertln(win)

CHAPTER 12

A blank line is inserted above the current line. The bottom line is lost. This
does not imply use of the hardware insert line feature.

12.1. 7 .6 Formatted Output
printw(fmt, args)
wprintw(win, fmt, args)
mvprintw(y, x, fmt, args)
mvwprintw(win, y, x, fmt, args)
These functions correspond to printf. The characters which would be
output by printf are instead output using waddch on the given window.

12.1.7.7 Miscellaneous
box(win, vert, hor)
A box is drawn around the edge of the window. vert and hor are the
characters the box is to be drawn with.

scroll(win)
The window is scrolled up one line. This involves moving the lines in the
window data structure. As an optimization, if the window is stdscr and the
scrolling region is the entire window, the physical screen will be scrolled at
the same time.

12.1.8 Input from a Window
getyx(win,y,x)
The cursor position of the window is placed in the two integer variables y
and x. Since this is a macro, no & is necessary.

inch()
winch(win)
mvinch(y,x)
mvwinch(win,y,x)
The character at the current position in the named window is returned. If
any attributes are set for that position, their values will be or-ed into the
value returned. The predefined constants A_ATTRIBUTES and
A_CHARTEXT can be used with the & operator to extract the character or
attributes alone.

12.1.9 Input from the Term in al

Sys5 UNIX 12-21

CHAPTER12

get ch()
wgetch(win)
mvgetch(y,x)
mvwgetch(win, y ,x)

THE CURSES AND TERMINFO PACKAGE

A character is read from the terminal associated with the window. In
nodelay mode, if there is no input waiting, the value -1 is returned. In delay
mode, the program will hang until the system passes text through to the
program. Depending on the setting of cbreak, this will be after one
character, or after the first newline.

If keypad mode is enabled, and a function key is pressed, the code for that
function key will be returned instead of the raw characters. Possible
function keys are defined with integers beginning with 0401, whose names
begin with KEY_. These are listed in "Input" under "INTRODUCTION." If a
character is received that could be the beginning of a function key (such as
escape), curses will set a 1-second timer. If the remainder of the sequence
does not come in within 1 second, the character will be passed through,
otherwise the function key value will be returned. For this reason, on many
terminals, there will be a one second delay after a user presses the escape
key. (Use by a programmer of the escape key for a single character
function is discouraged.)

getstr(str)
wgetstr(win,str)
mvgetstr(y ,x,str)
mvwgetstr(win, y ,x,str)
A series of calls to getch is made, until a newline is received. The resulting
value is placed in the area pointed at by the character pointer str. The
users' erase and kill characters are interpreted.

scanw(fmt, args)
wscanw(win, fmt, args)
mvscanw{y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
This function corresponds to scanf. wgetstr is called on the window, and
the resulting line is used as input for the scan.

12.1.10 Video Attributes

12-22 SysS UNIX

THE CURSES AND TERMINFO PACKAGE

attroff{at)
wattroff{win, attrs)
attron{at)
wattron(win, attrs)
attrset{at)
wattrset{win, attrs)
standout{)
standend{)
wstandout{win)
wstandend{win)

CHAPTER 12

These functions set the current attributes of the named window. These
attributes can be any combination of A_STANDOUT, A_REVERSE,
A_BOLD, A_DIM, A_BLINK, and A_UNDERLINE. These constants are
defined in <curses.h> and can be combined with the CI (or) operator.

The current attributes of a window are applied to all characters that are
written into the window with waddch. Attributes are a property of the
character, and move with the character through any scrolling and
insert/delete line/character operations. To the extent possible on the
particular terminal, they will be displayed as the graphic rendition of
characters put on the screen.

attrset(at) sets the current attributes of the given window to at. attroff(at)
turns off the named attributes without affecting any other attributes.
attron(at) turns on the named attributes without affecting any others.
standout is the same as attron(A_ST ANDOUT) standend is the same as
attrset(O), that is, it turns off all attributes.

12.1.11 Bells and Flashing Lights
beep{)
flash{)
These functions are used to signal the programmer. beep will sound the
audible alarm on the terminal, if possible, and if not, will flash the screen
(visible bell), if that is possible. flash will flash the screen, and if that is not
possible, will sound the audible signal. If neither signal is possible nothing
will happen. Nearly all terminals haye an audible signal (bell or beep) but
only some can flash the screen.

12.1.12 Portability Functions
These functions do not directly involve terminal dependent character output
but tend to be needed by programs that use curses. Unfortunately, their

t UNIX is a Trademark of Bell Laboratories

Sys5 UNIX 12-23

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

implementation varies from one version of UNIXt to another. They have
been included here to enhance the portability of programs using curses.

baudrate()
baudrate returns the output speed of the terminal. The number returned is
the integer baud rate, for example, 9600, rather than a table index such as
89600.

erasechar()
The erase character chosen by the user is returned. This is the character
typed by the user to erase the character just typed.

killchar()
The line kill character chosen by the user is returned. This is the character
typed by the user to forget the entire line being typed.

flushinp()
flushinp throws away any typeahead that has been typed by the user and
has not yet been read by the program.

12.1.13 Delays
These functions are highly unportable, but are often needed by programs
that use curses, especially real time response programs. Some of these
functions require a particular operating system or a modification to the
operating system to work. In all cases, the routine will compile and return
an error status if the requested action is not possible. It is recommended
that programmers avoid use of these functions if possible.

draino(ms) The program is suspended until the output queue has drained
enough to complete in ms additional milliseconds. Thus, draino(50) at 1200
baud would pause until there are no more than 6 characters in the output
queue, because it would take 50 milliseconds to output the additional 6
characters. The purpose of this routine is to keep the program (and thus the
keyboard) from getting ahead of the screen. If the operating system does
not support the ioctls needed to implement draino, the value ERR is
returned; otherwise, OK is returned.

napms(ms) This function suspends the program for ms milliseconds. It is
similar to sleep except with higher resolution. The resolution actually
provided will vary with the facilities available in the operating system, and
often a change to the operating system will be necessary to produce good
results. If resolution of at least .1 second is not possible, the routine will
round to the next higher second, call sleep, and return ERR. Otherwise, the
value OK is returned. Often the resolution provided is 1160th second.

12.1.14 Lower Level Functions
These functions are provided for programs not needing the screen
optimization capabilities of curses. Programs are discouraged from working

12-24 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

at this level, since they must handle various glitches in certain terminals.
However, a program can be smaller if it only brings in the low level routines.

12.1.14.1 Cursor Motion
mvcur(oldrow, oldcol, newrow, newcol)
This routine optimally moves the cursor from (oldrow, oldcol) to (newrow,
newcol). The user program is expected to keep track of the current cursor
position. Note that unless a full screen image is kept, curses will have to
make pessimistic assumptions, sometimes resulting in less than optimal
cursor motion. For example, moving the cursor a few spaces to the right
can be done by transmitting the characters being moved over, but if curses
does not have access to the screen image, it doesn't know what these
characters are.

12.1.14.2 Terminfo Level
These routines are called by low level programs that need access to specific
capabilities of terminfo. A program working at this level should include both
<curses.h> and <term.h> in that order. After a call to setupterm, the
capabilities will be available with macro names defined in <term.h>. See
terminfo(4) for a detailed description of the capabilities.

Boolean valued capabilities will have the value 1 if the capability is present,
0 if it is not. Numeric capabilities have the value -1 if the capability is
missing, and have a value at least O if it is present. String capabilities (both
those with and without parameters) have the value NULL if the capability is
missing, and otherwise have type char * and point to a character string
containing the capability. The special character codes involving the , and ·
characters (such as \r for return, or ·A for control A) are translated into the
appropriate ASCII characters. Padding information (of the form $<time>)
and parameter information (beginning with %) are left uninterpreted at this
stage. The routine tputs interprets padding information, and tparm
interprets parameter information.

If the program only needs to handle one terminal, the definition -DSINGLE
can be passed to the C compiler, resulting in static references to capabilities
instead of dynamic references. This can result in smaller code, but prevents
use of more than one terminal at a time. Very few programs use more than
one terminal, so almost all programs can use this flag.

setupterm(term, filenum, errret)
This routine is called to initialize a terminal. term is the character string
representing the name of the terminal being used. filenum is the UNIX file
descriptor of the terminal being used for output. errret is a pointer to an
integer, in which a success or failure indication is returned. The values
returned can be 1 (all is well), 0 (no such terminal), or -1 (some problem
locating the terminfo database).

SysS UNIX 12-25

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

The value of term can be given as 0, which will cause the value of TERM in
the environment to be used. The errret pointer can also be given as 0,
meaning no error code is wanted. If errret is defaulted, and something goes
wrong, setupterm will print an appropriate error message and exit, rather
than returning. Thus, a simple program can call setupterm{O, 1, 0) and not
worry about initialization errors.

If the variable TERMINFO is set in the environment to a path name,
setupterm will check for a compiled terminfo description of the terminal
under that path, before checking /etc/term. Otherwise, only /etc/term is
checked.

setupterm will check the tty driver mode bits, using filenum, and change
any that might prevent the correct operation of other low level routines.
Currently, the mode that expands tabs into spaces is disabled, because the
tab character is sometimes used for different functions by different
terminals. (Some terminals use it to move right one space. Others use it to
address the cursor to row or column 9.) If the system is expanding tabs,
setupterm will remove the definition of the tab and backtab functions,
making the assumption that since the user is not using hardware tabs, they
may not be properly set in the terminal. Other system dependent changes,
such as disabling a virtual terminal driver, may be made here.

As a side effect, setupterm initializes the global variable ttytype, which is
an array of characters, to the value of the list of names for the terminal.
This list comes from the beginning of the terminfo description.

After the call to setupterm, the global variable cur_term is set to point to
the current structure of terminal capabilities. By calling setupterm for each
terminal, and saving and restoring cur_term, it is possible for a program to
use two or more terminals at once.

The mode that turns newlines into CRLF on output is not disabled.
Programs that use cursor _down or scrolUorward should avoid these
capabilities if their value is linefeed unless they disable this mode.
setupterm calls reset_prog_mode after any changes it makes.

reset_prog_mode()
reset_shell_mode()
def _prog_mode()
def_shell_mode()
These routines can be used to change the tty modes between the two
states: shell (the mode they were in before the program was started) and
program (the mode needed by the program). def_prog_mode saves the
current terminal mode as program mode. setupterm and initscr call
def_shell_mode automatically. reset_prog_mode puts the terminal into
program mode, and reset_shell_mode puts the terminal into normal mode.

12-26 Sys5 UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

A typical calling sequence is for a program to call initscr (or setupterm if a
terminfo level program), then to set the desired program mode by calling
routines such as cbreak and noecho, then to call def_prog_mode to save
the current state. Before a shell escape or control-Z suspension, the
program should call reset_shell_mode, to restore normal mode for the
shell. Then, when the program resumes, it should call reset_prog_mode.
Also, all programs must call reset_shell_mode before they exit. (The
higher level routine endwin automatically calls reset_shell_mode.)

Normal mode is stored in cur_term->Ottyb, and program mode is in
cur_term->Nttyb. These structures are both of type SGTTYB (which
varies depending on the system). Currently the possible types are struct
sgttyb (on some other systems) and struct termio (on this version of the
UNIX system). def_prog_mode should be called to save the current state
in Nttyb.

vidputs(newmode, putc)
newmode is any combination of attributes, defined in <curses.h>. putc is
a putchar-like function. The proper string to put the terminal in the given
video mode is output. The previous mode is remembered by this routine.
The result characters are passed through putc.

vidattr(newmode)
The proper string to put the terminal in the given video mode is output to
stdout.

tparm(instring, p1, p2, p3, p4, p5, p6, p7, p8, p9)
tparm is used to instantiate a parameterized string. The character string
returned has the given parameters applied, and is suitable for tputs. Up to
9 parameters can be passed, in addition to the parameterized string.

tputs(cp, affcnt, outc)
A string capability, possibly containing padding information, is processed.
Enough padding characters to delay for' the specified time replace the
padding specification, and the resulting string is passed, one character at a
time, to the routine outc, which should expect one character parameter.
(This routine often just calls putchar.) cp is the capability string. affcnt is
the number of units affected by the capability, which varies with the
particular capability. (For example, the affcnt for insert_line is the number
of lines below the inserted line on the screen, that is, the number of lines
that will have to be moved by the terminal.) affcnt is used by the padding
information of some terminals as a multiplication factor. If the capability
does not have a factor, the value 1 should be passed.

SysS UNIX 12-27

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

putp(str)
This is a convenient function to output a capability with no affcnt. The string
is output to putchar with an affcnt of 1. It can be used in simple
applications that do not need to process the output of tputs.

delay _output(ms)
A delay is inserted into the output stream for the given number of
milliseconds. The current implementation inserts sufficient pad characters
for the delay. This should not be used in place of a high resolution sleep,
but rather for delay effects in the output. Due to buffering in the system, it is
unlikely that this call will result in the process actually sleeping. Since large
numbers of pad characters can be output, it is recommended that ms not
exceed 500.

12.2 OPERATION DETAILS

These paragraphs describe many of the details of how the curses and
terminfo package operates.

12.2.1 Insert and Delete Line and Character
The algorithm used by curses takes into account insert and delete line and
character functions, if available, in the terminal. Calling the routine

idlok(stdscr, TRUE);

will enable insert/delete line. By default, curses will not use insert/delete
line. This was not done for performance reasons, since there is no speed
penalty involved. Rather, experience has shown that some programs do not
need this facility, and that if curses uses insert,delete line, the result on the
screen can be visually annoying. Since many simple programs using
curses do not need this, the default is to avoid insert/delete line.
lnsert,delete character is always considered.

12.2.2 Additional Terminals
Curses will work even if absolute cursor addressing is not possible, as long
as the cursor can be moved from any location to any other location. It
considers local motions, parameterized motions, home, and carriage return.

Curses is aimed at full duplex, alphanumeric, video terminals. No attempt is
made to handle half-duplex, synchronous, hard copy, or bitmapped
terminals. Bitmapped terminals can be handled by programming the
bitmapped terminal to emulate an ordinary alphanumeric terminal. This
does not take advantage of the bitmap capabilities, but it is the fundamental
nature of curses to deal with alphanumeric terminals.

The curses handles terminals with the "magic cookie glitch" in their video
attributes. The term "magic cookie" means that a change in video attributes
is implemented by storing a "magic cookie" in a location on the screen.
This "cookie" takes up a space, preventing an exact implementation of what

12-28 SysS UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

the programmer wanted. Curses takes the extra space into account, and
moves part of the line to the right, as necessary. In some cases, this will
unavoidably result in losing text from the right hand edge of the screen.
Advantage is taken of existing spaces.

12.2.3 Multiple Terminals
Some applications need to display text on more than one terminal,
controlled by the same process. Even if the terminals are of different types,
curses can handle this.

All information about the current terminal is kept in a global variable

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler will
accept declarations of variables which are pointers. The user program
should declare one screen pointer variable for each terminal it wishes to
handle. The routine

struct screen *
newterm(type, fd}

will set up a new terminal of the given terminal type which does output on
file descriptor fd. A call to initscr is essentially
newterm{getenv("TERM"),stdout}. A program wishing to use more than
one terminal should use newterm for each terminal and save the value
returned as a reference to that terminal.

To switch to a different terminal, call

set_term(term}

The old value of SP will be returned. The programmer should not assign
directly to SP because certain other global variables must also be changed.

All curses routines always affect the current terminal. To handle several
terminals, switch to each one in turn with set_term, and then access it.
Each terminal must be set up with newterm, and closed down with endwin.

12.2.4 Video Attributes
Video attributes can be displayed in any combination on terminals with this
capability. They are treated as an extension of the standout capability,
which is still present.

Each character position on the screen has 16 bits of information associated
with it. Seven of these bits are the character to be displayed, leaving
separate bits for nine video attributes. These bits are used for standout,
underline, reverse video, blink, dim, bold, blank, protect, and alternate
character set. Standout is taken to be whatever highlighting works best on
the terminal, and should be used by any program that does not need

Sys5 UNIX 12-29

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

specific or combined attributes. Underlining, reverse video, blink, dim, and
bold are the usual video attributes. Blank means that the character is
displayed as a space, for security reasons. Protected and alternate
character set depend on the particular terminal. The use of these last three
bits is subject to change and not recommended. Note also that not all
terminals implement all attributes - in particular, no current terminal
implements both dim and bold.

The routines to use these attributes include

attrset(attrs)
attron(attrs)
attroff(attrs)
standout()
standend()

wattrset(wln, attrs)
wattron(wln, attrs)
wattroff(wln, attrs)
wstandout(wln)
wstandend{wln)

Attributes, if given, can be any combination of A_STANDOUT,
A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM, A_BOLD, A_INVIS,
A_PROTECT, and A_AL TCHARSET. These constants, defined in
curses.h, can be combined with the C I (or) operator to get multiple
attributes. attrset sets the current attributes to the given attrs; attron turns
on the given attrs in addition to any attributes that are already on; attroff ·
turns off the given attributes, without affecting any others. standout and
standend are equivalent to attron(A_STANDOUT) and
attrset(A_NORMAL).

If the particular terminal does not have the particular attribute or combination
requested, curses will attempt to use some other attribute in its place. If
the terminal has no highlighting at all, all attributes will be ignored.

12.2.5 Special Keys
Many terminals have special keys, such as arrow keys, keys to erase the
screen, insert or delete text, and keys intended for user functions. The
particular sequences these terminals send differs from terminal to terminal.
Curses allows the programmer to handle these keys.

A program using special keys should turn on the keypad by calling

keypad(stdscr, TRUE)

at initialization. This will cause special characters to be passed through to
the program by the function getch. These keys have constants which are
listed in "Input" under "INTRODUCTION." They have values starting at
0401, so they should not be stored in a char variable, as significant bits will
be lost.

A program using special keys should avoid using the escape key, since
most sequences start with escape, creating an ambiguity. Curses will set a
one second alarm to deal with this ambiguity, which will cause delayed

12-30 Sys5 UNIX

."' 7

(

(_

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

response to the escape key. It is a good idea to avoid escape in any case,
since there is eventually pressure for nearly any screen oriented program to
accept arrow key input.

12.2.6 Scrolling Region
There is a programmer accessible scrolling region. Normally, the scrolling
region is set to the entire window, but the calls

setscrreg(top, bot)
wsetscrreg(win, top, bot)

set the scrolling region for stdscr or the given window to any combination of
top and bottom margins. When scrolling past the bottom margin of the
scrolling region, the lines in the region will move up one line, destroying the
top line of the region. If scrolling has been enabled with scrollok, scrolling
will take place only within that window. Note that the scrolling region is a
software feature, and only causes a window data structure to scroll. This
may or may not translate to use of the hardware scrolling region feature of a
terminal, or insert/delete line.

12.2. 7 Mini-Curses
Curses copies from the current window to an internal screen image for every
call to refresh. If the programmer is only interested in screen output
optimization, and does not want the windowing or input functions, an
interface to the lower level routines is available. This will make the program
somewhat smaller and faster. The interface is a subset of full curses, so
that conversion between the levels is not necessary to switch from mini­
cu rses to full curses.

The following functions of curses and terminfo are available to the user of
minicurses:

addch(ch)
attrset(at)
move(y, x)
refresh()

Sys5 UNIX

addstr(str)
clear()
mvaddch(y,x,ch)
standend()

attroff(at)
erase()
mvaddstr(y ,x,str)
standout()

attron(at)
initscr
newterm

12-31

CHAPTER12 THE CURSES ANDTERMINFO PACKAGE

The following functions of curses and term info are not available to the user
of minicurses:

box clrtobot clrtoeol delch
deleteln delwin get ch getstr
inch insch insertln long name
make new mvdelch mvgetch mvgetstr
mvinch mvinsch mvprintw mvscanw
mvwaddch mvwaddstr mvwdelch mvwgetch
mvwgetstr mvwin mvwinch mvwinsch
mvwprintw mvwscanw newwin overlay
overwrite printw putp scanw
scroll setscrreg subwin touchwin
vidattr waddch waddstr wclear
wclrtobot wclrtoeol wdelch wdeleteln
werase wgetch wgetstr winsch
winsertln wmove wprintw wrefresh
wscanw wsetscrreg

The subset mainly requires the programmer to avoid use of more than the
one window stdscr. Thus, all functions beginning with "w" are generally
undefined. Certain high level functions that are convenient but not essential
are also not available, including printw and scanw. Also, the input routine
getch cannot be used with mini-curses. Features implemented at a low
level, such as use of hardware insert/delete line and video attributes, are
available in both versions. Also, mode setting routines such as crmode and
noecho are aHowed.

To access mini-curses, add -DMINICURSES to the CFLAGS in the
makefile. If routines are requested that are not in the subset, the loader will
print error messages such as

Undefined:
m_getch
m_waddch

to tell you that the routines getch and waddch were used but are not
available in the subset. Since the preprocessor is involved in the
implementation of mini-curses, the entire program must be recompiled when
changing from one version to the other.

12.2.8 TTY Mode Functions
In addition to the save/restore routines savetty() and resetty(), standard
routines are available for going into and out of normal tty mode. These
routines are resetterm(), which puts the terminal back in the mode it was in
when curses was started; fixterm(), which undoes the effects of resetterm,

12-32 SysS UNIX

(

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

that is, restores the "current curses mode"; and saveterm(), which saves
the current state to be used by fixterm(). endwin automatically calls
resetterm, and the routine to handle control-Z (on other systems that have
process control) also uses resetterm and fixterm. Programmers should
use these routines before and after shell escapes, and also if they write their
own routine to handle control-Z. These routines are also available at the
terminfo level.

12.2.9 Typeahead Check
If the user types something during an update, the update will stop, pending
a future update. This is useful when the user hits several keys, each of
which causes a good deal of output. For example, in a screen editor, if the
user presses the "forward screen" key, which draws the next screen full of
text, several times rapidly, rather than drawing several screens of text, the
updates will be cut short, and only the last screen full will actually be
displayed. This feature is automatic and cannot be disabled. The feature
only works on versions of the UNIX system with the necessary support in
the operating system.

12.2.1 O getstr
No matter what the setting of echo is, strings typed in here are echoed at
the current cursor location. The users erase and kill characters are
understood and handled. This makes it unnecessary for an interactive
program to deal with erase, kill, and echoing when the user is typing a line
of text.

12.2.11 longname
The longname function does not need any arguments. It returns a pointer
to a static area containing the actual long name of the terminal.

12.2.12 Nodelay Mode
The call

nodelay(stdscr, TRUE)

will put the terminal in "nodelay mode". While in this mode, any call to
getch will return -1 if there is nothing waiting to be read immediately. This
is useful for writing programs requiring "real time" behavior where the users
watch action on the screen and press a key when they want something to
happen. For example, the cursor can be moving across the screen, in real
time. When it reaches a certain point, the user can press an arrow key to
change direction at that point.

12.2.13 Portability
Several useful routines are provided to improve portability. The
implementation of these routines is different from system to system, and the
differences can be isolated from the user program by including them in
curses.

Sys5 UNIX 12-33

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

Functions erasechar() and killchar() return the characters which erase one
character, and kill the entire input line, respectively. The function baudrate()
will return the current baud rate, as an integer. (For example, at 9600 baud,
the integer 9600 will be returned, not the value 89600 from <sgtty.h>.)
The routine flushinp() will cause all typeahead to be thrown away.

12-34 Sys5 UNIX

(

CURSES EXAMPLE CHAPTER 13

13. CURSES EXAMPLE

The following examples are provided to demonstrate uses of curses. They
are for illustration purposes only. A good programmer would expand the
programs presented here before using them.

13.1 EXAMPLE PROGRAM 'editor'

/*
* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr itself to simplify
*the program.
*/

#include <curses.h>

#define CTRL(c) ('c' & 037)

main(argc, argv)
char **argv;
{

inti, n, I;
int c;
FILE *fd;

if (argc != 2) {

}

fprintf(stderr, "Usage: edit fileO);
exit(1);

fd = fopen(argv[1J, "r");
if (fd = = NULL) {

perror(argv[1]);
exit(2);

}

initscr();
cbreak();
nonl();
noecho();
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

(I* Read in the file * !

Sys5 UNIX 13-1

CHAPTER 13 CURSES EXAMPLE

}

while ((c = getc(fd)) != EOF)
addch(c);

fclose(fd);

move(O,O);
refresh();
edit();

I* Write out the file *I
fd = fopen(argv[1], "w");
for (l=O; 1<23; I++) {

n = len(I);
for (i=O; i<n; i+ +)

putc(mvinch(I, i), fd);
putc('O, fd);

}
fclose(fd);

endwin();
exit(O);

len(lineno)
int lineno;
{

}

int linelen = COLS-1 ;

while (linelen > =O && mvinch(lineno, tinelen) = = ' ')
linelen--;

return linelen + 1 ;

/*Global value of current cursor position*/
int row, col;

edit()
{

int c;

for (;;) {

13-2

move(row, col);
refresh();
c = getch();
switch (c) { I* Editor commands*/

Sys5 UNIX

CURSES EXAMPLE CHAPTER 13

(/* hjkl and arrow keys: move cursor *I
I* in direction indiated *I
case 'h':
case KEY _LEFT:

if (col> 0)
col--;

break;

case 'j':
case KEY _DOWN:

if (row < LINES-1)
row++;

break;

case 'k':
case KEY _UP:

if (row> 0)
row--; -

break;

case 'I':

(case KEY _RIGHT:
if (col< COLS-1)

col++;
break;

/* i: enter input mode *I
case KEY _IC:
case 'i':

input();
break;

/* x: delete current character*/
case KEY _DC:
case 'x':

delch();
break;

I* o: open up a new line and enter input mode *I
case KEY _IL:
case 'o':

move(++ row, col=O);
(~ insertln();

input();

Sys5 UNIX 13-3

CHAPTER 13

}
}

/*

break;

/* d: delete current line*/
case KEY _DL:
case 'd':

deleteln();
break;

/* ·L: redraw screen*/
case KEY _CLEAR:
case CTRL(L):

clearok(curscr);
refresh();
break;

I* w: write and quit *I
case 'w':

return;

/* q: quit without writing */
case 'q':

endwin();
exit(1);

default:

}

flash();
break;

* Insert mode: accept characters and insert them.
* End with ·o or EiC
*/

input() _
{

13-4

int c;

standout();
mvaddstr(LINES-1, COLS-20, "INPUT MODE");
standend();
move(row, col);
refresh();
for (;;) {

CURSES EXAMPLE

Sys5 UNIX

(

(

(

CURSES EXAMPLE

}

}

c = getch();
if (c = = CTRL(D) I c = = KEY _EiC)

break;
insch(c);
move(row, ++col);
refresh();

move(LINES-1, COLS-20);
clrtoeol();
move(row, col);
refresh();

SysS UNIX

CHAPTER 13

13-5

CHAPTER 13

13.2 EXAMPLE PROGRAM 'highlight'

/*
*highlight: a program to turn U, B, and
* N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <curses.h>

main(argc, argv)
char **argv;
{

13-6

FILE *fd;
int c, c2;

if (argc != 2) {

}

fprintf(stderr, "Usage: highlight fileO);
exit(1);

fd = fopen(argv[1], "r");
if (fd = = NULL) {

perror(argv[1]) ;
exit(2);

}

initscr();
scrollok(stdscr, TRUE);

for (;;) {
c = getc(fd);
if (c == EOF)

break;
if (c = = \') {

c2 = getc(fd);
switch (c2) {
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(O);

CURSES EXAMPLE

SysS UNIX

(~

(

CURSES EXAMPLE

}

continue;
}
addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-7

CHAPTER13 CURSES EXAMPLE

13.3 EXAMPLE PROGRAM 'scatter' ,.,.- "'-

/* ·'I...__ ,,,.

* SCATTER. This program takes the first
* 23 lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLS];/* ·Screen Array */

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZ];

initscr();
for(row=O;row<MAXLINES;row+ +)

for(col=O;col<MAXCOLS;col+ +)
s[row][col]= • ';

row= O;
I* Read screen in *I
while((c=getchar()) != EOF && row< LINES) {

if(c != 'O) {
I* Place char in screen array *I
s[row][col++] = c;
if(c != ' ')

char_count+ +;
} else {

col=O;
row++;

}
}

time(&t); I* Seed the random number generator*/ /

srand((int)(t&0177777L));
" / ..

13-8 Sys5 UNIX

(

(

CURSES EXAMPLE

}

continue;
}
addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-7

CHAPTER 13 CURSES EXAMPLE

13.3 EXAMPLE PROGRAM 'scatter' / ··-,

/*
\~ __ __;·

* SCA TIER. This program takes the first
* 23 lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLS];/* Screen Array*/

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZ];

initscr(); /

for(row=O;row<MAXLINES;row+ +)
for(col=O;col<MAXCOLS;col+ +)

s[row][col]=' ';

row= O;
/* Read screen in *I
while((c=getchar()) != EOF && row < LINES) {

if(c != 'O) {
I* Place char in screen array */
s[row][col+ +] = c;
if(c != · ')

char_count+ +;
} else {

col=O;
row++;

}
}

time(&t); /*Seed the random number generator*/ ,1(. -,

srand((int)(t&0177777L)); '· ', '- ... /

13-8 Sys5 UNIX

(

(

CURSES EXAMPLE

}

continue;
}
addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-7

CHAPTER 13 CURSES EXAMPLE

13.3 EXAMPLE PROGRAM 'scatter' /

/* ""'-, ___ ,.....-'

* SCATTER. This program takes the first
* 23 lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINESJ[MAXCOLS];/* Screen Array*/

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZ];

initscr();
for(row=O;row<MAXLINES;row+ +)

for(col=O;col<MAXCOLS;col+ +)
s[row][col]=' ';

row= O;
I* Read screen in *I
while((c=getchar()) != EOF && row < LINES) {

if(c != 'O) {
I* Place char in screen array *I
s[row][col+ +] = c;
if(c != ' ')

char _count+ +;
} else {

col=O;
row++;

}
}

time(&t); /*Seed the random number generator*/
(
/ -,

srand((int)(t&O 177777L)); c,,

13·8 Sys5 UNIX

CURSES EXAMPLE

}

while(char_count) {
row=rand() % LINES;
col=(rand()>>2) % COLS;
if(s[row][col] != ' ')
{

}
}
endwin();
exit(O);

move(row, col);
addch(s[row][col]);
s[row][col]=EOF;
char_count--;
refresh();

Sys5 UNIX

CHAPTER 13

13-9

CHAPTER 13 CURSES EXAMPLE

13.4 EXAMPLE PROGRAM 'show'

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argv[];
{

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if(argc != 2)
{

}

fprintf(stderr,"usage: %s fileO, argv[O]);
exit(1);

if((fd=fopen(argv[1],"r")) ==NULL)
{

perror(argv[1]);
exit(2);

}
signal(SIGINT, done);

initscr();
noecho();
cbreak();
nonl();
idlok(stdscr, TRUE);

while(1)
{

move(O,O);
for(line=O; line< LINES; line++)
{

}

if(fgets(linebuf, sizeof linebuf, fd) = = NULL)
{

}

clrtobot();
done();

move(line, O);
printw("%s", linebuf);

13-10 SysS UNIX

(

CURSES EXAMPLE

}
}

refresh();
if(getch() = = 'q')

done();

void
done()
{

}

move(LINES-1, O);
clrtoeol();
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-11

CHAPTER 13 CURSES EXAMPLE

13.5 EXAMPLE PROGRAM 'termhl'

/* ""'
* A terminfo level version of highlight.
*/

#include <curses.h>
#include <term.h>

int ulmode = O; /* Currently underlining *I

main(argc, argv)
char **argv;
{

FILE *fd;
int c, c2;
int outch();

if (argc > 2) {
fprintf(stderr, "Usage: termhl [file]O);
exit(1);

}

if (argc = = 2) {
fd = fopen(argv[1], "r");
if (fd = = NULL) {

perror(argv[1]) ;
exit(2);

}
} else {

fd = stdin;
}

setupterm(O, 1, O);

for (;;) {
· c = getc(fd);

if (c = = EOF)
break;

if (c = = '\') {
c2 = getc(fd);
switch (c2) {
case 'B':

tputs(enter_bold_mode, 1, outch);
continue;

case 'U': ',,_

13-12 Sys5 UNIX

(

(

CURSES EXAMPLE CHAPTER 13

}

tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

case 'N':

}

tputs(exit_attribute_mode, 1, outch);
ulmode = O;
continue;

putch(c);
putch(c2);

}
else

putch(c);
}
fclose(fd);
fflush(stdout);
resetterm ();
exit(O);

/*
* This function is like putchar, but it checks for underlining.
*/

putch(c)
int c;
{

}

/*

outch(c);
if (ulmode && underline_char) {

outch('
tputs(underline_char, 1, outch);

}

* Outchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*/

outch(c)
int c;
{

putchar(c);
}

Sys5 UNIX 13-13

CHAPTER 13 CURSES EXAMPLE

13.6 EXAMPLE PROGRAM 'two'

#include <curses.h>
#include <signal.h>

struct screen *me, *you;
struct screen *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)
char **argv;
{

int done();
int c;

if (argc != 4) {
fprintf(stderr, "Usage: two othertty otherttytype inputfileO);
exit(1);

}

fd = fopen(argv[3], "r");
fdyou = fopen(argv[1], "w+");
signal(SIGINT, done); /* die gracefully */

me = newterm(getenv("TERM"), stdout);/* initialize my tty*/
you = newterm(argv[2], fdyou);/* Initialize his terminal*/

set_term(me);
noecho();
cbreak();
nonl();

/* Set modes for my terminal ·I
I* turn off tty echo */
/* enter cbreak mode *I

I* Allow linefeed*/
nodelay(stdscr, TRUE); I* No hang on input *I

set_term(you); I* Set modes for other terminal*/
noecho();
cbreak();
nonl();
nodelay(stdscr,TRUE);

/*Dump first screen full on my terminal*/
dump_page(me);

/*Dump second screen full on his terminal*/

13-14 Sys5 UNIX

CURSES EXAMPLE

(dump_page(you);

}

for(;;) { /*for each screen full*/

}

set_term(me);
c = getch();
if (c = = 'q') /*wait for user to read it */

done();
if (c = = '')

dump_page(me);

set_term(you);
c = getch();
if (c = = 'q') /*wait for user to read it*/

done();
if (c = = ' ')

dump_page(you);
sleep(1);

dump_page(term)
struct screen *term;
{

}

int line;

set_term(term);
move(O, O);
for (line=O; line<LINES-1; line++) {

}

if (fgets(linebuf, sizeof linebuf, fd) = = NULL) {
clrtobot();
done();

}
mvprintw(line, 0, "%s", linebuf);

standout();
mvprintw(LINES-1, 0, "--More--");
standend();
refresh(); /* sync screen */

/*
* Clean up and exit.
*/

done()

Sys5 UNIX

CHAPTER 13

13-15

CHAPTER13

{

}

I* Clean up first terminal */
set_term(you);
move(LINES-1,0); /*to lower left corner*/
clrtoeol(); /*clear bottom line*/
refresh(); /*flush out everything */
endwin(); I* curses cleanup*/

I* Clean up second terminal *I
set_term(me);
move(LINES-1,0); /*to lower left corner*/
clrtoeol(); I* clear bottom line*/
refresh(); /*flush out everything */
endwin(); I* curses cleanup *I

exit(O);

13-16

CURSES EXAMPLE

SysS UNIX

(

CURSES EXAMPLE

13.7 EXAMPLE PROGRAM 'window'

#include <curses.h>

WINDOW *cmdwin;

main()
{

inti, c;
char buf[120];

initscr();
nonl();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, O);/* top 3 lines *I
for (i=O; i<LINES; i+ +)

mvprintw(i, O, 'This is line %d of stdscr", i);

for (;;) {
refresh();
c = getch();
switch (c) {
case 'c': /*Enter command from keyboard*/

werase(cmdwin);

Sys5 UNIX

wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, O);
for (i=O; i<COLS; i+ +)

waddch(cmdwin, ' -');
wmove(cmdwin, 1, O);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, but);
touchwin(stdscr);
/*
* The command is now in buf.
* It should be processed here.

CHAPTER 13

13-17

CHAPTER13

}
}

13-18

*/
break;

case 'q':
endwin(};
exit(O);

}

CURSES EXAMPLE

Sys5 UNIX

