

Sys3 UNIX Programmer's Manual -- vol 1 B

98-05046.7 April 6, 1984

PLEXUS COMPUTERS INC

2230 Martin Ave

Santa Clara, CA 95050

4081988-1755

Sys3 UNIX Programmer's Manual -- vol 1 B

98-05046.7 April 6, 1984

PLEXUS COMPUTERS INC

2230 Martin Ave

Santa Clara, CA 95050

4081988-1755

Copyright 1984
Plexus Computers Inc, Santa Clara, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

Copyright 1984
Plexus Computers Inc, Santa Clara, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

r /

REVISION RECORD

Plexus Sys3 UNIX Programmer's Manua/-- vol1B

REVISION LEVEL DATE DESCRIPTION

98-05046.1 December 23, 1982 First edition
98-05046.2 January 15, 1983 Editorial changes
98-05046.3 May 6,1983 Removed unsupported graphics

utilities; other small editorial
changes

98-05046.4 June 20, 1983 Changes for Sys3 Rev. 3.0
(MC68000 version)

98-05046.5 August 19, 1983 New pages for the Plexus
Network Operating System (NOS);
other small additions and corrections

r . ./

98-05046.6 November 18, 1983 Several new pages; other
small additions and corrections

98-05046.7 April 6, 1984 First typeset version;
additions and corrections

r , v

r /

REVISION RECORD

Plexus Sys3 UNIX Programmer's Manua/-- vol1B

REVISION LEVEL DATE DESCRIPTION

98-05046.1 December 23, 1982 First edition
98-05046.2 January 15, 1983 Editorial changes
98-05046.3 May 6,1983 Removed unsupported graphics

utilities; other small editorial
changes

98-05046.4 June 20, 1983 Changes for Sys3 Rev. 3.0
(MC68000 version)

98-05046.5 August 19, 1983 New pages for the Plexus
Network Operating System (NOS);
other small additions and corrections

r . ./

98-05046.6 November 18, 1983 Several new pages; other
small additions and corrections

98-05046.7 April 6, 1984 First typeset version;
additions and corrections

r , v

ACKNOWLEDGEMENTS

The form and much of the content of this manual come from the UNIX Programmer's Manual Release
3.0 (Volume 1), edited by T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli.

ACKNOWLEDGEMENTS

The form and much of the content of this manual come from the UNIX Programmer's Manual Release
3.0 (Volume 1), edited by T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli.

r

PLEXUS INTRODUCTION

This release of the Plexus Sys3 UNIX Programmer's Manual is designed for use with Plexus
Sys3. This manual includes a number of commands that are not part of stock SYSTEM III, plus
enhancements to SYSTEM III commands. The majority of these are in Section 1 ("Commands
and Application Programs"). Therefore, Volume 1 was separated into two different physical
volumes. Section 1 is now in physical Volume 1A, and Sections 2 through 8 are in Volume 1B.

Some SYSTEM III commands are designed for use with UNIX systems on specific hardware
such as the POP-11; these commands are inappropriate for use on Plexus systems, and are
thus not supported by Plexus. No source was provided for other SYSTEM III commands. The
following table lists all the SYSTEM III commands that are not supported by Plexus, along with
codes indicating why Plexus does not support them. The codes have the following meanings:

NA - Applicable to other hardware.
NI - Not implemented.
NS - No source available.

Command Function Code

as. pdp assembler for POP-11 NA
as.vax assembler for VAX-11 1780 NA
chess the game of chess NS
dj DJ-11 asynchronous multiplexor NA
dmc communications link with built-in OOCMP NA

protocol
dn ON-11 ACU interface NA
dpr off-line print NA
dqs 00S-11 interface for two-point BSC NA
du DU-11 synchronous line interface NA
dz DZ-11, OZ-11/KMC-11, OH-11 asynchronous NA

multiplexors
etp Equipment Test Package NA
.get retrieve files from the HONEYWELL 6000 NA
.get.demon file retrieval daemons NA
fptrap floating point interpreter NA
.scv convert files between PDP -11 and NA

VAX-11/780 systems
.send send files to the HONEYWELL 6000 NA
gcat send phototypesetter output to the NA

HONEYWELL 6000
gcosmail send mail to HIS user NA
gdev graphical device routines and filters NI
gad graphical editor NI
gps format of graphical files NI
graphics access graphical and numerical commands NI
gutil graphical utilities NI
hasp RJE (Remote Job Entry) to IBM NA
hp RP04/RPOS/RP06 moving-head disk NA
hs RH11/RJS03-RJS04 fixed-head disk file NA
ht TU16 magnetic tape interface NA
kas assembler for the KMC11 microprocessor NA
kl KL-11 or OL-11 asynchronous interface NA

- 5 -

r

PLEXUS INTRODUCTION

This release of the Plexus Sys3 UNIX Programmer's Manual is designed for use with Plexus
Sys3. This manual includes a number of commands that are not part of stock SYSTEM III, plus
enhancements to SYSTEM III commands. The majority of these are in Section 1 ("Commands
and Application Programs"). Therefore, Volume 1 was separated into two different physical
volumes. Section 1 is now in physical Volume 1A, and Sections 2 through 8 are in Volume 1B.

Some SYSTEM III commands are designed for use with UNIX systems on specific hardware
such as the POP-11; these commands are inappropriate for use on Plexus systems, and are
thus not supported by Plexus. No source was provided for other SYSTEM III commands. The
following table lists all the SYSTEM III commands that are not supported by Plexus, along with
codes indicating why Plexus does not support them. The codes have the following meanings:

NA - Applicable to other hardware.
NI - Not implemented.
NS - No source available.

Command Function Code

as. pdp assembler for POP-11 NA
as.vax assembler for VAX-11 1780 NA
chess the game of chess NS
dj DJ-11 asynchronous multiplexor NA
dmc communications link with built-in OOCMP NA

protocol
dn ON-11 ACU interface NA
dpr off-line print NA
dqs 00S-11 interface for two-point BSC NA
du DU-11 synchronous line interface NA
dz DZ-11, OZ-11/KMC-11, OH-11 asynchronous NA

multiplexors
etp Equipment Test Package NA
.get retrieve files from the HONEYWELL 6000 NA
.get.demon file retrieval daemons NA
fptrap floating point interpreter NA
.scv convert files between PDP -11 and NA

VAX-11/780 systems
.send send files to the HONEYWELL 6000 NA
gcat send phototypesetter output to the NA

HONEYWELL 6000
gcosmail send mail to HIS user NA
gdev graphical device routines and filters NI
gad graphical editor NI
gps format of graphical files NI
graphics access graphical and numerical commands NI
gutil graphical utilities NI
hasp RJE (Remote Job Entry) to IBM NA
hp RP04/RPOS/RP06 moving-head disk NA
hs RH11/RJS03-RJS04 fixed-head disk file NA
ht TU16 magnetic tape interface NA
kas assembler for the KMC11 microprocessor NA
kl KL-11 or OL-11 asynchronous interface NA

- 5 -

kmc
kun

maze
pcl
reversl
rf
rk
rI
rp
sdb
sky
st
stat
tm
toe
vaxops
vlx

KMC11 microprocessor
un-assembler for the KMC11/0MC11

microprocessor
generate a maze
parallel communications link interface
a game of dramatic reversals
RF11/RS11 fixed-head disk file
RK-11/RK03 or RK05 disk
RL-11/RL01 disk
RP-11/RP03 moving-head disk
symbolic debugger
obtain ephemerides
synchronous terminal interface
statistical network for graphical commands
TM11ITU10 magnetic tape interface
graphical table of contents routines
VAX-11/780 console operations
VAX-11/780 LSI console floppy interface

See the Introductions to each section for information on new commands.

-6-

NA
NA

NS
NA
NS
NA
NA
NA
NA
NA
NS
NA
NI
NA
NI
NA
NA

kmc
kun

maze
pcl
reversl
rf
rk
rI
rp
sdb
sky
st
stat
tm
toe
vaxops
vlx

KMC11 microprocessor
un-assembler for the KMC11/0MC11

microprocessor
generate a maze
parallel communications link interface
a game of dramatic reversals
RF11/RS11 fixed-head disk file
RK-11/RK03 or RK05 disk
RL-11/RL01 disk
RP-11/RP03 moving-head disk
symbolic debugger
obtain ephemerides
synchronous terminal interface
statistical network for graphical commands
TM11ITU10 magnetic tape interface
graphical table of contents routines
VAX-11/780 console operations
VAX-11/780 LSI console floppy interface

See the Introductions to each section for information on new commands.

-6-

NA
NA

NS
NA
NS
NA
NA
NA
NA
NA
NS
NA
NI
NA
NI
NA
NA

r BELL INTRODUCTION

(This Introduction was written by Bell laboratories for the UNIX User's Manual Release 1.0.)

This manual describes the features of UNIX. It provides neither a general overview of UNIX (for
that, see "The UNIX Time-Sharing System," BSTJ, Vol. 57, No.6, Part 2, pp. 1905-29, by
D. M. Ritchie and K. Thompson), nor details of the implementation of the system (see "UNIX
Implementation," BSTJ, same issue, pp. 1931-46).

Not all commands, features, ,and facilities described in this manual are available in every UNIX
system; for example, yacc(1) is usually not available in a UNIX system running on a PDP-11/23.
When in doubt, consult your system's administrator.

This manual is divided into eight sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.
1 C. Communications Commands.
1 G. Graphics Commands.
1 M. System Maintenance Commands.

2. System Calls.
3. Subroutines:

3C. C and Assembler Library Routines.
3M. Mathematical Library Routines.
3S. Standard 1/0 Library Routines.
3X. Miscellaneous Routines.

4. Special Files.
5. File Formats.
6. Games.
7. Miscellaneous Facilities.
8. System Maintenance Procedures.

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, as opposed to subroutines, which are
intended to be called by the user's programs. Commands generally reside in the directory fbin
(for binary programs). Some programs also reside in fusrfbin, to save space in fbin. These
directories are searched automatically by the command interpreter called the shell. Sub-class
1C contains communication programs such as cu, dpr, etc. These entries may differ from
system to system. Sub-class 1 M contains system maintenance programs such as fsck, mkfs,
etc., which generally reside in the directory fete; these commands are not intended for use by
the ordinary user due to their privileged nature. Some UNIX systems have a directory called
fusrflbin, containing local commands.

Section 2 (System Calls) describes the entries into the UNIX supervisor, including the C
language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions reside in
various system libraries in the directories /lib and fusrflib. See intro(3) for descriptions of these
libraries and the files in which they are stored.

Section 4 (Special Files) discusses the characteristics of each system file that actually refers to
an input/output device. The names in this section generally refer to the Digital Equipment
Corporation's device names for the hardware, rather than to the names of the special files
themselves.

Section 5 (File Formats) documents the structure of particular kinds of files; for example, the
format of the output of the link editor is given in a.out(5). Excluded are files used by only one

Plexus Sys3 UNIX - 7- March 1984'

r BELL INTRODUCTION

(This Introduction was written by Bell laboratories for the UNIX User's Manual Release 1.0.)

This manual describes the features of UNIX. It provides neither a general overview of UNIX (for
that, see "The UNIX Time-Sharing System," BSTJ, Vol. 57, No.6, Part 2, pp. 1905-29, by
D. M. Ritchie and K. Thompson), nor details of the implementation of the system (see "UNIX
Implementation," BSTJ, same issue, pp. 1931-46).

Not all commands, features, ,and facilities described in this manual are available in every UNIX
system; for example, yacc(1) is usually not available in a UNIX system running on a PDP-11/23.
When in doubt, consult your system's administrator.

This manual is divided into eight sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.
1 C. Communications Commands.
1 G. Graphics Commands.
1 M. System Maintenance Commands.

2. System Calls.
3. Subroutines:

3C. C and Assembler Library Routines.
3M. Mathematical Library Routines.
3S. Standard 1/0 Library Routines.
3X. Miscellaneous Routines.

4. Special Files.
5. File Formats.
6. Games.
7. Miscellaneous Facilities.
8. System Maintenance Procedures.

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, as opposed to subroutines, which are
intended to be called by the user's programs. Commands generally reside in the directory fbin
(for binary programs). Some programs also reside in fusrfbin, to save space in fbin. These
directories are searched automatically by the command interpreter called the shell. Sub-class
1C contains communication programs such as cu, dpr, etc. These entries may differ from
system to system. Sub-class 1 M contains system maintenance programs such as fsck, mkfs,
etc., which generally reside in the directory fete; these commands are not intended for use by
the ordinary user due to their privileged nature. Some UNIX systems have a directory called
fusrflbin, containing local commands.

Section 2 (System Calls) describes the entries into the UNIX supervisor, including the C
language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions reside in
various system libraries in the directories /lib and fusrflib. See intro(3) for descriptions of these
libraries and the files in which they are stored.

Section 4 (Special Files) discusses the characteristics of each system file that actually refers to
an input/output device. The names in this section generally refer to the Digital Equipment
Corporation's device names for the hardware, rather than to the names of the special files
themselves.

Section 5 (File Formats) documents the structure of particular kinds of files; for example, the
format of the output of the link editor is given in a.out(5). Excluded are files used by only one

Plexus Sys3 UNIX - 7- March 1984'

Introduction

command (for example, the assembler's intermediate files). In genera'l, the C language struct
declarations corresponding to these formats can be found in the directories lusr/include and
lusr/include/sys.

Section 6 (Games) describes the games and educational programs that, as a rule, reside in the
directory lusr/games.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are descriptions of
character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses crash recovery and boot procedures,
etc. Information in this section is not of great interest to most users.

Each section consists of a number of independent entries of a page or so each. The name of
the entry appears in the upper corners of its pages. Entries within each section are
alphabetized, with the exception of the introductory entry that begins each section. The page
numbers of each entry start at 1. Some entries may describe several routines, commands, etc.
In such cases, the entry appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names
found elsewhere in the manual (they are underlined in the typed version of the entries).

Square brackets [] around an argument prototype indicate that the argument is
optional. When an argument prototype is given as "name" or "file", it always refers to
a file name.

Ellipses ••• are used to show that the previous argument prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with
a minus -, plus +, or equal sign = is often taken to be some sort of flag argument,
even if it appears in a position where a file name could appear. Therefore, it is unwise
to have files whose names begin with -, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pOinters to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficienCies. Occasionally, the suggested
fix is also described.

A table of contents and a permuted index derived from that table precede Section 1. On each
index line, the title of the entry to which that line refers is followed by the appropriate section
number in parentheses. This is important because there is considerable duplication of names
among the sections, arising prinCipally from commands that exist only to exercise a particular
system call. On most systems, all entries are available on-line via the man(1) command, q.v.

March 1984 - 8 - Plexus Sys3 UNIX

Introduction

command (for example, the assembler's intermediate files). In genera'l, the C language struct
declarations corresponding to these formats can be found in the directories lusr/include and
lusr/include/sys.

Section 6 (Games) describes the games and educational programs that, as a rule, reside in the
directory lusr/games.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are descriptions of
character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses crash recovery and boot procedures,
etc. Information in this section is not of great interest to most users.

Each section consists of a number of independent entries of a page or so each. The name of
the entry appears in the upper corners of its pages. Entries within each section are
alphabetized, with the exception of the introductory entry that begins each section. The page
numbers of each entry start at 1. Some entries may describe several routines, commands, etc.
In such cases, the entry appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names
found elsewhere in the manual (they are underlined in the typed version of the entries).

Square brackets [] around an argument prototype indicate that the argument is
optional. When an argument prototype is given as "name" or "file", it always refers to
a file name.

Ellipses ••• are used to show that the previous argument prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with
a minus -, plus +, or equal sign = is often taken to be some sort of flag argument,
even if it appears in a position where a file name could appear. Therefore, it is unwise
to have files whose names begin with -, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pOinters to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficienCies. Occasionally, the suggested
fix is also described.

A table of contents and a permuted index derived from that table precede Section 1. On each
index line, the title of the entry to which that line refers is followed by the appropriate section
number in parentheses. This is important because there is considerable duplication of names
among the sections, arising prinCipally from commands that exist only to exercise a particular
system call. On most systems, all entries are available on-line via the man(1) command, q.v.

March 1984 - 8 - Plexus Sys3 UNIX

HOW TO GET STARTED

This discussion provides the basic information you need to get started on UNIX: how to log in
and log out, how to communicate through your terminal, and how to run a program. (See UNIX
for Beginners by B. W. Kernighan for a more complete introduction to the system.)

Logging in. You must dial up UNIX from an appropriate terminal. UNIX supports full-duplex
ASCII terminals. You must also have a valid user name, which may be obtained (together with
the telephone number(s) of your UNIX system) from the administrator of your system. Common
terminal speeds are 10,15,30, and 120 characters per second (110,150,300, and 1,200 baud);
occasionally, speeds of 240, 480, and 960 ch~uacters per second (2,400, 4,800, and 9,600
baud) are also available. On some UNIX systems, there are separate telephone numbers for
each available terminal speed, while on other systems several speeds may be served by a
single telephone number. In the latter case, there is one "preferred" speed; if you dial in from a
terminal set to a different speed, you will be greeted by a string of meaningless characters (the
login: message at the wrong speed). Keep hitting the "break" or "attention" key until the login:
message appears. Hard-wired terminals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a half-/full
duplex switch that should be set to full-duplex. When a connection (at the speed of the
terminal) has been established, the system types login: and you then type your user name
followed by the "return" key. If you have a password (and you Should!), the system asks for it,
but does not print ("echo") it on the terminal. After you have logged in, the "return", "new-line",
and "line-feed" keys will give exactly the same result.

It is important that you type your login name in lower case if possible; if you type upper-case
letters, UNIX will assume that your terminal cannot generate lower-case letters and that you
mean all subsequent upper-case input to be treated as lower case. When you have logged in
successfully, the shell will type a $ to you. (The shell is described below under How to run a
program.)

For more information, consult login(1) and getty(8), which discuss the login sequence in more
detail, and stty(1), which tells you how to describe the characteristics of your terminal to the
system (profile(5) explains how to accomplish this last task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usually typed

as "control-d") to the shell. The shell will terminate and the login: message will appear
again.

How to communicate through your terminal. When you type to UNIX, a gnome deep in the
system is gathering your characters and saving them. These characters will not be given to a
program until you type a "return" (or "new-line"), as described above in Logging in.

UNIX terminal input/output is full-duplex. It has full read-ahead, which means that you can type
at any time, even while a program is typing at you. Of course, if you type during output, the
output will have interspersed in it the input characters. However, whatever you type will be
saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead,
but it is generous and not likely to be exceeded unless the system is in trouble. When the
read-ahead limit is exceeded, the system throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back
to, but not beyond, the beginning of the line; @ and # can be typed as themselves by preceding
them with \ (thus, to erase a \' you need two #s). These default erase and kill characters can

Plexus Sys3 UNIX - 9 - March 1984

HOW TO GET STARTED

This discussion provides the basic information you need to get started on UNIX: how to log in
and log out, how to communicate through your terminal, and how to run a program. (See UNIX
for Beginners by B. W. Kernighan for a more complete introduction to the system.)

Logging in. You must dial up UNIX from an appropriate terminal. UNIX supports full-duplex
ASCII terminals. You must also have a valid user name, which may be obtained (together with
the telephone number(s) of your UNIX system) from the administrator of your system. Common
terminal speeds are 10,15,30, and 120 characters per second (110,150,300, and 1,200 baud);
occasionally, speeds of 240, 480, and 960 ch~uacters per second (2,400, 4,800, and 9,600
baud) are also available. On some UNIX systems, there are separate telephone numbers for
each available terminal speed, while on other systems several speeds may be served by a
single telephone number. In the latter case, there is one "preferred" speed; if you dial in from a
terminal set to a different speed, you will be greeted by a string of meaningless characters (the
login: message at the wrong speed). Keep hitting the "break" or "attention" key until the login:
message appears. Hard-wired terminals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a half-/full
duplex switch that should be set to full-duplex. When a connection (at the speed of the
terminal) has been established, the system types login: and you then type your user name
followed by the "return" key. If you have a password (and you Should!), the system asks for it,
but does not print ("echo") it on the terminal. After you have logged in, the "return", "new-line",
and "line-feed" keys will give exactly the same result.

It is important that you type your login name in lower case if possible; if you type upper-case
letters, UNIX will assume that your terminal cannot generate lower-case letters and that you
mean all subsequent upper-case input to be treated as lower case. When you have logged in
successfully, the shell will type a $ to you. (The shell is described below under How to run a
program.)

For more information, consult login(1) and getty(8), which discuss the login sequence in more
detail, and stty(1), which tells you how to describe the characteristics of your terminal to the
system (profile(5) explains how to accomplish this last task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usually typed

as "control-d") to the shell. The shell will terminate and the login: message will appear
again.

How to communicate through your terminal. When you type to UNIX, a gnome deep in the
system is gathering your characters and saving them. These characters will not be given to a
program until you type a "return" (or "new-line"), as described above in Logging in.

UNIX terminal input/output is full-duplex. It has full read-ahead, which means that you can type
at any time, even while a program is typing at you. Of course, if you type during output, the
output will have interspersed in it the input characters. However, whatever you type will be
saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead,
but it is generous and not likely to be exceeded unless the system is in trouble. When the
read-ahead limit is exceeded, the system throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back
to, but not beyond, the beginning of the line; @ and # can be typed as themselves by preceding
them with \ (thus, to erase a \' you need two #s). These default erase and kill characters can

Plexus Sys3 UNIX - 9 - March 1984

How To Get Started

be changed; see stty(1).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. Output is resumed when a
DC1 (control-q) or a second DC3 (or any other character, for that matter) is typed. The DC1 and
DC3 characters are not passed to any other program when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs, but instead generates an
interrupt signal, just like the "break", "interrupt", or "attention" signal. This signal generally
causes whatever program you are running to terminate. It is typically used to stop a long
printout that you don't want. However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of being terminated). The editor ed(1), for
example, catches interrupts and stops what it is doing, instead of terminating, so that an
interrupt can be used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a running
program to terminate, but also generates a file with the "core image" of the terminated process.
Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent as to whether you have
a terminal with the "new-line" function, or whether it must be simulated with a "carriage-return"
and "line-feed" pair. In the latter case, all input "carriage-return" characters are changed to
"line-feed" characters (the standard line delimiter), and a "carriage-return" and "line-feed" pair
is echoed to the terminal. If you get into the wrong mode, the stty(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and
echoed as spaces during input. Again, the stty(1) command will set or reset this mode. The
system assumes that tabs are set every eight character positions. The tabs(1) command will
set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into UNIX, a program called the
shell is listening to your terminal. The shell reads the lines you type, splits them into a
command name and its arguments, and executes the command. A command is simply an
executable program. Normally, the shell looks first in your current directory (see The current
directory below) for a program with the given name, and if none is there, then in system
directories. There is nothing special about system-provided commands except that they are
kept in directories where the shell can find them. You can also keep commands in your own
directories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you to
indicate that it is ready for another command. The shell has many other capabilities, which are
described in detail in sh(1). .

The current directory. UNIX has a file system arranged in a hierarchy of'directories. When the
system administrator gave you a user name, he or she also created a directory for you
(ordinarily with the same name as your user name, and known as your login or home directory).
When you log in, that directory becomes your current or working ·directory, and any file name
you type is by default assumed to be in that directory. Because you are the owner of this
directory, you have full permissions to read, write, alter, or destroy its contents. Permissions to
have your will with other directories and files will have been granted or denied to you by their
respective owners, or by the system administrator. To change the current directory use cd(1).

March 1984 - 10 - Plexus Sys3 UNIX

How To Get Started

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with I, which is the name of the root directory of the whole file system. After the
slash comes the name of each directory containing the next sub-directory (followed by a I), until
finally the file name is reached (e.g., lusr/ae/filex refers to file filex in directory ae, while ae is
itself a subdirectory of usr; usr springs directly from the root directory). See intro(2) for a
formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin with the
name of the corresponding subdirectory (without a prefixed I). Without important exception, a
path name may be used anywhere a file name is required.-

Important commands that modify the contents of files are cp(1), mv(1), and rm(1), which
respectively copy, move (Le., rename), and remove files. To find out the status of files or
directories, use Is(1). Use mkdir(1) for making directories and rmdir(1) for destroying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above. It may also be useful to glance through Section 2 of this manual, which
discusses system calls, even if you don't intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use ed(1). The four
principal languages available under UNIX are C (see cc(1», Fortran (see 177(1», bs (a
compiler/interpreter in the spirit of Basic, see bs(1», and assembly language (see as(1». After
the program text has been entered with the editor and written into a file (whose name has the
appropriate suffix), you can give the name of that file to the appropriate language processor as
an argument. Normally, the output of the language processor will be left in a file in the current
directory named a.out (if that output is precious, use mv(1) to give it a less vulnerable name). If
the program is written in assembly language, you will probably need to load with it library
subroutines (see Id(1». Fortran and C call the loader automatically; programs written in bs(1)
are interpreted and, therefore, do not need to be loaded.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the shell in response to the $ prompt.

If any execution (run-time) errors occur, you will need adb(1) to examine the remains of your
program.

Your programs can receive arguments from the command line just as system programs do; see
exec (2).

Text processing. Almost all text is entered through the editor ed(1). The commands most
often used to write text on a terminal are cat(1), pr(1), and nroff(1). The cat(1) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(1) command
paginates the text, supplies headings, and has a facility for multi-column output. Nroff(1) is an
elaborate text formatting program, and requires careful forethought in entering both the text and
the formatting commands into the input file; it produces output on a typewriter-like terminal.
Troff(1) is very similar to nroff(1), but produces its output on a phototypesetter (it was used to
typeset this manual). There are several "macro" packages (especially the so-called mm
package) that significantly ease the effort required to use nroff(1) and troff(1); Section 7 entries
for these packages indicate where you can find their detailed descriptions.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to
use them, it would be well to learn something about them, because someone else may aim them
at you. To communicate with another user currently logged in, write(1) is used; mail(1) will
leave a message whose presence will be announced to another user when he or she next logs
in. The corresponding entries in this manual also suggest how to respond to these two
commands if you are their target.

Plexus Sys3 UNIX - 11 - March 1984

How To Get Started

When you log in, a message-of-the-day may greet you before the first $.

March 1984 - 12 - Plexus Sys3 UNIX

r CONTENTS

1. Commands and Application Programs

intro .. .introduction to commands and application programs
300 .. handle special functions of DASI 300 and 300s terminals
4014 ... paginator for the Tektronix 4014 terminal
450 ... handle special functions of the DASI 450 terminal
aect ... overview of accounting and miscellaneous accounting commands
acctcms ... command summary from per-process accounting records
acctcom .. search and print process accounting file(s)
aectcon .. connect-time accounting
aectmerg .. merge or add total accounting files
acctprc ... process accounting
aectsh .. shell procedures for accounting
adb ... debugger
admin .. create and administer SCCS files
ar .. archive and library maintainer
arcv6 ... convert archives to new format
as.ZSOOO .. zeooo assembler
as.68000 ... MC68000 assembler
awk ... pattern scanning and processing language
banner ... make posters
basename .. deliver portions of path names
bbanner ... print large banner on printer
be .. arbitrary-precision arithmetic language

r bcopyi nteractive block copy
bdiff .. big diff
bls ... big file scanner
bls ... list contents of directory
bs ... a compiler/interpreter for modest-sized programs
cal. ... print calendar
calendar .. :~ ... reminder service
cat .. concatenate and print files
cb .. C program beautifier
cc ... C compiler
cd ... change working directory
cdc ... change the delta commentary of an SCCS delta
chmod ... change mode
chown ... change owner or group
chroot ... change root directory for a command
clear ... clear terminal screen
clri .. clear i-node
cmp ... compare two files
col .. .filter reverse line-feeds
comb .. combine SCCS deltas
comm ... select or reject lines common to two sorted files
eopytape ... make an ·image copy of a tape
ep .. copy. link or move files
epio ... copy file archives in and out
erash ... examine system images
erel ... make cross-reference listing
eron ... clock daemon
erypt ... encode/decode

Plexus Sys3 UNIX - 1 - March 1984

Contents

csh ... a shell with C-like syntax
csplit .. context split
ct .. call terminal
ctags ... create a tags file
cu .. call another UNIX system
cut.. ... cut out selected fields of each line of a file
cw .. prepare constant-width text for troff
date .. print and set the date
dc ... , .. desk calculator
dd .. convert and copy a file
delta ... make a delta (change) to an SCCS file
deroff .. remove nroff/troff, tbl, and eqn constructs
devnm ... device name
elf ~ .. report number of free disk blocks
diction .. print wordy sentences
diff .. differential file comparator
diff3 ... 3-way differential file comparison
diffmk .. mark differences between files
dircmp .. directory comparison
dnld .. download program files
du .. summarize disk usage
dump .. .incremental file system dump
dumpdir ... print the names of files on a dump tape
echo ... echo arguments
ed .. text editor
edit ... text editor, variant of the ex editor for new or casual users
efl .. Extended Fortran Language
env ... set environment for command execution
eqnformat mathematical text for nroff or troff
errdead .. extract error records from dump
errdemon .. error-Iogging daemon
errpt .. i process a report of logged errors
errstop ... terminate the error-logging daemon
ex .. text editor
expr .. evaluate arguments as an expression
file .. determine file type
find .. find files
fsck ... file system consistency check and interactive repair
fsdb .. fi Ie system debugger
fwtmp .. manipulate wtmp records
get ... get a version of an SCCS file
getopt .. parse command options
graph .. draw a graph
greek .. select terminal filter
grep ... search a file for a pattern
head ... give first few lines of a stream
help .. ask for help
hp .. handle special functions of HP 2640 and 2621-series terminals
hyphen .. find hyphenated words
icpdmp .. take a core image of the ICP and transfer to a host file
id .. print user and group IDs and names
install .. install commands
join .. relational database operator

March 1984 - 2 - Plexus Sys3 UNIX

Contents

killterminate a process
Id ... link editor
lex ... , generate programs for simple lexical tasks
line ... read one line
link ... exercise link and unlink system calls
lint. ... a e program checker
login .. sign on
logname .. get login name
lorder ... find ordering relation for an object library
lpel .. Iine printer daemon
Ipr .. Iine printer spooler
Is ... list contents of directories
m4 ... macro processor
mail .. send mail to users or read mail
make .. maintain. update. and regenerate groups of programs
man ... print entries in this manual
mesg ... permit or deny messages
mkdir .. make a directory
mkfs ... construct a file system
mknod ... build special file
mkstr ... create an error message file by massaging the e source
mm .. print out documents formatted with the MM macros
mmchek ... check usage of mm macros and eqn delimiters
mmt .. typeset documents. view graphs. and slides
more .. file perusal filter for eAT viewing
mount .. mount and dismount file system
mvdir , ... move a directory
ncheck .. generate names from i-numbers
newgrp ... 109 in to a new group
news ... print news items
nice .. run a command at low priority
nl .. Iine numbering filter
nm .. print name list
node .. enable or disable foreign hosts
nohup .. run a command immune to hangups and quits
od .. octal dump
openup ... keep open key directories and files
pack .. compress and expand files
passwd ... change login password
paste ... merge same lines of several files or subsequent lines of one file
pr .. pri nt files
printenv ... print out the environment
prof .. display profile data
profiler ... operating system profiler
prs .. print an sees file
ps ... report process status
ptx .. permuted index
pwck .. password/group file checkers
pwd .. worki ng di rectory name
ratfor .. rational Fortran dialect
reform ... reformat text fi Ie
regcmp .. regular expression compile
restor .. incremental file system restore

Plexus Sys3 UNIX - 3 - March 1984

Contents

rjestat ... RJE status report and interactive status console
rrn ... remove files or di rectories
rrndel. , .. remove a delta from an sees file
rrnount ...•.............. mount and dismount remote file system
rsh .. restricted shell (command interpreter)
runacct .. run daily accounting
sact : .. print current sees file editing activity
sag ... system activity graph
scc .. : e compiler for stand-alone programs
sccsdiff ... compare two versions of an sees file
script ... make typescript of terminal session
sdiff .. side-by-side difference program
sed ... stream editor
send ... gather files and/or submit RJE jobs
setmnt .. establish mnttab table
sh .. sheU, the standard command programming language
size .. size of an object file
sleep ... suspend execution for an interval
sno .. SNOBOL interpreter
sort .. sort and/or merge files
spell ... find spelling errors
spline .. .interpolate smooth curve
split .. split a file into pieces
st .. synchronous terminal control
strings ... find printable strings in object or other binary file
strip ... remove symbols and relocation bits
stty ... set the options for a terminal
style .. analyze surface characteristics of a document
su .. become super-user or another user
sum .. sum and count blocks in a file
sync .. update the super block
tabs ... set tabs on a terminal
tail .. deliver the last part of a file
tape ... tape manipulation
tar ... tape file archiver
tbl ... , format tables for nroff or troff
tc ... phototypesetter simulator
tee .. pipe fitting
test .. condition evaluation command
time .. time a command
timex .. time a command and generate a system activity report
touch .. I update access and modification times of a file
tp ... manipulate tape archive
tplot ... graphics filters
tr .. translate characters
trrntab ... make a new nroft terminaVprinter driver table
troff '" ... typeset or format text
true .. provide truth values
tset .. set terminal modes
tsort ' .. : topological sort
tty ... ; get the terminal's name
typo ... find possible typographical errors
umask ... set file-creation mode mask

March 1984 - 4 - Plexus Sys3 UNIX

Contents

uname••......•.••..............•..•..•..... print name of current UNIX
unget ...•..........••......••.......•.•..•.....•.................••••.................... undo a previous get of an SCCS file
uniq••..............•...............•.......••................................... report repeated lines in a file
units•....•.....•••....•...••••.•.•....•..••...........•.•.•..........•..........••..•...................••.. conversion program
update•.......•.........•......................•.........•.......................... periodically update the super block
uuclean•..................•......................•.................................... uucp spool directory clean-up
uucp ..•.............................•.................................•.. unix to unix copy
uustat .. uucp status inquiry and job control
uusub•........................•.. monitor uucp network
uuto ... public UNIX-to-UNIX file copy
uux ..•..•............•.•................ unix to unix command execution
val .. validate SCCS file
vc ..•............................•................. version control
vi .. , ... screen-oriented display editor based on ex
volcopy ... copy file systems with label checking
vpmc•.....•...............................•............. compiler for the virtual protocol machine
vpmstart ...•........... .Ioad the KMC11-B; print VPM traces
wait•...•........................ await completion of process
wall ...•... write to all users
wc•... word count
whatidentify SCCS files
who•.•........•...•......... who is on the system
whodo ..•........ who is doing what
write •.........................•..........•..........................•.....•.................•...............•.•.. write to another user
xargs ..•......•............. construct argument list(s) and execute command
xref•............••....•..•... cross reference for C programs
xstr•......••........•••...............•...•..• extract strings from C programs to implement shared strings
yacc•....•... yet another compiler-compiler

2. System Calls

intro•.............•.• :;••••... .introduction to system calls and error numbers
access••........................••...........................•.. determine accessibility of a file
acct•....•...•......•......•.•...................... enable or disable process accounting
alarm•..................•........•..............•..•.....••..•........•......••....... set a process's alarm clock
brk••...••..............•......•.....••.....•......... change data segment space allocation
chdir•.............•............•..........................•..................•••••...•............ change working directory
chmod•....................................••••••••........••.....•.•..............•.................... change mode of file
chown•....................................•.•...•..........••••.•...•..••.........•....•. change owner and group of a file
chroot•...••.......••..•......•..•.........•.....•..•••••••..•••••...•.....•..•...........•...............•. change root directory
close•..................•..•.....................•.......•.•....•.......•....•.•• close a file descriptor
creat•.•.................••.........•.•.•.•..•..•..••.••• create a new file or rewrite an existing one
dup•••.......••....•.•.•.........••••••••••••....•....•........•.•••..•..•...•.••. duplicate an open file descriptor
exec•..........•...•.•.•••......•.•.•...•••••..........................•..•.•....•••.....................•...... execute a file
exit•••..•...••..•....••••.•..•••..•.............•..........................•.••••...••.......•............• terminate process
fcntl•...•.••....................•...••...•............................. file control
fork•..................................•......................•.............••.•..........••......... create a new process
getpid ...••.. get process, process group, and parent process IDs
getuid•...........•..................•.•. get real user, effective user, real group, and effective group IDs
ioctl•..•....................•...•.•..•..................••..•...•....... control device
kill•....•......•..................•••..•...•••••..•......•... send a signal to a process or a group of processes
link•.••...•.•..•.•..•..•..•......•...•.....•.•.............................•...................•...•........................ Iink to a file
lock•...•.............•••......•...•.....•. 1ock a process in memory
locking ...•..••......•.•••.•....•...•............................. provide exclusive file regiOns for reading or writing

Plexus Sys3 UNIX - 5 - March .1984

Contents

lseek ... move read/write file pointer ~
mknod ... make a directory, or a special or ordinary file
mount ... mount a file system
nice ... change priority of a process
open .. open for reading or writing
pause .. suspend process until signal
phys .. allow a process to access physical memory
pipe ... create an interprocess channel
profil •... execution time profile
ptrace .. process trace
read .. read from file
rmount.. ... mount a remote file system directory
rumount.. ... umount a remote file system directory
setpgrp ... set process group 10
setuid .. set user and group IDs
signal.. .. specify what to do upon receipt of a signal
stat. ...•.. get file status
stime .. set time
sync .. update super-block
syscall ... numeric id of system call
time .. get time
times ... get process and child process times
ugrow ... change system stack limit
ulimit ... get and set user limits
umask ... set and get file creation mask
umount ... unmount a file system
uname .. get name of current UNIX system
unlink .. remove directory entry
ustat .. get file system statistics
utime .. set file access and modification times
wait .. wait for child process to stop or terminate
write ... write on a file

3. Subroutines

intro .. .introduction to subroutines and libraries
a64I.. ... convert between long and base-64 ASCII
abort .. generate an lOT fault
abs .. .integer absolute value
assert ... program verification
atof ... convert ASCII to numbers
bessel .. bessel functions
bsearch ... binary search
cony .. character translation
crypt ... OES encryption
ctermid ... generate file name for terminal
ctime .. convert date and time to ASCII
ctype ..•...................... character classification
curses ... screen functions with opti mat cursor motion
cuserid ... character login name of the user
ecvt ... output conversion
end ... Iast locations in program
exp ... exponential, logarithm, power, square root functions
fclose .. close or flush a stream

March 1984 - 6 - Plexus Sys3 UNIX

Contents

ferror ... stream status inquiries
floor .. absolute value. floor. ceiling. remainder functions
fopen .. open a stream
fread .. buffered binary input/output
frexp ... split into mantissa and exponent
.seek ... reposition a stream
gamma .. .log gamma function
gete ... get character or word from stream
getenv ... value for environment name
getgrent ... get group file entry
getlogin ... get login name
getopt ... get option letter from argv
getpass~ .. read a password
getpw .. get name from UID
getpwent ... get password file entry
gets .. get a string from a stream
hypot ... Euclidean distance
l3tol .. convert between 3-byte integers and long integers
lognameIogin name of user
lseareh ... linear search and update
malloe ... main memory allocator
mktemp .. make a unique file name
monitor .. prepare execution profile
nlist ... get entries from name list
perror ... system error messages
plot .. graphics interface subroutines
popen ... initiate I/O to/from a process
printf .. output formatters
pute ... put character or word on a stream
putpwent. .. write password file entry
puts ... put a string on a stream
qsort ... quicker sort
rand .. random number generator
regex ... regular expression compile/execute
scanf ... formatted input conversion
setbuf .. assign buffering to a stream
setjmp .. non-Iocal goto
sinh .. hyperbolic functions
sleep .. suspend execution for interval
ssignal ... software Signals
stdio .. standard buffered input/output package
string .. string operations
swab ... swap bytes
system .. issue a shell command
termlib .. terminal independent operation routines
tmpfila ... create a temporary file
tmpnam ... create a name for a temporary file
t . . t . . f . rig ... ngonometnc unctions
ttynama .. find name of a terminal
ungete .. push character back into input stream

r
Plexus Sys3 UNIX - 7 - March 1984

Contents

4. Special Flies

intro .. .introduction to special files
dk ... pseudo disk driver
err .. error-Iogging interface
Icp .. 1ntelligent Communications Processor
lmap ... Intelligent Mass Storage Processor
is .. iSBC disk controller
Ip .. line printer
mem .. memory devices
mt .. pseudo tape driver
null ... the null file
pd .. IMSC disk controller
pp ... parallel port interface
prf ... operating system profiler
pt .. IMSC cartridge controller
rm ... Cipher Microstreamer tape drive
st ... synchronous terminal interface
swap .. image of the swap area
trace ... event-tracing driver
tty .. general terminal interface
vpm ... the Virtual Protocol Machine

5. File Formats

Intro ... introduction to file formats
a.out .. assembler and link editor output ~_ _,
aect ... per-process accounting file format _,
ar .. archive file format
checklist.. .. list of file systems processed by fsck
core .. ~ ... format of core image file
cpio ... format of cpio archive
O-OOsts ... configuration file for NOS
dir .. format of directories
dumpincremental dump tape format
errflle .. error-Iog file format
fs .. format of system volume
fspec .. format specification in text files
group ... group file
holidays ... define holidays and prime time for accounting
Inittab ... control information for init
inode .. format of an inode
mnttab .. mounted file system table
passwd ... password file
plot. ... graphics interface
pnch ... file format for card images
profile : ... setting up an environment at login time
secsfile .. '"format of SCCS file
termcap .. terminal capability data base
tp ... magnetic tape format
ttytype .. data base of terminal types by port
utmp ... utmp and wtmp entry format
vtconf ... configuration file for NOS Virtual Terminal facility

March 1984 - 8 - Plexus Sys3 UNIX

Contents

r 6. Games

intro .. introduction to games
arithm.tic .. ; provide drill in number facts
back•..•.. the game of backgammon
bj ... the game of black jack
craps ...•.. the game of craps
fish•.. the game of fish
hangman ...•.. guess the word
moo ...•... guessing game
m .. tic-tac-toe
wump .. the game of hunt-the-wumpus

7. Miscellaneous Facilities

introintroduction to miscellany
ascii ... map of ASCII character set
environ .. user environment
eqnchar ... special character definitions for eqn and neqn
fcntl .. file control options
greek ... graphics for the extended TTY -37 type-box
man ..•................ macros for formatting entries in this manual
mm ... the MM macro package for formatting documents
ms ... macros for formatting manuscripts
mv ..•............. a macro package for making view graphs
reg.xp .. regular expression compile and match routines
stat ... data returned by stat system call
t.rm•...•.................•..................................... conventional names
types•.....••.........................•..........•...........•.•................................... primitive system data types

8. System Maintenance Procedures

intro ...•...•......... .introduction to system maintenance procedures
autoboot ...•... automatic reboot
crash ..•...............•........................ what to do when the system crashes
dconfig••....................................•....•.....••..........•........................... configure logical disks
dformat••......••........•...•......•...•... disk formatter
fbackup•...•..•.........• make a fast tape backup of a file system
filesav •..••..•••...•......••...........•.... daily/weekly UNIX file system backup
getty ... set the modes of a terminal
gettytab ..•........................•.•......... defining speed tables for getty
init ...•.......••..•.•................•......••.................. process control initialization
makekey•.................•.......•.................................... generate encryption key
mk ..•.........•...................• how to remake the system and commands
rc ...•............••.................••..•.......... system initialization shell script
rje ...•.........•.. RJE (Remote Job Entry) to IBM
sar ..•..................•............. system activity report package
shutdown .. terminate all processing

Plexus Sys3 UNIX - 9 - March 1984

PERMUTED INDEX

lfunctlons of HP 2640 and 2621-series terminals .. hp(1)
handle special functions of HP 2640 and 2621-seriesl hp: ... hp(1)

functions of DASI 300 and! 300, 300s: handle special .. 300(1)
Ispeclal functions of DASI 300 and 300s terminals. 300(1)

of DASI 300 and 300s! 300, 300s: handle special functions .. 300(1)
functions of DASI 300 and 300s terminals. !special ... 300(1)

13tol, ltol3: convert between 3-byte integers and longl .. 13tol(3C)
comparison. diff3: 3-way differential file ... diff3(1)

Tektronix 4014 terminal. 4014: paginator for the .. 4014(1)
paginator for the Tektronix 4014 terminal. 4014: .. 4014(1)
of the DASI 450 terminal. 450: handle special functions ... 450(1)

special functions of the DASI 450 terminal. 450: handle ... 450(1)
long and base-64 ASCII. a641, 164a: convert between .. a641(3C)

abort: generate an lOT fault. abort(3C)
abs: integer absolute value ... abs(3C)

abs: integer absolute value .. abs(3C)
floor, fabs, ceil, fmod: absolute value, floor,! ... floor(3M)

of a file. touch: update access and modification times .. touch(1)
utime: set file access and modification times .. utime(2)

accessibility of a file. access: determine .. access(2)
phys: allow a process to access physical memory ... phys(2)

access: determine accessibility of a file ... access(2)
acctcon: connect-time accounting .. acctcon(1M)

acctprc: process accounting. . .. acctprc(1 M)
acctsh: shell procedures lor accounting. acctsh(1 M)

runacct: run daily accounting ... runacct(1M)
enable or disable process accounting. acct: .. acct(2)

accounting! acct: overview of accounting and miscellaneous .. acct(1M)
accounting and miscellaneous accounting commands. lof .. acct(1M)

holidays and prime time lor accounting. define ... holidays(S)
acct: per-process accounting file format. .. acct(S)

acctmerg: merge or add total accounting files ... acctmerg(1 M)
search and print process accounting Iile(s). acctcom: .. acctcom(1)

summary from per-process accounting records. !command .. acctcms(1M)
process accounting. acct: enable or disable ... acct(2)

and miscellaneous accounting! acct: overview of accounting ... acct(1 M)
file format. acct: per-process accounting .. acct(S)

per-process accountingi acctcms: command summary from acctcms(1M)
process accounting file(s). acctcom: search and print ... acctcom(1)

accounting. acctcon: connect-time ... acctcon(1M)
accounting Iiles. acctmerg: merge or add total .. acctmerg(1 M)

acctprc: process accounting ... acctprc(1 M)
accounting. acctsh: shell procedures lor .. acctsh(1M)

sin, cos, tan, asin,' acos, atan, atan2:1 ... trig (3M)
sag: system activity graph. sag(1 M)
sar: system activity report package ... sar(8)

command and generate a system activity report. !tlme a ... tlmex(1)
current SCCS file editing activity. sact: print ... sact(1)

adb: debugger .. adb(1)
acctmerg: merge or add total accounting files ... acctmerg(1 M)

SCCS files. admin: create and administer .. admin(1)
admin: create and administer SCCS Iiles... .. admin(1)

alarm: set a process's alarm clock .. alarm(2)
clock. alarm: set a process's alarm .. alarm(2)

change data segment space allocation. brk, sbrk: ... brk(2)
realloc, calloc: main memory allocator. malloc, free, ... malloc(3C)

physical memory phys: allow a process to access .. phys(2)
01 a document style: analyze surface characteristics ... style(1)

sort: sort andlor merge files .. sort(1)
send, gath: gather flies andior submit RJE jobs ... send(1C)

link editor output. a.out: assembler and ... a.out(S)
introduction to commands and application programs. intro: ... intro(1)

maintainer. ar: archive and library ... ar(1)
ar: archive file format. .. ar(S)

language. bc: arbitrary-precision arithmetic .. bc(1)
cpio: format of cplo archive .. cplo(S)
tp: manipulate tape archive ... tp(1)

maintainer. ar: archive and library .. ar(1)

Plexus Sys3 UNIX - 1 - March .1984

Permuted Index
ar: archive file format. .. areS)

VAX-1117S01 arcv: convert archive files from PDP-11 to ... arcv(1)
tar: tape file archlver. tar(1)

cplo: copy file archives in and out. ... cpio(1)
arcv6: convert archives to new format. .. ' arcv6(1)

from PDP-11 to VAX-1117S01 arcv: convert archive files .. arcv(1)
format. arcv6: convert archives to new ... arcv6(1)

swap: image of the swap area ... swap(4)
command. xargs: construct argument list(s) and execute ... xargs(1)

echo: echo arguments .. echo(1)
expr: evaluate arguments as an expression ... expr(1)

getopt: get option letter from argv. getopt(3C)
bc: arbitrary-precision arithmetic language .. bc(1)

number facts. arithmetic: provide drill in ... arithmetic(6)
expr: evaluate arguments as an expression .. expr(1)

as.6S000: MC6S000 assembler. as.6S000(1)
between long and base-64 ASCII. a64I, 164a: convert ... a641(3C)

convert date and time to ASCII. lasctlme, tzset: ... ctlme(3C)
ascii: map of ASCII character set. ... ascii(7)

set. ascii: map of ASCII character .. ascli(7)
atof, atol, atol: convert ASCII to numbers ... atof(3C)

andl ctlme. localtlme, gmtlme, asctlme, tzset: convert date ... ctlme(3C)
trigonometricl sin, cos, tan, asln, acos. atan, atan2: ... trig (3M)

help: ask for help ... help(1)
as.6S000: MC6S000 assembler. as.6S000(1)

as.zaOOO: zaooo assembler .. as.zaOOO(1)
output. a.out: assembler and link editor .. a.out(S)

assert: program verification. assert(3X)
setbuf: assign buffering to a stream .. setbuf(3S)

as.zaOOO: zaooo assembler .. as.ZSOOO(1)
sin, cos, tan, asin, acos, atan, atan2: trigonometricl ... trig(3M)

cos, tan, asln, acos, atan, atan2: trigonometricl sin, ... trig(3M)
ASCII to numbers. atof, atoi, atol: convert ... atof(3C)

numbers. atof, atoi, atol: convert ASCII to ... atof(3C)
numbers. atof, atoi, atol: convert ASCII to ... atof(3C)

autoboot: automatic reboot. ... autoboot(S)
autoboot: automatic reboot. .. autoboot(S)

wait: await completion of process .. wait(1)
processing language. awk: pattem scanning and .. awk(1)

ungetc: push character back Into Input stream. ungetc(3S)
back: the game of backgammon. back(6)

back: the game of backgammon .. back(6)
dallylWeekly UNIX file system backup. fllesave, tapesave: .. fllesave(S)

fbackup: make a fast tape backup of a file system .. fbackup(S)
banner: make posters .. banner(1)

bbanner: print large banner on printer .. bbanner(1)
termcap: terminal capability data base. termcap(S)

ttytype: data base of terminal types by port ... ttytype(5)
164a: convert between long and base-64 ASCII. a641, .. a641(3C)

screen-oriented display editor based on ex. vJ: ; vi(1)
portions of path names. basename, dlmame: deliver .. basename(1)

printer. bbanner: print large banner on ... bbanner(1)
arithmetic language. bc: arbitrary-precision .. bc(1)

bcopy: Interactive block copy .. bcopy(1M)
bdiff: big diff. bdiff(1)

cb: C program beautifier. cb(1)
jO, j1, jn, yO, y1, yn: bessel functions ... bessel(3M)

bfs: big file scanner .. bfs(1)
strings in an object, or other binary, file. Iflnd the printable .. strings(1)

fread, fwrite: buffered binary input/output. ... fread(3S)
bsearch: binary search .. bsearch(3C)

remove symbols and relocation bits. strip: .. strip(1)
bj: the game of black jack. . .. bj(6)

bj: the game of black jack ... bj(6)
sync: update the super block .. sync(1 M)

bcopy: Interactlvt;l block copy ... bcopy(1 M)
periodically update the super block. update: .. update(1 M)
df: report number of free disk blocks .. df(1)

sum: sum and count blocks in a file ... sum(1)
bls: list contents of directory .. bls(1)

unlxboot: UNIX startup and boot procedures ... unlxboot(8)
space allocation. brk. sbrk: change data segment ... brk(2)

March 1984 - 2 - Plexus Sys3 UNIX

r
modest-sized programs.

fread, fwrite:
stdlo: standard
setbuf: assign

mknod:
swab: swap

cc, pcc:
programs. scc:

cb:
lint: a

xref: cross reference for
xstr: extract strings from

message file by massaging the

Plexus Sys3 UNIX

dc:desk
cal: print

syscall: numeric id of system
cu:

data retumed by stat system
ct:

malloc, free, realloc,
Intro: introduction to system

link and unlink system
termcap: terminal

pnch: file format for
pt: IMSC

of the ex editor for new or
files.

commentary of an SCCS delta.
floor, ceiling,! floor, fabs,

/fmod: absolute value, floor,
ugrow:

delta: make a delta
pipe: create an Interprocess

stream. ungetc: push
Ilsgraph, iscntrl, isascii:

and neqn. eqnchar: special
user. cuserid:

Igetchar, fgetc, getw: get
Iputchar, fputc, putw: put

ascii: map of ASCII
toupper, tolower, toascii:

style: analyze surface
tr: translate

directory.
fsck: file system consistency

eqn delimiters. mmchek:
constant-width text fori cw,
text for nroft orl eqn, neqn,

lint: a C program
grpck: passwordlgroup file

copy file systems with label
systems processed by fsck.

chown,
times: get process and
terminate. wait: wait for

of a file.
group.

for a command.

rm:
iscntrl, isascii: character

uuclean: uucp spool directory

clri:

Permuted Index

bs: a compiler/interpreter for "" ""." " bs(1)
bsearch: binary search " """" .•. " .. " ,,. bsearch(3C)
buffered binary input/output. " ... " """""" .. ,, ,," fread(3S)
buffered input/output package "." "" .. "."" stdlo(3S)
buffering to a stream " " " .. " ... " setbuf(3S)
build special file "" ... " "."., .. "" "",, ... mknod(1M)
bytes " " " .. " .. ""."." swab(3C)
C compiler ... " " " " .. "" " ... ". cc(1)
C compiler for stand-alone "" "" .. """""" .. ".,, scc(1)
C program beautifier. " ,,, .. ,,",, .. ,,,, ,,",, cb(1)
C program checker. "" "" .. ""." Iint(1)
C programs ... "." " xref(1)
C programs to implement shared! ."""""" ,, xstr(1)
C source. mkstr: create an error " .. " " "" .. mkstr(1)
cal: print calendar ... "",, cal(1)
calculator ... "." .. "" " dc(1)
calendar .. " " " " .. ""." ... "".""""" .. """ ... " ... ,, .. ,, cal(1)
calendar: reminder service " "" .. "" "."." calendar(1)
call. . .. "" """ ... ,, syscall(2)
call another UNIX system ... " .. " ... "" .. "" .. ,, cu(1C)
call. stat: " """" .. " ,, stat(7)
call terminal. " " " .. "" .. " ... " .. " ct(1 C)
calloc: main memory allocator " " " " malloc(3C)
calls and error numbers " " "."""" .. "" .. " ,, .. ,, intro(2)
calls. link, unlink: exercise "" .. " "" ... "" .. " .. ""." Iink(1M)
capability data base. """ .. " """,, .. ,, termcap(5)
card Images. """"" " " pnch(5)
cartridge controller " "." .. " " .. """" .. ",, pt(4)
casual users. ledltor, variant "."" .. """""" ... ",, ,, edit(1)
cat: concatenate and print .. """"" " .. , " " ,, cat(1)
cb: C program beautifier ... " .. "." "" .. " .. " .. """.",, cb(1)
cc, pcc: C compiler ... " " .. """""" " ,, cc(1)
cd: change working directory .. """." ... "" .. """""." ,,",,. cd(1)
cdc: change the delta " ,"""" .. """" .. " .. "",, ,, cdc(1)
ceil, fmod: absolute value, "" ,,"""""" floor(3M)
ceiling, remainder functions """ " ... " ",, floor(3M)
change system stack limit " " ""." .. """" .. ,, ugrow(2)
(change) to an SCCS file ... " " .. " delta(1)
channel " ... " ... "." pipe(2)
character back into input ".""" .. """ " " .. ,, ungetc(3S)
character classification " " .. "" ... " .. "" ctype(3C)
character definitions for eqn ."" " "" ""."" .. "" eqnchar(7)
character login name of the ."."" " " .. " ... "." .. """,, ... cuserid(3S)
character or word from stream : .. """ " .. " ,, getc(3S)
character or word on a stream " " " .. " "" .. ,,"" putc(3S)
character set. .".""" .. """"" ... " ,".,,, .. ,, ,, .. ,, ascii(7)
character translation " " " " .. conv(3C)
characteristics of a document " ... """" " """,, .. ,,",, .. ,," style(1)
characters " " " "" tr(1)
chdir: change working " """ .. " " ,, chdir(2)
check and interactive repair " " " .. """.,, fsck(1 M)
check usage of mm macros and " .. " " mmchek(1)
checkcw: prepare " .. " .. " .. " "." .. "" " cw(1)
checkeq: format mathematical ... """ " " eqn(1)
checker " ... " ""." ... " " , Iint(1)
checkers. pwck, " .. ".", .. ", ", ... " pwck(1 M)
checking. volcopy, labelit: " .. """".,, volcopy(1 M)
checklist: list of file "." """ " ... " checklist(5)
chgrp: change owner or group. " .. "" " ... " " " ... chown(1)
child process times " ... " " " .. "." ""."." times(2)
child process to stop or " "." " " """ .. ,,. wait(2)
chmod: change mode ... " " """.,,",, chmod(1)
chmod: change mode of file. " , .. " ... " chmod(2)
chown: change owner and group " chown(2)
chown, chgrp: change owner or """ "" ,, chown(1)
chroot: change root directory " " " " chroot(1 M)
chroot: change root directory. "" .. "." " ... " " .. " chroot(2)
Cipher Microstreamer tape drive. ".""." " rm(4)
classification. Iisgraph, " " ... """ " ctype(3C)
clean-up ... uuclean(1 M)
clear: clear terminal screen " .. " ... " ... "." ""."."",, .. clear(1)
clear i-node """"""."" ,, ,, ,,",, clri(1 M)

- 3 - March 1984

Permuted Index
clear: clear terminal screen .. clear(1)

status! ferror, feof, clearerr, flleno: stream ... ferror(3S)
csh: a shell with C-lIke syntax .. csh(1)

alarm: set a process's alarm clock .. alarm(2)
cron: clock daemon. cron(1 M)

close: close a file descriptor ... close(2)
descriptor. close: close a file .. close(2)

felose, fflush: close or flush a stream .. felose(3S)
clrl: clear I-node ... clrl(1 M)
cmp: compare two files .. cmp(1)

line-feeds. col: filter reverse ... col(1)
comb: combine secs deltas. comb(1)

comb: combine secs deltas .. comb(1)
common to two sorted files. comm: select or reject lines ... comm(1)

system: Issue a shell command. system(3S)
test: condition evaluation command. test(1)

time: time a command .. tlme(1)
actlvltyl timex: time a command and generate a system tlrnex(1)

nice: run a command at low priority ... niee(1)
change root directory for a command. chroot: .. chroot(1 M)

env: set environment for command execution ... env(1)
uux: unix to unix command execution ... UUX(1C)

quits. nohup: run a command Immune to hangups and nohup(1)
rsh: restricted shell (command Interpreter). rsh(1)

getopt: parse command options ... getopt(1)
sh: shell, the standard command programming language sh(1)

per-process! acctcms: command summary from ... acctcms(1M)
argument Ilst(s) and execute command. xargs: construct ... xargs(1)

Install: Install commands .. Install(1 M)
Intro: Introduction to commands and application! ... Intre(1)

how to remake the system and commands. mk: ... mk(8)
and miscellaneous accounting commands. lof accounting .. acct(1 M)

cdc: change the delta commentary of an secs delta ... cdc(1)
comm: select or reject lines common to two sorted files. comm(1)

Icp: Intelligent Communications Processor ; Icp(4)
dlff: differential file comparator .. dlff(1)

cmp: compare two files ... cmp(1)
sees file. sccsdlff: compare two versions of an .. sccsdlff(1)

dlff3: 3-way differential file comparison. dlff3(1)
dlrcmp: directory comparison. dlrcmp(1)

regcmp: regular expression compile .. regcmp(1)
regexp: regular expression compile and match routines .. regexp(7)
regcmp: regular expression complle/execute. regex, .. regex(3X)

cc, pee: C compiler ... ee(1)
programs. sec: C complier for stand-alone ... SCC(1)

protocol machine. vpmc: compiler for the virtual ... vpmc(1 C)
yacc: y~t anoth$r complier-compiler .. yacc(1)

modest-sized programs. bs: a compllerllnterpreter for ... bs(1)
walt: await completion of process .. wa1t(1)

pack, pcat, unpack: compress and expand files. pack(1)
cat: concatenate and print files. cat(1)
test: condition evaluation command .. test(1)

Virtual Terminal vtconf: configuration file for NOS ... vtconf(5)
Network Operating! O-hosts: configuration file for the ... 0-OOsts(5)

dconflg: configure logical disks .. dconflg(8)
acctcon: connect-time accounting. acctcon(1 M)

Interactlvel fsck: file system consistency check and , ... fsck(1 M)
report and Interactive status console. rjestat: RJE status .. rjestat(1C)

ew, checkcw: prepal'8 constant-width text for troff. ew(1)
mkfs: ·construct a file system ... mkfs(1M)

execute command. xargs: construct argument lIst(s) and ... xargS(1)
nroffltroff. tbl, and eqn constructs. deroff: remove .. deroff(1)

Is: list contents of directories .. 18(1)
bls: list contents of directory ... bls(1)
cspllt: context spilt. csp11t(1)

fentl: file control. , .. fcntI(2)
st: synchronous terminal control. .. st(1 M)

vc: version control. .. vc(1)
loctl: control device. ioctl(2)

Inlttab: control information for Inlt .. Inlttab(5)
Inlt: process control Initialization. , .. Inlt(8)

fentl: file control options .. fend(7)

March 1984 -4- Plexus Sys3.UNIX

Permuted Index

uucp status Inquiry and job control. uustat: ... uustat(1C)
is: iSSC disk controller ... Is(4)

pd: IMSC disk controller ... pd(4)
pt: IMSC cartridge controller ... pt(4)

term: conventional names ... term(7)
ecvt, fcvt: output conversion. . .. ecvt(3C)

units: conversion program. unlts(1)
sscanf: formatted input conversion. scanf, fscanf, ... 5Oanf(3S)

dd: convert and copy a file. . .. dd(1)
PDP-11 to VAX-1117801 arev: convert archive files from ... arcv(1)

arev6: convert archives to new format. .. arev6(1)
atof, atol, atol: convert ASCII to numbers ... atof(3C)

integers andl 13tol, ltol3: convert between 3-byte .. 13tol(3C)
base-64 ASCII. a641, 164a: convert between long and ... a641(3C)

Igmtime, asctime, tzset: convert date and time tol ... ctime(3C)
bcopy: interactive block copy ... bcopy(1M)

dd: convert and copy a file. dd(1)
cpio: copy file archives in and out. .. cpio(1)

checking. volcopY,labellt: copy file systems with label ... volcopy(1M)
cp, In, mv: copy, link or move files .. cp(1)

copytape: make an image copy of a tape. copytape(1 m)
uulog, uuname: unix to unix copy. uucp, ... uucp(1C)

public UNIX-to-UNIX file copy. uuto, uupick: .. uuto(1C)
tape. copytape: make an image copy of a copytape(1 m)

file. core: format of core image .. core(5)
core: format of core image file .. core(5)

transfer to at Icpdmp: take a core image of the ICP and .. icpdmp(1m)
mem, kmem: core memory ... mem(4)

atan2: trigonometric/ sin, cos, tan, asin, acos, atan, ... trig(3M)
functions. sinh, cosh, tanh: hyperbolic .. sinh(3M)

wc: word count. .. wc(1)
sum: sum and count blocks in a file. sum(1)

files. cpo In, mv: copy, link or move ... cp(1)
cpio: format of cpio archive. cpio(5)

and out. cpio: copy file archives in .. cpio(1)
cpio: format of cpio archive ... cpio(5)

craps: the game of craps. craps(6)
craps: the game of craps ... craps(6)
crash: examine system Images ... crash(1 M)

rewrite an existing one. creat: create a new file or .. creat(2)
file. tmpnam: create a name for a temporary ... tmpnam(3S)

an existing one. creat: create a new file or rewrite .. creat(2)
fork: create a new process. . .. fork(2)

ctags: create a tags file ... ctags(1)
tmpflle: create a temporary file ... tmpflle(3S)

massaging the C source. mkstr: create an error message file by .. mkstr(1)
channel. pipe: create an interprocess ... pipe(2)

files. admin: create and administer SCCS ... admin(1)
umask: set and get file creation mask ... umask(2)

listing. cref: make cross-reference ... cref(1)
cron: clock daemon .. cron(1 M)

programs. xref: cross reference for C ... xref(1)
cref: make cross-reference listing ... cref(1)

more: file perusal filter for CRT viewing. more(1)
crypt: encode/decode .. crypt(1)

encryption. crypt, setkey, encrypt: DES ... crypt(3C)
csh: a shell with C-like syntax .. csh(1)
cspllt: context spilt .. cspllt(1)
ct: call terminal .. ct(1C)
ctags: create a tags file. ctags(1)

for terminal. ctermid: generate file name ... ctermid(3S)
asctime, tzset: convert datel ctime, localtime. gmtime, ... ctime(3C)

cu: call another UNIX system .. cu(1C)
ttt, cubic: tlc-tac-toe. m(6)

activity. sact: print current SCCS file editing ... sact(1)
uname: print name of current UNIX ... uname(1)
uname: get name of current UNIX system .. uname(2)

optimal cursor motion curses: screen functions with .. curses(3C)
screen functions with optimal cursor motion curses: .. curses(3C)

spline: interpolate smooth curve ... spllne(1G)
of the user. cuserid: character login name ... cuserld(3S)

of each line of a file. cut: cut out selected fields , cut(1)

Plexus Sys3 UNIX - 5 - March 1984

Permuted Index

March 1984

.each line of a file. cut:
constant-width text fori

cron: clock
errdemon: error-logging

Ipd: line printer
terminate the error-logging

runacct: run
backup. filesave. tapesave:
/handle special functions of

special functions of the
prof: display profile

termcap: terminal capability
port ttytype:

call. stat:
brk. sbrk: change

types: primitive system
join: relational

date: print and set the
/asctlme. tzset: convert

adb:
fsdb: file system

for accounting.
gettytab:

eqnchar: special character
usage of mm macros and eqn
names. basename. dlmame:

file. tall:
delta commentary of an sees

file. delta: make a
delta. cdc: change the

rmdel: remove a
to an sees file.

comb: combine sees
mesg: permit or

tbl. and eqn constructs.
crypt. setkey. encrypt:

close: close a file
dup: duplicate an open file

de:
file. access:

file:
Ioct!: control

master: master
lIomem: local

devnm:

blocks.

the Network Operating System!
ratfor: rational Fortran

Interactive thesaurus for

bdlff: big
comparator.
comparison.

sdlff: slde-by-slde
dlffmk: mark

dlff:
dlff3: 3-way

between files.

dlr: format of
Is: list contents of

rm. rmdlr: remove files or
openup: keep open key

bls: list contents of
cd: change working

cut out selected fields of : cut(1)
cw, checkcw: prepare .. cw(1)
deemon. cron(1 M)
daemon. errdemon(1 M)
daemon. Ipd(1 c)
daemon. errstop: .. errstop(1M)
dally accounting .. runacct(1 M)
dallylWeekly UNIX file system .. filesave(8)
DASI 300 and 300s terminals. 300(1)
DASI 450 terminal. /handle ... 450(1)
date. prof(1)
data base. • .. termcap(5)
data base of terminal types by .. ttytype(5)
date retumed by stat system ... stat(7)
data segment space allocation. brk(2)
data types. types(7)
database operator. . .. joln(1)
date ... date(1)
date and time to ASCII. ctlme(3C)
date: print and set the date ... date(1)
dc: desk calculator. de(1)
dconfig: configure logical disks. dconfig(8)
dd: convert and copy a file. . .. dd(1)
debugger ... adb(1)
debugger ... fsdb(1M)
define holidays and prime time ... holldays(5)
defining speed tables for getty .. gettytab(8)
definitions for eqn and neqn .. eqnchar(7)
delimiters. mmchek: check .. mmchek(1)
deliver portions of path .. basename(1)
deliver the last part of a ... tall(1)
delta. cdc: change the ... cdc(1)
delta (change) to an sees ... delta(1)
delta commentary of an sees ... cdc(1)
delta from an secs file. rmdel(1)
delta: make a delta (change) .. delta(1)
deltas ... comb(1)
deny messages. mesg(1)
deroff: remove nroffltroff, ... deroff(1)
DES encryption ... crypt(3C)
descriptor .. close(2)
descriptor. dup(2)
desk calculator. dc(1)
determine accessibility of a ... access(2)
determine file type .. file(1)
device. loCII(2)
device Information table ... master(5)
device VO memory ... mem(4)
device name : ... devnm(1 M)
devnm: device name .. devnm(1 M)
df: report number of free disk .. df(1)
dformat: disk formatter ... dformat(8)
D-hosts: configuration file for .. D-hosts(5)
dialect. ratfor(1)
diction explain: ... diCllon(1)
diction: print wordy sentences ... dlctlon(1)
dlff .. bdlff(1)
dlff: differential file ... dlff(1)
dlff3: 3-way differential file .. diff3(1)
difference program. sdlff(1)
differences between files. dlffmk(1)
differential file comparator. d1ff(1)
differential file comparison ... dlff3(1)
dlffmk: mark differences ... dlffmk(1)
dlr: format of directOries. dlr(5)
dlrcmp: directory comparison. dlrcmp(1)
directories ... dlr(5)
directories ... 15(1)
directories. rm(1)
directories and files .. openup(1)
directory. bls(1)
directory. cd(1)

- 6 - Plexus Sys3 UNIX

Permuted Index

r chdir: change working directory ..•....................... chdlr(2)
chroot: change root directory. . .. chroot(2)

mkdir: make a directory .. mkdlr(1)
. mvdir: move a directory .. mvdlr(1M)

uuclean: uucp spool directory clean-up .. uuclean(1M)
dlrcmp: directory comparison .. dlrcmp(1)

unlink: remove directory entry ... unlink(2)
chroot: change root directory for a command .. chroot(1 M)

pwd: working directory name .. pwd(1)
ordinary file. mknod: make a directory. or a special or .. mknod(2)

mount a remote file system directory rmount: .. rmount(2)
unmount a remote file system directory rumount: .. rumount(2)

path names. basename. dirname: deliver portions of ... basename(1)
node: enable or disable foreign hosts .. node(1M)
aect: enable or disable process accounting. acct(2)

df: report number of free disk blocks. df(1)
is: iSSC disk controller ... is(4)

pd: IMSC disk controller ... pd(4)
dk: pseudo disk driver ... dk(4)

dformat: disk formatter. dformat(8)
du: summarize disk usage .. du(1)

dconfig: configure logical disks .. dconflg(8)
mount. umount: mount and dismount file system. . .. mount(1 M)

rmount. rumount: mount and dismount remote file system .. rmount(1)
vi: screen-oriented display editor based on ex .. vi(1)

prof: display profile data ... prof(1)
hypot: Euclidean distance.. ... hypot(3M)

dk: pseudo disk driver .. dk(4)
dnld: download program flies. dnld(1 m)

surface characteristics of a document style: analyze ... style(1)
MM macros. mm: print out documents formatted with the ... mm(1)

macro package for formatting documents. mm: the MM .. mm(7)
slides. mmt. mvt: typeset documents. view graphs, and ... mmt(1)

whodo: who is doing what. ... whodo(1 M)
dnld: download program files .. dnld(1 m)

graph: draw a graph .. graph(1G)
arithmetic: provide drill In number facts .. arithmetlc(6)

rm: Cipher Microstreamer tape drive ... rm(4)
dk: pseudo disk driver ... dk(4)
mt: pseudo tape driver ... mt(4)

trace: event-tracing driver ... trace(4)
make a new nroff terminal/printer driver table trmtab: ... trmtab(1)

du: summarize disk usage .. du(1)
dump: incremental file system dump. dump(1 M)

od: octal dump. od(1)
extract error records from dump. errdead: .. errdead(1M)

format. dump: incremental dump tape .. dump(5)
dump. dump: incremental file system ... dump(1M)

print the names of files on a dump tape. dumpdir: ... dumpdir(1 m)
dump: incremental dump tape format. .. dump(5)

on a dump tape. dumpdlr: print the names of files ... dumpdir(1 m)
deSCriptor. dup: duplicate an open file .. dup(2)

descriptor. dup: duplicate an open file ... dup(2)
echo: echo arguments ... echo(1)

echo: echo arguments ... echo(1)
ecvt, fcvt: output conversion .. ecvt(3C)
ed: text editor. ... ed(1)

program. end, etext. edata: last locations in ... end(3C)
ex editor for new or casuall edit: text editor. variant of the .. edlt(1)
sact: print current SCCS file editing activity ... sact(1)

ed: text editor. ed(1)
ex: text editor. ex(1)
Id: link editor ... Id(1)

sed: stream editor. . .. sed(1)
vi: screen-oriented display editor based on ex .. , vi(1)

!text editor. variant of the ex editor for new or casual users ... edlt(1)
for new or casual! edit: text editor. variant of the ex editor ... edlt(1)

luser. real group, and effective group IDs. getuld(2)
and! Igetegid: get real user, effective user, real group ... getuld(2)

language. e1l: Extended Fortran ... e1l(1)
for a pattern. grep. egrep. fgrep: search a file ... grep(1)

node: enable or disable foreign hosts ... node(1M)

Plexus Sys3 UNIX - 7 - March 1984

Permuted Index

accounting. aeet: enable or disable process ... aeet(2)
crypt: encode/decode ... crypt(1)

crypt, setkey, encrypt: DES encryption .. crypt(3C)
crypt, setkey, encrypt: DES encryption. crypt(3C)

makekey: generate encryption key .. makekey(8)
locations In program. end, etext, edata: last .. end(3C)

Igetgrgld, getgmam, setgrent, endgrent: get group fllel ... getgrent(3C)
Igetpwuld, getpwnam, setpwent, endpwent: get password fIIel ... getpwent(3C)

nllst: get entries from name list. nllst(3C)
man: print entries In this manual. man(1)

man: macros for formatting entries In this manual. .. man(7)
putpwent: write password file entry .. putpwent(3C)

unlink: remove directory entry. unlink(2)
utmp, WImp: utmp and wtmp entry format .. utmp(5)

endgrent: get group file entry. 1getgmam, setgrent, .. getgrent(3C)
endpwent: get password file entry. 1getpwnam, setpwent, ... getpwent(3C)

rje: RJE (Remote Job Entry) to IBM ... rje(8)
command execution. env: set environment for .. env(1)

environ: user environment .. envlron(7)
environ: user environment. ... envlron(7)

prlntenv: print out the environment. . .. prlntenv(1)
profile: setting up an environment at login time .. proflle(5)
execution. env: set environment for command ... env(1)

getenv: value for environment name ... getenv(3C)
character definitions for eqn and neqn. Ispeclal .. eqnchar(7)

remove nroffltroff, tbl, and eqn constructs. deroff: ... deroff(1)
check usage of mm macros and eqn delimiters. mmchek: ... mrnchek(1)

mathematical text for nroffl eqn, neqn, checkeq: format ... eqn(1)
definitions for eqn and neqn. eqnchar: special character .. eqnchar(7)

err: error-logging Interface .. err(4)
from dump. errdead: extract error records ... errdead(1 M)

daemon. errdemon: error-logging .. errdemon(1M)
format. errflle: error-log file .. errflle(5)

perror. svs_errllst, svs_nerr, erma: system error messages .. perror(3C)
the C source. mkstr: create an error message file by massaging .. mkstr(1)

sys_nerr, erma: system error messages. Isvs_errllat, ... perror(3C)
to system calls and error numbers. IIntrod4c11on .. Intro(2)

errdead: extract error records from dump .. errdead(1 M)
errflle: error-log file format ... errflle(5)

errdemon: error-logging daemon .. errdemon(1M)
errstop: terminate the error-logging daemon .. errstop(1 M)

err: error-logging Interface ... err(4)
process a report of logged errors. errpt: ... errpt(1M)

spellout: find spelling errors. spell. spellin .. spell(1)
find possible typographical errors. typo: .. typo(1)

logged errors. errpt: process a report of ... errpt(1M)
error-logging daemon. errstop: terminate the ... errstop(1M)

setmnt: establish mnttab table. setmnt(1 M)
In program. end. etext, edata: last locations ... end(3C)

hypot: euclidean distance. hypot(3M)
expression. expr: evaluate arguments as an ... expr(1)

test: condition evaluation command. test(1)
trace: ,event-tracing driver ... trace(4)

edit: text editor, variant of the ex editor for new or casuaV ... edlt(1)
ex: text editor. ex(1)

display editor based on ex. vi: screen-arlented .. vI(1)
crash: examine system Images .. crash(1M)

reading orl locking: provide exclusive file regions for .. Iockf(2)
execlp, execvp: execute at execl, ex8CV, execle, execve, ... exec(2)

execvp: executel exec!. execv, execle, execve, execlp, ... exec(2)
exec!. execv. execle, execve, execlp, execvp: execute at .. exec(2)

execve, execlp, execvp: execute a file. lexecle, ... exec(2)
construct argument lIst(s) and execute command. xargs: ... xargs(1)

uux: unix to unix command execution ... uux(1C)
set environment for command execution. env: ... env(1)

sleep: suspend execution for an Interval. s1eep(1)
sleep: suspend execution for Interval. ... sleep(3C)

monitor: prepare execution profile. monltor(3C)
profll: execution time profile. profll(2) ,

execvp: execute at execl, execv, execle, execve, execlp, ... exec(2)
executel execl, execv, execle, execve, execlp, execvp: .. exec(2)

lexecv, execle, execve, execlp, execvp: execute a file .. exec(2)

March 1984 -8- Plexus Sys3UNIX

Permuted Index

system calls. link, unlink: exercise link and unlink ... Iink(1 M)
a new file or rewrite an existing one. creat: create ... creat(2)

exit: terminate process ... exit(2)
exponential, logarithm.! exp, log, pow, sqrt: ... exp(3M)

pcat, unpack: compress and expand files. pack, ... pack(1)
for diction explain: Interactive thesaurus .. diction(1)

modf: split Into mantissa and exponent. frexp, Idexp, .. frexp(3C)
square/ exp, log, pow, sqrt: exponential, logarithm, power, .. exp(3M)

expression. expr: evaluate arguments as an ... expr(1)
expr: evaluate arguments as an expression. expr(1)

regcmp: regular expression compile. regcmp(1)
routines. regexp: regular expression compile and match ... regexp(7)

regex, regcmp: regular expression compile/execute .. regex(3X)
efl: Extended Fortran Language ... efl(1)

greek: graphics for the extended TTY -37 type-box .. greek(7)
dump. errdead: extract error records from .. errdead(1 M)

to implement shared! xstr: extract strings from C programs .. xstr(1)
value, floor, ceiling.! floor, fabs, ceil, fmod: absolute ... floor(3M)

true, false: provide truth values. true(1)
system. fbackup: make a fast tape backup of a file ... fbackup(8)

abort: generate an lOT fault. ... abort(3C)
of a file system. fbackup: make a fast tape backup fbackup(8)

a stream. telose, fflush: close or flush ... fclose(3S)
fcntl: file control. .. fcntl(2)
fcntl: file control options. fcntl(7)

ecvt, fcvt: output conversion ... ecvt(3C)
fopen, freopen, fdopen: open a stream. fopen(3S)

status Inquiries. ferror. feof, clearerr, flleno: stream ... ferror(3S)
flleno: stream status! ferror, feof, clearerr, ... ferror(3S)

head: give first few lines of a stream .. head(1)
stream. fclose, fflush: close or flush a .. telose(3S)

word from! getc, getchar, fgetc, getw: get character or .. getc(3S)
stream. gets, fgets: get a string from a ... gets(3S)

pattern. grep, egrep, fgrep: search a file for a .. grep(1)
chmod: change mode of file .. chmod(2)

core: format of core image file .. core(5)
ctags: create a tags file .. ctags(1)

dd: convert and copy a file .. dd(1)
get: get a version of an sees file .. get(1)

group: group file .. group(5)
link: link to a file .. Iink(2)

mknod: build special file .. mknod(1M)
null: the null file .. nUII(4)

passwd: password file .. passwd(5)
prs: print an sees file .. prs(1)

read: read from file .. read(2)
reform: reformat text file .. reform(1)

sccsflle: format of SCCS file .. sccsflle(5)
size: size of an object file .. slze(1)

sum: sum and count blocks In a file .. sum(1)
tmpflle: create a temporary file .. tmpflle(3S)

val: validate sees file .. val(1)
write: write on a file .. write(2)

determine accessibility of a file. access: .. access(2)
times. utime: set file access and modification .. utime(2)

tar: tape file archlver. tar(1)
cpio: copy file archives in and out. .. cpio(1)

mkstr: create an error message file by massaging the C source. mkstr(1)
pwck, grpck: password/group file checkers .. pwck(1 M)

change owner and group of a file. chown: ... chown(2)
diff: differential file comparator. ... dlff(1)

diff3: 3-way differential file comparison ... dlff3(1)
fcntl: file control. ... fcntl(2)
fcntl: file control options .. fcntl(7)

uuplck: public UNIX-to-UNIX file copy. uuto, .. uuto(1C)
umask: set and get file creation mask. umask(2)

fields of each line of a file. cut: cut out selected ... cut(1)
a delta (change) to an sees file. delta: make .. delta(1)

close: close a file descriptor .. ctose(2)
dup: duplicate an open file descriptor .. dup(2)

file: determine file type ... flle(1)
sact: print current secs file editing activity ... sact(1)

Plexus Sys3 UNIX - 9 - March 1984

Permuted Index

putpwent: write password file entry. . .. putpwent(3C)
setgrent, endgrent: get group file entry. Igetgmam, .. getgrent(3C)

endpwent: get password file entry. Isetpwent, ... getpwent(3C)
execlp, execvp: execute a file. lexecv, execle, execve, .. exec(2)

in an object, or other binary, file. lfind the printable strings .. strings(1)
grep, egrep, fgrep: search a file for a pattem .. grep(1)

vtconf: configuration file for NOS Virtual Terminal .. vtconf(5)
System! D-hosts: configuration file' for the Network Operating ... D-hosts(5)

acct: per-process accounting file format. ... acct(5)
ar: archive file format. ... ar(5)

errfile: error-log file format. ... errfile(5)
pnch: file format for card images ... pnch(5)

intro: introduction to file formats. intro(5)
of the ICP and transfer to a host file. icpdmp: take a core image .. icpdmp(1 m)

spilt: spilt a file into pieces ... spllt(1)
or subsequent lines of one file. Ilines of several files ... paste(1)

or a special or ordinary file. Imake a directory, ... mknod(2)
mktemp: make a unique file name ... mktemp(3C)

ctermid: generate file name for terminal. .. ctermid(3S)
one. creat: create a new file or rewrite an existing .. creat(2)

viewing. more: file perusal filter for eRT .. more(1)
Iseek: move read/write file pointer. Iseek(2)

locking: provide exclusive file regions for reading orl .. lockf(2)
remove a delta from an sees file. rmdel: ... rmdel(1)

bfs: big file scanner. bfs(1)
two versions of an sees file. sccsdiff: compare .. sccsdiff(1)

stat, fstat: get file status ... stat(2)
mkfs: construct a file system ... mkfs(1 M)

mount: mount a file system. mount(2)
umount: unmount a file system. umount(2)

tapesave: daily/weekly UNIX file system backup. filesave, ... filesave(8)
and interactive repair. fsck: file system consistency check ... fsck(1M)

fsdb: file system debugger .. fsdb(1 M)
rmount: mount a remote file system directory ... rmount(2)

rumount: unmount a remote file system directory ... rumount(2)
dump: incremental file system dump. dump(1 M)

make a fast tape backup of a file system. fbackup: .. fbackup(8)
volume. file system: format of system ... fs(5)

umount: mount and dismount file system. mount. ... mount(1 M)
restor: incremental file system restore .. restor(1 M)

mount and dismount remote file system rmount, rumount: .. rmount(1)
ustat: get file system statistics. ustat(2)

mnttab: mounted file system table .. mnttab(5)
fsck. checklist: list of file systems processed by ... checkllst(5)
volcopy, labellt: copy file systems with labeV ... volcopy(1M)

deliver the last part of a file. tail: .. tail(1)
create a name for a temporary file. trnpnam: ... trnpnam(3S)

and modification times of a file. touch: update access ... touch(1)
file: determine file type .. file(1)

undo a previous get of an sees file. unget: ... unget(1)
report repeated lines in a file. unlq: ... uniq(1)

umask: set file-creation mode mask .. umask(1)
ferror, feo1. clearerr, fileno: stream statusl .. ferror(3S)

cat: concatenate and print files .. cat(1)
cmp: compare two files .. cmp(1)

cp, In, mv: copy, link or move files .. cp(1)
dnld: download program files .. dnld(1 m)

find: find files .. find(1)
intro: introduction to special files .. intro(4)

pr: print files .. pr(1)
sort: sort and/or merge files ... sort(1)

what: Identify sees files .. what(1)
and print process accounting file(s). acctcom: search ... acctcom(1)

merge or add total accounting files. acctrnerg: ... acctmerg(1 M)
create and administer sees files. admln: .. , admin(1)

send, gath: gather files and/or submit RJE jobs .. send(1 e)
lines common to two sorted files. comm: select or reject .. comm(1)

mark differences between files. diffmk: .. diffmk(1)
arcv: convert archive files from PDP-11 tol ... arcv(1)

format specification in text files. fspec: ... fspec(5)
dumpdir: print the names of files on a dump tape .. dumpdlr(1 m)

keep open key directories and files. openup: .. openup(1)

March 1984 - 10 - Plexus Sys3 UNIX

r

rm. rmdir: remove
Imerge same lines of several

unpack: compress and expand
dailylweekly UNIX file system!

greek: select terminal
nl: line numbering
more: file perusal

col:
tplot: graphics

find:

hyphen:
nyname. Isany:

object library. lorder:
errors. typo:

spell. spellin. spellout:
object. or otherl strings:

fish: the game of

tee: pipe
Iceil. fmod: absolute value.

absolute value. floor,!
fclose. fflush: close or

ceiling,! floor. fabs. ceil.
stream.

node: enable or disable

ar: archive file
arev6: convert archives to new
dump: incremental dump tape

emile: error-log file
tp: magnetic tape

per-process accounting file
from PDP-11 to VAX-111780

pnch: file
nroff orl eqn. neqn. checkeq:

inode:
core:
cplo:

dlr:
sccsfile:

file system:
files. tspec:

troff. tbl:
troff. nroff: typeset or

wtrnp: utmp and wtmp entry
Intro: introduction to file

scanf. fscanf. sscanf:
mm: print out documents

dformat: disk
fprintf. sprintf: output

mm: the MM macro package for
manual. man: macros for

ms: macros for
ratfor: rational
efl: Ex1ended

formatters. printf.

Plexus Sys3 UNIX

word on at putc. putchar.
stream. puts.
input/output.

df: report number of
memory allocator. malloc.

stream. fopen.
mantissa and exponent.
gets. tgets: get a string
rmdel: remove a delta

getopt: get option letter
errdead: extract error records

read: read
ncheck: generate names

nlist: get entries
arcv: convert archive files

Permuted Index

files or directories ... rm(1)
files or subsequent lines ofl ... paste(1)
files. pack. pcat .. pack(1)
filesave. tapesave: ... filesave(8)
filter. . .. greek(1)
filter. ... nl(1)
filter for CRT viewing .. more(1)
filter reverse line-feeds .. col(1)
filters .. tplot(1 G)
find files ... find(1)
find: find files. .. flnd(1)
find hyphenated words. hyphen(1)
find name ot a terminal. ... nyname(3C)
find ordering relation for an ... lorder(1)
find possible typographical .. typo(1)
find spelling errors .. spell(1)
find the printable strings In an ... strings(1)
fish ... fish(6)
fish: the game of fish ... fish(6)
fitting .. tee(1)
floor. ceiling. remainderl ... floor(3M)
floor. fabs. ceil. fmod: ... floor(3M)
flush a stream ... fclose(3S)
fmod: absolute value. floor .. floor(3M)
fopen, freopen. fdopen: open a .. fopen(3S)
foreign hosts ... node(1 M)
fork: create a new process .. fork(2)
format. ... ar(5)
format. ... arcv6(1)
format. ... dump(5)
format. ... errflle(5)
format. ... tp(5)
format. acct: ... acct(5)
format. lconvert archive files ... arcv(1)
format for card images ... pnch(5)
format mathematical text for .. eqn(1)
format of an Inode .. inode(5)
format of core Image file .. core(5)
format of cpio archive. cpio(5)
format of directories. dir(5)
format of sces file. sccsfile(5)
format of system volume. fs(5)
format specification in text ... fspec(5)
format tables for nroff or .. tbl(1)
format text ... troff(1)
format. utmp ... utmp(5)
formats .. intro(5)
formatted input conversion. scanf(3S)
formatted with the MM macros .. mm(1)
formatter .. dformat(8)
formatters. printf, .. printf(3S)
formatting documents. . .. mm(7)
formatting entries in this u man(7)
formatting manuscripts ... ms(7)
Fortran dialect. .. ratfor(1)
Fortran Language ... efl(1)
fprintf, sprintf: output .. printf(3S)
fputc, putw: put character or .. putc(3S)
fputs: put a string on a ... puts(3S)
fread. fwrite: buffered binary .. fread(3S)
free disk blocks. df(1)
free, realloc, calloc: main ... malloc(3C)
freopen. fdopen: open a .. fopen(3S)
frexp. Idexp. modf: split into ... frexp(3C)
from a stream : ... gets(3S)
from an SCCS file. rmdel(1)
from argv ... getopt(3C)
from dump ... errdead(1 M)
from file. read(2)
from i-numbers. ncheck(1 M)
from name list. .. nlist(3C)
from PDP-11 to VAX-1117801 .. arcv(1)

- 11 - March 1984

Permuted Index

acctcms: command summary from per-process accounting! ... acctcms(1M)
getw: get character or word from stream. 1getchar, 1getc, ... getc(3S)

getpw: get name from UID .. getpw(3C)
Input conversion. scanf, fscanf, sscanf: formatted .. scanf(3S)

of file systems processed by fsck; checklist: list .. checkllst(5)
check and Interactive repair. fsck: file system consistency ... fsck(1 M)

fsdb: file system debugger .. fsdb(1M)
reposition a stream. fseek. ftell. rewind: .. fseek(3S)

text files. fspec: format specification In ... fspec(5)
stat, fstat: get file status ... stat(2)

stream. fseek, ftell, rewind: reposition a .. fseek(3S)
gamma: log gamma function .. gamma(3M)

10. j1, jn, yO, y1, yn: bessel functions .. bessel(3M)
sinh, cosh, tanh: hyperbolic functions .. slnh(3M)

floor, ceiling, remainder functions. labsolute value, ; fIoor(3M)
300, 300s: handle special functions of DASI 300 and 30081 .. 300(1)

hp: handle special functions of HP 2640 and! ... hp(1)
terminal. 450: handle special functions of the DASI 450 .. 450(1)
logarithm, power, square root functions. Isqrt: exponential, ... exp(3M)

atan, atan2: trigonometric functions. ltan, asln, acos, .. trig(3M)
motion curses: screen functions with optimal cursor ... curses(3C)

Input/output. fread, fwrite: buffered binary .. fread(3S)
wtmp records. fwlmp, wtmpflx: manipulate ... fwtmp(1M)
moo: guessing game ... moo(6)

back: the game of backgammon. back(6)
bj: the game of black jack. bj(6)

craps: the game of craps. craps(6)
fish: the game of fish .. flsh(6)

wump: the game of hunt-the-wumpus ... wump(6)
Intra: Introduction to games .. , Intro(6)

gamma: log gamma function .. gamma(3M)
gamma: log gamma function ... gamma(3M)

submit RJE jobs. send, gath: gather files and!or ... send(1C)
jobs. send, gath: gather files and/or submit RJE .. send(1 C)

timex: time a command and generate a system actlvltyl .. tlmex(1)
abort: generate an lOT fault. abort(3C)

makekey: generate encryption key .. makekey(8)
terminal. ctermld: generate file name for .. ctermld(3S)

ncheck: generate names from I-numbers .. ncheck(1 M)
lexical tasks. lex: generate programs for simple ... lex(1)

rand, srand: random number generator ... rand(3C)
ge1S, fge1s: get a string from a stream. gets(3S)

get: get a version of an sees file .. get(1)
ullmlt: get and set user limits .. ullmlt(2)

getc, getchar, 1getc, getw: get character or word from! ... getc(3S)
nllst: get entries from name list. ... nllst(3C)

umask: set and get file creation mask ... umask(2)
stat, fstat: get file status. stat(2)

ustat: get file system statistics. ; ustat(2)
file. get: get a version of an sees .. get(1)

Igetgmam, setgrent, endgrent: get group file entry ... getgrent(3C)
getiogln: get login name .. getlogln(3C)

logname: get login name .. Iogname(1)
g8tpW: get name from UID ... getpw(3C)

system. uname: get name of current UNIX .. uname(2)
unget: undo a previous get of an sees file. : unget(1)

getopt: get option letter from argv ... getopt(3C)
1getpwnam, setpwent, endpwent: get password file entry ... getpwent(3C)

times. times: get process and child process .. tlmes(2)
and! getpld, getpgrp, getppld: get process, process group, .. getpld(2)

1geteuld. getgld. getegld: get real user, effective user,l ... getuld(2)
tty: get the terminal's name. tty(1)

time: get time. tlme(2)
get character or word from! gate, getchar, 1getc, getw: , getc(3S)

character or word from! getc, getchar, 19ate, getw: get .. gate(3S)
getuld. geteuld, getgld, getegld: get real user,! ... getuld(2)

neme. getenv: value for environment ... getenv(3C)
real user, effectlvel getuld, geteuid, getgid. getegld: get .. getuld(2)

user,l getuld. geteuld, getgld. getegid: get real , ... getuid(2)
setgrent, endgrent: get group! getgrent, getgrgld, getgmam, .. getgrent(3C)
endgrent: get group! getgrent, getgrgid, getgmam, setgrent, .. getgrent(3C)
get group! getgrent, getgrgld, getgmam, setgrent. endgrent: ... getgrent(3C)

March 1984 - 12- Plexus Sys3 'UNIX

Permuted Index

getlogin: get login name .. getiogin(3C)
argv. getopt: get option letter from ... getopt(3C)

getopt: parse command options. getopt(1)
getpass: read a password ... getpass(3C)

process group, and! getpid, getpgrp, getppid: get process, .. getpld(2)
process, process group, andl getpid, getpgrp, getppid: get ... getpid(2)
group, and! getpid, getpgrp, getppid: get process, process ... getpid(2)

getpw: get name from Uio .. getpw(3C)
setpwent. endpwent: geV getpwent, getpwuid, getpwnam, .. getpwent(3C)
geV getpwent. getpwuid, getpwnam, setpwent, endpwent: ... getpwent(3C)

endpwent: geV getpwent, getpwuid, getpwnam, setpwent, .. getpwent(3C)
a stream. gets, fgets: get a string from ... gets(3S)

defining speed tables for getty. getty1ab: ... gettytab(8)
terminal. getty: set the modes of a ... getty(8)
for getty. gettytab: defining speed tables ... getty1ab(8)

getegid: get real user,! getuid, geteuld, getgid, .. getuld(2)
from/ getc, getchar, fgetc, getw: get character or word ... getc(3S)

head: give first few lines of a stream .. head(1)
convert! ctime, localtime, gmtime, asctime, tzset: .. ctime(3C)

setjmp, longjmp: non-local goto ... setjmp(3C)
graph: draw a graph ... graph(1G)

sag: system activity graph ... sag(1M)
graph: draw a graph .. graph(1G)

tplot: graphics filters. . .. tplot(1 G)
TTY -37 type-box. greek: graphics for the extended .. greek(7)

subroutines. plot: graphics interface ... plot(3X)
plot: graphics interface ... plot(5)

mvt: typeset documents, view graphs, and slides. mmt, ... mmt(1)
macro package for making view graphs. mv: a ... mv(7)

extended TTY -37 type-box. greek: graphics for the .. greek(7)
greek: select terminal filter ... greek(1)

file for a pattem. grep, egrep, fgrep: search a .. grep(1)
chown, chgrp: change owner or group ... chown(1)

newgrp: log in to a new group ... newgrp(1)
luser, effective user, real group, and effective groupl ... getuid(2)

Igetppid: get process, process group, and parent process IDs ... getpld(2)
group: group file ... group(5)

setgrent, endgrent: get group file entry. Igetgmam, ... getgrent(3C)
group: group file ... group(5)

setpgrp: set process group 10 .. setpgrp(2)
setuid, setgid: set user and group 105. . .. setuid(2)

id: print user and group IDs and names. Id(1)
real group, and effective group 105. leffective user, ... getuld(2)

chown: change owner and group of a file. chown(2)
a signal to a process or a group of processes. Isend .. kill(2)

update, and regenerate groups of programs. Imaintain, ... make(1)
checkers. pwck, grpck: password/group file ... pwck(1M)

sSignal, gsignal: software signals .. ssignal(3C)
hangman: guess the word ... hangman(6)

moo: guessing game ... moo(6)
oASI 300 and 300s/ 300, 300s: handle special functions of .. 300(1)

the oASI 450 terminal. 450: handle special functions of .. 450(1)
2640 and 2621-series/ hp: handle special functions of HP .. hp(1)

hangman: guess the word ... hangman(6)
nohup: run a command immune to hangups and quits ... nohup(1)

stream. head: give first few lines of a .. head(1)
help: ask for help .. help(1)

help: ask for help .. help(1)
accounting. define holidays and prime time for ... holidays(5)

of the ICP and transfer to a host file. ltake a core image ... icpdmp(1m)
node: enable or disable foreign hosts .. node(1M)

handle special functions of HP 2640 and 2621-serles/ hp: .. hp(1)
of HP 2640 and 2621-seriesl hp: handle special functions .. hp(1)

wump: the game of hunt-the-wumpus ... ; wump(6)
sinh, cosh, tanh: hyperbolic functions. sinh(3M)

hyphen: find hyphenated words .. hyphen(1)
hyphen: find hyphenated words .. hyphen(1)

hypot: Euclidean distance .. hypot(3M)
rje: RJE (Remote Job Entry) to IBM .. rje(8)

r icpdmp: take a core image of the ICP and transfer to a host file ... lcpdmp(1m)
Processor. iCp: Intelligent Communications ... Icp(4)

/vpmsnap, vpmtrace: load the ICP; print VPM traces .. vpmstart(1C)

Plexus Sys3 UNIX - 13 - March '1984

Permuted Index

ICP and transfer to a host file. icpdmp: take a core image of the icpdmp(1 m)
setpgrp: set process group 10 ... setpgrp(2)

syscall: numeric Id of system call. ... syscall(2)
and names. Id: print user and group IDs ... Id(1)

what: Identify SCCS flies .. what(1)
Id: print user and group IDs and names ... Id(1)

group. and effective group IDs. leffectlve user. real .. getuld(2)
group. and parent process IDs. Iget process. process .. getpid(2)
setgid: set user and group IDs. setuid. setuid(2)

copytape: make an Image copy of a tape ... copytape(1 m)
core: format of core Image file ... core(5)

a host file. Icpdmp: take a core Image of the ICP and transfer to ... Icpdmp(1m)
swap: Image of the swap area ... swap(4)

crash: examine system Images ... crash(1M)
pnch: file format for card Images ... pnch(5)
nohup: run a command Immune to hangups and quits ... nohup(1)

Istrings from C programs to implement shared strings. xstr(1)
pt: IMSC cartridge controller ... pt(4)

pd: IMSC disk controller ... pd(4)
Processor imsp: Intelligent Mass Storage .. imsp(4)

dump: Incremental dump tape format. ... dump(5)
restore. restor: Incremental file system .. restor(1 M)

dump: Incremental file system dump .. dump(1 M)
Itgetstr. tgoto. tputs. terminal Independent operation routines .. termllb(3C)

ptx: permuted Index .. ptx(1)
control Information for init. inittab: .. inittab(5)

initialization. Init: process control .. init(8)
Inlt: process control Initialization .. init(8)

rc: system Initialization shell script. .. rc(8)
process. popen. pclose: Initiate VO to/from a .. popen(3S)

for init. Inittab: control information ... , inittab(5)
clri: clear I-node ... clri(1 M)

Inode: format of an Inode ... inode(5)
Inode: format of an inode. Inode(5)

fscanf. sscanf: formatted Input conversion. scanf. scanf(3S)
push character back Into Input stream. ungetc: ... ungetc(3S)

fread. fwrlte: buffered binary Input/output. .. fread(3S)
stdlo: standard buffered Input/output package .. stdlo(3S)

fileno: stream status inquiries. /feof. clearerr .. ferror(3S)
uustat: uucp status Inquiry and job control. .. uustat(1C)

Install: install commands .. install(1 M)
Install: Install commands .. install(1 M)

abs: Integer absolute value .. abs(3C)
Iltol3: convert between 3-byte Integers and long Integers ... 13tol(3C)

3-byte Integers and long Integers. Iconvert between .. 13tol(3C)
Processor. icp: Intelligent Communications .. Icp(4)

Processor Imsp:lntelligent Mass Storage .. Imsp(4)
bcopy: InteraCtive block copy. bcopy(1 M)

system consistency check and Interactive repair. /file .. fsck(1 M)
rjestat: RJE status report and Interactive status console .. rjestat(1C)

diction explain: Interactive thesaurus for .. dlction(1)
err: error-logging Interface .. err(4)

plot: graphics Interface. plot(5)
pp: parallel port Interface .. pp(4)

st: synchronous terminal Interface .. st(4)
tty: general terminal Interface .. tty(4)

plot: graphics Interface subroutines .. plot(3X)
spline: Interpolate smooth curve ... spline(1G)

rsh: restricted shell (command Interpreter) .. rsh(1)
sno: SNOBOL Interpreter .. sno(1)

pipe: create an interprocess channel. ... pipe(2)
sleep: suspend execution for interval. .. sleep(3C)

suspend execution for an interval. sleep: .. sleep(1)
commands and application! Intro: Introduction to .. intro(1)

subroutines and libraries. intro: introduction to .. intro(3)
miscellany. Intro: Introduction to .. intro(?)

formats. Intro: introduction to file .. intro(S)
intro: introduction to games ... intro(6)

files. intro: introduction to special ... intro(4)
. calls and error numbers. intro: introduction to system .. intro(2)
maintenance procedures. intro: introduction to system .. intro(8)

application programs. Intro: Introduction to commands and .. intro(1)

March 1984 - 14- Plexus Sys3 UNIX

Permuted Index

intro: Introduction to file formats. Intro(5)
intro: introduction to games .. intro(6)
Intro: Introduction to miscellany .. Intro(7)
intro: introduction to special files. Intro(4)

and libraries. intro: introduction to subroutines .. intro(3)
malntenancel Intro: Introduction to system .. Intro(8)

and error numbers. intro: Introduction to system calls ., ... intro(2)
ncheck: generate names from I-numbers. . .. , ncheck(1 M)

llomem: local device 110 memory ... mem(4)
popen, pclose: initiate 110 toIfrom a process ... popen(3S)

loctl: control device ... loctl(2)
abort: generate an lOT fault. 0 .. abort(3C)

is: iSec disk controller ... is(4)
/lslower. isdlgit. isxdlglt. Isalnum. Isspace. ispunct,l ... ctype(3C)

Isdlgit. isxdlgit. lsalnum,l isalpha. Isupper. islower. . .. ctype(3C)
Isprint. l&graph. iscntri. lsaseli: characterl /lspunct ... ctype(3C)

terminal. ttyname. Isatty: find name of a ... ttyname(3C)
is: iSeC disk controller .. Is(4)

/lspunct. Isprint. l&graph, isentri. isaseii: character! .. ctype(3C)
lsalpha. isupper, islower, Isdlgit. Isxdlgit. Isalnum,l ... ctype(3C)
/lsspace. Ispunct, isprint. isgraph. isentri. Isascii:/ .. ctype(3C)

lsalnum,/ isalpha. isupper, islower, isdlgit. Isxdlglt, , ctype(3C)
llsalnum. Isspace. ispunct. isprint, isgraph, isentri,l .. ctype(3C)
/lsxdigit. lsalnum. isspace. ispunct, isprint. i&graph,! .. ctype(3C)

/lsdigit. isxdigit. isalnum. Isspace, ispunct. isprint,! .. ctype(3C)
system: Issue a shell command .. system(3S)

Isxdigit. Isalnum,/ lsalpha. Isupper, islower. isdigit ... ctype(3C)
/lsupper, islower. isdlgit. Isxdigit. isalnum. Isspace.! ... ctype(3C)

news: print news items... ... news(1)
functions. jO. j1. jn. yO, y1. yn: bessel .. bessel(3M)

functions. 10. j1. jn. yO, y1. yn: bessel ... bessel(3M)
bj: the game of black jack. 0 ... bj(6)

functions. 10. j1. jn. yO. y1. yn: bessel , ... bessel(3M)
operator. join: relational database ... join(1)

files. openup: keep open key directories and .. openup(1)
makekey: generate encryption key ... makekey(8)

openup: keep open key directories and files ... , ... openup(1)
process or a group oft kill: send a signal to a .. kill(2)

kill: terminate a process. kill(1)
memo kmem: core memory .. mem(4)

3-byte Integers and long! 13tol. ltol3: convert between ... 13tol(3C)
base-64 ASCII. a641. 164a: convert between long and .. a641(3C)
copy file systems with label checking. /labelit: .. volcopy(1 M)

with label checking. volcopy. labelit: copy file systems .. volcopy(1M)
efl: Extended Fortran Language .. efl(1)

scanning and processing language. awk: pattem .. awk(1)
arbitrary-precision arithmetic language. be: ... be(1)

standard command programming language. sh: shell. the ... sh(1)
bbanner: print large banner on printer .. bbanner(1)

Id: link editor. Id(1)
mantissa and exponent. frexp. Idexp. modf: split into ... frexp(3C)

getopt: get option letter from argv ... getopt(3C)
simple lexical tasks. lex: generate programs for .. lex(1)

generate programs for simple lexical tasks. lex: .. lex(1)
to subroutines and libraries. /Introduction .. , .. Intro(3)

relation for an object library. !find ordering .. lorder(1)
ar: archive and library maintainer. ar(1)

ugrow: change system stack limit .. , ugrow(2)
ulimit: get and set user limits. ulimlt(2)

line: read one line ... line(1)
nl: line numbering filter .. nl(1)

out selected fields of each line of a file. cut: cut .. cut(1)
Ip: line printer. Ip(4)

Ipd: line printer daemon : .. lpd(1c)
Ipr: line printer spooler ... Ipr(1)

line: read one line ... line(1)
lsearch: linear search and update ... Isearch(3C)

col: filter reverse line-feeds. col(1)
files. comm: select or reject lines common to two sorted .. comm(1)

~.
\

\

uniq: report repeated lines in a file .. uniq(1)
head: give first few lines of a stream ... head(1)

of several files or subsequent lines of one file. !same lines ... paste(1)

Plexus Sys3 UNIX - 15 - March 1984

Permuted Index

March 1984

subsequentl paste: merge same
link. unlink: exercise

Id:
a.out: assembler arid

CPo In. my: copy.
. link:

and unlink system calls.

nllst: get entries from name
nm: print name

Is:
bls:

by fsck. checklist:
cref: make cross-reference

xargs: construct argument
files. cpo

vpmstart. vpmsnap. vpmtrace:
1I0mem:

tzset: convert datel ctime.
end. etex!. edata: last

lock:

regions for reading or writing.
gamma:
newgrp:

logarithm. power. squarel expo
/log. pow. sqrt: exponential.

errpt: process a report of
dconflg: configure

getlogln: get
logname: get

cuserld: character
logname:

passwd: change

setting up an environment at

a641. 1648: convert between
between 3-byte' integers and

setjmp.
for an object library.

nice: run a command at

directories.
update.
pOinter.

Integers and long! I3tol,

vpm: The Virtual Protocol
for the virtual protocol

documents. mm: the MM
graphs. my: a

m4:
mmchek: check usage of mm

manuscripts. rna:
In this manual. man:

formatted with the MM
tp:

send mail to users or read
users or read mail.

mail. rmail: send
mailoc. free. realloc, calloc:

regenerate groups of! make:
ar: archive and library

Intro: Introduction to system
sees file. delta:

mkdlr:

lines of several files or ... paste(1)
.lInk ~nd unlink system calls ... IInk(1 M)
link editor ... Id(1)
link editor output. .. a.out(5)
link: link to a file .. Iink(2)
link or move files .. cp(1)
link to a file .. IInk(2)
link. unlink: exercise link .. IInk(1M)
lint: a C program checker. Iint(1)
1I0mem: local device I/O memory .. mem(4)
list .. nlist(3C)
list .. nm(1)
list contents of directories .. Is(1)
list contents of directory ... bls(1)
list of file systems processed .. checkllst(5)
listing ... cref(1)
IIst(s) and execute command .. xargs(1)
In. my: copy. link or move .. cp(1)
load the ICP; print VPMI .. vpmstart(1C)
local device I/O memory .. mem(4)
localtlme. gmtlme. asctime. ctime(3C)
locations In program ... end(3C)
lock a process In memory ... lock(2)
lock: lock a process In memory .. lock(2)
locking: provide exclusive file .. lockf(2)
log gamma function .. gamma(3M)
log In to a new group ... newgrp(1)
log. pow. sqrt: exponential ... exp(3M)
logarithm, power, square rootl .. exp(3M)
logged errors. errpt(1 M)
logical disks .. dconflg(8)
login name .. getlogln(3C)
login name .. logname(1)
login name of the user : ... cuserld(3S)
login name of user. logname(3X)
login password ... passwd(1)
login: sign on : login(1)
login time. profile: ... proflle(5)
logname: get login name ... logname(1)
Iogname: login name of user ... logname(3X)
long and base-64 ASCII. a641(3C)
long Integers. 1Ito13: convert .. 13tol(3C)
longjrnp: non-local goto ... setJmp(3C)
lorder: find ordering relation .. lorder(1)
low priority ... nlce(1)
Ip: line printer .. Ip(4)
Ipd: line printer daemon ... Ipd(1c)
Ipr: line printer spooler. Ipr(1)
Is: list contents of .. Is(1)
!search: linear search and ... Isearch(3C)
lseek: move readlwrlte file ... Iseek(2)
1to13: convert between 3-byte ... 13tol(3C)
m4: macro processor ... m4(1)
Machine. vpm(4)
machine. vpmc: complier .. vpmc(1C)
macro package for formatting ... mm(7)
macro package for making view ... mv(7)
macro processor .. m4(1)
macros and eqn delimiters .. mrnchek(1)
macros for formatting ... ms(7)
macros for formatting entries ... man(7)
macros. Iprlnt out documents ... mm(1)
magnetic tape format. .. tp(5)
mail. mall. rmall: ... mall(1)
mall, rmall: sendmailto ... mail\.\)
mall to users or read mall. ... mail(1)
main memory allocator. malloc(3C)
maintain. update. and .. make(1)
maintainer ... ar(1)
maintenance procedures ... \n\\'0(8)
make a delta (change) to an ... delta(l)
make a directory ... mlcdlr(1)

- 16- Plexus Sys3 UNIX

Permuted Index

or ordinary file. mknod: make a directory. or a special ... mknod(2)
mktamp: make a unique file name ... mktamp(3C)

cref: make cross-reference listing. cref(1)
regenerate groups of! make: maintain. update. and ... make(1)

banner: make posters. banner(1)
key. makekev: generate encryption .. makekey(8)

main memory allocator. malloc. free. realloc. calloc: ... malloc(3C)
entries In this manual. man: macros for formatting ... man(7)

manual. man: print entries In this .. man(1)
tp: manipulate tape archive .. tp(1)

fwtmp. Wlmpflx: manipulate WImp records .. fwbnp(1M)
tape: tape manipulation ... tape(1)

frexp. Idexp. mocIf: spilt into mantissa and exponent. frexp(3C)
man: print entries In this manual .. man(1)

for formatting entries In this manual. man: macros .. man(7)
ms: macros for formatting manuscripts. . .. ms(7)

ascII: map of ASCII character set. ascIl(7)
files. dlffmk: marie differences between ... dlffmk(1)

umask: set file-creation mode mask .. umask(1)
set and get file creation mask. umask: ... umask(2)

Imsp: Intelligent Mass Storage Processor ... imsp(4)
create an error message file by massaging the C source. mkstr: ... mkstr(1)

table. master: master device Information ... master(S)
Information table. master: master device ... master(S)

regular expression compile and match routines. regexp: ... regexp(7)
eqn. neqn. checkeq: format mathematical text for nroff or! ... eqn(1)

memory ·mblomem. mbmem:· Multlbus ... mem(4)
·mblomem. mbmem:· Multlbus memory ... mem(4)

·mblomem. mbmem:· Multlbus memory .. mem(4)
·mbiomem. mbmem:· Multlbus memory .. mem(4)

0.68000: MC68000 assembler .. 0.68000(1)
·mem. kmem:· core memory .. mem(4)
memo kmem: core memory .. mem(4)

·mem. kmem:· core memory ... mem(4)
·mem. kmem:· core memory ... mem(4)

·mem. kmem:· core memory .. mem(4)
lock: lock a process In memory ... Iock(2)

llomem: "local device 110 memory ... mem(4)
memo kmem: core memory ... mem(4)

free. realloc. calloc: main memory allocator. malloc. malloc(3C)
a process to access physical memory phys: allow ... phys(2)

sort: sort and/or merge files. sort(1)
files. acctmerg: merge or add total accounting .. acctmerg(1 M)

files or subsequent! paste: merge same lines of several ... paste(1)
mesg: permit or deny messages. mesg(1)

source. mkstr: create an error message file by massaging the C mkstr(1)
mesg: permit or deny messages. mesg(1)

sys~nerr. ermo: system error messages. !sys.errli8t ... perror(3C)
rm: Cipher Mlcrostreamer tape drive ... rm(4)

and commands. mk: how to remake the system ... mk(8)
mkdlr: make a directory ... mkdlr(1)
mkfs: construct a file system. mkfs(1 M)
mknod: build special file. mknod(1 M)

special or ordinary file. mknod: make a directory. or a .. mknod(2)
file by massaging the C source. mkstr: create an error message .. mkstr(1)

name. mktemp: make a unique file .. mktemp(3C)
formatting documents. mm: the MM macro package for .. mm(7)

mmchek: check usage of mm macros and eqn delimiters ... mmchek(1)
documents formatted with the MM macros. mm: print out .. mm(1)

formatted with the MM macros. mm: print out documents ... mm(1)
formatting documents. mm: the MM macro package for ... mm(7)

macros and eqn delimiters. mmchek: check usage of mm ... mmchek(1)
view graphs. and slides. mmt. mvt: typeset documents. mmt(1)

table. mnttab: mounted file system ... mnttab(S)
setmnt: establish mnttab table. setmnl(1 M)

chmod: change mode ... chmod(1)
umok: set file-creation mode mask. umask(1)

chmod: change mode of file ... chmod(2)
tset: set terminal modes. tset(1)

getty: set the modes of a terminal. .. getty(8)
bs: a compllerllnterpreter for modest-sized programs. bs(1)

exponent. frexp. ldexp. modf: spilt Into mantissa and ... frexp(3C)

Plexus Sys3 UN\X -17 • March "1984

Permuted Index

utlme: set file access and modification times ... utime(2)
touch: update access and modification times of a file. touch(1)

profile. monitor: prepare execution .. monltor(3C)
uusub: monitor uucp networt<. uusub(1 M)

moo: guessing game. moo(6)
viewing. more: file perusal filter for CRT ... more(1)

functions with optimal cursor motion curses: screen : curses(3C)
mount: mount a file system. mount(2)

directory rmount: mount a remote file system ... rmount(2)
system. mount, umount: mount and dismount file .. mount(1 M)

system rmount, rumount: mount and dismount remote file ... rmount(1)
mount: mount a file system. mount(2)

dismount file system. mount, umount: mount and ... mount(1 M)
mnttab: mounted file system table .. mnttab(5)

mvdlr: move a directory ... mvdlr(1M)
cp, In, mv: copy, link or move files .. cp(1)

Iseek: move readlwrlte file pointer. Iseek(2)
manuscripts. ms: macros for formatting .. ms(7)

mt: pseudo tape driver ... mt(4)
view graphs. my: a macro package for making mv(7)

cp, In, my: copy,lInk or move files ... cp(1)
mvdlr: move a directory. mVdlr(1 M)

graphs, and slides. mmt, mvt: typeset documents, view ... mmt(1)
dumpdlr: print the names of files on a dump tape. dumpdlr(1 m)

I-numbers. ncheck: generate names from .. ncheck(1 M)
mathematical text forI eqn, neqn, checkeq: format ... eqn(1)

definitions for eqn and neqn. Ispeclal character .. eqnchar(7)
uusub: monitor uucp networt< .. uusub(1 M)

lconfiguratlon file for the Network Operating System (NOS) D-hosts(5)
newgrp: log In to a new group .. newgrp(1)

news: print news Items .. news(1)
news: print news Items .. news(1)

process. nice: change priority of a ... nlce(2)
priority. nice: run a command at low .. nlce(1)

nl: line numbering filter ... nl(1)
list. nllst: get entries from name ... nllst(3C)

nm: print name list. ... nm(1)
hosts node: enable or disable foreign .. node(1 M)

hangups and quits. nohup: run a command Immune to nohup(1)
setjmp, longlmp: non-local gato. ; setlmp(3C)

for the Network Operating System (NOS) lconfiguratlon file .. D-hosts(5)
vtconf: configuration file for NOS Virtual Terminal ... vtconf(5)

tbl: format tables for nroff or troff. tbl(1)
format mathematical text for nroff or troff. Icheckeq: .. eqn(1)

table trmtab: make a new nroff termlnaVprlnter driver ... trrntab(1)
troff, nroff: typeset or format text. .. troff(1)

constructs. deroff: remove nroff/troff, tbl, and eqn .. deroff(1)
null: the null file ... null(4)

nUll: the null file ... null(4)
nl: line numbering filter ... nl(1)

syscall: numeric lei of system call. syscall(2)
size: size of an object file ... slze(1)

find ordering relation for an object library. lorder: .. lorder(1)
/find the printable strings In an object, or other binary, file ... strlngs(1)

od: octal dump. od(1)
od: octal dump .. od(1)

fopen, freopen, fdopen: open a stream. fopen(3S)
dup: duplicate an open file descriptor ... dup(2)

open: open for reading or writing .. open(2)
openup: keep open key directories and files. openup(1)

·wrltlng. open: open for reading or .. open(2)
and files. openup: keep open key directories openup(1)

/file for the Network Operating System (NOS) ... D-hosts(5)
prf: operating system profiler ... prf(4)

Iprfdc, prfsnap, prfpr: operating system profiler~ ... profiler(1 M)
tputs. terminal independent operation routines. Itgoto. termllb(3C)

strcspn, strtok: string operations. Istrpbrk. strspn. strlng(3C)
join: relational database operator ... join(1)

curses: screen functions with optimal cursor motion ... curses(3C)
getopt: get option letter from argv .. getopt(3C)

fentl: file control options ... fentl(7)
getopt: parse command options ... getopt(1)

March 1984 - 18- Plexus 5ys3 UNIX

Permuted Index

stly: set the options for a terminal ... Stly(1)
object library. Iorder: find ordering relation for an .. lorder(1)

a directory, or a special or ordinary file. mknod: make .. mknod(2)
assembler and link editor output. a.out: .. a.out(5) r

ecvt, fcvt: output conversion. ecvt(3C)
prlntf, fprintf, sprintf: output formatters. printf(3S)

mlscellaneous/ aect: overview of accounting and ... acct(1 M)
chown: change owner and group of a file. chown(2)

chown, chgrp: change owner or group ... chown(1)
and expand files. pack, peat, unpack: compress .. pack(1)

sar: system activity report package. sar(8)
documents. mm: the MM macro package for formatting ... mm(7)

graphs. mv: a macro package for making view ... mv(7)
standard buffered inpuVoutput package. stdlo: ... stdlo(3S)

4014 terminal. 4014: paglnator for the Tektronix .. 4014(1)
pp: parallel port interface ... pp(4)

process, process group, and parent process IDs. Iget .. getpid(2)
getopt: parse command options. getopt(1)

passwd: change login password ... passwd(1)
passwd: password file .. passwd(5)

getpass: read a password ... getpass(3C)
passwd: change login password ... passwd(1)

passwd: password file ... passwd(5)
lsetpwent. endpwent: get password file entry ... getpwent(3C)

putpwent: write password file entry ... putpwent(3C)
pwck, grpck: password/group file checkers .. pwck(1 M)

several files or subsequenV paste: merge same lines of ... paste(1)
dimame: deliver portions of path names. basename, ... basename(1)

fgrep: search a file for a pattem. grep, egrep, .. grep(1)
processing language. awk: pattem scanning and ... awk(1)

signal. pause: suspend process until ... pause(2)
expand files. pack, pcat, unpack: compress and ... pack(1)

cc, pcc: C complier ... cc(1)
process. popen, pclose: Initiate 110 tolfrom a ... popen(3S)

pd: IMSC disk controller ... pd(4)

r lconvert archive files from POP-11 to VAX-111780 format. ... arcv(1)
block. update: periodically update the super .. update(1 M)

mesg: permit or deny messages .. mesg(1)
ptx: permuted Index ... ptx(1)

acctcms: command summary from per-process accounting! ... acctcmS(1M)
format. aect: per-process accounting file .. acct(5)

ermo: system error messages. perror, sys_errlist, sys_nerr, .. perror(3C)
more: file perusal filter for CRT viewing. more(1)

tc: phototypesetter simulator. tc(1)
physical memory phys: allow a process to access ... phys(2)

phys: allow a process to access physical memory .. phys(2)
spilt: spilt a file into pieces .. spllt(1)

channel. pipe: create an interprocess .. plpe(2)
tee: pipe fitting .. tee(1)

subroutines. plot: graphics interface ... plot(3X)
plot: graphics interface. plot(5)

Images. pnch: file format for card .. pnch(5)
Iseek: move readlwrite file pOinter. Iseek(2)

tolfrom a process. popen, pclose: initiate 110 .. popen(3S)
pp: parallel port Interface ... pp(4)

data base of terminal types by port ttytype: .. ttytype(5)
basename, dimame: deliver portions of path names .. basename(1)

banner: make posters. banner(1)
logarithm. power,! expo log, pow. sqrt: exponential .. exp(3M)

Isqrt: exponential, logarithm. power, square root functions ... exp(3M)
pp: parallel port interface ... pp(4)
pr: print files .. pr(1)

for trott. cwo checkcw: prepare constant-width text .. cw(1)
monitor: prepare execution profile: .. monltor(3C)

unget: undo a previous get of an SCCS file .. , unget(1)
profiler. prf: operating system ... prf(4)

operating! prfid. prfstat, prfdc. prfsnap. prfpr: ... profiler(1 M)
prfsnap, prfpr: operatingl prfid. prfstat. prfdc .. profiler(1 M)

Iprfstat, prfdc, prfsnap, prfpr: operating systeml ... profller(1 M)
system! prfid, prfstat, prfdc. prfsnap, prfpr: operating .. profiler(1 M)

prfpr: operating! prfid, prfstat, prfdc, prfsnap, .. profiler(1 M)
define holidays and prime time for accounting .. holidays(5)

Plexus Sys3 UNIX - 19 - March 1984

Permuted Index

types: primitive system data types ... types(7)
prs: print an sees file ... prs(1) ,........"

date: print and set the date ... date(1))
cal: print calendar .. cal(1)

editing activity. sact: print current secs file ... sact(1)
, man: print entries In this manual. ... man(1)

cat: concatenate and print files .. cat(1)
pr: print files. pre 1)

bbanner: print large banner on printer .. bbanner(1)
nm: print name list ... nm(1)

uname: print name of current UNIX .. uname(1)
news: print news Items. news(1)

with the ~M macros. mm: grlnt out documents formatted .. mm(1)
prlntenv: print out the environment ... prlntenv(1)

flle(s). acctcom: search and print process accounting .. acctcom(1)
dump toPe. dumpdir: pdnt the names of files on a .. dumpdlr(1 m)

names. Id: PMt user and group IDs and : id(1)
vpmtrace: load the ICP; print VPM traces. Ivpmsnap, ... vpmstart(1C)

diction: print wordy sentences .. dlctlon(1)
or otherl strings: find the printable strings In an object, ' strIngs(1)

environment. prlntenv: print out the ... printenv(1)
bbanner: print large banner on printer .. bbanner(1)

Ip: line printer .. Ip(4)
Ipd: line printer daemon ... Ipd(1c)
Ipr: line printer spooler ... Ipr(1)

output formatters. prlntf, fprlntf, sprlntf: .. printf(3S)
nice: run a command at low prlerity .. nlce(1)

nice: change priority of a process. nlce(2)
exit: terminate process. exit(2)

fork: create a new process. fork(2)
kill: terminate a process. klll(1)

nice: change priority of a process ... nlce(2)
walt: await completion of process. walt(1)

errors. errpt: process a report of logged .. errpt(1 M)
acct: enable or disable process accounting. . .. acct(2)

rch acctpd rlrc: process accountltlng·fI·I .. ·(.. ·)·· .. · ··· ··················· .. ··· acctprc(1(M)) i~
acctcom: sea an p nt process aecoun ng e s .. acctcom 1]

times. times: get process and c,tlild process ... tlmes(2)
Initialization. Init: process control ... Inlt(8)

1getpgrp, getppld: get process, process group, and parenti ... getpld(2)
setpgrp: set process group 10 .. setpgrp(2)

process group, and parent process IDs. Iget process, .. getpld(2)
lock: lock a process In memory ' lock(2)

kill: send a signal to a process or a group ofl ... kill(2)
pc!ose: Initiate 110 toIfrom a process. popen, ... popen(3S)

getpld, getpgrp, getppld: get process, process group, and! .. getpld(2)
ps: report process status. ps(1)

times: get process and child process times. tlmes(2)
phys: allow a process to access physical memory phys(2)

walt: wait for child process to stop or terminate. wait(2)
ptrace: process trace .. ptrace(2)

pause: suspend process until signal. ... pause(2)
list of file systems processed by fsck. checklist: .. checkllst(S)

to a process or a group of processes. lsend a signal ... kill(2)
shutdown: terminate all processing. shutdown(8)

awk: pattem scanning and processing language .. awk(1)
lop: Intelligent Communications Processor ... : Icp(4)
Imap: Intelligent Mass. Storage Processor .. Imsp(4)

m4: macro proC$ssor. m4(1)
alarm: set a process's alarm clock. ·alarm(2)

prof: display profile data. prof(1)
profile. profll: execution time .. profll(2)

monitor: prepare execution profile ... monltor(3C)
profll: execution time profile ... profll(2)

prof: display profile data. prof(1)
environment at login time. profile: setting up an .. proflle(S)

prf: operating system profller ... prf(4)
prfpr: operating system profller. Iprfdc, prfsnap, ... profller(1M)

dnld: download program files ... dnld(1m)
shell, the standard command programming language. sh: .. sh(1)

xstr: extract strings from C programs to Implement shared! .. xstr(1)
vpm: The Virtual Protocol Machine .. vpm(4)

March 1984 - 20- Plexus Sys3 UNIX

Permuted Index

vpmc: compiler for the virtual protocol machine .. vpmc(1C)
arithmetic: provide drill In number facts. • .. arlthme1lc(6)

for reading or writing. locking: provide exclusive file regions ..•..•.............•...•...................... iockf(2)
true, false: provide truth values .. true(1)

prs: print an SCCS file ... prs(1)
ps: report process status. ps(1)

dk: pseudo disk driver ...•.........•............ dk(4)
mt: pseudo tape driver. mt(4)

pt: IMSC cartridge controller .. pt(4)
ptrace: process trace. ptrace(2)
ptx: permuted Index ... ptx(1)

stream. ungetc: push character back Into Input•................................ ungetc(3S)
put character or word on aJ putc, putchar, fputc, putw: ... putc(3S)

character or word on aJ putc, putchar, fputc, putw: put•..................................... putc(3S)
entry. putpwent: write password file .. putpwent(3C)

stream. puts, fputs: put a string on a ... puts(3S)
aJ putc, putchar, fputc, putw: put character or word on ... putc(3S)

file checkers. pwck, grpck: password/group .. pwck(1 M)
pwd: working directory name. . .. pwd(1)
qsort: quicker sort ... qsort(3C)

qsort: quicker sort. . •.. qsort(3C)
command Immune to hangups and quits. nohup: run a .. nohup(1)

generator. rand, srand: random number .. rand(3C)
rand, srand: random number generator ... rand(3C)

dialect. ratfor: rational Fortran .. ratfor(1)
ratfor: rational Fortran dialect. ratfor(1)

shell script. rc: system Initialization ... rc(8)
getpass: read a password .. getpass(3C)

read: read from file ... read(2)
rmall: sendmalltousersorreadmall.mail •... mail(1)

line: read one line ... Ilne(1)
read: read from file ... read(2)

open: open for reading or writing .. open(2)
exclusive file regions for reading or writing. /provlde•.................. lockf(2)

lseek: move readlwrlte file pointer. . .. Iseek(2)
allocator. malloc, free, realioc, calioc: main memory ... malioc(3C)

autoboot: automatic reboot ;•........................... autoboot(8)
specify what to do upon receipt of a signal. signal: ... slgnal(2)

from per-process accounting records. /command summary••..•.•.......•.....•....... acctcms(1M)
errdead: extract error records from dump ... errdead(1M)

W1mpflx: manipulate wtmp records. fwtmp,•... fwlmp(1 M)
xref: cross reference for C programs. . .. xref(1)

reform: reformat text file ... reform(1)
reform: reformat text file •..........................•.............•.......................... reform(1)

compile. regcmp: regular expression•...•............•....................... regcmp(1)
compile/execute. regex, regcmp: regular expression ... regex(3X)

make: maintain, update, and regenerate groups of programs. . .. make(1)
expression compile/execute. regex, regcmp: regular•.. regex(3X)
compile and match routines. regexp: regular expression .. regexp(7)

locking: provide exclusive file regions for reading or writing •.. iockf(2)
regex, regcmp: regular expressiOn! ... regex(3X)

regcmp: regular expression compile ... regcmp(1)
match routines. regexp: regular expression compile and .. regexp(7)

sorted tiles. comm: select or reject lines common to two .. comm(1)
iorder: tlnd ordering relation for an object/ ... lorder(1)

join: relational database operator .. joln(1)
strtp: remove symbols and relocation bits. strIp(1)

value, floor, ceiling, remainder functions. /absolute .. ftoor(3M)
commands. mk: how to remake the system and ... mk(8)

calendar: reminder service ... calendar(1)
rmount: mount a remote file system directory .. rmount(2)

rumount: unmount a remote file system directory .. rumount(2)
rumount: mount and dismount remote tile system rmount. .. rmount(1)

rje: RJE (Remote Job Entry) to IBM. rje(8)
tile. rmdel: remove a delta from an sees .. rmdel(1)

unlink: remove directory entry ... unlink(2)
rm, rmdlr: remove files or directories. rm(1)

eqn constructs. deroff: remove nroff/troff, tbl. and ... deroff(1)
bits. strip: remove symbols and relocation .. strIp(1)

check and Interactive repair. /system consistency ... fsck(1 M)
unlq: report repeated lines In a tile .. unlq(1)

console. rjestat: RJE status report and Interactive status .. rjestat(1C)

Plexus Sys3 UNIX - 21 - March' 1984

Permuted Index

blocks. df: report number of free disk ... df(1)
errpt: process a report of logged errors ... errpt(1 M)

sar: system activity report package. sar(8)
ps: report process status. ps(1)

file. unlq: report repeated lines in a .. uniq(1)
and generate a system activity report. timex: time a command ... timex(1)

fseek, ftell, rewind: reposition a stream. fseek(3S)
system restore. restor: incremental file .. restor(1 M)

incremental file system restore. restor: .. restor(1M)
interpreter). rsh: restricted shell (command ... rsh(1)

stat: data returned by stat system call. stat(7)
col: filter reverse line-feeds .. col(1)

fseek, ftell, rewind: reposition a stream ... fseek(3S)
creat: create a new file or rewrite an existing one ... creat(2)
gather files and/or submit RJE jobs.' send, gath: .. send(1C)

rje: RJE (Remote Job Entry) to IBM .. rje(8)
IBM. rje: RJE (Remote Job Entry) to ... rje(8)

interactive statusl rjestat: RJE status report and .. rjestat(1C)
interactive status console. rjestat: RJE status report and .. rjestat(1 C)

drive. rm: Cipher Microstreamer tape ... rm(4)
directories. rm, rmdir: remove files or ... rm(1)

read mall. mall, rmall: sendmalltousersor ... mall(1)
SCCS file. rmdel: remove a delta from an .. rmdel(1)

directories. rm, rmdir: remove files or ... rm(1)
system directory rmount: mount a remote file .. rmount(2)

dismount remote file system rmount, rumount: mount and ... rmount(1)
chroot: change root directory ... chroot(2)
chroot: change root directory for a command .. chroot(1 M)

logarithm, power, square root functions. lexponentlal, .. exp(3M)
expression compile and match routines. regexp: regular ... regexp(7)
terminal independent operation routines. Itgetstr, tgoto, tputs. : termllb(3C)

interpreter). rsh: restricted shell (command .. rsh(1)
remote file system rmount, rumount: mount and dismount .. rmount(1)

system directory rumount: unmount a remote file .. rumount(2)
nice: run a command at low priority, .. nice(1)

hangups and quits. nohup: run a command immune to ... nohup(1)
runacct: run daily accounting ... runacct(1 M)

runacct: run dally accounting. runacct(1 M)
editing activity. sact: print current SCCS file .. sact(1)

sag: system activity graph ... sag(1 M)
package. sar: system activity report .. sar(8)

space allocation. brl<, sbrl<: change data segment ... brl«2)
formatted input conversion. scanf. fscanf, sscanf: ... scanf(3S)

bfs: big file scanner. bfs(1)
language. awk: pattern scanning and processing ... awk(1)
stand-alone programs. sec: C complier for ... sec(1)

the delta commentary of an SCCS delta. cdc: change .. cdc(1)
comb: combine SCCS deltas ... comb(1)

get: get a version of an sees file ... get(1)
prs: print an SCCS file ... prs(1)

rmdel: remove a delta from an secs file ... rrndel(1)
sccsfile: format of SCCS file ... sccsflle(5)

val: validate SCCS file ... val(1)
make a delta (change) to an SCCS file. delta: ... delta(1)

saet: print current sces file editing activity .. saet(1)
compare two versions of an SCCS file. sccsdiff: .. sccsdlff(1)

undo a previous get of an SCCS file. unget: ... unget(1)
admin: create and administer SCCS files ... admin(1)

what: identify SCCS files ... what(1)
of an SCCS file. sccsdlff: compare two versions ... secsdlff(1)

sccsflle: format of secs file .. sccsflle(5)
clear: clear terminal screen. clear(1)

cursor motion curses: screen functions with optimal .. curses(3C)
based on ex. vi: screen-oriented display editor .. vi(1)
terminal session. script: make typescript of ... scrlpt(1)

system initialization shell script. rc: ... : rc(8)
program. sdiff: slde-by-side difference .. sdiff(1)

bsearch: binary search ... bsearch(3C)
grep. egrep. fgrep: search a file for a pattern .. grep(1)

accounting file(s). acctcom: search and print process ... acetcom(1)
lsearch: linear search and update ... Isearch(3C)

sed: stream editor. sed(1)

March 1984 - 22- Plexus Sys3 UNIX

Permuted Index .,

brk. sbrk: change data segment space allocation. . .. brk(2)
to two sorted files. comm: select or reject lines common ... comm(1)

greek: select terminal filter. . .. greek(1)
of a file. cut: cut out selected fields of each line .. cut(1)

a group of processes. kill: send a signal to a process or ... klll(2)
andlor submit RJE jobs. send. gath: gather files .. send(1C)

mail. mall. rmail: sendmailtousersorread .. mail(1)
diction: print wordy sentences ... diction(1)

make typescript of terminal session. script: ... script(1)
tset: set terminal modes ... tset(1)

stream. setbuf: assign buffering to a , , setbuf(3S)
IDs. setuid, setgld: set user and group .. setuld(2)

getgrent, getgrgid, getgrnam, setgrent, endgrent: get groupl ... getgrent(3C)
goto. setjmp, longjmp: non-local .. setjmp(3C)

encryption. crypt, setkey, encrypt: DES ... crypt(3C)
table. setmnt: establish mnttab , setmnt(1 M)

setpgrp: set process group 10 ... setpgrp(2)
getpwent. getpwuld. getpwnam. setpwent. endpwent: get! , " getpwent(3C)

login time. profile: setting up an environment at ... profile(S)
group IDs. setuld. setgid: set user and , setuid(2)

command programming language. sh: shell. the standard , sh(1)
from C programs to implement shared strings. lextract strings .. xstr(1)

system: issue a shell command " system(3S)
rsh: restricted shell (command interpreter) ... , ... rsh(1)

accounting. acctsh: shell procedures for ... acctsh(1 M)
rc: system initialization shell script. .. rc(8)

programming language. sh: shell. the standard command , sh(1)
csh: a shell with C-like syntax. csh(1)

processing. shutdown: terminate all , , shutdown(8)
program. sdiff: side-by-side difference ... sdiff(1)

login: sign on. . .. logln(1)
pause: suspend process until signal .. , pause(2)
what to do upon receipt of a Signal. signal: specify .. signal(2)

upon receipt of a signal. signal: specify what to do .. signal(2)
of processes. kill: send a signal to a process or a group , kill(2)
sslgnal, gsignal: software signals ... ssignal(3C)

lex: generate programs for simple lexical tasks. , lex(1)
tc: phototypesetter simulator .. te(1)

atan. atan2: trigonometric! sin, cos, tan, asin, acos, .. trig(3M)
functions. sinh, cosh. tanh: hyperbolic , slnh(3M)

size: size of an object file , size(1)
size: size of an object file , slze(1)

an Interval. sleep: suspend execution for , ... , .. " sleep(1)
Interval. sleep: suspend execution for , sleep(3C)

documents. view graphs, and slides. mmt, mvt: typeset ... mmt(1)
spline: Interpolate smooth curve .. spline(1 G)

sno: SNOBOL Interpreter ... sno(1)
sno: SNOBOL Interpreter " sno(1)

ssignal, gslgnal: software signals ... " sSignal(3C)
qsort: quicker sort. . .. qsort(3C)

tsort: topological sort. . .. tsort(1)
sort: sort andlor merge files , sort(1)

sort: sort and/or merge files. , sort(1)
or reject lines common to two sorted files. comm: select ... comm(1)

message file by massaging the C source. mkstr: create an error .. mkstr(1)
brk, sbrk: change data segment space allocation .. brk(2)

fspec: format specification In text files ... fspec(S)
receipt of a signal. signal: specify what to do upon .. signal(2)

gettytab: defining speed tables for getty , , , gettytab(8)
spelling errors. spell. speilin. spellout: find ... spell(1)

spelling errors. spell. spellin. speliout: find ... spell(1)
spell. spellin. spellout: find spelling errors ... speli(1)

errors. spell. spellin. spellout: find spelling .. , spell(1)
curve. spline: Interpolate smooth .. spline(1G)

csplit: context split. : .. csplit(1)
split: split a file into pieces .. : split(1)

exponent. frexp, Idexp. modf: split into mantissa and .. frexp(3C)
pieces. split: split a file into ... split(1) .

uuclean: uucp spool directory clean-up. uuclean(1 M)
Ipr: line printer spooler. , ... Ipr(1)

printf. fprintf. sprintf: output formatters , .. , printf(3S)
power. squarel expo log. pow. sqrt: exponential. logarithm. exp(3M)

P{exus Sys3 UNIX - 23 - March 1984

Permuted Index

exponential. logarithm. power. square root functions. Isqrt: .. exp(3M)
generator. rand. srand: random number .. rand(3C)

conversion. seanf. fscanf. sscanf: formatted Input .. seanf(3S)
signals. sslgnal. gslgnal: software ... ssignal(3C)
control. st: synchronous terminal .. st(1 M)

interface. st: synchronous terminal .. st(4)
ugrow: change system stack limit. ugrow(2)

sec: C compiler tor stand-alone programs ... sec(1)
package. stdio: standard buffered input/output .. stdio(3S)

language. sh: Shell. the standard command programming sh(1)
unixboot: UNIX startup and boot procedures. unixboot(8)

system call. stat: data returned by stat ... stat(7)
stat. fstat: get file status. stat(2)

stat: data returned by stat system call. stat(7)
ustat: get file system statistics... ... ustat(2)

ps: report process status ... ps(1)
stat. fstat: get file status ... stat(2)

status report and interactive status console. rjestat: RJ E .. rjestat(1 C)
feof. clearerr. flleno: stream status inquiries. ferror .. ferror(3S)

control. uustat: uucp status inquiry and job ... uustat(1C)
status console. rjestat: RJE status report and interactive .. rjestat(1C)

input/output package. stdlo: standard buffered ... stdio(3S)
stlme: set time. stlme(2)

wait for child process to stop or terminate. wait: .. wait(2)
imsp: Intelligent Mass Storage Processor ... Imsp(4)

stmcmp. strcpy. stmcpy,! strcat. strncat. strcmp ... strlng(3C)
Istrcpy. stmcpy. strlen. strchr. strrchr. strpbrk,! ... strlng(3C)

stmcpy,! strcat. stmcat. strcmp. stmcmp. strcpy .. strlng(3C)
Istmcat. strcmp. stmcmp. strcpy. stmcpy. strlen,! ... strlng(3C)

Istrrchr. strpbrk. strspn. strcspn. strtok: strlngl ... strlng(3C)
topen. freopen. fdopen: open a stream. topen(3S)

head: give first few lines of a stream. head(1)
puts. fputs: put a string on a stream. puts(3S)
setbuf: assign buffering to a stream. setbuf(3S)

sed: stream editor ... sed(1)
fflush: close or flush a stream. fclose ... fclose(3S)

ftell. rewind: reposition a stream. fseek. fseek(3S)
get character or word from stream. Igetchar. fgete. getw: ... gete(3S)

fgets: get a string from a stream. gets. gets(3S)
put character or word on a stream. Iputehar. fpute. putw: ... pute(3S)

/feof. clearerr. flleno: stream status inquiries ... ferror(3S)
push character back Into input stream. ungetc: .. ungetc(3S)

gets. fgets: get a string from a stream ... gets(3S)
puts. fputs: put a string on a stream .. puts(3S)

strspn. strcspn. strtok: string operations. Istrpbrk .. strlng(3C)
C programs to Implement shared strings. lextract strings from .. xstr(1)

strings in an object. or otherl strings: find the printable ... strIngs(1)
implement sharedl xstr: extract strings from C programs to .. xstr(1)

strings: find the printable strings in an object. or otherl ... strlngs(1)
relocation bits. strip: remove symbols and .. strlp(1)

Istmcmp. strcpy. stmcpy, strlen, strchr. strrchr,1 ... strlng(3C)
strcpy. stmcpy.1 strcat. strncat. strcmp. stmcmp .. strlng(3C)
strcat. stmcat. strcmp, stmcmp, strcpy. stmcpy,! ... strlng(3C)

Istrcmp, stmcmp. strcPY. strncpy, strlen, strchr,! .. strIng(3C)
Istrlen. strchr, strrchr, strpbrk. strspn. strcspn,! .. strlng(3C)

Istmcpy, strlen, strchr, strrchr. strpbrk, strspn,! .. strlng(3C)
Istrchr, strrchr. strpbrk. strspn. strcspn, strtok:1 ... strlng(3C)

Istrpbrk, strspn. strcspn, strtok: string operations. strIng(3C)
terminal. sny: set the options tor a ... sny(1)

characteristics of a document style: analyze surface .. style(1)
another user. su: become super-user or .. su(1)

gath: gather files and/or submit RJE jobs. send, ... send(1C)
plot: graphics interface subroutines. plot(3X)

intro: introduction to subroutines lind libraries. Intro(3)
Isame lines of several files or subsequent lines of one file. paste(1)

file. sum: sum and count blocks in a .. sum(1)
file. sum: sum and count blocks in a ... sum(1)
du: summarize disk usage ... du(1)

accountingl acctcms: command summary from per-process .. acctcms(1M)
sync: update the super block. sync(1 M)

update: periodically update the super block. update(1 M)
sync: update super-block. . .. sync(2)

March 1984 - 24- Plexus Sys3 'UNIX

su: become
document style: analyze

Interval. sleep:
Interval. sleep:

pause:

swap: Image of the
swab:

strip: remove

st:
st:

csh: a shell with C-lIke
call.

system errorl perror.
perror. sys _ errllst.

syscall: numeric id of
rmount: mount a remote file

rumount: unmount a remote file
make a fast tape backup of a file

file for the Network Operating
mount and dismount remote file

ugrow: change
mnttab: mounted file system

setmnt: establish mnttab
master device information

new nrotf terminaVprinter driver
gettytab: defining speed

tbl: format
tabs: set

etags: create a
a file.

trigonometric! sin, cos,
sinh. cosh,

copvtape: make an Image copy of a
tp: manipulate

fbackup: make a fast
rm: Cipher Microstreamer

mt: pseudo
the names of files on a dump

tar:
dump: incremental dump

tp: magnetic
tape:

Plexus Sys3 UNIX

file system backup. fllesave,

programs for simple lexical
derotf: remove nrotfltrotf.

or troff.

4014: paginator for the
tmpflle: create a

tmpnam: create a name for a

base.
ct: call

getty:' set the modes of a
stty: set the options for a

tabs: set tabs on a
for the Tektronix 4014

functions of the DASI 450
termcap:

st: synchronous
generate file name for

greek: select
Itgetflag, tgetstr, tgoto, tputs,

st: synchronous

Permuted Index

super-user or another user ... su(1)
surface characteristics of a .. style(1)
suspend execution for ... sleep(3C)
suspend execution for an .. sleep(1)
suspend process until signal ... pause(2)
swab: swap bytes ... swab(3C)
swap area ... swap(4)
swap bytes .. swab(3C)
swap: image of the swap area .. swap(4)
symbols and relocation bits ... strip(1)
sync: update super-block ... sync(2)
sync: update the super block .. sync(1 M)
synchronous terminal control. st(1 M)
synchronous terminal interface ... st(4)
syntax .. csh(1)
syscall: numeric id of system .. syscall(2)
sys_errlist. sys_nerr, ermo: .. perror(3C)
sys_nerr. ermo: system errorl ... perror(3C)
system call .. syscall(2)
system directory ... rmount(2)
system directory ... rumount(2)
system. fbackup: .. fbackup(8)
System (NOS) Iconflguratlon .. D-hosts(5)
system rmount, rumount: .. rmount(1)
system stack limit. ugrow(2)
table ... mnttab(5)
table ... setmnt(1 M)
table. master: ... master(5)
table trmtab: make a ... trmtab(1)
tables for getty. gettytab(8)
tables for nrotf or trotf. ~.. tbl(1)
tabs on a terminal. ... tabs(1)
tabs: set tabs on a terminal ... tabs(1)
tags file .. etags(1)
tail: deliver the last part of ... tail(1)
tan. asin. acos, atan, atan2: .. trlg(3M)
tanh: hyperbolic functions .. sinh(3M)
tape. copvtape(1 m)
tape archive. ... tp(1)
tape backup of a file system. fbackup(8)
tape drive .. rm(4)
tape driver ... mt(4)
tape. dumpdir: print .. dumpdir(1 m)
tape file archiver ... tar(1)
tape format. ... dump(5)
tape format. ... tp(5)
tape manipulation ... tape(1)
tape: tape manipulation. tape(1)
tapesave: dailylWeekly UNIX ... fllesave(8)
tar: tape file archiver. tar(1)
tasks. lex: generate ... lex(1)
tbl, and eqn constructs. derotf(1)
tbl: format tables for nrotf ... tbl(1)
tc: phototypesetter simulator ... tc(1)
tee: pipe fitting. tee(1)
Tektronix 4014 terminal ... 4014(1)
temporary file .. tmpflle(3S)
temporary file. n ... tmpnam(3S)
term: conventional names ... term(7)
termcap: terminal capability data .. termcap(5)
terminal ... ct(1C)
terminal. getty(8)
terminal. stty(1)
terminal. c tabs(1)
terminal. 4014: paginator .. 4014(1)
terminal. 450: handle special .. 450(1)
terminal capability data base ... termcap(5)
terminal control. .. st(1 M)
terminal. ctermid: ... ctermid(3S)
terminal filter ... greek(1)
terminal independent operation! .. termllb(3C)
terminal interface .. st(4)

- 25- March' 1984

Permuted Index

March 1984

tty: general
tset: set

clear: clear
serlpt: make typescript of

isatty: find name of a
ttytype: data base of

file for NOS Virtual
trmtab: make a new nroft

functions of DASI 300 and 300s
tty: get the

of HP 2640 and 2621-serles
kill:

shutdown:
exit:

daemon. errstop:
for child process to stop or

tgetflag, tgetstr, tgoto, tputs,!
command.

ed:
ex:

editor for new or casuaV edit:
reform: reformat

fspec: format specification in
Icheckeq: format mathematical

prepare constant-width
nroft: typeset or format

tgetstr, tgoto, tputs,! termllb:
termllb: tgetent, tgetnum,

tgoto, tputs.! termllb: tgetent,
Itgetent, tgetnum, tgetflag,

tgetnum, tgetflag, tgetstr,
explain: interactive

ttt, cubic:
stime: set
time: get

time:
system activityl timex:

profll: execution
up an environment at login

tzset: convert date and
process times.

update access and modification
get process and child process

file access and modification
generate a system actlvityl

file.
temporary file.

toupper, to lower,
popen, pclose: initiate I/O

translation. toupper,
tsort:

acctmerg: merge or add
modification times of a file.

character translation.

Itgetflag, tgetstr, tgoto,

ptrace: process

load the ICP; print VPM
take a core Image of the ICP and

tr:
tolower, toasell: character

tan, asin, acos, atan, atan2:
terminaVprlnter driver table

constant-width text for
mathematical text for nroft or

format text.

terminal interface .. tty(4)
terminal modes ... tset(1)
terminal screen ... clear(1)
terminal session. serlpt(1)
terminal. ttyname, .. ttyname(3C)
terminal types by port .. ttytype(5)
Terminal vtconf: configuration ... vtconf(5)
terminal/printer driver table .. trmtab(1)
terminals. /handle special .. 300(1)
terminal's name. tty(1)
terminals. Ispeclal functions .. hp(1)
terminate a process. kill(1)
terminate all processing ... shutdown(8)
terminate process ... exit(2)
terminate the error-logging ... errstop(1M)
terminate. wait: walt ... wait(2)
termlib: tgetent, tgetnum, ... termllb(3C)
lest: condition evaluation ... test(1)
text editor .. ed(1)
text editor .. ex(1)
text editor, variant of the ex ... edit(1)
text file. .. reform(1)
text files ... fspec(5)
text for nroft or troft. eqn(1)
text for troft. cw, checkcw: ... cw(1)
text. troft, ... troft(1)
tgetent, tgetnum, tgetflag, .. termllb(3C)
tgetflag, tgetstr, tgoto, tputs,! ... termllb(3C)
tgetnum, tgetflag, tgetstr, ... termllb(3C)
tgetstr, tgoto, tputs, termlnaV ... termllb(3C)
tgoto, tputs, termlnaV /tgetent, : termllb(3C)
thesaurus for diction ... dictlon(1)
tlc-tac-toe. ttt(6)
time ~ .. stirne(2)
time .. time(2)
time a command ... time(1)
~me a command and generate a .. timex(1)
time: get time .. tlme(2)
time profile. profll(2)
time. profile: setting .. profile(5)
time: time a command. tlme(1)
time to ASCII. lasctime, ... ctlme(3C)
times: get process and child ... tlmes(2)
times of a file. touch: ... touch(1)
times. times: ... tlmes(2)
times. utlme: set ... utlme(2)
timex: time a command and .. timex(1)
tmpflle: create a temporary .. tmpflle(3S)
tmpnam: create a name for a .. tmpnam(3S) .
toasell: characterl ... conv(3C)
to/from a process. popen(3S)
tolower, toaseii: character .. conv(3C)
topological sort. .. tsort(1)
total accounting files. acctmerg(1 M)
touch: update access and ... touch(1)
toupper, tolower, toascll: .. conv(3C)
tp: magnetic tape format. ... tp(5)
tp: manipulate tape archive ... tp(1)
tplot: graphics filters ... tplot(1G)
tputs, terminal independent! .. termlib(3C)
tr: translate characters ... tr(1)
trace. ptrace(2)
trace: event-tracing driver ... trace(4)
traces. Ivpmsnap. vpmtrace: ... vpmstart(1C)
transfer to a host file. icpdmp: , icpdmp(1m)
transiate characters. ... tr(1)
translation. toupper, ... conv(3C)
trigonometric functions. Icos, ... trig (3M)
trmtab: make a new nroft ... trmlab(1)
troft. cw, checkcw: prepare ... cw(1)
troft. Ineqn, checkeq: format ... eqn(1)
troft, nroft: typeset or .. troft(1)

- 26 - Plexus Sys3 UNIX

Plexus Sys3 UNIX

format tables for nroff or
values.

true, false: provide

Interface.

graphics for the extended
a terminal.

types by port
file: determine file

for the extended TTY -37
types: primitive system data

ttytype: data base of terminal
types.

script: make
graphs, and slides. mmt, mvt:

troff, nroft:
typographical errors.

typo: find possible
Ilocaitime, gmtlme, asctlme,

getpw: get name from
limits.

creation mask.
mask.

file system. mount,

UNIX system.
UNIX.

file. unget:
an SCCSfile.

Into Input stream.
a file.

mktemp: make a

boot procedures.
uuto, uupick: public

unlink system calls. link,
entry.

unlink: exercise link and
umount:

directory rumount:
files. pack, pcat,

lsearch: linear search and
times of a file. touch:

of programs. make: maintain,
super block.

sync:
sync:

update: periodically
du: summarize disk

delimiters. mmchek: check
logname: login name of

write: write to another
setuld, setgld: set

Id: print
character login name of the

Igetgid, getegld: get real
environ:

ulimlt: get and set
Iget real user, effective

become super-user or another
wall: write to all

mail, rmail: send mail to
the ex editor for new or casual

statistics.
modification times.

utmp, wtmp:
entry format.

clean-up.

Permuted Index

troff. tbl: ... tbl(1)
true, false: provide truth ,. true(1)
truth values. true(1)
tset: set terminal modes. tset(1)
tsort: topological sort. ... tsort(1)
m, cubic: tlc-tac-toe .. m(6)
tty: general terminal .. , ... tty(4)
tty: get the terminal's name ... tty(1)
TTY -37 type-box. greek: ... greek(7)
ttyname, isatty: find name of ... ttyname(3C)
ttytype: data base of terminal .. ttytype(5)
type. ... file(1)
type-box. greek: graphics , greek(7)
types .. types(7)
types by port ... ttytype(5)
types: primitive system data , types(7)
typescript of terminal session .. scrlpt(1)
typeset documents, view ... mmt(1)
typeset or format text. , troff(1)
typo: find possible .. typo(1)
typographical errors ... typo(1)
tzset: convert date and tlmel ... , ... ctlme(3C)
ugrow: change system stack limit ugrow(2)
UID. , getpw(3C)
ulimit: get and set user , ullmit(2)
umask: set and get file .. umask(2)
umask: set file-creation mode .,. ... umask(1)
umount: mount and dismount ... mount(1 M)
umount: unmount a file system ... umount(2)
uname: get name of current .. uname(2)
uname: print name of current : uname(1)
undo a previous get of an SCCS , unget(1)
unget: undo a previous get of ... unget(1)
ungetc: push character back ... ungetc(3S)
uniq: report repeated lines in .. uniq(1)
unique file name ... mktemp(3C)
units: conversion program. units(1)
unlxboot: UNIX startup and , unixboot(8)
UNIX-to-UNIX file copy .. uutO(1C)
unlink: exercise link and .. link(1 M)
unlink: remove directory , unlink(2)
unlink system calls. link, .. Iink(1 M)
unmount a file system .. umount(2)
unmount a remote file system ... rumount(2)
unpack: compress and expand ... pack(1)
update ... ,. Isearch(3C)
update access and modification ... touch(1)
update, and regenerate groups .. make(1)
update: periodically update the ... update(1M)
update super-block ... sync(2)
update the super block .. sync(1 M)
update the super block .. update(1 M)
usage .. du(1)
usage of mm macros and eqn .. mmchek(1)
user. logname(3X)
user. wrlte(1)
user and group lOs. setuid(2)
user and group lOs and names .. id(1)
user. cuserld: ... cuserld(3S)
user. effective user, reaV ... getuid(2)
user environment. .. environ(7)
user limits .. ulimlt(2)
user, real group, and! ... : getuid(2)
user. su: , .. su(1)
users ... , wall(1 M)
users or read mail. . .. mail(1)
users. Itext editor, variant of ... edit(1)
ustat: get file system .. , ustat(2)
utlme: set file access and .. utime(2)
utmp and wtmp entry format. .. utmp(5)
utmp. wtmp: utmp and wtmp ... utmp(5)
uuclean: uucp spool directory ... uuclean(1 M)

- 27 - March 1984

Permuted Index

uusub: monitor uucp network .. uusub(1 M)
uuclean: uucp spool directory clean-up. uuclean(1 M) ~

control. uustat: uucp status Inquiry and job ... uustat(1C) ,
unix copy. uucp, uulog, uuname: unix to .. Uucp(1C)

copy. uucp, uulog, uuname: unix to unix .. uucp(1C)
uucp, uulog, uur,ame: unix to unix copy .. uucp(1C)

file copy. uuto, uupick: public UNIX-to-UNIX ... uuto(1 C)
and job control. uustat: uucp status Inquiry ... uustat(1 C)

uusub: monitor uucp network .. uusub(1 M)
UNIX-to-UNIX file copy. uuto, uuplck: public .. uuto(1C)

execution. uux: unix to unix command ... uux(1C)
val: validate sees file. val(1)

val: validate sees file. val(1)
abs: Integer absolute value .. abs(3C)

tabs, cell, fmod: absolute value, floor, ceiling,! floor, ... floor(3M)
getenv: value for environment name .. getenv(3C)

true, false: provide truth values .. true(1)
or casusV edit: text editor, variant of the ex editor for new ... edlt(1)

archive files from PDP-11 to VAX-111780 format. !convert .. arcv(1)
vc: version control. ... vc(1)

assert: program verification. assert(3X)
vc: version control. ... vc(1)

get: get a version of an secs file. get(1)
sccsdHf: compare two ve~nil of an sees file .. sccsdHf(1)

editor based on ex. vi: screen-orlanted display .. : vl(1)
mY: a macro package for making view graphs. ; .. mv(7)

mmt, mvt: typeset documenlB, view graphs, and slides ... mmt(1)
more: file perusal filter for CRT viewing .. more(1)

. vpm: The Virtual Protocol Machine .. vpm(4)
vpmc: complier for the virtual protocol machine. vpmc(1 C)

configuration file for NOS Virtual Terminal vtconf: .. vtconf(5)
systems with label checking. volcopy, labellt: copy file .. voicopy(1 M)
file system: format of system volume ... fa(5)

Machine. vpm: The Virtual Protocol .. vpm(4)
load the ICP; print VPM traces. Ivpmtrace: ... vpmstart(1 C)
protocol machine. Vi)mc: compiler for the virtual .. vpmc(1 C) ~

ICP; print VPMI vpmstart, vpmsnap, vpmtrace: load the .. vpmstart(1C) ,
load the ICP; print VPMI vpmstart, vpmsnap, vpmtrace: .. vpmstart(1C)

print VPMI vpmstart, vpmsnap, vpmtrace: load the ICP; ... vpmstart(1 C)
NOS Virtual Terminal vtconf: configuration file for .. vtconf(5)

process. walt: await completion of .. walt(1)
or terminate. walt: walt for child process to stop ... walt(2)

to stop or terminate. walt: walt for child process .. walt(2)
wall:·wrIte to all users ... wall(1 M)
we: word count. we(1)
what: Identify sees files .. what(1)

signal. signal: &pacify what to do upon receipt of a ... slgnal(2)
whodo: who Is doing what. whodo(1 M)

who: who Is on the system. who(1)
who: who Is on the system .. who(1)
whodo: who Is doing what. .. whodo(1M)

. diction: print wordy sentences .. dlctlon(1)
cd: change working directory .. cd(1)

chdlr: change working directory .. chdlr(2)
pwd: working directory name .. pwd(1)
write: write on a file. wrlte(2)

putpwent: write password file entry .. putpwent(3C)
wall: write to all users ... wall(1M)

write: write to another user. wrlte(1)
write: write on a file. wrIte(2)
write: write to another user. wrIte(1)

open: open for reading or .lNritlng .. open(2)
file regions for reading or writing. !Provlde exclualve ... 1ockf(2)

utmp, WImp: utmp and WImp entry format. utmp(5)
fwtmp, Wlmpf!x: manipulate WImp records. fwtmp(1 M)

format. utmp, WImp: utmp and WImp entry .. utmp(5)
records. fwtmp, Wlmpf!x:·manlpulate WImp ... fwtmp(1M)

hunt-the-wumpus. wump: the game of .. wump(6)
Ilst(s) and execute comrIIand. xargs: construct argument ... xargs(1)

programs. xref: cross reference for C ... xref(1)

programs to Implement :'j~~ :.~~~~b=~'='O;. ... :: ~=1(3M) ~

March 1984 - 28- Plexus Sys3 'UNIX

Permuted Index

jO. j1. jn. yO. y1. yn: bessel functions ... bessel(3M)
compller-eompiler. yacc: yet another .. yacc(1)

jO. j1. jn. yO. y1. yn: bessel functions. bessel(3M)
as.zeOOO: zeooo assembler. as.Z8000(1)

Plexus Sys3 UNIX - 29- March 1984

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <ermo.h>

DESCRIPTION

Page 1

This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible returned value. This is
almost always -1; the individual descriptions specify the details. An error number is also made
available in the external variable ermo. Erma is not cleared on successful calls, so it should be
tested only after an error has been indicated.

All of the possible error numbers are not listed in each system call deSCription because many
errors are possible for most of the calls. The following is a complete list of the error numbers
and their names as defined in <error.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to
its owner or super-user. It is also returned for attempts by ordinary users to do things
allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition.

S EIO 1/0 error
Some physical 1/0 error. This error may in some cases occur on a call following the one
to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when, for example, a tape drive is not on-line or no disk
pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than S,12O bytes is presented to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number (see a.out(S».

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively write) request is
made to a file which is open only for writing (respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork, failed because the system's process table is full or the user is not allowed to
create any more processes.

March 27, 1984.

INTRO(2) INTRO(2)

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the system is able to
supply. This is not a temporary condition; the maximum space size is a system param
eter. The error may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough swap space during a
fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAUL T Bad address
The ~ystem encountered a hardware fault in attempting to use an argument of a system
call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an attempt is made to enable
accounting when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g., read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path prefix
or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mentioning an unde
fined signal in signal, or kill; reading or writing a file for which Iseek has generated a
negative pointer). Also set by the math functions described in the (3M) entries of this
manual. This error occurs if an open of a serial port, e.g., /dev/console or /dev/ttyx,
would exceed the maximum allowable (usually 16 or 32).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EM FILE Too many open files
No process may have more than 20 file deSCriptors open at a time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or
reading). Also an attempt to open for writing a pure-procedure program that is being
executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes) or UUMIT; see

March 27, 1984 Page 2

r

INTRO(2) INTRO(2)

ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally
generates a signal; the error is returned if the signal is ignored.

33 EOOM Math argument
The argument of a function in the math package (3M) is out of the domain of the func
tion.

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine
precision.

DEFINITIONS
Process 10

Each active process in the system is uniquely identified by a positive integer called a process
10. The range of this 10 is from 0 to 30,000.

Parent Process 10
A new process is created by a currently active process; see fork(2). The parent process 10 of a
process is the process 10 of its creator.

Process Group 10
Each active process is a member of a process group that is identified by a positive integer
called the process group 10. This 10 is the process 10 of the group leader. This grouping per
mits the signaling of related processes; see kill(2).

Tty Group 10
Each active process can be a member of a terminal group that is identified by a positive integer
called the tty group 10. This grouping is used to terminate a group of related process upon ter
mination of one of the processes in the group; see eJdt(2) and signa/(2).

Real User 10 and Real Group 10
Each user allowed on the system is identified by a positive integer called a real user 10.

Each user is also a member of a group. The group is identified by a positive integer called the
real group 10. .

An active process has a real user 10 and real group 10 that are set to the real user 10 and real
group 10, respectively, of the user responsible for the creation of the process.

Effective User 10 and Effective Group 10
An active process has an effective user 10 and an effective group 10 that are used to determine
file access permissions (see below). The effective user 10 and effective group 10 are equal to
the process's real user 10 and real group 10 respectively, unless the process or one of its ances
tors evolved from a file that had the set-user-Io bit or set-group 10 bit set; see exec(2).

Super-user

Page 3

A process is recognized as a super-user process and is granted special privileges if its effective
user 10 is O.

March 27, 1984

INTRO(2) INTRO(2)

SpedalP~ses ~
The processes with a process 10 of 0 and a process 10 of 1 are special processes and are
referred to as procO and proc 1.

ProcO is the scheduler. Proc1 is the initialization process (init). Proc1 is the ancestor of every
other process in the system and is used to control the process structure.

File Name.
Names consisting of up to 14 characters may be used to name an ordinary file, special file or
directory.

These characters may be selected from the set of all character values excluding 0 (null) and the
ASCII code for I (slash). .

Note that it is generally unwise to use *, ?, [, or] as part of file names because of the special
meaning attached to these characters by the shell. See sh(1).

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional slash (I), followed by
zero or more directory names separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed as follows:
< path-name> ::= <file-name> I <path-prefix> <file-name> I I
<path-prefix> ::= < rtprefix > II <rtprefix>
<rtprefix>::=<dirname>/1 < rtprefix > <dimame>/

where <file-name> is a string of 1 to 14 characters other than the ASCII slash and nUll, and
<dirname> is a string of 1 to 14 characters (other than the ASCII slash and nUll) that names a
directory.

If a path name begins with a slash, the path search begins at the root directory. Otherwise, the
search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-existent
file.

Directory.
Directory entries are called links. By convention, a directory contains at least two links, • and •• ,
referred to as dot and dot-dot respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory and a current working directory
for the purpose of resolving path name searches. A process's root directory need not be the
root directory of the root file system.

File Access Permissions.
Read, write, and execute/search permissions on a file are granted to a process if one or more of
the following are true:

March 27, 1984

The process's effective user 10 is super-user.

The process's effective user 10 matches the user 10 of the owner of the file and the
appropriate access bit of the "owner" portion (0700) of the file mode is set.

The process's effective user 10 does not match the user 10 of the owner of the file, and
the process's group 10 matches the group of the file and the appropriate access bit of
the "group" portion (070) of the file mode is set.

The process's effective user 10 does not match the user 10 of the owner of the file, and
the process's effective group 10 does not match the group 10 of the file, and the
appropriate access bit of the "other" portion (07) of the file mode is set.

Page 4

r

INTRO(2) INTRO(2)

Otherwise, the corresponding permissions are denied.

NOTES
Plexus adds the system calls locld and ugrow and the header file syscall, which lists the
numeric ids of system calls recognized by Plexus Sys3 UNIX. Plexus also adds rmount and
rumount, for use with the Plexus Network Operating System (NOS).

SEE ALSO
intro(3).

PageS March 27, 1984

ACCESS(2) ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char .path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named, file for accessibility
according to the bit pattern contained in amode, using the real user 10 in place of the effective
user 10 and the real group 10 in place of the effective group 10. The bit pattern contained in
amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a null path name.
[ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

Write access is requested for a file on a read-only file system. [EROFS]

Write access is requested for a pure procedure (shared text) file that is being executed.
,[ETXTBSy]

Permission bits of the file mode do not permit the requested access. [EACCES]

Path points outside the process's allocated address space. [EFAUL T]

The owner of a file has permission checked with respect to the "owner" read, write, and execute
mode bits, members of the file's group other than the owner have permissions checked with
respect to the "group" mode bits, and all others have permissions checked with respect to the
"other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

Page 1 March 9, 1984

ACCT(2) ACCT(2)

r NAME
acot - enable or disable process accounting

SYNOPSIS
int acct (path)
char .path;

DESCRIPTION
Acct is used to enable or disable the system's process accounting routine. If the routine is
enabled. an accounting record will be written on an accounting file for each process that ter
minates. Termination can be caused by one of two things: an exit call or a signal; see exit(2)
and s;gna/(2). The effective user 10 of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file format is given in
acct(5).

The accounting routine is enabled if path is non-zero and no errors occur during the system
call. It is disabled if path is zero and no errors occur during the system call.

Acct will fail if one or more of the following are true:

The effective user 10 of the calling process is not super-user. [EPERM]

An attempt is being made to enable accounting when it is already enabled. [EBUSY]

Acomponent of the path prefix is not a directory. [ENOTOIR]

One or more components of the accounting file's path name do not exist. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file. [EACCES]

The named file is a directory. [EISOIR]

The named file resides on a read-only file system. [EROFS]

Path points to an illegal address. [EFAUL 11
RETURN VALUE

Upon successful completion. a value of 0 is returned. Otherwise. a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
acct(1 M). acot(5).

Page 1 March 9, 1984

ALARM(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned secj

DESCRIPTION

ALARM(2)

Alarm instructs the calling process's alarm clock to send the signal SIGALRM to the calling pro
cess after the number of real time seconds specified by sec have elapsed; see s;gna/(2).

Alarm requests are not stacked; successive calls reset the calling process's alarm clock.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the calling process's alarm clock.

SEE ALSO
pause(2), signal(2).

Page 1 March 9, 1984

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
ark and sbrk are used to change dynamically the amount of space allocated for the calling
process's data segment; see exec (2). The change is made by resetting the process's break
value. The break value is the address of the first location beyond the end of the data segment.
The amount of allocated space increases as the break value increases.

ark sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. Incr can
be negative, in which case the amount of allocated space is decreased.

ark and sbrk will fail without making any change in the allocated space if such a change would
result in more space being allocated than is allowed by a system-imposed maximum (see
ulimit(2». [ENOMEM]

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Oth
erwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2).

Page 1 March 9, 1984

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char .path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning with
I.

Chdir will fail and the current working directory will be unchanged if one or more of the following
are true:

A component of the path name is not a directory. (ENOTDIR]

The named directory does not exist. (ENOENT]

Search permission is denied for any component of the path name. [EACCES]

Path points outside the process's allocated address space. [EFAUl T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
chroot(2).

Page 1 March 27, 1984

r

r

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
Int chown (path, owner, group)
char .path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner 10 and group 10 of the named file are set
to the numeric values contained in owner and group respectively.

Only processes with effective user 10 equal to the file owner or super-user may change the own
ership of a file.

If chown is invoked by other than the super-user, the set-user-IO and set-group-IO bits of the
file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if one or more
of the following are true:

A component of the path prefix is not a directory. [ENOTOIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

The effective user 10 does not match the owner of the file and the effective user 10 is not
super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a ·value of -1 is returned and
ermo is set to indicate the error.

SEe ALSO
chmod(2).

Page 1 March 9, 1984

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char .path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory to become
the root directory, the starting point for path searches for path names beginning with I.

The effective user 10 of the process must be super-user to change the root directory.

The •• entry in the root directory is interpreted to mean the root directory itself. Thus, •• can not
be used to access files outside the subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if one or more of the following are
true:

Any component of the path name is not a directory. [ENOTOIR)

The named directory does not exist. [ENOENll

The effective user 10 is not super-user. [EPERM]

Path points outside the process's allocated address space. [EFAUL T]

, RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chdir(2).

Page 1 March 9, 1984

CLOSE (2)

NAME
close - close a file descriptor

SYNOPSIS
int close (1I1des)
int fildes;

DESCRIPTION

CLOSE(2)

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Close
closes the file descriptor indicated by flldes.

Close will fail if flldes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
erma is set to indicate the error.

SEE ALSO
creat(2), duP(2), exec(2), fcntl(2), open(2), pipe(2).

Page 1 March 9, 1984

CREAT(2) CREAT(2)

NAME
creat - create il new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char .path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares'to rewrite an existing file named by the path name
pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. Other
wise, the file's owner ID is set to the process's effective user ID, the file's group ID is set to the
process's effective group ID, and the low-order 12 bits of the file mode are set to the value of
mode modified as follows:

All bits set in the process's file mode creation mask are cleared. See umask(2).

The "save text image after execution bit" of the mode is cleared. See chmod(2).

Upon successful completion, a non-negative integer, namely the file descriptor, is returned and
the file is open for writing, even if the mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open across exec system calls. See
fcntl(2). No process may have more than 20 files open simultaneously. A new file may be
created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR)

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES)

The path name is nUll. [ENOENT] .'

The file does not exist and the directory in which the file is to be created does not permit
writing. [EACCES)

The named file resides or would reside on a read-only file system. [EROFS)

The file is a pure procedure (shared text) file that is being executed. [ETXTBSy]

The file exists and write permission is denied. [EACCES)

The named file is an existing directory. [EISDIR)

Twenty (20) file descriptors are currently open. [EMFILE)

Path points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
close(2), dup(2), Iseek(2), open(2), read(2), umask(2), write(2).

Page 1 March 9, 1984

~
I

DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (tildes)
int tildes;

DESCRIPTION

DUP(2)

Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system call. Dup
returns a new file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer. (i.e., both file descriptors share one file pointer.)

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls. See fcntl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently open. [EMFILE]

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is returned. Oth
erwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

Page 1 March 9, 1984

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, arg1, ... , argn, 0)
char .path, .argO, .arg1, ... , .argn;

int execv (path, argv)
char .path, .argy[];

int execle (path, argO, arg1, ... , argn, 0, enyp)
char .path, .argO, .arg1, .•. , .argn, .enyp[];
int execye (path, argy, enyp);
char .path, .argy[], .enyp[];

int execlp (file, argO, arg1, ... , argn, 0)
char .file, .argO, .arg1, ... , .argn;
int execyp (file, argy)
char .file, .argy[];

DESCRIPTION

Page 1

Exec in all its forms transforms the calling process into a new process. The new process is
constructed from an ordinary, executable file called the new process file. This file consists of a
header (see a.out(5», a text segment, and a data segment. The data segment contains an ini
tialized portion and an uninitialized portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new process.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a search of the
directories passed as the environment line "PATH =" (see environ (7». The environment is
supplied by the shell (see sh(1».

ArgO, arg1, ... , argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new process. By convention, at least argO must be present
and point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process. By convention, argv must have at least one
member, and it must point to a string that is the same as path (or its last component). Argv is
terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process. Envp is terminated by a null pointer.

File descriptors open in the calling process remain open in the new process, except for those
whose close-on-exec flag is set; see fcntl(2). For those file descriptors that remain open, the
file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new process. Signals
set to be ignored by the calling process will be set to be ignored by the new process. Signals
set to be caught by the calling process will be set to terminate new process; see signa/(2).

If the set-user-IO mode bit of the new process file is set (see chmod(2», exec sets the effective
user 10 of the new process to the owner 10 of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group 10 of the new process is set to the
group 10 of the new process file. The real user 10 and real group 10 of the new process remain
the same as those of the calling process.

Profiling is disabled for the new process; see profll(2).

March 9, 1984

EXEC(2) EXEC(2)

The new process also inherits the following attributes from the calling process:

nice value (see nice (2»
process 10
parent process 10
process group 10
tty group 10 (see exit(2) and signa/(2»
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see a/arm(2»
current working directory
root directory
file mode creation mask (see umask(2»
file size limit (see u/imit(2»
utime, stime, cutime, and cstime (see times(2»

Exec will fail and return to the calling process if one or more of the following are true:

One or more components of the new process file's path name do not exist. [ENOENT]

A component of the new process file's path prefix is not a directory. [ENOTOIR]

Search permission is denied for a directory listed in the new process file's path prefix.
[EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission. [EACCES]

The new process file has the appropriate access permission, but has an invalid magic
number in its header. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is currently open for writ
ing by some process. [ETXTBSy]

The new process requires more memory than is allowed by the system-imposed max
imum MAXMEM. [ENOMEM]

The number of bytes in the new process's argument list is greater than the system
imposed limit of 5120 bytes. [E2BIGJ

The new process file is not as long as indicated by the size values in its header.
[EFAUlT]

Path, argv, or envp point to an illegal address. [EFAUlT]

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value will be -1 and ermo
will be set to indicate the error.

SEE ALSO
exit(2), fork(2).

March 9, 1984 Page 2

EXIT(2) EXIT(2)

NAME
exit - terminate process

SYNOPSIS
exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of the calling
process's termination and the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait(2).

If the parent process of the calling process is not executing a wait, the calling process is
transformed into a zombie process. A zombie process is a process that only occupies
a slot in the process table, it has no other space allocated either in user or kernel space.
The process table slot that it occupies is partially overlaid with time accounting informa
tion (see <sys/proc.h» to be used by times.

The parent process 10 of all of the calling process's existing child processes and zom
bie processes is set to 1. This means the initialization process (see intro(2» inherits
each of these processes. .

An accounting record is written on the accounting file if the system's accounting routine
is enabled; see acot(2).

If the process 10, tty group 10, and process group 10 of the calling process are equal, the
SIGHUP signal is sent to each processes that has a process group 10 equal to that of the
calling process.

SEE ALSO
signal(2), wait(2).

WARNING
See WARNING in slgna/(2).

Page 1 March 9, 1984

r
FCNTl(2) FCNTl(2)

NAME
fcntl - fi Ie control

SYNOPSIS
"include <fentl.h>

int fentl (fildes, emd, arg)
int fildes, emd, arg;

DESCRIPTION
Fcntl provides for control over open files. Fildes is an open file descriptor obtained from a
creat, open, dup, tcntl, or pipe system call.

The cmds available are:

F _DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to arg.

Same open file (or pipe) as the Original file.

Same file pointer as the Original file (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (Le., both file deSCriptors share the same file status flags).

The close-on-exec flag associated with the new file deSCriptor is set to remain open
across exec(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor tildes. If the low-order
bit is 0 the file will remain open across exec, otherwise the file will be closed upon
execution of exec.

F _SETFD Set the close-on-exec flag associated with tildes to the low-order bit of arg (0 or 1
as above).

F _GETFL Get tile status flags.

F _SETFL Set tile status flags to arg. Only certain flags can be set; see fcntl(7).

Fcntl will fail if one or more of the following are true:

Fildes is not a valid open file deSCriptor. [EBADFJ

Cmd is F _DUPFD and 20 file descriptors are currently open. [EM FILE]

Cmd is F _DUPFD and arg is negative or greater than 20. [EINVAL]

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F _DUPFD A new file descriptor.
F _GETFD Value of flag (only the low-order bit is defined).
F _SETFD Value other than -1.
F _GETFL Value of file flags.
F _SETFL Value other than -1.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
close(2), exec(2), open(2), fcntl(7).

Page 1 March 9, 1984

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
Int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of
the calling process (parent process) except for the following:

The child process has a unique process 10.

The child process has a different parent process 10 (i.e., the process 10 of the parent
process).

The child process has its own copy of the parent's file descriptors. Each of the child's
file descriptors shares a common file pointer with the corresponding file descriptor of the
parent.

The child process's utlme, stime, cut/me, and cst/me are set to 0; see tlmes(2).

Fork returns a value of 0 to the child process.

Fork returns the process 10 of the child process to the parent process.

Fork will fail and no child process will be created if one or more of the following are true;

The system-imposed limit on the total number of processes under execution would be
exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under execution by a single
user would be exceeded. [EAGAIN]

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro
cess 10 of the child process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and ermo is set to indicate the error.

SEE ALSO
exec(2), wait(2).

Page 1 March 9, 1984

GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process 10 of the calling process.

Getpgrp returns the process group 10 of the calling process.

Getppid returns the parent process 10 of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

Page 1

GETPID(2)

March 9, 1984

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid • get real user, effective user, real group, and effective group IDs

SYNOPSIS
int getuld ()

Int geteuld ()

int getgld ()

int getegid ()

DESCRIPTION
Getuid returns the real user 10 of the calling process.

Geteuid returns the effective user 10 of the calling process.

Getgid returns the real group 10 of the cal6ng process.

Getegld returns the effective group 10 of the calling process.

SEE ALSO
intro(2), setuid(2).

Page 1 March 9, 1984

IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
"include < syslioctl.h >
ioctl(fUdes, request, arg)

DESCRIPTION

1OCTL(2)

lootl performs a variety of functions on character special files (devices). The writeups of various
devices in Section 4 discuss how ioctl applies to them.

loctl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBAOF]

Fildes is not associated with a character special device. [ENOTIY]

Request or srg is not valid. See tty(4). [EINVALJ

RETURN VALUE
If an error has occurred, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
tty(4).

Page 1 March 9, 1984

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
Int kill (pid, alg)
Int pld, aig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal that is to be sent is specified by
sig and is either one from the list given in signa/(2), or O. If sig is 0 (the null signal), error
checking is performed but no signal is actually sent. This can be used to cheek the validity of
pid.

The effective user 10 of the sending process must match the real user 10 of the receiving pro
cess unless, the effective user 10 of the sending process is super-user, or the process is send
ing to itself.

The processes with a process 10 of 0 and a process 10 of 1 are special processes (see intro(2)t
and wiD be referred to below as procO and proc1 respectively.

If pid is greater than zero, sig will be sent to the process whose process 10 is equal to pid. Pid
may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc1 whose process group 10
is equal to the process group 10 of the sender.

If pid is -1 and the effective user 10 of the sender is not super-user, sig will be sent to all
processes excluding procO and proc1 whose real user 10 is equal to the effective user 10 of the
sender.

If pid is -1 and the effective user 10 of the sender is super-user, slg will be sent to all processes
excluding procO and proc1.

If pld is negative but not -1, sig will be sent to all processes whose process group 10 is equal to
the absolute value of pld.

Kill will fail and no signal will be sent if one or more of the following are true:

Sig is not a valid signal number. (EINVAL)

No process can be found corresponding to that specified by pld. [ESRCH)

The sending process is not sending to itself, its effective user 10 is not super-user, and
its effective user 10 does not match the real user 10 of the receiving process. (EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
e"no is set to indicate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

Page 1 March 9, 1984

r

UNK(2) UNK(2)

NAME
link - link to a file

SYNOPSIS
int link (path1, path2)
char .path1, .path2;

DESCRIPTION
PatM points to a path name naming an existing file. Path2 Points to a path name naming the
new directory entry to be created. Unk creates a new link (directory entry) for the existing file.

Unk will fail and no link will be created if one or more of the following are true:

A component of either path prefix is not a directory. [ENOTDIR)

A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission. [EACCES)

The file named by path1 does not exist. [ENOENT]

The link named by path2 exists. [EEXIST]

The file named by patM is a directory and the effective user 10 is not super-user.
[EPERM)

The link named by path2 and the file named by patM are on different logical devices
(file systems). [EXOEV]

Path2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a mode that denies write permis
sion. [EACCES)

The requested link requires writing in a directory on a read-only file system. [EROFS)

Path points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
link(1 M), unlink(2).

Page 1 March 9, 1984

LOCK(2) (Plexus - MC88000 only) LOCK(2)

NAME
lock - lock a process in memory

SYNOPSIS
lock(flag)

DESCRIPTION

BUGS

Page 1

If the nag argument is non-zero, the process executing this call will not be swapped except if it
is required to grow. If the argument is zero, the process is unlocked. This call may be executed
only by the super-user.

Locked processes interfere with the compaction of primary memory and can cause deadlock.
This system call is not considered a permanent part of the system.

March 9, 1984

LOCKF(2) (Plexus) LOCKF(2)

NAME
lockf - provide exclusive file regions for reading or writing

SYNOPSIS
lockf (fildes, mode, size) long size;

DESCRIPTION

NOTES

Loclcl allows a specified number of bytes to be accessed only by the /ocld process. Other
processes that attempt to lock, read, or write the locked area must sleep until the area becomes
unlocked.

Fildes is the word returned from a successful open, creat, dup, or pipe system call.

Mode is zero to unlock the area. Mode is 1 or 2 to lock the area. If the mode is 1, and the area
has some other lock on it, then the process sleeps until the entire area is available. If the mode
is 2, and the area is locked, an error is returned; otherwise the area is locked.

Size is the number of contiguous bytes to be locked or unlocked. The area to be locked starts at
the current offset in the file. If size is 0, the area to end of file is locked.

Deadlock may occur when a process controlling a locked area is put to sleep at the same time it
is accessing another process's locked area. Thus calls to locld, read, or write scan for a
deadlock prior to sleeping on a locked area. An error return is made if sleeping on the locked
error would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a previously locked area for the
same process. When this or adjacent areas occur, the areas are combined into a single area.
Unlock requests may, in whole or part, release one or more locked regions controlled by the pro
cess. When regions are not fully released, the remaining areas are still locked by the process.

While locks may be applied to special files or pipes, read/ write operations will not be blocked.
Closing fi/des automatically releases any locks the process has on a file.

This is a Plexus command. It is not part of standard SYSTEM III.

SEE ALSO
open(2), creat(2), read(2). write(2), dup(2), close(2).

DIAGNOSTICS

Page 1

The value -1 is returned if the file does not exist, or if a deadlock using file locks would occur.
EACCES is returned for lock requests in which the area is already locked by another process.
EDEADLOCK is returned by locking. read, or write if a deadlock would occur. EDEADLOCK
win also be returned when the Iocktable overflows.

March 27. 1984

LOCKlNG(2) (Plexus) LOCKING (2)

NAME
locking - provide exclusive file regions for reading or writing

SYNOPSIS
locking ('ildes, mode, size) long sizei

DESCRIPTION

NOTES

Locking allows a specified number of bytes to be accessed only by the locking process. Other
processes that attempt to lock, read,· or write the locked area must sleep until the area becomes
unlocked.

Fildes is the word returned from a successful open , creat, dup, or pipe system call.

Mode is zero to unlock the area. Mode is 1 or 2 to lock the area. If the mode is 1, and the area
has some other lock on it, then the process sleeps until the entire area is available. If the mode
is 2, and the area is locked, an error is returned; otherwise the area is locked.

Size is the number of contiguous bytes to be locked or unlocked. The area to be locked starts at
the current offset in the file. If size is 0, the area to end of file is locked.

Deadlock may occur when a process controlling a locked area is put to sleep at the same time it
is accessing another process's locked area. Thus calls to locking, read, or write scan for a
deadlock prior to sleeping on a locked area. An error return is made if sleeping on the locked
error would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a previously locked area for the
same process. When this or adjacent areas occur, the areas are combined into a single area.
Unlock requests may, in whole or· part, release one or more locked regiOns controlled by the pro
cess. When regions are not fully released, the remaining areas are still locked by the process.

While locks may be applied to special fil,. or pipes, read! write operatiOns will not be blocked. ~
Closing flldes automatically releases any locks the process has on a file.

This is a Plexus command. It is not part of standard SYSTEM III.

SEE ALSO
open(2), creat(2), read(2), write(2), dup(2), close(2).

DIAGNOSTICS

Page 1

The value -1 is returned if the file does not exist. or if a deadlock using file locks would occur.
EACCES is returned for lock requests in which the area is already locked by another process.
EDEAOLOCK is returned by lOCking, read, or write if a deadlock would occur. EOEAOLOCK
will also be returned when the locktable overflows.

March 27, 1984

LSEEK(2) lSEEK(2)

NAME
Iseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes; .
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or Icntl system call. Lseek sets the
file pointer associated with lildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from the begin
ning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the following are true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo. [ESPIPE]

Whence is not 0, 1 or 2. [EINVAL and SIGSYS signal]

The resulting file pointer would be negative. (EINVAL]

Some devices are incapable of seeking. The value of the file pointer associated with such a
device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer value is returned.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

Page 1 March 9, 1984

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
#include <sys/types.h>
#include < sys/stat.h >
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new
file is initialized from mode, where the value of mode is interpreted as follows:

0170000 file type (SJFMT); one of the following:
0010000 fifo special (S_IFIFO)
0020000 character special (SJFCHR)
0040000 directory (SJFDIR)
0060000 block special (SJFBLK)
0100000 or 0000000 ordinary file (SJFREG)

0004000 set user 10 on execution (SJSUID)
0002000 set group 10 on execution (SJSGID)
0001000 save text image after 'execution (SJSVTX)
0000777 access permissions; constructed from the following

0000400 read by owner (SJREAD)
0000200 write by owner (SJWRITE)
0000100 execute (search on directory) by owner (SJEXEC)
0000070 read, write, execute (search) by group.
0000007 read, write, execute (search) by others

Values of mode other than those above are undefined and should no, be used.

The file's owner 10 is set to the process's effective user 10. The file's group 10 is set to the
process's effective group 10.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set
in the process's file mode creation mask are cleared. See umask(2). If mode indicates a block
or character special file, dev is a configuration dependent specification of a character or block
I/O device. If mode does not indicate a block special or character special device, dev is
ignored.

Mknod may be invoked only by the super-user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following are true:

The process's effective user 10 is not super-user. [EPERM1

A component of the path prefix is not a directory. [ENOTOIR)

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a read-only file system.
[EROFS]

The named file exists. [EEXIST)

Path points outside the process's allocated address space. [EFAUL T)

RETURN VALUE

Page 1

Upon successful. completion a value of 0 is returned. Otherwise, a value of -1 is returned and
e"no is set to indicate the error.

March 9, 1984

MKNOD(2) MKNOD(2)

r SEE ALSO
mkdir(1). mknod(1 M). chmod(2). exec(2). umask(2), fs(5).

March 9. 1984 Page 2

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dlr, rwflag)
char .spec, .diri
int rwflagi

DESCRIPTION
Mount requests that a removable file system contained on the block special file identified by
spec be mounted on the directory identified by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory on the
mounted file system.

The Iow-order bit of rwfiag is used to control write permission on the mounted file system; if 1,
writing is forbidden, otherwise writing is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

The effective user 10 is not super-user. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTDIR]

Spec is not a block special device. (ENOTBLK]

The device associated with spec does not exist. [ENXIO]

Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space. (EFAULT]

Dir is currently mounted on, is someone's current working directory or is otherwise busy.
[EBUSY]

The device associated with spec is currently mounted. [EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of ·1 is returned and
erma is set to indicate the error.

SEE ALSO
mount(1 M), umount(2).

Page 1 March 9, 1984

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process's nice value is a
positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system.
Requests for values above or below these limits result in the nice value being set to the
corresponding limit.

Nice will fail and not change the nice value if Incr is negative and the effective user 10 of the
calling process is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
nice(1), exec(2).

Page 1 March 9, 1984

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS.
#include <fcntl.h>
int open (path, oflag[, mode])
char *pathj
int of lag, modej

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for the named file and
sets the file status flags according to the value of of lag . Of lag values are constructed by or-ing
flags from the following list (only one of the first three flags below may be used):

o O_RDONLY Open for reading only.

I O_WRONLY Open for writing only.

~ O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes. See read(2) and write(2).

When opening a FIFO with O_ROONl Y or 0_ WRONl Y set:

If O_NOELAY is set:

An open for reading-only will return without delay. An open for writing
only will return an error if no process currently has the file open for read
ing.

If O_NOELAY is clear:

An open for reading-only will block until a process opens the file for writ
ing. An open for writing-only will block until a process opens the file for
reading.

When opening a file associated with a communication line:

If ° _NOELA Y is set:

The open will return without waiting for carrier.

If O_NOELAY is clear:

The open will block until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise, the file's owner 10 is set to the
process's effective user 10, the file's group 10 is set to the process's effective
group 10, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows (see creat(2»:

All bits set in the process's file mode creation mask are cleared. See
umask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

0_ TRUNC If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

O_EXCL The O_EXCl flag is undefined if O_CREAT is 0; it is defined only when O_CREAT is
set. O_EXCl and O_CREAT both cause open to fail if the file exists. Use of both
these flags allows a process to create a temporary file and know that it is the only
cooperating process that has use of the file. O_EXCl does not grant exclusive use
of an existing file. Also, another non-cooperating process can open the file

Page 1 March 27, 1984

r

OPEN(2) OPEN(2)

without the ° _EXCL bit.

Upon successful completion a non-negative integer, the file descriptor, is returned.

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across exec system calls. See fcnt/(2).

No process may have more than 20 file descriptors open simultaneously.

The path must be non-null, i.e., 0 is illegal.

The named file is opened unless one or more of the following are true:

A component of \he path prefix is not a directory. [ENOTDIR]

O_CREAT is not set and the named file does not exist. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

Oflag permission is denied for the named file. [EACCES)

The named file is a directory and oflag is write or read/write. [EISDIR]

The named file resides on a read-only file system and oflag is write or read/write.
[EROFS]

Twenty (20) file descriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the device associated
with this special file does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is being executed and oflag is write or
read/write. [ETXTBSy]

Path points outside the process's allocated address space. [EFAUL T]

O_CREAT and O_EXCL are set, and the named file exists. [EEXIST]

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process has the
file open for reading. [ENXIO)

The maximum number of serial ports, e.g., /dev/ttyx, are currently open. [EINVAL]

RETURN VALUE

NOTES

Upon successful completion, a non-negative integer, namely a file descriptor, is returned. Oth
erwise. a value of -1 is returned and ermo is set to indicate the error.

The EINVAL message is a Plexus addition.

SEE ALSO
close(2), creat(2), dup(2), fcntl(2), lseek(2). read(2). write(2).

March 27, 1984 Page 2

PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION

PAUSE(2)

Pause suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal catching
function (see signa/(2», the calling process resumes execution from the point of suspension;
with a return value of -1 from pause and erma set to EINTR.

RETURN VALUE
If no error, a value of 0 is returned.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

Page 1 March 9, 1984

PHYS(2) (Plexus - MC68000 only) PHYS(2)

NAME
phys - allow a process to access physical memory

SYNOPSIS
long phys (virtualpage, pagecount, physaddr)
int virtualpage;
long pagecount;
long physpage;

DESCRIPTION
The argument virtua/page specifies a process (data-space) address range of pagecount X 4K
bytes starting at virtual address virtua/page X 4K bytes. This address range is mapped into phy
sical address physpage X 4K bytes. All three arguments, virtua/page, pagecount, and phys
page, correspond to 4K (4096) byte pages, which is the logical and physical page size of the
machine. If pagecount is zero, any previous mapping of virtua/page is nullified. If pagecount is
-1, the previous logical to physical mapping for virtua/page is returned. (In the cases where
pagecount is 0 or -1, physaddr is ignored.) For exmaple, the call

phys(Ox1 0,2,Ox1 00);

will map virtual addresses Ox10000-0x12000 to physical addresses Ox100000-Ox102000.

This call may be executed only by the superuser.

RETURN VALUE
Upon successful completion, the previous page number associated with the logical page is
returned. Otherwise, a value of -1 is returned and e"no is set to indicate the error.

SEE ALSO
syslock(2)

BUGS

Page 1

If an error is encountered while changing the mapping, the mapping for the valid pages may be
changed anyway.

This system call is obviously very machine-dependent and very dangerous. It was originally in
VERSION 7 UNIX but was removed from SYSTEM III. It is not considered a permanent part of
the system.

March 9, 1984

PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2] i

DESCRIPTION

PIPE(2)

Pipe creates an 1/0 mechanism called a pipe and returns two file descriptors, flldes[O] and
fildes[1]. Fildes[O] is opened for reading and fildes[1] is opened for writing.

Writes up to 10240 bytes of data are buffered by the pipe before the writing process is blocked.
A read on file descriptor flldes[O] accesses the data written to fildes[1] on a first-in-first-out
basis.

No process may have more than 20 file descriptors open simultaneously.

Pipe will fail if 19 or more file descriptors are currently open. [EMFILEJ

RETURN VALUE •

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
erma is set to indicate the error.

SEE ALSO
sh(1), read(2), write(2).

Page 1 March 9, 1984

r
PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char .buffj
int bufsiz, offset, scalej

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call. the
user's program counter (pc) is examined each clock tick (50th second for the Z8000. 64th
second for the MC68000); offset is subtracted from it. and the result multiplied by scale. If the
resulting number corresponds to a word inside buff. that word is incremented.

The scale is interpreted as an unsigned. fixed-point fraction with binary point at the left:
0177777 (octal) gives a 1-1 mapping of pc's to words in buff; 077777 (octal) maps each pair of
instruction words together. 02(8) maps all instructions onto the beginning of buff (producing a
non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
O. Profiling is turned off when an exec is executed. but remains on in child and parent both
after a fork. Profiling will be turned off if an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

NOTES
Plexus clock tick is each 50th second for the ZSQOO. each 64th second for the MC68000.

SEE ALSO
prof(1). monitor(3C).

Page 1 March 9. 1984

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
Int ptrace (request, pid, addr, data);
Int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child pro
cess. Its primary use is for the implementation of breakpoint debugging; see adb(1). The child
process behaves normally until it encounters a signal (see signa/(2) for the list). at which time it
enters a stopped state and its parent is notified via wait (2). When the child is in the stopped
state, its parent can examine and modify its "core image" using ptrace. Also. the parent can
cause the child either to terminate or continue. with the possibility of ignoring the signal that
caused it to stop.

The request argument determines the precise action to be taken by ptrace and is one of the fol
lowing:

o This request must be issued by the child process if it is to be traced by its parent.
It turns on the child's trace flag that stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by 'unc; see
signa/(2). The pid, addr, and data arguments are ignored, and a return value is
not defined for this request. Peculiar results will ensue if the parent does not
expect to trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the
process 10 of the child. The child must be in a stopped state before these requests are made.

1,2 With these requests, the word at location addrin the address space of the child is
returned to the parent process. If I and 0 space are separated (as on the Z8000)
request 1 returns a word from I space, and request 2 returns a word from 0 space.
If I and 0 space are not separated (as on the 68000). either request 1 or request 2
may be used with equal results. The data argument is ignored. These two
requests will fail if addr is not the start address of a word, in which case a value of
-1 is returned to the parent process and the parent's ermo is set to EIO.

3 With this request, the word at location addr in the child's USER area in the
system's address space (see <sys/user.h» is returned to the parent process.
Addresses in this area range from 0 to 2048 on the zaooo, and 0 to 4096 on the
68000. The data argument is ignored. This request will fail if addr is not the start
address of a word or is outside the USER area. in which case a value of -1 is
returned to the parent process and the parent's ermo is set to EIO.

4,5 With these requests, the value given by the data argument is written into the
address space of the child at location addr. If I and 0 space are separated (as on
the zaOOO), request 4 writes a word into I space, and request 5 writes a word into
o space. If I and 0 space are not separated (as on the 68000). either request 4 or
request 5 may be used with equal results. Upon successful completion, the value
written into the address space of the child is returned to the parent. These two
requests will fail if addr is a location in a pure procedure space and another pro
cess is executing in that space. or addr is not the start address of a word. Upon
failure a value of -1 is returned to the parent process and the parent's ermo is set
toEIO.

6 With this request. a few entries in the child's USER area can be written. Data
gives the value that is to be written and addr is the location of the entry. The few
entries that can be written are:

Page 1 March 9, 1984

PTRACE(2) PTRACE(2)

r the general registers (registers 0-15)

the program counter and FeW

7 This request causes the child to resume execution. If the data argument is 0, all
pending signals including the one that caused the child to stop are canceled before
it resumes execution. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that Signal and any other pending signals
are canceled. The addr argument must be equal to 1 for this request. Upon suc
cessful completion, the value of data is returned to the parent. This request will
fail if data is not 0 or a valid signal number, in which case a value of -1 is returned
to the parent process and the parent's ermo is set to EIO.

8 This request causes the child to terminate with the same consequences as exit(2).

9 This request simulates a the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The trace bit
causes on interrupt upon completion of one machine instruction. This effectively
allows single stepping of the child.
Note: the trace bit is turned off after an interrupt.

To forestall possible fraUd. ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If
a traced process calls exec, it will stop before executing the first instruction of the new image
showing signal SlGTRAP.

GENERAL ERRORS

NOTES

Ptrace will in general fail if one or more of the following are true:

Request is an illegal number. [EIO]

Pld identifies a child that does not exist or has not executed a ptrace with request O.
[ESRCH]

Although functionally identical to the stock SYSTEM III system call, some architectural differences
between Plexus and DEC hardware dictated a slightly modified implementation.

SEE ALSO
adb(1), exec(2), signal(2). wait(2).

March 9, 1984 Page 2

READ(2) READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int flldes;
char .buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat; open, dup, fentl, or pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to
by buf.

On devices capable of seeking, the read starts· at a position in the file given by the file pointer
associated with fildes. Upon return from read, the file pointer is incremented by the number of
bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file
pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if the file is associated with a communication line
(see ioctl(2) and tty(4», or if the number of bytes left in the file is less than nbyte bytes. A
value of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NOELAY is set, the read will return a O.

If O_NOELAY is clear, the read will block until data is written to the file or the file is no
longer open for writing.

When attempting to read a file associated with a tty that has no d~ta 'currently available:

If O_NOELAY is set, the read will retuma O.

If O_NOELAY is clear, the read will block until data becomes available.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading. [EBAOF]

Buf points outside the allocated address space. [EFAUL T]

RETURN VALUE

NOTES

Upon successful completion a non-negative integer is returned indicating the number of bytes
actually read. Otherwise, a -1 is returned and erma is set to indicate the error.

The Plexus ICP limits nbyte to 512 for TTY devices.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), open(2), pipe(2), tty(4).

Page 1 March 9, 1984

RMOUNT(2) (NOS only) RMOUNT(2)

NAME
rmount - mount a remote file system directory

SYNOPSIS .
int rmount (rdir, node, dir, rwflag)
char ddir, *node, *dir;
int rwflag;

DESCRIPTION
Rmount requests that a remote file system directory identified by rdir, at the remote system
identified by node, be mounted on the directory identified by dir. Rdir and dir are pointers to
path names. Node is a pointer to the remote system.

Upon successful completion, references to the file dir will refer to the specified directory rdir at
the remote system node.

The low-order bit of rwflag is used to control write permission on the mounted file system; if 1,
writing is forbidden; otherwise, writing is permitted according to individual file accessibility.

Rmount may be invoked only by the super-user.

Rmount will fail if one or more of the following are true:

The effective user 10 is not super-user. [EPERM)

Any of the named fi les or node names does not exist. [ENOENT)

A component of a path prefix is not a directory. [ENOTDlR)

Oir or rdir is not a directory. [ENOTDIR)

Rdir, node, or dir points outside the process's allocated address space. [EFAULT)

Oir is currently mounted on, is someone's current working directory or is otherwise busy.
[EBUSY]

The remote directory rdir at the remote system node is currently rmounted. [EBUSY)

RETURN VALUE

NOTES

Upon successful completion a value of a is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error. EIO is returned in ermo if the rmount fails because of exces
sive timeouts.

This command is available as part of the Plexus Network Operating System (NOS) only.

SEE ALSO
mount(1 M), rmount(1 M), umount(2), rumount(2).

Page 1 June 14, 1984

RUMOUNT(2) (NOS only) RUMOUNT(2)

NAME
rumount - unmount a remote file system directory

SYNOPSIS
int rumount (rdir, node)
char -rdir;
char .node;

DESCRIPTION
Rumount requests that a previously mounted remote file system directory rdir at the remote sys
tem node be unmounted. Rdir is a pOinter to a path name. Node is a pointer to the remote
system name. After unmounting the remote file system, the directory upon which the file sys
tem was mounted reverts to its ordinary interpretation.

Rumount may be invoked only by the super-user.

Rumount will fail if one or more of the following are true:

The process's effective user 10 is not super-user. [EPERM]

Rdir or the remote system node does not exist. [ENXIO]

The remote file system directory rdir at the remote system node is not mounted.
[EINVAL]

A file on rdir is busy locally. [EBUSY]

Rdir or node points outside the process's allocated address space. [EFAUL T]

RETURN VALUE

NOTES

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

This command is available as part of the Plexus Network Operating System (NOS) only.

SEE ALSO
mount(1 M), rmount (1 M), mount(2), rmount(2).

Page 1 March 27, 1984

RMOUNT(2) (NOS only) RMOUNT(2)

NAME
rmount - mount a remote file system directory

SYNOPSIS
int rmount (rdir, node, dir, rwflag)
char .rdir, .node, .dir;
int rwflag;

DESCRIPTION
Rmount requests that a remote file system directory identified by rdir, at the remote system
identified by node, be mounted on the directory identified by dir. Rdir and dir are pointers to
path names. Node is a pointer to the remote system.

Upon successful completion, references to the file dir will refer to the specified directory rdir at
the remote system node.

The low-order bit of rwflag is used to control write permission on the mounted file system; if 1,
writing is forbidden; otherwise, writing is permitted according to individual file accessibility.

Rmount may be invoked only by the super-user.

Rmount will fail if one or more of the following are true:

The effective user 10 is not super-user. [EPERMJ

Any of the named files or node names does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTOIR]

Dir or rdir is not a directory. [ENOTOIR]

Rdir, node, or dir points outside the process's allocated address space. [EFAUL 11
Dir is currently mounted on, is someone's current working directory or is otherwise busy.
[EBUSY]

The remote directory rdir at the remote system node is currently rmounted. [EBUSY]

RETURN VALUE

NOTES

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

This command is available as part of the Plexus Network Operating System (NOS) only.

SEE ALSO
mount(1 M), rmount(1 M). umount(2). rumount(2).

Page 1 March 27, 1984

SETPGRP(2)

NAME
setpgrp - set process group 10

SYNOPSIS
Int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group 10 of the calling process to the process 10 of the calling process
and returns the new process group 10.

RETURN VALUE
Setpgrp returns the value of the new process group 10.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

Page 1 March 9, 1984

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid is used to set the real user 10 and effective user 10 of the calling process.

Setgid is used to set the real group 10 and effective group 10 of the calling process.

If the effective user 10 of the calling process is super-user, the real user (group) 10 and effective
user (group) 10 are set to uid (gid).

If the effective user 10 of the calling process is not super-user, but its real user (group) 10 is
equal to uid (gid), the effective user (group) 10 is set to uid (gid).

Setuid will fail if the real user (group) 10 of the calling process is not equal to uid (gid) and its
effective user 10 is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

Page 1 March 9, 1984

SIGNAl(2) SIGNAl(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
f:include < signal.h >
int (.signal (sig, func»O
int sig;
int (.func)O;

DESCRIPTION

Page 1

Signal allows the calling process to choose one of three ways in which it is possible to handle
the receipt of a specific signal. Sig specifies the signal and fur'c specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP01
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT07*
SIGFPE
SIGKILL09
SIGBUS10*
SIGSEGV
SIGSYS
SIGPIPE13
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD 18
SIGPWR

hangup
02 interrupt
03* quit
04* illegal instruction (not reset when caught)
05* trace trap (not reset when caught)
06* lOT instruction
EMT instruction
08* floating point exception
kill (cannot be caught or ignored)
bus error
11 * segmentation violation
12* bad argument to system call
write on a pipe with no one to read it
14 alarm clock
15 software termination signal
16 user defined signal 1
17 user defined Signal 2
death of a child (see WARNING below)
19 power fail (see WARNING below)

See below for the significance of the asterisk in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values of are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be terminated with the fol
lowing consequences:

All of the receiving process's open file descriptors will be closed.

If the parent process of the receiving process is executing a wait, it will be noti
fied of the termination of the receiving process and the terminating signal's
number will be made available to the parent process; see wait(2).

If the parent process of the receiving process is not executing a wait, the receiv
ing process will be transformed into a zombie process (see e>dt(2) for definition
of zombie process). .

The parent process 10 of each of the receiving process's existing child processes
and zombie processes will be set to 1. This means the initialization process
(see intro(2» inherits each of these processes.

An accounting record will be written on the accounting file if the system's
accounting routine is enabled; see acct(2).

March 9, 1984

SIGNAL(2) SIGNAL(2)

If the receiving process's process 10, tty group 10, and process group 10 are
equal, the signal SIGHUP will be sent to all of the processes that have a process
group 10 equal to the process group 10 of the receiving process.

A "core image" will be made in the current working directory of the receiving
process if sig is one for which an asterisk appears in the above list and the fol
lowi ng conditions are met:

The effective user 10 and the real user 10 of the receiving process are
equal.

An ordinary file named core exists and is writable or can be created. If
the file must be created, it will have the following properties:

a mode of 0666 modified by the file creation mask (see
umask(2»

a file owner 10 that is the same as the effective user 10 of the
receiving process

a file group 10 that is the same as the effective group 10 of the
receivi ng process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address . catch signal
Upon receipt of the signal sig, the receiving process is to execute the signal-catching
function pointed to by func. The signal number sig will be passed as the only argu
ment to the signal-catching function.

Upon return from the signal-catching function, the receiving process will resume exe
cution at the point it was interrupted and the value of func for the caught signal will
be set to SIG_DFL unless the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

When a Signal that is to be caught occurs during a read, a write, an open, or an ioct!
system call on a slow device (like a terminal; but not a file), during a pause system
call, or during a wait system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal catching function will
be executed and then the interrupted system call will return a -1 to the calling pro
cess with errno set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL signal.

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, including SIGKILL. [EINVAL]

Func points to an illegal address. [EFAUL T)

RETURN VALUE
Upon successful completion, signal returns the previous value of func for the specified signal
sig. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above exist in this release
of the system; they are:

March 9, 1984 Page 2

SIGNAl(2) SIGNAl(2)

SIGClD 18 death of a child (not reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of UNIX, these signals will continue to behave as
described below; they are included only for compatibility with other versions of UNIX. Their use
in new programs is strongly discouraged.

Page 3

For these signals, func is assigned one of three values: SIG_DFl, SIG_IGN, or a function
address. The actions prescribed by these values of are as follows:

SIG_DFl - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process's child
processes will not create zombie processes when they terminate; see exit(2).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above
for func equal to function address. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching function any received SIGCLD
signals will be queued and the signal-catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wait(2), and exit(2» in the following ways:

wait If the func value of SIGCLD is set to SIGJGN and a wait is executed, the wait will
block until all of the calling process's child processes terminate; it will then return a
value of -1 with ermo set to ECHILD.

exit If in the exiting process's parent process the func value of SIGCLD is set to SIG_IGN,
the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
proceeding processes. A process that may be piped into in this manner (and thus become
the parent of other processes) should take care not to set SIGCLD to be caught.

March 9, 1984

r

r
\.

STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
"include < sysltypes.h >
"include < sys/stat.h >
int stat (path, buf)
char .path;
struct stat .buf;

int fstat (fildes, buf)
int fildes;
struct stat .buf;

DESCRIPTION

Page 1

Path points to a path name naming a file. Read, write or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcnt/, or pipe system call.

Buf is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure pointed to by buf include the following members:

short
ushort
ushort
ofU
time_t
time_t
time_t

sCmode;
sUno;
sCdev;

sCrdev;

sCnlink;
sCuid;
sCgid;
sCsize;
sCatime;
sCmtime;
sCctime;

I. File mode; see mknod(2) .1
I. lnode number.1
1.10 of device containing .1
I. a directory entry for this file .1
I. 10 of device ./
I. This entry is defined only for .1
I. character special or block special files .1
I. Number of links .1
I. User 10 of the file's owner .1
I. Group 10 of the file's group .1
I. File size in bytes .1
I. Time of last access .1
I. Time of last data modification .1
I. Time of last file status change .1
I. Times measured in seconds since .1
I. 00:00:00 GMT, Jan. 1, 1970 .1

scatlme Time when file data was last accessed. Changed by the following system calls:
creat(2), mknod(2), pipe(2), utime(2), and read(2).

sCmtlme Time when data was last modified. Changed by the following system calls: creat(2).
mknod(2). pipe(2). utime(2). and write(2).

scctime Time when file status was last changed. Changed by the following system calls:
chmod(2), chown(2). creat(2). link(2). mknad(2). pipe (2). unlink(2), utime(2). and
write (2).

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTOIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix. [EACCES]

March 9, 1984

STAT(2)

Buf or path points to an invalid address. [EFAUL T]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Buf points to an invalid address. [EFAUL T]

RETURN VALUE

STAT(2)

Upon successful completion a value of 0 is returned. Otherwise, a value of ·1 is returned and
e"no is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), time(2), unlink(2).

March 9, 1984 Page 2

r

r

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime(tp)
long .tp;

DESCRIPTION

STIME(2)

Stime sets the system's idea of the time and date, Tp points to the value of time as measured
in seconds from 00:00:00 GMT January 1, 1970.

Stime will fail if the effective user 10 of the calling process is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
erma is set to indicate the error.

SEE ALSO
time(2).

Page 1 March 9, 1984

SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync ()

DESCRIPTION

SYNC(2)

Sync causes all information in memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example fsck, df, etc. It is
mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from sync.

SEE ALSO
sync(1M).

Page 1 March 9, 1984

r

SYSCAll(2)

NAME
syscall.h - numeric id of system call

SYNOPSIS
lusr/include/syscall.h

DESCRIPTION

(Plexus) SYSCAll(2)

The Plexus UNIX operating system recognizes the following system calls. They are used in the
zaooo sc xx assembly instruction.

Page 1

#definelNDIR 0
#defineEXIT 1
#defineFORK 2
#defineREAD 3
#defineWRITE 4
#defineOPEN 5
#defineCLOSE 6
#defineWAIT 7
#defineCREAT 8
#defineUNK 9
#defineUNUNK 10
#defineEXEC 11
#defineCHDIR 12
#defineTIME 13
#defineMKNOD 14
#defineCHMOD 15
#defineCHOWN 16
#defineBREAK 17
#defineSTAT 18
#defineLSEEK 19
#defineGETPID 20
#defineMOUNT 21
#defineUMOUNT 22
#defineSETUID 23
#defineGETUID 24
#defineSTIME 25
#definePTRACE 26
#defineALARM 27
#defineFSTAT 28
#definePAUSE 29
#defineUTIME 30
#defineSTTY 31
#defineGTTY 32
#defineACCESS 33
#defineNICE 34
/* 35 Version 7: FTIME *1
#defineSYNC 36
#defineKILL 37
#defineCSW 38 /* Not in Weco R-III */
#defineSETPGRP 39
#defineDUP 41
#definePIPE 42
#defineTIMES 43
#definePROFIL 44
#defineLOCKING 45 /* Not in Weco R-III */
#defineSETGID 46

March 9, 1984

SYSCALL(2)

March 9, 1984

#defineGETGID
#defineSIGNAL
#defineACCT 51
/* 52
/* 53
#definelOCTL 54
#defineREBOOT
#define FCNTL56
#define PWBSYS
#defineEXECE 59
#defineUMASK60
#defineCHROOT
#define UGROW
#define UUMIT63
#define RMOUNT 64
#define RUMOUNT 65

47
48

(Plexus)

Version 7: PHYS wI
Version 7: LOCK *1

55 r Not in Weco R-III wI
r Version 7: MPX *1

SYSCALL(2)

57 /* UNAME and USTAT sys calls. V7: undefined *1

61
62 r R-III: FCNTL *1
r Version 7: undefined WI

r NOS only *1
r NOS only WI

Page 2

TIME(2) TlME(2)

NAME
time - get time

SYNOPSIS
long time ((long .) 0)

long time (tloc)
long .tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is also stored in the location to which
tloc points.

Time will fail if tloc points to an illegal address. [EFAUL T]

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value of -1 is returned
and erma is set to indicate the error.

SEE ALSO
stime(2).

Page 1 March 9, 1984

TIMES(2) TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
long times (buffer)
struct tbuffer .buffer;
struct tbuffer {

}

long utime;
long stime;
long cutime;
long cstimej

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information. This information
comes from the calling process and each of its terminated child processes for which it has exe
cuted a wait.

All times are in 50ths of a second for the Z8000, 64ths of a second for the MC68000.

Utime is the CPU time used while executing instructions in the user space of the calling process.

Stime is the CPU time used by the system on behalf of the calling process.

Cutime is the sum of the utimes and cutimes of the child processes.

Cstime is the sum of the stimes and cstimes of the child processes.

Times will fail if buffer points to an illegal address. [EFAUL T]

RETURN VALUE
Upon successful completion, times returns the elapsed real time -- in 50ths of a second for the ~
Z8000, 64ths of a second for the MC68000 -- since an arbitrary point in the past (e.g., system
start-up time). This point does not change from one invocation of times to another. If times
fails, a -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

Page 1 March 9, 1984

UGROW(2) (Plexus) UGROW(2)

NAME
ugrow - change system stack limit

SYNOPSIS
ugrow(addr);
char *addr;
char * _endstk

DESCRIPTION
Ugrow sets the lower limit on the user's stack area. Pushing the stack to an address lower than
this limit could cause a memory fault or overwrite data.

Addr should be a multiple of the system page size (Ox800). since the limit is modified in page
size increments. Otherwise. it is rounded down to the next page boundary.

Ugrow is automatically called when necessary by the library routine csav. which is invoked upon
procedure entry. A global variable _endstk contains the last value of addr passed to ugrow;
_endstk is also used by other library routines.

RETURN VALUE

Page 1

Upon successful completion a value of 0 is returned. Otherwise. -1 is returned and ermo is set
to indicate the error.

March 27. 1984

ULlMIT(2) ULlMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values available are:

1 Get the process's file size limit. The limit is in units of 1024-byte blocks and is inherited
by child processes. Files of any size can be read.

2 Set the process's file size limit to the value of new/imit. Any process may decrease this
limit, but only a process with an effective user 10. of super-user may increase the limit.
Ulimit will fail and the limit will be unchanged if a process with an effective user 10 other
than super-user attempts to increase its file size limit. [EPERM)

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is
returned and err no is set to indicate the error.

SEE ALSO
brk(2), write(2).

Page 1 March 9, 1984

r

r

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

UMASK(2)

Umask sets the process's file ,mode creation mask to cmask and returns the previous value of
the mask. Only the low-order 9 bits of cmask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1). mknod(1 M). sh(1). chmod(2), creat(2). mknod(2), open(2).

Page 1 March 9. 1984

UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
Int umount (spec)
char .spec;

DESCRIPTION

UMOUNT(2)

Umount requests that a previously mounted file system contained on the block special device
identified by spec be unmounted. Spec is a pointer to a path name. After unmounting the file
system, the directory upon which the file system was mounted reverts to its ordinary interpreta
tion.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

The process's effective user 10 is not super-user. [EPERMj

Spec does not exist. [ENXIOj

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINVALJ

A file on spec is busy. [EBUSY]

Spec points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
mount(1 M), mount(2).

Page 1 March 9, 1984

UNAME(2) UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include <syslutsname.h>

int uname (name)
struct utsname .name;

DESCRIPTION
Uname stores information identifying the current UNIX system in the structure pointed to by
name.

Uname uses the structure defined in <syslutsname.h>:

struct utsname {
char sysname[9];
char nodename[9];
char release[9];
char version[9];

};
extern struct utsname utsname;

Uname returns a null-terminated character string naming the current UNIX system in the charac
ter array sysname. Similarly, nodename contains the name that the system is known by on a
communications network. Release and version further identify the operating system.

Uname will fail if name points to an invalid address. [EFAUL 1']

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

SEE ALSO
uname(1).

Page 1 March 9, 1984

UNlINK(2) UNlINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Un/ink removes the directory entry named by the path name pointed to be path.

The named file is unlinked unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTOIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix. [EACCES]

Write permission is denied on the directory containing the link to be removed. [EACCES]

The named file is a directory and the effective user 10 of the process is not super-user.
[EPERM]

The entry to be unlinked is the mount point for a mounted file system. [EBUSY]

The entry to be unlinked is the last link to a pure procedure (shared text) file that is
being executed. [ETXTBSy]

The directory entry to be unlinked is part of a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAUL T]

When all links to a file have been removed and no process has the file open, the space occu
pied by the file is freed and the file ceases to exist. If one or more processes have the file open
when the last link is removed, the removal is postponed until all references to the file have been
closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
rm(1), close(2), Iink(2), open(2).

Page 1 March 9, 1984

r

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include < sysltypes.h >
#include <ustat.h>

in!. ustat (dev, but)
int dev;
struct ustat .bu';

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device number identifying a
device containing a mounted file system. Buf is a pointer to a ustat structure that includes to
following elements:

daddr _t Ufree;
ino_t Ctinode;
char Cfname[6];
char Cfpack[6];

I. Total free blocks ./
I. Number of free inodes ./
I. Filsys name ./
I. Filsys pack name ./

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted file system. [EINVAL]

Buf points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
stat(2), fs(5).

Page 1 March 9, 1984

UTlME(2) UTlME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sysltypes.h>
Int utime (path, times)
char .pathi
struct utimbuf .timesj

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification times of the
named file.

If times is NULL, the access and modification times of the file are set to the current time. A pro
cess must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner
of the file or the super-user may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; ,. access time .,
time_t modtime; ,. modification time .,

};

Utime will fail if one or more of the following are true:

The named file does not exist. (ENOENT)

A component of the path prefix is not a directory. [ENOTOIR)

Search permission is denied by a component of the path prefix. (EACCES)

The effective user 10 is not super-user and not the owner of the file and times is not
NULL. (EPERM)

The effective user 10 is not super-user and not the owner of the file and times is NULL
and write access is denied. [EACCES)

The file system containing the file is mounted read-only. (EROFS)

Times is not NULL and points outside the process's allocated address space. (EFAUL T)

Path points outside the process's allocated address space. (EFAUL T)

RETURN VALUe
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SeE ALSO
stat(2).

Page 1 March 9, 1984

WAIT(2) WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (staCloc)
int .staCloc;

int wait «int .)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be caught (see signa/(2»,
or until anyone of the calling process's child processes stops in a trace mode (see ptrace(2» or
terminates. If a child process stopped or terminated prior to the call on wait, return is immedi
ate.

lt statjoc (taken as an integer) is non-zero, 16 bits of information called status are stored in the
low order 16 bits of the location pointed to by statjoc. Status can be used to differentiate
between stopped and terminated child processes and if the child process terminated, status
identifies the cause of termination and pass useful information to the parent. This is accom
plished in the following manner:

If the child process stopped, the high order 8 bits of status will be zero and tbe low order
8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits of status will be
zero and the high order 8 bits will contain the low order 8 bits of the argument that the
child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status will be zero
and the low order 8 bits will contain the number of the signal that caused the termina
tion. In addition, if the low order seventh bit (Le., bit 200) is set, a "core image" will have
been produced; see signa/(2).

If a parent process terminates without waiting for its child processes to terminate, the parent
process 10 of each child process is set to 1. This means the initialization process inherits the
child processes; see intro(2).

Wait will fail and return immediately if one or more of the following are true:

The calling process has no existing unwaited-for child processes. [ECHILD]

Statjoc points to an illegal address. [EFAUL 11
RETURN VALUE

If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and
ermo is set to EINTR. If wait returns due to a stopped or terminated child process, the process
10 of the child is returned to the calling process. Otherwise, a value of -1 is returned and ermo
is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

WARNING
See WARNING in signa/(2).

Page 1 March 9, 1984

WRITE(2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char .buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with
the fildes.

On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file pointer. Upon return from write, the file pOinter is incremented by the
number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current position. The
value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to the end of the file
prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of the following are true:

Fildes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading by any process.
[EPIPE and SIGPIPE signal)

An attempt was made to write a file that exceeds the process's file size limit or the max
imum file size. See ulimit(2). [EFBIGI

Buf points outside the process's allocated address space. [EFAUL T]

If a write requests that more bytes be written than there is room for (e.g., the ulimit (see
ulimit(2» or the physical end of a medium), only as many bytes as there is room for will be writ
ten. For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a non-zero number of bytes will give a
failure return (except as noted below).

If the file being written is a pipe (or FIFO), no partial writes will be permitted. Thus. the write will
fail if a write of nbyte bytes would exceed a limit.

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag word is set, then
write to a full pipe (or FIFO) will return a count of O. Otherwise (O_NDELAY clear), writes to a full
pipe (or FIFO) will block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise, -1 is
returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2). open(2), pipe(2), ulimit(2).

Page 1 March 9, 1984

INTRO(3) INTRO(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
"include < stdio.h >

"include < math.h >

DESCRIPTION

FILES

NOTES

This section describes functions found in various libraries, other than those functions that
directly invoke UNIX system primitives. which are described in Section 2 of this volume. Certain
major collections are identified by a letter after the section number:

(3C) These functions. together with those of Section 2 and those marked (3S). constitute
library libc. which is automatically loaded by the C compiler. cc(1). The link editor Id(1)
searches this library under the -Ie option. Declarations for some of these functions may
be obtained from "include files indicated on the appropriate pages.

(3M) These functions constitute the math library. libm. They are automatically loaded as
needed by the FORTRAN compiler f77(1). The link editor searches this library under the
-1m option. Declarations for these functions may be obtained from the "include file
< math.h>.

(3S) These functions constitute the "standard 110 package" (see stdio(3S». These functions
. are in the library libc. already mentioned. Declarations for these functions may be
obtained from the "Include file <stdio.h>.

(3X) Various specialized libraries. The files in which these libraries are found are given on the
appropriate pages.

The descriptions of some functions refer to NULL. This is the value that is obtained by casting 0
into a character pointer. The C language guarantees that this value will not match that of any
legitimate pointer. so many functions that return pointers return it. for example. to indicate an
error. NULL is defined in <stdio.h> as 0; the user can include his own definition if he is not
using <stdio.h>. .

llib/libc.a
Ilib/libm.a

Plexus does not provide fptrap(3X). which is specific to non-Plexus hardware and not generally
supported in SYSTEM III. Plexus adds curses and termlib.

SEE ALSO
ar(1). cc(1), f77(1). 1d(1). nm(1). intro(2). stdio(3S).

DIAGNOSTICS

Page 1

Functions in the math library (3M) may return conventional values when the function is unde
fined for the given arguments or when the value is not representable. In these cases. the exter
nal variable ermo (see intro(2» is set to the value EDOM or ERANGE.

March 27. 1984

A64l(3C) A64l(3C)

NAME
a64I, l64a - convert between long and base-64 ASCII

SYNOPSIS
long a641 (8)
char .8;

char .164a (I)
long Ii

DESCRIPTION

BUGS

Page 1

These routines are used to maintain numbers stored in base-64 ASCII. This is a notation by
which long integers can be represented by up to six characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are • for 0, / for 1, 0 through 9 for 2-11, A through Z
for 12-37, and a through z for 38-63.

A641 takes a pointer to anull-terminated base-64 representation and returns a corresponding
long value. L64a takes a long argument and returns a pointer to the corresponding base-64
representation.

The value returned by 164a is a pointer into a static buffer, the contents of which are overwritten
by each call.

March 27, 1984

r···
·"

,/

ABORT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
abort ()

DESCRIPTION

ABORT(3C)

Abort causes an lOT signal to be sent to the process. This usually results in termination with a
core dump.

It is possible for abort to return control if SIGIOT is caught or ignored.

SEE ALSO
adb(1), exit(2), signal(2).

DIAGNOSTICS
Usually "abort - core dumped" from the shell.

Page 1 March 27, 1984

ABS(3C)

NAME
abs - integer absolute value

SYNOPSIS
Int abs (I)
Int Ii

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
fabs(3M).

BUGS
You get what the hardware gives on the largest negative integer.

Page 1

ABS(3C)

March 27, 1984

r

ASSERT(3X) ASSERT(3X)

NAME
assert - program verification

SYNOPSIS
#include < assert.h >
assert (expression);

DESCRIPTION

Page 1

This macro is useful for putting diagnostics into programs. When it is executed, if expression is
false, it prints "Assertion failed: file xyz, line nnn" on the standard error file and exits. Xyz is the
source file and nnn the source line number of the assert statement. Compiling with the prepro
cessor option -ON DEBUG (see cc (1» will cause assert to be ignored.

March 27, 1984

ATOF(3C) ATOF(3C)

NAME
atof, atoi, atol- convert ASCII to numbers

SYNOPSIS
double atof (nptr)
char .nptri

int atoi (nptr)
char .nptri

long atol (nptr)
char .nptri

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Atal recognizes an optional string of tabs and spaces, then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E followed by an optionally
signed integer.

Atoi and atal recognize an optional string of tabs and spaces, then an optional sign, then a
string of digits.

SEE ALSO
scanf(3S).

BUGS
There are no prOvisions for overflow.

Page 1 March 27, 1984

r

BESSEl(3M)

NAME
jO, j1, jn, yO, y1, yn - bessel functions

SYNOPSIS
"include <math.h>

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x);
double x;

double yO (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION

BESSEl(3M)

These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause yO, y1 , and yn to retum a huge negative value.

Page 1 March 27, 1984

BSEARCH(3C) BSEARCH(3C)

NAME
bsearch - binary search

SYNOPSIS
char .bsearch (key, base, nel, width, compar)
char .keYi
char .basej
int nel, width;
int (.compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a
pointer into a table indicating the location at which a datum may be found. The table must be
previously sorted in increasing order. The first argument is a pointer to the datum to be located
in the table. The second argument is a pointer to the base of the table. The third is the number
of elements in the table. The fourth is the width of an element in bytes. The last is the name of
the comparison routine. It is called with two arguments which are pointers to the elements
being compared. The routine must return an integer less than. equal to. or greater than 0
according as the first argument is to be considered less than. equal to. or greater than the
second.

DIAGNOSTICS
Zero is returned if the key can not be found in the table.

SEE ALSO
Isearch(3C). qsort(3C).

Page 1 March 27. 1984

CONV(3C) CONV(3C)

NAME
toupper, tolower, toascii • character translation

SYNOPSIS
#include <ctype.h>
int toupper (e)
int Ci

int tolower (c)
int Ci

int _toupper (c)
int Ci

int _tolower (c)
int Ci

int toascii (c)
int Ci

DESCRIPTION
Toupper and toIower have as domain the range of getc: the integers from ·1 through 255. If
the argument of toupper represents a lower-case letter, the result is the corresponding upper
case letter. If the argument of t%wer represents an upper-case letter, the result is the
corresponding lower-case letter. All other arguments in the domain are returned unchanged.

_toupper and _t%wer are macros that accomplish the same thing as toupper and totower but
have restricted domains and are faster. _toupper requires a Iower-case letter as its argument;
its result is the corresponding upper-case letter. _t%wer requires an upper-case letter as its
argument; its result is the corresponding lower-case letter. Arguments outside the domain
cause garbage results.

T08SC;; yields its argument with all bits turned off that are not part of e standard ASCII character;
it is intended for compatibility with other systems.

SEE ALSO
ctype(3C).

Page 1 March 27, 1984

CRYPT(3C) CRYPT(3C)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char .crypt (key, salt)
char .key, .salt;

setkey (key)
char .key;

encrypt (block, dlag)
char .block;
Int dlag;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard
(DES), with variations intended (among other things) to frustrate use of hardware implementa
tions of the DES for key search.

The first argument to crypt is a user's typed password. The second is a 2-character string
chosen from the set [a-zA-ZO-9./]; this salt string is used to perturb the DES algorithm in one of
4096 different ways, after which the password is used as the key to encrypt repeatedly a con
stant string. The returned value points to the encrypted password, in the same alphabet as the
salt. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual DES algorithm.
The argument of setkey is a character array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each
group is ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry .is likewise a character array of length 64 containing O's and
1's. The argument array is modified in place to a similar array representing the bits of the argu
ment after having been subjected to the DES algorithm using the key set by set key . ·If edf/ag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
login(1), passwd(1), getpass(3C), passwd(5).

Page 1 March 27, 1984

CRYPT(3C) CRYPT(3C)

BUGS
The retum value points to static data that are overwritten by each call.

Passwords encrypted under V7 use the German Enigma method, which is incompatible with
DES.

March 27, 1984 Page 2

CTERMID(3S) CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
. #Include <stdio.h>

char .ctermld(s)
char .Sj

DESCRIPTION

NOTES

Ctermld generates a string that refers to the controlling terminal for the current process when
used as a file name.

If (int)s is zero, the string is stored in an internal static area, the contents of which are overwrit
ten at the next call to ctermld, and the address of which is returned. If (int)s is non-zero, then s
is assumed to point to a character array of at least L_ctermid elements; the string is placed in
this array and the value of s is returned. The manifest constant L_ctermid is defined in
<stdlo.h>.

The difference between ctermld and ttyname(3C) is that ttyname must be handed a file descrip
tor and returns the actual name of the terminal associated with that file descriptor, while ctermid
returns a magic string (/dev/tty) that will refer to the terminal if used as a filename. Thus
ttyname is useless unless the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

Page 1 March 27, 1984

CTIME(3C) CTIME(3C)

NAME
dime, Iocaltime, gmtime, asctime, tzset - convert date and time to ASCII

SYNOPSIS
#include <tlme.h>

char cbuf(26) j
int dmsize(12) j
long timezonej
char .tzname[) j
int daylightj
struct {

int daylbj
int daylej

} daytab[)j

char .ctime (clock)
long .clockj

struct tm .Iocaltime (clock)
long .clockj

struct tm .gmtime (clock)
long .clockj

char .asctime (tm)
struct tm .tmj

tzset ()

DESCRIPTION

Page 1

Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields h~ve constant width.

Sun Sep 1601 :03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time the UNIX system uses. Asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {
int
int
int
int
int
int
int
int
int

};

/* see ctime(3) */
tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tmJsdst;

These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11),
day of week (Sunday = 0), year - 1900, day of year (0-365), and a flag that is non-zero if day
light saving time is in effect.

The external long variable timezone contains the difference, in seconds, between GMT and local
standard time (in EST, timezone is 5.60.60); the external variable daylight is non-zero if and
only if the standard U.S.A. Daylight Savings Time conversion should be applied. The program

March 27, 1984

CTIME(3C) CTIME(3C)

knows about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for these ~
years can be extended.

If an environment variable named TZ is present, aset/me uses the contents of the variable to
override the default time zone. The value of TZ must be a three-letter time zone name, followed
by a number representing the difference between local time and Greenwich time in hours, fol·
lowed by an optional three-letter name for a daylight time zone. For example, the setting for
New Jersey would be EST5EDT. The effects of setting TZ are thus to change the values of the
external variables t/mezone and daylight; in addition, the time zone names contained in the
external variable

char .tzname(2) = {-EST-, -EDT-};

are set from the environment variable. The function tzset sets the external variables from TZ; it
is called by asct/me and may also be called explicitly by the user.

SEE AlSO
time(2). getenv(3C). environ(7).

BUGS
The return values point to static data whose content is overwritten by each call.

March 27. 1984 Page 2

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl,
isascii - character classification

SYNOPSIS
#include <ctype.h>

Int isalpha (c)
int c;

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate return
ing nonzero for true. zero for false. /sascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (see stdio(3S».

isa/pha

isupper

Is/ower

isdigit

isxdigit

isa/num

isspace

ispunct

isprint

isgraph

iscntrl

isascii

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit [0-9]

c is a hexidecimal digit [0-9], [A-F] or [a-f]

c is an alphanumeric

c is a space, tab, carriage return, new-line. vertical tab, or form-feed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character. code 040 (space) through 0176 (tilde)

c is a printing character, like Isprint except false for space

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

SEi:ALSO
ascii (7).

Page 1 March 27. 1984

CURSES(3C) (Plexus) CURSES(3C)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -Icurses -Itermlib [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. Then the
refresh() tells the routines to make the current screen look like the new one. In order to initialize
the routines, the routine initscr() must be called before any of the other routines that deal with
windows and screens are used.

SEE ALSO
termcap (5), stty (2), setenv (3), setenv (3).

FUNCTIONS

Page 1

addch(ch)
addstr(str)
box(win, vert,hor)
cbreakO
clearO
clearok(scr,boolf)
clrtobotO
clrtoeolO
delwin(win)
echoO
erase()
getch()
getstr(str)
gettmodeO
getyx(win,y,x)
inchO
initscr()
leaveok(win,boolf)
longname(termbuf,name)
move(y,x)
mvcur(lasty ,Iastx,newy,newx)
newwin(lines,cols,begin_y,begin_x)
nl()
nocbreak{)
noecho()
nonl()
norawO
overlay(win1,win2)
overwrite(win1,win2)
printw(fmt,arg1,arg2, .•.)
raw()
refresh()
restty()
savetty()
scanw(fmt,arg1,arg2, ...)
scroll(win)
scrollok(win,boolf)
setterm(name)
unctrl(ch)

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete win
set echo mode
erase stdscr
get a char through stdscr
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unser raw mode
overlay win1 on win2
overwrite win1 on top of wi n2
printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value
stored current tty flags
scanf from stdscr
scroll win one line
set scroll flag
set term variables for name
printable version of ch

March 27, 1984

CURSES(3C)

waddch(win.ch)
waddstr(win.str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
werase(win)
wgetch(win)
wgetstr(win.str)
winch(win)
wmove(win.y.x)
wprintw(win.fmt.arg1.arg2 •...)
wrefresh(win)
wscanw(win.fmt.arg1.arg2 •...)

March 27. 1984

(Plexus) CURSES(3C)

add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
erase win
get a char through win
get a string through win
get char at current (y.x) from win
set current (y.x) co-ordinates on win
printf on win
make screen look like win
scant through win

Page 2

CUSERID(3S) CUSERID(3S)

NAME
cuserid - character login name of the user

SYNOPSIS
f=include < stdio.h >
char .cuserid (s)
char .s;

DESCRIPTION
Cuserid generates a character representation of the login name of the owner of the current pro
cess. If (int)s is zero, this representation is generated in an internal static area, the address of
which is returned. If (int)s is non-zero, s is assumed to point to an array of at least L_cuserid
characters; the representation is left in this array. The manifest constant L_cuserid is defined
in <stdio.h>.

DIAGNOSTICS
If the login name cannot be found, cuserid returns NULL; if s is non-zero in this case, \0 will be
placed at .s.

SEE ALSO

BUGS

Page 1

getlogin(3C), getpwuid(3C).

Cuserid uses getpwnam(3C); thus the results of a user's call to the latter will be obliterated by a
subsequent call to the former.
The name cuserid is rather a mi~nomer.

March 27, 1984

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt - OUtput conversion

SYNOPSIS
char .ecvt (value, neligit, deept, sign)
double value;
int nellgit, .decpt, .sign;

char .fcvt (value, neligit, decpt, sign)
double valuei
int neligit, .decpt, .sign;

char .gcvt (value, neligit, but)
double valuei
char .buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and retums a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the retumed digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format out
put of the number of digits specified by * _ndigits .

Gcvt converts the value to a null-terminated ASCII string in but and returns a pointer to but. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3S).

BUGS
The retum values point to static data whose content is overwritten by each call..

Page 1 March 27, 1984

ENO(3C) ENO(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern &text;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of
etext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but the program break may be
reset by the routines of brk(2), mal/oo(3C), standard input/output (stdio(3S)), the profile (-p)
option of 00(1), and so on. Thus, the current value of the program break should be determined
by "sbrk(O)" (see brk(2)).

These symbols are accessible from assembly language if it is remembered that they should be
prefixed by _.

SEE ALSO
brk(2), malloc(3C).

Page 1 Maroh 27, 1984

EXP(3M) EXP(3M)

NAME
exp, log, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS
#include <math.h>
double exp (x)
double Xi

double log (x)
double Xi

double pow (x, Y)
double x, Yi

double sqrt (xl
double Xi .

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x.

Pow returns xY.
Sqrt returns the square root of x.

SEE ALSO
intro(2), hypot(3M), sinh(3M).

DIAGNOSTICS

Page 1

Exp and pow return a huge value when the correct value would overflow. A truly outrageous
argument may also result in ermo being set to ERANGE.

Log returns a huge negative value and sets e"no to EDOM when x is non-positive.

Pow returns a huge negative value and sets e"no to EDOM when x is non-positive and y is not
an integer, or when x and yare both zero.

Sqrt returns 0 and sets ermo to EDOM when x is negative.

March 27, 1984

FCLOSE(3S)

NAME
fclose, fflush • close or flush a stream

SYNOPSIS
#Include <atdlo.h>
Int fcloae (stream)
FILE .streami

Int fflush (stream)
FILE .streami

DESCRIPTION

FCLOSE(3S)

Fclose causes any buffers for the named stream to be emptied. and the file to be closed.
Buffers allocated by the standard input/output system are freed.

Fclose is performed automatically upon cating exlt(2).

Fflush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

These functions retum 0 for success, and EOF if any errors were detected.

SEE ALSO
cIose(2). fopen(3S). setbUf(3S).

Page 1 March 27. 1984

r

FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#Include < stdio.h >
int feof (stream)
FILE .str8am;

int ferror (stream)
FILE .stream

clearerr (stream)
FILE .stream

fileno(stream)
FILE .stream;

DESCRIPTION

FERROR(3S)

Feaf returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when error has occurred reading or writing the named stream, other
wise zero. Unless cleared by c/earerr, the error indication lasts until the stream is closed.

C/earerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2).

Feof, ferror, and fileno are implemented as macros; they cannot be re-declared.

SEE ALSO
open(2), fopen(3S).

Page 1 March 27, 1984

FLOOR(3M)

NAME
floor, fabs, ceil, fmod - absolute value, floor, ceiling, remainder functions

SYNOPSIS
#Include <math.h>

double floor (x)
double Xi

double cell (x)
double Xi

double fmod (x, y)
double x, Yi

double fabs (x)
double Xi .

DESCRIPTION
Fabs returns I x I .

Floor returns the largest integer (as a double precision number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the number' such that x = iy +', for some integer i, and
o ~ '<yo

SEE ALSO
abs(3C).

FLOOR(3M)

Page 1 March 27, 1984

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE .fopen (file-name, type)
char .tile-name, .typei

FILE .freopen (file-name, type, stream)
char .file-name, .typei
FILE .streami

FILE .fdopen (fildes, type)
int tildesi
char .typei

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it. Fopen returns a
pointer to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append; open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" create for update

"a+" append; open or create for update at end of file

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed, regardless of whether the open ultimately succeeds.

Freopen is typically used to attach the preopened constant names stdin, stdout, and stderr to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2).
The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end of file.

SEE ALSO
open(2), fclose(3S).

DIAGNOSTICS
Fopen and freopen return the pointer NULL if file-name cannot be accessed.

Page 1 March 27, 1984

FREAD(3S) FREAD(3S)

NAME
fread. fwrite - buffered binary input/output

SYNOPSIS
"Include < stdlo.h >
Int tread «char .) ptr, slzeof (.ptr), nltems, stream)
FILE .stream;
Int fwrite «char .) ptr, slzeo. (.ptr), nitems, stream)
FILE .stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nit ems of data of the type of .ptr from the named
input stream. It returns the number of items actually read.

Fwrite appends at most nltems of data of the type of .ptr beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S). putc(3S). gets(3S), puts(3S), printf(3S), scanf(3S).

Page 1 March 27. 1984

r

FREXP(3C) FREXP(3C)

NAME
frexp. ldexp. modf - split into mantissa and exponent

SYNOPSIS
double frexp (value, eptr)
double value;
int .eptr;

double Idexp (value, exp)
double value;

double modf (value, iptr)
double value, .iptr;

DESCRIPTION

Page 1

Frexp returns the mantissa of a double value as a double quantity. x. of magnitude less than 1
and stores an integer n such that value = x.2 .. n indirectly through eptr.

Ldexp returns the quantity value .2 .. exp.

Modf returns the positive fractional part of value and stores the integer part indirectly through
iptr.

March 27. 1984

FSEEK(3S) FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
:f/:include <stdlo.h>

int fseek (stream, offset, ptmame)
FILE .streamj
long offsetj
int ptmamej

long ftell (stream)
FILE .streamj

rewind(stream)
FILE .streamj

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc (3S).

After fseek or rewind, the next operation on an update file may be either input or output.

Ftell returns the current value of the offset relative to the beginning of the file associated with
the named stream. The offset is measured in bytes.

Rewind(stream) is equivalent to fseek(stream, Ol, 0).

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks. otherwise zero.

Page 1 March 27 , 1984

GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>
extern int signgamj

double gamma (x)
double Xj

DESCRIPTION

GAMMA(3M)

Gamma returns In 1 r(1 xl) I. The sign of r(1 xl) is returned in the external integer signgam.
The following C program fragment might be used to calculate r:

y = gamma (x);
if (y > 88.0)

error ();
y = exp (y) * signgam;

DIAGNOSTICS
For negative integer arguments, a huge value is returned, and ermo is set to EDOM.

Page 1 March 27, 1984

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
f:1nclude < stdlo.h >
Int gatc (stream)
FILE .streamj

int gatchar ()

int fgate (stream)
FILE .streamj

int getw (stream)
FILE .stream;

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdln).

Fgetc behaves like getc, but is a genuine function, not a macro; it may therefore be used as an
argument. Fgetc runs more slowly than getc, but takes less space per invocation.

Getw returns the next word from the named input stream. It returns the constant EOF upon end
of file or error, but since that is a valid integer value, feof and ferror(3S) should be used to
check the success of getw. Getw assumes no special alignment in the file.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

BUGS

Page 1

These functions return the integer constant EOF at end of file or upon read error.

A stop with message "Reading bad file" means that an attempt has been made to read from a
stream that has not been opened for reading by fopen.

Getc and its variant getchar return EOF on end of file; this is wiser than, but incompatible with,
the older getchar(3S).
Because it is implemented as a macro, getc treats incorrectly a stream argument with side
effects. In particular, getc(.f++)j doesn't work sensibly.

March 27, 1984

GETENV(3C)

NAME
getenv - value for environment name

SYNOPSIS
char .getenv (name)
char .namej

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ(7)) for a string of the form name=va!ue and
returns value if such a string is present, otherwise 0 (NULL).

SEE ALSO
environ(7).

Page 1 March 27, 1984

GETGRENT(3C) . GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
"include <grp.h>

struct group *getgrent ();

struct group *getgrgid (gid)
int gid;

struct group *getgmam (name)
char *name;

int setgrent ();

int endgrent ();

DESCRIPTION

FilES

Getgrent, getgrgid and getgmam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

struct group {I* see getgrent(3) *1
char *gr _name;
char *gr _passwd;
int gr_gid;
char **gr _mem;

};

The members of this structure are:
gr _name The name of the group.
gr _passwd The encrypted password of the group.
gr _gid The numerical group 10.
gr _mem Null-terminated vector of pointers to the individual member names.

Getgrent reads the next line of the file, so successive calls may be used to search the entire
file. Getgrgid and getgmam search from the beginning of the file until a matching gid or name
is found, or EOF is encountered.

A call to setgrent has the effect of rewinding the group file to allow repeated searches.
Endgrent may be called to close the group file when processing is complete.

letc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(5).

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Page 1 March 27, 1984

GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
char .getlogin ();

DESCRIPTION

GETLOGIN(3C)

Getlogin returns a pointer to the login name as found in letc/utmp. It may be used in conjunc
tion with getpwnam to locate the correct password file entry when the same user 10 is shared by
several login names.

FILES

If get/ogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to call cuserid, or to call getlogin and if it
fails, to call getpwuid.

letclutmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(5).

DIAGNOSTICS
Returns NULL if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

Page 1 March 27, 1984

GETOPT(3C) GETOPT(3C)

NAME
getopt - get option letter from argv

SYNOPSIS
int getopt (argc, argv, optstrlng)
int &rgc;
char •• argv;
char .optstring;
extern char .optarg;
extern Int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to
have an argument that mayor may not be separated from it by white space. Optarg is set to
point to the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind
is external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns
EOF. The special option - may be used to delimit the end of the options; EOF will be returned,
and - will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when it encounters
an option letter not included in optstring.

EXAMPLE

Page 1

The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and 0, both of which require
arguments:

main (argc, argv)
int argc;
char .. argv;
{

int c;
extern int optind;
extern char .optarg;

while «c = getopt (argc, argv, "abf:o:"» != EOF)
switch (c) {
case ·a·:

if (bflg)

else

break;
case ·b·:

if (aflg)

else

break;
case ·f·:

errflg++;

errflg++;

bproc();

ifile = optarg;

March 27, 1984

GETOPT(3C)

}

March 27, 1984

break;
case '0':

ofile = optarg;
bufsiza = 512;
break;

case '?':
errflg++;

}
if (errflg) {

}

fprintf (stderr, "usage: . . . ");
exit (2);

for(; optind < argc; optind++) {
if (access (argv[optind), 4)) {

GETOPT(3C)

Page 2

GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

GETPASS(3C)

Getpass reads a password from the file /devltty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters.

FilES
/dev/tty

SEE AlSO
crypt(3C).

BUGS
The return value points to static data whose content is overwritten by each call.

Page 1 March 27, 1984

GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
getpw (uid, but)
int uid;
char .buf;

DESCRIPTION

GETPW(3C)

Getpw searches the password file for the (numerical) uid, and fills in buf with the corresponding
fine; it returns non-zero if uid could not be found. The line is null-terminated.

This routine is included only for compatibility with prior systems and should not be used; see
getpwent(3C) for routines to use instead.

FilES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(5).

DIAGNOSTICS
Non-zero return on error.

Page 1 March 27, 1984

GETPWENT(3C) GETPWENT(3C)

NAME
getpwent. getpwuid. getpwnam. setpwent. endpwent - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd .getpwent ();

struct passwd .getpwuid (uid)
int uid:

struct passwd .getpwnam (name)
char .name:

int setpwent ();

int endpwent ();

DESCRIPTION

FILES

Getpwent. getpwuid and getpwnam each returns a pointer to an object with the following struc
ture containing the broken-out fields of a line in the password file.

struct passwd {
char *pw _name;
char *pw _passwd;
int pw_uid;
int pw_gid;
char *pw _age;
char *pw_comment;
char *pw _gecos;
char *pw_dir;
char *pw_shell;

};

The pw _comment field is unused; the others have meanings described in passwd(5).

Getpwent reads the next line in the file. so successive calls can be used to search the entire
file. Getpwuid and getpwnam search from the beginning of the file until a matching uid or
name is found. or EOF is encountered.

A call to setpwent has the effect of rewinding the password file to allow repeated searches.
Endpwent may be called to close the password file when processing is complete.

letclpasswd

SEE ALSO
getlogin(3C). getgrent(3C). passwd(5).

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Page 1 March 27.1984

GETS(SS) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
"include <8tdio.h>
char .get8 (8)
char .8;

char .fget8 (8, n, stream)
char .8;
int n;
FILE .stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The string is terminated by a
new-line character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n-1 characters, or up to a neW-line character (which is retained), whichever comes
first, from the stream into the string s. The last character read into s is followed by a null char
acter. Fgets returns its first argument.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Gets and 'gets return the constant pointer NULL upon end-ot-file or error.

NOTE
Gets deletes the neW-line ending its input, but 'gets keeps it.

Page 1 March 27, 1984

HYPOT(3M)

NAME
hypot - Euclidean distance

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, Y;

DESCRIPTION
Hypot returns

sqrt(x*x + y*y).

taking precautions against unwarranted overflows.

SEE ALSO
sqrt(3M).

Page 1

HYPOT(3M)

March 27. 1984

l3TOl(3C)

NAME
I3tol, ltol3 - convert between 3-byte integers and long integers

SYNOPSIS
13101 (Ip, cp, n)
long .Ip;
char .cp;
int n;

Itol3 (cp, Ip, n)
char .cp;
long .Ip;
int n;

DESCRIPTION

l3TOL(3C)

L3tol converts a list of n three-byte integers packed into a character string pointed to by cp into
a list of long integers pointed to by Ip.

Uol3 performs the reverse conversion from long integers (/p) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three
bytes long.

SEE ALSO
fs(5).

Page 1 March 27, 1984

LOGNAME(3X)

NAME
logname - login name of user

SYNOPSIS
char .Iogname();

DESCRIPTION

LOGNAME(3X)

Logname returns a pointer to the null-terminated login name; it extracts the $LOGNAME variable
from the user's environment.

This routine is kept in llib/libpw.a.

FILES
letclprofile

SEE ALSO
env(1). login(1). profile(5). environ(7).

Page 1 March 27, 1984

LSEARCH(3C) LSEARCH(3C)

NAME
Isearch - linear search and update

SYNOPSIS
char .Isearch (key, base, nalp, width, compar)
char .key;
char .base;
int .nelp;
int width;
int (.compar)O;

DESCRIPTION

BUGS

!.search is a linear search routine generalized from Knuth (6.1) Algorithm Q. It returns a pointer
into a table indicating the location at which a datum may be found. If the item does not occur, it
is added at the end of the table. The first argument is a pointer to the datum to be located in
the table. The second argument is a pointer to the base of the table. The third is the address of
an integer containing the number of items in the table. It is incremented if the item is added to
the table. The fourth is the width of an element in bytes. The last is the name of the com
parison routine. It is called with two arguments which are pointers to the elements being com
pared. The routine must return zero if the items are equal and non-zero otherwise.

Unpredictable events can occur if there is not enough room in the table to add a new item.

SEE ALSO
bsearch(3C), qsort(3C).

Page 1 March 27, 1984

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char .malloc (size) unsigned size;

free (ptr)
char .ptr;

char .realloc (ptr, size)
char .ptr;
unsigned size;

char .calloc (nelem, elsize)
unsigned elem, elsize;

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package. Malloc returns
a pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by mal/oc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by mal/oc is overrun or if some
random number is handed to free.

Mal/oc allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls
sbrk (see brk(2» to get more memory from the system when there is no suitable space already
free.

Real/oc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the ~
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes.

Real/oc also works if ptr points to a block freed since the last call of mal/oc, real/oc, or calloc;
thus sequences of free, mal/oc and real/oc can exploit the search strategy of malloc to do
storage compaction.

Cal/oc allocates space for an array of ne/em elements of size elsize. The space is initialized to
zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

Page 1

Malloc, realloc and cal/oc return a null pointer (0) if there is no available memory or if the arena
has been detectably corrupted by storing outside the bounds of a block. When realloc returns 0,
the block pointed to by ptr may be destroyed.

March 27, 1984

MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char .mktemp (template)
char .template;

DESCRIPTION

MKTEMP(3C)

Mktemp replaces template by a unique file name, and returns the address of the template. The
template should look like a file name with six trailing Xs, which will be replaced with a letter and
the current process 10. The letter will be chosen so that the resulting name does not duplicate
an existing file.

SEE ALSO
getpid(2).

BUGS
It is possible to run out of letters.

Page 1 March 27, 1984

MONITOR(3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
monitor (Iowpc, highpc, buffer, bufsize, ntunc)
int (.Iowpc)(), (.highpc)();
short buffer[J;
int bufsize, ntunc;

DESCRIPTION

FilES

An executable program created by cc -p automatically includes calls for monitor with default
parameters; monitor needn't be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions;
buffer is the address of a (user supplied) array of bufsize short integers. Monitor arranges to
record a histogram of periodically sampled values of the program counter, and of counts of calls
of certain functions, in the buffer. The lowest address sampled is that of lowpc and the highest
is just below highpc. At most nfunc call counts can be kept; only calls of functions compiled
with the profiling option -p of cc(1) are recorded. For the results to be significant, especially
where there are small, heavily used routines, it is suggested that the buffer be no more than a
few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext();

monitor(2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

prof(1) can then be used to examine the results.

mon.out

SEE ALSO
00(1), prof(1), profil(2).

Page 1 March 27, 1984

NLlST(3C) NLlST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include < a.out.h >
nlist (file-name, nl)
char .file-name;
strue! nlist nl[];

DESCRIPTION

NOTES

Niist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names. types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found. the type and value of the name are inserted in the next two fields. If the
name is not found. both entries are set to O. See a.out(5) for a discussion of the symbol table
structure.

This subroutine is useful for examining the system name list kept in the file /sys3. In this way
programs can obtain system addresses that are up to date.

The system name is Isys3. not /unix.

SEE ALSO
a.out(5).

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

Page 1 March 27. 1984

PERROR(3C) PERROR(3C)

NAME
perror, sys_errlist, sys_nerr, errno - system error messages

SYNOPSIS
perror (s)
char .s;

int sys_nerr;
char .sys _ errlist[);

int errno;

DESCRIPTION
Pe"or produces a short error message on the standard error, describing the last error encoun
tered during a system call from a C program. First the argument string s is printed, then a
colon, then the message and a new-line. To be of most use, the argument string should be the
name of the program that incurred the error. The error number is taken from the external vari
able e"no, which is set when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_e"'ist is pro
vided; erma can be used as an index in this table to get the message string without the new
line. Sys_ne" is the largest message number provided for in the table; it should be checked
because new error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2).

Page 1 March 27, 1984

PLOT(3X) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openplO

erase 0
label (9)
char .9;

line (x1, y1, x2, y2)

circle (x, y, r)

arc (x, y, xO, yO, x1,

move (x, y)

cont (x, y)

point (x, y)

linemod (8)
char .9;

space (xO, yO, x1. y1)

cl0gepi 0
DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device-independent manner. See
pIot(5) for a description of their effect. Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

String arguments to label and linemod are terminated by nulls and do not contain new-lines.

The library files listed below provide several flavors of these routines.'

lusr/lib/libplot.a produces output for tplot(1G) filters
lusrllibllib300.a for DASI 300
lusr/libllib300s.a for DASI 300s
lusr/lib/lib450.a for DASi 450
lusrllib/lib4014.a for Tektronix 4014

SEE ALSO
graph(1 G), tplot(1 G), plot(5).

Page 1 March 27, 1984

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate 1/0 tolfrom a process

SYNOPSIS
#include <stdlo.h>
FILE .popen (command, type)
char .command, .type;

int pclose (stream)
FILE .stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing, respectively, a shell
command line and an 1/0 mode, either r for reading or w for writing. Popen creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process
to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter, and a type w
as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

page 1

Popen returns a null pointer if files or processes cannot be created, or if the shell cannot be
accessed.

Pclose returns -1 if stream is not associated with a "popened" command.

Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard input of that filter mispo
sitioned. Similar problems with an output filter may be forestalled by careful buffer flushing, e.g.
with fflush; see fclose (3S).

March 27, 1984

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - Output formatters

SYNOPSIS
#include < stdio.h >
int printf (format [, arg] ...)
char .formati

int fprintf (stream, format [, arg] ...)
FILE .streami
char .formati

int sprintf (s, format [, arg] ...)
char .s, formati

DESCRIPTION

Page 1

Print! places output on the standard output stream stdout. Fprint! places output on the named
output stream. Sprint! places "output", followed by the null character (\0) in consecutive bytes
starting at .s; it is the user's responsibility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not including the \0 in the case of
sprintl), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the format. The
format is a character string that contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient args forthe format. If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character 'Yo. After the 'Yo, the following
appear in sequence:

Zero or mor~ flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value
has fewer characters than the field width, it will be padded on the left (or right, if the
left-adjustment flag (see below) has been given) to the field width;

A preciSion that gives the minimum number of digits to appear for the d, 0, u, x, or X
conversions, the number of digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for the 9 conversion, or the max
imum number of characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string: a null digit string is
treated as zero.

An optional I specifying that a following d, 0, u, x, or X conversion character applies to a
long integer'arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (.) instead of a digit string. In this
case, an integer arg supplies the field width or precision. The arg that is actually converted is
not fetched until the conversion letter is seen, so the args specifying field width or precision
must appear before the arg (if any) to be converted.

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -). .
blank If the first character of a signed conversion is not a sign, a blank will be prepended to

the result. This implies that if the blank and + flags both appear, the blank flag will
be ignored.

March 27, 1984

PRINTF(3S) PRINTF(3S)

This flag specifies that the value is to be converted to an "alternate form." For c. d,
s. and u conversions, the flag has no effect. For 0 conversion. it increases the preci
sion to force the first digit of the result to be a zero. For x (X) conversion, a non
zero result will have Ox (OX) prepended to it. For e. E. f. g, and G conversions, the
result will always contain a decimal point. even if no digits follow the point (normally,
a decimal point appears in the result of these conversions only if a digit follows it).
For 9 and G conversions, trailing zeroes will not be removed from the result (which
they normally are).

The conversion characters and their meanings are:

d,o.u.x.X The integer arg is converted to signed decimal, unsigned octal, decimal, or hexade
cimal notation (x and X), respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. The default precision is 1. The result
of converting a zero value with a precision of zero is a null string (unless the conver
sion is o. x, or X and the "# flag is present).

f The float or double arg is converted to decimal notation in the style "[-]ddd.ddd",
where the number of digits after the decimal point is equal to the precision specifica
tion. If the preCision is missing, 6 digits are output; if the precision is explicitly 0, no
decimal point appears.

e,E The float or double arg is converted in the style "[-]d.ddde±dd", where there is one
digit before the decimal point and the number of digits after it is equal to the preci
sion; when the precision is missing, 6 digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a number with E instead of e
introducing the exponent. The exponent always contains exactly two digits.

9,G The float or double arg is printed in style f or e (or in style E in the case of a G for
mat code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent result
ing from the conversion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters from the string are

printed until a null character (\0) is encountered or the number of characters indi
cated by the precision specification is reached. If the precision is missing, it is taken
to be infinite, so all characters up to the first null character are printed.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by prlntf and fprintf are printed as if putchar had been called (see
putc(3S».

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d. %.2d:%.2d". weekday, month. day, hour, min);

To print 'Ir to 5 decimal places:

printf("pi = %.5f". 4.atan(1.0»;

SEE ALSO
ecvt(3C). putc(3S). scanf(3S). stdio(3S).

March 27,1984 Page 2

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include < stdio.h >
int putc (c, stream)
char c;
FILE .stream;

putchar (c)

fputc (c, stream)
FILE .stream;

putw (w, stream)
int w;
FILE .stream;

DESCRIPTION
Putc appends the character c to the named output stream. It returns the character written.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro; it may therefore be
used as an argument. Fputc runs more slowly than putc, but takes less space per invocation.

Putw appends the word (Le., integer) w to the output stream. Putw neither assumes nor
causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the output does not refer to a ter
minal; this default may be changed by setbuf(3S). The standard stream stderr is by default
unbuffered unconditionally, but use of freopen(3S) will cause it to become unbuffered; setbuf,
again, will set the state to whatever is desired. When an output stream is unbuffered informa
tion appears on the destination file or terminal as soon as written; when it is buffered many
characters are saved up and written as a block. See also fflush(3S).

SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), getc(3S), printf(3S), puts(3S).

DIAGNOSTICS

BUGS

Page 1

These functions return the constant EOF upon error. Since this is a good integer, ferror(3S)
should be used to detect putw errors.

Because it is implemented as a macro, putc treats incorrectly a stream argument with side
effects. In particular, putc(c, .f++); doesn't work sensibly.

March 27, 1984

PUTPWENT(3C) PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

Int putpwent (p, f)
struct passwd .p;
FILE .';

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to apasswd structure created by
getpwent (or getpwuid(3C) or getpwnam(3C». putpwuid writes a line on the stream f which
matches the format of letc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise zero.

Page 1 March 27, 1984

PUTS(3S)

NAME
puts. fputs - put a string on a stream

SYNOPSIS
"include < stdio.h >
int puts (8)
char .s;
int fputs (s, stream)
char .s;
FILE .stream;

DESCRIPTION

PUTS(3S)

Puts copies the null-terminated string s to the standard output stream stdout and appends a
new-line character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminating null character.

DIAGNOSTICS
Both routines return EOF on error.

SEE ALSO
ferror(3S).fopen(3S). fwrite(3S). gets(3S). printf(3S). putc(3S).

NOTES
Puts appends a neW-line. (puts does not.

Page 1 March 27. 1984

OSORT(3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
qsort (ba~, nel, width, compar)
char .base;
int net, width;
Int (.compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than. equal
to. or greater than 0 according as the first argument is to be considered less than. equal to. or
greater than the second.

SEE ALSO
sort(1). bsearch(3C). lsearch(3C). strcmp(3C).

Page 1 March 27. 1984

RAND(3C) RAND(3C)

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
unsigned seed;

rand ()

DESCRIPTION

Page 1

Rand uses a multiplicative congruential random number generator with period 232 to return suc
cessive pseudo-random numbers in the range from 0 to 215_1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

March 27, 1984

REGEX(3X) REGEX(3X)

NAME
regex, regcmp - regular expression compile/execute

SYNOPSIS
char .regcmp(string1[,string2, •••],0);
char .string1, .string2, ••• ;

char .regex(re,subject[,retO, ••.]);
char .re, .subject, .retO, .•• ;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled form. Mal/oc(3C)
is used to create space for the vector. It is the user's responsibility to free unneeded space so
allocated. A zero return from regcmp indicates an incorrect argument. Regcmp(1) has been
written to generally preclude the need for this routine at execution time.
Regex executes a compiled pattern against the subject string. Additional arguments are passed
to receive values back. Regex returns zero on failure or a pointer to the next unmatched char
acter on success. A global character pointer joc1 points to where the match began. Regcmp
and regex were mostly borrowed from the editor, ed(1) however, the syntax and semantics
have been changed slightly. The following are the valid symbols and their associated meanings.

[] * . A These symbols retain their current meaning.

S Matches the end of the string, \n matches the neW-line.

Within brackets the minus means through. For example, [aDZ] is equivalent to
[abed ••• xyz]. The - can appear as itself only if used as the last or first character. For
example, the character class expression []-] matches the characters] and -.

+ A regular expression followed by + means one or more times. For example, [0-9]+ is
equivalent to [o-9][0-9]..,~

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the preceding regular
expression is to be applied. m is the minimum number and u is a number, less than
256, which is the maximum. If only m is present (e.g., {m}), it indicates the exact
number of times the regular expression is to be applied. {m,} is analogous to
{m,infinity}. The plus (+) and star (.) operations are equivalent to {1,} and {O,}
respectively.

(•••)$n The value of the enclosed regular expression is to be returned. The value will be
stored in the (n+ 1)th argument following the subject argument. At present, at most
ten enclosed regular expressions are allowed. Regex makes its aSSignments uncondi
tionally.

(•••) Parentheses are used for grouping. An operator, e.g .• , +, {}, can work on a single
character or a regular expression enclosed in parenthesis. For example, (a*(cb+)*)$O.

By necessity, all the above defined symbols are special. They must, therefore, be escaped to
be used as themselves.

EXAMPLES
Example 1:

Page 1

char *cursor, *newcursor, *ptr;

newcursor = regex«ptr=regcmp("\n",o)),cursor);
free(ptr);

This example will match a leading neW-line in the subject string pointed at by cursor.

Example 2:
char retO[9];

March 27. 1984

REGEX(3X) REGEX(3X) . .

(" char *newcursor, *name;

name = regcmp("([A-Za-zUA-za-zO-9J{O,7})$O",O);
newcursor = regex(name, " 123Testing321 ",retO);

This example will match through the string "Testing3" and will return the address of the charac
ter after the last matched character (cursor+ 11). The string "Testing3" will be coPied to the
character array retO.

Example 3:
#include "file.i"
char *string, * newcursor;

newcursor = regex(name,string);

This example appfies a precompiled regular expression in file.i (see regcmp(1» against string.

This routine is kept in llibllibpw.a.

SEE ALSO

BUGS

ed(1), regcmp(1), free(3C), malloc(3C).

The user program may run out of memory if regcmp is called iteratively without freeing the vec
tors no longer required. The following user-supplied replacement for malloc(3C) re-uses the
same vector saving time and space:

1 * user's program *1

malloc(n) {
static int rebuf[256];

return &rebuf;
}

March 27, °1984 Page 2

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
:finclude < stdio.h >
scanl (Iormat [, pointer] .•.)
char .Ionnat;

Iscanl (stream, lonnat [, pointer] '")
FILE .stream;
char .Ionnat;

sscanl (s, lonnat [, pointer] ...)
char .s, .Ionnat;

DESCRIPTION

Page 1

Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments indicating where the con
verted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpreta
tion of input sequences. The control string may contain:

1. Blanks, tabs, or neW-lines, which cause input to be read up to the next non-white-space
character.

2. An ordinary character (not %), which must match the next character of the input stream. .
3. Conversion specifications, conSisting of the character %, an optional assignment suppress-

ing character., an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless aSSignment suppression was indi
cated by •. An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding pointer
argument must usually be of a restricted type. The following conversion characters are legal:

%
d
o
x

s

c

e,1

a single % is expected in the input at this point; no assignment is done.
a decimal integer is expected; the corresponding argument should be an integer pointer.
an octal integer is expected; the corresponding argument should be an integer pointer.
a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.
a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a ter
minating \0, which will be added automatically. The input field is terminated by a space
character or a new-line.
a character is expected; the corresponding argument should be a character pointer.
The normal skip over space characters is suppressed in this case; to read the next
non-space character, use %1s. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of characters is read.
a floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to afloat. The input for
mat for floating point numbers is an optionally signed string of digits, possibly containing
a decimal point, followed by an optional exponent field consisting of an E or an e, fol
lowed by an optionally signed integer.

March 27, 1984

SCANF(3S) SCANF(3S)

[indicates a string that is not to be delimited by space characters. The left bracket is fol
lowed by a set of characters and a right bracket; the characters between the brackets
define a set of characters making up the string. If the first character is not a circumflex
(A), the input field consists of all characters up to the first character that is not in the set
between the brackets; if the first character after the left bracket is a A, the input field
consists of all characters up to the first character that is in the set of the remaining char
acters between the brackets. The corresponding argument must point to a character
array.

The conversion characters d, 0, and x may be capitalized and/or preceded by I to indicate that a
pointer to long rather than to int is in the argument list. Similarly, the conversion characters e
and f may be capitalized and/or preceded by I to indicate that a pointer to double rather than to
float is in the argument list. The character h will, some time in the future, indicate short data
items.

Scant conversion terminates at EOF, at the end of the control string, or when an input character
conflicts with the control string. In the latter case, the offending character is left unread in the
input stream.

Scant returns the number of successfully matched and assigned input items; this number can
be zero in the event of an early conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i; float x; char name[50);
scanf ("%d%fO!os", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; float x; char name(50);
scanf ("%2d%f%*d%[1234567890)", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar (see getc(3S» will return a.

SEE ALSO
atof(3C), getc(3S), printf(3S).

NOTE
Trailing white space (including a new-line) is left unread unless matched in the control string.

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

March 27, 1984 Page 2

SETBUF(3S) . SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >
setbut (stream, but)
FILE .stream;
char .bu';

DESCRIPTION
Setbut is used after a stream has been opened but before it is read or written. It causes the
character array but to be used instead of an automatically allocated buffer. If but is the con
stant pointer NULL, input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from mal/oc(3C) upon the first getc or putc(3S) on the file, except
that output streams directed to terminals, and the standard error stream stderr are normally not
buffered.

A common source of error is allocation of buffer space as an "automatic" variable in a code
block, and then failing to close the stream in the same block.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S).

Page 1 March 27, 1984

SETJMP(3C) SETJMP(3C)

NAME
setjmp, Iongjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (eny)
jmp_but eny;

longjmp (eny, Yal)
jmp_but eny;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub
routine of a program.

Set;np saves its stack environment in env for later use by long;np. It returns value o.
Long;np restores the environment saved by the last call of set;np. It then returns in such a
way that execution continues as if the call of set;np had just returned the value val to the
corresponding call to set;np, which must not itself have returned in the interim. Long;np can
not return the value o. If long;np is invoked with a second argument of 0, it will return 1. All
accessible data have values as of the time long;np was called.

SEE ALSO
signal(2).

Page 1 March 27, 1984

SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
"include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH(3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

Page 1 March 27, 1984

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be less than that requested for two reasons: (1)
Because scheduled wakeups occur at fixed 1-second intervals, and (2) because any caught sig
nal will terminate the sleep following execution of that signal's catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount due to the scheduling of
other activity in the system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an alarm set to go off earlier
than the end of the requested sleep time, or premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal)
occurs. The previous state of the alarm signal is saved and restored. The calling program may
have set up an alarm signal before calling sleep; if the sleep time exceeds the time till such
alarm signal, the process sleeps only until the alarm signal would have occurred, and the caller's
alarm catch routine is executed just before the sleep routine returns, but if the sleep time is less
than the time till such alarm, the prior alarm time is reset to go off at the same time it would
have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

Page 1 March 27, 1984

SSIGNAL(3C) SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

Int (*ssignal (sig, action»()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION

NOTES

Page 1

Ssignal and gsignal implement a software facility similar to signa/(2). This facility is used by
the Standard C Ubrary to enable the user to indicate the disposition of error conditions, and is
also made available to the user for his own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 15. An action for a software signal is established by a call to ssigna/, and a software
signal is raised by a call to gsigna/. Raising a software signal causes the action established for
that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user defined)
action function or one of the manifest constants SIG_DFL (default) or SIGJGN (ignore). Ssignal
returns the action previously established for that signal type; if no action has been established or
the signal number is illegal, ssignal returns SIG_DFL.

Gsignal rais~s the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and
the action function is entered with argument slg. Gsignal returns the value returned to it
by the action function.

If the action for sig is SIGJGN. gsignal returns the value 1 and takes no other action.

If the action for sig is SiG_DFL. gslgnal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for slg, gsignal returns the value
o and takes no other action.

There are some additional signals with numbers outside the range 1 through 15 which are used
by the Standard C Ubrary to indicate error conditions. Thus, some signal numbers outside the
range 1 through 15 are legal, although their use may interfere with the operation of the Standard
C Ubrary.

March 27, 1984

STDIO(3S) STDlO(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >
FILE .stdin, .stdout, .stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute an efficient,
user-level I/O buffering scheme. The in-line macros gete(3S) and pute(3S) handle characters
quickly. The macros getehar, putehar, and the higher-level routines fgete, fgets. fprintf, fpute.
fputs, fread, fseanf, fwrite, gets. getw, printf, puts, putw, and seanf all use gete and pute;
they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. Normally, there are 3 open streams with con
stant pointers declared in the "include" file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant "pointer" NULL (0) designates the null stream.

An integer constant EOF (-1) is returned upon end-of-file or error by most integer functions that
deal with streams (see the individual deSCriptions for details).

Any program that uses this package must include the header file of pertinent macro definitions,
as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual are
declared in that "include" file and need no further declaration. The constants and the following
"functions" are implemented as macros (redeclaration of these names is perilous): gete,
getehar, pute. putehar. feof. ferror. and fileno.

SEE ALSO
open(2), close(2). read(2). write(2), ctermid(3S). cuserid(3S), fclose(3S), ferror(3S). fopen(3S),
fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3S), system(3S), tmpnam(3S).

DIAGNOSTICS

Page 1

Invalid stream pointers will usually cause grave disorder, possibly including program termination.
Individual function descriptions describe the possible error conditions.

March 27, 1984

STRING(3C) STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn,
strtok - string operations

SYNOPSIS
char .strcat (s1, s2)
char .s1, .s2;

char .stmcat (s1, s2, n)
char .s1, .s2;
int n;

int strcmp (s1, s2)
char .s1, .s2;

int stmcmp (s1, s2, n)
char .s1, .s2;
int n;

char .strcpy (s1, s2)
char .s1, .s2;

char .stmcpy (s1, s2, n)
char .s1, .s2;
int n;

int strlen (s)
char .s;

char .strchr (s, c)
char .s, c;

char .strrchr (s, c)
char .s, c;

char .strpbrk (s1, s2)
char .s1, .s2;

int strspn (s1, s2)
char .s1, .s2;

int strcspn (s1, s2)
char .s1, .s2;

char .strtok (s1, s2)
char $81, .s2;

DESCRIPTION

Page 1

These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Strcat appends a copy of string s2 to the end of string s1. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as s1 is lexicographically greater than, equal to, or less than s2. Strncmp makes the
same comparison but looks at at most n characters.

Strcpy copies string s2 to s1, stopping after the null character has been moved. Strncpy
copies exactly n characters, truncating or null-padding sl; the target may not be null-terminated
if the length of s2 is n or more. Both return s1.

Str/en returns the number of non-null characters in s.

March 27, 1984

STRING(3C) STRING(3C)

BUGS

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c in string s, or NULL
if c does not occur in the string. The null character terminating a string is considered to be part
of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character from string s2, or
NULL if no character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string s1 which consists entirely of
characters from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string s2. The first call (with pointer s1
specified) returns a pointer to the first character of the first token, and will have written a NULL
character into s1 immediately following the returned token. Subsequent calls with zero for the
first argument, will work through the string s1 in this way until no tokens remain. The separator
string s2 may be different from call to call. When no token remains in s1, a NULL is returned.

Strcmp uses native character comparison, which is signed on the zeooo, and unsigned on other
machines.

All string movement is performed character by character starting at the left. Thus overlapping
moves toward the left will work as expected, but overlapping moves to the right may yield
surprises.

March 27, 1984 Page 2

SWAB(3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
swab (from, to, nbytes)
char .from, .10;
int nbytes;

DESCRIPTION

Page 1

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adja
cent even and odd bytes. It is useful for carrying binary data between PDP-11s and other
machines. Nbytes should be even.

March 27, 1984

SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
=linclude < stdio.h >
int system (string)
char *string;

DESCRIPTION

SYSTEM(3S)

System causes the string to be given to sh(1) as input as if the string had been typed as a com
mand at a terminal. The current process waits until the shell has completed. then returns the
exit status of the shell.

SEE ALSO
sh(1). exec(2).

DIAGNOSTICS
System stops if it can't execute sh(1).

Page 1 March 27. 1984

TERMLlB(3C) (Plexus) TERMLlB(3C)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, -area;

char *
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc) 0;

DESCRIPTION

Page 1

These functions extract and use capabilities from the terminal capability data base termcap(5).
These are low level routines.

Tgetent extracts the entry for a terminal name into the buffer at bp. Bp should be a character
buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tgettlag, and
tgetstr. Tgetent returns -1 if it cannot open the termcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well. It looks in the environment for a TERMCAP variable. If
found, and the value does not begin with a slash, and the terminal type name is the same as the
environment string TERM, the TERMCAP string is used instead of reading the TERMCAP file. If it
does begin with a slash, the string is used as a path name rather than letc/termcap. This can
speed up entry into programs that call tgetent, as well as help debug new terminal descriptions
or make one for your terminal if you can't write the file letc/termcap.

Tgetnum gets the numeric value of capability id, returning -1 if id is not given for the terminal.
Tgettlag returns 1 if the specified capability is present in the terminal's entry, 0 if it is not.
Tgetstr gets the string value of the capability id, placing it in the buffer at area, and advancing
the area pointer. It decodes the abbreviations for this field described in termcap(5), except for
cursor addressing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line dest
line. It uses the external variables UP (from the up capability) and BC (if bc is given rather than
bs) if necessary to avoid placing \n, AD, or A@ in the returned string. (Programs that call tgoto
should turn off the XTABS bit(s), since tgoto may now output a tab. Note that programs using
termcap should in general turn off XTABS anyway, since some terminals use control I for other

March 27, 1984

TERMlIB(3C) (Plexus) TERMlIB(3C)

FILES

NOTES

functions, such as nondestructive space.) If a % sequence is given that is not understood, then
tgoto returns "OOPS".

Tputs decodes the leading padding information of the string cp; affcnt gives the number of lines
affected by the operation, or 1 if this is not applicable. Outc is called. with each character in
turn. The external variable ospeed should contain the output speed of the terminal as encoded
by stty(2). The external variable PC should contain a pad character to be used (from the pc
capability) if a null ("0) is inappropriate.

lusrllib/libtermlib.a
letc/termcap

termcap library
data base

These routines are based on those from the University of California at Berkeley.

SEE ALSO
ex(1), termcap(5).

March 27, 1984 Page 2

TMPFILE(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#Inclucle < stcIlo.h >
FILE .bnpfUe ()

DESCRIPTION

TMPFILE(3S)

Tmpfl/e creates a temporary file and returns a corresponding FILE pointer. Arrangements are
made so that the file will automatically be deleted when the process using it terminates. The file
is opened for update.

SEE ALSO
creat(2). unlink(2). fopen(3S). mktemp(3C). tmpnam(3S).

Page 1 March 27. 1984

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam - create a name for .a temporary file .

SYNOPSIS
#include <stdio.h>

char .tmpnam (8)
char .8;

DESCRIPTION
Tmpnam generates a file name that can safely be used for a temporary file. If (int)s is zero,
tmpnam leaves its result in an internal static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If (int)s is nonzero, s is assumed to be the
address of an array of at least L_tmpnam bytes; tmpnam places its result in that array and
returns s as its value.

Tmpnam generates a different file name each time it is called.

Files created using tmpnam and either 'open or creat are only temporary in the sense that they
reside in a directory intended for temporary use, and their names are unique. It is the user's
responsibility to use un/ink (2) to remove the file when its use is ended.

SEE ALSO

BUGS

Page 1

creat(2), unlink(2), fopen(3S), mktemp(3C).

If called more than 17,576 times in a single process,tmpnam will start recycling previOUSly used
names.
Between the time a file name is created and the file is opened, it is possible for some other pro
cess to create a file with the same name. This can never happen if that other process is using
tmpnam or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

March 27, 1984

TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double aeos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, Yi

DESCRIPTION

TRIG(3M)

Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the
argument should be checked by the caller to make sure the result is meaningful.

kin returns the arc sin in the range -fr/2 to 1{/2.

Acos returns the arc cosine in the range 0 to fr.

Atan returns the arc tangent of x in the range -fr/2 to 1{/2.

Atan2 returns the arc tangent of ylx in the range -fr to fr.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value O.

Page 1 March 27, 1984

TTYNAME(3C) TTYNAME(3C)

NAME
ttyname. isatty. ttyslot - find name of a terminal

SYNOPSIS
char .ttyname (tildes)

int isatty (tildes)

ttyslotO

DESCRIPTION

FILES

Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor fildes.

Isatty returns 1 if tildes is associated with a terminal device. 0 otherwise. Ttyslot returns the
number of the slot in letc/utmp corresponding to the current user.

/dev/.
/etclutmp

DIAGNOSTICS
Ttyname returns a null pointer (0) if tildes does not describe a terminal device in directory Idev.

Ttyslot returns -1 if letc/utmp is inaccessible or if it cannot determine the control terminal.

BUGS
The return value points to static data whose content is overwritten by each call.

Page 1 March 27. 1984

UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#includa <stdio.h>
Int ungatc (c, stream)
char c;
FILE .stream;

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the
next getc calion that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
fseek(3S). getc(3S). setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

Page 1 March 27. 1984

INTRO(4) INTRO(4)

NAME
intra - introduction to special files

DESCRIPTION

NOTES

BUGS

Page 1

This section describes various special files that refer to specific Plexus peripherals and UNIX
device drivers. The names of the entries are generally derived from Plexus names for the
hardware, as opposed to the names of the special files themselves. Characteristics of both the
hardware device and the corresponding UNIX device driver are discussed where applicable.

Plexus does not support some devices because of hardware differences between DEC and
Plexus machines. The following devices are not supported: cat, dj, dmc, dn, dqs, du, dz, hp,
hs, ht, kl, kmc, pcl, ri, rk, rl, rp, tm, and vp. Plexus adds the following: dk, icp, is, mt, pd, pp,
pt, and rm.

The names of the entries generally refer to Plexus hardware names, but in certain cases these
names are arbitrary for various historical reasons.

March 29,1984

DK(4) (Plexus) DK(4)

NAME
dk - pseudo disk driver

DESCRIPTION

FilES

NOTES

Page 1

Dk is the ngenericn disk device. It accesses whatever disk you have; it tries IMSC disks first. If
you have both IMSC and iSBC disks, you must use the special file is to access the iSBC disk.

/dev/dk?

This is a Plexus feature. It is not part of stock SYSTEM III.

March 29, 1984

ERR(4) ERR(4)

NAME
err - error-logging interface

DESCRIPTION

FILES

Minor device 0 of the err driver is the interface between a process and the system's error
record collection routines. The driver may be opened only for reading by a single process with
super-user permissions. Each read causes an entire error record to be retrieved; the record is
truncated if the read request is for less than the record's length.

/dev/error special file

SEE ALSO
errdemon(1 M).

Page 1 March 28. 1984

ICP(4) (Plexus) ICP(4)

NAME
icp -Intelligent Communications Processor

DESCRIPTION

FILES

BUGS

The icp is a special device that allows access to the memory of the Intelligent Communications
Processor (ICP). Reading from the device resets the ICP. Writing to the device overwrites the
memory.

/dev/ic[O-4]

Reading from the ICP resets it and kills all terminals actively using it.

SEE ALSO
dnld(1m)

Page 1 March 28, 1984

IMSP(4) (Plexus) IMSP(4)

NAME
imsp - Intelligent Mas~ Storage Processor

DESCRIPTION

FILES

The imsp is a special device that allows access to the memory of the Intelligent Mass Storage
processor (IMSP). Reading from the device returns data from the IMSP's local memory. Writ
ing to the device overwrites the IMSP's local memory.

/dev/im[O-3]

WARNING
Writing to the IMSP can cause it to hang. This may crash UNIX and destroy file systems.

Page 1 March 28.1984

IS(4) (Plexus) IS(4)

NAME
is - iSBC disk controller

DESCRIPTION

FILES

BUGS

Page 1

The iSBC disk controller and associated driver code access up to 4 disks. Each disk is subdi
Vided into 16 logical volumes. By convention, Idev/dk[0-15] refer to the logical volumes of disk
O,/dev/dk[16-31] refer to the logical volumes of disk 1, and so on.

The origin and size of the 16 logical volumes on a disk are:

Volume

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Starting Block
(1024 byte)
o
o
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
120000
130000
140000
150000

Length (in 1024 byte blocks)
C refers to end of disk)

20000

The dk files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a 'raw' interface which provides for
cirect transmission between the disk and the user's read or write buffer. A single read or write
call results in exactly one 1/0 operation and therefore raw 1/0 is considerably more efficient
when many words are transmitted. The names of the raw is files begin with rdk and end with a
number that selects the same logical disk volume as the corresponding dk file.

In raw 1/0 the buffer must begin on a word boundary.

ldev/dk?

In raw 110 read and write(2) truncate file offsets to 1024-byte block boundaries, and write scrib
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and Iseek(2) should always deal in 1024-byte multiples.

March 29, 1984

r

LP(4)

NAME
Ip - 6ne printer

DESCRIPTION

LP(4)

The line printer is a special file to which the line printer daemon, Ipd, prints output. It may be a
serial port, ttyX, or a parallel port, ppX.

FILES
/devllp

SEE ALSO
Ipr(1), tty(4) pp(4).

Page 1 March 28, 1984

MEM(4) MEM(4)

NAME
mem, kmem • core memory
mbiomem, mbmem • Multibus memory
liomem • local 110 device memory

DESCRIPTION

FILES

Page 1

Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to ~xamine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to non-existent
locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

Mbiomem is a special file that is an image of the Multibus 110 address space.

Mbmem is a special file that is an image of the Multibus memory address space.

Uomem is a special file that ia an image of the local 110 device address space. This can be
used, for example, to reference the clock chip or the SIO chip.

ldev/mem
ldevlkmem
ldev/mbiomem
ldev/mbmem
Idevlliomem

March 28, 1984

MT(4) (Plexus) MT(4)

NAME
mt - pseudo tape driver

DESCRIPTION

FILES

NOTES

Page 1

Mt is the "generic" tape device. It accesses whatever tape you have -- either 9-track or car
tridge. If you have both 9-track and cartridge tapes, mt accesses the 9-track, and you may use
the special file pt to access the cartridge tape or else omit the device specification entirely.

/dev/mt?

This is a Plexus feature. It is not part of stock SYSTEM III.

May 17,1984

NULL(4)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

Page 1

NULL(4)

March 28, 1984

MT(4)

NAME
mt - pseudo tape driver

DESCRIPTION

(Plexus) MT(4)

Mt is the "generic" tape device. It accesses whatever tape you have -- either 9-track or car
tridge. If you have both 9-track and cartridge tapes, pt accesses the 9-track, and you may use

. the special file mt to access the cartridge tape or else omit the device specification entirely.

FILES
Idev/mt?

NOTES
This is a Plexus feature. It is not part of stock SYSTEM III.

Page 1 March 29, 1984

PD(4) (Plexus) PD(4)

NAME
pd - IMSP disk controller

DESCRIPTION

FILES

NOTES

The IMSP disk/tape controller and associated driver code access up to 4 disks. Each disk is
subdivided into 16 logical volumes. By convention, /dev/dk[0-15] refer to the logical volumes of
physical disk 0, /dev/dk[16-31] refer to the logical volumes of physical disk 1, and so on.

The origin and size of the 16 logical volumes on a disk are as follows. ,"" refers to the end of
the physical disk. Length is given in 1024 byte blocks.

Volume Starting Block Length

0 0
1 0 20000 (default swap area

is 18000-20000)
2 20000
3 30000
4 40000
5 50000
6 60000
7 70000
8 80000
9 90000
10 100000
11 110000
12 120000
13 130000
14 140000
15 150000

The dk files access the disk via the system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a 'raw' interface which provides for
direct transmission between the disk and the user's read or write buffer. A single read or write
call results in exactly one I/O operation and therefore raw I/O is considerably more efficient
when many words are transmitted. The names of the raw pd files begin with rdk and end with
a number that selects the same logical disk volume as the corresponding dk file.

In raw I/O the buffer must begin on a word boundary.

/dev/dkx

This is a Plexus device, not part of standard SYSTEM III.

DIAGNOSTICS
The IMSP controller may produce the following error messages:

Ox0201 Reserved for controller busy

Ox0301 Command undefined

Ox0401 Command cannot be done

Ox0501 Bad CAB parameters

OxOf01 Firmware bug encountered

Ox0601 Internal command interrupts

Page 1 April 4, 1984

PO(4) (Plexus) PO(4)

Ox0701 Parity error occurred

Ox0801 PROM checksum error

Ox1103 Disk protected from writing

Ox1203 Disk not ready

OX1303 Disk drive fault indicated

Ox1403 Disk failed to select

Ox1503 Disk operation timeout error

Ox1603 Disk failed in formatting

Ox 1703 Disk seek error

Ox1803 Disk ECC error in id field

Ox1903 Disk ECC error in data field

Ox1b03 Disk limits not defined

Ox1C03 Disk unable to locate track

April 4, 1984 Page 2

PP(4) (Plexus) PP(4)

NAME
pp - parallel port interface

DESCRIPTION

FilES

The parallel port interface enables access to the parallel port on the Intelligent Communications
Processor (ICP). Each ICP has one parallel port interface. The parallel port interface is a
write-only device. It is also a raw device, i.e., the operating system does no processing of data
written to it.

Pp has no stty:"'like features. If your printer does not handle tabs and neW-line characters, you
need to write a filter to use this device.

/dev/pp[O-3]

SEE ALSO
Ip(4), tty(4), icp(4)

Page 1 March 29, 1984

PRF(4) PRF(4)

NAME
prf - operating system profiler

DESCRIPTION

FILES

The file prf provides access to activity information in the operating system. Writing the file
loads the measurement facility with text addresses to be monitored. Reading the file returns
these addresses and a set of counters indicative of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the program counter at
line frequency. Samples that catch the operating system are matched against the stored text
addresses and increment corresponding counters for later processing.

The file prf is a pseudo-device with no associated hardware.

/dev/prf

SEE ALSO
config(1 M). profiler(1 M).

Page 1 March 28. 1984

PT(4) (Plexus) PT(4)

NAME
pt - IMSP cartridge controller

DESCRIPTION
The IMSP disk/tape controller and associated driver code allow access to a cartridge tape. The
cartridge can be accessed only in raw mode (i.e., as a character device), and can be rewound
or left at the current position. These options are available based on the minor device number of
the special file used to access it. If the cartridge is not to be rewound, it is positioned after the
filemark at the end of the current file.

If the 04 bit is on in the minor device number, the cartridge is not rewound when closed.

By convention, the files /dev/nntO and /dev/nnntO are used to access the cartridge in raw
mode. Accessing /dev/nntO rewinds the cartridge when this special file is closed. Accessing
/dev/nnntO does not rewind the cartridge when the file is closed. Each read or write call reads
or writes the next record on the cartridge. All records on a cartridge are 512 bytes long and all
reads and writes must be in multiples of 512 bytes. An error is returned otherwise. The I/O
butter used in the read(2) or write(2) system call should begin on a word boundary and the
count should be even. Seeks are ignored. A zero byte count is returned when a file mark is
read, but another read will fetch the first record of the new file.

The cartridge drive can be accessed in high speed mode. However, this mode is effectively lim
ited to skipping forward over files on the cartridge and to 110 between the cartridge and a disk
attached to the same IMSP controller. High speed mode is accessed via ioct/(2) system calls.
The arguments to the ioct/ are:

tildes File descriptor returned from an open (2) of the special tape file /dev/nntOor
/dev/nnntO.

request A special command for the cartridge drive. These commands are defined in ~
/usr/includelsyslimsc.h and some are described below.

arg A pointer to a structure of the type "ptcmd" as defined in lusr/include/sys/imsc.h.

Some of the members of ptcmd are:

dknum Major/minor device number of the IMSP disk being read or written to (if applicable)
as returned by stat(2) system call (stJdev).

blkno Starting sector number on logical disk to be read/written. Sectors on disk are 512
bytes long and numbered starting at O. Note sector addresses are relative to the log-
ical, not the physical disk. .

blkcnt The number of 512-byte records to be read from or written to cartridge.

Some of the more useful ioct/ requests for the cartridge as defined in
lusr/lncludelsysllmsc.h are:

C JRECALL Read from cartridge and write to disk. The cartridge and disk must be on same
IMSP controller. The system returns in ptcmd.blkcnt the number of 512-byte
records not read. This is zero if the system reads all the records requested.

CJSAVE Read from disk and write to tape. The cartridge and disk must be on same IMSP
controller. The system returns in ptcmd.blkcnt the number of 512-byte records
not read. This is zero if the system reads all the record images (sectors)
requested.

C JWEOF WriteEOF mark on cartridge.

CJREW Rewinds the cartridge.

C -,MOVE Position to file blkcnt on cartridge.

Page 1 March 29, 1984

('.

PT(4)

FILES

(Plexus) PT(4)

Writing multiple files on cartridge should be done all at once, i.e., without rewinding the car
tridge. Once a cartridge has been rewound, positioning to the end of a file on the cartridge and
then writing to the cartridge may overwrite data. For example, once the cartridge has been
rewound, positioning to the end of file 2 and writing to the cartridge may overwrite portions of
file 2.

Neither the hardware or the software implement or support an end-of-tape marker on the car
tridge.

ldev/rmtO
Idev/nrmtO

DIAGNOSTICS
The IMSP controller may produce the following error diagnostics: .

OX0201 Reserved for controller busy

0X0301 Command undefined

0X0401

OxOS01

OXOf01

OX0601

OX0701

0X0801

OX1004

Ox1304

OX1504

OX1604

Ox1704

OX1804

OX1904

Ox2004

00104

0X2204

Ox2304

00404

00504

00604

Ox2704

Ox2804

Ox1505

March 29. 1984

Command cannot be done

Bad CAB parameters

Rrmware bug encountered

Internal command interrupts

Parity error occurred

PROM checksum error

End of file reached

An exception other than an end-of-file error

Tape timeout error

Error during recall

Error during save

Error received while attempting to get status' from the tape drive

During exception state, a command other than rstat was received

No tape drive present

Timeout during wait recall

Timeout during wait save

Timeout during stat tape

Timeout during stat tape

Timeout during command tape

Timeout during command tape

Timeout during ready tape

Tape drive inconsistent at start of tape command

Timeout on Host bus request

Page 2

RM(4) (Plexus) RM(4)

NAME
. rm - Cipher Microstreamer tape drive

DESCRIPTION

FILES

The Cipher Microstreamer magnetic tape can be accessed in blocked or raw mode and can be
rewound or left at the current position. These options are available based on the minor device
number of the special file used to access it. When the special file is closed, the tape can be
rewound or not (see below). If the special file was open for writing, two end-of-files are written.
If the tape is not to be rewound, it is positioned with the head between the two tapemarks.

If the 04 bit is on in the minor device number, the tape is not rewound when closed.

If the 010 bit is on in the minor device number, the tape is set to high speed mode (100 in/sec).
By convention, /dev/nrrmhO accesses the tape in high speed mode.

By convention, the file /dev/mlO accesses the tape in blocked mode. A tape accessed in block
mode consists of a series of 1024-byte records terminated by an end-of-file. As much as it
can, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks have
their usual meaning and it is possible to read or write a byte at a time. Writing in very small
units is inadvisable, however, because it tends to create monstrous record gaps.

Use Idev/mlO to access the tape in a way compatible with ordinary files. However, when
foreign tapes are to be dealt with, and especially when long records are to be read or written,
the 'raw' interface is more appropriate. By convention, the files /dev/nnlO and /deY/nnnlO are
used to access the tape in raw mode. Accessing /deY/nnlO rewinds the tape when /dey/rmlO is
closed. Accessing /dey/nnnlO does not rewind the tape when IdeY/nnnlO is closed.

Each read or write call reads or writes the next record on the tape. For writes, the record has
the same length as the buffer given. During a read, the record size is passed back as the
number of bytes read, provided it is no greater than the number of bytes requested; if the record
is longer than the number of bytes requested, an error is returned. On the other hand, if the
number of bytes requested is larger than the actual record size, there is a delay of 1-2 seconds
between the reading of each record.

In raw tape 110, the buffer must begin on a word boundary and the count must be even. Seeks
are ignored. A zero byte count is returned when a tape mark is read, but another read will fetch
the first record of the new tape file.

The tape drive can be run in high speed mode; however, this is really only usable for fast for
ward or reverse skipping of file marks. The files used for high speed mode are denoted by an 'h'
just before the unit number.

There is an ioctl(2) interface for controlling the tape drive. More information about this can be
found in /usr/include/sys/rm.h.

IdeY/mtO
IdeY/rmtO
IdeY/nrmtO
Idev/nrrmhO

SEE ALSO
tape(1).

DIAGNOSTICS

Page 1

The tape controller issues the following codes for unrecoverable errors detected during execu
tion of a command. The code is returned in the Command Status byte, bits 0-4.

Code Description

00 No unrecoverable error.

March 29, 1984

RM(4) (Plexus) RM(4)

NAME
rm - Cipher Microstreamer tape drive

DESCRIPTION

Page 1

The Cipher Microstreamer magnetic tape can be accessed in blocked or raw mode and can be
rewound or left at the current position. These options are available based on the minor device
number of the special file used to access it. When the special file is closed, the tape can be
rewound or not (see below). If the special file was open for writing, two end-of-files are written.
If the tape is not to be rewound, it is positioned with the head between the two tapemarks.

If the 04 bit is on in the minor device number, the tape is not rewound when closed.

If the 010 bit is on in the minor device number, the tape is set to high speed mode (100 in/sec).
By convention, Idev/nrrmhO accesses the tape in high speed mode.

By convention, the file Idev/mtO accesses the tape in blocked mode. A tape accessed in block
mode consists of a series of 1024-byte records terminated by an end-of-file. As much as it can,
the system makes it possible, if inefficient, to treat the tape like any other file. Seeks have their
usual meaning and it is possible to read or write a byte at a time. Writing in very small units is
inadvisable, however, because it tends to create monstrous record gaps.

Use Idev/mtO to access the tape in a way compatible with ordinary files. However, when foreign
tapes are to be dealt with, and especially when long records are to be read or written, the 'raw'
interface is more appropriate. By convention, the files fdevfrmtO and Idev/nrmtO are used to
access the tape in raw mode. Accessing Idev/rmtO rewinds the tape when Idev/rmtO is closed.
Accessing Idev/nrmtO does r:tot rewind the tape when Idev/nrmtO is closed.

Each read or write call reads or writes the next record on the tape. For writes, the record has
the same length as the buffer given. During a read, the record size is passed back as the
number of bytes read, provided it is no greater than the number of bytes requested; if the record
is longer than the number of bytes requested, an error is returned. On the other hand, if the
number of bytes requested is larger than the actual record size, there is a delay of 1-2 seconds
between the reading of each record.

In raw tape 110, the buffer must begin on a word boundary and the count must be even. Seeks
are ignored. A zero byte count is returned when a tape mark is read, but another read will fetch
the first record of the new tape file.

The tape drive can be run in high speed mode; however, this is really only usable for fast for
ward or reverse skipping of file marks. The files used for high speed mode are denoted by an 'h'
just before the unit number.

If you want to write your own program for tape manipulation on the rm device, there is an
ioetl(2) interface for controlling the tape drive. The file !usrlinclude/sys!rm.h lists the commands
that can be issued. These all begin with "C_" (capital C followed by an underbar). The only
ioetl request type allowed for this device is RMPOSN ("rm position"). The ioetl call structure is

struct rmcmd_struct {
unsigned rm_cmd;
unsigned rm_cnt;
unsigned rm_status;

};

/* the command C_ <option> *f
/* count, useful for commands such as SRCHEOF .,
/* physical device status returned *;

July 26, 1984

RM(4)

FILES

(Plexus) RM(4)

The status value is found by adding all the relevant values in the "status fields" portion of rm.h.
Status is determined by the output status field, which consists of two bytes arranged as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 1 1 1 1 1 1 1

1 E 1 C 1 R 1 ERROR IFM 1 OL 1 LP 1 EOT I R 1 FB 1 P 1

1 ___ 1 ___ 1 ___ 1 ______________ 1 ____ 1 ____ 1 ____ 1 _____ 1 ___ 1 ____ 1 ___ 1

where

Byte 0 Not used
P (Write Protect) The tape does not have a write enable ring.
FB (Formatter Busy) The Formatter is busy.
R (Ready) The selected drive is ready.
EOT (End of Tape) The EOT marker was detected.
LP (Load Point) The tape is at load point.
OL (On Line) The drive is on line.
FM (Filemark) A filemark was detected on this operation.
E (Entered) Execution has begun.
C (Complete) The command has completed successfully.
R (Retry) At least one Retry was executed.
ERRORThis 5-bit field specifies an error code when a non-recoverable error

is encountered. Error codes are listed under DIAGNOSTICS below.

For example, the value "C068" means the tape is online at load point, ready, and previous com
mand has completed.

The following program fragment illustrates the use of ioctl to rewind the tape.

#include "syslrm.h"
#include ··fcntl.h"
int fildes; I" file descriptor, returned by open 'j

fildes = open("/devirmtO",O_RDWR);

rmcmd.cmd = C_REW;
rmcmd.cnt = 1;
rmcmd.status = -1;

ioctl(fildes, RMPOSN, &rmcmd);

/dev/mtO
/dev/rmtO
/dev/nrmtO
idev/nrrmhO
lusr/include/sys/rm.h

SEE ALSO
tape(1), ioctl(2).

DIAGNOSTICS
The tape controller issues the fOllowing codes for unrecoverable errors detected during execu
tion of a command. The code is returned in the Command Status byte. bits 8-12.

July 26, 1984 Page 2

RM(4)

r

Page 3

(Plexus) RM(4)

Code Description

00 No unrecoverable error.

01 Timed out waiting for expected Data Busy false.

02 Timed out waiting for expected Data Busy false, Formatter Busy false and Ready True.

03 Timed out waiting for expected Ready false.

04 Timed out waiting for expected Ready true.

as Timed out waiting for expected Data Busy true.

06 A memory time-out occurred during a system memory reference.

a? A blank tape was encountered where data was expected.

08 An error occurred in the micro-diagnostic.

09 An unexpected EaT was encountered during a forward operation, or Load Point during a
reverse operation.

OA A hard or soft error occurred that could not be eliminated by retry.

OB A read overflow or write overflow occurred. This error indicates that the FIFO was empty
when data was requested by the tape during a write, or full when the tape presented a
byte during a read.

OC

00

OE

OF

10

11

12

13

14

15

16

17

18

Not used.

A read parity error occurred on the byte interface between the drive and the controller.

An error was detected during calculation of the checksum on the PROM.

A tape time-out occurred, because the tape drive did not supply an expected read or write
strobe. This error occurs when you attempt to read a larger record than was written. It
may also occur during a write if the tape is damaged.

Tape not ready.

A write was attempted on a tape without a write-enable ring.

Not used.

The diagnostic mode jumper was not installed while attempting to execute a Diagnostic
command.

An attempt was made to link from a command that does not allow linking.

An unexpected filemark was encountered during a tape read.

An error in specifying a parameter was detected by the controller. The usual cause is a
byte count that is either zero or too large.

Not used.

An unidentifiable hardware error occurred.

19 A streaming read or write operation was terminated by the operating system or disk.

The tape driver sends the code FFFF to the screen when the block size requested is smaller
than the actual block size on the tape.

July 26, 1984

.-~

/~

r

RM(4) (Plexus) RM(4)

01 Timed out waiting for expected Data Busy false.

02

03

Timed out waiting for expected Data Busy false, Formatter Busy false and Ready True.

Timed out waiting for expected Ready false.

04

05

06

07

08

09

OA

OB

Timed out waiting for expected Ready true.

Timed out waiting for expected Data Busy true.

A memory time-out occurred during a system memory reference.

A blank tape was encountered where data was expected.

An error occurred in the micro-diagnostic.

An unexpected EOT was encountered during a forward operation, or Load Point during a
reverse operation.

A hard or soft error occurred that could not be eliminated by retry.

A read overflow or write overflow occurred. This error indicates that the FIFO was empty
when data was requested by the tape during a write, or full when the tape presented a
byte during a read.

oC Not used.

00 A read parity error occurred on the byte interface between the drive and the controller.

OE An error was detected during calculation of the checksum on the PROM.

OF A tape time-out occurred, because the tape drive did not supply an expected read or
write strobe. This error occurs when you attempt to read a larger record than was writ
ten. It may also occur during a write if the tape is damaged.

10 Tape not ready.

11 A write was attempted on a tape without a write-enable ring.

12 Not used.

13 The diagnostic mode jumper was not installed while attempting to execute a Diagnostic
command.

14 An attempt was made to link from a command that does not allow linking.

15 An unexpected filemark was encountered during a tape read.

16 An error in specifying a parameter was detected by the controller. The usual cause is a
byte count that is either zero or too large.

17 Not used.

18 An unidentifiable hardware error occurred.

19 A streaming read or write operation was terminated by the operating system or disk.

The tape driver sends the code FFFF to the screen when the block size requested is smaller
than the actual block size on the tape.

March 29, 1984 Page 2

ST(4) ST(4)

NAME
st - synchronous terminal interface

DESCRIPTION

FILES

The synchronous terminal interface is a pseudo-device driver that enables a UNIX system to
communicate with a TELETYPE® Model 40/4 ASCII synchronous terminal. The driver utilizes the
Virtual Protocol Machine (VPM) to perform the end-to-end protocol and transmission assurance
for the synchronous line.

The user must be familiar with the operation of the Model 40/4 terminal. Screen management
functions are completely controlled by the user process; when formating a screen, the user must
supply everything from the initial STX (Start-of-Text) character to the ETX (End-of-Text) charac
ter.

By convention, Idev/stO is the synchronous terminal control channel, while other Idev/st? files
represent user terminal channels. Communication with the control channel is handled by the
stcntri command (see st(1 M».

A user process will sleep when trying to open a channel, until a terminal requests service. At
that time, a channel will be assigned to that terminal, and it will remain allocated until the user
process closes the terminal.

In addition to the synchronous terminal equipment, a KMC11-B microprocessor, and a DMC11-
DA synchronous line unit are required.

letclstproto
/devlkmc?
Idev/vpm?
Idev/stO
Idev/st?

synchronous terminal prototype script
KMC11-B microprocessor
virtual protocol machine
synchronous terminal control channel
synchronous terminal user channels

SEE ALSO
st(1M), kmc(4), trace(4), vpm(4).

Page 1 March 28, 1984

SWAP(4)

NAME
swap - image of the swap area

DESCRIPTION

(Plexus) SWAP(4)

swap is a block special device that corresponds to the file system containing the swap area
(default /dev/dk1). Reading from the swap device returns data from the swap area.

FILES
/dev/swap

Page 1 March 28, 1984

TRACE (4) TRACE(4)

NAME
trace - event-tracing driver

DESCRIPTION
Trace is a special file that allows UNIX kernel drivers to transfer event records to a user pro
gram, so that the activity of the driver may be monitored for debugging purposes.

An event record is generated from within a kernel driver by executing the following function:

trsave(dev, chno, buf, cnt)
char dev, chno, .buf, cnt;

Dev is the minor device number of the trace driver; chno is an integer between 1 and 16,
inclusive, identifying the data stream to which the record belongs; buf is a buffer containing the
bytes that make up a single event record; and cnt is the number of bytes in buf. Calls to trsave
will result in data being saved in a clist buffer, provided that some user program has opened the
trace minor device number dev and has activated channel chno. Event records prefaced by
chno and cnt are stored in a clist queue until a system-defined maximum (TROMAX) is reached;
event records are discarded while the queue is full. The clist queue is emptied by a user pro
gram reading the trace driver. The trace driver returns an integral number of event records; the
read count must, therefore, be at least equal to the size of a record plus two, to allow for the
chno and cnt bytes added to the event record by the trsave routine.

The trace driver supports open, close, read, and ioctl system calls. To activate a channel, ioctl
is used as follows:

#include <ioctl.h>
ioctl(fildes, VPMTRCO, chno)

SEE ALSO
vpmstart(1C), vpm(4).

Page 1 March 28~ 1984

TTY(4) TTY(4)

NAME
tty - general terminal interface

DESCRIPTION

Page 1

This section describes both a particular special file and the general nature of the terminal inter
face.

The file ldev/tty is, in each process, a synonym for the control terminal associated with the pro
cess group of that process, if any. It is useful for programs or shell sequences that wish to be
sure of writing messages on the terminal no matter how output has been redirected. It can also
be used for programs that demand the name of a file for output, when typed output is desired
and it is tiresome to find out what terminal is currently in use.

As for terminals in general: all of the asynchronous communications ports use the same general
interface, no matter what hardware is involved. The remaind~r of this section discusses the
common features of this interface.

When a terminal file is opened, it normally causes the process to wait until a connection is esta
blished. In practice, users' programs seldom open these files; they are opened by getty(8) and
become a user's standard input, output, and error files. The very first terminal file opened by
the process group leader of a terminal file not already associated with a process group becomes
the control terminal for that process group. The control terminal plays a special role in handling
quit and interrupt signals, as discussed below. The control terminal is inherited by a child pro
cess during a fork(2). A process can break this association by changing its process group using
setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system's
character input buffers become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been read by some program.
Currently, this limit is 512 characters. When the input limit is reached, all the saved characters
are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a new-line (ASCII
LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character. This means
that a program attempting to read will be suspended until an entire line has been typed. Also,
no matter how many characters are requested in the read call, at most one line will be returned.
It is not, however, necessary to read a whole line at once; any number of characters may be
requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, the character" erases the
last character typed, except that it will not erase beyond the beginning of the line. By default,
the character Q kills (deletes) the entire input line, and optionally outputs a neW-line character.
Both these characters operate on a key-stroke basis, independently of any backspacing or tab
bing that may have been done. Both the erase and kill characters may be entered literally by
preceding them with the escape character (\). In this case the escape character is not read.
The erase and kill characters may be changed.

Certain characters have special functions on input. These functions and their default character
values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent to all processes with
the associated control terminal. Normally, each such process is forced to terminate,
but arrangements may be made either to ignore the signal or to receive a trap to an
agreed-upon location; see signa/(2).

QUIT (Control-lor ASCII FS) generates a quit signal. Its treatment is identical to the inter
rupt Signal except that, unless a receiving process has made other arrangements, it
will not only be terminated but a core image file (called core) will be created in the

March 28, 1984

TIY(4) TIY(4)

current working directory.

ERASE (#) erases the preceding character. It will not erase beyond the start of a line, as del
imited by a Nl, EOF, or EOl character.

Kill (@) deletes the entire line, as delimited by a Nl, EOF, or EOl character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are immediately passed to the
program, without waiting for a new-line, and the EOF is discarded. Thus, if there are
no characters waiting, which is to say the EOF occurred at the beginning of a line, zero
characters will be passed back, which is the standard end-of-file indication.

Nl (ASCII LF) is the normal line delimiter. It can not be changed or escaped.

EOl (ASCII NUL) is an additional line delimiter, like NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend output. It is useful with
CRT terminals to prevent output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

START (Control-q or ASCII DC1) is used to resume output which has been suspended by a
STOP character. While output is not suspended, START characters are ignored and not
read. The start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, Kill, EOF, and EOl may be changed to suit indivi
dual tastes. The ERASE, KilL, and EOF characters may be escaped by a preceding \ character,
in which case no special function is done.

When the carrier signal from the data-set drops, a hangup signal is sent to all processes that
have this terminal as the control terminal. Unless other arrangements have been made, this Sig
nal causes the processes to terminate. If the hangup signal is ignored, any subsequent read
returns with an end-of-file indication. Thus programs that read a terminal and test for end-of
file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. If a process produces characters more rapidly than they can
be typed, it will be suspended when its output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.

Several ioct/(2) system calls apply to terminal files. ,The primary calls use the following struc
ture, defined in <terrnio.h>:

#define NCC 8
struct termio {

unsigned short
unsigned short
unsigned short
unsigned short
char
unsigned char

};

cJflag;
c_oflag;
c_cflag;
cJflag;
cJine;
c_cc[NCC);

I. input modes .1
I. output modes .1
I. control modes .1
I. local modes .1
I. line discipline .1
/. control chars .1

The special control characters are defined by the array c _cc. The relative positipns and initial
values for each function are as follows:

o INTR DEL
1 QUIT FS

2 ERASE "
3 KILL a
4 EOF EOT

March 28, 1984 Page 2

TTY(4)

Page 3

TTY(4)

5 EOL NUL
6 reselVed
7 reselVed

The c jflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

See NOTES below for Plexus additions to this list.

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored,
that is, not put on the input queue and therefore not read by any process. Otherwise if BRKINT
is set, the break condition will generate an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not ignored is read as the
three character sequence: 0377, 0, X, where X is the data of the character received in error. To
avoid ambiguity in this case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 0377.
If PARMRK is not set, a framing or parity error which is not ignored is read as the character NUL
~). '

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is dis
abled. This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise all 8-bits are pro
cessed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
received CR character is ignored (not read). Otherwise if ICRNL is set, a received CR character
is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding
Iower-case character.

HIXON is set, start/stop output control is enabled. A received STOP character will suspend out
put and a received START character will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character will restart output that has been suspended. Note
that some terminals experience difficulty with IXANY.

H IXOFF is set, the system will transmit START/STOP characters when the input queue is nearly
empty/full.

The initial input control value is all bits clear.

The c _oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.

March 28, 1984

TIY(4) TTY(4)

ONOCR 0000020 No CR output at column O.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:
NLO 0
Nl1 0000400
CROLY 0003000 Select carriage-return delays:
CRO 0
CR1 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TAB1 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BS1 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VT1 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FF1 0100000

If OPOST is set, output characters are post-processed as indicated by the remaining flags, oth
erwise characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper
case character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR 9haracter is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLRET is set, the NL character is assumed to
do the carriage-return function; the column pointer will be set to 0 and the delays specified for
CR will be used. Otherwise the NL character is assumed to do just the line-feed function; the
column pointer will remain unchanged. The column pointer is also set to 0 if the CR character is
actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used
instead of the new-line delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill char
acters, and type 2 four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2is about 0.10
seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILLis set, two fill

March 28,1984 Page 4

TrY(4) TrY(4)

characters will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFlll is set. one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c_cf/ag field describes the hardware control of the terminal:

CBAUD
eo
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
EXTA
EXTB
CSIZE
CS5
CS6
CS7
CS8
CSTOPB
CREAD
PARENB
PARODD
HUPCl
ClOCAl

0000017 Baud rate:
o Hang up
0000001 50 baud
0000002 75 baud
0000003 110 baud
0000004 134.5 baud
0000005 150 baud
0000006 200 baud
0000007 300 baud
0000010 600 baud
0000011 1200 baud
0000012 1800 baud
0000013 2400 baud
0000014 4800 baud
0000015 9600 baud
0000016 External A (19200 baud)
0000017 External B
0000060 Character size:
o 5 bits
0000020 6 bits
0000040 7 bits
0000060 8 bits
0000100 Send two stop bits. else one.
0000200 Enable receiver.
0000400 Parity enable.
0001000 Odd parity. else even.
0002000 Hang up on last close.
0004000 Local line. else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate. BO. is used to hang up the connec
tion. If BO is specified. the data-terminal-ready signal will not be asserted. Normally. this will
disconnect the line. For any particular hardware. impossible speed changes are ignored.

The baud rate for EXTB is determined from switch settings in the hardware. See the Plexus
User's Manual for details.

The CSIZE bits specify the character size in bits for both transmission and reception. This size
does not include the parity bit. if any. If CSTOPB is set. two stop bits are used. otherwise one
stop bit. For example, at 110 baud, two stops bits are required.

If PARENS is set, parity generation and detection is enabled and a parity bit is added to each
character. If parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity
is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

If HUPCl is set. the line will be disconnected when the last process with the line open closes it
or terminates. That is, the data-terminal-ready signal will not be asserted.

If ClOCAl is set. the line is assumed to be a local. direct connection with no modem control.
Otherwise modem control is assumed.

Page 5 March 28. 1984

TTY(4) TIY(4)

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

The c)"ag field of the argument structure is used by the line discipline to control terminal func
tions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 . Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo Nl after kill character.
ECHONl 0000100 Echo NL.
NOFlSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control characters INTR and
QUIT. If an input character matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, no checking is done. Thus these special
input functions are possible only if ISIG is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or impossible value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions,
and the assembly of input characters into lines delimited by Nl, EOF, and EOL. If ICANON is not
set, read(2) requests are satisfied directly from the input queue. A read will not be satisfied until
at least MIN characters have been received or the timeout value TIME has expired. This allows
fast bursts of input to be read efficiently while still allowing single character input. The MIN and
TIME values are stored in the position for the EOF and EOl characters respectively. The time
value represents tenths of seconds; values for TIME range from 2 to 255. If TIME has the value
o Or 1, no timeout occurs.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it
with a \ character, and is output preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input: .

for: ,
L
{
}
\

use:

\'
\1
\A
\(
\)
\\

For example, A is input as \8, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as receiVed.

When ICANONis set, the following echo functions are possible. If ECHO and ECHOE are set, the
erase character is echoed as ASCII BS SP BS, which will clear the last character from a CRT
screen. If ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If
ECHOK is set,the Nl character will be echoed after the kill character to emphasize that the line
will be deleted. Note that an escape character preceding the erase or kill character removes
any special function. If ECHONl is set, the Nl character will be echoed even if ECHO is not set.
This is useful for terminals set to local echo (so,:,called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF character, this prevents terminals that
respond to EOT from hanging up.

If NOFlSH is set, the normal flush of the input and output queues associated with the quit and
interrupt characters will not be done. When NOFlSH is set, a del (0177) or a A I will cause a sig
nal to be sent to the process. This process will be terminated. The character has already been
placed in the raw queue and will be read with the next read.

March 28, 1984 Page 6

TIY(4) TTY(4)

("" The initial Ii ne-cliscipli ne control value is all bits clear.

r
\

FILES

Page 7

The primary ioct/(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store in the termio
structure referenced by argo

TCSETA Set the parameters associated with the terminal from the structure refer
enced by argo The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters. This form
should be used when changing parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new
parameters.

Additional ioct/(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for
0.25 seconds).

TCXONC

TCFLSH

ldevltty
ldevltty*
Idev/console

Start/stop control. If arg is 0, suspend output; if 1, restart suspended out
put.

If arg is 0, flush the input queue; if 1, flush the output queue; if 2, flush
both the input and output queues.

March 28, 1984

TTY(4)

NOTES

TTY(4)

Plexus defines two extra flags in the cjflag field of the <termio.h> structure. They are

15 14

I I I I I I 1 __ 1_1 __ 1_1 ____ 1 ____ 1 ______________________________________ ,

1 1
1 1____ ICTS
1 1_________ ICTSLO

where

ICTS specifies that Clear to Send (CTS) is to be used as flow control. Note that XON and
XOFF processing is not disabled. Also, the ICP must be configured to accept the CTS
signal.

ICTSLO inverts the action of the CTS activity. This is for use with devices in which the polar-
ity of the CTS signal is inverted.

These two flags are not supported in stock SYSTEM III. The location of these flags may also
change in future releases. This feature is available on ICP ports only.

The ICPs that correspond to tty device addresses are as follows:

IdevlttyO - Idev/tty7 ICP 0
Idevltty8 - Idev/tty15 ICP 1
Idevltty16 - Idev/tty23 ICP 2
Idevltty24 -/dev/tty31 ICP 3
Idevltty32 -/dev/tty39 ICP 4

At least one ICP must be reserved if you use the Virtual Protocol Machine (VPM). This must be
the first ICP, or, if you use more than one VPM ICP, the first n ICPs.

The VPM ICP may function as a TTY ICP, although not at the same time it is being used for
VPM.

If you use your VPM ICP as a TTY ICP, you will probably want two sets of mknods, and two
each of the letc/inittab and letelre files. The idea is to switchback and forth between the sets
as you move from VPM applications to TTY applications. Two sets are required because you
will want to disable logins on the TTY ports of the VPM ICP when it is in use for VPM; other
wise, continuous gettys are done for those ports. Switching back and forth is not a trivial pro
cedure; you must reboot each time you change over. A shell procedure incorporating all the
steps makes it somewhat easier.

SEE ALSO
stty(1), ioctl(2), icp(4).

March 28, 1984 Page 8

VPM(4) VPM(4)

NAME
vpm - The Virtual Protocol Machine

DESCRIPTION

Page 1

This entry describes a particular kind of special file and gives an introduction to the Virtual Pro
tocol Machine (VPM).

The VPM is a software construct for implementing link protocols on the ICP in a high-level
language. This is accomplished by a compiler that runs on UNIX and that translates a high-level
language description of a protocol into an intermediate language that is interpreted by an inter
preter running in the ICP.

The VPM driver is functionally split into two parts: a top VPM device and a bottom VPM device.
The top device may be modified or replaced to suit particular applications; the bottom device
interfaces with the VPM interpreter using the ICP driver. When using the mknod command to
make a directory entry and corresponding i-node for a VPM special file, the minor device
number identifies the physical ICP device, the VPM protocol number, and the physical ICP line
number to be used for this special file. The two most significant bits of the minor device number
denote the physical ICP device; the next two bits denote the VPM protocol number; the four least
significant bits denote the VPM ICP line number. For example, if ICP device 1 is to be used with
protocol number 2, which in turn is to be used with ICP device 3, the minor device number would
be 0143 (octal).

UNIX user processes transfer data to or from a remote terminal or computer system through
VPM using normal open, read, write, and close operations. Flow control and error recovery are
provided by the protocol deSCription residing in the ICP.

The VPM software consists of six components:

1. vpmc (1 C): compiler for the protocol description language; it runs on UNIX.
2. VPM interpreter: a ICP program that controls the overall operation of the ICP and

interprets the protocol script.
3. si.c: a UNIX driver that provides the interface to the VPM.
4. vpmstart(1 C): a UNIX command that copies a load module into the ICP and

starts it.
5. vpmsnap(1 C): a UNIX command that prints a time-stamped event trace while

the protocol is running.
6. vpmtrace(1C): a UNIX command that prints an event trace for debugging pur-

poses while the protocol is running.

The VPM open for reading-and-writing is exclusive; opens for reading-only or writing-only are
not. The VPM open checks that the correct interpreter is running in the ICP, then sends a RUN
command to the interpreter (causing it to start interpreting the protocol script), and supplies a
S12-byte receive buffer to the interpreter.

The VPM read returns either the number of bytes requested or the number remaining in the
current receive buffer, whichever is less. Bytes remaining in a receive buffer are used to satisfy
subsequent reads. The VPM write copies the user data into S12-byte system buffers and
passes them to the VPM interpreter in the ICP for transmission.

The VPM close arranges for the return of system buffers and for a general cleanup when the last
transmit buffer has been returned by the interpreter.

The user command vpmtrace(1C) reads the trace driver and prints event records. While this
command is executing, the VPM driver will generate a number of event records, allowing the
activity of the VPM driver and protocol script to be monitored for debugging purposes. The sys
tem functions vpmopen, vpmread, vpmwrite, and vpmc/ose generate event records (identified
respectively by 0, r, W, and c). Calls to the vpmc(1C) primitive trace(arg1,arg2) cause the VPM
interpreter to pass arg1 and arg2 along with the current value of the script location counter to

March 28, 1984

VPM(4) VPM(4)

the VPM driver, which generates an event record identified by a T. Each event record is struc- ~
tured as follows:

struct event {
short
char
char
short
short

}

e_seqn;
e_type;
e_dev;
e_short1 ;
e_short2;

I*sequence number*1
I*record identifier*1
I*minor device number*1
l*data*1
l*data*1

When the script terminates for any reason, the driver is notified and generates an event record
identified by an E. This record also contains the minor device number, the script location
counter, and a termination code defined as follows:

o Normal termination; the interpreter received a halt command from the driver.
1 Undefined virtual-machine operation code.
2 Script program counter out of bounds.
3 Interpreter stack overflow or underflow.
4 Jump address not even.
5 MUL TIBUS error.
6 Transmit buffer has an odd address; the driver tried to give the interpreter too

many transmit buffers; or a get or rtnxbuf was executed while no transmit buffer
was open, i.e., no getxbuf was executed prior to the get or rtnxbuf.

7 Receive buffer has an odd address; the driver tried to give the interpreter too
many receive buffers; or a put or rtnrbuf was executed while no receive buffer
was open, i.e., no getrbuf was executed prior to the get or rtnxbuf.

8 The script executed an exit.
9 A crc16 was executed without a preceding crcloc execution.

10 Interpreter detected loss of modem-ready signal.
11 Transmit-buffer sequence-number error.
12 Command error; an invalid command or an improper sequence of commands

was received from the driver.
13 Not used.
14 Invalid transmit state.
15 Invalid receive state.
16 Not used.
17 Xmtctl or setctl attempted while transmitter was still busy.
18 Not used.
19 Same as error code 6.
20 Same as error code 7.
21 Script to large.
22 Used for debugging the interpreter.
23 The driver's OK-check has timed out.

SEE ALSO
vpmc(1C), vpmstart(1C), trace(4).

March 28, 1984 Page 2

INTRO(5) INTRO(5)

NAME
intra - introduction to file formats

DESCRIPTION

NOTES

Page 1

This section outlines the formats of various files. The C struct declarations for the file formats
are given where applicable. Usually, these structures can be found in the directories
lusr/include or lusr/include/sys.

Plexus adds D-hosts, for use with the Plexus Network Operating System (NOS). Plexus also
adds holidays, termcap, and ttytype and does not currently support master.

March 29, 1984

A.OUT(5) A.OUT(5)

NAME
a.out - assembler and link editor output .

DESCRIPTION

Page 1

A.out is the output file of the assembler as and the link editor Id. Both programs will make
a.out executable if there were no errors in assembling or linking, and no unresolved external
references.

This file has four sections: a header, the program text and data segments, relocation informa
tion, and a symbol table (in that order). The last two sections may be missing if the program
was linked with the -s option of Id(1) or if the symbol table and relocation bits were removed by
strip(1). Also note that if there were no unresolved external references after linking, the reloca
tion information will be removed.

The sizes of each segment (contained in the header, discussed below) are in bytes and are
even. The size of the header is not included in any of the other sizes.

When an a.out file is loaded into memory for execution, three logical segments are set up: the
text segment, the data segment (initialized data followed by uninitialized, the latter actually being
initialized to all O's), and a stack. The text segment begins at lOCation 0 in the core image; the
header is not loaded. If the magic number (the first field in the header) is 107 (hexadecimal), it
indicates that the text segment is not to be write-protected or shared, so the data segment will
be contiguous with the text segment. If the magic number is 108 (hexadecimal), the data seg
ment begins at the first 0 mod 2K byte boundary (zeOOO) or the first 0 mod 4K byte boundary
(MC68000) following the text segment, and the text segment is not writable by the program; if
other processes are executing the same a.out file, they will share a single text segment. For
the Z8000 only, if the magic number is 109 (hexadecimal), the text segment is again pure
(write-protected and shared); moreover, the instruction and data spaces are separated. The
text and data segment both begin .at location O. See the Zilog Z8000 Instruction Manual for res
trictions that apply to this situation.

The stack will occupy the highest possible locations in the core image: on the zeooo, from FFFE
(hexadecimal) and growing downwards; on the MC68000, from 1 FFFFC and growing down
wards. The stack is automatically extended as required. The data segment is only extended as
requested by the brk(2) system call.

The start of the text segment in the a.out file is hsize; the start of the data segment is hsize+St
(the size of the text), where hsize is 10 (hexadecimal).

The value of a word in the text or data portions that is not a reference to an undefined external
symbol is exactly the value that will appear in memory when the file is executed. If a word in
the text or data portion involves a reference to an undefined external symbol, as indicated by the
relocation information (discussed below) for that word, then the value of the word as stored in
the file is an offset from the associated external symbol. When the file is processed by the link
editor and the external symbol becomes defined, the value of the symbol will be added to the
word in the file.

March 29, 1984

A.OUT(5)

Header-ZSOOO
The format of the a.out header is as follows:

struct

};

Header-MC68000

exec
short
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

{
a_magic; I. magic number.1
a_text; I. size of text segment .1
a_data; I. size of data segment .1
a_bss; I. size of bss segment .1
a_syms; I. size of symbol table .1
a_entry; I. entry point of program .1
a_stamp; I. version stamp .1
a)lag; I. set if relocation info stripped .1

The format of the header on the MC68000 is as follows:

struct bhdr {
long fmagic;
long tsize;
long dsize;
long bsize;
long ssize;
long rtsize;
long rdsize;
long entry;

};

Relocation-ZSOOO

I. magic number .1
I. size of text segment .1
I. size of data segment .1
I. size of bss segment .1
I. size of symbol table .1
I. size of text relocation info .1
I. size of data relocation info .1
I. entry point of program .1

A.OUT(5)

If relocation information is present, it amounts to two bytes per relocatable datum. There is no
relocation information if the "suppress relocation" flag (a_flag) in the header is on.

The format of the relocation data is:

struct Unfo
int

};

{
r _symbolnum:11 ;
r _segment:3;
r_pcrel:1 ;

The r -,Jerel field is not used.

The r _segment field indicates the segment referred to by the text or data word associated with
the relocation word:

00 indicates the reference is absolute;
02 indicates the reference is to the text segment;
04 indicates the reference is to initialized data;
06 indicates the reference is to bss (uninitialized data);
10 indicates the reference is to an undefined external symbol.

The field r _symbolnum contains a symbol number in the case of external references, and is
unused otherwise. The first symbol is numbered 0, the second 1, etc.

The start of the relocation information is

hsize + ajext + a_data

March 29, 1984 Page 2

A.OUT(5) A.OUT(5)

Relocation-MC68000
Relocation information, if it is present, is given for each datum to be relocated.

The format of the relocation information is:

struct reloc {
unsigned rsegment:2;1. RTEXT, RDATA, RBSS, or REXTERN .1
unsigned rsize:2; I. RBYTE, RWORD, or RLONG .1
unsigned rdisp:1; 1.1 => a displacement.1
unsigned relpad1 :3;1. unused portion of relocation tag .1
char relpad2; I. unused portion of relocation tag .1
short rsymbol; I. id of the symbol of external relocations .1
long rpos; I. position of relocation in segment .1

};

The ,segment field indicates the segment referred to by the relocated datum.

00 indicates the reference is to the text segment;
01 indicates the reference is to initialized data;
02 indicates the reference is to bss (uninitialized data);
03 indicates the reference is to an undefined external symbol.

The ,size field indicates the size of the datum:

00 indicates the datum is one byte;

01 indicates the datum is one word;

02 indicates the datum is a long.

The field ,symbol contains a symbol number in the case of external references. The first sym-
bol is numbered 0, the second 1, etc. The start of the text relocation information is ~

ts;ze + ds;ze + ssize

The start of the data relocation information is

hs;ze + tslze + ds;ze + ss;ze + rts;ze

Symbol Table-ZSOOO

Page 3

The symbol table on the zaooo consists of entries of the form:

struct

};

nlist
char
int
unsigned

{
n_name[8];
n_type;
n_value;

The n_name field contains the ASCII name of the symbol, null-padded. The n_type field indi
cates the type of the symbol; the following values are possible:

March 29, 1984

A.OUT(5)

000 undefined symbol
001 absolute symbol
002 text segment symbol
003 data segment symbol
004 bss segment symbol
037 file name symbol (produced by Id)
040 undefined external symbol
041 absolute external symbol
042 text segment external symbol
043 data segment external symbol
044 bss segment external symbol

The start of the symbol table on the Z8000 is:

hsize +2(a_text +a_data)

if relocation information is present, and

hsize+a_text +a_data

if it is not.

A.OUT(5)

If a symbol's type is undefined external and the value field is non-zero, the symbol is interpreted
by the link editor Id(1) as the name of a common region whose size is indicated by the value of
the symbol.

Symbol Table-MC68000
The symbol table on the MC68000 consists of entries of the form:

struct sym {
char stype;
char sympad;
long svalue;

};

f. symbol type .f
f. pad to long aUgn .f
f. value if

The symbol follows each entry and is nUll-terminated. The stype field indicates the type of the
symbol; the following values are possible:

000 undefined symbol
001 absolute symbol
002 text segment symbol
003 data segment symbol
004 bss segment symbol
037 file name symbol (produced by Id)
024 register name
040 external bit or'd in
"o/c08x" format for printing a value

The start of the symbol table on the MC68000 is

hsize + tsize + dsize

If a symbol's type is undefined external and the value field is non-zero, the symbol is interpreted
by the link editor Id(1) as the name of a common region whose size is indicated by the value of
the symbol. .

SEE ALSO
as(1), Id(1), nm(1), strip(1).

March 29. 1984 Page 4

ACCT(5) ACCT(5)

NAME
acct - per-process accounting file format

SYNOPSIS
#include . <syslacct.h >

DESCRIPTION

Page 1

Files produced as a result of calling acct(2} have records in the form defined by <syslacct.h>,
whose contents are:

1*
* Accounting structures

. */

typedef ushort comp_t;

struct aect
{

};

char acJlag;
char ac_stat;
ushort ac_uid;
ushort ac_gid;
dev _t ac_tty;
time_t aC_btime;
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
comp_t ac_mem;
comp_t acjo;
comp_t aCJw;
char ac_comm[8];

extern struct aect
extern struct inode

=ldefine AFORK 101
=ldefine ASU 02
#define ACCTF 0300

1* "floating point" */
1* 13-bit fraction, 3-bit exponent * /

1* accounting flag */
/* exit status * /
1* accounting user 10 */
/* accounting group 10 */
1* control typewriter * /
1* beginning time */
1* aectng user time in clock ticks */
/* aectng system time in clock ticks */
/* acctng elapsed time in clock ticks */
1* memory usage */
1* chars transferred * /
1* blocks read or written */
1* command name * /

acctbuf;
acctp;/ inode of accounting file */

1* has executed fork, but no exec * /
/* used super-user priVileges */
/* record type: 00= aect */

In ac_flag, the AFORK flag is turned on by each forlc(2} and turned off by an exec(2}. The
ac _comm field is inherited from the parent process and is reset by any exec. Each time the
system charges the process with a clock tick, it also adds to sc _mem the current process size,
computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/sc_stime can be Viewed as an approximation to the mean process size,
as modified by text-sharing.

March 29, 1984

ACCT(S) ACCT(S)

The following structure represents the total accounting format used by the various accounting
commands:

1*
* total accounting (for acct period), also for day
*/

struct tacct {
uid_t ta_uid; /* userid */
char ta_name(8); 1* login name */
float ta_cpu(2); 1* cum. cpu time, p/np (mins) *1
float ta_kcore(2); /* cum. kcore-minutes, p/np *1
float ta_con(2); 1* cum. conn. time, p/np, mins *1
float ta_du; /* cum. disk usage *1
long ta_pc; /* count of processes *1
unsigned short ta_sc; /* count of login sessions *1
unsigned short ta_dc; /* count of disk samples *1
unsigned short taJee; 1* fee for special services *1

};

SEE ALSO

BUGS

acct(1 M), acctcom(1), acct(2).

The ac_mem value for a short-lived command gives little information about the actual size of
the command, because ae _mem may be incremented while a different command (e.g., the
shell) is being executed by the process.

March 29, 1984 Page 2

AR(5) AR(5)

NAME
ar - archive file format

DESCRIPTION
The archive command af is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link editor Id(1).

A file produced by af has a magic number at the start, followed by the constituent files, each
preceded by a file header. The magic number is 0177545(octal) (it was chosen to be unlikely to
occur anywhere else). The header of each file is 26 bytes long:

#ifdef z8000
#define ARMAG 0177545
struct ar _ hdr {

};
#else

char ar_name[14];
long ar _date;
char ar_uid;
char ar _gid;
int ar _mode;
long ar_size;

#define ARMAG nkarch>O
#define SARMAG 8

#define ARFMAG n'O

struct ar _hdr {

};
#endif

char ar_name[16];
char ar _date[12];
char ar _uid[6];
char ar _gid[6];
char ar _mode[8];
char ar _size[1 0];
char ar Jmag[2];

Each file begins on a word boundary; a null byte is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO

BUGS

Page 1

ar(1), arcv(1), 1d(1).

The archive header structure is not compatible between the ZSOOO and the 68000 due to the dif
ferent word sizes. See arcv(1) to convert between processors.

March 29,1984

r

CHECKlIST(5) CHECKlIST(5)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory lete and contains a list of at most 15 special file names. Each
special file name is contained on a separate line and corresponds to a file system. Each file
system will then be automatically processed by the fsck(1 M) command.

SEE ALSO
fsck(1M).

Page 1 March 29, 1984

CORE(S) CORE(S)

NAME
core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See
slgnal(2) for the list of reasons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls apply). A process with
an effective user 10 different from the real user 10 will not produce a core image.

The first section of the core image is a copy of the system's per-user data for the process,
including the registers as they were at the time of the fault. The size of this section depends on
the parameter usize, which is defined in lusr/include/sys/param.h. The remainder represents
the actual contents of the user's core area when the core image was written. If the text seg
ment is read-only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user structure of the sys
tem, defined in lusr/include/sys/user.h. The important stuff not detailed therein is the locations
of the registers, which are outlined in lusr/include/sys/reg.h.

SEE ALSO
adb(1), crash(1 M), setuid(2), signal(2).

Page 1 March 29, 1984

CPIO(5) CPIO(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the c option is not used, is:
struct {

short

char
} Hdr;

h_magic,
h_dev,
h)no,
h_mode,
h_uid,
h_gid,
h_nlink,
hJdev,
h_mtime[2],
h_namesize,
hJilesize[2];
h_name[h_namesize rounded to word];

When the c option is used, the header information is described by the statement below:
sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60%60%s",

&Hdr.h_magic,&Hdr.h_dev,&Hdr.h)no,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid,&Hdr.h_nlink,&Hdr.h_rdev,
&Longtime,&Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.hJilesize, respectively. The
contents of each file is recorded in an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of h_magic contains the constant
070707 (octal). The items h_dev through h_mtime have meanings explained in stat(2). The
length of the null-terminated path name h_name, including the null byte, is given by
h_namesize.

The last record of the archive always contains the name TRAILERIII. Special files, directories.
and the trailer are recorded with hJilesize equal to zero.

SEE ALSO
cpio(1), find(1), stat(2).

Page 1 March 29, 1984

D-HOSTS(5) (NOS only) D-HOSTS(5)

NAME
D-hosts - configuration file for the Network Operating System (NOS)

DESCRIPTION
The file lusr/lib/nos/D-hosts establishes the configuration of the Network Operating System
(NOS). This file identifies the remote hosts accessible to the local host. It also specifies the pro
tocol and physical link to be used when communicating with a given remote host.

lusr/lib/nos/D-hosts is read only at initialization time when the system is booted. 'Hence to
locally reconfigure the network, the system must be rebooted. An error message is generated if
the file cannot be located.

The file lusr/lib/nos/D-hosts contains one line for each remote host. This line describes vari
ous properties of the remote host. Each line is composed of a number of fields:

name:NA=xxxx:PL=ether:LL=pdlc:NL=pdlc:TL=ncf

where

name is the host name, remote or local. The name is limited to 9 characters; names longer than
this are truncated. Only the characters 0-9, a-z, and A-Z may be used. The local host's
name must match the 'Sys3 nodename:' as established via dconfig(8).

NA network address. The associated value is a hexadecimal number designating the address
of the host. The number is delivered with the Ethemet controller hardware. NA values
are used by the hardware drivers to route communication packets at the physical level.

PL physical level. This is the 'type' of the physical link. The associated value is a NOS
defined character string. The only physical media currently supported is ether.

LL link level. This is the link layer of the protocol. The associated value is a NOS-defined
string. The only link level protocol currently supported is pdlc.

NL network level. The network layer of the protocol. The associated value is a NOS-defined
character string. The only net level protocol currently supported is pdlc.

TL transport level. The transport layer of the protocol. The associated value is a NOS-
defined character string. The only transaction level protocol currently sUPP9rted is nc'.

A line in lusr/liblnos/D-hosts may be commented by beginning it with a '#'. A line may be
extended by using a '\' as the last character. This causes the EOl to be ignored. and the line
may be continued on the following line. Spaces and tabs are ignored except as,tring and
number delimiters.

DIAGNOSTICS

Page 1

The following error messages may occur during boot because of an invalid configuration file:

Can not open lusrlliblnoslD-hosts
You have not provided a configuration file in lusr/lib/nos. Check to ensure that file
exists. This may also be a symptom of a damaged file system.

no: <char>
The delimiter of the fields within a deSCriptor is a ':'; an unknown character <char>
was encountered instead of the expected ':'. Check file for bad entry or invisible charac
ters.

no = <char>
The assignment operator within each field is a '='; an unknown character <char> was
encounte,red instead of the expected '='. Check file for bad entry or invisible charac
ters.

March 29, 1984

D-HOSTS(5) (NOS only) D-HOSTS(5)

unknown type of ncf initalization argument <string>
The configuration paramter argument was illegal. Only NA. PL. LL. NL. and TL are
allowed.

physical layer ... " not yet implemented"
Currently only 'ether' is valid as a PL value.

Unknown host id
driver address (...) not found in configuration table
The address of the hardware was not found in the configuration table. Add an entry for
your device into the file.

configuration table device name (..) does not match host nodename (..)
The host name is obtained from the disk at boot time. It does not agree with the name
given the host in the configuration file. Change the configuration file or use dconflg(8) to
change host name so that both are consistent.

March 29. 1984 Page 2

DIR(5) DIR(5)

NAME
dir - format of directories

SYNOPSIS
:fI:include <sys/dlr.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
's(5». The structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino) dJno;
char d_name[DIRSIZ];

};

By convention, the first two entries in each directory are for. and ••. The first is an entry for the
directory itself. The second is for the parent directory. The meaning of •• is modified for the root
directory of the master file system; there is no parent, so •• has the same meaning as •.

SEE ALSO
fs(5).

Page 1 March 29, 1984

DUMP(5) DUMP(5)

NAME
dump - incremental dump tape format

DESCRIPTION

Page 1

The dump and restor commands are used to write and read incremental dump magnetic tapes.

The dump tape consists of a header record, some bit mask records, a group of records describ
ing file system directories, a group of records describing file system files, and some records
describing a second bit mask.

The header record and the first record of each description have the format described by the
structure included by

#include <dumprestor.h>

This include file has the following contents:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS_ TAPE
#define TSJNODE
#define TS_BITS
#define TS_ADDR
#define TS_END
#define TS_CLRI
#define MAGIC
#define CHECKSUM
struct spcl

1
2
3
4
5
6
(int)60011
(int)84446

{

} spcl;

struct
{

};

int c_type;
time_t c_date;
time) c_ddate;
int c_volume;
daddr) c _ tapea;
ino_t cJnumber;
int c_magic;
int c_checksum;
struct dinode c_dinode;
int c_count;
char c_addr[BSIZE);

idates

char id_name{16);
char idJncno;
time_t id_ddate;

NTREC is the number of 1024 byte blocks in a physical tape record. MLEN is the number of bits
in a bit map word. MSIZ is the number of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types

March 29, 1984

DUMP(S) DUMP(S)

and their meanings are as follows:

TS_TYPE Tape volume label

TSJNODE A file or directory follows. The c_dinode field is a copy of the disk inode and con-
tains bits telling what sort of file this is.

TS_BITS A bit mask follows. This bit mask has a one bit for each inode that was dumped.

TS_ADDR A subblock to a file (TSjNODE). See the description of c_count below.

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one bit for all inodes that were empty
on the file system when dumped.

MAGIC All header blocks have this number in c _magic.

CHECKSUM Header blocks checksum to this value.

The fields of the header structure are as follows:

c _type The type of the header.

c_date

c_ddate

c_volume

c_tapea

cJnumber

c_maglc

The date the dump was taken.

The date the file system was dumped from.

The current volume number of the dump.

The current block number of this record. This is counting 1024 byte blocks.

The number of the inode being dumped if this is of type TS-,NODE.

This contains the value MAGIC above. truncated as needed.

c_checksum This contains whatever value is needed to make the block sum to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system.

This is the count of characters following that describe the file. A character is zero
if the block associated with that character was not present on the file system. oth
erwise the character is non-zero. If the block was not present on the file system
no block was dumped and it is replaced as a hole in the file. If there is not suffi
cient space in this block to describe all of the blocks in a file, TS_ADDR blocks will
be scattered through the file, each one picking up where the last left off.

c_addr This is the array of characters that is used as described above.

Each volume except the last ends with a tapemark (read as an end of file). The last volume
ends with a TS_END block and then the tapemark.

The structure idates describes an entry of the file where dump history is kept.

SEE ALSO
dump(1 M). restor(1 M), fs(5).

March 29. 1984 Page 2

ERRFILE(5) ERRFILE(5)

NAME
errfile - error-log file format

DESCRIPTION

Page 1

When hardware errors are detected by the system, an error record is generated and passed to
the error-logging daemon for recording in the error log for later analysis. The default error log is
/usr/adm/errfile.

The format of an error record depends on the type of error that was encountered. Every record,
however, has a header with the following format:

struct errhdr {
int

};

int
time_t

e_type;
eJen;
e_time;

,. record type .,
,. bytes in record (inc hdr) .,
,. time of day.'

The permissible record types are as follows:

#define E_GOTS 010
#define E_GORT 011
#define E_STOP 012
#define E_TCHG 013
#define E_CCHG 014
#define E_BLK 020
#defineE_STRAY 030
#define E_PRTY 031

,. Start for UNIX 3.0.'
,. Start for UNIx/RT .,
,. Stop .,
,. Time change .,
,. Configuration change .,
,. Block device error .,
,. Stray interrupt .,
,. Memory parity *,

Some records in the error file are of an administrative nature. These include the startup record
that is entered into the file when logging is activated, the stop record that is written if the dae
mon is terminated "gracefully", and the time-change record that is used to account for changes
in the system's time-of-day. These records have the following formats:

struct estart {
struct errhdr
int
int
long
int

};

struct eend {

e_hdr;
e_cpu;
e_mmr3;
e_syssize;
e_bconf;

struct errhdr e _hdr;
};

struct etimchg {
struct errhdr e_hdr;
time_t e_ntime;

};

,* record header *, ,* CPU type ., ,* contents mem mgmt reg 3 *, ,* zaooo system memory size ., ,* block dev configuration *,

,. record header *,

,. record header *1
,. new time .,

March 29, 1984

ERRFILE(5)

Stray interrupts cause a record with the following format to be logged in the file:

struct estray {
struct errhdr
physadr
int

};

e _hdr; I. record header .1
e_saddr; I. stray loc or device addr .1
e _sbacty; . I. active block devices .1

ERRFILE(5)

Memory subsystem error on 11/70 processors cause the following record to be generated:

struct eparity {
struot errhdr e_hdr; I. record header .1
int e_parreg[5]; I. memory subsys registers .1

};

Error records for block devices have the following format:

struct eblock {
struot errhdr e_hdr;
dev_t e_dev;
physadr eJegloc;
int e_bacty;
struot iostat {

long io_ops;
long io_misc;
unsigned io _ unlog;

} e_stats;
int e_bflags;
int e_cyloff;
daddr_t e_bnum;
unsigned e_bytes;
long e_memadd;
unsigned e_rtry;
int e_nreg;

};

I. record header .1
I. "true" major + minor dev no .1
I. controller address .1
I. other block 110 activity .1

I. number read/writes .1
I. number "other" operations .1
I. number unlogged errors .1

I. read/write, error, etc .1
I. logical dev start cyl .1
I. logical block number .1
I. number bytes to transfer .1
I. buffer memory address .1
I. number retries .1
I. number device registers .1

The following values are used in the e _bflags word:

#define E_WRITE 0
#define E_READ 1
#define E_NOIO 02
#define E_PHYS 04
#define E_MAP 010
#define E_ERROR 020

I. write operation .1
I. read operation .1
I. no 110 pending .1
I. physical 110 .1
I. Unibus map in use .1
I. 110 failed .1

The ''true'' major device numbers that identify the failing device are as follows:

#define PDO 0
#define PTO 1
#definelSO 2
#define RMO 3

SEE ALSO
errdemon(1 M).

March 29, 1984 Page 2

r

FS(5) FS(5)

NAME
file system - format of system volume

SYNOPSIS
"include < syslfilsys.h >
"include < sysltypes.h >
"include <syslparam.h>

DESCRIPTION

Page 1

Every file system storage volume (e.g., RP04 disk) has a common format for certain vital infor
mation. Every such volume is divided into a certain number of 1024 byte blocks. Block 0 is
unused and is available to contain a bootstrap program or other information.

Block 1 is the super-block. Starting from its first word, the format of a super-block is:

/*
* Structure of the super-block
*/

struct fi Isys
{

};

ushort
daddr_t
short
daddr_t
short
ino_t
char
char
char
char
time)
short
daddr_t
ino_t
char
char

sjsize;
sJsize;
s_nfree;
sJree[NICFREE];
s_ninode;
sjnode[NICINOD);
sJlock;
sjlock;
sJmod;
sJonly;
s_time;
s_dinfo(4);
s_tfree;
s_tinode;
s_fname[6);
s_fpack[6);

/* size in blocks of i-list */
/* size in blocks of entire volume */
/* number of addresses in s_free */
/* free block list */
/* number of i-nodes in sjnode */
/* free i-node list */
/* lock during free list manipulation */
/* lock during i-list manipulation */
/* super block modified flag * /
/* mounted read-only flag */
/* last super block update * /
/* device information */
/* total free blocks*/
/* total free i nodes * /
/* file system name *1
/* file system pack name *1

S)size is the address of the first data block after the i-list; the i-list starts just after the super
block, namely in block 2; thus the i-list is s)s;ze-2 blocks long. SJs;ze is the first block not
potentially available for allocation to a file. These numbers are used by the system to check for
bad block numbers; if an "impossible" block number is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The sJree array contains, in sJree(1),
... , sJree[s_nfree-1), up to 49 numbers of free blocks. SJree[O] is the block number of the
head of a chain of blocks constituting the free list. The first long in each free-chain block is the
number (up to 50) of free-block numbers listed in the next 50 longs of this chain member. The
first of these 50 blocks is the link to the next member of the chain. To allocate a block: decre
ment s_nfree, and the new block is sJree[s_nfree). If the new block number is 0, there are no
blocks left, so give an error. If s_nfree became 0, read in the block named by the new block
number, replace s_nfree by its first word, and copy the block numbers in the next 50 longs into
the sJree array. To free a block, check if s_nfree is 50; if so, copy s_nfree and the sJree
array into it, write it out, and set s_nfree to O. In any event set sJree[s_nfree) to the freed
block's number and increment s_nfree.

March 29, 1984

FS(5)

FilES

NOTES

FS(5)

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the sjnode array. To allocate an i-node: if
s_ninode is greater than 0, decrement it and return sjnode[s_ninode). If it was 0, read the i
list and place the numbers of all free inodes (up to 100) into the sjnode array, then try again.
To free an i-node, provided s_ninode is less than 100, place its number into sjnode[s_ninode)
and increment s_ninode. If s_ninode is already 100, do not bother to enter the freed i-node into
any table. This list of i-nodes is only to speed up the allocation process; the information as to
whether the inode is really free or not is maintained in the inode itself.

S_tinode is the total free inodes available in the file system.

Sjlock and sjlock are flags maintained in the core copy of the file system while it is mounted
and their values on disk are immaterial. The value of sjmod on disk is likewise immaterial; it is
used as a flag to indicate that the super-block has changed and should be copied to the disk
during the next periodic update of file system information.

S -,only is a read-only flag to indicate write-protection.

S3ime is the last time the super-block of the file system was changed, and is a double
precision representation of the number of seconds that have elapsed since 00:00 Jan. 1, 1970
(GMT). During a reboot. the s_time of the super-block for the root file system is used to set the
system's idea of the time.

SJname is the name of the file system and sJpack is the name of the pack.

I-numbers begin at 1. and the storage for i-nodes begins in block 2. Also, i-nodes are 64 bytes
long. so 16 of them fit into a block. Therefore, i-node i is located in block (i+31)/16. and
begins 64x«i+31) (mod 16» bytes from its start. I-node 1 is reserved for future use. I-node
2 is reserved for the root directory of the file system, but no other i-number has a built-in mean
ing. Each i-node represents one file. For the format of an inode and its flags. see inode(5).

lusr/include/sys/filsys.h
lusrlinclude/sys/stat.h

Block size is 1024 bytes, so the formulas given here for calculating the whereabouts of i-nodes
are slightly different from stock SYSTEM III.

SEE ALSO
fsck(1 M). fsdb(1 M). mkfs(1 M). inode(5).

March 29. 1984 Page 2

FSPEC(S) FSPEC(S)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on UNIX with non-standard tabs, (i.e., tabs
which are not set at every eighth column). Such files must generally be converted to a standard
format, frequently by replacing all tabs with the appropriate number of spaces, before they can
be processed by UNIX commands. A format specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and sur
rounded by the brackets <: and : >. Each parameter consists of a keyletter, possibly followed
immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must be
one of the following:

1. a list of column numbers separated by commas, indicating tabs set at the
specified columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of n
columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t-8, or equivalently. t1,9,17,25,etc. The canned tabs
which are recognized are defined by the tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size must be an
integer. Size checking is performed after tabs have been expanded, but before the
margin is prepended.

mrnargin The m parameter specifies a number of spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the
format specification is to be deleted from the converted file.

I

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default valUes, which are assumed for parameters not supplied, are t-8 and mO. If the s param
eter is not specified, no size checking is performed. If the first line of a file does not contain a
format specification, the above defaults are assumed for the entire file. The following is an
example of a line containing a format specification:

* <:tS,10,1S s72:> *
If a format specification can be disguised as a comment, it is not necessary to code the d
parameter.

Several UNIX commands correctly interpret the format specification for a file. Among them is
gath (see send(1C» which may be used to convert files to a standard format acceptable to
other UNIX commands.

SEE ALSO
ed(1), reform(1), send(1 C), tabs(1).

Page 1 March 29, 1984

GROUP(S)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group 10
comma-separated list of all user allowed in the group

GROUP(S)

This is an ASCII file. The fields are separated by colons; each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

FILES

This file resides in directory letc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical group 10's to names.

lete/group

SEE ALSO
newgrp(1), passwd(1), crypt(3C), passwd(5).

Page 1 March 29, 1984

HOLIDAYS (5) (Plexus) HOLIDAYS (5)

NAME
holidays - defining holidays and prime time for accounting

DESCRIPTION

NOTES

The accounting programs acctcon1 and acctprc1 print usage data, dividing· the data between
prime and nonprime time. A holiday is nonprime time. The programs get the definition for prime
and nonprime time and holidays from the file lusr/lib/acctlholidays. If this file is missing or the
data is garbled or missing, the programs will use predefined values for the times and holidays.

A sample lusr/lib/acctlholidays file:

holidays = 0 44 163 188 329 330 349 350 364
prime = 9:15
nonprime = 17:00
year = 1982

The holidays are days of the year, starting with o. They must be separated by white space, they
must all fit on one line (maximum 200 characters), and only the first 30 holidays are used.

The prime and nonprime variables define the starting and ending times, respectively, for the
prime time. The times are given in hours and minutes separated by a colon as shown.

The year is the current year. If this does not agree with the year as determined by the date com
mand, the acctcon1 and accprc1 programs will issue a mild protest.

This command Originates from Plexus; it is not part of standard SYSTEM III UNIX.

SEE ALSO r acctcon1 (1) and acctprc1 (1)

Page 1 March 29, 1984

INITTAB(5) INmAB(5)

NAME
inittab - control information for init

DESCRIPTION

FilES

Page 1

When a state is entered, init reads the file letc/lniHab. Unes in this file have the format:

state:id:flags:command

All lines in which the state field match init's current state are recognized. If a process is active
under the same two character id as a recognized line, it may be terminated (signal 15), killed
(signal 9), or both by including the flags t and k in the order desired. The Signal is sent to all
processes in the process group associated with the id. The command field is saved for later
execution. The flag c requires the command to be continuously reinvoked whenever the pro
cess with that iddies. Otherwise the command is invoked a maximum of one time in the
current state.

Init ignores lines with the flag "0". Note that init kills processes only when directed to by the "k"
or ''t'' flags.

letclinittab

March 29, 1984

r

INODE(5)

NAME
inode - format of an inode

SYNOPSIS
"include < sys/types_h >
"include < sys/ino.h >

DESCRIPTION

INODE(5)

An i-node for a plain file or directory in a file system has the following structure defined by
< syslino.h >.

FILES

/* Inode structure as it appears on a disk block. */
struct dinode
{

};
/*

ushort di_mode;
short di_nlink;
ushort di_uid;
ushort di _gid;
off_t di_size;
char di_addr[40];
time_t di_atime;
time_t di_mtime;
time_t di_ctime;

* the 40 address bytes:

/* mode and type of file * /
/* number of links to file */
/* owner's user id */
/* owner's group id */
/* number of bytes in file */
/* disk block addresses * /
/* time last accessed */
/* time last modified */
/* time created */

* 39 used; 13 addresses
* of 3 bytes each.
*/

For the meaning of the defined types off _t and time _t see types (7).

/usr/include/syslino.h

SEE ALSO
stat(2). fs(5). types(7).

Page 1 March 29. 1984

MNTTAB(5) MNTTAB(5)

NAME
mnttab - mounted file system table

SYNOPSIS
struct mnttab {

char
char
char
short
time t

};

mt dev[MNTPATH);
mt-node(MNTPATH);
mt)lsys[MNTPATH);

mt_roJlg;
mt_time;

DESCRIPTION
Mnttab resides in directory letc and contains a table of devices mounted by the mount(1 M) and
rmount(1 M) commands.

MNTPATH is currently 50.

Each entry is 156 bytes in length; the first 50 bytes are the null-padded name of the place
where the special file or remote directory is mounted; the next 50 bytas contain the node name
of the remote system when rmount is invoked; the next .50 bytes represent the null-padded root
name of the mounted special file or remote directory; the remaining 6 bytes contain the
read/write permissions of the mounted special file or remote directory, and the date on which it
was mounted.

The maximum number of entries in mnttab is based on the system parameter NMOUNT located
in lusrlsrc/utslcf/conf.c, which defines the number of allowable mounted special files.

SEE ALSO
mount(1 M), rmount(1 M).

Page 1 March 29, 1984

PASSWD(5) PASSWD(5)

NAME
passwd - password file

DESCRIPTION

FilES

Passwd contains for each user the following information:

login name
encrypted password
numerical user 10
numerical group 10
GCOS job number, box number, optional GCOS user 10
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
The GCOS field is used only when communicating with that system, and in other installations
can contain any desired information. Each user is separated from the next by a new-line. If the
password field is nUll, no password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory letc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user 10's to names.

The encrypted password consists of 13 characters chosen from a 64 character alphabet (•• I.
0-9. A-Z, a-z), except when the password is null in which case the encrypted password is also
nUll. Password aging is effected for a particular user if his encrypted password in the password
file is followed by a comma and a non-null string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the super-user.) The first character of the age,
M say, denotes the maximum number of weeks for which a password is valid. A user who
attempts to login after his password has expired will be forced to supply a new one. The next
character, m say, denotes the minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week (counted from the beginning of
1970) when the password was last changed. (A null string is equivalent to zero.) M and m have
numerical values in the range 0-63. If m = M = 0 (derived from the string. or ••) the user will
be forced to change his password the next time he logs in (and the "age" will disappear from his
entry in the password file). If m > M (signified, e.g., by the string .f) only the super-user will be
able to change the password.

letclpasswd

SEE ALSO
login(1), passwd(1), a64I(3C), crypt(3C), getpwent(3C), group(5).

Page 1 March 29, 1984

PLOT(S) PLOT(S)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X) and are interpreted for vari
ous devices by commands described in tplot(1 G). A graphics file is a stream of plotting instruc
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary information.
The instructions are executed in order. A point is designated by four bytes representing the x
and y values; each value is a signed integer. The last deSignated point in an I, m, n, or p
instruction becomes the "current point" for the next instruction.

Each of the following deSCriptions begins with the name of the corresponding routine in plot(3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See
tplot(1G).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point given by the follow
ing four bytes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a new-Une.

e erase: Start another frame of output.

f linemod: Take the following string, up to a neW-line, as the style for drawing further lines.
The styles are "dotted",· "solid", "Iongdashed", "shortdashed", and "dotdashed". Effective
only for the -T4014 and -Tver options of tplot(1G) (Tektronix 4014 terminal and Versatec
plotter).

s space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as closely
as possible. .

Space settings that exactly fill the plotting area with unity scaling appear below for devices sup
ported by the filters of tplot(1G). The upper limit is just outside the plotting area. In every case
the plotting area is taken to be square; points outside may be displayable on devices whose
face is not square.

DASI300
DASI300s
DASI450
Tektronix 4014
Versatec plotter

space(O, 4096, 0, 4096);
space(O, 4096,0,4096);
space(O, 4096, 0, 4096);
space(O, 3120, 0,3120);
space(O, 2048,0,2048);

SEE ALSO
graph(1G), tplot(1G), plot(3X), gps(5), term(1).

Page 1 March 29, 1984

PNCH(5) PNCH(5)

NAME
pnch - file format for card images

DESCRIPTION

Page 1

The PNCH format is a convenient representation for files consisting of card images in an arbi
trary code.

A PNCH file is a simple concatenation of card records. A card record consists of a single control
byte followed by a variable number of data bytes. The control byte specifies the number (which
must lie in the range O-SO) of data bytes that follow. The data bytes are S-bit codes that consti
tute the card image. If there are fewer than SO data bytes. it is understood that the remainder of
the card image consists of trailing blanks.

March 29. 1984

PROFILE (5) PROFILE(5)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named .profile, that file will be executed (via the shell's
exec .proflle) before your session begins; .profiles are handy for setting exported environment
variables and terminal modes. If the file letc/profile exists, it will be executed for every user
before the .profile. The following example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM LOGNAME
Set file creation mask
umask22
Tell me when new mail comes in
MAIL lusr/maiVmyname
Add my lbin directory to the shell search sequence
PATH=$PATH:$HOMEIbin
Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

300)
300s)
450)

esac

hp)
7451735)
43)
40141tek)
.)

$HOMEI.profile
letc/profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty cr1 nl1 -tabs; TERM=745;;
stty cr1 nlO -tabs;;
stty crO nlO -tabs ff1; TERM 4014; echo "\33;";;
echo "$TERM unknown";;

SEE ALSO
env(1), login(1), mail(1), sh(1), stty(1), su(1), environ(7), terrn(7).

Page 1 March 29,1984

r
SCCSFILE(5) SCCSFILE(5)

NAME
sccsfile - format of sees file

DESCRIPTION

Page 1

An sees file is an ASCII file. It consists of six logical parts: the checksum. the delta table (con
tains information about each delta). user names (contains login names and/or numerical group
IDs of users who may add deltas). flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH (start of heading) char
acter (octal 001). This character is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line.
The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD •••
@x DDDDD •••
@g DDDDD •••
@m <MR number>

@c <comments> •••

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the sees 10 of the delta, the date and time of creation of the delta, the login name
corresponding to the real user 10 at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c
lines contain comments associated with the delta.

March 29, 1984

SCCSFllE(5) SCCSFllE (5)

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @u and @U. An empty list allows any
one to make a delta.

Keywords used internally (see admin(1) for more information on their use). Each flag
line takes the form:

@f <flag> < optional text >

The following flags are defined:
@f t <type of program>
@f v <program name>
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@f j

< module name>
<floor>
<ceiling>
< default-sid>

@f I <lock-releases>
@f q < user defined >

The t flag defines the replacement for the identification keyword. The v flag controls
prompting for MR numbers in addition to comments; if the optional text is present it
defines an MR number validity checking program. The i flag controls the warning/error
aspect of the "No id keywords" message. When the i flag is not present, this message
is only a warning; when the i flag is present, this message will cause a ''fatal'' error (the
file will not be gotten, or the delta will not be made). When the b flag is present the '~b
keyletter may be used on the get command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of the secsflle.5 identification key
word. The f flag defines the ''floor'' release; the release below which no deltas may be
added. The c flag defines the "ceiling" release; the release above which no deltas may
be added. The d flag defines the default SID to be used when none is specified on a
get command. The n flag causes delta to insert a "null" delta (a delta that applies no
changes) in those releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be completely empty. The j flag
causes get to allow concurrent edits of the same base SID. The I flag defines a list of
releases that are locked against editing (get(1) with the .. keyletter). The q flag defines
the replacement for the identification keyword.

Comments

Body

March 29, 1984

Arbitrary text surrounded by the bracketing lines @t and @T. The comments section
typically will contain a description of the file's purpose.

The body consists of text lines and control lines. Text lines don't begin with the control
character, control lines do. There are three kinds of control lines: insert, delete, and
end, represented by:

Page 2

SeeSFILE (5)

SEE ALSO

@IDDDDD
@DDDDDD
@EDDDDD

sees FILE (5)

respectively. The digit string is the serial number corresponding to the delta for the con
trolline.

admin(1), delta(1), get(1), prs(1).
Source Code Control System User's Guide by l. E. Bonanni and C. A. Salemi.

Page 3 March 29, 1984

TERMCAP(5) (Plexus) TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
/usr/plx/termcap

DESCRIPTION
Termcap is a database describing terminals, used, e.g., by vi(1) and curses (3). Terrncap
describes terminals by listing a set of their capabilities, and by describing how operations are
performed. Padding requirements and initialization sequences are included in termcap.

Entries in termcap consist of a number of fields, separated by':'. The first entry for each termi
nal gives the names that are known for the terminal, separated by 'I' characters. The first name
is always 2 characters long and is used by older version 6 systems, which store the terminal
type in a 16 bit word in a systemwide data base. The second name is the most common abbre
viation for the terminal, and the last name should be a long name fully identifying the terminal.
The second name should contain no blanks; the last name may contain blanks for readability.

CAPABILITIES
(P) padding may be specified
(P*) padding may be based on the number of lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Uke cm but horizontal m.otion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Uke ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give :ei=:'if Ie
eo str Can erase overstrikes with a blank

Page 1 March.29, 1984

/~

TERMCAP(5) (Plexus) TERMCAP(5)

ff str (P*) Hardcopy terminal page eject (default AL)
hc bool Hardcopy terminal
hd str Half-line down (forward 1/2Iinefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can't print ~'s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give :im=: if ie
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by other function keys 0-9
kb str Sent by backspace key
kd str Sent by termi nal down arrow key
ke str Out of keypad transmit mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of other keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in keypad transmit mode
ku str Sent by terminal up arrow key
10-19 str Labels on other function keys

r· Ii num Number of lines on screen or page
II str Last line, first column (if no em)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
mu str Memory unlock (turn off memory lock).
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than nUll)
pt bool Has hardware tabs (may need to be set with Is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue

r'
ul bool Terminal underlines even though it doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode

March 29, 1984 Page 2

TERMCAP(5) (Plexus) TERMCAP(5)

Page 3

vb
ve
vs
xb
xn
xr
xs
xt

str
str
str
bool
bool
bool
bool
bool

A Sample Entry

Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (f1 =escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)
Tabs are destructive, magic so char (Teleray 1061)

The following entry, which describes the Concept-100, is among the more complex entries in the
termcap file as of this writing. (This particular concept entry is outdated, and is used as an
example only.)

c1 I c100 I con~ept100:is=\EU\Ef\E7\E5\E8\~I\ENH\~K\E\200\Eo&\200:\
:al=3*\E R:am:bs:cd=16*\E C:ce=16\E S:cl=2* L:cm=\Ea%+ %+ :co#80:\
:dc=16\EAA:dl=3*\E AB:ei=\E\200:eo:im=\EAP:in:ip=16*:li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and empty
fields may be included for readability (here between the last field on a line and the first field on
the next). Capabilities intermcap are of three types: (1) Boolean capabilities, which indicate
that the terminal has some particular feature; (2) numeric capabilities giving the size of the ter
minal or the size of particular delays; and (3) string capabilities, which give a sequence that can
be used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has automatic mar
gins (i.e. an automatic return and linefeed when the end of a line is reached) is indicated by the
capability am. Hence the description of the Concept includes am. Numeric capabilities are fol
lowed by the character '#' and then the value. Thus co, which indicates the number of columns
the terminal has, equals '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by the
two-character code, an '=', and then a string ending at the next following ':'. A delay in mil
liseconds may appear after the '=' in such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to provide this delay. The delay can be either
a integer, e.g. '20', or an integer followed by a '*', i.e. '3*'. A '*' indicates that the padding
required is proportional to the number of lines affected by the operation, and the amount given
is the per-affected-unit padding required. When a '*' is specified, it is sometimes useful to give
a delay of the form '3.5' specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding
of characters there. A \E maps to an ESCAPE character, AX maps to a control-x for any appropri
ate x, and the sequences \n \r \t \b \f give a newline, return, tab, backspace and formfeed.
Finally, characters may be given as three octal digits after a \' and the characters A and \ may
be given as \ A and \ \. If it is necessary to place a : in a capability it must be escaped in octal
as \072. If it is necessary to place a null character in a string capability it must be encoded as
\200. The routines that deal with termcap use C strings, and strip the high bits of the output
very late so that a \200 comes out as a \000 would.

March 29, 1984

r"\
\

r

r

TERMCAP(5) (Plexus) TERMCAP(5)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is to imitate the description of a similar terminal in termcap and then build
up a description gradually, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ex. To easily test a new terminal description you can set the environment
variable TERMCAP to a pathname of a file containing the deSCription you are working on and
the editor will look there rather than in letcltermcap. TERM CAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor. (This only works on version 7
systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability. If the
terminal is a CRT, then the number of lines on the screen is given by the Ii capability. If the ter
minal wraps around to the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, then this is given by the cl
string capability. If the terminal can backspace, then it should have the bs capability, unless a
backspace is accomplished by a character other than AH (ugh) in which case you should give
this character as the be string capability. If it overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in termcap are undefined at
the left and top edges of a CRT terminal. The editor will never attempt to backspace around the
left edge, nor will it attempt to go up locally off the top. The editor assumes that feeding off the
bottom of the screen will cause the screen to scroll up, and the am capability tells whether the
cursor sticks at the right edge of the screen. If the terminal has switch selectable automatic mar
gins, the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 tele
type is described as

t3 I 33 I tty33:cotP2:os

while the Lear Siegler ADM-3 is described as

cll adm31311si adm3:am:bs:cl=/lZ:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a cm string capability, with printf(3s) like
escapes %x in it. These substitute to encodings of the current line or column position, while
other characters are passed through unchanged. If the cm string is thought of as being a func
tion, then its arguments are the line and then the column to which motion is desired, and the %
encodings have the following meanings:

March 29, 1984

%d
%2
%3
%.
%+x
%>xy
%r
%i
%0/0
%n
%B
%0

as in printf, 0 origin
Iike%2d
like%3d
like%c
adds x to value, then %.
if value> x adds y, no output.
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (16*(X/10» + (x%10), no output.
Reverse coding (x-2*(x%16», no output. (Delta Data).

Page 4

TERMCAP(5) (Plexus) TERMCAP(5)

Page 5

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its cm capability is
cm==6\E&%r%2c%2Y. The Microterm ACT-IV needs the current row and column sent preceded
by a AT, with the row and column simply encoded in binary, cm="T%.% .. Terminals which use
%. need to be able to backspace the cursor (bs or be), and to move the cursor up one line on
the screen (up introduced below). This is necessary because it is not always safe to transmit
\t, \n AD and V, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
cm=\E=%+ %+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the current
position unchanged, then this sequence should be given as nd (non-destructive space). If it can
move the cursor up a line on the screen in the same column, this should be given as up. If the
terminal has no cursor addressing capability, but can home the cursor (to very upper left corner
of screen) then this can be given as ho; similarly a fast way of getting to the lower left hand
corner can be given as II; this may involve going up with up from the home poSition, but the edi
tor will never do this itself (unless II does) because it makes no assumption about the effect of
moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as ceo If the terminal can clear from the current position to the end of
the display, then this should be given as cd. The editor only uses cd from the first column of a
line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as al; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dl; this is done only from the first position on the line to be deleted. If the terminal can
scroll the screen backwards, then this can be given as sb, but just al suffices. If the terminal
can retain display memory above then the da capability should be given; if di~play memory can
be retained below then db should be given. These let the editor understand that deleting a line
on the screen may bring non-blank tines up from below or that scrolling back with sb may bring
down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character that can
be described using termcap. The . most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other termi
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks. You can find out which
kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the end, then yOUr terminal
does not distinguish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as you insert,
you have the second type of terminal, and should give the capability In, which stands for insert
nUll. If your terminal does something different and unusual then you may have to modify the

March 29, 1984

~
\

TERMCAP(5) (Plexus) TERMCAP(5)

editor to get it to use the insert mode your terminal defines. All terminals we have seen have an
insert mode falling into one of these two classes.

The editor can handle both terminals that have an insert mode, and terminals that send a simple
sequence to open a blank position on the current line. Give as im the sequence to get into
insert mode, or give it an empty value if your terminal uses a sequence to insert a blank posi
tion. Give as ei the sequence to leave insert mode (give this, with an empty value also if you
gave im so). Now give as ic any sequence needed to be sent just before sending the character
to be inserted. Most terminals with a true insert mode will not give ic, terminals which send a
sequence to open a screen position should give it here. (Insert mode is preferable to the
sequence to open a position on the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other sequence which
may need to be sent after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g. if there is a tab after the insertion position). If your terminal allows motion while
in insert mode you can give the capability mi to speed up inserting in this case. Omitting mi will
affect only speed. Some terminals (notably Datamedia's) must not have mi because of the way
their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and dc
to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and
se respectively. If there are several flavors of standout mode (such as inverse video, blinking,
or underlining - half bright is not usually an acceptable standout mode unless the terminal is in
inverse video mode constantly) the preferred mode is inverse video by itself. If the code to
change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, this is acceptable, and although it may confuse some programs
slightly, it can't be helped.

Codes to begin underlining and end underlining can be given as us and ue respectively. If the
terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a nondestructive space.)

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be given as vs and ve, sent at the
start and end of these modes respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cursor,
the codes to enter and exit this mode can be given as tl and teo This arises, for example, from
terminals like the Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor addressing, a one screen
sized window must be fixed into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to

March 29, 1984 Page 6

TERMCAP(5) (Plexus) TERMCAP(5)

transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to
always transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kl, kr, ku, kd, and kh respectively. If there are function keys such as fO,
f1, ... , f9, the codes they send can be given as kO, k1, ••• , k9. If these keys have labels other
than the default fO through f9, the labels can be given as 10, 11, ••• , 19. If there are other keys
that transmit the same code as the terminal expects for the corresponding function, such as
clear screen, the termcap 2 letter codes can be given in the ko capability, for example,
:ko=cl,II,sf,sb:, which says that the terminal has clear. home down, scroll down. and scroll up
keys that transmit the same thing as the cl. II. sf. and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi. which must be run on some minicomputers
due to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists of
groups of two characters. In each group. the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are h for kl, j for kd, k
for ku. I for kr. and H for kh. For example. the mime would be :ma= "Kj"Zk"XI: indicating
arrow keys left (H), down (K), up (Z), and right (X). (There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than "I to tab,
then this can be given as tao

Hazeltine terminals, which don't allow· ' characters to be printed should indicate hz. Datamedia
terminals. which echo carriage-return linefeed for carriage return and then ignore a following
linefeed should indicate nco Early Concept terminals. which ignore a linefeed immediately after
an am wrap. should indicate xn. If an erase-eol is required to get rid of standout (instead of
merely writing on top of it). xs should be given. Teieray terminals. where tabs turn all charac
ters moved over to blanks, should indicate xt. Other specific terminal problems may be
corrected by adding more capabilities of the form xx.

Other capabilities include Is. an initialization string for the terminal. and if. the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal. if the terminal has settable tabs. If both are given. is will be printed
before if. This is useful where if is lusrillbitabsetlstd but is clears the tabs first.

. Similar Terminals

FILES

If there are two very similar terminals. one can be defined as being just like the other with cer
tain exceptions. The string capability tc can be given with the name of the similar terminal.
This capability must be last and the combined length of the two entries must not exceed 1024.
Since termlib routines search the entry from left to right. and since the tc capability is replaced
by the corresponding entry. the capabilities given at the left override the ones in the similar ter
minal. A capability can be canceled with xxO where xx is the capability. For example, the entry

hn 12621 nl:ks@:ke@:tc=2621:

defines a 2621 nl that does not have the ks or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or for
different user preferences.

letcltermcap file containing terminal deSCriptions

SEE ALSO
eX(1). curses(3). termlib(3). tset(1). vi(1). ul(1). more(1).

Page 7 March 29. 1984

TERMCAP(5) (Plexus) TERMCAP(5)

NOTES

BUGS

The Plexus version of termcap is based on the one developed at the University of California at
Berkeley.

Ex allows only 256 characters for string capabilities, and the routines in termcap(3) do not check
for overflow of this buffer. The total length of a single entry (excluding only escaped newlines)
may not exceed 1024.

The ma, VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

March 29, 1984 PageS

TP(5) TP(5)

NAME
tp - magnetic tape format

DESCRIPTION
The command tp(1) dumps files to and extracts files from magtape.

Block zero contains a copy of a stand-alone bootstrap program; see tapeboot(8).

Blocks 1 through 62 contain a directory of the tape. There are 496 entries in the directory; 8
entries per block; 64 bytes per entry. Each entry has the following format:

struct tpent {
char pathnam[32];
short mode;
char uid;
char uid;
char gid;
char spare;
char sizeO;
short size2;
long time;
short tapea; I. tape address .1
short unused[8];
short cksum; I. check sum .1

}

The pathnam entry is the path name of the file when put on the tape. If the path name starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, the sizes and time modified are the same as described under i-nodes (f8(5». The
tape address is the tape block number of the start of the contents of the file. Every file starts on
a block boundary. The file occupies (size+ 1023)/1024 blocks of continuous tape. The check
sum entry has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 63 on are available for file storage.

A fake entry has a size of zero. See tp(1).

SEE ALSO
cpio(1), tp(1), fs(5), tapeboot(8).

Page 1 March 29, 1984

TTYTYPE(5) (Plexus) TTYTYPE(5)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
letc/ttytype

DESCRIPTION
Ttytype is a database containing, for each TTY port on the system, the kind of terminal that is
attached to it. The terminal kinds are from the names listed in termcap(5). Each port descrip
tion occupies one line. The line contains the terminal kind, a space, and the name of the TTY,
minus the Idev prefix. A sample ttytype file looks like this:

vt100 console
adm3a ttyO
vt100 tty1
vt52 tty2
vt100 tty3
vt100 tty4
dm1520 tty5
vt100 tty6
vt100 tty?

This information is used by tset(1) and login(1) to initialize the TERM variable at login time.

SEE AILSO
tset(1), login(1).

Page 1 March 29, 1984

UTMP(5) UTMP(5)

NAME
utmp. wtmp - utmp and wtmp entry format

DESCRIPTION

FILES

The files utmp and wtmp hold user and accounting information for use by commands such as
who(1). acctcon1 (see acctcon(1M». and login(1). They have the following structure. as
defined by <utmp.h>:

struct utmp
{

char uUine[8];
char ut_name[8];
long ut_time;

};

letclutmp
lusr/adm/wtmp
lusr/include/utmp.h

I. tty name .1
I. login name .1
I. time on .1

SEE ALSO
acctcon(1 M). login(1). who(1). write(1).

Page 1 March 29. 1984

r

VTCONF(5) (NOS only) VTCONF(5)

NAME
vtconf - configuration file for the NOS Virtual Terminal facility

DESCRIPTION

Page 1

The file lusr/lib/nos/vtconf configures the Virtual Terminal Facility of the Plexus Network
Operating System (NOS).

The major device number of a virtual TIY is 22. Plexus by default creates eight virtual terminal
devices: four Idev/vltty devices, which are used by remote systems for logging in to the local
system; and four Idev/vtty devices, which are used by the local system to connect to remote
systems. There is no set limit to the number of virtual TIYs you can create. You can call them
whatever you like.

NOS uses the file lusr/lib/nos/vtconf to determine what virtual connections are permitted on
what lines. The file is read only at initialization time when the system is booted. Hence to
locally reconfigure virtual TIYs, the system must be rebooted. An error message is generated if
the file cannot be located.

Comments may be placed in v1tconf by preceding them with a pound sign (#). New lines may
be escaped with a backslash ("\ D).

For a vltty, the entries in vteonf have the form

<vtid >[- <vtid >]: < local node name >[: < remote nodename> , < remote nocIename > , ...]

where "vtid" is the minor device number of the virtual TIY device, "local nodename" is the
nodename of the system where this vltty is located, and "remote nodename" is the nodename
of systems that are permitted to use this virtual TIY for logging in. Nodenames are limited to 9
characters in length. No entry in the third field or the keyword "all" mean that any remote sys
tem may use this virtual TIY. For example, the line

0-5:local

means that any remote system may use vlttys 0-5. The line

10:local:remote2

means that vltty2 is dedicated for use by the remote system "remote2".

For a vtty, the entries in vtconf have the form

<vtid > [- <vtid >]: < remote nodename>

where "vtid" is the minor device number of the virtual TIY device, and "remote nodename" is
the nocIename of the system to which this virtual terminal is logically connected. For example, if
virtual terminal vttyO has the minor device number 0 and is logically connected to the system
"remote1 ", the vtconf entry for vttyO would read

0:remote1

This means that vttyO is connected to the system "remote1". Each vtty may be logically con
nected to one and only one remote system.

March 29, 1984

VTCONF(5)

EXAMPLE
If Idev contains these lines

crw-rw-rw- 1 root
crw-rw-rw- 1 root
crw-rw-rw- 1 root
crw-rw-rw- 1 root
crw-rw-rw- 1 root
crw-rw-rw- 1 root
crw-rw-rw- 1 root
crw--w--w- 1 root
crw--w--w- 1 root
crw--w--w- 1 root
crw--w--w- 1 root
crw--w--w- 1 root

(NOS only)

22, 5 Dec 11 15:14 glenvtty
22, 3 Dec 11 15:14 gregvtty
22, 6 Jan 28 15:57 guestvtty
22, 4 Dec 11 15:14 jsevttty
22, 1 Feb 11 14:06 montevtty
22, 2 Feb 14 14:13 pafvtty
22, 0 Jan 20 16:28 sandyvtty
22, 12 Feb 15 10:37 vlttyO
22, 13 Feb 14 17:58 vltty1
22, 14 Jan 11 15:27 vltty2
22, 15 Jan 10 18:26 vltty3
22, 16 Dec 1821:08 vltty4

VTCONF(5)

there are seven vtty devices (minor device numbers 0-6), and five vltty devices (minor device
numbers 12-16); and the vtcon. file might look like this:

0:remote1
1:remote2
2-6:remote3
12:looal:remote1
13-14:local:remote2
15-16:looal

The first three lines apply to vtty devices. The first line means that the device sandyvtty (minor
device number 0) must be used to connect with the remote system "remote1 ". The second line
means the device montevtty (minor device number 1) must be used to connect With the remote
system "remote2". The third line means any of the devices pafvtty, gregvtty, pevtty, glenvtty,
or guestvtty may be used to connect with.the remote system "remote3".

The rest of the lines apply to vltty devices. The fourth line means that the device vlttyO may
receive Iogins from remote system "remote1 II only; the fifth line says that devices vltty1 and
v/tty2 will receive logins from the remote system "remote2" only. The sixth line says that the
rest of the vltty devices will receive logins from any remote system.

DIAGNOSTICS
bad or duplicate line in vtconf line count = <line where error occurred>
Last part is <characters In line to the right of the error>
The input line contains a parse error. A parse error occurs when there is a duplicate line, or the
same vtty is connected to more than one remote system, or the same virtual terminal is
declared to be both a vtty and a vltty.

cannot build host list for VT: no space in siocbuf
The buffer for the storage of host names has overflowed.

Max no. vtty's: <number of new entries that have been added to parse table>
vtconf lists more which are ignored
The parser ran out of space trying to update vtconf. It was able to add some new entries, but
found it could no longer access the old ones. This means there are too many virtual terminal
devices.

March 29,1984 Page 2

INTRO(6) INTRO(6)

NAME
intro - introduction to games

DESCRIPTION

NOTES

Page 1

This section describes the recreational and educational programs found in the directory
lusr/games. A suggested procedure is to disallow their use during business hours by means of
cron(1M).

Plexus adds fish. The following games are not currently supported: chess, maze, quiz, reversi,
and sky.

April 3, 1984

ARITHMETIC(S) ARITHMETlC(S)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
lusr/gameslarithmetlc [+-xI] [range]

DESCRIPTION

Page 1

Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the
answer is correct, it types back "Right''', and a new problem. If the answer is wrong, it replies
"What?", and waits for another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +, -, x, and I
respectively cause addition, subtraction, multiplication, and division problems to be generated.
One or more characters can be given; if more than one is given, the different types of problems
will be mixed in random order; default is +-.
Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and
quotients will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less.than or equal to range are equally likely to appear. If the respon
dent makes a mistake, the numbers in the problem which was missed become more likely to
reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to provide
drill for someone just past the first learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per problem, not percent correct.

April 3, 1984

~ .,

BACK(6) BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
lusr/gameslback

DESCRIPTION

FilES

BUGS

Page 1

Back is a program which provides a partner for the game of backgammon. It is designed to
play at three different levels of skill, one of which you must select. In addition to selecting the
opponent's level, you may also indicate that you would like to roll your own dice during your
turns (for the superstitious players). You will also be given the opportunity to move first. The
practice of each player rolling one die for the first move is not incorporated.

The points are numbered 1-24, with 1 being white's extreme inner table, 24 being brown's inner
table, 0 being the bar for removed white pieces and 25 the bar for brown. For details on how
moves are expressed, type y when back asks "Instructions?" at the beginning of the game.
When back first asks "Move?", type ? to see a list of move options other than entering your
numerical move.

When the game is finished, back will ask you if you want the log. If you respond with y, back
will attempt to append to or create a file back. log in the current directory.

lusr/games/lib/backrules
Itmp/b.
back. log

rules file
log temp file
log file

The only level really worth playing is "expert", and it only plays the forward game.
Back will complain loudly if you attempt to make too many moves in a turn, but will become
very silent if you make too few.
Doubling is not implemented.
Back does not provide instructions.

April 3, 1984

BJ(8) BJ(8)

NAME
bJ • the game of black jack

SYNOPSIS
lusr/gamesJbj

DESCRIPTION

Page 1

BJ is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as
might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an "insurance" bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if
the dealer does not.

If the player is dealt two cards of the same value, he is allowed to "double". He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)

If a dealt hand has a total of ten or eleven, the player may "double down". He may double
the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his total is not over
twenty-one. If the player "busts" (goes over twenty-one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the player wins the bet. ~
If both player and dealer stand, the one with the largest total wins. A tie is a push.

The maChine deals and keeps score. The following questions will be asked at appropriate
times. Each question is answered by y followed by a neW-line for "yes", or just neW-line for
uno".

?
Insurance?
Double down?

(means, "do you want a hit?")

Every time the deck is shuffled, the dealer so states and the "action" (total bet) and "standing"
. (total won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will
be printed.

April 3, 1984

CRAPS(6) CRAPS(6)

NAME
craps - the game of craps

SYNOPSIS
lusr/gameslcraps

DESCRIPTION

Page 1

Craps is a form of the game of craps that is played in Las Vegas. The program simulates the
roller, while the user (the player) places bets. The player may choose, at any time, to bet with
the roller or with the House. A bet of a negative amount is taken as a bet with the House, any
other bet is a bet with the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total bankroll is rejected and
the program prompts with "bet?" until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following rules apply (the player wins
or loses depending on whether the bet is placed with the roller or with the House; the odds are
even). The first roll is the roll immediately following a bet.

1. On the first roll:

7 or 11 wi ns for the roller;

2, 3, or 12 wins for the House;

any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:

point

7

roller wins;

House wins;

any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player an additional $2,000.
The program will prompt:

marker?

A ''yes'' (or "y") consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a bet is placed, how
many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers exceeds $2,000, the House
asks:

Repay marker?

A reply of ''yes'' (or ''y'') indicates the player'S willingness to repay the loan. If only 1 marker is
outstanding, it is immediately repaid. However, if more than 1 marker are outstanding, the
House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or just a carriage
return), an appropriate message is printed and the program will prompt with "How many?" until
a valid number is entered.

April 3, 1984

CRAPS(6) CRAPS(6)

If a player accumulates 10 markers (a total of $20,000 borrowed from the House), the program
informs the player of the situation and exits. '-

Should the bankroll of a player who has outstanding markers exceed $50,000, the total amount
of money borrowed will be automatically repaid to the House.

Any player who accumulates $100,000 or more breaks the bank. The program then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than "yes" is considered "no" (except in the case of "bet?" or "How many?").
To exit, send an interrupt (break), DEL, or control-D. The program will indicate whether the
player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from the time of day.
Depending on system usage, these numbers, at times, may seem strange but occurrences of
this type in a real dice situation are not uncommon.

April 3, 1984 Page 2

FISH(6) (Plexus) FISH(6)

NAME
fish - the game of fish

SYNOPSIS
lusr/games/fish

DESCRIPTION

Page 1

Fish simulates the children's card game. The player is dealt seven cards; the computer also
has a hand of seven cards, which the player never sees. The players take turns asking each
other if each has a certain card; e.g., "Do you have any 8's?" The player asking must have at
least one of the card in question. If the other player has one or more of the cards, he must
surrender them; otherwise, he draws one from the deck. The goal is to accumulate all four of
each card, i.e., all the aces, all the 2's, all the 3's, and so on. Whoever has the most complete
sets wins.

April 3, 1984

HANGMAN(S)

NAME
hangman - guess the word

SYNOPSIS
lu./gamealhangman [arg]

DESCRIPTION

HANGMAN(S)

Hangman chooses a word at least seven letters long from a dictionary. The user is to guess
letters one at a time.

The optional argument arg names an alternate dictionary.

FilES
lusr/liblw2006

BUGS
Hyphenated compounds are run together.

Page 1 April 3. 1984

MOO(S) MOO(S)

NAME
moo - guessing game

SYNOPSIS
lusr/gameslmoo

DESCRIPTION

Page 1

Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A "cow" is a correct digit in an incorrect position. A "bull" is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

April 3. 1984

TIT(6)

NAME
ttt - tic-tac-toe

SYNOPSIS
lusr/games/ttt

DESCRIPTION

TIT(6)

Ttt is the X and 0 game popular in the first grade. This is a learning program that never makes
the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

Page 1 April 3, 1984

~\

WUMP(6) (PDP-11 only) WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
lusr/gameslwump

DESCRIPTION

BUGS

Page 1

Wump plays the game of "Hunt the Wumpus." A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some
random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described in People's Computer Company, 2, 2 (November
1973).

It will never replace Adventure.

April 3, 1984

/~
-'----,

INTRO(7)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO(7)

This section describes miscellaneous facilities such as macro packages, character set tables,
etc.

NOTES
Plexus continues to provide the ms macro package.

Page 1 March 30, 1984

ASCII(7) ASCII(7)

NAME i-, ascii - map of ASCII character set

SYNOPSIS
cat lusr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and hexadecimal equivalents of each
character, to be printed as needed. It contains:

1000 nul 1001 soh 1002 stx 1003 etx 1004 eot 1005 enq 1006 ack 1007 bel
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 1017 si
1020 die 1021 dc1 1022 dc2 1023 dc3 1024 dc4 1025 nak 1026 syn 1027 etb
1030 can 1031 em 1032 sub 1033 esc 1034 fs 1035 gs 1036 rs 1037 us
1040 sp 1041 1042 • 1043 # 1044 $ 1045 % 1046 & 1047 '
1050 (1051 1052 • 1053 + 1054 • 1055 - j056. 1057 I
1060 0 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7
1070 8 1071 9 1072 : 1073 ; 1074 < 1075 = 1076 > 1077 ?
1100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 11170
1120 P 1121 a 1122 R 1123 S 1124 T 1125 U 1126 V 1127 W
1130 X 1131 Y 1132 Z 1133 [1134 \ 1135 1 1136 " 1137 _
1140 \ 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 9
1150 h 1151 1152 j 1153 k 1154 I 1155 m 1156 n 1157 0

1160 P 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w
1170 x 1171 y 1172 z 1173 { 1174 1 1175 } 1176 N 1177 del

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht Oa nl Ob vt Oc np Od cr Oe so Of sl
10 die 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us
20 sp 21 ! 22 • 23 # 24 $ 25 % 26 & 27 I

28 (29) 2a • 2b+ 2c • 2d - 2e • 2f I
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a : 3b ; 3c < 3d= 3e> 3f ?
4O@ 41 A 42 B 43C 44D 45E 46F 47 G
48H 49 I 4a J 4b K 4c L 4dM 4eN 4f 0
50 P 51 a 52 R 53 S 54 T 55 U 56V 57W
58 X 59 Y 5a Z 5b [5c \ 5d 1 5e " 5f _
60 \ 61 a 62 b 63 c 64d 65 e 66 f 67 9
68h 69 i Saj 6b k 6c I 6d m 6e n 6f 0

70 P 71 q 72 r 73s 74 t 75 u 76 v 77w
78 x 79 y 7a z 7b { 7c 1 7d } 7e N 7f del

FILES
lusr/pub/ascii

Page 1 March 30, 1984

ENVIRON(7) ENVIRON(7)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2) when a process
begins. By convention, these strings have the form "name=value". The following names are
used by various commands:

PATH The sequence of directory prefixes that sh(1), time(1), nice(1), nohup(1), etc., apply
in searching for a file known by an incomplete path name. The prefixes are
separated by colons (:). Login(1) sets PATH=:/bin:/usr/bin.

HOME Name of the user's login directory, set by login(1) from the password file passwd(5).
TERM The kind of terminal for which output is to be prepared. This information is used by

commands, such as mm(1) or tplot(1G), which may exploit special capabilities of
that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is standard local time zone
abbreviation, n is the difference in hours from GMT, and zzz is the abbreviation for
the daylight-saving local time zone, if any; for example, EST5EDT.

LOGNAME User's login id.

Further names may be placed in the environment by the export command and "name=value"
arguments in sh(1), or by exec(2). It is unwise to conflict with certain shell variables that are
frequently exported by .profile files: MAIL, PS1, PS2, IFS.

SEE ALSO
env(1), login(1), sh(1), exec(2), getenv(3C), profile(5), term(7).

Page 1 March 30, 1984

FCNTL(7)

NAME
fcntl • file control options

SYNOPSIS
f:include < fcntl.h >

DESCRIPTION

FCNTL(7)

The fcnt/(2) function provides for control over open files.
and arguments to fcntl and open(2).

This include file describes requests

1* Flag values accessible to open(2) and fcntl(2) */
1* (The first three can only be set by open) */
#defineO _RDONL Y 0
#defineO_WRONLY 1
#defineO _RDWR 2
#defineO_NDELAY 04
#defineO_APPEND 010

1* Non-blocking I/O */
/* append (writes guaranteed at the end) * /

/* Flag values accessible only to open(2) * /
#defineO_CREAT 00400 /* open with file create (uses third open arg)*/
#defineO_ TRUNC 01000 1* open with truncation */
#defineO_EXCL 02000 /* exclusive open */

/* fcntl(2) requests * /
#defineF _DUPFD 0
#defineF _ GETFD 1
#defineF _SETFD 2
#defineF _ GETFL 3
#defineF _SETFL 4

/* Duplicate fildes * /
/* Get fildes flags * /
/* Set fildes flags * /
/* Get file flags * /
/* Set file flags * /

SEE ALSO
fcntl(2). open(2).

Page 1

-
March 30. 1984

r

GREEK(7)

NAME
greek - graphics for the extended TTY -37 type-box

SYNOPSIS
cat lusr/pub/greek [I greek -Tterminal]

DESCRIPTION

GREEK(7)

Greek gives the mapping from ASCII to the "shift-out" graphics in effect between SO and 61 on
TElETYPE'~ Model 37 terminals equipped with a 128-character type-box. These are the default
greek characters produced by nroff(1). The filters of greek(1) attempt to print them on various
other terminals. The file contains:

alpha a A beta p B gamma '1 \
GAMMA r G delta 6 D DELTA A W
epsilon f S zeta (a eta " N
THETA e T theta 0 0 lambda). L
LAMBDA A E mu p M nu II @

xi e X pi 'If J PI II P
rho p K sigma iT Y SIGMA E R
tau T I phi ~ U PHI ~ F
psi 1/J V PSI 'if H omega w C
OMEGA n Z nabla V [not -.
partial a] integral f

A

FILES
lusr/pub/greek

SEE ALSO
300(1).4014(1).450(1). greek(1). hp(1). tc(1). troff(1).

Page 1 March 30. 1984

MAN(7) MAN(7)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man fi les

troff -man [-rs1] files

DESCRIPTION

Page 1

These troff(1) macros are used to layout the format of the entries of this manual. A skeleton
entry may be found in the file lusr/man/manO/skeleton. These macros are used by the man(1)
command.

The default page size is 8.5" x 11 • " with a 6.5" X 10" text area; the -rs1 option reduces
these dimensions to 6" X 9" and 4.75" X 8.375' " respectively; this option (which is not
effective in nroff(1» also reduces the default type size from 10-point to 9-point, and the vertical.
line spacing from 12-point to 10-point. The -rV2 option may be used to set certain parameters
to values appropriate for certain Versatec printers: it sets the line length to 82 characters, the
page length to 84 lines, and, it inhibits underlining; this option should not be confused with the
-Tvp option of the man(1) command, which is available at some UNIX sites.

Any text argument below may be one to six "words". Double quotes (RR) may be used to
include blanks in a "word". If text is empty, the special treatment is applied to the next line that
contains text to be printed. For example, .I may be used to italicize a whole line, or .SM followed
by .B to make small bold text. By default, hyphenation is turned off for nroff, but remains on for
troff.

Type font and size are reset to default values before each paragraph and after processing font
and size-setting macros, e.g., .1, .RB, .SM. Tab stops are neither used nor set by any macro
except .DT and .TH.

Default units for indents in are ens. When in is omitted, the previous indent is used. This
remembered indent is set to its default value (7.2 ens in troff, 5 ens in nroff-this corresponds to
0.5" in the default page size) by .TH, .PP, and .RS, and restored by .RE.

.TH t s c n

• SH text
• SS text
• B text
• 1 text
• SM text
.RI a b

. P

.HP in

.TP in

• IP tin
.RSin

.REk

.PMm

Set the title and entry heading; t is the title, s is the section number, C is extra com
mentary, e.g., "local", n is new manual name. Invokes .DT (see below).
Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate these two fonts for up to six argu
ments. Similar macros alternate between any two of roman, italic, and bold:

.IR .RB .BR .IB .BI
Begin a paragraph with normal font, point size, and indent. .PP is a synonym for .P .
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag. The next line that contains text to be
printed is taken as the tag. If the tag does not fit, it is printed on a separate line.
Same as .TP in with tag t; often used to get an indented paragraph without a tag .
Increase relative indent (initially zero). Indent all output an extra in units from the
current left margin.
Return to the kth relative indent level (initially, k=1; k=O is equivalent to k=1); if k
is omitted, return to the most recent lower indent level.
Produces proprietary markings; where m may be P for PRIVATE, N for NOTICE, BP
for BELL LABORATORIES PROPRIETARY, or BR for BELL LABORATORIES RES
TRICTED.

March 30, 1984

r

r

MAN(7) MAN(7)

• DT Restore default tab settings (every 7.2 ens in troff, 5 ens in nroff) .
.PDv Set the interparagraph distance to v vertical spaces. If v is omitted, set the inter

paragraph distance to the default value (O.4v in troff, 1v in nroff).

The following strings are defined:

\.R ® in troff(1), (Reg.) in nroff(1).
\.S Change to default type size.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2 ens in troff, 5 ens in nroff).
LL Une length including IN.
PD Current interparagraph distance.

CAVEATS

FILES

In addition to the macros, strings, and number registers mentioned above, there are defined a
number of internal macros, strings, and number registers. Except for names predefined by
troff(1) and number registers d, m, and y, all such internal names are of the form XA, where X
is one of),), and }, and A stands for any alphanumeric character.

If a manual entry needs to be preprocessed by cw(1), eqn(1) (or neqn), and/or tbl(1), it must
begin with a special line (described in man(1», causing the man command to invoke the
appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index for this Manual
assume the NAME section of each entry consists of a single line of input that has the following
format:

name[, name, name ...] \- explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity) in the SYNOPSIS
section of each entry.

The macro package itself uses only the roman font (so that one can replace, for example, the
bold font by the constant-width font-see cw(1». Of course, if the input text of an entry contains
requests for other fonts (e.g., .I, .RB, \fI), the corresponding fonts must be mounted.

lusr/nb/tmac/tmac.an
lusr/lib/macros/cmp.[nt].[dt].an
lusr/lib/macros/ucmp.[nt].an
lusr/man/manO/skeleton

SEE ALSO

BUGS

man(1), troff(1).

If the argument to .TH contains any blanks and is not enclosed by double quotes (--), there will
be bird-dropping-like things on the output.

March 30, 1984 Page 2

MM(7) M~(7)

NAME
mm - the MM macro package for form~tting documents

SYNOPSIS
mm [options] [files]

nroft -mm [options) [files)

nroft -em [options) [files)

mmt [options) [files]

troft -mm [options) [files)

troff -em [options) [files)

DESCRIPTION

FILES

This package provides a formatting capability for a very wide variety of documents. It is the
standard package used by the BTL typing pools and documentation centers. The manner in
which a document is typed in and edited is essentially independent of whether the document is
to be eventually formatted at a terminal or is to be phototypeset. See the references below for
further details.

The -mm option causes nroff(1) and troff(1) to use the non-compacted version of the macro
package, while the -em option results in the use of the compacted version, thus speeding up the
process of loading the macro package.

lusr/lib/tmac/tmac.m
lusr/lib/macros/mm[nt]
lusrllib/macros/cmp.[nt].[dt).m
lusr/lib/macros/ucmp.[nt).m

pointer to the non-compacted version of the package
non-compacted version of the package
compacted version of the package
initializers for the compacted version of the package

SEE ALSO

Page 1

mm(1). mmt(1), troff(1).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

March 30, 1984

r

MS(7) (Plexus) MS(7)

NAME
ms - macros for formatting manuscripts

SYNOPSIS
nroff -ms [options) file .. .
troff -mS [options) file .. .

DESCRIPTION

FILES

This package of nroff and troff macro definitions provides a canned formatting facility for techni
cal papers in various formats. When producing 2-column output on a terminal. filter the output
through co/(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction
with this package. however these requests may be used with impunity after the first .PP:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n=1 single. n=2 double space

.na no alignment of right margin

Output of the eqn, neqn, refer, and tb/(1) preprocessors for equations and tables is acceptable
as input

lusr/libltmacltmac.s

SEE ALSO
eqn(1). troff(1). refer(1). tbl(1)

REQUESTS

Request
. 1C

.2C

.AB

.AE

. AI

.AT

.AU JC Y

. B JC

. B1

.B2

.BT

Page 1

Initial
Value
yes

no

no

no

no

no

no

no

no

date

Cause
Break
yes

yes

yes

Explanation .
One column format on a new page.

Two column format

Begin abstract.

yes End abstract .

yes

yes

yes

no

yes

yes

no

Author's institution follows. Suppressed in TM.

Print 'Attached' and turn off line filling.

Author's name follows. JC is location and y is
extension. ignored except in TM .

Print JC in boldface; if no argument switch to
boldface .

Begin text to be enclosed in a box.

End text to be boxed and print it.

Bottom title, automatically invoked at foot of
page. May be redefined.

March 30. 1984

MS(7)

March 30. 1984

.BXx

.CS x ...

. CT

.DAx

. DE

.DSx

. EG

.EN

. EQxy

. FE

.FS

.HO

.Ix

.IH

.IM

. IPxy

.KE

no

yes

no yes

nroft no

yes

no yes

no

yes

yes

yes

no no

no

no no

no no

no no

no yes

yes

(Ple.us)

Print x in a box.

Cover sheet ir:tfo if TM format. suppressed
otherwise. Arguments are number of text
pages. other pages. total pages. figures.
tables. references .

Print 'Copies to' and enter no-fill mode.

'Date line' at bottom of page is x. Default is
today .

End displayed text. Implies .KE.

Start of displayed text. to appear verbatim
line-by-line. x-I for indented display
(default). x=L for left-justified on the page.
x=C for centered, x=B for make left-justified
bleck. then center whole block. Implies .KS .

,Print document in BTL format for 'Engineer's
Notes.' Must be first.

Space after equation produced by eqn or
neqn.

Precede equation; break out and add space .
Equation number is y. The optional argument
x may be I to indent equation (default), L to
left-adjust the equation, or C to center the
equation.

End footnote .

Start footnote. The note will be moved to the
bottom of the page.

'Bell Laboratories. Holmdel. New Jersey
07733'.

Italicize X; if x missing. italic text follows .

'Bell Laboratories. Naperville. Illinois 60540'

Print document in BTL format for an internal
memorandum. Must be first.

Start indented paragraph. with hanging tag x .
Indentation is yens (default 5).

End keep. Put kept text on next page if not
enough room.

MS(7)

Page 2

MS(7)

Page 3

.KF no

. KS no

.LG no

.LP yes

.MF

. MH

.MR

.NO date troff

.NHn

. NL

. OK

.PT

.py

. OE

.OP

. OS

. R

. RE

. RP

yes

pg*

yes

no

yes

yes

no

yes

no

no

yes

no

yes

no

yes

yes

yes

no

yes

(Plexus)

Start floating keep. If the kept text must be
moved to the next page, float later text back
to this page .

Start keeping following text.

Make letters larger.

Start left-blocked paragraph.

Print document in BTL format for 'Memoran
dum for File.' Must be first .

'Bell Laboratories, Murray Hill, New Jersey
07974'.

Print document in BTL format for 'Memoran
dum for Record.' Must be first.

Use date supplied (if any) only in special BTL
format positions; omit from page footer.

Same as .SH, with section number supplied
automatically. Numbers are multilevel, like
1.2.~, where n tells what level is wanted
(default is 1) •

Make letters normal size.

'Other keywords' for TM cover sheet follow .

Page title, automatically invoked at top of
page. May be redefined.

'Bell Laboratories, Piscataway, New Jersey
08854'

End quoted (indented and shorter) material .

BegIn single paragraph which is indented and
shorter.·

Begin quoted (Indented and shorter) material .

Roman text follows .

End relative indent level .

Cover sheet and first page for released paper .
Must precede other requests.

MS(7)

March 30, 1984

MS(7)

.RS

.SGx no

.SH

. SM no

. TAx ... 5 ...

. TE

. TH

. TL no

.TMx ... no

.TRx

.TSx

. ULx

.UX

.WH

March 30, 1984

yes

yes

yes

no

no

yes

yes

yes

yes

no

no

no

(Plexus)

Start level of relative indentation. Following
IP's are measured from current indentation.

Insert signature(s) of author(s), ignored
except in TM. x is the reference line (initials
of author and typist).

Section head follows, font automatically bold

Make letters smaller .

Set tabs in ens. Default is 5 10 15 ...

End table .

End heading section of table .

Title follows .

Print document in BTL technical memoran
dum format. Arguments are TM number,
(quoted list of) case number(s), and file
number. Must precede other requests.

Print in BTL technical report format; report
number is x. Must be first.

Begin table; if x is H table has repeated head-
in~ .

Underline argument (even in troff) .

'UNIX'; first time used, add footnote 'UNIX is
a trademark of Bell Laboratories.'

'Bell LaboratOries, Whippany, New Jersey
07981'.

MS(7)

Page 4

r

MV(7) MV(7)

NAME
mv - a macro package for making view graphs

SYNOPSIS
mvt [options] [files]
Irolf -my [options] [files]

DESCRIPTION

FilES

This package provides an easy-to-use facility for making view graphs and projection slides in a
variety of formats. A dozen or so macros are provided that accomplish most of the formatting
tasks needed in making transparencies. All of the facilities of troff(1), eqn(1), and tbl(1) are
available for more difficult tasks. The output can be previewed on most terminals, and, in partic
ular, on the Tektronix 4014 and on the Versatec printer. See the reference below for further
details.

lusr/lib/tmac/tmac. v

SEE ALSO

Page 1

eqn(1), mvt(1), tbl(1), troff(1).
A Macro Package for View Graphs and Slides by T. A. Dolotta and D. W. Smith (in prepara
tion).

March 30, 1984

REGEXP(7) REGEXP(7)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
=ldefine INIT <declarations>
=ldefine GETC() < getc code>
=ldefine PEEKC() < peekc code>
=ldefine UNGETC(c) <ungetc code>
=ldefine RETURN(pointer) <return code>
=ldefine ERROR(val) < error code>

=linclude <regexp.h>

char .compile(instring, expbuf, endbuf, eof)
char .instring, .expbuf, .endbuf;

int step(string, expbuf)
char .string, .expbuf;

DESCRIPTION

Page 1

This page describes general purpose regular expression matching routines in the form of ed(1).
defined in lusr/include/regexp.h. Programs such as ed(1). sed(1). grep(1). bs(1); expr(1).
etc .• which perform regular expression matching use this source file. In this way. only this file
need be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the "#include <regexp.h>" statement. These macros
are used by the compile routine.

GETC() Return the value of the next character in the regular expression pattern.
Successive calls to GETC() should return successive characters of the
regular expression.

PEEKC() Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the next
character returned by GETC(».

UNGETC(C)

RETU RN (pointer)

ERROR(va/)

Cause the argument c to be returned by the next call to GETC() (and
PEEKC(». No more that one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(}. The
value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of
the argument pointer is a pointer to the character after the last character
of the compiled regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine. The argument val
is an error number (see table below for meanings). This call should never
return.

March 30. 1984

REGEXP(7)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \ { \}.
} expected after \.
First number exceeds second in \ { \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

REGEXP(7)

The first parameter instring is never used explicitly by the compile routine but is useful for pro
grams that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of «char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the compiled
regular expression will be placed.

The parameter endbuf is one more that the highest address that the compiled regular expres
sion may be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to
ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. For exam
ple, in ed(1), this character is usually a I.

Each programs that includes this file must have a #define statement for INIT. This definition
will be placed right after the declaration for the function compile and the opening curly brace (0.
It is used for dependent declarations and initializations. Most often it is used to set a register
variable to point the beginning of the regular expression so that this register variable can be
used in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEEKC() and UNGETC(). See the
example belOW of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression matching, one of
which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This
string should be null terminated.

The second parameter expbuf is the compiled regular expression which was obtained by a call
of the function compile.

The function step returns one, if the given string matches the regular expression, and zero if the
expressions do not match. If there is a match, two external character pointers are set as a side
effect to the call to step. The variable set in step is 1001. This is a pointer to the first character
that matched the regular expression. The variable 1002, which is set by the function advance,
points the character after the last character that matches the regular expression. Thus if the
regular expression matches the entire line, loc1 will point to the first character of string and 1002
will point to the null at the end of string.

March 30, 1984 Page 2

REGEXP(7) REGEXP(7)

Step uses the external variable circf which is set by compile if the regular expression begins
with A. If this is set then step will only try to match the regular expression to the beginning of ~
the string. If more than one regular expression is to be compiled before the the first is executed
the value of circf should be saved for each compiled expression and circf should be set to that
saved value before each call to step.

The function advance is called from step with the same arguments as step. The purpose of
.step is to step through the string argument and call advance until advance returns a one indi
cating a match or until the end of string is reached. If one wants to constrain string to the
beginning of the line in all cases, step need not be called, simply call advance.

When advance encounters a • or \ { \} sequence in the regular expression it will advance its
pOinter to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string that
initially matched the. or \ { \}. It is sometimes desirable to stop this backing up before the ini
tial point in the string is reached. If the external character pointer lacs is equal to the point in
the string at sometime during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used be ed(1) and sed(1) for substitutions done globally
(not just the first occurrence, but the whole line) so, for example, expressions like s/y.llg do not
loop forever.

The routines ecmp and getrange are trivial and are called by the routines previously mentioned.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls look from grep(1):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp) ~
#define UNGETC(c) (--sp)
#define RETURN(C) return;
#define ERROR(C) regerr()

#include <regexp.h>

compile(*argv, expbuf, &expbuf[ESIZE), '\0');

if(step(linebuf, expbuf»
succeed();

lusr/include/regexp.h

SEE ALSO

BUGS

Page 3

ed(1), grep(1), sed(1).

The handling of circf is kludgy.
The routine ecmp is equivalent to the Standard 1/0 routine strncmp and should be replaced by
that routine.
The actual code is probably easier to understand than this manual page.

March 30, 1984

STAT(7)

NAME
stat· data returned by stat system call

SYNOPSIS
"include < sysltypes.h >
"include < syslstat.h >

DESCRIPTION

STAT(7)

The system calls stat and fstat(2) return data whose structure is defined by this include file.
The encoding of the field sCmode is defined in this file also.

FilES

/*
* Structure of the result of stat
*/

struct stat
{

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
off_t
time_t
time_t
time_t

};

#define SJFMT
#define
#define
#define
#define
#define
#define SJSUID
#define SJSGID
#define S-,SVTX
#define S JREAD
#define SJWRITE
#define SJEXEC

st_dev;
sUno;
st_mode;
st_nlink;
st_uid;
st_gid;
stJdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000
SJFDIR
S_IFCHR
SJFBLK
SJFREG
SJFIFO
04000
02000
01000
00400
00200
00100

/usr/include/sys/typeS.h
/usr/include/syslstat.h

SEE ALSO
stat(2).

Page 1

0040000
0020000
0060000
0100000
0010000

/* type of file * /
/* di rectory * /
/* character special * /
/* block special */
/* regu lar * /
/* fifo */
/* set user id on execution * /
/* set group id on execution */
/* save swapped text even after use * /
/* read permission, owner * /
/* write permission, owner */
/* execute/search permission, owner */

March 30, 1984

TERM(7) TERM(7)

NAME
term - conventional names

DESCRIPTION
These names are used by certain commands (e.g., nroff(1), mm(1), man(1), tabs(1» and are
maintained as part of the shell environment (see sh(1), profile(5), and environ(7» in the variable
$TERM:

1520
1620
1620-12
2621
2631
2631-c
2631-e
2640
2645
300
300-12
300s
382
300s-12
3045
33
37
40-2
4000A
4014
43
450
450-12
735
745
dumb

hp
Ip
tn1200
tn300
vt100

Datamedi a 1520
Diablo 1620 and others using the HyType II printer
same, in 12-pitch mode
Hewlett-Packard HP2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard HP2640 series
Hewlett-Packard HP264n series (other than the 2640 series)
DASIJDTC/GSI 300 and others using the HyType I printer
same, in 12-pitch mode
DASIJDTC/GSI 300s
DTC 382
same, in 12-pitch mode
Datamedia 3045
TELETYPE® Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
Trendata 4000A
Tektronix 4014
TELETYPE Model 43 KSR
DASI450 (same as Diablo 1620)
same, in 12-pitch mode
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack reverse
line-feed and other special escape sequences
Hewlett-Packard (same. as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300
Digital VT100

Up to 8 characters, chosen from [-a-zO-9I, make up a basic terminal name. Terminal sub
models and operational modes are distinguished by suffixes beginning with a -. Names should
generally be based on original vendors, rather than local distributors. A terminal acquired from
one vendor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept arguments of the
form -Tterm where term is one of the names given above; if no such argument is present, such
commands should obtain the terminal type from the environment variable $TERM, which, in turn,
should contain term.

SEE ALSO

BUGS

Page 1

mm(1), nroff(1), tplot(1G), sh(1), stty(1), tabs(1), profile(5), environ(7).

This is a small candle trying to illuminate a large. dark problem. Programs that ought to adhere
to this nomenclature do so somewhat fitfully.

March 30. 1984

TYPES(7) TYPES(7)

NAME
types - primitive system data types

SYNOPSIS
#include <sysltypes.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

typedef struct { int r(1); } * physadr;
typedef long daddr _ t;
typedef char * caddr _t;
typedef unsigned short ushort;
typedef ushort ino_t;
#ifdef m68
typedef short
#else
typedef char
#endif
typedef long
#ifndef OVKRNL
#ifdef m68
typedef int
#else
typedef int
#endif
#else
typedef int
#endif
typedef short
typedef long
typedef long

cnt t· - ,

cnt to - ,

labeU(13);

label_ t(9);

labeU(10);

dev t· - ,
off t· -'
paddr);

/* a2-a7, d2-d7, & pc */

/* program status regs r7 - r15 * /

The form daddr j is used for disk addresses except in an i-node on disk, see fs(5). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a dev
ice code specify kind and unit number of a device and are installation-dependent. Offsets are
measured in bytes from the beginning of a file. The /abe/j variables are used to save the pro
cessor state while another process is running.

SEE ALSO
fs(5).

Page 1 March 30, 1984

INTRO(8) INTRO(8)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION

NOTES

BUGS

This section outlines certain procedures that will be of interest to those charged with the task of
system maintenance. Included are discussions on such topics as recovery from crashes, file
backups, etc.

Plexus added the commands autoboot, dconfig, dformat, fbackup, and gettytab. The com
mands 70boot, diskboot, etp, hasp, romboot, rp6fmt, tapeboot, unixboot, uvac, and vaxops
have been eliminated. In most cases, the deleted commands apply to non-Plexus hardware.

Because of its frequent use in system maintenance, the shutdown command has been moved
to this section from Section 1.

No manual can take the place of good, solid experience.

Page 1 April 2, 1984

AUTOBOOT(8) (Plexus) AUTOBOOT(8)

NAME
autoboot - automatic reboot

DESCRIPTION

NOTES

Plexus UNIX can be configured to boot itself from a system reset or power failure and go into
multi-user or single-user state. If autoboot is enabled, the software:

1) boots the default system as set by the standalone programs dconfig or dformat, and

2) goes into state 8, the autoboot state. In state 8, the file /etc/rc does an /etc/fsck on the
default disk devices and then goes into state 2, mUlti-user.

To enable autoboot, set switch S4 of the processor board switchpak to the ON position. See the
section titled "Processor Board Options" in the appendix titled "Board-Level Configuration
Options" in the Plexus User's Manual.

This is a Plexus command. It is not part of standard SYSTEM III.

SEE ALSO

BUGS

Page 1

init(8), rc(8).

While autoboot can ensure a running system when no one is around to reboot after a crash, it
does not resolve the cause of the crash or fix any damage done by it.

April 2, 1984

~
I

r

CRASH(8) (PDP-11 only) CRASH(8)

NAME
crash - what to do when the system crashes

DESCRIPTION

Page 1

This entry gives at least a few clues about how to proceed if the system crashes. It can't pre-
tend to be complete.

How to bring it back up. If the reason for the crash is not evident (see below for guidance on
"evident") you may want to try to dump the system if you feel up to debugging. At the moment
a dump can be taken only on magtape. With a tape mounted and ready, stop the machine, load
address 44(8) (on the PDP-11), 400(16) (on the VAX-11/780; see vaxops(8», and start. This
should write a copy of all of core on the tape with an EOF mark. Be sure the ring is in, the tape
is ready, and the tape is clean and new.

In restarting after a crash, always bring up the system single-user, as specified in unixpoot(8)
as modified for your particular installation. Then perform an fsck(1 M) on all file systems which
could have been in use at the time of the crash. If any serious file system problems are found,
they should be repaired. When you are satisfied with the health of your disks, check and set the
date if necessary, then come up multi-user.

To even boot UNIX at all, three files (and the directories leading to them) must be intact. First,
the initialization program /etc/init must be present and executable. If it is not, the CPU will loop
in user mode at location 6(8) (PDP-11), 13(16) (VAX-11/780). For init to work correctly,
/dev/console and /binlsh must be present. If either does not exist, the symptom is best
described as thrashing. Init will go into a fork/exec loop trying to create a Shell with proper
standard input and output.

If you cannot get the system to boot, a runnable system must be obtained from a backup
medium. The root file system may then be doctored as a mounted file system as described
!below. If there are any problems with the root file system, it is probably prudent to go to a
backup system to avoid working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should be treated gently; it
shouldn't be mounted unless necessary, and if it is very valuable yet in quite bad shape,
perhaps it should be copied before trying surgery on it. This is an area where experience and
informed courage count for much.

Fsck(1 M) is adept at diagnosing and repairing file system problems. It first identifies all of the
files that contain bad (out of range) blocks or blocks that appear in more than one file. Any such
files are then identified by name and fsck requests permission to remove them from the file sys
tem. Files with bad blocks should be removed. In the case of duplicate blocks, all of the files
except the most recently modified should be removed. The contents of the survivor should be
checked after the file system is repaired to ensure that it contains the proper data. (Note that
running fsck with the -n option will cause it to report all problems without attempting any repair.)

Fsck will also report on incorrect link counts and will request permiSSion to adjust any that are
erroneous. In addition, it will reconnect any files or directories that are allocated but have no file
system references to a "Iost+found" directory. Finally, if the free list is bad (out of range, miss
ing, or duplicate blocks) fsck will, with the operators concurrence, construct a new one.

Why did it crash? UNIX types a message on the console typewriter when it voluntarily crashes.
Here is the current list of such messages, with enough information to provide a hope at least of
the remedy. The message has the form "panic: ... ", possibly accompanied by other informa
tion. Left unstated in all cases is the possibility that hardware or software error produced the
message in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argument. Definitely
hardware or software error.

April 2, 1984

CRASH(8) (PDP-11 only) CRASH (8)

devtab ~
Null device table entry for the major device used as argument to getblk. Definitely
hardware or software error.

iinit An 1/0 error reading the super-block for the root file system during initialization.

no f5
A device has disappeared from the mounted-device table. Definitely hardware or softwar~
error.

noimt
Uke "no fs", but produced elsewhere.

no clock
During initialization, neither the line nor programmable clock was found to exist.

1/0 error in swap
An unrecoverable 1/0 error during a swap. Really shouldn't be a panic, but it is hard to fix.

out of swap space
A program needs to be swapped out, and there is no more swap space. It has to be
increased. This really shouldn't be a panic, but there is no easy fix.

trap An unexpected trap has occurred within the system. This is accompanied by three
numbers: a "ka6", which is the contents of the segmentation register for the area in which
the system's stack is kept; "aps", which is the location where the hardware stored the pro
gram status word during the trap; and a ''trap type" which encodes which trap occurred.
The trap types are:

PDP-11 :
o bus error
1 illegal instruction
2 BPT/trace
3 lOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 11170 cache parity, or programmed interrupt
8 floating point trap
9 segmentation violation

VAX-11/780:
o reserved addressing fault
1 illegal instruction
2 BPT instruction trap
3 XFC instruction trap
4 reserved operand fault
5 recursive system call (CHMK instruction)
6 floating point trap
7 software level 1 (reschedule) trap
8 segmentation violation
9 protection fault <,

10 trace trap
11 compatibility mode fault

In some of these cases it is possible for octal 40 to be added into the trap type; this indicates
that the processor was in user mode when the trap occurred. If you wish to examine the stack
after such a trap, either dump the system, or use the console switches to examine core; the
required address mapping is described below.

April 2, 1984 Page 2

,

r

CRASH (8) (PDP-11 only) CRASH(8)

Interpreting dumps. All file system problems should be taken care of before attempting to look
at dumps. The dump should be read into the file lusr/tmp/core~ cp(1) will do. At this point, you
should execute ps -el -c lusrltmplcore and who to print the process table and the users who
were on at the ti me of the crash.
Additional information for the PDP-11. You should dump (adb(1» the first 30 bytes of
lusr/tmp/core. Starting at location 4, the registers RO, R1, R2, R3, R4, R5, SP and KDSA6 (KISA6
for 11140s) are stored. If the dump had to be restarted, RO will not be correct. Next, take the
value of KA6 (location 22(8) in the dump) multiplied by 100(8) and dump 2000(8) bytes starting
from there. This is the per-process data associated with the process running at the time of the
crash. Relabel the addresses 140000 to 141776. R5 is C's frame or display pointer. Stored at
(R5) is the old R5 pointing to the previous stack frame. At (R5)+2 is the saved PC of the calling
procedure. Trace this calling chain until you obtain an R5 value of 141756, which is where the
user's R5 is stored. If the chain is broken, you have to look for a plausible R5, PC pair and con
tinue from there. Each PC should be looked up in the system's name list using adb(1) and its:
command, to get a reverse calling order. In most cases this procedure will give an idea of what
is wrong. A more complete discussion of system debugging is impossible.

SEE ALSO
adb(1), fsck(1 M), unixboot(8), vaxops(8).

Page 3 April 2, 1984

DCONFIG(8) (Plexus) DCONFIG(8)

NAME
dconfig - configure logical disks

SYNOPSIS
letcJdconfig - for use under UNIX

dconfig - for running program from release tape only

Istandldconfig - for standalone use (UNIX not running) only

DESCRIPTION

NOTES

Dconfig allows you to change the Sys3 default logical disk address assignments and the default
UNIX device mapping. It also can be used to verify the logical disk configuration, change the
system nodename for uucp and uname, or change the primary bootname.

Dconfig has both regular (/etcJdconfig) and standalone (/standldconflg) versions. Plexus
release tapes also contain a copy of dconfig. The argllhlents to letc/dconfig (the regular ver
sion) differ from those for the standalone and tape versions. letcJdconflg expects the special
files defined in the Idev directory as arguments, while the standalone version and the release
tape version both use built-in special filenames as described in the Plexus User's Manual.

Oconfig prompts for responses, and gives the current values for each parameter in brackets. A
<return> leaves the values the same; a <return> in response to a yes or no question
defaults to "no". Unlike most Sys3 programs, dconflg expects response in terms of 512-byte
sectors, rather than 1024 byte blocks.

Dconfig asks "Disk?". If dconflg for any reason (e.g., permissions) cannot access the disk you
type, it continues to give the "Disk?" prompt. For complete information and examples, see the
Plexus User's Manual.

This is a Plexus command. It is not part of stock SYSTEM III.

SEE ALSO
uname(1).

BUGS
letcJdconfig should be used only to examine and not change data.

Page 1 April 2, 1984

~.

r

DFORMAT(8)

NAME
dformat - disk formatter

SYNOPSIS

(Plexus)

dformat - for running the program from a release tape only

/standldformat - for standalone use (no UNIX) only

DESCRIPTION

DFORMAT(8)

Dformat is the Sys3 disk formatting program. One option to dformat formats the disk and
spares bad sectors; another just spares bad sectors. Other options differ for the P/40 and P/25;
all are explained in detail in the Plexus User's Manual.

Dformat prompts for the parameters it needs. For examples, see the Plexus User's Manual.

NOTES
This is a Plexus command. It is not part of standard SYSTEM III.

SEE ALSO
Plexus User's Manual

Page 1 April 2, 1984

FBACKUP(8) (Plexus) FBACKUP(8)

NAME
fbackup - make a fast tape backup of a file system

SYNOPSIS
fbackup - for running the program from a release tape only

Istandlfbackup - for standalone (no UNIX) use only

DESCRIPTION

NOTES

The standalone program fbackup makes a fast copy of data on disk to tape, or data on tape to
disk. It is usually used to make a copy of a file system. Fbackup is faster than dump and
writes in a format that is understood by dd (i.e., it is a byte-by-byte copy), so you should use
fbackup rather than dump if you need the speed. See NOTES below for when to use which of
the syntax descriptions above.

Fbackup prompts for its· arguments. It can copy between an iSBC disk and 9-track tape or
between an IMSC disk and cartridge. It does not support copies between an IMSC disk and 9-
track tape or an iSBC disk and a cartridge. Fbackup writes to 9-track tape in block sizes of
16K bytes per record.

To use fbackup, you need to know the starting disk address of the file system, and its length in
S12-byte disk sectors. To find this out, use dconfig(8).

On P/40 systems with the cartridge tape option; fbackup writes to the cartridge tape, not the 9-
track tape.

This is a Plexus program. It is not part of standard SYSTEM III.

SEE ALSO

BUGS

Page 1

Plexus User's Manual

Fbackup accepts unsupported combinations of disk and tape and proceeds to copy between a
supported combination.

April 2, 1984

FILESAVE(8) FILESAVE(8)

NAME
filesave, tapesave - daily/weekly UNIX file system backup

SYNOPSIS
letclfilesave. ?
letc/tapesave

DESCRIPTION
These shell sCripts are provided as models. They are designed to provide a simple, interactive
operator environment for file backup. Filesave.? is for daily disk-to-disk backup and tapesave
is for weekly disk-to-tape.

The suffix .? can be used to name another system where two (or more) machines share disk
drives (or tape drives) and one or the other of the systems is used to perform backup on both.

SEE ALSO
shutdown(8), volcopy(1 M).

Page 1 April 2, 1984

GETIY(8) GETTY(8) ..

NAME
getty - set the modes of a termi nal

SYNOPSIS
letc/getty name type delay

DESCRIPTION
Getty is normally invoked by init(8) as the first step in allowing users to login to the system.
Unes in letc/inittab tell init to invoke getty with the proper arguments.

Name should be the name of a terminal in Idev (e.g., tty03); type should be a single character
chosen from ., 0, 1, 2, 3, 4, 5, or 6 (may vary locally) which selects a speed table in getty, or I,
which tells getty to update letc/utmp and exit; delay is relevant for dial-up ports only. It speci
fies the time in seconds that should elapse before the port is disconnected if the user does not
respond to the login: request. .

First, getty types the login: message. The login: message depends on the speed table being
used, and may include the characters that put the GE TermiNet 300 terminal into full-duplex,
take the DASI terminals out of the plot mode, or put a TELElYPE~ Model 37 into full-duplex.
Then the user's login name is read, a character at a time.

While reading, getty tries to adapt to the terminal, speed, and mode that is being used. If a null
character is received, it is assumed to be the result of a "break" ("interrupt"). The speed is then
changed based on the speed table that getty is using, and login: is typed again. Subsequent
breaks cause a cycling through the speeds in the speed table being used.

The user's login name is terminated by a new-line or carriage-return character. The latter
results in the system being set to treat carriage returns appropriately. If the login name contains
only upper-case alphabetic characters, the system is told to map any future upper-case charac
ters into the corresponding lower-case characters.

Finally, login(1) is called with the user's login name as argument.

Speed sequences for the speed tables:

B 110; for 110 baud console TIY.
o B300-B150-B110-B1200; normal dial-up sequence starting at B300.
1 B150; no sequence.
2 B2400; no sequence.
3 B1200-B300-B150-B110; normal dial-up sequence starting at B1200.
4 B300; for console DECwriter.
5 B9600; no sequence.
6 B4800-B9600; for Tektronix 4014.
7 B4800; no sequence.
a External a, 19.2K baud, no sequence.
b External b, baud rate determined by external switches, no sequence.

Additional speed tables can be defined via gettytab.c. See gettytab(8).

SEE ALSO
login(1), tty(4), inittab(5), utmp(5), init(8), gettytab(8).

BUGS
Ideally, the speed tables would be read from a file, not compiled into getty.

Page 1 April 2, 1984

GETIYTAB(8) (Plexus) GETTYTAB(8)

NAME
gettytab - defining speed tables for getty

SYNOPSIS
/usr/src/cmd/gettytab.c
/usr/src/cmdlgetty.object
/usr/srclcmd/getty.mk

DESCRIPTION

NOTES

When getty(8) is called, it looks at /etc/inittab. Each line in letc/inittab specifies one of several
"speed tables" within getty. Based on the speed table argument given in letc/inittab, getty
sets the "initial" mode of a serial port, prints the "login: " message, reads the response, and
sets the "final" mode of the serial port. Getty then terminates by executing the login (1) pro
gram.

Gettytab.c allows you to define additional speed tables, over and above those already defined
in getty.

To define new speed tables, add speed-table entries to the file lusr/srclcmdlgettytab.c, and
recompile and install the file along with getty. object as prescribed within the getty.mk file.
Choose a speed table name other than those already known to getty. See getty(8) for this list.
Note that "a" and "b" are already known. Attempts to redefine a known speed table will fail.

To test the changed getty before installing it as letc/getty, copy the new getty to a user direc
tory and make an entry in /etc/inittab that refers to the new getty. For example, in letc/inittab
change the Ii ne

2:11 :c:/etc/getty tty11 b

to

2:11 :c:/usr/you/getty tty11 c

for serial port 11 and speed table "c". Only one entry in letc/inittab may refer to serial port 11.
To activate the new getty type

init 2

When the user on serial port 11 logs off, the new getty will be executed.

This is a Plexus command. It is not part of standard SYSTEM III.

SEE ALSO
getty(8), init(8), inittab(5), tty(4).

Page 1 April 2, 1984

INIT(8) INIT(8)

NAME
init - process control initialization

SYNOPSIS
lete/init [state]

DESCRIPTION
Init is invoked inside UNIX as the last step in the boot procedure. It is process number one, and
is the ancestor of every other process in the system. As such, it can be used to control the pro
cess structure of the system. If init is invoked with an argument by the super-user, it will cause
a change in state of process one.

Init has 9 states, 1 through 9; it is invoked by the system in state 1, and it performs the same
functions on entering each state. When a state is entered, init reads the file lete/inittab. Unes
in this file have the format:

state:id:flags:command

All lines in which the state field matches init's current state are recognized. If a process is
active under the same two character id as a recognized line, it may be terminated (signal 15),
killed (signal 9), or both by including the flags t and k in the order desired. The signal is sent to
all processes in the process group associated with the id. The command field is saved for later
execution.

On first invocation by Sys3, init sees if autoboot is enabled. If it is, Init puts the system in state
8, the autoboot state.

After reading lete/lnittab and signaling running processes as required, but before invoking any
processes under the new state, lete/rc is invoked with three arguments. This command file per
forms housekeeping such as removing temporary files, mounting file systems, and starting dae
mons. The three arguments are the current state, the number of times this state has been
entered previously, and the prior state. Init will also execute lete/re at the request of the operat
ing system (e.g., when recovering from power failure). In this last case, the first argument has
an x appended to it.

When lete/re has finished executing, init invokes all commands waiting to be executed. (A
command is waiting to be executed if there is no process currently running that has the same id
as the command.) The flag e (continuous) requires the command to be continuously reinvoked
whenever the process with that id dies. The flag 0 (off) causes the command to be ignored.
This is useful for turning lines off without extensive editing. Otherwise, the command is invoked
a maximum of one time in the current state.

Init invokes the command field read from letC/inittab by opening I for reading and writing on file
descriptors 0, 1, and 2, resetting all signals to system default, setting up a new process group
(setpgrp(2» , and execing:

Ibinlsh -c exec command

DIAGNOSTICS

BUGS

FilES

Page 1

When init can do nothing else because of a missing lete/inittab or when it has no children left, it
will try to execute a shell on Idev/console. When the problem has been fixed, it is necessary to
change states, and terminate the shell.

Init does not complain if the state-id pairs in lete/inittab are not unique. For any given pair, the
last one in the file is valid.

letC/inittab
letc/rc
Ibinlsh

April 2, 1984

r
INIT(8)

/dev/console

SEE ALSO
login(1), sh(1), exec(2), setpgrp(2), inittab(5), getty(8).

April 2, 1984

INIT(8)

Page 2

MAKEKEY(8) MAKEKEY(8)· .

NAME
makekey - generate encryption key

SYNOPSIS
lusr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output depends on the input in a way intended to be
difficult to compute (Le., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, ., I, and upper- and lower-case letters. The salt
characters are repeated as the first two characters of the output. The remaining 11 output char
acters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4,096
cryptographic machines all based on the National Bureau of Standards DES algorithm, but bro
ken in 4,096 different ways. Using the input key as key, a constant string is fed into the
machine and recirculated a number of times. The 64 bits that come out are distributed into the
66 output key bits in the result.

Makekey is intended for programs that perform encryption (e.g., ed(1) and crypt(1». Usually,
its input and output will be pipes.

SEE ALSO
crypt(1), ed(1), passwd(5).

Page 1 April 2, 1984

MK(8) MK(8).

NAME
mk - how to remake the system and commands

DESCRIPTION

Page 1

All source for UNIX is in a source tree distributed in the directory lusrlsrc. This includes source
for the operating system, libraries, commands, miscellaneous files necessary to the running sys
tem, and procedures to create everything from this source.

The top level consists of the directories cmd, lib, uts, head, and stand as well as commands to
remake each of these "directories". These commands are named :mk, which remakes every
thing, and :mkdir where dir is the directory to be recreated. Each recreation command will
make all or part of the piec; over which it has control. :mk will run each of these commands and
thus recreate the whole system.

The lib directory contains libraries used when loading user programs. The largest and most
important of these is the C library. All libraries are in sub-directories and are created by a
makefile or runcom. A runcom is a Shell command procedure used specifically to remake a
piece of the system. :mklib will rebuild the libraries that are given as arguments. The argument
* will cause it to remake all libraries.

The head directory contains the header files, usually found in lusr/include on the running sys
tem. :mkhead will install those header files that are given as arguments. The argument * will
cause it to install all header files.

The uts directory contains the source for the UNIX operating system. :mkuts (no arguments)
invokes a series of makefiles that will recreate the operating system.

The stand directory contains stand-alone commands and boot programs. :mkstand will rebuild
and install these programs.

The cmd directory contains files and directories. :mkcmd transforms source into a command
based upon its suffix (.I, .y, .c, .5, .sh), or its makefile (see make(1» or runcom. A directory is
assumed to have a makefile or a runcom that will take care of creating everything associated
with that directory and its sub-directories. Makefiles and runcoms are named command.mk
and command.rc respectively.

:mkcmd will recreate commands based upon a makefile or runcom if one of them exists; alter
natively commands are recreated in a standard way based on the suffix of the source file. All
commands requiring more than one file of source are grouped in sub-directories, and must have
a makefile or a runcom. C programs (.c) are compiled by the C compiler and loaded stripped
with shared text. Assembly language programs (.s) are run through the preprocessor of cc(-
Pflag) and then assembled. The file Idflags in lusrlsrc override the default flags to the loader,
Id. This way, some commands can be loaded with the -i flag. Yacc programs (.y) and lex pro
grams (.I) are processed by yacc(1) and lex(1) respectively before C compilation. Shell pro
grams (.sh) are copied to create the command. Each of these operations leaves a command in
./cmd which is then installed by using letc/install.

The arguments to :mkcmd are either command names, or subsystem names. The subsystems
distributed with UNIX are: acct, graf, rje, secs, and text. Prefacing the :mkcmd instruction with
an assignment to the Shell variable $ARGS will cause the indicated components of the subsys
tem to be rebuilt.

The entire secs subsystem can be rebuilt by:

lusrlsrc/:mkcmd sces

while the delta component of secs can be rebuilt by:

ARGS="delta" lusrlsrc/:mkcmd sccs

The log command, which is a part of the stat package, which is itself a part of the graf pack
age, can be rebuilt by:

April 2, 1984

MK(8) MK(8)

ARGS="stat log" lusrlsrc/:mkcmd graf

The argument * will cause all commands and subsystems to be rebuilt.

Makefiles, both in ./emd and in sub-directories, have a standard format. In particular :mkcmd
depends on there being entries for install and clobber. Install should cause everything over
which the makefile has jurisdiction to be made and installed by lete/install. Clobber should
cause a complete cleanup of all unnecessary files resulting from the previous invocation.

The file lete/plaees defines several source and destination directories.

Most of the runcoms in ./emd (as opposed to sub-directories) relate in particular to a need for
separated instruction and data (I and D) space.

In the past, dependency on the C library routine ctime(3C) was also important. Ctime had to be
modified for all systems located outside of the Pacific time zone, and all commands that refer
enced it had to be recompiled. Ctime has been rewritten to check the environment (see
environ(7)) for the time zone. This results in time zone conversions possible on a per-process
basis. /ete/profile sets the initial environment for each user, and /ete/re sets it for certain sys
~em daemons. These two programs are the only ones which must be modified outside of the
Pacific time zone.

An effort has been made to separate the creation of a command from source, and its installation
on the running system. The command /ete/install is used by :mkcmd and most makefiles to
install commands in the proper place on the running system. The use of install allows maximum
flexibility in the administration of the system. Install makes very few assumptions about where a
command is located, who owns it, and what modes are in effect. All assumptions may be over
ridden on invocation of the command, or more permanently by redefining a few variables in
install. The object is to install a new version of a command in the same place, with the same
attributes as the prior version.

In addition, the use of a separate command to perform installation allows for the creation of test
systems in other than standard places, easy movement of commands to balance load, and
independent maintenance of makefiles. The minimization of makefiles in most cases, and the
site independence of the others should greatly reduce the necessary maintenance, and allow
makefiles to be considered part of the standard source.

SEE ALSO
install(1 M), make(1).

April 2, 1984 Page 2

RC(8)

NAME
rc - system initialization shell script

SYNOPSIS
fetclrc

DESCRIPTION
The fetefrc file is executed by init(8) whenever the init state N; changed.

SEE ALSO
init(8).

Page 1

RC(8).

April 2, 1984

RJE(8) RJE(8) ..

NAME
rje - RJE (Remote Job Entry) to IBM

SYNOPSIS
lusr/rjelrjeinit
lusr/rje/rjehalt

DESCRIPTION
RJE is the communal name for a collection of programs and a file organization that allows a
UNIX system, equipped with an ICP driver, and associated Virtual Protocol Machine (VPM)
software, to communicate with IBM's Job Entry Subsystems by mimicking an IBM 360 remote
multileaving work station.

Implementation.

Page 1

RJE is initiated by the command rjeinit and is terminated gracefully by the command rjehalt.
While active, RJE runs in the background and requires no human supervision. It quietly
transmits, to the IBM system, jobs that have been queued by the send(1 C) command, and
operator requests that have been entered by the rjestat(1 C) command. It receives, from the IBM
system, print and punch data sets and message output. It enters the data sets into the proper
UNIX directory and notifies the appropriate user of their arrival. It scans the message output to
maintain a record on each of its jobs. It also makes these messages available for public inspec
tion, so that rjestat(1 C), in particular, may extract responses.

Unless otherwise specified, all files and commands described below reside in directory lusr/rje
(first exceptions: send and rjestat).

There are two sources of data to be transmitted byRJE from UNIX to an IBM System/370. In
both cases, the data is organized as files in the lusr/rje/squeue directory. The first are files
named co. which are created by the enquiry command rjestat(1 C). The second source, con-
taining the bulk of the data, are files named rd. or sq. which have been created by send and ~
queued by the program rjeqer. On completion of processing send invokes rjeqer. Rjeqer and
rjestat inform the program rjexmit that a file has been queued via 'the file joblog. Upon suc-
cessful transmission of the data to the IBM machine, rjexmit removes the queued file. As files
are transmitted and received, the program rjedisp writes an entry containing the date, time, file
name, logname, and number of records in the file acctlog, if it exists. This file can be used for
local logging or accounting information, but is not used elsewhere by RJE. The use of this infor-
mation is up to the RJE administrator.

Each time rjeinit is invoked, the joblog file is truncated and recreated from the contents of the
lusr/rje/squeue directory. During this time, rjeinit prevents simultaneous updating of the joblog
file.

Output from the IBM system is classified as either a print data set, a punch data set, or message
output. Print output is converted to an ASCII text file, with standard tabs. Form feeds are
suppressed, but the last line of each page is distinguished by the presence of an extraneous
trailing space. Punch output is converted to pnch(5) format. This classification and both
conversions occur as the output is received. Files are moved or copied into the appropriate
user's directory and assigned the name pmt. or pnch., respectively, or placed into user direc
tories under user-specified names, or used as input to programs to be automatically executed,
as specified by the user. This process is driven by the '~usr= ... " specification. RJE retains own
ership of these files and permits read-only access to them. Message output is digested by RJE
immediately and is not retained.

A record is maintained for each job that passes through RJE. Identifying information is extracted
contextually from files transmitted to and received from the IBM system. This information is
stored and used by the rjedisp program for IBM job acknowledgements and delivery of output
files.

April 2, 1984

RJE(8) RJE(8)· .

The IBM system automatically returns an acknowledgement message for each job it receives.
Other status messages are returned in response to enquiries entered by users. All messages
received by RJE are appended to the resp file. The resp file is automatically truncated when it
reaches 70,000 bytes. Each enquiry is preceded and followed by an identification card image of
the form U$UX<process id>". The IBM system will echo this back as an illegal command. The
appearance of process ids in the response stream permits responses to be passed on to the
proper users.

While it is active, RJE occupies at least the three process slots that are appropriated by rjeinit.
These slots are used to run rjexmit, the transmitter, rjerecv, the receiver, and rjedisp, the
dispatcher. These three processes are connected by pipes. The function of each is as follows:

rjexmit Cycles repetitively, looking for data to transmit to the IBM system. After transmission,
rjexmit passes an event notice to rjedisp. If rjexmit encounters a stop file, (created by
rjehalt) , it exits normally. In the case of error termination, rjexmit reboots RJE by exe
cuting rjeinit.

rjerecv Cycles repetitively, looking for data returning from the IBM machine. Upon receipt of
data, rjerecv notifies either rjexmit or rjedisp of the event (transfer information is some
times passed to rjexmit). Rjerecv exits normally at the first appropriate moment when it
encounters the file stop, or exits reluctantly when it encounters a run of errors.

rjedisp Follows up event notices by directing output files, updating records, and notifying users.
Rjedisp references the system files letc/passwd and letc/utmp to correlate user
names, numeric ids, and terminals. Termination of rjerecv causes rjedisp to exit also.

Most RJE files and directories are protected from unauthorized tampering. The exception is the
spool directory. It is used by send(1C) to create temporary files in the correct file system.
Rjeqer and rjestat(1C), the user's interfaces to RJE. operate in setuid mode to contribute the
necessary permission modes.

Administration.
Some minimal oversight of each RJE subsystem is required. The RJE mailbox should be
inspected and cleaned out periodically. The job directory should also be checked. The only
files placed there are output files whose destination file systems are out of space. Users should
be given a short period of time (say, a day or two), and then these files should be removed.

The configuration table lusr/rjellines is accessed by all components of RJE. Each line of the
table (maximum of 8) defines an RJE connection. Its seven columns may be labeled host, sys
tem, directory, prefix, device, peripherals and parameters. These columns are described as
follows:

host

system

The name of a remote IBM computer (e.g., A B C). This string can be up to 5 charac
ters.

The name of a UNIX system. This name should be the same as the system name from
uname(1).

directory

prefix

device

April 2, 1984

This is the directory name of the servicing RJE subsystem (e.g., lusr/rje1).

This is the string prefixed (redundantly) to several crucial files and programs in direc
tory (e.g., rje1, rje2, rje3).

This is the name of the contrOlling VPM device, with Idevl excised.

Page 2

RJE(8)

Page 3

RJE(8)

peripherals
This field contains information on the logical devices (readers, printers, punches) used
by RJE. Each subfield is separated by:, and is described as follows:

(1) Number of logical readers.
(2) Number of logical printers.
(3) Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the
number of peripherals which have been described on the remote machine for that line.

parameters
This field contains information on the type of connection to make. Each subfield is
separated by:. Any or all fields may be omitted; however, the fields are positional. All
but trailing delimiters must be present. For example, in

1200:512:::9-555-1212
subfields 3 and 4 are missing, but the delimiters are present. Each subfield is defined
as follows:

(1) space

(2) size

This subfield specifies the amount of space (5) in blocks that RJE tries to main
tain on file systems it touches. The default is 0 blocks. Send will not submit
jobs and rjeinit issues a warning when less than 1.55 blocks are available;
rjerecv stops accepting output from the host when the capacity falls to 5 blocks;
RJE becomes dormant, until conditions improve. If the space on the file system
specified by the user on the "usr=" card would be depleted to a point below 5,
the file will be put in the job subdirectory of the connection's home directory,
rather than in the place that the user requested.

This subfield specifies the size in blocks of the largest file that can be accepted
from the host without truncation taking place. The default is no truncation.

(3) badjobs
This subfield specifies what to do with undeliverable returning jobs. If an output
file is undeliverable for any reason other than file system space limitations (e.g.,
missing or invalid "usr=" card) and this subfield contains the letter y, the output
will be retained in the job subdirectory of the home directory, and login rje is
notified. If this subfield contains an n or has any other value, undeliverable out
put will be discarded. The default is n.

(4) console
This subfield specifies the status of the interactive status terminal for this line. If
the subfield contains an i, all console status facilities are inhibited (e.g.,
rjestat(1 C) will not behave like a status terminal). In all cases, the normal non
interactive uses of rjestat(1C) will continue to function. The default is y.

Sign-on is controlled by the existence of a
signon file in the home directory. If this file is present, its contents are sent as a sign
on message to the host system. If this file does not exist, a blank card is sent. Sign-Off
is controlled in the same way, except that the signoff file is sent by rjehalt if it exists. If
the signoff file does not exist, a "I.signoff" card is sent. These files should be ASCII
text and no more than 80 characters.

Send(1C) and rjestat(1C) select an available connection by indexing on the host field of the
configuration table. RJE programs index on the prefix field. A subordinate directory, sque,
exists in lusr/rje for use by rjedisp and shqer programs. This directory holds those output files
that have been designated as standard input to some executable file. This designation is done

April 2, 1984

RJE(8) RJE(8)

via the "usr= ••• " specification. Rjedisp places the output files here and updates the file log to
specify the order of execution, arguments to be passed, etc. Shqer executes the appropriate
files.

All RJE programs are shared text; therefore, if more than one RJE is to be run on a given UNIX
system, simply link (via In(1» RJE2 program names to RJE names in lusr.

SEE ALSO
rjestat(1C), send(1C), vpm(4), pnch(5), mk(8).
UNIX Remote Job Entry User's Guide by K. A. Kelleman.
UNIX Remote Job Entry Administrative Guide by M. J. Fitton.
Setting Up UNIX.

DIAGNOSTICS
Rjeinit provides brief error messages describing obstacles encountered while bringing up RJE.
They can best be understood in the context of the RJE source code. The most frequently occur
ring one is "cannot open /dev/vpm?". This may occur if the VPM script has not been started, or
if another process already has the VPM device open.

Once RJE has been started, users should assist in monitoring its performance, and should notify
operations personnel of any perceived need for remedial action. Rjestat(1 C) will aid in diagnos
ing the current state of RJE. It can detect, with some reliability, when the far end of the com
munications line has gone dead, and will report in this case that the host computer is not
responding to RJE. It will also attempt to reboot RJE if it detects a prolonged period of inactivity
on the ICP.

April 2, 1984 Page 4

SAR(8) SAR(8) ..

NAME
sar - system activity report package

DESCRIPTION

FILES

Page 1

Sar is the first (tentative) piece of an overall UNIX measurement and statistics package; the data
that are collected and the output formats are not yet final.

The operating system contains a number of counters that are incremented as various system
actions occur. These include several time counters (that are incremented each 50th of a second
depending on the CPU mode), I/O activity counters, switching and system-call counters, and
file-access counters. The system activity package writes system activity parameters periodi
cally on a binary file. It also generates a daily system activity report that covers the prime
period (from 8:00 to 18:00).

The data collection and report generation are controlled by entries in crontab (see cron(1 M».
The data collection program is normally activated every hour on the hour; the report generation
once a day.

Every time the system is booted, a special record is written to the daily data file, since all the
system activity counters restart from zero at that time. This process is done while executing
letclrc see (init(8» during UNIX initialization. It produces an entry on the daily report showing
the restart time.

The daily reports are deposited in lusr/admlsalsardd where dd are digits representing the day
of the month. A report can be printed (e.g., cat lusr/admlsalsarOS) any time before it is
removed the following week.

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; I. defined in lusrlinclude/syslsysinfo.h .1
long dO; I. number of reads and writes of disk 0.1
long d1; I. number of reads and writes of disk 1 .1
long d2; I. number of reads and writes of disk 2 .1
long ts; I. time stamp in time_t format .1

};

lusr/adm/salsadd
lusr/adm/salsardd
Itmplsa.adrfl

daily data file
daily report file
address file

April 2, 1984

SHUTDOWN (8) SHUTDOWN(8) ..

NAME
shutdown - terminate all processing

SYNOPSIS
/etc/shutdown

DESCRIPTION
Shutdown is part of the UNIX operation procedures. Its primary function is to terminate all
currently running processes in an orderly and cautious manner. The procedure is designed to
interact with the operator (Le., the person who invoked shutdown). Shutdown may instruct the
operator to perform some specific tasks, or to supply certain responses before execution can
resume. Shutdown should be run from the system console by root.

Shutdown goes through the following steps:

- All users logged on the system are notified to log off the system by a broadcasted message.
The operator may display his/her own message at this time. Otherwise, the standard file
save message is displayed.

- If the operator wishes to run the file-save procedure, shutdown unmounts all file systems.

- All file systems' super blocks are updated before the system is to be stopped (see
sync(1M». This must be done before re-booting the system, to insure file system integrity.

Shutdown does not terminate processes associated with the operator's terminal. The most
common error diagnostic that will occur is device busy. This diagnostic happens when a partic
ular file system could not be unmounted. See umount(1 M).

SEE ALSO
sync(1 M), umount(1 M).

Page 1 Apri12,1984

~ '--..

	Introduction
	Contents
	Permuted Index
	(2) System Calls
	(3) Subroutines
	(4) Special Files
	(5) File Formats
	(6) Games
	(7) Miscellany
	(8) Maintenance

