
68XxxNEWS< I Isslle#6.· ... ··N()vember··19SS····

How to Get This Newsletter

Several users have asked how to get their name on our
mailing list so they can receive this Newsletter.

If you note the fine print in the box at the bottom, we have
decided to make the Newsletter available on a subscription basis.
There is now a charge of $10 for a four-issue subSCription. We
intend to publish one issue every three months or so, so this
translates to roughly a one-year subscription. BUT - isn't there
always a BUT? - we will send a free four-issue subscription to
those Star-K customers who return the User Registration form
found at the end of their manuals.

We can't overemphasize the importance of your returning
the User Registration form from the back of your SK*DOS manu
al. We are gradually expanding our 68xxx Newsletter to contain
more information, and the User Registrations are our primary
mailing list. Remember: no Registration, no Newsletter.

We are making somewhat of an exception with this issue,
since Peripheral Technology has been kind enough to send us one
set of labels for their SK*DOS and HUMBUG customers. We are
thus able to send this issue even to those users who have not
returned their Registration forms. But they will not get the next
issue unless they return their registration forms.

How to Get Upgrades

We have regretfully decided to change our upgrade policy.
Up until now, upgrades have been free if you send in your

original disk along with a self-addressed and stamped mailer for
us~ in returning the disk. We have sudde,lly realized just how
much time it is taking us to make those upgrades - it's not so bad
for one or two upgrades, but it is frightening to think of updating
the many copies of SK*DOS out there. We have therefore decided
that we will have to subcontract some of that work to outside
people. That, unfortunately, costs money.

Effective immediately, upgrade copies of S1<.*DOS will cost
$5. You must return your original SK*DOS disk for the upgrade.

We really apologize for taking this step, but it is quite neces
sary. By way of comparison, here is what some vendors in the IBM
PC world are charging for upgrades:
IBM PC-DOS version 3.3: New price $125, upgrade $125.
IBM PC-DOS version 4.0: New price $150, upgrade $95.
Borland Turbo C version 2.0: New price $150, upgrade $50.
Inset Systems' Inset version 2.2: New price $99, upgrade $40.
p·rosoft's Fontasy version 3: New price $130, upgrade $50.

There was an interesting letter-to-the-editor of a large PC
magazine recently, written by the president of one of the really
large multi-million-$ software vendors. He discussed how airlines
have gotten themselves into a serious problem by offering mileage
clubs. In an effort to woo more customers, airlines essentially offer
free trips in the future in exchange for your flying with them now.
What this does is to exchange a slight increase in current revenue
for a tremendous future obligation which must at some time be
paid off. Because of their limited seat capacity, many of those
future free flights wind up bumping fare-paying passengers off

~>OcX.N.EIJV~ispul:tlishedandc()l'yright(!;)1988byStar-K
SOrtware Systellls COrp'; r·()· Box 2% Mt ..• Kisco':NYI0549,
(914) •. · 241-0287 .••• · ••• 'l1l~ •• ·.~\I?¥ripti()I1 ••• ·pri<:e •••• is ••• $10 •••. for..·.f()\lt·.·issues;
pu1"ChasersPfStaN~·.~f~l"e.~xxx.products •• lire .erttitlC<i t9 .. lI f J."l:.e
4-issue~~b~ription~]>Ol1re.'*iI>t(>f.theirlJser~e~stratio~fonn,
Rea.ders··a~inrtefj.to.(;()lltpl)\lte .lettfrs; •• arti<:les,.or ()ther..rnaterial
fotpublication.

planes, with the result that these mileage clubs represent a very
large future expense which could potentially bankrupt some of the
airlines if everyone should decide to cash in on their free flights at
the same time.

He then likened this to the plight of software vendors who
offer free support and upgrades. While this does help i~crease
present sales, it places a future burden on the vendors which can
easily bankrupt them if it represents a greater amount of money
than they gain in sales. . . .

I'm not sure that his point of view is entirely vahd, but It IS an
interesting thought.

New Fax Number

Several overseas corporate users have asked us to install a
Fax machine so they can communicate with us easier and cheaper.
It turns out to be a very useful device, and some of you may want
to use it to contact us also. Our Fax number is (914) 241-8607.
And, of course, don't forget our BBS at (914) 241-3307. Another
68000 BBS which also supports SK*DOS is Mike Evenson's; the
number is (817) 488-8398.

COpy Command Improvements

The S option of COPY has been changed. Whereas it used to
mean "second copy", now it means "since". It is now used to copy
only files generated on or after a date specified after the "from"
and "to· J'3rameters. For example, the command COpy SOl
6 - 28 - 88 would copy all those files dated June 28th, 1988 or
later. Since no directory is specified, only files in the root directory
would be copied in this case. The S option can, however, also be
combined with several other COpy command features to make
more complex commands. The S option can not be combined with
the F (copy by file number) option, since the F option ~11 take
precedence. (The F and S options are often used for backing up a
hard disk to floppy disks. F is used for a complete backup to copy
groups of files at a time to separate floppy disks; S is useful in
making incremental backups of just those files which have been
changed or newly generated in the last few days.) .

In the ·since" date, the month, day, and year must appear In

that order, and may be separated by hyphens or slashes, as. in
6-28-88 or 6/28/88. Note that the date must appear after the to
where" parameter, but before the "match-list", if one is used.

Reading Foreign Disks

Several readers have written programs which greatly improve
on the TOMSDOS and FROMSDOS commands which come with
SK*DOS. But to be able to read both sides of an MS-DOS disk,
we have had to make the following change (which, incidentally, will
also make it possible to read and write other foreign disks).

Variable FOTHER, which is at DOSORG+$151, tells
SK*DOS what format disks it is using. If FOTHER is 0, then it is
using SK*DOS disks; a non-zero number tells it tha~ a different
fo.rmat disk is being used, and the exact number tells It how many
sectors there are per side. For example, MS-DOS disks use nine
512-byte sectors per side, so FOTHER should be set to 09 for
those disks. Programs which translated one format disk to another
should change FOTHER back and forth between the two values.
Upon return to SK*DOS, FOTHER is automatically reset to O.

A set of MS-DOS read and write utilities written by Mike
Evenson is available for downloading from our BBS; if you live
closer to Texas, you may also get it from Mike Evenson's BBS (see
above for number).

Turning otT Type-Ahead

Under some conditions you may want to tum off keyboard
typeahead. For example, some older programs may do their own
keyboard access and do not therefore empty out the typeahead
buffer. When you exit that program, you then return to SK*DOS
with the full buffer, and SK*DOS goes wild trying to execute
whatever garbage is in the buffer. No harm done, but you sure get
a lot of error messages!

Typeahead is controlled by a flag called TPDFLG, located at
5645(A6). In a typical implementation this will work out to be
location $2AOD (since A6 will usually point to $1400 and 5645 is
equal to $16Od.) You can disable typeahead with a POKE 2AOD 1
command. Typeahed is turned off whenever the flag is non-zero.

The flag can be set manually with the POKE command, or
else you can automate the process one of two ways. One way
would be to use a batch file; the other is to append a flag-set
command to the program itself.

For example, suppose you have a program called
HHHH.COM which does not like to work with typeahead. Do a
LOCATE on it with the - option. Suppose LOCATE says "Ab
solute Address: 0000-1235" and "Absolute Execution Address:
0000". That tells us that the program starts at 0000, and that
memory above 1235 is free. Then edit and assemble the following
program:

ORG $1236
START MOVE.B #l,$2AOD

BRA.L$OOOO
END START

Set Flag
Go to HHHH.COM

Now append this short program to the end of HHHH.COM.
The resulting program will now set the flag and then jump to
HHHH automatically.

Which Way is Forward?

A recent letter from Bob Jones (the author of RBASIC)
brings up an interesting topic. Let me quote part of it:

"I feel you're making a mistake by moving toward multi
tasking/multi-user (or even larger sized sectors) with all the
attendant problems... If users need this they already have OS-
9/68K together with a wealth of supporting programs. After all,
the whole appeal of [SK*DOSj is that it's so friendly to use, and I
see the latest implementation of subdirectories as an early step
away from this friendliness " Now the mere fact that Bob has
written RBASIC shows that he is not a beginner to computers. He
is. not ~ushing for simplicity because SKoDOS is too complex for
hIm - hIS comments are based strictly on his belief that simpler is
better.

On the other hand, we have other users who have since the
beginning pushed to add more complex features to SK*DOS _
things like environment strings, more complex .BAT file struc
tures, more powerful device drivers, typeahead buffers, subdirec
tories, true pipes, error handling within .BAT files, different file
structures, relocating assemblers and loaders, etc. In fact, we've
had one user who even resorted to personal insults and four-letter
words in his frustration that SK*DOS wasn't more like Unix, and
that he couldn't get the source code so he could add Unix-like
functions to it.

There's a lot to be said for both points of view. What do you
think we should do???

Speaking of RBASIC •••

RBASIC has now been officially released. It is a full Basic
interpreter, and quite fast. We have decided not to get involved
with selling and supporting it; hence it is available directly from
the vendor, Micronics Research Corp., 33383 Lynn Ave., Abbot-

. _"." __ .tsford Be, Canada V2S 1E2. The price is $99.95 (or $125
Canadian).

and C •••

The C compiler has also been officially released by Com
puter Systems Consultants, 1454 Latta Lane, Conyers GA 30207,
(404) 483-4570 or -1717. It is priced at $99, and also available from
us or from Peripheral Technology.

An OtTer of Help

Karl Lunt of Peoria, Arizona, recently dropped us a note that
he has ported SK*DOS to his machine with success, and likes the
result. He ended his note with the comment "If you know of
anyone attempting to bring SK*DOS up on a Convergent Tech
nologies mini-frame that needs some help, please give them my
address." Let us know if you need his help.

Atari Anyone?

Speaking of porting to other machines, several potential
useIS have asked whether we know of anyone who has ported
SK*DOS to an ATARI ST. We don't - do you?

About Languages

Fairly ofte~, the question comes up of wnether MS-DOS
programs can run on a 68000 system under SK*DOS. We thought
that this might be a good topic for discussion.

Computer programs can be written in one of three types of
languages:

a. Machine language is the only language a normal computer
understands. A single machine language instruction does very
little, so thousands may be needed for even simple programs. Each
different microprocessor has its own machine language, and a
program written for one will generally not run on another (unless
the processoIS are intentionally similar. For example, a 68008
program will run on a 68000 processor, but an 8088 program will
not.)

b. Assembly language is very similar to machine language,
but uses words instead of machine language's numbers; it too
diffeIS from one processor to another. Because it uses words, it is
easier for us humans to use; a translator program called an as
sembler translates it to machine language. AssembleIS are fairly
simple programs since assembly and machine languages are quite
similar in structure.

c. Higher level languages such as Basic, Pascal, or C, are very
different from machine or assembly language. Rather than being
tailored to the hardware characteristics of the computer, they are
tailored to the job that needs to be done. A quite complex trans
lator, called an interpreter or compiler, is needed to translate to
machine language; some compilers translate first to assembly
language and let an assembler finish the job by translating the rest
of the way to machine language.

A program written in machine or assembly language will only
run on the computer it is written for; a program in a higher level
language will run on many different computers (with some
changes), provided that an appropriate translator is available.
Commercial software vendoIS prefer to write in a higher level
language such as C or Pascal, since they can then sell that program

"2

for more than one computer. Writing in such a language is also
easier, since higher level language statements are more powerful,
and so fewer are needed to do a specific job. They then translate
the program for the specific machine, and sell only the machine
language version. But there is a disadvantage - programs initially
written in machine or assembly language are substantially faster,
and require less memory. As more and more programs are written
in a higher level language, computers have to get bigger and faster
to keep up.

In SK*DOS, we currently have available two assemblers, a
Basic interpreter, and two C compilers; compilers for Modula and
Whimsical should be available soon. Thus it is possible to take a
Basic or C program from another computer, and translate it to
work under SK*DOS. Many of the programs available for
SK*DOS have gone through just this route - for example, the
User's Group has translated many programs originally written in C
for Unix, so they now run under SK*DOS.

Although MS-DOS programs are also often written in C or
other high level languages, they are not sold in their original
language; only the machine language forms are released for sale.
Once translated into machine language, programs designed .for an
8088 will not run on the 68000. So, though we can read and write
MS-DOS disks under SK*DOS, we can move programs over from
MS-DOS but we cannot run them.

But there are two ways of running an MS-DOS program on a
68000 system after all. One way is to add 8088 circuitry to the
68000 system; in essence, this combines two computers into one,
sharing memory or I/O equipment, but otherwise maintaining a

strict separation of the two systems. For example, Peripheral
Technology has an 8088 card which plugs into their PT68K-2
computer and allows just this. MS-DOS programs then run at
exactly the same speed they would on an 8088 PC.

The other approach is through software. It is possible to
write a program which makes one processor 'understand' the
language of another (though at greatly reduced speed.) For ex
ample, our SK*DOS09 program allows 6809 programs to run on
the 68000. SK*DOS09 is essentially an interpreter program, which
takes the 6809 program apart, one instruction at a time, and uses
anywhere from ten to twenty 68000 instructions to simulate each
6809 instruction. This explains why it is so much slower.

I! is possible to execute 8088 MS-DOS code on the 68000 in
exactly the same way, but it is much more complicated for two
reasons: the two processors are so different from each other, and
also the two operating systems are so different from each other. In
essence, it is necessary not just to simulate the 8088 on the 68000,
but also to adapt the DOS to run on a different computer. Since
we were intimately familiar with the 6809 - and had already written
a version of SK*DOS for it - we were able to write SK*DOS09 in
just a few weeks. But simulating both the 8088 and MS-DOS on
the 68000 might take several man years to do from scratch. It is far
beyond our resources.

We therefore contacted one company which specializes in
such programs, and which had already written such a simulator for
the Atari, another 68000 computer. We felt that they might be able
to adapt their Atari program with fairly minimal work. They
informed us that they would not even consider the job unless we

LAGRANGE INSTRUMENTS
HAS SOME REAL SOLUTIONS!

•.• [~ f
• j"

,-----..-.

LIQUID LEVEL SENSOR
o Ultrasonic, Digital
o Measures levels in:

tanks
resevoirs
streams
etc .

RADIATION DETECTOR
o Measures:

Alpha radiation
Beta radiation
Gamma radiation

TACHOMETER
o Measures RPM

For more information on our monitoring and control devices,
please call or write:

LAGRANGE INSTRUMENTS, INC.
KUCHLER DRIVE, LAGRANGEVILLE, NY, 12540

(914) 223 - 3336

3

paid them $250,000 up front, and also guaranteed sales of at least
$500,000 the first year. That was the end of that ...

RS·232 Wiring and CMODEM
by Sidney Thompson

(Editor'S note: Though Sidney's article was written specifical
ly for the PT68K-2 computer, the basic ideas really apply to most
computers.) .

The world is made up 'of two kinds of machines, talkers and
listeners. Since the beginning these have been known as Data
Terminal Equipment (DTE) or talkers and Data Computer
Equipment (DCE) or listeners. Examples of DTE equipment are
Video Terminals, Teletypes, and Serial Printers. Computer
mainframes and mini computers are examples of DCE.

The PT68K-2 is a DCE type device. After all it is a com
puter. What this means is that you use a terminal to talk to it. This
can be either a normal ascii terminal or the IBM keyboard and
Hercules compatible card. The RS232 connectors on the back of
the PT68K-2 are wired as DCE so that a "straight thru" cable can
be used to connect a terminal to the computer. This cable would
normally be a cable with a male connector on both ends. This
wiring also allows the use of a standard serial printer connected
with the same cable to be used without wiring changes.

When it is decided that we are going to use a modem to talk
with the outside world we begin to have problems. The modem is
wired as a DCE device. This is because the modem was meant to
be connected to a terminal or serial printer. The modem looks
like a remote connector from a distant mainframe. This connec
tion then satisfies the requirement that the DTE terminal talk to
the DCE device since the modem is simply an extension of the
mainframe connector. Unfortunately when we try to have the
PT68K-2 talk to our modem we quickly find out that we have a
problem.
• The PT68K-2 has the connectors on the back wired from the
six (6) pin "berg" plug to the 2S pin RS-232 connector (also known
as a DB-2S connector) as follows:
Berg DESCRIPTION
1 Request to Send (RTS)
2 Index pin

DB-2S
8

3 Signal Ground 7
4 Data Terminal Ready (DTR) 20
5 Transmit Data 3
6 Receive Data 2

As seen from the front of the board, the 6 pin connector
counts its pins as:

(1) (6)
(2) (5)
(3) (4)

In most cases pin 1 will not be connected on the connectors
built by Peripheral Technology, since it is not actually needed for
the operation of a terminal or printer with the system. It is
needed for use with a modem since it acts as an indicator to the
modem that the system is operational and ready to accept data.

There are two methods of wiring the connector of the
PT68K-2 that will work with a modem. If you never plan to use
the port for any purpose other than as a modem port you can wire
a male RS232 connector as follows:

Berg
1
2
3
4
5
6

DESCRIPTION
Request to Send (RTS)
Index pin
Signal Ground
Data Terminal Ready (DTR)
Transmit Data
Receive Data

DB-2S
20

7
8
2
3

4

You can then use a modem cable like that used by the IBM
PC. This is a straight thru cable with a female connector on the
computer end and a male connector on the modem end. It must
be remembered that with this wiring you can nOl attach a terminal
or printer to the connector. The reason is that all of the data and
control lines are reversed.

The other option is to leave the PT68K-2 connectors as they
are and modify your cable that is connected between the computer
and the modem. This modification will produce what is known as
a "null modem" cable. That means that the data and control lines
are crossed or transposed within the cable. This type of cable is
required when you wish to connect two DCE devices together.
The "null modem" cable has pins 2 & 3 and 8 & 20 transposed in
the cable connectors. By this it means that pin 2 on one end is
connected to pin 3 on the other end of the cable. The other pins
are swapped in the same manner. Only pin 7, the signal ground, is
not changed.

If you desire to set your modem up to always have "Terminal
Ready" high then you can build a connector and cable without the
RTS line being connected. If you choose to let the computer
assert the "Terminal Ready" line you can hang up the phone line
and modem from the keyboard when you are using "CMODEM".
This feature allows you to drop the connection to one system and
then call another one without having to manually drop the modem
line. This may not be a problem on some Hayes compatible
modems but other modems do not always allow for software
hangup. This is a problem if your modem is not located next to
you and you need to hang up the modem remotely.

CMODEM will default to 1200 baud upon execution. If you
desire some other baud rate, such as 2400 or 9600, you may change
the baud rate manually using the "M" option of the main menu
and option 1 of the Maintenance menu. An easier method is to
build a "proftle.txt" file which has an entry "baud 2400".
CMODEM will look on your current work disk for a "proftle.txt"
and set up all of the f.ai&&'1leters as IlpeCified in the file. See the
CMODEM documentation for a complete list of options that can
be set using the "proftle.txt".

Under SK*DOS, CMODEM has two types of ftle transfer -
text and binary. When your file is ascii text you will use the "S"
and "R" functions to transfer the file. If you are trying to move an
executable file to your SK*DOS system then you will need to use
the "yo option. To upload a binary executableftle you would use
the "X" option. If you are transferring a file from an IBM bulletin
board you should also change the internal option to add a CR
before the NL when the file is sent. This option allows the inser
tion of both carriage return and new line at the end of each line
for data that is being sent to the IBM, and the removal of the new
line from data being received from the IBM.

This is required because the end of line character for
SK*DOS is a carriage return while the end of line characters for
CPM and PC-DOS is a carriage return and a new line. This will
be option 5 under the "M" menu and option two (2) under the
modify line option (5). If this is your normal operating method you
may wish to enter a line "IMC" (Internal Mode CPM) into your
"profile.txt" file to set it up each time you execute CMODEM.

From the Users' Group
by Sidney Thompson

Here are some notes on Users' Group Programs:

NRO
Having been involved with UNIX and nroff (its text format

ter) for several years, it has become habit to place all my material
in nroff format. The C user group has a subset of nroff called nro.

While this program was written for BDS C, I have modified
it to run under both SK*DOS and UNIX. I currently use the nro
program on my system for SK*DOS, Fortune 32/16, and a VAX
running ULTRIX. I have also added most of the common com
mands used by the TSC formatter so that with the exception of
some of the header macros, which do not have an exact nro equiv
alent, the document can be processed through nro.

One consideration is that the output must be sent directly to
the printer if you are using the bold or underline features. Some
printers have a problem using the backspace overstrike feature so
nro also offers an option of issuing a carriage return and reprint
ing the affected portion of the line. Under SK*DOS, if the output
is redirected to a file, this will generate two separate lines since the
carriage return is the end of line character. This feature is due to
the end of line character being a line feed in UNIX rather than a
carriage return.

CCHK
There are many times while writing a C program that errors

can creep into your code. This can be even worse if you receive
code from someone who has tab sets that place the end of the lines
off the edge of an 80 column screen. An easy error is to have a
comment that does not end properly or to put "=" when you
meant "= =." CCHK is a program that was a cumulative adapta
tion by several people on the national "newsnet". I find it useful.
After I have made several changes to a C program I run CCHK to
ensure that all the braces match, and other syntax appears correct.

The use of this program does not insure that your program
will work correctly, but does mean that the compiler will not get
upset at you because of missing brackets or that you will not get
strange results due to nested comments. A sample program
"echo.c" is shown. Admittedly this is an exaggeration (but not by
much) of a normal program. Believe it or not this program is
correct as far as syntax is concerned. But readability does leave
something to be desired.

The CCHK program will compile under SK*DOS with the C
compiler.

CB
There are times when you receive a program source from

someone else or when you are adding code to an existing program
that the structure of the program is less than optimum. The CB (C
Beautifier) program will go a long way toward easing this little
chore. It was a part of the C user group collection and has been
reworked to run on SK*DOS and UNIX. It may seem a waste to
have it run under UNIX, except that it is often easier to develop a
C program on a UNIX system with its increased throughput and
then move it to the micro. Having a consistent set of tools avail
able on all of the systems I use has proven to be very useful in this
area. Now if I could just find one screen editor that would work
for all systems, it would be even simpler.

The second sample is the echo program after it has been run
through CB. At this point it does appear to be a bit more
readable than previously. Unfortunately CB does nothing for you

(PT-68000 SINGLE BOARD COMPUTER
The PT68K2 is Available in a Variety of Formats

From Basic Kits to Completely Assembled Systems

BASIC KIT (8 MHZ) - Board, 68000,
HUMBUG MONITOR + BASIC in ROM,
4K STATIC RAM, 2 SERIAL PORTS. aU
Components $200

PACKAGE DEAL - Complete Kit With
Board 66000 10 MHZ, SK·DOS. 512K
RAM. and all Necessary Parts $575

ASSEMBLED BOARD (12 MHZ)
Completely Tested, 1024K RAM,
FLOPPY CONTROLLER. PIA, SK'OOS

$899

ASSEMBLED SYSTEM - 10 MHZ
BOARD, CABINET POWER SUPPLY,
MONITOR + KEYBOARD, 60 TRACK
FLOPPY DRIVE, CABLES $1299
For A 20 MEG DRIVE, CONTROLLER
and CABLES Add $295

PROFESSIONAL OS9

'"5K'OOS is a Trademark ot

STAR·K SOFlWARE SYSTEMS CORP.
"'OS91& a Trademark at Mlcrowale

$500

FEATURES

• MC68000 Processor, 8 MHZ Clock (optional
10,12.5 MHZ)'

• 512K or 1024K of DRAM (no wait states)
• 4K of SPAM (6116)
• 32K,64K or 128K of EPROM
• Four RS-232 Serial Ports

Floppy disk controller will control up to four
5 1/4", 40 or 80 track.

• Clock with on-board battery.
• 2 - 8 bit Parallel Ports
• Board can be mounted in an IBM type PCI

XT cabinet and has a power connector to
match the IBM type power supply.

• Expansion ports - 6 IBM PC/XT compatible
110 ports. The HUMBUG'· monitor supports
monochrome and/or color adaptor cards
and Western Digital winchester interface
cards.

PERIPHERAL TECHNOLOGY
1480 Terrell Mill Rd., Suite 870

Marietta, Georgia 30067
404/984-0742

VISNMASTERCARD/CHECKlC.O.D.

5

Send For Catalogue
For Complete Information On All Products

as far as comments or understanding the flow of the program. If
these items are missing you are still on your own. It is also unable
to break down the code of those programmers trying to impress
someone else with how smart they are in the use of all of C's sioe
effects. But then C style is another subject.

CALLS
The calls program can be used to analyze the procedure calls

of a C source file. It lists out the function calls made within the
program with the appropriate indention to show the program
control flow. It also will indicate any function calls that can't be
resolved from the source as external functions that would be
provided by the runtime library.

I have run echo.c through CALLS and included the output.
It does show the basic calling sequence to give a better under
standing of how the program gets from beginning to end. It still
does not tell you what the program is doing.

XREF
XREF allows you to obtain a cross reference listing of all

variables within a program. This program can be used with C,
ASM or text files to produce a cross reference listing. It will
indicate all lines where a label is referenced within the source.
This can be very handy when trying to analyze a program. If you
simply type lITef without any file name it will give the following
usage menu:

lITef cross-references a c, basic, x assembler, or text file.

use: lITef [-option [-option ... J] filename-list
-a for non-intel assembler program.
-ai for intel format.
-b for basic program.
-bn for lITef by statement, not line number.
-c for c program.
-f for inclusion of file·names in xref.
-kfilename for kill-list file.
-I for listing of input files with line numbers.
-pxxx for overriding page depth (xxx = lines).
-t for text file (default).
-u for forcing upper to lower case.
-wxxx for overriding page width (xxx = columns).
-x for insertion of line after each lITef item.

An output based on echo.c is shown. This is a listing of all
the variables in the program and where they are referenced.

Conclusion
These are some of the tools that are in use on a daily basis in

my development of C programs. They are all in the public domain
and the original author's names have been left in for proper credit.
They are currently being used on several machines.

Example 1: Unformatted (Original) Program

#include <stdio.h>
#include < ctype.h >

char *expandO;
int nl;
char *p;
char *q;
int c, j, i,sp;
main(argc, argv)
int argc;
char
*argv[];
{for (i = 1; i < argc; i + +)fputs(expand(argv[iJ), stdout);
if (!nl)putc('\n', stdout);fflush(stdout);exit(O);}

6

char
*expand(a)
char *a;
{char string[256];
if (*a = = '-'){ nl + = «*(a + 1) I 0x20) = = 'n');return "";}
p = string;if (sp + +)*p + + = ' ';
while (*a)if«*p++ = *a++) == '\\'){switch(c = *a++)

{case O:-a;break;
case 'O':for (c = j = 0; isdigit(*a) && (j < 4); + + j, + +a)
c = (c < < 3) + (*a - 'O');*(P -1) = c;break;
case 'B':case 'b':*(p - 1) = '\b';break;
case 'C':case 'c':-p; + + nl;break;
case 'F:case 'f:*(P - 1) = '\f;break;
case 'N':case 'n':*(p - 1) = '\n';break;
case 'R':case 'r':*(P - 1) = '\r';break;
case T:case 't':*(p - 1) = '\t';break;
case 'V':case 'v':*(p - 1) = '\v';case '\ \':break;
defauIt:*p+ + = c;} }*p = O;return string;}

#include < stdio.h >
#include < ctype.h >

char *expandO;
int nl;
char *p;
char *q;

int c,j, i,sp;
main(argc, argv)
int argc;
char
*argv[];
{

Example 2: After CB

for (i = 1; i < argc; i + +)

}

fputs(expand(argv[iJ), stdout);
if (!nl)

putc('\n', stdout);
fflush(stdout);
exit(O);

char
*expand(a)
char *a;
{

char string[256];
if (*a = = '-'){

nl + = «*(a + 1) I 0x20) = = 'n');
return "If;

}
p = string;
if(sp++)

*p+ + = ";
while (*a)if«*p+ + = *a++) == '\\'){

switch (c = *a + +){
case 0:

--a;
break;

case '0':
for (c = j = 0; isdigit(*a) && (j < 4); + +j, + +a)

c = (c < < 3) + (*a - '0');
*(P - 1) = c;
break;

case 'B':
case 'b':

*(p -1) = '\b';
break;

case 'C':
case 'c':

--Pi
+ +nl;
break;

case 'F:
case T:

*(p - 1) = '\f;
break;

case 'N':
case 'n':

*(p - 1) = '\n';
break;

case'R':
case'r':

*(p - 1) = '\r';
break;

case'T':
case't':

*(p -1) = '\t';
break;

case'V':
case 'v':

*(p -1) = '\v';
case'\ \':

break;
default:

'p+ + = c;
}

*p = 0;
return string;

Example 3: Output From CALLS

1 main
2 fputs [ext]
3 expand
4
5
6
7

isdigit [ext]
putc [ext]
fflush [ext]
exit [ext]

Example 4: Output From XREF

page 1 Fri Aug 12 13:21:46 1988
a
argc
argv
break
c
case
char
ctype
default
exit
expand
fflush
for
fputs
h
i
if
include

22 23 26 28 34 35 37 40 43 44
91014
91215
414650555963677176
8 37 43 44 45 78
~~~~~~~~ro~M~M@nn~ 
4 6 7 11 21 23 25 
2 
77 
19 
41522 
18 
1443 
15 
1 2 
81415 
1626 32 35 
1 2 

7 

int 
isdigit 
j 
main 
nl 
p 
putc 
q 
return 
sp 
stdio 
stdout 
string 
switch 
while 

5 810 
43 
843 
9 
5162854 
6 31 33 35 4549 53 58 62 66 70 74 78 81 
17 
7 
2982 

832 
1 
151718 
25 3182 
37 
34 

Notes on SMALL C 
by Sidney Thompson 

The Small C compiler from the Users Group is the small C 
as written by Ron Cain and modified by John Byrns. To use the 
compiler, the file SC.COM should be on the system disk. To 
execute simply type "sC". It will then ask several questions. One is 
whether you wish to have the c code included in your output. I 
usuaUy answer 'no', but if you wish to see what type of code is 
being generated then answer 'yes'. The next question is whether 
you wish quick code. Answer 'yes' to this since it generates shorter 
object files. The next question is your output file name. Use some 
name like "edit.txt" if you are building the editor. If you have 
several modules then they should be included by a master module. 
An example of this is the ed-68k.c file that comes with the user 
group disk 1. After it has digested the inputSJe it will again ask for 
an input. If you are going to include your own library etc., then 
enter that name; if not, enter a CR 

After you have run the compiler you must assemble aU of the 
output. This wiU generate a file of type .COM which can be ex
ecuted. Use a command line like "ASM EDIT -L". Hope this 
helps. 

Call Waiting 
by Paul Bervaldi 

The following item from Family Computing (Sept. '87 issue) 
by Henry Beechhold might be of interest: "A reader wanted to 
know what could be done about loss of a modem carrier when a 
caU-waiting signal hits the phone line. This is an easy one: Dial 
'1170' before you dial the answering modem. If this newly in
stituted feature is operational in your calling area (check with your 
telephone company), you should hear a double beep on the line 
immediately after entering the code. When you've finished your 
modem call, the line wiU automaticaUy return to caU-waiting 
status." 

Programming the 68000 
by Peter A. Stark 

We were planning to start a series of lessons on program
ming, but in the meantime, the December 1988 issue of Radio
Electronics has come out with some programming info I wrote at 
the beginning of the year, so we'U refer you to that. We wiU start 
with programming in the next issue of this newsletter. 



Your Input 

Do you have a letter, article, program, or other material 
you'd like to contribute? Send it to us for the next issue. (One 
absolute requirement! It must be supplied as a ready-to-go disk 
file, in either SK*DOS or MS-DOS format. We will edit it to 
conform with our word processing requirements.) 

We are also starting a no-charge classified advertising sec
tion; feel free to use it to sell or buy computer-related stuff. As 
before, you must send us the ad as a ready-to-go disk file. 

If you have a product related to SK*DOS or any of our other 
Star-K products, which you would like to sell, you may also place a 
display ad (see, for example, the Lagrange Instruments ad on page 
3, or the Peripheral Technology ad on page 5). Please send 
camera-ready copy - nothing elaborate is needed - for our next 
issue. Our display advertising rate is $10 per quarter page, which is 
calculated to just about cover our expenses. 

Look at your mailing label 
If your mailing label has a dash above your name, 
you have not returned your User Registration Form 
to us and will not receive the next issue of the 68xxx 
News. 

Ft:om: Star-K Software Systems Corp. 
P. O. Box 209 
Mt. Kisco, NY 10549 

To: 

How To 
"HIT ANY KEY TO CONTINUE" 

Bulk Rate 
u.s. Postage 

PAID 
Permit #195 


