
NeXT™ Operating 
System Software 



NeXT™Operating System Software 

NeXT Developer's Library 
NeXT Computer, Inc. 

~ 
TT 
Addison-Wesley Publishing Company, Inc. 
Reading, Massachusetts • Menlo Park, California· New York 
Don Mills, Ontario • Wokingham, England • Amsterdam 
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan 
Paris • Seoul • Milan • Mexico City • Taipei 



The authors and publishers have taken care in preparation of this book, but make no expressed or implied 
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for 
incidental or consequential damages in connection with or arising out of the use of the information or programs 
contained herein. 

Copyright ©1991 by NeXT Computer, Inc. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, 
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the 
prior written permission of the publisher. Printed in the United States of America. Published simultaneously 
in Canada. 

NeXT, the NeXT logo, and NeXTstep are trademarks of NeXT Computer, Inc. PostScript is a registered 
trademark of Adobe Systems Incorporated. Sun and NFS are registered trademarks of Sun Microsystems, Inc. 
UNIX is a registered trademark of UNIX Systems Laboratories, Inc. All other trademarks mentioned belong to 
their respective owners. 

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as set 
forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86]. 

ISBN 0-201-58131-0 

This manual describes Release 2. 

Written by NeXT Publications. 

This book was printed on recycled paper. 

1 2345 7 8 9 -AL-9594939291 
First printing, November 1991 



Contents 

Introduction 

1-1 Chapter 1: The Mach Operating System 
1-2 Design Philosophy 
1-4 The Mach Kernel 
1-4 Mach Tasks and Threads 
1-5 Task and Thread Ports 
1-7 Mach Ports and Messages 

. 1-8 Port Access Rights 
1-9 Port Sets 
1-9 Port Names 
1-9 The Port Queue 
1-10 Extended Communication Functionality 
1-10 Messaging in a Network Environment 
1-11 Mach Virtual Memory Management 
1-12 Demand Paging 
1-12 Inheritance and Protection of Memory 
1-13 Inheritance 
1-13 Protection 
1-14 Interprocess CommuniCation 
1-14 Memory-Mapped Files 
1-14 Paging Objects 
1-15 Virtual Memory Functions 
1-15 Program Examples: Virtual Memory 
1-21 Mach Scheduling 
1-21 Priorities 
1-22 Policies 
1-23 Mach C Thread Functions 
1-23 Using Shared Variables 
1-24 Synchronization of Variables 
1-25 Program Example: C Threads 
1-27 Mach Exception Handling 
1-28 The UNIX Approach to Exception Handling 
1-29 A Model for Generalized Exception Handling 
1-30 Exception Handling in Mach 
1-31 Exception Ports 
1-32 User Extensibility 
1-32 Implementing Error Handlers 
1-33 Implementing Debuggers 
1-34 Debugger Attachment 
1-34 Parallel.and Distributed Debugging 



1-35 
1-36 
1-37 
1-38 

2-1 
2-1 
2-2 
2-3 
2-4 
2-4 
2-5 
2-6 
2-7 
2-8 
2-9 
2-9 
2-10 
2-10 
2-10 
2-14 
2-14 
2-15 
2-15 
2-17 
2-18 
2-18 
2-19 
2-21 
2-21 
2-21 
2-22 
2-22 
2-22 
2-23 
2-23 
2-26 

3 .. 1 
3-1 
3-2 
3-3 
3-3 
3-6 
3-7 
3-8 

4-1 
4-2 
4-22 
4-112 
4-123 
4~126 

GDB Enhancements 
Exception Classification 
Kernel Interface 
Program Example: Exception Handling 

Chapter 2: Using Mach Messages 
Message Structure 

Message Header 
Message Body 

Creating Messages by Hand 
Setting Up a Simple Message 
Setting Up a Nonsimple Message 
Setting Up a Reply Message 

The Mach Interface Generator 
Creating Mach Servers with MiG 
The Client's View 

Common Error Codes 
Out-of-Line Data 
Compiling the Client 

Programming Example 
MiG Specification File 

Subsystem Identification 
Type Declarations 

Simple TYpes 
Structured Types 
Pointer TYpes 

Import Declarations 
Operation Descriptions 
Options Declarations 

waittime Specification 
msgtypeSpecification 
error Specification 
serverprefix Specification 
llserprefix Specification 
rcsid Specification 

Syntax Summary 
Compiling MiG Specification Files 

Chapter 3: Using Loadable Kernel Servers 
Loadable Kernel Server Concepts 
Overview of Kernel-Server Loader Functions 
Functions for Asynchronous Messages 

Common Code for Handling Reply Messages 
Handling a Status Message 
Handling a Synchronization Message 
Handling a Log Message 

Chapter 4: C Functions 
C Thread Functions 
Mach Kernel Functions 
Bootstrap Server Functions 
Network Name Server Functions 
Kernel-Server Loader Functions 

Index 



Introduction 

This manual describes the NeXT™ Mach operating system. It's part of a collection of 
manuals called the NeXT Developer's Library; the illustration on the first page of this 
manual shows the complete set of manuals in this Library. 

You don't have to read this manual to be able to create NeXTstep® applications; however, 
the information in this manual is necessary if you want to use Mach features such as 
mUltiple threads in a task. 

UNIX®-related topics aren't covered in this manual. For information about the UNIX 
operating system, you should refer to the books listed in "Suggested Reading" (in the NeXT 
Technical Summaries manual) or to the on-line UNIX manual pages (available through the 
NeXT Digital Library). 

A version of this manual is stored on-line in the Digital Library, which is described in the 
user's manual NeXT Applications. The Digital Library also contains Release Notes, which 
provide last-minute information about the latest release of the software. 

How This Manual is Organized 

This manual contains the following four chapters: 

• Chapter 1, "The Mach Operating System," describes NeXT's version of Mach. It 
discusses concepts such as the kernel, tasks and threads, and ports and messages. This 
chapter also explains how Mach manages virtual memory allocation and how it handles 
exceptions. 

• Chapter 2, "Using Mach Messages," describes how to create Mach messages, either by 
hand or by using the Mach Interface Generator (MiG) .. 

• Chapter 3, "Using Loadable Kernel Servers," describes how to communicate with 
loadable kernel servers and the kernel-server loader by using the kernel-server loader 
functions. 

• Chapter 4, "C Functions," provides detailed descriptions of all Mach operating system 
functions that are available to user-level programs. These functions are summarized in 
the NeXT Technical Summaries manual. 

Note: UNIX library functions and system calls aren't covered in Chapter 4; they're 
described in the on-line UNIX manual pages. 

lntro-l 



Conventions 

Intro-2 

Syntax Notation 

Where this manual shows the syntax of a function, command, or other programming 
element, the use of bold, italic, square brackets, and ellipsis has special significance, as 
described here. 

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic 
denotes words that represent something else or can be varied. For example, the syntax 

print expression 

means that you follow the word print with an expression. 

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [1, 
in which case they're to be taken literally. The exceptions are few and will be clear from 
the context. For example, 

pointer rJilename] 

means that you type a pointer with or without a file name after it, but 

[receiver message] 

means that you specify a receiver and a message enclosed in square brackets. 

Ellipsis ( ... ) indicates that the previous syntax element may be repeated. For example: 

Syntax 
pointer ... 

pointer [, pointer] ... 

pointer rJilename ... ] 

pointer [,filename] ... 

Allows 

One or more pointers 

One or more pointers separated by commas 

A pointer optionally followed by one or more file names 

A pointer optionally followed by a comma and one or more 
file names separated by commas 



Special Characters 

In general, notation like 

Alternate-x 

represents the character you get when you hold down the Alternate key while typing x. 
Because the modifier keys Alternate, Command, and Control interpret the case of letters 
differently, their notation is somewhat different: 

Notation 

Alternate-x 

Alternate-X 

Alternate-Shift -x 

Command-d 

Command-Shift-D 

Control-X 

Notes and Warnings 

Meaning 

Hold down Alternate while typing lowercase x. 

Hold down Alternate while typing uppercase X (with either 
Shift or Alpha Lock). 

Same as Alternate-x. 

Hold down Command while typing lowercase d; if Alpha 
Lock is on, pressing the D key will still produce lowercase 
d when Command is held down. 

Hold down Command and Shift while pressing the D key. 
Alpha Lock won't work for producing uppercase D in this 
case. 

Hold down Control while pressing the X key, with or 
without Shift or Alpha Lock (case doesn't matter with 
Control). 

Note: Paragraphs like this contain incidental information that may be of interest to curious 
readers but can safely be skipped. 

Warning: Paragraphs like this are extremely important to read. 

Intro-3 



Intro-4 



Chapter 1 
The Mach Operating System 

Mach, the operating system of all NeXT computers, was designed by researchers at 
Carnegie Mellon University (CMU). Mach is based on a simple communication-oriented 
kernel, and is designed to support distributed and parallel computation while still providing 
UNIX 4.3BSD compatibility. 

The NeXT Mach operating system is a port of CMU's Release 2.0, with additional features 
both from NeXT and from later versions of CMU's Mach. NeXT-only features include the 
Bootstrap Server and loadable kernel servers. NeXT also added support for Sun® 
Microsystem's NFS®. Features from CMU Release 2.5 and beyond include scheduling and 
some details of messaging. 

Mach consists of the following components: 

• A small, extensible system kernel that provides scheduling, virtual memory, and 
interprocess communications; the kernel exports a small number of abstractions to the 
user via an integrated interface. 

• Operating -system support environments that provide distributed file access, transparent 
network interprocess communication, remote execution facilities, and UNIX 4.3BSD 
emulation. Many traditional operating system functions can be implemented by user 
programs or servers outside the kernel. 

Although Mach's design is conceptually unlike that of UNIX 4.3BSD, it maintains UNIX 
4.3BSD compatibility. Mach's system calls are upwardly compatible with those of UNIX 
4.3BSD, and Mach supports UNIX 4.3BSD commands. This compatibility is transparent 
to user programs and requires no special libraries or other utilities. Most programs that 
operate under UNIX 4.3BSD operate under Mach without modification, after being 
recompiled. 

Mach provides the following features not found in UNIX 4.3BSD: 

• Multiple tasks, each with a large, paged virtual memory space 
• Multiple threads of execution within each task, with a flexible scheduling facility 
• Flexible sharing of memory between tasks 

Efficient and consistent message-based interprocess communication 
• Memory-mapped files 
• Transparent network extensibility 

A flexible capability-based approach to security and protection 
Support for multiprocessor scheduling 

The Mach Operating System 1-1 



Mach is sometimes referred to as an object-oriented operating system, because it provides 
most services through user-level programs accessible by a consistent system of message 
passing. It's important, however, to distinguish between Mach's objects and messages and 
the Objective-C objects and messages used in higher-level software kits such as the 
Application Kit. Mach's objects and messaging system are distinct from those used in the 
kits. Kit objects can, however, communicate with the operating system by sending Mach 
messages to Mach objects or by using the standard UNIX system call interface. 

This chapter describes both the Mach kernel and user-level programs that interact with it, 
but doesn't attempt to redocument standard features of UNIX 4.3BSD (see "Suggested 
Reading" for information about available UNIX 4.3BSD documentation). Individual Mach 
functions are described in detail in Chapter 4, "C Functions," and summarized in the NeXT 
Technical Summaries manual. 

Design Philosophy 

Several factors were considered in choosing an operating system for NeXT computers. It 
was important that the operating system be: 

• Multiuser and multitasking 
• Network-compatible 
• An excellent program development environment 
• Well represented in the university, research, and business communities 
• Extensible and robust 
• Capable of providing room for growth and future extensions 

Although a standard version of the UNIX operating system would have satisfied many of 
these criteria, NeXT wanted an operating system offering better performance and a better 
foundation for future extensions. Mach, with its UNIX 4.3BSD compatibility and 
improved system design, provided these. 

UNIX 4.3BSD compatibility is important because as a multitasking, multiuser operating 
system, the UNIX environment has gained wide acceptance in many fields, particularly 
education. Since the creation of the UNIX operating system in 1969, many hours have been 
spent testing, improving, and extending its features. Currently the UNIX environment is 
considered one of the best for developing both small and large applications. 

However, the success and longevity of the UNIX operating system have exacted their own 
costs. Many of the features that made the UNIX operating system popular have disappeared 
in the quest for functionality beyond the scope of the original design. During two decades, 
the UNIX operating system has grown from a system designed for 16-bit minicomputers 
without paged memory or networking, to a system that supports multiprocessor mainframes 
with virtual memory and support for both local and wide-area networks. As a result of these 
extensions, the UNIX kernel (originally attractive to developers because of its small size, 
handful of system calls, and ease of modification) has grown to immense proportions. 

1-2 Chapter 1: The Mach Operating System 



As new features have been added to the kernel, its size and complexity have grown to the 
point where its underlying conceptual structure is obscured. Over time, programmers have 
added multiple routines that perform similar services for different kernel features. The 
complexity added by each of these extensions ensureS that future kernel extensions Will be 
based on an even less sound understanding of what already exists. The result is a system 
whose complex internal state and interactions make it very difficult to extend, debug, and 
configure. 

Not only has the UNIX kernel grown more complex as new features have been added, so 
has the interface presented to programmers who would like to make use of these features. 
For example, current UNIX systems provide an overwhelming variety of interprocess 
communication (IPC) facilities, including pipes, named pipes, sockets, and message 
queues. Unfortunately, none of these facilities is general enough to replace the others. As 
a result, the programmer must understand not only how to use a variety of IPC facilities, 
but also the tradeoffs involved in choosing one over another. 

While retaining UNIX 4.3BSD functionality, Mach departs from current UNIX design and 
returns to the tenets on which the UNIX operating system was originally built. Foremost 
among these is the idea that the kernel should be as small as possible, containing only a set 
of conceptually simple, yet powerful, primitive functions that programmers can use to 
construct more complex objects. 

Mach puts most services provided by the current UNIX kernel into independent user-level 
programs-the Mach kernel itself provides only the most basic s~rvices: 

• Processor scheduling 
• Interprocess communication 
• Management of virtual memory 

These services and others are accessed through a single form of IPC, regardless of whether 
they're provided by the kernel or by user-level programs. Modularity and a consistent 
pattern of IPC simplify the interface presented to the programmer. For example, a network 
expert can implement a new protocol without having to understand or modify other 
subsystems in the operating system. 

Modularity has other advantages as well. Moving functionality to user-level programs 
makes the kernel smaller and therefore easier to comprehend and debug. Another 
advantage is the ability to use standard debuggers and other tools to develop new system 
services rather than having to use special, less powerful, kernel debuggers. Also, 
configuring the system is simply a matter of choosing which user-level services to initiate, 
rather than building and linking a new kernel. 

Mach's movement toward providmg most operating system features as user-level processes 
is an evolutionary one. Currently, Mach supports some features within the kernel while 
others exist at the user level. AlthoughMach will change as it evolves, its developers are 
committed to maintaining UNIX 4.3BSD compatibility at each stage of development. If 
you design your programs to run under UNIX 4.3BSD, they'll run under current and 
subsequent releases of the Mach operating system. However, if you choose to take 
advantage of features unique to Mach, future releases of the operating system may require 
you to modify and recompile some of your programs. 

Design Philosophy 1-3 



The Mach Kernel 

Mach minimizes kernel size by moving most kernel services into user-level processes. The 
kernel itself contains only the services needed to implement a communication system 
between various user-level processes. The kernel exports several abstractions to users, 
including tasks, threads, ports, and messages. 

The functionality of the Mach kernel can be divided into the following categories: 

• Task and thread creation and management facilities 
• Port management facilities 
• Basic message functions and support facilities 
• Virtual memory management functions 
• Scheduling functions 

Descriptions of these areas of functionality are provided in the following sections. 
Messages are described in detail in Chapter 2, "Using Mach Messages." 

Mach Tasks and Threads 

Mach splits the traditional UNIX notion of a process into two abstractions, the task and the 
thread: 

• A task is the environment within which program execution occurs. It's also the basic 
unit of resource allocation--each task includes a paged virtual address space and port 
rights that protect access to system resources such as processors, communication 
capabilities, and virtual memory. The task itself performs no computation; rather, it's 
a framework for running threads. 

• A thread is the basic unit of execution. It's a lightweight process executing within a 
task, and consists solely of the processor state (such as program counter and hardware 
registers) necessary for independent execution. Each thread executes within the 
context of a single task, though each task may contain more than one thread. All 
threads within a task share the virtual memory address space and communication rights 
of that task. 

The task is the basic unit of protection-all threads within a task have access to all that 
task's capabilities, and aren't protected from each other. 

A traditional UNIX process is represented in Mach as a task with a single thread of 
execution. One major difference bet\yeen a UNIX process and a Mach task is that creating 
a new thread in a task is faster and more conservative of system resources than creating a 
new UNIX process. Creating a new UNIX process involves making a copy of the parent 
task's address space, but threads share the address space of their task. 

Threads are the basic unit of scheduling. On a multiprocessor host, mUltiple threads from 
one task may be executing simultaneously within the task's one address space. A thread 

1-4 Chapter 1: The Mach Operating System 



may be in a suspended state (prevented from running), or in a runnable state (that is, either 
currently running or scheduled to run). There's a nonnegative suspend count associated 
with each thread. The suspend count is 0 for runnable threads and positive for suspended 
threads. 

Tasks may be suspended or resumed as a whole. A thread may only execute when both it 
and its task are runnable. Resuming a task doesn't cause all component threads to begin 
executing, but only those threads that aren't suspended. 

Multiple threads executing within a single task are useful if several program operations 
need to execute concurrently while accessing the same data. For example, a word 
processing application could be designed as multiple threads within a single task. The main 
thread of execution could provide the basic services of the program: formatting text, 
processing user requests, and so on. Another thread could check the spelling of each word 
as it's typed in. A third thread could modify the shape of the cursor based on its position 
within the text window. Since these threads must have access to the same data and should 
execute concurrently, Mach's design is particularly advantageous. 

In addition, threads are well adapted for use with computers that incorporate a 
multiprocessor architecture. With some multiprocessor machines; individual threads can 
execute on separate processors, vastly improving overall application performance. 

To create and use threads in an application, you should use the C thread functions. C 
threads are described later in this chapter; each C thread functions is described in detail in 
Chapter 4. 

Task and Thread Ports 

Both tasks and threads are represented by ports. (Ports in Mach are message queues; they're 
described in the following section.) The task port and the thread port are the arguments 
used in kernel calls to identify to the kernel which task Or thread is to be affected by the call. 
The two functions task _ self 0 and thread _ self 0 return the task and thread ports of the 
currently executing thread. 

Tasks can have access to the task and thread ports of other tasks and threa.ds; For example, 
a task that creates another task or thread gets access to the new task port or thread port. 
Also, any thread can pass access to these ports ina message to another thread in the same 
or a different task. 

Having access to a task or thread port enables the possessor to perform kernel calls on 
behalf of that task or thread. Accessto a task's port indirectly permits access to all threads 
within that task via the task _ threadsO call; however, access to a thread's port doesn't imply 
access to its task's port. 

The task port and thread port are often called kernel ports. In addition to their kernel ports, 
tasks and threads have a number of special ports associated with them. These are ports that 
the kernel must know about to communicate with the task or thread in a structured manner. 

The Mach Kernel 1-5 



A task has three ports associated with it, in addition to its kernel port: 

• The notify port, on which the task receives messages from the kernel advising it of 
changes in port access rights and of the status of messages it has sent. For example, if 
a thread is unsuccessful in sending a message to another thread's port, its notify port 
will contain a status message stating that the port has been intentionally destroyed, that 
the port's task no longer exists, or that there has been a network failure. The task has 
receive rights to this port and can get its value from the function task_notifyO. 

Note that if a task's notify port is set to PORT_NULL, no notification messages are 
generated. This port is set to PORT_NULL at task creation, so a task that wants to 
receive notifications must explicitly set its notify port with the function 
task_set _special_portO. 

• The exception port, on which the task receives messages from the kernel when an 
exception occurs. Exceptions are synchronous interruptions to the normal flow of 
program control caused by the program itself. They include illegal m~mory accesses, 
protection violations, arithmetic exceptions, and hardware instructions intended to 
support emulation, debugging, and error detection. Some of these exceptions are 
handled transparently by the operating system but some must be reported to the user 
program. A default exception port is inherited from'the parent at task creation time. 
This port can be changed by the task or anyone of its threads in order to take an active 
role in handling exceptions. 

• The bootstrap port, to which a new task can send a message that will return any other 
system service ports that the task needs (for example, a port to the Network Name 
Server). Send rights to this port are inherited from the parent at task creation. This is 
the one port that the kernel doesn't actually use; it just makes it available to a new task. 

A thread has two ports, in addition to its kernel port: 

• The thread reply port, which is used in Mach remote procedure calls (remote procedure 
calls are described in Chapter 2). The thread JeplyO function returns send and receive 
rights to the reply port of the calling thread. 

• The thread exception port, to which the kernel sends exceptions occurring in this 
thread. This port is set to PORT_NULL at thread creation and can be set subsequently 
with the function thread_set_exceptionyortO. As long as the thread exception port 
is PORT_NULL the task exception port will be used instead. 

Customarily, only threads within a task will manipulate that task's state, but this custom 
isn't enforced by the Mach kernel. A debugger task, for example, can manipulate the state 
of the task being debugged by getting the task's kernel port and using it in Mach function 
calls. 

1-6 Chapter 1: The Mach Operating System 



Mach Ports and Messages 

In Mach, communication among operating system objects is achieved through messages. 
Mach's messaging facility is implemented by three kernel abstractions, ports, port sets, and 
messages: 

• A port is a protected communication channel (implemented as a finite-length message 
queue) to which messages may be sent and logically queued until reception. The port 
is also the basic object reference mechanism in Mach; its use is similar to that of object 
references in an object-oriented system. That is, operations on objects are requested by 
sending messages to and from the ports that represent them. When a task is created, a 
port that represents the task is simultaneously created. When the task is destroyed, its 
port is also destroyed. 

• A port set is a group of ports, implemented as a queue combining the message queues 
of the constituent ports. A thread may use a port set to receive a message sent to any 
of several ports. 

• A message is used to communicate between objects; the message is passed to an object 
by being sent to the port that represents the object. Each message is a data stream 
consisting of two parts: one fixed-length header and a variable-length message body 
composed of zero or more typed data objects. The header contains information about 
the size of the message, its type, and its destination. The body contains the content (or 
a pointer to the content) of the message. Messages may be of any size, and may contain 

. in-line data, pointers to data, and capabilities for ports. A single message may transfer 
up to the entire address space of a task. 

Message passing is the primary means of communication both among tasks and between 
tasks and the operating system kernel itself .... In fact, the only way one object Can 
communicate with another object is by sending a message to that object's port. System 
services, for example, are invoked by a thread in one task sending a message to another task 
that provides the desired service. The only functions implemented by system traps are 
those directly concerned with message communication; all the rest are implemented by 
messages to a task's task port. 

Threads within a single task also use messages and ports to communicate with each other. 
For example, one thread can suspend or resume the execution of another thread by sending 
the appropriate message to the thread's port. A thread ·can also suspend or resume the 
execution of all threads within another task by sending the appropriate message to the task's 
port; 

The indirection provided by me.ssage passing allows objects to be arbitrarily placed in the 
network without regard to programming details. For example, a thread can suspend another 
thread by sending a suspend message to the port representing that other thread even if the 
request is initiated on another node in a network. It's thus possible to run varying system 
configurations on different classes of machines while providing a consistent interface to all 
resources. The actual system running on any particular machine is. more a function of its 
servers than its kernel. 

The Mach Kernel 1-7 



Port Access Rights 

Communication between objects is protected·by a system of port access rights. Access 
rights to a port consist of the ability to send to or receive from that port. For example, before 
a task can send a message to a port, it must gain send rights to that port. Before a message 
can be received, a task must gain receive rights to the port containing the message. 

The port access rights operate as follows: 

• Send access to a port implies that a message can be sent to that port. If the port is 
destroyed during the time a task has send access, the kernel sends a message to that 
task's notify port indicating that the port has disappeared. For loadable kernel servers, 
this notification message isn't sent unless the server has requested notification by 
calling kern _ serv _ notifyO. 

• Receive access to a port allows a message to be dequeued from that port. Only one task 
may have receive access for a given port at a time; however, more than one thread 
within that task may concurrently attempt to receive messages from a given port. When 
the receive rights to a port are destroyed, that port is destroyed and tasks holding send 
rights are notified. Receive access implies send rights. 

A task may hold just send rights, or both receive and send rights. Although multiple tasks 
may hold send rights to the same port, only one task at a time may hold receive rights to a 
port. 

A thread's right of access is identical to that of the task within which the thread is executing. 
Also, when a thread creates a port, send and receive rights are accorded to the task within 
which the thread is executing. Thus, all threads within the task have equivalent access 
rights to the new port. Thereafter, any thread within the task can deallocate any or all of 
these rights, or transfer them to other tasks. The transfer of port rights is accomplished 
through Mach's messaging system: Access to a port is gained by receiving a message 
containing a port capability (that is, a capability to either send or receive messages). 

Port access rights can be passed in messages. The rights are interpreted by the kernel and 
transferred from the sender to the kernel upon message transmission and to the receiver 
upon message reception. Send rights are kept by the original task as well as being 
transmitted to the receiver task, but receive rights are removed from the original task at the 
time of the send, and appear in the user task when the receive is done. 

During the time between a send and receive, the kernel holds the rights, and any messages 
sent to the port will be queued waiting for a new task to receive on the port. If the task that 
was intended to receive the rights dies before it does the receive, the rights are handled as 
though the receive had been done before the task died. 

The type usually used for ports is port _ t. However, ports can also be referred to as the 
equivalent types port_name _ t and port _ all_ t. port_name _ t implies that no port access 
rights are being transferred; the port is merely being referred to by its name. port_all_t 
implies that all rights (both send and receive) for a port are being transferred. 

1·8 Chapter 1: The Mach Operating System 



Port Sets 

Conceptually, a port set is a bag holding zero or more receive rights. A port set allows a 
thread to block while waiting for a message sent to any of several ports. A port may be a 
member of at most one port set at any time. 

A task's port set right, created by port_set_allocateO, allows the task to receive a message 
from the port set with msgJeceiveO and manipulate the port set with port_set_addO, 
port set removeO, port set statusO, and port set deallocateO. Unlike port rights, a - - - - - -
port set right may not be passed in messages. 

Port set rights usually have the type port_set_name_t, which is equivalent to 
port_name _ t. 

Port Names 

Every task has its own port name space, used for port and port set names. For example, one 
task with receive rights for a port may know the port by the name 13, while another task 
with send rights for the same port may know it by the name 17 .. A task has only one name 
for a port, so if the task with send rights named 17 receives another message· carrying send 
rights for the same port, the arriving rights will also be named 17. 

Typically these names are small integers, but this is implementation dependent. When a 
task receives a message carrying rights for a new port, the Mach kernel is free to choose any 
unused name. The portJenameO call can be used to change a task's name for a port. 

The Port Queue 

Messages that are sent to a port are held there until removed by a thread. The queue 
associated with a port is of finite length and may become full. If an attempt is made to send 
a message to a port that's temporarily full, the sending thread has a choice of three 
alternatives: 

• By default, the sender is suspended until it can successfully transmit the message. 

• The sender can have the kernel hold the message for later transmission to the currently 
full port. If the sender selects this action, it can't transmit further messages to the port 
(nor can it have the kernel hold additional messages for the port) until the kernel notifies 
it that the port has received the initial message. 

• The attempt to send a message to a full port can simply be reported to the sender as an 
error. 

The Mach Kernel 1-9 



Extended Communication Functionality 

The kernel's message-based communication facility is the building block on which more 
complicated facilities may be constructed; for example, it's the underlying communication 
mechanism for the Mach exception handling facility. TWo properties of the Mach 
communication facility simplify the process of extending the functionality of systems based 
on it: 

• Independence: A port is an independent entity from the tasks that use it to 
communicate. Port rights can be exchanged in messages, and are tracked by the kernel 
to maintain protection. 

• Network transparency: As described in the following section, user-level network 
message servers transparently extend the Mach communication facility across a 
network, allowing messages to be sent between tasks on different computers. The 
forwarding process is invisible to both the sender and the receiver of the message. 

This combination of independence and network transparency enables Mach to support 
parallel and distributed architectures with no change to the operating system kernel. These 
properties of the communication facility also simplify the incorporation of new operating 
system functionality, because. user-level programs can easily be added to the existing kernel 
without the need to modify the underlying kernel base. 

Although messaging is similar to UNIX 4.3BSD stream sockets in that it permits reliable, 
kernel-mediated communication between tasks, messaging has a much more fundamental 
role within Mach. Whereas UNIX processes access system services through a variety of 
interfaces (for example, the openO system call for files, the socketO and bindO system 
calls for network connections, and numerous access protocols for user-level services), 
Mach accesses all services through messaging. Because of this consistency of interprocess 
communication, the Mach operating system can easily be extended to incorporate new 
features. 

As an alternative to messaging, Mach also supports interprocess communication via shared 
memory. However, if you use interprocess communication you're responsible for 
synchronizing the transmission and reception of the message. With Mach's messaging 
system, Mach itself schedules the transmission and reception of messages, thereby ensuring 
that no message is read before it's been sent in its entirety. 

Messaging in a Network Environment 

Mach's object-oriented design is well suited for network operation. Messages may be sent 
between tasks on different computers just as they're sent between tasks on the same 
computer. The only difference is the transparent intervention of a new user-level object, the 
network server.· 

1-10 Chapter 1: The Mach Operating System 



Programs called network servers act as intermediaries for messages sent between tasks on 
separate computers. Each network server implements network ports that represent ports for 
tasks on remote nodes. A unique network port identifier is used to distinguish each network 
port. 

A message addressed to a remote port is first received at the local network port that 
represents the remote port. The network server, upon receiving the message, translates it 
into a form compatible with the network protocol and then transmits the message to the 
counterpart network server on the destination node. The destination server decodes the 
message, and determines its ultimate destination from the network port identifier in the 
message. Finally, the destination network server dispatches the message to the local port 
to which it was addressed. 

This network messaging process is transparent to the sender; all routing services are 
provided by the network server. 

Mach Virtual Memory Management 

Each Mach task receives a 4-gigabyte virtual address space for its threads to execute in. 
This address space consists of a series of mappings between ranges of memory addressable 
to the task and memory objects. Besides accommodating the task and its threads, this space 
serves as the basis of Mach's messaging system and allows space for memory-mapped files, . 
to be discussed below. 

A task can modify its address space in several ways. It can: 

• Allocate a region of virtual memory (on a page boundary) 

• Deallocate a region of virtual memory 

• Set the protection status of a region of virtual memory 

• Specify the inheritance of a region of virtual memory 

• Create and manage a memory object that can then be mapped into the space of another 
task 

The only restriction imposed by Mach on the nature of the regions that may be specified for 
virtual memory operations is that they must be aligned on system page boundaries. The 
size in bytes of a virtual memory page is contained in the vm yage _size variable. 

The Mach Kernel 1-11 



Demand Paging 

A NeXT computer's memory management hardware is responsible for mapping sections of 
the virtual memory space into pages of physical memory as needed. The process it uses to 
decide which virtual pages map to which physical pages is known as demand paging. 

While a task is executing, only the page of memory containing the addresses referenced by 
the active thread must reside in physical memory. If the thread references an address not 
contained iIi a page of physical memory, the kernel requests the appropriate pager to read 
in the needed page from storage. Then, a NeXT computer's memory management unit 
maps the referenced virtual page onto this new physical page of memory. 

If there are no further free pages of physical memory available, the Mach kernel makes 
room by requesting the pager to copy the least recently used page to the paging file on the 
disk. The kernel then reassigns the newly freed page of memory. 

Mach's paged virtual address space makes it possible to run extremely large applications 
on a NeXT computer. With all but the largest applications, you can continue to allocate 
memory without concern for exceeding the system's capacity, although·to prevent 
unnecessary performance degradation, you should deallocate memory that's no longer 
needed. 

Inheritance and Protection of Memory 

Mach's virtual memory management system also streamlines the creation of a new task (the 
child) from an existing task (the parent), an operation similar to forking a UNIX process. 
Traditionally under the UNIX operating system, creating a new process entails creating a 
copy of the parent's address space. This is an inefficient operation since often the child task, 
during its existence, touches only a portion of its copy of the parent's address space. Under 
Mach, the child task initially shares the parent's address space and copying occurs only 
when needed, on a page~by-page basis. 

A region of an address space represents the memory associated with a continuous range of 
addresses, marked by a starting address and an ending address. Regions consist of pages 
that have different protection or inheritance characteristics. The Mach kernel extends each 
region to include the entire virtual memory pages that contain the starting and ending 
addresses in the specified range. 

Inheritance and protection are attached to a task's address space, not the physical memory 
contained in that address space. Tasks that share memory may specify different protection 
or inheritance for their shared regions. 

1-12 Chapter 1: The Mach Operating System 



Inheritance 

A task may specify that pages of its address space be inherited by child tasks in any Of three 
ways-copy, shared, or none: 

• copy: Pages marked as copy are logically copied by value, although for efficiency 
copy-on-write techniques are used. This means the first time the child task attempts to 
write to shared memory, a protection fault occurs. The kernel responds to this fault by 
making a copy, for the child task, of the page being written. This is the default mode 
of inheritance if no mode is specified. 

• shared: Pages specified as shared can be read from and written to by both the parent 
and child. 

• none: Pages marked as none aren't passed to a child. In this case, the child's 
corresponding address is left unallocated. 

Inheritance may be specified globally or on a page-by-page basis when a task is forked. 
Inheritance may be changed at any time; only at the time of task creation is inheritance 
information used. 

Copy-on-write sharing between unrelated tasks is typically the result of large message 
transfers. An entire address space may be sent in a single message with no actual data copy 
operations performed. 

Currently the only way two Mach tasks can share the same physical memory is for one of 
the tasks to inherit shared access to memory from a parent. 

Protection 

Besides specifying page inheritance attributes, a task may assign protection values to 
protect the virtual pages of its address space by allowing or preventing access to that 
memory. Protection values are a combination of read, write, and execute permissions. 

By default, when a child task inherits memory from a parent, it gets the same protection on 
that memory that its parent had. 

Like inheritance, protection is specified on a per-page basis. For each group of pages there 
exist two protection values: the current and the maximum protection. The current 
protection is used to determine the access rights of an executing thread, and the maximum 
protection specifies the maximum value that the current protection may take. The 
maximum value may be lowered but not raised. If the maximum protection is lowered to a 
level below the current protection, the current protection is also lowered to that level. 

For example, a parent task may create a child task and set the maximum protection value 
for some pages of memory to read-only. Thereafter, the parent task can be assured that the 
child won't be able to alter the information in those pages. 

The Mach Kernel 1-13 



Interprocess Communication 

Mach's virtual memory management scheme provides an efficient method of interprocess 
communication. Messages of any size (up to the limits imposed by the virtual address 
space) can be transferred between tasks by revising the mapping from a process's virtual 
address space to that of physical memory. This is accomplished by mapping an unused 
portion of the receiving process's virtual address space onto the addresses of the sender's 
message. 

The efficiency of this method can be appreciated more fully when compared to the standard 
UNIX method. Under the UNIX operating system, a message must be physically copied 
from the sending process's address space into the kernel's address space. From there, the 
message is copied into the receiver's address space. 

Memory-Mapped Files 

Memory-mapped files are a further benefit of Mach's virtual memory system. Under Mach, 
all or part of a disk file can be mapped onto a section of a process's virtual memory. A 
reference to a position within this section is equivalent to a reference to the same position 
in the physical file. If that portion of the file isn't currently in memory, a page fault occurs, 
prompting the kernel to request the file system to read the needed section of the file into 
physical memory. Thus, from the point of view of the process, the entire file is in memory 
at once. 

With Mach, the use of memory-mapped files is optional and currently only supports reading 
files. Mach also supports the standard UNIX readO, IseekO, and writeO system calls. 

Paging Objects 

A paging object is a secondary storage object that's mapped into a task's virtual memory. 
Paging objects are commonly files managed by a file server, but as far as the Mach kernel 
is concerned, a paging object may be implemented by any port that can handle requests to 
read and write data. 

Physical pages in an address space have paging objects associated with them. These objects 
identify the backing storage to be used when a page is to be read in as the result of a 
reference or written to in order to free physical memory. 

1·14 Chapter 1: The Mach Operating System 



Virtual Memory Functions 

The Mach kernel provides a set of functions to allow a programmer to manipulate the 
virtual address space of a task. The two most fundamental ones are vm _ allocateO to get 
new virtual memory and vm _ deallocateO to free virtual memory. The programmer also 
has available the UNIX functions mallocO, callocO, and freeO which have been 
reimplemented to use vm _ allocateO and vm _ deallocateO. 

In addition to memory explicitly allocated using vm _ allocateO, memory may appear in a 
task's address space as the result of a msgJeceiveO operation. 

The decision to use one allocation method rather than another should be based on several 
factors. vm _allocateO always adds new, zero-filled virtual memory in page-aligned, 
multiple of page-sized chunks. mallocO allocates approximately the size asked for (plus a 
few bytes) out of a preallocated heap. callocO is the same as mallocO except that it zeros 
the memory before returning it. mallocO and callocO are library subroutine calls; 
vm allocateO is a Mach kernel function, which is somewhat more expensive. 

The most obvious basis on which to choose an allocation function is the size of the desired 
space. There's one other consideration, however, which is the desirability of page-aligned 
storage. If the memory that's allocated is to be passed out-of-line in a message, it's more 
efficient if it's page-aligned. 

Note that it's essential that the correct de allocation function be used. If memory has been 
allocated with vm _ allocateO it must be deallocated with vm _ deallocateO; if it was 
allocated with mallocO it must be deallocated with freeO. Memory that's received 
out-of-line from a message has been allocated by the kernel with vm_allocateO. 

Program Examples: Virtual Memory 

The following three examples demonstrate various aspects of the use of virtual memory 
functions in C programs. 

The first program, vm Jead.c, demonstrates the use of vm _ allocateO, vm _ deallocateO, 
and another virtual memory function called vm readO. First some memory is allocated 
and filled with data. vm JeadO is then called, with reading starting at the previously 
allocated chunk. The contents of the two pieces of memory (that is, the one retrieved by 
vm _ allocateO and the one by vm Jead()) are compared. vm _ deallocateO is then used to 
get rid of the two chunks of memory. 

The Mach Kernel 1-15 



#include <mach.h> 

#include <stdio.h> 

main(int argc, char *argv(]) 

char 

char 

*datal, *temp; 

*data2; 

int i, min; 

unsigned int data_cnt; 
kern return t rtn; 

if (argc > 1) 

printf(nvm_read takes no switches. n); 

printf(nThis program is an example vm_read\nn); 
c:x.Li...(-l); 

if ((rtn = v!11._allocate (task_self (), (vm_address t *) &datal, 
vm_page_size, TRUE)) != KERN_SUCCESS) 

mach_error(nvm_allocate failed n , rtn); 

printf(nvmread: Exiting. \nn); 

exit(-l); 

temp = datal; 

for (i = 0; (i < vm_page_size); i++) 

temp(i] = i; 
printf(nFilled space allocated with some data.\nn); 
printf (nDoing vm_read .... \nn); 

if ((rtn = vm_read(task self(), (vm_address_t) datal, 

vm page size, (pointer_t *) &data2, &data_cnt)) 

!= KERN_SUCCESS) { 
mach_error(nvm_read failed n, rtn); 
printf (nvmread: Exiting. \n n) ; 

exit(-l); 

printf(nSuccessful vm_read.\nn); 

if (vm_page_size != data_cnt) 

pj:'intf(nvmread: Number of bytes read not equal to number n); 

printf(navailable and requested.\nn); 

for (i 0; (i < min); i++) 

if (datal[i] != data2(i]) 
printf(nvmread: Data not read correctly.\nn); 
printf (nvmread: Exiting. \nn) ; 

exit (-1) ; 

printf("Checked data successfully.\nn); 

1-16 Chapter 1: The Mach Operating System 



if ((rtn = vm_deallocate(task_self (), (vm_address_t) datal, 
vm-page_size)) != KERN_SUCCESS) { 

mach_error("vm_deallocate failed", rtn); 
printf ("vmread: Exiting. \n"); 
exit (-1) ; 

if ((rtn = vm_deallocate(task_self(), (vm_address_t)data2, 
data_cnt)) != KERN_SUCCESS) { 

mach_error("Vffi_deallocate failed", rtn); 
printf("vmread: Exiting. \n"); 
exit(-l) ; 

The next program, vrn _ copy.c, demonstrates the use of vrn _ allocate(), vrn _ deallocateO, 
and vrn _ copyO. First some memory is allocated and filled with data. Then another chunk 
of memory is allocated, and vrn _ copyO is called to copy the contents of the first chunk to 
the second. The data in the two spaces is compared to be sure it's the same, checking 
vrn _ copyO. vrn _ deaIlocateO is then used to get rid of the two chunks of memory. 

#include <mach.h> 
#include <stdio.h> 

main(int argc, char *argv[]) 

int 
int 

*data1, *data2, *temp; 
i; 

kern return t rtn; 

if (argc > 1) 
printf ("Vffi copy takes no switches.· "); 
printf("This program is an example vm_copy\n"); 
exit(-l); 

if ((rtn = Vffi_allocate(task_self(), (Vffi_address_t *)&data1, 
vm_page_size, TRUE)) != KERN_SUCCESS) 

mach_error("vm_allocate failed", rtn); 
printf ("Vffi_COpy: Exiting. \n"); 
exit (-1); 

temp = datal;· 
for (i == 0; (i < Vffi_page_size I sizeof(int)); i++) 

temp[i] = i, 
printf("Vffi_COPY: set data\n"); 

The Mach Kernel 1-17 



if ((rtn = Vffi_allocate(task_self(), (vm_address_t *)&data2, 
vm_page_size, TRUE)) != KERN_SUCCESS) ( 

mach_error("Vffi_allocate failed", rtn); 
printf ("Vffi_COpy: Exiting. \n"); 
exit (-1); 

if ((rtn = Vffi_copy(task_self(), (Vffi_address_t) datal, vm-page_size, 
(vm_address_t)data2)) != KERN_SUCCESS) ( 

mach_error("vm_copy failed", rtn); 
printf ("Vffi_COpy: Exiting. \n"); 
exit (-1); 

printf("Vffi_COPY: copied data\n"); 

for (i = 0; (i < Vffi-page_size / sizeof(int)); i++) { 

if (data1[ij != data2[ij) ( 
printf("vm_copy: Data not copied correctly.\n"); 
printf ("vm_copy: Exiting. \n"); 
exit (-1) ; 

printf ("vm_copy: Successful vm_copy. \n") ; 

if ((rtn = Vffi_deallocate(task_self (), (vm_address t)data1, 
Vffi_page_size)) != KERN_SUCCESS) ( 

mach_error("vm_deallocate failed", rtn); 
printf("Vffi_COPY: Exiting.\n"); 
exit (-1); 

if ((rtn = vm_deallocate(task_self(), (vm_address_t)data2, 
Vffi_page_size)) != KERN_SUCCESS) ( 

mach_error("vm_deallocate failed", rtn); 
printf ("Vffi_COpy: Exiting. \n"); 
exit (-1); 

printf("Vffi_COPY: Finished successfully!\n"); 

The following program, copy_on _ write.c, demonstrates the use of vrn _inheritO and 
copy-on-write memory. A child and parent task will share memory, polling this memory to 
see whose turn it is to proceed. First some memory is allocated, and vrn JnheritO is called 
on this memory, the variable lock. Then more memory is allocated for the copy-on-write 
test. A fork is executed, and the parent then stores new data in the copy-on-write memory 
previously allocated, and sets the shared variable signaling to the child that the parent is 
now waiting. The child, polling the shared variable, sees that the parent is waiting. The 
child prints the value of the variable lock and a value of the copy-on-write memory as the, 
child sees it. The value of lock is what the parent set it to be, but the value of the 
copy-on-write memory is the original value and not what the parent changed it to be. The 
parent then awakens and prints out the two values once more. The program then ends with 
the parent signaling the child via the shared variable lock. 

1-18 Chapter 1: The Mach Operating System 



Typically you wouldn't do this synchronization directly as shown here, but would use C 
thread functions (described later in this chapter). 

#include <mach.h> 

#include <stdio.h> 

#define NO ONE WAIT 0 

#define PARENT WAIT 1 
#define CHILD WAIT 2 

#define COPY ON WRITE 0 
#define PARENT CHANGED 1 

#define CHILD CHANGED 2 

#define MAXDATA 100 

main (int argc, char *argv []) 

int pid; 

int *mem; 

int *lock; 

kern return t ret; 

if (argc > 1) 
printf("cowtest takes no switches. "); 

printf("This is an example of copy-on-write \n"); 

printf(IImemory and the use of vm_inherit.\n"); 

exit(-l); 

if «ret = vm_allocate (task_self (), (vm_address_t *) &lock, 

sizeof (int), TRUE»' ! = KERN_SUCCESS) ( 
mach_error(IIvm_allocate failed: ", ret); 

printf("Exiting with error.\n"); 
exit (-1) ; 

if «ret = vm_inherit(task_self(), (vm_address_t) lock, 

sizeof(int), VM_INHERIT_SHARE» != KERN_SUCCESS) 
mach_error(IIvm_inherit failed:", ret); 

printf("Exiting with error.\n"); 
exit (-1) ; 

*lock = NO_ONE_WAIT; 

if «ret = vm_allocate (task_self (), (vm_address_t *) &mem, 

sizeof(int) * MAXDATA, TRUE» != KERN_SUCCESS) ( 

mach...:.error("vm_allocatefailed:", ret); 
printf("Exiting with error. \n"); 

exit(-l); 

mem[O] = COPY_ON_WRITE; 

printf("value of lock before fork: %d\n", *lock); 
pid = fork () ; 

The Mach Kernel 1-19 



if (pid) { 

printf(lfPARENT: copied memory = %d\n lf , mem[O)); 

printf(lfPARENT: changing to %d\n lf , PARENT_CHANGED); 

mem[O) = PARENT_CHANGED; 

printf ("\n"); 

printf("PARENT: lock = %d\n", *lock); 

printf("PARENT: changing lock to %d\n", PARENT_WAIT); 
printf (If\n"); 

*lock = PARENT_WAIT; 

while (*lock == PARENT_WAIT) 

/* wait for child to change the value */ ; 

printf("PARENT: copied memory = %d\n", mem[O)); 

printf("PARENT: lock = %d\n", *lock); 

printf (If PARENT: Finished. \n") ; 

*lock = PARENT_WAIT; 

exit (-1); 

while (*lock != PARENT_WAIT) 

/* wait for parent to change lock */ ; 

printf("CHILD: copied memory = %d\n lf , mem[O)); 

printf("CHILD: changing to %d\n lf , CHILD_CHANGED); 

mem[O) = CHILD_CHANGED; 

printf("\n") ; 

printf(lfCHILD: lock = %d\n", *lock); 

printf("CHILD: changing lock to %d\n", CHILD_WAIT); 

printf("\n lf ) ; 

*lock = 'CHILD_WAIT; 

while (*lock == CHILD_WAIT) 

/* wait for parent to change lock */ ; 

if ((ret = vm_deallocate(task_self(), (vm address_t) lock, 

sizeof(int))) != KERN_SUCCESS) { 

mach_error("vm_deallocate failed:", ret); 
printf(lfExiting.\nlf); 

exit (-1) ; 

if ((ret = vm_deallocate (task_self (), (vm_addresst)mem, 

MAXDATA * sizeof(char))) != KERN_SUCCESS) 

mach_error("vm_deallocate failed:", ret); 

printf("Exiting.\n"); 

exit (-1) ; 

printf("CHILD: Finished.\n"); 

1-20 Chapter 1: The Mach Operating System 



Mach Scheduling 

Each thread has a scheduling priority and policy. The priority is a number between 0 and 
31 that indicates how likely the thread is to run. The higher the priority, the more likely the 
thread is to run. For example, a thread with priority 16 is more likely to run than a thread 
with priority 10. The policy is by default a timesharing policy, which means that whenever 
the running thread blocks or a certain amount of time passes, the highest-priority runnable 
thread is executed. Under the timesharing policy, a thread's priority gets lower as it runs (it 
ages), so that not even a high-priority thread can keep a low-priority thread from eventually 
running. 

Priorities 

Each thread has three types of priorities associated with it: its base priority, its current 
priority, and its maximum priority. The base priority is the one the thread starts with or the 
one that's explicitly set using a function such as cthreadyriority(). The current priority 
is the one that the thread is really executing at; this may be lower than the base priority due 
to aging or a c.all to thread _ switch.O. The maximum priority is the highest priority at which 
the thread can execute. When a thread starts, it inherits its base priority from its parent task 
and its maximum priority is set to MAXPRCUSER (defined in the header file 
kernlsched.h). 

These priorities can be set at three levels: the thread, the task, and (on multiprocessors) the 
processor set. At the thread level, you can use cthread _priorityO or thread _priorityO to 
set the base priority and to optionally lower the maximum priority. You can raise or lower 
just the maximum priority using cthread_maxyriorityO or thread_maxyriorityO. To 
raise a thread's maximum priority, you must obtain the privileged port of the thread's 
processor set, which only the superuser can do. 

At the task level, you can set the task's base priority using taskyriorityO. The task's base 
priority is inherited by all threads that it forks; you can also specify that all existing threads 
in the task get the new base priority, 

You can get the priorities of running tasks using task_iofoO and thread_iofoO. Or, from 
a shell window,·you can view the priorities of running tasks using the UNIX command ps. 
The -I option of ps displays, among other things,the lowest values for maximum priority 
and current priority that were found in all the threads in the task. The -m option displays 
the current priority of every thread in the task. The following example shows the ps 
displays for Terminal. 

The Mach Kernel 1-21 



localhost> ps -axu I grepTe~ina1 
me 1658 2.8 2.4 1.31M 200K p2 S 0:00 grep Terminal 
root 174 2.4 11.4 3.84M 936K pI S 

-1 174 
0:41 /NextApps/Terminal -Mach 

localhost> ps 
F UID 

1 0 
PID PPID CP PRI BASE VSIZE RSIZE WCHAN STAT TT 
174 156 0 10 10 3.84M 912K 0 S pI 

localhost> ps -m 174 
USER PID TT %CPU STAT PRI SYSTEM USER COMMAND 

TIME COMMAND 
0:41 /NextAp 

root 174 pI 1.8 S 16 0:15.76 0:19.17 /NextApps/Terminal -Mac 
0.1 S 10 0:06.15 0:00.54 

Policies 

The NeXT Mach operating system has three scheduling policies: 

• Timesharing 
• Interactive 
• Fixed priority 

Every thread starts with the timesharing policy, no matter what policy the creator of the 
thread has. If you want the policy of any thread to be something other than timesharing, 
you must set that thread's policy using threadyolicyO. 

The interactive policy is a variant of timesharing that's designed to be optimized for 
interactive applications. If you have a non-NeXTstep application, such as a 
terminal-oriented editor, you should set the main thread's policy to interactive using 
thread yolicyO. (The Application Kit automatically sets up the first thread in an 
application to have an interactive policy.) Currently, the interactive policy is exactly the 
same as timesharing, but in the future performance might be enhanced by, for example, 
making interactive policy threads have higher priorities than the other threads in the task. 

Fixed priority can be a dangerous policy if you're not familiar with all of its consequences. 
For this reason, the fixed priority policy is disabled by default. If you want to use fixed 
priorities, you must enable them using processor_set _policy _ enableO. Threads that have 
the fixed priority policy have their current priority always equal to their base priority (unless 
their priority is depressed by thread _switch()). A thread with the fixed priority policy runs 
until one of the following happens: 

• A higher-priority process becomes available to run. 
• A per-thread, user-specified amount of time (the quantum) passes. 
• The thread blocks, waiting for some event or system resource. 

Because fixed priority threads don't lose priority over time, they can prevent lower priority 
threads from running. The opposite can happen, too; a low-priority fixed priority thread can 
be kept from running for enough time by higher priority threads. The first problem can be 
solved in some cases by the fixed-priority thread calling thread _switchO to temporarily 
depress its priority or hand off the processor to another thread. The fixed priority policy is 
often used for real-time problems, such as on-line transaction processing. 

1-22 Chapter 1: The Mach Operating System 



Mach C Thread Functions 

Mach provides a set of low-level, language-independent functions for manipulating threads 
of control. The C thread functions are higher-level, C language functions in a run-time 
library that provide an interface to the Mach facilities. The constructs provided in the C 
thread functions are: 

• Forking and joining of threads 
• Protection of critical regions with mutual exclusion (mutex) variables 
• Condition variables for synchronization of threads 

If you intend to do multithreaded applications, you should use the C thread functions rather 
than the Mach kernel functions. The C thread functions are a natural and efficient set of 
functions for multithreaded applications, whereas the thread kernel calls are designed to 
provide the low-level mechanisms that packages such as the C thread functions can be built 
with. 

Using Shared Variables 

All global and static variables are shared among all threads: If one thread modifies such a 
variable, all other threads will observe the new value. In addition, a variable reachable from 
a pointer is shared among all threads that can dereference that pointer; This includes objects 
pointed to by shared variables of pointer type, as well as arguments passed by reference in 
cthreadJorkO. You should be carefultodeclare all shared variables as volatile, or else 
the optimizer might remove references to them; 

When pointers are shared, some care is required to avoid probleD).s with dangling 
references. You must ensure that the lifetime of the object pointed to is long enough to 
allow the other threads to dereference the pointer. Since there's no bound on the relative 
execution speed of threads, the simplest solution is to share pointers to global or 
heap-allocated objects only. If a pointer to a local variable is shared, the function that 
variable is defined in must remain active until it can be guaranteed that the pointer will no 
longer be dereferenced by other threads. The synchronization functions can be used to 
ensure this. 

Unless a library has been d,esigned to work in the presence of reentrancy, the operations 
provided by the library must be presumed to make unprotected use of shared data. Hence, 
you must protect against this through the use of a mutexthat's locked before every library 
call (or sequence of library calls ) and unlocked afterward. For example, you should lock a 
mutex before calling printfO and unlock the mutex afterward. 

Mach C Thread Functions 1-23 



Synchronization of Variables 

This section describes mutual exclusion and synchronization functions, which are used to 
constrain the possible interleavings of threads' execution streams. These functions 
manipulate mutex and condition variables, which are defined as follows: 

typedef struct mutex { ... j *mutex_t; 

typedef struct condition { ... j *condition_t; 

Mutually exclusive access to mutable datais necessary to prevent corruption of data. As a 
simple example, consider concurrent attempts to update a simple counter. If two threads 
fetch the current value into a (thread-local) register, increment, and write the value back in 
some order, the counter will only be incremented once, losing one thread's operation. A 
mutex solves this problem by making the fetch-increment-deposit action atomic. Before 
fetching a counter, a thread locks the associated mutex, and after depositing a new value the 
thread unlocks the mutex: 

mutex _lock (m) ; 

count -= 1; 

mutex_unlock(m); 

If any other thread tries to use the counter in the meantime, it will block when it tries to lock 
the mutex. If more than one thread tries to lock the mutexat the same time, only one will 
succeed; the rest will block. 

Condition variables are used when one thread wants to wait until another thread has finished 
doing something. Every condition variable should be protected by a mutex. Conceptually, 
the condition is a boolean function of the shared data that the mutex protects. Commonly, 
a thread locks the mutex and inspects the shared data. If it doesn't like what it finds, it waits 
using a condition variable: 

while ( 1* condition isn't true *1 ) 
condition_wait(condition_t c, mutex t m); 

This operation also temporarily unlocks the mutex, to give other threads a chance to get in 
and modify the shared data. Eventually, one of them should signal the condition (which 
wakes up the blocked thread) before it unlocks the mutex: 

mutex_lock(mutex_t m); 

1* modify shared data *1 
condition_signal(condition_t c); 

mutex_unlock(mutex_t m); 

At that point, the original thread will regain its lock and can look at the shared data to see 
if things have improved. It can't assume that it will like what it sees, because some other 
thread may have slipped in and altered the data after the condition was signaled. 

1-24 Chapter 1: The Mach Operating System 



You must take special care with data structures that are dynamically allocated and 
deallocated. In particular, if the mutex that's controlling access to a dynamically allocated 
record is part of the record, make sure that no thread is waiting for the mutex before freeing 
the record. 

Attempting to lock a mutex that one already holds is another common error. The offending 
thread will block waiting for itself. This can happen when a thread is traversing a 
complicated data structure, locking as it goes, and reaches the same data by different paths. 
Another instance of this is when a thread is locking ele!llents in an array, say to swap them, 
and it doesn't check for the special case that the elements are the same. 

You must be careful to avoid deadlock, a condition in which one or more threads are 
permanently blocked waiting for each other. The above scenarios are a special case of 
deadlock. The easiest way to avoid deadlock with mutexes is to impose a total ordering on 
the mutexes, and then ensure that threads only lock mutexes in increasing order. 

You must decide what kind of granUlarity to use in protecting shared data with mutexes. 
The two extremes are to have one mutex protecting all shared memory, or to have one mutex 
for every byte of shared memory. Finer granularity normally increases the possible 
parallelism, because less data is locked at anyone time. However, it also increases the 
overhead lost to locking and unlocking mutexes and increases the possibility of deadlock. 

Program Example: C Threads 

This section demonstrates the use of the C thread functions in writing a multithreaded 
program. The program is an example of how to structure a program with a single master 
thread that spawns a number of concurrent slaves. The master thread waits until all the 
slaves have finished and then exits. 

Once created, a slave thread simply loops calling a function that makes the processor 
available to other threads. After this loop is finished, the slave thread informs the master 
that it's done, and then dies. In a more useful version of this program, each slave process 
would do something while looping. 

#include <stdio.h> 

#include <cthreads.h> 

volatile int count; 

mutex t loclc; 
mutex t print; 

condition t done; 

void init () 

/* 
/* 
/* 
/* 

number of slave threads active */ 
mutual exclusion for count */ 
mutual exclusion for printfs */ 
signaled each time a slave finishes */ 

/* Allocate mutex variables "lock" and "print". */ 
lock = mutex_alloc(); 
print = mutex_alloc(); 

Mach C Thread Functions 1-25 



/* 

/* Allocate condition variable "done". */ 

done = condition_alloc(); 

count = 0; 

* Each slave just loops, yielding the processor on each 

* iteration. When it's finished, it decrements the global 

* count and signals that it's done. 

*/ 
void slave(int n) 

/* 

int i; 

for (i = 0; i < 100; i += 1) 

cthread_yie1d(); 

/* 
* If any thread wants to access the count variable, it 

* first locks the mutex. When the mutex is locked, any 

* other thread wanting the count variable must wait until 

* the mutex is unlocked. 
*/ 

mutex_10ck(10ck); 

count -= 1; 

mutex_lock(print); 

printf("Slave %d finished.\n", n); 
mutex_unlock(print); 

/* Signal that this slave has finished. */ 

condition_signal(done); 

mutex_unlock(lock); 

* The master spawns a given number of slaves and then waits 

* for them all to finish. 
*/ 

void master (int nslaves) 

int i; 

for (i = 1; i <= nslaves; i++) 

mutex_lock(lock); 

/* Increment count with the creation of each slave thread. */ 
count += 1; 

/* Fork a slave and detach it. */ 
cthread_detach(cthread_fork((cthread_fn_t)slave, (any_t)i»; 

mutex_unlock(lock); 

1-26 Chapter 1: The Mach Operating System 



mutex_lock(lock); 

/* 
* Master thread loops waiting on the condition done. Each 

* time the master thread is signaled by a condition_signal 
* call, it tests the count for a value of zero. 

*/ 
while (count != 0) 

condition_wait (done, lock); 

mutex_unlock(lock); 

mutex_lock(print); 

printf("All %d sLaves have finished.\n", nslaves); 

mutex_unlock(print); 
cthread_exit(O); 

main() 
{ 

init () ; 

master(15); /* Create master thread and 15 slaves. */ 

Mach Exception Handling 

Exceptions are synchronous interruptions to the normal flow of program control caused by 
the occurrence· of unusual conditions during program execution. Raising an exception 
causes the operating system to manage recovery from the unusual condition. 

Exceptions include: 

• Illegal accesses (bus errors, segmentation and protection violations) 

• Arithmetic errors (overflow, underflow, divide by zero) 

• Hardware instructions intended to support facilities such as emulation, debugging, and 
error detection 

Software interrupts and other actions caused by asynchronous external events aren't 
considered to be exceptions. 

Although many exceptions, such as page faults, can be handled by the operating system and 
dismissed transparently to the user, the remaining exceptions are exported to the user by the 
operating system's exception handling facility (for example, by invoking a handler or 
producing a core dump). 

Mach Exception Handling 1-27 



Four major classes of applications use exceptions: 

• Debugging. Debuggers rely on exceptions generated by hardware trace and breakpoint 
facilities. Other exceptions that indicate errors must be reported to the debugger; the 
presence of the debugger indicates the user's interest in any anomalous program 
behavior. 

• Core dumps. In the absence of a debugger, a fatal exception can cause the execution 
state of a program to be saved in a file for later examination. 

• Error handling. Certain applications sometimes handle their own exceptions 
(particularly arithmetic). For example, an error handler could substitute 0 for the result 
of a floating underflow· and continue execution. Error handlers are often required by 
bigh-Ievellanguages. 

• Emulation. Generally, computers generate exceptions upon encountering operation 
codes that can't be executed by the hardware. Emulators can be built to execute the 
desired operation in software. Such .emulators serve to extend the instruction set of the 
underlying machine by performing instructions that aren't present in the hardware. 

The following sections contrast the UNIX approach to error handling with the general 
model upon which the Mach exception handling facility is built, and then present specific 
information about the Mach exception handling facility. 

The UNIX Approach to Exception Handling 

Designers of operating systems have approached exceptions in a variety of ways. The 
drawbacks of most approaches include limited functionality (often the result of designing 
only for debuggers) and lack of extensibility to a multithreaded environment. 

The UNIX operating system generalizes exception handling to the signal facility, which 
handles all interruptions to normal program flow. The varying requirements of different 
types of interruptions (such as exceptions, timer expiration, or a control character from the 

.. terminal) entail semantics that vary from signal to signal; the default action can be nothing, 
stop, continue from stop, or terminate (with or without a core dump). The user can change 
these defaults or specify a handler to be invoked by a signal. The interface to these handlers 
includes a partial machine context, but registers outside this context aren't accessible. 

Debugging support is centralized in the ptraceO system call: It performs all data transfer 
and process control needed by debuggers, and interacts with the signal facility to make 

. signals visible to debuggers (iIicluding signals that would otherwise invoke error handlers 
. or einullltors). The occurrence of a signal in a debugged process causes that process to stop 

in a peculiar manner and notify the debugger that something has happened. This 
notification is implemented by special treatment of debugged processes in the waitO 
system call; this call usually detects terminated processes, but also detects stopped 
processes that are being debugged. One consequence of these features and their 

1-28 Chapter 1: The Mach Operating System 



implementation is that debuggers are restricted to debugging processes that are the 
immediate children of the debugger. 

There are two major problems with the UNIX signal facility: 

• Executing the signal handler in the same context as the exception makes many registers 
inaccessible. These registers are often the very registers that an arithmetic error handler 
needs to modify (for example, by substituting 0 for a floating underflow). 

• The entire concept of signals is predicated on single-threaded applications. Adapting 
signals to multithreaded applications is difficult and complicates the interface to them. 
At least half a dozen major changes to the UNIX signal implementation in the Mach 
kernel have been required for this reason. 

The typical use of signal handlers is to detect and respond to external events; for this they're 
adequate, but as an exception handling facility they leave much to be desired. 

A Model for Generalized Exception Handling 

The Mach exception handling facility is based on a model whose generality is sufficient to 
describe virtually all uses of exceptions, including those made by the four classes of 
applications discussed earlier. 

Mach's exception handling model divides applications that use exceptions into two major 
classes: 

• Error handlers: These components perform recovery actions in response to an 
exception and resume execution of the thread involved. This class includes both error 
handlers and emulators. Error handlers typically execute in the same address space as 
that thread for efficiency reasons (access to state). 

• Debuggers: These components examine the state of an entire application to investigate 
why an exception occurred or why the program is misbehaving. This class includes 
both interactive debuggers and the servers that produce core dumps; the latter can be 
viewed as front ends to debuggers that examine core dumps. Debuggers usually 
execute in address spaces distinct from the application for protection reasons. 

This chapter uses the terms "error handler" and "debugger" to refer to these two classes (for 
example, a core dumper is a debugger). The term "handler" is used. to refer to any 
application that uses exceptions. 

The Mach exception handling model is derived by examining the requirements common to 
error handlers and debuggers. Specifically, the occurrence of an exception requires 
suspension of the thread involved and notification of a handler. The handler receives the 
notification and performs some computation (for example, an error handler fixes the error, 
a debugger decides what to do next), after which the thread is either resumed or terminated. 

Mach Exception Handling 1-29 



The model presented here covers all uses of exceptions. The occurrence of an exception 
invokes a four-step process involving the thread that caused the exception (victim) and the 
entity that handles the exception (handler, which may be the operating system): 

1. Victim does a raise, causing notification of an exception's occurrence. 

2. Victim does a wait, synchronizing with completion of exception handling. 

3. Handler does a catch, receiving notification. This notification usually identifies the 
exception and the victim, although some of this identification may be implicit in where 
and how the notification is received. 

4. Handler takes either of two possible actions: clear the exception (causing the victim to 
return from the wait) or terminate the victim thread 

The primitives appearing in bold in this model constitute the high-level model interface to 
exceptions and can be viewed as operating on exception objects. The handler will usually 
perform other functions between the catch step and the clear or terminate step; these 
functions are part of the handler application itself, rather than part of the exception model. 

Exception Handling in Mach 

The Mach exception handling facility was designed as a general implementation of the 
exception handling model described earlier in this chapter. The major design goals for this 
new facility were: 

• A single facility with consistent semantics for all excepti0ns 
• Clean and simple interface 
• Full support for debuggers and error handlers 
• No duplication of functionality within kernel 
• Support for user-defined exceptions 

A consequence of these goals is a rejection of the notion of a handler executing in the same 
context as the exception it's handling. There is no clean and straightforward way to make 
a thread's context available to the thread itself; this results in a single thread having multiple 
contexts (a currently executing context and one or more saved exception contexts). In tum 
this causes serious naming and functionality problems for operations that access or 
manipulate thread contexts. Because Mach supports multiple threads within the same task, 
it's sufficient to stop the thread that caused the exception and execute the handler as another 
thread in the same task. 

The Mach exception handling facility implements the exception handling model via Mach 
kernel functions to avoid duplication of kernel functionality. Because the handler never 
executes in the context of the victim thread, the raise, wait, notify, and clear primitives 
constitute a remote procedure call (RPC). We therefore implement them using a 
message-based RPC provided by Mach's communication facility. The remaining 

1-30 Chapter 1: The Mach Operating System 



terminate primitive is exactly Mach's thread _ terminateO or task _ terminateO function; 
no special action is required to terminate the thread or task instead of completing the RPC. 

The exception RPC consists of two messages: an initial message to invoke the RPC, and a 
reply message to complete the RPC. The initial message contains the following items: 

• Send and reply ports for the RPC. 
• The identities of thread that caused the exception and the corresponding task. 
• A machine-independent exception class (see the section "Exception Classification") 
• Two machine-dependent fields that further identify the exception. 

If the RPC is completed, the reply message contains the two RPC ports and a return code 
from the handler that handled the exception (success in almost all cases). MiG-generated· 
stub routines perform the generation and decoding of the messages; this allows users to 
avoid dealing directly with the contents of the messages. (MiG is described in Chapter 2.) 

An exception RPC corresponds to our exception model as follows: 

• raise: send initial message 
• wait: wait for and receive reply message 
• catch: receive initial message 

v. clear: send reply message 

. Exception Ports 

The two messages that constitute the RPC are sent to and received from ports corresponding 
to the handler (initial message) and victim (reply message). The handler's port is registered 
as the exception port for either the victim's task or thread; the kernel consults this 
registration when an exception occurs. The reply port is specified in the initial message; for 
hardware exceptions the kernel allocates the reply port and caches it for reuse on a 
per-thread basis. Mach kernel functions are available to register a port as an exception port 
for a task or thread, and to return the port currently registered; these functions for 
implementing debuggers and error handlers are described in the section "Program 
Example: Exception Handling." 

Registering exception ports for both tasks and threads effects a separation of concerns 
between error handlers and debuggers. Error handlers are supported by the thread 
exception ports because error handlers usually affect only the victim thread; different 
threads within a task can have different error handlers. The registered exception port for a 
thread defaults to the null port at thread creation; this defaults the initial error handler to no 
handler. Debuggers are supported by the task exception ports because debuggers operate 
on the application level; this includes at least all the threads in the victim's task, so at most 
one debugger is ever associated with a single task. The registered exception port for a task 
is inherited from the parent task at task creation; this supports debuggers that handle trees 
of tasks (such as a multitasking parallel program) and inheritance of core-dump servers, 

Mach Exception Handling 1-31 



Theptesence of both task and thread exception ports creates a potential conflict because 
both are applicable to any exception. This is resolved by examining the differences 
between error handlers and debuggers. Error handlers use exceptions to implement 
portions of an application; an error handler is an integral part of the application that 
generates its exceptions. Exceptions handled by an error handler may be unusual, but they 
don't indicate anomalous or erroneous behavior. In contrast, debuggers use exceptions to 
investigate anomalous or erroneous application behavior; as a result debuggers have little 
interest in exceptions successfully handled by error handlers. This implies that exceptions 
should invoke error handlers in preference to debuggers; this preference is implemented by 
having thread exception ports take precedence over task exception ports in determining 
where to direct the RPC invoked by an exception. If neither an error handler nor a debugger 
can successfully handle an exception, the task is terminated. 

User Extensibility 

Mach's exception handling facility permits you to define and handle your own exceptions 
in addition to those defined by the system. 

The software class of exceptions (see the section "Exception Classification") contains a 
range of codes reserved for user-defined exceptions; this allows the handling of these 
exceptions to be integrated into the handling of system-defined exceptions. The same ports 
are used in both cases, and the interface to handlers is identical. 

An advantage of this approach is that user-defined exceptions can immediately be 
recognized as such, even by debuggers that can't decode the machine-dependent fields 
which identify the exact exception. 

Generation of user-defined exceptions is facilitated by a MiG stub routine that implements 
the exception RPC (in turn this routine is generated automatically from an interface 
description of the exception RPC). User code that detects an exception simply obtains the 
appropriate exception port from the kernel and calls this stub routine; the stub routine 
handles the RPC and returns a return code from the handler. Alternatively, you may use the 
MiG exception interface with your own exceptions and exception ports; this approach may 
be advantageous for applications that handle only user-defined exceptions. 

Implementing Error Handlers 

Error handlers are supported by thread exception ports and invoked by remote procedure 
calls on those ports. An error handler is associated with a thread by registering a port on 
which the error handler receives exception RPCs as the thread's exception port. This 
registration causes all exceptions occurring in the thread to invoke RPCs to the error 
handler's port. Since most error handlers can't handle all possible exceptions that could 
occur, they must check each exception and forward it to the corresponding task exception 

1-32 Chapter 1: The Mach Operating System 



port if it can't be handled. This forwarding can be performed by obtaining the exception 
port for the task specified in the initial message and sending the initial message there. 
Alternatively the error handler can return a failure code in the reply message; this causes 
the sender of the initial message to reinitiate the RPC using the task exception port. 

Implementation of error handlers requires additional functionality beyond completing the 
RPC. This functionality is supported by separate Mach kernel functions that can also be 
used by other applications. The most common actions and corresponding functions are: 

• Read/write register state: thread_get_stateO, thread_set_stateO 

• Read/write memory state: access memory directly within task, otherwise vm readO, 
vID_writeO 

• Terminate thread: thread _ terminateO 

• Resume thread: send reply message to complete RPC (msg send()) 

Some applications may require that error handlers execute in the context of (that is, on the 
stack of) the thread that caused the exception (such as emulation of UNIX signal handlers). 
Although this appears to contlict with the principle of never executing an error handler in 
the context of the victim thread, it can be implemented by using a system-invoked error 
handler to set up the application's handler. Specifically, the error handler invoked by the 
exception RPC modifies the victim thread so that the application's handler is executed when 
the thread is resumed. Unwinding the stack when the application's error handler finishes is 
the responsibility of the application developer. 

Implementing Debuggers 

Debuggers are supported by the task exception ports; exceptions invoke debuggers via 
remote procedure calls on those ports. A debugger is associated with a task by registering 
a port on which the debugger receives exception RPCs as the task's exception port. An 
exception RPC omy stops the victim thread pending RPC completion; other threads in the 
task continue running. This has two consequences: 

• If the debugger wants to stop the entire task, a task _suspendO must be performed. A 
straightforward way to accomplish this is to do it inside the exception RPCand then 
complete the RPC; the victim thread can't resume execution upon RPC completion 
because its task has been suspended. 

• Multiple exceptions from a multithreaded task may be outstanding for the debUgger on 
a single debugger invocation. If the debugger doesn't handle 'these pending exceptions 
for the task, some may appear to occur at impossible times (such asa breakpoint 
occurring after the user has removed it). 

Mqch Exception Handling 1-33 



The Mach exception handling facility is one small component of the kernel that can be used 
by debuggers. The various actions required to support debuggers are implemented via 
general purpose functions that also support other applications. Some of the more important 
debugger actions and corresponding kernel functions are: 

• Detect event: msg receiveO. System components that generate or detect external 
events (such as interrupt characters on a terminal) signal the events by sending 
messages. 

• Read and write application memory (includes setting breakpoints): vmJeadO, 
vm_writeO. 

Read and write application registers (includes setting single-step mode if available): 
thread _get _ stateO, thread_set _ stateO. 

• Continue application: task and thread control functions. 

• End debugging session: task_terminateO. 

Exceptions that invoke error handlers via thread exception ports aren't visible to debuggers. 
A debugger that wants to detect error handler invocation can insert one or more breakpoints 
in the error handler itself; exceptions caused by these breakpoints will be reported to the 
debugger. 

Debugger Attachment 

The independence property of the Mach kernel above allows Mach to support debugger 
attachment and detachment without change to the kernel itself. Traditional UNIX systems 
require that the debugged process be the child of the debugger; this makes it impossible to 
debug a process that wasn't started by the debugger. Subsequent developers have expended 
considerable effort to implement an attach primitive that allows a debugger to attach to a 
previously started process and debug it; this allows analysis of failures that may not be 
repeatable. Similarly these systems allow a debugger to detach from a running process and 
exit without affecting the process. No design change is required to support this 
functionality; the debugger need only obtain the port representing the task to be debugged, 
and may then use all of the functions previously discussed to debug that task. A debugger 
can detach from a task by resetting the task's exception port to its former value; there is no 
other connection between the debugger and task being debugged. 

Parallel and Distributed Debugging 

The design of the exception handling facility also supports parallel and distributed 
debugging without change. There are several cases to be considered based on the structure 
of the debugger and the application being debugged. In all of these cases the debugger itself 
may be a parallel or distributed application consisting of multiple tasks and threads. 

/-34 Chapter 1: The Mach Operating System 



For parallel applications composed of multiple threads within a single task, a debugger need 
only register its exception RPC port as thattask's exception port. Multiple concurrent 
exceptions result in multiple RPC invocations being queued to that port; each invocation 
identifies the thread involved. Mach's communication facility allows the debugger to 
accept all of these RPCs before responding to any of them, and to respond to them in any 
order. (Of course the debugger must keep track of the RPCs and make sure they're all 
responded to when continuing the application.) A straightforward implementation is to 
suspend the task in response to the first RPC, and then complete all pending exception 
RPCs recording the threads and exceptions involved. The exceptions can then be reported 
to the user all at once. 

For parallel applications composed of multiple tasks within a single machine, only minor 
changes to the above debugger logic are required. The debugger must now register its 
exception RPC port as the task exception port for each task, and may choose to identify 
components of the parallel application by tasks instead of threads. Suspending or resuming 
the entire application now requires an operation on each task. If the application 
dynamically creates tasks, an additional interface to report these new tasks to the debugger 
may be required so that the new tasks can be suspended and resumed by the debugger. 

Network transparency allows the components of a debugger and the debugged application 
to be spread throughout a network; all required operations extend transparently across the 
network. This supports a number of possible debugging scenarios: 

• The application and the debugger are on separate hosts. 

• Debugging of a distributed application. The debugger doesn't require modifications 
beyond those needed to deal with applications composed of mUltiple tasks. 

• The debugger itself can be distributed over the network. 

The last scenario is useful for implementing fast exception response in a debugger for 
applications that run in parallel on several distributed hosts;·ifthe exception RPC stays 
within the host, suspending of all application components on that host can be done faster. 

GDB Enhancements 

The Mach exception handling facility and other Mach kernel functions have been used to 
enhance GDB (the GNU Debugger) for debugging multithreaded tasks. This enhanced 
version of GDB operates at the task level (that is, any exception causes GDB to suspend the 
entire task). A notion of the current thread has been added; this thread is used by any 
thread-specific command that doesn't specify a thread. New commands are provided to list 
the threads in the task, change the current thread, and examine or control individual threads. 
Thread-specific breakpoints are supported by logic that transparently continues the 
application from the breakpoint until the desired thread hits it. Implementation of 
attachment to running tasks as described in the section "Debugger Attachment" is in 
progress, as are changes to deal with mUltiple concurrent breakpoints. 

Mach Exception Handling 1-35 



The existence of multiple threads within a debugged task complicates GOB's execution 
control logic. In addition to the task _ suspendO required upon exception detection, 
resuming from a breakpoint becomes somewhat intricate. Standard GOB removes the 
breakpoint, single-steps the process, puts back the breakpoint and continues. The enhanced 
version must ensure that only the thread at the breakpoint executes while performing the 
single step; this requires switching from task suspension to suspension of all of the threads 
except one and then back again before resuming the application. 

The Mach exception handling facility is an important implementation base for the 
enhancements to GOB. Identification of the victim thread in the initial message avoids 
confusion over which thread in the process is being manipulated by ptraceO; without this 
identification it's necessary to compare the context accessed by ptraceO to all other thread 
contexts in the task to determine this. This identification also make it possible to handle 
multiple concurrent exceptions; all the UNIX functions are restricted to one current signal 
per task, and hence preclude handling of multiple concurrent exceptions. Finally, the 
independence of the debugger from the debugged application makes it possible to 
implement debugger attachment without kernel modifications; the UNIX operating system 
requires extensive kernel modifications to achieve similar functionality. 

Exception Classification 

The Mach exception handling facility employs a new hardware-independent classification 
of exceptions. This is in contrast to previous systems (such as UNIX), whose exception 
classifications are closely wedded to the hardware they were originally developed on. Our 
new classification divides all exceptions into six classes based on the causes and uses of the 
exceptions; further hardware and software specific distinctions can be made within these 
classes as needed. The six classes are: 

• Bad Access: A user access to memory failed for some reason and the operating system 
was unable to recover (such as invalid memory, protection violation). 

• Bad Instruction: A user executed an illegitimate instruction (such as an undefined 
instruction, reserved operand, privileged instruction). 

• Arithmetic: A user arithmetic instruction failed for an arithmetic reason (such as 
overflow, underflow, divide by zero). 

• Emulation: A user executed an instruction requiring software emulation. 

1-36 Chapter 1: The Mach Operating System 



• Software: A broad class including all exceptions intended to support software. These 
fall into three subclasses: 

Hardware 

Operating System 

User 

Hardware instructions to support error detection (such as trap 
on overflow, trap on subscript out of range). 

Exceptions detected by operating system during system call 
execution (such as no receiver on pipe). These are for 
operating system emulation (such as UNIX emulation). Mach 
doesn't use exceptions for system call errors. 

Exceptions defined and caused by user software for its own 
purposes. 

• Debugger: Hardware exceptions to support debuggers (such as breakpoint instruction 
and trace trap). 

In cases of potential confusion (for example, is it a bad ins!fuction or aninstructioll 
requiring emulation?) the correct classification is always clear from the intended uses of the 
instruction as determined by the hardware and system designers. 

Two machine-dependent fields are used to identify the precise exception within a class for 
flexibility in encoding exception numbers. Two fields are needed for emulation instructions 
containing a single argument (one for the instruction, one for the argument), but we have 
also found them useful for constructing machine-dependent exception classifications (for 
example, using one field to hold the trap number or vector" and the other to di~tinguish this 
tr~p from the others that use this number or vector). Cases in which two fields don't suffice 
require a separate interface to extract the additional machine-de~ndent status. 

I(ernellnterface 

This section lists functions that relate directly to the exception handling facility. The 
following Mach functions let you raise exceptions, handle them, and get or set exception 
ports. See Chapter 4 for descriptions of each of these functions and macros. 

• exception JaiseO 
• exc _ serverO 
• mach_NeXT _ exceptionO 
• mach _NeXT _exception _ stringO 
• task_set _exception_portO 
• task_get _exception yortO 
• thread_set _exception yortO 
• thread Jet_exception _portO 

Mach Exception Handling 1-37 



Another important function is one you implement yourself-catch_exceptioDJaiseO. If 
you implement this function, it must have the following syntax: 

kem_return_t catch_exception Jaise(port_t exception yort, port_t thread, port_t task, 
int exception, int code, int subcode) 

Program Example: Exception Handling 

The following example shows how to raise and handle user-defined exceptions. The 
program sets up a new exception port, sets up a thread to listen to this port, and then raises 
an exception by calling exception JaiseO. The thread that's listening to the exception port 
receives the exception message and passes it to exc_serverO, which calls the 
user-implemented function catch _ exceptioD JaiseO. 

This program's implementation of catch exception raiseO determines whether it - -
understands the exception. If so, it handles the exception by displaying a message. If not, 
this implementation of catch_exception JaiseO sets a global variable that indicates that its 
calling thread should forward the exception to the old exception port. This program doesn't 
know which exception handler is listening to the old exception port; it could be the default 
UNIX exception handler, GDB, or any other exception handler. 

/* 
* raise.c: This program shows how to raise user-specified 

exceptions. 

* If you use GOB, you can't set any breakpoints or step through any 

* code between the call to task_set_exception-port and the return 

* from exception_raise () . (You can never use GOB to debug exception 

* handling code, since GOB stops the~program by generating an 
* EXC BREAKPOINT exception.) 

*/ 
#include <mach.h> 
#include <sys/exception.h> 

#include <cthreads.h> 
#include <mig_errors.h> 

typedef struct { 

port_t old_exc_port; 

port_t clear-port; 

port_t exc-port; 
ports_t; 

volatile boolean t pass_on = FALSE; 

mutex t printing; 

1-38 Chapter 1: The Mach Operating System 



/* Listen on the exception port. */ 

any_t exc_thread(ports_t *port_p) 
{ 

kern return t 

char 

msg_header_t 

r; 
*msg_data[2] [64]; 

*imsg (msg header t *)msg_data[O], 

*omsg = (msg_header_t *)msg_data[l]; 

/* Wait for exceptions. */ 

while (1) { 

imsg->msg_size = 64; 

imsg->msg_local-port = port-p->exc-port; 

r = msg_receive(imsg, MSG_OPTION_NONE, 0); 

if (r==RCV_SUCCESS) 

/* Give the message to the Mach exception server. */ 

if (exc_server(imsg, omsg)) { 

/* Send the reply message that exc_serv gave us. */ 
r = msg_send(omsg, MSG_OPTION_NONE, 0); 

if (r != SEND_SUCCESS) { 

mach_error ("exc_thread msg_send", r); 

exit(l); 

else { /* exc_server refused to handle imsg. */ 

mutex_lock(printing); 

printf("exc_server didn't like the message\n"); 
mutex_unlock(printing); 

exit (2) ; 

else { /* msg_receive() returned an error. */ 
mach_error ("exc_thread msg_receive", r); 

exit (3) ; 

/* PBSS the message to old exception handler, if necessary. */ 
if (pass_on == TRUE) { 

imsg->msg_remote_port = port-p->old_exc-port; 

imsg->msg_local_port = port_p->clear_port; 

r = msg_send(imsg, MSG_OPT ION_NONE , 0); 

if (r != SEND~SUCCESS) { 
mach_error("msg_send to old exc_port", r); 

exit(4); 

Mach Exception Handling 1-39 



/* 
* catch_exception_raise() is called by exc_server(); The only 

* exception it can handle is EXC SOFTWARE. 
*/ 

kern return t catch_exception_raise(port_t exception-port, 

port_t thread, port_t task, int exception, int code, int subcode) 

if ((exception == EXC_SOFTWARE) && (code == Ox20000)) ( 

pass_on = FALSE; 

/* Handle the exception so that the program can continue. */ 
mutex_Iock(printing); 

printf("Handling the exception\n"); 
mutex_unlock(printing); 

return KERN_SUCCESS; 

else ( /* Pass the exception on to the old port. */ 

pass_on = TRUE; 

main() 
( 

int 

mutex_Iock(printing); 

mach_NeXT_exception("Forwarding exception", exception, 

code, subcode); 

mutex_unlock(printing); 

return KERN_FAILURE; /* Couldn't handle this exception. */ 

i; 
kern return t 

ports_t 

r; 

ports; 

printing mutex_alloc(); 

/* Save the old exception port for this task. */ 

r = task_get_exception_port(task_self (), & (ports.old_exc_port)) 

if (r != KERN_SUCCESS) ( 

mach_error ("task_get_exception_port" , r); 
exit (1) ; 

/* Create a new exception port for this task. */ 

r = port_allocate (task_self(), &(ports.exc_port)); 
if (r != KERN_SUCCESS) ( 

mach_error("port_allocate 0", r); 
exit (1) ; 

r = task set_exception_port(task_se1f(), (ports.exc_port)); 

if (r != KERN_SUCCESS) ( 

mach error("task set_exception_port" , r); 
exit (1) ; 

1-40 Chapter 1.' The Mach Operating System 



/* Fork the thread that listens to the exception port. */ 

cthread_detach(cthread_fork((cthread_fn_tJexc_thread, 

(any_t)&ports»; 
/* Raise the exception. ~/ 
ports.clear-port = thread_reply(); 

#ifdef NOT OUR EXCEPTION 
/* By default, EXC_BAD_ACCESS causes a core dump. */ 

r = exception_raise (ports.exc_port, ports.clear-port, 
thread_self(), task_self(), EXC_BAD_ACCESS, 0, 0); 

#else 

r = exception_raise(ports.exc_port, ports.clear_port, 

thread_self(), task_self(), EXC_SOFTWARE, Ox20000, 0); 

#endif 

if (r != KERN_SUCCESS) 

mach_error("catch_exception_raise didn't handle exception", 

r) ; 

else { 
mutex_lock(printing); 

printf("Successfully called exception_raise\n"); 

mutex_unlock(printing); 

sleep(S); /* Exiting too soon can disturb other exception 

* handlers. */ 

Mach Exception Handling 1-41 



1-42 



Chapter 2 
U sing Mach Messages 

This chapter describes how to use Mach messages for interprocess communication (IPC). 
Programs can either send and receive Mach messages directly, or they can use 
MiG-generated remote procedure calls (RPCs), which appear to be simple function calls 
but which actually involve messages. Many kernel functions, such as host_ info(), are really 
RPCs. 

This chapter first describes the structure of all messages. It then discusses how to set up 
messages for direct sending. Finally, it discusses how to use MiG (Mach Interface 
Generator) to build a Mach server-a program that provides services to clients, using 
remote procedure calls. This chapter assumes that you understand the concepts of ports, 
port sets, and messages, which are described in Chapter 1, "The Mach Operating System." 

You should usually use MiG to generate messages. MiG-generated code is easier for clients 
to use, and using MiG is a good way to define an interface that's separate from the 
implementation. However, you might want to build messages by hand if the messages are 
very simple or if you want fine control over communication details. 

Message Structure 

A message consists of a fixed header often followed by the message body. The body 
consists of alternating type descriptors and data items. Here's a typical message structure: 

typede£ struct { 
rnsg~header_t Head; 
rnsg_type_t aType; 
int a; 
rnsg_type_t bType; 
int b; 

Request; 

Using Mach Messages 2-1 



Message Header 

The C type definition for the message header is as follows (from the header file 
sys/message.h): 

typedef struct 
unsigned int msg_unused 24, 

msg_simple 8; 
unsigned int msg_size; 
int 
port_t 
port_t 
int 

msg_heade.r:_t; 

msg_type; 
msg_local_port; 
msg_remote_port; 
msg_id; 

The msg_simple field indicates whether the message is simple or nonsimple; the message 
is simple if its body contains neither ports nor out-of-line data (pointers). 

The msg_ size field specifies the size of the message to be sent, or the maximum size of the 
message that can be received. When a message is received, Mach sets msg_size to the size 
of the received message. The size includes the header and in-line data and is given in bytes. 

The msg_ type field specifies the general type ofthe message. For hand-built messages, it's 
MSG_TYPE_NORMAL. Other values for the msg_type field are defined in the header 
files sys/message.h and sys/msg_type.h (MiG-generated servers use the type 
MSG_TYPE_RPC). 

The msgJocal_port and msg_remote_port fields name the ports on which a message is 
to be received or sent. Before a message is sent, msg_local_port must be set to the port to 
which a reply, if any, should be sent; msgJemote _port must specify the port to which the 
message is being sent. Before a message is received, msg_local_port must be set to the 
port or port-set to receive on. When a message is received, Mach sets msg_local_port to 
the port the message is received on, and msgJemote _port to the port any reply should be 
sent to (the sender's msg_localyort). 

The msg_id field can be used to identify the meaning of the message to the intended 
recipient. For example, a program that can send two kinds of messages should set the 
msg_id field to indicate to the receiver which kind of message is being sent. MiG 
automatically generates values for the msgJd field. 

2-2 Chapter 2: Using Mach Messages 



Message Body 

The body of a message consists of an array of type descriptors and data. Each type 
descriptor contains the following structure: 

typedef struct 

8, 
unsigned int 

msg_type_name 
msg_type_size 
msg_type_number 

8, 
12, 

msg_type_longform 
msg_type_deallocate 

msg_type_unused : 1; 
} msg_type_t; 

1, 

1* Type of data *1 
1* Number of bits per item *1 
1* Number of items *1 
1* If true, data follows; else a 

pointer to the data follows *1 
1* Name, size, number follow *1 

I, 1* Deallocate port rights or 
memory *1 

msg_ type_name describes the basic type of data comprising this object. There are several 
system-defined data types, including: 

• Ports, including combinations of send and receive rights. 

• Port and port set names. This is the same language data type as. port rights, but the 
message only carries a task's name for a port and doesn't cause any transferral of rights. 

• Simple data types, such as integers, characters, and floating-point values. 

msg_ type_size indicates the size in bits of the basic object named in the msg_ type_name 
field. 

msg_ type_number indicates the number of items of the basic data type present after the 
type descriptor. . 

msg_type_inline indicates that the actual data is included after the type descriptor; 
otherwise, the word following· the descriptor is a pointer to the data to be sent. 

msg_ type Jongform indicates that the name, size, and number fields were too long to fit 
into the msg_ type _ t structure. These fields instead follow the msg_ type _ t structure, and 
the type descriptor consists· of a msg_ type _Iong_ t: 

typedef struct 
msg_type_t msg_type_header; 
short msg_type_long_name; 
short msg_type_long_size; 
int msg_type_long_number; 

msg type_long_t; 

Message Structure 2-3 



msg_ type _deallocate indicates that Mach should deallocate this data item from the 
sender's address space after the message is queued. You can deallocate only port rights or 
out-of-line data. 

A data item, an array of data items, or a pointer to data follows each type descriptor. 

Creating Messages by Hand 

This section shows how to create messages to be sent using msg_sendO or msgJPcO. You 
don't usually have to set up messages by hand. For example, although Mach servers call 
msg_ sendO, almost all the message fields are already set up in MiG-generated code. 
However, this section might be useful to you if you want to send messages without using 
MiG, or if you want to read through MiG-generated code. 

Setting Up a Simple Message 

As described earlier, a message is simple if its body doesn't contain any ports or out-of-line 
data (pointers). The msgJemote _port field must contain the port the message is to be sent 
to. The msgJocal_port field should be set to the port a reply message (if any) is expected 
on. 

The following example shows the creation of a simple message. Because every item in the 
body of the message is of the same type (int), only one type descriptor is necessary, even 
though the items are in two different fields. 

#define BEGIN MSG 0 /* Constants to identify the different messages */ 
#define END MSG 1 

#define REPLY MSG 2 

#define MAXDATA 3 

} ; 

msg_header_t 

msg_type_t 

int 

int 

h; 

t; 

inline_datal; 

inline_data2[2]; 

struct simp_msg struct msg_xmt; 

/* Fill in the message header. */ 

msg_xmt.h.msg_simple TRUE; 

/* message header */ 

/* type descriptor */ 

/* start of data array */ 

msg_xmt.h.msg_size = sizeof(struct simp_msg_struct); 

msg_xmt.h.msg_type = MSG_TYPE_NORMAL; 

msg_xmt.h.msg_local_port = reply_port; 

msg_xmt.h.msg_remote_port = comm_port; 

msg_xmt.h.msg_id BEGIN_MSG; 

2-4 Chapter 2: Using Mach Messages 



/* Fill in the type descriptor. */ 
msg_xmt.t.msg_type_name = MSG TYPE INTEGER_32; 
msg_xmt.t.msg_type_size = 32; 

MAXDATA; 
msg_xmt.t.msg_type_inline = TRUE; 
msg_xmt.t.msg_type_longform = FALSE; 
msg_xmt.t.msg_type_deallocate = FALSE; 

/* Fill in the array of data items. */ 
msg_xmt.inline_datal = valuel; 
msg_xmt.inline_data2[ll value2; 
msg_xmt.inline_data2[2l = value3; 

Setting Up a Nonsimple Message 

A message is nonsimple if its body contains ports or out-of-line data. The most common 
reason for sending data out-of-line is that the data block is very large or of variable size. 

In-line data is copied by the sender into the message structure and then often copied out of 
the message by the receiver. Out-of-line data, however, is mapped by the kernel from the 
address space of the sender to the address space of the receiver. No actual copying of 
out-of-line data is done unless one of the two tasks subsequently modifies the data. 

This example shows how to construct a message containing out-of-line data: 

#define BEGIN MSG 0 /* Constants to identify the different messages */ 
#define END MSG 1 
#define REPLY_MSG 2 

#define MAXDATA 3 

struct ool_msg_struct 
msg_header_t h; /* message header */ 
msg_type_t t; /* type descriptor */ 
int *out_Of_line_data; /* address of data */ 

} ; 

msg_xmt; struct ool_msg_struct 
port_t comm_port, reply-port; 

/* Fill in the message header. */ 
msg_xmt.h.msg_simple FALSE; 
msg_xmt.h.msg_size = sizeof(struct 001 msg struct); 
msg_xmt.h.msg_type = MSG_TYPE_NORMAL; 
msg_xmt.h.msg_local-port = reply-port ; 
msg_xmt.h.msg_remote-port = comm-port ; 
msg_xmt.h.msg_id BEGIN_MSG; 

Creating Messages by Hand 2-5 



/* Fill in the type descriptor. */ 
msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32; 
msg_xmt.t.msg_type_size = 32; 
msg_xmt.t.msg_type_number = MAXDATA; 
msg_xmt.t.msg_type_inline = FALSE; 
msg_xmt.t.msg_type_longform = FALSE; 
msg_xmt.t.msg_type_deallocate = FALSE; 

/* Fill in the out-of-line data. */ 
msg_xmt.out_of_line_data = (int *)&mydata; 

The fields that change values from those in the simple message example are msg_ simple, 
msg_ type Jnline, and possibly msg_ type _deallocate. The msg_ type_name, 
msg_ type_size, and msg_ type_number fields remain the same as before, so that Mach can 
determine how much memory to map. 

The msgJemote yort field must contain the port the message is to be sent to. The 
msg_localyort field should be set to the port a reply message (if any) is expected on. 

Setting Up a Reply Message 

Once a message has been received, a reply message may have to be sent to the sender of the 
received message. In the example below, the reply message, msg_ xmt, is simply a 
msg_ header _ t since no data is required. The msgJemote yort field-where to send the 
message-is set to the remote port of the previously received message (which Mach set to 
the previous sender's msgJocalyort field). The outgoing message's msg_localyort 
field is set to PORT_NULL because no reply to this reply message is expected. 

#define BEGIN MSG a /* Constants to identify the different messages */ 
#define END MSG 1 
#define REPLY MSG 2 

struct simp_msg_struct 
msg_header_t h; 
msg_type_t t; 

/* format of received message */ 
/* message header */ 
/* type descriptor */ 

int 
int 

inline_datal; /* start of data array */ 
inline_data2[2]; 

) ; 

msg_header t msg_xmt; 
struct simp_msg_struct *msg_rcv; 

msg_xmt.h.msg_remote-port = msg_rcv->h.msg_remote-port; 
msg_xmt.h.msg_local_port = PORT_NULL; /* no reply expected */ 
msg_xmt.h.msg_id = REPLY_MSG; 
msg_xmt.h.msg_size = sizeof(msg_header_t); 
msg_xmt.h.msg_type = MSG_TYPE_NORMAL; 
msg_xmt.h.msg_simple = TRUE; 

2-6 Chapter 2: Using Mach Messages 



The Mach Interface Generator 

The Mach Interface Generator (known as MiG) is a program that generates remote 
procedure call (RPC) code for communication between a client and a server process. The 
operations of sending a message and receiving a reply are represented as a single remote 
procedure call. 

For example, if a program makes a call to host )ofoO, it actually calls a library routine that 
sends a message to the Mach kernel and then waits to receive a reply message. After the 
Mach kernel sends a reply message containing the information, the library routine takes the 
data out of the reply message and returns it to the program in parameters to the host _iofoO 
call. However, the program sees none of this complexity-it merely makes the following 
function call: 

ret = host_info (host_self (), HOST_SCHED_INFO, 

(host_info_t)&sched_info, &sched_count); 

A Mach server executes as a separate task and communicates with its clients by sending 
Mach interprocess communication·(IPC) messages. As you can see from the previous 
sections in this chapter, Mach messages are fairly complex. The MiG program is designed 
to automatically generate procedures in C to pack and send, or receive and unpack the 
messages used to communicate between processes. 

Because of the complexity of sending and decoding messages, Mach remote procedure 
calls are an order of magnitude slower than real function calls, even if the server is on the 
local machine. Calls to servers on remote machines take longer. However, Mach RPC has 
the advantages of the separation of interface and implementation, and of network 
transparency. 

Using.MiG, you can create RPC interfaces for sending messages between tasks on the local 
machine, or between tasks on separate machines in a network. In the network environment, 
MiG both encodes messages to be transmitted and decodes them upon arrival at the 
destination node, taking into account dissimilarities in machine architecture. 

MiG is especially useful if you're faced with a heterogeneous network environment. 
Without MiG, you're responsible for providing routines to translate messages between two 
machines with different data representations. Using MiG,. you need only specify the calling 
arguments of the procedure and the procedure's return variables. The low-level routines 
required to translate messages between these machines are then generated automatically. 

MiG is flexible enough to describe most data structures that might be sent as messages 
between processes. MiG supports the data types boolean, character, signed and .unsigned 
integers, integer subranges, strings, reals, and communication port types. MiG also 
supports the limited creation of new data types through the use of enumerations, fixed- and 
variable-sized arrays, records, pointers to these types, and unions. 

The Mach Interface Generator 2-7 



Creating Mach Servers with MiG 

To create a Mach server, you must provide a specification file defining parameters of both 
the message passing interface and the procedure call interface. MiG then generates three 
files from the specification file: 

• User interface file (xxxUser.c, where xxx is the subsystem name). This file should be 
compiled and linked into the client program. It implements and exports the procedures 
and functions for sending and receiving the appropriate messages to and from the 
server. 

• User header file (xxx.h). This file defines the functions to be called by a client of the 
server. It is included in the user interface file (xxxUser.c) and defines the types and 
routines needed at compilation time. 

Server interface file (xxxServer.c). This file should be compiled and linked into the 
server process. It extracts the input parameters from an IPC message, and calls a server 
procedure to perform the operation. When the server procedure or function returns, the 
Server interface also gathers the output parameters and formats a reply message. 

Besides the specification file, you must write at least two functions for the Mach server. 
One is the main routine of the server, which registers the server and then goes into a loop 
that receives a message, calls the MiG-generated code to process the request, and sends a 
reply message. You must also write one function for each remote procedure call, so that the 
MiG-generated server code can call the appropriate function for each request. 

In addition, you should provide a library routine that clients can use to look up your server. 
For example, the kernel-server loader has a routine called kern_loader Jook _ upO that 
clients call to obtain the kernel-server loader's port. This port must be specified as the first 
argument in every RPC to the kernel-server loader. 

You can register your server with either the Network Name Server or the Bootstrap Server, 
depending on whether you want your server to be available to other machines on a network. 
The Bootstrap Server allows only processes that are on the local machine (or a subset of 
local processes) to get your server's port. For example, the sound driver registers its port 
with the Bootstrap Server so that only processes descended from the local machine's Login 
Window can control sound. The Network Name Server allows tasks on remote machines 
to get the server's port. See Chapter 4, "C Functions," for more information on 
NetworkName Server and Bootstrap Server functions. 

2-8 Chapter 2: USing Mach Messages 



The Client's View 

This section describes how clients use servers, so that you can better create and document 
your own server. 

Before a client can make remote procedure calls to the server, it must find the server's port. 
If the server doesn't provide a library function to do this lookup, then the client must call 
either netname _look _ upO or bootstrap Jook _ upO, supplying the name of the server. 

When a client makes a remote procedure call, it appears to be a simple function call. The 
return type depends on whether the RPC is defined in the server's MiG specification file to 
be a routine, procedure, or function (as described later in this chapter). 

The most convenient interfaces are to routines, which return a value of type kern Jeturn _ t. 
The returned value is either KERN_SUCCESS or a MiG, Mach, or server-specific error 
code. MiG and Mach error codes can be interpreted by mach _ errorO and 
mach_error _stringO. 

Procedure and function RPCs are less convenient than routines because they don't directly 
return error codes. Instead, the client must provide an error handling routine named either 
MsgErrorO or whatever name the server developer specified in the server's MiG 
specification file. The error handling routine must be defined as follows: 

void error yroc(kern_return_t error_code) 

Common Error Codes 

The most common system error that an RPC returns to a client is an invalid port. This can 
mean several things: 

• The request port (usually the first parameter in the RPC) is an invalid port, or the client 
doesn't have send rights for it. 

• The reply port is invalid or lacks receive rights. (This problem can't occur unless the 
client provides the reply port; usually the system provides it.) 

• Another port that the client is passing in the message is invalid. 

• A port that's being passed back to the client is invalid. 

Another system error a client might receive is a timeout. This can happen only if a timeout 
is specified in an argument or in the server's specification file, and usually doesn't happen 
unless the server is on a different machine from the client. 

MiG errors, which are defined in the header file mig_ errors.h, usually occur only if the 
client is using a different version of the interface than the server. 

The Mach Interface Generator 2-9 



Out-of-Line Data 

When making specific interface calls the client should be aware if any out-of-line data is 
being returned to it. If so, it might want to deallocate the space with a call to 
vm _ deallocateO. 

Compiling the Client 

The client must be compiled and linked with the xxxUser.c and xxx.h files that MiG 
produced from the server's specification file. The client should also include or be linked 
with any files that are necessary to communicate with the server (such as the file containing 
the routine that looks up the server). For example, clients of the kernel-server loader must 
be linked against the kernload library, which supplies all non-RPC kernel-server loader 
functions. 

Programming Example 

This example shows the implementation of a very simple server that adds two integers and 
returns the answer. The files used to produce this server and a sample client program, 
including make files, are located in the directory 
lNextLibrarylDocumentationlNextDev/ExampleslMiG. 

The user-written files required for the server are the following: 

• The MiG specification file (Server/add.defs) 

• The type definition file, which is included by both the server and the client 
(Library/add types.h) 

• The implementation file, which contains the server's main loop and the function that 
does the addition (Server/add_server_main.c) 

Once the server has been generated, any client programs need to have the following files: 

• The MiG-generated user interface file, in a form that can be compiled or linked into the 
client program (Library/addUser.o). (If this file isn't already compiled, then the client 
program also needs access to the ".h" file that was generated by MiG; for example, 
add.h.) 

• The type definition file (Library/add_types.h) 

• One or more files containing the main parts of the client program (Client/add.c). 

2-10 Ch(lpter 2: Using Mach Messages 



Below is add.defs, a simple MiG specification file. It declares the 'remote routine 
add2numsO, which takes as arguments the request port (the default first argument to every 
MiG operation), two integers, and a pointer to a third integer. Because all types mentioned 
in add.defs are already defined in the included header file std_types.defs, it isn'tnecessary 
to define any types directly in add.defs. 

/* add.defs: MiG definition file for add server */ 

subsystem add 0; 

/* Get standard definitions of int and port_to */ 

#include <std_types.defs> 

routine add2nums(server: port_t; a:int; b:int; out c:int); 

The header file std _ types.defs defines int and port _ t as the following: 

type int = MSG_TYPE_INTEGER_32; 

type port_t = MSG_TYPE_PORT; 

The header file add _ types.h contains definitions needed by both the client and the server: 

/* add_types.h: Definitions for add server */ 
#import <mach.h> 

#define ADD SERVER NAME "Addition-Server" 

The code that does the work for the server is in the file add server main.c. It contains a 
main loop and the function that performs the addition. It also defines a message structure 
to be passed into the MiG-generated message server, add_serverO. Such a message 
structure should start with a msg_ header _ t field, and it must be. at least as large as the 
largest possible incoming message (unless you use the ReV_LARGE option to 
msgJeceiveO to dynamically determine message size). You can see the structures of all 
possible incoming messages by running mig on the ".defs" file and looking at the Request 
structures that are defined in the generated user file (addUser.c). 

/* add_server_main.c: Main loop and implementation of add server */ 

#import <mach.h> 

#import <sys/message.h> 

#import " .• /Library/add_types.h" 

void server_loop(port_t port); 
/* defined by MiG: */ 

boolean t 

The Mach Interface Generator 2-11 



/* from Request types in addUser.c */ 

struct message { 

} ; 

msg_header_t 

msg_type_t 
int 

msg_type_t 

int 

head; /* 

arg1_type; /* 
arg1; /* 

arg2_type; /* 

arg2; /* 

standard header 

first arg type 
first arg */ 

second arg type 

second arg */ 

main() 
{ 

server_port; 

kern return t r; 

/* Register with the Network Name Server. */ 

r = port_allocate (task_self (), &server-port); 

if (r != KERN_SUCCESS) { 

mach_error("port_allocate failed", r); 
exit (1); 

field */ 

*/ 

*/ 

r = netname_check_in(name_server_port, ADD_SERVER_NAME, 

PORT_NULL, server-port); 

if (r != KERN_SUCCESS) { 
mach_error("netname_check_in failed", r); 

exit (1) ; 

/* Enter our main loop. */ 
server_loop(server-port); 

void server_loop(port_t port) 

struct message 

kern return t 

while (TRUE) 
{ 

msg, reply; 

ret; 

/* Receive a request from a client. */ 

msg.head.msg_local_port = port; 

msg.head.msg_size = sizeof(struct message); 
ret = msg_receive(&msg.head, MSG_OPTION_NONE, 0); 

if (ret != RCV_SUCCESS) /* ignore errors */; 

/* Feed the request into the server. */ 
(void)add_server((msg_header_t *)&msg, 

(msg_header_t *)&reply); 

/* Send a reply to the client. */ 

reply.head.msg_local-port = port; 

ret = msg_send(&reply.head, MSG OPTION_NONE, 0); 
if (ret != SEND_SUCCESS) /* ignore errors */; 

2·12 Chapter 2: Using Mach Messages 



/* 
* This function is called by add_server, which was created by MiG. 

* It is NOT directly called by any client process. 

*/ 
kern_return_t add2nums(port_t server, int nl, int n2, int *n3) 
{ 

*n3 = nl + n2; 

return KERN_SUCCESS; 

In general, your message receive loop should return a reply for every message it receives 
unless the reply message returned from the MiG-generated server has MIG_NO_REPLY in 
its RetCode field. MIG_NO_REPLY is used only when the received message was part of 
an RPC that never expects a return message (a simpleprocedure or simplefunction, both 
of which are defined later in this chapter). For example: 

(void) my_server (&msg, &reply); 

ret_code = reply->RetCode; 

if (reply->RetCode == MIG_NO_REPLY) 

ret code KERN_SUCCESS; 

else 

ret code msg_send(&reply->Head, MSG_OPTION_NONE, 0); 

Finally, a typical client process, such as Client/add.c, makes the RPC as follows: 

#import " .. /Library/add_types.h" 
int nl, n2, n3; 

kern return t ret; 

port'-'-.t server; 

/* Find the server. */ 

server = add_look_up(); 

if (server == PORT_NULL) 

fprintf(stderr, "Couldn't finct the add server.\n"); 
exit (2) ; 

/* S~nd a message to the server. */ 
. ret = add2nums(server, nl, n2, &n3); 

if (ret != KERN_SUCCESS) 

printf("Call to add2nums failed.\n"); 

else 
printf("According to the server, ,d + %d = %d.\n", n1, n2, n3); 

Note that although the RPC looks like it directly calls add2numsO in the server, it really 
doesn't. The client instead sends a message that's received in server_loopO, which calls 
add _ serverO .. add _serverO calls add2nums()and passes the result back to the client in a 
message. 

The Mach Interface Generator 2-/3 



Making a function such as add2numsO an RPC gives the advantages of network 
independence, interface independence, and automatic type checking, at the expense of 
some complexity in the server. 

MiG Specification File 

You must first write a MiG specification file to specify the details of the procedure 
arguments and the messages to be used. A MiG specification file contains the following 
components, some of which may be omitted: 

Subsystem identification 
• Type declarations 
• Import declarations 
• Operation descriptions 
• Options declarations 

The subsystem identification should appear first for clarity. Types must be declared before 
they're used. Code is generated for the operations and import declarations in the order in 
which they appear in the specification files. Options affect the operations that follow them. 

See the section "Programming Example" for an example of a complete subsystem 
definition. 

Subsystem Identification 

The subsystem identification statement has the following form: 

subsystem sys message_base _id ; 

sys is the name of the subsystem. It's used as the prefix for all generated file names. The 
user file name will be sysUser.c, the user header file will be sys.h, and the server file will 
be sysServer.c. 

message_base _id is a decimal integer that's used as the IPC message ID of the first 
operation in the specification file. Operations are numbered sequentially beginning with 
this base. The MiG-generated server function checks the message ID of an incoming 
message to make sure that it's no less than message_base _id and no greater than 
message_base _id + num _messages -1, where num _messages is the number of messages 
understood by the server. 

Several servers can use just one message receive loop as long as they have different 
subsystem n'lmbers (and they have few enough messages so that message IDs don't 
overlap). The message receive loop should call each MiG-generated server function in turn 
until one of them returns true (indicating the message ID is in the range understood by that 
server.) Once a MiG-generated server function has returned true or all the servers have 

2-14 Chapter 2: Using Mach Messages 



returned false, the receive-serve-send loop should send a reply (unless the reply message 
returned by the server function has MIG_NO_REPLY in its RetCode field). 

Example: 

subsystem random 500; 

Type Declarations 

Simple Types 

A simple type declaration has the following form: 

where a type _ desc is either a previously defined· user_type _name or an ipc _type _ desc, 
which has one of the following forms: 

ipc _type_name 
(ipc type name [, size [, dealloc ]]) 

The user_type _name is the name of a C type that will be used for some parameters of the 
calls exported by the user interface file. The ipc _type _ desc of simple types are enclosed in 
parentheses and consist of an IPC type name, decimal integer, or integer expression that's 
the number of bits in the IPC type and optionally, the dealloc keyword. 

The standard system-defined IPC type names are: 

MSG_TYPE_BOOLEAN 
MSG_TYPE_BIT 
MSG_TYPE_BYTE 
MSG_TYPE_CHAR 
MSG_TYPE_INTEGER_8 
MSG_TYPE_INTEGER_16 
MSG_TYPE_INTEGER_32 
MSG_TYPE_REAL 
MSG..;.TYPE_STRING 
MSG_TYPE_PORT 
MSG_TYPE_PORT_ALL 
MSG_TYPE_UNSTRUCTURED 

The current set of these type names is contained in the header file sys/message.h, which 
defines all the message-related types needed by a user of the Mach kernel. The programmer 
may define additional types. If the ipc type name is a system-defined one other than 
MSG_TYPE~STRING, MSG_TYPE3rNSTRUCTURED, or MSG_TYPE_REAL, size 
(the bit length) need not be specified and the parentheses can be omitted. 

The Mach Interface Generator 2-15 



The dealloc keyword controls the treatment of ports and pointers after the messages they're 
associated with have been· sent. dea1loc causes the deallocation bit in the IPC message to 
be set on; otherwise, it's off, If dealloc is used with a port, the port is deallocated after the 
message is sent. If dealloc is used with a pointer, the memory that the pointer references 
will be deallocated after the message has been sent. An error results if dealloc is used with 
any argument other than a port or a pointer. 

Some examples of simple type declarations are: 

type int = MSG~TYPE_INTEGER_32; 

type my_string = (MSG_TYPE_STRING,8*80); 

type kern_return_t = inti 
type disposable-port = (MSG_TYPE_PORT_ALL,32,dealloc); 

The MiG-generated code assumes that the C types IDL string, kern Jeturn _ t, and 
disposable Jlort are defined in a compatible way by a programmer-provided header file. 
The basic C and Mach types are defined in the file std _ types.defs .. 

MiG assumes that any variable of type MSG _TYPE_STRING is declared as a C char * or 
char array[n]. Thus it generates code for a parameter passed by reference and uses 
strncpyO for assignment statements. 

Optional translation _info information describing procedures for translating or deallocating 
values of the type may appear after the type definition information: 

• Translation functions, intran and outtran, allow the type as seen by the user process 
and the server process to be different. 

• Destructor functions allow the server code to automatically deallocate input types after 
they have been used. 

For example: 

intran: 

outtran: 

i_task_t PortToTask(task_t) 

task_t TaskToPort(i_task_t) 

destructor: OeallocT(i_task_t) 

Note: Because translation info is part of the type declaration, the semicolon (;) doesn't 
appear until after the end of translation_info. 

In this example, task t, which is the type seen by the user code, is defined as a port in the 
message. The type s~en by the server code is i_task _ t, which is a data structure used by 
the server to store information about each task it's serving. The intran function 
PortToTaSkO translates values of type task_t to i_task_t on rec~ipt by the server process. 
The outthm function TaskToPortO translates values of type i Jask _ t to type task _ t before 
return. The destructor function DeaIlocTO is called on the translated input parameter, 
t task _type, after the return from the server procedure and can be used to deallocate any 
or all parts of the internal variable. The destructor function won't be called if the parameter 

2-16 Chapter 2: Using Mach Messages 



is also an out parameter (as described in the section "Operation Descriptions" below), 
because the correct time to deallocate an out parameter is after the reply message has been 
sent, which isn't code that's generated by MiG. A destructor function can also be used 
independently of the translation routines. For example, if a large out-of-line data segment 
is passed to the server it could use a destructor function to deallocate the memory after the 
data was used. 

Although calls to these functions are generated automatically by MiG, the function 
definitions must be hand-coded and imported using: 

i_task_t PortToTask(task_t x) 

task_t TaskToPort(i_task_t y) 

void DeallocT(i_task_t y) 

Structured Types 

Three kinds of structured types are recognized: arrays, structures, and pointers. Definitions 
of arrays and structures have the following syntax: 

array [size J of comp _type _ desc 
array [ * : maxsize] of comp _type _ desc 
struct [size] of comp _type _ desc 

where comp _type _desc may be a simple type _ desc or may be an array or struct type, and 
size may be a decimal integer constant or expression. The second array form specifies that 
a variable-length array is to be passed in-line in the message. In this form maxsize is the 
maximum length of the item. Currently, only one variable-length array may be passed per 
message. For variable-length arrays an additional count parameter is generated to specify 
how much of the array is actually being used. 

If a type is declared as an array, the C type must also be an array, since the MiG RPC code 
will treat the user type as an array (that is, MiG will assume that the user type is passed by 
reference and it will generate special code for array assignments). A variable declared as a 
struct is assumed to be passed by value and treated as a C structure in assignment 
statements. There is no way to specify the fields of a C structure to MiG. The size and 
type _ desc are used only to give the size of the structure. The following example shows how 
to declare a C structure as a struct. 

1* declaration in MiG .defs file *1 
type short = MSG_TYPE_INTEGER_16; 

type port_t = MSG_TYPE_PORT; 
type lock_struct = struct [9] of short; 

routine fl_message(server_port: port_t; inout arg: lock struct); 

The Mach Interface Generator 2-17 



/* decl.aration in C code * / 
typedef struct { 

short l_type; 

short l_whence; 
long l_start; 

long l_len; 

short lyid; 

long l_hostid; 
lock_struct; 

Pointer Types 

In the definition of pointer types, the symbol A precedes a simple, array, or structure 
definition. 

A comp _type _ desc 
A array [size] of comp _type _ desc 
A struct [size] of comJype_desc 

size may be left blank or be *. In either case, the array or structure is of variable size, and 
a parameter is defined immediately following the array parameter to contain its size. Data 
types declared as pointers are sent out-of-line in the message. Since sending out-of-line 
data is considerably more expensive than sending in-line data, pointer types should be used 
only for large or variable amounts of data. A call that returns an out-of-line item allocates 
the necessary space in the user's virtual memory. It's up to the user to call vrn _ deallocateO 
on this memory when finished with the data. 

Some examples of complex types are: . 

type procids = array [lOJ of int; 

type procidinfo = struct [5*10) of (MSG_TYPE_INTEGER_32); 

type vardata = array [ * : 1024 ) of int; 
type array_by_value. = struct [1) of array [20) of (MSG_TYPE_CHAR); 
type pageytr = A array [4096) of (MSG_TYPE_INTEGER_32); 

type var_array = A array [) of int; 

Import. Declarations 

If any of the user_type _names or server _ type_names are other than .the standard C types 
(such as int and char), C type specification files must be imported into the user interface 
and server interface files so that they'll compile. The import declarations specify files that 
are imported into the modules generated by MiG. 

2~18 Chapter 2: Using Mach Messages 



An import declaration has one of the following forms: 

import file name; 
uimport file name; 
simportfile _name; 

where file_name has the same form as file name specifications ill #include statements (that 
is, <file_name> or "file_name"). 

For example: 

import "my_defs.h"; 

import "/usr/mach/include/cthreads.h"; 
import <cthreads.h>; 

import declarations are included ill both the user-side and server-side code: uimport 
declarations are included ill just the user side. simport declarations are illcluded ill just the 
server side. 

Operation Descriptions 

Any of five standard operations maybe specified by usillg the followillg keywords: 

function 
routine 
procedure 
simpleprocedure 
siwpleroutine 

One other keyword, skip, may be used in place of a standard operation. 

Functions and routines have a return value; procedures don.'t.Routines are functions whose 
result is of type kern Jeturn _ t. This result indicates whether the requested operation was 
successfully completed. If a routine re.tqrnsa. vfllue, other than KERN.,_SVCCESS the reply 
message won't include any ()f the:t:eplypw:;ametersex~ept the errorcpde. Neither 
procedures nor functions r~tum.illdications of errors directly; instead they call a 
hand-coded error fU1).ction ill the client. The name of the error function is MsgErrorO, by 
default; you can speCify another name usillg the error declaration in the MiG specification 
file. 

Simple pI:oceduresand. simple routines sendaJ;llessage to the server but don't expect a 
reply. The return value of a simple routi,ne is the value returned by the function 
msg_sendO.·Simple routines'()r simple procedures are.used whenasynchronous 
communication with a server is desired. All the rest of the operations wait for a reply before 
returning to the caller. . . 

The Mach Interface Generator 2-19 



The syntax of the procedure, simpleprocedure, simpleroutine, and routine statements 
are identical. The syntax of function is also the same except for the type name of the value 
of the function. The general syntax of an operation definition for everything except 
function has the following form: 

operation type operation name (parameter list); - - -

For function the form is: 

function operation name (parameter list) : function value type; - - --

The parameter _list is a list of parameter names and types separated by a semicolon. The 
form of each parameter is: 

[ specification] var name: type description [ , dealloc ] - -

If not omitted, specification must be one of the following: 

in 
out 
inout 
requestport 
replyport 
waittime 
msgtype 

type_description can be any user_type _name or a complete type description (see the section 
"Type Declarations"). 

The first unspecified parameter in any operation statement is assumed be the requestport 
unless a requestport parameter was already specified. This is the port that the message is 
to be sent to. If a replyport parameter is specified, it will be used as the port that the reply 
message is sent to. If no replyport parameter is specified a per-thread global port is used 
for the reply message. 

The keywords in, out, and inout are optional and indicate the direction of the parameter. 
The keyword in is used with parameters that are to be sent to the server. The keyword out 
is used with parameters to be returned by the server. The keyword inout is used with 
parameters to be both sent and returned. If no such keyword is given, the default is in. 

The keywords waittime, replyport, and msgtype may be used to specify dynamic values 
for the wait time, the reply port, or the message type for this message. These parameters 
aren't passed to the server code, but are used when generating the send and receive calls. 
The requestport and replyport parameters must be of types that resolve to . 
MSG_TYPE_PORT. The waittime and msgtype parameters must resolve to 
MSG_TYPE_INTEGER_32. 

The keyword skip is provided to allowed a procedure to be removed from a subsystem 
without causing all the subsequent message interfaces to be renumbered. It causes no code 
to be generated, but uses up a msg_ id number. 

2-20 Chapter 2: Using Mach Messages 



Here are some examples: 

procedure init_seed serveryort port_t; 
seed dbl) ; 

routine get_random ( serveryort port_ t; 
out num intI ; 

simpleroutine use random serveryort port_t; 
info - seed string8D; 
info comp_arr; 
info 1 words); 

simpleprocedure exit ( serveryort port_t) ; 

See the section "Programming Example" for an example of a complete subsystem 
definition. 

Options Declarations 

Several special~purpose options about the generated code may be specified. Defaults are 
available for each, and simple interlaces don't usually need to change them. FirsHime 
readers may want to skip this section .. These options may occur more than once in the 
specification file. Each time an option declaration appears, it sets that option for all the 
following operations. . 

waittime Specification 

The waittime specification has one of the following two forms: 

waittime time; 
nowaittime ; 

The word waittime is followed by an integer or an identifier that specifies the maximum 
time in milliseconds that the user code will wait for a reply from the server. If an identifier 
is tised, it shOuld be declared as an extern variable by some modUle in the user code. If the 
waittime option is omitted, or iithe nowaittiIne statement is seen, the RPC doesn't return 
until a message is received.· . . 

The timeout value for the msgJeceiveO can alternatively be controlled by using a 
waittime parameter to the RPC. 

msgtype Specification 

The msgtype specification has the following form:. 

msgtype msgtype _value; 

The Machlnterface Generator 2~21 



msgtype _value may be one of the values from the header file msg_type.h. The available 
types are MSG_TYPE_RPC and MSG_TYPE_NORMAL. The MSG_TYPE_RPC is set 
to a correct value by default; this value normally shouldn't be changed. The value 
MSG_TYPE_NORMAL can be used to reset the msgtype option. 

The msgtype value for the msg_ sendO can alternatively be controlled by using a msgtype 
parameter to the RPC. 

error Specification 

The error specification has the following form: 

error error yroc ; 

The error specification is used to specify how message-passing errors are to be handled for 
operations other than routines or simple routines. In all types of routines, any message 
errors are returned in the return value of the routine. For operations of types other than 
routines, the procedure error yroc is called when a message error is detected. The 
procedure specified by error yroc has to be supplied by the user, and must be of the form: 

void error yroc (kern_return_t error _code) 

If the error specification is omitted, error yroc is set to MsgErrorO. 

serverprejix Specification 

The serverprefix specification has the following form: 

serverprefix string ; 

The word serverprefix is followed by an identifier string that will be prepended to the 
actual names of all the following server-side functions implementing the message 
operations. This is particularly useful when it's necessary for the user-side and server-side 
functions to have different names, as must be the case when a server is also a user of copies 
of itself. 

userprejix Specification 

The userprefix specification has the following form: 

userprefix string; 

2-22 Chapter 2: Using Mach Messages 



The word userprefix is followed by an identifier string that will be prepended to the actual 
names of all the following user-side functions calling the message operations. serverprefix 
should usually be used when different names are needed for the user and server functions, 
but userprefix is also available for the sake of completeness. 

rcsid Specification 

The rcsid specification has the following form: 

rcsid string ; 

This specification causes a string variable sys ~ user Jscid in the user module and 
sys _server Jcsid in the server module to be set equal to the input string. The subsystem 
name sys was described earlier in the section "Subsystem Identification." 

. Syntax Summary 

This section summarizes the syntax of MiG specification files. Note the following 
conventions: 

• Terminal symbols (literals) are shown in bold. 

• Nonterminal symbols are shown in italic. 

• Alternatives are listed on separate lines. 

• Brackets indicate zero or one occurrence of the bracketed item. Ellipsis ( ... ) indicates 
one or more repetitions of the preceding item. Brackets and ellipsis combined, as in 
[ item ... ] indicate zero, one, or more repetitions of the item. 

• Types must be declared before they're used. 

• Comments may be included in a ".defs" file if surrounded by 1* and *1. Comments are 
parsed and removed by the C preprocessor. 

specification Jile: 
subsystem_description [ waittime _description] [ msgtype _description] 

[ error _description] [ server yrefix _description] [ user yrefix _description] 
[ rscid _description] [ type_description ... ] [ import_declaration ... ] 
operation_description ... 

subsystem_description: 
subsystem identifier decimal_integer; 

The Mach Interface Generator 2-23 



waittime _description: 
waittime time_value; 
nowaittime ; 

time value: 
MSG TYPE INTEGER 32 

msgtype _description: 
msgtype msgtype_value ; 

msgtype _value: 
MSG TYPE RPC - -
MSG TYPE NORMAL 

error _description: 
error error yrocedure ; 

server yrefix _description: 
serverprefix identifier_string ; 

user yrefix _description: 
userprefix identifier string; 

rcsid _description: 
rcsid identifier_string ; 

type_description: 
type type definition ; 

import_declaration: 
import_keyword include_name; 

import_keyword: 
import 
uimport 
simport 

include name: 
"file_name" 
<file_name> 

operation_description: 
routine_description 
simpleroutine _description 
procedure_description 
simpleprocedure _description 
function_description 

routine_description: 
routine argument_list; 

2-24 Chapter 2: Using Mach Messages 



· simpleroutine _description: 
simpleroutine argument_list; 

procedure_description: 
procedure argument_list; 

simpleprocedure _description: 
simpleprocedure argument_list; 

function_description: 
function argument list: type definition ; - -

argument_list: 
( [argument definition] [ ; argument definition] ... ) - -

argument_definition: 
[ specification] identifier: type definition [ , dealloc ] 

specification: 
in 
out 
inout 
requestport 
replyport 
waittime 
msgtype 

type definition: 
identifier = [ 1\ ] [ repetition ... ] ipc _info [ translation] 

repetition: 
array [ [ size] ] of 
struct [ [ size] 1 of 

size: 
integer_expression 

integer_expression: 
integer_expression + integer ~expression 
integer_expression - integer_expression 
integer_expression * integer_expression 
integer_expression / integer_expression 
(integer expression) 
integer 

ipc info: 
(ipc type name, size in bits [ , dealloc ] ) - - - -
ipc _type_name 
identifier 

The Mach Interface Generator 2-25 



translation: 
[ input Junction] [ output Junction] [ destructor Junction] 

input Junction: 
intran : identifier 

output Junction: 
outtran : identifier 

destructor Junction: 
destructor: identifier 

ipc _type_name: 
integer 
manifest constant 

Compiling MiG Specification Files 

To compile a MiG specification file, specify the name of your ".defs" file (or files) and any 
switches as arguments to the mig command. For example: 

mig -v random.defs 

If random is the subsystem name declared in the definitions file, MiG will produce the files 
random.h, randomUser.c, and randomServer.c as output. If the -MD switch was given, 
a random.d file will also be generated. 

MiG recognizes the following switches: 

[p,P] If p, use two-byte message padding. You should use this option only if your 
server or client might be exchanging messages containing fields shorter than 
four bytes with a client or server that was built using NeXT Software Release 
1.0. If P, use four-byte message padding. The default value is P. For 
example, a one-byte message element would be padded to two bytes if you 
specify -p, or four bytes by default. 

[q,Q] If q, suppress warning statements. If Q, print warning statements. The 
default value is Q. 

[r,R] Ifr, use msgJPcO; ifR,usemsg_sendO, msgJeceiveO pairs. The default 
value is r. 

2-26 Chapter 2: Using Mach Messages 



[s,S] If s, generate symbol table withsysServer.c code. The layout of a symbol 
table (mig_symtab_t) is defined in the header file mig_error.h. If S, 
suppress the symbol table. The default value is S. This is useful for 
protection systems where access to the server's operations is dynamically 
specifiable or for providing a run-time indirected server call interface with 
syscallO (server-to-server calls made on behalf on a client). 

[v,V] If v (verbose), print routines and types as they're processed. If V, compile 
silently. The default value is V. 

Any switches MiG doesn't recognize are passed to the C preprocessor. MiG also notices if 
the -MD option is being passed to the C preprocessor. If it is, MiG fixes up the resulting 
".d" file to show the dependencies of the" .h," sysUser.c, and sysServer.c files on the" .defs" 
file and any included" .defs" files. For this feature to work correctly the name of the 
subsystem must be thesam~ as the name of the ".defs" file. 

MiG runs the C preprocessor to process comments and preprocessor macros such as 
#include or #define. For example, the following statement can be used to include the type 
definitions for standard Mach and C types: 

""include <std_types"defs> 

The output from the C preprocessor is then passedto the program migcom, which generates 
the C files. 

The Mach Interface Generator 2-27 



2-28 



Chapter 3 
Using Loadable Kernel Servers 

This chapter discusses how to use the kernel-server loader functions to interact with 
loadable kernel servers. Loadable kernel servers are modules, such as device drivers and 
network protocols, that can be added to the NeXT Mach kernel. One example of interaction 
with a loadable kernel server is using the function kern Joader _load _serverO to load a 
loadable kernel server. Another example is usirig the function kernJoader_ server _listO 
to get a list of all kernel servers that are either loaded or prepared for loading (allocated). 

The following section gives some'more information on loadable kernel servers and on the 
kernel-server loader, kern loader. After that are some examples of using the kernel-server 
loader functjons. Each kemel-serverloader function is described in detail in Chapter 4, 
"C Functions." 

Formore information about loadable kernel servers, see, the manual Writing Loadable 
Kernel Servers. That manual also has information about thekeinel-server utility, kl_util, 
which is a command-line interface to many'ofthe functions described in ,this chapter. 

Loadable Kernel Server Concepts 

The kernel-server loader is a servertask that's automatically called during system startup. 
When started, it reads a list of load able kernel servers out of its configuration file, 
letclkern_loader.conf, and allocates these servers. 

A loadable kernel server is a module that's loaded into the kernel after the system has been 
hooted. Because loadable kernel servers are the only w~yto add kernel functionality 
without recompiling the whole kernel, they're the only way for anyone outside of NeXT to 
writekemel-Ievel device drivers and network protocols. aowever, third parties aren't the 
onfy ones to use loadable kernel servers--NeXT uses them for <irivers of devices that many 
,people won't have. , 

For example,the graphics tablet driver is a loadable kernel server that is loaded by the 
application lNextAdmin/lnstallTablet. • Having the tablet driver be loadable is ' 
advantageous becau~e perronnanceon NeXT computersth~t don't have ~ graphics tablet 
'(which is the rnajority ,of NeXT computers) is better than)f the tablet driver were always in 
the k~mel. ' , ' , " , 

Loadable Kernel Server Concepts 3-1 



Loadable kernel servers can have three states: 

• Allocated. The kernel-server loader (kern_loader) has allocated space and resources 
for the loadable kernel server and is listening for Mach messages to its ports. However, 
the server isn't currently loaded into the kernel. 

• Loaded. The loadable kernel server is running. 

• Unallocated. The kernel-server loader has no space or other resources allocated for the 
loadable kernel server. 

Not allioadable kernel servers stay in the allocated state when they're initialized. Servers 
that don't use Mach messages, for example, are loaded immediately. Most message-based 
servers, however, stay in the allocated state until the kernel-server loader receives either a 
message for the server or a request such as kern Joader _load _ serverO that tells it to load 
the server. 

Each loadable kernel server stays loaded until the kernel-server loader either shuts down or 
receives a request to unload or delete the server (such as kern loader unload server()). - - -
See the Writing Loadable Kernel Servers manual for more information on loadable kernel 
servers and on using kern_loader. 

Overview of Kernel-Server Loader Functions 

This section describes the usage of the kernel-server loader functions. See the 
"Kernel-Server Loader Functions" section of Chapter 4 for more information on each of the 
functions. 

The kernel-server loader functions are broken into two groups-those that deal with a 
single loadable kernel server, and those that deal with the kernel-server loader itself. There 
are also two functions to help you print error messages, kern_loader _ errorO and 
kern Joader _error _ stringO. 

Before you can call any other kernel-server loader function, you must call 
kern Joader _look _ upO to obtain the port of the kernel-server loader. You must provide 
this port as a parameter to all of the following function calls. A similar parameter, returned 
by kern Joader _server_com jlortO, is required only for calls to functions that deal with 
a server's message logging. 

Use kern_loader_add _ serverO to cause a loadable kernel server to be allocated. If the 
server starts automatically, then it will be added to the kernel; otherwise, you can call 
kern_loader Joad _ serverO to lqad the server into the kernel. To remove a loadable kernel 
server from the kernel, use kern_loader_unload_serverO (to leave the server in the 
allocated state) or kern_loader_delete _ serverO (to deallocate kernel-server loader 
resources for the server). 

3-2 Chapter 3: Using Loadable Kernel Servers 



For each loadable kernel server, logging is off by default. To get log messages from a 
particular loadable kernel server, use kern Joader Jog_levelO to tum the server's logging 
on and kern _loader _get_logO to get the next log message. You might want to tum logging 
off (by again using kern_loaderJogJevel()) before you stop collecting log messages, 
since messages continue to be logged and take system space even when no one requests 
them. 

You can get detailed information about the state of a particular server by calling 
kern_loader_server _infoO. 

Use kern _loader_status JlortO to register a port to which log messages from the 
kernel-server loader should be sent. These messages usually reflect changes in the state of 
one or more kernel servers. You can get a list of all the servers that the kernel-server loader 
knows about by calling kern_Ioader_server_listO. Use kernJoader_abortO to shut 
down or reconfigure the kernel-server loader. Use kern Joader JlingO to make sure either 
that the kernel-server loader is responding normally to messages or that all outstanding 
status messages have been sent. 

Functions for Asynchronous Messages 

Three of the kernel-server loader functions don't immediately return information. Instead, 
these three functions tell the kernel-server loader to send asynchronous reply messages that 
contain the information. Whenever you call one of these functions, you must supply the 
code necessary to handle the kernel-server loader's reply message. The following table 
shows the three asynchronous kernel-server loader functions and their corresponding 
user-written functions. 

Asynchronous Function 

kern Joader JlingO 
kern _loader_get JogO 
kern Joader _status JlortO 

User-Written Function 

pingJuncO 
log_data JuncO 
stringJuncO 

This section describes how to handle asynchronous reply messages from the kernel-server 
loader. First it describes the code that all three of the asynchronous functions require in 
your program. Then it describes how to implement the handler necessary for each of the 
functions. 

Common Code for Handling Reply Messages 

If your program calls a kernel-server loader function that sends an asynchronous reply 
message, then your program must follow these steps to handle reply messages: 

1. Allocate a port on which to receive messages from the kernel-server loader. 

2. Call the asynchronous function, passing as data the receiving port. 

Functions/or Asynchronous Messages 3-3 



3. Listen to the receiving port (often in a separate thread). 

4. After receiving a message on the port, call kern_loaderJepILhandlerO. 

5. Take care of the reply message in a handling function, which is called by 
kern_loader Jeply _ handlerO. 

You must write the handling function that's called by kern Joader Jeply _ handlerO. You 
must also create a structure that specifies which handling functions exist; you pass a pointer 
to this structure to kern loader reply handlerO every time you call it. The structure is - - -
of type kern Joader Jeply _ t, which is defined in the header file 
kernservlkern Joader Jeply _ handler.h as the following: 

typedef struct kern_loader_reply 
void *arg; 1* argument to pass to function *1 
msg_timeout_t timeout; 1* timeout for RPC return msg send *1 
kern_return_t (*string) ( 1* kern_loader_status_port() function *1 

void *arg, 
printf_data_t string, 
unsigned int string_count, 
int level); 

kern return_t (*ping) ( 1* kern_loader-ping() function *1 
void *arg, 
int id) ; 

kern_return_t (*log_data) (/* kern_loader_get_log() function *1 
void *arg, 
printf_data_t log_data, 
unsigned int log_data_count); 

} kern loader_reply_t; 

The following example calls one of the asynchronous kern Joader functions, 
kern_loader_statusJlortO. The handler for the reply message is called print_stringO, 
and is specified to the kernel-server loader using the structure reply_handlers. 

#import <mach.h> 
#import <kernserv/kern_loader types.h> 
#import <kernserv/kern_loader.h> 
#import <kernserv/kern_loader_reply_handler.h> 
#import <cthreads.h> 

void receive_thread(port_name_t port); 
kern_return_t print_string (void *arg,' printf_data t string, 

u int string_count, int level); 

3-4 Chapter 3: Using Loadable Kernel Servers 



main() 

kern return t 

port_name_t 

r; 

status-port, kl_port; 

r = kern loader_look_up(&kl_port); 

if (r != KERN_SUCCESS) { 

mach_error ("kl_util: can't find kernel lo.ader", r); 
exit(1); 

r = port_allocate (task_self(), &status-port); 

if (r != KERN_SUCCESS) { 

mach_error ("kl_util: can't allocate reply port", r); 
exit (1) ; 

/* Get generic status messages on this port. */ 

r = kern_loader_status-port(kl_port, status_port); 

if (r != KERN_SUCCESS) { 

kern_loader_error("Couldn't specify status port", r); 

exit(1); 

/* Create a t~read to listen on status-port. */ 
cthread_detach(cthread_fork((cthread_fn_t)receive_thread, 

(any_t)status_port)); 

1* 
* Sleep for a while so we can enter kl_util commands at a shell 

* window. The output of all commands (except status lines ·from 

* kl util -s) will show up in both the window that's running this 
* program and in the window that's running kl util. (kl_util 

* also has a status port registered.) 

*/ 
sleep(30); 

exit (0) ; 

kern_loader_reply_t reply_handlers = 

} ; 

0, /* argument to pass to function */ 
0, 
print_string, 

0, 
o 

/* timeout for rpc return msg_send */ 

/* string function */ 

/* reply_ping function */ 

/* log_data function*/ 

Functions/or Asynchronous Messages 3-5 



void receive_thread(port_name_t port) 
{ 

/* 

char msg_buf[KERN_LOADER_REPLY_INMSG_SIZE)i 
,msg_header_t *msg = (msg_header_t *)msg_buf; 
kern_return_t r; 

/* message handling loop */ 
while (TRUE) { 

/* Receive the next message in the queue. */ 
msg->msg_size = KERN_LOADER_REPLY_INMSG_SIZE; _ 
msg->msg_localyort = port; 
r = msg_receive(msg, MSG_OPTION_NONE, 0); 
if (r != KERN_SUCCESS) 

break; 

/* Handle the message we just received. */ 
kern_loader_reply_handler(msg, &reply_handlers); 

/* We get here only if msg_receive returned an error. */ 
mach_error ("receive_thread", r); 
exit(l); 

* This function is called by kern loader every time it has status to 
* report. 
*/ 

kern_return_t print_string(void *arg, printf_data_t string, 
u int string_count, int level) 

/* If the string is empty, return. */ 
if (string_count == 0 I I !string) 

return KERN_SUCCESS; 

/* Print the string we were passed, with our special prefix. */ 
printf(IIprint_string: %S", string); 

return KERN_SUCCESS; 

Handling a Status Message-

You can receive many reply messages as the result of just one call to 
kernJoader_statusyortO. The function you must use to handle these reply messages is 
defined as follows: 

kem_retum_t stringJunc(void *arg, printCdata_t string, u_int string_count, int level) 

3·6 Chapter 3: Using Loadable Kernel Servers 



The first argument, arg, has the same value as the arg field in the kern Joader Jeply _ t 
structure. The string that the kernel-server loader is logging is returned in string, with the 
string's length returned in string_count. level is set to the priority of the log message, using 
the priorities defined in the header file sys/syslog.h (LOG_EMERG, LOG_ALERT, and so 
on). 

Your function should return KERN_SUCCESS. 

The following code is an example of a stringJunc named print_stringO. 

/* 
* This function is called by kern loader every time it has status to 

* report. 
*/ 

kern return_t print_string(void *arg, printf_data_t strin.g, 

u int string_count, int level) 

/* If the string is empty, return. */ 

if (string_count == 0 I I !string) 

return KERN_SUCCESS; 

/* Print the string we were passed, with our special prefix. */ 
printf("print_string: is", string); 

return KERN_SUCCESS; 

Handling a Synchronization Message 

A call to kern_loader yingO results in a single reply message. Your handler for this reply 
message must have the following syntax: 

kern_return_t pingJunc(void *arg, int id) 

The first parameter, arg, is the value in the arg field of the kern_loaderJeply_t structure. 
id is the same as the id value specified in the call to kern Joader yingO. Your pingJunc 
should return KERN_SUCCESS. 

Here's an example of a pingJunc that causes its task to shut down. 

/* This function is called after a kern_loader_ping(). */ 

kern return t ping (void *arg, int id) 

exit (0) ; /* Kill this process. */ 

Functions/or Asynchronous Messages 3-7 



Handling a Log Message 

Each time you call kern_loader_log_dataO, you receive a single reply message as soon as 
any log data from the specified driver is available. The function you write to handle this 
message must have the following syntax: 

kern_return_t logJunc(void *arg, printCdata_t log_data, 
unsigned int log data count) - -

The first parameter has the same value as the arg field in the kern Joader Jeply _ t 
structure. The log_data parameter is a string containing the log entry from the loadable 
kernel server, preceded by a time stamp that indicates the relative time when the 
kernel-server loader received the log message. log_data _count is the size of log_data in 
bytes. You should call vm_deallocateO on log_data when it's no longer needed. 

Your logJunc should return KERN_SUCCESS. 

Here's an example of a logJunc called log_data. It prints out the log message it's passed, 
and then requests another log message. 

kern_return_t log_data(void *arg, printf_data_t log_data, 
unsigned int log_data_count) 

kern_return_t r; 

1* Print the string we were passed, with our prefix. *1 
printf("log_data: %s\n", log_data); 

vm_deallocate(task_self(), (vm_address_t) log_data, 
log_data_count*sizeof(*log_data)); 

1* Request the next log message. *1 
r = kern_loader_get_log(kl-port, server_corn_port, reply-port); 

if (r != KERN_SUCCESS) { 

kern_loader_error("log_data: Error calling 

kern_loader_get_log", r); 
exit(l); 

return KERN_SUCCESS; 

3-8 Chapter 3: Using Loadable Kernel Servers 



Chapter 4 
C Functions 

This chapter gives detailed descriptions of the C functions provided by the NeXT Mach 
operating system. It also describes some macros that behave like functions. For this 
chapter, the functions and macros are divided into five groups: 

• C thread functions. Use these to implement multiple threads in an application. 

• Mach kernel functions. Use these to get access to the Mach operating system. 

• Bootstrap Server functions. Use these to set up communication between the task that 
provides a local service and the tasks that use the service. 

• Network Name Server functions. Use these to set up communication between tasks 
that might not be on the same machine. 

• Kernel-server loader functions. Use these to load and unload loadable kernel servers, 
to add and delete servers to and from the kernel-server loader, and to get information 
about servers. 

Within each section, functions are subgrouped with other functions that perform related 
tasks. These subgroups are described in alphabetical order by the name of the first function 
listed in the subgroup. Functions within subgroups are also listed alphabetically, with a 
pointer to the subgroup's description. 

For convenience, these functions are summarized in the NeXT Technical Summaries 
manual. The summary lists functions by the same subgroups used in this chapter and 
combines several related subgroups under a heading such as "Basic C Thread Functions" 
or "Task Functions." For each function, the summary shows the calling sequence. 

C Functions 4-1 



C Thread Functions 

These functions provide a C language interface to the low-level, language-independent 
primitives for manipulating threads of control. 

In a multithreaded application, you should use the C thread functions whenever possible, 
rather than Mach kernel functions. If you need to call a Mach kernel function that requires 
a thread_t argument, you can find a C thread's corresponding Mach thread by calling 
cthread _ thread(). 

condition _ allocO, mutex _ allocO 

SUMMARY 

SYNOPSIS 

Create a condition or mutex object 

#include <cthreads.h> 

condition t condition allocO - -
mutex_t mutex_allocO 

DESCRIPTION 

The macros condition _ allocO and mutex _ allocO provide dynamic allocation of 
condition and mutex objects. When you're finished using these objects, you can 
deallocate them using condition _freeO and mutex _freeO. 

EXAMPLE 
my_condition = condition_alloc()i 
my_mutex = mutex_alloc()i 

SEE ALSO 

condition_initO, mutexJnitO, condition_freeO, mutexJreeO 

condition _ broadcastO 

SUMMARY 

SYNOPSIS 

Broadcast a condition 

#include <cthreads.h> 

void condition..;.. broadcast( condition_t c) 

4-2 Chapter 4: C Functions 



DESCRIPTION 

The macro condition_broadcastO wakes up all threads that are waiting (via 
condition _ wait()) for the condition c. This macro is similar to condition _ signalO, 
except that condition_signalO doesn't wake up every waiting thread. 

EXAMPLE 

any_t listen(any_t arg) 
{ 

mutex_lock(my_mutex); 

while ( ! data) 

condition_wait (my_condition, my~utex); 

/* ... */ 
mutex_unlock(my_mutex); 

mutex_lock(printing); 

printf("Condition has been met\n"); 
mutex_unlock(printing); 

main() 

{ 

my_condition = condition_alloc(); 

my_mutex = mutex_alloc(); 

printing = mutex_alloc(); 

cthread detach(cthread fork((cthread_fn_t)listen, (any_t)O»; 

mutex_lock(my_mutex); 

data = 1; 

mutex_unlock(my_mutex); 
condition_broadcast(my_condition); 

/* ... */ 

SEE ALSO 

condition_signaIO, condition_ waitO 

condition _ clearO, mutex _ clearO 

SUMMARY Clear a condition or mutex object 

SYNOPSIS 

#include <cthreads.h> 

void condition_c1ear(struct condition *c) 
void mutex_c1ear(struct mutex *m) 

condition_clearf) 4·3 



DESCRIPTION 

You must call one of these macros before freeing an object of type struct condition or 
struct mutex. For example, mutex freeO could be written in terms of mutex c1earO - -
as follows: 

void mutex free(m) 
mutex t m; 

SEE ALSO 

mutex_clear(m); 
free((char *) m); 

conditionJnitO, mutex_initO, condition_freeO, mutexJreeO 

condition _ freeO, mutex _ freeO 

SUMMARY 

SYNOPSIS 

Deallocate a condition or mutex object 

#include <cthreads.h> 

void condition _free(condition_t c) 
void mutex _free(mutex_t m) 

DESCRIPTION 

The macros condition _ freeO and mutex _ freeO let you deallocate condition and mutex 
objects that were allocated dynamically. Before deallocating such an object, you must 
guarantee that no other thread will reference it. In particular, a thread blocked in 
mutex JockO or condition _ waitO should be viewed as referencing the object 
continually, so freeing the object out from under such a thread is erroneous, and can 
result in bugs that are extremely difficult to track down. 

SEE ALSO 

condition _ allocO, mutex _allocO, condition _c1earO, mutex _ c1earO 

4-4 Chapter 4: C Functions 



condition JnitO, mutex JnitO 

SUMMARY 

SYNOPSIS 

Initialize a condition variable or mutex 

#include <cthreads.h> 

void condition_init(struct condition *c) 
void mutex_init(struct mutex *m) 

DESCRIPTION 

The macros condition_initO and mutex_initO initialize an object of the struct 
condition or struct mutex referent type, so that its address can be used wherever an 
object of type condition _tor mutex _tis expected. For example, mutex _ allocO could 
be written in terms of mutex _initO as follows: 

mutex t 

mutex_alloc () 
( 

register mutex_t m; 

m = (mutex_t) malloc(sizeof(struct mutex)); 

mutex_init (m) ; 

return m; 

Initialization of the referent type is most often used when you have included the 
referent type itself (rather than a pointer) in a larger structure, for more efficient storage 
allocation. 

For instance, a data structure might contain a component of type struct mutex to allow 
each instance of that structure to be locked independently. During initialization of the 
instance, you would call mutex initO on the struct mutex component. The alternative 
of using a mutex _ t component and initializing it using mutex _ allocO would be less 
efficient. 

SEE ALSO 

condition _ allocO, mutex _ allocO, condition _ clearO, mutex _ clearO 

condition _init() 4-5 



condition _ nameO, condition_set _ nameO, mutex _ nameO, mutex _set _ nameO 

SUMMARY 

SYNOPSIS 

Associate a string with a condition or mutex variable 

#include <cthreads.h> 

char *condition_name(condition_t c) 
void condition_set_name(condition_t c, char *name) 
char *mutex_name(mutex_t m) 
void mutex_set_name(mutex_t m, char *name) 

DESCRIPTION 

These macros let you associate a name with a condition or a mutex object. The name 
is used when trace information is displayed. You can also use this name for your own 
application-dependent purposes. 

EXAMPLE 

/* Do something if this is a "TYPE 1" condition. */ 
if (strcmp(condition_name(c), "TYPE 1") == 0) 

/* Do something. */; 

condition_set _ nameO ~ See condition _ nameO 

condition _signal 0 

SUMMARY Signal a condition 

SYNOPSIS 

#include <cthreads.h> 

void condition _ signal( condition_t c) 

DESCRIPTION 

The macro condition _ signalO should be called when one thread needs to indicate that 
the condition represented by the condition variable is now true. If any other threads are 
waiting (via condition _ wait()), at least one of them will be awakened. If no threads 
are waiting, nothing happens. The macro condition _ broadcastO is similar to this one, 
except that it wakes up all threads that are waiting. 

4-6 Chapter4: C Functions 



EXAMPLE 
any_t listen(any_t arg) 
{ 

mutex_lock(my_mutex) ; 
while (! data) 

condition_wait (my_condition, my_mutex); 

/* . . . * / 
mutex_unlock(my_mutex); 

mutex_lock(printing); 

printf("Condition has been met\n"); 

mutex_unlock(printing); 

main() 
{ 

my_condition = condition_alloc(); 
my_mutex mutex_alloc(); 
printing = mutex_alloc(); 

cthread detach(cthread fork((cthread_fn_t)listen, (any_t)O)); 

mutex_lock(my_mutex); 

data = 1; 

mutex_unlock(my_mutex); 

condition_signal(my_condition); 

/* . . . * / 

SEE ALSO 

condition _ broad castO, condition _ waitO 

condition _ waitO 

SUMMARY Wait on a condition 

SYNOPSIS 

#include <cthreads.h> 

void condition _ wait( condition_t c, mutex_t m) 

condition_wait() 4-7 



DESCRIPTION 

The function condition _ waitO unlocks the mutex it takes as Ii parameter, suspends the 
calling thread until the specified condition is likely to be true, and locks the mutex again 
when the thread resumes. There's no guarantee that the condition will be true when the 
thread resumes, so this function should always be used as follows: 

mutex_t m; 

condition t c; 

mutex_lock (m) ; 

1* . . . *1 
while (/* condition isn't true */) 

condition_wait(c, m); 

1* . . . *1 
mutex_unlock (m) ; 

SEE ALSO 

condition _ broadcastO, condition _signalO 

cthread _ abortO 

SUMMARY 

. SYNOPSIS 

Interrupt a C thread 

#include <cthreads.h> 

DESCRIPTION 

This function provides the functionality of thread _ abortO to C threads. 
cthread_abortO interrupts system calls; it's usually used along with 
thread_suspendO, which stops a thread from executing any more user code. Calling 
cthread_abortO on a thread that's not suspended is risky, since it's difficult to know 
exactly what system trap, if any, the thread might be executing and whether an interrupt 
return would cause the thread to do something useful. 

See thread _ abortO for a full description of the use of this function. 

4-8 Chapter 4: C Functions 



cthread _ countO 

SUMMARY 

SYNOPSIS 

Get the number of threads in this task 

#include <cthreads.h> 

int cthread _ countO 

DESCRIPTION 

This function returns the number of threads that exist in the current task. You can use 
this function to help make sure that your task doesn't create too many threads (over two 
hundred or so). See cthread_set_limitO for information on restricting the number of 
threads in a task. 

EXAMPLE 

printf("C thread count should be 1, is %d\n", cthread_count()); 

cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)O)); 

printf ("C thread count should be 2, is %d\n", cthread_count () ); 

SEE ALSO 

cthread JimitO, cthread _set _limitO 

cthread _ dataO, cthread _set _ dataO 

SUMMARY 

SYNOPSIS 

Associate data with a thread 

#include <cthreads.h> 

any _t cthread data( cthread_t t) 
void cthread_set_data(cthread_t t, any_t data) 

DESCRIPTION 

The macros cthread_dataO and cthread_set_dataO let you associate arbitrary data 
with a thread, providing a simple form of thread-specific "global" variable. More 
elaborate mechanisms, such as per-thread property lists or hash tables, can then be built 
with these macros. 

cthread _ count() 4-9 



EXAMPLE 

int listen(any_t arg) 
{ 

mutex_lock(printing); 

printf("This thread's data is: %d\n", 

(int)cthread_data(cthread_self())); 

mutex_unlock(printing); 
/* ... */ 

main () 

cthread t lthread; 

printing = mutex_alloc () ; 

lthread = cthread_fork«cthread_fn_t)listen, (any_t)O); 

cthread_set_data(lthread, (any_t)lOO); 

cthread_detach(lthread); 
/* ... */ 

SEE ALSO 

cthread _ nameO, cthread _ set_ nameO 

cthread _ detachO 

SUMMARY 

SYNOPSIS 

Detach a thread 

#include <cthreads.h> 

void cthread_detach(cthread_t t) 

DESCRIPTION 

The function cthread _ detachO is used to indicate that the given thread will never be 
joined. This is usually known at the time the thread is forked, so the most efficient 
usage is the following: 

cthread _ detach( cthread _fork(junction, argument»; 

A thread may, however, be detached at any time after it's forked, as long as no other 
attempt is made to join it or detach it. 

EXAMPLE 

cthread_detach (cthread_fork ( (cthread_fn_t) listen, (any_t) replyyort))'; 

4-10 Chapter4: C Functions 



SEE ALSO 

cthread JorkO, cthread joinO 

cthread _ errnoO 

SUMMARY Get a thread's ermo value 

SYNOPSIS 

#include <cthreads.h> 

int cthread _ errnoO 

DESCRIPTION 

Use the cthread errnoO function to get the ermo value for the current thread. In the 
UNIX operating system, errno is a process-wide global variable that's set to an error 
number when a UNIX system call fails. However, because Mach has multiple threads 
per process, Mach keeps ermo information on a per-thread basis as well as in errno. 

Like the value of errno, the value returned by cthread errnoO is valid only if the last 
UNIX system call returned -1. Ermo values are defined in the header file sys/errno.h. 

EXAMPLE 

int ret; 

ret = chown(FILEPATH, newOwner, newGroup); 

if (ret == -1) { 

if (cthread_errno() == ENAMETOOLONG) 

/* . . . * / 

SEE ALSO 

cthread set errnoO, intro(2) UNIX manual page 

cthread _ exitO 

SUMMARY Exit a thread 

SYNOPSIS 

#include <cthreads.h> 

void cthread _ exit(any _t result) 

cthread _ errno() 4-11 



DESCRIPTION 

The function cthread _ exitO terminates the calling thread. The result is passed to the 
thread that joins the caller, or is discarded if the caller is detached. 

An implicit cthread_exitO occurs when the top-level function of a thread returns, but 
it may also be called explicitly. 

EXAMPLE 

cthread_exit(O); 

SEE ALSO 

cthread_detachO, cthread_forkO, cthreadJoinO 

cthread _ forkO 

SUMMARY 

SYNOPSIS 

Fork a thread 

#include <cthreads.h> 

DESCRIPTION 

The function cthread_forkO takes two parameters: a function for the new thread to 
execute, and a parameter to this function. cthread_forkO creates a new thread of 
control in which the specified function is executed concurrently with the caller's thread. 
This is the sole means of creating new threads. 

The any _ t type represents a pointer to any C type. The cthread _ t type is an 
integer-size handle that uniquely identifies a thread of control. Values of type 
cthread _twill be referred to as thread identifiers. Arguments larger than a pointer 
must be passed by reference. Similarly, multiple arguments must be simulated by 
passing a pointer to a structure containing several components. The call to 
cthread_forkO returns a thread identifier that can be passed to cthreadJoinO or 
cthread_detachO (see the following example). Every thread must be either joined or 
detached exactly once. 

EXAMPLE 

cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)reply-port)); 

SEE ALSO 

cthread _ detachO, cthread _ exitO, cthread JoinO 

4-12 Chapter 4: C Functions 



cthread ..JoinO 

SUMMARY 

SYNOPSIS 

Join threads 

#include <cthreads.h> 

any_t cthread....ioin(cthread_t t) 

DESCRIPTION 

The function cthread ....ioinO suspends the caller until the specified thread t terminates 
via cthread _ exitO. The caller receives either the result of t's top-level function or the 
argument with which t explicitly called cthread _ exitO. 

Attempting to join one's own thread results in deadlock. 

EXAMPLE 

cthread_join(cthread_fork((any_t (*) ())listen, (any_t)reply_port))i 

SEE ALSO 

cthread _ detachO, cthread _ exitO, cthread _ forkO 

SUMMARY Get or set the maximum number of threads in this task 

SYNOPSIS 

#include <cthreads.h> 

int cthread_limitO 
void cthread_setjimit(int limit) 

ARGUMENTS 

limit: The new maximum number of C threads per task. Specify zero if you want no 
limit. 

DESCRIPTION 

These functions can help you to avoid creating too many threads. The danger in 
creating a large number of threads is that the kernel might run out of resources and 
panic. Usually, a task should avoid creating more than about two hundred threads. 

cthread -.JoinO 4-13 



Use cthread _set JimitO to set a limit on the number of threads in the current task; 
When the limit is reached, new C threads will appear to fork successfully, but they will 
have no associated Mach thread so they won't do anything. 

Use cthread JimitO to find out how many threads can exist in the current task. If the 
returned value is zero (the default), then no limit is currently being enforced. 

Important: Use cthread _ countO to determine when your task is approaching the 
maximum number of threads. 

EXAMPLE 

cthread_set_limit(LIMIT); 

1* ~ .. */ 

/* Fork if we haven't reached the limit. */ 

if ( (LIMIT == 0) I I (LIMIT> cthread_count ()) 
cthread_detach(cthread_fork((any_t (*) ())a_thread, (any_t)O)); 

cthread _ nameO, cthread _set _ nameO 

SUMMARY 

SYNOPSIS 

Associate a string with a thread 

#include <cthreads.h> 

char *cthread_name(cthread_t t) 
void cthread_set_name(cthread_t t, char *name) 

DESCRIPTION 

The functions cthread _ nameO and cthread _set _ nameO let you associate an arbitrary 
name with a thread. The name is used when trace information is displayed. The name 
may also be used for application-specific diagnostics. 

EXAMPLE 

int listen(any_t arg) 
{ 

mutex_lock(printing); 

printf("This thread's name is: %s\n", 
cthread_name(cthread_self())); 

mutex_unlock(printing); 

/* ... */ 

4-14 Chapter4: C Functions 



maine) 
( 

cthread t lthread; 

printing = mutex_alloc(); 

lthread = cthread_fork«cthread_fn_t)listen, (any_t)O); 
cthread_set_name(lthread, "lthread"); 
cthread_detach(lthread); 

/* ... */ 

SEE ALSO 

cthread _ data() , cthread _set _ data() 

cthread _priorityO, cthread _max yriorityO 

SUMMARY 

SYNOPSIS 

Set the scheduling priority for a C thread 

#include <cthreads.h> 

kem_retum_t cthread yriority( cthread_t t, int priority, boolean_t set_max) 
kem_retum_t cthread _max yriority( cthread_t t, processor_seCt processor_set, 

int max yriority) 

ARGUMENTS 

t: The C thread whose priority is to be changed. 

priority: The new priority to change it to. 

set_max: Also set thread's maximum priority if true. 

processor _set: The privileged port for the processor set to which thread is currently 
assigned. 

max yriority: The new maximum priority. 

DESCRIPTION 

These routines give C threads the functionality of thread _priorityO and 
thread_max yriorityO. See those functions for more details than are provided here. 

cthread yriorityO changes the base priority and (optionally) the maximum priority of 
thread. If the new base priority is higher than the scheduled priority of the currently 
executing thread, this thread might be preempted. The maximum priority of the thread 
is also. set if set ~max is true. . This call fails if priority is greater than the current 
maximum priority of the thread. As a result, cthread _priority() can never raise-only 
lower-the value of a thread's maximum priority. 

cthread yriority() 4-15 



cthread_ max yriorityO changes the maximum priority of the thread. Because it 
requires the privileged port for the processor set, this call can reset the maximum 
priority to any legal value. If the new maximum priority is less than the thread's base 
priority, then the thread's base priority is set to the new maximum priority. 

EXAMPLE 

/* Get the privileged port for the default processor set. */ 
error=processor_set_default (host_self (), &default_set); 
if (error!=KERN_SUCCESS) { 

mach_error("Error calling processor_set_default()", error); 
exit(l); 

error=host-processor_set-priv(host-priv_self(), default_set, 
&default_set-priv); 

if (error!=KERN_SUCCESS) { 
mach_error (",call to host-processor_set_priv () failed", error); 
exit (1) ; 

/* Set the max priority. */ 
error=cthread_max-priority(cthread_self(), default_set-priv, 

priority) ; 
if (error!=KERN_SUCCESS) 

mach_error("Call to cthread_max-priority() failed",error); 

/* Set the thread's priority. */ 
error=cthread-priority(cthread_self(), priority, FALSE); 
if (error!=KERN_SUCCESS) 

mach_error ("Call to cthread_priority () failed", error) ; 

RETURN 

KERN_SUCCESS: Operation completed successfully 

KERN_INVALID_ARGUMENT: cthread is not a C thread, processor _set is not a 
privileged port for a processor set, or priority is out of range (not in 0-31). 

KERN_FAILURE: The requested operation would violate the thread's maximum 
priority (only for cthread _priorityO) or the thread is not assigned to the processor 
set whose privileged port was presented. 

SEE ALSO 

thread _priorityO, thread_max yriorityO, thread yolicyO, task yriorityO, 
processor_set _priorityO 

4-16 Chapter4: C Functions 



SUMMARY 

SYNOPSIS 

Return the caller's thread identifier 

#include <cthreads.h> 

cthread t cthread self 0 - -

DESCRIPTION 

The function cthread _self 0 returns the caller's own thread identifier, which is the same 
value that was returned by cthread _forkO to the creator of the thread. The thread 
identifier uniquely identifies the thread, and hence may be used as a key in data 
structures that associate user data with individual threads. Since thread identifiers may 
be reused by the underlying implementation, you should be careful to clean up such 
associations when threads exit. 

EXAMPLE 

printf("This thread's name is: %s\n", 
cthread_name (cthread_self ()) ) ; 

mutex_unlock(printing); 

SEE ALSO 

ctbread_forkO, cthread_threadO, thread_self 0 

SUMMARY 

SYNOPSIS 

Set the current thread's errno value 

#include <cthreads.h> 

ARGUMENTS 

error: The value to set the errno to. Errno values are defined in the header file 
sys/errno.h. 

cthread _self() 4-17 



DESCRIPTION 

Use this function to set the errno value for the current thread. In the UNIX operating 
system, errno is a process-wide global variable that's set to an error number when a 
UNIX system call fails. However, because Mach has multiple threads per process, 
Mach keeps errno information on a per-thread basis as well as in errno. This function 
has no effect on the value of errno. 

The current thread's errno value can be obtained by calling cthread_errnoO. 

EXAMPLE 

SEE ALSO 

cthread_errnoO, intro(2) UNIX manual page 

cthread _set JimitO ~ See cthread _limitO 

cthread _set _ nameO ~ See cthread _ nameO 

cthread _ threadO 

SUMMARY 

SYNOPSIS 

Return the caller's thread identifier 

#include <cthreads.h> 

DESCRIPTION 

The macro cthread _ threadO returns the Mach thread that corresponds to the specified 
C thread t. 

EXAMPLE 

/* Save the cthread and thread values for the forked thread. */ 
l_cthread = cthread_fork((cthread_fn_t)listen, (any_t)O); 

cthread_detach(l_cthread); 

1 realthread = cthread_thread(l_cthread); 

SEE ALSO 

cthread _forkO, cthread _self 0 

4-18 Chapter4: C Functions 



cthread yieldO 

SUMMARY 

SYNOPSIS 

Yield the processor to other threads 

#include <cthreads.h> 

void cthread JieldO 

DESCRIPTION 

The function cthread JieldO is a hint to the scheduler, suggesting that this would be a 
convenient point to schedule another thread to run on the current processor. 

EXAMPLE 

int i, n; 

/* n is set previously */ 

for (i = 0; i < n; i += 1) 

cthread_yield(); 

SEE ALSO 

cthreadyriorityO, thread_switchO 

mutex _ allocO ~ See condition _ allocO 

mutex _ c1earO ~ See condition _ c1earO 

mutex_freeO ~ See condition_freeO 

mutex _initO ~ See condition JnitO 

SUMMARY Lock a mutex variable 

SYNOPSIS 

#include <cthreads.h> 

void mutexJock(mutex_t m) 

cthreadyield() 4-19 



DESCRIPTION 

The macro mutexJockO attempts to lock the mutex m and blocks until it succeeds. If 
several threads attempt to lock the same mutex concurrently, one will succeed, and the 
others will block untilm is unlocked. A deadlock occurs if a thread attempts to lock a 
mutex it has already locked. 

EXAMPLE 

/* Only one thread at a time should call printf. */ 

mutex_lock(printing); 

printf("Condition has been met\n"); 

mutex_unlock(printing); 

SEE ALSO 

mutex_tryJockO, mutex_unlockO 

mutex _ nameO ~ See condition _ nameO 

SUMMARY 

SYNOPSIS 

Try to lock a mutex variable 

#include <cthreads.h> 

DESCRIPTION 

The function mutex _try _lockO attempts to lock the mutex m, like mutex_lockO, and 
returns true if it succeeds. If m is already locked, however, IIlutex try lockO 
immediately returns false rather than blocking. For example, a busy-waiting version of 
mutexJockO could be written using mutex_tryJockO: 

4-20 Chapter4: C Functions 

for (;;) 

if (mutex_try_lock(m)) 

return; 



SEE ALSO 

mutex JockO, mutex _ unlockO 

mutex _ unlockO 

SUMMARY Unlock a mutex variable 

SYNOPSIS 

#include <cthreads.h> 

void mutex_unlock(mutex_t m) 

DESCRIPTION 

The function mutex _ unlockO unlocks m, giving other threads a chance to lock it. 

EXAMPLE 

/* Only one thread at a time should call printf. */ 

mutex_lock(printing); 

printf("Condition has been met\n"); 

mutex_unlock(printing); 

SEE ALSO 

mutex_lockO, mutex_try_lockO 

mutex _ unlock() 4-21 



Mach Kernel Functions 

exc _serverO 

SUMMARY Dispatch a message received on an exception port 

SYNOPSIS 

#include <mach.h> 
#include <sys/exception.h> 

boolean_t exc_server(msg_headect *in, msg_headect *out} 

ARGUMENTS 

in: A message that was received on the exception port. This message structure should 
be at least 64 bytes long. 

out: An empty message to be filled by exc _ serverO and then sent. This message buffer 
should be at least 32 bytes long. 

DESCRIPTION 

This function calls the appropriate exception handler. You should call this function 
after you've received a message on an exception port that you set up previously. 
Usually, this function is used along with a user-defined exception handler, which must 
have the following protocol: 

kern_return_t catch_exception Jaise(port_t exception yort, port_t thread, 
poret task, int exception, int code, int subcode) 

To receive a message on an exception port, you must first create a new port and make 
it the task or thread exception port. (You can't use the default task exception port 
because you can't get receive rights for it.) Before calling msgJeceiveO, you must set 
the local_port field ofthe header to the appropriate exception port and the msg_size 
field to the size of the structure for the incoming message. 

exc _ serverO returns true if it accepted the incoming message, false if it didn't 
recognize the message's type. 

You should keep a global value that indicates whether your exception handler 
successfully handled the exception. If it couldn't, then you should forward the 
exception message to the old exception port. 

4-22 Chapter 4: C Functions 



EXAMPLE 
typedef struct { 

port_t old_exc_port; 
port_t clear-port; 
port_t exc-port; 

ports_t; 

volatile boolean t pass_on = FALSE; 
mutex t printing; 

/* Listen on the exception port. */ 
any_t exc_thread(ports_t *port-p) 
{ 

kern return t r; 
char *msg_data [2] [64]; 
msg_header_t *imsg (msg header t *)msg_data[O], 

*omsg = (msg_header_t *)msg_data[l]; 

/* Wait for exceptions. */ 
while (1) { 

imsg->msg_size = 64; 
imsg->msg_loca1-port = port-p->exc-port; 
r = msg_receive(imsg, MSG_OPTION_NONE, 0); 

if (r==RCV_SUCCESS) { 
/* Give the message to the Mach exception server. */ 
if (exc_server(imsg, omsg)) { 

/* Send the reply message that exc_serv gave us. */ 
r = msg_send(omsg, MSG_OPTION_NONE, 0); 

if (r != SEND_SUCCESS) { 
mach_error (IImsg_send", r); 

exit (1) ; 

else { /* exc_server refused to handle imsg. */ 
mutex_lock(printing); 
printf("exc_server didn't like the message\n"); 
mutex_unlock(printing); 
exit (2); 

else { /* msg_receive() returned an error. */ 
mach_error ("msg_receive", r); 
exit (3); 

exc _server() 4-23 



/* 

/* Pass the message to old exception handler, if necessary. */ 

if (pass_on == TRUE) 

imsg->msg_remote_port = port_p->old_exc_port; 

imsg->msg_local_port = port_p->clear_port; 

r = msg_send(imsg, MSG_OPTION_NONE, 0); 

if (r != SEND_SUCCESS) { 

mach_error (nmsg_send to old exc_port n , r); 

exit(4); 

* catch_exception_raise() is called by exc_server(). The only 

* exception it can handle is EXC SOFTWARE. 

*/ 
kern return t catch exception_raise(port_t exception_port, 

port_t thread, port_t task, int exception, int code, int subcode) 

if «exception == EXC SOFTWARE) && (code == Ox20000)) 

/* Handle the exception so that the program can continue. */ 

mutex_lock(printing); 

printf(nHandling the exception\nn); 

mutex_unlock(printing); 

return KERN_SUCCESS; 

else { /* Pass the exception on to the old port. */ 

pass_on = TRUE; 

main () 

int 

mach_NeXT_exception(nForwarding exception n , exception, 

code, subcode); 

return KERN_FAILURE; /* Couldn't handle this exception. */ 

i; 
kern return t 

ports_t 

r; 

ports; 

printing mutex_alloc () ; 

/* Save the old exception port for this task. */ 

r = task_get_exception_port(task_self(}, & (ports.old_exc port)); 

if (r != KERN_SUCCESS) { 

4-24 Chapter 4: C Functions 

mach_error (ntask_get_exception_portn, r); 

exit (1) ; 



/* Create a new exception port for this task. */ 
r = port_allocate(task_self(), &(ports.exc-port»; 
if (r != KERN_SUCCESS) { 

mach_error("port_allocate 0", r); 
exit(l); 

r = task_set_exception-port(task_self(), (ports.exc-port»; 
if (r != KERN_SUCCESS) { 

, mach_error ("task_set_exception-port", r); 
exit(l); 

/* Fork the thread that listens to the exception port. */ 
cthread_detach(cthread_fork((cthread_fn_t)exc_thread, 

(any_t)&ports»; 

/* Raise the exception. */ 
ports.clear-port = thread_self(); 

r = exception_raise(ports.exc-port, thread reply(), 
ports. clear-port, task_self (), EXC_SOFTWARE, Ox20000, 6); 

if ,(r != KERN_SUCCESS) 

mach_error("catch_exception_raise didn't handle exception", 
r) ; 

else { 

mutex_lock(printing); 

SEE ALSO 

printf("Successfully called exception_raise\n"); 

mutex_unlock(printing); 

exception JaiseO, mach_NeXT _ exceptionO 



exception _ raiseO 

SUMMARY 

SYNOPSIS 

Cause an exception to occur 

#include <mach.h> 
#include <sys/exception.h> 

kemJetum_t exception Jaise(porCt exception yort, porCt clear yort, porCt thread, 
porCt task, int exception, int code, int subcode) 

ARGUMENTS 

exception yort: The exception port of the affected thread. (If the thread doesn't have 
its own exception port, then this should be the task's exception port.) 

clear yort: The port to which a reply message should be sent from the exception 
handler. If you don't care to see the reply, you can use threadJeplyO. 

thread: The thread in which the exception condition occurred. If the exception isn't 
thread-specific, then specify THREAD_NULL. 

task: The task in which the exception condition occurred. 

exception: The type of exception that occurred; for example, EXC_SOFfWARE. 
Values for this variable are defined in the header file sys/exception.h. 

code: The exception code. The meaning of this code depends on the value of 
exception. 

subcode: The exception subcode. The meaning of this subcode depends on the values 
of exception and code. 

DESCRIPTION 

This function causes an exception message to be sent to exception yort, which results 
in a call to the exception handler. Usually this routine is used along with a user-defined 
exception handler. (See exc _serverO and mach_NeXT _ exceptionO for more 
information on user-defined exception handlers.) 

You can obtain exception yort by calling thread _get_exception _portO or (if no 
thread exception port exists or the exception is a task-wide one) 
task_get _exception yortO. 

If you're defining your own type of exception, you must have exception equal to 
EXC_SOFfWARE and code equal to or greater than Ox20000. 

4-26 Chapter 4: C Functions 



EXAMPLE 

/* Raise the ~xception. */ 

r = exception_raise (ports.exc-port, thread_reply(), thread_self(), 

task_self(), EXC_SOFTWARE, Ox20000, 6); 
if (r != KERN_SUCCESS) 

mach_error("catch_exception_raise didn't handle exception", r); 

else { 

/* Use mutex so only one thread at a time can call printf. */ 

mutex_lock(printing); 

printf("Successfully called exception_raise\n"); 

mutex_unlock(printing); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_FAILURE: The exception handler didn't successfully deal with the exception. 

KERN_INVALID_ARGUMENT: One of the arguments wasn't va1id~ 

SEE ALSO 

exc _ serverO, mach_NeXT _ exceptionO, task ~et _exception yortO, 
thread_get _exception_portO 

hostJnfoO 

SUMMARY Get information about a host 

SYNOPSIS 

#include <mach.h> 

kern_return_t host_info(hosCt host, intflavor, hosCinfo_thost_info, 
unsigned int *host info count) 

ARGUMENTS 

host: The host for whlch information is to be obtained. 

flavor: The type of statistics that are wanted. Currently HOST_BASIC_INFO, 
HOST_PROCESSOR_SLOTS, and HOST_SCHED_INFO are implemented. 

host info: Returns statistics about host .. 

host info count: The number of integers in the info structure; returns the number of 
integers that Mach tried to fill the info structure with. For HOST_BASIC_INFO, 
you should set host_info _count to HOST_BASIC_INFO_COUNT. For 
HOST_PROCESS OR_SLOTS , you should set it to the maximum number ofCPUs 
(returned by HOST_BASIC_INFO). For HOST_SCHED_INFO, set it to 
HOST~SCHED_INFO_COUNT. 

host_in/oO 4-27 



DESCRIPTION 

Returns the selected information array for a host, as specified by flavor. host _info is an 
array of integers that's supplied by the caller and returned filled with specified 
information. host_info _count is supplied by the caller as the maximum number of 
integers in host info (which can be larger than the space required for the information). 
On return, it contains the actual number of integers in host_info. 

Warning: This replaces the old hostJnfoO call. It isn't backwards compatible. 

Basic information is defined by HOST_BASIC_INFO. Its size is defined by 
HOST_BASIC_INFO_COUNT. Possible values of the cpu_type and cpu_subtype 
fields are defined in the header file sys/machine.h, which is included in mach.h. 

} ; 

int 
vm size t 
cpu_type_t 

avail_cpus; 
memory_size; 
cpu_type; 

/* maximum possible cpus for 
* which kernel is configured */ 

/* number of cpus now available */ 
/* size of memory in bytes */ 
/* cpu type */ 
/* cpu subtype */ 

typedef struct host_basic_info *host_basic_info_t; 

Processor slots of the active (available) processors are defined by 
HOST_PROCESSOR_SLOTS. The size of this information should be obtained from 
the max_cpus field of the structure returned by HOST_BASIC_INFO. 
HOST_PROCESS OR_SLOTS returns an array of integers, each of which is the slot 
number of a CPU. 

Additional information of interest to schedulers is defined by HOST_SCHED_INFO. 
The size of this information is defined by HOST_SCHED_INFO_COVNT. 

struct host sched info 

} ; 

4-28 Chapter 4: C Functions 

- -
int min_timeout; /* minimum timeout in milliseconds */ 
int min_quantum; /* minimum quantum in milliseconds */ 



EXAMPLE 

An example of using HOST_BASIC_INFO: 

kern return t - -
struct host basic info 
unsigned int 

ret; 
basic_info; 
count=HOST BASIC_INFO_COUNT; 

ret=host info(host_self(), HOST BASIC INFO, 
(host_info_t)&basic_info, &count); 

if (ret != KERN_SUCCESS) 
mach_error ("host_info () call failed", ret); 

else printf("This system has %d bytes of RAM.\n", 
basic_info.memory_size); 

An example of using HOST _PROCESSOR_SLOTS (you also need to include the 
HOST_BASIC_INFO code above so you can get max_cpus): 

host info t slots; 
unsigned int cpu_count, i; 

cpu_count=basic_info.max_cpus; 
slots=(host_info_t)malloc(cpu_count*sizeof(int»; 
ret=host info (host_self (), HOST_PROCESSOR_SLOTS, slots, 

&Cpu_count); 
if (ret!=KERN_SUCCESS) 

mach_error("PROCESSOR host_info() call failed", ret); 
else for (i=O; i<cpu_count; i++) 

printf("CPU %d is in slot %d.\n", i, *slots++); 

An example of using HOST_SCHED_INFO: 

kern return t ret; 
struct host sched info sched_info; 
unsigned int sched count=HOST_SCHED_INFO_COUNT; 

ret=host_info(host_self(), HOST SCHED INFO, 
(host_info_t)&sched_info, &sched_count); 

if (ret != KERN_SUCCESS) 
mach_error("SCHED host_info() call failed", ret); 

else 
printf("The minimum quantum is %d milliseconds.\n", 

sched_info.min_quantum); 

host _in/aO 4-29 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: host is not a host,jlavor is not recognized, or (for 
HOST_PROCESSOR_SLOTS) *count is less than max_cpus. 

KERN_FAILURE: *count is less than HOST _BASIC_INFO_COUNT (whenjlavor is 
HOST_BASIC_INFO) or HOST_SCHED_INFO_COUNT (for 
HOST_SCHED_INFO). 

MIG_ARRAY_TOO_LARGE: Returned info array is too large for host_info. 
host _info is filled as much as possible. host_info _count is set to the number of 
elements that would be returned if there were enough room. 

SEE ALSO 

host _ kernel_ versionO, host JrocessorsO, processor JnfoO 

host _ kernet versionO 

SUMMARY 

SYNOPSIS 

Get kernel version information 

#include <mach.h> 

ARGUMENTS 

host: The host for which information is being requested. 

version: Returns a character string describing the kernel version executing on host. 

DESCRIPTION 

host_kernel_ versionO returns the version string compiled into host's kernel at the time 
it was built. If you don't use the kernel_version_t declaration, then you should 
allocate KERNEL_VERSION_MAX bytes for the version string. 

EXAMPLE 

kern_return_t 
kernel version t - -

ret; 
string; 

ret:host_kernel_version(host_self(), string); 
if (ret !: KERN_SUCCESS) 

mach_error ("host_kernel_version () call failed", ret); 
else 

printf(flVersion string: %s\n", string); 

4-30 Chapter 4: C Functions 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: host was not a host. 

KERN_INVALID_ADDRESS: version points to inaccessible memory. 

SEE ALSO 

hostJnfoO, host_processorsO, processor _infoO 

host priv self 0 ~ See host self 0 - - -

SUMMARY Get the privileged port of a processor set 

SYNOPSIS 

#include <mach.h> 

kern_return_t host_processor _set _priv(hoscpriv _t host yriv, 
processocseCt processor_set _name, processocseCt *processor _set) 

ARGUMENTS 

host yriv: The privileged host port for the desired host. 

processor_set _name: The name port of the processor set. 

processor _set: Returns the privileged port of the processor set. 

DESCRIPTION 

host yrocessor _set _privO returns send rights to the privileged port for the specified 
processor set. This port is used in calls that can affect other threads or tasks. For 
example, processor_set _ tasksO requires the privileged port because it returns the port 
of every task on the system. 

host yrocessor _set yriv() 4-31 



EXAMPLE 

kern return terror; 
processor set t processor_set; 
processor_set_t default_set; 

error=processor set_default(host self(), &default set); 
if (error != KERN_SUCCESS) 

mach_error("Call to processor_set_default failed", error); 

error=host_processor_set_priv(host_priv_self(), default set, 
&processor_set); 

if (error != KERN_SUCCESS) 
mach_error("Call to host processor set_priv failed; make sure 

you're superuser", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: hostyriv was not a privileged host port, or 
processor_set _name didn't name a valid processor set. 

host yrocessor _ setsO 

SUMMARY Get the name ports of all processor sets on a host 

SYNOPSIS 

#include <mach.h> 

kernJeturn_t host_processor _sets(hosCt host, 
processor_seCname_array _t *processor _set_list, 
unsigned int *processor _set_count) 

ARGUMENTS 

host: The host port for the desired host. 

processor_set _list: Returns an array of processor sets currently existing on host; no 
particular ordering is guaranteed. 

processor_set _ count: Returns the number of processor sets in the processor _set_list. 

DESCRIPTION 

host_processor _setsO gets send rights to the name port for each processor set currently 
assigned to host. hostyrocessor _set_privO can be used to obtain the privileged ports 
from these if desired. processor _set _list is an array that is created as a result of this 
call. You should call vm _ deallocateO on this array when the data is no longer needed. 

Note: In single-processor systems, you can get the same information by calling 
processor _ set_ defaultO. 

4-32 Chapter 4: C Functions 



EXAMPLE 

kern return t 
processor_set_name_array_t 

unsigned int 

ret; 

list; 

count; 

ret=host-processor_sets(host_self(), &list, &count); 

if (ret!=KERN_SUCCESS) 

mach_error("error calling host-processor_sets", ret); 

else { 

/* . . . * / 
ret=vm_deallocate(task_self (), (vm_address_t) list, 

sizeof(list)*count); 

if (ret!=KERN_SUCCESS) 
mach_error("error calling vm_deallocate", ret); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: host is not a host. 

SEE ALSO 

host yrocessor _set yrivO, processor_set _ createO, processor_set _ tasksO, 
processor_set _ threadsO, processor_set _ defaultO 

host yrocessorsO 

SUMMARY Get the processor ports for a host 

SYNOPSIS 

#include <rnach.h> 

kern_return_t host J)rocessors(hoscpriv _t host yriv, 
processocarray_t *processor _list, unsigned int *processor _count) 

ARGUMENTS 

host yriv: Privileged host port for the desired host. 

processor _list: Returns the processors existing on host yriv; no particular ordering is 
guaranteed. 

processor count: Returns the number of processors in processor _list. 

DESCRIPTION 

host yrocessorsO gets send rights to the processor port for each processor existing on 
host yriv. processor _list is an array that is created .as a result of this call. The caller 
may wish to call vrn _ deallocateO on this array when the data is no longer needed. 

host yrocessorsO 4-33 



EXAMPLE· 

kern return terror; 
processor_array_t list; 
unsigned int count; 

error=hostyrocessors (host_priv_self (), &list, &count); 
if (error!=KERN_SUCCESS) { 

mach_error("error calling hostyrocessors", error); 
exit (1) ; 

/* ... */ 

vm_deallocate(task_self(), (vm_address_t) list, sizeof(list)*count); 
if (error!=KERN_SUCCESS) 

mach_error("Trouble freeing list", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: hostyriv is not a privileged host port. 

SEE ALSO 

processor JnfoO, processor _ startO, processor _ exitO, processor _ controlO 

SUMMARY Get the host port for this host 

SYNOPSIS 

#include <mach.h> 

hoset host_selfO 
hosepriv _t host yriv _ self 0 

DESCRIPTION 

host _self 0 returns send rights to the host port for the host on which the call is executed. 
This port can be used only to obtain information about the host, not to control the host. 

host .;..priv _ self 0 returns send rights to the privileged host port for the host on which the 
call is executed. This port is used to control physical resources on that host and is only 
.available to privileged tasks. PORT_NULL is returned if the invoker is not the UNIX 
superuser. 

4-34 Chapter 4: C Functions 



EXAMPLE 

/* Get the privileged port for the default processor set. */ 
error=processor_set_default(host_self(), &default_set); 
if (error!=KERN_SUCCESS) { 

mach_error ("Error calling processor_set_default ()", .error); 
exit (1) ; 

error=host-processor_set-priv(host-priv_self(), default_set, 

&default_set-priv) ; 

if (error!=KERN_SUCCESS) { 

mach_error ("Call to host-processor_set_priv () failed", error); 
exit (1); 

SEE ALSO 

host _processorsO, host JnfoO, host _ kernel_ versionO 

SUMMARY Display or get a Mach error string 

SYNOPSIS 

#include <mach.h> 

void mach_error(char *string, kem_return_t errno) 
char *mach_error_string(kem_return_t errno) 

ARGUMENTS 

string: The string you want displayed before the Mach error string. 

errno: The error value for which you want an error string. 

DESCRIPTION 

The function mach _ errorO displays a message on stderr. The message contains the 
string specified by string, the stringteturned by mach_error_stringO, and the actual 
error value (errno).· Since mach_errorO isn't thread.,safe, you might want to protect it 
with a mutex if you call it in a multiple-thread task. 

The function mach_error_stringO returns the string associated with errno. 

Note that because the error value specified by errno is of type kern Jeturn _ t, these 
functions work only with Mach functions. 

mach_errorO 4·35 



EXAMPLE 

mutext printing; 

main() 

kern return terror; 
port_t result; 

printing mutex_alloc(); 

/* */ 
if ((error=port allocate(task_self(), &result)) != KERN_SUCCESS) 

mutex_lock(printing); 
mach_error("Error calling port_allocate", error); 
mutex_unlock(printing) ; 
exit (1) ; 

/* . . . * / 

mach _NeXT _ exceptionO, mach _NeXT_exception _ stringO 

SUMMARY Display or get a Mach exception string 

SYNOPSIS 

#include <mach.h> 

void mach_NeXT_exception(char *string, int exception, int code, int subcode) 
char *mach_NeXT_exception_string(int exception, int code, int subcode) 

ARGUMENTS 

string: The string you want displayed before the Mach exception string. 

exception: The exception value for which you want a string. 

code: The exception code. How this is used depends on the value of exception. 

subcode: The exception subcode. How this is used depends on the value of exception. 

DESCRIPTION 

The function mach_NeXT _ exceptionO displays a message on stderr. The message 
contains the string specified by string, then the string returned by 
mach_NeXT_exception_stringO, and then the values of exception, code, and 
subcode. Since mach_NeXT_exceptionO isn't thread-safe, you might want to protect 
it with a mutex if you call it in a multiple-thread task. 

The function mach NeXT exception stringO returns the string associated with - - -
exception, code, and subcode. 

4-36 Chapter4: CFunctions 



EXAMPLE 

/* 
* catch_exception_raise() is called by exc_server(). The only 
* exception it can handle is EXC SOFTWARE. 

*/ 
kern_return_t catch_exception_raise(port_t exception-Fort, 

port_t thread, port_t task, int exception, int code, int subcode) 

if «exception == EXC SOFTWARE) && (code == Ox20000)) ( 

/* Handle the exception so that the program can continue. */ 
mutex_Iock(printing); 

printf("Handling the exception\n"); 

mutex_unlock(printing); 
return KERN_SUCCESS; 

else ( /* Pass the exception on to the old port. */ 
pass_on = TRUE; 

mach_NeXT_exception("Forwarding exception", exception, 
code, subcode); 

return KERN_FAILURE; /* Couldn't handle this exception. */ 

SEE ALSO 

exception JaiseO, exc _ serverO 

map fdO 

SUMMARY Map a file into virtual memory 

SYNOPSIS 

#include <mach.h> 

kern_return_t map_fd(intfd, vm_offseCt offset, vm_offseCt *address, 
boolean_tfind space, vm_size_t size) 

ARGUMENTS 

fd:. An open UNIX file descriptor for the file that's to be mapped. 

offset: The byte offset within the file, at which mapping is to begin. 

address: A pointer to an address in the calling process at which the mapped file should 
start. This address, unlike the offset, must be page-aligned. 

find _space: If true, the kernel will select an unused address range at which to map the 
file and return its value in address. 

size: The number of bytes to be mapped. 

map JdO 4-J7 



DESCRIPTION 

The function map fdO is a UNIX extension that's technically not part of Mach. This 
function causes size bytes of data starting at offset in the file specified by fd to be 
mapped into the virtual memory at the address specified by address. Ifjind_space is 
true, the input value of address can be null, and the kernel will find an unused piece of 
virtual memory to use. (You should free this space with vm _ deallocateO when you no 
longer need it.) If you provide a value for address, it must be page-aligned and at least 
size bytes long. The sum of offset and size must not exceed the length of the file. 

Memory mapping doesn't cause I/O to take place. When specific pages are first 
referenced, they cause page faults that bring in the data. The mapped memory is 
copy-on-write. Modified data is returned to the file only by a writeO call. 

EXAMPLE 

kern return_t r; 

int 
char 

fd; 
*memfile, *filename 

/* Open the file. */ 

fd = open(filename, O_RDONLY); 

/* Map part of it into memory. */ 

"/tmp/myfile"; 

r = map_fd(fd, (vm_offset_t)0, & (vm_offset_t)memfile, TRUE, 

(vm_size_t)5) ; 

if (r != KERN_SUCCESS) 
mach_error("Error calling map fd() ", r); 

else 
printf("Second character in %s is: %c\n", filename, memfile[l]); 

RETURN 

KERN_SUCCESS: The data was mapped successfully. 

KERN_INVALID_ADDRESS: address wasn't valid. 

KERN_INVALID_ARGUMENT: An invalid argument was passed. 

msg_ receiveO 

SUMMARY Receive a message 

SYNOPSIS 

#include <mach.h> 
#include <sys/message.h> 

msgJetum_t msgJeceive(msg_headect *header, msg_option_t option, 
msg_timeouCt timeout) 

4-38 Chapter 4: C Functions 



ARGUMENTS 

header: The address of a buffer in which the message is to be received. Two fields of 
the message header must be set before the call is made: msgJocal_port must be 
set to the value of the port from which the message is to be received, and msg_size 
must be set to the maximum size of the message that may be received. This 
maximum size must be less than or equal to the size of the buffer. 

option: The failure conditions under which msg receiveO should terminate; the value 
of this parameter is an ORed combination of the following options. Unless one of 
these values is explicitly specified, msgJeceiveO does not return until a message 
has been received. 

RCV _TIMEOUT: Specifies that msg receiveO should return when the 
specified timeout elapses, if a message has not arrived by that time; if not 
specified, the timeout will be ignored (that is, it will be infinite). 

RCV _INTERRUPT: Specifies that msgJeceiveO should return when a 
software interrupt occurs in this thread. 

RCV _LARGE: Specifies that msgJeceiveO should return without dequeuing 
a message if the next message in the queue is larger than header.msg_size. 
(Normally, a message that is too large is dequeued and lost.) You can use this 
option to dynamically determine how large your message buffer must be. 

Use MSG_OPTION_NONE to specify that none of the above options is desired. 

timeout: If RCV _TIMEOUT is specified in option, then timeout is the maximum time 
in milliseconds to wait for a message before giving up. 

DESCRIPTION 

The function msgJeceiveO retrieves the next message from the port or port set 
specified in the msgJocal_port field of header. If a port is specified, the port must not 
be a member of a port set. 

If a port set is specified, then msgJeceiveO will retrieve messages sent to any of the 
set's member ports: Mach sets the msg_local_port field to the specific port on which 
the message was found. It's not an error for the port set to have no members,or for 
members to be added and removed from a port set while a msgJeceiveO on the port 
set is in progress. 

The message consists of its header, followed by a variable amount of data; the message 
header supplied to msgJeceiveO must specify (in msg_size) the maximum size of the 
message that can be received into the buffer provided. 

If no messages are present on the port(s) in question, msgJeceiveO will wait until a 
message arrives, or until one of the specified termination conditions is met (see the 
description of the option parameter above). 

If the message is successfully received, then msg receiveO sets the msg size field of - -
the header to the size of the received message. If the RCV _LARGE option was set and 
msgJeceiveO returned RCV _TOO _LARGE, then the msg_size field is set to the size 
of the message that was too large. 

msgJeceiveO 4-39 



If the received message contains out-of-line data (that is, data for which the 
msg_type_inline attribute was specified as false), the data will be returned in a newly 
allocated region of memory; the message body will contain a pointer to that new region. 
You should deallocate this memory when the data is no longer needed. See the 
vm allocateO call for a description of the state of newly allocated memory. 

See Chapter 2, "Using Mach Messages," for information on setting up messages and on 
writing Mach servers. 

EXAMPLE 

*imsg, header; 

/* Wait for messages. */ 
while (1) ( 

/* Set up the message structure. */ 

header.msg_size = sizeof header; 

header.msg_local_port = receive_port; 

/* Get the next message on the queue. */ 

r = msg_receive(&header, RCV_LARGE, 0); 

/* If the message is too big ... */ 

if (r==RCV_TOO_LARGE) { 

/* ... allocate a structure for it ... */ 

imsg = (msg_header_t *)malloc(header.msg_size); 
/* ... initialize the structure ... */ 

imsg->msg_size = header.msg_size; 

imsg->msg_local_port = receive_port; 

/* ... and get the message. */ 

r = msg_receive(imsg, MSG_OPTION_NONE, 0); 

if (r==RCV_SUCCESS) { 
/* Handle the message. */ 

else ( /* msg_receive() returned an error. */ 

mach_error ("msg_receive", r); 

exit (3) ; 

RETURN 

RCV _SUCCESS: The message has been received. 

RCV _INVALID_MEMORY: The message specified was not writable by the calling 
task. 

RCV _INVALID_PORT: An attempt was made to receive on a port to which the calling 
task does not have the proper access, or which was deallocated (see 
port _ deallocateO) while waiting for a message. 

4-40 Chapter4: C Functions 



RCV _TOO_LARGE: The message header and body combined are larger than the size 
specified by msg_size. Unless the RCV _LARGE option was set, the message has 
been dequeued and lost. If the RCV _LARGE option was specified, then Mach sets 
msg_size to the size of the too-large message and leaves the message at the head of 
the queue. 

RCV _NOT_ENOUGH_MEMORY: The message to be received contains more 
out-of-line data than can be allocated in the receiving task. 

RCV _TIMED_OUT: The message was not received after timeout milliseconds. 

RCV _INTERRUPTED: A software interrupt occurred and the RCV _INTERRUPT 
option was specified. 

RCV _PORT_CHANGE: The port specified was added to a port set during the duration 
of the msgJeceiveO call. 

msg rpcO 

SUMMARY 

SYNOPSIS 

Send and receive a message 

#include <mach.h> 
#include <sys/message.h> 

msg_return_tmsgJPc(ms~header_t *header, ms~option_t option, 
msg_size_t rev_size, msg_timeouCt send_timeout, msg_timeouCt rev_timeout) 

ARGUMENTS 

header: Address. of a message buffer that will be used for both msg_ sendO and 
msgJeceiveO. This buffer contains a message header followed by the data for the 
message to be sent. The msgJemote _port field specifies the port to which the 
message is to be sent. The msg_localyort field specifies the port on which a 
message is then to be received; if this port is the special value PORT_DEFAULT, it 
gets replaced by the value PORT_NULL for the purposes of the msg_sendO 
operation. 

option: A union of the option parameters for the send and receive (see msg_ sendO and 
msgJeceiveO). 

rev _size: The maximum size allowed for the received message; this must be less than 
or equal to the size of the message buffer. The msg_size field in the header 
specifies the size of the message to be sent. 

send_timeout, rev _timeout: The timeout values to be applied to the component 
operations. These are used only if the option SEND_TIMEOUT or 
RCV _TIMEOUT is specified. 



DESCRIPTION 

The function msg_ rpcO is a hybrid call that performs a msg_ sendO followed by a 
msgJeceiveO, using the same message buffer. Because of the order of the send and 
receive, this function is appropriate for clients of Mach servers. However, the 
msg rpcO call to a Mach server is usually performed by MiG-generated code, not by 
handwritten code. 

See Chapter 2, "Using Mach Messages," for information on setting up messages and on 
writing Mach servers. 

RETURN 

RPC_SUCCESS: The message was successfully sent and a reply was received. 

Other possible values are the same as those for msg_sendO and~sgJeceiveO; any 
error during the msg_sendO portion will terminate the call. 

msg_sendO 

SUMMARY Send a message 

SYNOPSIS 

#include <mach.h> 
#include <sys/message.h> 

msg_return_t msg_send(msg_headect *header, msg_option_t option, 
msg_timeouct timeout) 

ARGUMENTS 

header: The address of the message to be sent. A message consists of a fixed-size 
header followed by a variable number of data descriptors and data items. See the 
header file sys/message.h for a definition of the message structure. 

option: The failure conditions under which msg sendO should terminate; the value of 
this parameter is an ORed combination of the following options. Unless one of the 
following values is explicitly specified, msg sendO does not return until the 
message is successfully queued for the intended receiver. 

4-42 Chapter 4: C Functions 

SEND_TIMEOUT: Specifies that the msg_sendO request should terminate 
after the timeout period has elapsed, even if the kernel has been unable to queue 
the message. 

SEND_NOTIFY: Allows the sender to send exactly one message without 
being suspended even if the destination port is full. When that message can be 
posted to the receiving port's queue, this task receives a message that notifies 
it that another message can be sent. A second attempt to send a message with 
the notify option to the same port before the first notification arrives results in 



an error. If SEND_TIMEOUT is also specified, msg sendO will wait until the 
specified timeout has elapsed before invoking the SEND_NOTIFY option. 

SEND_INTERRUPT: Specifies that msg_sendO should return if a software 
interrupt occurs in this thread. 

Use MSG_OPTION_NONE to specify that none of the above options is wanted. 

timeout: If the destination port is full and the SEND_TIMEOUT option has been 
specified, this value specifies the maximum wait time (in milliseconds). 

DESCRIPTION 

The function msg_sendO transmits a message from the current task to the port 
specified in the message header field. The message consists of its header, followed by 
a variable number of data descriptors and data items. 

If the msgJocal Jlort field isn't set to PORT_NULL, send rights to that port will be 
passed to the receiver of this message. The receiver task can use that port to send a 

) reply to this message. 

If the SEND_NOTIFY option is used and this call returns a SEND _WILL_NOTIFY 
code, you can expect to receive a notify message from the kernel. This message will 
be either a NOTIFY_MSG_ACCEPTED or a NOTIFY_PORTjJELETED message, 
depending on what happened to the queued message. The notify_port field in these 
messages is the port to which the original message was sent. The formats for these 
messages are defined in the header file sys/notify.h. 

See Chapter 2, "Using Mach Messages," for information on setting up messages and on 
writing Mach servers. 

EXAMPLE 

1* From the handwritten part of a Mach server ... *1 
while (TRUE) 
{ 

} 

1* Receive a request from a client. -* I 
msg.head.msg_local-port = port; 

msg.head.msg_size = sizeof(struct message); 

ret = msg_receive(&msg.head, MSG_OPTION_NONE, 0); 

if (ret != RCV_SUCCESS) 1* ignore errors *1; 

1* Feed the request into the server. */ 
(void) add_server (&msg, &reply); 

/* Send a reply to the client. */ 
reply.head.msg_local_port = port; 

ret = msg_send(&reply.head, MSG_OPTION_NONE, 0); 

if (ret != SEND_SUCCESS) /* ignore errors */; 



RETURN 

SEND_SUCCESS: The message has been queued for the destination port. 

SEND_INVALID_MEMORY: The message header or body was not readable by the 
calling task, or the message body specified out-of-line data that was not readable. 

SEND_INVALID_PORT: The message refers either to a port for which the current 
task does not have access, or to which access was explicitly removed from the 
current task (see port_deallocate()) while waiting for the message to be posted, or 
a msg_type_name field in the message specifies rights that the name doesn't 
denote in the task (for example, specifying MSG_TYPE_SEND and supplying a 
port set's name). 

SEND_TIMED_OUT: The message was not sent since the destination port was still 
full after timeout milliseconds. 

SEND_WILL_NOTIFY: The destination port was full but the SEND_NOTIFY option 
was specified. A notification message will be sent when the message can be posted. 

SEND_NOTIFY_IN_PROGRESS: The SEND_NOTIFY option was specified but a 
notification request is already outstanding for this thread and given destination 
port. 

port _ aUocateO 

SUMMARY 

SYNOPSIS 

Create a port 

#include <mach.h> 

ARGUMENTS 

task: The task in which the new port is created (for example, use task _ self 0 to specify 
the caller's task). 

port_name: Returns the task's name for the new port. 

DESCRIPTION 

The function port _ allocateO causes a port to be created for the specified task; the 
resulting port is returned in port_name. The target task initially has both send and 
receive rights to the port. The new port isn't a member of any port set. 

4-44 Chapter 4: C Functions 



EXAMPLE 

port_t myport; 
kern return terror; 

if «error=port_allocate(task_self(), &myport)) != KERN_SUCCESS) 
mach_error("port_allocate failed", error); 
exit(!); 

RETURN 

KERN_SUCCESS: A port has been allocated. 

KERN_INVALID_ARGUMENT: task was invalid. 

KERN_RESOURCE_SHORTAGE: No more port slots are available for this task. 

SEE ALSO 

port _ deallocateO 

port _ deallocateO 

SUMMARY Deallocate a port 

SYNOPSIS 

#include <mach.h> 

ARGUMENTS 

task: The task that wants to relinquish rights to the port (for example, use task_self 0 
to specify the caller's task). 

port_name: task's name for the port to be deallocated. 

DESCRIPTION 

The function port deallocateO requests that the target task's access to a port be 
relinquished. 

If task has receive rights for the port and the portdoesn 'thave a backup port, these 
things happen: 

• The port is destroyed. 

• All other tasks with send access to the port are notified of the port's destruction. 

• lithe port is a member of aport set, it's removed from the port set. 

port _ deallocate() 4-45 



If task has receive rights for the port and the port does have a backup port, then the 
following things happen: 

• If the port is a member of a port set, it's removed from the port set. 

• Send and receive rights for the port are sent to the backup port in a notification 
message (see port_set_backup()). 

EXAMPLE 

port_t my_port; 
kern return terror; 

/* . . . * / 

error=port_deallocate(task self(), my_port); 
if (error != KERN_SUCCESS) { 

mach_error("port_deallocate failed", error); 
exit (1) ; 

RETURN 

KERN_SUCCESS: The port has been deallocated. 

KERN_INVALID_ARGUMENT: task was invalid or port_name doesn't name a valid 
port. 

SEE ALSO 

port _ allocateO 

port_extract _ receiveO, port_extract _ sendO 

SUMMARY Remove a task's rights for a port and return them to the caller 

SYNOPSIS 

#include <mach.h> 

kem_return_t port_extractJeceive(task_t task, port_name_t its_name, 
port_t *its yort) 

kem_retum_t port_extract_send(task_t task, porCname_t its_name, port_t *itsyort) 

ARGUMENTS 

task: The task whose rights the caller takes. 

its_name: The name by which task knows the port. 

its yort: Returns the receive or send rights. 

4-46 Chapter 4: C Functions 



DESCRIPTION 

The functions port_extractJeceiveO and port_extract_sendO remove task's rights 
for a port and return the rights to the caller. task is left with no rights for the port. 

port_extract_sendO extracts send rights; task can't have receive rights for the named 
port. port_extract _ receiveO extracts receive rights. 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID _ARGUMENT: task was invalid or its_name doesn't name a port for 
which task has the required rights. 

SEE ALSO 

port_insert _sendO, port_insert JeceiveO 

. port extract sendO -7 See port extract receiveO - - --

port )nsert _receiveO, port )nsert _ sendO 

SUMMARY 

SYNOPSIS 

Give a task rights with a specific name 

#include <mach.h> 

kern_return_t port_insertJeceive(task_t task, port_t my yort, 
port_name_t its_name) 

kern_return_t portJnsert_send(task_t task, port_t my yort, port_name_t its_name) 

ARGUMENTS 

task: The task getting the new rights. 

my yort: Rights supplied by the caller. 

its_name: The name by which task will know the new rights. 

DESCRIPTION 

The functions port_insertJeceiveO and portJnsert_sendO give a task rights with a 
specific name. If task already has rights named its_name, or has some other name for 
my yort, the operation will fail. its_name can't be a predefined port, such as 
PORT_NULL. . 

port_insert _ sendO inserts send rights, and port Jnsert JeceiveO inserts receive 
rights. 

port_insert Jeceive() 4-47 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_NAME_EXISTS: task already has a right named its_name. 

KERN_FAILURE: task already has rights to my yort. 

KERN_INVALID_ARGUMENT: task was invalid or its name was an invalid name. 

SEE ALSO 

port_extract _ sendO, port_extract JeceiveO 

port namesO 

SUMMARY Get information about a task's port name space 

SYNOPSIS 

#include <mach.h> 

kern_return_t port names(task_t task, port_name_array_t *port names, - -
unsigned int *port _names Jount, port_type_array _t *port _types, 
unsigned int *port types count) - -

ARGUMENTS 

task: The task whose port name space is queried. 

port_names: Returns the names of the ports and port sets in the task's port name space, 
in no particular order. 

port_names _count: Returns the number of names returned. 

port_types: Returns the type of each corresponding name. This indicates what kind of 
rights the task holds for the port, or whether the name refers to a port set. The type 
is one of the following: PORT_TYPE_SEND (send rights only), 
PORT_TYPE_RECEIVE_OWN (send and receive rights), PORT_TYPE_SET 
(the port is a port set). 

port_types _count: Returns the same value as port_names _count. 

DESCRIPTION 

The function port_namesO returns information about task's port name space. It 
returns task's currently valid port and port set names. For each name, it also returns 
what type of rights task holds. 

4-48 Chapter4: C Functions 



port_names and port_types are arrays that are automatically allocated when the reply 
message is received. You should use vm_deallocateO on them when the data is no 
longer needed. 

EXAMPLE 

kern return t 

port_name_array_t 
unsigned int 

port_type_array_t 

error; 

names; 

names_count, types_count; 
types; 

error=port_names(task_self(), &names, &names_count, &types, 

&types_count); 
if (error != KERN_SUCCESS) { 

mach_error("port_rename returned value of If, error); 

exit(l); 

/* . . . */ 
error=vm deallocate (task_self(), (vm_address_t) names, 

sizeof(names)*names_count); 

if (error != KERN_SUCCESS) 

mach_error("Trouble freeing names", error); 

error=vm_deallocate(task_self(), (vm_address_t) types, 

sizeof(names)*types_count); 

if (error != KERN_SUCCESS) 

mach_error("Trouble freeing types", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task was invalid. 

SEE ALSO 

port_typeO. port_statusO. port_set_statusO 

port .... renameO 

SUMMARY Change the name by which aport or port set is known to a task 

SYNOPSIS 

#include <mach.h> 

kern_retum ... J portJename(task_t task, port_name_t old_name, 
port_name_t new_name) 

port Jename() 4 ... 49 



ARGUMENTS 

task: The task whose port name space is changed. 

old_name: The current name of the port or port set. 

new_name: The new name for the port or port set. 

DESCRIPTION 

The function port JenameO changes the name by which a port or port set is known to 
task. new _name must not already be in use, and it can't be a predefined port, such as 
PORT_NULL. Currently, a name is a small integer. 

One way to guarantee that a name isn't already in use is to deallocate a port and then 
use its name as new _name. Another way is to check all the existing names, using 
port _ namesO, before you call port JenameO. If you choose another naming scheme, 
you should be prepared to try another name if port JenameO returns a 
KERN_NAME_EXISTS error. 

EXAMPLE 

#define MY PORT (port_name_t)99 

port_name_t my-port; 
kern return terror; 

error=port_allocate(task_self(),&my-port ); 
if (error != KERN_SUCCESS) { 

mach_error ("port .... :allocate failed", error); 
exit (1) ; 

error=port_rename(task_self(), my_port, MY_PORT); 
if (error == KERN_NAME_EXISTS) 

/* try again with a different name */; 
else if (error != KERN_SUCCESS) 

mach_error("port_rename failed", error); 
exit (1); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_NAME_EXISTS: task already has a port or port set named new_name. 

KERN_INVALID_ARGUMENT: task was invalid, or task didn't know any ports or 
port sets named old_name, or new_name was an invalid name. 

SEE ALSO 

port _ namesO 

4-50 Chapter 4: C Functions 



port set addO 

SUMMARY Move the named port into the named port set 

SYNOPSIS 

#include <mach.h> 

kem_return_t port_set_add(task_t task, port_seCname_t set_name, 
port_name_tport name) 

ARGUMENTS 

task: The task that has receive rights for the port set and port. 

set_name: task's name for the port set. 

port_name: task's name for the port. 

DESCRIPTION 

The function port_set _ addO moves the named port into the named port set. task must 
have receive rights for the port. If the port is already a member of another port set, it's 
removed from that set first. 

EXAMPLE 

kern return terror; 
port_set_name_t set_name; 
port_t my_port; 

error=port set_allocate(task_self(),&set_name); 
if (error != KERN_SUCCESS) { 

mach_error("port_set_allocate failed", error); 
exit(l); 

error=port_allocate(task_self(),&my_port); 
if (error != KERN_SUCCESS) { 

mach_error("port~allocate failed", error); 
exit(l); 

error=port_set_add(task_self(), set_name, my~ort); 
if (error != KERN_SUCCESS) { 

mach_error("port_allocate failed", error); 
exit(l); 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_NOT_RECEIVER: task doesn't have receive rights for the port. 

KERN_INVALID_ARGUMENT: task was invalid, or set_name doesn't name a valid 
port set, or port_name doesn't name a valid port. 

SEE ALSO 

port_set JemoveO 

SUMMARY 

SYNOPSIS 

Create a port set 

#include <mach.h> 

ARGUMENTS 

task: The task in which the new port set is created. 

set_name: Returns the task's name for the new port set. 

DESCRIPTION 

The function port_set _ allocateO causes a port set to be created for the specified task; 
the resulting set's name is returned in set_name. The new port set is empty . 

. EXAMPLE 

kern return terror; 
port_set_name_t set_name; 

if (error != KERN_SUCCESS) {, 
mach_error("port_set_allocate failed", error); 
exit(!); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task was invalid. 

KERN_RESOURCE_SHORTAGE: The kernel ran out of memory. 

4-52 Chapter 4: C Functions 



SEE ALSO 

port_set_deallocateO, port_set_addO 

SUMMARY 

SYNOPSIS 

Set the size of the port queue 

#include <mach.h> 

ARGUMENTS 

task: The task that has receive rights for the named port (for example, use task_self 0 
to specify the caller's task). 

port_name: task's name for the port. 

backlog: The new backlog to be set. 

DESCRIPTION 

The function port_set _ backlogO changes the backlog value on the specified port (the 
port's backlog value is the number of unreceived messages that are allowed in its 
message queue before the kernel will refuse to accept any more sends to that port). 

task must have receive rights for the named port. 

The current value of a port's backlog can be found by the port statusO call. The 
maximum backlog value is the constant PORT_BACKLOG_MAX. You can get the 
current backlog by calling port statusO. 

EXAMPLE 

tdefine MY BACKLOG 10 

kern_return_t error; 
port_t my_port; 

error=port_allocate (task_self () ,&myyort) ; 
if (error != KERN_SUCCESS) { 

mach_error("port_allocate failed", error); 
exit (1) ; 

error=port_set_backlog(task_self(), my_port, MY_BACKLOG); 
if (error!=KERN_SUCCESS) 

mach_error("Call to port_set_backlog failed", error); 



RETURN 

KERN_SUCCESS: The backlog value has been changed. 

KERN_NaT_RECEIVER: task doesn't have receive rights for the port. 

KERN_INVALID_ARGUMENT: task was invalid, or port_name doesn't name a valid 
port, or the desired backlog wasn't greater than 0, or the desired backlog was 
greater than PORT_BACKLOG_MAX. 

SEE ALSO 

msg_sendO, port_statusO 

SUMMARY 

SYNOPSIS 

Set the backup port for a port 

#include <mach~h> 

kern_return_t port_set_backup(task_t task, port_name_t port_name, port_t backup, 
port_t *previous) 

ARGUMENTS 

task: The task that has receive rights for the named port (for example, use task _ self 0 
to specify the caller's task). 

port_name: task's name for the port right. 

backup: The new backup port. If you want to disable the current backup port without 
setting a new one, set this to PORT_NULL. 

previous: Returns the previous backup port. 

DESCRIPTION 

Use this function to keep a port alive despite its being deallocated by its receiver. If the 
call to port_set _ backupO is successful, then whenever port_name is deallocated by its 
receiver, backup will receive a notification message with receive and send rights for 
port_name. As far as task is concerned,the port will be deleted; however, as far as 
senders to the port are concerned, the port will continue to exist. 

To let a port die naturally after its backup port has been set, call port_set_backupO on 
it with backup set to PORT_NULL. 

4-54 Chapter 4: C Functions 



EXAMPLE 

kern return t 

port_t 

error; 

mY-Fort, backup_port, previous_port; 

error=port_allocate(task_self(),&my_port); 

if (error != KERN_SUCCESS) { 

mach_error("port_allocate failed", error); 
exit(l); 

error=port_allocate(task_self(),&backup_port); 

if (error != KERN~SUCCESS) { 

mach_error("port_allocate failed", error); 
exit (1); 

error=port_set_backup(task_self(), mY-Fort, backuP-Fort, 
&previous-Fort); 

if (error!=KERN_SUCCESS) 

mach_error("Call to port_set_backlog failed", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task was invalid, or port_name doesn't name a valid 
port. 

KERN_NOT _RECEIVER: task doesn't have receive rights for port_name. 

SUMMARY Destroy a port set 

SYNOPSIS 

#include <mach.h> 

ARGUMENTS 

task: The task that has receive rights for the port set to be destroyed. 

set_name: task's name .for the doomed port set. 

DESCRIPTION 

The function port_set _ deallocateO requests that the target task's port set be destroyed. 
If the port set isn't empty, any members are first removed. 



EXAMPLE 

kern return t error; 

error=port_set_deallocate(task_self() ,set_name); 

if (error != KERN_SUCCESS) { 

mach_error("port_set_deallocate failed", error); 
exit (1) ; 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task was invalid or set name doesn't name a valid 
port set. 

SEE ALSO 

port_set _ allocateO 

port set removeO 

SUMMARY Remove the named port from a port set 

SYNOPSIS 

#include <mach.h> 

kem_return_t port set remove(task_t task, port_name_t port name) - - -

ARGUMENTS 

task: The task that has receive rights for the port and port set. 

port_name: task's name for the receive rights to be removed. 

DESCRIPTION 

The function port_setJemoveO removes the named port from a port set. task must 
have receive rights for the port, and the port must be a member of a port set. 

EXAMPLE 

error=port_set_remove(task_self (), myyort); 

if (error != KERN_SUCCESS) { 

mach_error("port_set_remove failed", error); 
exit (1) ; 

4-56 Chapter 4: C Functions 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_NOT_RECEIVER: task doesn't have receive rights for the port. 

KERN_NOT_IN_SET: The port isn't a member of a set. 

KERN_INVALID_ARGUMENT: task was invalid or port_name doesn't name a valid 
port. 

SEE ALSO 

port_set _ addO 

SUMMARY 

SYNOPSIS 

Get the members of a port set 

#include <mach.h> 

kem_return_t port_set_status(task_t task, port_seCname_t set_name, 
port_name_array _t *members, unsigned int *members _count) 

ARGUMENTS 

task: The task whose port set is queried. 

set_name: task's name for the port set. 

members: Returns task's names for the port set's members. 

members_count: RetUrns the number of port names in members. 

DESCRIPTION 

The function port_set_statusO returns a list of the ports in a port set. members is an 
array that's automatically allocated when the reply message is received. You should 
use vm _ deallocateO on it when the data is no longer needed. 

port set statusO 4-57 



EXAMPLE 

error=port_set_status{task_self{), set_name, &members, 

&members_count); 

if (error != KERN_SUCCESS) { 
mach_error{"port_set_status failed", error); 
exit (1) ; 

/* ... */ 
error=vm_deallocate{task_self{), (vm address t)members, 

sizeof{members)*members_count); 

if (error != KERN_SUCCESS) 

mach_error{"Trouble freeing members", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task was invalid or set name doesn't name a valid 
port set. 

SEE ALSO 

port _statusO 

SUMMARY Examine a port's current status 

SYNOPSIS 

#include <mach.h> 

kern_return_t port_status(task_t task, port_name_t port_name, 
port_seCname_t *port_set_name, int *num_msgs, int *backlog, 
boolean_t *owner, boolean_t *receiver) 

ARGUMENTS 

task: The task that has receive rights for the port in question (for example, use 
task_self 0 to specify the caller's task). 

port_name: task's name for the port right. 

port_set _name: Returns task's name for the port set that the named port belongs to, or 
PORT_NULL if it isn't in a set. 

num_ msgs: Returns the number of messages queued on this port. If task isn't the port's 
receiver, the number of messages will be returned as negative. 

backlog: Returns the number of messages that can be queued to this port without 
causing the sender to block. 

4-58 Chapter 4: C Functions 



owner: Returns the same value as receiver, since ownership rights and receive rights 
aren't separable. 

receiver: Returns true if task has receive rights to port_name; otherwise, returns false. 

DESCRIPTION 

The function port statusO returns the current port status associated with port name. - -

EXAMPLE 

error=port status(task_self(), my_port, &port_set_name, &num_msgs, 

&backlog, &owner, &receiver); 

if (error!=KERN_SUCCESS) 
mach_error("Call to port_status failed", error); 

RETURN 

KERN_SUCCESS: The data has been retrieved. 

KERN_INVALID_ARGUMENT: task was invalid or port_name doesn't name a valid 
port. 

SEE ALSO 

port_set _ backlogO, port_set _statusO 

SUMMARY 

SYNOPSIS 

Get a task's rights for a specific name in its port name space 

#include <mach.h> 

ARGUMENTS 

task: The task whose port name space is queried. 

port_name: The name being queried. 

port_type: Returns a value that indicates what kind of rights the task holds for the port, 
or whether the name refers to a port set. port _type is one of the following: 
PORT_TYPE_SEND (send rights only), PORT_TYPE_RECEIVE_OWN (send 
and receive rights), PORT_TYPE_SET (the port is a port set). 

DESCRIPTION 

The function port_typeO returns information about task's rights for a specific name in 
its port name space. 

por!Jype() 4-59 



EXAMPLE 
error=port_type (task_self (), port, &type); 
if (error != KERN_SUCCESS) 

mach_error("Couldn't get type of port", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task was invalid or task didn't have any rights 
named port_name. 

SEE ALSO 

port _ namesO, port _ statusO, port_set _ statusO 

processor _ assignO, processor _ controlO, processor _ exitO, 
processor Jet _ assignmentO, processor _ startO 

SUMMARY 

SYNOPSIS 

Start up a processor 

#include <mach.h> 

kern_return_t processor _ assign(processoct processor, 
processocseCt new yrocessor _set, boolean_t wait) 

kern_return; . .t processor _ control(processor_t processor, processocinfo_t info, 
long *count) 

kern_return_t processor _ exit(processoct processor) 
kern_return_t processor Jet _ assignment(processor_t processor, 

processor_seCt *processor _set) 
kern_return_t processor _ start(processoct processor) 

DESCRIPTION 

processor_assignO changes the processor set to which processor is 
assigned. processor _ controlO returns information about processor. processor _ exitO 
shuts down processor. processor_get _ assignmentO returns the processor set to which 
processor is assigned. processor _startO Starts up processor. 

Note: . These functions are useful only on multiprocessor systems. 

4·60 Chapter4: C Functions 



processor infoO 

SUMMARY 

SYNOPSIS 

Get information about a processor 

#include <mach.h> 

kem_return_t processor Jnfo(processoct processor, int flavor, hoset * host, 
processocinfo_t processor info, unsigned int *processor info count) - - -

ARGUMENTS 

processor: The processor for which information is to be obtained. 

flavor: The type of information that is wanted. Currently only 
PROCESSOR_BASIC_INFO is implemented. 

host: Returns the non-privileged host port for the host on which the processor resides. 

processor _info: Returns information about the processor specified by processor. 

processor info count: Size of the info structure. Should be 
PROCESSOR_BASIC_INFO_COUNT for flavor PROCESSOR_BASIC_INFO. 

DESCRIPTION 

Returns the selected information array for a processor, as specified by flavor. 
processor _info is an array of integers that is supplied by the caller and filled with 
specified information. processor _info Jount is supplied as the maximum number of 
integers in processor info. On return, it contains the actual number of integers in 
processor info. 

Basic information is defined by PROCESSOR_BASIC_INFO. The size of this 
information is defined by PROCESSOR_BASIC_INFO_COUNT. The data structures 
used by PROCESSOR_BASIC_INFO are defined in the header file 
sys/processor_info.h. Possible values of the cpu_type and cpu_subtype fields are 
defined in the header file sys/machine.h. . 

typedef int *processor_info_t; /* variable length array of int */ 

/* one interpretation of info is */ 
structprocessor_basic_info { 

} ; 

cpu_type_t cpu_type; /* cpu type */ 
cpu_subtype_t cpu_subtype; /* cpu subtype */ 
boolean t 
int 
boolean t 

running; 
slot_num; 
is_master; 

/* is processor running? */ 
/* slot number */ 
/* is this the master processor */ 

processor _in/oO 4-61 



EXAMPLE 
kern_return_t 
host t 
unsigned int 
struct processor_basic_info 
processor_array_t 

error; 
host; 
list_size, info_count; 
info; 
list; 

/* Get the processor port. */ 
error=host-processors(host-priv_self(), &list,&list_size); 
if ((error!=KERN_SUCCESS) II (list_size < 1» { 

mach_error("Error calling host-processors (are you root?)", 
error) ; 

exit(l); 

/* Get information about the processor. */ 
info_count=PROCESSOR_BASIC_INFO_COUNT; 
error=processor_info(list[Ol, PROCESSOR_BASIC_INFO, &host, 

(processor_info_t)&info, &info_count); 
if (error != KERN_SUCCESS) 

mach_error ("Error calling processor_info", error); 

/* Now that we're done with the processor port, free it. */ 
Vffi_deallocate(task_self(), (vm_address_t) list, 

sizeof(list)*list_size); 
if (error!=KERN_SUCCESSt 

mach_error("Trouble freeing list", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: processor isn't a known processor. 

MIG_ARRAY_TOO_LARGE: .Retumed info array is too large for processor_info. 
processor _info is filled as much as possible. processor _info Jount is set to the 
number of elements that would be returned if there were enough room. 

KERN_FAILURE: flavor isn't recognized or processor _info_count is too small. 

SEE ALSO 

processor _ startO, processor _ exitO, processor...:. controlO, host yrocessorsO 

4-62 Chapter 4: C Functions 



processor set createO 

SUMMARY 

SYNOPSIS 

Create a new processor set 

#include <mach.h> 

DESCRIPTION 

This function creates a new processor set on host. 

Note: This function is useful only on multiprocessor systems. 

SUMMARY 

SYNOPSIS 

Get the port of the default processor set 

#include <mach.h> 

keITLreturn_t processor_set_default(hosCt host, processocseCt *default_set) 

ARGUMENTS 

host: The host whose default processor set is requested. 

default _set: Returns the name (non-privileged) port for the default processor set. 

DESCRIPTION 

The default processor set is used by all threads, tasks, and processors that aren't 
explicitly assigned to other sets. processor_set _ defaultO returns a port that can be 
used to obtain· information about this set (for example, how many threads are assigned 
to it). This port can't be used to perf()rm operations on that set (call 
hostyrocessor_set_privO after processor_seLdefaultO to get the privileged port). 

EXAMPLE 

error=processor_set_default(host_self(), &default_set); 

if (error!=KERN_SUCCESS) { 

rnach_error("Error calling processor_set_default", error); 

exit(l); 

processor set create() 4-63 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: host is not a host. 

SEE ALSO 

processor_setJnfoO, task_assignO, thread_assignO 

SUMMARY 

SYNOPSIS 

Delete a processor set 

#include <mach.h> 

DESCRIPTION 

This function destroys processor _set, reassigning all of its tasks, threads, and 
processors to the default processor set. 

Note: This function is useful only on multiprocessor systems. 

processor_set JoroO 

SUMMARY 

SYNOPSIS 

Get information about a processor set 

#include <mach.h> 

kem_return_t processor ~seL~l)fo(processocseet processor_set, intflavor; 
hoset *host, processor~seLinfo_J processor set info, . . --
unsigned int *processor _set .;...,info _count) 

ARGUMENTS 

processor _set: The processor set for which information is to be obtained. 

flavor: The type of information that is wanted. Should be 
PROCESSOR_SET_BASIC_INFO or PROCESSOR_SET_SCHED_INFO. 

host: Returns the non-privileged host port for the host on which the processor set 
resides. 

processor set info: Returns information about the processor set specified by 
processor_set. 

4 ... 64 Chapter 4: C Functions 



processor set info count: Size of the info structure. Should be - - -
PROCESSOR_SET_BASIC_INFO_COUNT for flavor 
PROCESSOR_SET_BASIC_INFO, and 
PROCESSOR_SET_SCHED_INFO_COUNT for flavor 
PROCESSOR_SET_SCHED_INFO. 

DESCRIPTION 

Returns the selected infonnation array for a processor set, as specified by flavor. 
processor _set _info is an array of integers that is supplied by the caller, and filled with 
specified infonnation. processor set info count is supplied as the maximum number - - -
of integers in processor_set _info. On return, it contains the actual number of integers 
in processor set info. . 

Basic infonnation is defined by PROCESSOR_SET_BASIC_INFO. The size of this 
infonnation is defined by PROCESSOR_SET_BA.SIC_INFO_COUNT. The 
load ....:.average and mach_factor fields are scaled by the constant LOAD_SCALE (that 
is, the integer value returned is the load average or Mach factor multiplied by 
LOAD_SCALE). 

The Mach factor, like the UNIX load average, is a measurement of how busy the system 
is. Unlike the load average, higher Mach factors mean that the system is less busy. The 
Mach factor tells you how much of a CPU you have available for running an 
application. For example, on a single-processor system with one job running, the Mach 
factor is 0.5; this means if another job starts running it will get half of the CPU. (Two 
jobs will be running, each getting half the CPU.) On a single-processor system, the 
Mach factor is between zero and one. On a multiprocessor system, the Mach factor can 
go over one. For example, a three-processor system with one job running has a Mach 
factor of 2.0, since two processors are available to new jobs. 

struct processor_set_basic_info i 

} ; 

int processor_count; /* number of processors */ 
int task_count; /* number of tasks */ 
int thread_count; 
int loa~average; 

int mach_factor; 

/* number of threads */ 
/* scaled load average */ 
/* scaled mach factor */ 

typedef struct processor_set basic_info 
*processor_set_basic_info_t; 

Scheduling infonnation is defined by PROCESSOR_SET _SCHED _INFO. The size of 
this infonnation is given by PROCESSOR_SET _SCHED _INFO_COUNT. 

struct. processor~set_sched_info { 
int policies; /* allowed policies */ 
irtt max_priority; /* max priority for new threads */ 

} ; 

typedef struct processor~set_sched_in.fo 
*processor_set_sched_info_t; 

processor_set _in/o() 4-65 



EXAMPLE 

kern_return_t error; 
host_t host; 
unsigned int info_count; 
struct processor_set_basic_info info; 
processor_set_t default_set; 

error=processor_set_default(host_self(), &default_set); 
if (error!=KERN_SUCCESS) { 

mach ..... error("Er;ror calling processor_set_default", error); 
exit(l); 

info_count=PROCESSOR SET BASIC INFO COUNT; 
error=processor_set_info(default_set, PROCESSOR_SET_BASIC_INFO, 

&host, (processor_set_info_t)&info, &info_count); 
if (error != KERN_SUCCESS) 

mach_error(IIError calling processor set info", error); 

printf("The UNIX load average is %f\n", 
(float)info.load_average/LOAD_SCALE); 

printf("The Mach factor is %f\n", (float)info.mach_factor/LOAD SCALE); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: processor _set is not a processor set, orflavor is not 
recognized. 

KERN_FAILURE: processor _set_info _count is less than what it should be. 

MIG_ARRAY_TOO_LARGE: Returned info array is too large for 
processor _set_info. 

SEE ALSO 

processor_set _ createO, processor_set _defaultO, processor _ assignO, 
task_assignO, thread_assignO 

SUMMARY Set the maximum priority permitted on a processor set 

SYNOPSIS 

#include <mach.h> 

kem_retum_t processor_set _max yriority(processor.;,.sect processor _set, 
int max yriority, boolean_t change_threads) 

4-66 Chapter 4: C Functions 



DESCRIPTION 

This function affects only newly-created or newly-assigned threads unless you specify 
change _threads as true. 

Note: This function is useful only on multiprocessor systems. 

processor_set Jlolicy _ enableO, processor_set Jlolicy _ disableO 

SUMMARY 

SYNOPSIS 

Enable or disable a scheduling policy on a processor set 

#include <mach.h> 

kem_return_t processor _ setJ>0licy _ enable(processocseCt processor_set, 
intpolicy) 

ke~return_t processor_set "'policy _ disable(processocset_t processor _set, 
int policy, boolean_t change threads) 

ARGUMENTS 

processor ~set: The processor set whose allowed policies are to be changed. This must 
be the privileged processor set port, which is returned by . 
host "'processor _ set_privO. 

policy: The policy to enable or disable; Currently, the only valid policies are 
POLICY ~TIMESHARE, POLICY_INTERACTIVE, and POLICY _FIXEDPRI. 
You can't disable timesharing. 

change _threads: Specify true if you.want to reset to timesharing the policies of any 
threads with the newly-disallowed policy. Otherwise, specify false. 

DESCRIPTION 

Processor sets. may restrict the scheduling policies to be used for threads assigned to 
them. These two calls provide the mechanism fordesigmiting permitted and forbidden 
policies. The current set of permitted poliCies can be obtained, from 
processor _setJnfoO. Timesharing can't be forbidden by any processor set. This is a 
compromise to reduce the complexity of the assign operation; any thread whose policy 
is forbidden by the target processor set has its policy reset to timesharing .. If the 
chaf1:geJhreads.argumentto processor_set...p0licy_djsableO is true,.threads currently 
assigned to th\.sprocessor set~d.using the ne,wly disabled policy will have their policy 
reset to timesharing .. 

Warning: Don't use POLICY_FIXEDPRI unless you're familiar with the consequences of 
fixed-priorityscheduling~ Using fixed-priority~hed41ing ina process can keep other 
processes from getting any CPU time. If processes that are essential to the functioning 
of the. sYStem don't.get CPU time, you might have tor,?bootyoursys~em to make it 
work normally. . ,. . . 



EXAMPLE 

kern return terror; 

processor set t default set, default set_priv; 

error=processor_set_default(host_self(), &default set); 

if (error!=KERN_SUCCESS) { 

mach error ("Error calling processor_set _ defaul t () ", error); 

exit(l); 

error=host_processor_set_priv(host_priv_self(), default set, 

&default set_priv); 
if (error != KERN_SUCCESS) ( 

mach_error("Call to host_processor_set_priv() failed", error); 

exit(l); 

error=processor set_policy_enable(default set_priv, POLICY_FIXEDPRI); 
if (error != KERN_SUCCESS) 

mach_error("Error calling processor_set_policy_enable", error); 

RETURN 

KERN_SUCCESS: Operation completed successfully. 

KERN_INVALID_ARGUMENT: processor _set isn't the privileged port of a 
processor set, policy isn't a valid policy, or an attempt was made to disable 
timesharing. 

SEE ALSO 

thread _policyO, thread _switchO 

processor_set _ tasksO 

SUMMARY Get kernel ports for tasks assigned to a processor set 

SYNOPSIS 

#include <mach.h> 

kern_return_t processor _set_ tasks(processocset_t processor_set, 
task_array_t *task_list, unsigned int *task_count) 

ARGUMENTS 

processor _set: The processor set to be affected. This must be the privileged processor 
set port, which is returned by host_processor _set _privO. 

task_list: Returnsthe set of tasks currently assigned to processor _set; no particular 
ordering is guaranteed. 

4-68 Chapter 4: C Functions 



task count: Returns the number of tasks in task list. 

DESCRIPTION 

processor_set_tasksO gets send rights to the kernel port for each task currently 
assigned to processor _set. task _list is an array that is created as a result of this call. 
You should call vrn_deallocateO on this array when you no longer need the data. 

EXAMPLE 

task_array_t 

unsigned int task_count; 

processor_set t default_set, default set_priv; 
kern return t error; 

error=processor set_default(host self(), &default_set); 

if (error!=KERN_SUCCESS) { 

mach_error("Error calling processor_set_default()", error); 
exit (1) ; 

error=host_processor_set_priv(host_priv_self(), default_set, 

&default_set_priv); 
if (error != KERN_SUCCESS) 

mach_error("Call to host_processor_set_priv() failed", error); 

exit (1); 

error=processor_set_tasks(default_set_priv, &task_list, &task_count); 

if (error!= KERN_SUCCESS) { 

mach_error("Call to processor_set_tasks() failed", error); 

exit (1) ; 

/* . . . * / 
error=vm deallocate (task_self (), (vm_address-,-t) task_list, 

sizeof(task_list)*task_count); 

if (error != KERN_SUCCESS) 

mach_error("Trouble freeing task list", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: processor~set isn't a privileged processor set. 

SEE ALSO 

task _ assignO, thread _ assignO, processor_set _threadsO 

processor_set _tasks() 4-69 



SUMMARY Get kernel ports for threads assigned to a processor set 

SYNOPSIS 

#include <rnach.h> 

kern_return_t processor_set _ threads(processocseCt processor _set, 
thread_array _t *thread _list, unsigned int *thread _count) 

ARGUMENTS 

processor _set: The processor set to be affected. This must be the privileged processor 
set port, which is returned by hostyrocessor_setyrivO. 

thread _list: Returns the set of threads currently assigned to processor _set; no 
particular ordering is guaranteed. 

thread count: Returns the number of threads in thread list. 

DESCRIPTION 

processor_set _ threadsO gets send rights to the kernel port for each thread currently 
assigned to processor _set. thread _list is an array that is created as a result of this call. 
You should call vrn _ deallocateO on thread _list when you no longer need the data. 

EXAMPLE 

thread_array_t thread_list; 

unsigned int thread_count; 

processor_set_t default_set, default_set-priv; 

kern return t error; 

error=processor_set default (host_self(), &default_set); 

if (error!=KERN_SUCCESS) { 

mach_error("Error calling processor_set_default()", error); 
exit(l); 

error=host-processor_set_priv(host-priv_self(), default_set, 

&default_set_priv); 

if (error != KERN_SUCCESS) { 
mach_error ("Call to host_processor_set_priv () failed", error); 

exit(l); 

error=processor_set_threads(default_set-priv, &thread_list, 

&thread_count); 

if (error != KERN_SUCCESS) { 

mach_error("Call to processor_set_threads() failed", error); 
exit(l); 

4-70 Chapter 4: C Functions 



/* ... */ 
error=vrn_deallocate (task_self (), (vrn_address_t) thread_list, 

sizeof(thread_list)*thread_count); 
if (error != KERN_SUCCESS) 

rnach_error("Trouble freeing thread_list", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: processor _set isn't a privileged processor set. 

SEE ALSO 

task_ assignO, thread _ assign(), processor _ set_ tasks() 

processor startO -7 See processor assignO - -

task _ assignO, task_assign ..... defaultO 

SUMMARY 

SYNOPSIS 

Assign a task to a processor set 

#include <mach.h> 

kem:...return_t task_assign(task_t task, processocset.J new yrocessor _set, 
boolean_t assign :...threads) .. 

kern.::.,return_t task_assign _default(task_t task, boolean_t assign_threads) 

DESCRIPTION 

task;,...assignO assigns task to new yrocessor _set;task_assign_defauItOassigns task 
to the default processor set. 

Note: These functions are useful only on mUltiprocessor systems. 

SUMMARY 

SYNOPSIS 

Get the task port for a UNIX process on.the same host 

#include <mach.h> 



ARGUMENTS 

task: A task that is used to check permission (usually task_self()). 

pid: The process ID of the desired process. 

result _task: Returns send rights to the task port of the process specified by pid. 

DESCRIPTION 

Returns the task port for another process, named by its process ID, on the same host as 
task. This call succeeds only if the caller is the superuser or task has the same user ID 
as the process specified by pid. If the call fails, result _task is set to TASK_NULL. 

EXAMPLE 

pid=fork(); 

if (pid==O) /* We're in the child. */ { 

/* do childish things */ 

else /* We're in the parent */ 
result=task_by_unix_pid(task_self(), pid, &child_task); 

if (result != KERN_SUCCESS) 
mach_error (ntask_by_unix_pidn , result); 

/* . . . * / 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_FAILURE: target _task has a different user ID from pid's process and the caller 
isn't the superuser, or pid didn't refer to a valid process, or target_task wasn't a 
valid task. 

SEE ALSO 

unixJlidO 

SUMMARY 

SYNOPSIS 

Create a task 

#include <mach.h> 

kem_return_t task _ create( task_t parent_task, boolean_t inherit_memory, 
task_t *child _task) 

4-72 Chapter 4: C Functions 



ARGUMENTS 

parent_task: The task from which the child's capabilities are drawn. 

inherit_memory: If set, the child task's address space is built from the parent task 
according to its memory inheritance values; otherwise, the child task is given an 
empty address space. 

child task: Returns the new task. 

DESCRIPTION 

Important: Normally, you should use the UNIX forkO system call instead of 
task _ createO. 

The function task _ createO creates a new task from parent _task; the resulting task 
(child_task) acquires shared or copied parts of the parent's address space (see 
vm _inherit()). The child task initially has no threads; you put threads in it using 
thread _ createO. 

The child task gets the four special ports initialized for it at task creation. The kernel 
port (task port) is created and send rights for it are given to the child and returned to the 
caller in child _task. The notify portis initialized to null. The child inherits its bootstrap 
and exception ports from the parent task. The new task can get send rights to these ports 
with the call task~et_specialyortO. ' 

EXAMPLE 

error=task_create (task_self Of TRUE, &child_task); 
if(error!=KERN~SUCCESS) 

mach_error ("Call to task_create 0 failed", error); 

RETURN 

KERN_SUCCESS: A new task has been created. 

KERN_INVALID_ARGUMENT: parent _task is nota valid task port. 

KERN_RESOURCE_SHORTAGE: Some critical kernel resource is unavailable. 

SEE ALSO 

task_terminateO, task_suwendO, taskJesumeO, task_get_specialyortO, 
task.-set,;.. special:.Port(),ta~k.;,;self(), task _ threadsO, thread ...,;createO, . 
thread";;,resumeO,vIn,,.;ihheritO 



task get assignmentO 

SUMMARY Get the name of the processor set that a task is assigned to 

SYNOPSIS 

#include <mach.h> 

Note: This function is useful only on multiprocessor systems. 

task get special portO, task set special portO, task selfO, task notifyO - - - -- - - -

SUMMARY Access a task's special ports 

SYNOPSIS 

#include <mach.h> 

kern_return_t task_get_special_port(task_t task, int whichyort, 
porCt * special yort) 

kern_retum_t task_set_specialyort(task_t task, int whichyort, porct specialyort) 
task_t task _ self 0 
porct task _ notifyO 

ARGUMENTS 

task: The task for which to get the port. 

which yort: The port that's requested. This is one of: 

TASK_NOTIFY_PORT 
TASK_BOOTSTRAP_PORT 
TASK_EXCEPTION_PORT 

specialyort: The value of the port that's being requested or set. 

DESCRIPTION 

The function task _get_special _portO returns send rights to one of a set of special ports 
for the task specified by task. In the case of the task's own notify port, the task also gets 
receive rights. 

The function task_set_special_portO sets one of a set of special ports for the task 
specified by task. 

4-74 Chapter 4: C Functions 



The function task _ self 0 returns the port to which kernel calls for the currently 
executing thread should be directed. Currently task yelfO returns the task kernel port, 
which is a port for which the kernel has receive rights and which it uses to identify a 
task. In the future it may be possible for one task to interpose a port as another task's 
kernel port. At that time task _ self 0 will still return the port to which the executing 
thread should direct kernel calls, but it may no longer be a port for which the kernel has 
receive rights. 

If a controller task has send access to the kernel port of a subject task, then the 
controller task can perform kernel operations for the subject task. Normally only the 
task itself and the task that created it will have access to the task kernel port, but any 
task may pass rights to its kernel port to any other task. 

The function task _ notifyO returns receive and send rights to the notify port associated 
with the task to which the executing thread belongs. The notify port is a port on which 
the task should receive notification of such kernel events as the destruction of a port to 
which it has send rights. 

The other special ports associated with a task are the bootstrap port and the exception 
port. The bootstrap port is a port to which a thread may send a message requesting 
other system service ports. This port isn't used by the kernel. The task's exception port 
is the port to which messages are sent by the kernel, when an exception occurs and the 
thread causing the exception has no exception port of its own. 

Important: If you set your task's bootstrap port, you should also setthe global variable 
bootstrap yort to special yort. bootstrap yort is a task-wide variable that's used by 
mach _init and other processes to determine your task's bootstrap port. Since you can't 
change the bootstrap yort variable's value in another task, you should use care when 
changing the bootstrap port of another task. 

MACRO EQUIVALENTS 

The following macros are defined in the header file sys/task _specialyorts.h: 

task _get_notify yort(task, port) 
task_set _notify yort(task, port) 

task_get_ exception yort(task, port) 
task_set _exception yort(task, port) 

task_get _bootstrap yort(task, port) 
task_set _bootstrap _port(task, port) 



EXAMPLE 

/* Save the old exception port for this task. */ 

r = task_get_exception_port (task_self (), & (ports .old_excyort)); 

if (r != KERN_SUCCESS) { 
mach_error ("task_get_exceptionyort", r); 

exit (1) ; 

/* Create a new exception port for this task. */ 
r = port_allocate(task_self(), &(ports.excyort)); 

if (r != KERN_SUCCESS) { 

mach_error("port_allocate 0", r); 

exit (1) ; 

r = task_set_exception_port(task_self(), (ports.exc_port)); 

if (r != KERN_SUCCESS) { 

mach_error ("task_set_exception_port", r); 

exit (1) ; 

RETURN 

KERN_SUCCESS: The port was returned or set. 

KERN_INVALID_ARGUMENT: Either task is not a task or whichyort is an invalid 
port selector. 

SEE ALSO 

thread_special yortsO, task _ createO 

taskJnfoO 

SUMMARY Get infonnation about a task 

SYNOPSIS 

#include <mach.h> 

kem_return_t task_info(task_t target_task, intflavor, task_info_t task_info, 
unsigned int * task_info _count) 

ARGUMENTS 

target _task: The task to be affected (for example, use task _ self 0 to specify the caller's 
task). 

flavor: The type of statistics that are wanted. Currently only TASK_BASIC_INFO is 
implemented. 

task_info: Returns statistics about target_task. 

4-76 Chapter 4: C Functions 



task info count: Size of the info structure. Currently this must be 
TASK_BASIC_INFO_COUNT. 

DESCRIPTION 

The function task _infoO returns the information specified by jlavor about a 
task. task_info is an array of integers that's supplied by the caller and returned filled 
with information. task_info _count is supplied as the maximum number of integers in 
task _info. On return, it contains the actual number of integers in task_info. 

Currently there's only one flavor of information, defined by TASK_BASIC_INFO. Its 
size is defined by TASK_BASIC_INFO_COUNT. The definition of the information 
structure returned by TASK_BASIC_INFO is: 

struct task_basic_info { 
int suspend_count; /* suspend count for task */ 
int base_priority; /* base scheduling priority */ 
vm size t virtual_size; /* number of virtual pages */ 
vm size t resident_size; /* number of resident pages */ 
time value t user_time; /* total user run time for 

terminated threads */ 
time value t system_time; /* total system run time for 

terminated threads */ 
} ; 

typedef struct task basic info *task_basic_info_t; 

EXAMPLE 

kern return t error; 
info; struct task basic info 

unsigned int info count=TASK_BASIC INFO_COUNT; 

error=task_info(task_self (), TASK_BASIC_INFO, 
(task_info_t)&info, &info_count); 

if (error!=KERN_SUCCESS) 
mach_error ("Error calling task_info ()", error); 

else 
printf("Base priority is %d\n", info.base_priority); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: target_task isn't a task orjlavor isn't recognized. 

MIG_ARRAY_TOO_LARGE: The returned info array is too large for 
task _info. task _info is filled as much as possible, and task_info Jount is set to the 
number of elements that would be returned if there were enough room. 

SEE ALSO 

task _ threadsO, thread _infoO, thread _ stateO 

task_infoO 4-77 



task notifyO -7 See task get special portO - - - -

task priorityO 

SUMMARY Set the scheduling priority for a task 

SYNOPSIS 

#include <mach.h> 

kem_retum_t task J)riority( task_t task, int priority, boolean_t change_threads) 

ARGUMENTS 

task: Task to set priority for, 

priority: New priority. , 
change _threads: Change priority of existing threads if true. 

DESCRIPTION 

The priority of a task is used only for creation of new threads; a new thread's priority 
is set to its task's priority. taskJ)riorityO changes this task priority. It also sets the 
priorities of all threads in the task to this new priority if change _threads is true. 
Existing threads are not affected otherwise. If this priority change violates the 
maximum priority of some threads, as many threads as possible will be changed and an 
error code will be returned. 

Priorities range from 0 to 31, where higher numbers denote higher priorities. The 
maximum user priority is defined in the header file kern/sched.h as MAXPRC USER. 
You can retrieve the current scheduling priority using threadJnfoO. 

EXAMPLE 

kern return t 

struct task basic info 

unsigned int 

error; 

info; 
info count=TASK_BASIC_INFO_COUNT; 

error=task_info(task_self(), TASK_BASIC_INFO, 

(task_info_t)&info, &info_count); 

if (error!=KERN_SUCCESS) 
mach~error ("Error calling task_info () ", error); 

else { 
/* Set this task's base priority to be much lower than normal */ 
error = task_priority(task_self(), info.base_priority - 4, TRUE); 

if (error != KERN_SUCCESS) 
mach_error ("Call to taskyriority () failed", error); 

4-78 Chapter4: C Functions 



RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: task is not a task or priority is not a valid priority. 

KERN_FAILURE: change _threads was true and the attempt to change the priority of 
at least one existing thread failed because the new priority would have exceeded 
that thread's maximum priority. 

SEE ALSO 

thread yriorityO, processor _ set_max _priorityO, thread _ switchO 

SUMMARY 

SYNOPSIS 

Resume a task 

#include <mach.h> 

kem_return_t task resume(task_t target task) - -

ARGUMENTS 

target _task: The task to be resumed. 

DESCRIPTION 

The function task resumeO decrements the task's suspend count. If the suspend count 
becomes 0, all threads with 0 suspend counts in the task are resumed. If the suspend 
count is already 0, it's not decremented (it never becomes negative). 

RETURN 

KERN_SUCCESS: The task has been resumed. 

KERN_FAILURE: The suspend count is already O. 

KERN_INVALID~GUMENT: target_task isn't a task. 

SEE ALSO 

task_createO, task_terminateO, task_suspendO, task_infoO, thread_suspendO, 
thread JesumeO, thread JnfoO 

task_self 0 ~ See taskJet_specialyortO 

task_set _ special_portO ~ See task_get _special_portO 

taskJesume() 4·79 



task suspendO 

SUMMARY 

SYNOPSIS 

Suspend a task 

#include <mach.h> 

ARGUMENTS 

target_task: The task to be suspended (for example, use task_self 0 to specify the 
caller's task). 

DESCRIPTION 

The function task_suspendO increments the task's suspend count and stops all threads 
in the task. As long as the suspend count is positive, newly created threads will not run. 
This call doesn't return until all threads are suspended. 

If the count becomes greater than 1, it will take more than one task JesumeO call to 
restart the task. 

RETURN 

KERN_SUCCESS: The task has been suspended. 

KERN_INVALID_ARGUMENT: target _task isn't a task. 

SEE ALSO 

task _ createO, task _ terminateO, task JesumeO, task _infoO, thread _suspendO 

task terminateO - ' 

SUMMARY 

SYNOPSIS 

Terminate a task 

#include <mach.h> 

kern_return_t task terminate(task_t target task) - -

ARGUMENTS 

target_task: The task to be destroyed (for example, use task_self 0 to specify the 
caller's task). 

4-80 Chapter 4: C Functions 



DESCRIPTION 

The function task _ terminateO destroys the task specified by target _task and all its 
threads. All resources that are used only by this task are freed. Any port to which this 
task has receive rights is destroyed. 

RETURN 

KERN_SUCCESS: The task has been destroyed. 

KERN_INVALID_ARGUMENT: target_task isn't a task. 

SEE ALSO 

task_createO, task_suspendO, taskJesumeO, thread_terminateO, 
thread _ suspendO 

task _ threadsO 

SUMMARY 

SYNOPSIS 

Get a task's threads 

#include <mach.h> 

kernJeturn_t task _ threads(task_t target _task, thread_array _t *thread _list, 
unsigned int *thread Jount) 

ARGUMENTS 

target_task: The task to be affected (for example, use task _self 0 to specify the caller's 
task). 

thread _list: Returns the set of threads contained within target _task; no particular 
ordering is guaranteed. 

thread count: Returns the number of threads in thread list. 

DESCRIPTION 

The function task _ threadsO gets send rights to the kernel port for each thread 
contained in target_task. 

The array thread _list is created as a result of this call. You should call vm _ deallocateO 
on this array when the data is no longer needed. 

task _threads() 4-81 



EXAMPLE 

r = task_threads(task_self(), &thread_list, &thread~count); 

if (r != KERN_SUCCESS) 

mach_error("Error calling task_threads", r); 
else { 

if (thread_count == 1) 
printf ("There's 1 thread in this task\n"); 

else 
. printf ("There are %d threads in this task\n", thread_count); 

/* Deallocate the list of threads. */ 

r = vm_deallocate(task_self(), (vrn_address t)thread list, 

sizeof(thread_list)*thread_count); 

if (r != KERN_SUCCESS) 

mach_error("Trouble freeing thread--,list", r); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: target_task isn't a task .. 

SEE ALSO 

thread _ createO, thread _ terminateO, thread _ suspendO 

thread _ abortO 

SUMMARY Interrupt a thread 

SYNOPSIS 

#include <mach.h> 

kern_return_t thread' abort(thread_t target thread) - . -

ARGUMENTS 

target thread: The thread to be interrupted. 

DESCRIPTION 

The function thread_abortO aborts thekeTIlel functions msg_sendO, msgJeceiveO, 
and msgJPcO and page faults, making the call return a code indicating that it was 
interrupted. The call is interrupted whether or not the thread (or task containing it) is 
currently suspended. If it's suspended, the thread receives the interrupt when it 
resumes. 

4-82 Chapter4: C Functions 



A thread will retry an aborted page fault if its state isn't modified before it resumes. The 
function msg_sendO returns SEND_INTERRUPTED; msgJeceiveO returns 
RCV _INTERRUPTED; msgJPcO returns either SEND_INTERRUPTED or 
RCV _INTERRUPTED, depending on which half of the RPC was interrupted. 

This function lets one thread stop another thread cleanly, thereby allowing the future 
execution of the target thread to be controlled in a predictable way. thread _ suspendO 
keeps the target thread from executing any further instructions at the user level, 
including the return from a system call. thread Jet _ stateO and thread_set _ stateO let 
you examine or modify the user state of a target thread. However, if a suspended thread 
was executing within a system call, it also has associated with it a kernel state. This 
kernel state can't be modified by thread_set_stateO;therefore, when the thread is 
resumed the system call may return, changing the user state and possibly user memory. 

thread_abortO aborts the kernel call from the target thread's point of view by resetting 
the kernel state so that the thread will resume execution just after the system call. The 
system call will return one of the interrupted codes described above. The system call 
will either be entirely completed or entirely aborted, depending on the precise moment 
at which the abort was received. Thus if the .thread's user state has been changed by 
thread_set_stateO, it won't be modified by any unexpected system call sid~ effects. 

For example, to simulate a UNIX signal, the following sequence of calls may be used: 

1. thread_suspendO: Stops the thread. 

2. thread_abortO: Interrupts any system call in progress, setting the return value to 
"interrupted". Since the thread is stopped, it won't. return to user code. . 

3. thread_set_stateO: Alters the thread's state to simulate a procedure call to the 
signal handler. 

4. thread JesumeO: Resumes execution afthe sigrial handler. If the thread's stack 
has been correctly set up, the thread can return to the interrupted system call. 

Calling thread abortO ona thread that's not suspended is risky, since it's difficult to - . 
know exactly what system trap, if any, the thread Inight be executing and whether an 
interrupt return would cause the thread to do something useful. 

RETURN 

KERN_SUCCESS: The thread received an interrupt. 

KERN_INVALID_ARGUMENT: tqrgetjhread isn't athread. 

SEE ALSO 

thread JnfoO, thread _ stateO, thread_ terminate(), thread _ slIspendO 

thread_ abort() 4-83 



thread _ assignO, thread_assign _ defaultO 

SUMMARY 

SYNOPSIS 

Assign a thread to a processor set 

#include <mach.h> 

kern_return_t thread_assign(thread_t thread, processocseCt new "'processor_set) 
kern_return_t thread_assign _ default(thread_t thread) 

DESCRIPTION 

thread _ assignO assigns thread to new "'processor _set; thread_assign _ defaultO 
assigns thread to the default processor set. 

Note: These functions are useful only on mUltiprocessor systems. 

thread _ createO 

SUMMARY 

SYNOPSIS 

Create a thread 

#include <mach.h> 

ARGUMENTS 

parent task: The task that's to contain the new thread. 

child thread: Returns the new thread. 

DESCRIPTION 

Important: Don't use this function unless you're writing a loadable kernel server or 
implementing a new thread package, such as the C thread functions. For normal, 
user-level programming, use cthread_forkO instead. You can then use 
cthread _ threadO if you need to get the Mach thread that corresponds to the new C 
thread. 

The function thread _ createO creates a new thread within parent _task. The new thread 
has no processor state, and has a suspend count of 1. To get a new thread to run, first 
call thread_createO to get the new thread's identifier, child_thread. Then call 
thread_set_stateO to set a processor state. Finally, call threadJesumeO to schedule 
the thread to execute. 

4-84 Chapter 4: C Functions 



When the thread is created, send rights to its thread kernel port are given to it and 
returned to the caller in child_thread. The new thread's exception port is set to 
PORT_NULL. 

RETURN 

KERN_SUCCESS: A new thread has been created. 

KERN_INVALID_ARGUMENT: parent_task isn't a valid task. 

KERN_RESOURCE_SHORTAGE: Some critical kernel resource isn't available. 

SEE ALSO 

task_createO, task_threadsO, thread_terminateO. thread_suspendO, 
thread JesumeO, thread _ specialJlortsO, thread _set_stateO 

thread ~et_assignmentO 

SUMMARY 

SYNOPSIS 

Get the name of the processor set to which a thread is assigned 

#include <mach.h> 

kern_retum_t thread_get_assignment(thread_t thre(jd! processocseCt 
*processorset) . . . - . 

Nofe: thlsfunction is useful 0Illyin multiprocessor systems. 

thread ~et.specialJ1ortO, thread_set _ special_port{), thread _self 0, 
thread replyO - . 

Access a thread's special ports SUMMARY 

SYNOPSIS 

#include.<mach.h> 

kernJetum_t thread.-iet _ special_port(thr~ad_t thread, int which yort, 
port_t * special yort) . '. . . '.' ..... .. . 

kern_retutn~..t thread_set_special_p()rt(thread~t thread, int whichyort, 
port_t specialyort) 

thread_t thread_self 0 
port .. ..! thread Jeply() . 

thread:...8et .:..assignment() 4-85 



ARGUMENTS 

thread: The thread for which to get the port. 

whichyort: The port that's requested. This is one of: 

THREAD_REPLY _PORT 
THREAD_EXCEPTION_PORT 

special yort: The value of the port that's being requested or set. 

DESCRIPTION 

The function thread_get _special JortO returns send rights to one of a set of special 
ports for the thread specified by thread. In the case of getting the thread's own reply 
port, receive rights are also given to the thread. 

The function thread_set _special JortO sets one of a set of special ports for the thread 
specified by thread. 

The function thread _self 0 returns the portto which kernel calls for the currently 
executing thread should be directed. Currently thread _self 0 returns the thread kernel 
port, which is a port for which the kernel has receive rights and which it uses to identify 
a thread. In the future it may be possible for one thread to interpose a port as another 
thread's kernel port. At that time thread_self 0 will still return the port to which the 
executing thread should direct kernel calls, but it may no longer be a port for which the 
kernel has receive rights. 

If a controller thread has send access to the kernel port of a subject thread, the controller 
thread can perform kernel operations for the subject thread. Normally only the thread 
itself and its parent task will have access to the thread kernel port, but any thread may 
pass rights to its kernel port to any other thread. 

The function thread JeplyO returns receive and send rights to the reply port of the 
calling thread. The reply port is a port to which the thread has receive rights. It's used 
to receive any initialization messages and as a reply port for early remote procedure 
~b. r 

A thread also has access to its task's special ports. 

MACRO EQUIVALENTS 

The following macros are defined in the header file sys/thread_speciaIJorts.h: 

thread_get Jeply _port(thread, port) 
thread_set Jeply Jort(thread, port) 

thread Jet_exception Jort(thread, port) 
thread_set _exception Jort(thread, port) 

4-86 Chapter 4: C Functions 



RETURN 

KERN_SUCCESS: The port was returned or set. 

KERN_INVALID _ARGUMENT: thread isn't a thread or which yort is an invalid port 
selector. 

SEE ALSO 

task_get _special_portO, task_set _special_portO, task _ self 0, thread _ createO 

thread_get _ stateO, thread_set _stateO 

SUMMARY 

SYNOPSIS 

Access a thread's state 

#include <mach.h> 

kern_return_t thread get state(thread~t target thread, intflavor, - -, -
thread_state_data_t old _state, unsigned int *old _state_count) 

kern_return_t thread set state(thread_t target thread, intflavor, - - -
thread_state_data_t new state, unsigned int new state count) 

- - -

ARGUMENTS 

target _thread: Thread to get or set the state for. 

flavor: The type of state that's to be manipulated. This may be anyone of the 
following: 

NeXT _THREAD_STATE_REGS 
NeXT_THREAD_STATE_68882 
NeXT_THREAD_STATE_USER_REG 

old _state: Returns an array of state information. 

new _state: An array of state information. 

old _state _count: The size of the state information array. This may be anyone of the 
following: 

NeXT_THREAD_STATE_REGS_COUNT 
NeXT_THREAD_STATE_68882_COUNT 
NeXT_THREAD_STATE_USER_REG~COUNT 

new state count: Same as old state count. 
- - - -

DESCRIPTION 

The function thread_get _ stateO returns the state component (that is, the machine 
registers) of target _thread as specified by flavor. The old _state is an array of integers 
that's provided by the caller and returned filled with the specified information. You 
should set old_state _count to the maximum number of integers in old _state. On return, 
old_state _count is equal to the actual number of integers in old_state. 



The function thread_set _ stateO sets the state component of target _thread as specified 
by flavor. The new state is an array of integers that the caller fills. You should set - . 

new _state_count to the number of elements in new _state. The entire set of registers is 
reset. 

target thread must not be thread self 0 for either of these calls. - -

The state structures are defined in the header file machine/thread status.h. 

RETURN 

KERN_SUCCESS: The state has been set or returned. 

MIG_ARRAY_TOO_LARGE: The returned state is too large for the 
new _state. new _state is filled in as much as possible and new_state Jount is set to 
the number of elements that would be returned if there were enough room. 

KERN_INVALID_ARGUMENT: Either target_thread isn't a thread, target _thread is 
thread _self 0 , or flavor is unrecognized for this machine. 

SEE ALSO 

task JnfoO, thread _ infoO 

thread JnfoO 

SUMMARY 

SYNOPSIS 

Get information about a thread 

#include <mach.h> 

kern_return_t thread _ info( thread_t target_thread, int flavor, 
thread_info_t thread info, unsigned int *thread info count) - - -

ARGUMENTS 

target _thread: The thread to be affected. 

flavor: The type of statistics wanted. This can be THREAD_BASIC_INFO or 
THREAD_SCHED_INFO. 

thread _info: Returns statistics about target_thread. 

thread info count: Size of the info structure. This can be 
THREAD_BASIC_INFO_COVNT or THREAD_SCHED_INFO_COVNT. 

4-88 Chapter 4: C Functions 



DESCRIPTION 

The function thread JnfoO returns the selected infonnation array for a thread, as 
specified by flavor. thread _info is an array of integers that's supplied by the caller and 
returned filled with specified infonnation. thread_info _count is supplied as the 
maximum number of integers in thread_info. On return,it contains the actual number 
of integers in thread )nfo. 

The size of the information returned by THREAD_BASIC_INFO is defined by 
THREAD_BASIC_INFO_COUNT. The definition of the infonnation structure 
returned by THREAD_BASIC_INFO is: 

struct thread_basic_info { 
time value t user time; 
time value t system_time; 

/* user run time */ 
/* system run time */ 

} ; 

int 
int 
int 
int 
int 
int 
long 

cpu_usage; /* scaled cpu usage percentage */ 
baseyriority; /* base scheduling priority */ 
curyriority; /* current scheduling priority */ 
run_state; /* run state */ 
flags; /* various flags */ 
suspend_count; /* suspend count for thread */ 
sleep_time; /* number of seconds that thread 

has been sleeping */ 

typedef struct thread_basic_info *thread_basic_infb_t; 

The run_state field has one of the following values: 

TH_STATE_RUNNING: The thread is runningnonnally. 

TH_STATE_STOPPED: The thread is suspended. This happens when the thread 
or task suspend count is greater than iero. 

TH_STATE_ WAITING: The thread is sleeping nonnally. 

TH_STATE_UNINTERRUPTlBLE: The thread is in an uninterruptiblesleep. 
This should. happen only for very short times .during some system calls. 

TH __ STATE_HALTED: The thread is halted ala c1eanpoint. This state happens 
only after a call to thread .... abortO; 

Possible values of the flags field are: 

TH_FLAGS_SWAPPED: The thread is swapped out.. This happens when the 
thread hasn't run in a long time, and the kerneLstack for the thread has been 
swapped out. 

TH_FLAGSJDLE: The thread is the idle thread for the CPU~This means that the 
CPU runs this thread vvheneverit has nothing else to do. 

thread ~info() 4-89 



The sleep_time field is useful only when run_state is TH_STATE_STOPPED. 
(Currently sleep_time is always set to zero, no matter how long the thread has been 
sleeping.) 

The size of the information returned by THREAD_SCHED_INFO is defined by 
THREAD_SCHED_INFO_COUNT. The definition of the information structure 
returned by THREAD_SCHED_INFO is: 

struct thread sched info 
int policy; 1* scheduling policy *1 
int data; 1* associated data *1 
int base _priority; 1* base priority *1 
int max _priority; 1* max priority *1 
int cur _priority; 1* current priority *1 
boolean t depressed; 1* depressed ? *1 
int depress_priority; 1* priority depressed from 

} ; 

typedef struct thread sched info *thread sched info _t; 

The policy field has one of the following values: POLICY _FIXEDPRI, 
POLICY_TIMESHARE, or POLICY_INTERACTIVE. If policy is 

*1 

POLICY _FIXEDPRI, then data is the quantum (in milliseconds). Otherwise, data is 
meaningless. 

EXAMPLE 

Example of using THREAD_BASIC_INFO: 

kern return t error; 
struct thread basic info info; 
unsigned int info count=THREAD_BASIC_INFO_COUNT; 

error=thread info (thread_self (), THREAD BASIC INFO, 
(thread_info_t)&info, &info_count); 

if (error!=KERN_SUCCESS) 
mach_error("Error calling thread_info()", error); 

else { 

4-90 Chapter 4: C Functions 

printf("User time is %d seconds, %d microseconds\n", 
info.user_time.seconds, info.user_time.microseconds); 

printf("System time is %d seconds, %d microseconds\n", 
info. system_time. seconds, info.system_time.microseconds); 



Example of using THREAD _SCHED _INFO: 

kern_return_t error; 
struct thread_sched_info info; 
unsigned int info count=THREAD_SCHED_INFO_COUNT; 

error=thread_info(thread_self(), THREAD_SCHED_INFO, 
(thread_info_t)&info, &info_count); 

if (error!=KERN_SUCCESS) 
mach_error("Error calling thread_info()", error); 

else { 
printf("Base priority is %d\n", info.base_priority); 
printf("Max priority is %d\n", info.max_priority); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: target thread isn't a thread, or flavor isn't 
recognized, or thread info count is smaller than it's supposed to be. 

MIG_ARRAY_TOO_LARGE: The returned info array is too large for 
thread _info. thread _info is filled as much as possible. thread_info _count is set to 
the number of elements that would have been returned if there were enough room. 

SEE ALSO 

thread Jet_special yortO, task _ threadsO, task _infoO, thread _ stateO 

thread_max yriorityO ~ See thread yriorityO 

thread yolicyO 

SUMMARY 

SYNOPSIS 

Set scheduling policy for a thread 

#include <mach.h> 

kem_return_t thread yolicy( thread_t thread, int policy, int data) 

ARGUMENTS 

thread: Thread to set policy for. 

policy: Policy to set. This must be POLICY~TIMESHARE, 
POLICY_INTERACTIVE, or POLICY _FIXEDPRI. 

data: Policy-specific data. 

thread yolicy() 4-91 



DESCRIPTION 

thread "policyO changes the scheduling policy for thread to policy. 

data is meaningless for the timesharing and interactive policies; for the fixed priority 
policy, it's the quantum to be used (in milliseconds). The system will always round the 
quantum up to the next multiple of the basic system quantum (min_quantum, which 
can be obtained from hostJnfo()). You can find the current quantum using 
thread JnroO. 

Processor sets can restrict the allowed policies, so this call will fail if the processor set 
to which thread is currently assigned doesn't permit policy. 

EXAMPLE 
'kern return t - -
struct host sched info - -
unsigned int 
int 
proce~sor_set_t 

error; 
sched_info; 
$ched_count=HOST_SCHED INFO COUNT; 
quantum; 
default_set, default_setyriv; 

/* Set quantum to a reasonable value. */ 
error=host_info(host_self(), HOST_SCHED_INFO, 

(host_info_t)&sched_info, &sched_count); 
if (error != KERN_SUCCESS) { 

mach_error ("SCHED host_infO () call failed", error); 
exit(l); 

else 
quantum 

/* 
* Fix the default processor set to take a fixed priority thread. 
*/ 

error=processor_set_default(host_self(), &default_set); 
if (error!=KERN_SUCCESS){ 

mach_error ("Error calling processor_set_default ()", error); 
exit(l); 

error=host-processor_setyriv(hostyriv_self(), default_set, 
&default_setyriv); 

if (error != KERN_SUCCESS) { 
mach_error("Call to host-processor_setyriv() failed", error); 
,exit (1); 

error=processor_set_policy_enable(default_set-priv, POLICY_FIXEDPRI); 
if (error != KERN_SUCCESS) 

mach_error("Error calling processor_setyolicy_enable", error); 

4-92 Chapter 4: C Functions 



/* 
* Change the thread's scheduling policy to fixed priority. 

*/ 
error=thread_policy(thread_self(), POLICY_FIXEDPRI, quantum); 

if (error != KERN_SUCCESS) 

mach_error ("thread_policy () call failed", error); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: thread is not a thread, or policy is not a recognized 
policy. 

KERN_FAILURE: The processor set to which thread is currently assigned doesn't 
permit policy. 

SEE ALSO 

processor_set yolicyO, thread _ switchO 

thread yriorityO, thread_max yriorityO 

SUMMARY 

SYNOPSIS 

Set scheduling priority for thread 

#include <mach.h> 

kem_retum_t thread yriority(thread_t thread, int priority, boolean_t set_max) 
kern_return_t thread_max yriority(thread_t thread, processocseCt processor_set, 

int priority) 

ARGUMENTS 

thread: The thread whose priority is to be changed. 

priority: The new priority to change it to. 

set_max: Also set thread's maximum priority if true. 

processor _set: The privileged port for the processor set to which thread is currently 
assigned. 

DESCRIPTION 

Threads have three priorities assoc;iated with them by the system: a base priority, a 
maximum priority, and a scheduled priority. 

The scheduled priority is used to make scheduling decisions about the thread. It is 
determined from the base priority by the policy. (For the timesharing and interactive 
policies, this means adding an increment derived from CPU usage). The base priority 

thread yriorityO 4-93 



can be set under user control, but can never exceed the maximum priority. Raising the 
maximum priority requires presentation of the privileged port for the thread's processor 
set; since the privileged port for the default processor set is available only to the 
superuser, users cannot raise their maximum priority to unfairly compete with other 
users on that set. Newly created threads obtain their base priority from the task and 
their maximum priority from the thread. 

Priorities range from 0 to 31, where higher numbers denote higher priorities. The 
maximum user priority is defined in the header file kern/sched.h as MAXPRCUSER. 
You can obtain the base, scheduled, and maximum priorities using thread JnfoO. 

thread _priorityO changes the base priority and optionally the maximum priority of 
thread. If the new base priority is higher than the scheduled priority of the currently 
executing thread, preemption may occur as a result of this call. The maximum priority 
of the thread is also set if set_max is true. This call fails if priority is greater than the 
current maximum priority of the thread. As a result, thread _priorityO can never raise 
--only lower-the value of a thread's maximum priority. 

thread_max _priorityO changes the maximum priority of the thread. Because it 
requires the privileged port for the processor set, this call can reset the maximum 
priority to any legal value. If the new maximum priority is less than the thread's base 
priority, then the thread's base priority is set to the new maximum priority. 

EXAMPLE 

/* Get the privileged port for the default processor set. */ 
error=processor_set_default(host_self(), &default_set); 
if (error!=KERN_SUCCESS) { 

mach_error("Error calling processor_set_default()", error); 
exit (1) ; 

error=host-processor_set_priv(host_priv_self(), default_set, 
&defau1t set_priv); 

if (error!=KERN_SUCCESS) { 
mach_error("Call to host_processor_set_priv() failed", error); 
exit (1) ; 

/* Set the max priority. */ 
error=thread_max-priority(thread_self(), default_set_priv, priority); 
if (error!=KERN_SUCCESS) 

mach_error("Call to thread_max_priority() failed",error); 

/* Set the thread's priority. */ 

error=thread-priority(thread_self(), priority, FALSE); 
if (error!=KERN_SUCCESS) 

mach_error("Call to thread-priority() failed",error); 

4-94 Chapter 4: C Functions 



RETURN 

KERN_SUCCESS: Operation completed successfully 

KERN_INVALID ~RGUMENT: thread is not a thread, processor _set is not a 
prjvileged port for a processor set, or priority is out of range (not in 0-31). 

KERN_FAILURE: The requested operation would violate the thread's maximum 
(only for thread JuiorityO) or the thread is not assigned to the processor set 
whose privileged port was presented, 

SEE ALSO 

thread yolicyO, task yriorityO, processor_set _priorityO, thread _ switchO 

thread_replyO ~ See thread~et_specialyortO 

thread _resumeO 

SUMMARY 

SYNOPSIS 

Resume a thread 

#include <mach.h> 

ARGUMENTS 

target _thread: The thread to be resumed. 

DESCRIPTION 

The function threadJesumeO decrements the thread's suspend count. If the count 
1;>ecomes 0, the thfead is resumed; If it's still positive, the thread is left suspended. The 
suspend count never becomes negative. 

RETURN 

KERN_SUCCESS: The thread has been resumed. 

KERN_FAILURE: The suspend count is already O~ 

KERN_INVALID_ARGUMENT: target_thread iso't a thread. 

SEE ALSO 

task_suspendO, taskJesumeO, threadJnfoO, thread_createO, 
thread _ terminateO, thread _suspendO 

thread JesumeO 4-95 



thread _ self 0 ~ See thread ~get _special_portO 

thread_set_special_portO ~ See thread_get_special_portO 

thread_set_stateO ~ See thread_get_stateO 

thread suspendO 

SUMMARY 

SYNOPSIS 

Suspend a thread 

#include <mach.h> 

ARGUMENTS 

target _thread: The thread to be suspended. 

DESCRIPTION 

The function thread_suspendO increments the thread's suspend count and prevents 
the thread from executing any more user-level instructions. In this context, a user-level 
instruction is either a machine instruction executed in user mode or a system trap 
instruction (including page faults). 

Thus, if a thread is currently executing within a system trap, the kernel code may 
continue to execute until it reaches the system return code or it may suspend within the 
kernel code. In either case, when the thread is resumed the system trap will return. This 
could cause unpredictable results if you did a suspend and then altered the user state of 
the thread in order to change its direction upon a resume. The function thread _ abortO 
lets you abort any currently executing system call in a predictable way. 

If the suspend count becomes greater than 1, it will take more than one 
thread JesumeO call to restart the thread. 

RETURN 

KERN_SUCCESS: The thread has been suspended. 

KERN_INVALID_ARGUMENT: target_thread isn't a thread. 

SEE ALSO 

task_suspendO, taskJesumeO, thread_infoO, thread_stateO, threadJesumeO, 
thread _ terminateO, thread _ abortO 

4-96 Chapter4: C Functions 



thread _ switchO 

SUMMARY 

SYNOPSIS 

Cause context switch with options 

#include <mach.h> 

ARGUMENTS 

new _thread: Thread to context switch to. If you specify THREAD_NULL, be sure to 
specify the optio,! parameter to be either SWITCH_OPTION_WAIT or 
SWITCH_OPTION_DEPRESS. 

option: Specifies options associated with context switch. Three options are 
recognized: 

SWITCH_OPTION_NONE: No options, the time argument is ignored. (You 
must set new _thread to a valid thread.) 

SWITCH_OPTION_WAIT: This thread is blocked for the specified time. The 
block can be aborted by thread abortO. 

SWITCH_OPTION_DEPRESS: This thread's priority is depressed to the 
lowest possible value until one of the following happens: time milliseconds 
pass, this thread is scheduled again, or thread _ abortO is called on this thread 
(whichever happens first). Priority depression is independent of operations 
that change this thread 's priority; for example, thread yriorityO will not abort 
the depression. 

time: Time duration (in milliseconds) for options. The minimum time can be obtained 
as the min_timeout value from host_infoO. 

DESCRIPTION 

thread..;..switchO provides low-level access to the scheduler's context switching code. 
new Jhread is a hint .that implements handoff scheduling. The operating system will 
attempt to switch directly to new _thread (bypassing the normallog~c that selects the 
next thread to run) if possible. If new _thread isn't valid or THREAD_NULL, 
thread_switchO returns an error. 

thread _ switchO is often called when the current thread can proceed no further for 
some reason; the various options and arguments allow information about this reason to 
be transmitted to the kernel. The new _thread argument (handoff scheduling) is useful 
when the identity of the thread that must make progress before the current thread runs 
again is known. The SWITCH_OPTION_WAIT option is used when the amount of 
time that the current thread must wait before it can do anything useful cm be estimated 
and is fairly long. The SWITCH_OPTION_DEPRESS option is used when the amount 
of time that must be waited is fairly short, especially when the identity of the thread that 
is being waited for is not known. 

thread _switch() 4-97 



Users should beware of calling thread_switchO with an invalid new _thread (for 
example, THREAD_NULL) and no option. Because the time-sharing and interactive 
schedulers vary the priority of threads based on usage, this may result in a waste of CPU 
time if the thread that must be run is of lower priority. The use of the 
SWITCH_aPTIaN_DEPRESS option in this situation is highly recommended. 

When a thread that's depressed is scheduled, it regains its old priority. The code should 
recheck the conditions to see if it wants to depress again. If thread _ abortO is called 
on a depressed thread, the thread's priority is restored. 

Users relying on the preemption semantics of a fixed time policy should be aware that 
thread _ switchO ignores these semantics; it will run the specified new_thread 
independent of its priority and the priority of any other threads that could be run 
instead. 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_INVALID_ARGUMENT: new _thread is not a thread, or option is not a 
recognized option. 

thread _ terminateO 

SUMMARY 

SYNOPSIS 

Terminate a thread 

#include <mach.h> 

keffi_retuffi_t thread terminate(thread_t target thread) - -

ARGUMENTS 

target _thread: The thread to be destroyed. 

DESCRIPTION 

The function thread _ terminateO destroys the thread specified by target_thread. 

Warning: Don't use this function on threads that were created using the C thread functions. 

RETURN 

KERN_SUCCESS: The thread has been destroyed. 

KERN_INVALID_ARGUMENT: target_thread isn't a thread. 

4-98 Chapter4: C Functions 



SEE ALSO 

task _ terminateO, task _ threadsO, thread _ createO, thread JesumeO, 
thread _ suspendO 

unixyidO 

SUMMARY 

SYNOPSIS 

Get the process ID of a task 

#include <mach.h> 

ARGUMENTS 

target_task: The task for which you want the process ID. 

pid: Returns the process ID of target_task. 

DESCRIPTION 

Returns the process ID of target _task. If the call doe$n 't succ~ed, pid is set to -1. 

EXAMPLE 

result=unixyid (task_selfCi, &myyid); 
if (result!=KERN_SUCCESS) { 

mach_error ("Call to unixyid failed", result); 
exit (1) ; 

printf("My process ID is %d\n", myyid); 

. RETURN 

KERN_SUCCESS: The call succeeded. 

KERNYAILURE: target_task isn 'ta valid task .. Thismightbe because target _task is 
~ pure Mach task (one created using task.,:.. cr:eateO), 

SEE ALSO 

. task....by_ unix _pidO 

unixyid(} 4"99 



SUMMARY 

SYNOPSIS 

Allocate virtual memory 

#include <mach.h> 

kern_return_t vm_allocate(vm_task_t target_task, vm_address_t *address, 
vm_size_t size, boolean_t anywhere) 

ARGUMENTS 

target_task: Task whose virtual memory is to be affected. Use task_self 0 to allocate 
mem?ry in the caller's address space. 

address: Starting address. If anywhere is true, the input value of this address will be 
ignored, and the space will be allocated wherever it's available. If anywhere is 
false, an attempt is made to allocate virtual memory starting at this virtual address. 
If this address isn't at the beginning of a virtual page, it gets rounded down so that 
it is. If there isn't enough space at this address, no memory will be allocated. No 
matter what the value of anywhere is, the address at which memory is actually 
allocated is returned in address. 

size: Number of bytes to allocate (rounded up by the system to an integral number of 
virtual pages). 

anywhere: If true, the kernel should find and allocate any region of the specified size. 
If false, virtual memory is allocated starting at address (rounded down to a virtual 
page boundary) if there's sufficient space. 

DESCRIPTION 

The function vm _allocateO allocates a region of virtual memory, placing it in the 
specified task's address space. The physical memory isn't actually allocated until the 
new virtual memory is referenced. By default, the kernel rounds all addresses down to 
the nearest page boundary and all memory sizes up to the nearest page size. The global 
variable vmyage_size contains the page size. For languages other than C, the value 
of vm _page _size can be obtained by calling vm _ statisticsO. 

Initially, the pages of allocated memory are protected to allow all forms of access, and 
are inherited in child tasks as a copy. Subsequent calls to vm yrotectO and 
vm JnheritO may be used to change these properties. The allocated region is always 
zero-filled. 

Note: Unless you have a special reason for calling vm _allocateO (such as a need for 
page-aligned memory), you should usually call mailocO or a similar C library function 
instead. The C library functions don't necessarily make UNIX or Mach system calls, 
so they're generally faster than using a Mach function such as vm_allocateO. 

4-100 Chapter 4: C Functions 



EXAMPLE 

if ((ret = vm_allocate(task_self()i (vm_address_t *)&lock, 

sizeof(int), TRUE)) != KERN_SUCCESS) { 
mach_error(IIvm_allocate returned value of ", ret); 

printf("Exiting with error.\n"); 
exit (-1); 

if ((ret = vm_inherit(task~self(), (vm_address_t) lock, sizeof(int), 
VM_INHERIT_SHARE)) != KERN_SUCCESS) { 

mach_error(IIvm_inherit returned value of ", ret); 

printf("Exiting with error.\n"); 

exit (-1) ; 

RETURN 

KERN_SUCCESS: Memory allocated. 

KERN_INVALID_ADDRESS: Illegal address specified. 

KERN_NO_SPACE: Not enough spape leftto satisfy this request. 

SEE ALSO 

vm_deallocateO, vm_inheritO, vmyrotectO, vmJegionO, vm..,;.statisticsO 

SUMMARY 

SYNOPSIS 

Copy virtual memory 

#include <mach.h> 

kem_return_t vm ~~opy(vm_task_t target_task, vm....:address_t source_address, 
vm_size_t size, vm_address_t dest _address) 

ARGUMENTS 

targel:.}ask: Thet~~k whose yirtual memory is to be affected .. 

source _ address: The acjdtess ill target ~task of the start of the source range (must be a 
page boun~ary). 

size: The number of bytes to copy (must be a multiple Of vmyage _size). 

dest address: The addressirt target task of the start of the destination range (must be 
apageboundar)r).· -

vm.c.copy() 4-101. 



DESCRIPTION 

The function vrn _ copyo causes the source memory range to be copied to the 
destination address; the destination region must not overlap the source region. The 
destination address range must already be allocated and writable; the source range must 
be readable. 

For languages other than C, the value of vrn yage _size can be obtained by calling 
vrn _ statisticsO. 

EXAMPLE 

if «rtn = vm_allocate(task_self(), (vm_address_t*)&data1, 

vm~age_size, TRUE)) != KERN_SUCCESS) { 
mach_error(IIvm_allocate returned value of ", rtn); 

printf(IIvm_copy: Exiting.\n"); 

exit (-1) ; 

temp = datal; 

for (i = 0; (i < vm~age~size / sizeof(int)); i++) 
temp[ij = i; 

printf(IIvm_copy: set data\n"); 

if «rtn = vm_allocate(task_self(), (vm_address_t *)&data2, 

vm~age_size, TRUE)) != KERN_SUCCESS) 

mach_error(IIvm_allocate returned value of ", rtn); 
printf (IIvm_copy: Exiting. \n"); 

exit(-l); 

if «rtn = vm_copy(task_self(), (vm_address_t) datal, vm~age_size, 
(vm_address_t)data2)) != KERN_SUCCESS) { 

mach_e~ror(IIvm_copy returned value of ", rtn); 
printf(IIvm_copy: Exiting.\n"); 

exit(-l); 

RETURN 

KERN_SUCCESS: Memory copied. 

KERN_INVALID_ARGUMENT: The address doesn't start on a page boundary or the 
size isn't a multiple of vrn yage _size. 

KERN_PROTECTION_FAILURE: The destination region isn't writable or the source 
region isn't readable. 

KERN_INVALID_ADDRESS: An illegal or nonallocated address was specified, or 
insufficient memory was allocated at one of the addresses. 

SEE ALSO 

vrn_a1locateO, vrnyrotectO, vrn_writeO, vrn_statisticsO 

4-102 Chapter4: C Functions 



vm _ deallocateO 

SUMMARY 

SYNOPSIS 

Deallocate virtual memory 

#include <mach.h> 

kem_return_t vm deallocate(vm_task_t target task, vm_address_t address, - -
vm_size_t size) 

ARGUMENTS 

target _task: Task whose virtual memory is to be affected . 

. address: Starting address (this gets rounded down to a page boundary). 

size: Number of bytes to deallocate (this gets rounded up to a page boundary). 

DESCRIPTION 

The function vm _ deallocateO relinquishes access to a region of a task's address space, 
causing further access to that memory to fail. This address range will be available for 
reallocation .. Note that because of the rounding to virtual page boundaries, more than 
size bytes maybe deallocated. Use vm~ta.tisticsO or the global variable 
vm .J>age _size to find. out the current virtual page size. 

This function may be used to. deallocate memory that was passed to a task in a message 
(via out~of-line data). In that case, the rounding s~ould cause no trouble, since the 
region of memory was alloca.red as. a set of pages. 

The functionvm ~deallocateO affects only the task specified by target _task. Other 
tasks that may have access to this memory can continue to reference it. 

EXAMPLE 
r = vm_deallocatei(ti;l.sk_self (), (vm_address_t) thread_list, 

sizeof (thread_list) *thrE!ad~count).; 
if (r!C' KERN_SUCCESS) 

mach_error ("Trouble freeing threi;l.d_list", r); 

RETURN 

KERN_SUCCESS: Memory deallocated. 

KERN_INVALID.,.:.ADDRESS: megal or nonallocated addre~s specified. 

SEE ALSO 

vm _ aIlQCateQ,vrn_statisticsO, insg]eceiveO 

vm_deallocateO 4-103 



vmJnheritO 

SUMMARY 

SYNOPSIS 

Inherit virtual memory 

#include <rnach.h> 

kem_retum_t vrn Jnherit(vm_task_t target_task, vm_address_t address, 
vm_size_t size, vm_inheriCt new_inheritance) 

ARGUMENTS 

target _task: Task whose virtual memory is to be affected. 

address: Starting address (this gets rounded down to a page boundary). 

size: Size in bytes of the region for which inheritance is to change (this gets rounded 
up to a page boundary). 

new _inheritance: How this memory is to be inherited in child tasks. Inheritance is 
specified by using one of these following three values: 

VM_INHERIT_SHARE: Child tasks will share this memory with this task. 
VM_INHERIT_COPY: Child tasks will receive a copy of this region. 
VM_INHERIT_NONE: This region will be absent from child tasks. 

DESCRIPTION 

The function vrn_inheritO specifies how a region of a task's address space is to be 
passed to child tasks at the time of task creation. Inheritance is an attribute of virtual 
pages; thus the addresses and size of memory to be set will be rounded to refer to whole 
pages. 

Setting vrnJnheritO to VM_INHERIT_SHARE and forking a child task is the only 
way two Mach tasks can share physical memory. However, all the threads of a given 
task share all the same memory. 

EXAMPLE 

if ((ret = VIn_allocate (task_self (), (VIn_address_t *) &lock, 
sizeof(int), 

TRUE)) != KERN_SUCCESS) ( 

mach_error(IIvm_allocate returned value of ", ret); 
printf("Exiting with error.\n"); 
exit (-1); 

if ((ret = vm_inherit(task_self(), (vm_address_t) lock, sizeof(int), 
VM_INHERIT_SHARE)) != KERN_SUCCESS) ( 

mach_error(IIvm_inherit returned value of ", ret); 
printf("Exiting Mith error.\n"); 
exit (-1); 

4-104 Chapter4: C Functions 



RETURN 

KERN_SUCCESS: The inheritance has been set. 

KERN_INVALID_ADDRESS: Illegal address specified. 

SEE ALSO 

task _ createO, vm JegionO 

SUMMARY 

SYNOPSIS 

Protect virtual memory 

#include <mach.h> 

kem_return_t vmJlrotect(vm_task_t target_task, vm_address_t address, 
vm_size_t size, boolean_t set ~ maxirnum,vm_proCt new yrotection) 

ARGUMENTS 

target _task: Task whose virtual memory is to be affected. 

address: Starting address (this gets rounded down to a page boundary). 

size: Size in bytesofthe region for which protection is to change (this gets rounded up 
to a page boundary). 

set.:.. maximum: If set, make the protection change apply to the maximum protection 
associated with this address range;' otherwise, change the currentprotection on this 
range. If the maximum protection is reduced below the current protection, both 
will be changed to reflect the new maximum . . . 

new yrotection: A new protection value forthis region; some combination of 
. VM_PROT_READ, VM_PROT_WRITE,andVM_PROT_EXECUTE. 

DESCRIPTION 

The function vm_protettO chaligesthe protection of some pages of allocated memory 
in a task's address space. In general a protection value permits the named operation. 
When memory is first allOCated ithas all protection bits on. The exact interpretation of 
a protection vfilue is machine-dependent. . On a NeXT computer. three levels of 
memory protection are provided: 

e N6access 
e. . Read 'ahd eiecuteaccess 
e Read,execute, and write access 

VMYROT_WRITE pennits read,execute,and write access; YM_PROT ...;.READ or 
VM_PROT _EXECUTE permits read and execute access, but not write access. 

vm yrotectO 4,J 05 



EXAMPLE 

vrn address t 

r = vrn_protect(task_self(), addr, Vffi_page_size, FALSE, 0); 

if (r != KERN_SUCCESS) { 

rnach_error("vrn_protect 0", r); 

exit(l); 

printf("protect on\n"); 

RETURN 

KERN_SUCCESS: The memory has been protected. 

KERN_PROTECTION_FAILURE: An attempt was made to increase the current or 
maximum protection beyond the existing maximum protection value. 

KERN_INVALID_ADDRESS: An illegal or nonallocated address was specified. 

SUMMARY Read virtual memory 

SYNOPSIS 

#include <mach.h> 

kern_return_t vm read(vm_task_t target task, vm_address_t address, vm_size_t size, - -
pointer_t *data, unsigned int *data _count) 

ARGUMENTS 

target _task: Task whose memory is to be read. 

address: The first address to be read (must be on a page boundary). 

size: The number of bytes of data to be read (must be a multiple of vm _page _size). 

data: The array of data copied from the given task. 

data count: Returns the size of the data array in bytes (will be an integral number of 
pages). 

DESCRIPTION 

The function vm JeadO allows one task's virtual memory to be read by another task. 
The data array is returned in a newly allocated region; the task reading the data should 
call vm_deallocateO on this region when it's done with the data. 

For languages other than C, the value of vm yage _size can be obtained by calling 
vm _statisticsO. 

4-106 Chapter 4: C Functions 



EXAMPLE 

if «rtn = vm_allocate(task_self (), (vm_address_t *)&datal, 

vm_page_size, TRUE)) != KERN_SUCCESS) { 
mach_error("vm_allocate returned value of ", rtn); 

printf ( "vmread: Exiting. \n") ; 
exit (-1) ; 

temp = datal; 

for (i = 0; (i < vm_page_size); i++) 

temp[i] = i; 

printf("Filled space allocated with some data.\n"); 

printf ("Doing vm_read .... \n"); 

if «rtn = vm_read(task_self(), (vm_address_t) datal, vm_page size, 

(pointer_t *)&data2, &data_cnt)) != KERN_SUCCESS) 
mach_error("vm_read returned value of ", rtn); 

printf("vmread: Exiting. \n"); 
exit (-1) ; 

printf("Successful vm_read.\n"); 

RETURN 

KERN_SUCCESS: The memory has been read. 

KERN_INVALID_ARGUMENT: Either address does not start on a page boundary or 
size isn't an integral number of pages. 

KERN_NO_SPACE: There isn't enough room in the caller's virtual memory to 
allocate space for the data to be returned. 

KERN_PROTECTION_FAILURE: The address region in the target task is protected 
against reading. 

KERN_INVALID_ADDRESS: An illegal or nonallocated address was specified, or 
there were not size bytes of data following that address. 

SEE ALSO 

vm_writeO, vrn_copyO, vrn_deallocateO 

vmJeadO 4-107 



SUMMARY 

SYNOPSIS 

Get information about virtual memory regions 

#include <mach.h> 

kernJeturn_t vm ]egion(vm_task_t target_task, vm_address_t *address, 
vm_size_t *size, vm_proCt *protection, vm_proCt *maxyrotection, 
vm.,...inheriCt * inheritance , boolean_t *shared, port_t *object_name, 
vm_offset..t *offset) 

ARGUMENTS 

target _task: The task for which an address space description is requested. 

address: The address at which to start looking for a region. On return, address will 
contain the start of the region (therefore, the value returned will be different from 
the value that was passed in if the specified region is part of a larger region). 

size: Returns the size (in bytes) of the located region . 

. protection: Returns. the current protection of the region. 

maxyrotection: Returns the maximum allowable protection for this region. 

inheritance: Returns the inheritance attribute for this region. 

shared: Returns true if this region is shared, false if it isn't. 

object_name: Returns the port identifying the region's memory object. 

offset: Returns the offset into the pager object at which this region begins. 

DESCRIPTION 

The function vm ]egionO returns a description of the specified region of the target 
task's virtual address space. vm_regionO begins at address, looking forward through 
memory until it comes to an allocated·region. (If address is in a region, that region is 
used.) If address isn't in a region, it's set to the start of the first region that follows the 
incoming value. In this wayan entire address space can be scanned. You can set 
address to the constant VM_MIN_ADDRESS (defined in the header file 
machine/vmyaram.h) to specify the first address in the address space. 

EXAMPLE 

char 

vm size t - -
vmyrot_t 
vm inherit t 
boolean_t 
port_t 
vm offset_t 

4-108 Chapter4: C Functions 

data; 

size; 
protection, maxyrotection; 
inheritance; 
shared; 
objectyame; 
offset; 



/* ... */ 
/* Check the inheritance of "data". */ 
r = vm_region(task_self (), & (vm_address_t) size, &size, &protection, 

&max_protection, &inheritance, &shared, &object_name, &offset); 

if (r != KERN_SUCCESS) 

mach_error("Error calling vm_region", r); 

else { 

printf("Protection is: H); 

switch (inheritance) { 

RETURN 

case VM INHERIT SHARE: 
printf("Share with child\n"); 

break; 
case VM INHERIT COPY: 

printf("Copy into child\n"); 

break; 

case VM INHERIT NONE: 

printf("Absent from child\n"); 
break; 

case VM INHERIT DONATE COPY: - -
printf("Copy and delete\n"); 

break; 

KERN_SUCCESS: The region was located and infonnation has been returned. 

KERN_NO_SPACE: The task contains no region at or above address. 

SEE ALSO 

vm_ allocate(), vm _ deallocate(), vm yrotect(), vm _inherit() 

vrn _statisticsO 

SUMMARY Examine virtual memory statistics 

SYNOPSIS 

#include <mach.h> 

ARGUMENTS 

target_task: The task that's requesting the statistics. 

vm stats: Returns the statistics. 

vm_statisticsO 4-109 



DESCRIPTION 

The function vm _ statisticsO returns statistics about the kernel's use of virtual memory 
since the kernel was booted. pagesize can also be found through the global variable 
vm yage _size, which is set at task initialization and remains constant for the life of the 
task. 

struct vm_statistics { 
long pagesize; /* page size in bytes */ 

} ; 

long free_count; /* number of pages free */ 
long active_count; /* number of pages active */ 
long inactive_count; /* number of pages inactive */ 
long wire_count; /* number of pages wired down */ 
long zero_fill_count; /* humber of zero-fill pages*/ 
long reactivations; /* number of pages reactivated */ 
long pageins; /* number of pageins */ 
long pageouts; /* number of pageouts */ 
long faults; /* number of faults */ 
long 
long 
long 

cow_faults; 
lookups; 
hits; 

/* number of copy-on-writes */ 
/* object cache lookups */ 
/* object cache hits */ 

typedef struct vm statistics 

EXAMPLE 

result=vm_statistics(task_self(), &vm_stats); 
if (result != KERN_SUCCESS) 

mach_error ("An error calling vm_statistics () !", result); 
else 

printf("%d bytes of RAM are free\n", 
vm stats.free count * vm_stats.pagesize); 

RETURN 

KERN~SUCCESS: The operation was successful. 

SUMMARY Write virtual memory 

SYNOPSIS 

#include <mach.h> 

kernJeturn_t vm _ write( vm_task_t target_task, vm_address_t address, pointect data, 
unsigned int data_count) 

4-110 Chapter4: C Functions 



ARGUMENTS 

target_task: Task whose memory is to be written. 

address: Starting address in task to be affected (must be a page boundary). 

data: An array of bytes to be written. 

data_count: The size in bytes of the data array (must be a multiple of vm _page_size). 

DESCRIPTION 

The function vm _ writeO allows a task's virtual memory to be written by another task. 
For languages other than C, the value of vm _page_size can be obtained by calling 
vm _statisticsO. 

RETURN 

KERN_SUCCESS: Memory written. 

KERN_INVALID_ARGUMENT: The address doesn't start on a page boundary or the 
size isn't an integral number of pages. 

KERN_PROTECTION_FAILURE: The address region in the target task is protected 
against writing. 

KERN_INVALID _ADDRESS: An illegal or nonallocated address was specified or the 
amount of allocated memory starting at address was less than data_count. 

SEE ALSO 

vm_copyO, vmyrotectO, vmJeadO, vm_statisticsO 

vrn _ writeO 4-111 



Bootstrap Server Functions 

See /usr/include/servers/bootstrap.defs for documentation of how the Bootstrap 
Server works. 

The Bootstrap Server was created by NeXT, so these functions aren't in other versions 
of Mach. 

bootstrap check inO - -

SUMMARY Get receive rights to a service port 

SYNOPSIS 

#include <mach.h> 
#include <servers/bootstrap.h> 

kem_retum_t bootstrap_check jn(port_t bootstrap yort, name_t service_name, 
port_all_t * service yort) 

ARGUMENTS 

bootstrap yort: A bootstrap port. 

service_name: The string that names the service. 

service yort: Returns receive rights to the service's port. 

DESCRIPTION 

Use this routine in a server to start providing a service. The service must already be 
defined, either by the appropriate line in /etc/bootstrap.conf or by a call to 
bootstrap_create _ serviceO. Calling bootstrap_check _inO makes the service active. 

EXAMPLE 

extern port_t bootstrap-port; 
port_all_t my_service-port; 

/* Get receive rights for our service. */ 
result=bootstrap_check~in(bootstrap-port, MYNAME, &my_service-port); 
if (result != BOOTSTRAP_SUCCESS) 

mach_error("Couldn't create service", result); 

4-112 Chapter4: C Functions 



RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP _NOT_PRIVILEGED: bootstrap yort is an unprivileged bootstrap 
port. 

BOOTSTRAP _UNKNOWN_SERVICE: The service doesn't exist. It might be 
defined in a subset (see bootstrap_subsetO). 

BOOTSTRAP_SERVICE_ACTIVE: The service has already been registered or 
checked in and the server hasn't died. 

Returns appropriate kernel errors on RPC failure. 

bootstrap create serviceO - -

SUMMARY 

SYNOPSIS 

Create a service and service port 

#include <mach.h> 
#include <servers/bootstrap.h> 

kern_return_t bootstrap_create _ service(port_t bootstrap yort, name_t 
service_name, port_t * service yort) 

ARGUMENTS 

bootstrap yort: A bootstrap port. 

service_name: The string that specifies the service. 

service yort: Returns send rights for the service. 

DESCRIPTION 

Creates a service named service_name and returns send rights to that port in 
service yort. The port may later be checked in as if this port were configured in the 
bootstrap configuration file. (At that time bootstrap_check _inO will return receive 
rights to service yort and will make the service active.) 

This function is often used to create services that are available only to a subset of tasks 
(see bootstrapyubset()). Any task can call this routine-it doesn't have to be the 
server-as long as the task's bootstrap port isn't unprivileged. 

EXAMPLE 

/* Tell the bootstrap server about a service. */ 

result=bootstrap_create_service(bootstrap_port, SERVICENAME, 

&serviceyort); 

if (result!=BOOTSTRAP_SUCCESS) 

mach_error("Couldn't create service", result); 

bootstrap_create _service() 4-113 



RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP _NOT_PRIVll.EGED: bootstrap yort is an unprivileged bootstrap 
port. 

BOOTSTRAP_SERVICE_ACTIVE: The service already exists. 

Returns appropriate kernel errors on RPC failure. 

bootstrap _get _ unpriv yortO 

SUMMARY 

SYNOPSIS 

Get an unprivileged bootstrap port 

#include <mach.h> 
#include <servers/bootstrap.h> 

kern_return_t bootstrap_get_unpriv yort(port_t bootstrap yort, 
port_t *unpriv yort) 

ARGUMENT 

bootstrap yort: A bootstrap port. 

unpriv yort: Returns an unprivileged bootstrap port. 

DESCRIPTION 

Returns an unprivileged bootstrap port for the Bootstrap Server. Unprivileged ports are 
used just like regular bootstrap ports, except that they can't be used for 
bootstrap_check _inO, bootstrap_create _ serviceO, or bootstrap JegisterO 
requests. 

One use of unprivileged bootstrap ports is to ensure that remote processes aren't able 
to create or provide services. In this case, the task that spawns the remote processes 
setS its own bootstrap port to unpriv yort; the remote processes then inherit this 
unprivileged port as their bootstrap port. 

4-114 Chapter 4: C Functions 



EXAMPLE 

extern port t bootstrap-port; 
port_t unpriv_port; 

result=bootstrap_get_unpriv_port(bootstrap_port, &unpriv_port); 
if (result != BOOTSTRAP_SUCCESS) 

printf("Couldn't get the unprivileged port (%d)\n", result); 
else { 

/* 
* Set our bootstrap port so that tasks we create inherit the 

* unprivileged port. 
*/ 

result=task set bootstrap_port (task_self(), unpriv_port); 
if (result != KERN_SUCCESS) 

mach_error("task_set_bootstrap_port() failed", result); 
bootstrap_port=unpriv-port; 

RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

Returns appropriate kernel errors on RPC failure. 

bootstrap _ infoO 

SUMMARY Get information about all known services 

SYNOPSIS 

#include <mach.h> 
#include <servers/bootstrap.h> 

kern_return_t bootstrap _ info(porct bootstrap yort, name_array _t * service_names, 
unsigned int *service_names_count, name_array_t *server _names, 
unsigned int * server_names _count, bool_array _t* service_active, 
unsigned int * service active count) - -

ARGUMENTS 

bootstrap yort: A bootstrap port. 

service names: Returns the names of all known services. 

service. names count: Returns the number of service names. 

server_names: Returns the name, if known, of the server that provides the 
corresponding service. Except for the machJnit server, this name isn't known 
unless the bootstrap configuration file has a server line for this server. 

server names count: Returns the number of server names. 

bootstrap _in/oO 4 -115 



service active: Returns an array of booleans that correspond to the service_names 
array. For each item, the boolean value is true if the service is receiving messages 
sent to its port, otherwise false. 

service active count: Returns the number of items in the service_active array. 

DESCRIPTION 

This routine returns information about all services that are known. Note that it won't 
return information on services that are defined only in subsets, unless the subset port is 
an ancestor of bootstrap yort. (See bootstrap_subsetO for information on subsets.) 

EXAMPLE 

result = bootstrap_info (bootstrap_port, &service_names, &service_cnt, 
&server_names, &server_cnt, &service active, &service_active cnt); 

if (result != BOOTSTRAP_SUCCESS) 
printf("ERROR: info failed: %d", result); 

else { 
for (i = 0; i < service_cnt; i++) 

printf("Name: %-15s Server: %-15s Active: %-4s", 

RETURN 

service_names[i], 
server_names[i] [0] == '\0' ? "Unknown" 
service_active[i] ? "Yes\n" : "No\n"); 

BOOTSTRAP_SUCCESS: The call succeeded. 

server_names[i], 

BOOTSTRAP _NO_MEMORY: The Bootstrap Server couldn't allocate enough 
memory to return the information. 

Returns appropriate kernel errors on RPC failure. 

bootstrap look upO - -
SUMMARY Get the service port of a particular service 

SYNOPSIS 

#include <mach.h> 
#include <servers/bootstrap.h> 

kem_return_t bootstrap_look _ up(port_t bootstrap yort, name_t service_name, 
port_t * service yort) 

4-116 Chapter4: C Functions 



ARGUMENTS 

bootstrap yort: A bootstrap port. 

service_name: The string that identifies the service. 

service yort: Returns send rights for the service port. 

DESCRIPTION 

Returns send rights for the service port of the specified service. The service isn't 
guaranteed to be active. (To check whether. the service is active, use 
bootstrap _ statusO.) 

EXAMPLE 

result=bootstrap_look_up(bootstrap-,-port, "FreeService2", &srvcyort); 
if (result !=BOOTSTRAP_SUCCESS) 

printf("lookup failed: %d\n", result); 
. , 

else { 
/* Access the service by sending messages to srvcyort. */ 

RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP _UNKNOWN_$~RVICE: The service doesn't exist. It might be 
defined in a.subset (see boOtstrap_subsetO) . 

. Returns appropriate kernel errors on RPC failure. 

SUMMARY 

SYNOPSIS 

Get the service ports for an array of services 

#include <mach.h> 
#include <servers/bootstrap.l);> 

kern_return_t bootstrap )ook_up _ array(port_t bootstrap yort, 
name_arraY.,J service_names, unsigned int seT'vice_names _count, 
pon.:..,.array.:.,J *serviceyorts, unsigned int *serviceyortsJount, 
boolearct *all_services _known) 



ARGUMENTS 

bootstrap yort: A bootstrap port. 

service_names: An array of service names. 

service names count: The number of service names. 

service yorts: Returns an array of service ports. 

service yorts _count: Returns the number of service ports. This should be equal to 
service names count. 

all services known: Returns true if every service name was recognized; otherwise 
returns false. 

DESCRIPTION 

Returns port send rights in corresponding entries of the array service yorts for all 
services named in the array service_names. You should call vm _ deallocateO on 
service yorts when you no longer need it. 

Unknown service names have the corresponding service port set to PORT_NULL. 
Note that these services might be available in a subset (see bootstrap_subset()). 

EXAMPLE 

kern return t 

port_t 

unsigned int 

boolean t 

name t 

port_array_t 

result; 

my_bootstrap-port ; 

port_cnt; 
all_known; 

name_array [2]={"Service", "NetMessage"}; 

ports; 

result = task_get_bootstrap-port(task_self(), &my_bootstrap_port); 
if (result != KERN_SUCCESS) { 

mach_error("Couldn't get bootstrap port", result); 

exit(l); 

result=bootstrap_look up array(my bootstrap port, name_array, 2, 

&ports, &port_cnt, &all_known); 
if (result!=BOOTSTRAP_SUCCESS) 

mach_error("Lookup array failed", result); 

else 

printf("Port count = %d, all known = %d\n", port_cnt, all_known); 

/* ... */ 
result=vm deallocate (task_self(), (vm_address_t) ports, 

sizeof(ports)*port_cnt); 

if (result != KERN_SUCCESS) 

mach_error("Trouble freeing ports", result); 

4-118 Chapter4: C Functions 



RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP_BAD _COUNT: service_names _count was too large (greater than 
BOOTSTRAP _MAX_LOOKUP _COUNT, which is defined in the header file 
server/bootstrap _ defs.h). 

Returns appropriate kernel errors on RPC failure. 

bootstrap _ registerO 

SUMMARY 

SYNOPSIS 

Register send rights for a service port 

#include <mach.h> 
#include <serverslbootstrap.h> 

kern_return_fbootstrap ]egister(port_t bootstrap yort, name_t service_name, 
port_t service yort) 

ARGUMENTS 

bootstrap yort: A bootstrap port. 

service_name: The string that identifies the service. 

serviceyort: ·The service portf()rtheservice. 

DESCRIPTION 

You can use this function to create a server that hasn't peen defined in the bootstrap 
configuration file. This function specifies to the Bootstrap Server exactly which port 
should.be the service port. 

You can't register a service if all active binding already exists. However, you can 
regis(eraservice if the existing binding is inactive (thatis, the Bootstrap Server 
currently holds receive rights for the service port); in this case the previous service port 
will be deallocated. 

A service that is restarting can resume service forprevious clients by setting 
service ..I/ort totlle previous sel'Vice port. You can get this port by calling·· 
bootstrap_check JnO. 

bootstrap Jegister() 4-119 



EXAMPLE 

/* Create a port to use as the service port. */ 

result=port_allocate(task_self (), &myport); 
if (result != KERN_SUCCESS) ( 

mach_error("Couldn't allocate a service port", result); 

exit(l); 

/* Tell the bootstrap server about my service. */ 

result=bootstrap_register(bootstrap_port, MYNAME, myport); 

if (result != BOOTSTRAP_SUCCESS) 

printf("Call to bootstrap_register failed: %d", result); 

RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP _NOT_PRIVILEGED~ bootstrap yort is an unprivileged bootstrap 
port. 

BOOTSTRAP _NAME_IN_ USE: The service is already active. 

Returns appropriate kernel errors on RPC failure. 

bootstrap statusO 

SUMMARY Check whether a service is available 

SYNOPSIS 

#include <mach.h> 
#include <servers/bootstrap.h> 

kern_return_t bootstrap _status(port_t bootstrap yort, name_t service_name, 
boolean_t * service_active) 

ARGUMENTS 

bootstrap yort: A bootstrap port. 

service_name: The string that specifies a particular service. 

service active: Returns true if the service is active, false otherwise. 

DESCRIPTION 

This function tells you whether a service is known to users of bootstrap yort, and 
whether it's active. A service is active if a server is able to receive messages on its 
service port. If a service isn't active, the Bootstrap Server holds receive rights for the 
service port. 

4-120 Chapter4: C Functions 



EXAMPLE 

result;bootstrap_status(bootstrap-port, MYNAME, &service_active); 
if (result!;BOOTSTRAP_SUCCESS) 

printf("status check failed\n"); 

else { 
if (service_active) 

printf("Server %s is active\n", MYNAME); 

else 
printf ("Server %s is NOT active\n", MYNAME); 

RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP _UNKNOWN_SERVICE: The service doesn't exist. It might be 
defined in a subset (see bootstrap _ subset()). 

Returns appropriate kernel errors on RPC failure. 

bootstrap _ subsetO 

SUMMARY 

SYNOPSIS 

Get a new port to use as a bootstrap port 

#include <mach.h> 
#include <servers/bootstrap.h> 

kem_return_t bootstrap _ subset(port ... J bootstrap yort, poret requestoryort, 
port_t * subset yort) 

ARGUMENTS 

bootstrap yort: A bootstrap port. 

requestor yort: A port that determines the life-span of the subset. 

subset yort: Returns the subset port. 

DESCRIPTION 

Returns a new port to use as a bootstrap port. This port behaves exactly like the 
previous bootstrap yort, with one exception: When you register a port by calling 
bootstrap JegisterO using subset yort as the bootstrap port, the registered port is 
available only to users of subset yort and its descendants. Lookups on the subsetyort 
will return ports registered with this port specifically, and will also return ports 
registered with ancestors of this subset yort. (The ancestors of subset yort are 
bootstrap yortand, if bootstrap yort is itself a subset port, any ancestors of 
bootstrap yort.) 

bootstrap _subset() 4-121 



You can override a service already registered with an ancestor port by registering it with 
the subset port. Any thread that looks up the service using the subset port will see only 
the version of the service that's registered with the subset port. This is one way to 
transparently provide services such as monitor programs or individualized spell 
checkers, while the rest of the system still uses the default service. 

When it's detected that requestor yort is destroyed, the subset port and all services 
advertised by it are destroyed as well. 

EXAMPLE 

/* 
* Get a subset port. 

*/ 
print ("Subset port test"); 

result = bootstrap_subset (bootstrap_port, task_self (), &subset_port); 

if (result != BOOTSTRAP SUCCESS) 

mach_error("Couldn't get unpriv port", result); 

RETURN 

BOOTSTRAP_SUCCESS: The call succeeded. 

BOOTSTRAP _NOT_PRIVILEGED: bootstrap yort is an unprivileged bootstrap 
port. 

Returns appropriate kernel errors on RPC failure. 

4-122 Chapter 4: C Functions 



Network Name Server Functions 

SUMMARY 

SYNOPSIS 

Check a name into the local namespace 

#include <mach.h> 
#include <servers/netname.h> 

kernJeturn_t netname _check _in(porct server yort, netname_name_t port_name, 
port_t signature, port_t port _id) 

ARGUMENTS 

server yort: The port to the Network Name Server. 

port_name: The name of the port that's to be checked in. 

signature: The port that's used to protect the right to remove a name. 

port _id: The port that's to be checked in. 

DESCRIPTION 

The function netname _check JnO enters a port with the name port_name into the 
namespace of the local network server. signature is a port that's used to protect this 
name. This same port must be presented on a netname _check_ontO call for that call 
to be able to remove the name from the namespace. 

Note that the server yort parameter should be set to name _server _port in order to use 
the system Network Name Server. 

RETURN 

NETNAME_SUCCESS: The operation succeeded. 

SEE ALSO 

netname _check _ outO, netname Jook _ upO 



netname _check_ontO 

SUMMARY 

SYNOPSIS 

Remove a name from the local namespace 

#include <mach.h> 
#include <servers/netname.h> 

kern_return_t netname _check _ out(porCt server yort, netname_name_t port_name, 
porCt signature) 

ARGUMENTS 

server yort: The port to the Network Name Server. 

port_name: The name of the port that's to be checked out. 

signature: The port that's used to protect the right to remove a name. 

DESCRIPTION 

The function netname check outO removes a port with the name port name from the - - -
namespace of the local network server. signature must be the same port as the signature 
port passed to netname _check _inO when this name was checked in. 

Note that the server yort parameter should be set to name _server _port in order to use 
the system Network Name Server. 

RETURN 

NETNAME_SUCCESS: The operation succeeded. 

NAME_NOT_YOURS: The signature given to netname_check_outO did not match 
the signature with which the port was checked in. 

SEE ALSO 

netname_check_inO, netname_Iook_upO 

4-124 Chapter4: C Functions 



SUMMARY 

SYNOPSIS 

Look up a name on a specific host 

#include <mach.h> 
#include <servers/netname.h> 

kem_retum_t netname _look _ up(porCt server yort, netname_name_t host_name, 
netname_name_t port name, porCt *port id) - -

ARGUMENTS 

server yort: The port to the Network Name Server. 

host_name: The name of the host to query. This can't be a null pointer. 

port_name: The name of port to be looked up. 

port _id: The port that was looked up. 

DESCRIPTION 

The function netna~e Jook _ upO returns the value of the port named by port_name by 
questioning the host named by the host_name argument. Thus this call is a directed 
name lookup. The host_name may be any of the host's official nicknames. If it's an 
empty string, the local host is assumed. If host_name is "*", a broadcast lookup is 
performed. 

The server yort parameter should be set to name_server .J>ort in order to use the 
system Network Name Server. 

Important: Use NXPortNameLookupO instead of netname look upO in all - -
NeXTstep applications. (In the future, Listener instances might register with the 
Bootstrap Server instead of the Network Name Server.) 

RETURN 

NETNAME_SUCCESS: The operation succeeded. 

NAME_NOT_CHECKED_IN: netnameJook_upO could not find the name at the 
given host. 

NETNAME_NO_SUCH_HOST: The host ~ name argument to netname Jook _ upO 
does not name a valid host. 

NETNAME_HOST _NOT_FOUND: netname _look _ upO could not reach the host 
named by host_name (for instance, because it's down). 

SEE ALSO 

netname _check _ inO, netname _check _ outO 



Kernel-Server Loader Functions 

To use these functions, you must compile with the kernload library. For example: 

cc myprog.c -lkernload 

SUMMARY 

SYNOPSIS 

Shut down or reconfigure kern Joader 

#include <mach.h> 
#include <kernserv/kern loader.h> 

kern_return_t kern Joader _ abort(porCt loader yort, porct priv yort, 
boolean_t restart) 

ARGUMENTS 

loader yort: kern_loader's port, obtained from kern_IoaderJook_upO. 

priv yort: The privileged port for this host, returned by host yriv _selfO. 

restart: If true, reconfiglire kern Joader. 

DESCRIPTION 

This function unloads and deallocates all loadable kernel servers and then, depending 
on the value of restart, kills or reconfigures the kernel-server loader. If restart is true, 
then kernJoaderrereads its configuration file (etc/kern_loader.cont) to determine 
which servers it should allocate and load. 

EXAMPLE 

/* Get kern_loader's port. */ 

error=kern_loader~loo~_up(&loader-port); 

if (error != KERN_SUCCESS) { 
kern_loader_error("Couldn't find kern loader's port", error); 
exit(l); 

/* Recpnfigure kern_loader. */ 
error=kern_loader_abort (loaderyort, hostyriv_self (), TRUE); 
if (error != KERN_SUCCESS) 

kern_loader_error("Couldn't stop kern_loader", error); 

4-126 Chapter 4: C Functions 



RETURN 

KERN_SUCCESS: The call was successful. 

KERN_LOADER_NO_PERMISSION: priv yort isn't the host's privileged port. 
(Make sure host_priv _self 0 is called by a process with superuser permission.) 

SEE ALSO 

kern Joader _delete _ serverO, kern_loader Jook _ upO, 
. kern_loader_unload _ serverO 

SUMMARY 

SYNOPSIS 

Allocate a loadable kernel server 

#include <mach.h> 
#include <kernservlkern loader.h> 

kern_return_t kern_loader_add_server(port_t loader yort, port_t taskyort, 
server_reloc_t sefVer Jeloc) 

ARGUMENTS 

loader yort: kern_loader's port, obtained from calling kern_loaderJook_upO. 

taskyort: The kernel's task port, obtained using task_by _unix yidO. 

server Jeloc: The server's relocatable object file. For example, the MIDI driver's 
relocatable object file is "/usr/lib/kern_Ioader/Midi/midi_reloc". 

DESCRIPTION 

This function prepares the loadable kernel server to be loaded into the kernel. The 
server isn't loaded unless it automatically loads when: allocated. 

If the server is already loaded or allocated, then the server is unloaded (if necessary) 
and allocated again from scratch. 

EXAMPLE 

/* Get kern_loader's port. */ 
r = kern_loader_look_up(&loader_port); 
if (r != KERN_SUCCESS) { 

kern_loader_error(nCouldn't get loaderyort n, r); 
exit(l); 



/* Get the kernel's task port. */ 

r = task_by_unix_pid(task_self(), 0, &kernel_task); 

if (r != KERN_SUCCESS) { 

kern_loader_error("Couldn't get kernel_task", r); 

exit (2) ; 

/* Add the server. */ 

r = kern_loader_add_server(loader_port, kernel_task, 

"/usr/lib/kern_loader/Midi/midi_reloc"); 

if (r != KERN_SUCCESS) { 

kern_loader_error("Call to kern loader abort failed", r); 

exit (3) ; 

RETURN 

KERN_SUCCESS: The server has been successfully allocated. 

KERN_LOADER_NO_PERMISSION: task yort wasn't the kernel's task port. 
(Make sure task_by _unix _pidO is called by a process with superuser permission.) 

KERN_LOADER_SERVER_ WONT_LOAD: The kernel-server loader couldn't use 
server Jeloc to build an loadable object file, or it couldn't understand the load or 
unload commands, or it couldn't link the loadable object file against Imach. 

SEE ALSO 

kern Joader _delete _serverO, kern _loader_look _ upO 

kern_loader _delete _ serverO 

SUMMARY Delete a loadable kernel server 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern loader.h> 

kern_return_t kern Joader _delete _ server(port_t loader yort, port_t task yort, 
server_name_tserver_nan1e) 

ARGUMENTS 

loader yort: kern_loader's port, obtained from calling kernJoader_look_upO. 

task yort: The kernel's task port, obtained using task...;. by_unix _pidO. 

server _ nan1e: The string associated with the server. For example, the MIDI driver's 
name is "midi". 

4-128 Chapter4: C Functions 



DESCRIPTION 

This function removes the loadable kernel server from kern loader's control. If the 
server is currently loaded, then it's. unloaded. 

EXAMPLE 

/* Get kern_loader's port. */ 

error=kern_loader_look_up(&loader_port); 
if (error != KERN_SUCCESS) { 

kern_loader_error("Couldn't find kern loader's port", error); 

exit(!); 

/* Get the kernel's task port. */ 

error=task_by_unix_pid(task_self(), 0, &kern-port); 

if (error != KERN_SUCCESS) { 

mach_error("Error looking up kernel port", error); 
exit (2) ; 

/* Delete the server. */ 

error=kern_loader_delete_server(loader_port, kern_port, "midi"); 
if (error != KERN_SUCCESS) { 

kern_loader_error("Couldn't delete midi", error); 

exit(3); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_LOADER_NO_PERMISSION: taskyort wasn't the kernel's task port. 
(Make sure task_by _unix yidO is called by a process with superuser permission.) 

KERN_LOADER_UNKNOWN_SERVER: server_name wasn't recognized. 

SEE ALSO 

kern joader _add _ serverO, kern .:..Ioader _look _ upO 

kern_loader _ errorO, kern Joader _error _ stringO 

SUMMARY Display or return an error message 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern loader error.h> 

void kern joader _error( const char * string, kern_return_t errno) 
const char *kern joader _error _ string(kern_return_t errno) 

kern ...:.loader _error() 4-129 



ARGUMENTS 

string: The string to be printed along with the error message. 

errno: The value returned by a Mach function. 

DESCRIPTION 

These functions act like mach _ errorO and mach_error _ stringO, except that they also 
understand errors from the kernel-server loader functions. 

kern_Ioader_errorO prints to stderr the string, followed by the string corresponding 
to errno, followed by errno in parentheses. kernJoader_error_stringO returns the 
string that corresponds to errno. 

EXAMPLE 

error=kern_loader_delete_server(loader_port, kernyort, "midi"); 
if (error != KERN_SUCCESS) { 

kern_loader_error("Couldn't delete midi", error); 
exit (3) ; 

SEE ALSO 

mach _ error(), mach_error _ stringO 

SUMMARY Request a message containing kernel log data 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern _loader _ types.h> 

kern_return_t kern_loader JetJog(port...t loader yon, poret server_com yort, 
poret reply yort) 

ARGUMENTS 

loader yort: kernJoader's port, obtained from kern_Ioader_look_upO. 

server_com yort: The loadable kernel server's communication port, obtained from 
kern_loader_server _com yortO. 

replyyort: The port to which kero;...loader should send the reply message. 

4-130 Chapter4: C Functions 



DESCRIPTION 

This function requests a reply message containing data logged by a loadable kernel 
server. Before calling this function for the first time on a server, you should turn the 
server's logging on by calling kern_loader _logJeveIO. 

You must supply the implementation of the reply message, as described in Chapter 3, 
"Using Loadable Kernel Servers." 

Each item of logged data is preceded by a time stamp. The time stamp is a relative 
indicator of when the data was logged by the loadable kernel server. 

EXAMPLE 
r = kern_Ioader_look_up(&kl_port); 

if (r != KERN_SUCCESS) { 

mach_error("Can't find kernel loader", r); 

exit (1) ; 

r = port_allocate(task_self(), &reply_port); 

if (r != KERN_SUCCESS) { 

mach_error("Can't a.llocate reply port",. r); 

exit(l); 

/* Get the server's communication port. */ 

r = task_by_unix_pid (task_self (), 0, &kern_port); 

if (r != KERN_SUCCESS) { 

mach_error("Error lookin.g up kernel's port", r); 

exit (1); 

r = kern loader server_com_port(kl_port, kern_port, MYDRIVER_NAME, 

&server_com_port); 

if (r != KERN_SUCCESS) { 

kern_Ioader_error("Error looking up server com port", r); 

exit (1) ; 

/* Set the log level so we'll get log messages. */ 

r = kern_Ioader_log_level(kl_port, server_co~port, LOG_NOTICE); 

if (r != KERN_.SUCCESS) { 

kern_Ioader_error("Can't chan.ge log level", r); 

exit (1) ; 



/* Get the first log message. */ 

r = kern_loader_get_log(kl-port, server_corn_port, reply_port); 

if (r != KERN_SUCCESS) { 

kern_loader_error("Error calling kern_loader_get_log", r); 
exit (1) ; 

/* Listen for the asynchronous reply message. */ 

listen(reply-port ); 

kern loader_reply_t kern_loader_reply = { 

0, /* argument to pass to function */ 
0, /* timeout for rpc return msg_ send */ 

0, /* string function */ 

0, /* ping function */ 

log_ data /* log_data function */ 
} ; 

void listen(port_name_t port) 

char msg_buf[KERN_LOADER_REPLY_INMSG_SIZE]; 
msg_header_t *msg (msg_header_t *)msg_buf; 
kern return t r; 

while (1) { 

/* Receive the next message in the queue. */ 
msg->msg_size = KERN_LOADER_REPLY_INMSG_SIZE; 

msg->msg_local-port = port; 

r = msg_receive(msg, MSG_OPTION_NONE, 0); 

I 

if (r != KERN_SUCCESS) 
mach_error("listen msg_receive", r); 

exit(l); 

/* Handle the message we just received. */ 

kern_loader_reply_handler(msg, &kern loader_reply); 

kern return_t log_data(void *arg, printf_data_t log_data, unsigned 
int log_data_count) 

/* Print the string we were passed, with our prefix. */ 

printf("log_data: %s", log_data); 

/* Deallocate the memory used for the string. */ 

vm_deallocate(task_self(), (vm_address_t) log_data, 

log_data_count*sizeof(*log_data»; 

4-132 Chapter 4: C Functions 



/* Get another log message. */ 
r = kern_loader_get_log(kl_port, server_com-port, reply-port); 

if (r != KERN_SUCCESS) { 

kern_loader_error("Error calling kern_loader_get_logll, r); 
exit (1) ; 

return KERN_SUCCESS; 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_LOADER-UNKNOWN_SERVER: The server is either unknown or has been 
deallocated. 

KERN_LOADER_SERVER_UNLOADED: The server is only allocated, not loaded. 

KERN_LOADER_PORT_EXISTS: Someone is already receiving log messages for 
this server. 

SEE ALSO 

kern )oader )og_leveIO, kern_loader_look _ upO, kern )oader Jeply _handlerO, 
kern _loader ~erver _com JlortO 

SUMMARY 

SYNOPSIS 

Load a loadable kernel server 

#include <mach.h> 
#include <kernservlkern loader.h> 

kern_return_t kern )oaderJoad _server(prirtjloader yort, 
servecname_t seT1ler _ narrte) . 

ARGUMENTS 

loader yort: kern )oader's port, obtained from kern _Ioader)ook.:.... upO. 

seT1ler.:.. n:qme, 1hestring associated with the server. Forexample, the MIDI driver's 
name is "midi". 

DESCRIPJ'ION . 

This function loadsaloadablekernel server that nas already been allocated. If the 
server 's relocatable object file has changed since allocation, then the server is allocated 
again from scratch .. This function has no effect on servers that are already loaded; it 
simply returns KERN_SUCCESS. 



EXAMPLE 

/* Get kern_loader's port. */ 

error=kern_loader_look_up(&loader_port); 

if (error != KERN_SUCCESS) ( 

kern_loader_error("Couldn't find kern loader's port", error); 

exit (1) ; 

/* Load the server. */ 

error=kern_loader_load_server(loader_port, "midi"); 

if (error != KERN_SUCCESS) ( 

kern_loader_error("Cou1dn't load the server", error); 

exit(2); 

RETURN 

KERN_SUCCESS: The server was successfully loaded. 

KERN_LOADER_UNKNOWN_SERVER: server_name wasn't recognized. 

KERN_LOADER_SERVER_ WONT_LOAD: The server couldn't be loaded. 

SEE ALSO 

kern Joader Jook _ upO, kern Joader _unload _serverO 

kern loader log levelO - --
SUMMARY Set the level of data being logged by a kernel server 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern loader.h> 

kern_return_t kern_loader JogJevel(poret loader yort, poret server_com yort, 
int log_level) 

ARGUMENTS 

loader yort: kern_loader's port, obtained from kern_loaderJook_upO. 

server _comyort: The loadable kernel server's communication port, obtained from 
kern_loader_server _com_portO. 

log_level: An integer indicating the minimum priority of data to be logged. A value of 
zero turns logging off. 

4-134 Chapter4: C Functions 



DESCRIPTION 

This function determines which data logged by a kernel server gets kept. When a 
loadable kernel server is first loaded, none of its log messages are kept since its log level 
is initialized to zero. If you set log_level to a value greater than zero, then messages 
logged at a priority equal to or higher than log_level are kept. If you reset the log level 
to zero, no more log messages are kept until the log level is once again set to a positive 
value. 

Each kernel server can have its own conventions for log priorities; the values defined in 
the header file sys/syslog.h are one possible convention. 

EXAMPLE 

r = kern_loader_look_up(&kl_port); 
if (r != KERN_SUCCESS) { 

mach_error("Can't find kernel loader", r); 
exit (1) ; 

/* Get the server's communication port. */ 

r =task_by_unix~id(task_self(), 0, &kern_port}; 
if (r != KERN_SUCCESS) { 

mach_error(tlError looking up kernel's port", r); 
exit.(I) ; 

r =' kern_loa<;ier_server_com_port(kl~ort, kern~ort, MYDRlVER_NAME, 
&server_com~ort); 

if (r 1= KERN_SUCCESS) { 

} 

kern_loader_error(nError looking up server 'com'port n , r); 
exit (1) ; 

1* Set the log level so we'll get log messages. */ 
r = kern_loader_log~level(kl~ort, server_co~~ort, LOG.;;..NOTICE); 
if (r != KERN_SUCCESS) { 

kern_loader_error(nCan't change log level", r); 
exit(l); 

RETURN 
. . 

KERN_SUCCESS: Theloglevel was successfully set. 
.\... . . . 

KERN_LOADER_VNKNOWN_SERVER: server _comyott wasn't valid. 

KERN_LOADER_SERVER_ UNLOADED: The . server i'sn'tttirrently.loaded. 

SEE ALSO 

kern Joader .• Jook--. up(),kern Joader _server _com _portO. kern_loader _log_leveIO 



kern loader look upO - - -

SUMMARY 

SYNOPSIS 

Get kernJoader's port 

#include <mach.h> 
#include <kernserv/kern Joader _ types.h> 

ARGUMENTS 

loader yort: Returns the port on which kern Joader receives our messages. 

DESCRIPTION 

This function returns the service port for the kernel-server loader. 

EXAMPLE 

/* Get kern_loader's port. */ 

error=kern_loader_look_up(&loader_port); 

if (error != KERN_SUCCESS) { 
kern_loader_error("Couldn't find kern loader's port", error); 

exit(l); 

RETURN 

KERN_SUCCESS: The call succeeded. 

SEE ALSO 

kern Joader _server_com yortO 

kern_loader yingO 

SUMMARY Request a synchronization message 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern _loader _ types.h> 

4-136 Chapter 4: C Functions 



ARGUMENTS 

loader yort: kernJoader's port, obtained from calling kern_loader_look_upO. 

pingyort: The port to which the ping message should be sent. 

id: A value to be sent in the message. You can use this as you wish. 

DESCRIPTION 

You can use this function to make sure that all outstanding status messages have been 
sent to your program. For example, if you call kern_loader_status yortO, you might 
want to call kern Joader yingO at some point afterward. When you receive the ping 
message, you'll know that you have received all status messages that were queued 
before you called kern_loader yingO. 

Another reason to call kern Joader yingO is to check whether kern_loader has fallen 
into an unresponsive state. 

You must implement the ping message yourself, as described in Chapter 3. 
kernJoader yingO returns a value indicating whether the message was successfully 
sent to pingyort. 

EXAMPLE 

r = kern_loader look up(&kl port); 

if (r != KERN_SUCCESS) { 

mach_error ("kl_util: can't find kernel loader", r); 

exit (1); 

r = port_allocate (task_self(), &reply_port); 

if (r != KERN_SUCCESS) { 

mach_error ("kl_util: can't allocate reply port", r); 

exit (1); 

/* Create a thread to listen on replYYort. */ 
<::thread_detach(cthread_fork((cthread_fn_t)ping_thread, 

(a.ny_t)replyyort»; 

1* */ 

/* Get a ping message sent to the reply port. *1 
r'7kern_loader_ping(kl_port, replyyort, 0); 

/* Wait for ping() to kill us. Exit if we receive a signal. */ 
pause () ; 

exit(O); 

kern_loader "ping() . 4-137 



kern_loader_reply_t kern_loader_reply = { 

0, /* argument to pass to function */ 

0, /* timeout for rpc return msg_ send */ 

0, /* string function */ 
ping, /* ping function */ 

0 /* log~data function */ 
} ; 

void ping_thread(port name t port) 

char msg buf[KERN LOADER_REPLY_INMSG_SIZE]; 

msg_header_t *msg (msg_header_t *)msg_buf; 

kern_return_t r; 

/* message handling loop */ 
while (TRUE) { 

/* Receive the next message in the queue. */ 

msg->msg_size = KERN_LOADER_REPLY INMSG SIZE; 
msg->msg_local-port = port; 

r = msg_receive(msg, MSG_OPTION_NONE, 0); 

if (r != KERN_SUCCESS) 

break; 

/* Handle the message we just received. */ 

kern_loader_reply_handler(msg, &kern loader_reply); 

/* We get here only if msg_receive returned an error. */ 

mach_error("ping_thread receive", r); 
exit (1) ; 

/* This function is called after a kern loader_ping. */ 

kern return t ping (void *arg, int id) 

exit (0) ; /* Kill this process. */ 

SEE ALSO 

kern_loader Jeply _ handlerO 

4-138 Chapter4: C Functions 



kern loader reply handlerO - - -

SUMMARY 

SYNOPSIS 

Handle a message from the kernel-server loader 

#include <mach.h> 
#include <kernserv/kern Joader ]eply _ handler.h> 

kern_return_t kern_loader ]eply _ handler(ms~headect *msg, 
kern_Ioadecreply _t * kern_loader Jeply) 

ARGUMENTS 

msg: The message you just received from the kernel-server loader. 

kern_loader Jeply: A pointer to the structure that specifies which of your functions 
handle each type of reply from the kernel-server loader. 

DESCRIPTION 

You must use this function if you use kern Joader _pingO, kern Joader _get JogO, or 
kern_loader_statusyortO. Those routines cause an asynchronous reply message 
from the kernel-server loader; this reply message must be passed to 
kern_loader]eply_handlerO, which forwards the message's data to your 
pingJunc(), logJunc(), or stringJuncO function. 

This function returns the value that is returned by your pingJunc(), logJunc(), or 
stringJunc() function. See Chapter 3 for more information on implementing these 
functions. 

EXAMPLE 

kern loader_reply_t kern_loader_reply = { 

} ; 

0, /* argument to pass to function */ 
0, 
0, 
0, 
log_data 

/* timeout for rpc return msg_send */ 
/* string function */ 
/* ping function */ 
/* log_data function */ 

void listen(port-pame_t port) 

char msg_buf[KERN_LOADER_REPLY_INMSG SIZE); 
msg_header_t *msg = (msg_header_t *)msg_buf; 

kern return t r; 



while (1) { 

SEE ALSO 

/* Receive the next message in the queue. */ 

msg->msg_size = KERN_LOADER_REPLY_INMSG_SIZE; 

msg->msg_local-port = port; 
r = msg_receive(msg, MSG_OPTION_NONE, 0); 

if (r != KERN_SUCCESS) { 

mach_error("listen msg_receive", r); 

exit (1); 

/* Handle the message we just received. */ 

kern_loader_reply_handler(msg, &kern_loader_reply); 

kern _loader_get _,ogO, kern )oader yingO, kern _loader_status yortO 

SUMMARY 

SYNOPSIS 

Get a loadable kernel server's communication port 

#include <mach.h> 
#include <kernservlkern loader.h> 

kem_retum_t kern _loader_server _com yort(port_t loader ...port, port_t task "'port, 
servecname_t server_name, port_t * server _com "'port) 

ARGUMENTS 

loader "'port: kern_loader's port, obtained from calling kern _loader_look _ upO. 

task "'port: The kernel port for the task in which the loadable kernel server is executing. 
This is retumedby kern)oader_server_taskyortO. 

server_name: The string associated with the server. For example, the MIDI driver's 
name is "midi". 

server_com "'port: Returns the server's communication port. 

DESCRIPTION 

A loadable kernel server's communication portis used for logging-related functions, 
such as kern)oader_get)ogO and kern_loader_log_leveIO. 

4-140 Chapter4: C Functions 



EXAMPLE 

/* Get kern_loader's port. */ 

r = kern_loader_look_up(&kl_port); 

if (r != KERN_SUCCESS) { 

mach_error("Can't find kernel loader", r); 

exit(l); 

/* Get the kernel's task port. */ 

r = task_by_unix_pid(task_self(), 0, &kern-port); 

if (r != KERN_SUCCESS) { 

mach_error("Error looking up kernel's port", r); 

exit(l); 

/* Get the server's com port. */ 
r = kern_loader_server_coffi_port(kl_port, kern-port, MYDRIVER_NAME, 

&server_com-port ); 
if (r != KERN_SUCCESS) { 

kern_loader_error("Error looking up server com port", r); 

exit(l); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_LOADER_NO_PERMISSION: task yort wasn't the server's task port. 

KERN_LOADER_ UNKNOWN_SERVER: server_name wasn't recognized. 

SEE ALSO 

kern_loader _getJogO, kern Joader _logJeveIO, kern Joader _look _ upO 

SUMMARY Get information about a kernel server 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern _loader Jeply.h> 

kem_retum_t kern_loader_server _ info(port_t loader yort, port_t task yort, 
server_narne_t server_name, servecstate_t *server _state, 
vrn_address_t *load _address, vrn_size_t *load _size, server_reloc_t relocatable, 
servecreloc_t loadable, port_narne_array_t *port_list, 
unsigned int *port_list_count, port_narne_string_array_t *port_names, 
unsigned int *port _names_count, boolean_array _t *advertised, 
unsigned int *advertised _count) 



ARGUMENTS 

loader yort: kern_loader's port, obtained from calling kern Joader Jook _ upO. 

task yort: The ke~el 's task port, obtained using task_by _unix yidO. Specify 
PORT_NULL if you don't want to have data returned in port_list. 

server_name: The string associated with the server. For example, the MIDI driver's 
name is "midi". 

server state: Returns the state of the loadable kernel server. The value is one of the 
following: Zombie, Allocating, Allocated, Loading, Loaded, Unloading, 
Deallocated (as defined in the header file kernserv/kernJoader_types.h). 

load_address: Returns the address in the kernel address space that the kernel server 
starts at. 

load_size: Returns the number of bytes used by the kernel server. 
load_address + load_size - lis the last address in the kernel map that's used by the 
kernel server's text and data. 

relocatable: Returns the location of the relocatable object file for this server. 

loadable: Returns the location of the loadable object file (if any) for this server. This 
is a file created by kern Joader from relocatable and then loaded against Imach. 

port _list: Returns the ports that the kernel server has made available to kern Joader, 
using the HMAP or SMAP load command. If you don't pass in the correct 
task yort, this list will consist of null ports. 

port_list _count: Returns the number of ports that the kernel server has made available 
to kern_loader. Even if taskyort isn't valid, and so nothing is returned in 
port _list, this argument holds the number of ports that would have been returned. 

port_names: Returns the strings associated with the ports in port_list. 

port_names _count: Returns the number of names in port_names. This number is the 
same as port_list _count. 

advertised: For each entry in port _list, returns true if the port is advertised with the 
Network Name Server. 

advertised count: Returns the number of entries in advertised. This number is the 
same as port_list_count. 

DESCRIPTION 

kern_loader_server jnfoO returns information about a particular loadable kernel 
server. 

4·142 Chapter4: C Functions 



EXAMPLE 

/* Get kern_loader's port. */ 

error=kern_loader_look_up(&loader-port); 

if (error != KERN_SUCCESS) { 
kern_loader_error("Couldn't find kern loader's port", error); 

exit (1); 

/* Get the information. */ 

error=kern_loader_server_info(loader-port, PORT_NULL, "midi", 

&server_state, &load_addr, &load_size, relocatable, loadable, 

(port_name_array_t *)&scratch, &count, &port_names, &count, 

&advertised, &count); 
if (error != KERN_SUCCESS) 

kern_loader_error("Couldn't get info on midi", error); 

else 

printf("The relocatable object file is located at: %s\n", 

relocatable); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_LOADER_UNKNOWN_SERVER: server_name wasn't recognized. 

SEE ALSO 

kern Joader Jook _ upO, kern_loader_server _listO 

SUMMARY Get the names of all known servers 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern loader.h> 

kem_return_t kern_loader_server _Iist(porct loader yort, 
server_name_array_t *server _names, unsigned int *server _names_count) 

ARGUMENTS 

loader yort: kernJoader's port, obtainedfrQm calling ker~loaderJook_upO. 

server _names: Returns an array whose entries arethe stringsassc:>ciated with all known 
servers. 

server_names count: Returns the number of entries in server names. 



DESCRIPTION 

Use this function to get the string associated with each loadable kernel.server that" 
kern Joader is keeping track of. 

EXAMPLE 

r = kern_loader_look_up(&loader-port); 

if (r != KERN_SUCCESS) { 
kern_loader_error("Couldn't get loader_port", r); 

exit (1) ; 

r = kern_loader_server_1ist(loader-port, & server_names, &count); 
if (r != KERN_SUCCESS) 

kern_loader_error("Couldn't get the list", r); 

else 
for (i=O; i<count; i++) 

printf("Server %d: %s\n", i, server_names[i]); 

RETURN 

KERN_SUCCESS: The call succeeded. 

SEE ALSO 

kern Joader Jook _ upO, kern_loader_server _infoO 

SUMMARY 

SYNOPSIS 

Get the task port of a loadable kernel server 

#include <mach.h> 
#include <kernservlkern _Ioader.h> 

kern_return_t kern _loader_server _task jlort(port_t loader yort, port_t kernel yort, 
servecname.:Jserver ....:.name, port_t *server _task yort) 

ARGUMENTS 

loaderyort: kern_loader's port, obtained from calling.kem _loader_look _ upO. 

kernel yort: The kernel's task port. 

server_name: The string associated with a loaded server. For example, the MIDI 
driver's name is "midi". 

server :.,./askyort: Returns· the kernel port for the task in which the loadable kernel 
server is executing. 

4-144 Chapter4: C Functions 



DESCRIPTION 

This function returns the task port of the server. Each loadable kernel server currently 
executes in its own task, but uses the kernel address space. The port returned by 
kern _loader_server _task J>ortO isn't necessary for any other kernel-server loader 
functions, but might be useful for gathering debugging information. 

EXAMPLE 
port_t 

kern return t 
port_name_array_t 

unsigned int 

port_type_array_t 

loader_port, kernel_task, server-port; 

r; 
names; 

i, names_count, types_count; 

types; 

r = kern_loader_look_up(&loader-port); 
if (r != KERN_SUCCESS) { 

kern_loader_error("Couldn't get loader_port", r); 
exit (1); 

r = task by unix_pid(task_self(), 0, &kernel_task); 

if (r != KERN_SUCCESS) { 
kern_loader_error("Couldn't get kernel_task", r); 

exit (2) ; 

r = kern_loader_server_task-port(loader_port, kernel_task, "midi", 

&server_port); 

if (r != KERN_SUCCESS) 

kern_loader_error("Couldn't get the server port", r); 

else 
printf("Midi's task port is %d\n", server-port); 

r = port_names«task_t)server_port, &names, &names_count, &types, 

&types_count); 

if (r != KERN_SUCCESS) 
mach_error ("Error calling port_names ()", r); 

else 

for (i=O; i<names_count; i++) 

printf("Port %d has type %d\n", names[i], types[i]); 

RETURN 

KERN_SUCCESS: The call succeeded. 

KERN_LOADER_NO_PERMISSION: taskyort wasn't the server's task port. 

KERN_LOADER_UNKNOWN_SERVER: server_name wasn't recognized. 

SEE ALSO 

kern )oader _look _ upO, kern_loader_server _com J>ortO 



kern _loader_status _portO 

SUMMARY Specify a port for kern _loader to send status to 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern loader.h> 

ARGUMENTS 

loader yort: kern_loader's port, obtained from calling kern_Ioader_look_upO. 

listen yort: The port we want to receive the status messages on. 

DESCRIPTION 

Use this function to get general status from kern_loader. You can receive many reply 
messages as the result of just one call to kern Joader _status_portO. 

You must define the function that handles status reply messages, as described in Chapter 3. 
This function receives the status string along with its priority, using the priorities defined in 
the header file sys/syslog.h (LOG_EMERG, LOG_ALERT, and so on). 

EXAMPLE 

r = kern_loader_look_up(&kl_port); 

if (r != KERN_SUCCESS) { 

mach_error ("kl_util: can't find kernel loader", r); 
exit (1) ; 

r = port_allocate (task_self(), &status_port); 

if (r != KERN_SUCCESS) { 

mach_error ("kl_util: can't allocate reply port", r); 

exit (1); 

1* Get generic status messages on this port. *1 
r = kern_loader_status_port(kl_port, status_port); 

if (r != KERN_SUCCESS) { 

4-146 Chapter 4: C Functions 

kern_loader_error("Couldn't specify status port", r); 
exit(l); 



1* Create a thread to listen on status_port. *1 
cthread_detach(cthread_fork«cthread_fn_t)receive_thread, 

(any~t)status_port)); 

1* 
* Sleep for a while so we can enter kl_util commands at a shell 

* window. The output of all commands (except status lines from 

* kl util -s) will show up in both the window that's running this 
* program and in the window that's running kl util. (kl_util 

* also has a status port registered.) 

*1 
sleep(30); 

exit.(O) ; 

kern_Ioader_reply_t kern_Ioader_reply = { 

} ; 

0, 1* argument to pass to function *1 
0, 
print_string, 

0, 

1* timeout for rpc return msg_send *1 
1* string function *1 
1* reply~ping function *1 
1* log_data functio'n *1 o 

char 

msg_header_t *msg 

kern_return_t r; 

1* message handling loop *1 
while (TRUE) { 

1* Receive the next message in the queue. *! 

msg->msg~size = KERN~LOADER_R~PLY INMSG SIZE; 

msg->msg_Iocal.:....port = port; 

r = msg~receive (msg, MSG_OPTION_NPNE, 0); 

if (r !=KERN_SUCCESS) 

break; 

1* Hanqle the message we just received. "·1 
kern_loader _reply_handler (msg, . &kE?rn _loader,---reply) ; 

1* We get here ion'lyif,msg_r,eceive returned an ,error. *1 
mach_error ("receive_thread reCe'ive", r); 

exi.t (1) ; 

kern .Joader _Status yort() 4-147 



/* Called every time kern_loader has status to report. */ 

kern_return_t print_string(void *arg, printf_data_t string, 

u int string_count, int level) 

/* If the string is empty, return. */ 

if (string_count == 0 I I !string) 

return KERN_SUCCESS; 

/* Print the string we were passed, with our prefix. */ 

printf("print_string: is", string); 

return KERN_SUCCESS; 

RETURN 

KERN_SUCCESS: The call succeeded. 

SEND _INVALID _PORT: listen yort isn't a valid port. 

SEE ALSO 

kern _loader_look _ upO, kern_loader Jeply _ handlerO 

kern Joader _unload _ serverO 

SUMMARY Unload a server 

SYNOPSIS 

#include <mach.h> 
#include <kernserv/kern loader.h> 

kern_return_t kern_loader_unload _ server(port_t loader yort, port_t task yort, 
servecname_t server_name) 

ARGUMENTS 

loader yort: kernJoader's port, obtained from calling kernJoader_look_upO. 

taskyort: The kernel's task port, obtained using task _ bL unix yidO. 

server_name: The string associated with the server. For example, the MIDI driver's 
name is "midi". 

DESCRIPTION 

Use this function to unload a running loadable kernel server, leaving it allocated. 

4-148 Chapter 4: C Functions 



EXAMPLE 

r = kern loader look_up(&loader_port); 
if (r != KERN_SUCCESS) { 

kern_loader_error("Couldn't get loaderyort", r); 
exit(l); 

r = task_by_unixyid(task_self(), 0, &kernel_task); 
if (r != KERN_SUCCESS) { 

kern_loader_error("Couldn't get kernel_task", r); 
exit(2); 

r = kern_loader_unload_server(loader_port, kernel_task, 
"NextDimension"); 

if (r != KERN_SUCCESS) 

kern_loader_error("Couldn't unload the server", r); 

RETURN 

KERN_SUCCESS: The server was successfully unloaded. 

KERN_LOADER_SERVER_UNLOADED: The server was already unloaded. 

KERN_LOADER_NO~PERMISSION: task yort wasn't the kernel's task port. 
(Make sure task ..,.;bL unix yidO is called by a process with superuser permission.) 

KERN_LOADER_UNKNOWN_SERVER: server_name wasn't recognized. 

SEE ALSO 

kern_loader )oad _serverO, kern )oader _look _ upO 



4-150 



Index 

array declaration in MiG 2-17 
asynchronous messages 3-3 

Bootstrap Server functions 4-112 
bootstrap_check_inO 4-112 
bootstrap_create _ serviceO 4-113 
bootstrap_get _ unpriv _portO 4-114 
bootstrap _ infoO 4-115 
bootstrap~look_upO 4-116 
bootstrap_look_up _ arrayO 4-117 
bootstrap JegisterO 4-119 
bootstrap _ statusO 4-120 
bootstrap _ subsetO 4-121 

C thread functions 1-23, 4-2 
conditionvariable 1-24 

functions 4-2 
condition _ allocO 4-2 
condition _ broadcastO 4-2 
condition _ clearO 4-3 
condition JreeO 4-4 
condition_initO 4-5 
condition _ nameO 4-6 
condition_set _ nameO 4-6 
condition _ signalO 4-6 
condition _ waitO 4-7 
cthread _ abortO 4-8 
cthread _ countO 4-9 
cthread _ dataO 4-9 
cthread_detachO 4-10 
cthread ~ errnoO 4~ 11 
cthread .;.. exitO 4-11 
cthread_forkO 4-12 
cthread .JoinO 4-13 
cthread_limitO 4-13 
cthread_maxyriorityO 4-15 
cthread _nameO 4-14 
cthread _priorityO 4-15 
cthread_selfO.4-17 
cthread_set_dataO 4-9 
cthread -,-set _ errno _ self 0 .4-17 
cthread _ setJimit04-13 
cthread_set_nameO 4-14 
cthread _ threadO 4-18 
cthread yieldO 4-19 

current thread 1-35 

debugger implementation in Mach 1-33 
demand paging 1-12 

error handler implementation in Mach 1-32 
error specification in MiG 2-22 
exc_serverO 4-22 
exception 

classification 1-36 
handling 1-27 
port 1-31 

exception _ raiseO 4-26 

functions 
Bootstrap Server functions 4-112 
kernel functions 4-22 
kernel-server loader functions 3c2, 4-126 
Mach functions 4-1 
Network Name Server functions 4-123 
thread functions 1-23,4-2 
virtual memory functions 1-15, 4-100 

GDB enhancements for Mach 1-35 

host_infoO 4-27 
host_kernetversionO 4-30 
host _priv _ self 0 4-34 
hostyrocessor_set .... privO 4-31 
host_processor_setsO 4-32 
host_processorsO 4-33 
host_self 0 4-34 

import declaration in MiG 2-19 
inheritance of memory 1-12 
interprocess communication 1-14, 2-1 
IPC 1-14,2-1 

kern loader 3-1 
kern_loader _ abortO 4-126 
kern Joader _add _ serverO 4-127 
kern Joader _delete _ serverO 4-128 
kern_loader_errorO 4-129 
kern_loader_error _ stringO 4-129 
kern Joader _getJogO 4-130 

Index-l 



kern_loader_load_serverO 4-133 
kern_loader_log_leveIO 4-134 
kern_loader_look_upO 4-136 
kern_loaderyingO 4-136 
kern_loader Jeply _ handlerO 4-139 
kern _loader_server _com_portO 4-140 
kern_loader_server _ infoO 4-141 
kern _loader_server _listO 4-143 
kern_loader_server _task_portO 4-144 
kern_loader_status _portO 4-146 
kern_loader_unload _ serverO 4-148 
kernel 1-4 

functions 4-22 
kernel server 3-1 
kernel-server loader 3-1 

functions 3-2,4-126 

loadable kernel server 3-1 

Mach 1-1 
exception handling 1-27 
functions 4-1 
Interface Generator 2-7 
kernel See kernel 
messages 1-7, 2-1 
ports 1-7 
scheduling 1-21 
server 2-1, 2-8 
virtual memory management 1-11 

mach_errorO 4-35 
mach_error_stringO 4-35 
mach_NeXT_exceptionO 4-36 
mach_NeXT _exception _ stringO 4-36 
map_fdO 4-37 
memory-mapped file 1-14 
messages in Mach 1-7, 2-1 

creating by hand 2-4 
MiG 2-7 

compile command 2-26 
specification file 2-14 
syntax summary 2-23 

mig shell command 2-26 
msgJeceiveO 4-38 
msgJPcO 4-41 
msg_ sendO 4-42 
msgtype specification 2-21 
mutex variable 1-24 

functions 4-2 
mutex_allocO 4-2 
mutex _ clearO 4-3 
mutex _freeO 4-4 
mutex_initO 4-5 
mutex_lockO 4-19 
mutex _ nameO 4-6 

Index-2 

mutex_set_nameO 4-6 
mutex_try_lockO 4-20 
mutex_unlockO 4-21 

netname_check)nO 4-123 
netname _ check_ outO 4-124 
netname)ook_upO 4-125 
network 

port 1-11 
server 1-10 
transparency 1-10 

Network Name Server functions 4-123 

operation descriptions in MiG 2-19 
options declarations in MiG 2-21 

paging object 1-14 
pointer type declaration in MiG 2-18 
port in Mach 1-7 

access rights 1-8 
names 1-9 
queue 1-9 

port set 1-7,1-9 
port allocateO 4-44 
port deallocateO 4-45 
port_extract JeceiveO 4-46 
port_extract_seridO 4-46 
port_insert JeceiveO 4-47 
port)nsert _ sendO 4-47 
port _ namesO 4-48 
portJenameO 4-49 
port_set_addO 4-51 
port set allocateO 4-52 
port_set_backlogO 4-53 
port_set_backupO 4-54 
port set deallocateO 4-55 
port_setJemoveO 4-56 
port_set_statusO 4-57 
port_statusO 4-58 
port_typeO 4-59 
processor _ assignO 4-60 
processor controlO 4-60 
processor exitO 4-60 
processor_get _ assignmentO 4-60 
processor infoO 4-61 
processor set createO 4-63 
processor_set _ defaultO 4-63 
processor_set _ destroyO 4-64 
processor_set _ infoO 4-64 
processor_set _max _priorityO 4-66 
processor_set _policy _ disableO 4-67 
processor_set _policy _ enableO 4-67 
processor_set _ tasks{) 4-68 
processor set threadsO 4-70 



processor _ startO 4-60 
protection of memory 1-12 

rcsid specification 2-23 
remote procedure call 2-1 
RPC 2-1 

scheduling of threads 1-21 
server See kernel server or Mach server 
serverprefix specification 2-22 
simport declaration in MiG 2-19 
skip in MiG 2-20 
struct declaration in MiG 2-17 
subsystem statement in MiG 2-14 

task 1-4 
port 1-5 

task_assignO 4-71 
task_assign _ defaultO 4-71 
task_by _unix yidO 4-71 
task _ createO 4-72 
task _get_ assignmentO 4-74 
task_get _bootstrap yortO 4-75 
task_get _exception yortO 4-75 
task_get_notifyyortO 4-75 
task_get_special_portO 4-74 
task_infoO 4-76 
task_notifyO 4-74 
task yriorityO 4-78 
task _ resumeO 4-79 
task _ self 0 4-74 
task _ set_bootstrap yortO 4-75 
task_set _exception yortO 4-75 
task_set _notify yortO 4-75 
task _ set_specia~portO 4-74 
task _suspendO 4-80 
task _ terminateO 4-80 
task _ threadsO 4-81 
thread 1-4 

functions 1-23,4-2 
policy 1-22 
port 1-5 
priority 1-21 

thread _ abortO 4-82 
thread _ assign() 4-84 
thread_assign _ defaultO 4-84 
thread _ createO 4-84 
thread_get _ assignmentO 4-85 
thread_get _exception yortO 4-86 
thread ~et _reply-portO 4-86 
thread _get _ specialyortO 4-85 
thread_get _ stateO 4-87 
thread _infoO 4-88 
thread _ max_priorityO 4-93 

threadyolicyO 4-91 
thread _priorityO 4-93 
threadJeplyO 4-85 
thread JesumeO 4-95 
thread_self 0 4-85 
thread_set _exception yortO 4-86 
thread_set Jeply yortO 4-86 
thread_set _special_portO 4-85 
thread_set _ stateO 4-87 
thread _suspendO 4-96 
thread _ switchO 4-97 
thread _ terminateO 4-98 
type declaration in MiG 2"15 

uimport declaration in MiG 2-19 
UNIX 1-1 
unix _pidO 4-99 
userprefix specification 2-22 

virtual memory 
functions 1-15,4-100 
managing in Mach 1-11 

vm _ allocateO 4-100 
vm_copyO 4-101 
vm _ deallocateO 4-103 
vm JnheritO 4-104 
vm _protectO 4-105 
vm JeadO 4-106 
vmJegionO 4-108 
vm _ statisticsO 4-109 
vm.-:writeO 4-110 

waittime specification 2-21 

Index-3 



Index-4 



NeXT Programming 

NeXT Operating System Software 

The Mach operating system is the foundation on which the NeXTStep 

programming environment is built. Mach is fully compatible with UNIX 
4.3BSD (Berkeley Software Distribution), but is better at handling advanced 

networking or multiple processor computer systems. 

NeXT Operating System Software describes NeXT's version of Mach and 
documents the C functions that developers can use to access operating 
system services. These services include: 

• Multithreading, which lets an application do work while remaining 
responsive 

• Interprocess and interapplication communication using Mach messages 

• Thread and task scheduling 

• Virtual memory management 

The NeXT Developer's Library is essential reading for every NeXT step 
enthusiast, providing authoritative, in-depth descriptions of the NeXTstep 

programming environment. Other titles in the NeXT Developer's Library 

from Addison-Wesley Publishing Company include: 

• NeXTstep Reference 
• Sound, Music, and Signal Processing on a NeXT Computer: Concepts 

• Sound, Music, and Signal Processing on a NeXT Computer: Reference 

• NeXT Development Tools 

NeXT Computer, Inc., is a state-of-the-art computer manufacturer and 
software developer located in Redwood City, California. 

>$24.95 USA 
> .$31.95 CANADA 

52495> 

9 780201 581317 
Text printed on recycled paper 

Addison-Wesley Publishing Company, Inc. 
ISBN 0-201-58131-0 

. 58131 


	00-001
	00-002
	00-003
	00-004
	00-005
	00-01
	00-02
	00-03
	00-04
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	04-104
	04-105
	04-106
	04-107
	04-108
	04-109
	04-110
	04-111
	04-112
	04-113
	04-114
	04-115
	04-116
	04-117
	04-118
	04-119
	04-120
	04-121
	04-122
	04-123
	04-124
	04-125
	04-126
	04-127
	04-128
	04-129
	04-130
	04-131
	04-132
	04-133
	04-134
	04-135
	04-136
	04-137
	04-138
	04-139
	04-140
	04-141
	04-142
	04-143
	04-144
	04-145
	04-146
	04-147
	04-148
	04-149
	04-150
	Index-01
	Index-02
	Index-03
	Index-04
	xBack

