
NeXTstepTM Reference

NeXTstepM Reference

NeXTstepM Reference

NeXT Developer's Library
NeXT Computer, Inc .

• ~~

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts· Menlo Park, California· New York
Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan
Paris • Seoul • Milan • Mexico City • Taipei

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

Copyright ©1991 by NeXT Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, The NeXT logo, NeXTbus, NeXTstep, Digital Librarian, Digital Webster, Interface Builder, and
Workspace Manager are trademarks of NeXT Computer, Inc. Display PostScript and PostScript are registered
trademarks of Adobe Systems Incorporated. WriteNow is a registered trademark of TlMaker Company. UNIX
is a registered trademark of UNIX Systems Laboratories, Inc. All other trademarks mentioned belong to their
respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

ISBN 0-201-58136-1

This manual describes Release 2.

Written by NeXT Publications.

This book was printed on recycled paper.

1 2345789 -AL-9594939291
First printing, November 1991

Contents

Introduction

1-1 Chapter 1: Constants and Data Types
1-3 Constants
1-8 Data Types

2-1 . Chapter 2: Class Specifications
2-3 How to Read the Specifications
2-11 Common Classes
2-63 Application Kit Classes

3-1 Chapter 3: C Functions
3-3 NeXTstep Functions
3-148 Run-Time Functions

4-1 Chapter 4: PostScript Operators .

5-1 Chapter 5: Data Formats

Index

Introduction

3 Using Documented API

4 How This Manual is Organized

4 Conventions
4 Syntax Notation

Intro-l

Intro-2

Introduction

This manual describes the Application Programming Interface (API) for the NeXTstep®
development environment. It's part of a collection of manuals called the NeXT™
Developer's Library; the illustration on the first page of this manual shows the complete set
of manuals in this Library.

In two volumes, this manual provides detailed descriptions of all classes, functions,
operators, and other programming elements that make up the API, listed alphabetically
within each category for easy reference. Some topics discussed here aren't covered in
detail; instead, you're referred to a generally available book on the subject, or to an on-line
source of the information (see "Suggested Reading" in the NeXT Technical Summaries
manual.

For many programmers, only a fraction of the information in this manual will have to be
learned; the more sophisticated the application, the more you'll need to understand.

This manual assumes you're familiar with the standard NeXT user interface. Some
experience using a NeXT application, such as the WriteNow® word processor, would be
helpful.

A version of this manual is stored on-line in the NeXT Digital Library (which is described
in the user's manual NeXT Applications). The Digital Library also contains Release Notes
that provide last-minute information about the latest release of the software.

Using Documented API

The API described in this manual provides all the functionality you need to make full use
of the NeXTstep software. If you have questions about using the API, this documentation
and the NeXT Technical Support Department can help you use it correctly. If a feature in
the API doesn't work as described, it's considered a bug which NeXT will work to fix. If
API features change in future releases, these changes will be described in on-line release
notes and printed documentation.

Undocumented features are not part of the API. If you use undocumented features, you run
several risks. First, your application may be unreliable, because undocumented features
won't work the way you expect them to in all cases. Second, NeXT Technical Support can't
provide full assistance in fixing problems that arise, other than to recommend that you use
documented API. Finally, your application may be incompatible with future releases, since
undocumented features can and will change without notice.

Intro-3

How This Manual is Organized

The chapters in this manual are as follows:

• Chapter 1, "Constants and Data Types," lists constants and data types used by the
methods, instance variables, and functions described in the remaining chapters. Not
listed in this chapter are constants and data types specific to a particular class; these are
documented with the associated class in Chapter 2.

• Chapter 2, "Class Specifications," describes the classes defined in the Application Kit
as well as those that come with the NeXT implementation of the Objective-C language.
Each class specification details the instance variables the class declares, the methods it
defines, and any special constants and defined types it uses. There's also a general
description of the class and its place in the inheritance hierarchy.

• Chapter 3, "C Functions," describes in detail the C functions provided by NeXT (except
for Mach functions). It lists the functions in two groups, NeXTstep functions and
run-time functions. Each function's calling sequence, its return value, and any
exceptions it raises are given, in addition to a description of what the function does.

• Chapter 4, "PostScript@ Operators," describes NeXT's extensions to the Display
PostScript@ system. It also lists the standard PostScript operators that have different or
additional effects in the NeXT implementation.

• Chapter 5, "Data Formats," describes the standard data formats recognized by the
pasteboard.

Volume 1 includes the introductory material, all of Chapter 1, and Chapter 2 through the
OpenPanel class in the Application Kit. Volume 2 continues Chapter 2, beginning with the
PageLayout class; it includes Chapters 3, 4, and 5 and the index.

Conventions

Intro-4

Syntax Notation

Where this manual shows the syntax of a method, function, or other programming element,
the use of bold, italic, square brackets [], and ellipsis has special significance, as described
here.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [],
in which case they're to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer rJilename]

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer rJilename ...]

pointer [, filename] ...

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or more
file names separated by commas

Intro-5

Intro-6

Chapter 1
Constants and Data Types

1-3 Constants

1-8 Data Types

1-1

1-2

Constants

Chapter 1
Constants and Data Types

This chapter lists many of the constants and data types used in developing NeXT step
applications. This list includes constants and types defined in the lusr/include
subdirectories objc, dpsclient, appkit, and streams. Not included are constants and types
defined in the header files for the common classes and Application Kit classes: these are
listed with the class descriptions in Chapter 2.

Constants and Data Types are presented in separate sections of this chapter. Each listing
includes a reference to the class header file where the constant or type is defined.

In most cases, the value defined for a constant is arbitrary; you don't need to know the value
to use the constant. In cases where a constant provides access to a meaningful value, the
definition of that value is included in parentheses next to the constant's name.

Name

CLS_CLASS
CLS_META
CLS_INITIALIZED
CLS_POSING
CLS_MAPPED
DPS_ALLCONTEXTS
DPS_ARRAY
DPS_BOOL
DPS_DEF _TOKENTYPE
DPS_ERRORBASE
DPS_EXEC
DPS_EXT_HEADER_SIZE
DPS_HEADER_SIZE
DPS_HI_IEEE
DPS_HI_NATIVE
DPS_IMMEDIATE
DPS_INT
DPS_LITERAL
DPS_LO_IEEE
DPS_LO_NATIVE
DPS_MARK
DPS_NAME

Defined In

objc/objc-c1ass.h
objc/objc-class.h
o bjc/o bjc-c1ass.h
objc/objc-class.h
objc/objc-class.h
dpsc1ient/dpsNeXT.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsclient.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/ dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h

Constants 1-3

DPS_NEXTERRORBASE
DPS_NULL
DPS_REAL
DPS_STRING
DPSSYSNAME
FALSE
NB ITS CHAR
NBITSINT
nil
Nil
NO
NX_ABOVE
NX_ALLEVENTS
NX_ALLOC_ERROR
NX_ALPHAMASK
NX_ALPHASHIFTMASK
NX_ALTERNATEMASK
NX_APPBASE
NX_APPDEFINED
NX_APPDEFINEDMASK
NX_APPKITERRBASE
NX_ASCIISET
NX_BAD _TIFF_FORMAT
NX_BELOW
NX_BIGENDIAN
NX_BLACK (0.0)
NX_BROADCAST
NX_BUFFERED
NX_B YPS CONTEXT
NX_BYTYPE
NX_CANREAD
NX_CANSEEK
NX_CANWRITE
NX_CLEAR
NX_COLORBLACK
NX_COLORBLUE
NX_COLORBROWN
NX_COLORCLEAR
NX_COLORCYAN
NX_COLORDKGRAY
NX_COLORGRAY
NX_COLORGREEN
NX_COLORLTGRAY
NX_COLORMAGENTA
NX_COLORMASK
NX_COLORORANGE
NX_C9~ORPURPLE
NX_COLORRED
NX_COLORWHITE
NX_COLORYELLOW

1-4 Chapter 1: Constants and Data Types

dpsclient/dpsclient.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
appkit/nextstd.h
appkit/nextstd.h
appkit/nextstd.h
objc/objc.h
objc/objc.h
objc/objc.h
dpsclient/dpsN eXT.h
dpsclient/event.h
appkit/tiff.h
appkit/graphics.h
dpsclient/event.h
dpsclient/event.h
appkit/errors.h
dpsclient/event.h
dpsclient/event.h
appkit/errors.h
dpsclient/event.h
appkit/tiff.h
dpsclient/dpsNeXT.h
appkit/tiff.h
appkit/ graphics.h
dpsclient/event.h
dpsclient/dpsNeXT.h
dpsclient/event.h
dpsclient/event.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsNeXT.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/graphics.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h

NX_COMMANDMASK dpsclient/event.h
NX_COMPRESSION_NOT _YET_SUPPORTED

NX_CONTROLMASK
NX_COPY
NX_CURSORUPDATE
NX_CURSORUPDATEMASK
NX_DATA
NX_DATOP
NX_DEFAULTBUFSIZE (16 * 1024)
NX_DIN
NX_DINGBATSSET
NX_DKGRAY (1.0/3.0)
NX_DOUT
NX_DOVER
NX_EOS
NX_EVENTCODEMASK
NX_EXPLICIT
NX_FILE_IO _ERROR
NX_FIRSTEVENT
NX_FIRSTWINDOW
NX_FLAGSCHANGED
NX_FLAGSCHANGEDMASK
NX_FONTCHARDATA
NX_FONTCOMPOSITES
NX_FONTHEADER
NX_FONTKERNING
NX_FONTMETRICS
NX_FONTWIDTHS
NX_FOREVER
NX_FORMAT_NOT_YET_SUPPORTED
NX_FREEBUFFER
NX_FROMCURRENT
NX_FROMEND
NX_FROMSTART
NX_HIGHLIGHT
NX_IMAGE_NOT _FOUND
NX_JOURNALEVENT
NX_JOURNALEVENTMASK
NX_KEYDOWN
NX_KEYDOWNMASK
NX_KEYUP
NX_KEYUPMASK
NX_KITDEFINED
NX_KITDEFINEDMASK
NX_LASTEVENT
NX_LASTKEY
NX_LASTLEFT
NX_LASTRIGHT
NX_LITTLEENDIAN

appkit/tiff.h
dpsclient/event.h
dpsclient/dpsNeXT.h
dpsclient/event.h
dpsclient/event.h
dpsclient/dpsN eXT.h
dpsclient/dpsNeXT.h
streams/streamsimpl.h
dpsclient/dpsNeXT.h
dpsclient/event.h
appkit/graphics.h
dpsclient/dpsN eXT.h
dpsclient/dpsN eXT.h
streams/streams.h
dpsclient/event.h
dpsclient/event.h
appkit/tiff.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
dpsclient/dpsN eXT.h
appkit/tiff.h
streams/streams.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsN eXT.h
appkit/tiff.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/tiff.h

Constants 1-5

NX_LMOUSEDOWN
NX_LMOUSEDOWNMASK
NX_LMOUSEDRAGGED
NX_LMOUSEDRAGGEDMASK
NX_LMOUSEUP
NX_LMOUSEUPMASK
NX_LTGRAY (2.0/3.0)
NX_MESHED
NX_MONOTONICMASK
NX_MOUSEDOWN
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGED
NX_MOUSEDRAGGEDMASK
NX_MOUSEENTERED
NX_MOUSEENTEREDMASK
NX_MOUSEEXITED
NX_MOUSEEXITEDMASK
NX_MOUSEMOVED
NX_MOUSEMOVEDMASK
NX_MOUSEUP
NX_MOUSEUPMASK
NX_MOUSEWINDOW
NX_NEXTCTRLKEYMASK
NX_NEXTLALTKEYMASK
NX_NEXTLCMDKEYMASK
NX_NEXTLSHIFTKEYMASK
NX_NEXTRALTKEYMASK
NX_NEXTRCMDKEYMASK
NX_NEXTRSHIFTKEYMASK
NX_NEXTWINDOW
NX_NOALPHA
NX_NOBUF
NX_NONRETAINED
NX_NOWINDOW
NX_NULLEVENT
NX_NULLEVENTMASK
NX_NUMERICPADMASK
NX_ONES
NX_OUT
NX_PAGEHEIGHT
NX_PLANAR
NX_PLUS
NX_PLUSD
NX_PLUSL
NX_READFLAG

. NX_READONLY
NX_READWRITE
NX_RETAINED
NX_RMOUSEDOWN
NX_RMOUSEDOWNMASK

1-6 Chapter 1: Constants and Data Types

dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/graphics.h
appkit/graphics.h
appkit/graphics.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/color.h
strearns/strearns.h
dpsclient/dpsN eXT.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/dpsN eXT.h
dpsclient/dpsN eXT.h
appkit/tiff.h
appkit/ graphics.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h .
dpsclient/dpsN eXT.h
strearns/strearns.h
strearns/strearns.h
strearns/strearns.h
dpsclient/dpsN eXT.h
dpsclient/event.h
dpsclient/event.h

NX_RMOUSEDRAGGED
NX_RMOUSEDRAGGEDMASK
NX_RMOUSEUP
NX_RMOUSEUPMASK
NX_SATOP
NX_S AVEB UFFER
NX_SHIFTMASK
NX_SIN
NX_SOUT
NX_SOVER
NX_STREAMERRBASE
NX_SYMBOLSET
NX_SYSDEFINED
NX_SYSDEFINEDMASK
NX_TIFF _CANT_APPEND
NX_TIFF _COMPRESSION_CCITFAX3
NX_ TIFF _ COMPRESSION_JPEG
NX_ TIFF _COMPRESSION_LZW
NX_TIFF _COMPRESSION_NEXT
NX_TIFF _COMPRESSION_NONE
NX_TIFF _COMPRES SION_PACKB ITS
NX_TIMER
NX_TIMERMASK
NX_TOPWINDOW
NX_ TRANSMIT
NX_TRUNCATEBUFFER
NX_UNIQUEALPHABITMAP
NX_UNIQUEBITMAP .
NX_USER_OWNS_BUF
NX_ WHITE (1.0)
NX_ WRITEFLAG
NX_ WRITEONLY
NX_XMAX
NX_XMIN
NX_XOR
NX_YMAX
NX_YMIN
NXSYSTEMVERSION
NXSYSTEMVERSION082
NXSYSTEMVERSION083
NXSYSTEMVERSION090
NXSYSTEMVERSION0900
NXSYSTEMVERSION0901
NXSYSTEMVERSION0905
NXSYSTEMVERSION0930
TRUE
TYPEDSTREAM_ERROR_RBASE
YES

dpsclient/event.h
dp~client/event.h

dpsclient/event.h
dpsclient/event.h
dpsclient/dpsNeXT.h
streams/streams .h
dpsclient/event.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
streams/streams.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
streams/streams.h
appkit/obsoleteBitmap.h
appkit/obsoleteBitmap.h
streams/streams.h
appkit/graphics.h
streams/streams.h
streams/streams.h
appkit/graphics.h
appkit/graphics.h
dpsclient/dpsNeXT.h
appkit/graphics.h
appkit/graphics.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
appkit/nextstd.h
objc/typedstream.h
objc/objc.h

Constants 1-7

Data Types

BOOL

DEFINED IN objc/objc.h

typedef char BOOL;

Cache

DEFINED IN objc/objc-class.h

typedef struct objc_cache *Cache;

Category

DEFINED IN objc/objc-class.h

typedef struct objc_category *Category;

Class

DEFINED IN objc/objc.h

typedef struct objc_class *ClaSSi

DPSBinObjRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char attributedType;
unsigned char tag;
unsigned short length;
union {

long int integerVal;
float real Val;
long int nameVal; /* offset or index */
long
long
long

val;

int
int
int

booleanVal;
stringVal; /* offset */
arrayVal; /* offset */

DPSBinObjRec, *DPSBinObj;

1-8 Chapter 1: Constants and Data Types

DPSBinObjGeneric

DEFINED IN dpsclient/dpsfriends .h

typedef struct
unsigned char attributedType;
unsigned char tag;
unsigned short length;
long int val;

DPSBinObjGeneric;

DPSBinObjReal

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char attributedType;
unsigned char tag;
unsigned short length;
float realVal;

DPSBinObjReal;

DPSBinObjSeqRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBinObjRec objects[l];

DPSBinObjSeqRec, *DPSBinObjSeq;

Data Types 1-9

DPSContextRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct t DPSContextRec
char *priv;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct t DPSProcsRec const * procs;
void (*textProc) () ;
void (*errorProc) () ;
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_DPSContextRec *chainParent, *chainChild;
DPSContextType type; /* NeXT addition - denotes type of context */
} DPSContextRec, *DPSContext;

DPSContextType

DEFINED IN dpsclient/dpsfriends.h

typedef enum /* NeXT addition */
dps_machServer,/* a mach binary connection to a window server */
dps fdServer, /* a socket binary connection to a window server */
dps_stream /* an ascii NXStream */
} DPSContextType;

DPSDefinedType

DEFINED IN

typedef enum
dps_tBoolean,
dps_tChar, dps_tUChar,
dps_tFloat, dps_tDouble,
dps_tShort, dps_tUShort,
dps_tInt,
dps_tLong,

1-10 Chapter 1,' Constants and Data Types

dps_tUInt,
dps_tULong

dpsclient/dpsfriends.h

DPSDefinedType;

DPSErrorCode

DEFINED IN dpsclient/dpsclient.h

typedef enum _DPSErrorCode {
dps_err_ps = DPS_ERRORBASE,
dps_err_nameTooLong,
dps_err_resultTagCheck,
dps_err_resultTypeCheck,
dps_err_invalidContext,
dps_err_select = DPS_NEXTERRORBASE,
dps_err_connectionClosed,
dps_err_read,
dps_err_write,
dps_err_invalidFD,
dps_err_invalidTE,
dps_err_invalidPort,
dps_err_outOfMemory,
dps_err_cantConnect

DPSErrorCode;

DPSErrorProc

DEFINED IN

typedef void (*DPSErrorProc) (
DPSContext ctxt,
DPSErrorCode errorCode,
long unsigned int argl,
long unsigned int arg2);

DPSEventFilterFunc

DEFINED IN

dpsclient/dpsclient.h

dpsc1ient/dpsNeXT .h

typedef int (*DPSEventFilterFunc) (NXEvent *ev);

DPSExtendedBinObjSeq

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char tokenType;
unsigned char escape; /* zero if this is an extended sequence */
unsigned short nTopElements;
unsigned long length;
DPSBinObjRec objects[l];

DPSExtendedBinObjSeqRec, *DPSExtendedBinObjSeq;

Data Types 1-11

DPSFDProc

DEFINED IN dpsclient/dpsN eXT .h:

typedef void (*DPSFDProc) (int fd, void *userData);

DPSNameEncoding

DEFINED IN

typedef enum
dps _indexed,
dps strings
} DPSNameEncoding;

DPSNumberFormat

DEFINED IN

typedef enum DPSNumberFormat
dps float = 48,
dps_long = 0,
dps short = 32

DPSNumberFormat;

DPSPortProc

DEFINED IN

dpsclient/dpsfriends .h

dpsclient/dpsNeXT .h

dpsclient/dpsNeXT .h

typedef void (*DPSPortProc) (msg_header_t *msg, void *userData);

DPSProcs

DEFINED IN dpsclient/dpsfriends .h

typedef struct t DPSProcsRec
void (*BinObjSeqWrite) (

DPSContext ctxt,
const void *buf,
unsigned int count);

void (*WriteTypedObjectArray) (
DPSContext ctxt,
DPSDefinedType type,
const void *array,
unsigned int length);

1-12 Chapter 1 : Constants and Data Types

void (*WriteStringChars) (

DPSContext ctxt,

const char *buf,
unsigned int count);

void (*WriteData) (

DPSContext ctxt,
const void *buf,

unsigned int count);

void (*Wri tePostScript) (
DPSContext ctxt,

const void *buf,

unsigned int count);
void (*FlushContext) (DPSContext ctxt);

void (*ResetContext) (DPSContext ctxt);
void (*UpdateNameMap) (DPSContext ctxt);
void (*AwaitReturnValues) (DPSContext ctxt);

void (*Interrupt) (DPSContext ctxt);
void (*DestroyContext) (DPSContext ctxt);

void (*Wai tContext) (DPSContext ctxt);
void (*Printf) (

DPSContext ctxt,

const char *fmt,
va_list argList);

DPSProcsRec, *DPSProcs;

DPSProgramEncoding

DEFINED IN

typedef enum
dps_ascii,
dps_binObjSeq,

dps_encodedTokens

} DPSProgramEncoding;

DPSResultsRec

DEFINED IN

typedef struct

DPSDefinedType type;
int count;

char *value;

dpsclient/dpsfriends .h

dpsclient/dpsfriends.h

} DPSResultsRec, *DPSResults;

Data Types 1-13

DPSSpaceRec

DEFINED IN dpsclient/dpsfriends.h

.typedef struct
int lastNameIndex;

struct _t_DPSSpaceProcsRec const * procs;
} DPSSpaceRec, *DPSSpace;

DPSSpaceProcsRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct _t_DPSSpaceProcsRec
void (*DestroySpace) (DPSSpace space);

/* See DPSDestroySpace() in dpsclient.h */

DPSSpaceProcsRec, *DPSSpaceProcs;

DPSTextProc

DEFINED IN

typedef void (*DPSTextProc) (
DPSContext ctxt,
const char *buf,
long unsigned int count);

DPSTimedEntry

DEFINED IN

dpsclient/dpsclient.h

dpsclient/dpsN eXT.h

typedef struct __ DPSTimedEntry *DPSTimedEntry;

1-14 Chapter 1: Constants and Data Types

DPSUserPathAction

DEFINED IN dpsclient/dpsN eXT.h

typedef enum DPSUserPathAction
dps_uappend = 176,
dps_ufill = 179,
dps_ueofill = 178,
dps_ustroke = 183,
dps_ustrokepath = 364,
dps inufill = 93,
dps inueofill 92,
dps_inustroke = 312,
dps_def = 51,
dps_put = 120

DPSUserPathAction;

DPSUserPathOp

DEFINED IN

id

typedef enum DPSUserPathOp
dps setbbox = 0,
dps_moveto,
dps_rmoveto,
dps lineto,
dps rlineto,
dps_curveto,
dps rcurveto,
dps arc,
dps arcn,
dps_arct,
dps closepath,
dps_ucache

DPSUserPathOp;

DEFINED IN

typedef struct objc_object
Class isa;

} *id;

IMP

DEFINED IN

dpsclient/dpsNeXT .h

objc/objc.h

objc/objc.h

typedef id (*IMP) (id, SEL, ...);

Data Types 1-15

Ivar

DEFINED IN objc/objc-class.h

typedef struct objc_ivar *Ivar;

Method

DEFINED IN objc/objc-class.h

typedef struct objc_method *Method;

Module

DEFINED IN objc/objc-runtime.h

typedef struct objc_module *Module;

NXAppkitErrorTokens

DEFINED IN appkit/errors.h

typedef enum _NXAppkitErrorTokens {
NX_longLine NX_APPKITERRBASE,

NX_nullSel, /* Text, operation attempted on empty

selection */

NX_wordTablesWrite, /* error while writing word tables */

NX_wordTablesRead, /* error while reading word tables */

NX_textBadRead, /* Text, error reading from file */

NX_textBadWrite, /* Text, error writing to file */

NX_powerOff, /* poweroff */

NX_pasteboardComm,
NX_mallocError,

NX_printingComm,

NX_abortModal,

/* communications prob with pbs server */
/* malloc problem */

/* sending to npd problem */
/* used to abort modal panels */

NX_abortPrinting, /* used to abort printing */

NX_illegalSelector, /* bogus selector passed to appkit */
NX_appkitVMError, /* error from vm call */

NX_badRtfDirective,

NX_badRtfFontTable,

NX_badRtfStyleSheet,

NX_newerTypedStream,

NX tiff Error

NXAppkitErrorTokens;

1-16 Chapter 1: Constants and Data Types

NXAtom

DEFINED IN objcfhashtable.h

typedef const char *NXAtom;

NXCharMetrics

DEFINED IN appkit/afm.h

typedef struct /* per character info */
short charCode;
unsigned char numKernPairs;
unsigned char reserved;
float xWidth;
int name;
float bbox[4];
int kernPairlndex;

NXCharMetrics;

NXChunk

DEFINED IN appkit/chunk.h

typedef struct NXChunk
short growby;
int allocated;
int used;

NXChunk;

NXCoior

DEFINED IN

/* increment to grow by */
/* how much is allocated */
/* how much is used */

appkit/color.h

typedef struct _NXColor {
unsigned short colorField[8];

} NXColor;

Data Types 1-17

NXColorSpace

DEFINED IN appkit/graphics.h

typedef enum _NXColorSpaceType

NX ONEISBLACK COLORS PACE 0,

NX ONEISWHITE COLORS PACE 1,

NX_RGB_COLORSPACE = 2,

NX CMYK COLORS PACE = 5

NXColorSpace;

NXCompositeChar

/* monochrome, 1 is black */

/* monochrome, 1 is white */

DEFINED IN appkit/afm.h

typedef struct /* a composite char */

int numParts;

int firstPartlndex;

NXCompositeChar;

NXCompositeCharPart

DEFINED IN appkit/afm.h

typedef struct /* elements of the composite char array */

int partlndex;

float dx;

float dy;

NXCompositeCharPart;

NXCoord

DEFINED IN dpsclient/event.h

typedef float NXCoord

1-18 Chapter 1 : Constants and"Data Types

NXDefaultsVector

DEFINED IN appkit/defaults.h

typedef struct NXDefault
char *name;
char *value;

NXDefaultsVector[];

NXEncodedLigature

DEFINED IN appkit/afm.h

typedef struct
unsigned char

/* elements of the encoded ligature array */
firstChar;

unsigned char secondChar;
unsigned char ligatureChar;
unsigned char reserved;

NXEncodedLigature;

NXErrorReporter

DEFINED IN appkit/errors.h

typedef void NXErrorReporter(NXHandler *errorState);

NXEvent

DEFINED IN dpsclient/event.h

typedef struct NXEvent
int type; /* An event type from above */
NXPoint location;

/* Base coordinates in window, from lower-left */
long time /* vertical intervals since launch */
int flags; /* key state flags */
unsigned int window;
NXEventData data;
DPSContext ctxt;

NXEvent, *NXEventPtr;

/* window number of assigned window */
/* type-dependent data */
/* context the event came from */

Data Types 1-19

NXEventData

DEFINED IN

typedef union
struct {

short reserved;
short eventNum;
int click;
int unused;

mouse;
struct {

short reserved;

dpsclient/event.h

/* For mouse-down and mouse-up events */

/* unique identifier for this button */
/* click state of this event */

/* For key-down and key-up events */

short repeat; /* for key-down: nonzero if really a repeat */
unsigned short charSet; /* character set code */
unsigned short charCode; /* character code in that set */
unsigned short keyCode; /* device-dependent key number */
short keyData; /* device-dependent info */

key;
struct {

short
short

int

int

tracking;

/* For mouse-entered and mouse-exited events */
reserved;
eventNum;

/* unique identifier from mouse down event */
trackingNum; /* unique identifier from

settrackingrect */
userData; /* uninterpreted integer from

settrackingrect */

struct { /* For appkit-defined, sys-defined, and app-defined
events */

short
short
union

reserved;
subtype;

float F [2] ;
long L [2] ;
short S [4] ;
char C [8] ;

misc;
compound;

NXEventData;

NXExceptionRaiser

DEFINED IN

/* event subtype for compound events */

/* for use in compound events */
/* for use in compound events */
/* for use in compound events */
/* for use in compound events */

objc/error.h

typedef void NXExceptionRaiser(int code,

1-20 Ch~pter 1: Constants and Data Types

const void *datal,
const void *data2);

NXFontMetrics

DEFINED IN appkit/afm.h

typedef struct NXFontMetrics
char *formatVersion;
char *name;
char *fullName;
char *familyName;
char *weight;
float italicAngle;
char isFixedPitch;
char isScreenFont;
short screenFontSize;
float fontBBox[4];
float underlinePosition;
float underlineThicknessi
char *version;
char *notice;
char *encodingScheme;
float capHeight;
float xHeight;
float ascender;
float descender;
short hasYWidths;
float *widths;
unsigned int widthsLength;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

version of afm file format */
name of font for findfont */
full name of font */
"font family" name */
weight of font */
degrees ccw from vertical */
is the font mono-spaced? */
is the font a screen font? */
If it is, how big is it? */
bounding box (llx lly urx ury) */
dist from bas line for underlines
thickness of underline stroke */
version identifier */
trademark or copyright */
default encoding vector */
top of ' H' */
top of ' x, */
top of ' d' */
bottom of 'p' */
do any chars have non-O y width?
character widths in x */

*/

*/

char *stringsi /* table of strings and other info */
unsigned int stringsLengthi
char hasXYKernsi /* Do any of the kern pairs have nonzero dy? */
char reserved;
short *encoding;
float *yWidths;

/* 256 offsets into charMetrics */

/* character widths in y. NOT in encoding */
/* order, but a parallel array to the charMetrics array */

NXCharMetrics *charMetrics; /* array of NXCharMetrics */
int numCharMetrics; /* num elements */
NXLigature *ligatures; /* array of NXLigatures */
int numLigatures; /* num elements */
NXEncodedLigature *encLigatures; /* array of

NXEncodedLigatures */
int numEncLigatures; /* num elements */

Data Types 1-21

union
NXKernPair
NXKernXPair

kerns;

*kernPairs;
*kernXPairs;

/* array of NXKernPairs */
/* array of NXKernXPairs */

int /* num elements */
NXTrackKern

numKernPairs;
trackKerns; / array of NXTrackKerns */

int
NXCompositeChar

numTrackKerns;
*compositeChars;

/* num elements */
/* array of

NXCompositeChar */
int numCompositeChars; /* num elements */
NXCompositeCharPart *compositeCharParts; /* array of

NXCompositeCharPart */
int numCompositeCharParts;

NXFontMetrics;

NXHandler

DEFINED IN

/* num elements */

objc/error.h

typedef struct _NXHandler { /* a node in the handler chain
jmp_buf jumpState; /* place to longjmp to */
struct _NXHandler *next; /* ptr to next handler */

/* error code of exception */ int code;
const void *datal, *data2; /* blind data for describing */

NXHandler; /* error */

NXHashState

DEFINED IN objc/hashtable.h

typedef struct {int i; int j;} NXHashState;

NXHashTablePrototype

DEFINED IN objc/hashtable.h

typedef struct
unsigned (*hash) (canst void *info, canst void *data);
int (* isEqual) (const void * info, const void *datal,

const void *data2);
void (*free) (const void *info, void *data);

*/

int style; /* reserved for future expansion; currently 0 */
} NXHashTablePrototype;

1-22 Chapter 1 : Constants and Data Types

NXlmagelnfo

DEFINED IN appkit/tiff.h

typedef struct _NXlmagelnfo {

int widthi /* image width in pixels */

int heighti /* image height in pixels */

int bitsPerSamplei /* number of bits per data channel */

int samplesPerPixel; /* number of channels per pixel */

int planarConfigi /* NX MESHED for mixed data channels */

/* NX_PLANAR for separate data planes */

int photolnterpi

/* interpretations

} NXlmageln"foi

/* various bits set for various photometric */

NXKernPair

DEFINED IN appkit/afm.h

typedef struct /* elements of the kern pair array */

int secondCharlndexi

float dXi

float dYi

NXKernPairi

NXKernXPair

DEFINED IN appkit/afm.h

typedef struct /* elements of the kern X pair array */

int secondCharlndexi

float dXi

NXKernXPairi

NXLigature

DEFINED IN appkit/afm.h

typedef struct /* elements of the ligature array */

int firstCharlndex;

int secondCharlndex;

int ligaturelndexi

NXLigature;

Data Types 1-23

NXPoint

DEFINED IN

typedef struct NXPoint
NXCoord x, y;

} NXPoint;

NXPrintfProc

DEFINED IN

dpsclient/event.h

/* point */

streams/streams.h

typedef void NXPrintfProc(NXStream *stream, void *item,
void *procData);

NXRect

DEFINED IN appkit/graphics.h

typedef struct NXRect
NXPoint origin;
NXSize size;

NXRect;

NXScreen

DEFINED IN

typedef struct _NXScreen {

appkit/screens.h

int screenNumber; /* Screen number (may be used as */
/* argument to framebuffer op). */

NXRect screenBounds; /* Bounds of the screen. */
short _reservedShort[6]; /* Don't use these. */
NXWindowDepth depth; /* Depth of the frame buffer */
int

NXScreen;
_reserved[3]; /* Don't use these either. */

NXSize

DEFINED IN

typedef struct _NXSize {
NXCoord width, height;

} NXSize;

1-24 Chapter 1: Constants and Data Types

dpsc1ient/event.h

/* size */

NXStream

DEFINED IN streams/streams.h

typedef struct _NXStream {
unsigned int magic_number;/* to check stream validity */
unsigned char *buf_base; /* data buffer */
unsigned char *buf_ptr; /* current buffer pointer */
int buf_size; /* size of buffer */
int buf_left; /* # left till buffer operation */
long
int
int

offset;
flags;
eof;

/* position of beginning of buffer */
/* info about stream */

const struct stream functions *functions; /* functions to
implement stream */

void
NXStream;

info; / stream specific info */

NXStreamErrors

DEFINED IN streams/streams.h

typedef enum NXStreamErrors
NX_illegalWrite NX_STREAMERRBASE,
NX_illegalRead,
NX_illegalSeek,
NX_illegalStream,
NX streamVMError

NXStreamErrors;

NXTIFFlnfo

DEFINED IN appkit/tiff.h

typedef struct NXTIFFInfo
int imageNumber;
NXImageInfo image;
int subfileType; /* only subfileType 1 is supported */
int rowsPerStrip;
int stripsPerImage;
int compression;
int numImages;
int endian;
int version;
int error;

/* compression id, 1 = no compression */
/* number of images in tiff */
/* either NX BIGENDIAN or NX LITTLEENDIAN */
/* tiff version */

int firstIFD; /* offset of first IFD entry */
unsigned int stripOffsets[NX_PAGEHEIGHT];
unsigned int stripByteCounts[NX_PAGEHEIGHT];

NXTIFFInfo;

Data Types 1-25

NXTopLevelErrorHandler

DEFINED IN appkit/errors .h

typedef void NXTopLevelErrorHandler(NXHandler *errorState);

NXTrackingTimer

DEFINED IN appkit/timer.h

typedef struct _NXTrackingTimer

double delay;
double period;

DPSTimedEntry te;
BOOL freeMe;

BOOL firstTime;
NXHandler *errorData;
int reservedl;

int reserved2;
NXTrackingTimer;

NXTrackKern

DEFINED IN appkit/afm.h

typedef struct /* elements of the track kern array */

int degree;

float minPointSize;
float minKernAmount;
float maxPointSize;

float maxKernAmount;
NXTrackKern;

NXTypedStream

DEFINED IN

typedef void NXTypedStream;

NXU ncaughtExceptionHandler

DEFINED IN

objc/typedstream.h

objc/error.h

typedef void NXUncaughtExceptionHandler(int code,

1-26 Chapter 1: Constants and Data Types

const void *datal,
const void *data2);

SEL

DEFINED IN objc/objc.h

typedef struct objc_selector *SEL;

STR

DEFINED IN objc/objc.h

typedef char *STR;

Symtab

DEFINED IN objc/objc-runtime.h

typedef struct objc_symtab *Symtab;

TypedstreamErrors

DEFINED IN objc/typedstream.h

enum TypedstreamErrors

} ;

TYPEDSTREAM CALLER ERROR = TYPEDSTREAM_ERROR_RBASE,

TYPEDSTREAM_FILE_INCONSISTENCY,
TYPED STREAM_CLAS S_ERROR,

TYPEDSTREAM_TYPE_DESCRIPTOR_ERROR,
TYPEDSTREAM_WRITE_REFERENCE_ERROR,
TYPEDSTREAM INTERNAL ERROR.

Data Types 1-27

1-28

Chapter 2
Class Specifications

Volume 1:

2-3 How to Read the Specifications
2-3 Organization
2-7 Method Descriptions
2-8 Implementing Your Own Version of a Method
2-8 Retaining the Kit~s Version of a Method
2-9 Designated Initializer Methods
2-10 Sending a Message to Perform a Method

2-11 Common Classes
2-13 HashTable
2-19 List
2-27 NXStringTable
2-31 Object
2-53 Storage
2-59 StreamTable

2-63 Application Kit Classes
2-65 ActionCell
2-71 Application
2-105 Box
2-113 Button
2-123 ButtonCell
2-141 Cell
2-167 ClipView
2-179 Control
2-195 Font
2-205 FontManager
2-217 FontPanel
2-225 Form
2-235 FormCell
2-241 Listener
2-267 Matrix
2-295 Menu
2-303 MenuCell
2-307 NXBitmapImageRep
2-323 NXBrowser
2-345 NXBrowserCell
2-349 NXCachedImageRep
2-353 NXColorPanel

2-1

2-2

2-363 NXColorWell
2-369 NXCursor
2-375 NXCustomImageRep
2-379 NXEPSImageRep
2-385 NXImage
2-411 NXImageRep
2-417 NXJoumaler
2-423 NXSplitView
2-429 Object Methods
2-433 OpenPanel

Volume 2:

2-437 Application Kit Classes (continued)
2-437 PageLayout
2-445 Panel
2-451 Pasteboard
2-459 PopUpList
2-465 PrintInfo
2-477 PrintPanel
2-483 Responder
2-491 SavePanel
2-499 Scroller
2-509 ScrollView
2-521 SelectionCell
2-525 Slider
2-529 SliderCell
2-537 Speaker
2-557 Text
2-625 TextField
2-633 TextFieldCell
2-639 View
2-681 Window

Chapter 2
Class Specifications

This chapter describes each of the classes defined in the Application Kit, as well as the
classes that come with the NeXT compiler for the Objective-C language. The classes that
come with the compiler can be used with any kit (and in programs that don't use the kits).

Each class specification details the instance variables the class declares, the methods it
defines, and any special constants and defined types it uses. There's also a general
description of the class and its place in the inheritance hierarchy. However, you won't find
a discussion of any kit's design or an explanation of how to go about using the kit to
program an application. You may occasionally encounter terms that assume some prior
knowledge about the kits, Mach, the Display PostScript system, or object-oriented
programming. These topics are covered in other volumes of the NeXT Developer's Library.

How to Read the Specifications

The class specifications are organized in two groups: common classes and Application Kit
classes. Within each of these groups, the specifications are arranged in alphabetical order
by class.

Organization

Information about a class is presented under the following headings:

INHERITS FROM

The first line of a class specification lists the classes that the class being described
inherits from. For example:

Panel : Window : Responder : Object

The first class listed (Panel, in this example) is the class's superclass. The last class
listed is always Object, the root of all inheritance hierarchies. The classes between
show the chain of inheritance from Object to the superclass. (This particular example
shows the inheritance hierarchy for the Menu class of the Application Kit.)

How to Read the Specifications 2-3

DECLARED IN

Each class lists the directory and header file in which its interface is declared.

In the Application Kit, a master header file includes almost all the other header files you
need to program with the kit:

/usr/include/appkit/appkit.h

There's also a master header file for the classes that come with the compiler:

/usr/include/objc/objc.h

If you include the master header file for the Application Kit, you don't need to also
include this file; it's included by the kit file.

Because the kits are written in the Objective-C language, they make use of constants
and types defined in the principal header file for Objective-C, objc.h. Only a handful
of these constants and types are used by the kits, but they're used pervasively. For
convenience, they're listed below.

Defined Types:

id

STR

SEL

BOOL

Constants:

nil
YES
NO

2-4 Chapter 2: Class Specifications

An object.

A C string. STR is a shorthand for (char *). It's used only for an
array of characters that's terminated by the null character.

A method selector. SEL is another shorthand for (char *), where
the character string can be thought of as a method name. However,
SEL is used only as a unique code for a method name, rather than
as a pointer to an actual occurrence of the name in memory.
Values should be assigned to SEL variables only with the
@selector operator:

SEL aMethod;
aMethod = @selector(moveTo::);

This allows selectors to be tested by matching the value of a SEL
code, rather than by comparing all the characters in a string.

A char that holds one of two values: YES (true) or NO (false).

A null object id, (id)O.
Boolean true, (BOOL) 1.
Boolean false, (BOOL)O.

CLASS DESCRIPTION

This section gives a general description of the class. It tells how the class fits into the
general design of its kit and how your application can make use of it.

• Some classes define "off-the-shelf' objects: Your program can create direct
instances of the class, or modify it in a subclass definition.

• Other classes are "abstract superclasses": You wouldn't create an instance of the
class itself, but only of its subclasses. The kits define some subclasses for each
abstract superclass; others can be defined by your application.

Occasionally, the class description will recommend that you define a subclass of a kit
class, even though the kit class isn't abstract. The subclass allows you to customize an
object to the needs of your application.

INSTANCE VARIABLES

The instance variables that are incorporated into each object belonging to the class,
including instance variables inherited from other classes, are listed next. The first
instance variable in all the lists is one inherited from the Object class, isa. isa identifies
the class that an object belongs to for the run-time system; it should never be altered or
read directly.

After all the instance variables are listed, those declared in the class being described are
explained.

However, instance variables that are for the internal use of the class are neither listed
nor explained. These instance variables all begin with an underscore (_) to prevent
collisions with names that you might choose for instance variables in a subclass you
define.

METHOD TYPES

Methods are next listed by name and grouped by type-for example, methods used to
draw are listed separately from methods used to handle events. This directory includes
all the principal methods defined in the class and some that are defined in classes it
inherits from. Inherited methods are followed by the name of the class where they're
defined; they're included in the directory to let you know which inherited methods you
might commonly use with instances of the class and where to look for a description of
those methods.

How to Read the Specifications 2-5

CLASS METHODS
INSTANCE METHODS

A detailed description of each method defined in the class follows the classification by
type. Methods that are used by class objects are presented first; if a class has no class
methods, this section is left out. Methods that are used by instances (the objects
produced by the class) are presented next. The descriptions within each group are
ordered alphabetically by method name.

Each description begins with the syntax of the method's arguments and return values,
continues with an explanation of the method, and ends, where appropriate, with a list
of other related methods. Where a related method is defined in another class, it's
followed by the name of the other class within parentheses.

Some methods listed in a class specification are prototypes for methods that you may
want to implement in a subclass. A prototype is declared in the header file, but not
actually implemented by the class. The description for such methods states that they
are prototypes and describes the behavior and return value you should implement for
the method.

All methods except prototypes have reliable return values which are included in the
method description. Many methods return self; this allows you to chain messages
together:

[[[receiver message1] message2] message3];

Internal methods used to implement the class aren't listed. Since you shouldn't
override any of these methods, or use them in a message, they're excluded from both
the method directory and the method descriptions. However, you may encounter them
when looking at the call stack of your program from within the debugger. A private
method is easily recognizable by the underscore (_) that begins its name.

METHODS IMPLEMENTED BY ANOTHER OBJECT

If a class lets you define another object-a delegate-that can intercede on behalf of
instances of the class, the methods that the delegate can implement are described in a
separate section. These are not methods defined in the class; rather, they're methods
that you can define to respond to messages sent to the delegate.

If you define one of these methods, the delegate will receive automatic messages to
perform it at the appropriate time. For example, if you define a
windowDidBecomeKey: method for a Window's delegate, the delegate will receive
windowDidBecomeKey: messages whenever the Window becomes the key window.

Messages are sent only if the delegate has a method that can respond. If you don't
define a windowDidBecomeKey: method, no message will be sent.

2-6 Chapter 2: Class Specifications

Only certain classes provide for a delegate. In the Application Kit, they are:

Application
Listener
NXBrowser
Speaker
Text
Window

You can set a delegate for instances of these classes or for instances that inherit from
these classes.

Some class specifications have separate sections with titles such as "Methods
Implemented by the SuperView" or "Methods Implemented by the Owner." The
methods described in these sections need to be implemented by another object, such as
the superview of an instance of that class or, in the case of the Pasteboard, the owner of
the Pasteboard instance. For example, the ClipView's superview needs to define the
scrollClip:to: method to coordinate scrolling of multiple Clip Views. The owner of the
Pasteboard should define provideData: if certain promised data types won't be
immediately written to the Pasteboard. As is the case with the delegate methods, you
won't invoke these methods directly; messages to perform them will be sent
automatically when needed and only if they've been defined.

CONSTANTS AND DEFINED TYPES

If a class makes use of symbolic constants or defined types that are specific to the class,
they're listed in the last section of the class specification. Defined types are likely to
show up in instance variable declarations, and as return and parameter types in method
declarations. Symbolic constants typically define permitted return and argument
values.

Method Descriptions

By far, the major portion of each class specification is the description of methods defined
in the class. When reading these descriptions, be especially attentive to four kinds of
information that affect how the method can be used:

• Whether you should implement your own version of the method

• Whether you should have your version of the method include the kit-defined version

• Which method is a class's designated initializer, the method to override if you
implement a subclass that performs initialization

• Whether you should ever send a message to an object to perform the method

The next four sections examine these questions.

How to Read the Specifications 2-7

Implementing Your Own Version of a Method

For the most part, the methods in a class definition act as a private library for objects
belonging to that class. Just as programmers generally don't replace functions in the
standard C library with their own versions, you generally wouldn't write your own versions
of the methods provided for a class.

However, to add specific behavior to your application, you must override some of the
methods that are defined in the kits. Often, the kit-defined method will do little or nothing
that's of use to your application, but it will appear in messages initiated by other methods.
To give content to the method, your application must implement its own version.

To override a kit method with one of your own design, simply define a subclass of the
appropriate class and redefine the method. For example, the interface declaration for the
Circle View class illustrated below shows that it does nothing more than override the View
class's drawSelf:: method.

@interface CircleView : View {

- drawSelf: (NWRect *)drawRects : (int)rectCount;

@end

Circle View objects will perfonn its version of drawSelf:: rather than the empty default
version defined in View.

In contrast to methods that must be overridden, some methods should never be changed by
the application. The kit depends on these methods doing just what they're currently
programmed to do--nothing more and nothing less. While your application can use these
methods, it's important that you don't override them when defining a subclass.

Most methods fit between these two extremes: They can be overridden, but it's not
necessary for you to do so. If a method description is silent on the question of overriding
the kit method, you can be certain that it fits into this middle category. It's a method that
you can override, but like a function in the C library, you nonnally would have no reason to.

If a method is designed to be overridden, or if it should never be overridden, the method
description explicitly says so.

Retaining the Kit's Version of a Method

Some methods can be overridden, but only to add behavior, not to alter the default actions
of the kit-defined method. When your application overrides one of these methods, it's
important that it incorporate the very method it overrides. This is done by messaging super
to perform the kit-defined version of the method. For example, if you write a new version

2-8 Chapter 2: Class Specifications

of the kit method that moves a Window, you'd most likely still want it to move a Window.
The easiest way to have it do that is to include the old method in the new one through a
message to super.

- moveTo: (NWCoord)x : (NWCoord)y

[super moveTo:x :y];

/* your code goes here */

You may occasionally be required to implement a new version of a method while preserving
the behavior of the method you override. An example is the write: method, which archives
an object by writing it to a typed stream. When you define a kit subclass, you may need to
implement a version of this method that can archive the instance variables your subclass
declares. So that a write: message will archive all of an object's instance variables, not just
those declared in the subclass, your version of the method should begin by incorporating
the version used by its superclass.

- write: (NXTypedStream *)stream

[super write:stream];

/* your code goes here */

Method descriptions explicitly mention that you should incorporate a method you override
only when it's not obvious that you should preserve the default behavior in the new method.

Designated Initializer Methods

Initializer methods (those that begin with init. ..) initialize a new instance of a class by
setting values for instance variables, creating support objects, and so on. Before a new
instance receives class-specific initialization, it must be initialized as an instance of each
class from which it inherits, in order, beginning with Object. To maintain this sequence,
each common and Application Kit class has designated initializers, init ... methods that
invoke a designated initializer in the superclass before doing their work. Since Object is
the root of the inheritance hierarchy, its designated initializer, the init method, is always the
first method to initialize an object. The designated initializer for most other classes is the
init .•. method with the most arguments (some classes have more than one designated
initializer to perform different types of initialization). Other init ... methods for a class
initialize objects by invoking a designated initializer. Designated initializers are identified
in their method descriptions.

In its discussion of the alloc and init methods, the Object class specification provides more
detail on how new instances are allocated and initialized. This discussion includes some
guidelines to follow when writing initializer methods in a subclass.

How to Read the Specifications 2-9

Sending a Message to Perform a Method

Some methods should never appear as messages in the code you write; you should never
directly ask an object to perform the method. Typically, these are methods that your
application will use indirectly, through other methods.

Most of these methods begin with a underscore and are treated as class-internal methods.
However, some don't have an underscore and are included in the method descriptions.
These are methods that your application can implement, even though it won't directly use
them in a message. The messages to perform these methods originate in the kit.

The most notable example of this is the drawSelf:: method that draws a View. Although
you must implement a drawSelf:: method for each View subclass you define, your code
should never send a drawSelf:: message. Instead, you send a display message; the display
method (such as display, displaylfNeeded, or display:::) sees to it that the drawing context
is properly set before initiating a drawSelf:: message to the View.

The methods that respond to event messages (such as mouseUp:, keyDown:, and
windowExposed:) also fall into this category. Event messages are initiated by the
Application Kit when it receives events from the Window Server; you shouldn't initiate
them ~n your own code.

The write: and read: methods for archiving and unarchiving are other examples of methods
that shouldn't be sent directly to objects. They're generated by functions, such as
NXWriteObjectO and NXReadObjectO.

If a method is designed to respond to messages generated by other methods or by a kit, the
method description will generally say so. If there's a penalty for generating the message
within the code you write (as there is for drawSelf::), the description will include an
explicit warning.

2 -1 0 Chapter 2: Class Specifications

Common Classes

A handful of classes come with the NeXT compiler for the Objective-C language. They
include, most prominently, the Object class, which defines the basic functionality inherited
by all objects. The Object class is at the root of all inheritance hierarchies.

The other classes that come with the compiler are similar in that they also define
functionality that can serve a wide variety of applications. They can be used with any kit.
The five common classes are shown in Figure 2-1.

Figure 2-1. Inheritance Hierarchy of the Common Classes

Common Classes 2-11

2-12

HashTable

INHERITS FROM Object

DECLARED IN objc/HashTable.h

CLASS DESCRIPTION

The HashTable class defines objects that store associations of keys and values. You use
a HashTable object when you need a convenient and efficient way to store and access
unordered data. Hash tables double as their number of associations increase, thus
guaranteeing both constant average access time and linear size.

HashTable objects are convenient to use, but when even greater efficiency of storage
and access is required, consider using the C function interface to hash tables (see
NXCreateHashTableO). Two alternatives to the HashTable class are NXStringTable
and List. An NXStringTable is a HashTable that's designed to store associations
between keys and values that are both character strings. List is useful when you need
to store a collection of objects; however, it doesn't provide for storage of key/value
pairs. Also, the time required to access an element in a List object grows linearly with
the number of elements.

In a HashTable object, keys and values can be of type id, int, void *, char *, or any
other 32-bit quantity that can be described by a type string. The following outlines the
usage of key and value descriptions:

Hashing: A hash message is sent for object keys, a string hashing function is used for
string keys, and a generic integer hashing function is used for all other cases.

Equality: An isEqual: message is sent for object keys, and a string comparison is used
for string keys.

Descriptions must be invariant strings and are restricted to encode 32-bit quantities,
typically the following:

"@" (id) "*,, (char *) "iH (int) "!" (other)

Two other restrictions that a HashTable must satisfy are:

1. Keys must be invariant. In particular, when keys are strings, no copy is made, and
the string is assumed to never change until the association is removed from the
table.

2. If two keys are equal in the sense of isEqual:, then their hashed values must be
equal. If you're creating a HashTable of List or Storage objects, note that these
classes have an isEqual: method but no hash method; you can either subclass or
define a hash method.

Common Classes: HashTable 2-13

When freeing a HashTable, only object keys or object values are freed. Data is archived
according to its type description. When description is "%", hashing and equality are
same as for "*". On reading, however, the string is uniqued, using the
NXUniqueStringO function.

INSTANCE VARIABLES

Inherited/rom Object

Declared in HashTable

count

keyDesc

valueDesc

METHOD TYPES

Initializing and freeing a HashTable

Copying a HashTable

Manipulating table associations

Iterating over all associations

Archiving

2-14 Chapter 2: Class Specifications

Class

unsigned
const char
const char

isa;

count;
*keyDesc;
*valueDesc;

Current number of associations

Description of keys

Description of values

- in it
- initKeyDesc:
- initKeyDesc:valueDesc:
- initKey Desc:valueDesc:capacity:
- free
- freeObjects
- freeKeys:values:
- empty

-copy
- copyFromZone:

- count
- isKey:
- valueForKey:
- insertKey:value:
- removeKey:

- initState
- nextState:key:value:

- read:
- write:

INSTANCE METHODS

copy
-copy

Returns a new HashTable. Keys nor values are copied.

copyFromZone:

- copyFromZone:

Returns a new HashTable. Memory for the new HashTable is allocated from zone.
Keys nor values are copied.

count
- (unsigned)count

Returns the number of objects in the table.

empty

-empty

Empties the HashTable but retains its capacity.

free

-free

Deallocates the table, but not the objects that are in the table.

freeKeys:values:
- freeKeys:(void (*)(void *))keyFunc values:(void (*)(void *))valueFunc

Conditionally deallocates the HashTable's associations but does not deallocate the table
itself.

freeObjects

- freeObjects

Deallocates every object in the HashTable, but not the HashTable itself. Strings are not
recovered.

Common Classes: HashTable 2-15

init

- init

Initializes a new HashTable to map object keys to object values. Returns self.

See also: - initKeyDesc:key:value:capacity:

initKeyDesc:

+ initKeyDesc:(const char *)aKeyDesc

Initializes a new HashTable to map keys as described by aKeyDesc to object values.
Returns self.

See also: - initKeyDesc:key:value:capacity:

initKey Desc:valueDesc:

- initKeyDesc:(const char *)aKeyDesc valueDesc:(const char *)aValueDesc

Initializes a new HashTable to map keys and values as described by aKeyDesc and
aValueDesc. Returns self.

See also: - initKeyDesc:key:value:capacity:

initKey Desc:valueDesc:capacity:

- initKeyDesc:(const char *)aKeyDesc
valueDesc:(const char *)aValueDesc
capacity: (unsigned)aCapacity

Initializes a new HashTable. This is the designated initializer for HashTable objects:
If you subclass HashTable, your subclass's designated initializermust maintain the
initializer chain by sending a message to super to invoke this method. See the
introduction to the class specifications for more information.

A HashTable initialized by this method maps keys and values as described by aKeyDesc
and aValueDesc. aCapacity is given only as a hint; you can use 0 to create a table of
minimal size. As more space is needed, it will be allocated automatically. Returns self.

See also: - initKeyDesc:key:value:capacity:

2-16 Chapter 2: Class Specifications

initState

- (NXHashState)initState

Returns an NXHashState structure that's required when iterating through the
HashTable. Iterating through all associations of a HashTable involves setting up an
iteration state, conceptually private to HashTable, and then progressing until all entries
have been visited. An example of counting associations in a table follows:

unsigned count = 0;

const void *keYi

void *value;
NXHashState state = [table initState]i
while ([table nextState: &state key: &key value: &value])

count++;

See also: - nextState:key:value:

insertKey:value:

- (void *)insertKey:(const void *)aKey value:(void *)aValue

Adds or updates a key and value pair, as specified by aKey and aValue. If aKey is
already in the hash table, it's associated with a Value and its previously associated value
is returned. Otherwise, insertKey:value: returns nil.

See also: - removeKey:

isKey:

- (BOOL)isKey:(const void *)aKey

Returns YES if aKey is in the table, otherwise NO.

See also: - valueForKey:

nextState: key: value:

- (BOOL)nextState:(NXHashState *)aState
key:(const void **)aKey
value:(void **)aValue

Moves to the next entry in the HashTable and provides the addresses of pointers to its
key/value pair. No insertKey: or removeKey: should be done while iterating through
the table. Returns NO when there are no more entries in the table; otherwise, returns
YES.

See also: - in itS tate

Common Classes: HashTable 2-17

read:
- read:(NXTypedStream *)stream

Reads the HashTable from the typed stream stream. Returns self.

See also: - write:

removeKey:
- (void *)removeKey:(const void *)aKey

Removes the hash table entry identified by aKey. Always returns nil. .

See also: - insertKey:value:

valueForKey:
- (void *)valueForKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

See also: - isKey:

write:
- write:(NXTypedStream *)stream

Writes the HashTable to the typed stream stream. Returns self.

See also: - read:

2-18 Chapter 2: Class Specifications

List

INHERITS FROM Object

DECLARED IN objc/List.h

CLASS DESCRIPTION

A List is a collection of objects. The class provides an interface that permits easy
manipulation of the collection as a fixed or variable-sized list, a set, or an ordered
collection. Lists are implemented as arrays to allow fast random access using an index.
Indices start at O.

A List array contains object ids. An object isn't copied when it's added to a List; only
its id is. There are no empty slots within the array. nil objects can't be inserted in a
List, and the collection is contracted to fill in the empty space when an object is
removed.

Lists grow dynamically when new objects are added. The default mechanism
automatically doubles the capacity of the List when it becomes full, thus ensuring an
average constant time for insertions, independent of the size of the List.

For manipulating sets of structures that aren't objects, see the Storage class.

INSTANCE VARIABLES

Inherited/rom Object

Declared in List

dataPtr

numElements

maxElements

Class

id
unsigned int
unsigned int

isa;

*dataPtr;
numElements;
maxElements;

The data managed by the List object (the array of
objects).

The actual number of objects in the array.

The total number of objects that can fit in
currently allocated memory.

Common Classes: List 2-19

METHOD TYPES

Initializing a new List object - init
- initCount:

Copying and freeing a List -copy
- copyFromZone:
-free

Manipulating objects by index - insertObject:at:
- addObject:
- removeObjectAt
- removeLastObject
- replaceObjectAtwith:
- objectAt:
- lastObject
- count

Manipulating objects by id - addObject:
- addObjectIfAbsent:
- removeObject:
- replaceObjectwith:
- indexOf:

Comparing Lists - isEqual:

Emptying a List -empty
- freeObjects

S~nding messages to the objects - makeObjectsPerform:
- makeObjectsPerform:with:

Managing the storage capacity - capacity
- setAvailableCapacity:

Archiving - read:
- write:

INSTANCE METHODS

addObject:
- addObject:anObject

Inserts anObject at the end of the List, and returns self. However, if anObject is nil,
nothing is inserted and nil is returned.

See also: - insertObject:at:

2-20 Chapter 2: Class Specifications

addObjectlfAbsent:
- addObjectlfAbsent:anObject

Inserts anObject at the end of the List and returns self, provided that anObject isn't
already in the List. If anObject is in the List, it won't be inserted, but self is still
returned.

If anObject is nil, nothing is inserted and nil is returned.

See also: - insertObject:at:

capacity

- (unsigned int)capacity

Returns the maximum number of objects that can be stored in the List without
allocating more memory for it. When new memory is allocated, it's taken from the
same zone that was specified when the List was created.

See also: - count, - setAvaiiableCapacity:

copy
-copy

Returns a new List object with the same contents as the receiver. The objects in the List
aren't copied; therefore, both Lists contain pointers to the same set of objects. Memory
for the new List is allocated from the same zone as the receiver.

See also: - copyFromZone:

copyFrornZone:
- copyFrornZone:(NXZone *)zone

Returns a new List object, allocated from zone, with the same contents as the receiver.
The objects in the List aren't copied; therefore, both Lists contain pointers to the same
set of objects.

See also: - copy

count
- (unsigned int)count

Returns the number of objects currently in the List.

See also: - capacity

Common Classes: List 2-21

empty
-empty

Empties the List of all its objects without freeing them, and returns self. The current
capacity of the List isn't changed.

See also: - freeObjects

free
-free

Deallocates the List object and the memory it allocated for the array of object ids.
However, the objects themselves aren't freed.

See also: - freeObjects

freeObjects
- freeObjects

Removes every object from the List, sends each one of them a free message, and returns
self. The List object itself isn't freed and its current capacity isn't altered.

The methods that free the objects shouldn't have the side effect of modifying the List.

See also: - empty

indexOf:

init

- (unsigned int)indexOf:anObject

Returns the index of the first occurrence of anObject in the List, or
NX_NOT_IN_LIST if anObject isn't in the List.

-init

Initializes the receiver, a new List object, but doesn't allocate any memory for its array
of object ids. It's initial capacity will be O. Minimal amounts of memory will be
allocated when objects are added to the List. Or an initial capacity can be set, before
objects are added, using the setAvailableCapacity: method. Returns self.

See also: - initCount:, - setAvailableCapacity:

2-22 Chapter 2: Class Specifications

initCount:
- initCount:(unsigned int)numSlots

Initializes the receiver, a new List object, by allocating enough memory for it to hold
numSlots objects. Returns self.

This method is the designated initializer for the class. It should be used immediately
after memory for the List has been allocated and before any objects have been assigned
to it; it shouldn't be used to reinitialize a List that's already in use.

See also: - capacity

insertObject:at:
- insertObject:anObject at:(unsigned int)index

Inserts anObject into the List at index, moving objects down one slot to make room. If
index equals the value returned by the count method, anObject is inserted at the end of
the List. However, the insertion fails if index is greater than the value returned by count
or anObject is nil.

If anObject is successfully inserted into the List, this method returns self. If not, it
returns nil.

See also: - count, - addObject:

isEqual:
- (BOOL)isEqual:anObject

Compares the receiving List to anObject. If anObject is a List with exactly the same
contents as the receiver, this method returns YES. If not, it returns NO.

Two Lists have the same contents if they each hold the same number of objects and the
ids in each List are identical and occur in the same order. '

lastObject
- lastObject

Returns the last object in the List, or nil if there are no objects in the List. This method
doesn't remove the object that's returned.

See also: - removeLastObject

Common Classes: List 2-23

makeObjectsPerform:

- makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the List in reverse order (starting with the
last object and continuing backwards through the List to the first object), and returns
self. The aSelector method must be one that takes no arguments. It shouldn't have the
side effect of modifying the List.

makeObjectsPerform:with:

- makeObjectsPerform:(SEL)aSelector with:anObject

Sends an aSelector message to each object in the List in reverse order (starting with the
last object and continuing backwards through the List to the first object), and returns
self. The message is sent each time with anObject as an argument, so the aSelector
method must be one that takes a single argument of type id. The aSelector method
shouldn't, as a side effect, modify the List.

objectAt:

- objectAt:(unsigned int)index

Returns the id of the object located at slot index, or nil if index is beyond the end of the
List.

See also: - count

read:

- read:(NXTypedStream *)stream

Reads the List and all the objects it contains from the typed stream stream.

See also: - write:

removeLastObject

- removeLastObject

Removes the object occupying the last position in the List and returns it. If there are
no objects in the List, this method returns nil.

See also: - lastObject, - removeObjectAt:

2-24 Chapter 2: Class Specifications

removeObject:
- removeObject:anObject

Removes the first occurrence of anObject from the List, and returns it. If anObject isn't
in the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

See also: - removeLastObject, - removeObjectAt:

removeObjectAt:
- removeObjectAt:(unsigned int)index

Removes the object located at index and returns it. If there's no object at index, this
method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

See also: - removeLastObject, - removeObject:

replaceObject:with:
- repiaceObject:anObject with:newObject

Replaces the first occurrence of anObject in the List with newObject, and returns
anObject. However, if newObject is nil or anObject isn't in the List, nothing is replaced
and nil is returned.

See also: - repiaceObjectAt:with:

replaceObjectAt:with:
- repiaceObjectAt:(unsigned int)index with:newObject

Returns the object at index after replacing it with newObject. If there's no object at
index or newObject is nil, nothing is replaced and nil is returned.

See also: - repiaceObject:with:

Common Classes: List 2-25

setA vailableCapacity:

- setAvaiiableCapacity:(unsigned int)numSlots

Sets the storage capacity of the List to at least numSlots objects and returns self.
However, if the List already contains more than numSlots objects (if the count method
returns a number greater than numSlots), its capacity is left unchanged and nil is
returned.

See also: - capacity, - count

write:

- write:(NXTypedStream *)stream

Writes the List, including all the objects it contains, to the typed stream stream.

See also: - read:

2-26 Chapter 2: Class Specifications

NXStringTable

INHERITS FROM HashTable : Object

DECLARED IN objc/NXStringTable.h

CLASS DESCRIPTION

NXStringTable defines an object that associates a key with a value. Both the key and
the value must be cnaracter strings. For example, these keys and values might be
associated in a particular NXStringTable:

Key Value

"Yes" "Oui"
"No" "Non"

By using an NXStringTable object to store your application's character strings, you can
reduce the effort required to adapt the application to different language markets.
Interface Builder give you direct access to NXStringTables, letting you create and
initialize a string table and connect it into your application.

A new NXStringTable instance can be created either through Interface Builder's
Classes window or through the inherited alloc ... and init ... methods. Similarly, you can
establish the contents of an NXStringTable either directly through Interface Builder or
programmatically through NXStringTable methods that read keys and values that are
stored in a file (see readFromFile: and readFromStream:). Each assignment in the
file can be of either of these formats:

"key" = "value";
"key" ;

If only key is present for a particular assignment, the corresponding value is taken to be
identical to key.

A valid key or value-a valid token-is composed of text enclosed in double quotes.
The text can't include double quotes or the null character. It can include the escape
sequences: \a., \b, \f, \n, \r, \t, \v, and \". The backs lash is stripped for any other
character; consequently, numeric escape codes aren't interpreted. White space between
tokens is ignored. A key or value can't exceed MAX_NXSTRINGTABLE_LENGTH
characters.

The file can also include standard C-language comments which the NXStringTable
ignores. However, these comments can provide valuable information for a person
who's translating or documenting the application.

Common Classes: NXStringTable 2-27

To retrieve the value associated with a specific key, send a valueForStringKey:
message to the NXStringTable. For example, assuming myStringTable is an
NXStringTable containing the appropriate keys and values, this call would display an
attention panel announcing a problem opening a file:

NXRunAlertPanel([myStringTable valueForStringKey:"openTitle"],
[myStringTable valueForStringKey:"openError"],

"OK" ,

NULL,

NULL) ;

If you're accessing NXStringTables through Interface Builder, please note the
following. For efficiency, use several NXStringTables-each in its own interface file
rather than one large one. By using several NXStringTables, your application can load
only those strings that it needs at a particular time. For example, you might place all
the strings associated with a help system in an NXStringTable in one interface file and
those associated with error messages in another NXStringTable in another file. When
the user accesses the help system for the first time, the application can load the
appropriate NXStringTable. Also, instantiate only one copy of any individual
NXStringTable. Don't put an NXStringTable object in an interface file that will be
loaded more than once, since multiple copies of the same table will result.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from H ashTable

Declared in NXStringTable

METHOD TYPES

Class

unsigned
const char
const char

(none)

Initializing and freeing an NXStringTable
- init
-free

Querying an NXStringTable - valueForStringKey:

Reading and writing elements - readFromFile:
- writeToFile:
- readFromStream:
- writeToStream:

2-28 Chapter 2: Class Specifications

isa;

count;
*keyDesc;
*valueDesc;

INSTANCE METHODS

free
-free

init

Frees the string table and its strings. You should never send a freeObjects (HashTable)
message to an NXStringTable.

- init

Initializes a new NXStringTable. This is the designated initializer for the
NXStringTable class. Returns self.

readFromFile:
- readFromFile:(const char *)jileName

Reads an ASCII representation of the NXStringTable's keys and values fromjileName.
The NXStringTable opens a stream on the file and then sends itself a
readFromStream: message to load the data. See "Class Description" above for the
format of the data. Returns nil on error; otherwise, returns self.

See also: - readFromStream:

readFromStream:
- readFromStream:(NXStream *)stream

Reads an ASCII representation of the NXStringTable's keys and values from stream.
See "Class Description" above for the format of the data. Returns nil on error;
otherwise, returns self.

See also: - readFromFile:

valueForStringKey:
- (const char *)valueForStringKey:(const char *)aString

Searches the string table for the value that corresponds to the key aString. Returns
NULL if and only if no value is found for that key; otherwise, returns a pointer to the
value.

Common Classes: NXStringTable 2-29

writeToFile:
- writeToFile:(const char *)fileName

Writes an ASCII representation of the NXStringTable' s keys and values to fileName.
The NXStringTable opens a stream on the file and then sends itself a writeToStream:
message. See "Class Description" above for the format of the data. Returns nil if an
error occurs; otherwise, returns self. '

See also: - writeToStream:

writeToStream:

- writeToStream:(NXStream *)stream

Writes an ASCII representation of the NXStringTable's keys and values to stream. See
"Class Description" above for the format of the data. Returns self.

See also: - writeToFile:

CONSTANTS AND DEFINED TYPES

#define MAX NXSTRINGTABLE LENGTH 1024 - -

2-30 Chapter 2: Class Specifications

Object

INHERITS FROM none (Object is the root class.)

DECLARED IN objc/Object.h

CLASS DESCRIPTION

Object is an abstract superclass that defines a basic interface to the Objective-C
run-time system that other classes use and build upon. It's the root of all Objective-C
inheritance hierarchies, the only class that has no superclass'. All other classes inherit
from Object.

Among other things, the Object class provides its subclasses with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for
performing methods selected at run-time, for querying an object about its methods and
its position in the inheritance hierarchy, and for forwarding messages to other objects.
For example, to query an object about what class it belongs to, you'd send it a class or
a name message. To find out whether it implements a particular method, you'd send it
a respondsTo: message.

This type of information is obtained through the object's isa instance variable, which
points to a class structure that describes the object to the run-time system. Because all
objects directly or indirectly inherit from the Object class, they all have this variable.
The installation of the class structure (the initialization of isa) is one of the
responsibilities of the alloc, allocFromZone:, and new methods, the same methods
that create (allocate memory for) new instances of a class. The defining characteristic
of an "object" is that its first instance variable is an isa pointer to a class structure.

INSTANCE VARIABLES

Declared in Object Class isa;

isa A pointer to the instance's class structure.

METHOD TYPES

Initializing the class + initialize

Common Classes: Object 2-31

Creating, copying, and freeing instances

Initializing a new instance

Identifying classes

+ alloc
+ allocFromZone:
+ new
-copy
- copyFromZone:
-zone
- free
+ free

- init

- class
+ class
-name
- superClass
+ superClass

Identifying and comparing instances
-hash

Testing inheritance relationships

Testing class functionality

- isEqual:
- self

- isKindOf:
- isKindOfGivenName:
- isMemberOf:
- isMemberOfGivenName:

+ instancesRespondTo:
- respondsTo:

Sending messages determined at run time

Forwarding messages

Obtaining method handles

Posing

Enforcing intentions

Error handling

2-32 Chapter 2: Class Specifications

- perform:
- perform:with:
- perform: with: with:

- forward::
- performv::

+ instanceMethodFor:
- methodFor:

+ poseAs:

- notImplemented:
- subclassResponsibility:

- doesNotRecognize:
- error:

Dynamic loading

Archiving

CLASS METHODS

alloc

+ alloc

+ finishLoading:
+ startUnloading

-read:
- write:
- startArchiving:
- awake
- finishUnarchiving
+ setVersion:
+ version

Returns a new instance of the receiving class. The isa instance variable of the new
object is initialized to a data structure that describes the class; otherwise the object isn't
initialized. A version of the in it method should be used to complete the initialization
process. For example:

id newObjeet = [[TheClass alloe] init];

Subclasses shouldn't override alloc to add code that initializes the new instance.
Instead, class-specific versions of the init method should be implemented for that
purpose. Versions of the new method can also be implemented to combine allocation
and initialization.

Note: The alloc method doesn't invoke allocFromZone:. The two methods work
independently.

See also: + allocFromZone:, - init, + new

allocFromZone

+ allocFromZone:(NXZone *)zone

Returns a new instance of the receiving class. The isa instance variable of the new
object is initialized to a data structure that describes the class; its other instance
variables aren't initialized. Memory for the new object is allocated from zone.

This method is always used in conjunction with an init method that completes the
initialization of the new instance. For example:

id newObjeet = [[TheClass alloeFrornZone:sorneZone] init];

Common Classes: Object 2-33

The allocFromZone: method shouldn't be overridden to include any initialization
code. Instead, class-specific versions of the init method should be implemented for tha
purpose.

When one object creates another, it's often a good idea to make sure they're both
allocated from the same region of memory. The zone method can be used for this
purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone: [self zone]] init];

See also: + alloc, - zone, - init

class

+ class

Returns self. Since this is a class method, it returns the class object.

See also: - name, - class

finishLoading:

+ finishLoading:(struct mach_header *)header

Implemented by subclasses to integrate a newly loaded class or category into a mnnin)
program. A finishLoading: message is sent to the class object immediately after the
class, or a category of the class, has been dynamically loaded-if the newly loaded
class or category implements a method that can respond. header is a pointer to the
structure that describes the modules that were just loaded.

Once a dynamically loaded class is used, it will also receive an initialize message.
However, because the finishLoading: message is sent immediately after the class is
loaded, it always precedes the initialize message, which is sent only when the class
receives its first message from the program.

A finishLoading: method is specific to the class or category where it's defined, and
isn't inherited by subclasses or shared with the rest of the class. Thus a class that ha:
four categories can define a total of five finishLoading: methods, one in each categor:
and one in the main class definition. The method that's performed is the one defined il
the class or category just loaded.

There's no default finishLoading: method. The Object class declares a protocol for
this method, but doesn't implement it.

See also: + startUnloading

2-34 Chapter 2: Class Specifications

free

+ free

Returns nil. This method is implemented to prevent class objects, which are "owned"
by the Objective-C run-time system, from being accidentally freed. To free an instance,
use the instance method free.

See also: - free

initialize

+ initialize

Initializes the class before it's used (before it receives its first message). The
Objective-C run-time system generates an initialize message to each class just before
the class, or any class that inherits from it, is sent its first message from within the
program. Each class object receives the initialize message just once. Superclasses
receive it before subclasses do.

For example, if the first message your program sends is this,

[Application alloc]

the run-time system will generate these three initialize messages,

[Object initialize];

[Responder initialize];

[Application initialize];

since Application is a subclass of Responder and Responder is a subclass of Object. All
the initialize messages precede the alloc message and are sent in the order of
inheritance, as shown.

If your program later begins to use the Text class,

[Text instancesRespondTo:someSelector]

the run-time system will generate these initialize messages,

[View initialize];

[Text initialize];

since the Text class inherits from Object, Responder, and View. The
instancesRespondTo: message is sent only after all these classes are initialized. Note
that the initialize messages to Object and Responder aren't repeated; each class is
initialized only once.

You can implement your own versions of initialize to provide class-specific
initialization as needed.

Common Classes: Object 2-35

Because initialize methods are inherited, it's possible for the same method to be
invoked many times, once for the class that defines it and once for each inheriting class ..
To prevent code from being repeated each time the method is invoked, it can be
bracketed as shown in the example below:

+ initialize

if (self == [MyClass class]) {

/* put initialization code here */

return self;

See also: - init, - class

instanceMethodFor:
+ (IMP)instanceMethodFor: (SEL)aSelector

Locates and returns the address of the implementation of the aSelector instance
method. An error is generated if instances of the receiver can't respond to aSelector
messages.

This method, and the function pointer that it returns, are subject to the same constraints
as those described for the instance method methodFor:.

See also: - methodFor:

instancesRespondTo:
+ (BOOL)instancesRespondTo:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages,
and NO if they're not. The application is responsible for determining whether a NO
response should be considered an error.

If an instance can successfully forward aSelector messages to other objects, it will be
able to receive the message without error even though instancesRespondTo: returns
NO.

See also: - respondsTo:

2-36 Chapter 2: Class Specifications

new
+ new

Creates a new instance of the receiving class, sends it an init message, and returns the
initialized object returned by init.

As defined in the Object class, new is essentially a combination of alloc and init. Like
alloc, it initializes the isa instance variable of the new object so that it points to the class
data structure; it leaves the initialization of other instance variables up to the init
method.

Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a
class-specific initialization method. If the init method includes arguments, they're
typically reflected in the new method. For example:

+ newArg: (int)tag arg: (struct info *)data

return [[self alloc] initArg:tag arg:data];

However, there's little point in implementing new .•• methods if they're simply
shorthand for alloc and init .•• , like the one shown above. Often new ... methods will do
more than just allocation and initialization. In some classes, they manage a set of
instances, returning the one with the requested properties if it already exists, allocating
and initializing a new one only if necessary. For example:

+ newArg: (int)tag arg: (struct info *)data

id thelnstance;

if (thelnstance findTheObjectWithTheTag(tag)

return thelnstance;

return [[self alloc] initArg:tag arg:data];

Although it's appropriate to define new new ... methods in this way, the alloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: - init, + alloc, + allocFromZone:

Common Classes: Object 2-37

poseAs:

+ poseAs:aClassObject

Permits the receiver to "pose as" the aClassObject class. All messages to aClassObject
will actually be sent to the receiver. The receiver should be defined as a subclass of
aClassObject and shouldn't declare any instance variables of its own. A poseAs:
message should be sent before any instances of aClassObject are created.

This facility allows you to add methods to an existing class by defining them in a
subclass and having the subclass pose as the existing class. The new method definitions
will be inherited by all subclasses of the existing class. Care should be taken to ensure
that this doesn't generate errors.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes.

Posing has only one feature that categories lack: The methods added by a posing class
can override methods already defined for the existing class. You can therefore use
posing to replace existing methods with new versions.

Returns self.

set Version:

+ setVersion:(int)aVersion

Sets the class version number to a Version, and returns self. The version number is
helpful when instances of the class are to be archived and reused later.

See also: + version

startU nloading

+ startUnloading

Implemented by subclasses to prepare for the class or category being unloaded from a
running program. A startUnloading message is sent to the class object immediately
before the class, or category of the class, is unloaded-if a method that can respond is
implemented in the class or category about to be unloaded.

A startUnloading method is specific only to the class or category where it's defined,
and isn't inherited by subclasses or shared with the rest of the class. Thus a class that
has four categories can define a total of five startUnloading methods, one in each
category and one in the main class definition. The method that's performed is the one
defined in the class or category that will be unloaded.

There's no default startUnloading method. The object class declares a protocol for
this method but doesn't implement it.

See also: + finishLoading:

2-38 Chapter 2: Class Specifications

superClass

+ superClass

Returns the class object for the receiver's superclass.

See also: + class, - supcrClass

version
+ (int)version

Returns the version number assigned to the class. If no version has been set, this will
beD.

See also: + setVersion:

INSTANCE METHODS

awake
-awake

Implemented by subclasses to reinitialize the receiving object after it has been
un archived (by read:). An awake message is automatically sent to every object after
it has been unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely returns self.

You can implement an awake method in any class to provide for more initialization
than can be done in the read: method. Each implementation of awake should limit the
work it does to the scope of the class definition, and incorporate the initialization of
classes farther up the inheritance hierarchy through a message to super. For example:

- awake

[super awake];
/* class-specific initialization goes here */
return self;

All implementations of awake should return self.

See also: - read:, - tinishUnarchiving

Common Classes: Object 2-39

class

- class

Returns the class object for the receiver s class.

See also: + class

copy

-copy

Returns a new instance that s an exact copy of the receiver. This method creates only
one new object. If the receiver has instance variables that point to other objects, the
instance variables in the copy will point to the same objects. The values of the instance
variables are copied, but the objects they point to aren t.

See also: - copyFromZone:

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new instance that s an exact copy of the receiver. Memory for the new
instance is allocated from zone. This method creates only one new object; it works
exactly like the copy method, except that it allows you to determine where the copy will
reside in memory.

See also: - copy, - zone

doesNotRecognize:

- doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn t recognize. The Objective-C
run-time system invokes this method whenever an object receives an aSelector message
that it can t respond to or forward. It, in tum, invokes the error: method to generate an
error message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although
they re sometimes· used in program code to prevent a method from being inherited, it s
better to use the error: method directly. For example, an Object subclass might
renounce the copy method by reimplementing it to include an error: message as
follows:

- copy

[self error:" %s objects should not be sent %s messages\n",
[self name], sel_getName(_cmd)];

2-40 Chapter 2: Class Specifications

This code prevents instances of the subclass from recognizing or forwarding copy
messages although the respondsTo: method will still report that the receiver has
access to a copy method.

(The _ cmd variable identifies to the current selector; in the example above, it identifies
the selector for the copy method. The sel_getNameO function returns the method
name corresponding to a selector code; in the example, it returns the name copy .)

See also: - error:, - subclassResponsibility:, - name

error:

- error:(STR)aString, •••

Generates a formatted error message, in the manner of printfO, from aString followed
by a variable number of arguments. For example:

[self error:"index %d exceeds limit %d\n", index, limit];

The message specified by aString is preceded by this standard prefix (where <class>
is the name of the receiver s class):

"error: <class> "

This method doesn t return. After generating the error message, it calls abortO to
create a core file and terminate the process. It works through the Objective-C run-time
error function.

See also: - subclassResponsibility:, - notImplemented:, - doesNotRecognize:

finish Unarchiving

- finish Unarchiving

Implemented by subclasses to replace an unarchived object with a new object if
necessary. A finishUnarchiving message is sent to every object after it has been
unarchived (using read:) and initialized (by awake), but only if a method has been
implemented that can respond to the message.

The finishUnarchiving message gives the application an opportunity to test an
unarchived and initialized object to see whether it ·s usable, and, if not, to replace it with
another object that is. This method should return nil if the unarchived instance (self) is
OK; otherwise, it should free the receiver and return another object to take its place.

There s no default implementation of the finishUnarchiving method. The Object class
declares this method, but doesn t define it.

See also: - read:, - awake, - startArchiving:

Common Classes: Object 2-41

forward::
- forward:(SEL)aSelector :(marg_list)argFrame

Implemented by subclasses to forward messages to other objects. When an object is
sent an aSelector message, and the run-time system can't find an implementation of the
method for the receiving object, it sends the object a forward:: message to give it an
opportunity to delegate the message to another object. (If that object can't respond to
the message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other
objects that will, for certain messages, act on its behalf. The forwarding object is, in a
sense, able to "inherit" some of the chara<;teristics of the object it forwards the message
to.

A forward:: message is generated only if the aSelector method isn't implemented by
the receiving object's class or by any of the classes it inherits from.

An implementation of the forward:: method can do more than just forward messages.
It can, for example, locate code that responds to a variety of different messages, thus
avoiding the necessity of having to write a separate method for each selector. A
forward:: method might also involve several other objects in the response to a
message, rather than forward it to just one.

If implemented to forward messages, a forward:: method has two tasks:

To locate an object that can respond to the aSelector message. This need not be the
same object for all messages.

To send the message to that object, using the performv:: method.

In the simple case, in which an object forwards messages to just one destination (such
as the hypothetical friend instance variable in the example below), a forward:: method
could be as simple as this:

- forward: ($EL)aSelector : (marg_list)argFrame

if ([friend respondsTo:aSelector])
return [friend performv:aSelector :argFrame]i

return [self doesNotRecognize:aSelector]i

argFrame is a pointer to the arguments included in the original aSelector message. It's
passed directly to performv:: without change.

The default version of forward:: implemented in the Object class simply invokes the
doesNotRecognize: method. It doesn't forward messages. Thus if you choose not to
implement forward:: methods, unrecognized messages will be handled in the usual
way.

See also: - performv::, - doesNotRecognize:

2-42 Chapter 2: Class Specifications

free
-free

Frees the memory occupied by the receiver and returns nil. This method also sets the
isa pointer of the freed object to nil, so that subsequent messages to the object will
generate an error indicating that a message was sent to a freed object.

This method uses object_deallocateO to free the receiver's memory.

hash

init

- (unsigned int)hash

Returns an unsigned integer that's guaranteed to be the same for any two objects which
are equal according to the isEqual: method. The integer is derived from the id of the
receiver.

See also: - isEqual:

- init

Implemented by subclasses to initialize a new object (the receiver) immediately after
memory for it has been allocated. An in it message is generally coupled with an alloc
or allocFrornZone: message in the same line of code:

id newObject = [[TheClass alloc] init];

Subclass versions of this method should return the new object (self) if it has been
successfully initialized. If it can't be initialized, they should free the object and return
nil. The version of the method defined here simply returns self.

Every class must guarantee that the init method returns a fully functional instance of
the class. This typically means overriding the method to add class-specific
initialization code. Subclass versions of the method need to incorporate the
initialization code for the classes they inherit from, through a message to super:

- in it

[super init];

/* class-specific initialization goes here */

return self;

Note that the message to super precedes the initialization code added in the method.
This ensures that initialization proceeds in the order of inheritance.

Common Classes: Object 2-43

Subclasses often add arguments to the init method to allow specific values to be set.
The more arguments a method has, the more freedom it gives you to determine the
character of initialized objects. Classes often have a set of init ••. methods, each with a
different number of arguments. For example:

- init;
- initArg: (int)tag;
- initArg: (int)tag arg: (struct info *)data;

The convention is that at least one of these methods, usually the one with the most
arguments, includes a message to super to incorporate the initialization of classes
higher up the hierarchy. This method is the designated initializer for the class. The
other init ••. methods defined in the class directly or indirectly invoke the designated
initializer through messages to self. In this way, all init ... methods are chained together.
For example:

- init

return [self initArg:-l];

- initArg: (int)tag

return [self initArg:tag arg:NULL];

- initArg: (int)tag arg: (struct info *)data

[super init ...];
/* class-specific initialization goes here */

In this example, the initArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated
initializer. This method should begin by sending a message to super to perform the
designated initializer of its superclass. Suppose, for example, that the three methods
illustrated above are defined in the B class. The C class, a subclass of B, might have
this designated initializer:

- initArg: (int)tag arg: (struct info *)data arg:anObject

[super initArg:tag arg:data];
/* class-specific initialization goes here */

If inherited init ••• methods are to successfully initialize instances of the subclass, they
must all be made to (directly or indirectly) invoke the new designated initializer. To
accomplish this, the subclass is obliged to cover (override) only the designated
initializer of the superclass. For example, in addition to its designated initializer, the C
class would also implement this method:

2-44 Chapter 2: Class Specifications

- initArg: (int)tag arg: (struct info *)data

return [self initArg:tag arg:data arg:nil];

This ensures that all three methods inherited from the B class also work for instances
of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement the one init ••• method.

These conventions maintain a direct chain of init .•• links, and ensure that the new
method and all inherited init ••• methods return usable, initialized objects. They also
prevent the possibility of an infinite loop wherein a subclass method sends a message
(to super) to perform a superclass method, which in tum sends a message (to self) to
perform the subclass method.

The Object class also has a designated initializer-this init method. Subclasses that do
their own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:

isEqual:

- (BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO if it isn't. This is
determined by comparing the id of the receiver to the id of anObject.

The hash method is guaranteed to return the same integer for both objects when this
method returns YES.

See also: hash

isKindOf:

- (BOOL)isKindOf:aClassObject

Returns YES if the receiver is an instance of aClassObject or an instance of any class
that inherits from aClassObject. Otherwise, it returns NO. For example, in this code
isKindOf: would return YES:

id aMenu = [[Menu alloc] init];

if ([aMenu isKindOf: [Window class]]

In the Application Kit, the Menu class inherits from Window.

See also: - isMemberOf:

Common Classes: Object 2-45

isKindOfGivenName:
- (BOOL)isKindOfGivenName:(STR)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class
that inherits from aClassName. This method is the same as isKindOf:, except it takes
the class name, rather than the class id, as its argument.

STR is defined, in objc/objc.h, as a character pointer (char *).

See also: - isMemberOfGivenName:

isMemberOf:
- (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO.
For example, in this code, isMemberOf: would return NO:

id aMenu = [[Menu alloc] init];

if ([aMenu isMemberOf: [Window class]])

See also: - isKindOf:

isMemberOfGivenName:
- (BOOL)isMemberOfGivenName:(STR)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn't. This
method is the same as isMemberOf:, except it takes the class name, rather than the
class id, as its argument.

STR is defined, in objc/objc.h, as a character pointer (char *).

See also: - isKindOfGivenName:

methodFor:
- (lMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver's implementation of the aSelector
method. An error is generated if the receiver has no implementation of the method (if
it can't respond to aSelector messages).

IMP is defined (in the objc/objc.h header file) as a pointer to a function that takes a
variable number of arguments and returns an id. It's the only prototype provided for
the function pointer that methodFor: returns. Therefore, if the aSelector method takes
any arguments or returns anything but an id, its function counterpart will be
inadequately prototyped. Lacking a prototype, the compiler will promote floats to
doubles and chars to ints, which the implementation won't expect. It will therefore

2-46 Chapter 2: Class Specifications

behave differently (and erroneously) when called as a function than when performed as
a method.

.
To remedy this situation, it's necessary to provide your own prototype. In the example
below, IMPEqual is used to prototype the implementation of the isEqual: method. It's
defined as pointer to a function that returns a BOOL and takes an id in addition to the
two "hidden" arguments (self, the current receiver, and _ cmd, the current selector) that
are passed to every method implementation.

typedef BOOL (*IMPEqual) (id, SEL, id);

IMPEqual tester;

tester = (IMPEqual) [target methodFor:@selector(isEqual:)];

while !tester(target, @selector(isEqual:), someObject))

Note that turning a method into a function by obtaining the address of its
implementation "unhides" the self and _ cmd arguments.

See also: + instanceMethodFor:

name
- (const char *)name

Returns a character string with the name of the receiver's class. This information is
often used in error messages or debugging statements.

See also: + class

notlmplemented:
- notImplemented:(SEL)aSeiector

U sed in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time being. aSeiector is the selector
for the unimplemented method; notImplemented: messages are sent to self. For .
example:

- methodNeeded

[self notlmplemented:_cmd];

When a methodNeeded message is received, notImplemented: will invoke the error:
method to generate an appropriate error message and abort the process. (In this
example, _ cmd refers to the methodNeeded selector.)

See also: - subclassResponsibility:, - error:

Common Classes: Object 2-47

perform:
- perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This
allows you to send messages that aren't determined until run time. For example, all
three of the following messages do the same thing:

id myClone

id myClone

id myClone

[anObject copy];

[anObject perform:@selector(copy)];

[anObject perform: sel_getUid ("copy")];

aSelector should identify a method that takes no arguments. If the method returns
anything but an object, the return must be cast to the correct type. For example:

char *myClass;

myClass = (char *) [anObject perform:@selector(name)];

Casting works for any integral type (char, short, int, long, or enum) or any pointer.
However, it doesn't work if the return is a floating type (float or double) or a structure
or union. This is because the C language doesn't permit a pointer (like id) to be cast to
these types.

Therefore, perform: shouldn't be asked to perform any method that returns a floating
type, structure, or union. An alternative is to get the address of the method
implementation (using methodFor:) and call it as a function. For example:

float grayValue;

grayValue = ((float (*) ()) [anObject methodFor: @selector (gray)]) () ;

See also: - perform:with:, - perform:with:with:, - methodFor:

perform:with:

- perform: (SEL)aSelector with:anObject

Sends an aSelector message to the receiver with anObject as an argument. This method
is the same as perform:, except that you can supply an argument for the aSelector
message. aSelector should identify a method that takes a single argument of type id.

See also: - perform:

2-48 Chapter 2: Class Specifications

perform:with:with:

- perform:(SEL)aSelector
with:objectl
with:object2

Sends the receiver an aSelector message with objectl and object2 as arguments. This
method is the same as perform:, except that you can supply two arguments for the
aSelector message. aSelector should identify a method that can take the two arguments
of type id.

See also: - perform:

performv::

- performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSe lector message with the arguments in argFrame. performv::
messages are used within implementations of the forward:: method. Both arguments,
aSelector and argFrame, are identical to the arguments the run-time system passes to
forward::. They can be taken directly from that method and passed through without
change to performv::.

perform v:: should be restricted to implementations of the forward:: method.
Although it may seem like a more flexible way of sending messages than perform:,
perform:with:, or perform:with:with:, in that it doesn't restrict the number of
arguments in the aSelector message or their type, it's not an appropriate substitute for
those methods. First, it's more expensive than they are. The run-time system must
parse the arguments in argFrame based on information stored for aSelector. Second,
in future releases performv:: may not work in contexts other than the forward::
method.

See also: - forward::, - perform:

Common Classes: Object 2-49

read:
- read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver's instance variables from the typed
stream stream. You need to implement a read: method for any class you create, if you
want its instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class
in a manner that matches they way they were archived by write:. In each class, the
read: method should begin with a message to super:

- read: (NXTypedStream *)stream

[super read:stream];

/* class-specific code goes here */

return self;

This ensures that all inherited instance variables will also be unarchived.

All implementations of the read: method should return self.

After an object has been read, it's sent an awake message so that it can reinitialize
itself, and may also be sent a finishUnarchiving message.

See also: - awake, - finishUnarchiving, - write:

respondsTo:
- (BOOL)respondsTo:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to
aSelector messages, and NO if it doesn't. The application is responsible for
determining whether a NO response should be considered an error.

Note that if the receiver is able to forward the aSelector message to another object, it
will be able to respond to the message (albeit indirectly), even though this method
returns NO.

See also: - forward::, + instancesRespondTo:

self
- self

Returns the receiver.

See also: + class

2-50 Chapter 2: Class SpecificationS

startArchiving:

- startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archived-that is, for being
written to the typed stream stream. A startArchiving: message is sent to an object just
before it's archived-but only if it implements a method that can respond. The message
gives the object an opportunity to do anything necessary to get itself, or the stream,
ready before a write: message begins the archiving process.

There's no default implementation of the startArchiving: method. The Object class
declares the method, but doesn't define it.

See also: - awake, - finishUnarchiving, - write:

subclassResponsibility:
- subclassResponsibility: (SEL)aSelector

U sed in an abstract superclass to indicate that its subclasses are expected to implement
aSelector methods. If a subclass fails to implement the method, the method is inherited
from the superclass and an error is generated.

For example, if subclasses are expected to implement doSomething methods, the
superclass would define this version of the method:

- doSomething
{

[self subclassResponsibility:_cmd];

When this method is invoked, subclassResponsibility: will, working through Object's
error: method, abort the process and generate an appropriate error message.

The _ cmd variable identifies the current method selector, just as self identifies the
current receiver. In the example above, it identifies the selector for the doSomething
method.

Subclass implementations of the aSelector method shouldn't include messages to
super to incorporate the superclass version. If they do, they'll also generate an error.

See also: - doesNotRecognize:, - notImplemented:, - error:

superClass
- superClass

Returns the class object for the receiver's superclass.

See also: + super Class

Common Classes: Object 2-51

write:
- write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver's instance variables to the typed stream
stream. You need to implement a write: method for any class you create if you want
to be able to archive its instances (or instances of classes that inherit from it).

The methods you implement should archive only the instance variables defined in the
class, but should begin with a message to super so that all inherited instance variables
will also be archived:

- write: (NXTypedStream *)stream

[super write:stream];

/* class-specific archiving code goes here */

return self;

All implementations of the write: method should return self.

During the archiving process, write: methods may be performed twice, so they
shouldn't do anything other than write instance variables to a typed stream.

See also: - read:, - startArchiving:

zone

- (NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZoneO.

See also: + allocFrornZone:, + alloc, + copyFrornZone:

2-52 Chapter 2: Class Specifications

Storage

INHERITS FROM Object

DECLARED IN objc/Storage.h

CLASS DESCRIPTION

The Storage class implements a general storage allocator. Each Storage object
manages an array containing data elements of an arbitrary type. When an element is
added to the object, it's copied into the array.

As is the case with List objects, Storage arrays grow dynamically when necessary.
Their capacity doesn't need to be explicitly adjusted.

Because a Storage object holds elements of an arbitrary type, you don't have to define
a special class for each type of data you want to store. When setting up a new instance
of the class, you specify the size of the elements and a description of their type. The
type description is needed for archiving the object and must agree with the specified
element size. It's encoded in a string using the descriptor codes listed below:

Type Code Type Code
char c Class #
char * * id @
NXAtom % SEL
int int (ignored)
short s structure {<types> }
float f array [<count> <types>]
double d

For example, "[15d]" means an array of fifteen doubles, and "{csi*@}" means a
structure containing a char, a short, an int, a character pointer, and an object. The
descriptor "%" specifies a unique string pointer. When it's unarchived, the
NXUniqueStringO function is used to make sure that it's also unique within the new
context. The "!" descriptor requires that the data be the same size as an int; the data
won't be archived.

INSTANCE VARIABLES

Inherited/rom Object

Declared in Storage

Class

void
const char
unsigned int
unsigned int
unsigned int

isa;

*dataPtr;
*description;
numElements;
maxElements;
elementSize;

Common Classes: Storage 2-53

dataPtr

description

numElements

maxElements

elementSize

METHOD TYPES

A pointer to the data stored by the object.

A string encoding the type of data stored.

T~e number of elements actually in the Storage
array.

The total number of elements that can fit within
currently allocated memory.

The size of each element in the array.

Initializing a new Storage instance - init
- initCount:elementSize :description:

Copying and freeing Storage objects
-copy
- copyFromZone:
- free

Getting, adding, and removing elements
- addElement:
- insert:at:
-removeAt:
- removeLastElement
- replace:at:
- empty
- elementAt:

Comparing Storage objects - isEqual:

Managing the storage capacity and type
- count
- description
- setAvailableCapacity:
- setNumSlots:

Archiving - read:
- write:

2-54 Chapter 2: Class Specifications

INSTANCE METHODS

addElement:
- addElement:(void *)anElement

Adds anElement at the end of the Storage array and returns self. The size of the array
is increased if necessary.

See also: - insert:at:

copy
-copy

Returns a new Storage object containing the same data as the receiver. The data as well
as the object is copied, but the two objects share the same description string. Memory
for the copy is taken from the same zone as the receiver.

See also: - copyFromZone:

copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a new Storage object containing the same data as the receiver. The data as well
as the object is copied, and memory for both is taken from zone. The two objects share
the same description string.

See also: - copy

count
- (unsigned)count

Returns the number of elements currently in the Storage array.

See also: - setNumSlots:

description
- (const char *)description

Returns the string encoding the data type of elements in the Storage array.

See also: - initCount:elementSize:description:

Common Classes: Storage 2-55

elementAt:

- (void *)elementAt:(unsigned)index

Returns a pointer to the element at index in the Storage array. If no element is stored at
index (index is beyond the end of the array), a NULL pointer is returned.

Before using the pointer that's returned, you must convert it into the appropriate type
by a cast. The pointer can be used either to read the element at index or to alter it.

See also: - replace:at:, - insert:at:

empty
-empty

Empties the Storage array of all its elements and returns self. The current capacity of
the array remains unchanged.

See also: - free

free
-free

in it

Frees the Storage object and all the elements it contains. Pointers stored in the object
will be freed, but the data they point to won't be (unless the data is also stored in the
object). You might want to free the data before freeing the Storage object. The
description string isn't freed.

See also: - empty

- in it

Initializes'the Storage object so that it's ready to storeobject ids. The initial capacity
of the array isn't set. In general, it's better to store object ids in a List object. Returns
self.

See also: - initConnt:elementSize:description:, - initCount: (List)

2-56 Chapter 2: Class Specifications

initCount:elementSize:description:
- initCount:(unsigned)count

elementSize: (unsigned)sizeI nBytes
description:(const char *)string

Initializes the Storage object so that it will have room for at least count elements. Each
element is of size sizelnBytes and of the type described by string. If string is NULL,
the object won't be archivable. Once set, the description string should never be
modified. Returns self.

This method is the designated initializer for the class. It's used to initialize Storage
objects immediately after they have been allocated; it should never be used to
reinitialize a Storage object that's already been used.

insert:at:
- insert:(void *)anElement at:(unsigned)index

Puts anElement in the Storage array at index. All elements between index and the last
element are shifted to make room. The size of the array is increased if necessary.
Returns self.

See also: - addElement:, - setNumSlots:

isEqual:
- (BOOL)isEqual:anObject

Compares the receiver with anObject, and returns YES if they're the same and NO if
they're not. Two Storage objects are considered to be the same if they have the same
number of elements and the elements at each position in the array match.

read:
- read:(NXTypedStream *)stream

Reads the Storage object and the data it stores from the typed stream stream.

See also: - write:

removeAt:
- removeAt:(unsigned)index

Removes the element located at index from the Storage array and returns self. All
elements between index and the last element are shifted to close the gap.

See also: - removeLastElement

Common Classes: Storage 2-57

removeLastElement

- removeLastElement

Removes the last element from the Storage array and returns self.

See also: - removeAt:

replace:at:

- replace:(void *)anElement at:(unsigned)index

Replaces the data at index with the data pointed to by anElement. However, if no
element is stored at index (index is beyond the end of the array), nothing is replaced.
Returns self.

See also: - elementAt:, - insert:at:

setA vaiiableCapacity:

- setAvailableCapacity:(unsigned)numSlots

Sets the storage capacity of the array to at least numSlots elements and returns self. If
the array already contains more than numSlots elements, its capacity is left unchanged
and nil is returned.

See also: - setNumSlots:, - count

setNumSlots:

- setNumSlots:(unsigned)numSlots

Sets the number of elements in the Storage array to numSlots and returns self. If
numSlots is greater than the current number of elements in the array (the value returned
by count), the new slots will be filled with zeros. If numSlots is less than the current
number of elements in the array, access to all elements with indices equal to or greater
than numSlots will be lost.

If necessary, this method increases the capacity of the storage array so there's room for
at least numSlots elements.

See also: - setAvailableCapacity:, - count

write:

- write:(NXTypedStream *)stream

Writes the Storage object and its data to the typed stream stream.

See also: - read:

2-58 Chapter 2: Class Specifications

StreamTable

INHERITS FROM HashTable : Object

DECLARED IN objc/StreamTable.h

CLASS DESCRIPTION

This class reads and writes a set of independent data structures on streams. Its goal is
to provide incremental saving of files, as a cheap way to implement very primitive data
bases. Both read and write operations are lazy, e.g., reading a StreamTable file only
implies reading of the directory.

Although StreamTable inherits from HashTable, very few methods can be directly
inherited because internal representations of values differ. Nevertheless, the HashTable
abstraction is retained, and StreamTable is described as an object class in order to
simplify usage and implementation. The only inherited methods are count and isKey:.
In order to read and write a StreamTable, the usual read: and write: methods can be
performed.

INSTANCE VARIABLES

Inherited from Object

Inherited from H ashTable

Declared in StreamTable

METHOD TYPES

Creating and freeing a StreamTable

Manipulating table elements

Iterating over all elements

Archiving

Class

unsigned
const char
const char

(none)

-free
- freeObjects
+ new
+ newKeyDesc:

isa;

count;
*keyDesc;
*valueDesc;

- insertStreamKey:value:
- removeStreamKey:
- valueForStreamKey:

- initStreamState
- nextStreamState:key:value:

-read:
- write:

Common Classes: StreamTable 2-59

CLASS METHODS

new

+ new

Returns a new StreamTable with objects as keys.

newKeyDesc:

+ newKeyDesc:(const char *)aKeyDesc

Returns a new StreamTable. Keys must be 32-bit quantities described by aKeyDesc.

INSTANCE METHODS

free

- free

Deallocates the table, but not the objects that are in the table.

freeObjects

- freeObjects

Deallocates every object in the StreamTable, but not the StreamTable itself. Strings are
not recovered.

initStreamState

- (NXHashState)initStreamState

Iterating over all elements of a StreamTable involves setting up an iteration state,
conceptually private to Stream Table, and then progressing until all entries have been
visited. An example of counting elements in a table follows:

unsigned count = 0;
const void *key;
void *value;
NXHashState state = [table initStreamState];
while ([table nextStreamState:&state key:&key value: &value])

count++;

initState begins the process of iteration through the Stream Table.

See also: nextStreamState:key:value:

2-60 Chapter 2: Class Specifications

insertStreannlCey:value:

- (id)insertStreamKey:(const void *)aKey value:(id)aValue

Adds or updates akey/avalue pair.

nextStreannState:key:value:

- (BOOL)nextStreamState:(NXHashState *)aState
key:(const void **)aKey
value:(id *)a Value

Moves to the next entry in the StreamTable. No insertStreamKey: or
removeStreamKey: should be done while iterating through the table.

See also: initStreamState

read:

- read:(NXTypedStream *)stream

Reads the StreamTable from the typed stream stream.

rennoveStreannlCey:

- (id)removeStreamKey:(const void *)aKey

Removes akey/avalue pair. Always returns nil.

valueForStreannlCey: .

- (id)valueForStreamKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

write:

- write:(NXTypedStream *)stream

Writes the StreamTable to the typed stream stream.

Common Classes: StreamTable 2-61

2-62

Application Kit Classes

The class specifications for the Application Kit describe over 50 classes. The inheritance
hierarchy for these classes is shown in Figure 2-2.

Application Kit Classes 2-63

Figure 2-2. Application Kit Inheritance Hierarchy

2-64 Chapter 2: Class Specifications

ActionCell

INHERITS FROM Cell: Object

DECLARED IN appkit/ ActionCell.h

CLASS DESCRIPTION

An ActionCell defines the active area inside a control (an instance of Control or one of
its subclasses). You can set an ActionCell's control only by sending the
drawS elf: in View: message to the ActionCell, passing the control as the second
argument.

A single control may have more than one ActionCell. An integer tag, provided as the
instance variable tag, is used to identify an ActionCell object; this is of particular
importance to controls that contain more than one ActionCell. Note, however, that no
checking is done by the ActionCell object itself to ensure that the tag is unique. See
the Matrix class for an example of a subclass of Control that contains multiple
ActionCells.

ActionCell defines the target and action instance variables and methods for setting
them. These define the ActionCell's target object and action method. As the user
manipulates a control, ActionCell's trackMouse:inRect: ofView: method (inherited
from Cell) sends the action message to the target object with the id of the Control object
as the only argument.

Many of the methods that define the contents and look of an ActionCell, such as
setFont: and setBordered:, are reimplementations of methods inherited from Cell.
They're subclassed to ensure that the ActionCell is redisplayed if it's currently in a
control.

INSTANCE VARIABLES

Inherited from Object

Inherited from Cell

Declared in ActionCell

tag

target

action

Class

char
id
struct _cFlags 1
struct _cFlags2

int
id
SEL

isa;

*contents;
support;
cFlagsl;
cFlags2;

tag;
target;
action;

Reference number for the object.

The object's notification target.

The message to send to the target.

Application Kit Classes: ActionCell 2-65

METHOD TYPES

Configuring the ActionCell - setAlignment:
- setBezeled:
- setBordered:
- setEnabled:
- setFloatingPointFormat:left:right:
- setFont:
- setIcon:

Manipulating ActionCell values - double Value
- float Value
- intValue
- setStringValue:
- setString ValueNoCopy:shouldFree:
- stringValue

Displaying - control View
- drawSelf:in View:

Target and action - action
- setAction:
- setTarget:
- target

Assigning a tag - setTag:
-tag

Archiving -read:
- write:

INSTANCE METHODS

action

- (SEL)action

Returns the selector for the receiver's action method. Keep in mind that the argument
to an ActionCell's action method is the object's Control (the object returned by
controIView).

See also: - setAction:

2-66 Chapter 2: Class Specifications

control View

- control View

Returns the Control object in which the receiver was most recently drawn. In general,
you should use the object returned by this method only to (indirectly) redisplay the
receiver. For example, the subclasses of ActionCell defined by the Application Kit
invoke this method in order to send the returned object a message such as
updateCelllnside: .

The Control in which an ActionCell is drawn is set through the drawSelf:in View:
method (only).

See also: - drawSelf:in View:

double Value

- (double)double Value

Returns the receiver's contents as a double.

See also: - setDoubleValue:(Cell), - doubleValue (Cell)

drawS elf: in View:

- drawSelf:(const NXRect *)ceIlFrame inView:controlView

Displays the ActionCell by sending

[super drawSelf:cellFrame inView:controlView];

Sets the receiver's Control (the controlView instance variable) to controlView if and
only if controlView is a Control object (in other words, an instance of Control or a
subclass thereof).

See also: - drawS elf: in View: (Cell)

floatValue

- (float)floatValue

Returns the receiver's contents as a float.

See also: - setFloatValue:(Cell), - floatValue (Cell)

Application Kit Classes: ActioriCell 2-67

intValue
- (int)intValue

Returns the receiver's contents as an int.

See also: - setIntValue:(Cell), - intValue (Cell)

read:
- read:(NXTypedStream *)stream

Reads and returns an object of class ActionCell from stream.

setAction:
- setAction: (SEL)aSelector

Sets the receiver's action method to aSelector. Keep in mind that the argument to an
ActionCell's action method is the object's Control (the object returned by
controIView). Returns self.

See also: - setTarget:, - sendAction:to: (Control)

setAlignment:
- setAlignment:(int)mode

If the receiver is a text Cell (type NX_TEXTCELL), this sets its text alignment to mode,
which should be NXLEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.
If it's currently in a Control view, the receiver is redisplayed. Returns self.

setBezeled:
- setBezeled:(BOOL)jlag

Adds or removes the receiver's bezel, asflag is YES or NO. Adding a bezel will remove
the receiver's (flat) border, if any. If it's currently in a Control view, the receiver is
redisplayed. Returns self.

See also: - setBordered:

setBordered:
- setBordered:(BOOL)flag

Adds or removes the receiver's border, asflag is YES or NO. The border is black and
has a width of 1.0. Adding a border will remove the receiver's bezel, if any. If it's
currently in a Control view, the receiver is redisplayed. Returns self.

See also: - setBezeled:

2-68 Chapter 2: Class Specifications

setEnabled:

- setEnabled:(BOOL)jlag

Enables or disables the receiver's ability to receive mouse events asjlag is YES or NO.
If it's currently in a Control view, the receiver is redisplayed. Returns self.

setFloatingPointFormat: left: right:
- setFloatingPointFormat: (BOOL)autoRange

left: (unsigned int) leftDig its
right:(unsigned int)rightDigits

Sets the receiver's floating point format. If it's currently in a Control view, the receiver
is redisplayed. Returns self.

See also: - setFloatingPointFormat:left:right: (Cell)

setFont:

- setFont:fontObJ

If the receiver is a text Cell (type NX_TEXTCELL), this sets its font to fontObJ. In
addition, if it's currently in a Control view, the receiver is redisplayed. Returns self.

setIcon:
- setlcon:(const char *)iconName

Sets the receiver's icon to iconName and sets its Cell type to NX_ICONCELL. If it's
currently in a Control view, the receiver is redisplayed. Returns self.

See also: - setlcon: (Cell)

setStringValue:
- setStringValue:(const char *)aString

Sets the receiver's contents to a copy of aString. If it's currently in a Control view, the
receiver is redisplayed. Returns self.

See also: - setStringValue: (Cell)

Application Kit Classes: ActionCeli 2-69

setString ValueNoCopy:shouldFree:
- set String ValueNoCopy:(char *)aString shouldFree: (BOOL)jlag

Sets the receiver's contents to a aString. Ifjlag is YES, aString will be freed when the
receiver is freed. If it's currently in a Control view, the receiver is redisplayed. Returns
self.

See also: - setStringValueNoCopy:shouldFree: (Cell)

setTag:
- setTag:(int)anInt

Sets the receiver's tag to anInt. Returns self.

setTarget:
- setTarget:anObject

Sets the receiver's target to anObject. Returns self.

See also: - setAction:

stringValue
- (const char *)stringValue

Returns the receiver's contents as a string. Returns self.

See also: - setStringValue:, - stringValue (Cell)

tag
- (int)tag

Returns the receiver's tag.

target
- target

Returns the receiver's target.

write:
- write:(NXTypedStream *)stream

Writes the receiver to stream. Returns self.

2-70 Chapter 2: Class Specifications

Application

INHERITS FROM Responder: Object

DECLARED IN appld tf Application.h

CLASS DESCRIPTION

The Application class provides the framework for program execution; every program
must have exactly one Application object. Creating the object connects the program to
the Window Server and initializes its PostScript environment. The Application object
maintains a list of all the Windows in the application, thereby allowing it to retrieve
every View in the application. To make it readily accessible to other objects, the
Application object for your program is assigned to the global variable NXApp.

The main task of the Application object is to receive events from the Window Server
and distribute them to the proper Responders. System events are handled by the
Application object itself. Window events are translated into event messages for the
affected Window object. Key-down events that occur when the Command key is
pressed are translated into commandKey: messages that every Window has an
opportunity to respond to. Other keyboard and mouse events are sent to the Window
associated with the event; the Window then distributes them to the objects in its view
hierarchy.

Subclassing the Application class is discouraged. Instead of placing the functionality
of your program in an Application object, you should place that functionality in one or
more modules which are subclasses of the Object class. Your program will then tend
to be more reusable, and can be invoked from a small dispatcher object rather than
being closely tied to the Application code.

The Application object can be assigned a delegate that responds to notification
messages on the Application object's behalf. The easiest way to make your own object
the Application object's delegate is to Control-drag a connection from the File's Owner
icon to your object in Interface Builder, and connect it as the delegate. Many of the
notification methods are sent back to the Application object if the delegate doesn't
respond, but the preferred technique is to have the delegate respond to these messages.
The notification messages are listed below, divided into two categories:

Delegate Only

appDidHide:
appDidUnhide:
appWillUpdate:
appDidUpdate:
appDidBecomeActive:
appDidResignActive:
powerOff:

Delegate or Application subclass

appAcceptsAnotherFile:
app:openFile:type:
app:openTempFile:type:
appDidInit:
app:powerOffln:andSave:
app:unmounting:
applicationDefined:

Application Kit Classes: Application 2-71

Note that of the methods in the second category the Application class implements only
the applicationDefined: method, and that it implements that method only to forward
the message to the delegate.

Since an application must have one and only one Application object, you must use new
to create it. You can't use alloc, allocFrornZone:, or init to create or initialize an
Application object.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Declared in Application

appName

currentEvent

windowList

keyWindow

2-72 Chapter 2: Class Specifications

Class isa;

id nextResponder;

char *appName;
NXEvent currentEvent;
id windowList;
id keyWindow;
id main Window;
id delegate;
int *hiddenList;
int hiddenCount;
const char *hostName;
DPSContext context;
int contextNum;
id appListener;
id appSpeaker;
port_t replyPort;
NXSize screenSize;
short running;
struct _appFlags {

unsigned int hidden: 1;
unsigned int autoupdate: 1;
unsigned int active: 1;

appFlags;

The name of your application; used by the
defaults system and the application's Listener
object.

The event most recently retrieved from the event
queue.

A List of all the windows belonging to the
application.

The Window that receives keyboard events.

mainWindow

delegate

hiddenList

hiddenCount

hostName

context

contextNum

appListener

appSpeaker

replyPort

screenSize

running

appFlags.hidden

appFlags.autoupdate

appFlags.active

The Window that receives menu commands and
action messages from a Panel.

The object that responds to delegated messages.

The Window Server's List for Windows in the
application at the time the application is hidden.

The number of windows referred to by
hiddenList.

The name of the machine running the Window
Server.

The Display PostScript context connected to the
Window Server.

A number identifying the application's Display
PostScript context.

The Application object's Listener.

The Application object's Speaker.

A general purpose reply port for the Application
object's Speakers.

The size of the screen that this application is
running on.

The nested level of run and runModaIFor:.

YES if the application's windows are currently
hidden.

YES if the Application object is to send an
update message to each Window after an event
has been processed.

YES if the application is the active application.

Application Kit Classes: Application 2-73

METHOD TYPES

Initializing the class

Creating and freeing instances

Setting up the application

Changing the active application

Running the event loop

Getting and peeking at events

2-74 Chapter 2: Class Specifications

+ initialize

+ new
- free

-loadNibFile:owner:
- loadNibFile: owner: withN ames:
-loadNibFile:owner:withNames:fromZone:
-loadNibSection:owner:
-loadNibSection:owner:withNames:
- loadNibSection: owner: withN ames:

fromHeader:
-loadNibSection:owner:withNames:

fromZone:
-loadNibSection:owner:withNames:

fromHeader:fromZone:
-appName
- setMainMenu:
-mainMenu

- activate:
- activateS elf:
- activeApp
- becomeActiveApp
- deactivateS elf
- isActive
- resignActiveApp

-run
- stop:
- runModalFor:
- stopModal
- stopModal:
- abortModal
- beginModaISession:for:
- runModalSession:
- endModalSession:
- delayedFree:
- isRunning
- sendEvent:

- currentEvent
- getNextEvent:
- getNextEvent:waitFor:threshold:
- peekAndGetNextEvent:
- peekNextEvent:into:
- peekNextEvent:into:waitFor:threshold:

Joumaling - isJ oumalable
- setloumalable:
- masterJ oumaler
- slaveJ oumaler

Handling user actions and events - applicationDefined:
- hide:
- isHidden
- unhide
- unhide:
- unhide WithoutActivation:
-powerOff:
- powerOffIn:andSave:
- rightMouseDown:
- unmounting:ok:

Sending action messages - sendAction:to:from:
- tryToPerform:with:
- calcTargetForAction:

Remote messaging - setAppListener:
- appListener
- setAppSpeaker:
- appSpeaker
- appListenerPortN arne
- replyPort

Managing Windows - applcon
- findWindow:
- getWindowNumbers:count:
-keyWindow
- main Window
- make WindowsPerform:inOrder:
- setAutoupdate:
- update Windows
- window List

Managing the Windows menu - setWindowsMenu:
- windowsMenu
- arrangelnFront:
- addWindowsltem:title:filename:
- remove Windowsltem:
- changeWindowsltem:title:filename:
- update Windowsltem:

Managing the Services menu - setServicesMenu:
- servicesMenu
- registerServicesMenuSendTyp~s:

andRetumTypes:
- validRequestorForSendType:andRetumType:

Application Kit Classes: Application 2-75

Managing screens - mainScreen
- colorScreen
- getScreens:count:
- getScreenSize:

Querying the application - context
- focusView
-hostName

Language - systemLanguages

Opening files - openFile:ok:
- openTempFile:ok:

Printing - setPrintInfo:
- printInfo
- runPageLayout:

Color - orderFrontColorPanel:

Tetminating the ,application - terminate:

Assigning a delegate - setDelegate:
- delegate

CLASS METHODS

alloc

Generates an error message. This method c·annot be used to create an Application
object. Use new instead.

See also: + new

allocFrornZone:

Generates an error message. This method cannot be used to create an Application
object. Use new instead.

See also: + new

initialize

+ initialize

Registers defaults used by the Application class. You never send this message directly;
it's sent for you when your application starts. Returns self.

2-76 Chapter 2: Class Specifications

new

+ new

Creates a new Application object and assigns it to the global variable NXApp. A
program can have only one Application object, so this method just returns NXApp if
the Application object already exists. This method also makes a connection to the
Window Server, loads the PostScript procedures the application needs, and completes
other initialization. Your program should generally invoke this method as one of the
first statements in mainO; this is done for you if you create your application with
Interface Builder. The Application object is returned.

See also: - run

INSTANCE METHODS

abortModal

- (void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught
by runModaIFor:, the method that started the modal loop. Since this method raises an
exception, it never returns; runModaIFor:, when stopped with this method, returns
NX_RUNABORTED. This method is typically invoked from procedures registered
with DPSAddTimedEntryO, DPSAddPortO, or DPSAddFDO. Note that you can't
use this method to abort modal sessions, where you control the modal loop and
periodically invoke runModaISession:.

See also: - runModaIFor:, - stopModal, - stopModal:

activate:

- (int)activate:(int)contextNumber

Makes the application identified by contextNumber the active application.
context Number is the PostScript context number of the application to be activated.
Normally, you shouldn't invoke this method; the Application Kit is responsible for
proper activation. The previously active application's PostScript context number is
returned.

See also: - isActive, - activateSelf:, - deactivateSelf

Application Kit Classes: Application 2-77

activateSelf:

- (int)activateSelf:(BOOL)jlag

Makes the receiving application the active application. Ifjlag is NO, the application is
activated only if no other application is currently active. Normally, this method is
invoked withjlag set to NO. When the WorkSpace Manager launches an application,
it deactivates itself, so activateSelf:NO allows the application to become active if the
user waits for it to launch, but the application remains unobtrusive if the user activates
another application. Ifjlag is YES, the application will always activate. Regardless of
the setting of flag, there may be a time lag before the application activates; you should
not assume that the application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the
active application; when you send a makeKeyWindow message to a Window, you
simply ensure that the Window will be the key window when the application is active.

You should rarely have a need to invoke this method. Under most circumstances the
Application Kit takes care of proper activation. However, you might find this method
useful if you implement your own methods for inter-application communication. This
method returns the PostScript context number of the previously active application.

See also: - activeApp, - activate:, - deactivateS elf, - makeKeyWindow (Window)

activeApp

- (int)activeApp

Returns the active application's PostScript context number. If no application is active,
returns zero.

See also: - isActive, - activate:

addWindowsltem:title:filename:
- add.Windowsltem:aWindow title:(const char *)aString

filename: (BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window aWindow. If
isFilename is NO, aString appears literally in the menu. If isFilename is YES, aString
is assumed to be a converted name with the filename preceding the path, as placed in a
Window title by Window's setTitleAsFilename: method. If an item for aWindow
already exists in the Windows menu, this method has no effect. You rarely invoke this
method because an item is placed in the Windows menu for you whenever a Window's
title is set. Returns self.

See also: - changeWindowsltem:title:filename:, - setTitle: (Window),
- setTitleAsFilename: (Window)

2-78 Chapter 2: Class Specifications

appIcon

- applcon

Returns the Window that represents the application in the Workspace Manager.

applicationDefined:
- applicationDefined:(NXEvent *)theEvent

Handles the application-defined (NX_APPDEFINED) event theEvent. The default
implementation forwards the message to the receiver's delegate (if the delegate
responds to the message). You should either provide a delegate implementation or
override this method in your subclass of Application if you want to handle such events.
If the delegate responds to this message, the delegate's return value is returned;
otherwise returns self.

appListener
- appListener

Returns the Application object's Listener-the object that will receive messages sent
to the port that's registered for the application's name. If you don't send a
setAppListener: message before your application starts running, an instance of
Listener is created for you.

See also: - setAppListener:, - appListenerPortName, - run

appListenerPortName
- (const char *)appListenerPortName

Returns the name used to register the Application object's Listener. The default is the
same name that's returned by the Application object's appName method. If a different
name is desired, this method should be overridden. Messages sent by name to
appListenerPortName will be received by your Application object.

See also: - checklnAs: (Listener), - appName, NXPortFromNameO

appName
- (const char *)appName

Returns the name under which the Application object has been registered for defaults.
This name is also used for messaging unless the messaging name was changed with an
override of appListenerPortName.

See also: - appListenerPortName

Application Kit Classes: Application 2-79

appSpeaker

- appSpeaker

Returns the Application object's Speaker. You can use this object to send messages to
other applications.

See also: - setSendPort: (Speaker)

arrangelnFront:

- arrangeInFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows.
Windows associated with the application but not listed in the Windows menu are not
ordered to the front. Returns self.

See also: - removeWindowsItem:, - makeKeyAndOrderFront: (Window)

becomeActiveApp

- becomeActiveApp

Sends the appDidBecomeActive: message to the Application object's delegate. This
method is invoked when the application is activated. You never send a
becomeActiveApp message directly, but you can override this method in a subclass.
Returns self.

See also: - activateSelf:, - appDidBecomeActive: (delegate)

beginModalSession :for:

- (NXModalSession *)beginModaISession:(NXModaISession *)session
for:the Window

Prepares the application for a modal session with theWindow. In other words, prepares
the application so that mouse events get to it only if they occur in the Window. If session
is NULL, a NXModalSession is allocated; otherwise the given storage is used. (The
sender could declare a local NXModalSession variable for this purpose.) the Window
is made the key window and ordered to the front.

beginModaISession:for: should be balanced by endModaISession:. If an exception
is raised, beginModaISession:for: arranges for proper cleanup. Do NOT use
NX_DURING constructs to send an endModalSession: message in the event of an
exception. Returns the NXModalSession pointer that's used to refer to this session.

See also: - runModaISession:, - endModalSession:

2-80 Chapter 2: Class Specifications

calcTargetFor Action:

- calcTargetFor Action: (SEL)theAction

Returns the first object in the responder chain that responds to the message theAction.
The message isn't actually dispatched. Note that this method doesn't test the value that
the responding object would return should the message be sent; specifically, it doesn't
test to see if the responder would return nil. Returns nil if no responder is found.

See also: - sendAction:to:from:

change Windowsltem:title:filename:

- changeWindowsltem:aWindow title:(const char *)aString
filename: (BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString. If aWindow doesn't
have an item in the Windows menu, this method adds the item. If isFilename is NO,
aString appears literally in the menu. If isFilename is YES, aString is assumed to be a
converted name with the filename preceding the path, as placed in a Window title by
Window's setTitieAsFilename: method. Returns self.

See also: - addWindowsltem:title:filename:, - setTitle: (Window),
- setTitieAsFilename: (Window)

color Screen

- (const NXScreen *)colorScreen

Returns the screen that can best represent color. This method will always return a
screen, even if no color screen is present.

See also: NXBPSFromDepthO

context

- (DPSContext)context

Returns the Application object's Display PostScript context.

currentEvent

- (NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue.
A pointer to the current event is also passed with every event message.

See also: - getNextEvent:waitFor:threshold:,
- peekNextEvent:waitFor:threshold:

Application Kit Classes: Application 2-81

deactivateSelf

- deactivateS elf

Deactivates the application if it's active. Normally, you shouldn't invoke this method;
the Application Kit is responsible for proper deactivation. Returns self.

See also: - activeApp, - activate:, - activateSelf:

delayedFree:

- delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding
to the current event and before it gets the next event. If this method is performed during
a modal loop, theObject is freed after the modal loop ends. Returns self.

delegate

- delegate

Returns the Application object's delegate.

See also: - setDelegate:

endModalSession:

- endModaISession:(NXModaISession *)session

Cleans up after a modal session. session should be from a previous invocation of
beginModaISession:for:.

See also: - runModaISession:, - beginModaISession:for:

findWindow:
- findWindow:(int)windowNum

Returns the Window object that corresponds to the window number windowNum. This
method is of primary use in finding the Window object associated with a particular
event.

See also: - windowNum (Window)

focusView

- focusView

Returns the View that is currently focused on, or nil if no View is focused on.

See also: -lockFocus (View)

2-82 Chapter 2: Class Specifications

free
-free

Closes all the Application object's windows, breaks the connection to the Window
Server, and frees the Application object.

getNextEvent:
- (NXEvent *)getNextEvent:(int)mask

Gets the next event from the Window Server and returns a pointer to its event record.
This method is similar to getNextEvent:waitFor:threshold: with an infinite timeout
and a threshold of NX_MODALRESPTHRESHOLD.

See also: - getNextEvent:waitFor:threshold, - run, - runModalFor:,
- currentEvent

getNextEvent:waitFor:threshold:
- (NXEvent *)getNextEvent:(int)mask

waitFor: (double)timeout
threshold: (int)leve I

Gets the next event from the Window Server and returns a pointer to its event record.
Only events that match mask are returned; getNextEvent:waitFor:threshold: goes
through the event queue, starting from the head, until it finds an event matching mask.
Events that are skipped are left in the queue. Note that
getNextEvent:waitFor:threshold: doesn't alter the window event masks that
determine which events the Window Server will send to the application.

If an event matching the mask doesn't arrive within timeout seconds, this method
returns a NULL pointer.

You can use this method to short circuit normal event dispatching and get your own
events. For example, you may want to do this in response to a mouse-down event in
order to track the mouse while it's down. In this case, you would set mask to accept
mouse-dragged, mouse-entered, mouse-exited, or mouse-up events.

level determines what other tasks should be performed when the event queue is
examined. Tasks that may be performed include procedures to deal with timed-entries,
procedures to handle messages received on ports, or procedures to read new data from
files. Any such procedure that needs to be called will be called if its priority (specified
when the procedure is registered) is equal to or higher than level.

In general, modal responders should pass NX_MODALRESPTHRESHOLD for level.
The main run loop uses a threshold of NX_BASETHRESHOLD, allowing all
procedures (except those registered with priority 0) to be checked and invoked if
needed.

See also: - peekNextEvent:waitFor:threshold:, - run, - runModalFor:

Application Kit Classes: Application 2-83

getScreens: count:

- getScreens:(const NXScreen **)list count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array
of NXScreen structures is placed in the variable indicated by list, and the number of
NXScreen structures in that array is placed in the variable indicated by numScreens.
Returns self.

getScreenSize:

- getScreenSize:(NXSize *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and places it
in the structure pointed to by theSize. Returns self.

getWindowNumbers:count:

- getWindowNumbers:(int **)list count:(int *)numWindows

Gets the window numbers for all the Application object's Windows. A pointer to a
non-NULL-terminated int array is placed in the variable indicated by list. The number
of entries in this array is placed in the integer indicated by numWindows. The order of
window numbers in the array is the same as their order in the Window Server's screen
list, which is their front-to-back order on the screen. The application is responsible for
freeing the list array when done. Returns self.

See also: NXWindowListO

hide:

- hide:sender

Collapses the application's graphics-including all its windows, menus, and panels
into a single small window. The hide: message is usually sent using the Hide command
in the application's main menu. Returns self.

See also: - unhide:

hostName

- (const char *)hostName

Returns the name of the host machine on which the Window Server that serves the
Application object is running. This method returns the name that was passed to the
receiving Application object through the NXHost default; this name is set either from
its value in the defaults database or by providing a value for NXHost through the
command line. If a value for NXHost isn't specified, NULL is returned.

2-84 Chapter 2: Class Specifications

isActive

- (BOOL)isActive

Returns YES if the application is currently active, and NO if it isn't.

See also: - activateSelf:, - activate:

isHidden

- (BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn't.

isJ ournalable

- (BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can't. By default,
applications can be journaled.

See also: - setJournalable:

isRunning

- (BOOL)isRunning

Returns YES if the application is running, and NO if the stop: method has ended the
main event loop.

See also: - run, - stop:, - terminate:

key"Yindow

-keyWindow

Returns the key window-the Window that receives keyboard events. If there is no key
window, or if the key window belongs to another application, this method returns nil.

See also: - mainWindow, - isKeyWindow (Window)

loadNibFile:owner:

-loadNibFile:(const char *)filename owner:anOwner

Loads objects from the specified interface file. This method is a cover for
loadNibFile:owner:withNames:fromZone:. The objects and their names are read
from the specified interface file into storage allocated from the default zone. Returns
non-nil if the file filename is successfully opened and read; otherwise it returns nil.

See also: -loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZoneO

Application Kit Classes: Application 2-85

loadNibFile:owner:withNames:

-loadNibFile:(const char *)filename
owner:anObject
withNarnes: (BOOL)flag

Loads objects from the specified interface file. This method is a cover for
loadNibFile:owner:withNarnes:frornZone:. The objects are read from the specified
interface file into storage allocated from the default zone. Returns non-nil if the file
filename is successfully opened and read; otherwise it returns nil.

See also: -loadNibFile:owner:withNarnes:frornZone:, NXDefaultMallocZoneO

loadNibFile:owner:withNames:fromZone:

-loadNibFile:(const char *)filename
owner:anObject
withNarnes:(BOOL)flag
frornZone:(NXZone *)zone

Loads objects from the specified interface file into memory allocated from zone. This
method returns non-nil if the file filename is successfully opened and read; otherwise it
returns nil.

anObject is the object that corresponds to the "File's Owner" object in Interface
Builder's File window. As the objects are loaded, the outlet initialization methods in
anObject are invoked to bind the outlets.

If flag is YES, the names of the objects are loaded. If you use only the outlet
mechanism to get to objects in the interface file, you can save some memory by
specifying NO as the value of flag. However, you won't be able to use
NXGetNarnedObjectO to get at the objects.

See also: -loadNibSection:owner:withNarnes:frornZone:

loadNibSection:owner:

-loadNibSection:(const char *)sectionName owner:anObject

Loads objects and their names from the specified section of the application's executable
file into memory allocated from the default zone. This method returns non-nil if the
section is successfully loaded; otherwise it returns nil.

See also: -loadNibSection:owner:withNarnes:frornZone:,
NXDefaultMallocZoneO

2-86 Chapter 2: Class Specifications

loadNibSection:owner:withNames:
-loadNibSection:(const char *)name

owner:anObject
withNames:(BOOL)jlag

Loads objects from the interface data in the specified section in the _NIB segment of
the executable file into memory allocated from the default zone. This method returns
non-nil if the section is successfully loaded; otherwise it returns nil (for example if
section name doesn't exist).

See also: -loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZoneO

loadNibSection:owner:withNames:fromHeader:
-loadNibSection:(const char *)name

owner:anObject
withNames:(BOOL)jlag
fromHeader:(const struct mach_header *)header

Loads objects from a dynamically loaded header into memory allocated from the
default zone. A class can use this method in its + finishLoading method to load
associated interface data.

See also: -loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZoneO

loadNibSection:owner:withNames:fromHeader:fromZone:
- loadNibSection: (const char *)name

owner:anObject
withNames:(BOOL)jlag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

Loads objects from a dynamically loaded header into memory allocated from the
specified zone. A class can use this method in its + load method to load associated
interface data.

See also: -loadNibSection:owner:withNames:fromZone:

Application Kit Classes: Application 2-87

loadNibSection:owner:withNames:fromZone:
- loadNibSection:(const char *)name

owner:anObject
withNames:(BOOL)jlag
fromZone:(NXZone *)zone

Loads objects from the interface data in the specified section in the _NIB segment of
the executable file into memory allocated from the specified zone. This method returns
non-nil if the section is successfully loaded; otherwise it returns nil (for example if
section name doesn't exist).

anObject is the object that corresponds to the "File's Owner" object in the Interface
Builder's File window. As the objects are loaded, the outlet initialization methods in
anObject are performed to bind the outlets.

If jlag is YES, the names of the objects are loaded. If you use only the outlet
mechanism to get to objects in the interface section, you can save some memory by
specifying NO as the value ofjlag. In that case you won't be able to use
NXGetNamedObjectO to get the id of objects.

See also: - loadNibSection:owner:withNames:fromZone:

mainMenu
-mainMenu

Returns the Application object's main menu.

mainScreen
- (const NXScreen *)mainScreen

Returns the main screen. If there is only one screen, that screen is returned. Otherwise,
this method attempts to return the key window's screen. If there is no key window, it
attempts to return the main menu's screen. If there is no main menu, this method
returns the screen that contains the screen coordinate system origin.

See also: - screen (Window)

mainWindow
- main Window

Returns the main window. This method returns nil if there is no main window, if the
main window belongs to another application, or if the application is hidden.

See also: - keyWindow, - isMainWindow (Window)

2-88 Chapter 2: Class Specifications

make WindowsPerform:inOrder:

-makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)jlag

Sends the Application object's Windows a message to perform the aSelector method.·
The message is sent to each Window in tum until one of them returns YES; this method
then returns that Window. If no Window returns YES, this method returns nil.

Ifjlag is YES, the Application object's Windows receive the aSelector message in the
front-to-back order in which they appear in the Window Server's window list. Ifjlag is
NO, Windows receive the message in the order they appear in the Application object's
window list. This order generally reflects the order in which the Windows were
created.

The aSelector method can't take any arguments.

master Journaler

- master Journaler

Returns the Application object's master journaler.

See also: - slaveJounaler

openFile:ok:

- (int)openFile:(const char *)fullPath ok:(int *)flag

Responds to a remote message requesting the application to open a file. The
openFile:ok: message is typically sent to the application from the Workspace
Manager, although other applications can send it directly to a specific application. The
Application object's delegate is queried with the appAcceptsAnotherFile: message
and if the result is YES, it's sent the app:openFile:type: message. If the delegate
doesn't respond to either of these messages, they're sent to the Application object (if it
implements them).

The variable pointed to by jlag is set to YES if the file is successfully opened, NO if the
file is not successfully opened, and (-1) if the application does not accept another file.
Returns zero.

See also: - app:openFile:type: (Application delegate), - openFile:ok: (Speaker)

openTempFile:ok:

- (int)openTempFile:(const char *)fullPath ok:(int *)jlag

Same as the openFile:ok: method, but app:openTempFile:type: is sent. Returns zero.

See also: - app:openTempFile:type: (Application delegate),
- openTempFile:ok: (Speaker)

Application Kit Classes: Application 2-89

orderFrontColor Panel:
- orderFrontColorPanel:sender

Displays the color panel. Returns self.

peekAndGetNextEvent:
- (NXEvent *)peekAndGetNextEvent: (int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and
a threshold of NX_MODALRESPTHRESHOLD.

See also: - getNextEvent:waitFor:threshold, - run, - runModaIFor:,
- currentEvent

peekNextEvent:into:
- (NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)evimtPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero
timeout and a threshold of NX_MODALRESPTHRESHOLD.

See also: - peekNextEvent:into:waitFor:threshold, - run, - runModaIFor:,
- currentEvent

peekNextEvent:into:waitFor:threshold:
- (NXEvent *)peekNextEvent:(int)mask

into:(NXEvent *)eventPtr
waitFor: (float)timeout
threshold: (int)level

This method is similar to getNextEvent:waitFor:threshold: except the matching
event isn't removed from the event queue nor is it placed in currentEvent; instead, it's
copied into storage pointed to by eventPtr.

If no matching event is found, NULL is returned; otherwise, eventPtr is returned.

See also: - getNextEvent:waitFor:threshold:, - run, - runModaIFor:,
- currentEvent

2-90 Chapter 2: Class Specifications

powerOff:
- powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window
Server. If the application was launched by the Workspace Manager, this method does
nothing; instead, the Application object will wait for the powerOffin:andSave:
message from the Workspace Manager. If the application wasn't launched from the
Workspace Manager, this method sends the delegate a powerOff: message, assuming
there's a delegate and it implements the method. Returns self.

powerOffIn:andSave:
- (int)powerOffin:(int)ms andSave:(int)aFlag

You never invoke this method directly; it's sent from the Workspace Manager. The
delegate or your subclass of Application will be given the chance to receive the
app:powerOffin:andSave message. This method raises an exception, so it never
returns.

See also: - app:powerOffin:andSave: (delegate)

printlnfo

- printlnfo

Returns the Application object's global PrintInfo object. If none exists, a default one
is created.

registerServicesMenuSendTypes:andReturnTypes:
- registerServicesMenuSendTypes:(const char *const *)sendTypes

andReturnTypes:(const char *const *)returnTypes

Registers pasteboard types that the application can send and receive in response to
service requests. If the application has a Services menu, a menu item is added for each
service provider that can accept one of the specified send types or return one of the
specified return types. This method should typically be invoked at application startup
time or when an object that can use services is created. It can be invoked more than
once; its purpose is to ensure that there is a menu item for every service that may be
used by the application. The individual items will be dynamically enabled and disabled
by the event handling mechanism to indicate which services are currently appropriate.
An application (or object instance that can cut or paste) should register every possible
type that it can send and receive. Returns self.

See also: - validRequestorForSendType:andReturnType: (Responder),
- readSelectionFromPasteboard: (Object method),
- writeSelectionToPasteboard: (Object method)

Application Kit Classes: Application 2-91

remove Windowsltem:

- remove WindowsItem:aWindow

Removes the item for a Window in the Windows menu. Returns self.

See also: - change WindowsItem:title:filename:

replyPort

- (port_t)replyPort

Returns the Application object's reply port. This port is allocated for you automatically
by the run method, and is the default reply port which can be shared by all the
Application object's Speakers.

See also: - setReplyPort: (Speaker)

resignActiveApp

- resignActiveApp

This method is invoked immediately after the application is deactivated. You never
send resignActiveApp messages directly, but you could override this method in your
Application object to notice when your application is deactivated. Alternatively, your
delegate could implement appDidResignActive:. Returns self.

See also: - deactivateS elf: , - appDidResignActive: (delegate)

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Pops up the main menu. Returns self.

run

-run

Initiates the Application object's main event loop. The loop continues until a stop: or
terminate: message is received. Each iteration through the loop, the next available
event from the Window Server is stored, and is then dispatched by sending the event to
the Application object using sendEvent:

A run message should be sent as the last statement from mainO, after the application's
objects have been initialized. Returns self if terminated by stop:, but never returns if
terminated by terminate:.

See also: - runModaIFor:, - sendEvent:, - stop:, - terminate:,
- appDidInit: (delegate)

2-92 Chapter 2: Class Specifications

runModalFor:
- (int)runModaIFor:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a
stopModal, stopModal:, or abortModal message, the application won't respond to
any mouse, keyboard, or window-close events unless they're associated with
theWindow. If stopModal: is used to stop the modal event loop, this method returns
the argument passed to stopModal:. If stopModal is used, it returns the constant
NX_RUNSTOPPED. If abortModal is used, it returns the constant
NX_RUNABORTED. This method is functionally similar to the following:

NXModalSession session;

[NXApp beginModalSession:&session for:theWindow];
for (;;) {

if ([NXApp runModalSession:&session] != NX_RUNCONTINUES)
break;

[NXApp endModalSession:&session];

See also: - stopModal, - stopModal:, - abortModal, - runModalSession:

runModalSession:

- (int)runModaISession:(NXModaISession *)session

Runs a modal session represented by session, as defined in a previous invocation of
beginModaISession:for:. A loop using this method is similar to a modal event loop
run with runModaIFor:, except that with this method the application can continue
processing between method invocations. When you invoke this method, events for the
window of this session are dispatched as normal; this method returns when there are no
more events. You must invoke this method frequently enough that the window remains
responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If
stopModal was invoked as the result of event procession, NX_RUNSTOPPED is
returned. If stopModal: was invoked, this method returns the value passed to
stop Modal:. The NX_abortModal exception raised ~y abortModal isn't caught.

See also: - beginModaISession:, - endModalSession, - stopModal:, - stopModal,
- runModalFor:

runPageLayout:
- runPageLayout:sender

Brings up the Application object's Page Layout panel, which allows the user to select
the page size and orientation. Returns self.

Application Kit Classes: Application 2-93

sendAction:to:from:
- (BOOL)sendAction:(SEL)aSeiector to:aTarget from:sender

Sends an action message to an object. If aTarget is nil, the message is sent down the
responder chain. Returns YES if the action is applied; otherwise returns NO.

sendEvent:
- sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages
directly although you might want to override this method to perform some action on
every event. sendEvent: messages are sent from the main event loop (the run method).
sendEvent is the method that dispatches events to the appropriate responders; the
Application object handles application events, the Window indicated in the event
record handles window related events, and mouse and key events are forwarded to the
appropriate Window for further dispatching. Returns self.

See also: - setAutoupdate:

servicesMenu
- services Menu

Returns the Application object's Services menu. Returns nil if no Services menu has
been created.

See also: - setServicesMenu:

setAppListener:

- setAppListener:aListener

Sets the Listener that will receive messages sent to the port that's registered for the
application. If you want to have a special Listener reply to these messages, you must
either send a setAppListener: message before the run message is sent to the
Application object, or send this message from the delegate method appWilllnit:, so
that aListener is properly registered. This method doesn't free the Application object's
previous Listener object. Returns self.

See also: - appListenerPortName, - appWilllnit: (delegate)

2-94 Chapter 2: Class Specifications

setAppSpeaker:

- setAppSpeaker:aSpeaker

Sets the Application object's Speaker. If you don't send a setAppSpeaker: message
before the Application object initializes, a default Speaker is created for you. This
method doesn't free the Application object's previous Speaker object.

See also: - app WilHnit: (delegate)

setAutoupdate:
- setAutoupdate:(BOOL)jlag

Turns on or off automatic updating of windows. If automatic updating is on, update is
sent to each of the application's Windows after each event has been processed. This
can be used to keep the appearance of menus and panels synchronized with your
application. Returns self.

setDelegate:
- setDelegate:anObject

Sets the Application object's delegate. The notification messages that a delegate can
expect to receive are listed at the end of the Application class specifications. The
delegate doesn't need to implement all the methods. Returns self.

See also: - delegate

setJournalable:
- setJournalable:(BOOL)jlag

Sets whether the application is journalable. Returns self.

setMainMenu:
- setMainMenu:aM enu

Makes aMenu the Application object's main menu. Returns self.

See also: - mainMenu

setPrintlnfo:

- setPrintInfo:inJo

Sets the Application object's global Printlnfo object. Returns the previous Printlnfo
object, or nil if there was none.

Application Kit Classes: Application -2-95

setServicesMenu:

- setServicesMenu:aMenu

Makes aMenu the Application object's Services menu. Returns self.

setWindowsMenu:

- setWindowsMenu:aMenu

Makes aMenu the Application object's Windows menu. Returns self.

slaveJ ournaler

- slaveJournaler

Returns the Application object's slave journaler.

stop:

- stop:sender

Stops the main event loop. This method will break the flow of control out of the run
method, thereby returning to the mainO function. A subsequent run message will
restart the loop.

If this method is applied during a modal event loop, it will break that loop but not the
main event loop. Returns self.

See also: - terminate:, - run, - runModaIFor:, - runModalSession:

stop Modal

- stopModal

Stops a modal event loop. This method should always be paired with a previous
runModalFor: or beginModaISession:for: message. When runModalFor: is
stopped with this method, it returns NX_RUNSTOPPED. This method will stop the
loop only if it's executed by code responding to an event. If you need to stop a
runModalFor: loop from a procedure registered with DPSAddTimedEntryO,
DPSAddPortO, or DPSAddFDO, use the abortModal method. Returns self.

See also: - runModaIFor:, - runModaISession:, - abortModal

2·96 Chapter 2,' Class Specifications

stopModal:
- stopModal:(int)returnCode

Just like stopModal except argument returnCode allows you to specify the value that
runModalFor: will return. Returns self.

See also: - stopModal, - runModaIFor:, - abortModal

systemLanguages

- (const char *const *)systemLanguages

Returns a NULL-terminated list of NULL-terminated strings which specify the user's
preferred languages (human languages, not computer languages) in order of
preference. If this method returns NULL, the user has no preference. This should be
used to do any localization of your application.

terminate:
- terminate:sender

Terminates the application. This method invokes app Will Terminate: to notify the
delegate that the application will terminate. If appWillTerminate: returns nil,
terminate: returns self; control is returned to the main event loop, and the application
isn't terminated. Otherwise, this method frees the Application object and terminates
the application by using exitO. terminate: is the default action method for the
application's "Quit" menu item. Note that you should not put final cleanup code in your
application's MainO function; it will never be executed.

See also: - stop, - appWillTerminate: (delegate), exitO

tryToPerform:with:
- (BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object tries to perform the
method selector aSelector using its inherited Responder method tryToPerform:with:.
If the Application object doesn't perform aSelector, the delegate is given the
opportunity to perform it using its inherited Object method perform:with:. If either
the Application object or the Application object's delegate accept aSelector, this
method returns YES; otherwise it returns NO.

See also: - tryToPerform:with: (Responder), - respondsTo: (Object),
- perform:with: (Object)

Application Kit Classes: Application 2-97

unhide

- (int)unhide

Responds to an unhide message sent from Workspace Manager. You shouldn't invoke
this method; invoke unhide: instead. Returns zero.

See also: - unhide:

unhide:

- unhide:sender

Restores a hidden application to its former state (all of the windows, menus, and panels
visible), and makes it the active application. This method is usually invoked as the
result of double-clicking in the icon for the hidden application. Returns self.

See also: - hide:, - unhideWithoutActivation:, - activateS elf:

un hide WithoutActivation:

- unhide WithoutActivation:sender

U nhides the application but does not make it the active application. You might want to
invoke activateSelf:NO after invoking this method to make the receiving application
active if there is no active application. Returns self.

See also: - hide:, - activateS elf:

unmounting:ok:

- (int)unmounting:(const char *)fuIlPath ok:(int *)flag

Replies to an unmounting:ok: message sent from the Workspace Manager. You
shouldn't directly send unmounting:ok: messages. This method attempts to invoke
the app:unmounting: method of the Application object's delegate or of the
Application object itself. If neither object implements app:unmounting:, and the
current working directory is on the same volume as fullPath, this method changes the
working directory to the user's home directory. Returns zero.

update Windows

- update Windows

Sends an update message to the Application object's visible Windows. If automatic
updating is enabled, this method is invoked automatically in the main event loop after
each event. An application can also send update Windows messages at other times to
have Windows update themselves.

2-98 Chapter 2: Class Specifications

If the delegate implements app WillU pdate:, that message is sent to the delegate before
the windows are updated. Similarly, if the delegate implements appWiIlUpdate:, that
message is sent to the delegate after the windows are updated. Returns self.

See also: - setAutoupdate:, - appWillUpdate: (delegate),
- appDidUpdate: (delegate)

update Windowsltem:
- update Windowsltem:win

Updates the item for aWindow in the Windows menu to reflect the edited status of
aWindow. You rarely need to invoke this method because it is invoked automatically
when the edited status of a Window is set. Returns self.

See also: - changeWindowsltem:title:filename:, - setDocEdited: (Window)

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)sendType
andReturnType:(NXAtom)returnType

Passes this message on to the Application object's delegate, if the delegate can respond
(and isn't a Responder with its own next responder). If the delegate can't respond or
returns nil, this method returns nil, indicating that no object was found that could
supply typeSent data for a remote message from the Services menu and accept back
typeReturned data. If such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu. This method
might not be in the Application class header file at this time.

See also: - validRequestorForSendType:andReturnType: (Responder),
- registerServicesMenuSendTypes:andReturnTypes:,
- writeSelectionToPasteboard:types: (Object Method),
- readSelectionFromPasteboard: (Object Method)

windowList

- windowList

Returns the List object used to keep track of the Application object's Windows.

windowsMenu
- windowsMenu

Returns the Application object's Windows menu. Returns nil if no Windows menu has
been created.

Application Kit Classes: Application 2-99

METHODS IMPLEMENTED BY THE DELEGATE

app:openFile:type:
- (int)app:sender openFile:(const char *)filename type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can
open another file. The method should attempt to open the file filename with the
extension aType, returning YES if the file is successfully opened, and NO otherwise.

This method is also invoked from within openTempFile:ok: if neither the delegate nor
the Application subclass responds to app:openTempFile:type:

See also: - openFile:ok:, - openTempFile:ok:

app:openTempFile:type:

- (int)app:sender openTempFile:(const char *)filename type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the
application can open another file. The method should attempt to open the file filename
with the extension aType, returning YES if the file is successfully opened, and NO
otherwise.

By design, a file opened through this method is assumed to be temporary; it's the
application's responsibility to remove the file at the appropriate time.

See also: - openTempFile:ok:

app:powerOffln:andSave:

- app:sender powerOffln:(int)ms andSave:(int)aFlag

Invoked when the Application object receives a power-off event through the
powerOffIn:andSave: method. This method is invoked only if the application was
launched from the Workspace Manager. ms is the number of milliseconds to wait
before powering down or logging out. aFlag has no particular meaning at this time.
You can ask for additional time by sending the extendPowerOffBy:actual: message
to the Workspace Manager. The Workspace Manager will power the machine down (or
logout the user) as soon as all applications terminate, even if there's time remaining on
the time extension.

See also: - extendPowerOffBy:actual: (Speaker)

2-100 Chapter 2: Class Specifications

app:unmounting:
- (int)app:sender unmounting:(const char *)fullPath

Invoked when the device mounted at fullPath is about to be unmounted. This method
is invoked from unmounting:ok: and is invoked only if the application was launched
from the Workspace Manager. The Application object or its delegate should do
whatever is necessary to allow the device to be unmounted. Specifically, all files on the
device should be closed and the current working directory should be changed if it's on
the device.

appAcceptsAnother File:
- (BOOL)appAcceptsAnotherFile:sender

Invoked from within Application's openFile:ok: and openTempFile:ok: methods, this
method should return YES if it's okay for the application to open another file, and NO
if isn't. If neither the delegate nor the Application object responds to the message, then
the file shouldn't be opened.

See also: - openFile:ok:, - openTempFile:ok:

appDidBecomeActive:

- appDidBecomeActive:sender

Invoked immediately after the application is activated.

appDidHide:

- appDidHide:sender

Invoked immediately after the application is hidden.

appDidlnit:

- appDidlnit:sender

Invoked after the application has been launched and initialized, but before it has
received its first event. The delegate or the Application subclass can implement this
method to perform further initialization.

See also: - appWilllnit: (delegate)

appDidResignActive:

- appDidResignActive:sender

Invoked immediately after the application is deactivated.

Application Kit Classes: Application 2-101

appDidUnhide:

- appDidUnhide:sender

Invoked immediately after the application is unhidden.

appDidUpdate:

- appDidUpdate:sender

Invoked immediately after the Application object updates its Windows.

applicationDefined:

- applicationDefined: (NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED)
event. See the description of this method under INSTANCE METHODS, above.

app Willlnit:

- app Willlnit:sender

Invoked before the Application object is initialized. This method is invoked before the
Application object has initialized its Listener and Speaker objects and before any
app:openFile:type: messages are sent to your delegate. The Application object's
Listener and Speaker objects will be created for you immediately after invoking this
method if they have not been previously created.

'See also: - appDidlnit: (delegate), - appListener, - appSpeaker

app WillTerminate:

- app WillTerminate:sender

Invoked from within the terminate: method immediately before the application
terminates. If this method returns nil, the application is not terminated, and control is
returned to the main event loop. If you want to allow the application to terminate, you
should put your clean up code in this method and return non-nil.

See also: - terminate:

appWillUpdate:

- appWiIlUpdate:sender

Invoked immediately before the Application object updates its Windows.

2-102 Chapter 2: Class Specifications

powerOff:
- powerOff:(NXEvent *)theEvent

Invoked when the Application object receives a power-off event through the powerOff:
method. Note that power Off: (and so, too, this method) is invoked only if the
application wasn't launched from the Workspace Manager.

CONSTANTS AND DEFINED TYPES

/* KITDEFINED subtypes */
#define NX WINEXPOSED 0

#define NX APPACT 1

#define NX APPDEACT 2

#define NX WINRESIZED 3

#define NX WINMOVED 4

#define NX SCREENCHANGED 8

/* SYSDEFINED subtypes */

#define NX_POWEROFF 1

/* Additional flags */
#define NX JOURNALFLAG 31
#define NX_JOURNALFLAGMASK (1 « NX_JOURNALFLAG)

/* Thresholds passed to DPSGetEvent() and DPSPeekEvent(). */
#define NX BASETHRESHOLD 1
#define NX RUNMODALTHRESHOLD 5
#define NX MODALRESPTHRESHOLD 10

/*
* Predefined return values for runModalFor: and
* runModalSession:. All values below these (-1003, -1004, and
* so on) are also reserved.
*/

#define NX RUNSTOPPED
#define NX RUNABORTED
#define NX RUNCONTINUES

(-1000)
(-1001)
(-1002)

Application Kit Classes: Application 2-103

/*

* The NXModalSession structure contains information used by the
* system between beginModalSession:for: and endModalSession:
* messages. This structure can either be allocated on the stack
* frame of the caller, or by beginModalSession:for:. The
* application should not access any of the elements of this
* structure.
*/

typedef struct NXModalSession
id app;
id window;
struct NXModalSession *prevSession;
int oldRunningCount;
BOOL oldDoesHide;
BQOL freeMe;
int winNum;
NXHandler *errorData;
int reservedl;
int reserved2;

NXModalSession;

2-104 Chapter 2: Class Specifications

Box

INHERITS FROM View: Responder: Object

DECLARED IN appkitlBox.h

CLASS DESCRIPTION

A Box is a View that visually groups other Views. A Box has one subview, its content
view, which is used to group the Box's contents. A Box also typically displays a title
and a border around its content view. The Box class includes methods to change the
Box's border style and title position, and to set the text and font of the title. In addition,
you can add subviews to the Box's content view and then resize the Box to fit around
these subviews.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Inherited from View

Declared in Box
II

cell

contentView

offsets

borderRect

Class isa;

" id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ v Flags vFlags;

id cell;
id contentView;
NXSize offsets;
NXRect borderRect;
NXRect titleRect;
struct _bFlags {

unsigned int borderType:2;
unsigned int titlePosition:3;
unsigned int transparent: 1;

bFlags;

The cell that draws the Box's title.

The Box's subview that contains the Views that
are grouped within the Box.

Offset of the content view from the Box's border.

The Box's border rectangle.

Application Kit Classes: Box 2-105

titleRect The location of the title cell.

bFlags. borderType Indicates the Box's border type.

bFlags. titlePosition Indicates the Box's title position.

bFlags.transparent Reserved. Do not use.

METHOD TYPES

Initializing a new Box object - initFrame:

Freeing a Box object - free

Modifying graphic attributes - setBorderType:
- borderType
- setOffsets::
- getOffsets:

Modifying the title - cell
- setFont:
-font
- setTitle:
- title
- setTitlePosition:
- titlePosition

Putting Views in the Box - addSubview:
- setContentView:
- content View

Resizing the Box - setFrameFromContentFrame:
- sizeTo::
- sizeToFit

Drawing the Box - drawS elf: :

Archiving - awake
- read:
- write:

2-106 Chapter 2,' Class Specifications

INSTANCE METHODS

addSubview:

- addSubview:aView

Adds aView as a subview of the Box's content view. Since the content view is a
subview of the Box, the frame rectangles of Views added to the Box should reflect their
position within the content rectangle rather than the Box's bounds rectangle. After
you've added a subview, you'll probably want to use the sizeToFit method to adjust the
Box's size to accommodate its new subview. Returns self.

See also: - sizeToFit

awake

-awake

Lays out the Box during the unarchiving process so that it can be displayed. You should
never directly invoke this method.

borderType

cell

- (int)borderType

Returns the Box's border type, which is NX_LINE, NX_GROOVE, NX_BEZEL, or
NX_NOBORDER.

See also: - setBorderType:

- cell

Returns the cell used to display the title of the Box.

contentView

- content View

Returns the Box's content view.

See also: - setContentView:

Application Kit Classes: Box 2-107

drawSelf::
- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Box. You never invoke this method directly; it's invoked from Box's
inherited display methods. Returns self.

See also: - display (View)

font
-font

Returns the id of the font object used to draw the title of the Box.

See also: - setFont:

free
-free

Releases the storage for the Box and all its subviews.

See also: - free (View)

getOffsets:
- getOffsets:(NXSize *)theSize

Gets the horizontal and vertical distances between the border of the Box and the content
view, and places them in the structure indicated by theSize. Returns self.

See also: - setOffsets::

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes the Box, which must be a newly allocated Box instance. The Box's frame
rectangle is made equivalent to that pointed to by frameRect. The title is "Title," the
border type is NX_ GROOVE, the title position is NX_ATTOP, and the offsets are
5.0-by-5.0. The Box's content view is created, but it has no size; you will probably
want to set its size with the sizeToFit method. This method is the designated initializer
for the Box class, and can be used to initialize a Box allocated from your own zone.
Returns self.

See also: - initFrame (View), + alloc (Object), + allocFromZone: (Object),
- addSubview:, - sizeToFit

2 -1 08 Chapter 2: Class Specifications

read:
- read:(NXTypedStream *)stream

Reads the Box from the typed stream stream. Returns self.

See also: - write:

setBorderType:
- setBorderType:(int)aType

Sets the border type to aType, which must be NX_LINE, NX_GROOVE, NX_BEZEL,
or NX_NOBORDER. The default is NX_GROOVE. Returns self.

See also: - borderType

setContentView:
- setContent View:aView

Replaces the Box's content view with a View and recalculates the size of the Box based
on the size of the new content view. The old content view is returned.

See also: - addSubview:, - contentView, - sizeToFit

setFont:

- setFont:fontObJ

Sets the title's font tofontObj. By default, the title will be displayed using 12-point
Helvetica.

See also: + newFont:size: (Font)

setFrameFromContentFrame:
- setFrameFromContentFrame:(const NXRect *)contentFrame

Resizes the Box so that its content view lies on contentFrame. contentFrame is in the
coordinate system of the Box's superview. Returns self.

See also: - setOffsets::, - setFrame: (View)

Application Kit Classes: Box 2-109

setOffsets: :
- setOffsets:(NXCoord)w :(NXCoord)h

Sets the horizontal and vertical distance between the border of the Box and its content
view. w refers to the horizontal offset and h refers to the vertical offset; these offsets
are applied to both sides of the content view. After changing the offsets, you'll want to
resize the Box using the setFrameFromContentFrame: method. This method returns
self. In the following example, the offsets are modified but the content view's size and
location within the Box's superview remain unchanged:

id contentView;

NXRect contentRect;

NXCoord w = 10.0, h = 10.0;

contentView = [myBox contentView];

[contentView getFrame:&contentRect];
[myBox convertRectToSuperview:&contentRect];

[myBox setOffsets:w :h];
[myBox setFrameFromContentFrame:&contentRect];

See also: - setFrameFromContentFrame:, - convertRectToSuperview: (View)

setTitle:

- setTitle:(const char *)aString

Sets the title to aString. The default title is "Title." Returns self.

See also: - setFont:

setTitlePosition:

- setTitlePosition:(int)aPosition

Sets the title position to aPosition, which can be one of the values listed in the following
table. The default position is NX_ATTOP. Returns self.

aPosition value

NX_NOTITLE
NX_ABOVETOP
NX_ATTOP
NX_BELOWTOP
NX_ABOVEBOTTOM
NX_ATBOTTOM
NX_BELOWBOTTOM

2-110 Chapter 2: Class Specifications

Meaning

The Box has no title
Title positioned above the Box's top border
Title positioned within the Box's top border
Title positioned below the Box's top border
Title positioned above the Box's bottom border
Title positioned within the Box's bottom border
Title positioned below the Box's bottom border

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the Box to width and height. The Box is laid out to fit inside this new boundary.
If the new width or height of the Box is too small to accommodate its border or offsets,
the respective dimension of the content view will be zero. Returns self.

See also: - setFrameFromContentFrame:, - getOffsets:

sizeToFit
- sizeToFit

Calculates the appropriate size for the Box's content rectangle so that it just encloses
all the content view's subviews. A setFrameFromContentFrame: message is then
sent to resize the Box to enclose the new content rectangle. Returns self.

See also: - setFrameFromContentFrame:

title
- (const char *)title

Returns the title of the Box.

See also: - setTitle:

titlePosition
- (int)titlePosition

Returns an integer representing the title position. See the description for
setTitlePosition: for possible title position values.

See also: - setTitlePosition:

write:
- write:(NXTypedStream *)stream

Writes the receiving Box to the typed stream stream. Returns self.

See also: - read:

Application Kit Classes: Box 2-111

2-112

Button

INHERITS FROM Control: View : Responder: Object

DECLARED IN appkit/B utton.h

CLASS DESCRIPTION

A Button is a Control subclass that intercepts mouse-down events and sends an action
message to a target object whenever the Button is pressed.

Button essentially provides the Control view needed to display a ButtonCell object.
Most of its methods simply delegate to the same method in ButtonCell. To change the
look or behavior of a Button, create a subclass of ButtonCell and use the method
setCellClass: to get the Button class to use it.

Buttons can display any NXImage object. The icon methods altlcon, icon,
setAltlcon:, and setlcon: are provided for use with named images. The corresponding
image methods altlmage, image, setAltlmage:, and setlmage: are provided for use
with the ids of image objects.

The initFrame:icon:tag:target:action:key:enabled: method is the designated
initializer for Buttons that display icons. Buttons that display text have the designated
initializer initFrame:text:tag:target:action:key:enabled:. Override one of these
methods if you create a subclass of Button that performs its own initialization.

INSTANCE VARIABLES

Inheritedfrom Object Class is a;

Inheritedfrom Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _v Flags vFlags;

Inheritedfrom Control int tag;
id cell;
struct _conFlags conFlags;

Declared in Button (none)

Application Kit Classes: Button 2-113

METHOD TYPES

Setting Button's Cell Class + setCellClass:

Initializing a Button Instance - init
- initFrame:
- initFrame:icon:tag:target:action:key:enabled:
- initFrame:title:tag:target:action:key:enabled:

Setting the Button Type - setType:

Setting the State - setState:
- state

Setting Button Repeat - getPeriodicDelay:andInterval:
- setPeriodicDelay:andInterval:

Modifying the Title - altTitle
- setAltTitle:
- setTitle:
- setTitleNoCopy:
- title

Modifying the Icon - altIcon
- altImage
-icon
-image
- iconPosition
- setAltIcon:
- setAltImage:
- setlcon:
- setImage:
- setlcon:position:
- setlconPosition:

Modifying Graphic Attributes - isBordered
- isTransparent
- setBordered:
- setTransparent:

Displaying - display
- highlight:

Handling Events and Action Messages
- acceptsFirstMouse
- keyEquivalent
- performClick:
- performKeyEquivalent:
- setKeyEquivalent:

2-114 Chapter 2: Class Specifications

Setting the Sound - setSound:
- sound

CLASS METHODS

setCellClass:

+ setCellClass:classld

Initializes the Button to work with a subclass of ButtonCell. The classld will usually
be the value returned by the message [myButtonCell class], where myButtonCell is an
instance of the subclass. Returns self.

INSTANCE METHODS

acceptsFirstMollse
- (BOOL)acceptsFirstMouse

Returns YES. Buttons always accept the mouse-down event that activates a Window.

altIcon
- (const char *)altIcon

Returns the Button's alternate icon by name. This icon will appear on the Button when
it's in its alternate state.

altImage

- altImage

Returns the Button's alternate icon by id. This image will appear on the Button when
it's in its alternate state.

altTitle
- (const char *)altTitie

Returns the current value of the Button's alternate title. This is the string that appears
on the Button when it's in its alternate state.

display

- display

Overridden from View so that displayFromOpaqueAncestor::: is called if the Button
has some non-opaque parts. Returns self.

Application Kit Classes: Button 2-115

getPeriodicDelay:andInterval:

- getPeriodicDelay:(float *)delay andlnterval:(float *)interval

This method returns self explicitly and two values by reference. delay returns the
amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object. interval returns the amount of
time (also in seconds) between those messages.

See also: - setContinuous: (Control), - setPeriodicDelay:andlnterval:

highlight:

- highlight:(BOOL)flag

If the highlighted flag of the cell is not equal to flag, the Button is highlighted and the
highlighted flag of the cell is set to flag. Issues a flush Window after highlighting the
Button. Returns self.

See also: - performClick:

icon

- (const char *)icon

Returns the Button's icon by name.

iconPosition

- (int)iconPosition

Returns a constant representing the position of the icon on the Button. See
setIconPosition: for the list of position constants.

image

init

- image

Returns the id of the Button's icon.

See also: - altImage, - setAltIcon:, -. setAltImage:

-init

Initializes and returns the receiver, a new Button instance. The new instance displays
the word "Button" and has no icon associated with it. You usually invoke
initFrame: {title,icon} :tag:target:action:key:enabled: to initialize a Button.

2-116 Chapter 2: Class Specifications

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new Button instance, with default parameters in
the given frame. The default title is "Button," the default action is NULL and the
default target is nil. You usually invoke
initFrame: {title,icon} :tag:target:action:key:enabled: to initialize a Button.

initFrame:icon:tag:target:action:key:enabled:

- initFrame:(const NXRect *)frameRect
icon:(const char *)aString
tag: (int)anlnt
target:anObject
action: (SEL)aSelector
key:(unsigned short)charCode
enabled: (BOOL)jlag

Initializes and returns the receiver, a new Button instance that displays an icon. The
arguments and operation of this method are exactly like those of
initFrame:title:tag:target:action:key:enabled:, except that the Button displays the
named icon represented by aString rather than displaying a text string. This method is
the designated initializer for Buttons that display icons.

initFrame:title:tag:target:action:key:enabled:

- initFrame:(const NXRect *)frameRect
title:(const char *)aString
tag: (int)anlnt
target:anObject
action: (SEL)aSelector
key:(unsigned short)charCode
enabled: (BOOL)jlag

Initializes and returns the receiver, a new Button instance that displays a text string.
anlnt is a unique tag to identify your Button View. frameRect is the rectangle the
Button will occupy in its superview's coordinates. aString contains the title for the
Button. anObject is the target that will be notified via the action message aSelector
when the Button is successfully pressed. If anObject is nil, the target will default to the
Button's superview. aSelector should be a valid selector. charCode is the key
equivalent for this Button. jlag determines whether your Button is initially enabled.
This method is the designated initializer for Buttons that display text.

Application Kit Classes: Button 2-117

isBordered
- (BOOL)isBordered

Returns YES if the Button has a border, NO otherwise.

See also: - setBordered:

isTransparent
- (BOOL)isTransparent

Returns YES if the Button is transparent, NO otherwise.

See also: - setTransparent:

keyEquivaJent
- (unsigned short)keyEquivalent

Returns the key equivalent character of the Button.

See also: - performKeyEquivalent:

performClick:
- performClick:sender

Highlights the Button, sends its action message to the target object, then unhighlights
the Button. Invoke this method when you want the Button to behave exactly as if the
user had clicked it with the mouse.

performKeyEquivaJent:
- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Simulates the user clicking the Button and returns YES if the character in the event
record matches the Button's key equivalent. Otherwise, does nothing and returns NO.

See also: - keyEquivalent

2-118 Chapter 2: Class Specifications

setAltlcon:
- setAltlcon:(const char *)iconName

Sets the Button's alternate icon by name; iconName is the name of an image to be
displayed. Does not display the Button even if autodisplay is on.

See also: - setlcon:

setAltlmage:
- setAltlmage:altImage

Sets the Button's alternate icon by id; altlmage is the id of the image to be displayed.
Does not display the Button even if autodisplay is on.

See also: - setlmage:

setAltTitle:
- setAltTitle:(const char *)aString

Sets the alternate title of your Button to aString, the title that will display when the
Button is clicked. Does not display the Button even if autodisplay is on.

setBordered:
- setBordered:(BOOL)jlag

Ifjlag is YES, the Button displays a border; if NO, no border is displayed. This method
redraws the Button if the bordered state is changed. Returns self.

setlcon:
- setIcon:(const char *)iconName

Sets the Button's icon by name; iconName is the name of an image to be displayed.
Returns self.

See also: - getBitmapFor: (Bitmap)

setlcon:position:
- setIcon:(const char *)iconName position:(int)aPosition

Combines setlcon: and setIconPosition: into one message. Returns self.

Application Kit Classes: Button 2-119

setlconPosition:
- setIconPosition:(int)aPosition

Sets the position of the icon when a Button simultaneously displays both text and an
icon. aPosition can be one of the following constants:

NX_TITLEONLY
NX_ICONONLY
NX_ICONLEFT
NX_ICONRIGHT
NX_ICONBELOW
NX_ICONABOVE
NX_ICONOVERLAPS

title only (no icon on the Button)
icon only (no text on the Button)
icon is to the left of the text
icon is to the right of the text
icon is below the text
icon is above the text
icon and text overlap

If the position is top or bottom, the alignment of the text will be set to
NX_ CENTERED. This behavior can be overridden with a subsequent setAlignment:.
Returns self.

setlmage:
- setImage:image

Sets the Button's icon by id; image is the id of the image to be displayed. Returns self.

See also: + findlmageNamed:(NXlmage)

setKeyEquivalent:
- setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the Button. Returns self.

See also: - keyEquivalent, - performKeyEquivalent:

setPeriodicDelay:andlnterval:
- setPeriodicDelay:(float)delay andlnterval:(float)interval

Sets two values that are in effect if the Button is set to continuously send the action
message to the target object while tracking the mouse. delay is the amount of time (in
seconds) that a continuous button will pause before starting to periodically send action
messages to the target object. interval is the amount of time (also in seconds) between
those messages. Returns self.

See also: - getPeriodicDelay:andlnterval:, - setContinuous(Control)

2-120 Chapter 2: Class Specifications

setSound:
- setSound:soundObj

Sets the sound played when the Button is pressed. Returns self.

setState:
- setState:(int)value

Sets the Button's state to value and redraws the Button. Returns self.

setTitle:
- setTitle:(const char *)aString

Sets the title of the Button to aString. Returns self.

setTitieNoCopy:
- setTitieNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTransparent:
- setTransparent:(BOOL)jlag

Sets whether the Button is transparent. A transparent Button tracks the mouse and
sends its action, but it doesn't draw anything. Returns self.

Application Kit Classes: Button 2-121

setType:
- setType:(int)dType

Sets the way the Button shows its state and highlighting, and returns self. aType can be
one of five constants:

NX~MOMENTARYPUSH (the default). States 0 and 1 are displayed in the same
manner. Highlighting is shown by the Button's "pushing in" to the screen.

NX_MOMENTARYCHANGE. States 0 and 1 look identical. When the Button is
highlighted, the alternate icon or alternate text will be displayed. The miniaturize
Button in the window frame is a good example of this type of Button.

NX_PUSHONPUSHOFF. State 1 differs from state 0 by the fact that different colors
are used. Highlighting is achieved by "pushing in."

NX_TOGGLE. State 1 uses the altContents and/or altIcon. Highlighting is performed
by "pushing in."

NX_SWITCH. A variant of NX_ TOGGLE that has no border, and that has a default
icon called "switch."

sound
- sound

Returns the sound played when the button is pressed.

state
- (int)state

Returns the Button's state (0 or 1).

title
- (const char *)titie

Returns a pointer to the current string value of the Button's title.

2-122 Chapter 2: Class Specifications

ButtonCell

INHERITS FROM ActionCell : Cell: Object

DECLARED IN appkitlButtonCell.h

CLASS DESCRIPTION

The ButtonCell class is a subclass of Cell that is used to implement Button. Different
modes of button operation are distinguished according to the values of the changeXXX
and lightBy XXX bitfields.

changeXXX refers to what changes when the state changes. Thus, if changeGray is
set, then, when a button is in state 1, all light gray areas in the button become white, and
all white areas become light gray. If changeBackground is set, then the background
in state 1 is white instead of the default light gray used in state O. If changeContents
is set, then altContents and/or icon. bmap.altemate are used to draw the button when it
is in state 1. If both changeBackground and changeGray are set, then the ButtonCell
will use change Gray unless the ButtonCell has an icon and alpha values, in which case
it will use changeBackground. The lightByXXX flags have similar meanings, but are
used when the button is pressed to highlight the button. The pushln flag is used to
determine whether the button appears to "push in" to the screen when pressed. This
only has meaning when the bordered flag is set.

For all ButtonCells, the "default" icon is the keyEquivalent for the button. Therefore,
if you want the button to display its keyEquivalent, just use setIconPosition: to
determine where on the button the keyEquivalent should appear. MenuCells use this,
for example (by issuing a setIconPosition:NX_ICONRIGHT). If you set an icon (or
an altIcon) for the button, then the icon will be displayed instead of the key Equivalent,
so if you want the key Equivalent, don't invoke setIcon:!

ButtonCells can display any type of image. The icon methods altIcon, icon,
setAltIcon:, and setIcon: work with named images. The corresponding image
methods altImage, image, setAltlmage:, and setImage: work with ids of image
objects.

The initIconCell: method is the designated initializer for ButtonCells that display
icons. The initTextCell: method is the designated initializer for ButtonCells that
display text. Override one of these methods if you create a subclass of ButtonCell that
does its own initialization.

Application Kit Classes: ButtonCell 2-123

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Cell

Inherited/rom ActionCell

Declared in ButtonCell

2-124 Chapter 2: Class Specifications

Class

char
id
struct _cFlags 1
struct _cFlags2

int
id
SEL

char
union _icon {

struct _bmap {
id

id

id
}
struct _ke {

id
float

}

struct _bcFlags 1 {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

}
struct _ bcFlags2 {

unsigned int
unsigned int

}
unsigned short
unsigned short

isa;

*contents;
support;
cFlags1;
cFlags2;

tag;
target;
action;

*altContents;

normal;
alternate;

bmap;

font;
descent;

ke;
icon;
sound;

pushIn:1;
changeContents: 1;
changeBackground: 1;
changeGray: 1;
lightB yContents: 1 ;
lightBy Backgroq.nd: 1;
lightByGray: 1;
hasAlpha: 1 ;
bordered: 1 ;
iconOverlaps: 1;
horizontal: 1;
bottomOrLeft: 1;
iconAndText: 1 ;
lastState: 1;
iconSizeDiff: 1;
iconIsKeyEquivalent: 1;

bcFlags1;

keyEquivalent:8;
transparent: 1 ;

bcFlags2;
periodic Delay;
periodic Interval;

altContents

bmap.normal

bmap.alternate

ke.font

ke.descent

sound

bcFlags 1. pushln

bcFlags l.changeContents

bcFlags l.changeBackground

bcFlags l.changeGray

bcFlags l.lightByContents

bcFlags l.lightBy Background

bcFlags l.lightByGray

bcFlags l.hasAlpha

bcFlags 1. bordered

bcFlags l.iconOverlaps

bcFlags l.horizontal

bcFlags 1. bottomOrLeft

bcFlags l.iconAndText

bcFlags l.lastState

bcFlags l.iconSizeDiff

bcFlags l.iconlsKey Equivalent

bcFlags2.keyEquivalent

Alternate contents used instead of contents in
certain state configurations.

Name of the icon for this button.

Name of the alternate icon.

Font used to draw the key equivalent.

The descent of descenders in the key equivalent
. font.

The button's sound.

Button appears to push into the screen when
pressed.

Show alternate state by using alternate contents.

Show alternate state by changing the background.

Show alternate state by inverting the button.

Show highlighting by using alternate contents.

Show highlighting by changing the background.

Show highlighting by inverting the button.

Icon has alpha values.

Button has border.

Icon overlaps text.

Icon to side of text.

Icon on left or bottom.

Button has icon and text.

Last state drawn.

Alternate icon is a different size than the normal
icon.

The icon is the key equivalent.

The key equivalent.

Application Kit Classes: ButtonCell 2-125

bcFlags2. transparent

periodicDelay

periodicInterval

METHOD TYPES

Whether to draw.

The delay before sending the first send by a
continuous button.

The interval at which a continuous button sends
its action.

Copying, Initializing and Freeing a ButtonCell
- copyFromZone
- init
- initIconCell:
- initTextCell:
- free

Determining Component Sizes - calcCellSize:inRect:
- getDrawRect:
- getIconRect:
- getTitleRect:

Modifying the Title - altTitle
- setAltTitle:
- setFont:
- setTitle:
- setTitleN oCopy:
- title

Modifying the Icon - altIcon
- altImage
- icon
- image
- iconPosition
- setAltIcon:
- setAltImage:
- setIcon:
- setImage:
- setIconPosition:

Modifying the Sound - setSound:
- sound

2-126 Chapter 2: Class Specifications

Setting the State - double Value
- floatValue
- intValue
- setDouble Value:
- setFloat Value:
- setIntValue:
- setString Value:
- setStringValueNoCopy:
- stringValue

Setting the Button Repeat - getPeriodicDelay:andlnterval:
- setPeriodicDelay:andInterval:

Tracking the Mouse - trackMouse:inRectofView:

Setting the Key Equivalent - keyEquivalent
- setKeyEquivalent:
- setKeyEquivalentFont:
- setKeyEquivalentFont:size:

Setting Parameters - getParameter:
- setParameter:to:

Modifying Graphic Attributes - highlightsBy
- isBordered
- isOpaque
- isTransparent
- setBordered:
- setHighlightsBy:
- setShowsStateBy:
- setTransparent:
- setType:
- showsStateBy

Simulating a Click - perform Click:

Displaying - draw Inside: in View:
- draw Self: in View:
- highlight: in View:lit:

Archiving - read:
- write:

Application Kit Classes: ButtonCell 2-127

INSTANCE METHODS

altlcon
- (const char *)altIcon

Returns the ButtonCell's alternate icon by name. This icon will appear on the Button
when it is in its alternate state. If there is no alternate icon, it returns NULL. This is
the icon that will be displayed if the iconPosition is not NX_TITLEONLY and the
changeContents or lightByContents flag is set.

altlmage
- altImage

Returns the ButtonCell's alternate icon by id. This image will appear on the Button
when it is in its alternate state. If there is no alternate image, it returns nil. This is the
image that will be displayed if the iconPosition is not NX_ TITLEONLY and the
changeContents or lightByContents flag is set.

altTitle
- (const char *)altTitle

Returns the ButtonCell's alternate title. This is the text string that will appear on the
button if the iconPosition is not NX_ICONONLY and the changeContents or
IightByContents flag is set.

caIcCeIlSize:inRect:
- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns, by reference, the minimum width and height required for displaying the button
in aRect. The computation is done as follows:

1. The size of the contents instance variable is computed.

2. The size of the altContents is computed.

3. The maximum width and height are set in theSize.

4. If the button has an additional icon, its width and height are calculated; if either is
bigger than the contents size, the size is increased to accommodate the icon.

5. If the button has a border, then the width and the height are incremented by the
border width.

2-128 Chapter 2: Class Specifications

copyFromZone

- copyFromZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the ButtonCell. Allocates the copy from
zone.

double Value

- (double)doubleValue

Returns the ButtonCell's state cast as a double (O.q or 1.0).

drawlnside:in View:

- drawlnside:(const NXRect *)aRect inView:controlView

Draws the inside of the ButtonCell (the text and the icon and their background, but not
the bezel). This method is called by drawSelf:in View: and by the Control classes'
drawCelllnside: method. It is provided so that when a ButtonCell's state is set (via
setState:, setIntValue:, and others), a minimal update of the ButtonCell's visual
appearance can occur. If you subclass ButtonCell and override drawSelf:inView: you
MUST override this method as well (however, you are free to override only this method
and not drawS elf: in View: as long as your subclass draws inside the same area as
ButtonCell does). Returns self.

See also: - drawlnside:in View: (Cell)

drawSelf:in View:

- drawSelf:(const NXRect *)cellFrame in View:controlView

Displays the ButtonCell in the given rectangle of the given view. Focus must be locked
on controlView. It draws the border of the ButtonCell if necessary, then calls
drawlnside:inView:. Returns self.

floatValue

- (float)f1oatValue

Returns the ButtonCell's state cast as a float (0.0 or 1.0).

free

- free

Disposes of the memory used by the ButtonCell and returns nil.

Application Kit Classes: ButtonCell 2-129

getDrawRect:

- getDrawRect:(NXRect *)theRect

Returns self and, by reference, the bounds of the area into which the text and/or icon
will be drawn. You must pass the bounds of the ButtonCell in theRect (the same bounds
passed to drawSelf:inView:). It assumes that the ButtonCell is being drawn in a
flipped view.

getIconRect:

- getIconRect:(NXRect *)theRect

Returns self and, by reference, the bounds of the area into which the icon of the
ButtonCell will be drawn. If the button has no icon, then theRect will not be touched.
You must pass the bounds of the ButtonCell in theRect (the same bounds passed to
drawSelf:in View:). It assumes that the ButtonCell is being drawn in a flipped view.

getParameter:
- (int)getParameter:(int)aParameter

Returns the state of a number of frequently accessed flags for a ButtonCell. The
following constants correspond to the different flags:

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE
NX_CHANGECONTENTS
NX_CHANGEBACKGROUND
NX_CHANGEGRAY
NX_LIGHTBYCONTENTS
NX_LIGHTBYBACKGROUND
NX_LIGHTBYGRAY
NX_PUSHIN
NX_OVERLAPPINGICON
NX_ICONHORIZONTAL
NX_ICONONLEFTORBOTTOM
NX_ICONISKEYEQUIVALENT

You don't normally invoke this method since all of these flags are available via normal
querying methods (e.g., isEnabled, highlightsBy:, etc.).

2-130 Chapter 2: Class Specifications

getPeriodicDelay:andlnterval:

- getPeriodicDelay:(float *)delay andlnterval:(float *)interval

Returns two values: The amount of time (in seconds) that a continuous button will
pause before starting to periodically send action messages to the target object, and the
interval (also in seconds) at which those messages are sent. Returns self.

See also: - setContinuous: (Cell), - setPeriodicDelay:andlnterval:

getTitleRect:

- getTitleRect:(NXRect *)theRect

Returns self and, by reference, a copy of the bounds of the area into which the text of
the ButtonCell will be drawn. You must pass the bounds of the ButtonCell in theRect
(the same bounds passed to drawS elf: in View:). It assumes that the ButtonCell is being
drawn in a flipped view.

highlight: in View:lit:

- highlight:(const NXRect *)celiFrame
in View:controlView
lit: (BOOL)jlag

Highlights the ButtonCell if its highlighted flag is not equal tojlag. You must
lockFocus on controlView before calling this method. If possible, this method tries to
use NXHighlightRect (i.e., if the button is not pushln and changeContents and
IightByContents are not set). If it cannot use NXHighlightRect, then it simply calls
drawS elf: in View: or drawlnside:in View: dependent upon whether the border of the
button is involved in the highlighting process (e.g., in a pushln button). Does nothing
if the button is disabled or transparent. Returns self.

highlightsBy

- (int)highlightsBy

Returns the logical OR of one or more flags that indicate the way the ButtonCell
highlights when the button is pressed. See setHighlightsBy: for the list of flags.

icon

- (const char *)icon

Returns the ButtonCell's icon by name .. If there is no icon displayed in the ButtonCell,
or if the icon is the key equivalent, then it returns NULL.

See also: - setlcon:

Application Kit Classes: ButtonCell 2-131

iconPosition

- (int)iconPosition

Returns the position of the ButtonCell's icon. See setIconPosition: for the valid
positions. The default is NX_TITLEONLY if the ButtonCell is created with
newTextCell: or NX_ICONONLY if created with newIconCell!.

image

-image

init

Returns the ButtonCell's icon by id. If there is no image displayed in the ButtonCell,
or if the image is the key equivalent, then it returns nil.

See also: - setImage:

- init

Initializes and returns the receiver, a new ButtonCell, as a text cell with the word
"Button" on it.

initlconCell :

- initIconCell:(const char *)iconName

Initializes and returns the receiver, a new ButtonCell, with default size. By default, the
ButtonCell is bordered and is pushIn. None of the changeXXX flags is set. The
IightByGray and IightByBackground flags are set. This means that, when pressed,
the button will perform NXHighIightRectO if the icon has no alpha or will change the
background (from light gray to white) if the icon does have alpha values. An icon is a
named NXImage; see the NXImage class for details. This is the designated initializer
for ButtonCells that display icons.

See also: - findImageNamed: (NXImage)

initTextCell:

- initTextCell:(const char *)aString

Initializes the receiver, a new ButtonCell, with default size, font, title, and centered
alignment. By default, the ButtonCell is bordered and is pushIn. None of the
changeXXX is set and the button will "light up" when pressed (IightByGray and
JightByBackground are set). This is the designated initializer for ButtonCells that
display text.

2-132 Chapter 2: Class Specifications

intValue

- (int)intValue

Returns the ButtonCell's state (0 or 1).

isBordered
- (BOOL)isBordered

Returns YES if the button has a border, NO if not.

isOpaque
- (BOOL)isOpaque

Returns YES if drawing the ButtonCell touches all the bits in its frame, NO if not. The
ButtonCell is opaque if it is not transparent and if it has a border.

isTransparent

- (BOOL)isTransparent

Returns YES if the ButtonCell is transparent, NO if not.

See also: - setTransparent:

keyEquivalent

- (unsigned short)keyEquivalent

Returns the key equivalent character of the ButtonCell.

perform Click:
- performClick:sender

If this ButtonCell is contained in a Control, then invoking this method causes the
ButtonCell to act exactly as if the user had clicked the button.

read:

- read:(NXTypedStream *)stream

Reads the ButtonCell from the typed stream stream.

Application Kit Classes: ButtonCell 2-133

setAltlcon:

- setAItlcon:(const char *)iconName

Sets the ButtonCell's alternate icon by name; iconName is the name of an image to be
displayed. This icon is displayed if the changeContents or lightByContents flag is
set; these are set by the setShowsStateBy: and setHighlightsBy: methods,
respectively. Note that no icon will be displayed in a ButtonCell unless setIcon: or
setImage: is invoked (thus, setAltIcon: by itself has no affect on the appearance of the
button). Returns self.

See also: - setIcon:

setAltlmage:

- setAltImage:alt/mage

Sets the ButtonCell's alternate icon by id; alt/mage is the id of the image to be
displayed. This image is displayed if the changeContents or lightByContents flag is
set; these are set by the setShowsStateBy: and setHighlightsBy: methods,
respectively. Note that no image will be displayed in a ButtonCell unless setIcon: or
setImage: is invoked (thUS, setAltImage: by itself has no effect on the appearance of
the button). Returns self.

See also: - setImage:

setAItTitle:

- setAItTitle:(const char *)aString

Invoke this method to set the alternate title to a copy of aString. If the ButtonCell was
not an NX_ TEXTCELL, it is automatically converted, in which case its support
instance variable is set to the default font. If there is an icon associated with this
ButtonCell, then the iconAndText flag is set. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, sets the ButtonCell to display a border; ifjlag is NO, it has none.
Redraws the ButtonCell if its bordered status changes. Returns self.

setDouble Value:

- setDouble Value: (double)aDouble

Sets the ButtonCell's state to 1 if aDouble is nonzero, 0 otherwise. Returns self.

2-134 Chapter 2: Class Specifications

setFloatValue:
- setFloatValue:(float)aFloat

Sets the ButtonCell's state to 1 if aFloat is non-zero, 0 otherwise. Returns self.

setFont:
- setFont:fontObj

Sets the font to be used when displaying text. Does nothing if the cell type is not
NX_ TEXTCELL. Returns self.

setHighlightsB y:
- setHighlightsBy:(int)aType

Sets the way the button highlights itself. aType can be the logical OR of one or more
of the following constants:

NX_PUSHIN
NX_NONE
NX_CONTENTS
NX_CHANGEGRAY
NX_CHANGEBACKGROUND

The button "pushes in" when pressed (default)
No difference when highlighted
Use the alternate contents
Light gray -> white, white -> light gray
Same as NX_CHANGEGRAY, but only
touches background

If you specify both NX_CHANGEGRAY and NX_CHANGEBACKGROUND, then a
choice will be made between the two based on whether the icon of your button (if any)
has any alpha. If it does, then NX_CHANGEBACKGROUND will be used; otherwise,
NX_CHANGEGRAY will be used. If your button has no icon, then
NX_CHANGEGRAY will be used. Returns self.

setIcon:
- setIcon:(const char *)iconName

Sets the ButtonCell's icon by name; iconName is the name of an image to be displayed.
If there is no text associated with the ButtonCell, then it is converted to
NX_ICONCELL; otherwise, the iconOverlaps flag is set. An icon is a named
NXlmage. Returns self.

See also: - findlmageNamed: (NXImage)

Application Kit Classes: ButtonCell 2-135

setlconPosition:
- setIconPosition:(int)aPosition

Sets the position of the icon for this ButtonCell. aPosition can be one of the following
constants:

NX_TITLEONLY = title only
NX_ICONONLY = icon only
NX_ICONLEFT = icon left of the text·
NX_ICONRIGHT = right of the text
NX_ICONBELOW = below the text
NX_ICONABOVE = above the text
NX_ICONOVERLAPS = overlapping

(iconAndText = 0, iconOverlaps = 0)
(iconAndText = 0, iconOverlaps = 1)
(iconAndText = 1, iconOverlaps = 0)
(iconAndText = 1, iconOverlaps = 0)
(iconAndText = 1, iconOverlaps = 0)
(iconAndText = 1, iconOverlaps = 0)
(iconAndText = 1, icon Overlaps = 1)

If the position is top or bottom, the alignment of the text will be set to
NX_ CENTERED. This can be overridden with a subsequent setAlignment:. Returns
self.

setlmage:

- setImage:image

Sets the ButtonCell's icon; image is the id of an image to be displayed. Returns self.

setlntValue:
- setlntValue:(int)anInt

Sets the ButtonCell's state to 1 if anInt is nonzero, 0 otherwise. Returns self.

setKeyEquivalent:
- setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the ButtonCell. The key equivalent will appear on
the button only if there is no icon set (with setIcon: or setAltIcon:) and the
iconPosition is not NX_ TITLEONLY or NX_ICONONLY or NX_ICONOVERLAPS.
The canonical way to put the key equivalent character on your button is to invoke
setKeyEquivalent:, then invoke setIconPosition:NX_ICONRIGHT (or LEFT or
ABOVE or BELOW). Menu entries (which inherit from ButtonCell) are usually the
only ButtonCells with key equivalents. Returns self.

A ButtonCell's key equivalent can be tested by sending it a keyEquivalent message.

See also: - keyEquivalent, - performClick: (Matrix, Button)

2-136 Chapter 2: Class Specifications

setKeyEquivalentFont:
- setKeyEquivalentFont:fontObj

Sets the font used to draw the key Equivalent. Does nothing if there is already an icon
associated with this ButtonCell. The default font is the same as that used to draw the
text on the ButtonCell. Returns self.

setKeyEquivalentFont:size:
- setKeyEquivalentFont:(const char *)fontName size:(float)fontSize

Convenient form of setKeyEquivalent: that sets both the font and font size used to
draw the key Equivalent. Returns self.

setParameter:to:
- setParameter:(int)aParameter to:(int)value

Sets the most usual flags of a B uttonCell. See getParameter: for the list of usual flags.
You do not usually invoke this method; instead use the appropriate set ... methods to set
flags. Returns self.

setPeriodicDelay:andlnterval:
- setPeriodicDelay:(float)delay andlnterval:(float)interval

This method sets two values: The amount of time (in seconds) that a continuous button
will pause before starting to periodically send action messages to the target object, and
the interval (also in seconds) at which those messages are sent. The maximum delay
or interval is 60.0 seconds. Returns self.

See also: - setContinuous: (Cell)

Application Kit Classes: ButtonCell 2-137

setShowsStateBy:

- setShowsStateBy:(int)aType

Sets the way the button shows its alternate state. aType should be the logical OR of one
or more of the following constants:

NX_PUSHIN
NX_NONE
NX_CONTENTS
NX_CHANGEGRAY
NX_CHANGEBACKGROUND

The button "pushes in" when pressed (default)
No difference when highlighted
Use the alternate contents
Light gray -> white, white -> light gray
Same as NX_CHANGEGRAY, but only
touches background

If you specify both NX_CHANGEGRAY and NX_CHANGEBACKGROUND, then a
choice will be made between the two based on whether the icon of your button (if any)
has any alpha. If it does, then NX_CHANGEBACKGROUND will be used, else
NX_CHANGEGRAY. If your button has no icon, then NX_CHANGEGRAY will be
used. Returns self.

setSound:

- setSound:aSound

Sets the sound that will be played when the mouse goes down in the ButtonCell. If you
use a sound on your button, you must link your application against the soundkit.
Returns self.

setStringValue:

- setStringValue:(const char *)aString

Sets the state of the ButtonCell. If aString is a non-null string, the state is set to 1; if
aString is null, the state is set to O. Returns self.

setStringValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Same as setStringValue:.

setTitle:

- setTitle:(const char *)aString

Sets the text that is displayed on the button to aString. If there is already an icon
associated with the button, then the iconAndText flag is set to YES. Returns self.

2-138 Chapter 2,' Class Specifications

setTitleN oCopy:

- setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTransparent:

- setTransparent:(BOOL)jlag

Sets whether the ButtonCell is transparent. A transparent button never draws anything,
but it does track the mouse and send its action normally. This method is useful for
sensitizing an area on the screen so that an action gets sent to a target when the area
receives a mouse click. Returns self.

setType:

- setType:(int)aType

Sets standard button types. The ButtonCell does not record the type directly; instead,
this method sets the changeXXX and lightBy XXX flags appropriately. The
NX_SWITCH and NX_RADIOBUTTON types also set the icon to the default icon for
that type of button (only if there is not already an icon set). aType can be one of the
following constants:

NX_MOMENTARYPUSH
NX_MOMENTARYCHANGE
NX_PUSHONPUSHOFF
NX_TOGGLE
NX_SWITCH
NX_RADIOBUTTON

This method is invoked by Button's setType: method. It is very useful for creating
prototype cells in a matrix of radio buttons. Returns self.

See also: - setType: (Button)

showsStateBy

- (int)showsStateBy

Returns flags reflecting the way that the button shows its alternate state. See
setShowsStateBy: for list of appropriate flags. Returns self.

sound

- sound

Returns the sound object that is sent a play message on a mouse-down event in the
ButtonCell.

See also: - setSound:

Application Kit Classes: ButtonCell 2-139

stringValue
- (const char *)stringValue

Returns the ButtonCell's state as a string. If the state is 1, "" (empty string) is returned,
otherwise, NULL is returned. This is an unusual method to invoke (since the
stringValue of a button doesn't make much sense) and is included only for
completeness.

title
- (const char *)title

Returns ButtonCell's text if the receiving ButtonCell displays any text; otherwise it
returns NULL.

trackMouse:inRect:ofView:
- (BOOL)trackMouse:(NXEvent *)theEvent

inRect:(const NXRect *)celiFrame
ofView:controlView

Tracks the mouse by starting the sound (if any) and calling
[super trackMouse:theEvent inRect:cellFrame ofView:controlView]. Returns YES if
the mouse button goes up with the cursor in the cell, NO otherwise.

See also: - trackMouse:inRect:ofView: (Cell)

write:
- write:(NXTypedStream *)stream

Writes the receiving ButtonCell to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Button Types */

#define NX MOMENTARYPUSH 0
#define NX PUSHONPUSHOFF 1

#define NX TOGGLE 2

#define NX SWITCH 3

#define NX RADIOBUTTON 4

#define NX MOMENTARYCHANGE 5

2-140 Chapter 2: Class Specifications

Cell

INHERITS FROM Object

DECLARED IN appkit/Cell.h

CLASS DESCRIPTION

Cell is an abstract super class that provides many useful functions needed for displaying
text or icons without the overhead of a full View subclass. In particular, it provides
most of the functionality of a Text class by providing access to a shared Text object that
can be used by all instances of Cell in an Application. Cell is used heavily by the
Control classes to implement their internal workings. Some subclasses of Control
(notably Matrix) allow multiple Cells to be grouped and act together in some
cooperative manner. Thus, with a Matrix, a group of radio buttons can be implemented
without needing a View for each button (and without needing a Text object for the text
on each button). Cells are also extremely useful for placing titles or icons at will in a
custom subclass of View.

The Cell class provides primitives for displaying text or an icon, editing text, formatting
floating point numbers, maintaining state, highlighting~ and tracking the mouse. It has
several subclasses: SelectionCell, NXBrowserCell, and ActionCell (which in tum has
the subclasses ButtonCell, SliderCell, TextFieldCell, and FormCell). Cell's
trackMouse:inRect:ofView: method supports the target object and action method
used to implement controls. However, Cell implements these features abstractly,
deferring the details of implementation to ActionCell.

The initIconCell: method is the designated initializer for Cells that display icons. The
initTextCell: method is the designated initializer for Cells that display text. Override
one of these methods if you implement a subclass of Cell that performs its own
initialization.

Application Kit Classes: Cell 2-141

INSTANCE VARIABLES

Inherited from Object

Declared in Cell

contents

support

cFlags I.state

cFlags I.highlighted

cFlags I.disabled

cFlags I.editable

cFlags 1. type

cFlags I.freeText

cFlags I.alignment

2-142 Chapter 2: Class Specifications

Class

char
id
struct _ cFlags 1 {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

struct _cFlags2 {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
}

isa;

*contents;
support;

state: 1;
highlighted: 1 ;
disabled: 1;
editable: 1;
type:2;
freeText: 1;
alignment: 2;
bordered: 1;
bezeled:I;
selectable: 1;
scrollable: 1;
entryType:3;

cFlagsI;

continuous: 1;
actOnMouseDown: 1;
floatLeft:4;
floatRight:4;
autoRange: 1;
actOnMouseDragged: 1;
noWrap:I;
dontActOnMouseUp: 1;

cFlags2;

String for a TextCell, name of the icon for an
IconCell.

Font for TextCell, NXImage for IconCell.

Current state of the Cell (0 or 1).

Whether Cell is highlighted.

Whether Cell is disabled.

Whether text in the Cell is editable.

NULLCELL, TEXTCELL, or ICONCELL.

Whether to free contents when freeing the Cell.

Text justification.

cFlags 1. bordered

cFlags 1. bezeled

cFlags l.selectable

cFlags l.scrollable

cFlags l.entryType

cFlags2.continuous

Whether the Cell has a border.

Whether the Cell has a bezeled border.

Whether the text is selectable.

Whether the text is scrollable.

Type of data accepted.

Sends action continuously to target while control is
active.

cFlags2.actOnMouseDown Sends action on the mouse-down (rather than the
mouse-up).

cFlags2.floatLeft Digits to left of decimal when text is floating-point
number.

cFlags2.floatRight Digits to right of decimal when text is floating-point
number.

cFlags2.autoRange Autorange decimal when text is floating point
number.

cFlags2.actOnMouseDragged Send action every time the mouse changes position.

cFlags2.no Wrap 0 = word wrap, 1 = character wrap.

cFlags2.dontActOnMouseUp Don't send the action on the mouse-up event.

METHOD TYPES

Copying, initializing, and freeing a Cell
-copy
- copyFromZone:
- init
- initIconCell:
- initTextCel1:
-free

Determining component sizes - calcCellSize:
- calcCellSize:inRect:
- calcDrawlnfo:
- getDrawRect:
- getIconRect:
- getTitleRect:

Application Kit Classes: Cell 2-143

Setting the Cell's type - setType:
-type

Setting the Cell's state - incrementS tate
- setState:
- state

Enabling and disabling the Cell - isEnabled
- setEnabled:

Modifying the Icon - icon
- setIcon:

Setting Cell values - double Value
- floatValue
- intValue
- setDouble Value:
- setFloatValue:
- setlntValue:
- setStringValue:
- setStringValueNoCopy:
- setString ValueN oCopy:shouldFree:
- stringValue

Modifying text attributes - alignment
- font
- isEditable
- isScrollable
- isSelectable
- setAlignment:
- setEditable:
- setFont
- setScrollable:
- setSelectable:
- setTextAttributes:
- setWrap:

Editing text - edit in View:editor:delegate:event
- endEditing:
- select:in View:editor:delegate: start: length:

Validating input - entryType
- isEntry Acceptable:
- setEntryType:

Formatting data - setFloatingPointFormat:leftright

2-144 Chapter 2: Class Specifications

Modifying graphic attributes

Setting parameters

Interacting with other Cells

Displaying

Target and action

Assigning a tag

Handling keyboard alternatives

Tracking the mouse

Managing the cursor

Archiving

- isBezeled
- isBordered
- isOpaque
- setBezeled:
- setBordered:

- getParameter:
- setParameter:to:

- takeDouble ValueFrom:
- takeFloatValueFrom:
- takeIntValueFrom:
- takeStringValueFrom:

- controlView
- drawInside:inView:
- drawSelf:in View:
- highlight in View:lit:
- isHighlighted

- action
- getPeriodicDelay:andInterval:
- isContinuous
- sendActionOn:
- setAction:
- setContinuous:
- setTarget:
- target

- setTag:
-tag

- keyEquivalent

- continueTracking:at:in View:
- mouseDownFlags
+ prefersTracking UntilMouseUp
- startTrackingAt:in View:
- stopTracking:at:in View:mouseIsUp:
- trackMouse:inRect:ofView:

- resetCursorRect:in View:

- awake
- read:
- write:

Application Kit Classes: Cell 2-145

CLASS METHODS

prefersTrackingUntilMouseUp

+ (BOOL)prefersTrackingUntiIMouseU p

Returns NO by default. Override this method to return YES if the Cell should, after a
mouse-down event, track mouse-dragged and mouse-up events even if they occur
outside the Cell's frame. This method is overridden to ensure that a SliderCell in a
matrix doesn't stop responding to user input (and its neighbor start responding) just
because the knob isn't dragged in a perfectly straight line.

INSTANCE METHODS

action
- (SEL)action

Returns a null selector. This method is overridden by Action Cell and its subclasses,
which actually implement the target object and action method.

alignment

- (int)alignment

Returns the alignment of text in the Cell. The return value can be one of three
constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

awake
-awake

Used during unarchiving; initializes static variables for the Cell class. Returns self.

calcCellSize:

- caIcCeIlSize:(NXSize *)theSize

Returns self and, by reference, the minimum width and height required for displaying
the Cell. It's implemented by calling calcCeIlSize:inRect: with the rectangle argument
set to a rectangle with very large width and height. This should be overridden if that is
not the proper way to calculate the minimum width and height required for displaying
the Cell (SliderCell overrides this method for that reason).

2-146 Chapter 2: Class Specifications

calcCellSize:inRect:

- calcCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self and, by reference, the minimum width and height required for displaying
the Cell in a given rectangle. If it's not possible to fit, the width and/or height could be
bigger than the ones of the rectangle. The computation is done by trying to size the Cell
so that it fits in the rectangle argument (by wrapping the text for instance). If a choice
must be made between extending the width or height of aRect to fit the text, the height
will be extended.

calcDraw Info:

- caIcDrawlnfo:(const NXRect *)aRect

Objects using Cells generally maintain a flag that informs them if any of their Cells has
been modified in such a way that the location or size of the Cell should be recomputed.
If so a method (usually named calcSize) is automatically invoked before displaying the
Cell; this method invokes Cell's calcDrawlnfo: for each Cell. Subclasses of Cell can
override calcDrawlnfo: to cache some information that could speed up the drawing of
the Cell. In Cell, this method does nothing and returns self.

See also: - calc Size (Matrix)

continueTracking:at:in View:

- (BOOL)continue'fracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
in View:controlView

Returns YES if it's OK to keep tracking. This method is invoked by
trackMouse:inRect:ofView: as the mouse is dragged around inside the Cell. By
default, this method returns YES when the cFlags2.continuous or
cFlags2.actOnMouseDragged is set to YES. This method is often overridden to
provide more sophisticated tracking behavior.

controlView

- controlView

Returns nil. This method is implemented abstractly, since Cell doesn't have an instance
variable for the view in which an instance is drawn. It's overridden by ActionCell and
its subclasses, which use the controlView's id as the only argument in the action
message when it's sent to the target.

See also: - controlView (ActionCell)

Application Kit Classes: Cell 2-147

copy

-copy

Allocates and returns a copy of the receiving Cell. The copy is allocated from the
default zone and is assigned the contents of the receiver.

copyFromZone:

- copyFrornZone:(NXZone *)zone

Allocat~s and returns a copy of the receiving Cell. The copy is allocated from zone and
is assigned the contents of the receiver. When you subclass Cell, override this method
to send the message [super copyFromZone:], then copy each of the subclass's unique
instance variables separately.

double Value

- (double)double Value

Returns the receiver's double value by converting its contents to a double using the C
function atofO. Returns 0 if the cell type is not NX_ TEXTCELL.

drawInside:in View:

- drawlnside:(const NXRect *)celiFrame inView:controlView

Draws the inside of the Cell; it's the same as drawSelf:in View: except that it does not
draw the bezel or border if there is one. All subclasses of Cell which implement
drawSelf:inView: must implement drawlnside:inView:. drawlnside:inView:
should never invoke drawSelf:inView:, but drawSelf:inView: can invoke
drawlnside:in View: (in fact, it often does). drawlnside:in View: is invoked from the
Control class's drawCelllnside: method and is used to cause minimal drawing to be
done in order to update the value displayed by the Cell when the contents is changed.
This becomes more important in more complex Cells such as ButtonCell and
SliderCell. The passed celiFrame should be the frame of the Cell (Le., the same
celiFrame passed to drawS elf: in View:), not the rectangle returned by getDrawRect:!
Be sure to lock focus on the controlView before invoking this method. If
cFlagsl.highlighted is YES, then the Cell is highlighted (by changing light gray to
white and white to light gray throughout celiFrame). Returns self.

2-148 Chapter 2: Class Specifications

drawS elf: in View:

- drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the contents of a Cell in a given rectangle of a given view. Lock the focus on
the controlView before invoking this method. It draws the border or bezel (if any), then
invokes drawlnside:in View:. A text Cell displays its text in the rectangle by using a
global Text object, an icon Cell displays its icon centered in the rectangle if it fits in the
rectangle, by setting the icon origin on the rectangle origin if it does not fit. Nothing is
displayed for NX_NULLCELL. You can override this method if you want a display
that is specific to your own subclass of Cell. Returns self.

See also: - drawlnside:in View:

edit:in View:editor:delegate:event:

- edit:(const NXRect *)aRect
in View:controlView
editor:textObj
delegate :anO b ject
event:(NXEvent *)theEvent

Use this method to edit the text of a Cell by using the Text object textObj in response
to an NX_MOUSEDOWN event. The aRect argument must be the one you have used
when displaying the Cell. theEvent is the NX_MOUSEDOWN event. anObject is
made the delegate of the Text object textObj used for the editing: it will receive the
methods such as textDidEnd:endChar:, textWillEnd, textDidResize,
textWillResize, and others sent by the Text object while editing. If the cell type is not
equal to NX_ TEXTCELL no editing is performed, otherwise the Text object is sized to
aRect and its superview is set to controlView, so that it exactly covers the Cell. Then
it's activated and editing begins. It's the responsibility of the delegate to end the
editing, remove any data from the textObj and invoke endEditing: on the Cell in the
textDidEnd:endChar: method. Returns self.

endEditing:

- endEditing:textObj

Use this method to end the editing you began with edit:in View:editor:delegate:event:
or select:inView:editor:delegate:start:length:. Usually this method is called by the
textDidEnd:endChar: method of the object you are using as the delegate for the Text
object (most often a Matrix or TextField). It removes the Text object from the view
hierarchy and sets its delegate to nil. Returns self.

entry Type

- (int)entryType

Returns the type of data allowed in the Cell. See setEntryType: for the list of valid
types.

Application Kit Classes: Cell 2-149

floatValue
- (float)floatValue

Returns the receiver's float value by converting its contents to a float using the C
function atofO. Returns 0.0 if the cell type is not NX_TEXTCELL.

font
-font

Returns the font used to display text in the Cell. Returns nil if the Cell is not of type
NX_TEXTCELL.

free
- free

Frees all disposable storage used by the Cell. If cFlagsl.freeText is YES, then the
contents instance variable is freed. Returns nil.

getDrawRect:
- getDrawRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the Cell will draw its "insides."
In other words, this method usually returns the rectangle which is touched by
drawInside:inView:. Pass the bounds of the Cell in theRect.

getlconRect:
- getIconRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the icon will be drawn. Pass
the bounds of the Cell in theRect. If this Cell does not draw an icon, theRect is
untouched.

getParameter:
- (int)getParameter:(int)aParameter

Returns the most usual flags of a Cell. The following constants corresponds to the
different flags:

NX_CELLDISABLED
. NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE

It is, in general, much better to invoke the "is" methods (isEnabled, isHighlighted,
isEditable) rather than use getParameter:.

2-150 Chapter 2: Class Specifications

getPeriodicDelay:andlnterval:

- getPeriodicDelay:(float*)delay andlnterval:(float*)interval

Sets two values: the amount of time (in seconds) that a continuous button will pause
before starting to periodically send action messages to the target object, and the interval
(also in seconds) at which those messages are sent. Periodic messaging behavior is
controlled by Cell's sendA~tionOn: and setContinuous: methods. (By default, Cell
sends the action message on mouse up events.) The default values returned by this
method are 0.2 seconds delay and 0.025 seconds interval. Can be overridden. Returns
self.

getTitleRect:

- getTitleRect:(NXRect *)theReet

Returns self and, by reference, the rectangle into which the text will be drawn. Pass the
bounds of the Cell in theReet. If this Cell does not draw any text, theReet is untouched.

highlight: in View:lit:

- highlight:(const NXRect *)eellFrame
in View:eontrolView
Iit:(BOOL)jlag

If cFlagsl.highlighted is not equal tojlag, it's set tojlag and the rectangle eellFrame
is highlighted in eontrolView. (You must lockFocus on eontrolView before calling this
method.) The default is simply to composite with NX_HIGHLIGHT inside the bounds
of the eellFrame. Override this method if you want a more sophisticated highlighting
behavior in a Cell subclass. Note that the highlighting that the base Cell class does will
not appear when printed (although subclasses like TextFieldCell, SelectionCell, and
ButtonCell can print themselves highlighted). This is due to the fact that the base Cell
class is transparent, and there is no concept of transparency in printed output. Returns
self.

icon

- (const char *)icon

Returns the name of the icon currently used by the Cell. Returns NULL if the cell type
is not NX_ICONCELL.

Application Kit Classes: Cell 2-151

incrementState

init

- incrementS tate

Adds 1 to the state of the Cell, wrapping around to 0 from maximum value (for the base
Cell class, 1 wraps to 0). Subclasses may want to change the meaning of this method
(for rnultistate Cells, for example). Remember that if you want the visual appearance
of the Cell to reflect a change in state, you must invoke drawSelf:in View: after altering
the state (and your drawSelf:inView: must draw the different states in different
ways-the default implementation of the Cell class does not visually distinguish
differences in state). Returns self.

- init

Initializes and returns the receiver, a new Cell instance, as type NX_NULLCELL. This
method is the designated initializer for null cells.

initIconCell :

- initlconCell:(const char *)iconName

Initializes and returns the receiver, a new Cell instance, as type NX_ICONCELL. The
icon is set to iconName. This method is the designated initializer for icon Cells.

See also: - findlmageFor: (NXImage), - name (NXImage)

initTextCell :

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new Cell instance, as type NX_TEXTCELL. The
string value is set to aString. This method is the designated initializer for text Cells.

intValue

- (int)intValue

Returns the Cell's integer value by converting its contents to an integer using the C
function atoiO. Returns 0 if the cell type is not NX_TEXTCELL.

isBezeled
- (BOOL)isBezeled

Returns YES if the Cell has a bezeled border, NO otherwise.

2-152 Chapter 2: Class Specifications

isBordered

- (BOOL)isBordered

Returns YES if the Cell is surrounded by a 1-pixel black frame, NO otherwise. The
default is NO.

isContinuous

- (BOOL)isContinuous

Returns YES if the Cell continuously sends its action message to the target object when
tracking. This usually has meaning only for subclasses of Cell that implement target
and action instance variables (ActionCell and its subclasses), although some Control
subclasses will send a default action to a default target even if the Cell does not itself
have a target and action.

isEditable

- (BOOL)isEditable

Returns YES if the text in the Cell is editable, NO otherwise. The default is NO.

isEnabled

- (BOOL)isEnabled

Returns YES if the Cell is enabled, NO otherwise. The default is YES.

isEntry Acceptable:

- (BOOL)isEntryAcceptable:(const char *)aString

Tests whether aString matches the Cell's entry type, set by the setEntryType: method.
Returns YES if it aString is acceptable by the receiving Cell, NO otherwise. This
method is invoked by Form, Matrix, and other Controls to see if a new text string is
acceptable for this Cell. This method doesn't check for overflow. It can be overridden
to enforce specific restrictions on what the user can type into the Cell. If aString is
NULL or empty, this method returns YES.

See also: - setEntryType:

isHighlighted

- (BOOL)isHighlighted

Returns YES if the Cell is currently highlighted, NO otherwise. The Cell can be
highlighted by calling highlight: in View:lit:.

Application Kit Classes: Cell 2-153

isOpaque

- (BOOL)isOpaque

Returns YES if the Cell is opaque (i.e., it touches every pixel in its bounds), NO
otherwise. The base Cell class is opaque if and only if it has a bezel. Subclasses which
draw differently should override this appropriately.

isScrollable

- (BOOL)isScrolIable

Returns YES if typing past the end of the text in the Cell will cause the Cell to scroll to
follow the typing. The default return value is NO.

isS electable

- (BOOL)isSelectable

Returns YES if the text in the Cell is selectable, NO otherwise. The default return value
is NO.

keyEquivaJent

- (unsigned short)keyEquivalent

Returns O. Should be overridden by subclasses to return a key equivalent for the
receiver.

mouseDownFlags

- (int)mouseDownFlags

Returns the flags (e.g., NX_SHIFTMASK) that were set when the mouse went down to
start the current tracking session. This is useful if you want to use these flags, but don't
want the overhead of having to add NX_MOUSEDOWNMASK to the sendActionOn:
mask just to get those flags. This method is only valid during tracking and does not
work if the target of the Cell initiates another Cell tracking loop as part of its action
method (for example, like PopUpLists do).

read:

- read:(NXTypedStream *)stream

Reads the Cell from the typed stream stream.

2-154 Chapter 2: Class Specifications

resetCursorRect:in View:

- resetCursorRect:(const NXRect *)cellFrame inView:controlView

If the type of the Cell is NX_ TEXTCELL, then a cursor rectangle is added to
controlView (via addCursorRect:cursor:).

See also: - addCursorRect:cursor: (View, Control)

select:in View:editor:delegate:start:length:

- select:(const NXRect *)aRect
in View:controlView
editor: textO b j
delegate:anObject
start: (int)selStart
length: (int)selLength

Similar to edit:in View:editor:delegate:event: but you can invoke it in any situation,
not only on a mouse-down event. You must specify the beginning and the length of the
selection.

sendAction On:

- (int)sendActionOn:(int)mask

Resets flags to determine when the action is sent to the target while tracking. Can be
any combination of:

NX_MOUSEUPMASK
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGEDMASK
NX_PERIODICMASK

The default is NX_MOUSEUPMASK. You can use the setContinuous: method to
tum on the bit in the NX_PERIODICMASK or the NX_MOUSEDRAGGEDMASK
(whichever is appropriate to the given subclass of Cell) in the current mask.

Returns the old mask.

setAction:

- setAction:(SEL)aSelector

Does nothing. Should be overridden by subclasses that implement target and action
instance variables (ActionCell and its subclasses). Returns self.

Application Kit Classes: Cell 2-155

setAlignment:

- setAlignment:(int)mode

Sets the alignment of text in the Cell and returns self. mode should be one of three
constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setBezeled:

- setBezeled:(BOOL)jlag

Ifjlag is YES, then the Cell is surrounded by a bezel, otherwise it's not. setBordered:
and setBezeled: are mutually exclusive options. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, then the Cell is surrounded by a I-pixel black frame, otherwise it's not.
setBordered: and setBezeled: are mutually exclusive options. Returns self.

setContinuous:

- setContinuous:(BOOL)flag

Sets whether a Cell continuously sends its action message to the target object when
tracking. Normally, this method will simply add NX_PERIODICMASK or
NX_MOUSEDRAGGEDMASK to the mask set with sendActionOn:, depending on
which setting is appropriate to the subclass implementing it. In the base Cell class, this
method adds NX_PERIODICMASK to the mask. These settings usually have meaning
only for ActionCell and its subclasses which implement instance variables for the target
object and action method. However, some Control subclasses will send a default action
to a default target when the Cell itself doesn't define target and action instance
variables.

See also: - sendActionOn:

setDouble Value:

- setDouble Value: (double)aDouble

Sets the receiver to represent aDouble, by replacing the contents with the character
string representing aDouble. Does nothing if the cell type is not NX_TEXTCELL.
Returns self.

2-156 Chapter 2: Class Specifications

setEditable:
- setEditable:(BOOL)jlag

Sets the editable state of the Cell. Ifjlag is YES, then the text is also set to be selectable.
Ifjlag is NO, then the text is set not selectable. Returns self.

See also: - edit:in View:editor:delegate:event:

setEnabled:
- setEnabled:(BOOL)jlag

Sets the enabled state of the Cell. Returns self.

setEntryType:

- setEntryType:(int)aType

This method sets the type of data allowed in the Cell. aType is one of these four
constants:

NX_ANYTYPE
NX_(POS)INTTYPE
NX_(POS)FLOATTYPE
NX_(POS)DOUBLETYPE

If the Cell is not of type NX_TEXTCELL, it's automatically converted, in which case
its support instance variable is set to the default font (Helvetica 12.0), and its string
value is set to "Cell" (the default).

The entry type is checked by the isEntry Acceptable: method. That method is used by
Controls that contain editable text (such as Matrix and TextField) to validate that what
the user has typed is correct. If you want to have a custom Cell accept some specific
type of data (other than those listed above), you can override the isEntry Acceptable:
method to check for the validity of the data the user has entered.

See also: - isEntry Acceptable:, - setFloatingPointFormat:left:right:

Application Kit Classes: Cell 2-157

setFloatingPointFormat:left:right:

- setFloatingPointFormat: (BOOL)autoRange
left: (unsigned)leftDigits
right: (unsigned)rightDigits

Sets whether floating-point numbers are autoranged, and sets the size of the fields to the
left and right of the decimal point. leftDigits must be between ° and 10. rightDigits
must be between ° and 14. If leftDigits is 0, then the number is not formatted. If
rightDigits is 0, then the fractional part of the floating-point number is truncated (Le.,
the floating-point number is printed as if it were an integer). Otherwise,leftDigits
specifies the number of digits to the left of the decimal point, and rightDigits specifies
the number of digits to the right. If autoRange is YES, the number will be fit into a field
that's leftDigits + rightDigits + 1 spaces wide and the decimal point will be autoranged
to fit that field (the field will also be padded with zeros). To tum off formatting, simply
invoke this routine with leftDigits = 0. If the entryType of the Cell is not already
NX_FLOATTYPE, NX_POSFLOATTYPE, NX_DOUBLETYPE, or
NX_POSDOUBLETYPE, it's set to NX_FLOATTYPE. Returns self.

setFloatValue:

- setFloatValue:(float)aFloat

Sets cell-specific float value, by replacing its contents by the character string
representing the float. Does nothing if the cell type is not NX_ TEXTCELL. Returns
self.

setFont:

- setFont:fontObj

Sets the font to be used when displaying text in the Cell. Does nothing if the Cell is not
of type NX_ TEXTCELL. Returns self.

setlcon:

- setlcon:(const char *)iconNarne

Invoke this method to set the icon of the Cell to the icon represented by iconNarne (an
icon is a named NXImage-see the NXImage class). If the Cell was not an
NX_ICONCELL, it's automatically converted. Sets the support instance variable to
iconNarne, and sets the contents instance variable to the result of sending the name
message to that NXImage. If you specify an invalid NXImage name, you will get a
default icon (you c~n verify that the NXImage you requested was valid by checking the
result of sending the icon message to the Cell to be sure it matches the iconN arne you
supplied). Returns self.

See also: - findImageNamed (NXImage), - name (NXImage)

2-158 Chapter 2: Class Specifications

setlntValue:
- setIntValue:(int)anlnt

Sets cell-specific integer value by replacing its contents by the character string
representing an/nt. Does nothing if the cell type is not NX_TEXTCELL. Returns self.

setParameter:to:
- setParameter:(int)aParameter to:(int)value

Sets the most usual flags of a Cell. Calling this method could result in unpredictable
results in subclasses. It's much safer to invoke the appropriate set. .• method to set a
specific flag. Returns self.

See also: - getParameter:, - highlightInView:lit:, - setEditable:, - setEnabled:,
- setState:

setScrollable:
- setScrollable:(BOOL)jlag

Sets whether, while editing, the Cell will scroll to follow typing. Returns self.

See also: - edit:in View:editor:delegate:event:

setSelectable:
- setSelectable:(BOOL)jlag

Ifjlag is YES, then the text is selectable but not editable. If NO, then the text is static
(not editable or selectable). Returns self.

See also: - edit:in View:editor:delegate:event:

setState:
- setState:(int)value

Sets the state of the Cell to 0 if value is 0, to 1 otherwise. Returns self.

See also: - incrementState

Application Kit Classes: Cell 2-159

setStringValue:

- setStringValue:(const char *)aString

Invoke this method to set the contents instance variable to a copy of aString. If the Cell
was not of type NX_ TEXTCELL, it's automatically converted, in which case its
support instance variable is set to the default font (Helvetica 12.0). If floating point
parameters have been set (via setFloatingPointParameters:left:right:) and the type
of the Cell is NX_(POS) {FLOAT,DOUBLE} TYPE, then the string will be tested for
being a float or a double. If it's a float or a double, then the appropriate
parameterization will be applied; otherwise, the string will be copied directly. Returns
self.

setString ValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Similar to setStringValue: but does not make a copy of aString. The Cell records that
it does not have to dispose of its contents instance variable when it receives the free
message. Note that if you set a string this way, then the floating-point parameters will
not be applied (since no copy of the string is being made). Returns self.

setString ValueN oCopy:shouldFree:

- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Similar to setStringValueNoCopy:, but the caller can specify if the contents instance
variable will be freed when the Cell receives the free message. Note that if you set a
string this way, then the floating-point parameters will not be applied (since no copy of
the string is being made). If aString == contents, then ifjlag is NO, cFlagsl.freeText
will be set to NO. Returns self.

setTag:

- setTag:(int)anint

Does nothing. This method is overridden by ActionCell and its subclasses to support
multiple-Cell controls (Matrix and Form). Returns self.

setTarget:

- setTarget:anObject

Does nothing. This method is overridden by ActionCell and its subclasses that
implement the target object and action method. Returns self.

2-160 Chapter 2: Class Specifications

setTextAttributes:
- setTextAttributes:textObj

Invoked just before any drawing or editing occurs in the Cell. It's intended to be
overridden. If you do override this method you must invoke
[super setTextAttributes:textObj] first. If you do not, you risk inheriting drawing
attributes from the last Cell which drew any text. You should invoke only the following
two Text instance methods:

setBackgroundGray:
setTextGray:

Do not set any other parameters in the Text object.

You should return textObj as the return value of this method. Therefore, if you want to
substitute some other Text object to draw with (but not edit, editing always uses the
window's field editor), you can return that object instead of textObj and it will be used
for the draw that caused setTextAttributes: to be called.

TextFieldCell, a subclass of ActionCell, allows you to set the grays without creating
your own subclass of Cell. You only need to subclass Cell to control the gray values if
you don't want all of the functionality (and instance variable usage) of an ActionCell.

Defaults: If the Cell is disabled, its text gray will be NX_DKGRAY, otherwise it will
be NX_BLACK. If the Cell has a bezel, then its background gray will be NX_ WHITE,
otherwise it will be NX_LTGRAY. The Text object does not paint the background gray
before drawing; it only uses the background gray to erase characters while editing. The
Cell class does paint the NX_ WHITE background when it draws a bezeled Cell, but
does not paint any background (Le., it's transparent) otherwise.

Note that most of the other text object attributes can be set via Cell methods (setFont:,
setAlignment:, setWrap:) so you need only override this method if you need to set the
gray values. Returns self.

setType:
- setType:(int)aType

Sets the type of the Cell. It should be NX_TEXTCELL, NX_ICONCELL, or
NX_NULLCELL. If aType is NX_ TEXTCELL and the current type is not
NX_TEXTCELL, then the font is set to the default font (Helvetica 12.0), and the string
value of the Cell is set to the default string, "Cell". If aType is NX_ICONCELL and
the current type is not NX_ICONCELL, then the icon for the Cell is set to be the default
icon, "square 16".

Application Kit Classes: Cell 2-161

setWrap:
- setWrap:(BOOL)flag

Ifflag is YES, then the text (when displaying, not editing) will be wrapped to word
breaks. Otherwise, it will not. The default is YES.

startTrackingAt:in View:
- (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:controlView

This method returns YES if and only if the Cell is continuous, that is, if
cFlags2.continuous or cFlags2.actOnMouseDragged is YES. Called via
trackMouse:inRect:ofView: the first time the mouse appears in the Cell needing to be
tracked. Default is to do nothing. Should return YES if it's OK to track based on this
starting point, otherwise it returns NO. This method is often overridden to provide
more sophisticated tracking behavior.

state
- (int)state

Returns the state of the Cell (0 or 1). The default is O.

stopTracking:at:in View:mouseIsUp:
- stopTracking:(const NXPoint *)lastPoint

at:(const NXPoint *)stopPoint
in View:controlView
mouseIsUp:(BOOL)flag

Invoked via trackMouse:inRect:ofView: when the mouse has left the bounds of the
Cell, or the mouse button has gone up. flag is YES if the mouse button went up to cause
this method to be invoked. The default method does nothing and returns self. This
method is often overridden to provide more sophisticated tracking behavior. Returns
self.

stringValue

tag

- (const char *)string Value

Returns a pointer to the contents instance variable.

- (int)tag

Returns -1. Overridden by subclasses such as ActionCell to provide a way to identify
Cells in a multiple-Cell Control such as Matrix or Form.

2-162 Chapter 2: Class Specifications

takeDouble ValueFrom:

- takeDouble ValueFrom:sender

Sets the receiving Cell's double-precision floating point value to the value returned by
sender's double Value method. Returns self.

This method can be used in action messages between Cells. It permits one Cell
(sender) to affect the value of another Cell (the receiver). For example, a TextFieldCell
can be made the target of a SliderCell, which will send it takeDouble ValueFrom:
action message. The TextFieldCell will get the SliderCell's double value, tum it into
a text string, and display it.

See also: - takeDoubleValueFrom: (Control), - setDoubleValue:, - doubleValue

takeFloatValueFrom:

- takeFloatValueFrom:sender

Sets the receiving Cell's single-precision floating-point value to the value returned by
sender's tloatValue method. Returns self.

This is the same as takeDouble VaiueFrom: except it works with floats rather than
doubles.

See also: - takeFloatValueFrom: (Control), - setFloatValue:, - tloatValue

takelntValueFrom:

- takelntValueFrom:sender

Sets the receiving Cell's integer value to the value returned by sender's intValue
method. Returns self.

This is the same as takeDouble ValueFrom: except it works with ints rather than
doubles.

See also: - takelntValueFrom: (Control), - setIntValue:, - intValue

take String ValueFrom:

- takeString ValueFrom:sender

Sets the receiving Cell's string value to the value returned by sender's stringValue
method. Returns self.

This is the same as take Double ValueFrom: except it works with strings rather than
doubles.

See also: - takeStringValueFrom: (Control), - stringValue, - setStringValue:

Application Kit Classes: Cell 2-163

target
- target

Returns nil. This method is overridden by ActionCell and its subclasses that implement
target and action instance variables. Returns self.

trackMouse:inRect:ofView:
- (BOOL)trackMouse:(NXEvent *)theEvent

inRect:(const NXRect *)cellFrame
ofView:eontrolView

This method is called by Controls to implement the tracking behavior of a Cell. It's
generally not overridden since the default implementation provides a simple interface
to some other, simpler, tracking routines:

(BOOL)startTrackingAt:(NXPoint *)startPoint
in View: control View

(BOOL)continueTracking:(NXPoint *)lastPoint
at:(NXPoint *)currentPoint
in View: control View

stopTracking:(NXPoint *)lastPoint
at:(NXPoint *)endPoint
in View:controlView
mouselsUp:(BOOL)flag

This method invokes startTrackingAt:in View: first, then, as mouse-dragged events
are intercepted, continueTracking:at:in View: is called, and, finally, when the mouse
leaves the bounds (if eellFrame is NULL, then the bounds are considered infinitely
large), or if the mouse button goes up, stopTracking:at:in View:mouseIsUp: is called.
If this interface is insufficient for the needs of your Cell, you may override
trackMouse:inRect:ofView: directly. It's this method's responsibility to invoke the
controlView's sendAction:to: method when appropriate (before, during, or after
tracking) and to return YES if and only if the mouse goes up within the Cell during
tracking.' If the Cell's action is sent on mouse down, then startTrackingAt:inView: is
called before the action is sent and the mouse is tracked until it goes up or out of
bounds. If the Cell sends its action periodically, then the action is sent periodically to
the target even if the mouse is not moving (although continueTracking:at:in View: is
only called when the mouse changes position). If the Cell's action is sent on mouse
dragged, then continueTracking:at:in View: is called before the action is sent. The
state of the Cell is incremented (via incrementState) before the action is sent and after
stopTracking:at:in View: is called when the mouse goes up. Returns self.

type
- (int)type

Returns the type of the Cell. Can be one of NX_NULLCELL, NX_ICONCELL or
NX_TEXTCELL.

2-164 Chapter 2: Class Specifications

write:

- write: (NXTypedStream *)stream

Writes the Cell to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Cell Data Types */

#define NX ANYTYPE 0

#define NX INTTYPE 1

#define NX POSINTTYPE 2

#define NX FLOATTYPE 3

#define NX POSFLOATTYPE 4

#define NX DATE TYPE 5

#define NX DOUBLETYPE 6

#define NX POSDOUBLETYPE 7

/* Cell Types */

#define NX NULLCELL 0

#define NX TEXT CELL 1

#define NX ICONCELL 2

/* Cell & ButtonCell */

#define NX CELLDISABLED 0

#define NX CELLS TATE 1

#define NX CELLEDITABLE 3

#define NX CELLHIGHLIGHTED 5

#define NX LIGHTBYCONTENTS 6

#define NX LIGHTBYGRAY 7

#define NX LIGHTBYBACKGROUND 9

#define NX_ICONISKEYEQUIVALENT 10

#define NX HASALPHA 11

#define NX BORDERED 12

#define NX OVERLAPPINGICON 13

#define NX ICONHORIZONTAL 14

#define NX ICONONLEFTORBOTTOM 15

#define NX CHANGECONTENTS 16

/* ButtonCell icon positions */
#define NX TITLEONLY 0

#define NX ICONONLY 1

#define NX ICONLEFT 2

#define NX ICONRIGHT 3

#define NX ICONBELOW 4

#define NX ICONABOVE 5

#define NX ICONOVERLAPS 6

Application Kit Classes: Cell 2-165

/* ButtonCel1 highlightsBy and showsStateBy mask */
#define NX NONE 0

#define NX CONTENTS 1

#define NX PUSH IN 2

#define NX CHANGE GRAY 4

#define NX CHANGE BACKGROUND 8

/* Cell whenActionIsSent mask flag */
#define NX PERIODICMASK (1 « (NX_LASTEVENT+1))

2-166 Chapter 2: Class Specifications

ClipView

INHERITS FROM View : Responder: Object

DECLARED IN appkit/Clip View.h

CLASS DESCRIPTION

The ClipView class provides basic scrolling behavior by displaying a portion of a
document that may be larger than the ClipView's frame rectangle. It also provides
clipping to ensure that its document is not drawn outside the ClipView's frame. The
Clip View has one subview, the document view, which is the view to be scrolled. Since
a subview's coordinate system is positioned relative to its superview's origin, the
Clip View changes the displayed portion of the document by translating the origin of its
own bounds rectangle.

When the Clip View is instructed to scroll its document view, it copies as much of the
previously visible document as possible, unless it received a setCopyOnScroll:NO
message. The Clip View then sends its document view a message to either display or
mark as invalidated the newly exposed region(s) of the ClipView. By default it will
invoke the document view's display:: method, but if the ClipView received a
setDisplayOnScroll:NO message, it will invoke the document view's invalidate::
method.

The ClipView sends its superview (usually a ScrollView) a reflectScroll: message to
notify it whenever the relationship between the Clip View and the document view has
changed. This allows the superview to update any controls it manages to reflect the
change. You don't normally use the ClipView class directly; it is used by ScrollView
which provides standard controls to allow the user to perform scrolling. However, you
,might use the Clip View class to implement a class similar to ScrollView.

INSTANCE VARIABLES

Inheritedfrom Object Class is a;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Declared in ClipView float backgroundGray;
id docView;
id cursor;

Application Kit Classes: ClipView 2-167

backgroundGray

doc View

cursor

METHOD TYPES

Initializing the class object

The gray value used to fill the area of the
Clip View not covered by the opaque portions of
the document view.

The Clip View's document view.

The cursor that's used inside the ClipView's
frame rectangle.

+ initialize

Initializing and freeing a Clip View - initFrame:
-free

Modifying the frame rectangle -moveTo::
- rotateTo:
- sizeTo::

Modifying the coordinate system - rotate:
- scale::
- setDrawOrigin::
- setDrawRotation:
- setDrawSize::
- translate::

Managing component Views -docView
- setDocView:
- getDocRect:
- getDoc VisibleRect:
- resetCursorRects
- setDocCursor:

Modifying graphic attributes and displaying
- backgroundGray
- setBackgroundGray:
- backgroundColor
- setBackgroundColor:
- drawSelf::

Scrolling - autoscroll:
- constrainScroll:
- rawScroll:
- setCopyOnScroll:
- setDisplayOnScroll:

Coordinating with other Views - descendantFlipped:
- descendantFrameChanged:

2-168 Chapter 2: Class Specifications

Archiving - awake
- read:
- write:

CLASS METHODS

initialize

+ initialize

Sets the current version of the Clip View class. You never send an initialize message;
it's sent for you when the application starts. Returns self.

INSTANCE METHODS

autoscroll:

- autoscroll:(NXEvent *)theEvent

Performs automatic scrolling of the document. This message is sent to the document
view when the mouse is dragged from a position within the Clip View to a position
outside it. The document view then sends this message to its ClipView. You never send
an autoscroll: message directly to a Clip View. Returns nil if no scrolling occurs;
otherwise returns self.

See also: - autoscroll: (View)

awake

-awake

Overrides View's awake method to ensure additional initialization. After a ClipView
has been read from an archive file, it will receive this message. You should not invoke
this method directly. Returns self.

background Color

- (NXColor)backgroundColor

Returns the color of the Clip View's background. If the background gray value has been
set but no color has been set, the color equivalent of the background gray value is
returned. If neither value has been set, the background color of the Clip View's window
is returned.

See also: - backgroundGray, - setBackgroundColor:, - setBackgroundGray:,
- backgroundColor (Window), NXConvertGrayToColorO

Application Kit Classes: ClipView 2-169

background Gray

- (float)backgroundGray

Returns the gray value of the ClipView's background. If no value has been set, the gray
value of the ClipView's window is returned.

See also: - background Color, - setBackgroundGray:,
- backgroundGray (Window)

constrainS croll :
- constrainScroll:(NXPoint *)newOrigin

Ensures that the document view is not scrolled to an undesirable position. This method
is invoked by the private method that all scrolling messages go through before it
invokes rawScroll: or scroIlClip:to:. The default implementation keeps as much of
the document view visible as possible. You may want to override this method to
provide alternate constraining behavior. newOrigin is the desired new origin of the
ClipView's bounds rectangle and is given in ClipView coordinates. Returns self.

See also: - rawScroll:

descendantFlipped:

- descendantFlipped:sender

Notifies the Clip View that the orientation of the coordinate system of its document view
has changed (from unflipped to flipped, or vice versa). The orientation of the Clip View
is changed to match the orientation of its document view. You should not invoke this
method directly, or override it. Returns self.

See also: - notifyWhenFlipped: (View), - setDocView:

descendantFrameChanged:
- descendantFrameChanged:sender

Notifies the Clip View that its document view has been resized or moved. The Clip View
may then scroll and/or display the document view, and the Clipview may also notify its
superview to reflect the changes in the scroll position. You should not invoke this
method directly, or override it. Returns self.

See also: - moveTo:: (View), - sizeTo:: (View), - reflectScroll: (ScrollView),
- notify Ancestor WhenFrameChanged: (View), - setDoc View:

2-170 Chapter 2: Class Specifications

docView

- docView

Returns the ClipView's document view.

See also: - setDoc View:

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

Overrides View's drawSelf:: method to fill the portions of the ClipView that are not
covered by opaque portions of the document view. If a color value has been set and the
Clip View is drawing itself on a color screen, the Clip View draws its background with
the color value, otherwise it draws its background using its background gray value.
Returns self.

See also: - backgroundColor:, - backgroundGray:, - drawSelf:: (View)

free

-free

Deallocates the memory used by the receiving Clip View. The Clip View is removed
from the view hierarchy, and all its subviews are also freed.

getDocRect:

- getDocRect:(NXRect *)aReet

Places the ClipView's document rectangle into the structure specified by aReet. The
origin of this rectangle is equal to the origin of the document view's frame rectangle.
The document rectangle's height and width are set to the maximum corresponding
values from the document view's frame size and the content view's bounds size. The
document rectangle is used in conjunction with the ClipView's bounds rectangle to
determine values for any indicators of relative position and size between the Clip View
and the document view. The ScrollView uses these rectangles to set the size and
position of the Scrollers' knobs. Returns self.

See also: - reflectScroll: (ScrollView)

Application Kit Classes: ClipView 2-171

getDoc VisibleRect:

- getDocVisibleRect:(NXRect *)aRect

Gets the portion of the document view that's visible within the ClipView. The
ClipView's bounds rectangle, transformed into the document view's coordinates, is
placed in the structure specified by aRect. This rectangle represents the portion of the
document view's coordinate space that's visible through the ClipView. However, this
rectangle doesn't reflect the effects of any clipping that may occur above the Clip View
itself. Thus, if the Clip View is itself clipped by one of its superviews, this method
returns a different rectangle than the one returned by the get VisibleRect: method,
because the latter reflects the effects of all clipping by superviews. Returns self.

See also: - getVisibleRect: (View)

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the ClipView, which must be a newly allocated ClipView instance. The
ClipView's frame rectangle is made equivalent to that pointed to by frameRect. This
method is the designated initializer for the Clip View class, and can be used to initialize
a ClipView allocated from your own zone. By default, clipping is enabled, and the
Clip View is set to opaque. A Clip View is initialized without a document view. Returns
self.

See also: - setDocView:, - initFrame: (View), + alloc (Object),
+ allocFromZone: (Object)

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the ClipView's frame rectangle to (x, y) in its superview's
coordinates. Returns self.

See also: - moveTo:: (View)

rawScroll:

- rawScroll:(const NXPoint *)newOrigin

Performs scrolling of the document view. This method sets the ClipView's bounds
rectangle origin to newOrigin. Then, it copies as much of the previously visible
document as possible, unless it received a setCopyOnScroll:NO message. It then
sends its document view a message to either display or mark as invalidated the newly
exposed region(s) of the ClipView. By default it will invoke the document view's
display:: method, but if the Clip View received a setDisplayOnScroll:NO message, it
will invoke the document view's invalidate:: method. The rawScroll: method does
not send a reflectScroll: message to its superview; that message is sent by the method

2-172 Chapter 2: Class Specifications

that invokes rawScroll:. Note also that while the Clip View provides clipping to its
frame, it does not clip to the update rectangles.

This method is used by a private method through which all scrolling passes, and is
invoked if the ClipView's superview does not implement the seroIlClip:to: method. If
the ClipView's superview does implement serollClip:to:, that method should invoke
rawSeroll:. The ClipView's typical superview (Scrollview) doesn't implement the
seroIlClip:to: method. This mechanism is provided so that the ClipView's superview
can coordinate scrolling of multiple tiled Clip Views. Returns self.

read:
- read:(NXTypedStream *)stream

Reads the Clip View and its document view from the typed stream stream. Returns self.

See also: - write:

resetCursorRects
- resetCursor Reets

Resets the cursor rectangle for the document view to the bounds of the Clip View.
Returns self.

See also: - setDoeCursor:, - addCursorReet:eursor: (View)

rotate:
- rotate:(NXCoord)angie

Disables rotation of the ClipView's coordinate system. You also should not rotate the
ClipView's document view, nor should you install a ClipView as a subview of a rotated
view. The proper way to rotate objects in the document view is to perform the rotation
in your document view's drawS elf: : method. Returns self.

rotateTo:
- rotateTo:(NXCoord)angie

Disables rotation of the ClipView's frame rectangle. This method also disables
ClipView's inherited rotateBy: method. Returns self.

See also: - rotate:

Application ~it Classes: ClipView 2-173

scale::
- scale:(NXCoord)x :(NXCoord)y

Rescales the ClipView's coordinate system by a factor of x for its x axis, and by a factor
of y for its yaxis. Since the document view's coordinate system is measured relative
to the ClipView's coordinate system, the document view is redisplayed and a
reflectScroll: message may be sent to the ClipView's superview. Returns self.

See also: - reflectScroll: (ScrollView)

setBackgroundColor:
- setBackgroundColor:(NXColor)color

Sets the color of the ClipView's background. This color is used to fill the area inside
the ClipView that's not covered by opaque portions of the document view. If no
background gray has been set for the Clip View, this method sets it to the gray
component of the color. Returns self.

See also: - background Color, - background Gray, - setBackgroundGray,
NXGrayComponentO

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray value of the Clip View's background. This gray is used to fill the area
inside the ClipView that's not covered by opaque portions of the document view. value
must lie in the range from 0.0 (black) to 1.0 (white). Returns self.

See also: - background Color, - background Gray, - setBackgroundColor

setCopyOnScroll :
- setCopyOnScroll:(BOOL)flag

Determines whether the buffered bits will be copied when scrolling occurs. If flag is
YES, scrolling will copy as much of the Clip View's bitmap as possible to scroll the
view, and the document view is responsible only for updating the newly exposed
portion of itself. Ifflag is NO, the document view is responsible for updating the entire
ClipView. This should only rarely be changed from the default value (YES). Returns
self.

2-174 Chapter 2: Class Specifications

setDispiayOnScroll:

- setDisplayOnScroll:(BOOL)jlag

Determines whether the results of scrolling will be immediately displayed. If jlag is
YES, the results of scrolling will be immediately displayed. Ifjlag is NO, the Clip View
is marked as invalid but is not displayed. In either case, when a scroll occurs, the
Clip View first copies as much of its buffered bitmap as possible, assuming the default
case where setCopyOnScroll: YES was sent. This should only rarely be changed from
the default value (YES). Returns self.

See also: - rawScroll:, - display:: (View), - invalidate:: (View)

setDocCursor:

- setDocCursor:anObj

Sets the cursor to be used inside the ClipView's bounds. anObj should be a NXCursor
object. Returns the old cursor.

setDoc View:

- setDocView:aView

Sets aView as the ClipView's document view. There is one document view per
Clip View, so if there was already a document view for this Clip View it is replaced. This
method initializes the document view with
notify Ancestor WhenFrameChanged: YES and notifyWhenFlipped: YES
messages. The origin of the document view's frame is initially set to be coincident with
the origin of the ClipView's bounds. If the ClipView is contained within a ScrollView,
you should send the ScrollView the setDoc View: message and have the ScrollView
pass this message on to the Clip View. Returns the old document view, or nil if there
was none.

See also: - setDocView: (ScrollView)

setDrawOrigin: :

- setDrawOrigin:(NXCoord)x :(NXCoord)y

Overrides the View method so that changes in the ClipView's coordinate system are
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - setDrawOrigin:: (View)

Application Kit Classes: ClipView 2-175

setDrawRotation:
- setDrawRotation:(NXCoord)angle

Disables rotation of the ClipView's coordinate system. The proper way to rotate
objects in the document view is to perform the rotation in your document view's
drawS elf: : method. Returns self.

See also: - rotate:

setDrawSize: :
- setDrawSize:(NXCoord)width :(NXCoord)height

Overrides the View method so that rescaling of the ClipView's coordinate ·system is
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - setDrawSize:: (View)

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Overrides the View method so that resizing of the ClipView's frame rectangle is
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - sizeTo:: (View)

translate: :
- translate:(NXCoord)x :(NXCoord)y

Overrides the View method so that translation of the ClipView's coordinate system is
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - translate:: (View)

write:
- write:(NXTypedStream *)stream

Writes the receiving Clip View and its document view to the typed stream stream.
Returns self.

See also: - write:

2-176 Chapter 2: Class Specifications

METHODS IMPLEMENTED BY CLIPVIEW'S SUPERVIEW

reflectScroll :

- reflectScroll:aC lip View

Notifies the ClipView's superview that either the ClipView's bounds rectangle or the
document view's frame rectangle has changed, and that any indicators of the scroll
position need to be adjusted. Scroll View implements this method to update its
Scrollers.

scrollClip:to:

- scrollClip:aClipView to:(c~nst NXPoint *)newOrigin

Notifies the ClipView's superview that the ClipView needs to set its bounds rectangle
origin to newOrigin. The ClipView's superview should then send the ClipView the
rawScroll: message. This mechanism is provided so that the ClipView's superview
can coordinate scrolling of multiple tiled Clip Views. Note that the default ScrollView
class does not implement this method.

See also: - rawScroll: (ClipView)

Application KitClasses: ClipView 2-177

2-178

Control

INHERITS FROM View: Responder: Object

DECLARED IN appkit/Control.h

CLASS DESCRIPTION

Control is an abstract superclass that provides three fundamental features for
implementing user interface devices. First, as a subclass of View, Control has a bounds
rectangle in which to draw the on-screen representation of the device. Second, it
provides a mouseDown: method and a position in the responder chain; together these
features enable Control to receive and respond to user-generated events within its
bounds. Third, it implements the sendAction:to: method through which Control sends
an action message to its target object. Subclasses of Control defined in the Application
Kit are Button, Form, Matrix, NXBrowser, NXColorWell, Slider, Scroller, and
TextField.

Target objects and action methods provide the mechanism by which Controls interact
with other objects in an application. A target is an object that a Control has affect over.
An action method is defined by the target class to enable its instances to respond to user
input; the id of the Control is the only argument to the action method. When it receives
an action message, a target can use the id to send a message requesting additional
information from the Control about its status. Targets and actions can be set explicitly
by application code. You can also set the target to nil and allow it to be determined at
run time. When the target is nil, the Control that's about to send an action message
must look for an appropriate receiver. It conducts its search in a prescribed order:

• It begins with the first responder in the current key window and follows
nextResponder links up the responder chain to the Window object. After the
Window object, it tries the Window's delegate.

• If the main window is different from the key window, it then starts over with the
first responder in the main window and works its way up the main window's
responder chain to the Window object and its delegate.

• Next, it tries the Application object, NXApp, and finally the Application object's
delegate. NXApp and its delegate are the receivers of last resort.

Control provides methods for setting and using the target object and action method.
However, these methods require that Control's cell instance variable be set to some
subclass of Cell that provides the instance variables target and action, such as
ActionCell and its subclasses.

Target objects and action methods demonstrate the close relationship between Controls
and Cells. In most cases, a user interface device consists of an instance of a Control
subclass paired with one or more instances of a Cell subclass. Each implements
specific details of the user interface mechanism. For example, Control's mouseDown:

Application Kit Classes: Control 2-179

method sends a trackMouse:inRect:ofView: message to Cell, which handles
subsequent mouse and keyboard events; Cell sends Control a sendAction:to: message
in response to particular events. Control's drawSelf:: method is implemented by
sending a drawS elf: in View: message to Cell. As another example, Control provides
methods for setting and formatting its contents; these methods s~nd corresponding
messages to Cell, which owns the contents instance variable.

A Control subclass doesn't have to use a Cell subclass to implement itself; Scroller and
NXColorWell don't. However, such subclasses have to take care of details that Cell
would otherwise handle. Specifically, they have to overwrite methods designed to work
with a Cell. What's more, they cannot be used in a Matrix-a subclass of Control
designed specifically for managing multiple Cell arrays such as radio buttons. You
usually implement a unique user interface device by creating a subclass of Cell or
ActionCell rather than Control.

In general, Interface Builder is the easiest way to add both kit-defined and your own
subclasses of Control to an application.

The initFrame: method is the designated initializer for the Control class. Override this
method if you create a subclass of Control that performs its own initialization.

See also: ActionCell, Cell

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Inherited from View

Declared in Control

tag

2-180 Chapter 2: Class Specifications

Class

id

NXRect
NXRect
id
id
id
struct _v Flags

int
id
struct _ conFlags {

unsigned int
unsigned int
unsigned int
unsigned int
}

isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

tag;
cell;

enabled: 1;
editing Valid: 1 ;
ignoreMultiClick: 1;
calcSize: 1;

conFlags;

An integer that identifies the Control; can be used
by View's findViewWithTag: method to find a,
Control in a view hierarchy.

cell

conFlags.enabled

conFlags.editing Valid

conFlags.ignoreMultiClick

conFlags.calcSize

METHOD TYPES

The id of the Control's cell (if it has only one).

True if the Control is enabled; relevant for
multi-cell controls only.

True if editing has been validated.

True if the Control ignores double- or
triple-clicks.

True if the cell should recalculate its size and
location before drawing.

Initializing and freeing a Control - initFrame:
-free

Setting the Control's Cell - cell
- setCell:
+ setCellClass:

Enabling and disabling the Control - isEnabled
- setEnabled:

Identifying the selected Cell - selectedCell
- selectedTag

Setting the Control's value - setFloatValue:
- floatValue
- setDouble Value:
- double Value
- setIntValue:
- intValue
- setStringValue:
- setStringValueNoCopy:
- setStringValueNoCopy:shouldFree:
- string Value

Formatting text - setFont:
- font
- setAlignment:
- alignment
- setFloatingPointFormat:left:right:

Managing the field editor - abortEditing
- currentEditor
- validateEditing

Application Kit Classes: Control 2-181

Managing the cursor - resetCursorRects

Interacting with other Controls - take Double ValueFrom:
- takeFloatValueFrom:
- takeIntValueFrom:
- takeString ValueFrom:

Resizing the Control - calcSize
- sizeTo::
- sizeToFit

Displaying the Control and Cell - drawCell:
- drawCellInside:
- drawSelf::
- selectCell:
- update
- updateCell:
- updateCellInside:

Target and action - action
- isContinuous
- sendAction:to:
- sendActionOn:
- setAction:
- setContinuous:
- setTarget:
- target

. Assigning a tag - setTag:
-tag

Tracking the mouse - ignoreMultiClick:
- mouseDown:
- mouseDownFlags

Archiving -read:
- write:

CLASS METHODS

setCellClass:

+ setCellClass:classld

This abstract method does nothing and returns the id of the receiver. It's implemented
by subclasses of Control, which use this method to set their cell instance variable.

2-182 Chapter 2: Class Specifications

INSTANCE METHODS

abortEditing

- abortEditing

Terminates and discards any editing of text displayed by the receiving Control. Returns
self or, if no editing was going on in the receiving Control, nil. Does not redisplay the
old value of the Control-you must explicitly do that.

See also: - endEditingFor: (Window), - validateEditing

action

- (SEL)action

Returns the action message sent by the Control. To get the action message, this method
sends an action message to the Control's cell.

See also: - setAction:

alignment

- (int)alignment

Returns the justification mode. The return value can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.

calcSize

cell

- calcSize

Recomputes any internal sizing information for the Control, if necessary, by invoking
calcDrawlnfo: on its cell. This can be useful for caching any information needed to
make the drawing of a cell faster.· Does not draw. Can be used for more sophisticated
sizing operations as well (for example, Form). This is automatically invoked whenever
the Control is displayed and something has changed (as recorded by the calcSize flag).

See also: - calcSize (Matrix, Form), - sizeToFit

- cell

Returns the Control's cell. Should not be used by the action method of the target of the
Control (use selectedCell).

Application Kit Classes: Control 2-183

currentEditor

- currentEditor

If the receiving Control is being edited (that is, the user is typing or selecting text in the
Control), this method returns the editor (the Text object) being used to perform that
editing. If the Control is not being edited, this method returns nil.

double Value

- (double)double Value

Returns the value of the Control as a double-precision floating point number. If the
Control contains many cells (for example, Matrix), then the value of the currently
selected Cell is returned. If the Control is in the process of editing the affected cell, then
validateEditing is invoked before the value is extracted and returned.

See also: - setDouble Value:

drawCell:

- drawCell:aCeli

If aCeli is the cell used to implement this Control, then the Control is displayed. This
is provided primarily in support of a consistent interface with a multiple cell Control's
drawCell:. Returns self.

See also: - drawCell: (Matrix), - updateCell:

drawCellInside:

- drawCelllnside:aCeli

Same as drawCell: except that only the "inside" of the Control is drawn (using the
cell's drawlnside:inView: method). This method is used by setStringValue: and
similar content -setting methods to provide a minimal update of the Control when its
value is changed. Returns self.

See also: - drawlnside:in View: (Cell), - drawCelllnside: (Matrix),
- updateCelllnside:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Control. It simply invokes the Control's cell's drawSelf:inView: -method.
Must override if you have a multi -cell control. Returns self.

2-184 Chapter 2: Class Specifications

floatValue
- (float)f1oatValue

Returns the value of the Control as a single-precision floating point number (see
doubleValue for more details).

See also: - setFloatValue:

font
-font

Returns the font object used to draw the text (if any) of the Control.

free
-free

Frees the memory used by the Control and its cells. Aborts editing if the text of the
Control was currently being edited. Returns nil.

ignoreMultiClick:
- ignoreMultiClick:(BOOL)jlag

Sets the Control to ignore multiple clicks ifjlag is YES. By default, double-clicks (and
higher order clicks) are treated the same as single clicks. You can use this method to
"debounce" a control.

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Control, by settingframeRect as
its frame rectangle. Sets the new instance as opaque. Since Control is an abstract class,
messages to perform this method should appear only in subclass methods. initFrame:
is the designated initializer for the Control class.

intValue
- (int)intValue

Returns the value of the Control as an integer (see double Value for more details).

See also: - setIntValue:

Application Kit Classes: Control 2-185

isContinuous

- (BOOL)isContinuous

Returns YES if the Control continuously sends its action to its target during mouse
tracking.

See also: - setContinuous:

isEnabled

- (BOOL)isEnabled

Returns YES if the Control is enabled, NO otherwise.

mouseDown:

- mouseDown;(NXEvent *)theEvent

Invoked when the mouse button goes down while the cursor is within the bounds of the
Control. The Control is highlighted and the Control's Cell tracks the mouse until it
goes outside the bounds, at which time the Control is unhighlighted. If the cursor goes
back into the bounds, then the Control highlights again and its Cell starts tracking
again. This behavior continues until the mouse button goes up. If it goes up with the
cursor in the Control, the state of the Control is changed, and the action is sent to the
target. If the mouse button goes up with the cursor outside the Control, no action is
taken.

mouseDownFlags

- (int)mouseDownFlags

Returns the event flags (for example, NX_SHIFTMASK) that were in effect at the
beginning of tracking. The flags are valid only in the action method that is sent to the
Control's target.

See also: - mouseDownFlags (Cell), - sendAction:to:

read:

- read:(NXTypedStream *)stream

Reads the Control from the specified typed stream stream.

2-186 Chapter 2: Class Specifications

resetCursorRects

- resetCursorRects

If the Control's cell is editable, then resetCursorRect:in View: is sent to the cell
(which will, in tum, send addCursorRect:cursor: back to the Control). Causes the
cursor to be an I -beam when the mouse is over the editable portion of the cell.

selectCell

- selectCell:aCell

If aCell is the receiving Control's cell and is currently unselected, this method selects
aCell and redraws the Control. Returns self.

selectedCell

- selected Cell

This method should be used by the target of the Control when it wants to get the cell of
the sending Control. Note that even though the cell method will return the same value
for single cell Controls, it's strongly suggested that this method be used since it will
work both for multiple and single cell Controls.

See also: - sendAction:to:, - selected Cell (Matrix)

selectedTag

- (int)selectedTag

The action method in the target of the Control should use this method to get the
identifying tag of the sending Control's cell. You should use the setTag: and tag
methods in conjunction with findViewWithTag:. This is equivalent to [[self
selected Cell] tag]. Returns -1 if there is no currently selectedCell. The cell's tag can
be set with ActionCell's setTag: method. When you set a single-cell Control's tag in
Interface Builder, it sets both the Control's and the cell's tag (as a convenience).

See also: - sendAction:to:

Application Kit Classes: Control 2-187

sendAction:to:
- sendAction:(SEL)theAction to:theTarget

Sends a sendAction:to: message to NXApp, which in tum sends a message to
theTarget to perform theAction. This method adds the Control's id as the action
method's only argument. If theAction is NULL, no message is sent.

This method is invoked primarily by Cell's trackMouse:inRect:ofView:.

If theTarget is nil, NXApp looks for an object that can respond to the message-that is,
for an object that implements a method matching the theAction selector. It begins with
the first responder of the key window. If the first responder can't respond, it tries the
first responder's next responder and continues following next responder links up the
responder chain. If none of the objects in the key window's responder chain can handle
the message and if the main window is different from the key window, it begins again
with the first responder in the main window. If objects in neither the key window nor
the main window can respond, NXApp tries to handle the message itself. If NXApp
cannot respond, then the message is sent to NXApp's delegate.

Returns nil if the message could not be delivered; . otherwise returns self.

See also: - setAction:, - setTarget:, - trackMouse:inRect:ofView: (Cell)

sendActionOn:

- (int)sendActionOn:(int)mask

Sets a mask of the events that cause sendAction:to: to be invoked during tracking of
the mouse (done in Cell's trackMouse:inRect:ofView:). Returns the old event mask.

See also: - sendActionOn: (Cell), - trackMouse:inRect:ofView: (Cell)

setAction:
- setAction:(SEL)aSelector

Makes aSelector the Control's action method.

See also: - sendAction:to:

setAlignment:

- setAlignment:(int)mode

Sets the justification mode. The mode should be one of: NX_LEFTALIGNED,
NX_CENTERED or NX_RIGHTALIGNED.

2-188 Chapter 2: Class Specifications

setCell:

- setCell:aCell

Sets the cell of the Control to be cell. Use this method with great care as it can
irrevocably damage your Control. Returns the old cell.

setContinuous:
- setContinuous:(BOOL)jlag

Sets whether the Control should continuously send its action to its target as the mouse
is tracked.

See also: - setContinuous: (ButtonCell, SliderCell), - sendActionOn:

setDouble Value:
- setDouble Value: (double)aDouble

Sets the value of the Control to be aDouble (a double-precision floating point number).
If the Control contains many cells, then the currently selectedCell's value is set to
aDouble. If the affected cell is currently being edited, then that editing is aborted and
the value being typed is discarded in favor of aDouble. If autodisplay is on, then the
cell's "inside" is redrawn.

See also: - double Value, - abortEditing, - drawlnside:in View: (Cell)

setEnabled:

- setEnabled:(BOOL)jlag

Sets the flag determining whether the Control is active or not. Redraws the entire
Control if autodisplay is on. Subclasses may want to override this to redraw only a
portion of the Control when the enabled state changes (Button and Slider do this).

setFloatValue:
- setFloatValue:(float)aFloat

Same as setDoubleValue:, but sets the value as a single-precision floating point
number.

See also: - floatValue

Application Kit Classes: Control 2-189

setFloatingPointFormat:left:right:
- setFloatingPointFormat: (BOOL)autoRange

left: (unsigned)leftDigits
right: (unsigned)rightDigits

Sets the floating point number format of the Control. Does not redraw the cell. Affects
only subsequent settings of the value using setFloatValue:.

See also: - setFloatPointFormat:left:right: (Cell)

setFont:

- setFont:fontObJ

Sets the font used to draw the text (if any) in the Control. You only need to invoke this
method if you do not want to use the default font (Helvetica 12.0). If autodisplay is on,
then the inside of the cell is redrawn.

setlntValue:

- setlntValue:(int)anlnt

Same as setDoubleValue:, but sets the value as an integer.

See also: - intValue

setStringValue:
- setStringValue:(const char *)aString .

Same as setDouble Value:, but sets the value as a string.

See also: - stringValue, - setStringValueNoCopy:, - setIntValue:

setString ValueN oCopy:

- setStringValueNoCopy:(const char *)aString

Like setStringValue:, but doesn't copy the string.

See also: - stringValue, - setStringValue:, - setStringValueNoCopy:shouldFree:

setStringValueNoCopy:shouldFree:
- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Like setStringValueNoCopy:, but lets you specify whether the string should be freed
when the Control is freed.

See also: - stringValue, - setStringValueNoCopy:

2 -190 Chapter 2: Class Specifications

setTag:

- setTag:(int)anlnt

Makes anlnt the receiving Control's tag.

See also: - tag, - selectedTag, - findViewWithTag: (View)

setTarget:

- setTarget:anObject

Sets the target for the Control's action message.

See also: - sendAction:to:

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Changes the width and the height of the Control's frame. Redisplays the Control if
autodisplay is on.

sizeToFit

- sizeToFit

Changes the width and the height of the Control's frame so that they get the minimum
size to contain the cell. If the Control has more than one cell, then you must override
this method.

See also: - sizeToFit (Matrix), - sizeToCells (Matrix)

string Value
- (const char *)stringValue

Returns the value of the Control as a string (see doubleValue for more details).

See also: - setStringValue:, - setStringValueNoCopy:

tag
- (int)tag

Returns the receiving Control's tag (not the Control's cell's tag).

See also: - setTag:, - selectedTag

Application Kit Classes: Control 2-191

takeDouble ValueFrom:

- takeDouble ValueFrom:sender

Sets the receiving Control's double-precision floating-point value to the value obtained
by sending a double Value message to sender.

This method can be used in action messages between Controls. It permits one Control
(sender) to affect the value of another Control (the receiver) by sending this method in
an action message to the receiver. For example, a TextField can be made the target of
a Slider. Whenever the Slider is moved, it will send a takeDouble ValueFrom:
message to the TextField. The TextField will then get the Slider's floating-point value,
tum it into a text string, and display it, thus tracking the value of the Slider.

See also: - setDoubleValue:, - doubleValue

takeFloat ValueFrom:

- takeFloatValueFrom:sender

Sets the receiving Control's single-precision floating-point value to the value obtained
by sending a floatValue message to sender.

See setDouble Value: for an example.

See also: - setFloatValue:, - floatValue

takelnt ValueFrom:

- takeIntValueFrom:sender

Sets the receiving Control's integer value to the value returned by sending an intValue
message to sender.

See setDouble Value: for an example.

See also: - setIntValue:, - intValue

takeString ValueFrom:

- takeStringValueFrom:sender

Sets the receiving Control's character string to a string obtained by sending a
stringValue message to sender.

See setDouble Value: for an example.

See also: - stringValue, - setStringValue:

2-192 Chapter 2: Class Specifications

target

- target

Returns the target for the Control's action message.

See also: - setTarget:

update

- update

Same as View's update, but also makes sure that calcSize gets performed.

updateCell:

- updateCell:aCell

If aCell is a cell used to implement this Control, and if autodisplay is on, then draws
the Control; otherwise, sets the needsDisplay and calcSize flags to YES.

updateCelllnside:

- updateCelllnside:aCell

If aCell is a cell used to implement this Control, and if autodisplay is on, draws the
inside portion of the cell; otherwise sets the needsDisplay flag to YES.

validateEditing

- validateEditing

Causes the value of the field currently being edited (if any) to be absorbed as the value
of the Control. Invoked automatically from stringValue, intValue, and others, so that
partially edited field's values will be reflected in the values returned by those methods.

This method doesn't end editing; to do that, invoke Window's endEditingFor: or
abortEditing.

See also: - endEditingFor: (Window)

write:

- write:(NXTypedStream *)stream

Writes the Control to the specified typed stream stream.

Application Kit Classes: Control 2-193

2-194

Font

INHERITS FROM Object

DECLARED IN Font.h

CLASS DESCRIPTION

The Font class provides objects that correspond to PostScript fonts. Each Font object
records a font's name, size, style, and matrix. When a Font object receives a set
message, it establishes its font as the current font in the Window Server's current
graphics state.

For a given application, only one Font object is created for a particular PostScript font.
When the Font class object receives a message to create a new object for a particular
font, it first checks whether one has already been created for that font. If so, it returns
the id of that object; otherwise, it creates a new object and returns its id. This system
of sharing Font objects minimizes the number of objects created. It also implies that
no one object in your application can know whether it has the only reference to a
particular Font object. Thus, Font objects shouldn't be freed; Font's free method
simply returns self.

A Font object's fontNum instance variable stores a number (a PostScript user object)
that refers to the actual font dictionary within the Window Server. You shouldn't
change the value of this variable.

INSTANCE VARIABLES

Inherited/rom Object

Declared in Font

name

size

Class

char
float
int
float
int
NXFacelnfo
id
struct _fFlags {

unsigned int
unsigned int
unsigned int

The font's name.

The font's size.

is a;

*name;
size;
style;
*matrix;
fontNum;
*facelnfo;
otherFont;

usedByWS: 1;
usedByPrinter: 1;
isScreenFont: 1 ;

fFlags;

Application Kit Classes: Font 2-195

style The font's style.

matrix The font's matrix.

fontNum The user object referring to this font.

facelnfo The font's face information.

otherFont The associated screen font for this font.

tFlags.usedByWS True if the font is stored in the Window Server.

tFlags.usedByPrinter True if the font is stored in the printer.

tFlags .isScreenFont True if the font is a screen font.

METHOD TYPES

Initializing the Class object + initialize
+ useFont:

Creating and freeing a Font object + newFontsize:

Querying the Font object

Setting the font

Archiving

2-196 Chapter 2: Class Specifications

+ newFont:size:matrix:
+ newFont:size:style:matrix:
-free

-fontNum
- getWidthOf:
- hasMatrix
- matrix
- metrics
-name
- pointSize
- readMetrics:
- screenFont
- style

- set
- setStyle:

- awake
- finishUnarchiving
- read:
- write:

CLASS METHODS

alloc

Disables the inherited aHoe method to prevent multiple Font objects from being created
for a single PostScript font. Create Font objects by using newFont:size:style:matrix:,
newFont:size:matrix:, or newFont:size:. These methods ensure that no more than
one Font object is created for any PostScript font. Returns an error message.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:, + newFont:size:

allocFrornZone:

Disables the inherited aHoeFromZone: method to prevent multiple Font objects from
being created for a single PostScript font. Create Font objects by using
newFont:size:style:matrix:, newFont:size:matrix:, or newFont:size:. These
methods ensure that no more than one Font object is created for any PostScript font.
Returns an error message.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:, + newFont:size:

initialize

+ initialize

Initializes the Font class object. The class object receives an initialize message before
it receives any other message. You never send an initialize message directly.

See also: + initialize (Object)

newFont:size:

+ newFont:(const char *)fontName size:(float)fontSize

Returns a Font object for fontfontName of sizefontSize. This method invokes the
newFont:size:style:matrix: method with the style set to 0 and the matrix set to
NX_FLIPPEDMATRIX.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:

Application Kit Classes: Font 2-197

newFont:size:matrix:

+ newFont:(const char *)JontName
size: (float)JontSize
matrix: (const float *)JontMatrix

Returns a Font object for fontJontName of sizeJontSize. This method invokes the
newFont:size:style:matrix: method with the style set to O.

See also: + newFont:size:style:matrix:, + newFont:size:

newFont:size:styIe:matrix:

+ newFont:(const char *)JontName
size: (float)JontSize
style: (int)JontStyle
matrix:(const float *)JontMatrix

Returns a Font object for fontJontName, of sizeJontSize, and matrixJontMatrix.
JontStyle is currently ignored. If an appropriate Font object was previously created, it's
returned; otherwise, a new one is created and returned. If an error occurs, this method
returns nil. This is the designated new ••. method for the Font class.

There are two constants available for the JontM atrix parameter:

• NX_IDENTITYMATRIX. Use the identity matrix.

• NX_FLIPPEDMATRIX. Use a flipped matrix. (Appropriate for a flipped View
like the Text object.)

The JontStyle parameter is stored in the Font object, and is preserved by the
FontManager's convertFont: method, but is not used by the Application Kit. It can be
used to store application-specific font information.

Note: If this method is invoked from a subclass (through a message to super), a new
object is always created. Thus, your subclass should institute its own system for
sharing Font objects.

See also: + newFont:size:matrix:, + newFont:size:

2-198 Chapter 2: Class Specifications

useFont:

+ useFont:(const char *)fontName

Registers that the font identified by fontName is used in the document. Returns self.

The Font class object keepE' track of the fonts that are being used in a document. It does
this by registering the font whenever a Font object receives a set message. When a
document is called upon to generate a conforming PostScript language version of its
text (such as during printing), the Font class provides the list of fonts required for the
% % DocumentFonts comment. (See Document Structuring Conventions by Adobe
Systems Inc.)

The useFont: method augments this system by providing a way to register fonts that
are included in the document but not set using Font's set method. Send a useFont:
message to the class object for each font of this type. Returns self.

See also: - set

INSTANCE METHODS

awake

-awake

Reinitializes the Font object after it's been read in from a stream. This method makes
sure that the Font object doesn't assume it has data cached in the Window Server.

An awake message is automatically sent to each object of an application after all
objects of that application have been read in. You never send awake messages directly.
The awake message gives the object a chance to complete any initialization that read:
couldn't do. If you override this method in a subclass, the subclass should send this
message to its superclass:

[super awake];

Returns self.

See also: - read:, - write:, - finishUnarchiving

finish U narchiving

- finish U narchiving

A finishUnarchiving message is sent after the Font object has been read in from a
stream. This method checks if a Font object for the particular PostScript font already
exists. If so, self is freed and the existing object is returned.

See also: - read:, - write:, - awake

Application Kit Classes: Font 2-199

fontNum

- (int)fontNum

Returns the PostScript user object that corresponds to this font. The Font object must
set the font in the Window Server before this method will return a valid user object.
Sending a Font object the set message sets the font in the Window Server. The
fontNum method returns 0 if the Font object hasn't previously received a set message
or if the font couldn't be set.

See also: - set, DPSDefineUserObjectO

free

- free

Has no effect. Since only one Font object is allocated for a particular font, and since
you can't be sure that you have the only reference to a particular Font object, a Font
object shouldn't be freed.

getWidthOf:

- (float)getWidthOf:(const char *)string

Returns the width of string using this font. This method has better performance than
the Window Server routine PSstringwidthO.

hasMatrix
- (BOOL)hasMatrix

Returns YES if the Font object's matrix is different from the identity matrix,
NX_IDENTITYMATRIX; otherwise, returns NO.

See also: + newFont:size:style:matrix:, - matrix

matrix
- (const float *)matrix

Returns a pointer to the matrix for this font.

See also: - has Matrix

2-200 Chapter 2: Class Specifications

metrics
- (NXFontMetrics *)metrics

Returns a pointer to the NXFontMetrics record for the font. See the header file
appkit/afm.h for the structure of an NXFontMetrics record.

See also: - readMetrics:

name
- (const char *)name

Returns the name of the font.

pointSize
- (float)pointSize

Returns the size of the font in points.

read:
- read:(NXTypedStream *)stream

Reads the Font object's instance variables from stream. A read: message is sent in
response to archiving; you never send this message.

See also: - write:, - read: (Object)

readMetrics:
- (NXFontMetrics *)readMetrics:(int)flags

Returns a pointer to the NXFontMetrics record for this font. The flags argument
determines which fields of the record will be filled in. flags is built by ORing together
constants such as NX_FONTHEADER, NX_FONTMETRICS, and
NX_FONTWIDTHS. See the header file appkit/afm.h for the complete list of
constants and for the structure of the NXFontMetrics record.

See also: - metrics

screenFont
- screenFont

Provides the screen font corresponding to this font. If the receiver represents a printer
font, this method returns the Font object for the associated screen font (or nil if one
doesn't exist). If the receiver represents a screen font, it simply returns self.

Application Kit Classes: Font 2-201

set

- set

Makes this font the current font in the current graphics state. Returns self.

When a Font object receives a set message, it registers with the Font class object that
its PostScript font has been used. In this way, the Application Kit, when called upon to
generate a conforming PostScript language document file, can list the fonts used within
a document. (See Document Structuring Conventions by Adobe Systems Inc.) If the
application uses fonts without sending set messages (say through including an BPS
file), such fonts must be registered by sending the class object a useFont: message.

See also: + useFont:

setStyle:

- setStyle:(int)aStyle

Sets the Font's style. Setting a style isn't recommended but is minimally supported
a Font object's style isn't interpreted in any way by the Application Kit. You can use
it for your own non-PostScript language font styles (a drop-shadow sty Ie, for example).

Be very careful using this method since it causes the Font to stop being shared. You
must reassign the pointer to the Font to the return value of setStyle:.

font = [font setStyle:12];

Returns self.

See also: - style

style

- (int)style

Returns the style of the font. For Font objects created by the Application Kit, this
method returns O.

See also: - setStyle:

write:

- write:(NXTypedStream *)stream

Writes the Font object's instance variables to stream. A write: message is sent in
response to archiving; you never send this message directly.

See also: - read:, - write: (Object)

2-202 Chapter 2: Class Specifications

CONSTANTS AND DEFINED TYPES

/* Flipped matrix */
#define NX IDENTITYMATRIX «float *) 0)
#define NX_FLIPPEDMATRIX «float *) -1)

/* Space characters */
#define NX_FIGSPACE «unsigned short)Ox80)

/* Font information */
typedef struct NXFaceInfo

NXFontMetrics *fontMetrics;
int flags;
struct _fontFlags {

/* Information from afm file. */
/* Which font info is present. */
/* Keeps track of font usage for

Conforming PS */
unsigned int usedInDoc:1; /* Has font been used in document?*/
unsigned int usedInPage:1; /* Has font been used in page? */
unsigned int usedInSheet:1; /* Has font been used in sheet?

unsigned int _PADDING:13;
fontFlags;

struct NXFaceInfo *nextFInfo;
NXFaceInfo;

(There can be more than one
page printed on a sheet of
paper.) */

/* Next record in list. */

Application Kit Classes: Font 2-203

2-204

FontManager

INHERITS FROM Object

DECLARED IN FontManager.h

CLASS DESCRIPTION

The FontManager is the center of activity for font conversion. It accepts messages from
font conversion user-interface objects (such as the Font menu or the Font panel) and
appropriately converts the current font in the selection by sending a changeFont:
message up the responder chain. When an object receives a changeFont: message, it
should query the FontManager (by sending it a convertFont: message), asking it to
convert the font in whatever way the user has specified. Thus, any object containing a
font that can be changed should respond to the changeFont: message by sending a
convertFont: message back to the FontManager for each font in the selection.

To use the FontManager, you simply insert a Font menu into your application's menu.
This is most easily done with Interface Builder, but, alternatively, you can send a
getFontMenu: message to the FontManager and then insert the menu that it returns
into the application's main menu. Once the Font menu is installed, your application
automatically gains the functionality of both the Font menu and the Font panel.

The FontManager can be used to convert a font or find out the attributes of a font. It
can also be overridden to convert fonts in some application-specific manner. The
default implementation of font conversion is very conservative: The font isn't
converted unless all traits of the font can be maintained across the conversion.

INSTANCE VARIABLES

Inherited from Object

Declared in FontManager

panel

menu

Class

id
id
SEL
int
NXFontTraitMask
id
struct _fmFlags {

unsigned int
unsigned int

The Font panel.

The Font menu.

isa;

panel;
menu;
action;
whatToDo;
traitToChange;
selFont;

multipleFont: 1;
disabled: 1 ;

fmFlags;

Application Kit Classes: FontManager 2~205

action

whatToDo

traitToChange

selFont

fmFlags.multipleFont

fmFlags.disabled

METHOD TYPES

Creating the FontManager

Converting fonts

Setting parameters

Querying parameters

Target and action methods

Archiving the FontManager

2-206 Chapter 2: Class Specifications

The action to send.

What to do when a convertFont: message is
received.

The trait to change if whatToDo ==
NX_CHANGETRAIT.

The font of the current selection.

True if the current selection has multiple fonts.

True if the Font panel and menu are disabled.

+ new

- convertFont:
- convertWeight:of:
- convert:toFamily:
- convert:toHaveTrait:
- convert:toNotHaveTrait:
- findFont:traits : weight: size:
- getFamily:traits:weight:size:ofFont:

- setAction:
+ setFontPanelFactory:
- setSeIFont:isMultiple:
- setEnabled:

- action
- availableFonts
- getFontMenu:
- getFontPanel:
- isMultiple
- selFont
- isEnabled

- modifyFont:
- addFontTrait:
- removeFontTrait:
- modifyFontViaPanel:
- orderFrontFontPanel:
- sendAction

- finishUnarchiving

CLASS METHODS

alloc

Disables the inherited alloc method to prevent multiple FontManagers from being
created. There's only one FontManager object for each application; you access it using
the new method. Returns an error message.

See also: + new

allocFromZone:

Disables the inherited allocFrornZone method to prevent multiple FontManagers from
being created. There's only one FontManager object for each application; you access
it using the new method. Returns an error message.

See also: + new

new

+ new

Returns a FontManager object. An application has no more than one FontManager
object, so this method either returns the previously created object (if it exists) or creates
a new one. This is the designated new method for the FontManager class.

setFontPanelFactory:

+ setFontPanelFactory:factoryI d

Sets the class object that will be used to create the FontPanel object when the user
chooses Font Panel from the Font menu and no Font panel has yet been created. Unless
you use this method to specify another class, the FontPanel class will be used.

INSTANCE METHODS

action
- (SEL)action

Returns the action that's sent to the first responder when the user selects a new font
from the Font panel or from the Font menu.

See also: - setAction:

Application Kit Classes: FontManager 2-207

addFontTrait:
- addFontTrait:sender

Causes the FontManager's action message (by default, changeFont:)to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to add the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selectedTag
message. The FontManager also sets its whatToDo variable to NX_ADDTRAIT.
When the convertFont: message is received, the FontManager converts the supplied
font by sending itself a convert:toHaveTrait: message.

See also: - removeFontTrait:, - convertFont:, - convert:toHaveTrait:,
- selected Tag (Control)

avaiiabIeFonts
- (char **)avaiiableFonts

Returns by reference a NULL-terminated list of NULL-terminated PostScript font
names of all the fonts available for use by the Window Server. The returned names are
suitable for creating new Fonts using the newFont:size: class method of the Font class.
The fonts are not in any guaranteed order, but no font name is repeated in the list. It's
the sender's responsibility to free the list when finished with it.

See also: + newFont:size: (Font)

convert:toFamiIy:
- convert:fontObJ toFamily:(const char *)family

Returns a Font object whose traits are the same as those offontObJ except as specified
by family. If the conversion can't be made, the method returnsfontObJ itself. This
method can be used to convert a font, or it can be overridden to convert fonts in a
different manner.

See also: - convert: to HaveTrait:, convertWeight:of:

2-208 Chapter 2: Class Specifications

convert:toHaveTrait:
- convert:fontObj toHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those offontObj except as altered by
the addition of the traits specified by traits. Of course, conflicting traits (such as
NX_CONDENSED and NX_EXPANDED) have the effect of turning each other off.
If the conversion can't be made, the method returnsfontObj itself. This method can be
overridden to convert fonts in a different manner.

See also: - convert:toNotHaveTrait:, - convert:toFamily:, - convertWeight:of:

convert:toNotHaveTrait:
- convert:fontObj toNotHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those offontObj except as altered by
the removal of the traits specified by traits. If the conversion can't be made, the method
returnsfontObj itself. This method can be overridden to convert fonts in a different
manner.

See also: - convert:toHaveTrait:, - convert:toFamily:, - convertWeight:of:

convertFont:
- convertFont:fontObj

ConvertsfontObj according to the user's selections from the Font panel or menu.
Whenever you receive a changeFont: message from the FontManager, you should send
a convertFont: message for each font in the selection.

This method determines what to do to the fontObj by checking the whatToDo instance
variable and applying the appropriate conversion method. Returns the converted font.

convertWeight:of:
- convertWeight:(BOOL)upFlag of:fontObj

Attempts to increase (if upFlag is YES) or decrease (if upFlag is NO) the weight of the
font specified by fontObj. If it can, it returns a new font object with the higher (or
lower) weight. If it can't, it returns fontObj itself. By default, this method converts the
weight only if it can maintain all of the traits of the originalfontObj. This method can
be overridden to convert fonts in a different manner.

See also: - convert: to HaveTrait:, - convert:toNotHaveTrait:, - convert:toFamily:

Application Kit Classes: FontManager 2-209

findFont:traits:weight:size:

- findFont:(const char *)/amily
traits: (NXFontTraitMask)traits
weight: (int)weight
size: (float)size

If there's a font on thesystem with the specified/amity, traits, weight, and size, then it's
returned; otherwise, nil is returned. If NX_BOLD or NX_ UNBOLD is one of the
traits, weight is ignored.

finish U narchiving

- finishUnarchiving

Finishes the unarchiving task by instantiating the one application-wide instance of the
FontManager class if necessary.

getFamily:traits:weight:size:ofFont:

- getFamily:(const char **)family
traits: (NXFontTraitMask *)traits
weight:(int *)weight
size: (float*)size
ofFont:fontObj

For the given font object/ontObj, copies the font family, traits, weight, and point size
information into the storage referred to by this method's arguments.

getFontMenu:

- getFontMenu:(BOOL)create

Returns a menu suitable for insertion in an application's menu. The menu contains an
item that brings up the Font panel as well as some common accelerators (such as Bold
and Italic). If the create flag is YES, the menu is created if it doesn't already exist.

See also: - getFontPaneI:

2-210 Chapter 2: Class Specifications

getFontPanel:
- getFontPanel:(BOOL)create

Returns the FontPanel that will be used when the user chooses the Font Panel command
from the Font menu. If the create flag is YES, the FontPanel is created if it doesn't
already exist.

Unless you've specified a different class (by sending a setFontPanelFactory: message
to the FontManager class before creating the FontManager object), an object of the
FontPanel class is returned.

See also: - getFontMenu:

isEnabled

- (BOOL)isEnabled

Reports whether the controls in the Font panel and the commands in the Font menu are
enabled or disabled.

See also: - setEnabled:

isMultiple
- (BOOL)isMultiple

Returns whether the current selection has multiple fonts.

modifyFont:
- modifyFont:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted in a way specified by the selected Tag of the sender of this message. The
Larger, Smaller, Heavier, and Lighter commands in the Font menu invoke this method.

See also: - addFontTrait:, - removeFontTrait:

Application Kit Classes: FontManager 2-211

modifyFontViaPanel:

- modifyFont ViaPanel:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the receiver replies with a convertFont: message, the
FontManager sends a panelConvertFont: message to the FontPanel to complete the
conversion.

This message is almost always sent by a Control in the Font panel itself. Usually, the
panel uses the FontManager's convert routines to do the conversion based on the
choices the user has made.

See also: - panelConvertFont: (FontPanel)

orderFrontFontPanel:

- orderFrontFontPanel:sender

Sends orderFront: to the FontPanel. If there's no Font panel yet, a new message is
sent to the FontPanel class object, or to the object you specified with the FontManager's
setFontPanelFactory: class method.

removeFontTrait:

- removeFontTrait:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. 'Vhen the responder replies with a convertFont: message, the font is
converted to remove the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selected Tag
message. The FontManager also sets its whatToDo variable to NX_REMOVETRAIT.
When the convertFont: message is received, the FontManager converts the supplied
font by sending itself a convert:toNotHaveTrait: message. -

See also: - convertFont:, - convert:toHaveTrait:, - selectedTag (Control)

2~212 Chapter 2: Class Specifications

selFont

- selFont

Returns the last font set with setSeIFont:isMultiple:.

If you receive a changeFont: message from the FontManager and want to find out what
font the user has selected from the Font panel, use the following (assuming
theFontManager is the application's FontManager object):

selectedFont = [theFontManager convertFont: [theFontManager selFont]]

See also: - setSeIFont:isMultiple:, - modifyFont:

sendAction

- send Action

Sends the FontManager's action message (by default, changeFont:) up the responder
chain. The sender is always the FontManager object regardless of which user-interface
object initiated the sending of the action. The whatToDo and possibly traitToChange
variables should be set appropriately before sending a sendAction message.

You rarely, if ever, need to send a sendAction message or to override this method. The
message is sent by the target/action messages sent by different user-interface objects
that allow users to manipulate the font of the current text selection (for example, the
Font panel and the Font menu).

See also: - setAction:

setAction:

- setAction: (SEL)as elector

Sets the action that's sent when the user selects a new font from the Font panel or from
the Font menu. The default is changeFont:.

See also: - sendAction

Application Kit Classes: FontManager '2-213

setEnabled:

- setEnabled:(BOOL)flag

Sets whether the controls in the Font panel and the commands in the Font menu are
enabled or disabled. By default, these controls and commands are enabled. Even when
disabled, the Font panel allows the user to preview fonts. However, when the Font
panel is disabled, the user can't apply the selected font to text in the application's main
window.

You can use this method to disable the user interface to the font selection system when
its actions would be inappropriate. For example, you might disable the font selection
system when your application has no document window.

See also: - isEnabled

setSeIFont:isMultiple:

- setSelFont:jontObj isMultiple:(BOOL)flag

Sets the font that the Font panel is currently manipulating. An object containing a
document should send this message every time its selection changes. If the selection
contains multiple fonts, flag should be YES.

An object shouldn't send this message as part of its handling of a changeFont:
message, since doing so will cause subsequent convertFont: messages to have no
effect. This is because if you are converting a font based on what is set in the Font panel
and you reset what's in the panel (by sending a setSeIFont:isMultiple: message), the
FontManager can no ionger sensibly convert the font since the information necessary
to convert it has been lost.

See also: - selFont

2-214 Chapter 2: Class Specifications

CONSTANTS AND DEFINED TYPES

typedef unsigned int NXFontTraitMask;

1*
* Font Traits. This list should be kept small since the more traits
* that are assigned to a given font, the harder it will be to map it
* to some other family. Some traits are mutually exclusive, such as
* NX EXPANDED and NX CONDENSED.

*1
#define NX ITALIC OxOOOOOOOl
#define NX BOLD OxOOOOOOO2
#define NX UNBOLD OxOOOOOOO4
#define NX NONSTANDARDCHARSET OxOOOOOOO8
#define NX NARROW OxOOOOOO1O
#define NX EXPANDED OxOOOOOO20
#define NX CONDENSED OxOOOOOO40
#define NX SMALLCAPS OxOOOOOO80
#define NX POSTER OxOOOOO1OO
#define NX COMPRESSED OxOOOOO200

1* whatToDo values *1
#define NX_NOFONTCHANGE 0
#define NX VIAPANEL 1
#define NX_ADDTMIT 2
#define NX SIZEUP 3
#define NX SIZEDOWN 4
#define NX HEAVIER 5

#define NX LIGHTER 6
#define NX REMOVETRAIT 7

Application Kit Classes: FontManager 2-215

2-216

FontPanel

INHERITS FROM Panel: Window: Responder: Object

DECLARED IN FontPanel.h

CLASS DESCRIPTION

The FontPanel is a user-interface object that lets the user preview fonts and change the
font of the text that's selected in the application's main window. The actual changes
are made through conversion messages sent to the FontManager. There is only one
FontPanel object for each application.

In general, you add the facilities of the FontPanel (and of the other components of the
font conversion system: the FontManager and the Font menu) to your application
through Interface Builder. You do this by dragging a Font menu into one of your
application's menus. At runtime, when the user chooses the Font Panel command for
the first time, the FontPanel object will be created and hooked into the font conversion
system. You can also create (or access) the FontPanel through either of the new ...
methods.

A FontPanel can be customized by adding an additional View object or hierarchy of
View objects (see setAccessoryView:). If you want the FontManager to instantiate a
panel object from some class other than FontPanel, use the FontManager's
setFontPanelFactory: method.

INSTANCE VARIABLES

Inheritedfrom Object Class is a;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ w Flags wFlags;
struct _ w Flags2 wFlags2;

Inherited from Panel (none)

Application Kit Classes: FontPanel 2-217

Declared in FontPanel

faces

families

preview

current

size

sizes

manager

selFont

selMetrics

curTag

accessory View

currentBox

setButton

separator

sizeTitle

2-218 Chapter 2: Class Specifications

id faces;
id families;
id preview;
id current;
id size;
id sizes;
id manager;
id selFont;
NXFontMetrics *selMetrics;
int curTag;
id accessory View;
id setButton;
id separator;
id sizeTitle;
char *lastPreview;
struct _fpFlags {

unsigned int multipleFont: 1 ;
unsigned int dirty: 1;

fpFlags;

The Typeface browser.

The Family browser.

The preview field.

The current font field.

The Size field.

The Size browser.

The FontManager object.

The font of the current selection.

The metrics of selFont.

The tag of the currently displayed font.

The application-customized area.

The box displaying the current font.

The Set button.

The line separating buttons from upper part of
panel.

The title over the Size field and Size browser.

lastPreview The last font previewed.

fpFlags.multipleFont True if selection has multiple fonts.

fpFlags.dirty True if panel was updated while not visible.

METHOD TYPES

Creating a FontPanel + new
+ newContent: style: backing: buttonMask:defer:

Setting the font - panelConvertFont:
- setPaneIFont:isMultiple:

Configuring the FontPanel - accessory View
- setAccessoryView:
- setEnabled:
- isEnabled
- works WhenModal

Editing the FontPanel's fields - textDidGetKeys:isEmpty:
- textDidEnd:endChar:

Displaying the FontPanel - orderWindow:relativeTo:

Resizing the FontPanel - windowDidResize:
- window WillResize:toSize:

CLASS METHODS

alloc

Disables the inherited alloc method to prevent multiple FontPanels from being created.
There's only one FontPanel object for each application; you access it through either of
the new ... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

allocFromZone:

Disables the inherited allocFromZone method to prevent multiple FontPanels from
being created. There's only one FontPanel object for each application; you access it
through either of the new ... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

Application Kit Classes: FontPanel 2-219

new

+ new

Returns a FontPanel object by invoking the
newContent:style:backing:buttonMask:defer: method. An application has no more
than one Font panel, so this method either returns the previously created object (if it
exists) or creates a new one.

See also: + new

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Returns a FontPanel object. An application has no more than one Font panel, so this
method either returns the previously created object (if it exists) or creates a new one.
The arguments are ignored. This is the designated new .•. method of the FontPanel
class.

See also: + new

INSTANCE METHODS

accessory View

- accessory View

Returns the application-customized View set by setAccessoryView:.

See also: - setAccessoryView:

isEnabled

- (BOOL)isEnabled

Reports whether the Font panel's Set button is enabled.

See also: - setEnabled:

2-220 Chapter 2: Class Specifications

order Window:relativeTo:

- orderWindow:(int)place relativeTo:(int)otherWin

Repositions the panel in the screen list and updates the panel if it was changed while
not visible. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_ OUT, the panel is removed from the screen list and otherWin is ignored. If
it's NX_ABOVE or NX_BELOW, otherWin is the window number of the window that
the Font Panel is to be placed above or below. If otherWin is 0, the panel will be placed
above or below all other windows.

See also: - orderWindow:relativeTo: (Window), - makeKeyAndOrderFront:
(Window)

panelConvertFont:

- panelConvertFont:fontObj

Returns a Font object whose traits are the same as those offontObj except as specified
by the users choices in the Font Panel. If the conversion can't be made, the method
returnsfontObj itself. The FontPanel makes the conversion by using the
FontManager's methods that convert fonts. A panelConvertFont: message is sent by
the FontManager whenever it needs to convert a font as a result of user actions in the
Font panel.

setAccessory View:

- setAccessoryView:aView

Customizes the Font panel by adding a View above the action buttons at the bottom of
the panel. The FontPanel is automatically resized to accommodate aView.

aView should be the top View in a view hierarchy. If aView is nil, any existing
accessory view is removed. If a View is the same as the current accessory view, this
method does nothing. Returns the previous accessory view or nil if no accessory view
was previously set.

See also: - accessoryView

Application Kit Classes: FontPanel 2-221

setEnabled:
- setEnabled:(BOOL)jlag

Sets whether the Font panel's Set button is enabled (the default state). Even when
disabled, the Font panel allows the user to preview fonts. However, when the Font
panel is disabled, the user can't apply the selected font to text in the application's main
window.

You can use this method to disable the user interface to the font selection system when
its actions would be inappropriate. For example, you might disable the font selection
system when your application has no document window.

See also: - isEnabled

setPaneIFont:isMultiple:

- setPanelFont:fontObj isMuItiple:(BOOL)jlag

Sets the font that the FontPanel is currently manipulating. This message should only
be sent by the FontManager. Do not send a setPaneIFont:isMultiple: message
directly.

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)endChar

A textDidEnd:endChar: message is sent to the FontPanel object when editing is
completed in the Size field. This method updates the Size browser and the preview
field.

See also: - textDidGetKeys:isEmpty:, - textDidEnd:endChar: (Text)

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

A textDidGetKeys:isEmpty: message is sent to the FontPanel object whenever the
Size field is typed in or emptied.

See also: - textDidEnd:endChar:, - textDidGetKeys:isEmpty: (Text)

windowDidResize:
- windowDidResize:sender

Adjusts the width of the browser columns and the accessory view in response to
window resizing.

See also: - windowDidResize: (Window)

2-222 Chapter 2: Class Specifications

windowWilIResize:toSize:

- windowWillResize:sender toSize:(NXSize *)frameSize

Keeps the FontPanel from being sized too small to accommodate the browser columns
and accessory view.

See also: - windowWiIlResize:toSize: (Window)

worksWhenModal

- (BOOL)worksWhenModal

Returns whether the FontPanel will operate while a modal panel is displayed within the
application. By default, this method returns YES.

See also: - worksWhenModal (Panel)

CONSTANTS AND DEFINED TYPES

/* Tags of View objects in the FontPanel */

#define NX FPPREVIEWFIELD 128
#define NX FPSIZEFIELD 129
#define NX FPREVERTBUTTON 130
#define NX FPPREVIEWBUTTON 131
#define NX FPSETBUTTON 132
#define NX FPSIZETITLE 133
#define NX FPCURRENTFIELD 134

Application Kit Classes: FontPanel 2-223

2-224

Form

INHERITS FROM Matrix: Control: View : Responder: Object

DECLARED IN appkit/Form.h

CLASS DESCRIPTION

A Form is a Control that contains titled entries into which a user can type data values.
An example:

Name:
Address:

I

Telephone:

These entries are indexed starting with zero as the topmost entry. A mouse click event
in an entry starts text editing in that entry. A mouse click event outside the Form or a
RETURN key event while editing an entry causes the action of the entry to be sent to
the target of the entry if there is such an action; otherwise the action of the Form is sent
to the target of the Form. If the user presses the Tab key, the next entry is selected.

INSTANCE VARIABLES

Inherited from Object Class is a;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inherited from Control int tag;
id cell;
struct _conFlags conFlags;

Application Kit Classes: Form 2-225

Inherited from Matrix id cellList;
id target;
SEL action;
id selectedCell;
int selectedRow;
int selected Col;
int numRows;
int numCols;
NXSize cellSize;
NXSize intercell;
float backgroundGray;
float cellBackgroundGray;
id font;
id protoCell;
id cellClass;
id nextText;
id previous Text;
SEL doubleAction;
SEL errorAction;
id textDelegate;
struct _mFlags mFlags;

Declared in Form (none)

METHOD TYPES

Setting the Cell Class + setCellClass:

Initializing a Form Object - initFrame:

Laying Out the Form - addEntry:
- addEntry:tag:target:action:
- insertEntry:at:
- insertEntry:at:tag:target:action:
- removeEntry At:
- setlnterline:

Resizing the Form - calcSize
- setEntry Width:
- sizeTo::
- sizeToFit

2-226 Chapter 2: Class Specifications

Setting Fonn Values - double ValueAt:
- floatValueAt:
- intValueAt:
- setDoubleValue:at:
- setFloatValue:at:
- setIntValue:at:
- setStringValue:at:
- string ValueAt:

Returning the Index - findIndexWithTag:
- selectedlndex

Modifying Text Attributes - setFont:
- setTextAlignment:
- setTextFont:
- setTitle:at:
- setTitleAlignment:
- setTitleFont:
- titleAt:

Editing Text - selectTextAt:

Modifying Graphic Attributes - setBezeled:
- setBordered:

Displaying - drawCellAt:

Target and Action - setAction:at:
- setTarget:at:

Assigning a Tag - setTag:at:

CLASS METHODS

setCellClass:

+ setCellClass:classld

This method initializes the subclass of Cell used in the Fonn. The default is FonnCell.
Use this when you subclass FonnCell to modify the behavior of a Form:, by sending
this method with the class id of your subclass as the argument.

Application Kit Classes: Form 2-227

INSTANCE METHODS

addEntry:
- addEntry:(const char *)title

Adds a new entry with the given title at the bottom of the Form. Returns the FormCell
used to implement the entry. Does not redraw the Form even if autodisplay is on.

addEntry:tag:target:action:
- addEntry:(const char *)title

tag: (int)anlnt
target:anObject
action: (SEL)aSeleCtor

Adds a new entry with the given title at the bottom of the Form. The tag, target, and
action of the corresponding entry are set to the given values. Returns the FormCell used
to implement the entry. Does not redraw the Form even if autodisplay is on.

calcSize
- calcSize

Invoke this method before drawing after you have modified any of the cells in the Form
in such a way that the size of the cells or the size of the title part of the cells has changed.
Automatically invoked before any drawing is done after a setTitle:at:, setFont:,
setBezeled: or some other similar method has been invoked.

See also: - validateSize: (Matrix)

double ValueAt:
- (double)double ValueAt: (int) index

Returns the entry at position index, converted to a float by the C function atofO then
cast as a double.

drawCellAt:
- drawCeIlAt:(int)index

Displays the entry at the specified index in the Form.

2-228 Chapter 2: Class Specifications

findlndexWithTag:
- (int)findlndexWithTag:(int)aTag

Returns the index which has the corresponding tag, -1 otherwise.

See also: - findCellWithTag: (Matrix)

floatValueAt:
- (float)f1oatValueAt:(int)index

Returns the entry at position index, converted to a float by the C function atofO.

initFrame
- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Form, with default parameters in
the given frame. The default Form has no entries. Newly created entries will have the
following default characteristics: Titles will be right justified, text will be left justified
with bezeled border, background colors will be white, text color black, fonts will be the
system font 12.0, the interline spacing will be 1.0, and the action selectors will be
NULL. This method is the designated initializer for Form; override it if you create a
subclass of Form that performs its own initialization.

Note that Form doesn't override the Matrix class's designated initializers
initFrame:mode:ceIlClass:numRows:numCols: or
initFrame:mode:prototype:numRows:numCols:. Don't use those methods to
initialize a new instance of Form.

insertEntry:at:
- insertEntry:(const char *)title at:(int)index

Inserts a new entry with the given title at position index. Returns the FormCell used to
implement the entry. Does not redraw the Form even if autodisplay is on.

insertEntry:at:tag:target:action:
- insertEntry:(const char *)title

at: (int) index
tag: (int)anlnt
target:anObject
action: (SEL)aSelector

Inserts a new entry with the given title at position index. The tag, target, and action of
the corresponding entry are set to the given values. Returns the FormCell used to
implement the entry. Does not redraw the Form even if autodisplay is on.

Application Kit Classes: Form 2-229

intValueAt:

- (int)intValueAt:(int)index

Returns the entry at position index converted to an integer by the C function atoiO.

removeEntry At:

- removeEntry At: (int) index

Removes the entry at the given index and disposes of the associated memory. Note that
if you use Matrix's removeRowAt:andFree: method to remove an entry, the widths of
the titles in the entries will not be readjusted, so use this method instead. Does not
redraw the Form even if autodisplay is on. Returns self.

selectTextAt:

- selectTextAt:(int)index

Enters text editing on the entry at index and selects all of its contents. Do not invoke
this function before inserting your Form in a view hierarchy with a window at the root;
it will have no effect. Returns the id of the Cell located at index.

selectedIndex

- (int)selectedlndex

Returns the index of the currently selected entry if any, -1 otherwise. The currently
selected entry is the one being edited or, if none of the entries is being edited, then it's
the last edited entry.

setAction:at:

- setAction:(SEL)aSelector at:(int)index

Sets the action of the FormCell associated with the entry at position index in the Form
to aSelector. Returns self.

setBezeled:
- setBezeled:(BOOL)jlag

Sets whether to draw a bezeled frame around the text in the Form (YES is the default).
Redraws the Form if autodisplay is on. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Sets whether to draw a I-pixel black frame around the text in the Form (rather than the
default bezel). Redraws the Form if autodisplay is on. Returns self.

2-230 Chapter 2: Class Specifications

setDouble Value:at:
- setDoubleValue:(double)aDouble at:(int)index

Sets the text of the entry at position index to aDouble. Redraws the entry. Returns self.

setEntryWidth:
- setEntryWidth:(NXCoord)width

Sets the width of all the entries (including the title part). You should invoke sizeToFit
after invoking this method. Returns self.

setFloatValue:at:
- setFloatValue:(float)aFloat at:(int)index

Sets the text of the entry at position index to aFloat. Redraws the entry. Returns self.

setFont:
- setFont;{ontObj

Sets the font used to draw both the titles and the editable text in the Form. It's generally
best to keep the title font and the text font the same (or at least the same size); therefore,
this method is preferred to setTitleFont: and setTextFont:. Redraws the Form if
autodisplay is on. Returns self.

setlntValue:at:
- setIntValue:(int)an/nt at:(int)index

Sets the text of the entry at position index to an/nt. Returns self.

setInterline:
- setInterline:(NXCoord)spacing

Changes the value of the interline spacing. Does not redraw the matrix even if
autodisplay is on. Returns self.

setStringValue:at:
- setStringValue:(const char *)aString at:(int)index

Sets the text of the entry at position index to a copy of aString. The entry is redrawn.
Returns self.

Application Kit Classes: Form 2-231

setTag:at:
- setTag:(int)anlnt at:(int)index

Sets the tag of the FormCell associated with the entry at position index in the Form to
anlnt. Returns self.

setTarget:at:
- setTarget:anObject at:(int)index

Sets the target of the FormCell associated with the entry at position index in the Form
to anObject.

setTextAlignment:
- setTextAlignment:(int)mode

Sets the justification mode for the editable text in the Form. mode can be one of three
constants: NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.
Redraws the Form if autodisplay is on, and returns self.

setTextFont:
- setTextFont:fontObj

Sets the font used to draw the editable text in the Form. Redraws the Form if
autodisplay is on, and returns self.

See also: - setFont:

setTitle:at:
- setTitle:(const char *)aString at:(int)index

Changes the title of the entry at position index to aString.

setTitleAlignment:
- setTitleAlignment:(int)mode

Sets the justification mode for titles in the Form. mode can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED. Redraws the
Form if autodisplay is on, and returns self.

2-232 Chapter 2: Class Specifications

setTitleFont:

- setTitieFont:fontObj

Sets the font used to draw the titles in the Form. Redraws the Form if autodisplay is on
and returns self.

See also: - setFont:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the entry width to reflect width, then resizes the Form to width and height.
Returns self.

sizeToFit
- sizeToFit

Adjusts the width of the Form so that it s the same as the width of the entries. Adjusts
the height of the Form so that it will just contain all of the cells. Returns self.

See also: - setEntryWidth:

string ValueAt:

- (const char *)stringValueAt:(int)index

Returns a pointer to the text (contents) of the entry at position index.

titieAt:

- (const char *)titleAt:(int)index

Returns a pointer to the title of the entry at position index.

Application Kit Classes: Form 2-233

2-234

FormCell

INHERITS FROM ActionCell : Cell : Object

DECLARED IN appkit/FormCell.h

CLASS DESCRIPTION

This class is used to implement the details of the Form class. Form is a subclass of
Matrix, and this is the cell which goes in that Matrix. The titleCell is used to draw the
title of the FormCell. The titleWidth is the width of the title (in pixels). If it's -1.0,
then the title is autosized to the width of the titleCell. The titleEndPoint is the
coordinate at which the title ends and the editable text begins.

If you want to change the look of a Form, then you should subclass FormCell. When
you do so, remember to implement both drawS elf: in View: and drawlnside:in View:.
The initTextCell: method is the designated initializer for FormCell; override this
method if your subclass performs its own initialization.

INSTANCE VARIABLES

Inheritedfrom Object

Inheritedfrom Cell

Inherited from ActionC e II

Declared in FormCell

titleWidth

titleCell

titleEndPoint

Class is a;

char * contents;
id support;
struct _cFlags 1 cFlagsl;
struct _cFlags2 cFlags2;

int tag;
id target;
SEL action;

NXCoord title Width;
id titleCell;
NXCoord titleEndPoint;

The width of the title field.

The cell used to draw the title.

The coordinate that separates the title from the
text area.

Application Kit Classes: FormCell 2-235

METHOD TYPES

Copying, Initializing, and Freeing a FormCell
-copy
- init
- initTextCell:
- free

Determining the FormCell's Size - calcCellSize:inRect:

Enabling and Disabling the FormCell
- setEnabled:

Modifying the Title - setTitle:
- setTitleAlignment:
- setTitleFont:
- setTitle Width:
- title
- titleAlignment
- titleFont
- title Width
- titleWidth:

Modifying Graphic Attributes - isOpaque

Displaying - draw Inside: in View:
- drawSelf:in View:

Managing the Cursor - resetCursorRect:in View:

Tracking the Mouse - trackMouse:inRectofView:

Archiving - read:
- write:

INSTANCE METHODS

calcCeIlSize:inRect:

- ca)cCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the size of the FormCell assuming it's constrained to fit within aRect.
Returns the size in theSize.

copy

-copy

Creates and returns a copy of the receiving FormCell instance.

2-236 Chapter 2: Class Specifications

drawlnside:in View:

- drawlnside:(const NXRect *)cellFrame inView:controlView

Draws only the text inside the FormCell (not the bezels or the title of the FormCell).
This is called from the Control method drawCelllnside: (which is called from Cell
setTypeValue: methods). If you subclass FormCell and override drawSelf:in View:
you MUST implement this method as well. Returns self.

drawS elf: in View:

- drawSelf:(const NXRect *)celiFrame inView:controlView

Draws the FormCell by sending drawSelf:in View: to the titleCell with the frame
width set to the title Width (if the title Width is -1.0, then the width is calculated), and
then sending drawSelf:inView: to super. Does not invoke [super drawSelf:inView:]
nor does it invoke [self drawlnside:inView:] (it does, however, invoke [super
drawlnside:in View: D. Returns self.

free

-free

init

Frees the storage used by the FormCell (the titleCell) and returns nil.

- init

Initializes and returns the receiver, a new instance of FormCell, with its contents set to
the empty string ('''') and its title set to "Field."

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of FormCell, with its contents set to
the empty string ("") and its title set to aString. This method is the designated initializer
for FormCell.

isOpaque

- (BOOL)isOpaque

Returns YES if the FormCell is opaque, NO otherwise. If the FormCell has a title, then
it's NOT opaque (since the title field is not opaque).

Application Kit Classes: FormCell 2-237

read:

- read:(NXTypedStream *)stream

Reads the FormCell from the typed stream stream.

resetCursorRect:in View:

- resetCursor Rect: (const NXRect *)cellFrame in View:controlView

Sets up an appropriate cursor rectangle in controlView.

setEnabled:

- setEnabled:(BOOL)jlag

Enables or disables the FormCell.

setTitle:

- setTitle:(const char *)aString

Sets the title of the FormCell.

setTitleAlignment:

- setTitleAlignment: (int) mode

Sets the alignment of the title. mode can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setTitleFont:

- setTitleFont:jontObj

Sets the font used to draw the title of the FormCell.

setTitleWidth:

- setTitle Width: (NXCoord)width

Sets the width of the title field. Can be "unset"by providing -1.0 as the width.

title

- (const char *)title

Returns the title of the FormCell.

2-238 Chapter 2: Class Specifications

titleAlignment
- (int)titieAlignment

Returns the alignment of the title. The return value will match one of three constants:
NX_LEFfALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

titleFont

- titleFont

Returns the font used to draw the title of the FormCell.

titleWidth

- (NXCoord)title Width

If the width of the title has already been set (i.e., it's not -1.0), then that value is
returned. Otherwise, it's calculated (not constrained to any rectangle) and returned.

title Width:

- (NXCoord)titleWidth:(const NXSize *)aSize

If the title width is already set (i.e., it's not -1.0), then it's returned. Otherwise, the
width is calculated constrained to aSize.

trackMouse:inRect:ofView:

- (BOOL)trackMoDse:(NXEvent*)event
inRect:(const NXRect*)aRect
ofView:controlView

Does nothing since clicking in a FormCell causes editing to occur.

write:

- write:(NXTypedStream *)stream

Writes the receiving FormCell to the typed stream stream and returns self.

Application Kit Classes: FormCeli 2-239

2-240

Listener

INHERITS FROM Object

DECLARED IN appkit/Listener .h

CLASS DESCRIPTION

The Listener class, with the Speaker class, supports communication between
applications (tasks) through Mach messaging. Mach messages are the standard way of
performing remote procedure calls (RPCs) in the Mach operating system. The Listener
class implements the receiving end of a remote message, and the Speaker class
implements the sending end.

Remote messages are sent to ports, which act something like mailboxes for the tasks
that have the right to receive the messages delivered there. Each Listener corresponds
to a single Mach port to which its application has receive rights. Since a port has a fixed
size-usually there's room for only five messages in the port queue-when the port is
full, a new message must wait for the Listener to take an old message from the queue.

To initiate a remote message, you send an Objective-C message to a Speaker instance.
The Speaker method that responds to the message translates it into the proper Mach
message protocol and dispatches it to the port of the receiving task. The Mach message
is received by the Listener instance associated with the port. The Listener verifies that
it understands the message, that the Speaker has sent the correct parameters for the
message, and that all data values are well formed-for example, that character strings
are null~terminated. The Listener translates the Mach message back into an
Objective-C message, which it sends to itself. It's as if an Objective-C message sent to
a Speaker in one task is received by a Listener in another task.

Delegation

The Listener methods that receive remote Objective-C messages simply pass those
messages on to a delegate. The Listener's job is just to get the message and find another
object to respond to it.

The setDelegate: method assigns a delegate to the Listener. There's no default
delegate, but before the Application object gets its first event, it registers a Listener for
the application and makes itself the Listener's delegate. You can register your own
Listener (with Application's setAppListener: method) in start-up code, but when you
send the Application object a run message, it will become the Listener's delegate.

If an object has its own delegate when it becomes the Listener's delegate, the Listener
looks first to its delegate's delegate and only then to its own delegate when searching
for an object to entrust with a remote message. This means that you can implement the
methods that respond to remote messages in either the Application object's delegate or
in the Application object. (You can also implement the methods directly in a Listener
subclass, or in another object you make the Listener's delegate.)

Application Kit Classes: Listener 2-241

Setting Up a Listener

Two methods, checklnAs: and usePrivatePort, allocate a port for the Listener:

• With the checklnAs: method, the Listener's port is given a name (usually the name
of the application) and is registered with the network name server. This makes the
port publicly available so that other applications can find it. Applications get send
rights to a public port through the NXPortFromNameO function.

• Alternatively, the Listener's port can be kept private (with the usePrivatePort
method). Send rights to the port can then be doled out only to selected applications.

Once allocated, the port must be added (with the addPort method) to the list of those
that the client library monitors. A procedure will automatically be called to read Mach
messages from the port queue and begin the Listener's process of transforming the
Mach message back into an Objective-C message. The procedure is called between
events, provided the priority of getting remote messages is at least as high as the priority
of getting the next event.

A Listener is typically set up as follows:

myListener = [[Listener alloc] init];
[myListener setDelegate:someOtherObject];

/*
* Sets the object responsible for handling

* messages received.
*/

[myListener checklnAs:"portname"];
/* or [myListener usePrivatePort] */

[myListener addPort];
/*
* NOW, between events, the client library

* will check to see if a message has arrived

* in the port queue.
*/

[myListener free];

/* When we no longer need the Listener. */

An application may have more than one Listener and Speaker, but it must have at least
one of each to communicate with the Workspace Manager and other applications. If
your application doesn't create them, a default Listener and Speaker are created for you
at start-up before Application's run method gets the first event.

If a Listener is created for you, it will be checked in automatically under the name
returned by Application's appListenerPortName method. Normally, this is the name
assigned to the application at compile time. The port will also be added to the list of
those the client library monitors, so the Listener will be scheduled to receive messages
asynchronousl y.

2-242 Chapter 2: Class Specifications

Remote Methods

The Listener and Speaker classes implement a number of methods that can be used to
send and receive remote messages. You can add other methods in Listener and Speaker
subclasses. The msgwrap program can be used to generate subclass definitions from
a list of method declarations. Most programmers will use msgwrap instead of
manually subclassing the Listener class. See the man page for msgwrap for details.

The Listener class declares the same set of remote methods as the Speaker class.
However, applications will use some of these methods only in their Speaker versions to
send messages and others only in their Listener versions to receive messages. For
example, launchProgram:ok: messages are normally sent by applications to the
Workspace Manager, which has the responsibility for launching applications, so in
general only the Speaker version of the method will be used. On the other hand,
unmounting:ok: messages are received by applications when the Workspace Manager
is ready to unmount an optical disk. Since the Workspace Manager is in charge of
mounting and unmounting disks, applications won't send this message but will use the
Listener version of the method to receive it.

Some remote methods, especially those with the. prefix "msg", are designed to allow an
application to run under program control rather than user control. By implementing
these methods, you'll permit a controlling application to run your application in
conjunction with others as part of a script.

Argument Types

Remote messages take two kinds of arguments-input arguments, which pass values
from the Speaker to the Listener, and output arguments, which are used to pass values
back from the Listener to the Speaker. The Listener sends return information back to
the Speaker in a separate Mach message to a port provided by the Speaker. The Speaker
reformats this information so that it's returned by reference in variables specified in the
original Objective-C message.

A method can take up to NX_MAXMSGPARAMS arguments. Arguments are
constrained to a limited set of permissible types. Internally, the Listener and Speaker
identify each permitted type with a unique character code. Input argument types and
their identifying codes are listed below. Note that an array of bytes counts as a single
argument, even though two Objective-C parameters are used to refer to it-a pointer to
the array and an integer that counts the number of bytes in the array. A character string
must be null-terminated.

Category Type Character Code
integer (int) i
double (double) d
character string (char *) c
byte array (char *), (int) b
receive rights (port) (port_t) r
send rights (port) (port_t) s

Application Kit Classes: Listener 2-243

There's a matching output argument for each of these categories. Since output
arguments return information by reference, they're declared as pointers to the
respective input types:

Category

integer
double
character string
byte array
receive rights (port)
send rights (port)

Type

(int *)

Character Code

(double *)
(char **)
(char **), (int *)
(port_t *)
(port_t *)

I
D
C
B
R
S

The validity of all input parameters is guaranteed for the duration of the remote
message. The memory allocated for a character string or a byte array is freed
automatically after the Listener method returns. If you want to save a string or an array,
you must copy it. When the amount of input data is large, you can use the
NXCopylnputDataO function to take advantage of the out-of-line data feature of
Mach messaging. This function is passed the index of the argument to be copied (the
combination of a pointer and an integer for a byte array counts as a single argument)
and returns a pointer to an area obtained through the vrn _ allocateO function. This
pointer must be freed with vrn deallocateO, rather than freeO. Note that the size of
the area allocated is rounded up to the next page boundary, and so will be at least one
page. Consequently, it is more efficient to mallocO and copy amounts up to about half
the page size.

The application is responsible for deallocating all port parameters received with the
port_deallocateO function when they're no longer needed.

Return Values

All remote methods return an int that indicates whether or not the message was
successfully transmitted. A return of 0 indicates success.

The Listener methods that receive remote messages use the return value to signal
whether they're able to delegate a message to another object. If a method can't entrust
its message to the delegate (or the delegate's delegate), it returns a value other than O.
If, on the other hand, it's successful in delegating the message, it passes on the
delegate's return value as its own. In general, delegate methods should always return O.

The Listener doesn't pass the return value back to the Speaker that initiated the remote
message. However, if the Speaker is expecting return information from the Listener
that is, if the remote message has output arguments-a nonzero return causes the
Listener to send an immediate message back to the Speaker indicating its failure to find
a delegate for the remote message. The Speaker method then returns -1.

Note that the return value indicates only whether the message got through; it doesn't
say anything about whether the action requested by the message was successfully
carried out. To provide that information, a remote message must include an output
argument.

2-244 Chapter 2: Class Specifications

INSTANCE VARIABLES

Inherited/rom Object

Declared in Listener

portName

listenPort

signaturePort

delegate

timeout

priority

METHOD TYPES

Initializing the class

Class

char
port_t
port_t
id
int
int

isa;

*portName;
listenPort;
signaturePort;
delegate;
timeout;
priority;

The name under which the port is registered.

The port where the Listener receives remote
messages.

The port used to authenticate registration.

The object responsible for responding to remote
messages received by the Listener.

How long, in milliseconds, that the Listener will
wait for its return results to be placed in the port
queue of the sending application.

The priority level at which the Listener will
receive messages.

+ initialize

Initializing a new Listener instance - init

Freeing a Listener - free

Setting up a Listener - addPort
- removePort
- checkInAs:
- usePrivatePort
- checkOut
-listenPort
- signaturePort
-portName
- setPriority:
- priority
- setTimeout:
- timeout
+ run

Application Kit Classes: Listener 2-245

Standard remote methods

Handing off an icon

Providing for program control

Getting file information

Receiving remote messages

Assigning a delegate

Archiving

2-246 Chapter 2: Class Specifications

- openFile:ok:
- openTempFile:ok:
- launchProgram:ok:
- powerOffln:andSave:
- extendPowerOffBy:actual:
-unhide
- unmounting:ok:

- iconEntered:at: :icon Window:iconX:icon Y:
icon Width:iconHeight:pathList:

- iconMovedTo::
- iconReleasedAt::ok:
- iconExitedAt::
- registerWindow:toPort:
- unregisterWindow:

- msgCalc:
- msgCopy AsType:ok:
- msgCutAsType:ok:
- msgDirectory:ok:
- msgFile:ok:
- msgPaste:
- msgPosition:posType:ok:
- msgPrint:ok:
- msgQuit:
- msgSelection:length:asType:ok:
- msgSetPosition:posType:andSelect:ok:
- msgVersion:ok:

- getFilelnfoFor:app:type:ilk:ok:
- getFileIconFor:TIFF:TIFFLength:ok:

- messageReceived:
- performRemoteMethod:paramList:
- remoteMethodFor:

- setDelegate:
- delegate
- setServicesDelegate:
- servicesDelegate

-read:
- write:

CLASS METHODS

initialize
+ initialize

Sets up a table that instances of the class use to recognize the remote messages they
understand. The table lists the methods that can receive remote messages and specifies
the number of parameters for each and their types. An initialize message is sent to the
class the first time it's used; you should never invoke this method.

run

+ run

Sets up the necessary conditions for Listener objects to receive remote messages if
they're used in applications that don't have an Application object and a main event
loop. In other words, if an application doesn't send a run message to the Application
object,

[NXApp run];

it will need to send a run message to the Listener class

[Listener run];

for instances of the class to work. This method never returns, so your application will
probably need to be dispatched by messages to its Listener instances.

INSTANCE METHODS

addPort
- addPort

Enables the Listener to receive messages by adding its port to the list of those that the
client library monitors. The Listener will then be scheduled to receive messages
between events. Returns self.

See also: - removePort, DPSAddPortO

Application Kit Classes: Listener 2-247

checklnAs:

- (int)checklnAs:(const char *)name

Allocates a port for the Listener, and registers that port as name with the Mach network
name server. This method also allocates a signature port that's used to protect the right
to remove name 'from the name server. This method returns 0 if it successfully checks
in the application with the name server, and a Mach error code if it doesn't. The Mach
error code is most likely to be one of those defined in the header files netname _ defs.h
and sys/kern _ return.h

See also: - usePrivatePort, - checkOut

checkOut

- (int)checkOut

Removes the Listener's port from the list of those registered with the network name
server. This makes the port private. This method will always be successful and
therefore always returns O.

See also: - checklnAs:

delegate

- delegate

Returns the Listener's delegate. The default delegate is nil, but just before the first
event is received, the Application object is made the delegate of the Listener registered
as the AppliCation object's Listener. The delegate is expected to respond to the remote
messages received by the Listener, although it may do this by sending messages to its
own delegate. Here is an example of how this can work: When the Application object's
Listener receives an openFile:ok: message, it passes this message to its delegate,
which is the Application object. The Application object, in tum, queries its delegate to
see if it accepts another file, and if it does, the Application object sends its delegate a
app:openFile:type: message.

See also: - setDelegate:, - setAppListener: (Application)

extendPowerOfffiy:actual:

- (int)extendPowerOffBy:(int)requestedMs actual:(int *)actuaIMs

Receives a remote message requesting the Workspace Manager for more time before
logging out or turning the power off. Other applications use the Speaker version of this
method to send the Workspace Manager extendPowerOffBy:actual: requests.

See also: - extendPowerOffBy:actual: (Speaker), - powerOffIn:andSave:,
- app:powerOffIn:andSave: (Application delegate)

2-248 Chapter 2: Class Specifications

free
-free

Frees the Listener object and deallocates its listen port and its signature port. If the
Listener's port is registered with the network name server, it is unregistered.

See also: - allocFromZone: (Object), - init

getFilelconFor:TIFF:TIFFLength:ok:
- (int)getFilelconFor:(char *)fullPath

TIFF:(char **)tiff
TIFFLength:(int *)length
ok:(int *)flag

Receives a remote message to obtain information about an icon. The Workspace
Manager implements a method that responds to this message. For information on how
to use getFilelconFor:TIFF:TIFFlength:ok: messages to get information from the
Workspace Manager, see the Speaker class.

See also: - getFilelconFor:TIFF:TIFFLength:ok: (Speaker)

getFilelnfoFor:app:type:i1k:ok:
- (int)getFilelnfoFor:(char *)fullPath

app:(char **)appName
type:(char **)aType
i1k:(int *)anIlk
ok:(int *)flag

Receives a remote message to obtain information about a file. The Workspace Manager
implements a method that can respond to this message. For information on how to use
getFilelnfoFor:app:type:i1k:ok: messages to get information from the Workspace
Manager, see the Speaker class.

See also: - getFilelnfoFor:app:type:i1k:ok: (Speaker)

Application Kit Classes: Listener 2-249

iconEntered:at: :icon Window:iconX:icon Y :icon Width:iconHeight:pathList:

- (int)iconEntered:(int)windowNum
at: (double)x
: (double)y
icon Window: (int)icon WindowNum
iconX:(double)iconX
icon Y: (double)iconY
icon Width:(double)icon Width
iconHeight: (double)iconH eight
pathList:(const char *)pathList

Receives a remote message from the Workspace Manager that the user has dragged an
icon into the windowNum window. This message is received when the icon first enters
the window, but only if windowNum was previously registered through a
registerWindow:toPort: message to the Workspace Manager:

unsigned int windowNum;

id speaker = [NXApp appSpeaker];

NXConvertWinNumToGlobal([myWindow windowNum], &windowNum);

[speaker setSendPort:NXPortFromName(NX_WORKSPACEREQUEST, NULL)];

[speaker registerWindow:windowNum toPort: [myListener listenPort]];

windowNum is the global window number of the window the icon entered. (The global
window number is the one assigned by the Window Server, not the user object
maintained within an application.)

x and y specify the cursor's location in screen coordinates.

iconWindowNum is the global window number of the off-screen window where the icon
image is cached. The icon can be composited from that window to your own. The four
arguments iconX, iconY, iconWidth, and iconHeight locate the rectangle occupied by
the icon in iconWindow's base coordinates.

pathList is the null-terminated pathname of the file represented by the icon. If the icon
represents a number of files, pathList will contain a list of tab-separated paths.

You will probably want to save a copy of the file icon and/or the path list so you can use
them in your iconMovedTo:: and iconReleasedAt: :ok: methods. The following
implementation of this method saves both:

char *iconPathList = NULL;

NXSize size = {48.0, 48.0};

myFileIcon = [[NXImage alloc] initSize:&size];

- (int)iconEntered: (int)windowNum at: (double)winX : (double) winY

iconWindow: (int)iconWindowNum iconX: (double) x iconY: (double)y

iconWidth: (double)w iconHeight: (double)h

pathList: (char *)pathList

2-250 Chapter 2.' Class Specifications

/* lock focus on the image so we can use the pswrap function */
/* to copy the icon from the icon's window */
[myFilelcon 10ckFocus];

copylconPicture (iconWindowNum, (float) x, (float) y,

(float) w, (float) h) ;

[myFilelcon unlockFocus];

/* The icon now has a copy of the picture. Let's make */
/* a copy of the path list */

if (iconPathList) NX_FREE(iconPathList)i

/* allocate space for the path list and copy the string */
iconPathList = NXCopyStringBuffer(pathList)i

/* Don't forget to free your copy of the path list in your */
/* iconReleasedAt::ok: and iconExitedAt:: methods. You will */

/* also need to set iconPathList to NULL */
return Oi

In order to copy the icon to your image, you'll need a copy IconPictureO function. Put
the following pswrap in a file with an extension of .psw:

defineps copylconPicture(int wini float Xi float Yi float Wi float h)

X Y w h gsave win windowdeviceround gstate grestore 0 0

Copy composite
endps

See also: - registerWindow:toPort: (Speaker), - iconMovedTo::,
- iconReleasedAt::ok:, - dragFile:fromRect:slideBack:event: (View)

iconExitedAt: :

- (int)iconExitedAt:(double)x :(double)y

Receives a remote message from the Workspace Manager that the user has dragged an
icon out of a registered window. An iconExitedAt:: message will be received only
after the application has been notified that the icon entered the window. The two
arguments, x and y, specify the cursor's location in screen coordinates when the icon
exited the window.

See also:
- iconEntered:at: :icon Window:iconX:icon Y:icon Width: iconHeight: pathList:

Application Kit Classes: Listener 2-251

iconMovedTo: :
- (int)iconMovedTo:(double)x :(double)y

Receives a remote message from the Workspace Manager that the user has dragged an
icon to the cursor location (x, y) in screen coordinates. You will probably want to use
Window's convertScreenToBase: method to convert these points to window
coordinates, and View's convertPoint:fromView: method to then convert them to the
coordinate system of a particular View. iconMovedTo:: messages are repeatedly
received while the icon is being dragged within a registered window. They're received
only after the application has been notified that the icon entered the window and before
it has been notified that the icon exited the window.

See also:
- iconEntered:at: :icon Window:iconX:icon Y:icon Width:iconHeight:pathList:,
- convertScreenToBase: (Window), - convertPoint:from View: (View),
- iconReleasedAt: :ok:

iconReleasedAt: :ok:
- (int)iconReleasedAt: (double)x

: (double)y
ok:(int *)jlag

Receives a remote message from the Workspace Manager when the user releases an
icon over a registered window. The Workspace Manager sends an
iconReleasedAt: :ok: message only after notifying the application that the icon entered
the window. Your iconEntered:at: ... method should save the icon's image and
pathname if you need them for this method.

The first two arguments, x and y, specify the location of the cursor in screen coordinates
when the user let go of the mouse button to stop dragging the icon.

The iconReleasedAt::ok: method you implement should set the integer referred to by
jlag to 1 if you want the Workspace Manager to hide the icon window the user was
dragging, or to 0 if you want the Workspace Manager to animate the icon back to its
source window (indicating to the user that your window didn't accept it).

See also:
- iconEntered:at: :icon Window:iconX:icon Y:icon Width:iconHeight:pathList:,
- iconMovedTo::

2-252 Chapter 2: Class Specifications

init
- init

Initializes the Listener which must be a newly allocated Listener instance. The new
instance has no port name, its priority is set to NX_BASETHRESHOLD, its timeout is
initialized to 30,000 milliseconds, its listen port and signature port are both
PORT_NULL, and it has no delegate. Returns self.

See also: + alloc (Object), + allocFromZone: (Object), + new (Object),
- setPriority:, - setTimeout:, - setDelegate:, - checkInAs:

launchProgram:ok:
- (int)launchProgram:(const char *)name ok:(int *)jlag

Receives requests to launch an application. The Workspace Manager is the application
that properly responds to these requests. See the Speaker class for information on how
to send launchProgram:ok: messages to the Workspace Manager.

See also: - launchProgram:ok: (Speaker)

IistenPort
- (port_t)listenPort

Returns the port at which the Listener receives remote messages. This port is never set
directly, but is allocated by either checkInAs: or usePrivatePort. It's deallocated by
the free method. The Listener caches this port as its IistenPort instance variable.

See also: - checkInAs:, - usePrivatePort, - free

messageReceived:
- messageReceived:(NXMessage *)msg

Begins the process of translating a Mach message received at the Listener's port into an
Objective-C message. This method verifies that the Mach message is well formed, that
it corresponds to an Objective-C method understood by the Listener, and that the
method's arguments agree in number and type with the fields of the Mach message.

messageReceived: messages are initiated whenever a Mach message is to be read from
the Listener's port; you shouldn't initiate them in the code you write. Returns self.

See also: - performRemoteMethod:paramList:

Application Kit Classes: Listener 2-253

msgCalc:

- (int)msgCalc:(int *)flag

Receives a remote message to perform any calculations that are necessary to bring the
current window up to date. The method you implement to respond to this message
should set the integer specified by flag to YES if the calculations will be performed, and
to NO if they won't.

msgCopy AsType:ok:

- (int)msgCopyAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to copy the current selection to
the pasteboard as aType data. aType should be one of the standard pasteboard types
defined in appkitiPasteboard.h. The method you implement to respond to this request
should set the integer referred to by flag to YES if the selection is copied, and to NO if
it isn't.

msgCutAsType:ok:

- (int)msgCutAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to delete the current selection
and place it in the pasteboard as aType data. aType should be one of the standard
pasteboard types defined in appkitiPasteboard.h. The method you implement to
respond to this request should set the integer referred to by flag to YES if the requested
action is carried out, and to NO if it isn't.

msgDirectory:ok:

- (int)msgDirectory:(char *const *)fullPath ok:(int *)flag

Receives a remote message asking for the current directory. The method you
implement to respond to this message should place a pointer to the full path of its
current directory in the variable specified by fullPath. The integer specified by flag
should be set to YES if the directory will be provided, and to NO if it won't.

The current directory is application-specific, but is probably best described as the
directory the application would show in its Open panel were the user to bring it up.

2-254 Chapter 2: Class Specifications

msgFile:ok:

- (int)msgFile:(char *const *)fullPath ok:(int *)jlag

Receives a remote message requesting the application to provide the full pathname of
its current document. The current document is the file displayed in the main window.

The method you implement to respond to this request should set the pointer referred to
by fullPath so that it points to a string containing the full pathname of the current
document. The integer specified by jlag should be set to YES if the pathname is
provided, and to NO if it isn't.

msgPaste:

~ (int)msgPaste:(int *)flag

Receives a remote message requesting the application to replace the current selection
with the contents of the pasteboard, just as if the user had chosen the Paste command
from the Edit menu. The method you implement to respond to this message should set
the integer referred to by flag to YES if the request is carried out, and to NO if it isn't.

msgPosition:posType:ok:

- (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)flag

Receives a remote message requesting a description of the current selection.

The method you implement to respond to this request should describe the selection in
a character string and set the pointer referred to by aString so that it points the
description. The integer referred to by anlnt should be set to one of the following
constants to indicate how the current selection is described:

NX_ TEXTPOSTYPE

NX_REGEXPRPOSTYPE

NX_LINENUMPOSTYPE

NX_CHARNUMPOSTYPE

NX_APPPOSTYPE

As a character string to search for

As a regular expression to search for

As a colon-separated range of line numbers, for
example "10:12"

As a colon-separated range of character positions,
for example "21 :33"

As an application-specific description

The integer referred to by flag should be set to YES if the requested information is
provided in the other two output arguments, and to NO if it isn't.

Application Kit Classes: Listener 2-255

msgPrint:ok:

- (int)msgPrint:(const char *)fullPath ok:(int *)flag

Receives a remote message requesting the application to print the document whose path
isfullPath. The method you implement to respond to this request should set the integer
referred to by flag to YES if the document is printed, and to NO if it isn't. The
document file should be closed after it's printed.

msgQuit:

- (int)msgQuit:(int *)flag

Receives a remote message for the application to quit. The method you implement to
respond to this message should set the integer specified by flag to YES if the application
will quit, and to NO if it won't.

msgSelection:length:asType:ok:

- (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

Receives a remote message asking the application for its current selection as aType
data. aType will be one of the following standard data types for the pasteboard (or an
application-specific type):

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPb0 ardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType

The method you implement to respond to this request should set the pOinter referred to
by bytes so that it points to the selection and also place the number of bytes in the
selection in the integer referred to by numBytes. The integer referred to by flag should
be set to YES if the selection is provided, and to NO if it's not.

msgSetPosition:posType:andSelect:ok:

- (int)msgSetPosition:(const char *)aString
posType:(int)anlnt
andSelect:(int)selectFlag
ok:(int *)flag

Receives a remote message requesting the application to scroll the current document
(the one displayed in the main window) so that the portion described by aString is

2-256 Chapter 2: Class Specifications

visible. aString should be interpreted according to the anlnt constant, which will be
one of the following:

NX_ TEXTPOSTYPE

NX_REGEXPRPOSTYPE

NX_LINENUMPOSTYPE

NX_CHARNUMPOSTYPE

NX_APPPOSTYPE

aString is a character string to search for.

aString is a regular expression to search for.

aString is a colon-separated range of line
numbers, for example "10:12".

aString is a colon-separated range of character
positions, for example "21:33".

aString is an application-specific description of a
portion of the document.

The msgSetPosition:posType:andSelect:ok: method you implement should set the
integer referred to by flag to YES if the document is scrolled, and to NO if it isn't. If
selectFlag is anything other than 0, the portion of the document described by aString
should also be selected.

msgVersion:ok:

- (int)msgVersion:(char *const *)aString ok:(int *)flag

Receives a remote message requesting the current version of the application. The
method you implement to respond to this request should set the pointer referred to by
aString so that it points to a string containing current version information for your
application. The integer specified by flag should be set to YES if version information
is provided, and to NO if it's not.

openFile:ok:

- (int)openFile:(const char *)fullPath ok:(int *)flag

Receives a remote message asking the application to open a file. The file is identified
by an absolute pathname, fullPath.

The Application object, NXApp, has an openFile:ok: method that can respond to this
message. Much of the task of opening and displaying the file is left to the application,
however. This can be done by implementing an appOpenFile:type: method, either for
NXApp's delegate or in an Application subclass, rather than a version of openFile:ok:.

If you implement your own version of openFile:ok:, it should set the output argument
specified by flag to YES if the application will open the file, and to NO if it won't. It
should return ° to indicate that the remote message was handled.

See also: - app:openFile:type: (Application delegate), - openFile:ok: (Application)

Application Kit Classes: Listener 2~257

openTempFile:ok:
- (int)openTempFile:(const char *)fuIlPath ok:(int *)jlag

Receives a remote message asking the application to open a temporary file. The
temporary file is identified by an absolute pathname,fuIlPath. The application that
receives this message should delete the file when it's no longer needed.

The Application class implements a openTempFile:ok: method that can respond to
this message.

See also: - app:openTempFile:type: (Application delegate),
- openTempFile:ok: (Application), - openFile:ok: (Application)

performRemoteMethod:paramList:
- (int)performRemoteMethod:(NXRemoteMethod *)method

paramList:(NXParam Value *)params

Matches the data received in the Mach message with the corresponding Objective-C
method and initiates the Objective-C message to self. The Listener method that
receives the message will then try to delegate it to ,another object. method is a pointer
to the method structure returned by remoteMethodFor: and params is a pointer to the
list of arguments.

The msgwrap program automatically generates a
performRemoteMethod:paramList: method for a Listener subclass. Each Listener
subclass must define its own version of the method.

performRemoteMethod:paramList: messages are initiated when the Listener reads
a Mach message from its port queue.

See also: msgwrap (in the Unix manual)

portName
- (const char *)portName

Returns the name under which the Listener's port (the port returned by the IistenPort
method) is registered with the network name server.

See also: - checkInAs:, -listenPort, - appListenerPortName (Application)

2-258 Chapter 2: Class Specifications

powerOffIn:andSave:

- (int)powerOffIn:(int)ms andSave:(int)aFlag

Receives a remote message from the Workspace Manager that the machine will be
powered down, or the user will be logged out, in ms milliseconds. The second
argument, aF lag, should be ignored. If ms is insufficient time, the application can ask
for additional time by sending an extendPowerOfffiy:actual: to the Workspace
Manager.

The Application class implements a powerOffIn:andSave: method that can respond
to this message. It raises an exception that's caught by the main event loop, which then
notifies the Application object's delegate with an appPowerOffIn:andSave: message.

See also: - app:powerOffIn:andSave: (Application delegate),
- powerOffin:andSave: (Application)

priority

- (int)priority

Returns the priority level for receiving remote messages. This value is cached as the
Listener's priority instance variable.

See also: - setPriority:

read:

- read:(NXTypedStream *)stream

Reads the Listener from the typed stream stream.

See also: - write:

register Window:toPort:

- (int)registerWindow:(int)windowNum toPort:(port_t)aPort

Receives a remote message registering windowNum to receive icons the user drags into
the window. The Workspace Manager implements a method that responds to this
message. Other applications will use the Speaker version of the method to send the
Workspace Manager registerWindow:toPort: messages.

See also: - registerWindow:toPort: (Speaker), - iconEntered:at: ...

Application Kit Classes: Listener 2-259

remoteMethodFor:

- (NXRemoteMethod *)remoteMethodFor:(SEL)aSelector

Looks up aSelector in the table of remote messages the Listener understands and
returns a pointer to the table entry. A NULL pointer is returned if aSelector isn't in the
table.

Each Listener subclass must define its own version of this method and send a message
to super to perform the Listener version. The msgwrap program produces subclass
method definitions automatically. The version of the method produced by msgwrap
uses the NXRemoteMethodFromSeIO function to do the look up.

remoteMethodFor: messages are initiated automatically when the Listener reads a
Mach message from its port queue.

See also: - performRemoteMethod:paramList:, msgwrap (in the Unix manual)

removePort

- removePort

Removes the Listener's port from the list of those that the client library monitors.
Remote messages sent to the port will pile up in the port queue until they are explicitly
read; they won't be read automatically between events.

See also: - addPort

servicesDelegate

- servicesDeIegate

Returns the Listener's services delegate~ the object that will respond to remote
messages sent from the Services menus of other applications. The services delegate
should contain the methods that a service providing application uses to provide services
to other applications.

See also: - setServicesDeIegate:

setDelegate: .

- setDeIegate:anObject

Sets the Listener's delegate to anObject. The delegate is expected to respond to the
remote messages received by the Listener. However, if anObject has a delegate of its
own at the time the setDeIegate: message is sent, the Listener will first check to see if
that object can handle a remote message before checking anObject. In other words, the
Listener recognizes a chain of delegation.

2-260 Chapter 2: Class Specifications

The delegate assigned by this method will be overridden if the Listener is registered as
the Application object's appListener and the assignment is made before the
Application object is sent a run message. Before getting the first event, the run method
makes the Application object the appListener's delegate.

See also: - delegate, - setAppListener: (Application)

setPriority:

- setPriority:(int)level

Sets the priority for receiving remote messages to level. Whenever the application is
ready to get another event, the priority level is compared to the threshold at which the
application is asking for the next event. For the Listener to be able to receive remote
messages from its port queue, the priority level must be at least equal to the event
threshold.

Priority values can range from ° through 30, but three standard values are generally
used:

NX_MODALRESPTHRESHOLD 10
NX_RUNMODALTHRESHOLD 5
NX_BASETHRESHOLD 1

These constants are defined in the appkitl Application.h header file.,

• At a priority equal to NX_BASETHRESHOLD, the Listener will be able to receive
messages whenever the application asks for an event in the main event loop, but not
during a modal loop associated with an attention panel nor during a modal loop
associated with a control such as a button or slider.

• At a priority equal to NX_RUNMODALTHRESHOLD, the Listener will receive
remote messages in the main event loop and in the event loop for an attention panel,
but not during a control event loop.

• At a priority equal to NX_MODALRESPTHRESHOLD, remote n1essages are
received even during a control event loop.

The default priority level is NX_BASETHRESHOLD.

A new priority takes effect when the Listener receives an addPort message. To change
the default, you must either set the Listener's priority before sending it an addPort
message, or you must send it a removePort message then another addPort message.

See also: - priority, - addPort

Application Kit Classes: Listener 2-261

setServicesDelegate:

- setServicesDelegate:anObject

Registers anObject as the object within a service provider that will respond to remote
messages. This method returns self. As an example, consider an application called
Thinker that provides a ThinkAboutIt service that ponders the meaning of Ascii text it
receives on the pasteboard. Thinker would need to have something like the following
in the _services section of its _ICON segment in its Mach-O file:

Message: thinkMethod

Port: Thinker

Send Type: NXAsciiPboardType
Menu Item: ThinkAboutlt

To get this information in your Mach-O file you could put the above text in a file called
services.txt and then include the following line in your Makefile.preamble file:

LDFLAGS = -segcreate ICON services services.txt

Alternatively, if the services the application can provide are not known at compile time,
the application can build a services file at run time; see NXUpdateDynamicServicesO.

Then, in order to provide the ThinkAboutlt service you must implement a
thinkMethod:userData:error: method in an object which is the services delegate of
a Listener which is listening on the Thinker port. (If the application is named
"Thinker", then by default NXApp's Listener listens on this port.) Here is an example
method that could be used to provide the ThinkAboutlt service:

- thinkMethod: (id)pb
userData: (const char *)userData

error: (char **)msg

char *data;
int length;

char *const *s; /* We use s to go through types. */
char *const *types = [pb types];

for (s = types; *s; s++)

if (!strcmp(*s, NXAsciiPboardType» break;
if (*s && [pb readType:NXAsciiPboardType

data:&data length:&length])

/* doSomething is your own method ... */

[self doSomething:data :length];
/* free the memory allocated by readType: ... */
vm_deallocate(task_self(), data, length);

/* now make msg point to an error string if */

/* anything went wrong, and return ... */
return self;

2-262 Chapter 2: Class Specifications

See also: - servicesDelegate,
- registerServicesMenuSendTypes:andReturn Types: (Application),
- validRequestorForSendType:andReturnType: (Responder)

setTimeout:
- setTimeout:(int)ms

Sets, to ms milliseconds, how long the Listener will persist in attempting to send a
return message back to the Speaker that initiated the remote message. If ms is 0, there
will be no time limit. The default is 30,000 milliseconds. Returns self.

See also: - timeout

signaturePort
- (port_t)signaturePort

Returns the port that's used to authenticate the Listener's port to the network name
server. This port is never set directly, but is allocated by checklnAs: and deallocated
by free. The Listener caches this port as its signaturePort instance variable.

See also: - checklnAs:, - free, netname _check _inO, netname _check _ outO

timeout
- (int)timeout

Returns the number of milliseconds the Listener will wait for a return message to the
Speaker to be successfully placed in the port designated by the Speaker. This value is
cached by the Listener as its timeout instance variable. If it's 0, there's no time limit.

See also: - setTimeout:

unhide
- (int)unhide

Receives a remote message asking the application to unhide its windows and become
the active application. When the user double-clicks a freestanding or docked icon for
a running application, the Workspace Manager sends the application an unhide
message. The Application object has an unhide method that can respond appropriately
to this message. The Application object notifies its delegate with an appDidUnhide
message, if its delegate can respond. Returns the delegate's return value if the
Listener's delegate responds to this message, otherwise returns -1.

See also: - unhide (Application)

Application Kit Classes: Listener 2-263

unmounting:ok:
- (int)unmounting:(const char *)fullPath ok:(int *)jlag

Receives a remote message from the Workspace Manager that a disk is about to be
unmounted. fullPath is the full pathname of a directory on the disk that will be
unmounted.

The Application class implements an unmounting:ok: method that responds to this
message. Application's method first tries to assign responsibility for the message to its
delegate by sending the delegate an appUnmounting: message. Failing that, it tries to
change the current working directory so that it's not on the disk.

If you implement your own version of unmounting:ok:, it should set the integer
specified by jlag to YES if it's OK for the Workspace Manager to unmount the disk,
and to NO if it's not. Most applications will implement appUnmounting: instead of
unmounting:ok:. Returns the delegate's return value if the Listener's delegate
responds to this message, otherwise returns -1.

See also: - unmounting:ok: (Application)

unregister Window:
- (int)unregisterWindow:(int)windowNum

Receives a remote message to cancel the registration of windowNum. The Workspace
Manager implements a method that responds to this message. Other applications will
send the Workspace Manager unregisterWindow: messages when they no longer want
to be notified of icons dragged into the window. See the Speaker class for information
on sending these messages.

See also: - unregisterWindow: (Speaker), - registerWindow:toPort: (Speaker),
- iconEntered:at: ...

usePrivatePort
- (int)usePrivatePort

Allocates a listening port for the Listener, but doesn't register it publicly. Other tasks
can send messages to this Listener only if they are explicitly given the address of the
port in a message; the port is not available through the Network Name Server. This
method is an alternative to checklnAs:. It returns 0 on success and a Mach error code
if it can't allocate the port. The error code will be one of those defined in the
kern_return.h header file in lusr/include/sys.

See also: - checklnAs:

2-264 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the Listener to the typed stream stream.

See also: - read:

CONSTANTS AND DEFINED TYPES

/* Port for sending messages to the Workspace Manager */
#define NX_WORKSPACEREQUEST NXWorkspaceName

/* Port for acknowledging launch by Workspace Manager */
#define NX WORKSPACEREPLY NXWorkspaceReplyName

/* Reserved message numbers */
#define NX SELECTORPMSG 35555

#define NX SELECTORFMSG 35556

#define NX RESPONSEMSG

#define NX ACKNOWLEDGE

35557

35558

/*. RPC return result error returns. * /
#define NX INCORRECTMESSAGE -20000

/* Maximum number of remote method parameters allowed */

#define NX MAXMSGPARAMS 20

#define NX MAXMESSAGE (2048-sizeof(msg_header_t)-\

sizeof(msg_type_t)-sizeof(int)-\

sizeof(msg_type_t)-8)

/* A message sent via Mach */
typedef struct _NXMessage {

msg_header_t header;

msg_type_t sequenceType;

int sequence;

msg_type_t actionType;

char action[NX_MAXMESSAGE];

NXMessage;

/* A message received via Mach */

typedef struct _NXResponse {

msg_header_t header;

msg_type_t sequenceType;

int sequence;

NXResponse;

/* every message has one */

/* sequence number type */

/* sequence number */

/* selector string */

/* every message has one */
/* sequence number type */
/* sequence number */

Application Kit Classes: Listener 2-265

/* For acknowledging a message via Mach */
typedef struct _NXAcknowledge {

msg_header_t header;
msg_type_t sequenceType;
int sequence;
msg_type_t errorType;
int error;

NXAcknowledge;

/* every message has one */
/* sequence number type */
/* sequence number */
/* error number type */
/* error number, 0 is ok */

/* defines method understood by Listener */
typedef struct NXRemoteMethod {

SEL key;
char *types;

NXRemoteMethod;

/* Objective-C selector */
/* defines types of parameters */

/* used to pass parameters to method */
typedef union {

/*

int ivaI;
double dval;
port_t pval;
struct bval

char *p;
int len;

bval;
NXParamValue;

* permissible values for the second argument of
* msqSetPosition:posType:andSelect:ok: and msqPostion:posType:ok:
*/

#define NX TEXTPOSTYPE 0
#define NX REGEXPRPOSTYPE 1

#define NX LINENUMPOSTYPE 2

#define NX CHARNUMPOSTYPE 3
#define NX APPPOSTYPE 4

2-266 Chapter 2: Class Specifications

Matrix

INHERITS FROM Control: View : Responder: Object

DECLARED IN appkit/Matrix.h

CLASS DESCRIPTION

The Matrix class allows creation of matrices of Cells of the same or of different types.
The main restriction is that all Cells must have the same size. You can add rows and
columns to a Matrix by using addRow, insertRow At:, add Col, or insertCoIAt:. Cells
created by the Matrix to fill its rows and columns will be instances of the Cell subclass
stored in the cell Class instance variable or copies of the prototype Cell stored in the
protoCell instance variable.

There are four modes of operation for a Matrix:

NX_ TRACKMODE is the most basic mode of operation. All that happens in this mode
is that the Cells are asked to track the mouse via trackMouse:inReci:ofView:
whenever the mouse is inside their bounds. No highlighting is performed. An example
of this mode might be a "graphic equalizer" Matrix of Sliders. Moving the mouse
around would cause the sliders to move under the mouse.

NX_HIGHLIGHTMODE is a modification of TRACKMODE. In this mode, a Cell is
highlighted before it is asked to track the mouse, then unhighlighted when it is done
tracking. Useful for multiple unconnected Cells which use highlighting to inform the
user that they are being tracked (like buttons).

NX_RADIOMODE is used when you want no more than one Cell to be selected at a
time. Used in conjunction with allowEmptySel:NO, it can be used to create a set of
buttons of which one and only one is selected. Any time a Cell is selected, that Cell's
action (if any) is sent to its target (or the Matrix's target if the Cell has none). The
canonical example of this mode is a set of radio buttons.

NX_LISTMODE allows mUltiple Cells to be highlighted. The Cell is not given the
opportunity to track the mouse; it is only highlighted. This can be used to select a range
of text values, for example. The method sendAction:to:for AIlCells:NO can be used
to iterate through the highlighted Cells and perform various functions on them.
Highlighting can be done in many ways including dragging to select, using the shift key
to make disjoint selections, and using the alternate key to extend selections.

Application Kit Classes: Matrix 2-267

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _v Flags vFlags;

Inherited from Control int . tag;
id cell;
struct _conFlags conFlags;

Declared in Matrix id cellList;
id target;
SEL action;
id selectedCell;
int selectedRow;
int selectedCol;
int numRows;
int numCols;
NXSize cellSize;
NXSize intercell;
float backgroundGray;
float cellBackgroundGray;
id font;
id protoCell;
id cellClass;
id nextText;
id previousText;
SEL doubleAction;
SEL errorAction;
id textDelegate;
struct _mFlags {

unsigned int highlightMode: 1;
unsigned int radioMode: 1;
unsigned int listMode: 1 ;
unsigned int allow EmptySel: 1;
unsigned int autoscroll: 1;
unsigned int reaction: 1 ;

mFlags;

cellList The List of Cells.

target Target of the Matrix.

2-268 Chapter 2: Class Specifications

action

selectedCell

selectedRow

selectedCol

numRows

numCols

cellSize

intercell

backgroundGray

cellBackgroundGray

font

protoCell

cellClass

nextText

previousText

doubleAction

errorAction

textDelegate

mFlags.highlightMode

mFlags.radioMode

mFlags.listMode

mFlags.allowEmptySel

mFlags.autoscroll

mFlags.reaction

Action of the Matrix.

The currently selected Cell.

The row number of selectedCell.

The column number of selectedCell.

Number of rows.

Number of columns.

Width & height of the Cells.

Vertical and horizontal spacing between Cells.

Background gray.

Cells background gray.

Font of Cells.

Prototypical Cell.

Factory for new Cells.

Object to select when Tab key is pressed.

Object to select when Shift-Tab is pressed.

Action sent on double click.

Action to apply for edit errors.

Object to which textDidEnd:endChar:, etc. is
forwarded.

NX_HIGHLIGHTMODE.

NX_RADIOMODE.

Whether no selection is allowed in
NX_RADIOMODE.

Autoscroll when in a ScrollView.

send Action caused the Cell to change.

Application Kit Classes: Matrix 2-269

METHOD TYPES

Initializing the Matrix Class Object + initialize

Initializing and Freeing a Matrix

Creating a new Cell

Laying out the Matrix

Modifying the Matrix

Modifying the Cells

2-270 Chapter 2: Class Specifications

+ setCell Class:

- initFrame:
- initFrame:mode:cellClass:numRows:

numCols:
- initFrame:mode:prototype:numRows:

numCols:
-free

- makeCellAt::
- prototype
- setCellClass:
- setPrototype:

- addCol
-addRow
- cell Count
- getCellFrame:at::
- getCellSize:
- getIntercell:
- getNumRows:numCols:
- getRow:andCol:forPoint:
- getRow: andCol: of Cell:
- insertColAt:
- insertRow At:
- removeCoIAt:andFree:
- removeRow At:andFree:
- renewRows:cols:
- setCellSize:
- setIntercell:

- putCell:at::
- setMode:
- setPreviousText:

- sendAction:to:forAllCells:
- setEnabled:
- setFont:
- setIcon:at::
- setS tate: at: :
- setTarget:at::
- setTitle:at::

Editing Text - selectAll:
- selectText:
- selectTextAt::
- setNextText:
- setTextDelegate:
- textDidGetKeys:isEmpty:
- textDelegate
- textDidChange:
- textDidEnd:endChar:
- textWillChange:
- textWillEnd:

Selecting and Identifying Cells - allowEmptySel:
- cellAt::
- cellList
- clearSelectedCell
- findCellWithTag:
- selectCell:
- selectCellAt::
- selectCellWithTag:
- selected Cell
- selected Col
- selectedRow

Modifying Graphic Attributes - backgroundColor
- backgroundGray
- cellBackgroundColor
- cellBackgroundGray
-font
- isBackgroundTransparent
- isCellBackgroundTransparent
- setBackgroundColor:
- setBackgroundGray:
- setBackgroundTransparent:
- setCellBackgroundColor:
- setCellBackgroundGray:
- setCellBackgroundTransparent:

Resizing the Matrix and Cells - doesAutosizeCells
- ca1cSize
- setAutosizeCells:
- sizeTo::
- sizeToCells
- sizeToFit
- validateSize:

Scrolling - scrollCellToVisible::
- setAutoscroll:
- setScrollable:

Application Kit Classes: Matrix 2-271

Displaying - display
- drawCell:
- drawCellAt::
- drawCelllnside:
- drawSelf::
- highlightCellAt: :lit:

Target and Action - action
- doubleAction
- errorAction
- sendAction
- sendAction:to:
- sendDoubleAction
- setAction:
- setAction:at::
- setDoubleAction:
- setErrorAction:
- setReaction:
- setTarget:
- target

Assigning a Tag - setTag:at::
- setTag:target:action:at::

Handling Event and Action Messages
- acceptsFirstMouse
- mouseDown:
- mouseDownFlags
- performKeyEquivalent:

Managing the Cursor - resetCursorRects

Archiving - read:
- write:

CLASS METHODS

initialize

+ initialize

Sets the current version of the Matrix class.

2-272 Chapter 2: Class Specifications

setCell Class:

+ setCellClass:factoryI d

This method initializes the subclass of Cell used by the Matrix class when the
initFrame: method is used to initialize a Matrix. You rarely need to invoke this method
since you usually set the cellClass or a prototype Cell by invoking the methods
initFrame:mode: {prototype,ceIlClass } :numRows:numCols: when the Matrix is
first initialized.

See also: - initFrame:, - initFrame:mode:ceIlClass:numRows:numCols:,
- initFrame:mode:prototype:numRows:numCols:

INSTANCE METHODS

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

Returns NO if the Matrix is in NX_LISTMODE, YES if the Matrix is in any other
mode. The Matrix does not accept first mouse in NX_LISTMODE.

action

- (SEL)action

Returns the default action of the Matrix. If a Cell which has no action receives an event
which causes an action message to be sent to a target object (normally an
NX_MOUSEUP event), this action is sent to the Matrix's target.

add Col

- addCol

Adds a new column of Cells to the right of the existing columns by invoking
insertCoIAt:. New Cells are created with makeCeIlAt::. Does not redraw even if
autodisplay is on. If the number of rows or columns in the Matrix has been changed
via renewRows:cols: then makeCellAt: is invoked only if a new one is needed (since
renewRows:cols: doesn't free any Cells). This fact can be used to your advantage
since you can grow and shrink a Matrix without repeatedly creating and freeing the
Cells.

See also: - insertCoIAt:, - makeCeIlAt::

Application Kit Classes: Matrix 2-273

addRow

-addRow

Adds a new row of Cells at the bottom of the existing rows by invoking insertRow At: ..
New Cells are created with makeCeIlAt::. Does not redraw even if autodisplay is on.
If the number of rows or columns in the Matrix has been changed via renewRows:cols:
then makeCellAt: is invoked only if a new one is needed (since renewRows:cols:
doesn't free any Cells). This fact can be used to your advantage since you can grow
and shrink a Matrix without repeatedly creating and freeing the Cells.

See also: - insertCoIAt:, - makeCeIlAt::

allowEmptySel:

- allowEmptySel: (BOOL)flag

Ifflag is YES, then the Matrix will allow one or zero Cells to be selected. Ifflag is NO,
then the Matrix will allow one and only one Cell (not zero Cells) to be selected. This
setting has effect only in NX_RADIOMODE.

background Color

- (NXColor)backgroundColor

Returns the background color of the matrix.

background Gray

- (float)backgroundGray

Returns the background gray. A background Gray of -1.0 implies no background
gray; the Matrix is transparent.

calcSize

- calcSize

You never invoke this method. It is invoked automatically by the system if it has to
recompute some size information about the Cells. It invokes calcDrawlnfo: on each
Cell in the Matrix. Can be overridden to do more if necessary (Form overrides
calcSize, for example). Returns self.

See also: - calcSize (Control, Form), - validateSize:

ceIlAt::

- ceIlAt:(int)row :(int)col

Returns the Cell at row row and column col.

2-274 Chapter 2: Class Specifications

cellBackgroundColor

- (NXColor)ceIlBackgroundColor

Returns the background color used to fill the background of a Cell.

cellBackgroundGray

- (float)ceIlBackgroundGray

Returns the gray value used to fill the background of a Cell before the Cell is drawn. If
-1.0, then no fill is done behind the Cell before drawing (the cell is transparent).

cell Count

- (int)ceIlCount

Returns the number of Cells in the Matrix.

cellList

- cellList

Returns the List object that tracks the Cells of the Matrix.

See also: the List class

clearS elected Cell

- clearSelectedCell

Sets selectedCell to be no selection. Does no drawing. Doesn't end the previous text
editing if any and doesn't invoke selectTextAt::. Will not allow clearing of selected
Cell if NX_RADIOMODE and an empty selection is not allowed. Returns whatever
Cell used to be the selectedCell. You rarely invoke this method since
selectCeIlAt:-1 :-1 will clear the selected Cell and redraw.

See also: - allowEmptySel:

display

- display

Invokes displayFromOpaqueAncestor::: if the Matrix is not opaque and either there
is an interCell spacing or one or more of the Cells is not opaque. Invokes display:::
otherwise. The Matrix is considered to be opaque if the background Gray is
non-negative (or if it was setOpaque: explicitly). If cellBackgroundGray is
non-negative, then all of the Cells are treated as if they were opaque.

Application Kit Classes: Matrix 2-275

doesAutosizeCells

- (BOOL)doesAutosizeCells

Determines whether Cells will automatically resize when the size of the matrix
changes.

doubleAction

- (SEL)doubleAction

Returns the action that is sent on a double-click on a Cell in the Matrix.

drawCell:

- drawCell:aCeli

If aCeli is in the Matrix, then it is drawn. Does nothing otherwise. Useful for
constructs like: [matrix drawCell:[[matrix cellAt:row :col] setSomething:args]]].

drawCellAt: :

- drawCeIlAt:(int)row :(int)col

Displays the Cell at (row, col) in the Matrix.

drawCelllnside:

- drawCelllnside:aCeli

If aCeli is in the Matrix, then its inside is drawn (i.e., drawlnside:in View: is invoked
on the Cell).

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

Displays the Cells in the Matrix which intersect any of the reets.

error Action

- (SEL)error Action

Returns the action that is sent to the target of the Matrix upon text editing errors.

See also: setError Action:

2-276 Chapter 2: Class Specifications

findCellWithTag:

- tindCellWithTag:(int)anInt

Returns the Cell which has a tag matching anInt. If no Cell in the Matrix matches
anI nt, then nil is returned.

See also: - setTag: (ActionCell), - setTag:at::, - setTag:target:action::,
- selectCellWithTag:

font
-font

Returns the font that will be used to display text in any Cells.

free

- free

Deallocates the storage for the Matrix and all its Cells and returns nil .

. getCellFrame:at::

- getCellFrame:(NXRect *)theRect
at: (int) row
: (int)col

Returns the frame of the Cell at the specified row and col.

getCellSize:

- getCeIlSize:(NXSize *)theSize

Gets the width and the height of the Cells in the Matrix.

getlntercell :
- getIntercell:(NXSize *)theSize

Gets the vertical and horizontal spacing between Cells.

getNumRows:numCols:
- getNumRows:(int *)rowCount numCols:(int *)coICount

Returns, by reference, the number of rows and columns in the Matrix.

Application Kit Classes: Matrix 2-277

getRow:andCol:for Point:

- getRow:(int *)row
andCol:(int *)col
forPoint:(const NXPoint *)aPoint

Returns the Cell at aPoint in the Matrix. If aPoint is outside the bounds of the Matrix
or in an intercell spacing, getRow:andCol:forPoint: returns nil. Fills *row and *col
with the row and column position of the Cell. aPoint must be in the Matrix's coordinate
system.

getRow:andCol:ofCell:

- getRow:(int *)row
andCol:(int *)col
ofCell:aCell

Gets the row and column position of aCell in the Matrix. Fills *row and *col with the
row and column position of the Cell. Returns the Cell (or nil if aCell is not in the
Matrix).

highlightCellAt: :lit:

- highlightCeIlAt:(int)row
: (int)col
lit: (BOOL)jlag

Highlights or unhighlights the Cell at (row, col) in the Matrix by sending the
highlight:in View: lit: message to the Cell. The focus must be locked on the Matrix.
Returns self.

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Matrix, with default parameters in
the given frame. The default font is Helvetica 12.0, the default cellSize is
100.0-by-17.0, the default intercell is 1.0-by-1.0, the default background Gray is-1
(transparent), and the default cellBackgroundGray is -1. The new Matrix contains no
rows or columns. The default mode is NX_RADIOMODE.

2-278 Chapter 2: Class Specifications

initFrame:mode:cellClass:numRows:numCols:

- initFrame:(const NXRect *)frameRect
mode: (int)aMode
eeHClass:cellld
numRows:(int)numRows
numCols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, with numRows rows and
numCols columns. Sets the Matrix's mode to aMode. aMode can be one of four
constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NX_LISTMODE

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

These constants are described in the "CLASS DESCRIPTION." The new Matrix adds
new Cells by sending aHoe and init messages to the Cell subclass represented by
classld (the value returned when sending a class message to Cell or a subclass of Cell).

This method is the designated initializer for Matrices that add Cells by creating
instances of a Cell subclass.

initFrame:mode: prototype: numRows:numCols:
- initFrame:(const NXRect *)frameRect

mode: (int)aMode
prototype:aCell
numRows: (int)numRows
numCols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, with numRows rows and
numCols columns. Sets the Matrix's mode to aMode. aMode can be one of the four
constants listed in the previous method.

These constants are described in the "CLASS DESCRIPTION." The new Matrix adds
new Cells by copying aCell, and instance of Cell or a subclass of Cell. If you do not
plan to add any more Cells to this Matrix, invoke [[matrix setPrototype:nil] free] after
creating the· Matrix.

This method is the designated initializer for Matrices that add Cells by copying an
instance of a Cell subclass.

Application Kit Classes: Matrix 2-279

insertColAt:
- insertCoIAt:(int)col

Inserts a new column of Cells before column col. New Cells are created with
makeCeIlAt::. This method doesn't redraw even if autodisplay is on. Most of the
time, you'll want to perform sizeToCells after performing this method to resize the
Matrix View to fit the newly added Cells. Returns self.

insertRow At:
- insertRow At: (int)row

Inserts a new row of Cells before row row. New Cells are created with makeCeIlAt::.
This method doesn't redraw even if autodisplay is on. Most of the time, you'll want to
perform sizeToCells after performing this method to resize the Matrix View to fit the
newly added Cells. Returns self.

isBackgroundTransparent
- (BOOL)isBackgroondTransparent

Returns YES if the Matrix background is transparent, NO otherwise.

isCellBackgroundTransparent
- (BOOL)isCeIlBackgroondTransparent

Returns YES if Cells in the Matrix are created with transparent backgrounds, NO
otherwise.

makeCellAt: :
- makeCeIlAt:(int)row :(int)col

If there is a protoCell, then it is cloned by sending it a copy message; otherwise, a new
Cell is created by sending new to the class object referenced by the cell Class instance
variable. You never invoke this method directly; it's invoked by addRow and other
methods. It may be overridden if desired.

See also: - addCol, - addRow, - insertCoIAt:, - insertRowAt:

2-280 Chapter 2: Class Specifications

mouseDown:

- mouseDown:(NXEvent *)theEvent

You never invoke this method but may override it to implement subclassses of the
Matrix class. The response of the Matrix depends on the mode set when it was first
initialized:

In NX_ TRACKMODE, each Cell is given the opportunity to track the mouse while it
is in its bounds.

In NX_HIGHLIGHTMODE, each Cell is given the opportunity to track the mouse
while it is in its bounds and the currently tracking Cell is highlighted.

In NX_RADIOMODE, each Cell is given the opportunity to track the mouse while it
is in its bounds, the currently tracking Cell is highlighted, and no more than one Cell
can have a non-zero state at any time.

In NX_LISTMODE, Cells are not given the opportunity to track the mouse, rather, they
are merely highlighted as the mouse is dragged over them. Shift-mousedown can be
used to extend the selection, Command-mousedown can be used to make disjoint
selections.

In any mode, a mousedown in an editable Cell immediately enters text editing mode.
Also, a double-click in any Cell sends the double Action to the target in addition to the
regular action.

See also: - initFrame:mode:ceIlClass:numRows:numCols:,
- initFrame:mode:prototype:numRows:numCols:

mouseDownFlags

- (int)mouseDownFlags

Returns the flags (e.g., NX_SHIFTMASK) that were in effect when the mouse went
down to start the current tracking session. Use this method if you want to access these
flags, but don't want the overhead of having to add NX_MOUSEDOWNMASK to the
sendActionOn: mask in every Cell to get them. This method is valid only during
tracking; it's not useful if the target of the Matrix initiates another Matrix tracking loop
as part of its action method.

performKey Equivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Returns YES if a Cell in the matrix responds to the key equivalent in theEvent, NO if
no Cell responds. If a Cell responds to the key equivalent, it is sent the messages
highlight: in View:lit: YES, then incrementState, and finally
highlight: in View:lit:NO. You do not send this message; it is sent when the Matrix or
one of its superviews is the first responder and the user presses a key.

Application Kit Classes: Matrix 2-281

prototype

- prototype

Returns the prototype Cell set by initFrame:mode:prototype:numRows:numCo)s:
or setPrototype:.

See also: - initFrame:mode:prototype:numRows:numCols:, - setPrototype:

putCelI:at::

- putCell:newCell
at: (int)row
: (int)col

Replaces the Cell at (row, col) by newCell, and returns the old Cell at that position.
Draws the new Cell if autodisplay is on.

read:

- read:(NXTypedStream *)stream

Reads the Matrix from the typed stream stream. Returns self.

removeCoIAt:andFree:
- removeCoIAt:(int)col andFree:(BOOL)flag

Removes the column at position col. If flag is YES then the Cells in that column are
freed. Doesn't redraw even if autodisplay is on. You normally need to invoke
sizeToCells after invoking this method to resize the Matrix to fit the reduced Cell count.
Returns self.

removeRow At:andFree:
- removeRowAt:(int)row andFree:(BOOL)flag

Removes the row at position row. Ifflag is YES then the Cells in that column are freed.
Doesn't redraw even if autodisplay is on. You normally need to invoke sizeToCells
after invoking this method to resize the Matrix to fit the reduced Cell count. Returns
self.

2-282 Chapter 2: Class Specifications

renew Rows:eols:

- renewRows:(int)newRows cols:(int)newCols

Changes the number of rows and columns in the Matrix, but uses the same Cells as
before (creates new Cells if the new size is larger). Since renewing the number of rows
and columns often requires that the size of the Matrix itself change (by sending a
sizeToCells message, for example), renewRows:cols: doesn't automatically display
the Matrix even if autodisplay is on. You will normally want to invoke sizeToCells to
resize your Matrix View after invoking this method. The selectedCell is cleared.
Returns self.

resetCursor Reets

- resetCursorRects

Cycles through the Cells asking each to resetCursorRects:inView:. If one of the Cells
has a cursor rectangle to set up, it will send the message addCursorRect:cursor: back
to the Matrix. Returns self.

serollCellTo Visible::

- scroIlCeIlToVisible:(int)row :(int)col

If the Matrix is in a scrolling view, then the Matrix will scroll to make the Cell at
(row, col) visible. Returns self.

seleetAll:

- selectAII:sender

If the mode of the Matrix is not NX_RADIOMODE, then all the Cells in the Matrix are
selected. The currently selected Cell is unaffected. Editable Cells are not affected. The
Matrix is redisplayed. Returns self.

See also: - selectText:, - selectCeIlAt::

seleetCell:

- selectCell:aCell

If aCell is in the Matrix, then the Cell is selected, the Matrix is redrawn,~and the
selected Cell is returned. Returns nil if the Cell is not in the Matrix.

Application Kit Classes: Matrix 2-283

selectCellAt: :

- selectCeIlAt:(int)row :(int)col

Sets selectedCell to be the Cell at (row, col), selectedRow to be row and selectedCol
to be col. Ends any editing going on in the window and invokes selectTextAt:row :col
if the Cell at (row, col). If row or col is -1, then the current selection is cleared (unless
the Matrix is in NX_RADIOMODE and does not allow empty selection). Redraws the
affected Cells and returns self.

selectCellWithTag:

- selectCeIlWithTag:(int)theTag

Finds the Cell in the Matrix with the given tag and selects it. Returns the Matrix id or
nil if no Cell has theTag.

selected Cell

- selected Cell

Returns the currently selected Cell.

selectedCol

- (int)selectedCol

Returns the column number of the current! y selected Cell. If Cells in multiple columns
are selected, this method returns the number of the last column in which a cell was
selected. If no Cells are selected, this method returns -1.

selectedRow

- (int)selectedRow

Returns the row number of the currently selected Cell. If Cells in multiple rows are
selected, this method returns the number of the last row in which a cell was selected. If
no Cells are selected, this method returns -1.

selectText:

- selectText:sender

Selects the text of an editable Cell in the Matrix, if any. If sender is nextText, the first
Cell is selected; otherwise, the last Cell is selected. Don't invoke this method before
inserting the receiving Matrix in a window's view hierarchy and drawing it. Returns
self.

2-284 Chapter 2: Class Specifications

selectTextAt: :

- selectTextAt:(int)row :(int)col

Select the text of the Cell at (row, col) in the Matrix if any. Don't invoke this method
before inserting the receiving Matrix in a window's view hierarchy and drawing it.
Returns self.

sendAction

- sendAction

If the selected Cell has an action and a target, its action is sent to its target. If the Cell
has an action but no target, its action is sent to the Matrix's target. If the Cell doesn't
have an action or target, the Matrix's action is sent to its target.

See also: - action, - setAction:, - setTarget:, - target

sendAction:to:

- sendAction:(SEL)theAction to:theTarget

Sends theAction to theTarget and returns self. You don't normally invoke this method.
It is invoked by event handling methods such as Cell's trackMouse:inRect:ofView: to
send an action to a target in response to an event within the Matrix.

sendAction:to:for AIICells:

- sendAction:(SEL)aSelector
to:anObject
for AIICells: (BOOL)flag

Repeatedly sends the message [anObject aSelector:aCell] for each Cell in the matrix.
The process begins with aCell being the Cell in the first row and column of the Matrix
and proceeds row by row. If the flag is NO, then only highlighted Cells are sent in the
message; this is useful for performing actions when multiple Cells are selected in an
NX_LISTMODE Matrix. The method aSelector should return YES if it wants to
continue looping for remaining cells, NO otherwise.

Note: This method is not invoked to send action messages to target objects in response
to mouse-down events in the Matrix. Instead, you can invoke it if you want to have
multiple Cells in a Matrix interact with an object.

This method returns self.

Application Kit Classes: Matrix 2-285

sendDoubleAction

- sendDoubleAction

You don't invoke this method; it is sent in response to a double-click event in the
Matrix. The method sends an action message to a target object, depending on the
actions and targets of the Matrix and the selected Cell. If the selected Cell has an
action, then it sends that action to the selected cell's target. Otherwise, if the Matrix
has a doubleAction message, it sends that message to the Matrix's target. Finally, if
the Matrix doesn't have a doubleAction, it sends the Matrix's action to its target.
Returns self.

setAction:

- setAction:(SEL)aSelector

Sets the default action of the Matrix. If it has an action, a Cell in the Matrix can respond
to certain events (usually NX_MOUSEUP events) within its frame by sending its action
to its target. If a Cell doesn't have an action, the Matrix can respond to the event by
sending its action to its target (not to the Cell's target). This method sets the action sent
by the Matrix in such cases. Returns self.

setAction:at: :

- setAction:(SEL)aSelector
at: (int) row
: (int)col

Sets the action of the Cell at (row, col) to aSelector. Returns self.

setAutoscroll:

- setAutoscroll:(BOOL)flag

If flag is YES and the Matrix is in a scrolling view, it will be auto scrolled whenever a
the mouse is dragged outside the Matrix after a mouse-down event within its bounds.
Returns self.

setAutosizeCells:

- setAutosizeCells:(BOOL)flag

Sets Cells in the Matrix to automatically resize when the size of the Matrix
changes. Returns self.

2-286 Chapter 2: Class Specifications

setBackgroundColor:

- setBackgroundColor: (NXColor)C olorvalue

Sets the background color for the Matrix. This is the color used to fill the space
between Cells or the space behind any non-opaque Cells. If autodisplay is on, the entire
Matrix is redrawn. Returns self.

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the background gray for the Matrix (a backgroundGray of -1.0 means there is no
background gray: the Matrix is transparent). This is the gray used to fill the spaces
between Cells or the space behind any non-opaque Cell if cellBackgroundGray is
-1.0. If autodisplay is on, the entire Matrix is redrawn. Returns self.

See also: - background Gray

setBackgroundTransparent:

- setBackgroundGray:(BOOL)jlag

Sets the background of the Matrix to transparent. With the background transparent, the
spaces between Cells are transparent, as is the space behind any non-opaque Cell. If
autodisplay is on, the entire Matrix is redrawn.

See also: - isBackgroundTransparent

setCellBackground Color:

- setCeIlBackgroundColor:(NXColor)value

Sets the background color for the Cells. If autodisplay is on, the entire Matrix is
redrawn.

setCellBackgroundGray:

- setCellBackground Gray:(float)value

Sets the background gray for the Cells. If value is -1.0, then no background gray is
drawn behind the Cells. If autodisplay is on, the entire Matrix is redrawn.

setCellBackgroundTransparent:

- setCeIlBackgroundTransparent:(BOOL)jlag

Sets the background of the Cells to transparent. If autodisplay is on, the entire Matrix
is redrawn.

See also: - isCellBackgroundTransparent

Application Kit Classes: Matrix 2-287

setCellClass:

- setCeIlClass:classld

Sets the cell Class instance variable to classld, the value returned by sending a class
message to Cell or a subclass of Cell. This class will be used by makeCeIlAt:: to create
new Cells if there is no prototype Cell. The default is set with the setCellClass: class
method.

See also: + setCeIlClass:, - setPrototype:

setCellSize:

- setCeIlSize:(const NXSize *)aSize

Sets the width and the height of each of the Cells. Does not redraw the Matrix (even if
autodisplay is on).

setDoubleAction:

- setDoubleAction:(SEL)aSelector

Sets aSelector as the action to be sent to the Matrix's target (in addition to the regular
action) when the user double-clicks on a Cell. If there is no doubleAction, then
double-clicks are treated as single-clicks. Setting a double action also sets
aIlowMultiClick: to YES. Returns self.

See also: - allowMultiClick:

setEnabled:

- setEnabled:(BOOL)jlag

Ifjlag is YES, enables all Cells in the Matrix; if NO, disables all Cells. If autodisplay
is on, this redraws the entire Matrix. Returns self.

setError Action:

- setErrorAction:(SEL)aSelector

Sets aSelector as the action sent to the target of the Matrix when any text editing errors
occur. An error can occur when the user types something into a Cell and the value
returned when isEntryAcceptable: is sent to the Cell is NO. This is a convenient
method for enforcing some restrictions on what a user can type into a Cell. However,
if you want to impose some restriction such as a range restriction (e.g., a typed number
must be within some bounds), it is probably more convenient simply to check the value
in your action method and, if it is not acceptable, invoke selectTextAt::) to notify the
user that the value must be retyped. Returns self.

2-288 Chapter 2: Class Specifications

setFont:
- setFont:JontObj

Sets the font of the Matrix to JontObj. This will cause all current Cells to have their
font changed to JontObj as well as cause all future Cells to have that font. If autodisplay
is on, this redraws the entire Matrix. Returns self.

setIcon:at: :
- setlcon:(const char *)iconName

at: (int)row
: (int)col

Sets the icon of the Cell at (row, col) to iconName. If autodisplay is on, then the Cell
is redrawn. Returns self.

See also: - setlcon: (ButtonCell, Cell)

setlntercell :
- setlntercell:(const NXSize *)aSize

Sets the width and the height of the space between Cells without redrawing the Matrix,
even if autodisplay is on. Returns self.

setMode:
- setMode:(int)aMode

Sets the mode of the Matrix. aMode can be one of four constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NX_LISTMODE

See also: - mouseDown:

setNextText:
- setNextText:anObject

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

Sets the nextText instance variable. When the user presses the Tab key while the last
editable entry of the Matrix is being edited, the selectText: method is sent to the object
represented by nextText. A backwards link is automatically created, so that pressing
Shift-Tab will move backwards to the previous text via setPreviousText:. Returns self.

Application Kit Classes: Matrix 2-289

setPreviousText:
- setPreviousText:anO b jeet

Normally you never invoke this method. It is invoked automatically by some other
object's setNextText: method. It sets the object which will be sent selectText: when
Shift-Tab is pressed in the Matrix and there are no more fields. Returns self.

setPrototype:
- setPrototype:aCell

Sets the protoCeIl instance variable to aCell and returns the id of the previous
protoCeIl. As the new prototype, aCell is copied to make any future Cells added to the
Matrix.

If you implement your own Cell subclass, then instantiate it as the prototype for your
Matrix and make sure your Cell does the right thing when it receives a copy message.
For example, remember that Object's copy copies only pointers, not what they point
to-sometimes this is what you want, sometimes not. The best way to implement copy
when you subclass Cell is to invoke [super copy], then copy instance variable values in
your subclass individually. Be especially careful that freeing the prototype will not
damage any of the copies that were made and put into the Matrix (for example, due to
shared pointers).

To stop prototyping, invoke this method with nil as the argument, then free the old
prototype Cell if no more Cells of that type will be created. If you want to use a
prototype cell in other places in the application, it may be useful to copy your prototype
when invoking this method, for example:

rnyCellPrototype = [[myCell alloc] init];

[myMatrix setPrototype: [myCellPrototype copy]];

This prevents your version of the prototype from being freed when the Matrix is freed.

setReaction:
- setReaction:(BOOL)jlag

Ifjlag is NO, prevents the cell from changing back to its previous state; if YES, allows
it to revert to reflect unhighlighting. Invoke this from an action method if the action
causes the Cell to change in such a way that trying to unhighlight it would be incorrect;
for example, if the Cell is deleted or its visual appearance completely changes. Returns
self.

2-290 Chapter 2: Class Specifications

setScrollable:
- setScrollable:(BOOL)flag

Sets all the Cells to be scrollable. Returns self.

See also: - setScrollable: (Cell)

setState:at: :
- setState:(int)value

at: (int)row
: (int)col

Sets the state of the Cell at row row and column col to value. For NX_RADIOMODE
Matrices, this is identical to selectCeIlAt:: except that the state can be set to any
arbitrary value. If autodisplay is on, redraws the affected Cell; if the Matrix is in
NX_RADIOMODE, the Cell is redrawn regardless of the setting of autodisplay.
Returns self.

setTag:at: :
- setTag:(int)anInt

at: (int) row
: (int)col

Sets the tag of the Cell at (row, col) to anI nt and returns self.

setTag:target:action:at: :
- setTag:(int)anInt

target:anO b jeet
action: (SEL)aSelector
at: (int)row
: (int)col

Sets the tag, target object and action method of the Cell at row row and column col.
Returns self.

setTarget:
- setTarget:anObject

Sets the target object of the Matrix. This is the target to which actions will be sent
during tracking in any Cells that do not have their own target. Returns self.

See also: - action, - setAction, - target

Application Kit Classes: Matrix 2-291

setTarget:at; :
- setTarget:anObject

at: (int)row
: (int)col

Sets the target of the Cell at row row and column col to anObject. Returns self.

setTextDelegate:
- setTextDelegate:anObject

Sets the object to which the Matrix will forward any messages from the field editor (for
example, text:isEmpty:, textWiIlEnd:, textDidEnd:endChar:, textWillChange:
and textDidChange:). Returns self.

See also: the Text class

setTitle:at: :
- setTitle:(const char *)aString

at: (int)row
: (int)col

Invoke this method to set the title of the Cell at row row and column col to aString. If
autodisplay is on, then the Cell is redrawn. Returns self.

See also: - setTitle: (ButtonCell)

sizeTo::
- sizeTo:(float)width :(float)height

If editing is going on in the Matrix, this aborts the editing, then, after the View is
resized, reselects the text to allow editing to continue. Returns self.

sizeToCells
- sizeToCells

Changes the width and the height of the Matrix frame so that the Matrix's frame
contains exactly the Cells. Does not redraw the Matrix. Returns self.

sizeToFit
- sizeToFit

Changes cellSize to accommodate the Cell with the largest contents in the Matrix.
Then changes the width and the height of the Matrix frame so that the Matrix's frame
contains exactly the Cells. Doesn't redraw the Matrix. Returns self.

2-292 Chapter 2: Class Specifications

target

- target

Returns the id of the Matrix's target object.

See also: - setTarget:.

textDelegate

" - textDelegate

Returns the id of the Matrix's text delegate: the object that receives messages from the
field editor. The field editor is the Text object used to draw text in all cells in the
window. Messages are forwarded to the text delegate by the Matrix.

See also: - getFieldEditor:for: (Window)

textDidChange:

- textDidChange:textObject

This message is forwarded to the textDelegate if the Matrix has one.

See also: - textDelegate

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)whyEnd

Invoked automatically by the system when the text editing ends. If editing ends
because the Return key is pressed, then the message [self sendAction] is sent. To get
the id of the Cell in which editing is being performed, use the selected Cell method; to
access its row or column, use selected Row or selectedCol. If editing ends because the
Tab key is pressed and the Cell being edited was not the last in the Matrix, then the next
Cell is selected. If the Cell is the last one and the nextText instance variable is nil, the
first Cell in the Matrix is selected. Otherwise the selectText: message is sent to the
object stored in nextText. The textDelegate (if any) is sent the textDidEnd:endChar:
message. Returns self,

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Forwarded to the textDelegate (if any). Returns self.

textWillChange:

- (BOOL)textWiIlChange:textObject

Forwarded to the textDelegate (if any). Returns self.

Application Kit Classes: Matrix 2-293

text WillEnd:

- (BOOL)textWiIIEnd:textObject

Invoked automatically by the system before text editing ends. It sends the error Action
to the target ifisEntryAcceptable:. The textDelegate gets a chance to cancel as well.
Returns self.

validateSize:

- validateSize:(BOOL)jlag

Allows control over whether the Matrix will invoke calcSize the next time it draws. If
jlag is YES, then the size information in the Matrix is assumed correct and will not be
recomputed. Ifjlag is NO, then calcSize will be invoked before any further drawing is
done. Returns self.

See also: - calcSize:

write:

- write:(NXTypedStream *)stream

Writes the receiving Matrix to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Matrix Constants */

#define NX RADIOMODE 0
#define NX_HIGHLIGHTMODE 1
#define NX_LISTMODE 2
#define NX TRACKMODE 3

2-294 Chapter 2: Class Specifications

Menu

INHERITS FROM Panel: Window : Responder: Object

DECLARED IN appkit/Menu.h

CLASS DESCRIPTION

The Menu class defines a Panel that contains a single Control object: a Matrix that
displays a list of MenuCells.

There are methods for adding both command and submenu items to the Menu. The
Menu window can be resized to exactly fit the matrix.

Exactly one Menu created by the application is designated as the "main menu" for the
application. This Menu is displayed on top of all other windows whenever the
application is active, and it has no close box.

Menus can be made submenus of other menus. A submenu is associated with a
particular item in another menu, its "supermenu." Whenever the user clicks the item,
the submenu it controls is brought to the screen and "attached" to the controlling
supermenu. An item can control only one submenu.

Note that you can drag Menus into your application from Interface Builder's Palettes
panel. Several menu items are initialized to work correctly without any additional
effort on your part. You can easily set other menu items to display the commands and
perform the actions associated with your specific application.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ w Flags wFlags;
struct _ w Flags2 wFlags2;

Application Kit Classes: Menu 2-295

Inherited from Panel

Declared in Menu

supermenu

matrix

attachedMenu

lastLocation

reserved

menuFlags.sizeFitted

menuFlags.autoupdate

menuFlags.attached

menuFlags.tornOff

menuFlags. wasAttached

menuFlags. wasTornOff

METHOD TYPES

Creating a Menu zone

Initializing a new Menu

2-296 Chapter 2: Class Specifications

(none)

id
id
id
NXPoint
id
struct _menuFlags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

supermenu;
matrix;
attachedMenu;
lastLocation;
reserved;

sizeFitted: 1 ;
autoupdate: 1;
attached: 1 ;
tornOff:l;
wasAttached: 1;
wasTornOff: 1;

menuFlags;

The Menu that this Menu is a submenu of.

The Matrix object used to hold MenuCells.

The submenu that is currently attached to this
Menu. When the user moves or closes a Menu,
the attached submenu performs with it.

Last menu location.

Reserved for future use.

Set if the menu has been sized to fit the matrix.

Set if the menu wants automatic updating.

Set if the menu is attached to its supermenu.

Set if the menu has been torn off of its supermenu.

Set if the menu was attached before tracking.

Set if the menu was torn off before tracking.

+menuZone
+ setMenuZone:

- init
- initTitle:

Setting up the commands - addltem:action:keyEquivalent:
- findCellWithTag:
- itemList
- setltemList:
- setSubmenu:forItem:
- submenuAction:

Managing menu windows - close
- getLocation:forSubmenu:
- moveTopLeftTo::
- sizeToFit
- window Moved:

Displaying the Menu - display
- setAutoupdate:
- update

Handling events - mouseDown:
- rightMouseDown:

Archiving - awake
- read:
- write:

CLASS METHODS

menu Zone

+ (NXZone *)menuZone

Creates and returns a zone with the name "Menus" in which to allocate new Menus.
After invoking this method, you should allocate new Menu instances from this zone.

See also: - alloc (Object)

setMenuZone

+ setMenuZone:(NXZone *)aZone

Sets the zone from which menus will be allocated to aZone.

See also: - alloc (Object)

Application Kit Classes: Menu 2-297

INSTANCE METHODS

addItem:action:keyEquivalent:
- addItem:(const char *)aString

action: (SEL)aSelector
keyEquivaJent: (unsigned short)charC ode

Creates a new MenuCell, appends it to the receiving Menu, and returns the id of the
new cell.

The MenuCell displays aString as the command name for the menu item. aSelector is
the action method the command will invoke. The key equivalent charCode becomes
the key equivalent for the cell.

The new MenuCell's target is nil, it's automatically enabled, and it has no tag or
alternate character string to display. You can change these and other properties of the
Cell, including the submenu attribute, by sending direct messages to the returned id.

This method doesn't automatically redisplay the Menu. Upon the next display
message, the menu is automatically sized to fit.

See also: - setSubmenu:forltem:

awake
-awake

Reinitializes and returns a Menu as it's unarchived. Do not invoke this method directly;
it's invoked by the read: method.

close

- close

Overrides Panel's close method. If a submenu is attached to the Menu, the attached
submenu is also removed from the screen.

See also: - close (Window)

display
- display

This overrides window's display method to provide automatic size-to-fit of the menu
window to its matrix. All changes to the matrix that go through the menu methods
cause a resizing the next time the Menu is displayed.

See also: - sizeToFit

2-298 Chapter 2: Class Specifications

tindCellWithTag:
- findCeIlWithTag:(int)aTag

Returns the MenuCell that has aTag as its tag; returns nil if no such cell can be found.

getLocation:forSubmenu:

init

- getLocation:(NXPoint *)theLocation forSubmenu:aSubmenu

This message is sent whenever the submenu location is needed. By default, the
submenu is to the right of its supermenu, with its titlebar aligned with the supermenu's.
You never directly use this method, but may override it to cause the submenu to be
attached with a different strategy.

- init

Initializes and returns the receiver, a new instance of Menu, displaying the title "Menu."
All other features are as described in the initTitle: method below.

initTitle:
- initTitle:(const char *)aTitle

Initializes and returns the receiver, a new instance of Menu, displaying the title aTitle.
The Menu is positioned in the upper left comer of the screen. The Menu's Matrix is
initially empty.

The Menu is created as a buffered window initially out of the Window Server's screen
list. It must be sent one message to display itself (into the buffer), and another message
to move itself on-screen before it will be visible.

The Menu has a style of NX_MENUSTYLE and it has an NX_ CLOSEBUTTON
button mask. The button isn't shown until the Menu is tom off of its supermenu.

A default matrix is created to contain MenuCell items to display without any
intervening space in a single column. The Matrix will use 12-point Helvetica by default
to display the items. The matrix will be empty.

Items can be added to the Menu through the addItem:action:keyEquivalent: method.
The action and key equivalent may both be null. To make a submenu, a
setSubmenu:forItem: message is sent directly to the Menu.

All Menus have an event mask that excludes keyboard events; they therefore will never
become the key window or main window for your application.

See also: - addItem:action:keyEquivalent:

Application Kit Classes: Menu 2-299

itemList

- itemList

Returns the matrix of MenuCells used by the Menu.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Overrides the View method to allow MenuCell to delegate tracking control to the
Menu. Returns self.

moveTopLeftTo: :

- moveTopLeftTo:(NXCoord)x :(NXCoord)y

Repositions the Window on the screen. The arguments specify the new location of the
Window's top left comer-the top left comer of its frame rectangle-in screen
coordinates.

See also: - dragFrom::eventNum: (Window), - moveTo:: (Window)

read:

- read:(NXTypedStream *)stream

Reads the Menu from the typed stream stream. Returns self.

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Saves the current state of the menu (and its submenus), and pops it up under the mouse
position. The menu is tracked as normal, and then the menu's state is restored.

setAutoupdate:

- setAutoupdate:(BOOL)jlag

Ifjlag is YES, the menu will respond to the update message sent by the Application to
all visible Windows after each event (if Application's autoupdating has been enabled).
If NO, the Menu won't respond.

See also: - update

2-300 Chapter 2: Class Specifications

setltemList:
- setItemList:aMatrix

Sets the Menu's Matrix to aMatrix. Subsequent display will size to fit. The previous
Matrix is returned.

setSubmenu:forltem:
- setSubmenu:aMenu forItem:aCell

Sets aMenu as the submenu controlled by the MenuCell aCell.

sizeToFit
- sizeToFit

Adjusts the size of the Menu window to its Matrix subview so that they exactly
encompass all the commands. Use this method after you're through adding items,
modifying the strings they display, or altering the font used to display them. When the
Menu is resized, its upper left comer remains fixed. After any resizing that might be
necessary, this method will redisplay the Menu.

See also: - sizeToFit (Matrix)

submenuAction:
- submenuAction:sender

This message is the action message sent to a submenu by the MenuCell attached to that
submenu. If sender is in a visible Menu, this action message causes the receiving Menu
to attach itself to the menu containing sender. Returns self.

update
- update

Sent to Menu to have the menu update its display. It does this by getting the
updateAction for each cell and sending it to NXApp. If the updateMethod returns
YES, the Menu's Matrix is told to redraw the cell using drawCeIlAt::. For this method
to have any effect, you must have sent a prior setAutoupdate: YES message.

See also: - setUpdate:

windowMoved:
- windowMoved:(NXEvent *)theEvent

Overrides Window method to detach the receiving Menu from its supermenu.

See also: - windowMoved: (Window)

Application Kit Classes: Menu 2-301

write:
- write:(NXTypedStream *)stream

Writes the receiving Menu to the typed stream stream and returns self.

METHODS IMPLEMENTED BY THE DELEGATE

submenuAction:
- submenuAction:sender

2-302 Chapter 2: Class Specifications

MenuCell

INHERITS FROM ButtonCell : ActionCell : Cell: Object

DECLARED IN appkitlMenuCell.h

CLASS DESCRIPTION

MenuCell is a subclass of ButtonCells that appear in Menus. They draw their text
left-justified and show an optional key equivalent or submenu arrow on the right.

INSTANCE VARIABLES

Inherited from Object

Inheritedfrom Cell

Inherited from ActionCell

Inherited from ButtonCell

Declared in MenuCell

updateAction

METHOD TYPES

Initializing a new MenuCell

Setting the Update Action

Querying the MenuCell

Class is a;

char * contents;
id support;
struct _cFlagsl cFlagsl;
struct _cFlags2 cFlags2;

int tag;
id target;
SEL action;

char * altContents;
union - icon icon;
id sound;
struct _bcFlags 1 bcFlagsl;
struct _bcFlags2 bcFlags2;
unsigned short periodic Delay;
unsigned short periodicInterval;

SEL updateAction;

Action used to keep MenuCell's enabled state in
synch with the Application.

- init
- initTextCell:

- setUpdateAction:forMenu:
- updateAction

- hasSubmenu

Application Kit Classes: MenuCell 2-303

Tracking the Mouse

Setting User Key Equivalents

Archiving

- trackMouse:inRect:ofView:

+ useUserKeyEquivalents:
- userKeyEquivalent

- read:
- write:

INSTANCE METHODS

hasSubmenu

init

- (BOOL)hasSubmenu

Return YES if the MenuCell invokes a submenu, NO otherwise.

- init

Initializes and returns the receiver, a new instance of MenuCell, with the default title
"MenuItem."

initTextCell :

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of MenuCell, with aString as its title.
This method is the designated initializer for the MenuCell class; override this method
if you create a subclass of MenuCell that performs its own initialization.

read:

- read:(NXTypedStream *)stream

Reads the MenuCell from the typed stream stream. Returns self.

2-304 Chapter 2: Class Specifications

setUpdateAction:forMenu:

- setUpdateAction:(SEL)aSelector forMenu:aMenu

Sets the updateAction for the MenuCell. The updateAction is a method that when
invoked should set the MenuCell to reflect the current state of the application. This may
include enabling or disabling the item, changing the string displayed, or setting the
item's state. The updateAction takes a single argument, the id of the Cell to update.

The updateAction shouldn't redisplay the Cell itself. Rather it should return YES or
NO depending upon whether the Cell needs to be redisplayed.

When an updateAction is set for a MenuCell, the Menu passed in aMenu is set so it
will be automatically updated after each event is processed.

See also: - update: (Menu), - updateWindows: (Application)

trackMouse:inRect:ofView:
- (BOOL)trackMouse:(NXEvent *)theEvent

inRect:(const NXRect *)cellFrame
ofView:controlView

Delegates the first event it gets to the Menu. All mouse tracking is handled by Menu.

updateAction
- (SEL)updateAction

Returns selector for the updateAction method.

userKeyEquivalent

- userKeyEquivalent

Returns the user-assigned key equivalent for the receiving MenuCell.

useUserKeyEquivalents:

+ useUserKeyEquivalents:(BOOL)flag

Ifflag is YES, then MenuCells can accept user key equivalents. If NO, user key
equivalents are disabled.

write:
- write:(NXTypedStream *)stream

Writes the receiving MenuCell to the typed stream stream and returns self.

Application Kit Classes: MenuCell 2-305

2-306

NXBitmaplmageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXBitmapImageRep.h

CLASS DESCRIPTION

An NXBitmapImageRep is an object that can render an image from bitmap data. The
data can be in Tag Image File Format (TIFF), or it can be raw image data. If it's raw
data, the object must be informed about the structure of the image-its size, the number
of color components, the number of bits per sample, and so on-when it's first
initialized. If it's TIFF data, the object can get this information from the various TIFF
fields included with the data.

Although NXBitmapImageReps are often used indirectly, through instances of the
NXImage class, they can also be used directly-to render bitmap images or to produce
TIFF representations of them.

Setting Up an NXBitmaplmageRep

A new NXBitmapImageRep is passed bitmap data for an image-or told where to find
it-when it's first initialized:

TIFF data can be read from a stream, from a file, or from a section of the _TIFF
segment of the application executable. If it's stored in a section or a separate file,
the object will delay reading the data until it's needed.

• Raw bitmap data is placed in buffers, and pointers to the buffers are passed to the
object.

An NXBitmapImageRep can also be created from bitmap data that's read from an
existing (already rendered) image. The·object created from this data is able to
reproduce the image.

Although the NXBitmapImageRep class inherits NXImageRep methods that set image
attributes, these methods shouldn't be used. Instead, you should either allow the object
to find out about the image from the TIFF fields or use methods defined in this class to
supply this information when the object is initialized.

Application Kit Classes: NXBitmaplmageRep 2-307

TIFF Compression

TIFF data can be read and rendered after it has been compressed using anyone of the
three schemes briefly described below:

LZW

PackBits

JPEG

Compresses and decompresses without information loss,
achieving compression ratios of anywhere from 2: 1 to 3: 1. It may
be somewhat slower to compress and decompress than the
PackBits scheme.

Compresses and decompresses without information loss, but may
not achieve the same compression ratios as LZW.

Compresses and decompresses with some information loss, but
can achieve compression ratios anywhere from 10: 1 to 100: 1. The
ratio is determined by a user-settable factor ranging from 1.0 to
255.0, with higher factors yielding greater compression. More
information is lost with greater compression, but 15: 1
compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for
images that specify at least 4 bits per sample.

An NXBitmaplmageRep can also produce compressed TIFF data for its image using
any of these schemes.

INSTANCE VARIABLES

Inherited from Object Class is a;

Inherited from NXImageRep NXSize size;

Declared in NXBitmapImageRep (none)

METHOD TYPES

Initializing a new NXBitmaplmageRep object

2-308 Chapter 2: Class Specifications

- initFromSection:
- initFromFile:
- initFromStream:
- initData:fromRect:
- initData:pixels Wide :pixelsHigh:

bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:
bytesPerRow: bitsPerPixel:

- initDataPlanes:pixels Wide:pixelsHigh:
bitsPerSample: samplesPerPixel:
l)asAlpha:isPlanar:colorSpace:
bytesPerRow: bitsPerPixel:

Creating a List of NXBitmapImageReps
+ new ListFromSection:
+ newListFromSection:zone:
+ new ListFromFile:
+ new ListFromFile:zone:
+ newListFromStream:
+ newListFromStream:zone:

Reading information from a rendered image
+ sizeImage:
+ sizeImage:pixels Wide:pixelsHigh:

bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:

Copying and freeing an NXBitmapImageRep
-copy
- free

Getting information about the image
- bitsPerPixel
- samplesPerPixel
- bitsPerSample (NXImageRep)
- isPlanar
- numPlanes
- numColors (NXImageRep)
- has Alpha (NXImageRep)
- bytesPerPlane
- bytesPerRow
- colorSpace
- pixels Wide (NXImageRep)
- pixelsHigh (NXImageRep)

Getting image data - data
- getDataPlanes:

Drawing the image -draw
- drawIn:
- draw At: (NXImageRep)

Producing a TIFF representation of the image
- writeTIFF:
- writeTIFF:usingCompression:
- writeTIFF:usingCompression:andFactor:

Archiving - read:
- write:

Application Kit Classes: NXBitmaplmageRep 2-309

CLASS METHODS

newListFromFile:

+ (List *)newListFromFile:(const char *)filename

Creates one new NXBitmapImageRep instance for each TIFF image specified in the
jilename file, and returns a List object containing all the objects created. If no
NXBitmapImageReps can be created (for example, ifjilename doesn't exist or doesn't
contain TIFF data), nil is returned. The List should be freed when it's no longer
needed.

Each new NXBitmapImageRep is initialized by the initFromFile: method, which
reads information about the image fromjilename, but not the image data. The data will
be read when it's needed to render the image.

See also: + newListFromFile:zone:, - initFromFile:

newListFromFile:zone:

+ (List *)newListFromFile:(const char *)filename zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromFile: does,
except that the List object and the NXBitmapImageReps are allocated from memory
located in aZone.

See also: + newListFromFile:, - initFromFile:

newListFromSection:

+ (List *)newListFromSection:(const char *)name

Creates one new NXBitmapImageRep instance for each TIFF image specified in the
name section of the _TIFF segment in the executable file, and returns a List object
containing all the objects created. If not even one NXBitmapImageRep can be created
(for example, if the name section doesn't exist or doesn't contain TIFF data), nil is
returned. The List should be freed when it's no longer needed.

Each new NXBitmapImageRep is initialized by the initFromSection: method, which
reads information about the image from the section, but doesn't read image data. The
data will be read when it's needed to render the image.

See also: + newListFromSection:zone:, - initFromSection:

2-310 Chapter 2: Class Specifications

newListFromSection :zone:

+ (List *)newListFromSection:(const char *)name zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromSection:
does, except that the List object and the NXBitmapImageReps are allocated from
memory located in aZone.

See also: + newListFromSection:, - initFromSection:

newListFromStream:

+ (List *)newListFromStream:(NXStream *)stream

Creates one new NXBitmapImageRep instance for each TIFF image that can be read
from stream, and returns a List object containing all the objects created. If not even one
NXBitmapImageRep can be created (for example, if the stream doesn't contain TIFF
data), nil is returned. The List should be freed when it's no longer needed.

The data is read and each new object initialized by the initFromStream: method.

See also: + newListFromStream:zone:, - initFromStream:

newListFromStream:zone:

+ (List *)newListFromStream:(NXStream *)stream zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromStream:
does, except that the NXBitmapImageReps and the List object are allocated from
memory located in aZone.

See also: + newListFromStream:, - initFromStream:

sizeImage:
+ (int)sizelmage:(const NXRect *)reet

Returns the number of bytes that would be required to hold bitmap data for the rendered
image bounded by the reet rectangle. The rectangle is located in the current window
and is specified in t~e current coordinate system.

See also: + sizelmage:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar :colorSpace:, - initData:fromRect:

Application Kit Classes: NXBitmaplmageRep 2-311

sizeImage:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace:

+ (int)sizelmage:(const NXRect *)reet
pixelsWide:(int *)width
pixelsHigh:(int *)height
bitsPerSample:(int *)bps
samplesPerPixel:(int *)spp
hasAlpha:(BOOL *)alpha
isPlanar:(BOOL *)eonfig
colorSpace:(NXColorSpace *)spaee

Returns the number of bytes that would be required to hold bitmap data for the rendered
image bounded by the reet rectangle. The rectangle is located in the current window
and is specified in the current coordinate system.

Every argument but reet is a pointer to a variable where the method will write
information about the image. For an explanation of the information provided, see the
description of the initDataPlanes: ... method

See also: - initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

INSTANCE METHODS

bitsPerPixel

- (int)bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data. This is
normally equal to the number of bits per sample or, if the data is in meshed
configuration, the number of bits per sample times the number of samples per pixel. It
can be explicitly set to another value (in the initData: ... or initDataPlanes: ... method)
in case extra memory is allocated for each pixel. This may be the case, for example, if
pixel data is aligned on byte boundaries.

However, in the current release, an NXBitmapImageRep cannot render an image that
has empty memory separating pixel specifications.

bytesPer Plane

- (int)bytesPerPlane

Returns the number of bytes in each plane or channel of data. This will be figured from
the number of bytes per row and the height of the image.

See also: - bytesPerRow

2-312 Chapter 2: Class Specifications

bytesPerRow

-(int)bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single row of
pixels spanning the width of the image) in each data plane. If not explicitly set to
another value (in the initData: ... or initDataPlanes: ... method), this will be figured
from the width of the image, the number of bits per sample, and, if the data is in a
meshed configuration, the number of samples per pixel. It can be set to another value
to indicate that each row of data is aligned on word or other boundaries.

However, in the current release, an NXBitmaplmageRep can't render an image that has
empty space at the end of a scan line.

colorS pace

- (NXColorSpace)colorSpace

Returns one of the following enumerated values, which indicate how bitmap data is to
be interpreted:

NX_OnelsBlack
NX_ Onels White
NX_RGBColorSpace
NX_ CMYKColorSpace

A gray scale where 1 means black and 0 means white
A gray scale where 0 means black and 1 means white
Red, green, and blue color values
Cyan, magenta, yellow, and black color values

These values are defined in the header file appkit/graphics.h.

See also: - numColors (NXlmageRep)

copy

-copy

Returns a new NXBitmaplmageRep instance that's an exact copy of the receiver. The
new object will have its own copy of the bitmap data, unless the receiver merely
references the data. In that case, both objects will reference the same data.

The new object doesn't need to be initialized.

data

- (unsigned char *)data

Returns a pointer to the bitmap data. If the data is in planar configuration, this pointer
will be to the first plane. To get separate pointers to each plane, use the getDataPlanes:
method.

See also: - getDataPlanes:

Application Kit Classes: NXBitmaplmageRep 2-313

draw
- (BOOL)draw

Renders the image at (0.0, 0.0) in the current coordinate system on the current device
using the appropriate PostScript imaging operator. This method returns YES if
successful in producing the image, and NO if not.

See also: - drawAt: (NXImageRep), - drawln:

drawln:
- (BOOL)drawln:(const NXRect *)rect

Renders the image so that it fits inside the rectangle referred to by recto The current
coordinate system is translated and scaled so the image will appear at the right location
and fit within the rectangle. The draw method is then invoked to render the image.
This method passes through the return value of the draw method, which indicates
whether the image was successfully drawn.

The coordinate system is not restored after it has been altered.

See also: - draw, - draw At: (NXImageRep)

free
- free

Deallocates the NXBitmapImageRep. This method will not free any bitmap data that
the object merely references-that is, raw data that was passed to it in a initData:,.. or
initDataPlanes: ... message.

getDataPlanes:
- getDataPlanes:(unsigned char **)thePlanes

Provides bitmap data for the image separated into planes. thePlanes should be an array
of five character pointers. If the bitmap data is in planar configuration, each pointer will
be initialized to point to one of the data planes. If there are less than five planes, the
remaining pointers will be set to NULL. If the bitmap data is in meshed configuration,
only the first pointer will be initialized; the others will be NULL. Returns self.

Color components in planar configuration are arranged in the expected order-for
example, red before green before blue for ROB color. All color planes precede the
coverage plane.

See also: - data, - isPlanar

2-314 Chapter 2: Class Specifications

init

Generates an error message. This method cannot be used to initialize an
NXBitmapImageRep. Instead, use one of the methods listed under "See also" below.

See also: - initFromSection:, - initFromFile:, - initFromStream:,
- initDataPlanes:pixels Wide:pixelsHigh: bitsPerSample:samplesPer Pixel:
hasAlpha:isPlanar:colorSpace: bytesPer Row: bitsPer Pixel:,
- initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:, - initData:fromRect:

initData:fromRect:
- initData:(unsigned char *)data fromRect:(const NXRect *)reet

Initializes the receiver, a newly allocated NXBitmapImageRep object, with bitmap data
read from a rendered image. The image that's read is located in the current window and
is bounded by the reet rectangle as specified in the current coordinate system.

This method uses PostScript imaging operators to read the image data into the data
buffer; the object is then created from that data. The object is initialized with
information about the image obtained from the Window Server.

If data is NULL, the NXBitmapImageRep will allocate enough memory to hold bitmap
data for the image. In this case, the buffer will belong to the object and will be freed
when the object is freed.

If data is not NULL, you must make sure the buffer is large enough to hold the image
bitmap. You can determine how large it needs to be by sending a sizeImage: message
for the same rectangle. The NXBitmapImageRep will only reference the data in the
buffer; the buffer won't be freed when the object is freed.

If for any reason the new object can't be initialized, this method frees it and returns nil.
Otherwise, it returns the initialized object (self).

See also: + sizeImage:

Application Kit Classes: NXBitmaplmageRep 2-315

initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

- initData:(unsigned char *)data
pixels Wide: (int) width
pixelsHigh: (int)he ig ht
bitsPerSample: (int)bps
sanlplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)conjig
colorSpace:(NXColorSpace)space
bytesPer Row: (int)rowBytes
bitsPerPixel:(int)pixeIBits

Initializes the receiver, a newly allocated NXBitmapImageRep object, so that it can
render the image specified in data and described by the other arguments. If the object
can't be initialized, this method frees it and returns nil. Otherwise, it returns the object
(self).

data points to a buffer containing raw bitmap data. If the data is in planar configuration
(config is YES), all the planes must follow each other in the same buffer. The
initDataPlanes: ... method can be used instead of this one if there are separate buffers
for each plane.

If data is NULL, this method allocates a data buffer large enough to hold the image
described by the other arguments. You can then obtain a pointer to this buffer (with the
data or getDataPlanes: method) and fill in the image data. In this case the buffer will
belong to the object and will be freed when it's freed.

If data is not NULL, the object will only reference the image data; it won't copy it. The
buffer won't be freed when the object is freed.

All the other arguments to this method are the same as those to initDataPlanes: ... See
that method for descriptions.

See also: - initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

2-316 Chapter 2: Class Specifications

initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

_ initDataPlanes:(unsigned char **)planes
pixels Wide: (int)width
pixelsHigh:(int)height
bitsPerSample:(int)bps
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
is Planar : (BOOL)config
colorSpace:(NXColorSpace)space
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixeIBits

Initializes the receiver, a newly allocated NXBitmapImageRep object, so that it can
render the image specified in planes and described by the other arguments. If the object
can't be initialized, this method frees it and returns nil. Otherwise, it returns the object
(self).

planes is an array of character pointers, each of which points to a buffer containing raw
image data. If the data is in planar configuration, each buffer holds one component
one plane-of the data. Color planes are arranged in the standard order-for example,
red before green before blue for RGB color. All color planes precede the coverage
plane.

If the data is in meshed configuration (config is NO), only the first buffer is read. The
initData: ... method can be used instead of this one for data in meshed configuration.

If planes is NULL or if it's an array of NULL pointers, this method allocates enough
memory to hold the image described by the other arguments. You can then obtain
pointers to this memory (with the getDataPlanes: or data method) and fill in the image
data. In this case, the allocated memory will belong to the object and will be freed when
it's freed.

If planes is not NULL and the array contains at least one data pointer, the object will
only reference the image data; it won't copy it. The buffers won't be freed when the
object is freed.

Each of the other arguments (besides planes) informs the NXBitmapImageRep object
about the image. They're explained below:

• width and height specify the size of the image in pixels. The size in each direction
must be greater than O.

• bps (bits per sample) is the number of bits used to specify one pixel in a single
component of the data. All components are assumed to have the same bits per
sample.

Application Kit Classes: NXBitmaplmageRep 2-317

• spp (samples per pixel) is the number of data components. It includes both color
components and the coverage component (alpha), if present. Meaningful values
range from 1 through 5. An image with cyan, magenta, yellow, and black (CMYK)
color components plus a coverage component would have an spp of 5; a gray-scale
image that lacks a coverage component would have an spp of 1.

• alpha should be YES if one of the components counted in the number of samples
per pixel (spp) is a coverage component, and NO if there is no coverage component.

• config should be YES if the data components are laid out in a series of separate
"planes" or channels ("planar configuration"), and NO if component values are
interwoven in a single channel ("meshed configuration").

For example, in meshed configuration, the red, green, blue, and coverage values for
the first pixel of an image would precede the red, green, blue, and coverage values
for the second pixel, and so on. In planar configuration, red values for all the pixels
in the image would precede all green values, which would precede all blue values,
which would precede all coverage values.

• space indicates how data values are to be· interpreted. It should be one of the
following enumerated values (defined in the header file appkit/graphics.h):

NX_ OneIsBlack
NX_ OneIs White
NX_RGBColorSpace
NX_ CMYKColorSpace

A gray scale between 1 (black) and ° (white)
A gray scale between ° (black) and 1 (white)
Red, green, and blue color values
Cyan, magenta, yellow, and black color values

• rowBytes is the number of bytes that are allocated for each scan line in each plane
of data. A scan line is a single row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits
per pixel in each sample (bps), and, if the data is in a meshed configuration, the
number of samples per pixel (spp). However, if the data for each row is aligned on
word or other boundaries, it may have been necessary to allocate more memory for
each row than there is data to fill it. rowBytes lets the object know whether that's
the case. In the current release, an NXBitmapImageRep cannot render an image
with empty space at the end of a scan line.

If row Bytes is 0, the NXBitmapImageRep assumes that there's no empty space at
the end of a row.

2-318 Chapter 2: Class Specifications

• pixelBits infonns the NXBitmapImageRep how many bits are actually allocated
per pixel in each plane of data. If the data is in planar configuration, this nonnally
equals bps (bits per sample). If the data is in meshed configuration, it nonnally
equals bps times spp (samples per pixel). However, it's possible for a pixel
specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. In the current
release, an NXBitmapImageRep cannot render an image if this is the case.

If pixelBits is 0, the object will interpret the number of bits per pixel to be the
expected value, without any meaningless bits.

This method is the designated initializer for NXBitmapImageReps that handle raw
image data.

See also: - initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

initFromFile:
- initFromFile:(const char *)jilename

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF
image found in the jilename file. This method reads some infonnation about the image
fromjiiename, but not the image itself. Image data will be read when it's needed to
render the image.

If the new object can't be initialized for any reason (for example,jilename doesn't exist
or doesn't contain TIFF data), this method frees it and returns nil. Otherwise, it returns
self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a file.

See also: + newListFromFile:, - initFromSection:

Application Kit Classes: NXBitmaplmageRep 2-319

initFromSection:
- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF
image found in the name section in the _TIFF segment of the application executable.
This method reads some information about the image from the section, but not the
image itself. Image data is read only when it's needed to render the image.

If the new object can't be initialized for any reason (for example, the name section
doesn't exist or doesn't contain TIFF data), this method frees it and returns nil.
Otherwise, it returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a section of the _TIFF segment.

See also: + newListFromSection:, - initFromFile:

initFromStream:
- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF
image read from stream. If the new object can't be initialized for any reason (for
example, stream doesn't contain TIFF data), this method frees it and returns nil.
Otherwise, it returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a stream.

See also: + newListFromStream:

isPlanar
- (BOOL)isPlanar

Returns YES if image data is segregated into a separate plane for each color and
coverage component (planar configuration), and NO if the data is integrated into a
single plane (meshed configuration).

See also: - samplesPerPixel

2-320 Chapter 2: Class Specifications

numPlanes

- (int)numPlanes

Returns the number of separate planes that image data is organized into. This will be
the number of samples per pixel if the data has a separate plane for each component
(is Planar returns YES) and 1 if the data is meshed (isPlanar returns NO).

See also: - isPlanar, - samplesPerPixel, - hasAlpha, - numColors (NXImageRep)

read:

- read:(NXTypedStream *)stream

Reads the NXBitmapImageRep from the typed stream stream.

See also: - write:

samplesPer Pixel

- (int)samplesPerPixel

Returns the number of components in the data. It includes both color components and
the coverage component, if present.

See also: - hasAlpha, - numColors (NXImageRep)

write:

- write:(NXTypedStream *)stream

Writes the NXBitmapImageRep to the typed stream stream.

See also: - read:

writeTIFF:

- writeTIFF: (NXStream *)stream

Writes a TIFF representation of the itnage to stream. This method is equivalent to
writeTIFF:usingCompression:andFactor: when
NX_TIFF _COMPRESSION_NONE is passed as the second argument. The TIFF data
is not compressed.

See also: - writeTIFF:usingCompression:andFactor:

Application Kit Classes: NXBitmaplmageRep 2-321

writeTIFF:usingCompression:
- writeTIFF:(NXStream *)stream usingCompression:(int)compression

Writes a TIFF representation of the image to stream, compressing the data according
to the compression scheme. This method is equivalent to
writeTIFF:usingCompression:andFactor: when 0.0 is passed as the third argument.
If compression is NX_TIFF _COMPRESSION_JPEG, the default compression factor
will be used. This and the other compression constants are listed under the next
method.

See also: - writeTIFF:usingCompression:andFactor:

writeTIFF:usingCompression:andFactor:
- writeTIFF:(NXStream *)stream

usingCompression:(int)compression
andFactor:(float)jactor

Writes a TIFF representation of the image to stream. If the stream isn't currently
positioned at location 0, this method assumes that it contains another TIFF image. It
will try to append the TIFF representation it writes to that image. To do this, it must
read the header of the image already in the stream. Therefore, the stream must be
opened with NX_READWRITE permission.

The second argument, compression, indicates whether or not the data should be
compressed and, if so, which compression scheme to use. It should be one of the
following constants:

NX_TIFF _COMPRESSION_LZW
NX_ TIFF _ COMPRES SION_PACKB ITS
NX_ TIFF _ COMPRESSION_JPEG
NX_TIFF _COMPRESSION_NONE

LZW compression
PackBits compression
JPEG compression
No compression

The third argument,jactor, is used in the JPEG scheme to determine the degree of
compression. Ifjactor is 0.0, the default compression factor of 10.0 will be used.
Otherwise,jactor should fall within the range 1.0-255.0, with higher values yielding
greater compression but also greater information loss.

The compression schemes are discussed briefly under "CLASS DESCRIPTION"
above.

2-322 Chapter 2: Class Specifications

NXBrowser

INHERITS FROM Control: View : Responder: Object

DECLARED IN appkit/NXBrowser.h

CLASS DESCRIPTION

NXBrowser provides a user interface for displaying and selecting hierarchically
organized data such as directory paths. The levels of the hierarchy are displayed in
columns. Columns are numbered from left to right, beginning with O. Each column
consists of a ScrollView or Clip View containing a Matrix filled with NXBrowserCells.
NXBrowser must have a delegate; the delegate's role is to provide the data that fills the
columns as the user navigates through the hierarchy.

You can implement one of three delegate types-normal, lazy, or very-Iazy
depending on your needs for performance and memory use. A normal delegate
implements the browser:fillMatrix:inColumn: method; implemented alone, this
method may improve performance if the data space is small, since it always creates and
loads all the entries in a column. A lazy delegate implements the
browser:fiIlMatrix:inColumn: and browser:loadCell:atRow:inColumn: methods;
lazy delegates create all cells in a column, but they load only those that are displayed.
A very-lazy delegate implements the browser:loadCell:atRow:inColumn: and
browser:getNumRowslnColumn: methods. Very-lazy delegates make spare use of
memory by not creating a cell for an entry until it's to be displayed; this is useful for
large, potentially open-ended data spaces. A delegate must implement either the
normal, lazy, or very-lazy methods; however, it shouldn't implement both the
browser:fillMatrix:inColumn: and browser:getNumRowslnColumn: methods.

An entry in NXBrowser's columns can be either a branch node (such as a directory) or
a leaf node (such as a file). As the delegate loads an entry in a Cell, it invokes
NXBrowserCell's setLeaf: method to specify the type of entry. When the user selects
a single branch node entry in a column, the NXBrowser sends itself the addColumn
message, which messages the delegate to load the next column. NXBrowser can be set
to allow selection of multiple entries in a column, or to limit selection to a single entry.
When set for multiple selection, it can also be set to limit multiple selection to leaf
nodes only, or to allow selection of both types of nodes together.

As a subclass of Control, NXBrowser has a target object and action message. Each
time the user selects one or more entries in a column, the action message is sent to the
target.

You can change the appearance and user interface feature~ of NXBrowser in a number
of ways. Columns in the NXBrowser may have up and down scroll buttons, scroll bars,
both, or neither. The NXBrowser itself mayor may not have left and right scroll
buttons. You generally won't create NXBrowser without scrollers; if you do, you must
make sure the bounds rectangle of the NXBrowser is large enough that all its rows and
columns can be displayed. The NXBrowser's columns may be bordered and titled,

Application Kit Classes: NXBrowser 2-323

bordered and untitled, or unbordered and untitled. A column's title may be taken from
the selected entry in the column to its left, or may be provided explicitly by NXBrowser .
or its delegate.

You can drag NXBrowser into an application from the Interface Builder Palettes panel.
Interface Builder provides easier ways to set many of the user interface features
described previously.

INSTANCE VARIABLES

Inherited from Object

Inheritedfrom Responder

Inherited from View

Inheritedfrom Control

Defined in NXBrowser

target

delegate

action

doubleAction

matrixClass

pathSeparator

2-324 Chapter 2: Class Specifications

Class isa;

id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _v Flags vFlags;

int tag;
id cell;
struct _conFlags conFlags;

id target;
id delegate;
SEL action;
SEL doubleAction;
id matrix Class;
id cellPrototype;
unsigned short pathSeparator;

The object notified by NXBrowser when one or
more items are selected in a column.

The object providing the data which is browsed
by.the NXBrowser.

The message sent to the target when one or more
entries are selected in a column.

The message sent to the target when an entry in
the NXBrowser is double-clicked.

The class used to instantiate the matrices in the
columns of NXBrowser; Matrix by default.

The character which separates the substrings of a
path (see getPath:ToColumn:, setPath:).

METHOD TYPES

Initializing and freeing - initFrame:
- free

Setting the delegate - delegate
- setDelegate:

Setting target and action - action
- setAction:
- target
- setTarget:
.- double Action
- setDoubleAction:

Setting the Matrix class - setMatrixClass:

Setting the Cell class - setCellClass:
- cellPrototype
- setCellPrototype:

Setting NXBrowser behavior - allowMultiSel:
- allowBranchSel:
- reuseColumns:
- acceptArrowKeys:
- acceptsFirstResponder
- setEnabled:
- hideLeftAndRightScrollButtons:
- useScrollButtons:
- useScrollBars:

Setting NXBrowser appearance - setMinColumn Width:
- minColumn Width
- setMax VisibleColumns:
- max VisibleColumns
- num VisibleColumns
- first Visible Column
-lastVisibleColumn
-lastColumn
- separateColumns:
- columnsAreSeparated

Application Kit Classes: NXBrowser 2-325

Manipulating columns - loadColumnZero
- isLoaded
- addColumn
- reloadColumn:
- displayColumn:
- displayAllColumns
- setLastColumn:
- selectAll:
- selectedColumn
- columnOf:
- validate VisibleColumns

Manipulating column titles - getTitleFromPreviousColumn:
- isTitled
- setTitled:
- getTitleFrame:ofColumn:
- setTitle:ofColumn:
- drawTitle:inRect:ofColumn:
- clearTitlelnRect:ofColumn:
- titleHeight
- titleOfColumn:

Scrolling the NXBrowser - scrollColumnsRightBy:
- scrollColumnsLeftBy:
- scrollColumnTo Visible:
- scrollUpOrDown:
- reflectScroll:

Event handling - mouseDown:
-keyDown:
-.doClick:
- doDoubleClick:

Getting column Matrices and Cells - getLoadedCellAtRow:inColumn:
- matrixlnColumn:

Getting column frames -getFrame:ofColumn:
- getFrame:oflnsideOfColumn:

Paths - setPathSeparator:
- setPath:
- getPath:toColumn:

Drawing - drawS elf: :

Resizing the NXBrowser - sizeTo::
- sizeToFit

Arranging NXBrowser components
- tile

2-326 Chapter 2: Class Specifications

INSTANCE METHODS·

acceptArrowKeys:
- acceptArrowKeys:(BOOL)jlag

Sets NXBrowser handling of arrow key input. Ifflag is YES, then the keyboard arrow
keys move the selection whenever the NXBrowser or one of its subviews is the first
responder; ifjlag is NO, arrow key input has no effect. Returns self.

acceptsFirstResponder
- (BOOL)acceptsFirstResponder

Returns YES if the NXBrowser accepts arrow key input; NO otherwise. The default
setting is NO.

See also: - acceptArrowKeys:

action
- (SEL)action

Returns the action sent to the target by the NXBrowser when the user makes a selection
in one of its columns.

See also: - doubleAction, - setAction:, - setDoubleAction:

addColumn
-addColumn

Adds a column to the right of the last column in the NXBrowser and, if necessary,
scrolls the NXBrowser so that the new column is visible. You never invoke this
method; it's invoked by doClick: and keyDown: when the user selects a single branch
node entry in the NXBrowser, and by setPath: when it matches a path substring with a
branch node entry. Returns self.

See also: -loadColumnZero, - reloadColumn:, - setPath:

allowBranchSel:
- allowBranchSel:(BOOL)jlag

Sets whether the user can select multiple branch and leaf node entries. Ifjlag is YES
and multiple selection is enabled (by allowMultiSel:), then multiple branch and leaf
node entries can be selected. By default, a user can choose only multiple leaf node
entries when multiple entry selection is enabled. Returns self.

See also: - allowMultiSel:

Application Kit Classes: NXBrowser 2-327

alIowMultiSel:

- aIlowMultiSel:(BOOL).flag

Sets whether the user can select multiple entries in a column. Ifflag is YES, the user
can choose any number of leaf entries in a column (or leaf and branch entries if enabled
byaIIowBranchSel:). By default, the user can choose just one entry in a column at a
time. Returns self.

See also: - aIIowBranchSel:

cell Prototype

- ceIIPrototype

Returns the NXBrowser's prototype cell. This cell is copied to create new cells in the
columns of the NXBrowser.

See also: - setCeIIPrototype:

c1earTitlelnRect:ofColumn:

- cIearTitlelnRect:(const NXRect *)aReet of Column: (int)eolumn

Clears the title displayed in aReet above column. You don't invoke this method
directly; it's called whenever a title of a column needs to be cleared. You can override
this method if you draw your own column titles. aReet is in the NXBrowser's
coordinate system. Returns self.

columnOf:

- (int)coluinnOf:matrix

Returns the index of the column containing matrix; the leftmost (root) column is O.
Returns -1 if no column contains matrix.

See also: - matrixlnColumn:

columnsAreSeparated

- (BOOL)columnsAreSeparated

Returns YES if columns are separated by a bezeled bar; NO otherwise. If the
NXBrowser is set to display column titles, its columns are automatically separated by
bezels; however, the value returned by this method is not changed by the setTitled:
method.

See also: - separateColumns:, - setTitled:

2-328 Chapter 2: Class Specifications

delegate

- delegate

Returns the delegate of the NXBrowser, the object that provides the data to be browsed.

See also: - setDelegate:, "METHODS IMPLEMENTED BY THE DELEGATE"

display AIIColumns

- display AllColumns

Causes columns currently visible in the NXBrowser to be redisplayed. You can call this
to update the NXBrowser after manipulating it with display disabled in the window.
Returns self.

displayColumn:

- displayColumn:(int)column

Validates and displays column number column. You can call this method to update the
NXBrowser after manipulating it with display disabled in column. Returns self.

See also: - display AIIColumns

doClick:

- doClick:sender

You never invoke this method. This is the action message sent to the NXBrowser by a
column's Matrix when a mouse-down event occurs in a column. It sets the lastColumn
to that of the Matrix where the click occurred, and removes any columns to the right
that were previously loaded in the NXBrowser. If a single branch node entry is selected
by the event, this method sends addColumn to self to display the-corresponding data
in the column to the right. It sends the NXBrowser's action message to its target and
returns self.

See also: - action, - setAction, - setTarget, - target

doDoubleClick:

- doDoubleClick:sender

You never invoke this method. This is the action message sent to the NXBrowser by a
column's Matrix when a double-click occurs in a column. This method simply sends
the doubleAction message to the target; if no double Action message is set, it sends the
action. Override this method to add specific behavior for double-click events. Returns
self.

See also: - doubleAction, - setDoubleAction, - setTarget, - target

Application Kit Classes: NXBrowser 2-329

doubleAction

- (SEL)doubleAction

Returns the action sent by the NXBrowser to its target when the user double-clicks on
an entry. If no doubleAction message is specified, this method returns the action.

See also: - setDoubleAction:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the NXBrowser; loads column 0 if it has not been loaded. Override this method
if you change the way NXBrowser draws itself. You never invoke this method; it's
invoked by the display method. Returns self.

drawTitle: inRect: of Column:

- drawTitle:(const char *)title
inRect:(const NXRect *)aRect
of Column: (int)column

You never invoke this method. It's invoked whenever the NXBrowser needs to draw a
column title. You may override it if you draw your own column titles. Returns self.

first VisibleColumn

- (int)6rstVisibleColumn

Returns the index of the leftmost visible column.

See also: -lastVisibleColumn

free

- free

Frees the NXBrowser and all the objects it manages: scroll views, matrices, cells, scroll
buttons, prototypes, and so on. Returns nil.

getFrame:ofColumn:

- (NXRect *)getFrame:(NXRect *)theRect ofinsideOfColumn:(int)column

Returns a pointer to the rectangle (in NXBrowser coordinates) containing column; the
pointer is returned both explicitly by the method and implicitly in theRect. The
returned rectangle includes the bezel area surrounding the column. If column isn't
currently loaded or displayed, this method returns NULL explicitly, without changing
the coordinates of the rectangle represented in theRect. It also returns NULL if theRect
is NULL.

2-330 Chapter 2: Class Specifications

getFrame:ofInsideOfColumn:
- (NXRect *)getFrame:(NXRect *)theRect ofinsideOfColumn:(int)column

Returns a pointer to the rectangle (in NXBrowser coordinates) containing the "insides"
of column; the pointer is returned both explicitly by the method and implicitly in
theRect. The "insides" are defined as the area in the column that contains the cells and
only that area (i.e., no bezels). If column isn't currently loaded or displayed, this
method returns NULL explicitly, without changing the coordinates of the rectangle
represented in theRect. It also returns NULL if theRect is NULL.

getLoadedCeIlAtRow:inColumn:
- getLoadedCeIlAtRow:(int)row inColumn:(int)column

Returns the cell at row in column, if that column is currently in the NXBrowser. This
method creates and loads the cell if necessary. It's the safest way to get a particular cell
in a column, since lazy delegates don't load every cell in a matrix and very-lazy
delegates don't even create all cells until they're displayed. This method is preferred
to the Matrix method ceIlAt::. If the specified column isn't in the NXBrowser, or if row
doesn't exist in column, returns nil.

getPath:toColumn:
- (char *)getPath:(char *)thePath toColumn:(int)column

Returns a pointer to the string representing the path to column, both explicitly and in
thePath. Before invoking this method, you must allocate sufficient memory to accept
the entire path string, and set thePath as a pointer to that memory. column must
currently be loaded in the NXBrowser. If column isn't loaded or thePath is a null
pointer, this method returns NULL.

The path is constructed by concatenating the string values in the selected cells in each
column, preceding each with the pathSeparator. For example, consider a pathSeparator
"@" and an NXBrowser with two columns. If the selected cell in the left column has
the string value "foo" and the selected cell in the right column has the string value "bar,"
the resulting path is "@foo@bar." The default pathSeparator is the slash character
("r).

See also: - pathSeparator, - setPath:, - setPathSeparator:

getTitleFrame:ofColumn:
- (NXRect *)getTitleFrame:(NXRect *)theRect of Column: (int)column

Returns theRect, a pointer to the rectangle (in NXBrowser coordinates) enclosing the
title of column number column. If the NXBrowser isn't displaying titles or the
specified column isn't loaded, returns NULL.

Application Kit Classes: NXBrowser 2-331

getTitleFromPreviousColumn:

- getTitleFromPreviousColumn:(BOOL)jlag

Ifflag is YES, sets the NXBrowser so that each column takes its title from the string
value in the selected cell in the column to its left, leaving column 0 untitled; use
setTitle:ofColumn: to give column 0 a title. This method affects the receiver only
when it is titled (isTitled returns YES).

By default, the NXBrowser is set to get column titles from the previous column. Send
this message with NO as the argument if your delegate implements the
browser:titleOfColumn: method or if you use the setTitle:ofColumn: method to
set all column titles. Returns self.

See also: - isTitled, - setTitle:ofColumn:, - setTitled:, - browser:titleOfColumn:
in "METHODS IMPLEMENTED BY THE DELEGATE"

hideLeftAndRightScrollButtons:

- hideLeftAndRightScroIlButtons:(BOOL)jlag

Ifjlag is YES, sets the NXBrowser to hide left and right scroll buttons. Generally, you
shouldn't hide left and right scroll buttons unless your data is nonhierarchical, thus
limited to a single column, or restricted so that the NXBrowser will always display
enough columns for all data. Returns self.

initFrame

- initFrame:(const NXRect *)frameRect

Initializes a new instance of NXBrowser with a bounds offrameRect. The initialized
NXBrowser is set to have column titles, to get titles from previous columns, and to use
scrollbars. The minimum column width is set to 100 and the path separator is set to the
slash ("I") character. The NXBrowser is set not to clip. This method invokes the tile
method to arrange the components of the NXBrowser (titles, scroll bars, matrices, and
so on).

isLoaded

- (BOOL)isLoaded

Returns YES if any of the NXBrowser's columns are loaded.

See also: loadColumnZero

2-332 Chapter 2: Class Specifications

isTitied

- (BOOL)isTitled

Returns YES if the NXBrowser's columns are displayed with titles above them; NO
otherwise.

See also: - getTitleFromPreviousColumn:, - setTitled:

keyDown

- keyDown:(NXEvent *)theEvent

Handles arrow key events. This method is invoked when the NXBrowser or one of its
subviews is the first responder. If the NXBrowser has been set to accept arrow keys,
and the key represented in theEvent is an arrow key, this method scrolls through the
NXBrowser in the direction indicated.

See also: - acceptArrowKeys:, - acceptsFirstResponder

last VisibleColumn

- (int)lastVisibleColumn

Returns the index of the rightmost visible column. This may be less than the value
returned by lastColumn if the NXBrowser has been scrolled left.

See also: - firstVisibleColumn, -lastColumn

lastColumn

- (int)lastColumn

Returns the index of the last column in the NXBrowser.

loadColumnZero

- load Column Zero

Loads and displays data in column 0 of the NXBrowser, unloading any columns to the
right that were previously loaded. Invoke this method to force the NXBrowser to be
loaded. You may want to override this method if you subclass NXBrowser.

See also: - addColumn, - reloadColumn:

matrixlnColumn:

- matrixlnColumn:(int)column

Returns the matrix found in column number column. Returns nil if column number
column isn't loaded in the NXBrowser.

Application Kit Classes: NXBrowser 2-333

max VisibleColumns

- (int)maxVisibleColumns

Returns the maximum number of visible columns allowed. No matter how many
loaded columns the NXBrowser contains, or how large the NXBrowser is made (for
example, by resizing its window), it will never display more than this number of
columns. If the number of loaded columns can exceed the value returned by this
method, the NXBrowser must display left and right scroll buttons.

See also: - hideLeftAndRightScrollButtons, - setMaxVisibleColumns

minColumn Width

- (int)minColumn Width

Returns the minimum width of a column in PostScript points (rounded to the nearest
integer). No column will be smaller than the returned value unless the NXBrowser
itself is smaller than that. The default setting is 100 points.

See also: - setMinColumn Width

mouseDown:

- mouseDown:(NXEvent *)theEvent

Handles a mouse down in the NXBrowser's left or right scroll buttons. Returns self.

num VisibleColumns

- (int)num VisibleColumns

Returns the number of columns which can be visible at the same time in the
NXBrowser (that is, the current width, in columns, of the NXBrowser). This may be
less than the value returned by max VisibleColumns if the window containing the
NXBrowser has been resized.

See also: - setMaxVisibleColumns

reflectS croll :

- reflectScroll:clipView

This method updates scroll bars in the column containing clip View. Scroll bars are
enabled if a column contains more data than can be displayed at once and disabled if
the column can display all data. Returns self.

See also: - useScrollBars

2-334 Chapter 2,' Class Specifications

reloadColumn:

- reloadColumn:(int)column

Reloads column number column by sending a message to the delegate to update the
Cells in its Matrix, then reselecting the previously selected Cell if it's still in the Matrix.
Redraws the column and returns self.

reuseColumns:

- reuseColumns:(BOOL)flag

Sets whether the NXBrowser saves a column's Matrix and Clip View or ScrollView
when the column is removed, and whether it then reuses these subviews when the
column is reloaded. Ifflag is YES, the NXBrowser reuses columns for somewhat faster
display of columns as they are reloaded. Ifflag is NO, the NXBrowser frees columns
as they're unloaded, reducing average memory use. Returns self.

scrollColumnsLeftBy:

- scroIlColumnsLeftBy:(int)shiftAmount

Scrolls the NXBrowser left (toward the first column) by shiftAmount columns. If
shiftAmount exceeds the number of columns to the left of the first visible column, then
the NXBrowser scrolls left until the column 0 is visible. Redraws and returns self.

See also: - scrollColumnsRightBy:

scrollColumnsRightB y:

- scroIlColumnsRightBy:(int)shijtAmount

Scrolls the NXBrowser right (toward the last column) by shiftAmount columns. If
shiftAmount exceeds the number of loaded columns to the right of the first visible
column" then the NXBrowser scrolls right until the last loaded column is visible.
Redraws and returns self.

See also: - scrollColumnsLeftBy:

scrollColumnTo Visible:

- scrollColumnTo Visible: (int)column

Scrolls the NXBrowser to make column number column visible. If there's no column
in the NXBrowser, this method scrolls to the right as far as possible. Redraws and
returns self.

Application Kit Classes: NXBrowser 2-335

scrollUpOrDown:

- scrollUpOrDown:sender

Scrolls a column up or down. You don't send this message; NXBrowser receives it
from a column's scroll buttons. Returns self.

selected Column

- (int)selectedColumn

Returns the column number of the rightmost column containing a selected cell.
Returns -1 if no column in the NXBrowser contains a selected cell.

selectAll

- selectAII:sender

Selects all entries in the last column loaded in the NXBrowser if multiple selection is
allowed. Returns self.

See also: - allowMultiSel:

separateColumns:

- separateColumns: (BOOL)flag

Ifflag is YES, sets NXBrowser so that columns have bezeled borders separating them;
if NO, the borders are removed. When titles are set to display (by setTitled:), columns
are automatically separated; however, the flag set by this method is unchanged.
Redraws the NXBrowser and returns self.

See also: - setTitled:

setAction:

- setAction:(SEL)aSelector

Sets the action of the NXBrowser. aSelector is the selector for the message sent to the
NXBrowser's target when a mouse-down event occurs in a column of the NXBrowser.
Returns self.

See also: - action, - doubleAction, - doClick, - doDoubleClick, - setTarget,
- target

2-336 Chapter 2: Class Specifications

setCellClass:

- setCellClass:classld

Sets the class of Cell used when adding Cells to a Matrix in a column of the
NXBrowser. classld must be the value returned when sending the class message to
NXBrowserCell or a subclass of NXBrowserCell. Returns self.

See also: - cellClass, - setCellPrototype

setCellPrototype:

- setCellPrototype:aCeli

Sets aCeli as the Cell prototype copied when adding Cells to the Matrices in the
columns of NXBrowser. aCeli must be an instance of NXBrowserCell or a subclass of
NXBrowserCell. Returns self.

See also: - cellPrototype

setDelegate:
- setDelegate:anObject

Sets the delegate of the NXBrowser to anObject and returns self. If anObject is of a
class that implements the browser:fillMatrix:inColumn: method (normal or lazy
delegates) or the browser:loadCell:atRow:inColumn and
browser:getNumRowslnColumn: methods (very lazy delegate), it's set as the
NXBrowser's delegate; otherwise, the delegate is set to nil. Returns self.

See also: - delegate, "METHODS IMPLEMENTED BY THE DELEGATE"

setDoubleAction:

- setDoubleAction:(SEL)aSelector

Sets the double action of the NXBrowser. aSelector is the selector for the action
message sent to the target when a double-click occurs in one of the columns of the
NXBrowser. Returns self.

setEnabled:

- setEnabled:(BOOL)flag

Enables the NXBrowser when flag is YES; disables it whenflag is NO. Returns self.

Application Kit Classes: NXBrowser 2-337

setLastColumn:

- setLastColumn:(int)column

Sets the last column loaded in and displayed by the NXBrowser. Removes any columns
to the right of column from the NXBrowser. Scrolls columns in the NXBrowser to
make the new last column visible if it wasn't previously. If column is to the right of the
last column in the NXBrowser, this method does nothing. Returns self.

setMatrixClass:

- setMatrixClass:classld

Sets the matrix Class instance variable, representing the class used when adding new
columns to the NXBrowser. classld must be the value returned by sending the class
message to Matrix or a subclass of Matrix; otherwise this method retains the previous
setting for matrixClass. Returns self.

setMax VisibleColumns:

- setMax VisibleColumns: (int)columnCount

Sets the maximum number of columns that may be displayed by the NXBrowser.
Returns self.

To set the number of columns displayed in a new NXBrowser, first send it a
setMinColumn Width: message with a small argument (1 for example) to ensure that
the desired number of columns will fit in the NXBrowser's frame. Then invoke this
method to set the number of columns you want your NXBrowser to display.

See also: - maxVisibleColumns, - setMinColumnWidth:

setMinColumn Width:

- setMinColumn Width: (int)column Width

Sets the minimum width for each column to column Width and redisplays the
NXBrowser with columns set to the new width. column Width is measured in PostScript
points rounded to the nearest integer. The default setting is 100. Returns self.

See also: - minColumn Width

2-338 Chapter 2: Class Specifications

setPath:
- setPath:(const char *)path

Parses aPath-a string consisting of one or more substrings separated by the path
separator-and selects column entries in the NXBrowser that match the substrings. If
the first character in aPath is the path separator, this method begins searching for
matches in column 0; otherwise, it begins searching in the last column loaded. If no
column is loaded, this method loads column 0 and begins the search there. While
parsing the current substring, it tries to locate a matching entry in the search column.
If it finds an exact match, this method selects that entry and moves to the next column
(loading the column if necessary) to search for the next substring.

If this method finds a valid path (one in which each substring is matched by an entry in
the corresponding column), it returns self. If it doesn't find an exact match on a
substring, it stops parsing aPath and returns nil; however, column entries that it has
already selected remain selected.

See also: - getPath:toColumn, - pathSeparator, - setPathSeparator

setPathSeparator:
- setPathSeparator:(unsigned short)charCode

Sets the character used as the path separator; the default is the slash character ("j").
Returns self.

See also: - getPath:toColumn, - pathSeparator, - setPath:

setTarget:
- setTarget:anObject

Sets the target of the NXBrowser. Returns self.

setTitle:ofColumn:
- setTitle:(const char *)aString of Column: (int)column

Sets the title of column number column in the NXBrowser to aString. Returns self.

See also: - browser: TitleOf Column: in "METHODS IMPLEMENTED BY THE
DELEGATE," - getTitleFromPreviousColumn:, and - setTitled:

Application Kit Classes: NXBrowser 2-339

setTitled:

- setTitled:(BOOL)jlag

Ifjlag is YES, columns display titles and are separated by bezeled borders. Returns
self.

See also: - browser: TitleOf Column: in "METHODS IMPLEMENTED BY THE
DELEGATE," - getTitleFromPreviousColumn:, and - setTitle:ofColumn:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the NXBrowser to the new width and height. Usually sent by the window.
Returns self.

sizeToFit

- sizeToFit

Resizes the NXBrowser to contain all the columns and controls displayed in it. Returns
self.

target

tile

- target

Returns the target for the NXBrowser's action message.

See also: - action, - doClick, - doDoubleClick, - doubleAction, - setAction,
- setDoubleAction, - setTarget:

- tile

Arranges the various subviews of NXBrowser-scrollers, columns, titles, and so on
without redrawing. You shouldn't send this message. Rather, it's invoked any time the
appearance of the NXBrowser changes; for example, when scroll buttons or scroll bars
are set, a column is added, and so on. Override this method if you change the
appearance of the NXBrowser, for example, if you draw your own titles above columns.
Returns self.

titieHeight

- (NXCoord)titleHeight

Returns the height of titles drawn above the columns of the NXBrowser. Override this
method if you display your own titles above the NXBrowser's columns.

2-340 Chapter 2: Class Specifications

titleOfColumn:

- (const char *)titleOfColumn:(int)column

Returns a pointer to the title string displayed above column number column. If no such
column is loaded in the NXBrowser, returns NULL.

useScrollBars:

- useScroIlBars:(BOOL)flag

If flag is YES, sets NXBrowser to use scroll bars for its columns. By default,
NXBrowser does use scroll bars. Redraws and returns self.

See also: - useScrollButtons

useScrollButtons:

- useScrollButtons: (BOOL)flag

Ifflag is YES, sets the NXBrowser to use scroll buttons for its columns. When the
NXBrowser is also set to use scroll bars, this method causes scroll buttons to display at
the base of the scroll bars. Redraws and returns self.

See also: - useScrollBars

validate VisibleColumns

- validate Visible Columns

Validates the columns visible in the NXBrowser by invoking the delegate method
browser:columnIsValid: for all visible columns. Use this method to confirm that the
entries displayed in each visible column are valid before redrawing.

See also: browser:columnIsValid in "METHODS IMPLEMENTED BY THE
DELEGATE"

METHODS IMPLEMENTED BY THE DELEGATE

browser:columnIsValid:

- (BOOL)browser:sender columnIsValid:(int)column

This method is invoked by NXBrowser's validateVisibleColumns method to
determine whether the contents currently loaded in column number column need to be
updated. Returns YES if the contents are valid; NO otherwise.

Application Kit Classes: NXBrowser 2-341

browser DidScroll:

- browserDidScroll:sender

Notifies the delegate when the browser has finished scrolling. Returns self.

b,rowser:fiIlMatrix:inColumn:

- (int)browser:sender
fillMatrix:matrix
inColumn:(int)column

Invoked by the NXBrowser to query a normal or lazy browser for the contents of
column. This method should create NXBrowserCells by sending addRow or
insertRow At: messages to matrix. A normal delegate should then load each new
NXBrowserCell and send them the messages setLoaded: and setLeaf:. A lazy
delegate loads Cells only when they are about to be displayed. This method returns the
number of entries in column.

If you implement this method, don't implement the delegate method
browser:getNumRowslnColumn:.

browser:getNumRowslnColumn:

- (int)browser:sender getNumRowslnColumn:(int)column

Implemented by very-lazy delegates, this method is invoked by the NXBrowser to ask
the delegate for the number of rows in column number column. This method allows the
NXBrowser to resize its scroll bar for a column, \vithout loading all the cells in that
column. Returns the number of rows in column.

If you implement this method, don't implement the delegate method
browser:fiIlMatrix:in Column:.

browser:loadCell:atRow:inColumn:

- browser:sender
loadCell:cell
atRow:(int)row
inColumn:(int)column

Implemented by lazy and very-lazy delegates. This method loads the entry in cell in
the specified row and column in the NXBrowser. This method should send setLoaded:
and setLeaf: messages to cell. Returns self (the id of the delegate).

2-342 Chapter 2: Class Specifications

browser:selectCell:inColumn:

- (BOOL)browser:sender
selectCell:(const char *)entry
inColumn:(int)column

Asks NXBrowser's delegate to validate and select an entry in column number column.
This method should load entry if necessary and send it setLoaded: and setLeaf:
messages to indicate its state. Returns YES if the method successfully selects entry in
column; NO otherwise.

browser: title Of Column :

- (const char *)browser:sender titleOfColumn:(int)column

Invoked by NXBrowser to get the title for column from the delegate. This method is
invoked only when the NXBrowser is titled and has received a
getTitleFromPreviousColumn: message with NO as the argument. By default, the
NXBrowser makes each column title the string value of the selected cell in the previous
column. Returns the string representing the title belonging above column.

See also: - getTitledFromPreviousColumn:, - setTitle:ofColumn:, - setTitled:

browser WillS croll :

- browserWillScroll:sender

This method notifies the delegate when the browser is about to scroll. Returns self.

Application Kit Classes: NXBrowser 2-343

2-344

NXBrowserCell

INHERITS FROM Cell : Object

DECLARED IN appkit/NXBrowserCell.h

CLASS DESCRIPTION

NXBrowserCell is the subclass of Cell used to display data in the column Matrices of
NXB row ser. Many of NXBrowserCell's methods are designed to interact with
NXBrowser and NXBrowser's delegate. The delegate implements methods, for loading
the Cells in NXBrowser by setting their values and status. If you need access to a
specific NXBrowserCell, you can use the NXBrowser method
getLoadedCeIlAtRow:inColumn: .

You may find it useful to subclass NXBrowserCell to alter its behavior and to enable it
to work with and display the type of data you wish to represent. Use NXBrowser's
setCellClass: or setCellPrototype: methods to use your subclass.

See also: NXBrowser

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Cell

METHOD TYPES

Creating an NXBrowserCell

Determining icons

Determining component sizes

Displaying

Highlighting behavior

Class

char
id
struct _cFlagsl
struct _cFlags2

- init
- initTextCell:

+ branchIcon
+ branchIconH

- calcCellSize:inRect:

- drawlnside:inView:
- drawSelf:in View:

- highlight in View:lit:

isa;

*contents;
support;
cFlagsl;
cFlags2;

Application Kit Classes: NXBrowserCell 2-345

Placing in browser hierarchy - isLeaf
- setLeaf:

Determining loaded status - isLoaded
- setLoaded:

Determining reset status - reset

Modifying graphic attributes - is Opaque

CLASS METHODS

branchIcon

+ branch Icon

Returns the id of the NXImage object "NXMenuArrow." This is the icon displayed to
indicate a branch node in an NXBrowserCell. Override this method if you want to
display a different branch icon.

See also: - isBranch, - setBranch

branchIconH

+ branchIconH

Returns the id of the NXImage object "NXMenuArrowH." This is the highlighted icon
displayed to indicate a branch node in an NXBrowserCell. Override this method if you
want to display a different branch icon.

See also: - isBranch, - setBranch

INSTANCE METHODS

caIcCellSize:inRect:

- calcCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the minimum width and height required for displaying the NXBrowserCell
in a given rectangle. Makes sure theSize remains large enough to accommodate the
branch arrow icon. If it isn't possible for the NXBrowserCell to fit in aRect, the width
and/or height returned in theSize could be bigger than those of the rectangle. The
computation is done by trying to size the NXBrowserCell so that it fits in the rectangle
argument (by wrapping the text, for instance). If a choice must be made between
extending the width or height of aRect to fit the text, the height will be extended.
Returns self and, by reference, the minimum size for the NXBrowserCell.

2-346 Chapter 2: Class Specifications

drawlnside:in View:

- drawlnside:(const NXRect *)celiFrame inView:controlView

Draws the inside of the NXBrowserCell (that is, it's the same as drawS elf: in View:
except that it doesn't draw the bezel or border if there is one). Returns self.

drawSelf:in View:

- drawSelf:(const NXRect *)celiFrame inView:controlView

Draws the NXBrowserCell, including the bezel or border. Returns self.

See also: - drawlnside:in View:

highlight: in View:lit:

init

- highlight: (const NXRect *)celiFrame inView:controlView Iit:(BOOL)lit

Sets the highlighted state to lit and redraws the NXBrowserCell. Returns self.

See also: - reset

- in it

Initializes and returns the receiver, a new NXBrowserCell instance, by invoking the
initTextCell: method. Sets the NXBrowserCell's string value to "BrowserItem" and
returns self.

initTextCell:

- initTextCell: (const char *)aString

Initializes the receiver, a new NXBrowserCell instance, by sending the message
[super initTextCell:aString]. Sets the NXBrowserCell so it doesn't wrap text.
Returns self. This method is the designated initializer for the NXBrowserCell class.
Override this method if you create a subclass of NXBrowserCell that performs its own
initialization.

isLeaf

- (BOOL)isLeaf

Determines whether the entry in the receiver represents a leaf node (such as a file) or
branch node (such as a directory). This method is invoked by NXBrowser to check
whether to display the branch icon in the Cell and, when an NXBrowserCell is selected,
whether to load a column to the right of the column containing the receiving Cell.
Returns YES if the cell represents a leaf, NO if the cell represents a branch.

See also: - setLeaf:

Application Kit Classes: NXBrowserCell 2-347

isLoaded
- (BOOL)isLoaded

Returns YES if the NXBrowserCell is loaded, NO if it isn't. Used by NXBrowser to
determine if a particular Cell is loaded in a column. When an NXBrowserCell is
created, this value is YES. NXBrowser and its delegate change the value returned by
this method using the setLoaded: method to reflect the current status of the cell.

See also: - setLoaded:

isOpaque
- (BOOL)isOpaque

Returns YES if the NXBrowserCell is opaque (that is, it touches every pixel in its
bounds).

reset
-reset

Sets the NXBrowserCell 's state to 0, sets the highlighted flag to NO, and returns self.

See also: - highlight: in View: lit

setLeaf:
- setLeaf:(BOOL)flag

Invoked by NXBrowser's delegate when it loads an NXBrowserCell. Whenflag is
YES, the NXBrowserCell represents a leaf node; it will display without the branch
icon. Whenflag is NO, the NXBrowserCell represents a branch node; it will display
with the branch icon.

See also: - branchlcon, - branchlconH, - isLeaf

setLoaded:
- setLoaded:(BOOL)jlag

Sets the loaded status of the NXBrowser cell to flag. This method is invoked by
NXBrowser or its delegate to set the status of the NXBrowserCell. The delegate should
send the setLoaded: message with YES as the argument when it loads the cell.

See also: - isLoaded, "METHODS IMPLEMENTED BY THE DELEGATE"
(NXBrowser)

2-348 Chapter 2: Class Specifications

NXCachedlmageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXCachedImageRep.h

CLASS DESCRIPTION

An NXCachedImageRep is a rendered image in a window, typically a window that
stays off-screen. The only data that's available for reproducing the image is the image
itself. Thus an NXCachedImageRep differs from the other kinds of NXImageReps
defined in the Application Kit, all of which can reproduce an image from the
information originally used to draw it.

Instances of this class are generally used indirectly, through an NXImage object. An
NXCachedImageRep must be able to provide the NXImage with some information
about the image-so that the NXImage can match it to a display device, for example,
or know whether to scale it. Therefore, it's a good idea to use these inherited methods
to inform the NXCachedImageRep object about the image in the cache:

setNumColors:
setAlpha:
setPixelsHigh:
setPixels Wide:
setBitsPerSample:

These methods are all defined in the NXImageRep class.

INSTANCE VARIABLES

Inheritedfrom Object Class

Inherited from NXImageRep NXSize

Declared in NXCachedImageRep (none)

isa;

size;

Application Kit Classes: NXCachedlmageRep 2-349

METHOD TYPES

Initializing a new NXCachedImageRep
- initFrom Window:rect:

Freeing an NXCachedImageRep -free

Getting the representation - getWindow:andRect:

Drawing the image -draw

Archiving - read:
- write:

INSTANCE METHODS

draw
- (BOOL)draw

Reads image data from the cache and reproduces the image from that data. The
reproduction is rendered in the current window at location (0.0,0.0) in the current
coordinate system.

It's much more efficient to reproduce an image by compo siting it, which can be done
through the NXImage class. An NXBitmapImageRep can also be used to reproduce an
existing image.

This method returns YES if successful in reproducing the image, and NO if not.

See also: - drawln: (NXImageRep), - drawAt: (NXImageRep),
- initData:fromRect: (NXBitmapImageRep)

free
-free

Deallocates the NXCachedImageRep.

getWindow:andRect:
- getWindow:(Window **)theWindow andRect:(NXRect *)theRect

Copies the id of the Window object where the image is located into the variable referred
to by theWindow, and copies the rectangle that bounds the image into the structure
referred to by theRect. If theRect is NULL, only the Window id is provided. Returns
self.

2-350 Chapter 2: Class Specifications

init

Generates an error message. This method cannot be used to initialize an
NXCachedlmageRep. Use the initFromWindow:rect: method instead.

See also: - initFrom Window:rect:

initFrom Window:rect:

- initFrom Window: (Window *)aWindow rect:(const NXRect *)aReet

Initializes the receiver, a new NXCachedlmageRep instance, for an image that will be
rendered within the aReet rectangle in aWindow, and returns the initialized object. The
rectangle is specified in aWindow's base coordinate system. The size of the image is
set from the size of the rectangle.

You must draw the image in the rectangle yourself; there are no NXCachedlmageRep
methods for this purpose.

read:

- read:(NXTypedStream *)stream

Reads the NXCachedlmageRep from the typed stream stream.

write:

- write:(NXTypedStream *)stream

Writes the NXCachedlmageRep to the typed stream stream.

Application Kit Classes: NXCachedlmageRep 2~351

2-352

NXColorPanel

INHERITS FROM Panel : Window: Responder: Object

DECLARED IN appkit/NXColorPane1.h

CLASS DESCRIPTION

NXColorPanel provides a standard user interface for selecting color in an application.
It provides seven color selection modes, including four that correspond to
industry-standard color models. It allows the user to set swatches containing frequently
used colors. Once set, these swatches are displayed by NXColorPanel in any
application where it is used, giving the user color consistency between applications.
The NXColorPanel also enables the user to capture a color anywhere on the screen for
use in the active application, and to drag colors between views in an application.

The color mask determines which of the color modes are enabled for NXColorPanel.
This mask is set by using color mask constants when you initialize a new instance of
NXColorPanel. When an instance of NXColorPanel is masked for more than one color
mode, your program can set its mode by invoking the setMode: method with a color
mode constant as its argument; the user can set the mode by clicking buttons on the
panel. Here are the color modes with corresponding mask and mode constants:

Mode Color Mask/Color Mode Constants
Grayscale-Alpha NX_GRAYMODEMASK

NX_GRAYMODE

Red-Green-Blue NX_RGBMODEMASK
NX_RGBMODE

Cyan-Yellow-Magenta-Black NX_ CMYKMODEMASK
NX_CMYKMODE

Hue-Saturation-Brightness NX_HSBMODEMASK
NX_HSBMODE

TIFF image NX_CUSTOMPALETTEMODEMASK
NX_CUSTOMPALETTEMODE

Custom color lists NX_CUSTOMCOLORMODEMASK
NX_CUSTOMCOLORMODE

Color wheel NX_BEGINMODEMASK
NX_BEGINMODE

All of the above NX_ALLMODESMASK
none

Application Kit Classes: NXColorPanel 2-353

NX_ALLMODESMASK represents the logical OR of the other color mask constants.
When NXColorPanel is initialized using NX_ALLMODESMASK, it can be set to any
of the modes. When initializing a new instance of NXColorPanel, you can logically
OR any combination of color mask constants to restrict the available color modes.

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and
hue-saturation-brightness modes, the user adjusts colors by manipulating sliders. In the
custom palette mode, the user can load a TIFF file into the NXColorPanel, then select
colors from the TIFF image. In custom color list mode, the user can create and load
lists of named colors. The two custom modes provide PopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting
colors; by default, it's the initial mode when the NX_ALLMODESMASK constant is
used to initialize the NXColorPanel.

NXColorPanel's action message is sent to the target object when the user changes the
current color.

An application has only one instance of NXColorPanel, the shared instance. Once the
shared instance has been created, invoking any of the new methods returns the shared
instance rather than a new NXColorPanel.

One of NXColorPanel' s methods, dragCoior:withEvent:from View:, allows colors to
be moved between Views in an application. For example, NXColorWell invokes this
method from its mouseDown: method to allow you to move colors from a well to other
views. Any View can implement the acceptCoior:atPoint: method to accept a color
dragged from an NXColorWell or NXColorPanel.

You can put NXColorPanel in any application created with Interface Builder by adding
the "Colors ... " item from the Menu palette to the application's menu.

See also: NXColorWell

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

2-354 Chapter 2: Class Specifications

Inherited from Window

Inherited/rom Panel

Declared in NXColorPanel

METHOD TYPES

Creating a New NXColorPanel

Setting NXColorPanel Behavior

Setting Color

Target and Action

NXRect
id
id
id
id
id
id
id
int
int
float
struct _ wFlags
struct _ wFlags2

(none)

(none)

frame;
contentView;
delegate;
firstResponder;
lastLeftHit;
lastRightHit;
counterpart;
fieldEditor;
winEventMask;
windowNum;
backgroundGray;
wFlags;
wFlags2;

+ newContent:style:backing:buttonMask:defer:
+ newContent:style:backing:buttonMask:defer:

colorMask:
+newMask:
+ sharedlnstance:

- colorMask
- setColorMask:
- setContinuous:
- setMode:
- setAccessoryView:
- setShow Alpha:

+ dragColor:withEvent:from View:
- color
- setColor:
- updateCustomColorList

- setAction:
- setTarget:

Application Kit Classes: NXColorPanel 2-355

CLASS METHODS

dragColor:withEvent:from View:

+ (BOOL)dragColor:(NXColor)color
withEvent:(NXEvent*)theEvent
from View:controlView

Allows colors to be dragged between views in an application. This method is usually
invoked by the mouseDown: method of controlView; the mouseDown: method sets up
a modal loop until the subsequent NX_MOUSEUP event occurs, then sends this
message to the NXColorPanel class object. theEvent is always the NX_MOUSEUP
event; this method uses the cursor coordinates from theEvent to determine the receiving
View.

To accept the dragged color, the receiving view must implement the method
acceptColor:(NXColor)color atPoint:(NXPoint)mouseUpPoint. The only View
subclass in the application kit that implements this method is NXColorWell.
Implementing acceptColor:atPoint: in a View subclass is described in "METHODS
IMPLEMENTED BY A VIEW SUBCLASS" at the end of this section.

Because it is a class method, dragColor:withEvent:from View: can be used whether
or not an instance of NXColorPanel exists. Returns YES.

See also: - mouseDown: (NXColorWell), - acceptColor:atPoint: in "METHODS
IMPLEMENTED BY A VIEW SUBCLASS" below and in NXColorWell

newContent:style: backing: huttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)buffering Type
buttonMask:(int)mask
defer: (BOOL)jlag

Invokes the newContent:style:backing:buttonMask:defer:colorMask: method with
NX_ALLMODESMASK as the argument. This method is implemented to override the
method inherited from the Panel class.

See also: + newContent:style:backing:buttonMask:defer:colorMask:

2-356 Chapter 2: Class Specifications

newContent:style: backing: buttonMask: defer: color Mask:

+ newContent:(const NXRect *)contentRect
style: (int)as tyle
backing: (int)buf/eringType
buttonMask:(int)mask
defer: (BOOL)jlag
color Mask: (int)colormask

Creates, if necessary, and returns the shared instance of NXColorPanel. Only one
instance of NXColorPanel can be created in an application. This method allocates a
new instance of NXColorPanel from its own zone, then initializes it by invoking the
initContent:style: backing: buttonMask: defer: color Mask: method. The
newColorMask: method below lists the constants to use for colormask.

See also: + newColorMask:

new Color Mask:

+ newMask:(int)colormask

Creates, if necessary, and returns the shared instance of the NXColorPanel. Only one
instance of NXColorPanel can be created in an application. This method allocates a
new instance of NXColorPanel from its own zone, then initializes it by invoking the
initColorMask: method.

To set the color selection modes available in a new instance of NXColorPanel, use one
of the following constants for colormask:

NX_GRAYMODEMASK
NX_RGBMODEMASK
NX_CMYKMODEMASK
NX_HSBMODEMASK
NX_CUSTOMPALETTEMODEMASK
NX_CUSTOMCOLORMODEMASK
NX_BEGINMODEMASK
NX_ALLMODESMASK

To enable multiple selection modes for the new NXColorPanel, use a colormask
expression containing the logical OR of two or more color mask constants.
NX_ALLMODESMASK represents the logical OR of all the other masks.

To change the color selection modes available in an existing instance of
NXColorPanel, use the setColorMask method.

See also: - colorMask, - setColorMask, - setMode

Application Kit Classes: NXColorPanel 2-357

sharedlnstance:
+ sharedInstance:(BOOL)create

Tests for the shared instance of NXColorPanel. If create is NO and the shared instance
exists, this method returns its id; if no instance of NXColorPanel exists, returns nil. If
create is YES, this method creates, if necessary, and returns the id of the shared
NXColorPanel.

INSTANCE METHODS

alloc

Generates an error message. This method cannot be used to create NXColorPanel
instances. Use the newFrame: method instead.

See also: + newFrame:

allocFromZone

Generates an error message. This method cannot be used to create NXColorPanel
instances. Use the newFrame: method instead.

See also: + newFrame:

color
- (NXColor)color

Returns the current color selection of the NXColorPanel.

See also: - setColor

colorMask
- (int)color Mask

Returns the color mask. The return value will be one of the color mask constants
described in the newMask: method or a logical OR of two or more of the constants.

See also: + newMask:

2-358 Chapter 2: Class Specifications

setAccessory View:

- setAccessoryView:aView

Sets the accessory view displayed in the NXColorPanel to aView. The accessory View
can be any custom View that you want to display with NXColorPanel, for example, a
View offering patterns or brush shapes in a drawing program. The accessory View is
displayed below the regular controls in the NXColorPanel. The NXColorPanel
automatically resizes to accommodate the accessory View. Returns self.

setAction:

- setAction:(SEL)aSelector

Sets the action of the NXColorPanel to aSelector. Returns self.

setColor:

- setColor:(NXColor)color

Sets the color setting of the NXColorPanel to color and redraws the panel. Returns self.

setColor Mask:

- setColorMask:(int)colormask

Sets the color mode mask of the NXColorPanel. Returns self.

setContinuous:

- setContinooos:(BOOL)jlag

Sets the NXColorPanel to send the action message to its target continuously as the color
of the NXColorPanel is set by the user. Send this message withjlag YES if, for
example, you want tot continuously update the color of the target. Returns self.

Application Kit Classes: NXColorPanel 2-359

setMode:

- setMode:(int)mode

Sets the mode of the NXColorPanel if mode is one of the modes allowed by the color
mask. The color mask is set when you first create the shared instance of NXColorPanel
for an application. mode can be one of seven constants:

NX_GRAYMODE
NX_RGBMODE
NX_CMYKMODE
NX_HSBMODE
NX_CUSTOMPALETTEMODE
NX_CUSTOMCOLORMODE
NX_BEGINMODE

Color modes and masks are described in more detail in "CLASS DESCRIPTION" at
the beginning of this discussion.

Returns self.

See also: "CLASS DESCRIPTION"

setS how Alpha:

- setShowAlpha:(BOOL)flag

If flag is YES, sets the NXColorPanel to show alpha. Returns self.

setTarget:

- setTarget:anObject

Sets the target of the NXColorPanel. The NXColorPanel's target is the object to which
the action message is sent when the user selects a color. Returns self.

See also: - setAction, - setContinuous

updateCustomColorList

- updateCustomColorList

Updates the custom color list to reflect the current entries. This method is invoked by
Controls on the NXColorPanel in NX_CUSTOMCOLORMODE.

2-360 Chapter 2: Class Specifications

METHODS IMPLEMENTED BY A VIEW SUBCLASS

acceptColor: atPoint:

- acceptColor:(NXColor)color atPoint:(NXPoint *)aPoint

Allows the View to accept color when aPoint is a point within its bounds. Implement
this method if you want to be able to drag a color from an NXColorPanel or
NXColorWell into your subclass of View. This method is invoked by NXColorPanel's
class method dragColor:withEvent:fromView:. Returns self.

See also: - acceptColor:atPoint: in NXColorWell,
+ dragColor:withEvent:from View:

CONSTANTS

#define NX GRAYMODE
#define NX RGBMODE
#define NX CMYKMODE
#define NX HSBMODE
#define NX CUSTOMPALETTEMODE
#define NX CUSTOMCOLORMODE
#define NX BEGINMODE

#define NX GRAYMODEMASK
#define NX RGBMODEMASK
#define NX CMYKMODEMASK
#define NX HSBMODEMASK
#define NX CUSTOMPALETTEMODEMASK
#define NX CUSTOMCOLORMODEMASK
#define NX BEGINMODEMASK

#define NX ALLMODESMASK \

(NX_GRAYMODEMASKI \
NX_RGBMODEMASKI \
NX_CMYKMODEMASKI \
NX_HSBMODEMASKI \
NX_CUSTOMPALETTEMODEMASKI \
NX_CUSTOMCOLORMODEMASKI \
NX_BEGINMODEMASK)

0

1

2

3

4

5

6

1
2
4

8

16
32
64

Application Kit Classes: NXColorPanel 2-361

2-362

NXColorWell

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/NXColorWell.h

CLASS DESCRIPTION

NXColorWell is a Control for selecting and displaying a single color value. An
example of NXColorWell is found in NXColorPanel, which uses a well to display the
current color selection. NXColorWell is available from the Palettes panel of Interface
Builder.

An application can have one or more active NXColorWells. You can activate multiple
NXColorWells by invoking the activate: method with NO as its argument. You can set
the same color for all active color wells by invoking the class method
activeWellsTakeColorFrom:. You can deactivate multiple wells using the class
method deactivateAIIWells. When a mouse-down event occurs in an NXColorWell, it
becomes the only active well.

The mouseDown: method enables an instance of NXColorWell to send its color to
another NXColorWell or any other subclass of View that implements the
acceptColor:atPoint: method. NXColorWell'smouseDown: method invokes
NXColorPanel's dragColor:withEvent:fromView: class method, which sends an
acceptColor:atPoint: message to the receiving View.

See also: NXColorPanel

INSTANCE VARIABLES

Inherited from Object Class is a;

Inherited from Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inherited from Control int tag;
id cell;
struct _conFlags conFlags;

Defined in NXColorWell NXColor color;

color The current color value of the NXColorWell

Application Kit Classes: NXColorWeli 2-363

METHOD TYPES

Initializing an NXColorWell

Multiple NXColorWells

Drawing

Handling events

Activating and enabling

Setting color

Target and action

CLASS METHODS

active WellsTakeColorFrom:

- initFrame:

+ active WellsTakeColorFrom:
+ active WellsTakeColorFrom:continuous:
+ deactivateAllWells

- drawS elf: :
- drawWellInside:

- acceptsFirstMouse
- mouseDown:
- isContinuous
- setContinuous:

- activate:
- deactivate
- isActive
- setEnabled:

- acceptColor:atPoint:
- setColor:
- color
- takeColorFrom:

- target
- action
- setTarget:
- setAction:

+ activeWellsTakeColorFrom:sender

This method changes the color of all active NXColorWells by invoking their
takeColorFrom: method with sender as the argument. Returns the NXColorWell class
object.

See also: - activate:, + activeWellsTakeColorFrom:continuous:, - deactivate,
+ deactivateAIlWells, - takeColorFrom:

2-364 Chapter 2: Class Specifications

active WellsTakeColorFrom:continuous

+ active WellsTakeColorFrom:sender continuous: (BOOL)jlag

Ifjlag is YES, this method continuously changes the color of all active NXColorWells
that are continuous; If NO, all active NXColorWells, continuous or not, change their
color just once. NXColorWells are updated by invoking their takeColorFrom: method
with sender as the argument. Use this method with YES as the jlag in a modal event
loop if you want active NXColorWells to continuously update to reflect the current
color of sender. Returns the NXColorWell class object.

See also: - activate:, - deactivate, + deactivateAIIWells, - isContinuous,
- setContinuous:, - takeColorFrom:

deactivateAlIWells

+ deactivateAIIWells

Deactivates all currently active NXColorWells. Returns the NXColorWell class object.

See also: - activate:, - deactivate

INSTANCE METHODS

acceptColor:atPoint:

- acceptColor:(NXColor)color atPoint:(NXPoint *)aPoint

Changes the color value of the NXColorWell to color when aPoint is a point within the
bounds of the NXColorWell. This method is invoked by the NXColorPanel method
dragColor:withEvent:from View: to move color into an NXColorWell. Returns self.

Note that any subclass of View can accept colors from an NXColorWell by
implementing a version of this method.

See also: - dragColor:withEvent:from View: (NXColorPanel)

acceptsFirstMouse

- acceptFirstMouse

Returns YES.

action

- action

Returns the action sent by the NXColorWell to the target.

Application Kit Classes: NXColorWell 2-365

activate:

- (int)activate:(int)exclusive

If exclusive is YES, this method activates the receiving NXColorWell and deactivates
any other active NXColorWells. If NO, this method activates the receiving
NXColorWell and keeps previously active NXColorWells active. Redraws the receiver.
An active NXColorWell will have its color updated as the NXColorPanel's current
color changes.

This method returns the number of active NXColorWells.

See also: + activeWellsTakeColorFrom:, - deactivate

color

- (NXColor)color

Returns the color of the NXColorWell.

See also: - acceptColor:atPoint, - setColor:, - takeColorFrom:

deactivate

- deactivate

Sets the NXColorWell to inactive and redraws it. Returns self.

- drawSelf:(const NXRect *)rects:(int)rectCount

Draws the entire NXColorWell, including its border. Returns self.

drawWelllnside:

- drawWeIlInside:(const NXRect *)insideRect

Draws the inside of the NXColorWell only, the area where the color is displayed.
Returns self.

initFrame:

- initFrame:(NXRect const *)theFrame

. Initializes and returns the receiver, a new instance of NXColorPanel within theFrame.
By default, the color is NX_COLORWHITE and the NXColorWell is bordered and
inactive. Returns self.

2-366 Chapter 2: Class Specifications

is Active

- (BOOL)isActive

Returns YES if the receiving NXColorWell is active, NO if not active.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Makes the receiver the only active NXColorWell. If theEvent occurs within the colored
area of the NXColorWell (not on its border), then this method invokes NXColorPanel's
dragColor:withEvent:from View: method. The user can then drag the color from the
NXColorWell to another View that has an acceptColor:atPoint: method, such as
another NXColorWell. Returns self.

You never invoke this method. It's sent when an NX_MOUSEDOWN event occurs
within the bounds of the NXColorWell.

See also: - acceptColor:atPoint:, - activate, - deactivate,
+ dragColor:withEvent:from View: (NXColorPanel), - isActive

setAction:

- setAction:(SEL) aSelector

Sets the default action method of the NXColorWell. The action message is sent to the
target by NXColorWell's acceptColor:atPoint: and takeColorFrom: methods.
Returns self.

setColor:

- setColor:(NXColor)color

Sets the color of the NXColorWell to color and redraws it. Returns self.

setContinuous:

- setContinuous: (BOOL)jlag

If jlag is YES, the NXColorWell continuously updates its color and sends its action
message to its target in response to an activeWellsTakeColorFrom:continuous:. If
NO, the NXColorWell doesn't respond to this message. Returns self.

Application Kit Classes: NXColorWell 2-367

setEnabled:
- setEnabled:(BOOL)jlag

Ifjlag is YES, the receiving NXColorWell is enabled. If NO, the receiver is disabled.
An NXColorWell cannot be both disabled and active; enabling an NXColorWell
doesn't activate. Returns self.

See also: - activate, - deactivate, - isActive

setTarget:

- setTarget:anObject

Sets the target of the NXColorWell. The action message is sent to the target by
NXColorWell's acceptColor:atPoint: and takeColorFrom: methods. Returns self.

takeColorFrom
- takeColorFrom:sender

Causes the receiving NXColorWell to set its color by sending a color message to
sender. Sends the NXColorWell's action message to its target and returns self.

See also: - color

target
- target

Returns the target of the NXColorWell. The action message is sent to the target by
NXColorWell's acceptColor:atPoint: and takeColorFrom: methods. Returns self.

See also: - setTarget:

2-368 Chapter 2: Class Specifications

NXCursor

INHERITS FROM Object

DECLARED IN appkit/NXCursor

CLASS DESCRIPTION

An NXCursor object holds an image that can become the image the Window Server
displays for the cursor. A set message makes the receiver the current cursor:

[myNXCursor set];

For automatic cursor management, an NXCursor can be assigned to a cursor rectangle
within a window. When the window is the key window and the user moves the cursor
into the rectangle, the NXCursor is set to be the current cursor. It ceases to be the
current cursor when the cursor leaves the rectangle. The assignment is made using
View's addCursorRect:cursor: method, usually inside a resetCursorRects method:

- resetCursorRects

[self addCursorRect:&someRect cursor:theNXlmageObject];

return self;

This is the recommended way of associating a cursor with a particular region inside a
window. However, the NXCursor class provides two other ways of setting the cursor:

• The class maintains its own stack of cursors. Pushing an NXCursor instance on the
stack sets it to be the current cursor. Popping an NXCursor from the stack sets the
next NXCursor in line, the one that's then at the top of the stack, to be the current
cursor.

• An NXCursor can be made the owner of a tracking rectangle and told to set itself
when it receives a mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NXCursor instances and assigns them to
global variables:

NXArrow
NXIBeam

The standard arrow cursor
The cursor that's displayed over editable or selectable text

There's no NXCursor instance for the wait cursor. The wait cursor is displayed
automatically by the system, without any required program intervention.

Application Kit Classes: NXCursor 2-369

INSTANCE VARIABLES

Inherited from Object

Declared in NXCursor

hotSpot

cFlags.onMouseExited

cFlags.onMouseEntered

image

METHOD TYPES

Class

NXPoint
struct _csrFlags {

unsigned int
unsigned int

id

isa;

hotSpot;

onMouseExited: 1 ;
onMouseEntered: 1;

cFlags;
image;

The point in the cursor image whose location on
the screen is reported as the cursor's location.

A flag indicating whether to set the cursor when
the Cursor object receives a mouse-exited event.

A flag indicating whether to set the cursor when
the Cursor object receives a mouse-entered event.

The cursor image, an NXImage object.

Initializing a new NXCursor object - init

Defining the cursor

Setting the cursor

Archiving

2-370 Chapter 2: Class Specifications

- initFromImage:

- setlmage:
- image
- setHotSpot:

-push
-pop
+ pop
- set
- setOnMouseEntered:
- setOnMouseExited:
- mouseEntered:
- mouseExited:
+ currentCursor

- read:
- write:

CLASS METHODS

currentCursor
+ currentCursor

Returns the last NXCursor to have been set.

See also: - set, - push, + pop, - mouseEntered:, - mouseExited:,

pop

+ pop

Removes the NXCursor currently at the top of the cursor stack, and sets the NXCursor
that was beneath it (but is now at the top of the stack) to be the current cursor. Returns
self (the class object).

This method can be used in conjunction with the push method to manage a group of
cursors within a local context. Every push should be balanced by a subsequent pop.
When the last remaining cursor is popped from the stack, the Application Kit restores
a cursor appropriate for the larger context.

The pop instance method provides the same functionality as this class method.

See also: - push

INSTANCE METHODS

image

init

- image

Returns the NXImage object that supplies the cursor image for the receiving NXCursor.

See also: - initFromlmage:, - setImage:

- init

Initializes the receiver, a newly allocated NXCursor instance, by sending it an
initFromlmage: message with nil as the argument. This doesn't assign an image to
the object. An image must then be set (with the setImage: method) before the cursor
can be used. Returns self.

See also: - setImage:, - initFromlmage:

Application Kit Classes: NXCursor 2-371

initFromlmage:

- initFromlmage:image

Initializes the receiver, a newly allocated NXCursor instance, by setting the image it
will use to image, an NXImage object. For a standard cursor, the image should be 16
pixels wide by 16 pixels high. The default hot spot is at the upper left comer of the
image.

This method is the designated initializer for the class. Returns self.

See also: - setHotSpot:

mouseEntered:

- mouseEntered:(NXEvent *)theEvent

Responds to a mouse-entered event by setting the NXCursor to be the current cursor,
but only if enabled to do so by a previous setOnMouseEntered: message. This
method does not push the receiver on the cursor stack. Returns self.

See also: - setOnMouseEntered:

mouseExited:

- mouseExited:(NXEvent *)theEvent

Responds to a mouse-exited event by setting the NXCursor to be the current cursor, but
only if enabled to do so by a previous setOnMouseExited: message. This method does
not push the receiver on the cursor stack. Returns self.

See also: - setOnMouseExited:

pop

-pop

Removes the topmost NXCursor object, not necessarily the receiver, from the cursor
stack, and makes the next NXCursor down the current cursor. Returns self.

This method is an interface to the class method with the same name.

See also: + pop, - push

2-372 Chapter 2: Class Specifications

push

-push

Puts the receiving NXCursor on the cursor stack and sets it to be the Window Server's
current cursor. Returns self.

This method can be used in conjunction with the pop method to manage a group of
cursors within a local context. Every push should be matched by a supsequent pop.

See also: + pop

read:

set

- read:(NXTypedStream *)stream

Writes the NXCursor, including the image, to stream.

See also: - write:

- set

Makes the NXCursor the current cursor displayed by the Window Server, and returns
self. This method doesn't push the receiver on the cursor stack.

setHotSpot:
- setHotSpot:(const NXPoint *)aPoint

Sets the point on the cursor that will be used to report its location. The point is specified
relative to a flipped coordinate system with an origin at the upper left comer of the
cursor image and coordinate units equal to those of the base coordinate system. The
point should not have any fractional coordinates, meaning that it should lie at the comer
of four pixels. The point selects the pixel below it and to its right. This pixel is the one
part of the cursor image that's guaranteed never to be off-screen.

When the pixel selected by the hot spot lies inside a rectangle (say a button), the cursor
is said to be over the rectangle. When the" pixel is outside the rectangle, the cursor is
taken to be outside the rectangle, even if other parts of the image are inside.

The default hot spot is at the upper left comer of the image. Returns self.

Application Kit Classes: NXCursor 2-373

setlmage:
- setImage:image

Sets a new image for the NXCursor, and returns the old image. The new image should
be an NXImage object. If the old image is of no further use, it should be freed.
Resetting the image while the cursor is displayed may have unpredictable results.

See also: - image, - initFromlmage:

setOnMouseEntered:

- setOnMollseEntered:(BOOL)jlag

Determines whether the NXCursor should set itself to be the current cursor when it
receives a mOllseEntered: event message. To be able to receive the event message, an
NXCursor must first be made the owner of a tracking rectangle by Window's
setTrackingRect:inside:owner:tag:left:right: method.

Cursor rectangles are a more convenient way of associating cursors with particular
areas within a window.

Returns self.

See also: - mOllseEntered:, - setTrackingRect:inside:owner:tag:left:right:
(Window)

setOnMouseExited:
- setOnMollseExited:(BOOL)jlag

Determines whether the NXCursor should set itself to be the current cursor when it
receives a mOllseExited: event message. To be able to receive the event message, an
NXCursor must first be made the owner of a tracking rectangle by Window's
setTrackingRect:inside:owner:tag:left:right: method.

Cursor rectangles are a more convenient way of associating cursors with particular
areas within windows.

Returns self.

See also: - mOllseExited:, - setTrackingRect:inside:owner:tag:left:right:
(Window)

write:.

- write:(NXTypedStream *)stream

Writes the NXCursor and its image to stream.

See also: - read:

2-374 Chapter 2: Class Specifications

NXCustomlmageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXCustomImageRep.h

CLASS DESCRIPTION

An NXCustomImageRep is an object that uses a delegated method to render an image.
When called upon to produce the image, it sends a message to have the method
performed.

Like most other kinds of NXImageReps, an NXCustomImageRep is generally used
indirectly, through an NXImage object. To be useful to the NXImage, it must be able
to provide some information about the image. The following methods, inherited from
the NXImageRep class, inform the NXCustomImageRep about the size of the image,
whether it can be drawn in color, and so on. Use them to complete the initialization of
the object.

setSize:
setNumColors:
setAlpha:
setPixelsHigh
setPixels Wide
setBitsPerSample:

INSTANCE VARIABLES

Inherited from Object Class isa;

Inheritedfrom NXImageRep NXSize size;

Declared in NXCustomImageRep SEL drawMethod;
draw Object;

draw Method

drawObject

id

The method that draws the image.

The object that receives messages to perform the
drawMethod.

Application Kit Classes: NXCustomlmageRep 2-375

METHOD TYPES

Initializing a new NXCustomImageRep
- initDraw Method:inObject:

Drawing the image -draw

Archiving - read:
- write:

INSTANCE METHODS

draw

init

- (BOOL)draw

Sends a message to have the image drawn. Returns YES if the message is successfully
sent, and NO if not. The message will not be sent if the intended receiver is nil or it
can't respond to the message.

See also: - drawAt: (NXImageRep), - drawln: (NXImageRep)

Generates an error message. This method cannot be used to initialize an
NXCustomImageRep. Use initDrawMethod:inObject: instead.

See also: - initDrawMethod:inObject:

initDrawMethod:inObject:

- initDrawMethod:(SEL)aSelector inObject:anObject

Initializes the receiver, a newly allocated NXCustomImageRep instance, so that it
delegates responsibility for rendering the image to anObject. When the
NXCustomImageRep receives a draw message, it will in turn send a message to
anObject to perform the aSelector method. The aSelector method should take only one
argument, the id of the NXCustomImageRep. It should draw the image at location
(0.0,0.0) in the current coordinate system.

Returns self.

read:

- read:(NXTypedStream *)stream

Reads the NXCustomImageRep from the typed stream stream.

See also: - write:

2-376 Chapter 2: Class Specifications

write:

-write:(NXTypedStream *)stream

Writes the NXCustomlmageRep to the typed stream stream. The object that's
delegated to draw the image is not explicitly written.

See also: - read:

Application Kit Classes: NXCustomlmageRep 2-377

2-378

NXEPSlmageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXEPSImageRep

CLASS DESCRIPTION

An NXEPSImageRep is an object that can render an image from encapsulated
PostScript code (EPS). The size of the object is set from the bounding box specified in
the EPS header comments. Other information about the image should be supplied
using inherited NXImageRep methods.

Like most other kinds of NXImageReps, an NXEPSImageRep is generally used
indirectly, through an NXImage object.

INSTANCE VARIABLES

Inherited/rom Object Class is a;

Inheritedfrom NXImageRep NXSize size;

Declared in NXEPSImageRep (none)

METHOD TYPES

Initializing a new NXEPSImageRep instance
- initFromSection:
- initFromFile:
- initFromStream:

Creating a List of NXEPSImageReps
+ newListFromSection:
+ newListFromSection:zone:
+ newListFromFile:
+ newListFromFile:zone:
+ newListFromStream:
+ newListFromStream:zone:

Copying and freeing an NXEPSImageRep
-copy
-free

Getting the rectangle that bounds the image
- getBoundingBox:

Application Kit Classes: NXEPSlmageRep 2-379

Getting image data - getEPS:length:

Drawing the image -prepareGState
- drawln:
-draw

Archiving - read:
- write:

newListFromFile:

+ (List *)newListFromFile:(const char *)filename

Creates one new NXEPSlmageRep instance for each EPS image specified in the
filename file, and returns a List object containing all the objects created. If no
NXEPSlmageReps can be created (for example, if filename doesn't exist or doesn't
contain EPS code), nil is returned. The List should be freed when it's no longer needed.

Each new NXEPSlmageRep is initialized by the initFromFile: method, which reads a
minimal amount of information about the image from the header comments in the file.
The PostScript code will be read when it's needed to render the image.

See also: + newListFromFile:zone:, - initFromFile:

newListFromFile:zone:
+ (List *)newListFromFile:(const char *)filename zone:(NXZone *)aZone

Returns a List of new NXEPSlmageRep instances, just as newListFromFile: does,
except that the NXEPSlmageReps and the List object are allocated from memory
located in aZone.

See also: + newListFromFile:, - initFromFile:

newListFromSection:

+ (List *)newListFromSection:(const char *)name

Creates one new NXEPSlmageRep instance for each image specified in the name
section of the _EPS segment in the executable file, and returns a List object containing
all the objects created. If not even one NXEPSlmageRep can be created (for example,
if the name section doesn't exist or doesn't contain EPS code), nil is returned. The List
should be freed when it's no longer needed.

Each new NXEPSlmageRep is initialized by the initFromSection: method, which
reads reads a minimal amount of information about the image from the EPS header
comments. The PostScript code will be read only when it's needed to render the image.

See also: + newListFromSection:zone:, - initFromSection:

2-380 Chapter 2: Class Specifications

newListFromSection: zone:

+ (List *)newListFromSection:(const char *)name zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromSection: does,
except that the List object and the NXEPSImageReps are allocated from memory
located in aZone.

See also: + newListFromSection:, - initFromSection:

newListFromStream:
+ (List *)newListFromStream:(NXStream *)stream

Creates one new NXEPSImageRep instance for each EPS image that can be read from
stream, and returns a List object containing all the objects created. If not even one
NXEPSImageRep can be created (for example, if the stream doesn't contain EPS
code), nil is returned. The List should be freed when it's no longer needed.

The data is read and each new object initialized by the initFromStream: method.

See also: + newListFromStream:zone:, - initFromStream:

newListFromStream:zone:

+ (List *)newListFromStream:(NXStream *)stream zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromStream: does,
except that the List object and the NXEPSImageReps are allocated from memory
located in aZone.

See also: + newListFromStream:, - initFromStream:

INSTANCE METHODS

copy

-copy

Returns a new NXEPSImageRep instance that's an exact copy of the receiver. The new
object will have its own copy of the image data. It doesn't need to be initialized.

Application Kit Classes: NXEPSlmageRep 2-381

draw
- (BOOL)draw

Draws the image at (0.0,0.0) in the current coordinate system on the current device.
This method returns YES if successful in rendering the image, and NO if not.

An NXEPSlmageRep draws in a separate PostScript context and graphics state. Before
the EPS code is interpreted, all graphics state parameters-with the exception of the
CTM and device-are set to the Window Server's defaults and the defaults required by
EPS conventions. If you want to change any of these defaults, you can do so by
implementing a prepareGState method in an NXEPSlmageRep subclass. The draw
method invokes prepareGState just before sending the EPS code to the Window
Server. For example, if you need to set a transfer function or halftone screen that's
specific to the image, prepareGState is the place to do it.

See also: - drawAt: (NXlmageRep), - drawIn:, - prepareGState

drawln:
- (BOOL)drawIn:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto The current
coordinate system is translated and scaled so the image will appear at the right location
and fit within the rectangle. The draw method is then invoked to produce the image.
This method passes through the return value of the draw method, which indicates
whether the image was successfully drawn.

The coordinate system is not restored after it has been altered.

See also: - draw, - drawAt: (NXlmageRep)

free
-free

Deallocates the NXEPSlmageRep.

getBoundingBox:
- getBoundingBox:(NXRect *)theRect

Provides the rectangle that bounds the image. The rectangle is copied from the
"%%BoundingBox:" comment in the EPS header to structure referred to by theRect.
Returns self.

2-382 Chapter 2: Class Specifications

getEPS:length:

init

- getEPS:(char **)theEPS length:(int *)numBytes

Sets the pointer referred to by theEPS so that it points to the EPS code. The length of
the code in bytes is provided in the integer referred to by numBytes. Returns self.

Generates an error message. This method can't be used to initialize an
NXEPSImageRep. Use one of the other init ... methods instead.

See also: - initFromSection:, - initFromFile:, - initFromStream:

initFromFile:

- initFromFile:(const char *)filename

Initializes the receiver, a newly allocated NXEPSlmageRep object, with the EPS image
found in the filename file. Some information about the image is read from the EPS
header comments, but the PostScript code won't be read until it's needed to render the
image.

If the new object can't be initialized for any reason (for example,filename doesn't exist
or doesn't contain EPS code), this method frees it and returns nil. Otherwise, it returns
self.

This method is the designated initializer for NXEPSImageReps that read EPS code
from a file.

See also: + newListFromFile:, - initFromSection:

initFromSection:
- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXEPSImageRep object, with the image
found in the name section in the _EPS segment of the application executable. Some
information about the image is read from the EPS header comments, but the PostScript
code won't be read until it's needed to render the image.

If the new object can't be initialized for any reason (for example, the name section
doesn't exist or doesn't contain EPS code), this method frees it and returns nil.
Otherwise, it returns self.

This method is the designated initializer for NXEPSImageReps that read image data
from the _EPS segment..

See also: + newListFromSection:, - initFromFile:

Application Kit Classes: NXEPSlmageRep 2-383

initFromStream:
- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXEPSImageRep object, with the EPS image
read from stream. If the new object can't be initialized for any reason (for example,
stream doesn't contain EPS code), this method frees it and returns nil. Otherwise, it
returns self.

This method is the designated initializer for NXEPSImageReps that read image data
from a stream.

See also: + newListFromStream:

prepareGState

- prepareGState

Implemented by subclasses to initialize the graphics state before the image is drawn.
The draw method sends a prepareGState message just before rendering the EPS code.
This default implementation of the method does no initialization; it simply returns self.

See also: - draw

read:
- read:(NXTypedStream *)stream

Reads the NXEPSImageRep from the typed stream stream.

See also: - write:

write:
- write:(NXTypedStream *)stream

Writes the NXEPSImageRep to the typed stream stream.

See also: - read:

2-384 Chapter 2: Class Specifications

NXlmage

INHERITS FROM Object

DECLARED IN appkit/NXImage.h

CLASS DESCRIPTION

An NXImage object contains an image that can be compo sited anywhere without first
being drawn in any particular View. It manages the image by:

• Reading image data from the _ICON , _TIFF, or _EPS segments of the
application executable, from a separate file, or from an NXStream.

• Keeping multiple representations of the same hnage.

• Choosing the representation that's appropriate for any given display device.

• Caching the representations it uses by rendering them in off-screen windows.

• Optionally retaining the data used to draw the representations, so that they can be
reproduced when needed.

• Compo siting the image from the off-screen cache to where it's needed on-screen.

• Reproducing the image for the printer so that it matches what's displayed
on-screen, yet is the best representation possible for the printed page.

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)
• Bitmap data in Tag Image File Format (TIFF)
• U ntagged (raw) bitmap data

If TIFF or EPS image data is placed in a section of the application executable or in a
separate file, the NXImage object can access the data whenever it's needed to create the
image. If TIFF or EPS data is read from a stream, the NXImage object may need to
retain the data itself.

Application Kit Classes: NXlmage 2-385

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NXImage object.
In this case, the NXImage maintains only the cached image.

• By defining a method that can be used to draw the image when needed. This allows
the NXImage to delegate responsibility for producing the image to some other
object.

Image Representations

An NXImage object can keep more than one representation of an image. Multiple
representations permit the image to be customized for the display device. For example,
different hand-tuned TIFF images can be provided for monochrome and color screens,
and an EPS representation or a custom method might be used for printing. All
representations are versions of the same image.

An NXImage returns a List of its representations in response to a representationList
message. Each representation is a kind of NXImageRep object:

NXEPSImageRep An image that can be recreated from EPS data that's either
retained by the object or at a known location in the file
system.

NXBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NXCustomImageRep An image that can be redrawn by a method defined in the
application.

NXCachedImageRep An image that has been rendered in an off-screen cache
from data or instructions that are no longer available. The
image in the cache provides the only data from which the
image can be reproduced.

You can also define other NXImageRep subclasses for objects that render images from
other kinds of source information.

Choosing and Caching Representations

The NXImage object will choose the representation that best matches the rendering
device. By default, the choice is made according to the following set of ordered rules.
Each rule is applied in tum until the choice of representation is narrowed to one:

6. Choose a color representation for a color device, and a gray-scale representation for
a monochrome device.

2-386 Chapter 2: Class Specifications

7. Choose a representation with a resolution that matches the resolution of the device,
or if no representation matches, choose the one with the highest resolution.

By default, any image representation with a resolution that's an integer multiple of
the device resolution is considered to match. If more than one representation
matches, the NXImage will choose the one that's closest to the device resolution.
However, you can f9rce resolution matches to be exact by passing NO to the
setMatchedOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution,
over EPS representations, which don't. However, you can use the
setEPSPreferredOnResolutionMismatch: method to have the NXImage choose
an EPS representation in case a resolution match isn't possible.

8. If all else fails, choose the representation with a specified bits per sample that
matches the depth of the device. If no representation matches, choose the one with
the highest bits per sample.

By passing NO to the setColorMatchPreferred: method, you can have the NXImage
try for a resolution match before a color match. This essentially inverts the first and
second rules above.

When first asked to composite the image, the NXImage object chooses the
representation that's best for the destination display device. It renders the
representation in an off-screen window on the same device, then composites it from this
cache to the desired location. Subsequent requests to composite the image use the same
cache. Representations aren't cached until they're needed for compositing.

When printing, the NXImage tries not to use the cached image. Instead, it attempts to
render on the printer-using the appropriate EPS or TIFF data, or a delegated
method-the best version of the image that it can. Only as a last resort will it image
the cached bitmap.

Image Size

Before an NXImage can be used, the size of the image must be set, in units of the base
coordinate system. If a representation is smaller or larger than the specified size, it can
be scaled to fit.

If the size of the image hasn't already been set when the NXImage is provided with an
EPS or TIFF representation, the size will be set from the EPS or TIFF data. The EPS
bounding box and TIFF "ImageLength" and "ImageWidth" fields specify an image
size.

Application Kit Classes: NXlmage 2-387

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they
can't be rotated or flipped. When composited, an image maintains this orientation, no
matter what coordinate system it's compo sited to. (The destination coordinate system
is used only to determine the location of a compo sited image, not its size or
orientation.)

It's possible to refer to portions of an image when compo siting (or when defining
subimages), by specifying a rectangle in the image's coordinate system, which is
identical to the base coordinate system, except that the origin is at the lower left comer
of the image.

Named Images

An NXImage object can be identified either by its id or by a name. Assigning an
NXImage a name adds it to a database kept by the class object; each name in the
database identifies one and only one instance of the class. When you ask for an
NXImage object by name (with the findImageNamed: method), the class object
returns the one from its database, which also includes all the system bitmaps provided
by the Application Kit. If there's no object in the database for the specified name, the
class object tries to create one by looking in the _ICON, _EPS, and _TIFF segments
of the application's executable file, and then in the directory of the executable file (the
file package).

If a section or file matches the name, an NXImage is created from the data stored there.
You can therefore create NXImage objects simply by including EPS or TIFF data for
them within the executable file, or in files inside the application's file package.

The job of displaying an image within a View can be entrusted to a Cell object. A Cell
identifies the image it's to display by the name of the NXImage object. The following
code sets myCelJ to display one of the system bitmaps: .

id myCel1 = [[Cell alloe] initleonCell:"NXswiteh"];

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in NXImage char *name;

name The name assigned to the image.

2-388 Chapter 2: Class Specifications

METHOD TYPES

Initializing a new NXImage instance
- init
- initSize:
- initFromSection:
- initFromFile:
- initFromStream:
- initFromImage:rect:

Freeing an NXImage object - free

Setting the size of the image - setSize:
- getSize:

Referring to images by name - setName:
-name
+ findImageNamed:

Specifying the image - useDrawMethod:inObject:
- useFromSection:
- useFromFile:
- useRepresentation:
- useCache WithDepth:
- loadFrOlnStream:
-lockFocus
- lockFocusOn:
- unlockFocus

U sing the image - composite:toPoint:
- composite:fromRect:toPoint:
- dissolve:toPoint:
- dissolve:fromRect:toPoint:

Choosing which image representation to use
- setColorMatchPreferred:
- isColorMatchPreferred
- setEPSU sedOnResolutionMismatch:
- isEPSU sedOnResolutionMismatch
- setMatchedOnMultipleResolution:
- isMatchedOnMultipleResolution

Getting the representations - lastRepresentation
- bestRepresentation
- representationList
- removeRepresentation:

Application Kit Classes: NXlmage 2-389

Determining how the image is stored
- setUnique:
- isUnique
- setDataRetained:
- isDataRetained
- setCacheDepthBounded:
- isCacheDepthBounded
- getlmage:rect:

Determining how the image is drawn
- setFlipped:
- isFlipped
- setScalable:
- isScalable
- setBackgroundColor:
- backgroundColor
- drawRepresentation:inRect:
- recache

Assigning a delegate - setDelegate:
- delegate

Producing TIFF data for the image - writeTIFF:
- writeTIFF:allRepresentations:

Archiving -read:
- write:
- finish U narchiving

CLASS METHODS

tindlmageNamed:

+ findlmageNamed:(const char *)name

Returns the NXImage instance associated with name. The returned object can be:

• One that's been assigned a name with the setName: method,
• One of the named system bitmaps provided by the Application Kit, or
• One that's been created and named by this method.

If there's no known NXImage with name, this method tries to create one by searching
for image data in the _ICON, _EPS, and _TIFF segments of the application
executable and in the directory (file package) where the executable resides:

1. It looks first in the _ICON segment for a name section containing either
Encapsulated PostScript code (EPS) or Tag Image File Format (TIFF) data.

2-390 Chapter 2: Class Specifications

2. Failing to find image data there, it looks next for a section with TIFF data in the
_TIFF segment if name includes a ".tiff' extension, or for a section containing
EPS data in the _EPS segment if name includes a ".eps" extension. If name has
neither extension, both segments are searched, first after adding the appropriate
extension to name, then for name alone, without an extension. If it finds sections
in both segments, it creates both EPS and TIFF representations of the image.

3. If this method can't find a EPS or TIFF representation in any segment,·it searches
for name.eps and name.tiff files in the directory containing the application
executable (the file package). This allows you to keep image data in separate files
during the development phase (so that you won't have to relink every time the
image changes), then later insert the data in a segment of the finished executable.

If a section or file contains data for more than one image, a separate representation is
created for each one. If an image representation can't be found for name, no object is
created and nil is returned.

The preferred way to name an EPS or TIFF image is to ask for a name without the
".eps" or". tiff' extension, but to include the extension on the section name or file name.

This method treats all images found in the _ICON segment as application or document
icons, since the point of putting an image in that segment rather than in _TIFF or
_EPS is to advertise it to the Workspace Manager. The Workspace Manager requires
icons to be no more than 48 pixels wide by 48 pixels high. Therefore, an NXImage
created from an _ICON section has its size set to 48.0 by 48.0 and is made scalable.

See also: - setName:, - name

INSTANCE METHODS

background Color

- (NXColor)backgroundColor

Returns the background color of the rectangle where the image is cached. If no
background color has been specified, NX_COLORCLEAR is returned, indicating a
totally transparent background.

The background color will be visible when the image is compo sited only if the image
doesn't completely cover all the pixels within the area specified for its size.

See also: - setBackgroundColor:

Application Kit Classes: NXlmage 2-391

bestRepresentation
- (NXlmageRep *)bestRepresentation

Returns the image representation that best matches the display device with the deepest
frame buffer currently available to the Window Server.

See also: - representationList

composite:fromRect:toPoint:
- composite:(int)op

fromRect:(const NXRect *)aRect
toPoint:(const NXPoint *)aPoint

Composites the area enclosed by the aRect rectangle to the location specified byaPoint
in the current coordinate system. The op and aPoint arguments are the same as for
composite:toPoint:. The source rectangle is specified relative to a coordinate system
that has its origin at the lower left comer of the image, but is otherwise the same as the
base coordinate system.

This method doesn't check to be sure that the rectangle encloses only portions of the
image. Therefore, it can conceivably composite areas that don't properly belong to the
image, if the aRect rectangle happens to include them. If this turns out to be a problem,
you can prevent it from happening by having the NXlmage cache its representations in
their own individual windows (with the setUnique: method). The window's clipping
path will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compo siting the whole itnage, bui
printing just part of an image is not. When printing, it's necessary to draw the whole
image and rely on a clipping path to be sure that only the desired portion appears.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - composite:toPoint:, - setUnique:

composite:toPoint:
- composite:(int)op toPoint:(const NXPoint *)aPoint

Composites the image to the location specified by aPoint. The first argument, op,
names the type of compo siting operation requested. It should be one of the following
constants:

NX_CLEAR
NX_COPY
NX_PLUSD
NX_PLUSL

2-392 Chapter 2: Class Specifications

NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP

NX_DOVER
NX_DIN
NX_DOUT
NX_DATOP

aPoint is specified in the current coordinate system-the coordinate system of the
currently focused View-and designates where the lower left comer of the image will
appear. The image will have the orientation of the base coordinate system, regardless,
of the destination coordinates.

The image is composited from its off-screen window cache. Since the cache isn't
created until the image representation is first used, this method may need to render the
image before compositing. .

When printing, the compo siting methods do not composite, but attempt to render the
same image on the page that compo siting would render on the screen, choosing the best
available representation for the printer. The op argument is ignored.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - composite:fromRect:toPoint:, - dissolve:toPoint:

delegate
- delegate

Returns the delegate of the NXImage object, or nil if no delegate has been set.

See also: - setDelegate:

dissolve:fromRect:toPoint:
- dissolve:(float)delta

fromRect:(const NXRect *)aRect
toPoint:(const NXPoint *)aPoint

Composites the aRect portion of the image to the location specified by aPoint, just as
composite:fromRect:toPoint: does, but uses the dissolve operator rather than
composite. delta is a fraction between 0.0 and 1.0 that specifies how much of the
resulting composite will come from the NXImage.

When printing, this method is identical to composite:fromRect:toPoint:. The delta
argument is ignored.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - dissolve:toPoint:, - composite:fromRect:toPoint:

Application Kit Classes: NXlmage 2-393

dissolve:toPoint:

- dissolve:(float)delta toPoint:(const NXPoint *)aPoint

Composites the image to the location specified by aPoint, just as composite:toPoint:
does, but uses the dissolve operator rather than composite. delta is a fraction between
0.0 and 1.0 that specifies how much of the resulting composite will come from the
NXlmage.

To slowly dissolve one image into another, this method (or
dissolve:fromRect:toPoint:) needs to be invoked repeatedly with an ever-increasing
delta. Since delta refers to the fraction of the source image that's combined with the
original destination (not the destination image after some of the source has been
dissolved into it), the destination image should be replaced with the original destination
before each invocation. This is best done in a buffered window before the results of the
composite are flushed to the screen.

When printing, this method is identical to composite:toPoint:. The delta argument is
ignored.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - dissolve: fromRect:toPoint:, - composite:toPoint:

draw Representation :inRect:

- (BOOL)drawRepresentation:(NXlmageRep *)imageRep
inRect:(const NXRect *)rect

Fills the specified rectangle with the background color, then sends the imageRep a
drawln: message to draw itself inside the rectangle (if the NXlmage is scalable), or a
draw At: message to draw itself at the location of the rectangle (if the NXlmage is not
scalable). The rectangle is located in the current window and is specified in the current
coordinate system.

This method is not ordinarily used in program code; the NXlmage uses it to cache its
representations and to print them. By overriding it in a subclass, you can change how
representations appear in the cache, and thus how they'll appear when composited. For
example, you could scale or rotate the coordinate system, then send a message to super
to perform this version of the method.

This method passes through the return of the drawln: or draw At: method, which
indicates whether or not the representation was successfully drawn. When NO is
returned, the NXlmage will ask another representation, if there is one, to draw the
image.

If the background color is fully transparent and the image is not being cached by the
NXlmage, the rectangle won't be filled before the representation draws.

See also: - drawln (NXlmageRep), - draw At: (NXlmageRep)

2-394 Chapter 2: Class Specifications

finish Unarchiving

- finish U narchiving

Registers the name of the newly unarchived receiver, if it has a name, and returns nil.
It also returns nil if the receiving NXlmage doesn't have a name. However, if the
receiver has a name that can't be registered because it's already in use, this method frees
the receiver and returns the existing NXlmage with that name, thus replacing the
unarchived object with one that's already in use.

finishUnarchiving messages are generated automatically (by NXReadObjectO) after
the object has be unarchived (by read:) and initialized (by awake).

free

- free

Deallocates the NXlmage and all its representations. If the object had been assigned a
name, the name is removed from the class database.

getlmage:rect:

- getImage:(NXlmage **)the/mage rect:(NXRect *)theRect

Provides information about the receiving NXlmage object, if it's a subimage of another
NXlmage. The parent NXlmage is assigned to the variable referred to by the/mage,
and the rectangle where the receiver is located in that NXlmage is copied into the
structure referred to by theRect.

If the receiver is not a subimage of another NXlmage object (if it wasn't initialized by
initFromImage:rect:), the variable referred to by the/mage is set to nil and the
rectangle is not modified.

Returns self.

See also: - initFromImage:rect:

getSize:

- getSize:(NXSize *)theSize

Copies the size of the image into the structure specified by theSize. If no size has been
set, all values in the structure will be set to 0.0. Returns self.

See also: - setSize:

Application Kit Classes: NXlmage 2-395

init

-- in it

Initializes the receiver, a newly allocated NXImage instance, but does not set the size
of the image. The size must be set, and at least one image representation provided,
before the NXImage object can be used. The size can be set either through a setSize:
message or by providing an image from data (BPS or TIFF) that specifies a size.

See also: - initSize:, - setSize:

initFromFile:

- initFromFile:(const char *)filename

Initializes the receiver, a newly allocated NXImage instance, with the image specified
in filename , which can be a full or relative pathname. The file should contain BPS or
TIFF data for one or more versions of the image. An image representation will be
created and added to the NXImage for each image specified. The size of the NXImage
is set from information found in the TIFF fields or the BPS bounding box comment.

After finishing the initialization, this method returns self. However, if the new instance
can't be initialized, it's freed and nil is returned.

This method invokes the useFromFile: method to find filename and create
representations for the NXImage. It's equivalent to a combination of init and
useFromFile: .

See also: - useFromFiIe:, - initSize:

initFromImage: rect:

- initFromlmage:(NXImage *)image rect:(const NXRect *)reet

Initializes the receiver, a newly allocated NXImage instance, so that it's a subimage for
the reet portion of another NXlmage object, image. The size of the new object is set
from the size of the reet rectangle. Returns self.

Once initialized, the new instance can't be altered and will remain dependent on the
original image. Changes made to the original will also change the subimage.

Subimages should be used only as a way of avoiding composite:fromRect:toPoint:
and dissolve:fromRect:toPoint: messages. They permit you to divide a large image
into sections and assign each section a name. The name can then be passed to those
Button and Cell methods that identify images by name rather than id.

See also: - getImage:rect:, - initSize:

2-396 Chapter 2: Class Specifications

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXImage instance, with the image specified
in the name section of the ~EPS or _TIFF segment of the application executable. If
the section contains EPS or TIFF data for more than one version of the image, a
representation will be created and added to the NXImage for each image specified. The
size of the NXImage is set from information taken from the TIFF fields or the EPS
bounding box comment. .

After finishing the initialization, this method returns self. However, if the new instance
can't be initialized, it's freed and nil is returned.

This method uses the useFromSection: method to find the name section and create
representations for the NXImage. It's equivalent to a combination of init and
useFromFile: .

See also: - useFromSection:, - initSize:

initFromStream:
- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXImage instance, with the image or images
specified in the data read from stream, and returns self. If the receiver can't be
initialized for any reason, it's freed and nil is returned.

Since this method must store the data read from the stream or render the specified
image immediately, it's less preferred than initFromSection: or initFromFile:, which
can wait until the image is needed.

The stream should contain recognizable image data, either EPS or TIFF. It's read using
the loadFromStream: method, which will set the size of the NXImage from
information found in the TIFF fields or the EPS bounding box comment. This method
is equivalent to a combination of init and loadFromStream:.

See also: - loadFromStream:, - initSize:

Application Kit Classes: NXlmage 2-397

initSize:

- initSize:(const NXSize *)aSize

Initializes the receiver, a newly allocated NXImage instance, to the size specified and
returns self. The size should be specified in units of the base coordinate system. It must
be set before the NXImage can be used.

This method is the designated initializer for the class (the method that incorporates the
initialization of classes higher in the hierarchy through a message to super). All other
init ... methods defined in this class work through this method.

See also: - setSize:

isCacheDepthBounded

- (BOOL)isCacheDepthBounded

Returns YES if the depth of the off-screen windows where the NXImage's
representations are cached are bounded by the application's default depth limit, and NO
if the depth of the caches can exceed that limit. The default is YES.

See also: - setCacheDepthBounded:, + defaultDepthLimit (Window)

isColor MatchPreferred

Returns YES if, when selecting the representation it will use, the NXImage first looks
for one that matches the color capability of the rendering device (choosing a gray-scale
representation for a monochrome device and a color representation for a color device),
then if necessary narrows the selection by looking for one that matches the resolution
of the device. If the return is NO, the NXImage first looks for a representation that
matches the resolution of the device, then tries to match the representation to the color
capability of the device. The default is YES.

See also: - setColorMatchPreferred:

isDataRetained

- (BOOL)isDataRetained

Returns YES if the NXImage retains the data needed to render the image, and NO if it
doesn't. The default is NO. If the data is available in a section of the application
executable or in a file that won't be moved or deleted, or if responsibility for drawing
the image is delegated to another object with a custom method, there's no reason for the
NXImage to retain the data. However, if the NXImage reads image data from a stream,
you may want to have it keep the data itself.

See also: - setDataRetained:, -loadFromStream:

2-398 Chapter 2: Class Specifications

isEPSUsedOnResolutionMismatch

- (BOOL)isEPSUsedOnResolutionMismatch

Returns YES if an EPS representation of the image should be used whenever it's
impossible to match the resolution of the device to the resolution of another
representation of the image (a TIFF representation, for example). By default, this
method returns NO to indicate that EPS representations are not necessarily preferred.

See also: - setEPSUsedOnResolutionMismatch:

isFlipped

- (BOOL)isFlipped

Returns YES if a flipped coordinate system is used when drawing the image, and NO
if it isn't. The default is NO.

See also: - setFlipped:

isMatchedOnMultipleResolution

- (BOOL)isMatchedOnMultipleResolution

Returns YES if the resolution of the device and the resolution specified for the image
are considered to match if one is a multiple of the other, and NO if device and image
resolutions are considered to match only if they are exactly the same. The default is
YES.

See also: - setMatchedOnMultipleResolution:

isScalable

- (BOOL)isScalable

Returns YES if image representations are scaled to fit the size specified for the
NXImage. If representations are not scalable, this method returns NO. The default is
NO.

Representations created from data that specifies a size (for example, the
"ImageLength" and "Image Width" fields of a TIFF representation or the bounding box
of an EPS representation) will have the size the data specifies, which may differ from
the size of the NXImage.

See also: - setScalable:

Application Kit Classes: NXlmage 2-399

isUnique
- (BOOL)isUnique

Returns YES if each representation of the image is cached alone in an off-screen
window of its own, and NO if they can be cached in off-screen windows together with
other images. A return of NO doesn't mean that the windows are, in fact, shared, just
that they can be. The default is NO.

See also: - setUnique:

lastRepresentation
- (NXImageRep *)lastRepresentation

Returns the last representation that was specified for the image (the last one added with
methods like useCacheWithDepth:, loadFromStream:, and initFromStream:). If
the NXImage has no representations, this method returns nil.

See also: - representationList, - bestRepresentation

loadFromStream:
- (BOOL)loadFromStream:(NXStream *)stream

Creates an image representation from the data read from stream and adds it to the
receiving NXImage's list of representations. The data must be of a recognizable type,
either TIFF or EPS. If the size of the NXImage hasn't yet been set, it will be set from
information found in the TIFF fields or from the BPS bounding box comment. If the
stream contains data specifying more than one image, a separate representation is
created for each one.

If the NXImage object doesn't retain image data (isDataRetained returns NO), the
image will be rendered in an off-screen window and the representations will be of type
NXCachedImageRep. If the data is retained, the representations will be of type
NXBitmaplmageRep or NXEPSImageRep, depending on the data.

If successful in creating at least one representation, this method returns YES. If not, it
returns NO.

See also: - initFromStream:

2-400 Chapter 2: Class Specifications

lockFocus

- (BOOL)lockFocus

Focuses on the best representation for the NXImage, by making the off-screen window
where the representation will be cached the current window and a coordinate system
specific to the area where the image will be drawn the current coordinate system. The
best representation is the one that best matches the deepest available frame buffer; it's
the same object returned by the bestRepresentation method.

If the NXImage has no representations, lockFocus creates one with the
useCache WithDepth: method, specifying the best depth for the deepest frame buffer
currently in use. To add additional representations, useCache WithDepth: messages
must be sent explicitly.

This method returns YES if it's successful in focusing on the representation, and NO if
not. A successfullockFocus message must be balanced by a subsequent unlockFocus
message to the same NXImage. These messages bracket the code that draws the image.

If lockFocus returns NO, it will not have altered the current graphics state and should
not be balanced by an unlockFocus message.

See also: -lockFocusOn:, -lockFocus (View), - unlockFocus,
- useCacheWithDepth:, - bestRepresentation

lockFocusOn:

- (BOOL)lockFocusOn:(NXImageRep *)imageRep

Focuses on the imageRep representation, by making the off-screen window where it,
will be cached the current window and a coordinate system specific to the area where
the image will be drawn the current coordinate system.

This method returns YES if it's successful in focusing on the representation, and NO if
it's not. A successfullockFocusOn: message must be balanced by a subsequent
unlockFocus message to the same receiver. These messages bracket the code that
draws the image. The useCache WithDepth: method will add a representation
specifically for this purpose. For example:

[myNXImage useCacheWithDepth:NX_TwoBitGrayDepth]i

if ([myNXImage lockFocusOn: [myImage lastRepresentation]]) {

/* drawing code goes here */

[myNXImage unlockFocuS]i

If lockFocusOn: returns NO, it will not have altered the current graphics state and
should not be balanced by an unlockFocus message.

See also: -lockFocus, -lockFocus (View), - unlockFocus, -lastRepresentation

Application Kit Classes: NXlmage 2-401

name
- (const char *)name

Returns the name assigned to the NXImage, or NULL if no name has been assigned.

See also: - setName:, + findlmageNamed:

read:
- read:(NXTypedStream *)stream

Reads the NXImage and all its representations from the typed stream stream.

See also: - write:

recache
- recache

Invalidates the off-screen caches of all representations and frees them. The next time
any representation is composited, it will first be asked to redraw itself in the cache.
NXCachedImageReps are not destroyed by this method.

If an image is likely not to be used again, it's a good idea to free its caches, since that
will reduce that amount of memory consumed by your program and therefore improve
performance.

Returns self.

removeRepresentation:

- removeRepresentation:(NXImageRep *)imageRep

Frees the imageRep representation after removing it from the NXImage's list of
representations. Returns self.

See also: - representationList

representation List
- (List *)representationList

Returns the List object containing all the representations of the image. The List
belongs to the NXImage object, and there's no guarantee that the same List object will
be returned each time. Therefore, rather than saving the object that's returned, you
should ask for it each time you need it.

See also: - bestRepresentation, - lastRepresentation

2-402 Chapter 2: Class Specifications

setBackgroundCo)or:

- setBackgroundColor:(NXColor)aC olor

Sets the background color of the image. The default is NX_COLORCLEAR,
indicating a totally transparent background. The background color will be visible only
for representations that don't touch all the pixels within the image when drawing.
Returns self.

See also: - backgroundColor

setCacheDepthBounded:
- setCacheDepthBounded:(BOOL)jlag

Determines whether the depth of the off-screen windows where the NXlmage's
representations are cached should be limited by the application's default depth limit. If
jlag is NO, window depths will be determined by the specifications of the
representations, rather than by the current display devices. The default is YES. Returns
self.

See also: - isCacheDepthBounded, + defaultDepthLimit (Window)

setColor MatchPreferred:
- setColorMatchPreferred:(BOOL)jlag

Determines how the NXlmage will select which representation to use. Ifjlag is YES,
it first tries to match the representation to the color capability of the rendering device
(choosing a color representation for a color device and a gray-scale representation for
a monochrome device), and then if necessary narrows the selection by trying to match
the resolution of the representation to the resolution of the device. Ifjlag is NO, the
NXlmage first tries to match the representation to the resolution of the device, and then
tries to match it to the color capability of the device. The default is YES. Returns self.

See also: - isColorMatchPreferred

setDataRetained:
- setDataRetained:(BOOL)jlag

Determines whether the NXlmage retains the data needed to render the image. The
default is NO. If the data is available in a section of the application executable or in a
file that won't be moved or deleted, or if responsibility for drawing the image is
delegated to another object with a custom method, there's no reason for the NXlmage
to retain the data. However, if the NXlmage reads image data from a stream, you may
want to have it keep the data itself.

See also: - isDataRetained

Application Kit Classes: NXlmage 2-403

setDelegate:

- setDelegate:anObject

Makes anObject the delegate of the NXImage. Returns self.

See also: - delegate

setEPSUsedOnResolutionMismatch:

- setEPSUsedOnResolutionMismatch:(BOOL)jlag

Determines whether EPS representations will be preferred when there are no
'representations that match the resolution of the device. The default is NO. Returns
self.

See also: - isEPSUsedOnResolutionMismatch

setFlipped:

- setFlipped:(BOOL)jlag

Determines whether the polarity of the y-axis is inverted when drawing an image. If
flag is YES, the image will have its coordinate origin in the upper left comer and the
positive y-axis will extend downward. This method affects only the coordinate system
used to draw the image, whether through a method assigned with the
useDrawMethod:object: method or directly by focusing on a representation. It
doesn't affect the coordinate system for specifying portions of the image for methods
like composite:fromRect:toPoint: or initFromlmage:rect:.

See also: - isFlipped

setMatched OnMultipleResolution:

- setMatchedOnMultipleResolution:(BOOL)jlag

Determines whether image representations with resolutions that are exact multiples of
the resolution of the device are considered to match the device. The default is NO.
Returns self.

See also: - isMatchedOnMultipleResolution

2-404 Chapter 2: Class Specifications

setName:
- (BOOL)setName:(const char *)string

Sets string to be the name of the NXlmage object and registers it under that name. If
the object already has a name, that name is discarded. If string is already the name of
another object or if the receiving NXlmage is one of the system bitmaps provided by
the Application Kit, the assignment fails.

If successful in naming or renaming the receiver, this method returns YES. Otherwise
it returns NO.

See also: + findlmageNamed:, - name

setScalable:
- setScalable:(BOOL)jlag

Determines whether representations with sizes that differ from the size of the NXlmage
will be scaled to fit. The default is NO.

Generally, representations that are created through NXlmage methods (such as
useCacheWithDepth: or initFromSection:) have the same size as the NXlmage.
However, a representation that's added with the useRepresentation: method may have
a different size, and representations created from data that specifies a size (for example,
the "ImageLength" and "Image Width" fields of a TIFF representation or the bounding
box of an EPS representation) will have the size specified.

Returns self.

See also: - isScalable

setSize:
- setSize:(const NXSize *)aSize

Sets the width and height of the image. The size referred to by aSize should be in units
of the base coordinate system. The size of an NXImage must be set before it can be
used. Returns self.

The size of an NXImage can be changed after it has been used, but changing it
invalidates all its caches and frees them. When the image is next composited, the
selected representation must draw itself in an off-screen window to recreate the cache.

See also: - getSize:, - initSize:

Application Kit Classes: NXlmage 2-405

setUnique:

- setUnique:(BOOL)flag

Determines whether each image representation will be cached in its own off-screen
window or in a window shared with other images. If flag is YES, each representation
is guaranteed to be in a separate window. Ifflag is NO, a representation can be cached
together with other images, though in practice it might not be. The default is NO.

If an NXImage is to be resized frequently, it's more efficient to cache its representations
in unique windows.

This method does not invalidate any existing caches. Returns self.

See also: - isUnique

unlockFocus

- unlockFocus

Balances a previous lockFocus or lockFocusOn: message. All successfullockFocus
and lockFocusOn: messages (those that return YES) must be followed by a subsequent
unlockFocus message. Those that return NO should never be followed by
unlockFocus.

Returns self.

See also: -lockFocus, -lockFocusOn:

useCache WithDepth:

- (BOOL)useCache WithDepth: (NXWindowDepth)depth

Creates a representation of type NXCachedImageRep and adds it to the NXImage's list
of representations. Initially, the representation is nothing more than an empty area
equal to the size of the image in an off-screen window with the specified depth. You
must focus on the representation and draw the image. The following code shows how·
an NXImage might be created with the same appearance as a View.

id rnylrnage;
NXReet theReet;

[rnyView getFrarne:&theReet];
rnylrnage = [[NXlrnage alloe] initSize:&theReet.size];
[rnylrnage useCaeheWithDepth:NX_DefaultDepth]

. if ([rnylrnage loekFoeus]) {
[rnyView drawSelf: (NXReet *)0 :0];
[rnylrnage unloekFoeus];

2-406 Chapter 2: Class Specifications

depth should be one of the following enumerated values, defined in the header file
appkit/graphics.h:

NX_DefaultDepth
NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveBitRGBDepth
NX_TwentyFourB itRGB Depth

If successful in adding the representation, this method returns YES. If the size of the
image has not been set or the cache can't be created for any other reason, it returns NO.

useDrawMethod:inObject:
- (BOOL)useDrawMethod:(SEL)aSelector inObject:anObject

Creates a representation of type NXCustomImageRep and adds it to the NXImage
object's list of representations. aSelector should name a method that can draw the
image in the NXImage object's coordinate system, and that takes a single argument, the
id of the NXCustomImageRep. anObject should be the id of an object that can perform
the method.

This type of representation allows you to delegate responsibility for creating an image
to another object within the program.

This method returns YES if it's successful in creating the representation, and NO if it's
not.

useFromFile:
- (BOOL)useFromFile:(const char *)filename

Creates an image representation from the data found infilename, which can be a full or
relative path, and adds the representation to the receiving NXImage. The data must be
of a recognizable type, either EPS or TIFF. If the size of the NXImage has not yet been
set, it will be set from information found in the TIFF fields or from the EPS bounding
box comment.

If a representation can be added to the NXImage, this method returns YES. If not, it
returns NO. In the current implementation, it may return YES even if the filename file
doesn't exist or it contains bad data.

If filename contains data specifying more than one image, a separate representation is
added for each one.

See also: - initFromFile:

Application Kit Classes: NXlmage 2-407

useFromSection:
- (BOOL)useFromSection:(const char *)name

Creates an image representation from the data found in the name section of the _EPS
or _TIFF segment of the application executable, and adds the representation to the
NXImage. The data must be of a recognizable type, either EPS or TIFF. If the size of
the NXImage has not yet been set, it will be set from information found in the TIFF
fields or from the EPS bounding box comment.

If name includes a ".tiff' extension, this method looks in the_TIFF segment for a
TIFF representation of the image; if name includes a ".eps" extension, it looks in the
_EPS segment for an EPS representation. If name has neither extension, both
segments are searched after adding the appropriate extension. Failing to find a section
that matches the extended name, both segments are searched again for a section that
matches name alone, without the extensions.

If no section is found that matches name, with or without the extension, this method
searches for name .tiff and name .eps files in the directory where the application
executable resides.

If sections that match the name are found in both the _EPS and _TIFF segments (or
both ".eps" and ".tiff' files are found), this method creates both EPS and TIFF
representations for the image. If the data in a section or file specifies more than one
image, a separate representation is created for each one.

This method returns YES if a representation can be added to the NXImage, and NO if
not. In the current implementation, it may return YES even if the section matching
name contains bad data or no such section can be found.

See also: - initFromSection:

useRepresentation:
- (BOOL)useRepresentation:(NXImageRep *)imageRep

Adds imageRep to the receiving NXImage object's list of representations. If successful
in adding the representation, this method returns YES. If not, it returns NO.

Any representation that's added by this method will belong to the NXImage and will
be freed when the NXImage is freed. Representations can't be shared among
NXImages.

See also: - representation List

2-408 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the NXImage and all its representations to the typed stream stream.

See also: - read:

writeTIFF:

- writeTIFF:(NXStream *)stream

Writes TIFF data for the representation that best matches the display device with the
deepest frame buffer to stream. This method is a shorthand for
writeTIFF:aIlRepresentations: with aflag of NO. Returns self.

writeTIFF:allRepresentations: .

- writeTIFF:(NXStream *)stream
allRepresentations: (BaaL)jlag

Writes TIFF data for the representations to stream. Ifjlag is YES, data will be written
for each of the representations. Ifjlag is NO, data will be written only for the
representation that best matches the display device with the deepest frame buffer.
Returns self.

If stream is positioned anywhere but at the beginning of the stream, this method will
append the representation(s) it writes to the TIFF data it assumes is already in the
stream. To do this, it must be able to read the TIFF header from the stream. Therefore,
the stream must be opened for NX_READWRITE permission.

METHOD IMPLEMENTED BY THE DELEGATE

imageDidNotDraw:inRect:

- (NXImage *)imageDidNotDraw:sender inRect:(NXRect *)aRect

Implemented by the delegate to respond to a message sent by the sender NXImage
when the sender was unable, for whatever reason, to composite its image. The delegate
can return another NXImage to draw in the sender's place. If not, it should return nil
to indicate that sender should give up the attempt at drawing the image.

Application Kit Classes: NXlmage 2-409

2-410

NXImageRep

INHERITS FROM Object

DECLARED IN appkit/NXImageRep.h

CLASS DESCRIPTION

NXImageRep is an abstract superclass for objects that know how to render an image.
Each of its subclasses defines an object that can draw an image from a particular kind
of source data. There are four subclasses defined in the Application Kit:

Subclass

NXBitmapImageRep
NXEPSImageRep
NXCustomImageRep
NXCachedImageRep

Source Data

Tag Image File Format (TIFF) and other bitmap data
Encapsulated PostScript code (EPS)
A delegated method that can draw the image
A rendered image, usually in an off-screen window

An NXImageRep can be used simply to render an image, but is more typically used
indirectly, through an NXImageobject. An NXImage manages a group of
representations, choosing the best one for the current output device.

INSTANCE VARIABLES

Inherited from Object Class is a;

Declared in NXImageRep NXSize size;

size The size of the image in screen pixels.

METHOD TYPES

Setting the size of the image - setSize:
- getSize:

Specifying information about the representation
- setNumColors:
- numColors
-setAlpha:
- hasAlpha
- setBitsPerSample:
- bitsPerSample
- setPixelsHigh:
- pixels High
- setPixels Wide:
- pixels Wide

Application Kit Classes: NXlmageRep 2-411

Drawing the image -draw
- drawAt:
- drawIn:

Archiving -read:
- write:

INSTANCE METHODS

bitsPerSample
- (int)bitsPerSample

Returns the number of bits used to specify a single pixel in each component of the data.
If the image isn't specified by pixel values, but is device-independent, the return value
will be NX_MATCHESDEVICE.

See also: - setBitsPerSample:

draw
- (BOOL)draw

Implemented by subclasses to draw the image at location (0.0, 0.0) in the current
coordinate system. Subclass methods return YES if the image is successfully drawn,
and NO if it isn't. This version of the method simply returns YES.

See also: - drawAt:, - drawln:

drawAt:

- (BOOL)drawAt:(const NXPoint *)point

Translates the current coordinate system to the location specified by point and has the
receiver's draw method draw the image at that point.

This method returns NO without translating or drawing if the size of the image has not
been set. Otherwise, it passes through the return of the draw method, which indicates
whether the image is successfully drawn.

The coordinate system is not restored after it has been translated.

See also: - draw, - draw In:

2-412 Chapter 2: Class Specifications

drawln:

- (BOOL)drawIn:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto The current
coordinate system is first translated to the point specified in the rectangle and is then
scaled so the image will fit within the rectangle: The receiver's draw method is then
invoked to draw the image.

This method returns NO without translating, scaling, or drawing if the size of the image
has not been set. Otherwise it passes through the return of the draw method, which
indicates whether the image is successfully drawn.

The previous coordinate system is not restored after it has been altered.

See also: - draw, - draw At:

getSize:

- getSize:(NXSize *)theSize

Copies the size of the image to the structure referred to by the Size , and returns self. The
size is provided in units of the base coordinate system.

See also: - setSize:

hasAlpha

- (BOOL)basAlpba

Returns YES if the receiver has been informed that the image has a coverage
component (alpha), and NO if not.

See also: - setAlpba:

numColors

- (int)numColors

Returns the number of color components in the image. For example, the return value
will be 4 for images specified by cyan, magenta, yellow, and black (CMYK) or any
other four components. It will be 3 for images specified by red, green, and blue (RGB),
hue, saturation, and brightness (HSB), or any other three components. And it will be 1
for images that use only a gray scale. NX_MATCHESDEVICE is a meaningful return
value for representations that vary their drawing depending on the output device.

See also: - setNumColors:

Application Kit Classes: NXlmageRep 2-413

pixelsHigh

- (int)pixelsHigh

Returns the height of the image in pixels, as specified in the image data. If the image
isn't specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setPixelsHigh:

pixelsWide

- (int)pixelsWide

Returns the width of the image in pixels, as specified in the image data. If the image
isn't specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setPixelsWide:

read:

- read:(NXTypedStream *)stream

Reads the NXImageRep from the typed stream stream.

See also: - write:

setAlpha:

- setAlpha:(BOOL)flag

Informs the NXImageRep whether the image has an alpha component. flag should be
YES if it does, and NO if it doesn't. Returns self.

See also: - hasAlpha

setBitsPerSample:

- setBitsPerSample:(int)anInt

Informs the NXImageRep that the image has anI nt bits of data for each pixel in each
component. If the image isn't specified by pixel values, but is device-independent,
anInt should be NX_MATCHESDEVICE. Returns self.

See also: - bitsPerSample

2-414 Chapter 2: Class Specifications

setNumColors:

- setNumColors:(int)anInt

Informs the NXImageRep that the image has anlnt number of color components. For
color images with cyan, magenta, yellow, and black (CMYK) components, anlnt
should be 4, for color images with red, green, and blue (RGB) components, it should
be 3, and for images that use only a gray scale, it should be 1. The alpha component is
not included. NX_MATCHESDEVICE could be a meaningful value, if the
representation varies its drawing depending on the output device. Returns self.

See also: - numColors

setPixelsHigh:

- setPixelsHigh:(int)anInt

Informs the NXImageRep that the data specifies an image anI nt pixels high. If the
image isn't specified by pixel values, but is device-independent, anlnt should be
NX_MATCHESDEVICE. Returns self.

See also: - pixelsHigh

setPixels Wide:

- setPixelsWide:(int)anlnt

Informs the NXImageRep that the data specifies an image anInt pixels wide. If the
image isn't specified by pixel values, but is device-independent, anlnt should be
NX_MATCHESDEVICE. Returns self.

See also: - pixelsWide

setSize:

~ setSize:(const NXSize *)aSize

Sets the size of the image in units of the base coordinate system, and returns self. This
determines the size of the image when it's rendered; it's not necessarily the same as the
width and height of the image in pixels as specified in the image data.

See also: - getSize:

write:

- write:(NXTypedStream *)stream

Writes the NXImageRep to the typed stream stream.

See also: - read:

Application Kit Classes: NXlmageRep 2-415

CONSTANTS AND DEFINED TYPES

/*
* NX_MATCHESDEVICE indicates a value that's variable, depending
* on the output device. It can be passed to the setNumColors:,
* setBitsPerSample:, setPixelsWide:, and setPixelsHiqh: methods,
* and is returned by their counterparts.
*/

#define NX MATCHESDEVICE (0)

/*

* Names of segments

*/

#define NX EPSSEGMENT EPS"

#define NX TIFF SEGMENT " TIFF"

#define NX ICONSEGMENT" ICON"

2-416 Chapter 2: Class Specifications

NXJournaler

INHERITS FROM Object

DECLARED IN appkit/NXJ ournaler.h

CLASS DESCRIPTION

The NXJournaler class defines an object that lets an application record and play back
events and sounds, a process calledjournaling. By using an NXJournaler object, an
application canjournal events flowing to one or more applications-including itself.
Optionally, sound can be recorded synchronously with the events. Later, the recorded
events and sound can be played back, reenacting the activities as they occurred during
the recording. With journaling, you can implement event-based macros or complete
self-running demonstrations for your application. See the Show AndTell application in
INextDeveloper/Demos for an example of journaling.

J ournaling is initiated by creating a new NXJ ournaler object and sending it a
setEventStatus:soundStatus:eventStream:soundfile: message. The status
arguments may have the values NX_STOPPED, NX_PLAYING, and
NX_RECORDING. The event stream argument is a stream to record to or play back
from. If you're recording, any data in the stream will be overwritten. It's not currently
possible to add to the end of an existing event stream. The sound file argument is the
name of a sound file to record to or play back from.

When recording, by default all events going to any application are captured.
Sometimes, you may not want certain applications to be recorded. For example, you
might want to prevent the application that's recording the journal from being recorded.
There are two ways to control this: with the defaults system and by sending a
setJournalable: message to the Application object. Of the two, the defaults system is
the more general.

To use the defaults system to control journaling, add this code to the initialize method
of the object that will be controlling the journaling:

+ initialize

static NXDefaultsVector myDefaults
{ "NXAllowJournaling", "NO"},
{NULL} };

NXRegisterDefaults([NXApp appName], myDefaults);
return self;

This will prevent the application that contains the object from being journaled unless a
user overrides the default for that application in the user's default database.

Application Kit Classes: NXJournaler 2-417

Users can also disallow journaling of any given application by adding an entry to their
defaults database for that application. This would be done by entering the following
command line in a Terminal window:

dwrite applicationName NXAllowJournaling NO

A less common way of allowing or disallowing journaling in an application is to send
a setJournaIabIe: message to the Application object. This allows more precise
runtime control over journaling in that application.

Event recording may be aborted by clicking the right mouse button while holding down
the Alternate key. (Note: For this to work, you must have the right mouse button
enabled in the Preferences application.) Event playback can be aborted by typing a
character with any key on the keyboard.

INSTANCE VARIABLES

Inherited from Object Class

Declared in NXJournaler (none)

METHOD TYPES

Initializing and freeing an NXJournaler

Controlling journaling

Identifying associated objects

2-418 Chapter 2: Class Specifications

- init
- free

- setEventStatus:
soundStatus:
eventStream:
soundfile:

- getEventStatus:
soundStatus:
eventStream:
soundfile:

- setRecordDevice:
- recordDevice .

- speaker
-listener
- setDelegate:
- delegate

is a;

INSTANCE METHODS

delegate
- delegate

Returns the NXJournaler's delegate.

See also: - setDelegate:

free
-free

Frees the NXJournaler. Send this message to an NXJournaler after you're completely
done with it.

getEventStatus:soundStatus:eventStream:soundfile:

init

- getEventStatus:(int *)eventStatusPtr
soundStatus:(int *)soundStatusPtr
eventStream:(NXStream **) streamPtr
soundfile:(char **)soundfilePtr

Provides status information about the NXJournaler. Values returned at eventStatusPtr
and soundStatusPtr can be NX_PLAYING, NX_RECORDING, or NX_STOPPED.
streamPtr is the address of a pointer to the event stream. soundfilePtr is the address of
a pointer to the name of the sound file. Any of the arguments may be NULL if you
don't want that piece of information. Returns self.

See also: - setEventStatus:soundStatus:eventStream:soundfile:

- in it

Initializes anew ly allocated NXJ ournaler object. The delegate of the new object is nil.
This is the designated initializer for an NXJ ournaler object. Returns self.

listener
-listener

Returns the listener used by the NXJournaler to communicate with other applications.

See also: - speaker

Application Kit Classes: NXJournaler 2-419

record Device

- (int)recordDevice

Returns whether sound is recorded from the CODEC microphone or from the DSP. The
return value is either NX_CODEC or NX_DSP.

See also: - setRecordDevice:

setDelegate:

- setDelegate:anObject

Sets the delegate used by the NXJ ournaler. The delegate is sent the method
journalerDidEnd: when either playing or recording the journal finishes. If the journal
was aborted, the delegate will first receive the message journalerDidUserAbort:.
Returns self.

See also: - delegate

setEventStatus:soundStatus:eventStream:soundflle:

- setEventStatus: (int)eventStatus
soundStatus:(int)soundStatus
eventStream:(NXStream *)stream
soundfile:(const char *)soundfile

Controls the recording and playback of events and sounds. This is the main control
point of the NXJournaler. The arguments eventStatus and soundStatus may be
independently set to NX_STOPPED, NX_PLAYING, NX_RECORDING. By setting
eventStatus to NX_RECORDING and soundStatus to NX_STOPPED, it's possible to
record events without the sound. By setting eventStatus to NX_PLAYING and
soundStatus to NX_RECORDING, it's possible to dub new sound over an existing
event track.

The stream argument is the stream to record events to or playback events from. When
recording, any preexisting data in the stream will be overwritten. It's not currently
possible to record onto the end of an existing event stream.

The soundfile argument is the name of the file to record sound to or playback sound
froin.

See also: - getEventStatus:soundStatus:eventStream:soundfile:

2-420 Chapter 2: Class Specifications

setRecordDevice:

- setRecordDevice: (int)device

Sets whether sound is recorded from the CODEC microphone (the default device) or
from the DSP. The constants NX_CODEC and NX_DSP can be used to specify the
device.

See also: - recordDevice

speaker

- speaker

Returns the speaker used by the NXJ ournaler to communicate with the other
applications.

See also: - listener

METHODS IMPLEMENTED BY THE DELEGATE

journalerDidEnd:

- journalerDidEnd:journaler

Responds to a message informing the delegate that recording or playback of the journal
is finished or has been aborted.

See also: - journalerDidUser Abort:

journaler DidU ser Abort:

- journalerDidUser Abort:journaler

Responds to a message informing the delegate that the user has aborted the recording
or playback session. A journalerDidUser Abort: message is sent when the
NXJournaler in the controlling application receives notice from one of the controlled
applications that the user has generated an. abort event during recording or playback.
The delegate receives this message just before the NXJ oumaler stops the recording or
playback.

See also: - journalerDidEnd:

Application Kit Classes: NXJournaler 2-421

CONSTANTS AND DEFINED TYPES

/* NX_JOURNALEVENT subtypes */

#define NX WINDRAGGED 0

#define NX MOUSELOCATION 1
#define NX LASTJRNEVENT 2

/* Window encodings in .evt file */
#define NX KEYWINDOW (-1)
#define NX MAINWINDOW (-2)
#define NX MAINMENU (-3)
#define NX MOUSEDOWNWINDOW (-4)

#define NX APPICONWINDOW (-5)
#define NX UNKNOWNWINDOW (-6)

/* Values for eventStatus and soundStatus */
#define NX_STOPPED (0)
#define NX PLAYING (1)
#define NX RECORDING (2)

/* Values for recordDevice */

#define NX CODEC 0
#define NX DSP 1

#define NX_JOURNALREQUEST "NXJournalerRequest"

typedef struct {
int
unsigned int
unsigned int
unsigned int
unsigned int

} NXJournalHeader;

2-422 Chapter 2: Class Specifications

version;
offsetToAppNames;
lastEventTime;
reserved1;
reserved2;

NXSplitView

INHERITS FROM View: Responder: Object

DECLARED IN appkit/NXSplitView.h

CLASS DESCRIPTION

The NXSplitView class defines an object that lets several Views share a region within
a window. The NXSplitView resizes its subviews so that each subview is the same
width as the NXSplitView, and the total of the subviews' heights is equal to the height
of the NXSplitView. The NXSplitView positions its subviews so that the first subview
is at the top of the NXSplitView, and each successive subview is positioned below.
The user can set the height of two subviews by moving a horizontal bar called the
divider, which makes one subview smaller and the other larger.

To add a View to an NXSplitView, you use the addSubview: View method. When the
NXSplitView is displayed (as a result of a sending a display message, or because it was
resized), it checks to see if its subviews are properly tiled. If not, it attempts to invoke
the splitView:resizeSubviews: delegate method. If the delegate doesn't respond to
this message, the adjustSubviews method is invoked to yield the default tiling
behavior. If you want to set the height of a single subview to a specific value, you can
simply set the height of its frame rectangle to that value. Remember, however, that the
sum of the heights of the subviews plus the sum of the heights of the dividers must
equal the frame height of the NXSplitView; otherwise, the NXSplitView will retile
(and possibly resize) all its subviews. You can get the height of a divider with the
dividerHeight method.

When a mouse event occurs in an NXSplitView, the NXSplitView determines if the
event occurred in one of the dividers. If so, the NXSplitView determines the limits for
the divider's travel, allows the delegate to limit the travel, and tracks the mouse to allow
the user to drag the divider within the previously set limits. If the divider gets
repositioned, the NXSplitView resizes the two affected subviews, informs the delegate
that subviews were resized, and displays the affected Views and divider.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _v Flags vFlags;

Application Kit Classes: NXSplitView 2-423

Declared in NXSplitView

delegate

METHOD TYPES

Initializing a new NXSplitView

Handling Events

Managing component Views

Assigning a delegate

INSTANCE METHODS

acceptsFirstMouse
- (BOOL) acceptsFirstMouse

id delegate;

The object that receives notification messages
from the NXSplitView.

- initFrame:

- mouseDown:
- acceptsFirstMouse

- adjustSubviews
- resizeSubviews:
- dividerHeight
- drawSelf::
- draw Divider:
- setAutoresizeSubviews:

- delegate
- setDelegate:

Overrides the View method to allow the NXSplitView to respond to the mouse event
that made its window the key window. Returns YES.

See also: - acceptsFirstMouse (View)

adjustSubviews

- adjustSubviews

Adjusts the heights of the NXSplitView's subviews so that the total of the subviews'
heights fill the NXSplitView. The subviews are resized proportionally; the size of a
subview relative to the other subviews doesn't change. This method is invoked if the
NXSplitView's delegate doesn't respond to a splitView:resizeSubviews: message.
Returns self.

See also: - setDelegate:, - splitView:resizeSubviews: (delegate),
- setFrame: (View)

2-424 Chapter 2: Class Specifications

delegate

- delegate

Returns the NXSplitView's delegate.

See also: - setDelegate:

divider Height

- (NXCoord)dividerHeight

Returns the height of the divider. You can override this method to change the divider's
height, if necessary; the value that this method returns is used as the divider's height.

See also: - drawDivider:

drawDivider:

- drawDivider:(const NXRect *)aReet

Draws a divider between two of the NXSplitView's subviews. aReet describes the
entire divider rectangle in the NXSplitView's coordinates, which are flipped. The
default implementation simply composites an image to the center of aReet; if you
override this method and use a different icon to identify the divider, you may want to
change the height of the divider. Returns self.

See also: - dividerHeight, - drawSelf::, + findlmageNamed: (NXlmage),
- composite:toPoint: (NXlmage)

drawSelf::

- drawSelf:(const NXRect *) reets :(int)reetCount

Draws the NXSplitView. This method first checks all the NXSplitView's subviews to
ensure that they are positioned properly: Each subview should be the width of the
NXSplitView and butted against the left edge of its frame rectangle. Each subview
should also be butted against the divider for the previous subview. If the subviews
aren't positioned properly, this method invokes resizeSubviews: to reposition and
resize the subviews. This method then fills the NXSplitView's background area and
invokes the drawDivider: method one or more times to draw all the required dividers.
This method is invoked by the View methods for display; you shouldn't invoke this
method directly. Returns self.

See also: - drawDivider:, - resizeSubviews:, - display: (View)

Application Kit Classes: NXSplitView 2-425

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the NXSplitView, which must be a newly allocated NXSplitView instance.
The NXSplitView's frame rectangle is made equivalent to that pointed to by frameRect.
If frameRect is NULL the default frame containing all zeros is unaltered. The
NXSplitView's coordinate system is flipped so that its origin is at its upper left comer,
and a flag is set so the NXSplitView automatically resizes its subviews when it's
resized. This method is the designated initializer for the NXSplitView class. Returns
self.

See also: - setAutoresizeSubviews: (View)

mouseDown:

- mouseDown:(NXEvent *)theEvent

Overrides the Responder method so that the user can resize the NXSplitView's
subviews. If the mouse-down event occurs in one of the NXSplitView's dividers, the
NXSplitView determines the limits within which the divider can be dragged. It then
gives the delegate the opportunity to modify the divider's minimum and maximum
limits. This method then tracks the mouse to allow the user to resize the subviews
within the previously set limits. It then resizes the appropriate subviews, informs the
delegate that the subviews were resized, and displays the appropriate area of the
NXSplitView and its subviews. Returns self.

See also: - splitView:getMinY:maxY:ofSubviewAt: (delegate),
- splitViewDidResizeSubviews: (delegate), - setFrame: (View)

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Ensures that the NXSplitView's subviews are properly sized to fill the NXSplitView. If
the delegate implements the splitView:resizeSubviews: method, that method is
invoked to resize the subviews; otherwise, the adjustSubviews method is invoked to
resize the subviews. In either case, this method then informs·the delegate that the
subviews were resized. oldSize is the previous bounds rectangle size. Returns self.

See also: - splitView:resizeSubviews: (delegate), - adjustSubviews,
- splitViewDidResizeSubviews: (delegate), - resizeSubviews: (View)

setAutoresizeSubviews:

- setAutoresizeS ubviews: (B OOL).flag

Overrides View's setAutoresizeSubviews: method to ensure that automatic resizing of
subviews will not be disabled. You should never invoke this method. Returns self.

2-426 Chapter 2: Class Specifications

setDelegate:

- setDelegate:anObject

Makes anObject the NXSplitView's delegate. The notification messages that the
delegate can expect to receive are listed at the end of the NXSplitView class
specifications. The delegate doesn't need to implement all the delegate methods.
Returns self.

See also: - delegate

METHODS IMPLEMENTED BY THE DELEGATE

splitView:getMin Y :maxY :ofSubview At:

- splitView:sender
getMin Y:(NXCoord *)minY
maxY:(NXCoord *)maxY
ofSubview At: (int)offset

Allows the delegate to constrain the y coordinate limits of a divider when the user drags
the mouse. This method is invoked before the NXSplitView begins tracking the mouse
to position a divider. When this method is invoked, the limits have already been set and
are stored in minY (the topmost limit) and maxY (the bottommost limit). You may
further constrain the limits by setting the variables indicated by minY and maxY, but you
cannot extend the divider limits. minY and maxY are specified in the NXSplitView's
flipped coordinate system. The divider to be repositioned is indicated by offset; the
divider between the first two subviews is indicated by an offset of zero.

See also: - mouseDown:

splitView:resizeSubviews:

- splitView:sender
resizeSubviews:(const NXSize· *)oldSize

Allows the delegate to specify custom sizing behavior for the subviews of the
NXSplitView. If the delegate implements this method, splitView:resizeSubviews: is
invoked after the NXSplit View is resized; otherwise, adjustSubviews is invoked to
retile the subviews. The old size of the NXSplitView is indicated by oldSize; the
subviews should be resized to fill the NXSplitView's new frame rectangle size. You
may find it convenient to use NX _ADDRESSO to get the address of the array of the
ids of the subviews in order to step through the subview list.

See also: - adjustSubviews, - dividerHeight, - setFrame: (View),
NX_ADDRESSO

Application Kit Classes: NXSplitView 2-427

splitViewDidResizeSubviews:

- split ViewDidResizeSubviews:sender

Informs the delegate that the sizes of some or all of the NXSplitView's subviews were
changed. This method is invoked when the NXSplitView resizes all its subviews
because its frame rectangle changed, and also after the NXSplit View resizes two
subviews in response to the repositioning of a divider.

See also: - resizeSubviews:, - mouseDown:

2-428 Chapter 2: Class Specifications

Object Methods

INHERITS FROM none (Object is the root class.)

DECLARED IN appkit/ Application.h

CLASS DESCRIPTION

The methods described here are declared in the Application Kit as additions to the
Object class. However, the Object class itself is a "common class," not part of the Kit.
For a description of the class and the other methods it defines, see "Object" in the
"Common Classes" section above.

METHOD TYPES

Sending messages determined at run time
- perform:with:afterDelay:canceIPrevious:

Saying whether to run the Print panel
-shouldRunPrintPanel:

Services menu support - readSelectionFromPasteboard:
- writeSelectionToPasteboard:types:

INSTANCE METHODS

perform:with:afterDelay:canceIPrevious:

- perform:(SEL)aSelector
with:anObject
afterDelay:(int)ms
canceIPrevions:(BOOL)jlag

Registers a timed entry to send an aSelector message to the receiver after a delay of at
least ms milliseconds, and returns self. The aSelector method should not have a
significant return value and should take a single argument of type id; anObject will be
the argument passed in the message. Since timed entries are checked only when the
application goes to get another event, program activity could delay the aSelector
message well beyond ms milliseconds.

Ifjlag is YES and another perform:with:afterDelay:canceIPrevious: message is sent
. to the same receiver to have it perform the same aSelector method, the first request to

perform the aSelector method is canceled. Thus successive
perform:with:afterDelay:canceIPrevious: messages can repeatedly postpone the
aSelector message.

Application Kit Classes: Object Methods 2-429

Ifflag is NO, each perform:with:afterDelay:canceIPrevious: message will cause
another delayed aSelector message to be sent.

This method permits you to register an action in response to a user event (such as a
click), but delay it in case subsequent events alter the environment in which the action
would be performed (for example, if the click turns out to be double-click). It can also
be used to delay a free message to an object, until after the application has finished
responding to the current event, or to postpone a message that updates a display until
after a number of changes have accumulated.

See also: - perform:with: (Object)

readSelectionFromPasteboard:

- readSelectionFromPasteboard:pboard

Implemented by subclasses to replace the current selection with data read from the
Pasteboard object pboard. The data would have been placed in the pasteboard by
another application in response to a remote message from the Services menu. A
readSelectionFromPasteboard: message is sent to the same object that previously
received a writeSelectionToPasteboard:types: message.

There's no default readSelectionFromPasteboard: method. The Application Kit
declares a prototype for this method in the Object class, but doesn't implement it.

See also: - writeSelectionToPasteboard:types:

shouldRunPrintPanel:

#import <appkitNiew.h>
- (BOOL)shouldRunPrintPanel:aView

Implemented by subclasses to indicate whether the Print panel (or Fax panel) should be
run before printing (or faxing) a View or a Window.

Printing requests are initiated by sending a View or Window a message to perform one
of these two methods:

printPSCode: (View and Window)
smartPrintPSCode: (Window only)

Each method takes an id argument, which usually identifies the initiator of the print
request (the object that sent the message). A shouldRunPrintPanel: message is sent
back to that object, if the object can respond to the message. The aView argument
identifies the View being printed.

If shouldRunPrintPanel: returns YES, the Print panel is run before printing begins.
If it returns NO, the panel is not run, and the previous settings of the Print panel are
used. The Print panel is also run if this method is not implemented.

2-430 Chapter 2: Class Specifications

Requests to fax a View or a Window can be initiated (by users) from within the Print
panel. An application can also bypass the Print panel using either of the following two
methods, which parallel the printing methods listed above:

faxPSCode: (View and Window)
smartFaxPSCode: (Window only)

Like the printing methods, these methods each take an id argument, and the argument
is sent a shouldRunPrintPanel: message if it can respond. However, in this case, the
value returned by shouldRunPrintPanel: indicates whether the Fax panel (not the
Print panel) should be run.

There's no default implementation of the shouldRunPrintPanel: method. The
Application Kit declares a prototype for this method in the Object class, but doesn't
define it.

See also: - printPSCode: (View and Window), - smartPrintPSCode: (Window),
- faxPSCode: (View and Window), - smartFaxPSCode: (Window)

writeSelectionToPasteboard:types:
- (BOOL)writeSelectionToPasteboard:pboard types:(NXAtom *)types

Implemented by subclasses to write the current selection to the Pasteboard object
pboard. The selection should be written as one or more of the data types listed in types.
After writing the data, this method should return YES. If for any reason it can't write
the data, it should return NO.

A writeSelectionToPasteboard:types: message is sent to the first responder when the
user chooses a command from the Services menu, but only if the receiver didn't return
nil to a previous validRequestorForSendType:andReturnType: message. After the
data is written to the pasteboard, a remote message is sent to the application that
provides the service the user requested. If the service provider supplies return data to
replace the selection, the first responder will receive a subsequent
readSelectionFromPasteboard: message.

There's no default writeSelectionToPasteboard:types: method. The Application Kit
declares a prototype for this method in the Object class, but doesn't implement it.

See also: - validRequestorForSendType:andReturnType: (Responder),
- readSelectionFromPasteboard:

Application Kit Classes: Object Methods 2-431

2-432

OpenPanel

INHERITS FROM SavePanel : Panel: Window: Responder: Object

DECLARED IN appkit/OpenPanel.h

CLASS DESCRIPTION

The OpenPanel provides a convenient way for an application to query the user for the
name of a file to open. It can only be run modally (the user should use the directory
browser in the Workspace for non-modal opens). It allows the specification of certain
types (i.e., file name extensions) of files to be opened.

Every application has one and only one OpenPanel, and the new method returns a
pointer to it. Do not attempt to create a new OpenPanel using the methods alloc or
allocFromZone; these methods are inherited from SavePanel, which overrides them to
return errors if used.

See the class description for SavePanel for more information.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id content View;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _wFlags wFlags;
struct _ wFlags2 wFlags2;

Inherited from Panel (none)

Application Kit Classes: OpenPanel 2-433

Inherited from SavePanel id form;
id browser;
id okButton;
id accessory View;
id separator;
char * filename;
char * directory;
const char * *filenames;
char *requiredType;
struct _spFlags spFlags;
unsigned short directorySize;

Declared in OpenPanel char * *filterTypes;

filterTypes File types allowed to open

METHOD TYPES

Creating and Freeing an OpenPanel + new

Filtering files

Querying the chosen files

Running the OpenPanel

CLASS METHODS

new

+ new

+ newContent:style: backing: buttonMask:defer:
-free

- allowMultipleFiles:

- filenames

- runModaIForDirectory:file:
- runModaIForDirectory:file:types:
- runModalForTypes:

Creates, if necessary, and returns the shared instance of OpenPanel. Each application
has just one instance of OpenPanel. This method is implemented to override the
inherited new method to assure that only one instance of OpenPanel is created in an
application.

2-434 Chapter 2: Class Specifications

newContent:style: backing: buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask: (int)mask
defer: (BOOL)jlag

Don't use this method, invoke new instead. This method is implemented to override
the newContent:style:backing:buttonMask:defer: method inherited from
SavePanel. Returns self.

See also: + new

INSTANCE METHODS

allowMultipleFiles:

- allowMultipleFiles:(BOOL)jlag

Ifjlag is YES, then the user can select more than one file in the browser. If multiple
files are allowed, then the filenames method will be non-NULL only if one and only
one file was selected. The filenames method will always return the selected files (even
if only one file was selected). Note further that, though filenames always returns a
fully-specified path, filenames never returns a fully-specified path (the files in the list
are always relative to the path returned by directory). Returns self.

See also: - filenames

filenames

- (const char *const *)filenames

Returns a NULL terminated list of files (relative to the path returned by directory).
This will be valid even if allowMultipleFiles is NO. This is the preferred way to get
the name or names of any files that the user has chosen.

free

-free

Frees the storage used by the shared OpenPanel object and returns nil. The next time
new is sent to the OpenPanel, it will be recreated. You probably never need to invoke
this method since there is one shared instance of the OpenPanel.

See also: + new

Application Kit Classes: OpenPanel 2-435

runModalFor Directory: file:
- (int)runModaIForDirectory:(const char *)path file:(const char *)filename

Initializes the panel to the file specified by path and filename, then displays it and
begins its event loop. Returns self.

runModaIForDirectory:fiie:types:
-.;-(int)runModaIForDirectory:(const char *)path

file:(const char *)filename
types:(const char *const *)fileTypes

Loads up the directory specified in path and optionally sets filename as the default file (
to open. fileTypes is a NULL-terminated list of suffixes (not including the "."'s) to be
used to filter which files the user is given the opportunity to open. If the FIRST item in
the list is a NULL, then all ASCII files will be included. Returns self.

runModalForTypes:
- (int)runModaIForTypes:(const char *const *)fileTypes

Same as runModaIForDirectory:file:types: except that the last directory from which
a file was chosen is used. Returns self.

CONSTANTS AND DEFINED TYPES

/* Tags for the Views in a SavePanel */

#define NX OPICONBUTTON NX SPICONBUTTON

#define NX OPTITLEFIELD NX SPTITLEFIELD

#define NX OPCANCELBUTTON NX SPCANCELBUTTON

#define NX OPOKBUTTON NX SPOKBUTTON

#define NX OPFORM NX SPFORM

2-436 Chapter 2: Class Specifications

PageLayout

INHERITS FROM Panel: Window : Responder: Object

DECLARED IN appkit/PageLayout.h

CLASS DESCRIPTION

PageLayout is a type of Panel that queries the user for information such as paper type
and orientation. This information is passed to the Application object's PrintInfo object,
and is later used when printing. You can invoke the setAccessoryView: method to add
your own View to the PageLayout panel to extend its functionality. An application can
have only one PageLayout object; the new method returns the previous instance of the
PageLayout object if one already exists. Most applications will bring up this panel by
invoking the Application method runPageLayout: (this method is sent up the
responder chain when you click the Page Layout menu item), but you can also run the
panel with the PageLayout method runModal.

INSTANCE VARIABLES

Inheritedfrom Object Class is a;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id content View;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ w Flags wFlags;
struct _ w Flags2 wFlags2;

Inheritedfrom Panel (none)

Application Kit Classes: PageLayout 2-437

Declared in PageLayout

appIcon

height

width

ok

cancel

orientation

scale

paperSizeList

layoutList

unitsList

exitTag

paperView

accessory View

2-438 Chapter 2: Class Specifications

id applcon;
id height;
id width;
id ok;
id cancel;
id orientation;
id scale;
id paperSizeList;
id layoutList;
id unitsList;
int exitTag;
id paperView;
id accessory View;

The Button object with the Application's icon.

The Form object for paper height.

The Form object for paper width.

The OK Button object.

The Cancel Button object.

The Matrix object for choosing between portrait
and landscape orientation.

The TextF~eld for the scaling factor.

The Button object for the PopUpList of paper
choices.

The Button object for the PopUpList of layout
choices.

The Button object for the PopUpList of unit
choices.

The tag of the Button object the user clicked to
exit the Panel.

The View used to display the size and orientation
of the selected paper type. A subclass could set
this instance to its own View to display a
customized paper representation.

The optional View added by the application.

METHOD TYPES

Creating and freeing an instance

Running the PageLayout panel

+ new
+ newContent:style:backing:buttonMask:defer:
- free

-runModal

Customizing the PageLayout panel - setAccessory View:
- accessory View

Updating the panel's display - pickedLayout:
- picked Orientation:
- pickedPaperSize:
- pickedUnits:
- textDidEnd:endChar:
- textWillChange:
- convertOldFactor:newFactor:
- pickedButton:

Communicating with the Printlnfo object
- readPrintlnfo
- writePrintlnfo

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create PageLayout
instances. Use new instead.

See also: + new

allocFromZone:

Generates an error message. This method cannot be used to create PageLayout
instances. Use new instead.

See also: + new

new

+ new

Creates and returns the Page Layout panel. This will return the existing instance of the
Page Layout panel if one has already been created.

Application Kit Classes: PageLayout 2-439

newContent:style: backing: buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Used in the instantiation of the Page Layout panel. You shouldn't use this method to
create the panel; use new instead.

See also: + new

INSTANCE METHODS

accessory View

- accessory View

Returns the custom accessory View set by setAccessoryView:.

See also: - setAccessoryView:

convertOldFactor:newFactor:

- convertOldFactor:(float *)old newFactor:(float *)new

Returns conversion factors for values displayed in the panel. If this method is invoked
from within an override of the pickedUnits: method, it will set old to the conversion
factor between the unit of points and the previous units selected; new will be set to the
conversion factor between points and the new units just selected. If this method is
invoked at other times, such as when the page layout information is being loaded with
the readPrintInfo method, both old and new will be set to the conversion factor
between points and the currently selected units. See pickedUnits: for an example.
Returns self.

See also: - pickedUnits:

free

-free

Frees all the memory used by the Page Layout panel.

See also: + new

2-440 Chapter 2: Class Specifications

pickedButton:

-. pickedButton:sender

Ends the current run of the Page Layout panel if all the entries in the panel are valid. If
the entries are not valid, this method does nothing. This method is the target of the OK
and Cancel buttons. If all the panel entries are valid, this method sets the exitTag
instance variable to the tag of the button that the user clicked to dismiss the panel, and
sends a stopModal message to the Application object. Returns self.

See also: - runModal, - stopModal (Application)

pickedLayout:

- pickedLayout:sender

Performed when the user selects an item from the layout list. You might override this
method to update other controls you add to the panel. You can get the new layout with
the message [[sender selectedCell] title]. Returns self.

See also: - setAccessoryView:, - selectedItem (PopUpList), - selectedCell (Matrix)

pickedOrientation:

- pickedOrientation:sender

Performed when the user selects a page orientation. This method updates the paper
width and height forms. You can override it to update other controls you add to the
panel. You can get the new orientation with the message [sender selectedCol], where
a return value of 0 means portrait, and a value of 1 means landscape. Returns self.

See also: - setAccessoryView:, - selectedCol (Matrix)

pickedPaperSize:

- pickedPaperSize:sender

Performed when the user selects a paper size. This method updates the paper width and
height forms, and may switch the page orientation. You can override this method to
update other controls you add to the panel. You can get the new name of the new paper
size with the message [[sender selectedCell] title]. Returns self.

See also: - setAccessoryView:, - selectedItem (PopUpList), - selected Cell (Matrix)

Application Kit Classes: PageLayout 2-441

pickedUnits:
- pickedUnits:sender

Performed when the user selects a new unit of measurement. You can override this
method to update other controls you add to the panel. You should do this for any fields
you add that express dimensions on the page. To determine how to update your field,
call the PageLayout method convertOldFactor:newFactor:. The first value will
convert from the unit of points to the previous unit of measurement. The second will
convert from points to the new unit of measurement. The following example supposes
that a subclass of PageLayout adds a TextField stored in the instance variable myField:

- pickedUnits:sender

float old, new;

/* At this point, the units have been selected, */

/* but not set. Get the conversion factors: */

[self convertOldFactor:&old newFactor:&new];
/* Set my field based on the conversion factors */
[myFleld setFloatValue: ([myField floatValue] * new / old)];

/* Now let the method set the selected units */

return [super pickedUnits:sender];

See also: - convertOldFactor:newFactor:, - setAccessoryView:

readPrintlnfo
- readPrintlnfo

Reads the Application's global PrintInfo object, and sets the values of the Page Layout
panel to those in the PrintInfo. This method is invoked from the runModal method;
you should not need to invoke it yourself. Returns self.

See also: - writePrintlnfo, - runModal

2-442 Chapter 2,' Class Specifications

run Modal

- (int)runModal

Runs the Page Layout panel. For most applications, this is the only method needed to
use this object. It loads the current printing information into the panel from the
Application's global Printlnfo object. It then runs the panel using Application's
runModalFor: method. When the user finishes with the panel, it is hidden. If the user
exited the panel via the OK button, the information that he filled in is written back to
the global PrintInfo object. The method returns the tag of the button that the user chose
to dismiss the panel (either NX_OKTAG or NX_CANCELTAG). Note that since
runModalFor: is used to run the Page Layout panel, the pickedButton: method must
terminate the modal run by invoking Application's stopModal method.

See also: - run Page Layout (Application), - pickedButton:,
- stopModal (Application), - runModalFor: (Application)

setAccessoryView:

- setAccessoryView:a View

Adds aView to the contents of the Page Layout panel. Applications can invoke this
method to add controls to extend the functionality of the panel. aView should be the
top View in a View hierarchy. The Page Layout panel is automatically resized to
accommodate aView. This method can be invoked repeatedly to change the accessory
View depending on the situation. If aView is nil, then any accessory View that's in the
panel is removed. Returns the old accessory View.

See also: - accessoryView

textDidEnd:end Char:

- textDidEnd:textObject endChar:(unsigned short)theChar

Performed when user finishes typing a page size. Selects the correct orientation to
match the new paper size. You can override this method to update other controls you
add to the panel. The width and height fields are Form objects, so you can use the Form
method tloatValueAt:O to get the values of these fields. Returns self.

See also: - setAccessoryView:, - tloatValueAt: (Form)

Application Kit Classes: PageLayout 2-443

text WillChange:
- (BOOL)textWiIlChange:textObject

Performed when the user types in a page size. This method highlights the "Other"
choice in the list of paper types. You can override this method to update other controls
you add to the panel. This message is sent to the PageLayout object because it is the
Text object's delegate; it returns 0 to indicate that the text field can be changed.

See also: - setAccessoryView:, - textWiIlChange: (Text delegate)

writePrintInfo
- writePrintInfo

Writes the settings of the Page Layout panel to the Application object's global PrintInfo
object. This method is invoked when the user quits the Page Layout panel by clicking
the OK button. Returns self.

See also: - readPrintlnfo, - runModal

CONSTANTS AND DEFINED TYPES

/* Tags of Controls in the Page Layout panel */

#define NX PLICONBUTTON 50
#define NX PLTITLEFIELD 51
#define NX PLPAPERSIZEBUTTON 52
#define NX PLLAYOUTBUTTON 53
#define NX PLUNITSBUTTON 54
#define NX PLWIDTHFORM 55
#define NX PLHEIGHTFORM 56
#define NX PLPORTLANDMATRIX 57
#define NX PLSCALEFIELD 58
#define NX PLCANCELBUTTON NX CANCELTAG

#define NX PLOKBUTTON NX OKTAG

2-444 Chapter 2: Class Specifications

Panel

INHERITS FROM Window : Responder: Object

DECLARED IN appkit/Panel.h

CLASS DESCRIPTION

A Panel is a Window that serves an auxiliary function within an application; it contains
Views that give information to users and let users give instructions to the application.
Usually, the Views are Control objects of some sort-Buttons, Forms, NXBrowsers,
TextViewers, Sliders, and so on. Menu is a Panel subclass.

Panels behave differently than other Windows in only a small number of ways, but the
ways are important to the user interface:

• Panels pass Command key-down events to the objects in their view hierarchies.
This permits them to have keyboard alternatives.

• Panels aren't destroyed when closed; they're simply moved off-screen (taken out
of the screen list).

• On-screen Panels are removed from the screen list when the user begins to work in
another application, and are restored to the screen when the user returns to the
Panel's application.

• Panels have a light gray, rather than white, background in their content area.

To facilitate their intended roles in the user interface, some panels can be assigned
special behaviors:

• A panel can be precluded from becoming the key window until the user makes a
selection (makes a View the first responder) indicating an intention to begin typing.
This prevents key window status from shifting to the Panel unnecessarily.

• Palettes and similar panels can be made to float above standard windows and other
panels. This prevents them from being covered and keeps them readily available
to the user.

• A Panel can be made to work-to receive mouse and keyboard events-even when
there's an attention panel on-screen. This permits actions within the Panel to affect
the attention panel.

Application Kit Classes: Panel 2-445

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ w Flags wFlags;
struct _ w Flags2 wFlags2;

Declared in Panel (none)

METHOD TYPES

Initializing a new Panel - init
- initContent:style: backing: buttonMask:defer:

Handling events - commandKey:
-keyDown:

Determining the Panel interface - setBecomeKeyOnly IfNeeded:
- doesBecomeKeyOnly IfNeeded
- setFloatingPanel:
- isFloatingPanel
- setWorks WhenModal:
- works WhenModal

2-446 Chapter 2: Class Specifications

INSTANCE METHODS

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

Intercepts commandKey: messages being passed from Window to Window, and
translates them to performKeyEquivalent: messages for the Views within the Panel.
This method returns YES if any of the Views can handle the event as its keyboard
alternative, and NO if none of them can. A NO return continues the commandKey:
message down the Application object's list of windows; a YES return terminates it.

The Application object initiates commandKey: messages when it gets key-down
events with the Command key pressed. The Panel also initiates them, but just to itself,
when it gets a key Down: event message. The argument, theEvent, is a pointer to the
key-down event.

Before any performKeyEquivalent: messages are sent, a Panel that's not on-screen
receives an update message. This gives it a chance to make sure that its Views are
properly enabled or disabled to reflect the current state of the application.

See also: - keyDown:, - performKeyEquivalent: (View)

doesBecomeKeyOnlyIfNeeded

init

- (BOOL)doesBecomeKeyOnlylfNeeded

Returns whether the Panel refrains from becoming the key window until the user clicks
within (sends a mouse-down event to) a View that can become the first responder. The
default is NO.

See also: - setBecomeKeyOnlyltNeeded:

- init

Initializes the receiver, a newly allocated Panel object, by sending it an
initContent:style:backing:buttonMask:defer: message with default parameters, and
returns self.

The Panel will have a content rectangle of minimal size. The Window Server won't
create a window for the Panel until the Panel is ready to be displayed on-screen; the
window will be a buffered window. The Panel will have a title bar and close button, but
no resize bar. Like all Windows, it's initially placed out of the screen list. Its title is
not set.

See also: - initContent:style: backing: buttonMask:defer:

Application Kit Classes: Panel 2-447

initContent:style: backing: buttonMask:defer:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Initializes the receiver, a newly allocated Panel instance, and returns self.

This method is the designated initializer for this class. It's identical to the Window
method of the same name, except that it additionally initializes the receiver so that it
will behave like a panel in the user interface:

• The Panel's background color is set to be light gray.
• The Panel will hide when the application it belongs to is deactivated.
• The Panel won't be freed when the user closes it.

The new Panel is initially out of the Window Server's screen list. To make it visible,
you must display it (into the buffer) and then move it on-screen.

See also: - initContent:style:backing:buttonMask:defer: (Window)

isFloatingPanel

- (BOOL)isFloatingPanel

Returns whether the Panel floats above standard windows and other panels. The default
is NO.

See also: - setFloatingPanel:

keyDown:

- keyDown:(NXEvent *)theEvent

Translates the key-down event into a commandKey: message for the Panel, thus
interpreting the event as a potential keyboard alternative. If the Panel has a button that
displays the Return symbol and the key-down event is for the Return key, it will operate
the button.

A Panel can receive keyDown: event messages only when it's the key window and none
of its Views is the first responder.

See also: - commandKey:

2-448 Chapter 2: Class Specifications

setBecomeKeyOnlylfNeeded:

- setBecomeKeyOnly If Needed: (BOOL)jlag

Sets whether the Panel becomes the key window only when the user makes a selection
(causing one of its Views to become the first responder). Since this requires the user
to perform an extra action (clicking in the View) before being able to type within the
window, it's appropriate only for Panels that don't normally require text entry. You
should consider setting this attribute only if (1) most of the controls within the Panel
are not text fields, and (2) the choices that can be made by entering text can also be
made in another way (or are only incidental to the way the panel is normally used). The
defaultjlag is NO. Returns self.

See also: - doesBecomeKeyOnlylfNeeded, - keyDown:

setFloatingPanel:

- setFloatingPanel:(BOOL)jlag

Sets whether the Panel should be assigned to a window tier above standard windows.
The default is NO. It's appropriate for a Panel to float above other windows only if:

• It's oriented to the mouse rather than the keyboard-that is, it doesn't become the
key window (or becomes the key window only if needed),

• It needs to remain visible while the user works in the application's standard
windows-for example, if the user must frequently move the cursor back and forth
between a standard window and the panel (such as a tool palette) or the panel gives
information relevant to the user's actions within a standard window,

• It's small enough not to obscure much of what's behind it, and

• It doesn't remain on-screen when the application is deactivated.

All four of these test must be met for jlag to be set to YES. Returns self.

See also: - isFloatingPanel

set Works WhenModal:

- setWorksWhenModal:(BOOL)jlag

Sets whether the Panel remains enabled to receive events and possibly become the key
window even when a modal panel (attention panel) is on-screen. This is appropriate
only for a Panel that needs to operate on attention panels. The default is NO. Returns
self.

See also: - worksWhenModal

Application Kit Classes: Panel 2-449

works When Modal

- (BOOL)setWorksWhenModal

Returns whether the Panel can receive keyboard and mouse events and possibly become
the key window, even when a modal panel (attention panel) is on-screen. The default
is NO.

See also: - setWorksWhenModal:

CONSTANTS AND DEFINED TYPES

/*
* Values returned by NXRunAlertPanel() (also returned by

* runModalSession: when the modal session is run with a Panel

* provided by NXGetAlertPanel(»)
*/

#define NX ALERTDEFAULT 1

#define NX ALERTALTERNATE 0

#define NX ALERTOTHER -1

#define NX ALERTERROR -2

/*

* Tags for common buttons in panels

*/

#define NX OKTAG 1

#define NX CANCELTAG 0

2-450 Chapter 2: Class Specifications

Pasteboard

INHERITS FROM Object

DECLARED IN appkitlPasteboard.h

CLASS DESCRIPTION

Pasteboard objects transfer data to and from the pasteboard server, pbs. The server is
shared by all running applications. It contains data that the user has cut or copied and
may paste, as well as other data that one application wants to transfer to another.
Pasteboard objects are an application's sole interface to the server and to all pasteboard
operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it's to be
used. Each set of named data is, in effect, a separate pasteboard, distinct from the
others. An application keeps a separate Pasteboard object for each named pasteboard
that it uses. There are four standard pasteboards in common use:

Font pasteboard The pasteboard that holds font and character information
and supports the Copy Font and Paste Font commands.

Ruler pasteboard The pasteboard that holds information about paragraph
formats in support of the Copy Ruler and Paste Ruler
commands.

Find pasteboard The pasteboard that holds information about the current
state of the active application's Find panel. This
information permits users to enter a search string into the
Find panel, then switch to another application to conduct
the search.

Selection pasteboard The pasteboard that's used for ordinary cut, 'copy, and
paste operations. It holds the contents of the last selection
that's been cut or copied.

Each standard pasteboard is identified by a unique name designated by a global variable
of type NXAtom:

NXFontPboard
NXRulerPboard
NXFindPboard
NXSelectionPboard

Application Kit Classes: Pasteboard 2-451'

You can also create private pasteboards by asking for a Pasteboard object with any other
name. The name of a private pasteboard can be passed to other applications to allow
them to share the data it holds.

The Pasteboard class makes sure there's just one object for each named pasteboard. If
you ask for a new object when one has already been created for the pasteboard, the
existing one will be returned to you. For this reason, only the new and newName:
methods defined in this class should be used to create Pasteboard objects; Object's alloc
and allocFromZone: methods can't be used.

Data Types

Data can be placed in the pasteboard server in more than one representation. For
example, an image might be provided both in Tag Image File Format (TIFF) and as
encapsulated PostScript code (EPS). Multiple representations give pasting applications
the option of choosing which data type to use. In general, an application taking data
from the pasteboard should choose the richest representation it can handle-rich text
over plain ASCII, for example. An application putting data in the pasteboard should
promise to supply it in as many data types as possible, so that as many applications as
possible can make use of it.

Data types are identified by character strings containing a full type name. The
following global variables are string pointers for the standard NeXT pasteboard types.
They're of type NXAtom.

Type

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType
NXFontPboardType
~XRulerPboardType

Description

Plain ASCII text
Encapsulated PostScript code (EPS)
Tag Image File Format (TIFF)
Rich Text Format (RTF)
The Sound object's pasteboard type
ASCII text designating a file name
Tab-separated fields of ASCII text
Font and character information
Paragraph formatting information

Other data types can also be used. For example, your application may keep data in a
private format that's richer than any of types listed above. That format can also be used
as a pasteboard type.

Reading and Writing Data

The pasteboard server supports a simple interface to reading and writing data, using a
pointer to the data and the length of the data in bytes. Data is written to the pasteboard
using writeType:data:length: and read using readType:data:length:. In each case
only a pointer to the data is passed. The pointer and a single copy of the data can be
shared among many applications.

2-452 Chapter 2: Class Specifications

It's often convenient to prepare data for the pasteboard by opening a memory stream
and writing the data to it using functions like NXWriteO, NXPrintfO, and NXPutcO.
After the data has been written, a pointer to the data and the number of bytes can be
extracted from the stream and sent to the pasteboard server. Using a stream means that
the data will be page-aligned, so it will occupy the fewest number of pages possible.

Similarly, you can create a memory stream for the data received from the pasteboard
server and use functions like NXGetcO, NXReadO, and NXScanfO to parse it.
Objects can be archived to and from the pasteboard server using typed streams.

Errors

Except where errors are specifically mentioned in the method descriptions, any
communications error with the pasteboard server causes an NX_pasteboardComm
exception to be raised.

INSTANCE VARIABLES

Inherited from Object

Declared in Pasteboard

owner

METHOD TYPES

Class isa;

id owner;

The object responsible for putting data in the
pasteboard.

Creating and freeing a Pasteboard object
+ new
+newName:
-free
- free Globally

Referring to a Pasteboard by name + newName:
-name

Writing data - declareTypes:num:owner:
- writeType:data:length:

Reading data - changeCount
\

- types
- readType:data:length:

Application Kit Classes: Pasteboard 2-453

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create Pasteboard
instances. Use new or newName: instead.

See also: + new, + newName:

allocFromZone:

Generates an error message. This method cannot be used to create Pasteboard
instances. Use new or newName: instead.

See also: + new, + newName:

new

+ new

Returns the Pasteboard object for the selection pasteboard, by passing
NXSelectionPboard to the newName: method.

newName:

+ newName:(const char *)name

Returns the Pasteboard object for the name pasteboard. A new object is created only if
the application doesn't yet have a Pasteboard object for the specified name; otherwise,
the existing one is returned. To get a standard pasteboard, name should be one of the
following variables:

NXFontPboard
NXRulerPboard
NXFindPboard
NXSelectionPboard

Other names can be assigned to create private pasteboards for other purposes.

2-454 Chapter 2: Class Specifications

INSTANCE METHODS

changeCount
- (int)changeCount

Returns the current change count of the pasteboard. The change count is a system-wide
global that increments every time the contents of the pasteboard changes (a new owner
is declared). It allows applications the optimization of knowing whether the current
data in the pasteboard is the same as the data they last received.

An independent change count is maintained for each named pasteboard.

See also: - declareTypes:num:owner:

declareTypes:num :owner:
- declareTypes:(const char * const *)newTypes

num:(int)numTypes
owner:newOwner

Prepares the pasteboard for a change in its contents by declaring the new types of data
it will contain and a new owner. This is the first step in responding to a user's copy or
cut command and must precede the messages that actually write the data. A
declareTypes:num:owner: message is tantamount to changing the contents of the
pasteboard. It invalidates the current contents of the pasteboard and increments its
change count.

numTypes is the number of types the new contents of the pasteboard may assume, and
newTypes is an array of null-terminated strings that name those types. The types should
be ordered according to the preference of the source application, with the most
preferred type coming first. Usually, the richest representation is the one most
preferred.

The newOwner is the object responsible for writing data to the pasteboard in all the
types listed in newTypes. Data is written using the writeType:data:length: method.
You can write the data immediately after declaring the types, or wait until it's required
for a paste operation. If you wait, the owner will receive a pasteboard:provideData:
message requesting the data in a particular type when it's needed. You might choose
to write data immediately for the most preferred type, but wait for the others to see
whether they'll be requested.

The newOwner can be NULL if data is provided for all types immediately. Otherwise,
the owner should be an object that won't be freed. It should not, for example, be the
View that displays the data if that View is in a window that might be closed.

Returns self.

See also: - writeType:data:length:, - pasteboard:provideData:

Application Kit Classes: Pasteboard 2-455

free

-free

Frees the Pasteboard object. A Pasteboard object should not be freed if there's a chance
that the application might want to use the named pasteboard again; standard
pasteboards generally should not be freed at all.

free Globally

- free Globally

Frees the Pasteboard object and the domain for its name within the pasteboard server.
This means that no other application will be able to use the named pasteboard. A
temporary, privately named pasteboard can be freed when it's no longer needed, but a
standard pasteboard should never be freed globally.

name

- (const char *)name

Returns the name of the Pasteboard object.

See also: + newName:

readType:data:length:

- readType:(const char *)dataType
data:(char **)theData
length:(int *)numBytes

Reads the dataType representation of the current contents of the pasteboard. dataType
should be one of the types returned by the types method. The data is read by setting
the pointer referred to by theData to the .address of the data, and setting the integer
referred to by numBytes to the length of the data in bytes.

If the data is successfully read, this method returns self. It returns nil if the contents of
the pasteboard have changed (if the change count has been incremented by a
declareTypes:num:owner message) since they were last checked with the types
method. It also returns nil if the pasteboard server can't supply the data in time-for
example, if the pasteboard's owner is slow in responding tq a
pasteboard:provideData: message and the interprocess communication times out.
All other errors raise an NX_pasteboardComm exception.

If nil is returned, the application should put up a panel informing the user that it was
unable to carry out the paste operation. It should not attempt to use the pointer referred
to by theData, as it won't be valid.

2-456 Chapter 2: Class Specifications

The memory for the data that this method provides is allocated directly from the Mach
virtual memory manager, not through mallocO; it therefore should be freed only by
vm _ deallocateO, not freeO. For example:

char *data;
int length;

if ([myPasteboard readType:NXAsciiPboardType
data:&data length:&length])

/* Use the data here, keeping it for as long as necessary */
vm_deallocate(task_self(), data, length);

See also: - types

types

- (const NXAtom *)types

Returns the list of the types that were declared for the current contents of the
pasteboard. The list is an array of character pointers holding the type names, with the
last pointer being NULL. Each of the pointers is of type NXAtom, meaning that the
type name is a unique string.

Types are listed in the same order that they were declared. A types message should be
sent before reading any data from the pasteboard.

See also: - declareTypes:num:owner:, - readType:data:length:,
NXUniqueStringO

writeType: data: length:

- writeType:(const char *)dataType
data:(const char *)theData
length: (int)numBytes

Writes data to the pasteboard server. dataType gives the type of data being written; it
must be a type that was declared in the previous declareTypes:num:owner: message.
theData points to the data to be sent to the pasteboard server, and numBytes is the length
of the data in bytes.

A separate writeType:data:length: message is required for each data representation
that's written to the server.

This method returns self if the data is successfully written. It returns nil if an object in
another application has become the owner of the pasteboard. Any other error raises an
NX_pasteboardComm exception.

See also: - declareTypes:num:owner:

Application Kit Classes: Pasteboard 2-457

METHODS IMPLEMENTED BY THE OWNER

pasteboard:provideData:
- pasteboard:sender provideData:(NXAtom)type

Implemented by the owner (previously declared in a declareTypes:num:owner:
message) to provide promised data. The owner receives a pasteboard:provideData:
message from the sender Pasteboard when the data is required for a paste operation;
type gives the type of data being requested. The requested data should be written to
sender using the writeType:data:length: method.

pasteboard:provideData: messages may also be sent to the owner when the
application is shut down through Application's terminate: method. This is the method
that's invoked in response to a Quit command. Thus the user can copy something to
the pasteboard, quit the application, and still paste the data that was copied.

A pasteboard:provideData: message is sent only if type data hasn't already been
supplied. Instead of writing all data types when the cut or copy operation is done, an
application can choose to implement this method to provide the data for certain types
only when they're requested.

If an application writes data to the pasteboard in the richest, and therefore most
preferred, type at the time of a cut or copy operation, its pasteboard:provideData:
method can simply read that data from the pasteboard, convert it to the requested type,
and write it back to the pasteboard as the new type.

See also: - declareTypes:num:owner:, - writeType:data:length:

CONSTANTS AND DEFINED TYPES

/*
* standard Pasteboard types
*/

extern NXAtom NXAsciiPboardType;

extern NXAtom NXPostScriptPboardType;

extern NXAtom NXTIFFPboardType;
extern NXAtom NXRTFPboardType;

extern NXAtom NXFilenamePboardType;
extern NXAtom NXTabularTextPboardType;
extern NXAtom NXFontPboardType;

extern NXAtom NXRulerPboardType;

/*
* standard Pasteboard names
*/

extern NXAtom NXSelectionPboard;

extern NXAtom NXFontPboard;
extern NXAtom NXRulerPboard;
extern NXAtom NXFindPboard;

2-458 Chapter 2: Class Specifications

PopUpList

INHERITS FROM Menu: Panel: Window : Responder: Object

DECLARED IN appkit/Pop UpList.h

CLASS DESCRIPTION

PopUpList is used to create a pop-up list of items. The list is popped up in response to
the action message popUp:, usually sent from a Button that acts as a "cover" for the
PopUpList. The sender of the popUp: message must respond to the messages title and
setTitle:; it can be any subclass of View. If the sender is a Matrix, the selectedCell
must respond to those messages. In the Interface Builder, a PopUpList and a Button to
activate it are available as a single palette item.

A PopUpList can actually be one of two types: pop-up or pull-down. In the Interface
Builder, you can select the type by selecting the appropriate icon in the Inspector panel.
A pop-up list's button title changes as items are selected from the list; a pull-down list's
button title doesn't change.

Accessing the PopUpList's Button is useful if you want to change the title displayed for
the list. To access the Button from your code, give it a tag in the Interface Builder's
Inspector. Send a setTitle: message to the Button to change the title string it displays.
If the title you send isn't represented in the PopUpList, it's added at the top of the list
the next time the user manipulates the Button.

PopUpList is not a control. When you invoke setAction: and setTarget:, you are
setting the action and target of the matrix used to display the list elements. The matrix
itself actually sends the action message to the target as items are chosen from the
PopUpList.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Inherited from Responder id nextResponder;

Application Kit Classes: PopUpList 2-459

Inherited/rom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ w Flags wFlags;
struct _ wFlags2 wFlags2;

Inherited/rom Panel (none)

Inherited/rom Menu id supermenu;
id matrix;
id attachedMenu;
NXPoint lastLocation;
id reserved;
struct _menuFlags menuFlags;

Declared in PopUpList (none)

METHOD TYPES

Initializing a PopUpList - init

Setting up the items - addItem:
- count
- indexOfltem:
- insertItem:at:
- removeItem:
- removeItemAt:

Interacting with the Button - changeButtonTitle:
- getButtonFrame:

Activating the PopUpList -popUp:

Returning the user's selection - selectedItem

Modifying the items -font
- setFont:

2-460 Chapter 2: Class Specifications

Target and action - action
- setAction:
- setTarget:
- target

Resizing the PopUpList - sizeWindow::

INSTANCE METHODS

action
- (SEL)action

Returns the action which will be sent when an item is selected from the list.

See also: - setAction:

addltem:

- addItem:(const char *)title

Adds the item with the name title to the PopUpList. The newly added cell is returned.
The new item is added to the end of the list.

Note: Popping up a list from a sender whose title is not in the list will cause that title
to be added to the list (at the beginning of the list).

See also: - setTarget:

changeButtonTitle:
- changeButtonTitle:(BOOL)flag

If flag is YES, then when a selection is made from the list, the title of the selection
becomes the title of the Control (usually a Button) which sent the popUp: message. If
NO, then no such change occurs. YES is the default. Returns self.

count
- (unsigned int)count

Returns the number of entries in the list.

font
-font

Returns the font that is used to draw the items in the PopUpList.

Application Kit Classes: PopUpList 2-461

getButtonFrame:

- getButtonFrame:(NXRect *)bframe

Returns, by reference, the frame for the button which is used to pop this list up.

indexOfltem:

init

- (int)indexOfItem:(const char *)title

Returns the index of the item title. If title is not in the list, returns -1.

- init

Initializes and returns the receiver, a new instance of PopUpList. This method is the
designated initializer for PopUpList. PopUpList does not override the designated
initializers for Menu, Panel, or Window. Use only this method to initialize new
instances of PopUpList. If you create a subclass of PopUpList that performs its own
initialization, you must override this method.

insertltem:at:

- insertItem:(const char *)title at:(unsigned int)index

Inserts an item at the specified point in the PopUpList. The index starts with item 0 at
the top of the list. Returns the newly inserted Cell.

popUp:

- popUp:sender

This is the action message sent by an object, usually a Button, whose target is the
PopUpList. The sender must be either a subclass of View that responds to the messages
title and setTitle: or a subclass of Matrix whose selected Cell responds to title and
setTitle:.

This method works if and only if the Application's currentEvent is a mouse down;
thus, it should be invoked only as a result of a mouse-down occurring somewhere.
When a selection is made in the PopUpList, the Matrix that displays PopUpList's
entries sends the action to the target. Returns self.

See also: - setAction:, - setTarget:

removeltem:

- removeItem:(const char *)title

Removes the item with the name title from the list and returns the Cell used to draw the
item.

2-462 Chapter 2: Class Specifications

removeItemAt:

- removeItemAt:(unsigned int)index

Removes the item at the specified index. Returns the Cell used to draw the title at that
location.

selectedItem
- (const char *)selectedItem

Returns the title of the currently selected item. The target of the PopUpList can get the
title of the selected item by sending either [[sender selectedCell] title] or
[[sender window] selectedItem] messages. The former is preferred.

setAction:
- setAction:(SEL)aSelector

Sets the action sent when an item is selected from the PopUpList. This method invokes
the setAction: method of the Matrix containing the list of items. Returns self.

See also: - setAction: (Matrix)

setFont:
- setFont:fontld

Sets the font that is used to draw the PopUpList. Returns self.

setTarget:
- setTarget:anObject

Sets the object to which an action will be sent when an item is selected from the list.
This method invokes the setTarget: method on the Matrix containing the list of items.
Returns self.

See also: - setTarget: (Matrix), - target

size Window::

- sizeWindow:(NXCoord)width :(NXCoord)height

Never invoke this method directly. This method is overridden from Menu because
PopUpList needs to surround itself with a dark gray border, and thus needs to be one
pixel wider and taller than a Menu. Returns self.

Application Kit Classes: PopUpList 2-463

target

- target

Returns the object to which the action will be sent when an item is selected from the
list. The default value is nil, which causes the action message to be sent down the
responder chain.

See also: - setTarget:

2-464 Chapter 2: Class Specifications

Printlnfo

INHERITS FROM Object

DECLARED IN appkit/printInfo.h

CLASS DESCRIPTION

The PrintInfo class contains all information describing a given print job. This includes
parameters set in the Page Layout panel, and the Print panel. The units of the paper
rectangle and margins are points (72 points equals 1 inch).

The paperType, paperRect, and orientation variables are interrelated. A given paper
type has a size, which determines what that paper type's default orientation is
(landscape if the width is greater than the height, else portrait). If the user chooses the
contrary orientation, the size components in paperRect are reversed. These
relationships between paperType, paperRect, and orientation must be maintained.

The methods for setting these variables have an andAdjust: keyword for a Boolean
parameter that can be used to maintain the above relationships. If you pass YES for the
parameter, the variables will stayed synchronized. The Page Layout panel performs
this maintenance for user actions.

INSTANCE VARIABLES

Inherited from Object

Declared in PrintInfo

Class

char
NXRect
NXCoord
NXCoord
NXCoord
NXCoord
float
char
struct _pInfoFlags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

isa;

*paperType;
paperRect;
leftPageMargin;
rightPageMargin;
topPageMargin;
bottomPageMargin;
scalingFactor;
pageOrder;

orientation: 1 ;
horizCentered: 1 ;
vertCentered: 1;
manualFeed: 1;
allPages:l;
horizPagination:2;
vertPagination:2;

pInfoFlags;

Application Kit Classes: Printlnfo 2-465

paperType

paperRect

leftPageMargin

rightPageMargin

topPageMargin

bottomPageMargin

scalingFactor

pageOrder

plnfoFlags . orientation

plnfoFlags.horizCentered

plnfoFlags. vertCentered

plnfoFlags.manualFeed

plnfoFlags.allPages

plnfoFlags.horizPagination

plnfoFlags. vertPagination

. firstPage

lastPage

currentPage

2-466 Chapter 2: Class Specifications

int
int
int
int
char
DPSContext
char
char
char
int
short

Type of paper.

firstPage;
lastPage;
currentPage;
copies;
*outputFile;
context;
*printerName;
*printerType;
*printerHost;
resolution;
pagesPerSheet;

Rect representing paper's area; origin is always
(0,0).

Left margin.

Right margin.

Top margin.

Bottom margin.

Factor to scale image by.

Order of pages in document.

Landscape or portrait mode.

True if the image is centered horizontally on the
page.

True if the image is centered vertically on the
page.

True if the job requires manual paper feed.

True if all the pages are to be printed.

Horizontal pagination.

Vertical pagination.

First page to print.

Last page to print.

Current page being printed.

copies Number of copies to print.

outputFile File to spool to.

context Spooling context.

printerName N arne of printer to use.

printerType Type of that printer.

printerHost Host machine for that printer. An empty string
indicates the local machine.

resolution Resolution at which to print.

pagesPerSheet The number of pages per sheet of paper.

METHOD TYPES

Initializing a new PrintInfo instance - init

Freeing a PrintInfo instance - free

Defining the printing rectangle - setMarginLeft:right:top: bottom:
- getMarginLeft:right:top: bottom:
- setOrientation:andAdjust:
- orientation
- setPaperRect:andAdjust:
- paperRect
- setPaperType:andAdjust:
- paperType

Setting which pages to print - setFirstPage:
- firstPage
- setLastPage:
-lastPage
- setAllPages:
- isAllPages
- currentPage

Pagination - setHorizPagination:
- horizPagination
- setVertPagination:
- vertPagination
- setScalingFactor:
- scalingFactor

Application Kit Classes: Printlnfo 2-467

Positioning the image on the page - setHorizCentered:
- isHorizCentered
- set VertCentered:
- is VertCentered
- setPagesPerSheet:
- pagesPerSheet

Print job attributes - setPageOrder:
- pageOrder
- setManualFeed:
- isManualFeed
- setCopies:
- copies
- setResolution:
- resolution

Specifying the printer - setPrinterN arne:
- printerName
- setPrinterType:
- printerType
- setPrinterHost:
- printerHost

Spooling - setOutputFile:
- outputFile
- setContext:
- context

Archiving -read:
- write:

INSTANCE METHODS

context

- (DPSContext)context

. Returns the Display PostScript context used for printing.

copies

- (int)copies

Returns the number of copies of the document that will be printed.

2-468 Chapter 2: Class Specifications

currentPage
- (int)currentPage

Returns page number of the page currently being printed. This method is valid only
when printing (or faxing) a View. See setFirstPage: for the meaning of the number
returned.

See also: - setFirstPage:, - printPSCode: (View)

firstPage
- (int)firstPage

Returns the first page that will be printed in this document, assuming
plnfoFlags.allPages is NO. See setFirstPage: for the meaning of the number
returned.

See also: - setFirstPage:

free

- free

Frees all storage used by the PrintInfo object.

getMarginLeft:right:top:bottom:
- getMarginLeft:(NXCoord *)leftMargin

right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottorn:(NXCoord *)bottomMargin

Returns the margins. All margins are in points, in the default coordinate system of the
page.

horizPagination

init

- (int)horizPagination

Returns the way in which pagination is done horizontally across the page.

- init

Initializes the Printlnfo object after memory for it has been allocated by Object's alloc
or allocFrornZone: methods. Returns self.

Application Kit Classes: PrintInfo 2-469

isAIIPages

- (BOOL)isAIIPages

Returns whether all the pages of this document are to be printed. If NO, then the pages
that are to be printed are given by firstPage and lastPage.

isHorizCentered

- (BOOL)isHorizCentered

Returns whether the default implementation of placePrintRect:offset: in the View
class centers the image horizontally on the page.

isManualFeed

- (BOOL)isManuaIFeed

Returns whether the pages for this print job will need to be manually fed to the printer.

is VertCentered

- (BOOL)isVertCentered

Returns whether the default implementation of placePrintRect:offset: in the View
class centers the image vertically on the page.

lastPage

- (int)lastPage

Returns the last page that will be printed in this document, assuming allPages is NO.
See setFirstPage: for the meaning of the number returned.

See also: - setFirstPage:

orientation

- (char)orientation

Returns the orientation (either NX_PORTRAIT or NX_LANDSCAPE).

outputFile

- (const char *)outputFile

Returns the name of the file to which the generated PostScript code is sent. If this field
is NULL, output will go to a temporary file.

2-470 Chapter 2: Class Specifications

pageOrder
- (char)pageOrder

Returns pageOrder.

pagesPerSheet
- (short)pagesPerSheet

Returns the number of pages of the document printed per sheet of paper.

paperRect
- (const NXRect *)paperRect

Returns a pointer to paperRect, which is measures the size of the paper in points.

paperType

- (const char *)paperType

Returns the paperType of this PrintInfo object. If paperType is an unknown type, then
an empty string is returned.

printerHost
- (const char *)printerHost

Returns the name of the machine where the printer that we will print on resides.

printerName
- (const char *)printerName

Returns the name of the printer on which we will print.

printerType
- (const char *)printerType

Returns the type of printer on which we will print.

read:
- read:(NXTypedStream *)stream

Reads the PrintInfo from the typed stream stream.

Application Kit Classes: Printlnfo 2-471

resolution
- (int)resolution

Returns the resolution at which we will print.

scalingFactor
- (float)scalingFactor

Returns scalingFactor.

setAIIPages:
- setAIIPages:(BOOL)jlag

Sets whether all the pages of the document are to be printed (as opposed to a subset
given by the firstPage and lastPage values).

setContext:
- setContext:(DPSContext)aContext

Sets the DPS context we print through. This is normally done by the printing
machinery in View.

setCopies:
- setCopies:(int)anlnt

Sets the number of copies of the document that will be printed.

setFirstPage:
- setFirstPage:(int)anlnt

Sets the page number of the first page that will be printed.

Page numbers used by the PrintInfo object should use the same numbering as the pages
in the document. For example, if a 10-page document's first page is numbered page 20,
then the Printlnfo's first page should be set to 20 and the last page set to 29. This is the
same numbering that the user will use to enter specific page ranges in the Print Panel.

setHorizCentered:
- setHorizCentered:(BOOL)jlag

Sets whether the default implementation of placePrintRect:offset: in the' View class
centers the image horizontally on the page.

2-472 Chapter 2: Class Specifications

setHorizPagination:

-setHorizPagination: (int)mode

Sets the way in which pagination is done horizontally across the page. The value
NX_AUTOPAGINATION means the default Application Kit algorithm will be applied
to divide the View being printed into pages. The value NX_FITPAGINATION means
that the View will be scaled if necessary so that it fits on a single page horizontally: Any
scaling applied will also affect the vertical dimension, maintaining a square aspect
ratio. The value NX_CLIPPAGINATION means that the View will be clipped
horizontally so that there is only one column of pages produced.

setLastPage:

- setLastPage:(int)anlnt

Sets the page number of the last page that will be printed. See setFirstPage: for the
meaning of the number passed.

See also: - setFirstPage:

setManualFeed:

- setManuaIFeed:(BOOL)jlag

Sets whether the pages for this job will need to be manually fed to the printer.

setMarginLeft: right:top: bottom:

- setMarginLeft:(NXCoord)lejtMargin
right: (NXCoord)rightM argin
top: (NXCoord)topMargin
bottom: (NXCoord)bottomM argin

Sets the margins. All margins are in points, in the default coordinate system of the
page.

setOrientation:andAdjust:

- setOrientation:(char)mode andAdjust:(BOOL)jlag

Sets orientation. mode should be either NX_PORTRAIT or NX_LANDSCAPE.

Ifjlag is NO, then only orientation is changed. Ifjlag is YES, then paperRect is also
updated to reflect the new orientation.

Application Kit Classes: Printlnfo 2-473

setOutputFile:
- setOutputFile:(const char *)aString

Sets the name of the file to which the generated PostScript code is sent. If this field is
NULL, output will go to a temporary file.

setPageOrder:
- setPageOrder:(char)mode

Sets pageOrder. mode should be one of these constants:

NX_DESCENDINGORDER
NX_SPECIALORDER
NX_ASCENDINGORDER
NX_UNKNOWNORDER

setPagesPerSheet:
- setPagesPerSheet:(short)aShort

Sets the number of pages of the document printed per sheet of paper. This number is
rounded up to a power of two when used by the system.

setPaperRect:andAdjust:
- setPaperRect:(const NXRect *)aRect andAdjust:(BOOL)jlag

Sets paperRect. The origin of the rectangle is always constrained to be (0,0). The
origin of aRect is ignored. Even though only the size of paperRect carries the
information, it is stored as a rectangle to facilitate calculations, such as intersecting
other objects with this rectangle. Points are the unit of measure.

Ifjlag is NO, then only paperRect is changed. Ifjlag is YES, then orientation and
paperType are updated to reflect the new paperRect.

setPaperType:andAdjust:
- setPaperType:(const char *)type andAdjust:(BOOL)jlag

Sets paperType to type. If type is NULL, paperType is set to an empty string.

If jlag is NO, or if jlag is YES but type is not a recognized paper type, then only
paperType will be changed. If jlag is YES and type is a known paper type, then
paperRect and orientation are updated to reflect the new type.

2-474 Chapter 2: Class Specifications

setPrinter Host:
- setPrinterHost:(const char *)aString

Sets the name of the machine where the printer on which we will print resides. If
aString is an empty string, the host name is set to that of the local machine.

setPrinterName:
- setPrinterName:(const char *)aString

Sets the name of the printer on which we will print.

setPrinterType:
- setPrinterType:(const char *)aString

Sets the type of printer on which we will print.

setResolution:
- setResolution:(int)anlnt

Sets the resolution at which we will print.

setScalingFactor:
- setScalingFactor:(float)aFloat

Sets scalingFactor.

setVertCentered:
- setVertCentered:(BOOL)jlag

Sets whether the default implementation of placePrintRect:offset: in the View class
centers the image vertically on the page.

setVertPagination:
- setVertPagination:(int)mode

Sets the way in which pagination is done vertically across the page. The value
NX_AUTOPAGINATION means the default Application Kit algorithm will be applied
to divide the View being printed into pages. The value NXYITPAGINATION means
that the View will be scaled if necessary so that it fits on a single page vertically. Any
scaling applied will also affect the horizontal dimension, maintaining a square aspect
ratio. The value NX_CLIPPAGINATION means that the View will be clipped
vertically so that only one row of pages is produced.

Application Kit Classes: Printlnfo 2-475

vertPagination
- (int)vertPagination

Returns the way in which pagination is done vertically across the page.

write:
- write:(NXTypedStream *)stream

Writes the receiving PrintInfo to the typed stream stream.

CONSTANTS AND DEFINED TYPES

/* Possible values for the page order */

#define NX_DESCENDINGORDER (-1) /* descending order of pages */

#define NX SPECIALORDER

#define NX ASCENDINGORDER

#define NX UNKNOWNORDER

o

1

2

/* The orientation of the page */

/* special order; tells the spooler

to not rearrange pages */
/* ascending order of pages */

/* no page order written out */

#define NX_LANDSCAPE 1 /* long side horizontal */

#define NX_PORTRAIT 0 /* long side vertical */

/* Pagination modes */

#define NX_AUTOPAGINATION

#define NX FITPAGINATION

#define NX CLIPPAGINATION

2~476 Chapter 2: Class Specifications

o
1

2

/* auto pagination */

/* force image to fit on one page */

/* let image be clipped by page */

PrintPanel

INHERITS FROM Panel: Window : Responder: Object

DECLARED IN appkit/printPanel.h

CLASS DESCRIPTION

PrintPanel is a type of Panel that queries the user for information about the print job,
such as which pages and how many copies to print. The PrintPanel contains a Choose
button the user can click to display the ChoosePrinter panel and thereby select a printer;
see ChoosePrinter's class description for more information.

Printing is typically initiated by the user choosing "Print" in the main menu, which
sends amessage to a View (or sometimes a Window) to perform its printPSCode:
method. This method brings up the PrintPanel during the printing process by
generating the shouldRunPrintPanel: method, which returns YES by default. The
PrintPanel is displayed and run using its runModal method. This method loads
information from the global PrintInfo object, runs the panel using runModalFor:, and
returns the tag of the button the user clicked to dismiss the panel. See PrintInfo's class
specification for details about what information it stores.

You can customize the PrintPanel for your application by adding a View to the panel
through setAccessoryView:. This View might contain additional controls, for
example. If you add a View, you may need to override some of PrintPanel's methods
to coordinate any displays or controls you add.

INSTANCE VARIABLES

Inheritedfrom Object Class is a;

Inheritedfrom Responder id nextResponder;

Inherited/rom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _ wFlags2 wFlags2;

Application Kit Classes: PrintPanel 2-477

Inherited/rom Panel

Declared in PrintPanel

appIcon

pageMode

firstPage

lastPage

copies

ok

cancel

preview

save

change

feed

resolutionList

name

type

2-478 Chapter 2: Class Specifications

(none)

id applcon;
id pageMode;
id firstPage;
id lastPage;
id copies;
id ok;
id cancel;
id preview;
id save;
id change;
id feed;
id resolutionList;
id name;
id type;
id status;
int exitTag;
id accessory View;
id buttons;

The Button containing the application's icon.

The Matrix of radio buttons indicating whether to
print all pages or a subset.

The Form indicating the first page to print.

The Form indicating the last page to print.

The TextField indicating how many copies to
print.

The Print Button.

The Cancel Button.

The Preview Button.

Save Button.

Change Button.

The PopUpList of paper feed options.

The PopUpList of resolution choices.

The TextField for the name of the printer.

The TextField for the type of printer.

status

exitTag

accessoryView

buttons

METHOD TYPES

The TextField for the printing status.

The tag of the button user clicked to exit the
panel.

The optional View added by the application.

The Matrix of PrintPanel buttons.

Creating and freeing a PrintPanel + new
+ new Content: sty Ie: backing: buttonMask:defer:
-free

Customizing the PrintPanel - setAccessoryView:
- accessoryView

Running the panel - runModal
- pickedButton:

Updating the panel's display - changePrinter:
- pickedAllPages:
- textWillChange:

Communicating with the PrintInfo object
- readPrintInfo
- writePrintInfo

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create PrintPanel
instances; use new instead.

See also: + new

allocFromZone:

Generates an error message. This method cannot be used to create PrintPanel
instances; use new instead.

See also: + new

Application Kit Classes: PrintPanel 2-479

new

+ new

Creates and returns the PrintPanel. This will return the existing instance of the
PrintPanel if one has already been created. To display and run the panel, use the
run Modal method.

See also: - runModal

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Used in the instantiation of the PrintPanel. You shouldn't use this method to create the
panel; use new instead.

See also: + new, - runModal

INSTANCE METHODS

accessoryView

- accessory View

Returns the View set by setAccessory View:.

See also: - setAccessoryView:

changePrinter:
- changePrinter:sender

Brings up the ChoosePrinter Panel to allow the user to select a printer. After the user
finishes with that panel, the PrintPanel's display is updated to reflect the newly chosen
printer.

free
-free

Frees all storage used by the PrintPanel.

2-480 Chapter 2: Class Specifications

pickedAIIPages:

- pickedAllPages:sender

Updates the fields for entering page numbers when the user clicks either of the radio
buttons indicating whether to print all pages.

pickedButton:
- pickedButton:sender

Ends the current run of this panel by sending the stopModal message to the
Application object. This method sets the exitTag instance variable to the tag of the
button that the user clicked to dismiss the panel (either NX_OKTAG,
NX_CANCELTAG, NX_PREVIEWTAG, NX_SAVETAG, or NX_FAXTAG).

See also: - stop Modal (Application)

readPrintlnfo

- readPrintInfo

Reads the global PrintInfo in Application, setting the initial values of this panel. The
number of copies is set at 1, all pages are printed, and automatic feed is chosen.

See also: - writePrintInfo

runModal
- (int)runModal

Executes the PrintPanel. This method loads the current printing information into the
panel from NXApp' s global PrintInfo object. It then runs the panel using
runModalFor:. When the user finishes with the panel, it's still displayed; you must
hide the panel when printing is completed. If the user exits the PrintPanel with any
button other than cancel, the information in the PrintPanel is written back to the global
PrintInfo object. The method returns the tag of the button that the user chose to dismiss
the panel (NX_OKTAG, NX_CANCELTAG, NX_SAVETAG, NX_PREVIEWTAG,
or NX_FAXTAG). Note that since runModalFor: is used, the pickedButton: method
must use the stopModal method to terminate the modal run of this panel.

See also: + new

Application Kit Classes: PrintPanel 2-481

setAccessory View:

- setAccessory View: a View

Adds aView to the contents of the panel. Applications use this method to add controls
to extend the functionality of the panel. The panel is automatically resized to
accommodate aView, which should be the top View in a view hierarchy. If aView is nil,
then any accessory view in the panel will be removed. setAccessory View: may be
performed repeatedly to change the accessory view as needed.

If controls are added, you may need to define your own version of several PrintPanel's
methods. For example, you may want to override pickedAIIPages: to update any fields
of information you display. Also, you may need to override readPrintlnfo and
writePrintInfo to get information from and write it to the global PrintInfo object.

See also: - accessoryView:

text WillChange:

- (BOOL)textWiIlChange:textObject

Ensures that the correct cell of the page mode matrix is set. Called when the user types
in either the first page or last page field of the form.

writePrintlnfo

- writePrintInfo

Writes the values of the PrintPanel to NXApp's global PrintInfo object.

See also: - readPrintInfo

2-482 Chapter 2: Class Specifications

Responder

INHERITS FROM Object

DECLARED IN appkit/Responder .h

CLASS DESCRIPTION

Responder is an abstract class that forms the basis of command and event processing in
the Application Kit. Most Kit classes inherit from Responder. When a Responder
object receives an event or action message that it can't respond to--that it doesn't have
a method for-the message is sent to its next responder. For a View, the next responder
is usually its superview; the content view's next responder is the Window. Each
Window, therefore, has its own responder chain. Messages are passed up the chain
until they reach an object that can respond.

Action messages and keyboard event messages are sent first to the first responder, the
object that displays the current selection and is expected to handle most user actions
within a window. Each Window object has its own first responder. Messages the first
responder can't handle work their way up the responder chain.

This class defines the nextResponder instance variable and the methods that pass event
and action messages along the responder chain.

INST ANCE VARIABLES

Inherited/rom Object

Declared in Responder

nextResponder

METHOD TYPES

Managing the next responder

Determining the first responder

Aiding event processing

Class is a;

id nextResponder;

The object that will be sent event messages and
action messages that the Responder can't handle.

- setNextResponder:
- nextResponder

- acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder

- performKeyEquivalent:
- tryToPerform:with:

Application Kit Classes: Responder 2-483

Forwarding event messages - mouseDown:
- rightMouseDown:
- mouseDragged:
- rightMouseDragged:
-mouseUp:
- rightMouseUp:
- mouseMoved:
- ·mouseEntered:
- mouseExited:
-keyDown:
-keyUp:
- flagsChanged:
- noResponderFor:

Services menu support - validRequestorForSendType:andReturnType:

Archiving - read:
- write:

INSTANCE METHODS

acceptsFirstResponder
- (BOOL)acceptsFirstResponder

Returns NO to indicate that, by default, Responders don't agree to become the first
responder.

Before making any object the first responder, the Application Kit gives it an
opportunity to refuse by sending it an acceptsFirstResponder message. Objects that
can display a selection should override this default to return YES. Objects that respond
with this default version of the method will receive mouse event messages, but no
others.

See also: makeFirstResponder: (Window)

becomeFirstResponder
- becomeFirstResponder

Notifies the receiver that it has just become the first responder for its Window. This
default version of the method simply returns self. Responder subclasses can implement
their own versions to take whatever action may be necessary, such as highlighting the
selection.

By returning self, the receiver accepts being made the first responder. A Responder can
refuse to become the first responder by returning nil.

2-484 Chapter 2: Class Specifications

becomeFirstResponder messages are initiated by the Window object (through its
makeFirstResponder: method) in response to mouse-down events.

See also: - resignFirstResponder, - makeFirstResponder: (Window)

flagsCbanged:

- flagsChanged:(NXEvent *)theEvent

Passes the flagsChanged: event message to the receiver's next responder.

keyDown:

- keyDown:(NXEvent *)theEvent

Passes thekeyDown: event message to the receiver's next responder.

keyUp:

- keyUp:(NXEvent *)theEvent

Passes the keyUp: event message to the receiver's next responder.

mouseDown:

- mouseDown: (NXEvent *)theEvent

Passes the mouseDown: event message to the receiver's next responder.

mouseDragged:

- mouseDragged:(NXEvent *)theEvent

Passes the mouseDragged: event message to the receiver's next responder.

mouseEntered:

- mouseEntered:(NXEvent *)theEvent

Passes the mouseEntered: event message to the receiver's next responder.

mouseExited:

- mouseExited:(NXEvent *)theEvent

Passes the mouseExited: event message to the receiver's next responder.

Application Kit Classes: Responder 2-485

mouseMoved:
- mouseMoved:(NXEvent *)theEvent

Passes the mouseMoved: event message to the receiver's next responder.

mouseUp:

- mouseUp:(NXEvent *)theEvent

Passes the mouseUp: event message to the receiver's next responder.

nextResponder
- nextResponder

Returns the receiver's next responder.

See also: - setNextResponder:

noResponderFor:
- noResponderFor:(const char *)eventType

Handles an event message when it's passed to the end of the responder chain and no
object can respond. It writes a message to the system log. If the event is a key-down
event, it generates a beep.

performKeyEquivaJent:

- (BOOL)performKeyEquivaJent:(NXEvent *)theEvent

Returns NO to indicate that, by default, the Responder doesn't have a key equivalent
and can't respond to key-down events as keyboard alternatives.

The Responder class implements this method so that any object that inherits from it can
be asked to respond to a a performKeyEquivaJent: message. Subclasses that define
objects with key equivalents must implement their own versions of
performKeyEquivaJent:. If the key in theEvent matches the receiver's key equivalent,
it should respond to the event and return YES.

See also: - performKeyEquivaJent: (View and Button)

read:
- read:(NXTypedStream *)stream

Reads the Responder from the typed stream stream.

See also: - write:

2-486 Chapter 2: Class Specifications

resignFirstResponder

- resignFirstResponder

Notifies the receiver that it's n::> longer the first responder for its window. This default
version of the method simply returns self. Responder subclasses can implement their
own versions to take whatever action may be necessary, such as unhighlighting the
selection.

By returning self, the receiver accepts the change. By returning nil, the receiver refuses
to agree to the change, and it remains the first responder.

A resignFirstResponder message is sent to the current first responder (through
Window's makeFirstResponder: method) when another object is about to be made the
new first responder.

See also: - becomeFirstResponder, - makeFirstResponder: (Window)

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Passes the rightMouseDown: event message to the receiver's next responder.

rightMouseDragged:

- rightMouseDragged:(NXEvent *)theEvent

Passes the rightMouseDragged: event message to the receiver's next responder.

rightMouseUp:

- rightMouseUp:(NXEvent *)theEvent

Passes the rightMouseUp: event message to the receiver's next responder.

setNextResponder:

- setNextResponder:aResponder

Makes aResponder the receiver's next responder.

See also: - nextResponder

Application Kit Classes: Responder 2-487

tryToPerform:with:

- (BOOL)tryToPerform:(SEL)anAction with:anObject

Aids in dispatching action messages. This method checks to see whether the receiving
object can respond to the method selector specified by anAction. If it can, the message
is sent with anObject as an argument. Typically, anObject is the initiator of the action
message.

If the receiver can't respond, tryToPerform:with: checks to see whether the receiving
object's next responder can. It continues to follow next responder links up the
responder chain until it finds an object that it can send the action message to, or the
chain is exhausted.

Even if the receiver can respond to anAction messages, it can "refuse" them by having
its implementation of the anAction method return nil. In this case, the message is
passed on to the next responder in the chain.

If successful in finding a receiver that doesn't refuse the message, tryToPerform:
returns YES. Otherwise, it returns NO.

This method is used (indirectly, through the sendAction:to:from: method) to dispatch
action messages from Control objects. You'd rarely have reason to use it yourself.

See also: - sendAction:to:from: (Application)

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Implemented by subclasses to determine what services are available at any given time.
In order to keep the Services menu current, the Application object sends
validRequestorForSendType:andReturnType: messages to the first responder with
the send and return types for each service method of every service provider. Thus, a
Responder may receive this message many times per event. If the receiving object can
place data of type typeSent on the pasteboard and receive data of type typeReturned
back, it should return self; otherwise it should return nil. The Application object checks
the return value to determine whether to enable or disable commands in the Services
menu.

Responder's implementation of this method simply forwards the message to the next
responder, so by default this method returns nil. Like untargetted action messages,
validRequestorForSendType:andReturnType: messages are passed up the
responder chain to the Window, then to the Window's delegate, and finally to the
Application object and its delegate, until an object returns self rather than nil.

typeSent and typeReturned are pasteboard types. They're NXAtoms, so you can
compare them to the types your application can send and receive by comparing pointers

2-488 Chapter 2: Class Specifications

rather than comparing strings. Since this method will be invoked frequently, it must be
as efficient as possible.

Either typeSent or typeReturned may be NULL. If typeSent is NULL, the service
doesn't require data from the requesting application. If typeReturned is NULL, the
service doesn't return data to the requesting application.

When the user chooses a menu item for a service, a
writeSelectionToPasteboard:types: message is sent to the Responder (if typeSent was
not NULL). The Responder writes the requested data to the pasteboard and a remote
message is sent to the service. If the service's typeReturned is not NULL, it places
return data on the pasteboard, and the Responder receives a
readSelectionFromPasteboard: message.

The following example demonstrates an implementation of the
validRequestorForSendType:andReturnType: method for an object that can send
and receive ASCII text. Pseudocode is in italics.

- validRequestorForSendType: (NXAtom)typeSent

andReturnType: (NXAtom)typeReturned

/*
* First, check to make sure that the types are ones

* that we can handle.
*/

if ((typeSent == NXAsciiPboardType I I typeSent == NULL) &&

(typeReturned == NXAsciiPboardType I I typeReturned == NULL)

/*

/*

* If so, return self if we can give the service
* what it wants and accept what it gives back.
*/

if ((there is a selection) I I typeSent == NULL) &&

((the text is editable) I I typeReturned == NULL)

return self;

* Otherwise, return the default.
*/

return [super validRequestorForSendType:typeSent
andReturnType:typeReturned];

See also: - registerServicesMenuSendTypes:andReturnTypes: (Application),
- writeSelectionToPasteboard:types: (Object Method),
- readSelectionFromPasteboard: (Object Method)

Application Kit Classes: Responder 2-489

write:
- write:(NXTypedStream *)stream

Writes the receiving Responder to the typed stream stream. The next responder is not
explicitly written.

See also: - read:

2-490 Chapter 2: Class Specifications

SavePanel

INHERITS FROM Panel: Window : Responder: Object

DECLARED IN appkit/SavePanel.h

CLASS DESCRIPTION

The SavePanel provides a simple way for an application to query the user for the name
of a file to use when saving a document or other data. It allows the application to
restrict the filename to have a certain file type, as specified by a filename extension.
There is one and only one SavePanel in an application and the new method returns a
pointer to it.

Whenever the user actually decides on a file name, the message
panelValidateFilename: will be sent to the SavePanel's delegate (if it responds to that
message). The delegate can then determine whether that file name can be used; it
returns YES if the file name is okay, or NO if the SavePanel should stay up and wait for
the user to type in a different file name. The delegate can also implement a
panel:fiiterFile:inDirectory: method to test that both the file name and the directory
are valid.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _ w Flags2 wFlags2;

Inheritedfrom Panel (none)

Application Kit Classes: SavePanel 2-491

Declared in SavePanel

form

browser

okButton

accessory View

separator

filename

directory

filenames

requiredType

spFlags .opening

spFlags.exitOk

spFlags.allow Multiple

spFlags.dirty

spFlags .invalidateMatrices

spFlags . filtered

directory Size

2-492 Chapter 2: Class Specifications

id
id
id
id
id
char
char
const char
char
struct _spFlags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

unsigned short

Typeable form

The browser

The OK button

form;
browser;
okButton;
accessory View;
separator;
* filename;
* directory;
**filenames;
*requiredType;

opening: 1;
exitOk:1;
allow Multiple: 1;
dirty: 1;
invalidateMatrices: 1;
filtered: 1 ;

spFlags;
directorySize;

Application-customized area

Line separating icon from rest

The chosen file name

The directory of the chosen file

The list of chosen files

The type of file to save

Opening or saving

Exit status

Whether to allow multiple files

Dirty flag for invisible updates

Whether the matrices are valid

Whether types are filtered

Current size of directory var

METHOD TYPES

Creating and Freeing a SavePanel + newContentstyle:backing:buttonMask:defer:
-free

Customizing the SavePanel - setAccessoryView:
- accessoryView
- setTitle:
- setPrompt:

Setting directory and file type - setDirectory:
- setRequiredFileType:
- requiredFileType

Running the SavePanel -runModal
- runModaIForDirectory:file:

Reading Save information - directory
- filename

Completing a partial filename - commandKey:

Action methods - cancel:
-ok:

Responding to User Input - selectText:
- textDidGetKeys:isEmpty:
- textDidEnd:endChar:

Setting the delegate - setDelegate:
- delegate (Window)

CLASS METHODS

new Content: style: backing: buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Creates, if necessary, and returns a new instance of SavePanel. Each application shares
just one instance of SavePanel; this method returns the shared instance if it exists. A
simpler interface is available via the inherited method new which invokes this method
with all the appropriate parameters.

Application Kit Classes: SavePanel 2-493

INSTANCE METHODS

accessory View

- accessory View

Returns the view set by setA~cessoryView:.

See also: setAccessoryView:

alloc

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style: backing: buttonMask:defer: method instead.

See also: +;, newContent:style: backing: buttonMask:defer:
"!

allocFromZone:

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style:backing:buttonMask:defer: method instead.

See also: newContent:style: backing: buttonMask:defer:

cancel:

- cancel:sender

This method is the target of the Cancel button in the SavePanel. Returns self.

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

This method is used to accept command-key events. If theEvent contains a
Command-Space, the SavePanel will do file name completion; if it contains a
Command-H, the SavePaneljumps to the user's home directory. Other command-key
events are ignored. Returns YES

directory

- (const char *)directory

Returns the path of the directory that the SavePanel is currently showing.

2-494 Chapter 2: Class Specifications

filename

- (const char *)filename

Returns the file name (fully specified) that the SavePanellast accepted. Use
strrchr([savepanel filename], '/') to get the file name only (no path).

free
- free

Frees all storage used by the SavePanel.

ok:
- ok:sender

This method is the target of the OK button in the SavePanel.

requiredFileType

- (const char *)requiredFileType

Returns the last type set by setRequiredFileType:.

runModal
- (int)runModal

Displays the panel and begins its event loop. Returns 1 if successful, 0 otherwise.

runModalFor Directory :file:

- (int)runModaIForDirectory:(const char *)path file:(const char *).filename

Initializes the panel to the file specified by path and name, then displays it and begins
its event loop. Returns 1 if successful, 0 otherwise.

selectText:
- selectText:sender

Advances the current browser selection one line when TAB is pressed (goes back one
line when BACKTAB is pressed).

Application Kit Classes: SavePanel 2-495

setAccessoryView:
- setAccessoryView:aView

aView should be the top View in a view hierarchy which will be added just above the
"OK" and "Cancel" buttons at the bottom of the panel. The panel is automatically
resized to accommodate a View. This may be called repeatedly to change the accessory
view depending on the situation. If a View is nil, then any accessory view which is in
the panel will be removed.

setDelegate:
- setDelegate:anObject

Makes anObject the SavePanel's delegate. Returns self.

setDirectory:
- setDirectory:(const char *)path

Sets the current path in the SavePanel browser. Returns self.

setPrompt:

- setPrompt:(const char *)prompt

Sets the title for the form field in which users type their entries on the panel. This title
will appear on all SavePanels (or all OpenPanels if the receiver of this message is an
OpenPanel) in your application. "File:" is the default prompt string. Returns self.

setRequiredFileType:
- setRequiredFileType:(const char *)type

Specifies the type, a file name extension to be appended to any selected files which do
not already have that extension; for example, "nib". type should not include the period
which begins the extension. Be careful to invoke this method each time the SavePanel
is used for another file type within the application. Returns self.

setTitle:

- setTitle:(const char *)newTitle

Sets the title of the SavePanel to newTitle and returns self. By default, "Save" is the
title string. If a SavePanel is adapted to other uses, its title should reflect the user action
that brings it to the screen.

2-496 Chapter 2: Class Specifications

textDidEnd:endChar:
- textDidEnd:textObject endChar:(unsigned short)endChar

Detennines whether the key that ended text was Tab or Shift-Tab so that selectText:
knows whether to move forward or backwards. Returns self.

textDidGetKeys:isEmpty:
'- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Invoked by the Panel's text to indicate whether there is any text in the Panel. Disables
the OK button if there is no text in the Panel.

METHODS IMPLEMENTED BY THE DELEGATE

panel:filterFile:inDirectory:
-(BOOL) panel:sender

filterFile:(const char *)filename
inDirectory:(const char *)directory

Sent to the panel's delegate. The delegate can then detennine whether that filename can
be saved in the directory; it returns YES if the filename and directory are okay, or NO
if the SavePanel should stay up and wait for the user to type in a different file name or
select another directory.

panelValidateFilenames:

-(BOOL) panelValidateFilenames:sender

Sent to the panel's delegate. The delegate can then detennine whether that file name
can be used; it returns YES if the file name is okay, or NO if the SavePanel should stay
up and wait for the user to type in a different file name.

Application Kit Classes: SavePanel 2-497

2-498

Scroller

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/Scroller .h

CLASS DESCRIPTION

The Scroller class defines a Control that's used by a ScrollView object to position a
document that's too large to be displayed in its entirety within a View. A Scroller is
typically represented on the screen by a bar, a knob, and two scroll buttons, although it
may contain only a subset of these. The knob indicates both the position within the
document and the amount displayed relative to the size of the document. The bar is the
rectangular region that the knob slides within. The scroll buttons allow the user to
scroll in small increments by clicking, or in large increments by Alternate-clicking. In
discussions of the Scroller class, a small increment is referred to as a "line increment"
(even if the Scroller is oriented horizontally), and a large increment is referred to as a
"page increment," although a page increment actually advances the document by one
windowful. When you create a Scroller, you can specify either a vertical or a horizontal
orientation.

As a Control, a Scroller handles mouse events and sends action messages to its target
(usually its parent ScrollView) to implement user-controlled scrolling. The Scroller
must also respond to messages from a ScrollView to represent changes in document
positioning.

Scroller is a public class primarily for programmers who decide not to use a ScrollView
but want to present a consistent u~er interface. Its use is not encouraged except in cases
where the porting of an existing application is made more straightforward. In these
situations, you initialize a newly created Scroller with initFrame:. Then, you use
setTarget: (Control) to set the object that will receive messages from the Scroller, and
you use setAction: (Control) to specify the target's method that will be invoked by the
Scroller. When your target receives a message from the Scroller, it will probably need
to query the Scroller using the hitPart and floatValue methods to determine what
action to take.

The Scroller class has several constants referring to the parts of a Scroller. A scroll
button with an up arrow (or left arrow, if the Scroller is oriented horizontally) is known
as a "decrement line" button if it receives a normal click, and as a "decrement page"
button if it receives an Alternate-click. Similarly, a scroll button with a down or right
arrow functions as both an "increment line" button and an "increment page" button.
The constants defining the parts of a Scroller are as follows:

Application Kit Classes: Scroller 2-499

Constant

NX_NOPART
NX_KNOB
NX_DECPAGE
NX_INCPAGE
NX_DECLINE
NX_INCLINE
NX_KNOBSLOT or
NX_JUMP

INSTANCE VARIABLES

Inherited from Object

Inheritedfrom Responder

Inherited from View

Inherited from Control

Declared in Scroller

curValue

perCent

hitPart

target

2-500 Chapter 2: Class Specifications

Refers To

No part of the Scroller
The knob
The button that decrements a page (up, left arrow)
The button that increments a page (down, right arrow)
The button that decrements a line (up, left arrow)
The button that increments a line (down, right arrow)
The bar

Class isa;

id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

int tag;
id cell;
struct _ conFlags conFlags;

float curValue;
float perCent;
int hitPart;
id target;
SEL action;
struct _sFlags {

unsigned int isHoriz:1;
unsigned int arrowsLoc:2;
unsigned int partsUsable:2;

sFlags;

The position of the knob, from 0.0 (top or left
position) to 1.0.

The fraction of the bar the knob fills, from 0.0 to
1.0.

Which part got the last mouse-down event.

The target of the Scroller.

action

sFlags.isHoriz

sFlags.arrowsLoc

sFlags. parts Usable

METHOD TYPES

Initializing a Scroller

Laying out the Scroller

Setting Scroller values

Resizing the Scroller

Displaying

Target and action

Handling events

Archiving

The action sent to Scroller's target.

True if this is a horizontal Scroller.

The location of the scroll buttons within the
Scroller.

The parts of the Scroller that are currently
displayed.

- initFrame:

- calcRect:forPart:
- checkSpaceForParts
- setArrowsPosition:

- floatValue
- setFloatValue:
- setFloatValue::

- sizeTo::

- drawArrow::
- drawKnob
- drawParts
- drawSelf::
- highlight:

- setAction:
- action
- setTarget:
- target

- acceptsFirstMouse
- hitPart
- mouseDown:
- testPart:
- trackKnob:
- trackScrollButtons:

- awake
- read:
- write:

Application Kit Classes: Scroller 2-501

INSTANCE METHODS

acceptsFirstMonse
- (BOOL)acceptsFirstMoose

Overrides inherited methods to ensure that the Scroller will receive the mouse-down
event that made its window the key window. Returns YES.

action

- (SEL)action

Returns the action of the Scroller-in other words, the selector for the method the
Scroller will invoke when it receives a mouse-down event.

See also: - target, - setAction:

awake

-awake

Overrides Object's awake method to ensure additional initialization. After a Scroller
has been read from an archive file, it will receive this message. You should not invoke
this method directly. Returns self.

calcRect:for Part:

- (NXRect *)calcRect:(NXRect *)aRect forPart:(int)partCode

Calculates the rectangle (in the Scroller's drawing coordinates) that encloses a
particular part of the Scroller. This rectangle is returned in aRect. partCode is
NX_DECPAGE, NX_KNOB, NX_INCPAGE, NX_DECLINE, NX_INCLINE, or
NX_KNOBSLOT. This method is useful if you override the draw Arrow:: or
drawKnob method. Returns aRect (the pointer you passed it).

See also: - drawArrow::, - drawKnob

2-502 Chapter 2: Class Specifications

checkSpaceFor Parts
- checkSpaceForParts

Checks to see if there is enough room in the Scroller to display the knob and buttons
and sets sFlags.partsUsable to one of the following values:

Value
NX_SCROLLERNOPARTS
NX_SCROLLERONLYARROWS
NX_SCROLLERALLPARTS

Meaning
Scroller has no usable parts, only the bar.
Scroller has only scroll buttons.
Scroller has all parts.

This method is used by sizeTo::; you should not invoke this method yourself. Returns
self.

See also: - sizeTo::

draw Arrow::
- drawArrow:(BOOL)upOrLeft :(BOOL)highlight

Draws a scroll button. If upOrLeft is NO, this method draws the down or right scroll
button (NX_INCLINE), depending on whether the Scroller is oriented vertically or
horizontally. If upOrLeft is YES, this method draws the up or left scroll button
(NX_DECLINE). The highlight state is determined by highlight. If highlight is YES,
the button is drawn highlighted, otherwise it's drawn normally. This method is invoked
by drawSelf:: and mouse-down events. It's a public method so that you can override
it; you should not invoke it directly. Returns self.

See also: - drawKnob, - calcRect:forPart:

drawKnob
- drawKnob

Draws the knob. Don't send this message directly; it's invoked by drawSelf:: and
mouse-down events. Returns self.

See also: - drawArrow::, - calcRect:forPart:

drawParts
- drawParts

This method caches images for the various graphic entities composing the Scroller. It's
invoked only once by the first of either initFrame: or awake. You may want to
override this method if you alter the look of the Scroller, but you should not invoke it
directly. Returns self.

Application Kit Classes: Scrolier 2-503

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

This method draws the Scroller. It's used by the display methods, and you should not
invoke it directly. reets is an array of rectangles that need to be covered, with the first
one being the union of the subsequent rectangles. reetC ount is the number of elements
in this array. Returns self.

See also: - display::: (View)

floatValue

- (float)f1oatValue

Returns the position of the knob, a value in range 0.0 to 1.0. A value of 0.0 indicates
that the knob is at the top or left position within the bar, depending on the Scroller's
orientation.

highlight:

- highlight:(BOOL)jlag

This method highlights or unhighlights the scroll button that the user clicked on. The
Scroller invokes this method while tracking the mouse, and you should not invoke it
directly. Ifjlag is YES, the button is drawn highlighted, otherwise it's drawn normally.
Returns self.

See also: - drawArrow::

hitPart

- (int)hitPart

Returns the part of the Scroller that received a mouse-down event. See the Scroller
class description for possible values. This method is typically invoked by the
ScrollView to determine what action to take when the ScrollView receives an action
message from the Scroller.

See also: - action

2-504 Chapter 2: Class Specifications

initFrame:
-initFrame:(const NXRect *)frameRect

Initializes a new Scroller with frame frameRect, which cannot be NULL. If
frameRect's width is greater than its height, a horizontal Scroller is created; otherwise,
a vertical Scroller is created. The Scroller is initially disabled. If the Scroller is a
subview of a ScrollView, its width and height are reset automatically by the
ScrollView's tile method; in this case, the width of vertical Scrollers and the height of
horizontal Scrollers are set to NX_SCROLLERWIDTH. This method is the designated
initializer for the Scroller class. Returns self.

See also: - setEnabled: (Control), - tile (ScrollView), + alloc (Object),
+ allocFromZone: (Object)

mouseDown:
- mouseDown:(NXEvent *)theEvent

This method acts as a dispatcher when a mouse-down event occurs in the Scroller. It
determines what part of the Scroller was clicked, and invokes the appropriate methods
(such as trackKnob: or trackScroIlButtons:). You should not invoke this method
directly. Returns self.

read:
- read:(NXTypedStream *)stream

Reads the Scroller from the typed stream stream, and sets all aspects of its state.
Returns self.

See also: - write:

setAction:
- setAction:(SEL)aSelector

Sets the action of the Scroller. When the user manipulates the Scroller, the Scroller
sends its action message to its target, which (if it's a ScrollView) will then query the
Scroller to determine how to respond. Returns self.

See also: - setTarget:, - action

Application Kit Classes: Scroller 2-505

setArrowsPosition:

- setArrowsPosition:(int)where

Sets the location of the scroll buttons within the Scroller to where, or inhibits their
display, as follows:

Value

NX_SCROLLARROWSMAXEND
NX_SCROLLARROWSMINEND
NX_S CROLLARROWS NONE

Returns self.

setFloat Value:

- setFloatValue:(float)aFloat

Meaning

Buttons. at bottom or right
Buttons at top or left
No buttons

Sets the position of the knob to aFloat, which is a value between 0.0 and 1.0. This
method is the same as setFloatValue:: except it doesn't change the size of the knob.
Returns self.

See also: - setFloatValue::

setFloat Value::

- setFloatValue:(float)aFloat :(float)knobProportion

Sets the position and size of the knob. Sets the position within the bar to aFloat, which
is a value between 0.0 and 1.0. A value of 0.0 positions and displays the knob at the
top or left of the bar, depending on the orientation of the Scroller. The size of the knob
is determined by knobProportion, which is a value between 0.0 and 1.0. A value of 0.0
sets the knob to a predefined minimum size, and a value of 1.0 makes the knob fill the
bar. Returns self.

See also: - setFloatValue:

setTarget:

- setTarget:anObject

Sets the target of the Scroller. The Scroller's target receives the action message set by
setAction: when the user manipulates the Scroller. Returns self.

See also: - target, - setAction:

2-506 Chapter 2: Class Specifications

sizeTo::
~ sizeTo:(NXCoord)width :(NXCoord)height

Overrides the default View method so the Scroller can check which parts can be drawn.
This method is typically invoked by tile (ScrollView), which sets the Scroller to a
constant width (or height, if the Scroller is horizontal) of NX_SCROLLERWIDTH.
Returns self.

See also: - checkSpaceForParts, - tile (ScrollView)

target
- target

Returns the Scroller's target.

See also: - setTarget:, - action

testPart:
- (int)testPart:(const NXPoint *)thePoint

Returns the part of the Scroller that lies under thePoint. See the Scroller class
description for possible values.

trackKnob:
- trackKnob:(NXEvent *)theEvent

Tracks the knob and sends action messages to the Scroller's target. This method is
invoked when the Scroller receives a mouse-down event in the knob. You should not
invoke this method directly. Returns self.

See also: - mouseDown:, - action, - target

trackScrollButtons:

- trackScrollButtons: (NXEvent *)theEvent

Tracks the scroll buttons and sends action messages to the Scroller's target. This
method is invoked when the Scroller receives a mouse-down event in a scroll button.
You should not invoke this method directly. Returns self.

See also: - mouseDown:, - action, - target

Application Kit Classes: Scroller 2-507

write:

- write:(NXTypedStream *)stream

Writes the Scroller to the typed stream stream, saving all aspects of its state. Returns
self.

See also: - read:

CONSTANTS AND DEFINED TYPES

/* Location of scroll buttons within the Scroller */

#ctefine NX_SCROLLARROWSMAXEND 0

#define NX SCROLLARROWSMINEND 1

#define NX SCROLLARROWSNONE 2

/* Usable parts in the Scroller */

#define NX_SCROLLERNOPARTS 0

#define NX SCROLLERONLYARROWS 1

#define NX SCROLLERALLPARTS 2

/* Part codes for various parts of

#define NX NOPART 0

#define NX DECPAGE 1

#define NX KNOB 2

#define NX INCPAGE 3
#define NX DECLINE 4

#define NX INCLINE 5
#define NX KNOBSLOT 6

#define NX JUMP 6

the Scroller */

#define NX SCROLLERWIDTH (18.0)

2-508 Chapter 2: Class Specifications

ScrollView

INHERITS FROM View: Responder: Object

DECLARED IN appkit/ScrollView.h

CLASS DESCRIPTION

The purpose of the ScrollView class is to allow the user to interact with a document that
is too large to be represented in its entirety within a View and must therefore be
scrolled. The responsibility of a ScrollView is to coordinate scrolling behavior between
Scroller objects and a Clip View object. Thus, the user may drag the knob of a Scroller
and the ScrollView will send a message to its Clip View to ensure that the viewed
portion of the document reflects the position of the knob. Similarly, the application can
change the viewed position within a document and the ScrollView will send a message
to the Scrollers advising them of this change.

The ScrollView has at least one subview (a ClipView object), which is called the
content view. The content view in tum has a subview called the document view, which
is the view to be scrolled. When a ScrollView is created, it has neither a vertical nor a
horizontal scroller, and the content view is sized to fill the ScrollView. If Scrollers are
required, the application must send the setVertScrollerRequired:YES and
setHorizScrollerRequired:YES messages to the ScrollView, and the content view is
resized to fill the area of the Scroll View not occupied by the Scrollers. These two
methods only set flags for the ScrollView; if the flag is YES, the ScrollView will
automatically enable and disable the Scroller as required to allow the user to scroll
through the entire document. In other words, if the vertical scroller flag is set to YES
and the document view grows beyond the vertical bounds of the Clip View, the
ScrollView will enable the vertical Scroller.

When a Scroller is required, the application must send the appropriate message to the
ScrollView (setVertScrollerRequired: or setHorizScrollerRequired:). The
ScrollView will then create a new Scroller instance, make the Scroller a subview of the
ScrollView, and set itself as the Scroller's target. When the ScrollView receives an
action message from the Scroller, it queries the Scroller to determine what action to
take, and then it sends a message to the content view telling it to scroll itself to the
appropriate position. Similarly, when the application modifies the scroll position
within the document, it should send a reflectScroll: message to the ScrollView, which
will then query the content view and set the Scroller(s) accordingly. The reflectScroll:
message may also cause the ScrollView to enable or disable the Scrollers as required.

Application Kit Classes: ScrollView 2-509

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Responder

Inherited from View

Declared in ScrollView

vScroller

hScroller

contentView

pageContext

lineAmount

METHOD TYPES

Initializing a ScrollView

Determining component sizes

Laying out the ScrollView

2-510 Chapter 2: Class Specifications

Class

id

NXRect
NXRect
id
id
id
struct _ vFlags

id
id
id
float
float

The vertical scroller.

The horizontal scroller.

The content view.

isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

vScroller;
hScroller;
content View;
pageContext;
lineAmount;

The amount from the previous page (in the
content view's coordinates) remaining in the
content view after a page scroll.

The number of units (in the content view's
coordinates) to scroll for a line scroll.

- initFrame:

- getContentSize:
- getDoc VisibleRect:

+ getContentSize:forFrameSize:horizScroller:
vertScroller: borderType:

+ getFrameSize:forContentSize:horizScroller:
vertScroller: borderType:

- resizeSubviews:
- setHorizScrollerRequired:
- set VertScrollerRequired:
- tile

Managing component Views - setDoc View:
- docView
- setHorizScroller:
- horizScroller
- setVertScroller:
- vertScroller
- reflectScroll:

Modifying graphic attributes - setBorderType:
- borderType
- setBackgroundGray:
- backgroundGray
- setBackgroundColor:
- backgroundColor

Setting scrolling behavior - setCopyOnScroll:
- setDisplayOnScroll:
- setDynamicScrolling:
- setLineScroll:
- setPageScroll:

Displaying - drawSelf::

Managing the cursor - setDocCursor:

Archiving - read:
- write:

CLASS METHODS

getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

+ getContentSize:(NXSize *)cSize
forFrameSize:(const NXSize *)jSize
horizScroller:(BOOL)hFlag
vertScroller:(BOOL)vFlag
borderType:(int)aType

Calculates the size of a content view for a ScrollView with frame size jSize. hFlag is
YES if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical
scroller. aType indicates whether there's a line, a bezel, or no border around the frame
of the ScrollView, and is NX_LINE, NX_BEZEL, or NX_NOBORDER. The content
view size is placed in the structure specified by csize. If the ScrollView object already
exists, you can send it a getContentSize: message to get the size of its content view.
Returns self.

See also:
+ getFrameSize:forContentSize:horizScroller:vertScroller: borderType:,
- getContentSize:

Application Kit Classes: ScrollView 2-511

getFrameSize:forContentSize:horizScroller:vertScroller: borderType:
+ getFrameSize:(NXSize *)jSize

forContentSize:(const NXSize *)cSize
horizScroller:(BOOL)hFlag
vertScroller:(BOOL)vFlag
borderType: (int)aType

Calculates the size of the frame required for a ScrollView with a content view size
cSize. The required frame size is placed in the structure specified by jSize. hFlag is
YES if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical
scroller. aType indicates whether there's a line, a bezel, or no border around the frame
of the ScrollView, and is NX_LINE, NX_BEZEL, or NX_NOBORDER. Returns self.

See also:
+ getContentSize:forFrameSize:horizScroller:vertScroller:borderType:,
- getContentSize:

INSTANCE METHODS

background Color

- (NXColor)backgroundColor

Returns the color of the content view's background. This method simply invokes the
content view's backgroundCo)or method.

See also: - setBackgroundColor:, - background Gray,
- backgroundCo)or (ClipView)

backgroundGray

- (float)backgroundGray

Returns the gray value of the content view's background, a float from 0.0 (black) to 1.0
(white). This method simply invokes the content view's background Gray method.

See also: - setBackgroundGray:, - backgroundColor,
- backgroundGray (ClipView)

borderType

- (int)borderType

Returns a value representing the type of border surrounding the ScrollView. The
possible values for the border type are NX_LINE, NX_BEZEL, and
NX_NOBORDER.

See also: - setBorderType:

2-512 Chapter 2: Class Specifications

docView

- docView

Returns the current document view by sending the ScrollView's content view a
doc View message.

See also: - setDocView:, - docView (ClipView)

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

This method draws the ScrollView. It does not draw the ScrollView's subviews. reets
is an array of rectangles that need to be covered, with the first one being the union of
the subsequent rectangles. reetCount is the number of elements in this array. You may
want to override this method if you've subclassed the ScrollView to manage additional
subviews and if other separation lines need to be drawn. Returns self.

See also: - borderType, - display::: (View)

getContentSize:

- getContentSize:(NXSize *)theSize

Places the size of the ScrollView's content view in the structure specified by theSize.
theSize is specified in the coordinates of the ScrollView's superview. Returns self.

See also: + getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

getDoc VisibleRect:

- getDocVisibleRect:(NXRect *)aReet

Gets the portion of the document view visible within the ScrollView's content view.
The content view's bounds rectangle, transformed into the document view's
coordinates, is placed in the structure specified by aReet. This rectangle represents the
portion of the document view's coordinate space that's visible through the ClipView.
However, the rectangle doesn't reflect the effects of any clipping that may occur above
the Clip View itself. Thus, if the Clip View is itself clipped by one of its superviews, this
method returns a different rectangle than the one returned by the getVisibleRect:
method,_ because the latter reflects the effects of all clipping by superviews. Returns
self.

See also: - getDocVisibleRect: (ClipView), - getVisibleRect: (View)

Application Kit Classes: ScroliView 2-513

horizScroller

- horizScroller

Returns the horizontal scroller, a Scroller object. This method is provided for the rare
case where sending a message directly to the Scroller is desired.

See also: - vertScroller

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the ScrollView, which must be a newly allocated ScrollView instance. The
ScrollView's frame rectangle is made equivalent to that pointed to by frameRect, which
is expressed in the ScrollView's superview's coordinates. This method installs a
ClipView as its content view. Clipping is set to NO by a setClipping: message (the
Scroll View relies on the content view for clipping), opacity is set to YES by a
setOpaque: message, and auto-resizing of its subview is set to YES by a
setAutoresizeSubviews: message. When created, the ScrollView has no Scrollers, and
its content view fills its bounds rectangle. This method is the designated initializer for
the Scroll View class, and can be used to initialize a Scroll View allocated from your own
zone. Returns self.

See also: + alloc (Object), + allocFromZone: (Object),
- setHorizScrollerRequired:, - setVertScrollerRequired:, - setLineScroll:,
- setPageScroll:

read:

- read:(NXTypedStream *)stream

Reads the ScrollView from the typed stream stream. This method reads the ScrollView,
its scrollers, and its content view, which in tum causes the content view's document
view to be read. Returns self.

See also: - write:

reflectScroll:

- reflectScroll:cView

Determines the new settings for the Scrollers by looking at the relationship between the
content view's bounds and the document view's frame, and sends the Scrollers a
setFloatValue:: message. If the appropriate extent of the document view's frame is
less than or equal to that of the content view's bounds, the corresponding Scroller is
disabled. Returns self.

See also: - setFloatValue:: (Scroller)

2-514 Chapter 2: Class Specifications

resizeSubviews:
- resizeSubviews:(const NXSize *)oldSize

Overrides View's resizeSubviews: to retile the ScrollView. This method is invoked
when the ScrollView receives a sizeTo:: message. Returns self.

See also: - tile

setBackgroundColor:
- setBackgroundColor:(NXColor)color

Sets the color of the content view's background. This color is used to paint areas inside
the content view that aren't covered by the document view. This method simply
invokes the content view's setBackgroundColor: method. Returns self.

See also: - backgroundColor, - setBackgroundGray:, - setBackgroundColor:
(ClipView)

setBackgroundGray:
- setBackgroundGray:(tloat)value

Sets the gray value of the content view's background. This gray is used to paint areas
inside of the content view that aren't covered by the document view. value must be in
the range from 0.0 (black) to 1.0 (white). To specify one of the four pure shades of gray,
use one of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

This method simply invokes the content view's setBackgroundGray: method.
Returns self.

See also: - background Gray, - setBackgroundColor:,
- setBackgroundGray: (Clip View)

setBorderType:
- setBorderType:(int)aType

Determines the border type of the ScrollView. aType must be NX_NOBORDER,
NX_LINE, or NX_BEZEL. The default is NX_NOBORDER. Returns self.

See also: - borderType

Application Kit Classes: ScrollView 2-515

setCopyOnScroll:

- setCopyOnScroll:(BOOL)jlag

Determines whether the bits on the screen will be copied when scrolling occurs. Ifjlag
is YES, scrolling will copy as much of a view's bitmap as possible to scroll the view.
Ifjlag"is NO, the entire content view will always be redrawn to perform a scroll. This
should only rarely be changed from the default value (YES). This method simply
invokes the content view's setCopyOnScroll: method. Returns self.

See also: - setCopyOnScroll: (ClipView)

setDispiayOnScroll:

- setDisplayOnScroll:(BOOL)jlag

Determines whether the results of scrolling will be immediately displayed. If jlag is
YES, the results of scrolling will be immediately displayed. Ifjlag is NO, the Clip View
is marked as invalid but is not displayed. The Scroll View may then be updated by
sending it a display message. This should only rarely be changed from the default
value (YES). This method simply invokes the content view's setDisplayOnScroll:
method. Returns self.

See also: - setDisplayOnScroll: (ClipView), - display (View), - invalidate (View)

setDocCursor:

- setDocCursor:anObj

Sets the cursor to be used inside the content view by sending a setDocCursor: message
to the content view. Returns the old cursor.

See also: - setDocCursor: (Clip View)

setDoc View:

- setDoc View:a View

Attaches the document view to the ScrollView. There is one document view per
ScrollView, so if there was already a document view for this ScrollView it is replaced.
A ScrollView is initialized without a document view. This method simply invokes the
content view's setDocView: method. Returns the old document view, or nil if there
was none.

See also: - docView, - setDocView: (ClipView)

2-516 Chapter 2: Class Specifications

setDynamicScroiling:
- setDynamicScrolling:(BOOL)jlag

Determines whether dragging a scroller's knob will result in dynamic redisplay of the
document. Ifjlag is YES, scrolling will occur as the knob is dragged. Ifjlag is NO,
scrolling will occur only after the knob is released. By default, scrolling occurs as the
knob is dragged. Returns self.

setHorizScroller:
- setHorizScroller:anObject

Sets the horizontal scroller to an instance of a subclass of Scroller. You will rarely need
to invoke this method. This method sets the target of anObject to the ScrollView and
sets anObject's action to the ScrollView's private method that responds to the Scrollers
and invokes the appropriate scrolling behavior. To make the scroller visible, you must
have previously sent or must subsequently send a setHorizScrollerRequired:YES
message to the ScrollView. Returns the old scroller.

See also: - setVertScroller:

setHorizScroller Required:
- setHorizScrollerRequired: (BOOL)flag

Adds or removes a horizontal scroller for the ScrollView. Ifflag is YES, the ScrollView
creates a new Scroller and resizes its other subviews to make space for the Scroller. If
flag is NO, the Scroller is removed from the ScrollView and the other subviews are
resized to fill the ScrollView. When a ScrollView is created, it does not have a
horizontal scroller. Once a Scroller is added, it will be enabled and disabled
automatically by the ScrollView. This method retiles and redisplays the ScrollView.
Returns self.

See also: - tile

setLineScroll:
- setLineScroll: (float)value

Sets the amount to scroll the document view when the ScrollView receives a message
to scroll one line. value is expressed in the content view's coordinates. Returns self.

See also: - setPageScroll:

Application Kit Classes: ScrollView 2-517

setPageScroll:

- setPageScroll:(tloat)value

Sets the amount to scroll the document view when the ScrollView receives a message
to scroll one page. value is the amount common to the content view before and after
the page scroll and is expressed in the content view's coordinates. Therefore, setting
value to 0.0 implies that the entire content view is replaced when a page scroll occurs.
Returns self.

See also: - setLineScroll:

setVertScroller:

- setVertScroller:anObject

Sets the vertical scroller to an instance of a subclass of Scroller. You will rarely need
to invoke this method. This method sets the target of anObject to the ScrollView and
sets anObject's action to the ScrollView's private method that responds to the Scrollers
and invokes the appropriate scrolling behavior. To make the scroller visible, you must
have previously sent or must subsequently send a setHorizScrollerRequired: YES
message to the ScrollView. Returns the old scroller.

See also: - setHorizScroller:

setVertScrollerRequired:

- setVertScrollerRequired:(BOOL)flag

Adds or removes a vertical seroller to the ScrollView. Jfflag is YES, the ScrollView
creates a new Scroller and resizes its other subviews to make space for the Scroller. If
flag is NO, the Scroller is removed from the ScrollView and the other subviews are
resized to fill the ScrollView. When a ScrollView is created, it does not have a vertical
scroller. Once a Scroller is added, it will be enabled and disabled automatically by the
ScrollView. This method retiles and redisplays the ScrollView. Returns self.

See also: - tile

2-518 Chapter 2: Class Specifications

tile

- tile

Tiles the subviews of the ScrollView. You never send a tile message directly, but you
may override it if you need to have the ScrollView manage additional views. When tile
is invoked, it's responsible for sizing each of the subviews of the ScrollView, including
the content view. This is accomplished by sending each of its subviews a setFrame:
message. The width of the vertical scroller and the height of the horizontal scroller (if
present) are set to NX_SCROLLERWIDTH. A tile message is sent whenever the
ScrollView is resized, or a vertical or horizontal scroller is added or removed. The
method invoking tile should then send a display message to the ScrollView. Returns
self.

See also: - setVertScrollerRequired:, - setHorizScrollerRequired:,
- resizeSubviews:

vertScroller
- vertScroller

Returns the vertical scroller, a Scroller object. This method is provided for the rare case
where sending a message directly to the scroller is required.

See also: - horizScroller

write:
- write:(NXTypedStream *)stream

Writes the ScrollView to the typed stream stream. This method writes the ScrollView,
its scrollers, and its content view, which in turn causes the content view's document
view to be written. Returns self.

See also: - read:

Application Kit Classes: ScrollView 2-519

2-520

Selection Cell

INHERITS FROM Cell : Object

DECLARED IN appkit/SelectionCell.h

CLASS DESCRIPTION

SelectionCell is a subclass of Cell used to implement the visualization of hierarchical
lists of names. If the cell is a leaf, it displays its text only; otherwise it also displays a
right arrow, similar to the way MenuCell indicates submenus.

INSTANCE VARIABLES

Inherited from Object

Inheritedfrom Cell

Declared in SelectionCell

METHOD TYPES

Initializing a new Selection Cell

Querying Component Sizes

Querying the SelectionCell

Modifying the SelectionCell

Displaying

Archiving

Class

char
id
struct _cFlags 1
struct _cFlags2

(none)

- init
- initTextCell:

- calcCellSize:inRect:

- isOpaque
- setLeaf:

- isLeaf

- drawInside:in View:
- drawSelf:in View:
- highlight: in View:lit:

- awake

isa;

* contents;
support;
cFlagsl;
cFlags2;

Application Kit Classes: SelectionCell 2-521

INSTANCE METHODS

awake

-awake

Caches the arrow bitmaps, if they aren't already and returns the receiver, a newly
unarchived instance of SelectionCell. You don't invoke this method; it is invoked as
part of the read method used to unarchive objects from typed streams.

calcCeIlSize:inRect:

- calcCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns, by reference, the minimum width and height required for displaying the
SelectionCell in aRect. Leaves enough space for a menu arrow.

drawlnside:in View:

- drawInside:(const NXRect *)ceIlFrame inView:controlView

Displays the SelectionCell within cellFrame in controlView. You never invoke this
method directly; it is invoked by the drawSelf method of controlView. Override this
method if you create a subclass of SelectionCell that does its own drawing.

drawSelf:in View:

- drawSelf:(const NXRect *)ceIlFrame inView:controlView

Simply invokes drawInside:in View: since the SelectionCell has nothing to draw
except its insides. You never invoke this method directly; it is invoked by the drawS elf
method of controlView.

highlight:in View:lit:

init

- highlight:(const NXRect *)cellFrame
in View: con tro lView
lit: (BOOL)jlag

Highlights the cell within cellFrame in controlView ifjlag is YES, unhighlights it ifjlag
is NO. Returns self.

- init

Initializes and returns the receiver, a new instance of SelectionCell, with the title
"Listltem." The new instance is set as a leaf.

See also: - setLeaf:

2-522 Chapter 2: Class Specifications

initTextCell:
- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of SelectionCell, with aString as its
title. The new instance is set as a leaf. This method is the designated initializer for
SelectionCell; override this method if you create a subclass of SelectionCell that
performs its own initialization.

See also: - setLeaf:

isLeaf
- (BOOL)isLeaf

Returns YES if the cell is a leaf, NO otherwise. If the cell is a leaf, it displays its text
only, otherwise it also displays a right arrow like that MenuCell displays to indicate
submenus

See also: - setLeaf:

isOpaque
- (BOOL)isOpaque

Returns YES since SelectionCells touch all the bits in their frame.

setLeaf:
- setLeaf:(BOOL)jlag

Ifjlag is YES, sets the Cell to be a leaf, if NO, sets it to be a branch. Leaf SelectionCells
display text only; branch SelectionCells also displays a right arrow like that displayed
by MenuCell to indicate submenu entries. Returns self.

See also: - isLeaf:

Application Kit Classes: SelectionCell 2-523

2-524

Slider

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/Slider .h

CLASS DESCRIPTION

Sliders are Controls that have a sliding knob that can be moved to represent a value
between a minimum and a maximum. The action of the Slider can be sent continuously
to the target by invoking setContinuous: (YES is the default).

Slider (and an accompanying SliderCell) can be dragged into your application from
Interface Builder's Palettes panel.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _v Flags vFlags;

Inherited from Control int tag;
id cell;
struct _conFlags conFlags;

Declared in Slider (none)

METHOD TYPES

Initializing the Slider Class Objects + setCellClass:

Initializing a new Slider instance - initFrame:

Setting Slider Values - maxValue
-minValue
- setMaxValue:
- setMinValue:

Enabling the Slider - setEnabled:

Application Kit Classes: Slider 2-525

Resizing the Slider - sizeToFit

Handling Events - acceptsFirstMouse
- mouseDown:

CLASS METHODS

setCellClass:

+ setCellClass:classld

Sets the subclass of SliderCell that's used in implementing all Sliders. The default is
SliderCell. classld should be the value returned by sending a class message to
SliderCell or a subclass of SliderCell. Returns the id of the Slider class object.

INSTANCE METHODS

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

Returns YES since Sliders always accept first mouse.

initFrame:

- initFrame:(const NXRect *)JrameRect

Initializes and returns the receiver, a new instance of Slider. The Slider will be
horizontal ifJrameRect is wider than it is high; otherwise it will be vertical. By default,
the Slider is continuous. After initializing the Slider, invoke the sizeToFit method to
resize the Slider to accommodate its knob. This method is the designated initializer for
the Slider class.

maxValue

- (double)maxValue

Returns the maximum value of the Slider.

minValue

- (double)min Value

Returns the minimum value of the Slider.

2-526 Chapter 2: Class Specifications

mouseDown:

- mouseDown:(NXEvent *)theEvent

Sends a trackMouse:inRect:ofView: message to the Slider's cell. Returns self.

setEnabled:

- setEnabled:(BOOL)jlag

lfjlag is YES, enables the Slider; if NO, disables the Slider. Redraws the interior of the
Slider if autodisplay is on and the enabled state has changed. Returns self.

setMaxValue:

- setMaxValue:(double)aDouble

Sets the maximum value of the Slider and returns self.

setMin Value:

- setMin Value: (double)aDouble

Sets the minimum value of the Slider and returns self.

sizeToFit

- sizeToFit

The Slider is sized to fit its cell, and its width is adjusted so that its knob fits exactly in
its border. Returns self.

Application Kit Classes: Slider 2-527

2-528

SliderCell

INHERITS FROM ActionCell : Cell: Object

DECLARED IN appkit/SliderCell.h

CLASS DESCRIPTION

The SliderCell is used to implement the Slider Control as well as to provide Matrices
of SliderCells. The trackRect is the rectangle inside whiCh tracking occurs-the
interior of the bezeled area in which the Slider's knob slides.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inheritedfrom Cell char *contents;
id support;
struct _cFlags 1 cFlagsl;
struct _cFlags2 cFlags2;

Inherited from ActionC ell int tag;
id target;
SEL action;

Declared in SliderCell double value;
double maxValue;
double minValue;
NXRect trackRect;

value The current value of the slider

maxValue The maximum allowable value of the slider

minValue The minimum allowable value of the slider

trackRect The interior tracking area

METHOD TYPES

Initializing a new SliderCell - init

Determining Component Sizes - calcCellSize:inRect:
- getKnobRect:tlipped:

Application Kit Classes: SliderCell 2-529

Setting SliderCell Values

Modifying Graphic Attributes

Displaying

Target and Action

Tracking the Mouse

Archiving

CLASS METHODS

prefersTrackingUntilMouseUp

- double Value
- floatValue
- intValue
-maxValue
-minValue
- setDouble Value:
- setFloatValue:
- setIntValue:
- setMaxValue:
- setMin Value:
- setString Value:
- string Value

- isOpaque

- drawBarInside:flipped:
- draw Inside: in View:
-drawKnob
-drawKnob:
- drawS elf: in View:

- isContinuous
- setContinuous:

- continueTracking: at: in View:
+ prefersTrackingUntilMouseUp
- startTrackingAt:in View:
- stopTracking:at:in View:mouseIsUp:
- trackMouse:inRect:ofView:

- awake
- read:
- write:

+ (BOOL)prefersTrackingU ntilMouseU p

Returns YES to enable a SliderCell instance, after a mouse-down event, to track
mouse-dragged and mouse-up events even if they occur outside its frame. This ensures
that a SliderCell in a matrix doesn't stop responding to user input (and its neighbor start
responding) just because the knob isn't dragged in a perfectly straight line. Override
this method to allow a SliderCell to stop tracking if the mouse moves outside its frame
after a mouse-down event.

2-530 Chapter 2: Class Specifications

INSTANCE METHODS

awake

- awake

Reinitializes the receiver's NXImageReps upon unarchiving.

calcCellSize:inRect:

- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

If the width of aRect is greater than its "height then the SliderCell will be horizontal in
which case theSize->width returned will be the same as aRect->width and
theSize->height will be the height of the SliderCell bar. Otherwise, the SliderCell will
be vertical, and the height will be the same as aRect->height and the width will be the
width of the bar. Note that it is usually wrong to invoke calcCellSize: without the
inRect: on a SliderCell.

Override this if you draw a different knob on the SliderCell (or if you draw the
SliderCell itself differently). You must also override getKnobRect:flipped: and
drawKnob:.

continueTracking:at:in View:

- (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
in View:controlView

Continues tracking by moving the knob to currentPoint. Always returns YES. Invokes
getKnobRect:flipped: to get the current location of the knob and drawKnob to draw
the new position. Override this if you want to change the way positioning is done (e.g.,
if you wanted to add fine positioning with the ALTERNATE key).

double Value

- (double)doubleValue

Returns the value of the SliderCell.

drawBar Inside:f1ipped:

- drawBarlnside:(const NXRect *)cellFrame flipped:(BOOL)jlipped

Draws the slider bar. Override this method if you want to draw your own slider bar.

See also: - drawSelf:in View:

Application Kit Classes: SliderCell 2-531

drawInside:in View:

- drawlnside:(const NXRect *)ceIlFrame inView:controlView

Same as drawSelf:inView:, but doesn't draw the bezel.

See also: - drawSelf:in View:

drawKnob

-drawKnob

Draws the knob. You never override this method; override drawKnob: instead.

drawKnob:

- drawKnob:(const NXRect*)knobRect

Draws the knob in knobRect. You must override this method if you want to draw your
own knob (as well as getKnobRect:flipped: and maybe calcCeIlSize:inRect:).

drawSelf:in View:

- drawSelf:(const NXRect *)ceIlFrame inView:controlView

Draws the SliderCell bar and knob. The knob is drawn at a position which reflects the
current value of the SliderCell. This drawSelf:in View: doesn't invoke
drawlnside:in View:.

This method invokes caIcCeIlSize:inRect: and centers the resulting sized rectangle in
cellFrame, draws the bezel, fills the bar with LTGRAY if the cell is disabled, and 0.5
gray if not, then invokes draw Knob.

If, for example, you wanted a SliderCell which could be any size, you simply have
caIcCeIlSize:inRect: return whatever size you deem appropriate, override
getKnobRect:flipped: to return the correct rectangle to draw the knob in, and
drawKnob: so that an appropriate knob is drawn.

floatValue

- (float)floatValue

Returns the value of the SliderCell as a float.

2-532 Chapter 2: Class Specifications

getKnobRect:flipped:

init

- getKnobRect:(NXRect*)knobRect flipped:(BOOL)jlipped

This method must be overridden if you do your own knob (as well as drawKnob: and
maybe caIcCellSize:inRect:). It returns the rectangle into which the knob will be
drawn based on value, min Value, maxValue and trackRect (the interior tracking
rectangle of the SliderCell). Remember to take into account the flipping of the target
view (injlipped) in vertical SliderCells.

- init

Initializes and returns the receiver, a new instance of SliderCell. The value is set to 0.0,
the minValue is set to 0.0, the maxValue is set to 1.0, and the SliderCell is continuous.

This method is the designated initializer for SliderCell; override this method if you
create a subclass of SliderCell that performs its own initialization. SliderCell doesn't
override the Cell class's designated initializer initIconCell:; don't use that method to
initialize a SliderCell.

See also: - setContinuous:, - setMaxValue:, - setMinValue:

intValue
- (int)intValue

Returns the value of the SliderCell as an into

isContinuous

- (BOOL)isContinuous

Returns YES if action message is sent to the target object continuously as
mouse-dragged events occur in the Cell; NO if the action is sent periodically or only on
mouse-up events.

isOpaque
- (BOOL)isOpaque

Returns YES since all SliderCells are opaque.

maxValue

- (double)maxValue

Returns the maximum value of the SliderCell.

See also: - setMaxValue:

Application Kit Classes: SliderCell 2-533

minValue
- (double)min Value

Returns the minimum value of the SliderCell.

See also: - setMin Value:

read:
- read:(NXTypedStream *)stream

Reads the SliderCell from the typed stream stream. Returns self.

setContinuous:

- setContinuous:(BOOL)jlag

Ifjlag is YES, sets the SliderCell so that it sends its action message to its target object
continuously as mouse-dragged events occur in it. If NO, then the SliderCell sends its
action message to its target object only when a mouse-up event occurs. Returns self.

setDouble Value:

- setDouble Value: (double)aDouble

Sets the value of the SliderCell to aDouble. Updates the SliderCell knob position to
reflect the new value and returns self.

setFloatValue:
- setFloatValue:(float)aFloat

Sets the value of the SliderCell to aFloat. Updates the SliderCell knob position to
reflect the new value and returns self.

setlntValue:

- setIntValue:(int)anInt

Sets the value of the SliderCell to anI nt. Updates the SliderCell knob position to reflect
the new value and returns self.

setMaxValue:
- setMaxValue:(double)aDouble

Sets the maximum value of the SliderCell to aDouble. Returns self.

2-534 Chapter 2: Class Specifications

setMin Value:

- setMin Value: (double)aDouble

Sets the minimum value of the SliderCell to aDouble. Returns self.

setStringValue:

- setStringValue:(const char *)aString

Parses aString for a floating point value. If a floating point value can be parsed, then
the SliderCell value is set and the knob position is updated to reflect the new value;
otherwise, does nothing. Returns self

startTrackingAt:in View:

- (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:controlView

Begins a tracking session by moving the knob to startPoint. Always returns YES.

stopTracking:at:in View:mouseIsUp:

- stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
in View:controlView
mouseIsUp:(BOOL)jlag

Ends tracking by moving the knob to stopPoint. Returns self.

string Value

- (const char *)stringValue

Returns a pointer to the value of the SliderCell, typecast as a string.

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)celiFrame
ofView:controlView

Tracks the mouse until it goes up or until it goes outside the celiFrame. If celiFrame is
NULL, then it tracks until the mouse goes up. If the SliderCell is continuous (see Cell's
setContinuous:), then the action will be continuously sent to the target as the mouse is
tracked. If celiFrame isn't the same celiFrame that was passed to the last
drawSelf:in View:, then this method doesn't track. Returns self.

See also: - setContinous:

Application Kit Classes: SliderCell 2-535

write:

- write:(NXTypedStream *)stream

Writes the receiving SliderCell to the typed stream stream and returns self.

2-536 Chapter 2: Class Specifications

Speaker

INHERITS FROM Object

DECLARED IN appkit/Speaker.h

CLASS DESCRIPTION

The Speaker class, with the Listener class, puts an Objective-C interface on Mach
messaging. Mach messages are the way that applications (tasks) communicate with
each other; they're how remote procedure calls (RPCs) are implemented in the Mach
operating system.

A remote message is initiated by sending a Speaker instance the very same Objective-C
message you want delivered to the remote application. The Speaker translates the
message into the correct Mach message format and dispatches it to the receiving
application's port. A Listener in the receiving application reads the message from the
port queue and translates in back into an Objective-C message, which it tries to delegate
to another object.

If the Speaker expects information back from the Listener, it will wait to receive a reply.

Every application must have at least one Speaker and one Listener, if for no other
reason but to communicate with the Workspace Manager. If you don't create a Speaker
in start-up code and register it as the application's Speaker (with the setAppSpeaker:
method), the Application object, when it receives a run message, will create one for
you.

For a general discussion of the Speaker-Listener interaction, see the Listener class. The
descriptions here add Speaker-specific information, but don't repeat any of the basic
information presented there. In particular, the discussion here doesn't explain the
structure of remote messages or the distinction between input and output argument
types.

Sending Remote Messages

Before sending a remote message, it's necessary only to provide variables where output
information-information returned to the Speaker by the receiving application~an be
returned by reference, and to tell the Speaker which port to send the message to.

Application Kit Classes: Speaker 2-537

The example below shows a typical use of the Speaker class:

int msgDelivered, fileOpenedi

id mySpeaker = [[Speaker alloc] init];

port t thePort = NXPortFromName("SomeApp", NULL);

1* Gets the public port for SomeApp *1

if (thePort != PORT_NULL) {

[mySpeaker setSendPort:thePort];

1* Sets the Speaker to send its

* next message to SomeApp's port *1
msgDelivered = [mySpeaker openFile:"/usr/foo" ok:&fileOpened];

1* Sends the message, here a message

* to open the "/usr/foo" file. *1
if (msgDelivered == 0)

if (fileOpened == YES)

else

[mySpeaker free]; 1* Frees the Speaker

* when it's no longer needed. *1
port_deallocate (task_self(), thePort);

1* Frees the application's

* send rights to the port. *1

The NXPortFromN ameO function returns the port registered with the network name
server under the name passed in its first argument. The second argument names the host
machine; when it's NULL, as in the example above, the local host is assumed.

To find the port of the Workspace Manager, the constant
NX_ WORKSPACEREQUEST can be passed as the first argument to
NXPortFromNameO. For example:

port_t workspacePort;

workspacePort = NXPortFromName(NX_WORKSPACEREQUEST, NULL);

A Speaker can be dedicated to sending remote messages to a single application, in
which case its destination port may need to be set only once. Or a single Speaker can
be used to send messages to any number of applications, simply by resetting its port.

It's important to reset the destination port of the Speaker registered as the appSpeaker
before each remote message. The Application Kit uses the appSpeaker to keep in
contact with the Workspace Manager and so may reset its port behind your
application's back.

2-538 Chapter 2: Class Specifications

Return Values

Each method that initiates a remote message returns an int that indicates whether the
message was successfully transmitted or not.

• If the message couldn't be delivered to the receiving application, the return value
will be one of the Mach error codes defined in the message.h header file in
lusr/include/sys.

If the message was delivered, but the Listener didn't recognize it or couldn't
delegate it to a responsible object, the return value is -1.

• If the message was successfully delivered, recognized, and delegated, 0 is returned.

A Mach error code is also returned if the Speaker times out while waiting for a return
message.

Copying Output Data

The validity of all output arguments is guaranteed until the next remote message is sent.
Then the memory allocated for a character string or a byte array will be freed
automatically. If you want to save an output string or an array, you must copy it. When
the amount of data is large, you can use the NXCopyOutputDataO function to take
advantage of the out-of-line data feature of Mach messaging. This function is passed
the index of the output argument to be copied (the combination of a pointer and an
integer for a byte array counts as a single argument) and returns a pointer to an area
obtained through the vm _allocateO function. This pointer must be freed with
vm _ deallocateO, rather than freeO. Note that the size of the area allocated is rounded
up to the next page boundary, and so will be at least one page. Consequently, it is more
efficient to mallocO and copy amounts up to about half the page size.

Note: The application is responsible for deallocating all ports received when they're
no longer needed.

INSTANCE VARIABLES

Inherited from Object

Declared in Speaker

Class

port_t
port_t
int
int
id

is a;

sendPort;
replyPort;
sendTimeout;
replyTimeout;
delegate;

Application Kit Classes: Speaker 2-539

sendPort

replyPort

sertdTimeout

replyTimeout

delegate

METHOD TYPES

The port to which the Speaker sends remote
messages.

The port where the Speaker receives return
messages from the Listener of the remote
application.

How long the Speaker will wait for a remote
message to be delivered at the port of the
receiving application.

How long the Speaker will wait, after a remote
message is delivered, to receive a return message
from the other application.

The Speaker's delegate, which is generally
unused.

Initializing a new Speaker instance - init

Freeing a Speaker -free

Setting up a Speaker - setSendTimeout:
- sendTimeout
- setReplyTimeout:
- replyTimeout

Managing the ports - setSendPort:
- sendPort
- setReplyPort:
- replyPort

Standard remote methods - openFile:ok:
- openTempFile:ok:
- launchProgram:ok:
- powerOffIn:andSave:
- extendPowerOffBy:actual:
- unmounting:ok:

2-540 Chapter 2: Class Specifications

Handing off an icon

Providing for program control

Getting file information

Sending remote messages

Assigning a delegate

Archiving

- iconEntered:at: :icon Window :iconX:icon Y:
icon Width:iconHeight:pathList:

- iconMovedTo::
- iconReleasedAt: :ok:
- iconExitedAt::
- registerWindow:toPort:
- unregisterWindow:

- msgCalc:
- msgCopy AsType:ok:
- msgCutAsType:ok:
- msgDirectory:ok:
- msgFile:ok:
- msgPaste:
- msgPosition:posType:ok:
- msgPrint:ok: -
- msgQuit:
- msgSelection:length:asType:ok:
- msgSetPosition:posType:andSelect:ok:
- msg Version:ok:

- getFileIconFor:TIFF:TIFFLength:ok:
- getFilelnfoFor:app:type:ilk:ok:

-- performRemoteMethod:
- performRemoteMethod:with:length:
- selectorRPC:paramTypes: ...
- sendOpenFileMsg:ok:andDeactivateSelf:
- sendOpenTempFileMsg:ok:andDeactivateSelf:

- setDelegate:
- delegate

- read:
- write:

Application Kit Classes: Speaker 2-541

INSTANCE METHODS

delegate
- delegate

Returns the Speaker's delegate.

See also: - setDelegate:

extendPowerOfmy:actual:
- (int)extendPowerOfffiy:(int)requestedMs actual:(int *)actuaIMs

Sends a remote message requesting more time before the power goes off or the user
logs out. This message should be directed to the Workspace Manager. It's sent in
response to a powerOffln:andSave: message that doesn't give the application enough
time to prepare for the impending shutdown.

requestedMs is how many additional milliseconds are needed, beyond the number
given in the powerOffln:andSave: message. The actual number of additional
milliseconds that are granted will be returned by reference in the integer referred to by
actualMs.

See also: - powerOffln:andSave: (Listener and Application),
- app:powerOffln:andSave: (Application delegate)

free
- free

Frees the memory occupied by the Speaker object, but does not deallocate its ports.

getFilelconFor:TIFF:TIFFLength:ok:
- (int)getFilelconFor:(char *)fullPath

TIFF:(char **)tiffData
TIFFLength:(int *)length
ok:(int *)jlag

Sends a remote message requesting the icon for the fullPath file. This request should
be directed to the Workspace Manager.

fullPath is a string containing the complete path for a single file. tiffData is the address
of a pointer that will be set to point to a byte array containing the icon image. The
image is provided as TIFF (Tag Image File Format) data. The number of bytes in the
tiffData array are returned by reference in the integer referred to by length.

2-542 Chapter 2: Class Specifications

jlag is the address of an integer that will be set to YES if the Workspace Manager
provides the icon, and to NO if it doesn't. Here's an example of a method the takes a
pathname and returns an NXlmage object containing the file's icon:

- workspaeeImage: (ehar *)fullPath

int ok, length;

ehar *tiffData;
NXStream *imageStream;
id theIeon, mySpeaker = [NXApp appSpeaker];

[mySpeaker setSendPort:
NXPortFromName(NX_WORKSPACEREQUEST,NULL)];

[mySpeaker getFileIeonFor:fullPath TIFF:&tiffData
TIFFLength:&length ok:&ok];

if (!ok) return nil;

imageStream = NXOpenMemory(tiffData, length, NX_READONLY);

if (!imageStream) return nil;

theIeon = [[NXImage alloe] initFromStream:imageStream];

NXClose(imageStream);

return theIeon;

You cannot use getFilelconFor: .•• from within an implementation of the
iconEntered:at: .•• Listener method, as the Workspace will be blocked waiting for
iconEntered:at: .•. to return. See the documentation for the iconEntered:at: ••. Listener
method for information on copying the image of an icon that gets dragged into a
window.

See also: - getFilelnfoFor:app:type:Hk:ok:, - iconEntered:at: •.. (Listener),
- iconReleasedAt::ok: (Listener)

getFilelnfoFor:app:type:ilk:ok:

- (int)getFilelnfoFor:(char *)fullPath
app:(char **)appName
type:(char **)aType
i1k:(int *)anIlk
ok:(int *)jlag

Sends a remote message asking for information about the fullPath file. This message
should be sent to the Workspace Manager, which implements a method that can provide
the requested information.

appName is the address of a character pointer; the pointer will be set to point to the
name of the application that the Workspace Manager would call upon to open the
fullPath file.

Application Kit Classes: Speaker 2-543

aType is the address of a pointer that will be set to point to the file type. The type is
typically the file name extension-"wn" for WriteNow files and "score" for music files
in the ScoreFile language, for example.

anIlk is the address of an integer that will be set to one of the following constants:

NX_ISODMOUNT

NX_ISSCSIMOUNT

NX_ISNETMOUNT

NX_ISDIRECTORY

NX_ISAPPLICATION

fullPath is where a file system on an optical disk is
mounted.

fullPath is where a file system on a hard disk is
mounted.

fullPath is where a file system accessed over the
network is mounted.

fullPath is a directory, but not one where a file system
is mounted and not a file package.

fullPath is an executable file or a ".app" file package
for an executable file.

fullPath is a file or a file package (not one of the
above).

The last argument, flag, is the address of an integer that will be set to YES if the
Workspace Manager provides the information requested by the three other arguments,
and to NO if it doesn't.

To get the icon for fullPath, use getFileIconFor:TIFF:TIFFLength:ok:.

See also: - getFileIconFor:TIFF:TIFFLength:ok:

iconEntered:at: :icon Window:iconX:icon Y :icon Width:iconHeight:pathList:

- (int)iconEntered:(int)windowNum
at: (double)x
: (double)y
icon Window: (int)iconWindowNum
iconX: (double)iconX
icon Y: (double)iconY
icon Width: (double)icon Width
iconHeight:(double)iconHeight
pathList:(const char *)pathList

Sends a remote message notifying another application that the user has dragged an icon
into one of its windows. This notification is sent by the Workspace Manager; see the
Listener class for information on how to receive

2-544 Chapter 2: Class Specifications

iconEntered:at: :icon Window: iconX: icon Y:icon Width: iconHeight: pathList:
messages.

See also: - registerWindow:toPort:

iconExitedAt: :

- (int)iconExitedAt:(double)x :(double)y

Sends a remote message notifying the receiving application that the user dragged an
icon out of one its registered windows. This notification is sent by the Workspace
Manager; see the Listener class for information on receiving iconExitedAt:: messages.

See also: - registerWindow:toP'ort:, iconExitedAt:: (Listener)

iconMovedTo::

- (int)iconMovedTo:(double)x :(double)y

Sends a remote message notifying another application that the user dragged an icon
within one of its registered windows, to (x, y) in the screen coordinate system. This
notification is sent by the Workspace Manager; see the Listener class for information
on receiving iconMovedTo:: messages.

See also: - registerWindow:toPort:, iconMovedTo:: (Listener)

iconReleasedAt: :ok:

init

- (int)iconReleasedAt:(double)x
: (double)y
ok:(int *)jlag

Sends a remote message notifying another application that the user has dragged an icon
to one of its registered windows and released it there, at (x, y) in screen coordinates.
This notification is sent by the Workspace Manager; see the Listener class for
information on receiving iconReleasedAt: :ok: messages.

See also: - registerWindow:toPort:, iconReleasedAt::ok: (Listener)

- init

Initializes the Speaker immediately after memory for it has been allocated by Object's
alloc or allocFromZone: methods. The new object's send Timeout and replyTimeout
are both set to 30,000 milliseconds, its sendPort and replyPort are both PORT_NULL,
and its delegate is nil. Returns self.

Application Kit ~lasses: Speaker 2-545

launchProgram:ok:

- (int)launchProgram:(const char *)name ok:(int *)jlag

Sends a remote message requesting the receiver to launch the name application. This
message is sent only to the Workspace Manager, the application responsible for
executing programs that run in the workspace. name is the ordinary name of the
application to be launched-for example, "Edit" or "Webster". jlag points to an integer
that will be set to YES if the program is executed, and to NO if it's not.

The Application Kit initiates launchProgram:ok: messages when it needs a running
application to send another message. For example, the NXPortFromNameO function
uses this method to launch the application you name if it's not already running.

See also: - openFile:ok: (Application)

msgCalc:

- (int)msgCalc:(int *)jlag

Sends a remote message asking the receiving application to perform any calculations
necessary to update its current window. jlag points to an integer that will be set to YES
if the calculations will be performed, and to NO if they won't.

msgCopy AsType:ok:

- (int)msgCopyAsType:(const char *)aType ok:(int *)jlag

Sends a remote message asking the receiving application to copy its current selection
to the pasteboard as aType data. jlag is the address of an integer that will be set to YES
if the selection is copied, and to NO if it isn't.

msgCutAsType:ok:

- (int)msgCutAsType:(const char *)aType ok:(int *)jlag

Sends a remote message requesting the receiving application to delete the current
selection and put it in the pasteboard as aType data. jlag points to an integer that will
be set to YES if the request is carried out, and to NO if it isn't.

msgDirectory:ok:

- (int)msgDirectory:(char *const *)fuliPath ok:(int *)jlag

Sends a remote message asking the receiving application for its current directory. See
the Listener class for information on the two arguments.

See also: - msgDirectory:ok: (Listener)

2-546 Chapter 2: Class Specijications

msgFile:ok:
- (int)msgFile:(char *const *)fullPath ok:(int *)jlag

Sends a remote message asking the receiving application for its current document (the
file displayed in the main window). See the Listener class for information on the two
arguments.

See also: - msgFile:ok: (Listener)

msgPaste:
- (int)msgPaste:(int *)flag

Sends a remote message asking the receiving application to replace its current selection
with the contents of the pasteboard, just as if the user had chosen the Paste command
in the Edit menu. jlag is the address of an integer that will be set to YES if the receiving
application will carry out the request, and to NO if it won't.

msgPosition:posType:ok:

- (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)jlag

Sends a remote message asking the receiving application for information about its
current selection. See the Listener class for information on the three arguments.

See also: - msgPosition:posType:ok: (Listener)

msgPrint:ok:

- (int)msgPrint:(const char *)fullPath ok:(int *)jlag

Sends a remote message asking the receiving application to print the fullPath file, then
close it. jlag points to an integer that will be set to YES if the file will be printed, and
to NO if it won't.

msgQuit:
- (int)msgQuit:(int *)jlag

Sends a remote message requesting the receiving application to quit. jlag points to an
integer that will be set to YES if the receiving application quits, and to NO if it doesn't.

Application Kit Classes: Speaker 2-547

msgSelection:length:asType:ok:

- (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

Sends a remote message asking the receiving application to provide its current selection
as aType data. See the Listener class for information on the four arguments.

See also: - msgSelection:length:asType:ok: (Listener)

msgSetPosition:posType:andSelect:ok:

- (int)msgSetPosition:(const char *)aString
posType:(int)anlnt
andSelect: (int)sflag
ok:(int *)flag

Sends a remote message asking the receiving application to scroll its current document
(the one displayed in the main window) so that the portion represented by aString is
visible. See the Listener class for information on permitted argument values.

See also: - msgSetPosition:posType:andSelect:ok: (Listener)

msgVersion:ok:

- (int)msgVersion:(char *const *)aString ok:(int *)flag

Sends a remote message asking the receiving application for its current version. See
the Listener class for information on the arguments.

See also: - msgVersion:ok: (Listener)

openFile:ok:

- (int)openFile:(const char *)fuliPath ok:(int *)flag

Sends a remote message requesting another application to open the fuliPath file. Before
the message is sent, the sending application is deactivated to allow the application that
will open the file to become the active application.

If the Workspace Manager is sent this message, it will find an appropriate application
to open the file based on the file name extension. It will launch that application if
necessary.

flag is the address of an integer that the receiving application will set to YES if it opens
the file, and to NO if it doesn't.

See also: - openFile:ok: (Application)

2-548 Chapter 2: Class Specifications

openTempFile:ok:
- (int)openTempFile:(const char *)fuliPath ok:(int *)flag

Sends a remote message requesting another application to open a temporary file. The
file is specified by an absolute pathname, fuliPath. Before the message is sent, the
sending application is deactivated to allow the application that will open the file to
become the active application.

U sing this method instead of openFile:ok: lets the receiving application know that it
should delete the file when it no longer needs it.

See also: - openTempFile:ok: (Application)

performRemoteMethod:
- (int)performRemoteMethod:(const char *)methodName

Sends a remote message to perform the methodN ame method. The method must be one
that takes no arguments. performRemoteMethod: is analogous to Object's perform:
method in that it permits you to send an arbitrary message.

This method has the same return values as other methods that send remote messages:
o on success, a Mach error code if the message couldn't be delivered, and -1 if it was
delivered but wasn't understood or couldn't be delegated.

See also: - selectorRPC:paramTypes:

performRemoteMethod:with:length:
- (int)performRemoteMethod:(const char *)methodName

with:(const char *)data
length: (int)numBytes

Sends a remote message to perform the method Name method and passes it the data byte
array containing numBytes of data. This method is similar to Object's perform:with:
method in that it permits you to send an arbitrary message with one argument.

performRemoteMethod:with:length: has the same return values as other methods
that send remote messages: 0 on success, a Mach error code if the message couldn't be
delivered, and -1 if it was delivered but wasn't understood or couldn't be delegated.

See also: - selectorRPC:paramTypes:

Application Kit Classes: Speaker 2-549

powerOffIn:andSave:

- (int)powerOffin:(int)ms andSave:(int)aFlag

Sends a remote message that the power is about to go off, or that the user is about to log
out, in ms milliseconds. The Workspace Manager is the application that initiates this
message, broadcasting it to all running applications. See the Listener and Application
classes for information on how to respond to powerOffin:andSave: messages.

See also: - powerOffin:andSave: (Listener and Application)

read:

- read:(NXTypedStream *)stream

Reads the Speaker from the typed stream stream. The Speaker's sendPort and
replyPort instance variables will both be PORT_NULL.

See also: - write

register Window:toPort:

- (int)register Window: (int)windowN um toPort: (port_t)aPort

Sends a remote message registering windowNum, so that the application will be notified
when the user drags an icon over the window. This message should be sent to the
Workspace Manager, which displays the file icons that users can drag to other windows.
A window must be registered for it to accept icons dragged from the Workspace
Manager and other applications.

Once an window is registered, the Workspace Manager will dispatch messages to the
application whenever the user drags an icon into, out of, or within the window. The
Workspace Manager will also notify the application (with a iconReleasedAt::ok:
message) when the user drops the icon in the window. The application can then either
accept the icon, or reject it and have the Workspace Manager animate it back to its
source window.

windowNum is the global window number of the window that accepts icons. The global
window number is the Window Server's unique identifier for the window; it can be
obtained from the Window object as follows:

unsigned int global;
NXConvertWinNumToGlobal([myWindow windowNum], &global);

aPort is the port where the application wants to receive subsequent notification
messages from the Workspace Manager.

See also: - nnregisterWindow:, - iconEntered:at: ... (Listener),
- dragFile:fromRect:slideBack:event: (View),

2-550 Chapter 2: Class Specifications

replyPort

- (port_t)replyPort

Returns the port where the Speaker expects to receive return messages. The Speaker
caches this port as its reply Port instance variable. If this method returns
PORT_NULL, the default, the Speaker will use the port returned by Application's
reply Port method.

See also: - replyPort (Application), - setReplyPort:

replyTimeout

- (int)replyTimeout

Returns how many milliseconds the Speaker will wait, after delivering a remote
message to another application, for a return message to arrive back from the other
application.

See also: - setReplyTimeout:

selector RPC :paramTypes:

- (int)selectorRPC:(const char *)methodName
paramTypes:(char *)params,

Sends a remote message to perform the methodName method with an arbitrary number
of arguments. This is the general routine for sending remote messages and is used by
most of the more specific Speaker methods. For example, a
getFilelnfoFor:app:type:ilk:ok: message could be sent as follows:

int msgDelivered, infoProvided, theIlk;
char *theApp, *theExtension;

msgDelivered =
[mySpeaker selectorRPC:"getFileInfoFor:app:type:ilk:ok:"

paramTypes:"cCCII","/usr/foo",
&theApp, &theExtension,
&theIlk, &infoProvided];

params is a character string, "cCCIl" in the example above, that describes the
arguments to the method. Each argument is represented by a single character that
encodes its type. (A single character, "b" or "B", represents the two Objective-C
arguments of a byte array.) See the Listener class for an explanation of these codes.

The actual arguments that will be passed to methodN ame are listed after params.

This method has the same return values as other methods that send remote messages:
o on success, a Mach error code if the message couldn't be delivered, and -1 if it was
delivered but wasn't understood or couldn't be delegated.

Application Kit Classes: Speaker 2-551

send OpenFileMsg:ok :"andDeactivateSelf:

- (int)sendOpenFileMsg:(const char *)fullPath
ok:(int *)flag
andDeactivateSelf:(BOOL)deactivateFirst

Initiates an openFile:ok: remote message, which could also be initiated by sending an
openFile:ok: message directly to the Speaker. However, when a Speaker receives an
openFile:ok: message, it first deactivates the application in order to allow the receiving
application to become active when it opens the file.

In contrast, this way of sending an openFile:ok: remote message gives the sending
application control over whether it will deactivate before dispatching the message. If
deactivateFirst is YES, this method works just like openFile:ok:. If deactivateFirst is
NO, the sending application will remain the active application.

See also: - openFile:ok:

sendOpenTempFileMsg:ok:andDeactivateSelf:

- (int)sendOpenTempFileMsg:(const char *)fuliPath
ok:(int *)flag
andDeactivateSelf:(BOOL)deactivateFirst

Initiates an openTempFile:ok: remote message, which could also be initiated by
sending an openTempFile:ok: message directly to the Speaker. However, when a
Speaker receives an openTempFile:ok: message, it first deactivates the application in
order to allow the receiving application to become active when it opens the file.

In contrast, this way of sending an openTempFile:ok: remote message gives the
sending application control over whether it will deactivate before dispatching the
message. If deactivateFirst is YES, this method works just like openTempFile:ok:. If
deactivateFirst is NO, the sending application will remain the active application.

See also: - openTempFile:ok:

sendPort

- (port_t)sendPort

Returns the port the Speaker will send remote messages to. The Speaker caches this
port as its sendPort instance variable.

See also: - setSendPort:

2-552 Chapter 2: Class Specifications

sendTimeout

- (int)sendTimeout

Returns how many milliseconds the Speaker will wait for its remote message to be
delivered to the port of the receiving application. The Speaker caches this value as its
sendTimeout instance variable. If it's 0, there's no time limit.

See also: - setSendTimeout:

setDelegate:

- setDelegate:anObject

Makes anObject the Speaker's delegate. The default delegate is nil. But before
processing the first event, Application's run method makes the Application object,
NXApp, the delegate of the Speaker registered as the appSpeaker. If there is no
appSpeaker, the run method creates one, registers it, and sets its delegate to be
NXApp.

Unlike a Listener, a Speaker doesn't expect anything from its delegate.

See also: - delegate, - setAppSpeaker: (Application)

setReply Port:

- setReply Port: (port_t)aPort

Makes aPort the port where the Speaker receives return messages. If the Speaker sends
a remote message with output arguments, it will supply the receiving application with
send rights to this port, then wait for a return message containing the output data it
requested.

If aPort is PORT_NULL, the Speaker will use a port supplied by the Application object
in response to a replyPort message. Since return messages are read from the port as
they arrive (synchronously), a number of different Speakers can share the same port.

At start-up, before the run method gets the application's first event, it sets the port of
the Speaker registered as the appSpeaker to the port returned by Application's
reply Port method.

See also: - replyPort, - replyPort (Application)

Application Kit Classes: Speaker 2-553.

setReplyTimeout:
- setReplyTimeout:(int)ms

Sets, to ms milliseconds, how long the Speaker will wait to receive a reply from the
application it sent a remote message. The Speaker expects a reply when the remote
message it sends contains output arguments for information to be supplied by the
receiving application. If ms is 0, there will be no time limit; the Speaker will wait until
a return message is received or there's a transmission error. The default is 30,000
milliseconds.

See also: - repJyTimeout

setSendPort:
- setSendPort: (port_t)aPort

Makes aPort the port that the Speaker will send remote messages to. The default is
PORT_NULL. A single Speaker can send remote messages to a variety of applications
simply by setting a different port before each message.

The NXPortFromNameO function can be used to find the public port of another
application, as explained in the class description above.

See also: - sendPort

setSendTimeout:
- setSendTimeout:(int)ms

Sets, to ms milliseconds, how long the Speaker will persist in attempting to deliver a
message to the port of the receiving application. If ms is 0, there will be no time limit;
the Speaker will wait until the message is successfully delivered or there's a
transmission error. The default is 30,000 milliseconds.

See also: - send Timeout

unmounting:ok:
- (int)unmounting:(const char *)fullPath ok:(int *)flag

Sends a remote message that a disk is about to be unmounted. When the user requests
it to unmount a disk, the Workspace Manager sends unmounting:ok: messages to
every running application. Other applications use the Listener version of the method
to receive the Workspace Manager's message.

See also: - unmounting:ok: (Listener and Application)

2-554 Chapter 2: Class Specifications

unregister Window:

- (int)unregisterWindow:(int)windowNum

Sends a remote message cancelling the registration of windowNum as a window that
accepts dragged icons. This message should be sent to the Workspace Manager.
windowNum should have been previously registered with the registerWindow:toPort:
method.

See also: - registerWindow:toPort:

write:

- write:(NXTypedStream *)stream

Writes the receiving Speaker to the typed stream stream.

See also: - read

CONSTANTS AND DEFINED TYPES

/* File Information */

#define NX ISFILE 0

#define NX ISDIRECTORY 1

#define NX ISAPPLICATION 2

#define NX ISODMOUNT 3

#define NX ISNETMOUNT 4

#define NX ISSCSIMOUNT 5

Application Kit Classes: Speaker 2-555

2-556

Text

INHERITS FROM View: Responder: Object

DECLARED IN appkitrrext.h

CLASS DESCRIPTION

The Text class defines an object that manages text. Text objects are used by the
Application Kit wherever text appears in interface objects: A Text object draws the title
of a Window, the commands in a Menu, the title of a Button, and the items in an
NXBrowser. Your application inherits these uses of the Text class when it incorporates
any of these objects into its interface. It can also create Text objects for its own
purposes.

The Text class is unlike most other classes in the Application Kit in its complexity and
range of features. One of its design goals is to provide a comprehensive set of
text-handling features so that you'll rarely need to create a subclass. A Text object can
(among other things):

Control the color of its text and background.
• Control the font and layout characteristics of its text.
• Control whether text is editable.
• Wrap text on a word or character basis.
• Write text to, or read it from, an NXStream as either RTF or plain ASCII data.
• Display graphic images within its text.
• Communicate with other applications through the Services menu.
• Let another object, the delegate, dynamically control its properties.
• Let the user copy and paste text within and between applications.
• Let the user copy and paste font and format information between Text objects.
• Let the user check the spelling of words in its text.
• Let the user control the format of paragraphs by manipulating a ruler.

Interface Builder gives you access to Text objects in several different configurations,
such as those found in the TextField, Form, and ScrollView objects in the Palettes
window. These classes configure a Text object for a specific purpose. Additionally, all
TextFields, Forms, Buttons within the same window-in short, all objects that access a
Text object through associated Cells-share the same Text object, reducing the
memory demands of an application. Thus, it's generally best to use one of these classes
whenever it meets your needs, rather than create Text objects yourself. If one of these
classes doesn't provide enough flexibility for your purposes, use a Text object directly.

Plain and Rich Text Objects

When you create a Text object directly, by default it allows only one font, line height,
text color, and paragraph format for the entire text. You can set the default font used
by new Text instances by sending the Text class object a setDefaultFont: message.
Once a Text object is created, you can alter its global settings using methods such as

Application Kit Classes: Text 2-557

setFont:, setLineHeight:, setTextGray:, and setAlignment:. For convenience, such
a Text object will be called aplain Text object.

To allow multiple values for these attributes, you must send the Text object a
setMonoFont:NO message. A Text object that allows multiple fonts also allows
multiple paragraph formats, line heights, and so on. Such a Text object can store the
content and format of its text by writing RTF (Rich Text Format) data to the pasteboard
or to a file. For convenience, such a Text object will be called a rich Text object.

In a Text object, each sequence of characters having the same attributes is called a run.
(See the NXRun structure at the end of this class specification for details.) A Text
object in its default state has only one run for the entire text. A rich Text object can
have multiple runs. Methods such as setSeIFont:, setSeIProp:to:, setSeIGray:, and
alignSelCenter: let you programmatically modify the attributes of the selected
sequence of chara~ters in a rich Text object. As discussed below, the user can set these
attributes by using the Font panel and the ruler.

Text objects are designed to work closely with various objects and services. Some of
these (such as the delegate or an embedded graphic object) require a degree of
programming on your part. Others (such as the Font panel, spelling checker, ruler, and
Services menu) take no effort other than deciding whether the service should be
enabled or disabled. The following sections discuss these interrelationships.

Notifying the Text Object's Delegate

Many of a Text object's actions can be controlled through an associated object, the Text
object's delegate. If it implements any of the following methods, the delegate receives
the corresponding message at the appropriate time:

text WillResize:
textDidResize:oldBounds:invalid:
textWillChange:
textDidChange:
textWillEnd:
textDidEnd:endChar:
textDidGetKeys:isEmpty:
textWillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillWriteRichText:stream:forRun:atPosition:emitDefaultRichText:
textWillReadRichText:stream:atPosition:
textWillStartReadingRichText:
text WillFinishReadingRichText:
textWillWrite:paperSize:
textDidRead:paperSize:

2-558 Chapter 2: Class Specifications

So, for example, if the delegate implements the textWillChange: method, it will
receive notification upon the user's first attempt to alter the text. Moreover, depending
on the method's return value, the delegate can either allow or prohibit changes to the
text. (See the section titled "Methods Implemented by the Delegate" for more
information.) The delegate can be any object you choose, and one delegate can be used
to control multiple Text objects.

Adding Graphics to the Text

A rich Text object allows graphic objects to be embedded in the text. Each object is
treated like a single character: The text's line height and character placement are
adjusted to accommodate the graphic "character."

In most cases, the graphic object is a subclass of Cell; however, the only requirement is
that the embedded object be able to respond to these messages (see the section titled
"Methods Implemented by an Embedded Graphic Object" for more information):

highlight in View:lit
drawSelf:in View:
trackMouse:inRect:ofView:
ca1cCellSize:
readRichTextforView:
writeRichText:forView:

A graphic object can be placed in the text by sending the Text object a
replaceSelWithCell: message.

A Text object displays a graphic object in its text by sending the object a
drawSelf:in View: message. To record the object to a file or to the pasteboard, the Text
object sends it a writeRichText:forView: message. The graphic object must then write
an RTF control word along with any data (such as the path of a TIFF file containing its
image data) it might need to recreate its image. To reestablish the text containing the
graphic image from RTF data, a Text object must know which class to associate with
particular RTF control words. You associate a control word with a class object by
sending the Text class object a registerDirective:forClass: message. Thereafter,
whenever a Text object finds the registered control word in RTF data being read from
a file or the pasteboard, it will create a new instance of the class and send the object a
readRichText:for View: message.

Application Kit Classes: Text 2-559

Cooperating with Other Objects and Services

Text objects are designed to work with the Application Kit's font conversion system.
By default, a Text object keeps the Font panel updated with the font of the current
selection. It also changes the font of the selection (for a rich Text object) or of the entire
text (for a default Text object) to reflect the user's choices in the Font panel qr menu.
To disconnect a Text object from this service, send it a setFontPanelEnabled:NO
message.

If a Text object is a subview of a ScrollView, it can cooperate with the ScrollView to
display and update a ruler that displays formatting information. The Scroll View retiles
its subviews to make room for the ruler, and the Text object updates the ruler with the
format information of the paragraph containing the selection. The toggleRuler:
method controls the display of this ruler. Users can modify paragraph formats by
manipulatirig the components of the ruler.

By means of the Services menu, a Text object can make use of facilities outside the
scope of its own application. By default, a Text object registers with the services
system that it can send and receive RTF and plain ASCII data. If the application
containing the Text object has a Services menu, a menu item is added for each service
provider that can accept or return these formats. To prevent Text objects from
registering for services, send the Text class object an
excludeFromServicesMenu: YES message before any Text objects are created.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Inherited from View

2-560 Chapter 2: Class Specifications

Class

id

NXRect
NXRect
id
id
id
struct _ vFlags

isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

Declared in Text constNXFSM *breakTable;
constNXFSM *clickTable;
const unsigned char *preSeISmartTable;
const unsigned char *postSeISmartTable;
const unsigned char *charCategoryTable;
char delegateMethods;
NXCharFilterFunc charFilterFunc;
NXTextFilterFunc textFilterFunc;
NXTextFunc scanFunc;
NXTextFunc drawFunc;
id delegate;
int tag;
DPSTimedEntry cursorTE;
NXTextBlock *firstTextBlock;
NXTextBlock * lastTextB lock;
NXRunArray *theRuns;
NXRun typingRun;
NXBreakArray *theBreaks;
int growLine;
int textLength;
NXCoord maxY;
NXCoord maxX;
NXRect bodyRect;
NXCoord borderWidth;
char clickCount;
NXSelPt spO;
NXSelPt spN;
NXSelPt anchorL;
NXSelPt anchorR;
float backgroundGray;
float textGray;
float selectionGray;
NXSize maxSize;
NXSize minSize;
struct _tFlags {

unsigned int changeState: 1;
unsigned int charWrap: 1;
unsigned int haveDown: 1;
unsigned int anchorIsO: 1 ;
unsigned int horizResizable: 1;
unsigned int vertResizable: 1;
unsigned int overstrikeDiacriticals: 1;
unsigned int monoFont: 1;
unsigned int disableFontPanel: 1;
unsigned int inClip View: 1;

tFlags;
NXStream *textStream;

Application Kit Classes: Text 2-561

breakTable

clickTable

preSelSmartTable

postSelSmartTable

charCategoryTable

delegateMethods

charFilterFunc

textFilterFunc

scanFunc

drawFunc

delegate

tag

cursorTE

firstTextBlock

lastTextBlock

theRuns

typingRun

2-562 Chapter 2: Class Specifications

A pointer to the finite-state machine table that
specifies word and line breaks.

A pointer to the finite-state machine table that defines
word boundaries for double-click selection.

A pointer to the table that specifies which characters
on the left end of a selection are treated as equivalent
to a space.

A pointer to the table that specifies which characters
at the right end of a selection are treated as equivalent
to a space.

A pointer to the table that maps ASCII characters to
character classes. Entries are premultiplied by the
size of a finite-state machine table entry.

A record of the notification methods that the delegate
implements.

The function that checks each character as it's typed
into the text.

The function that checks the text that's being added to
the Text object.

The function that calculates the line of text.

The function that draws the line of text.

The object that's notified when the Text object is
modified.

The integer that the delegate uses to identify the Text
object.

The timed-entry number returned by
DPSAddTimedEntryO.

A pointer to the first record in a linked list of text
blocks.

A pointer to the last record in a linked list of text
blocks.

A pointer to the array of format runs. By default,
theRuns points to a single run of the default font.

The format run to use for the next characters entered.

theBreaks

growLine

textLength

maxY

maxX

bodyRect

borderWidth

clickCount

spO

spN

anchorL

anchorR

backgroundGray

textGray

selectionGray

maxSize

minSize

tFlags.changeState

tFlags.charWrap

tFlags.haveDown

tFlags. anchorIsO

tFlags.horizResizable

A pointer to the array of line breaks.

The line containing the end of the growing selection.

The number of characters in the Text object.

The bottom of the last line of text. maxY is measured
relative to the origin of the body Rect.

The widest line of text. maxX is accurate only after
the calcLine method is applied.

The rectangle the Text object draws text in.

Reserved for future use.

The number of clicks that created the selection.

The starting position of the selection.

The ending position of the selection.

The left anchor position.

The right anchor position.

The background gray value of the text.

The gray value of the text.

The gray value of the selection.

The maximum size of the frame rectangle.

The minimum size of the frame rectangle.

True if any changes have been made to the text since
the Text object became the first responder.

True if the Text object wraps words whose length
exceeds the line length on a character basis. False if
such words are truncated at the end of the line.

True if the left mouse button (or either button if their
functions haven't been differentiated) is down.

True if the anchor's position is at spO.

True if the Text object's width can grow or shrink.

Application Kit Classes: Text 2-563

tFlags. vertResizable

tFlags .overstrikeDiacriticals

tFlags.monoFont

tFlags .disableFontPanel

tFlags.inClip View

textStream

METHOD TYPES

Initializing the class object

True if the Text object's height can grow or shrink.

Reserved for future use.

True if the Text object uses one font for all its text.

True if the Text object doesn't update the Font panel
automatically.

True if the Text object is the subview of a Clip View.

The stream for reading and writing text.

+ setDefaultFont:
+ getDefaultFont
+ excludeFromServicesMenu:
+ registerDirective:forClass:
+ initialize

Initializing a new Text object - initFrame:
- initFrame:text:alignment:

Freeing Text object - free

Modifying the frame rectangle - setMaxSize:
- getMaxSize:
- setMinSize:
- getMinSize:
- setVertResizable:
- is VertResizable
- setHorizResizable:
- isHorizResizable
- sizeTo::
- sizeToFit
- resizeText::
-moveTo::

2-564 Chapter 2: Class Specifications

Laying out the text - setMarginLeft right top: bottom:
- getMarg inLeft:right: top: bottom:
- getMin Width:minHeight:max Width:maxHeight:
- setAlignment:
- alignment
- alignSelLeft:
- alignSelCenter:
- alignSelRight:
- setSelProp:to:
- changeTabStopAt:to:
- ca1cLine
- setCharWrap:
- charWrap
- setNoWrap
- setParaStyle:
- defaultParaStyle
- ca1cParagraphStyle::
- setLineHeight:
- lineHeight
- setDescentLine:
- descentLine

Reporting line and position -lineFromPosition:
- positionFromLine:

Setting, reading, and writing the text

Setting editability

- setText:
- readText:
- startReadingRichText
- readRichText
- readRichTextatPosition:
- finishReadingRichText
- write Text:
- writeRichText:
- writeRichText:from:to:
- writeRichText:forRun:atPosition:

emitDefaultRichText:
- stream
- firstTextBlock
- getParagraph: start:end:rect:
- getSubstring: start:length:
- byteLength
- textLength

- setEditable:
- isEditable

Application Kit Classes: Text 2-565

Editing the text - copy:
- copyFont:
- copyRuler:
- paste:
- pasteFont:
- pasteRuler:
- cut:
- delete:
- clear:
- selectAll:
- selectText:

Managing the selection - subscript:
- superscript:
- unscript:
- underline:
- showCaret
- hide Caret
- setS electable:
- isSelectable
- selectError
- selectNull
- setSel::
- getSel::
- replaceSel:
- replaceSel:length:
- replaceSel:length:runs:
- replaceSelWithRichText:
- scrollSelTo Visible

Setting the font - setMonoFont:
- isMonoFont
- setFontPanelEnabled:
- isFontPanelEnabled
- changeFont:
- setFont:
- font
- setFont:paraStyle:
- setSelFont:
- setSelFontFamily:
- setSelFontSize:
- setSelFontStyle:
- setSeIFont:paraStyle:

Checking spelling - checkSpelling:
- showGuessPanel:

Managing the ruler - toggleRuler:
- isRulerVisible

2-566 Chapter 2: Class Specifications

Modifying graphic attributes - setBackgroundGray:
- backgroundGray
- setBackgroundColor:
- backgroundColor
- setSelGray:
- selGray
- setSelColor:
- setTextGray:
- textGray
- setTextColor:
- textColor

Reusing a Text object - renewFont:text:frame:tag:
- renewFont:size:style:text:frame:tag:
- renewRuns:text:frame:tag:
- windowChanged:

Displaying - drawSelf::
- setRetainedWhileDrawing:
- isRetainedWhileDrawing

Assigning a tag - setTag:
-tag

Handling event messages - acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder
- becomeKeyWindow
- resignKey Window
- mouseDown:
-keyDown:
- moveCaret:

Displaying graphics within the text

U sing the Services menu

+ registerDirective:forClass:
- replaceSelWithCell:
- replaceSelWith View:
- setLocation:ofCell:
- getLocation:ofCell:
- getLocation:ofView:

+ excludeFromServicesMenu:
- validRequestorForSendType:

andRetumType:
- readSelectionFromPasteboard:
- writeSelectionToPasteboard:types:

Application Kit Classes: Text 2-567

Setting tables and functions - setCharFilter:
- charFilter
- setTextFilter:
- textFilter
- setBreakTable:
- breakTable
- setPreSelSmartTable:
- preSelSmartTable
- setPostSelSmartTable:
- postSelSmartTable
- setCharCategoryTable:
- charCategoryTable
- setClickTable:
- clickTable
- setScanFunc:
- scanFunc
- setDrawFunc:
- drawFunc

Printing - adjustPageHeightNew:top:bottom:limit:

Archiving - read:
- write:

Assigning a delegate - setDelegate:
- delegate

CLASS METHODS

excludeFromServicesMenu:

+ excludeFromServicesMenu:(BOOL)flag

Controls whether Text objects will communicate with interapplication services through
the Services menu. By default, as each new Text instance is initialized, it registers with
the Application object that it's capable of sending and receiving the pasteboard types
identified by NXAsciiPboardType and NXRTFPboardType. If you want to prevent
Text objects in your application from registering for services that can receive and send
these types, send the Text class object an excludeFromServicesMenu: YES message.
If, for example, your application displays text but doesn't have editable text fields, you
might use this method.

Send an excludeFromServicesMenu: message early in the execution of your
application, either before sending the Application object a run message or in the
Application delegate's appWilllnit: method. Returns self.

See also: - validRequestorForSendType:andReturnType:,
- registerServicesMenuSendTypes:andRettirnTypes: (Application)

2-568 Chapter 2: Class Specifications

getDefaultFont

+ getDefaultFont

Returns the Font object that corresponds to the Text object's default. Unless you've
changed the default font by sending a setDefaultFont: message, or taken advantage of
the NXFont parameter using defaults, getDefaultFont returns a Font object for a
12-point Helvetica font with a flipped font matrix.

See also: + setDefauItFont:, - setFont:

initialize

+ initialize

Initializes the class object. The initialize message is sent for you before the class object
receives any other message; you never send an initialize message directly. Returns self.

See also: + initialize (Object)

registerDirective:forClass:

+ registerDirective:(const char *)directive forClass:class

Creates an association in the Text class object between the RTF control word directive
and class, a class object. Thereafter, when a Text instance encounters directive while
reading a stream of RTF text, it creates a new class instance. The new instance is sent
a readRichText:forView: message to let it read its image data from the RTF text.
Conversely, when a Text object is writing RTF data to a stream and encounters an object
of the class class, the Text object sends the object a writeRichText:forView: message
to let it record its representation in the RTF text. Thus, this method is instrumental in
enabling a Text object to read, display, and write an image within a text stream.

An object of the class class must implement these methods:

highlight: in View:lit:
drawSelf:in View:
trackMouse:inRect:ofView:
calcCellSize:
readRichText:forView:
writeRichText:forView:

See the section titled "Methods Implemented by an Embedded Graphic Object" for
more information on these methods.

Returns nil if directive or class has already been registered; otherwise, returns self.

See also: - replaceSelWithCell:

Application Kit Classes: Text 2-569

setDefaultFont:
+ setDefaultFont:anObject

Sets the default font for the Text class object. The argument passed to this method is
the id of the Font object for the desired font. Since a Text object uses a flipped
coordinate system, make sure the Font object you specify uses a matrix that flips the
y-axis of the characters. Returns anObject.

See also: + getDefauItFont, - setLineHeight:, + newFont:size: (Font)

INSTANCE METHODS

acceptsFirstResponder
- (BOOL)acceptsFirstResponder

Assuming the text is selectable, returns YES to let the Text object become the first
responder; otherwise, returns NO. acceptsFirstResponder messages are sent for you;
you never send them yourself.

See also: - setSelectable:, - setDelegate:, - resignFirstResponder

adjustPageHeightNew:top:bottom:limit:
- adjustPageHeightNew:(float *)newBottom

top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

During automatic pagination, this method is performed to help lay a grid of pages over
the top-level view being printed. newBottom is passed in undefined and must be set by
this method. oldTop and oldBottom are the current values for the horizontal strip being
created. bottomLimit is the topmost value newBottom can be set to. If this limit is
broken, the new value is ignored. By default, this meth,od tries to prevent the view from
being cut in two. All parameters are in the view's own coordinate system. Returns self.

2-570 Chapter 2: Class Specifications

alignment

- (int)alignment

Returns a value indicating the default alignment of the text. The returned value is equal
to one of these constants:

Constant

NX~EFTALIGNED

NX_RIGHTALIGNED

See also: - setAlignment:

alignSelCenter:

- alignSelCenter:sender

Alignment

Flush to left edge of the body Rect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect;
justified. Not yet implemented.

Sets the paragraph style of one or more paragraphs so that text is centered between the
left and right margins. For a plain Text object, all paragraphs are affected. For a rich
Text object, only those paragraphs marked by the selection are affected. The sending
object passes its id as part of the alignSelCenter: message. The text is rewrapped and
redrawn. Returns self.

See also: - alignSeILeft:, - alignSeIRight:, - setSeIProp:to:, - setMonoFont:

alignSelLeft:

- alignSelLeft:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the left
margin. For a plain Text object, all paragraphs are affected. For a rich Text object, only
those paragraphs marked by the selection are affected. The sending object passes its id
as part of the alignSelLeft: message. The text is rewrapped and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeIRight:, - setSeIProp:to:, - setMonoFont:

Application Kit Classes: Text 2-571

aJignSelRight:

- alignSelRight:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the right
margin. For a plain Text object, all paragraphs are affected. For a rich Text object, only
those paragraphs marked by the selection are affected. The sending object passes its id
as part of the alignSelRight: message. The text is rewrapped and redrawn. Returns
self.

See also: - alignSeICenter:, - aIignSeILeft:, - setSeIProp:to:, - setMonoFont:

background Color

- (NXColor)backgroundColor

Returns the background color of the text.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:,
- selGray, - setSelColor:

background Gray

- (float)backgroundGray

Returns the gray value of the text's background.

See also: - setBackgroundGray:, - setBackgroundColor:, - background Color,
-setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

becomeFirstResponder

- becomeFirstResponder

Lets the Text object know that it's becoming the first responder. By default, the Text
object always accepts becoming first responder. becomeFirstResponder messages are
sent for you; you never send them yourself. Returns self.

See also: - setDelegate:, -acceptsFirstResponder, - selectError

becomeKeyWindow

- becomeKeyWindow

Activates the caret if it exists. becomeKeyWindow messages are sent by an
application's Window object, which, upon receiving a mouse-down event, sends a
becomeKeyWindow message to the first responder. You should never directly send
this message to a Text object. Returns self.

See also: - showCaret, - hideCaret, - becomeKeyWindow (Window)

2-572 Chapter 2: Class Specifications

breakTable

- (const NXFSM *)breakTable

Returns a pointer to the break table, the finite-state machine table that the Text object
uses to determine word boundaries.

See also: - setBreakTable:

byteLength

- (int)byteLength

Returns the number of bytes used by the characters in the receiving Text object. The
number doesn't include the null terminator ('\0') that getSubstring:start:length:
returns if you ask for all the text in a Text object.

In a standard Text object, the number of bytes is equal to the number of characters.
Subclasses of Text that use more than one byte per character should override this
method to return an accurate count of the number of bytes used to store the text.

See also: - textLength, - getSubstring:start:length:

calcLine

- (int)calcLine

Calculates the array of line breaks for the text. The text will then be redrawn if
autodisplay is set.

This message should be sent after the Text object's frame is changed. These methods
send a calcLine message as part of their implementation:

- initFrame:text alignment: - readText:
- read: - renewFont:size:style:text:frame:tag:
- renewFonttextframe:tag: - setFont:
- renewRuns:text:frame:tag: - setParaStyle:
- setFont:paraStyle: - setText:

In addition, if a vertically resizable Text object is the document view of a ScrollView,
and the ScrollView is resized, the Text object receives a calcLine message. Has no
significant return value.

See also: - readText:, - renewRuns:text:frame:tag:

Application Kit Classes: Text 2-573

calcParagraphStyle: :

- (void *)caIcParagraphStyle:fontld :(int)alignment

Recalculates the default paragraph style given the Font'sfontld and alignment. The
Text object sends this message for you after its font has been changed; you will rarely
need to send a calcParagraphStyle:: message directly. Returns a pointer to an
NXTextStyle structure that describes the default style.

See also: - defaultParaStyle

changeFont:
- changeFont:sender

Changes the font of the selection for a rich Text object. It changes the font for the entire
Text object for a plain Text object. sender must respond to the convertFont: message.

If the Text object's delegate implements the method, it receives a
textWiIlConvert:fromFont:toFont: notification message for each text run that's about
to be converted.

See also: - setFontPanelEnabled:

changeTabStopAt:to:
- changeTabStopAt:(NXCoord)oldX to: (NXCoord)newX

Moves the tab stop from the receiving Text object's x coordinate oldX to the coordinate
newX. For a plain Text object, all paragraphs are affected. For a rich Text object, only
those paragraphs marked by the selection are affected. The text is rewrapped and
redrawn. Returns self.

See also: - setMonoFont:, - setSeIProp:to:

charCategoryTable

- (const unsigned char *)charCategoryTable

Returns a pointer to the character category table, the table that maps ASCII characters
to character categories.

See also: - setCharCategoryTable:

2-574 Chapter 2: Class Specifications

charFilter

- (NXCharFilterFunc)charFilter

Returns the character filter function, the function that analyzes each character the user
enters. By default, this function is NXEditorFilterO.

See also: - setCharFilter:

char Wrap

- (BOOL)charWrap

Returns charWrap, a flag indicating how words whose length exceeds the line length
should be treated. If YES, long words are wrapped on a character basis. If NO, long
words are truncated at the boundary of the bodyRect.

See also: - setCharWrap:

checkSpelling:

- checkSpelling:sender

Searches for a misspelled word in the text of the receiving Text object. The search starts
at the current selection and continues until it reaches a word suspected of being
misspelled or the end of the text. If a word isn't recognized by the spelling server or
listed in the user's local dictionary in -1.NeXT/LocaIDictionary, it's highlighted. A
showGuessPanel: message will then display the Guess panel and allow the user to
make a correction or add the word to the local dictionary. Returns self.

See also: - showGuessPanel:

clear:

- c1ear:sender

Provided for backward compatibility. Use the delete: method instead.

See also: - delete:

clickTable

- (const NXFSM *)c1ickTable

Returns a pointer to the click table, the finite-state machine table that defines word
boundaries for double-click selection.

See also: - setClickTable:

Application Kit Classes: Text 2-575

copy:
- copy:sender

Copies the selected text from the Text object to the selection pasteboard. The selection
remains unchanged. The pasteboard receives the text and its corresponding run
information. The pasteboard types used are NXAsciiPboardType and
NXRTFPboardType.

The sender passes its id as part of the copy: message. Returns self.

See also: - cut:, - paste:, - delete:, - copyFont:, - pasteFont:, - copyRuler:,
- pasteRuler:

copyFont:

- copyFont:sender

Copies font information for the selected text to the font pasteboard. If the selection
spans more than one font, the information copied is that of the first font in the selection.
The selection remains unchanged. The pasteboard type used is NXFontPboardType.

The sender passes its id as the argument of the copyFont: message. Returns self.

See also: - pasteFont:, - copyRuler:, - pasteRuler:, - copy:, - cut:, - paste:,
- delete:

copyRuler:
- copyRuler:sender

Copies ruler information for the paragraph containing the selection to the ruler
pasteboard. The selection expands to paragraph boundaries.

The ruler controls a paragraph's text alignment, tab settings, and indentation. If the
selection spans more than one paragraph, the information copied is that of the first
paragraph in the selection. The pasteboard type used is NXRulerPboardType.

Once copied to the pasteboard, ruler information can be pasted into another object or
application that's able to paste RTF data into its document.

The sender passes its id as the argument of the copyRuler: message. Returns self.

See also: - pasteRuler:, - copyFont:, - pasteFont:, - copy:, - cut:, - paste:,
- delete:

2-576 Chapter 2: Class Specifications

cut:
- cut:sender

Copies the selected text to the pasteboard and then deletes it from the Text object. The
pasteboard receives the text and its corresponding font information.

If the Text object's delegate implements the method, it receives a
textDidGetKeys:isEmpty: message immediately after the cut operation. If this is the
first change since the Text object became the first responder (and the delegate
implements the method), a textDidChange: message is also sent to the delegate.

The sender passes its id as part of the cut: message. Returns self.

See also: - copy:, - paste:, - delete:, - textDidGetKeys:isEmpty:,
- textDidChange:

defaultParaStyle
- (void *)defaultParaStyle

Returns by reference the default paragraph style for the text. The pointer that's returned
refers. to an NXTextStyle structure. The fields of this structure contain default
paragraph indentation, alignment, line height, descent line, and tab information. The
Text object's default values for these attributes can be altered using methods such as
setParaStyle:, setAlignment:, setLineHeight:, and setDescentLine:.

See also: - setParaStyle:, - setAlignment:, - setLineHeight:, - setDescentLine:

delegate
- delegate

Returns the Text object's delegate.

See also: - setDelegate:

Application Kit Classes: Text 2-577

delete:

- delete:sender

Deletes the selection without adding it to the pasteboard. The sender passes its id as
part of the delete: message.

If the Text object's delegate implements the method, it receives a
textDidGetKeys:isEmpty: message immediately after the delete operation. If this is
the first change since the Text object became the first responder (and the delegate
implements the method), a textDidChange: message is also sent to the delegate.

The delete: method replaces clear:. Returns self.

See also: - cut:, - copy:, - paste:, - textDidGetKeys:isEmpty:, - textDidChange:

descentLine

- (NXCoord)descentLine

Returns the default descent line for the Text object. The descent line is the distance
from the bottom of a line of text to the base line of the text.

See also: - setDescentLine:

drawFunc

- (NXTextFunc)drawFunc

Returns the draw function, the function that's called to draw each line of text.
NXDraw ALineO is the default draw function.

See also: - setDrawFunc:, - setScanFunc:

. drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws a Text object. You never send a drawSelf:: message directly, although you may
want to override this method to change the way a Text object draws itself. Returns self.

See also: - drawSelf:: (View)

2-578 Chapter 2: Class Specifications

finishReadingRichText

- finishReadingRichText

Notifies the Text object that it has finished reading RTF data. The Text object responds
by sending its delegate a textWillFinishReadingRichText: message, assuming there
is a delegate and it responds to this message. The delegate can then perform any
required cleanup. Alternatively, a subclass of Text could put these cleanup routines in
its own implementation of this method. Returns self.

firstTextBlock
- (NXTextBlock *)firstTextBlock

Returns a pointer to the first text block. You can traverse this head of the linked list of
text blocks to read the contents of the Text object. In most cases, however, it's better to
use the getSubstring:start:length: method to get a substring of the text or the stream
method to get read-only access to the entire contents of the Text object.

See also: - getSubstring:start:length:, - stream

font
-font

Returns the Font object for a plain Text object. For rich Text objects, the Font object
for the first text run is returned.

See also: - setFont:

free
-free

Releases the storage for a Text object.

See also: - free (View)

getLocation:ofCell:
- getLocation:(NXPoint *)origin ofCell:celi

Places the x and y coordinates of cell in the NXPoint structure specified by origin. The
coordinates are in the Text object's coordinate system. cell is a Cell object that's
displayed as part of the text.

Returns nil if the Cell object isn't part of the text; otherwise, returns self.

See also: - replaceSeIWithCell:, - setLocation:ofCell:, - getLocation:ofView:,
- calcCellSize: (Cell)

Application Kit Classes: Text 2-579

getLocation:ofView:
- getLocation:(NXPoint *)origin ofView:view

Unimplemented.

getMarginLeft:right:top:bottom:
- getMarginLeft:(NXCoord *)leftMargin

right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottom:(NXCoord *)bottomMargin

Calculates the dimensions of the Text object's margins and returns by reference these
values in its four arguments. Returns self.

See also: - setMarginLeft:right:top:bottom:

getMaxSize:
- getMaxSize:(NXSize *)theSize

Copies the maximum size of the Text object into the structure referred to by theSize.
Returns self.

See also: - setMaxSize:, - getMinSize:

getMinSize:
- getMinSize:(NXSize *)theSize

Copies the minimum size of the Text object into the structure referred to by theSize.
Returns self.

See also: - setMinSize:, - getMaxSize:

getMin Width:minHeight:maxWidth:maxHeight:
- getMinWidth:(NXCoord *)width

minHeight:(NXCoord *)height
maxWidth:(NXCoord)widthMax
maxHeight:(NXCoord)heightMax

Calculates the minimum width and height needed to contain the text. Given a
maximum width and height (widthMax and heightMax), this method copies the
minimum width and height to the addresses pointed to by the width and height
arguments. This method doesn't rewrap the text. To get the absolute minimum
dimensions of the text, send a getMin Width:minHeight:maxWidth:maxHeight:
message only after sending a calcLine message.

2-580 Chapter 2: Class Specifications

The values derived by this method are accurate only if the Text object hasn't been
scaled. Returns self.

See also: - sizeToFit

getParagraph:start:end:rect:
- getParagraph:(int)prNumber

start:(int *)startPos
end:(int *)endPos
rect:(NXRect *)paragraphRect

Copies the positions of the first and last characters of the specified paragraph to the
addresses startPos and endPos. It also copies the paragraph's bounding rectangle into
the structure referred to by paragraphRect. A paragraph ends in a Return character; the
first paragraph is paragraph 0, the second is paragraph 1, and so on. Returns self.

See also: - getSubstring:start:length:, - tirstTextBlock

getSel::
- getSel:(NXSelPt *)start :(NXSeIPt *)end

Copies the starting and ending character positions of the selection into the addresses
referred to by start and end. start points to the beginning of the selection; end points
to the end of the selection. Returns self.

See also: - setSel::

getSubstring:start: length:
- (int)getSubstring:(char *)buf

start: (int)startPos
length: (int)numChars

Copies a substring of the text to a specified memory location. The substring is specified
by startPos and numC hars. startPos is the position of the first character of the
substring; numC hars is the number of characters to be copied. buf is the starting
address of the memory location for the substring. getSubstring:start:length: returns
the number of characters actually copied. This number may be less than numChars if
the last character position is less than startPos + numChars. Returns -1 if startPos is
beyond the end of the text.

getSubstring:start:length: appends a null terminator ('\0') to the substring only if the
requested substring includes the end of the Text object's text.

See also: - textLength, - getSel::

Application Kit Classes: Text 2-581

hideCaret

- hideCaret

Removes the caret from the text. The Text object sends itself hideCaret messages
whenever the display of the caret would be inappropriate; you rarely need to send a
hideCaret message directly. Occasions when the hideCaret message is sent include
whenever the Text object receives a resignKeyWindow, mouseDown:, or keyDown:
message. Returns self.

See also: - showCaret

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes a new Text object. This method invokes the initFrame:text:alignment:
method with the size and location specified by frameRect. Text alignment is set to
NX_LEFfALIGNED. Returns self.

See also: - initFrame:text:alignment:

initFrame:text:alignment:

- initFrame:(const NXRect *)frameRect
text:(const char *)theText
alignment: (int)mode

Initializes a new Text object. This is the designated initializer for Text objects: If you
subclass Text, your subclass's designated initializer must maintain the initializer chain
by sending a message to super to invoke this method. See the introduction to the class
specifications for more information.

The three arguments specify the Text object's frame rectangle, its text, and the
alignment of the text. TheframeRect argument specifies the Text object's location and
size in its superview's coordinates. A Text object's superview must be a flipped view
that's neither scaled nor rotated. The second argument, theText, is a null-terminated
array of characters. The mode argument determines how the text is drawn with respect
to the bodyRect:

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

NX_CENTERED

2-582 Chapter 2: Class Specifications

Alignment

Flush to left edge of the bodyRect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect;
justified. Not yet implemented.

The Text object returned by this method uses the class object's default font (see
setDefauItFont:) and uses NXEditorFilterO as its character filter. It wraps words
whose length exceeds the line length. It sets its View properties to draw in its
superview, to be flipped, and to be transparent. For more efficient editing, you can send
a setOpaque: message to make the Text object opaque.

Text editing is designed to work in buffered windows only. In a nonretained or retained
window, editing text in a Text object causes flickering. (However, to get better drawing
performance without causing flickering during editing, see
setRetainedWhileDrawing:).

Returns self.

See also: - initFrame:

isEditable
- (BOOL)isEditable

Returns YES if the text can be edited, NO if not.

See also: - isSelectable, - setDelegate:

isFontPanelEnabled
- (BOOL)isFontPaneIEnabled

Returns YES if the Text object will respond to the Font panel, NO if not. The default
value is YES.

See also: - setFontPanelEnabled:

isHorizResizable
- (BOOL)isHorizResizable

Returns YES if the text can automatically change size horizontally, NO if not. The
default value is NO.

See also: - setVertResizable:, - isVertResizable, - setHorizResizable:

isMonoFont
- (BOOL)isMonoFont

Returns YES if the Text object allows multiple paragraph styles and fonts, NO if not.

See also: - setMonoFont:

Application Kit Classes: Text 2-583

isRetainedWhileDrawing

- (BOOL)isRetainedWhileDrawing

Returns YES if the Text object automatically changes its window's buffering type from
buffered to retained whenever it redraws itself, NO if not.

See also: - setRetainedWhileDrawing:, - drawSelf::

isRuler Visible

- (BOOL)isRulerVisible

Returns YES if the ruler is visible in the Text object's superview, a ScrollView;
otherwise, returns NO.

See also: - toggleRuler:

isS electable

- (BOOL)isSelectable

Returns YES if the text can be selected, NO if not.

See also: - isEditable, - setDelegate:

isVertResizable

- (BOOL)isVertResizable

Returns YES if the text can automatically change size vertically, NO if not. The default
value is NO.

See also: - setVertResizable:, - setHorizResizable:, - isHorizResizable

keyDown:

- keyDown:(NXEvent *)theEvent

Analyzes key-down events received by the Text object. keyDown: first uses the Text
object's character filter function to determine whether the event should be interpreted
as a command to move the cursor or as a command to end the Text object's status as the
first responder. If the latter, the Text object's delegate is given an opportunity to prevent
the change.

If the event represents a character that should be added to the text, the Text object sets
up a modal event loop to process it along with other key-down events as they're
received. The text is redrawn, and then keyDown: notifies the delegate that the text has
changed. This message is sent by the system in response to keyboard events. You never
send this message, though you may want to override it.

See also: - setCharFilter:, - setDelegate:, - getNextEvent:waitFor: (Application)

2-584 Chapter 2: Class Specifications

IineFromPosition:

- (int)lineFromPosition:(int)position

Returns the line number that contains the character at position. To get more
information about the contents of the Text object, use the stream returned by the stream
method to read the contents of the Text object.

See also: - positionFromLine:, - stream

IineHeight

- (NXCoord)lineHeight

Returns the default line height for the Text object.

See also: - setLineHeight:

mouseDown:

- mouseDown:(NXEvent *)theEvent

Responds to mouse-down events. When a Text object that allows selection receives a
mouseDown: message, it tracks mouse-dragged events and responds by adjusting the
selection and autoscrolling, if necessary. You never send this message, though you may
want to override it.

See also: - setEditable:, - setDelegate:, - getNextEvent:waitFor: (Application)

moveCaret:

- moveCaret:(unsigned short)theKey

Moves the caret either left, right, up, or down if theKey is NX_LEFT, NX_RIGHT,
NX_UP, or NX_DOWN. If theKey isn't one of these four values, the caret doesn't
move. Returns self.

See also: -keyDown:

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the Text object's frame rectangle to (x, y) in its superview's
coordinates. Returns self.

See also: - moveTo:: (View)

Application Kit Classes: Text 2-585

overstrikeDiacriticals
- (int)overstrikeDiacriticals

Unimplemented.

paste:
- paste:sender

Places the contents of the selection pasteboard into the Text object at the position of the
current selection. If the selection is zero-width, the text is inserted at the caret. If the
selection has positive width, the selection is replaced by the contents of the pasteboard.
In either case, the text is rewrapped and redrawn.

Before the paste operation, a textDidChange: message is sent to the delegate,
assuming that this is the first change since the Text object became the first responder
and that the delegate implements the method. After the paste operation, the delegate
receives a textDidGetKeys:isEmpty: message, if it implements the method;

sender is the id of the sending object. paste: returns nil if the pasteboard can provide
neither NXAsciiPboardType nor NXRTFPboardType format types; otherwise, returns
self.

See also: - copy:, - cut:, - delete:, - copyFont:, - copyRuler:, - pasteFont:,
- pasteRuler:, - textDidGetKeys:isEmpty:, - textDidChange:

pasteFont:
- pasteFont:sender

Takes font information from the font pasteboard and applies it to the current selection.
If the selection is zero-width, only those characters subsequently entered at the
insertion point are affected.

pasteFont: works only with rich Text objects (see setMonoFont:). Attempting to
paste a font into a plain Text object generates a system beep without altering any fonts.

Before the paste operation, a textDidChange: message is sent to the delegate,
assuming that this is the first change since the Text object became the first responder
and that the delegate implements the method. After the paste operation, the delegate
receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the font is pasted, the text is rewrapped and
redrawn. pasteFont: returns nil if the pasteboard has no data of the type
NXFontPboardType; otherwise, returns self.

See also: - copyFont:, - copyRuler:, - pasteRuler:, - copy:, - cut:, - delete:,
- paste:, - setMonoFont: - textDidGetKeys:isEmpty:, - textDidChange:

2-586 Chapter 2: Class Specifications

pasteRuler:
- pasteRuler:sender

Takes ruler information from the ruler pasteboard and applies it to the paragraph or
paragraphs marked by the current selection. The ruler controls a paragraph's text
alignment, tab settings, and indentation.

pasteRuler: works only with rich Text objects (see setMonoFont:). Attempting to
paste a ruler into a plain Text object generates a system beep without altering any ruler
settings.

Before the paste operation, a textDidChange: message is sent to the delegate,
assuming that this is the first change since the Text object became the first responder
and that the delegate implements the method. After the paste operation, the delegate
receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the ruler is pasted, the text is rewrapped
and redrawn. If the ruler is visible, it's also updated. pasteRuler: returns nil if the
pasteboard has no data of the type NXRulerPboardType; otherwise, returns self.

See also: - copyRuler:, - copyFont:, - pasteFont:, - copy:, - cut:, - delete:,
- paste:, - setMonoFont: - textDidGetKeys:isEmpty:, - textDidChange:

positionFromLine:
- (int)positionFromLine:(int)line

Returns the character position of the line numbered line. Each line is terminated by a
Return character, and the first line in a Text object is line 1. To find the length of a line,
you can send the positionFromLine: message with two successive lines, and use the
difference of the two to get the line length. To get more information about the contents
of the Text object, use the stream returned by the stream method to read the contents
of the Text object.

See also: -lineFromPosition:, - stream

postSelSmartTable
- (const unsigned char *)postSeISmartTable

Returns a pointer to the table that specifies which characters on the right end of a
selection are treated as equivalent to a space character.

See also: - setPostSeISmartTable:, - setPreSeISmartTable:, - preSelSmartTable

Application Kit Classes: Text 2-587

preSelSmartTable
- (const unsigned char *)preSeISmartTable

Returns a pointer to the table that specifies which characters on the left end of a
selection are treated as equivalent to a space character.

See also: - setPreSeISmartTable:, - setPostSeISmartTable:, - postSelSmartTable

read:
- read:(NXTypedStream *)stream

Reads the Text object in from the typed stream stream. A read: message is sent in
response to archiving; you never send this message directly. Returns self.

readRichText:
- readRichText:(NXStream *)stream

Reads RTF text from stream into the Text object and formats the text accordingly. The
Text object is resized to be large enough for all the text to be visible. The NeXTstep
Concepts manual lists the RTF directives that the Text object understands. RTF
directives that aren't implemented are ignored. Returns self.

See also: - writeRichText:

readRichText:atPosition:
- readRichText:(NXStream *)stream atPosition:(int)position

Reads RTF text from stream into the Text object's text at position and formats the text
accordingly. You never send this message, but may want to override it to read special
RTF directives while the Text object is reading RTF data. If there is a delegate, and it
implements the method, the Text object sends it a textWillReadRichText:atPosition
message. Returns self.

readSelectionFromPasteboard:
- readSelectionFromPasteboard:pboard

Replaces the current selection with data from the supplied Pasteboard object, pboard.
When the user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first responder. This
message is followed by a readSelectionFromPasteboard: message, if the command
requires the requesting application to replace its selection with data from the service
provider.

See also: - writeSelectionToPasteboard:types:,
- validRequestorForSendType:andReturnTypes:

2-588 Chapter 2: Class Specifications

readText:
- readText:(NXStream *)stream

Reads new text into the Text object from stream. All previous text is deleted. The Text
object wraps and redraws the new text if autodisplay is enabled. This method doesn't
affect the object's frame or bounds rectangle. To resize the text rectangle to make the
text entirely visible, use the sizeToFit method. Returns self. This method raises an
NX_textBadRead exception if an error occurs while reading from stream.

See also: - setSel::, - setText:, - readRichText:, - sizeToFit

renewFont:size:style:text:frame:tag:
- renewFont:(const char *)newFontName

size: (tloat)newFontSize
style: (int)newFontStyle
text:(const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If
newText is NULL, the new text is the same as the previous text. newTag sets the Text
object's tag. A font object is created with newFontName, newFontSize, and
newFontStyle. This method is a convenient cover for the renewRuns:text:frame:tag:
method. Returns self.

See also: - renewRuns:text:frame:tag:, - setText:

renewFont:text:frame:tag:
- renewFont:newFontId

text:(const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If
newText is NULL, the new text is the same as the previous text. newTag sets a Text
object's tag. This method is a convenient cover for the renewRuns:text:frame:tag:
method. Returns self.

See also: - setText:

Application Kit Classes: Text 2-589

renewRuns: text: frame:tag:

- renewRuns:(NXRunArray *)newRuns
text:(const char *)newText
frame: (const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If
newRuns is NULL, the new text uses the same runs as the previous text. If newText is
NULL, the new text is the same as the previous text. newTag sets a Text object's tag.
Returns self.

See also: - setText:

replaceSel:

- replaceSel:(const char *)aString

Replaces the current selection with text from aString, a null-terminated character
string, and then rewraps and redisplays the text. Returns self.

See also: - replaceSel:length:

replaceSel: length:

- replaceSel:(const char *)aString length:(int)length

Replaces the current selection with length characters of text from aString, and then
rewraps and redisplays the text. Returns self.

See also: - replaceSel:

replaceSel: length: runs:

- replaceSel:(const char *)aString
length: (int) length
runs:(NXRunArray *)insertRuns

Replaces the current selection with length characters of text from aString, using
insert Runs to describe the run changes. Another way to replace the selection with
multiple-run text is with replaceSeIWithRichText:.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

See also: - replaceSel:, - replaceSelWithRichText:

2-590 Chapter 2: Class Specifications

replaceSelWithCell:

- replaceSelWithCell:cell

Replaces the current selection with the image provided by cell. This method works
only with rich Text objects. (See setMonoFont:.)

The image is treated like a single character. Its height and width are determined by
sending the Cell a calcCellSize: message. The height determines the line height of the
line containing the image, and the width sets the character placement in the line. The
image is drawn by sending the Cell a drawSelf:in View: message.

After receiving a replaceSelWithCell: message, a Text object rewraps and redisplays
its contents. Returns self.

See also: - setMonoFont:, - calcCellSize: (Cell), - drawSelf:inView: (Cell)

replaceSelWithRichText:

- replaceSeIWithRichText:(NXStream *)stream

Replaces the current selection with RTF data from stream. A
replaceSelWithRichText: message is sent in response to pasting RTF data from the
pasteboard.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

See also: - replaceSel:, - replaceSel:length:runs:

replaceSelWith View:

- replaceSelWith View: view

Unimplemented.

resignFirstResponder

- resignFirstResponder

Asks the Text object's delegate for permission before letting the Text object cease being
the first responder. If the delegate's textWillEnd: method returns a nonzero value, the
Text object remains the first responder, the entire text becomes the selection, and this
method returns nil. Otherwise, resignFirstResponder returns self.

resignFirstResponder messages are sent for you; you never send them yourself.

See also: - setDelegate:, -acceptsFirstResponder, - selectError

Application Kit Classes: Text 2-591

resignKeyWindow

- resignKeyWindow

Deactivates the caret when the Text object's window ceases to be the key window. A
Window, before it ceases to be the application's key window, sends this message to its
first responder. You should never directly send this message to a Text object. Returns
self.

See also: - becomeKeyWindow

resizeText: :

- resizeText:(const NXRect *)oldBounds :(const NXRect *)maxRect

Causes the superview to redraw exposed portions of itself after the Text object's frame
has changed in response to editing. You never send a resizeText:: message directly, but
you might override it. oldBounds can differ from bounds in origin.x and size.width
and size. height. Returns self.

scanFunc

- (NXTextFunc)scanFunc

Returns the scan function, the function that calculates the contents of each line of text
given the line width, font size, text alignment, and other factors. NXScanALineO is
the default scan function.

See also: - setScanFunc:, - setDrawFunc:

scrollSelTo Visible

- scrollSelTo Visible

Scrolls the text so that the selection is visible. Returns self.

selectAIl:

- selectAII:sender

Attempts to make a Text object the first responder and, if successful, then selects all of
its text. Returns self.

See also: - selectError, - setSel::

2-592 Chapter 2: Class Specifications

selectError

- selectError

Makes the entire text the selection and highlights it. The Text object applies this
method if the delegate requires the Text object to maintain its status as the first
responder. You rarely need to send a selectError message directly, although you may
want to override it. To highlight a portion of the text, use setSel::. Returns self.

See also: - setSel::, - setDelegate:, - selectAII:

selectNull

- selectN ull

Removes the selection and makes the highlighting (or caret, if the selection is
zero-length) disappear. The Text object's delegate isn't notified of the change. The
Text object sends a selectNull message whenever it needs to end the current selection
but retain its status as the first responder; you rarely need to override this method or
send selectNulI messages directly. Returns self.

See also: - setSel::, - selectError, - selectAII:, - getSel::

selectText:

- selectText:sender

Attempts to make a Text object the first responder and, if successful, then selects all of
its text. Returns self.

See also: - selectAII:, - setSel::

selGray
- (tloat)seIGray

Not yet implemented.

See also: - setSeIGray:, - setBackgroundGray:, - background Gray,
- setTextGray:, - textGray

Application Kit Classes: Text 2-593

setAlignment:
- setAlignment:(int)mode

Sets the default alignment for the text. mode can have these values
(NX_LEFTALIGNED is the default):

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

NX_CENTERED

Alignment

Flush to left edge of the bodyRect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect;
justifi~d. Not yet implemented.

setAlignment: doesn't rewrap or redraw the text. Send a calcLine message if you want
the text rewrapped and redrawn after you reset the alignment. Returns self.

See also: - alignment, - calcLine, - alignSeILeft:, - alignSeICenter:,
- alignSelRight:

setBackgroundColor:
- setBackgroundColor:(NXColor)color

Sets color as the background color for the Text object. color is an NXCoior structure
as defined in appkit/color.h. If the Text object's window and screen allow it, this color
is displayed the next time the text is redrawn. A setBackgroundColor: message
doesn't cause the text to be redrawn. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - background Color,
- setTextGray:, - textGray, - setTextColor:, - textCoior, - setSeIGray:,
- selGray, - setSelColor:

2-594 Chapter 2: Class Specifications

setBackgroundGray:
- setBackgroundGray:(float)value

Sets the gray value for the background of the text. value should lie in the range from
0.0 (indicating black) to 1.0 (indicating white). To specify one of the four pure shades
of gray, use one of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

A setBackgroundGray: message doesn't cause the text to be redrawn. Returns self.

See also: - backgroundGray:, - setBackgroundColor:, - backgroundColor,
-setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

setBreakTable:
- setBreakTable:(const NXFSM *)aTable

Sets the break table, the finite-state machine table that the Text object uses to determine
word boundaries. Returns self.

See also: - breakTable

setCharCategoryTable:
- setCharCategoryTable:(const unsigned char *)aTable

Sets the character category table, the table that maps ASCII characters to character
categories. Returns self.

See ,also: - charCategoryTable

setCharFilter:
- setCharFilter: (NXCharFilterFunc)aFunc

Sets the character filter function, the function that analyzes each character the user
enters. The Text object has two character filter functions: NXFieldFilterO and
NXEditorFilterO. NXFieldFilterO interprets Tab and Return characters as
commands to end the Text object's status as the first responder. NXEditorFilterO, the
default filter function, accepts Tab and Return characters into the text. Returns self.

See also: - charFilter

Application Kit Classes: Text 2-595

setCharWrap:

- setCharWrap:(BOOL)jlag

Sets how words whose length exceeds the line length should be treated. If YES, long
words are wrapped on a character basis. If NO, long words are truncated at the
boundary of the bodyRect. Returns self.

See also: - charWrap

setClickTable:

- setClickTable:(const NXFSM *)aTable

Sets the finite-state machine table that defines word boundaries for double-click
selection. Returns self.

See also: - c1ickTable

setDelegate:

- setDelegate:anObject

Sets the Text object's delegate. In response to user input, the Text object can send the
delegate any of several notification messages. See the introduction to this class
specification for more information. Returns self.

See also: - delegate, - acceptsFirstResponder, - resignFirstResponder

setDescentLine:

- setDescentLine:(NXCoord)value

Sets the default descent line for the text. The descent line is the distance from the
bottom of a line of text to the base line of the text. setDescentLine: neither rewraps
nor redraws the text. Send a calcLine message if you want the text rewrapped and
redrawn after you reset the descent line. Returns self.

See also: - descentLine, - calcLine

setDrawFunc:

- setDrawFunc:(NXTextFunc)aFunc

Sets the draw function, the function that's called to draw each line of text.
NXDraw ALineO is the default draw function. Returns self.

See also: - drawFunc, - setScanFunc:

2-596 Chapter 2: Class Specifications

setEditable:
- setEditable:(BOOL)jlag

Sets whether the text can be edited. Ifjlag is YES, the text is editable; if NO, the text
is read-only. By d~fau1t, text is editable.

Use setEditable: if you don't expect the text's edit status to change. If your application
needs to change the text's edit status repeatedly, have the text's delegate implement the
appropriate notification methods (see setDelegate:). Returns self.

See also: - isEditable, - setDelegate:

setFont:
- setFont:fontObj

Sets the font for the entire text. The entire text is then rewrapped and redrawn. Returns
self.

See also: - setFont:paraStyle:, - setSelFont:

setFont:paraStyle:
- setFont:fontObj paraStyle:(void *)paraStyle

Sets the font and paragraph style for the entire text. The text is then rewrapped and
redrawn. The paragraph style controls such features as tab stops and line indentation.
Returns self.

See also: - setFont:, - setSeIFont:, - setParaStyle:

setFontPanelEnabled:
- setFontPaneIEnabled:(BOOL)jlag

This sets whether the Text object will respond to the changeFont: message issued by
the Font panel. If enabled, the Text object will allow the user to change the font of the
selection for a rich Text object. For a plain Text object, the font for the entire text is
changed. If enabled, the Text object also updates the Font panel's font selection
information. Returns self.

See also: - isFontPanelEnabled

Application Kit Classes: Text 2-597

'setHorizResizable:

- setHorizResizable:(BOOL)flag

Sets whether the text can change size horizontally. If flag is YES, the Text object's
frame rectangle can change in the horizontal dimension in response to additions or
deletions of text; if NO, it can't. By default, the Text object can't change size. Returns
self.

See also: - setVertResizable:, - isVertResizable, - isHorizResizable

setLineHeight:

- setLineHeight: (NXCoord)value

Sets the default minimum distance between adjacent lines. For a plain Text object, this
will be the same for all lines. For rich Text objects, line heights will be increased for
lines with larger fonts. Even if very small fonts are used, in no case will adjacent lines
be closer than this minimum. setLineHeight: neither rewraps nor redraws the text.
Send a calcLine message if you want the text rewrapped and redrawn after you reset
the line height. If no line height is set, the default line height will be taken from the
default font. Returns self.

See also: -lineHeight, + setDefaultFont:, - calcLine

setLocation:ofCell:

- setLocation:(NXPoint *)origin ofCell:cell

Sets the x and y coordinates for the Cell object specified by cell. The coordinates are
contained in the structure referred to by origin and are interpreted as being in the Text
object's coordinate sys,tem.

This method is provided for programmers who want to write their own scan functions
and need a way to position Cell objects found in the text stream. Sending a
setLocation:ofCell: message to a Text object that uses the standard scan function will
have no effect on the placement of cell. Returns self.

See also: - getLocation:ofCell:, - replaceSelWithCell:

setMarginLeft:right:top: bottom:

- setMarginLeft: (NXCoord)leftMargin
right: (NXCoord)rightMargin
top: (NXCoord)topMargin
bottom:(NXCoord)bottomMargin

Adjusts the dimensions of the Text object's margins. Returns self.

See also: - getMarginLeft:right:top:bottom:

2-598 Chapter 2: Class Specifications

setMaxSize:

- setMaxSize:(const NXSize *)newMaxSize

Sets the maximum size of a Text object. This maximum size is ignored if the Text
object can't be resized.' The default maximum size is {O.O, O.O}. Returns self.

See also: - getMaxSize:, - setMinSize:

setMinSize:
- setMinSize:(const NXSize *)newMinSize

Sets the minimum size of the receiving Text object. This size is ignored if the Text
object can't be resized. The default minimum size is {O.O, O.O}. Returns self.

See also: - getMinSize:, - setMaxSize:

setMonoFont:

- setMonoFont:(BOOL)jlag

Sets whether the receiving Text object uses one font and paragraph style for the entire
text. By default, a Text object allows only one font and paragraph style. Messages to
set the font, line height, text alignment, and so on affect the entire text of such Text
objects. Text pasted into such Text objects assume their current font and alignment
characteristics. A Text object in this state is called a plain Text object.

By sending a setMonoFont:NO message, multiple fonts and paragraph styles can be
displayed in a Text object. Thereafter, font changes affect only the selected text, and
paragraph style changes affect only the paragraph or paragraphs marked by the
selection. The font and alignment characteristics of pasted text are maintained. A Text
object in this state is called a rich Text object. Returns self.

See also: - isMonoFont, - alignSeILeft:, - setSeIProp:to:, - setFontPanelEnabled:

setNoWrap

- setNoWrap

Sets the Text object's breakTable and charWrap instance variables so that word wrap
is disabled. It also sets the text alignment to NX_LEFTALIGNED. Returns self.

See also: - setCharWrap:

setOverstrikeDiacriticals:
- setOverstrikeDiacriticals: (BOOL)jlag

Unimplemented.

Application Kit Classes: Text 2-599

setParaStyle:

- setParaStyle:(void *)paraStyle

Sets the paragraph style for the entire text. The text is then rewrapped and redrawn.
The paragraph style controls features such as tab stops and line indentation. Returns
self.

See also: - setFont:, - setFont:paraStyle:,- setSelFont:

setPostSelSmartTable:

- setPostSeISmartTable:(const unsigned char *)aTable

Sets postSelSmartTable, the table that specifies which characters on the right end of a
selection are treated as equivalent to a space character. Returns self.

See also: - postSelSmartTable, - setPreSeISmartTable:, - preSelSmartTable

setPreSelSmartTable:

- setPreSeISmartTable:(const unsigned char *)aTable

Sets preSelSmartTable, the table that specifies which characters on the left end of a
selection are treated as equivalent to a space character. Returns self.

See also: - preSelSmartTable, - setPostSelSmartTable:

setRetainedWhileDrawing:

- setRetainedWhileDrawing: (BOOL)flag

Sets whether the Text object automatically changes its window's buffering type from
buffered to retained whenever it redraws itself. Drawing directly to the screen improves
the Text object's perceived performance, especially if the text contains numerous fonts
and formats. Rather than waiting until the entire text is flushed to the screen, the user
sees the text being drawn line-by-line.

The window's buffering type changes to retained only while the Text object is
redrawing itself-that is, only when the Text object's drawSelf:: method is invoked.
In other cases, such as when a user is entering text, the window's buffering type is
unaffected. This method is designed to work with Text objects that are in buffered
windows; don't send a setRetainedWhileDrawing: message to a Text object in a
retained or nonretained window. Returns self.

See also: - isRetainedWhileDrawing, - drawS elf: :

2-600 Chapter 2: Class Specifications

setScanFunc:

- setScanFunc:(NXTextFunc)aFunc

Sets the scan function, the function that calculates the contents of each line of text given
the line width, font size, type of text alignment, and other factors. NXScanALineO is
the default scan function. Returns self.

See also: - scanFunc, - setDrawFunc:

setSel::

- setSel:(int)start :(int)end

Makes the Text object the first responder and then selects and highlights a portion of
the text. start is the first character position of the selection; end is the last character
position of the selection. To create an empty selection, start must equal end. Use
setSel:: to select a portion of the text programmatically. Returns self.

See also: - selectAIl:, - selectError, - selectNull, - getSel::

setSelColor:

- setSeIColor:(NXColor)color

Sets the text color of the selected text, assuming the Text object allows more than one
paragraph style and font (see setMonoFont:). Otherwise, setSelColor: sets the text
color for the entire text. color is an NXCoior structure as defined in the header file
appkit/color.h. After the text color is set, the text is redisplayed. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - setTextGray:, - textGray, - setTextColor:, - textColor,
- setSeIGray:, - selGray

setSelectable:

- setSelectable:(BOOL)jlag

Sets whether the text can be selected. By default, text is selectable. Returns self.

See also: - isSelectable, - setEditable:

Application Kit Classes: Text 2-601

setSelFont:

- setSelFont:fontld

Sets the font for the selection. The text is then rewrapped and redrawn. Returns self.

See also: - setSeIFontSize:, - setSeIFontStyle:, - setFont:

setSeIFont:paraStyle:

- setSelFont:fontld paraStyle:(void *)paraStyle

Sets the font of the current selection to that specified by fontID. The paragraph style is
also changed. Returns self.

See also: - setSeIFont:, - setSeIFontSize:, - setSelFontStyle:

setSelFontFamily:

- setSeIFontFamily:(const char *)fontNarne

Sets the name of the font for the selection to fontN arne. The text is then rewrapped and
redrawn. Returns self.

See also: - setSeIFontSize:, - setSelFontStyle:

setSelFontSize:

- setSeIFontSize:(float)size

Sets the size of the font for the selection to size. The text is then rewrapped and
redrawn. Returns self.

See also: - setSeIFont:, - setSeIFontStyle:, - setFont:

2-602 Chapter 2: Class Specifications

setSelFontStyle:

- setSeIFontStyle:(NXFontTraitMask)traits

Sets the font sty Ie for the selection. The text is then rewrapped and redrawn. The Text
object uses the FontManager to change the various traits of the selected font. Returns
self.

See also: - setSeIFont:, - setSeIFontSize:, - setFont:

setSelGray:

- setSeIGray:(float)value

Sets the gray value of the selected text, assuming the Text object allows more than one
paragraph style and font (see setMonoFont:). Otherwise, setSelGray: sets the gray
value for the entire text. value should lie in the range 0.0 (indicating black) to 1.0
(indicating white). To specify one of the four pure shades of gray, use one of these
constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

After the gray value is set, the text is redisplayed. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - setTextGray:, - textGray, - setTextColor:, - textColor,
- selGray, - setSelColor:

Application Kit Classes: Text 2-603

setSeIProp:to:

- setSeIProp:(NXParagraphProp)prop to:(NXCoord)val

Sets the paragraph style for one or more paragraphs. For a plain Text object, all
paragraphs are affected. For a rich Text object, only those paragraphs marked by the
selection are affected. prop determines which property is modified, and val provides
additional information needed for some properties. These constants are defined for
prop:

Constant

NX_LEFTALIGN

NX_RIGHTALIGN

NX_CENTERALIGN

NX_FIRSTINDENT

NX_LEFTMARGIN

NX_RIGHTMARGIN

Property Affected

Text alignment. Aligns the text to the left margin. val
is ignored.

Text alignment. Aligns the text to the right margin.
val is ignored.

Text alignment. Centers the text between the left and
right margins. val is ignored.

Not yet implemented.

Indentation of the first line. val specifies the number
of units (in the receiver's coordinate system) along the
x axis to indent.

Indentation of lines other than the first line. val
specifies the number of units (in the receiver's
coordinate system) aloI?-g the x axis to indent.

Tab placement. val specifies the position on the x axis
(in the receiver's coordinate system) to add the new
tab.

Tab placement. val identifies the tab to be removed by
specifying its position on the x axis (in the receiver's
coordinate system).

Left margin width. val gives the new width as a
number of units in the receiver's coordinate system.

Right margin width. val gives the new width as a
number of units in the receiver's coordinate system.

setSeIProp:to: sets the left and right margins by performing the
setMarginLeft:right:top:bottom: method. For all other properties, it performs the
setFont:parastyle: method. After the paragraph property is set, the text is rewrapped
and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeILeft:, - alignSeIRight:, - setMonoFont:

2-604 Chapter 2: Class Specifications

setTag:
- setTag:(int)an/nt

Sets the Text object's tag value to an/nt. Returns self.

See also: - tag, - find View With Tag:

setText:
- setText:(const char *)aString

Replaces the current text with the text referred to by aString. The Text object then
wraps and redraws the text, if autodisplay is enabled. This method doesn't affect the
object's frame or bounds rectangle. To resize the text rectangle to make the text entirely
visible, use the sizeToFit method. Returns self.

See also: - setSel::, - readText:, - readRichText:, - sizeToFit

setTextColor:
- setTextColor:(NXColor)color

Sets color as the text color for the entire text. color is an NXColor structure as defined
in the header file appkit/color.h. If the Text object's window and screen allow it, this
color is displayed the next time the text is redrawn. setTextColor: doesn't redraw the
text. Returns self.

To set the color of selected text, use setSeIColor:.

See also: - setBackgroundGray:, - backgroun~Gray:, - setBackgroundColor:,
- background Color, - setTextGray:, - textGray, - textColor, - setSeIGray:,
- selGray, - setSelColor:

setTextFilter:
- setTextFilter:(NXTextFilterFunc)aFunc

Sets the text filter function, the function that analyzes text the user enters.

The text filter function is called with the following arguments:

NXTextFunc myTextFilter(id self, unsigned char *insertText,
int *insertLength, int position);

This function may change the contents of the text to be inserted. The pointer to the new
text is returned, and the new length is written into the insertLength integer pointer. The
position is where the new text is to be inserted.

This filter is different from the character filter in that you're given where the text is to
be inserted and the new text that will be inserted. This enables you to write a filter to

Application Kit Classes: Text 2-605

do auto-indent, or a filter to allow only properly formatted floating point numbers. The
character filter doesn't give enough context to determine exactly what the state of the
Text object is before and after the edit. Returns self.

See also: - textFilter

setTextGray:
- setTextGray:(float)value

Sets the gray value for the entire text. value should lie in the range 0.0 (indicating
black) to 1.0 (indicating white). To specify one of the four pure shades of gray, use one
of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

A setTextGray: message doesn't cause the text to be redrawn. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - text Gray, - setTextColor:, - textColor, - setSeIGray:,
- selGray, - setSelColor:

setVertResizable:
- setVertResizable:(BOOL)jlag

Sets whether the text can change size vertically. If flag is YES, the Text object's frame
rectangle can change in the vertical dimension in response to additions or deletions of
text; if NO, it can't. By default, a Text object can't change size. Returns self.

See also: - isVertResizable, - setHorizResizable:, - isHorizResizable

showCaret
- showCaret

Displays the caret. The Text object sends itself showCaret messages whenever it needs
to redisplay the caret; you rarely need to send a showCaret message directly.
Occasions when the showCaret message is sent include whenever a Text object
receives becomeKeyWindow, paste:, or delete: messages. A showCaret message
redisplays the caret only if the selection is zero-width. If the Text object is not in a
window, or the window is not the key window, or the Text object is not editable, this
method has no effect. Returns self.

See also: - hideCaret

2-606 Chapter 2: Class Specifications

showGuessPanel:

- showGuessPanel:sender

Displays a panel that offers suggested alternate spellings for a word that's suspected of
being misspelled. The user can either accept one of the alternates, added the word to a
local dictionary in -1.NeXT/LocaIDictionary, or skip the word.

A word becomes a candidate for the Guess panel's actions by being selected as the
result of the Text object's receiving a checkSpelling: message. Returns self.

See also: - checkSpelling:

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Sets the Text object's frame rectangle to the specified width and height in its
superview's coordinates. This method doesn't rewrap the text; to do that, send a
calcLine message. Returns self.

See also: - sizeTo:: (View)

sizeToFit
- sizeToFit

Modifies the frame rectangle to completely display the text. This is often used with
Text objects in a ScrollView. The setHorizResizable: and setVertResizable: methods
determine whether the Text object will resize horizontally or vertically (by default, it
won't change size in either dimension). After receiving a calcLine message, a Text that
is the document view of a ScrollView sends itself a sizeToFit message. See calcLine
for the methods that send calcLine messages. Returns self.

See also: - setHorizResizable:, - setVertResizable:

startReadingRichText
- startReadingRichText

A startReadingRichText message is sent to the Text object just before it begins
reading RTF data. The Text object responds by sending its delegate a
textWillStartReadingRichText: message, assuming there is a delegate and it
responds to this message. The delegate can then perform any required initialization.
Alternatively, a subclass of Text could put these initialization routines in its own
implementation of this method. Returns self.

Application Kit Classes: Text 2-607

stream
- (NXStream *)stream

Returns a pointer to a read-only stream that allows you to read the contents of the Text
object. The returned stream is convenient for parsing the contents of the Text object or
for implementing text searching within a text editor. The stream is valid until the Text
object is edited. You shouldn't keep a copy of the stream (or free the stream) after you
finish using it. When you need the stream again, send another stream message to get
a valid one.

See also: - getSubstring:start:length:, - firstTextBlock, - stream

subscript:
- subscript:sender

Subscripts the selection. The text is then rewrapped and redrawn. The text is
subscripted by 40% of the selection's font height. Returns self.

See also: - superscript:, - unscript:

superscript:

tag

- superscript:sender

Superscripts the selection. The text is then rewrapped and redrawn. The text is
superscripted by 40% of the selection's font height. Returns self.

See also: - subscript:, - unscript:

- (int)tag

Returns the Text object's tag.

See also: - setTag:, - findViewWithTag:

textColor

- (NXColor)textColor

Returns an NXCoior structure that denotes the color used for drawing text.

See also: - setTextColor:

2-608 Chapter 2: Class Specifications

textFilter
- (NXTextFilterFunc)textFilter

Returns the text filter function, the function that analyzes text the user enters. By
default, this function is NULL.

See also: - setTextFilter:

textGray
- (float)textGray

Returns the gray value used to draw the text.

See also: - setTextGray:

textLength
- (int)textLength

Returns the number of characters in a Text object. The length doesn't include the null
terminator ('\0') that getSubstring:start:length: returns if you ask for all the text in a
Text object.

See also: - byteLength, - getSubstring:start:length:

toggleRuler:
- toggleRuler:sender

Controls the display of the ruler. This method has effect only if the receiving Text
object is a subview of a ScrollView. toggleRuler: causes the ScrollView to display a
ruler if one isn't already present, or to remove the ruler if one is. When the ruler is
displayed, its settings reflect the paragraph style of the paragraph containing the
selection.

sender is the id of the sending object. Returns nil if the receiver isn't a subview of a
ScrollView instance; otherwise, returns self.

See also: - isRulerVisible:, - copyRuler:, - pasteRuler:

Application Kit Classes: Text 2-609

underline:
- underline:sender

Toggles the underline attribute of text. This method has effect only if the receiving Text
object can display mUltiple fonts and paragraph styles (see setMonoFont:).

underline: adds an underline to the selected text if one doesn't already exist or removes
the underline if it does. If the selection is zero-width, underline: affects the underline
attribute of text that's subsequently entered at the insertion point.

sender is the id of the sending object. Returns self.

See also: - setMonoFont:, - superscript:, - subscript:

unscript:
- unscript:sender

Removes the subscript or superscript property of the current selection. The text is then
rewrapped and redrawn. Returns self.

See also: - subscript:, - superscript:

validRequestorForSendType:andReturnType:
- valid Requestor ForSendType:(NXAtom)sendType

andReturnType:(NXAtom)returnType

Responds to a message that the Application object sends to determine which items in
the Services menu should be enabled or disabled at any particular time. You never send
a validRequestorForSendType:andReturnType: message directly, but you might
override this method in a subclass of Text.

A Text object registers for services during initialization (however, see
excIudeFromServicesMenu:). Thereafter, whenever the Text object is the first
responder, the Application object can send it one or more
validRequestorForSendType:andReturnType: messages during event processing to
determine which Services menu items should be enabled. If the Text object can place
data of type sendType on the pasteboard and receive data of type returnType back, it
should return self; otherwise it should return nil. The Application object checks the
return value to determine whether to enable or disable commands in the Services menu.

Since an object can receive one or more of these messages per event, it's important that
if you override this method in a subclass of Text, the new implementation include no
time-consuming calculations.

See the description of validRequestorForSendType:andReturnType: in the
Responder class specification for more information.

2-610 Chapter 2: Class Specifications

See also: + exciudeFromServicesMenu:,
- registerServicesMenuSendTypes:andReturnTypes: (Application),
- readSelectionFromPasteboard:, - writeSelectionToPasteboard:,
- validRequestorForSendType:andReturnType: (Responder)

windowChanged:
- windowChanged:newWindow

Notifies the receiving Text object of a change in the identity of its Window. Generally,
the change is the result of the Text object (or one of its superviews) being removed from
the Window's view hierarchy. This method ensures that the caret is hidden whenever
the window changes. Returns self.

See also: - windowChanged: (View)

write:
- write:(NXTypedStream *)stream

Writes the Text object to the typed stream stream. A write: message is sent in response
to archiving; you never send this message directly. Returns self.

writeRichText:
- writeRichText:(NXStream *)stream

Writes the contents of the Text object as RTF data to stream. The margins, fonts,
superscripting/subscripting, text color, and text are written out in this format. See the
NextStep Concepts manual for the subset of RTF directives that's supported. Returns
self.

See also: - writeText:, - readText:

writeRichText:forRun: atPosition:emitDefauItRichText:
-writeRichText:(NXStream *)stream

forRun:(NXRun *)run
atPosition:(int)runPosition
emitDefaultRichText:(BOOL *)writeDefaultRTF

You never send this message, but may want to override it to write special RTF directives
while the Text object is writing RTF data. Returns self.

Application Kit Classes: Text 2-611

writeRichText:from:to:
- writeRichText:(NXStream *)stream

from: (int)start
to: (int)end

Writes a portion of the text starting at position start to position end in RTF to stream.
Returns self.

See also: - writeText:, - readText:

writeSelectionToPasteboard:types:
- (BOOL)writeSelectionToPasteboard:pboard

types:(NXAtom *)types

Writes the current selection to the supplied Pasteboard object, pboard. types lists the
data types to be copied to the pasteboard. A return value of NO indicates that the data
of the requested types could not be provided.

When the user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first responder. This
message is followed by a readSelectionFromPasteboard: message if the command
requires the requesting application to replace its selection with data from the service
provider.

See also: - readSelectionFromPasteboard:,
- validRequestorForSendType:andReturnType:

writeText:
- writeText:(NXStream *)stream

Writes the entire text to stream. If you want to write only the selected text to a stream,
use getSel:: (to determine the extent of the selection), getSubstring:start:length: (to
retrieve the text within the selected region), and then NXWriteO to write the text to the
stream. Returns self.

See also: - writeRichText:, - readText:, - getSubstring:start:length:

METHODS IMPLEMENTED BY THE DELEGATE

textDidChange:
- textDidChange:sender

Responds to a message sent to the delegate after the first change to the text since the
Text object became the first responder. The delegate receives a textWillChange:
message immediately before receiving a textDidChange: message.

2-612 Chapter 2: Class Specifications

textDidEnd:endChar:

- textDidEnd:sender endChar:(unsigned short)whyEnd

Responds to a message informing the delegate that the Text object has relinquished first
responder status. whyEnd is the movement character (Tab, Shift-Tab, or Return) that
caused the Text object to cease being the first responder. The delegate can use this
information to decide which other object should become the first responder.

textDidGetKeys:isEmpty:

- textDidGetKeys:sender isEmpty:(BOOL)jlag

Responds to a message sent to the delegate after each change to the text. jlag indicates
whether the Text object contains any text after the change.

textDidRead:paperSize:
- textDidRead:sender paperSize:(NXSize *)paperSize

Responds to a message informing the delegate that the Text object will read the paper
size for the document.

This message is sent to the delegate after the Text object reads RTF data, allowing the
delegate to modify the paper size. paperSize is the dimensions of the paper size
specified by the \ paperw and \ paperh RTF directives.

See also: - textWiIlWrite:paperSize:

textDidResize: oldBounds: invalid:

- textDidResize:sender
oldBounds:(const NXRect *)oldBounds
invalid:(NXRect *)invalidRect

Responds to a message informing the delegate that the Text object has changed its size.
oldBounds is the Text object's bounds rectangle before the change. invalidRect is the
area of the Text object's superview that should be redrawn if the Text object has become
smaller.

textWillChange:

- (BOOL)textWiIlChange:sender

Responds to a message sent upon the first user input since the Text object became the
first responder. The delegate's textWillChange: method can prevent the text from
being changed by returning a nonzero value. If the delegate allows the change, it
immediately receives a textDidChange: message after the change is made. If the
delegate doesn't implement this method, the change is allowed by default.

Application Kit Classes: Text 2-613

text WillConvert:fromFont:toFont:

- textWiIlConvert:sender
fromFont:from
toFont:to

Responds to a message giving the delegate the opportunity to alter the font that will be
used for the selection. The message is sent whenever the Font panel sends a
changeFont: message to the Text object. from is the old font that's currently being
changed, to is the font that's to replace from. This method returns the font that's to be
used instead of the to font.

textWillEnd:

- (BOOL)textWiIlEnd:sender

Responds to a message informing the delegate that the Text object is about to relinquish
first responder status. The delegate's textWiIlEnd: method can prevent the change by
returning a nonzero value. If the delegate prevents the change, the entire text becomes
selected. If the delegate doesn't implement this method, the change is allowed by
default.

text WillFinishReadingRichText:

- textWiIlFinishReadingRichText:sender

Responds to a message informing the delegate that the Text object has read RTF data,
either from the pasteboard or from a text file.

textWiIlReadRichText:stream:atPosition:

- textWiIlReadRichText:sender
stream:(NXStream *)stream
atPosition:(int)runPosition

This method is the inverse operation from
textWiIlWriteRichText:stream:forRun:atPosition:emitDefaultRichText:. This
method must read the same number of characters from stream that the inverse operation
emits.

See also:
- textWiIlWriteRichText:stream:forRun:atPosition:emitDefaultRichText:

2-614 Chapter 2: Class Specifications

text WillResize:

- textWillResize:sender

Responds to a message informiGg the delegate that the Text object is about to change
its size. The delegate's textWillResize: method can specify the maximum dimensions
of the Text object by using the setMaxSize: method.

If the delegate doesn't implement this method, the change is allowed by default.

text WillSetSel:toFont:

- textWillSetSel:sender toFont:font

Responds to a message giving the delegate the opportunity to change the font that the
Text object is about to display in the Font panel. font is the font that's about to be set
in the Font panel. This method returns the real font to show in the Font panel.

text WillStartReadingRichText:

- textWillStartReadingRichText:sender

Responds to a message informing the delegate that the Text object is about to read RTF
data, either from the Pasteboard or from a text file.

textWillWrite:paperSize:

- textWillWrite:sender paperSize:(NXSize *)paperSize

Responds to a message informing the delegate that the Text object will write out the
paper size for the document.

As part of its RTF output, theText object's delegate can write out a paper size for the
document. The delegate specifies the paper size by placing the width and height values
(in points) in the structure referred to by paperSize. Unless the delegate specifies
otherwise, the paper size is assumed to be 612 by 792 points (8 1/2 by 11 inches).

See also: - textDidRead:paperSize:

Application Kit Classes: Text 2-615

textWiIlWriteRichText:stream:forRun:atPosition:emitDefauItRichText:

- textWillWriteRichText:sender
stream:(NXStream *)stream
forRun:(NXRun *)run
atPosition: (int)runPosition
emitDefauItRichText:(BOOL *)writeDefaultRichText

The delegate may choose to write additional information into the RTF output. Runs
that have the rFlags.subclassWantRTF field set will be sent as run in this message.
The additional information should be written to stream, in an ASCII format. The
textWiIlReadRichText:stream:atPosition: method, which does the inverse operation
when RTF data is read, must read the same number of characters as is written by
textWiIlWriteRichText:stream:forRun:atPosition:emitDefauItRichText:.
runPosition is the position in the text stream that run describes; the length of the run is
in the chars field of the NXRun structure. If YES, writeDefaultRichText instructs the
Text object to write out the normal RTF data for the run run.

See also: - textWiIlReadRichText:stream:atPosition:

METHODS IMPLEMENTED BY AN EMBEDDED GRAPHIC OBJECT

caIcCellSize:

- calcCeIlSize:(NXSize *)theSize

Responds to a message from the Text object by providing the graphic object's width
and height. The Text object uses this information to adjust character placement and line
height to accommodate the display of the graphic object in the text. See the Cell class
specification for one implementation of this method.

See also: - calcCeIlSize: (Cell)

drawSeIf:in View:

- drawSelf:(const NXRect *)rect in View: view

Responds to a message from the Text object by drawing the graphic object within the
given rectangle and View. The supplied View is generally the Text object itself. See
the Cell class specification for one implementation of this method.

See also: - drawSelf:inView: (Cell)

2-616 Chapter 2: Class Specifications

highlight: in View:lit:

- highlight:(const NXRect *)reet inView:view lit:(BOOL)flag

Responds to a message from the Text object by highlighting or unhighlighting the
graphic object during mouse tracking. reet is the area within view (generally the Text
object itself) to be highlighted. If flag is YES, this method should draw the graphic
object in its highlighted state; if NO, it should draw the graphic object in its normal
state. See the Cell class specification for one implementation of this method.

See also: - highlight:in View: lit: (Cell)

readRichText:for View:

- readRichText:(NXStream *)stream forView:view

Responds to a message sent by the Text object when it encounters an RTF control word
that's associated with the graphic object's class (see registerDirective:forClass:). The
graphic object should read its representation from the RTF data in the supplied stream.
The Text object passes its id as the view argument.

This method is the counterpart to writeRichText:forView:. In extracting the image
data from the stream, readRichText:forView: must read the exact number of
characters that writeRichText:forView: wrote in storing the image data to the stream.

See also: - writeRichText:forView:, - registerDirective:forClass:

trackMouse:inRect:ofView:

- (BOOL)trackMollse:(NXEvent *)theEvent inRect:(const NXRect *)reet
ofView:view

Responds to a message from the Text object by tracking the mouse while it's within the
specified rectangle of the supplied View. theEvent is a pointer to the mouse-down event
that caused the Text object to send this message. reet is the area within view (generally
the Text object) where the mouse will be tracked. See the Cell class specification for
one implementation of this method.

See also: - trackMollse:inRect:ofView: (Cell)

writeRichText:for View:

- writeRichText:(NXStream *)stream forView:view

Responds to a message sent by the Text object when it encounters the graphic object in
the text it's writing to stream. The graphic object should write an RTF representation
of its image to the supplied stream. The Text object passes its id as the view argument.

See also: - readRichText:forView:, - registerDirective:forClass:

Application Kit Classes: Text 2-617

CONSTANTS AND DEFINED TYPES

#define NX TEXTPER 490 /* Number of characters to allocate */
/* for each text block *1

typedef struct _NXTextBlock {
struct NXTextBlock *next; /* Next block in linked list */
struct NXTextBlock *prior; /* Previous block in linked list */
struct _tbFlags

unsigned int
unsigned int

tbFlags;
short

malloced:1; /* True if block was malloced */
PAD:15;

unsigned char
NXTextBlock;

chars; /* Number of characters in block */
text; / The text */

typedef struct
unsigned int underline:1;
unsigned int dummy:1;
unsigned int subclassWantsRTF:l;
unsigned int graphic:l;
unsigned int RESERVED:12;

NXRunFlags;

/* True if text is underlined */
1* Unused */
/* Obsolete */
/* True if graphic is present */

/* NXRun represents a single sequence of text with a given format. */
typedef struct _NXRun {

id font; 1* Font id */

int chars; /* Number of characters in run

void *paraStyle; 1* Implementation-dependent */

1* paragraph style information

float textGray; /* Text gray of current run */

float textRGBColor; /* Text color of current run */

unsigned char superscript; /~ Superscript in points */

unsigned char subscript; /* Subscript in points */

id info; /* For subclasses of Text */
NXRunFlags rFlags; /* Indicates underline etc. */

NXRun;

/* An NXRunArray holds the array of text runs.*/
typedef struct _NXRunArray

NXChunk chunk;
NXRun runs[l];

NXRunArray;

2-618 Chapter 2: Class Specifications

*/

*/

/*
* An NXBreakArray holds line break information. It's mainly an
* array of line descriptors. Each line descriptor contains three
* fields:

*
*
*

1) Line change bit (sign bit); set if this line defines a new
height

*
*

2) Paragraph end bit (next to sign bit); set if the end of this
line ends the paragraph

* 3) Number of characters in the line (low-order 14 bits) .

*
* If the line change bit is set, the descriptor is the first field
* of an NXHeightChange structure. Since this record is bracketed
* by negative short values, the breaks array can be sequentially
* accessed backwards and forwards.
*/

typedef short NXLineDesc;

typedef struct _NXHeightInfo
NXCoord newHeight;
NXCoord oldHeight;
NXLineDesc lineDesc;

NXHeightlnfo;

typedef struct _NXHeightChange
NXLineDesc lineDesc;
NXHeightInfo heightInfo;

NXHeightChange;

typedef struct _NXBreakArray

/*

NXChunk chunk;
NXLineDesc

NXBreakArray;
breaks[l];

/* Line descriptor */

/* Line height from here forward*/
/* Height before change */
/* Line descriptor */

/* Line descriptor */

/* Line descriptor */

* NXLay represents a single sequence of text in a line a~d records
* everything needed to select or draw that piece.
*/

typedef struct {

unsigned int

unsigned int

unsigned int
NXLayFlags;

mustMove:1;

isMoveChar:1;

RESERVED: 14;

/*
/*
/*
/*

True if lay follows lay with */
nonprinting character; e.g. Tab */

True if lay contains nonprinting */
character; e.g. Tab */

Application Kit Classes: Text 2-619

typedef struct _NXLay
NXCoord X; /* x coordinate of moveto */
NXCoord y; /* y coordinate of moveto */
short offset; /* Offset in line for first character

/* of run */
short chars; /* Number of characters in lay */
id font; /* Font id */
void *paraStyle; /* Implementation-dependent paragraph

/* style information */
NXRun *run; /* Run for lay */
NXLayFlags lFlags; /* Indicates lay affected by move */

/* characters */
NXLay;

/* NXLayArray holds the layout for the current line. */

typedef struct _NXLayArray {
NXChunk chunk;

NXLay lays[l];
NXLayArray;

/* NXWidthArray holds the widths for the current line. */
typedef struct _NXWidthArray

NXChunk chunk;
NXCoord widths[l];

NXWidthArray;

/* NXCharArray holds the character array for the current line. */

typedef struct _NXCharArray

/*

NXChunk chunk;

unsigned char text[l];
NXCharArray;

* An NXFSM is a word definition finite-state machine transition

* structure.
*/

typedef struct _NXFSM {
const struct NXFSM *next; /* State to go to; NULL implies

final state */

*/

*/

short delta;

short token;

/* If final state, this undoes lookahead */

/* If final state, negative value implies */
/* word is newline; 0 implies dark; */
/* positive implies white space */

} NXFSM;

2-620 Chapter 2: Class Specifications

/* Represents one end of a selection. */

typedef struct NXSelPt

int cp; /* Character position */

int line; /* Offset of NXLineDesc in break table */

NXCoord X; /* X coordinate */

NXCoord y; /* y coordinate */

int cist; /* Character position of first character */

/* on the line */

NXCoord ht; /* Line height */

NXSelPt;

/* Describes tabstop. */

typedef struct _NXTabStop

short

NXCoord

NXTabStop;

kind;

X;

/* Only NX_LEFTTAB implemented */

/* x coordinate for stop */

/* Describes current text block and run. */

typedef struct NXTextCache

int

NXRun

int

curPos;

*curRun;

runFirstPos;

NXTextBlock *curBlock;

int blockFirstPos;

NXTextCache;

typedef struct _NXLayInfo {

NXRect

NXCoord

NXCoord

NXCoord

NXCoord

NXCoord

NXLayArray

NXWidthArray

NXCharArray

NXTextCache

NXRect

rect;

descent;

width;

left;

right;

right Indent;

*lays;

*widths;

*chars;

cache;

*textClipRect;

/* Current position in text stream */

/* Current run of text */

/* Character position of first */

/* character in current run */

/* Current block of text */

/* Character position of first */

/* character in current block */

/* Bounds recto for current line. */

/* Descent line for current line. */

/* Can be reset by scanFunc */

/* Width of line */

/* Coordinate visible at left side */

/* Coord. visible at right side */

/* How much white space to leave */

/* at right side of line */

/* Scan function fills with NXLay */

/* items */

/* Scan function fills with */

/* character widths */

/* Scan function fills with */

/* characters */

/* Cache of current block & run */

/* If not NULL, the current */

/* clipping rectangle for drawing */

Application Kit Classes: Text 2-621

struct lFlags {

unsigned int horizCanGrow:l;/* True if scan func. should */
/* dynamically resize x margins

unsigned int vertCanGrow:l; /* True if scan func. should */
/* dynamically resize y margins

unsigned int erase:l; /* True if draw function should

/* erase before drawing */

unsigned int ping:l; /* True if draw function should

/* ping Window Server */
unsigned int endsParagraph:l;/* True if line ends paragraph

unsigned int resetCache:l; /* Used by Scan function

/* reset local caches */

unsigned int RESERVED:lO;

lFlags;
NXLayInfo;

/* Describes text layout and tab stops. */
typedef struct _NXTextStyle

to */

NXCoord indentlst; /* How far first line in paragraph is

/* indented */

NXCoord indent2nd; /* How far second and subsequent lines

/* are indented */

NXCoord lineHt; /* Line height */

NXCoord descentLine; /* Distance from baseline to */

/* bottom of line */

short alignment; /* Text alignment */

short numTabs; /* Number of tab stops */

NXTabStop *tabs; /* Array of tab stops */
NXTextStyle;

/* Text alignment modes. */
#define NX LEFTALIGNED 0

#define NX RIGHTALIGNED 1
#define NX CENTERED 2
#define NX JUSTIFIED 3

/* Tab stop types. */
#define NX_LEFTTAB 0

/* Constants used by the character filter function. */

#define NX BACKSPACE 8

#define NX CR 13
#define NX DELETE ((unsigned short)Ox7F)

#define NX BTAB 25
#define NX ILLEGAL 0
#define NX RETURN ((unsigned short) Oxl 0)

#define NX TAB ((unsigned short) Oxll)
#define NX BACKTAB ((unsigned short)Ox12)
#define NX LEFT ((unsigned short) Ox13)

#define NX RIGHT ((unsigned short) Ox14)

#define NX UP ((unsigned short) Ox15)
#define NX DOWN ((unsigned short) Ox16)

2-622 Chapter 2: Class Specifications

*/

*/

*/

*/

*/

*/

*/

/* Paragraph properties */

typedef enum {

/*

NX_LEFTALIGN = NX_LEFTALIGNED,
NX_RIGHTALIGN = NX_RIGHTALIGNED,
NX_CENTERALIGN = NX_CENTERED,
NX_JUSTALIGN = NX_JUSTIFIED,
NX_FIRSTINDENT,
NX_INDENT,
NX_ADDTAB,
NX_REMOVETAB,
NX_LEFTMARGIN,
NX RIGHTMARGIN

NXParagraphProp;

* Word tables for various languages. The SmartLeft and SmartRight
* arrays are suitable as arguments for the messages
* setPreSelSmartTable: and setPostSelSmartTable. When doing a
* paste, if the character to the left (right) of the new word is not
* in the left (right) table, an extra space is added on that side.
* The CharCats tables define the character classes used in the word
* wrap or click tables. The BreakTables are finite-state machines
* that determine word wrapping. The ClickTables are finite-state
* machines that determine which characters are selected when the
* user double clicks.
*/

const unsigned char * const NXEnglishSmartLeftChars;
const unsigned char * const NXEnglishSmartRightChars;
const unsigned char * const NXEnglishCharCatTable;
const NXFSM * const NXEnglishBreakTable;
const int NXEnglishBreakTableSize;
const NXFSM * const NXEnglishNoBreakTablei
const int NXEnglishNoBreakTableSize;
const NXFSM * const NXEnglishClickTable;
const int NXEnglishClickTableSize;

const unsigned char * const NXCSmartLeftChars;
const unsigned char * const NXCSmartRightCharsi
const unsigned char * const NXCCharCatTable;
const NXFSM * const NXCBreakTable;
const int NXCBreakTableSize;
const NXFSM * const NXCClickTablei
const int NXCClickTableSize;

typedef int (*NXTextFunc) (id self, NXLaylnfo *laylnfo);

typedef unsigned short (*NXCharFilterFunc) (unsigned short
charCode, int flags, unsigned short charSet)i

typedef char *(*NXTextFilterFunc) (id self, unsigned char *
insertText, int *insertLength, int position);

Application Kit Classes: Text 2-623

TextField

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkitffextField.h

CLASS DESCRIPTION

The TextField class provides a Control object that can display a piece of text, select all
or part of it if it is selectable, and edit it if it is editable. It is a good alternative to the
Text object when you want small editable text since you don't have to allocate memory
for a Text object for each TextField instance-the display of the TextField is achieved
by using a global Text object shared by objects all over your application. Moreover,
editing and selecting are achieved by a Text object that is unique for a given Window.
The TextField is a Control in the sense that the action message of its Cell is sent to the
target object of its Cell when the user presses the Return key. When the user presses
the Tab key and when there is some object in the TextField's nextText instance variable
that responds to the selectText: method (such as another field of data to enter), that
object is selected.

You can drag TextField and an accompanying TextFieldCell into an application from
the Interface Builder Palettes panel.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ v Flags vFlags;

Inheritedfrom Control int tag;
id cell;
struct _ conFlags conFlags;

Declared in TextField id nextText;
id previousText;
id textDelegate;
SEL errorAction;

nextText the object to select when Tab is pressed

Application Kit Classes: TextField 2-625

previousText

textDelegate

errorAction

METHOD TYPES

Initializing the TextField Class

Initializing a new TextField

Enabling the TextField

Modifying Text Attributes

Editing Text

Modifying Graphic Attributes

Resizing a TextField

Target and Action

2-626 Chapter 2: Class Specifications

object to select when Shift-Tab is pressed

delegate for textDidEnd:endChar:, etc.

sent to target when a bad value is entered in the
field

+ setCellClass:

- initFrame:

- setEnabled:

- isEditable
- isS electable
- setEditable:
- setSelectable:

- selectText:
- setNextText:
- setPreviousText:
- textDidGetKeys:isEmpty:
- textDidChange:
- textDidEnd:endChar:
- textWillChange:
- textWillEnd:

- backgroundColor
- backgroundGray
- isBezeled
- isBordered
- isBackgroundTransparent
- setBackgroundColor:
- setBackgroundGray:
- setBackgroundTransparent:
- setBezeled:
- setBordered:
- setTextColor:
- setTextGray:
- textColor
- textGray

- sizeTo::

- errorAction
- setErrorAction:

Handling Events - acceptsFirstResponder
- mouseDown:

Archiving - read:
- write:

Assigning a Delegate - setTextDelegate:
- textDelegate

CLASS METHODS

setCellClass:
+ setCellClass:classld

This metho~ initializes which subclass of TextFieldCell is used in implementing all
TextFields. The default is TextFieldCell. If you subclass TextFieldCell to modify the
behavior of a TextField, send this message with the class object of your subclass as the
argument. Returns the id of the TextField class object.

INSTANCE METHODS

acceptsFirstResponder
- (BOOL)acceptsFirstResponder

Returns YES if the TextField is editable or selectable, NO otherwise.

See also: - setEditable:, - setS electable

backgroundColor
- (NXColor)backgroundColor

Returns the background color of the TextField.

background Gray
- (float)backgroundGray

Returns the background gray.

Application Kit Classes: TextField 2-627

error Action

- (SEL)error Action

Returns the action (a selector) that is sent to the target of the TextField upon text-editing
errors (for example, if.the user typed something that wasn't acceptable).

See also: - setErrorAction:, - setEntryType: (Cell)

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of TextField, with default parameters
in the given frame. The text is set to "Some Text", the action is set to NULL, and the
justification mode is set to NX_LEFTALIGNED. Also by default, the text is editable
and the TextField is surrounded by a bezel. This method is the designated initializer
for the TextField class.

isBackgroundTransparent

- (BOOL)isBackgroondTransparent

Returns YES if the background is transparent.

isBezeled

- (BOOL)isBezeled

Returns YES if the text is in a bezeled frame.

isBordered

- (BOOL)isBordered

Returns YES if the text has a border around it.

isEditable

- (BOOL)isEditable

Returns YES if the text is editable and selectable.

isS electable

- (BOOL)isSelectable

Returns YES if the text is selectable.

2-628 Chapter 2: Class Specifications

mouseDown:

- mouseDown:(NXEvent *)theEvent

You never invoke this method directly, but may override it to implement subclassses of
the TextField class. If the receiver is editable text editing begins; if the receiver is
selectable, text is selected as appropriate. Returns self.

read:

- read:(NXTypedStream *)stream

Reads the TextField from the typed stream stream. Returns self.

selectText:

- selectText:sender

Selects all contents of the receiving TextField if it is editable or selectable. If you
invoke this method before inserting the TextField in a view hierarchy, it has no effect.
Returns self.

setBackgroundColor:

- setBackgroundColor:(NXColor)Colorvalue

Sets the background color for the TextField. Returns self.

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the background gray for the TextField. Returns self.

setBackgroundTransparent:

- setBackgroundGray:(BOOL)jlag

Sets the background of the TextField to transparent. Returns self.

setBezeled:

- setBezeled:(BOOL)jlag

Ifjlag is YES, then a bezel will be drawn around the text. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, then a I-pixel black border will be drawn around the text. Returns self.

Application Kit Classes: TextField 2-629

setEditable:
- setEditable:(BOOL)jlag

Ifjlag is YES, then the text in the TextField is made editable and selectable. If NO,
then the text cannot be edited; it may, however, be selectable. Returns self.

setEnabled:
- setEnabled:(BOOL)jlag

Ifjlag is YES, then the TextField is made active; if NO, then the TextField is made
inactive. Redraws the text of the cell if autodisplay is on and the enabled state changes.
Returns self.

setError Action:

- setErrorAction:(SEL)aSelector

Sets the action that is sent to the target of the TextField upon text-editing errors. An
error can occur when the user types something into a cell and the value returned when
isEntry Acceptable: is sent to the cell is NO. This is a convenient method for enforcing
some restrictions on what a user can type into a Cell. Returns self.

setN extText:

- setNextText:anObject

Sets the nextText instance variable to anObjeet. If the anObjeet responds to
setPreviousText: and selectText:, then it is sent a setPreviousText: message with self
as the argument. The nextText instance variable is used to determine the TextField's
action when the user presses the Tab key; if nextText contains an object which
responds to selectText:, the current TextField is deactivate~ and the selectText:
message is sent to anObjeet. Returns self.

setPreviousText:

- setPreviousText:anO b jeet

Normally you never use this method directly. It's invoked automatically by some other
object's setNextText: method. It sets the object that will be sent selectText: when
Shift-Tab is pressed in the TextField. Returns self.

setSelectable:

- setSelectable:(BOOL)jlag

Ifjlag is YES, then the TextField is made selectable but not editable. If NO, then the
text is made static; neither editable nor selectable. Returns self.

See also: - isEditable, - isSelectable, - setEditable

2-630 Chapter 2: Class Specifications

setTextColor:
- setTextColor:(NXColor)Colorvalue

Sets the color for text in the TextField. Returns self.

setTextDelegate:

- setTextDelegate:anObject

Sets the object to which the TextField will forward any messages from the field editor.
These messages include text:isEmpty:, textWiIlEnd:, textDidEnd:endChar:,
textWiIlChange:, and textDidChange:. Returns self.

See also: - textDelegate

setTextGray:
- setTextGray:(t1oat)value

Sets the gray used to draw the text in the TextField. Returns self.

sizeTo::
- sizeTo:(t1oat)width :(t1oat)height

If editing is occurring in the TextField, this aborts the editing. Then, after the View is
resized, this method reselects the text so that editing can continue. Returns self.

textColor
- (NXColor)textColor

Returns the color of text in the TextField.

textDelegate
- textDelegate

Returns the object that receives messages that are forwarded by the TextField from the
field editor. This object is set with the setTextDelegate: method.

See also: - setTextDelegate:

textDidChange:
- textDidChange:textObject

Delegates to the textDelegate. Can be overridden. Returns self.

Application Kit Classes: TextField 2-631

textDidEnd:endChar:
- textDidEnd:textObject endChar:(unsigned short)whyEnd

Invoked automatically when text editing ends. If editing ends because the Return key
has been pressed, the TextField's Cell sends its action message to its target. If the Tab
key has been pressed, then the selectText: method is sent to the object stored in
nextText or to self if nextText is nil. Returns self.

textDidGetKeys:isEmpty:
- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Delegates to the textDelegate. You can override this method. Returns self.

textGray
- (float)textGray

Returns the gray value used to draw the text in the TextField.

textWillChange:
- (BOOL)textWiIlChange:textObject

Invoked automatically during editing to determine if it is okay to edit this field. This
method checks whether the TextField is editable and sends the text delegate a
textWillChange message to allow it to respond. Returns NO if the text is editable;
YES if the text is not editable.

See also: - setEditable, - setTextDelegate

textWillEnd:
- (BOOL)textWiIlEnd:textObject

Invoked automatically before text editing ends. This method returns YES if the editing
can't end, NO if editing can end. Determines the return value by sending the
TextField's cell an isEntryAcceptable: message and sending the text delegate a
textWillEnd: message.

write:
- write:(NXTypedStream *)stream

Writes the receiving TextField to the typed stream stream. Returns self.

2-632 Chapter 2: Class Specifications

TextField Cell

INHERITS FROM ActionCell : Cell : Object

DECLARED IN appkitrrextFieldCell.h

CLASS DESCRIPTION

TextFieldCell is used when you want an NX_ TEXTCELL that knows what the
background and text gray values are. Normally, the Cell class assumes white as the
background when bezeled, and light gray otherwise, and black text is always used.
With TextFieldCell, you can specify those two parameters. This object is used by
TextField.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Cell char * contents;
id support;
struct _cFlags 1 cFlagsl;
struct _ cFlags2 cFlags2;

Inherited from ActionCell int tag;
id target;
SEL action;

Declared in TextFieldCeli float backgroundGray;
float textGray;

backgroundGray The background gray color

textGray The gray used to display the text

METHOD TYPES

Initializing a new TextFieldCell -init
- initTextCell:

Copying a TextFieldCell -copy

Application Kit Classes: TextFieldCell 2-633

Modifying Graphic Attributes - backgroundColor
- backgroundGray
- isOpaque
- setBackgroundColor:
- setBackgroundGray:
- isBackgroundTransparent:
- setB ackgroundTransparent:
- setBezeled:
- setTextAttributes:
- setTextColor:
- setTextGray:
- textColor
- textGray

Displaying - draw Inside: in View:
- drawSelf:in View:

Tracking the Mouse - trackMouse:inRect:ofView:

Archiving - read:
- write:

INSTANCE METHODS

background Color

- (NXColor)backgroundColor

Returns the color used to draw the background.

background Gray

- (tloat)backgroundGray

Returns the gray used to draw the background.

copy

-copy

Creates and returns a new TextFieldCell as a copy of the receiver.

2-634 Chapter 2: Class Specifications

drawlnside:in View:

- drawlnside:(const NXRect *)cellFrame inView:controlView

Draws the inside of the TextFieldCell only (in other words, it doesn't draw the bezels
or border if any). This method is invoked from drawSelf:inView: and also from
Control and its subclasses' drawCelllnside: method (which is invoked from Cell's
setTypeValue: methods). If you subclass TextFieldCell, and you override
drawSelf:inView:, then you must override this method as well. Returns self.

drawS elf: in View:

init

- drawSelf:(const NXRect *)cellFrame inView:controlView

Draws the text with the appropriate textGray and background Gray. Returns self.

- init

Initializes and returns the receiver, a new instance of TextFieldCell, with the default
title, "Field". Other defaults are set as described in initTextCell: below.

initTextCell :

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of TextFieldCell, with aString as its
text. The default textGray is NX_BLACK, and the default background Gray is
transparent (-1.0).

This method is the designated initializer for TextFieldCell. Override his method if you
create a subclass of TextFieldCell that performs its own initialization. Note that
TextFieldCell doesn't override Cell's initIconCell: designated initializer; don't use
that method to initialize an instance of TextFieldCell.

isBackgroundTransparent:

- (BOOL)isBackgroundGray:

Returns YES if the background of the TextFieldCell is transparent.

See also: - setBackgroundTransparent:

isOpaque

- (BOOL)isOpaque

Returns YES if drawing the cell touches every bit in its frame. This will be true if the
cell is bezeled, or if its background Gray is not transparent.

Application Kit Classes: TextFieldCell 2-635

read:
- read:(NXTypedStream *)stream

Reads the TextFieldCell from the typed stream stream. Returns self.

setBackground Color:
- setBackgroundColor:(NXColor)Colorvalue

Sets the background color for the TextFieldCell. Returns self.

setBackgroundGray:
- setBackgroundGray:(float)value

Sets the gray that will be used to draw the background. A value of less than 0.0 will
result in no background being drawn. If the cell is editable, it must have a background
gray greater than or equal to 0.0. Returns self.

setBackgroundTransparent:
- setBackgroundGray:(BOOL)jlag

Sets the background of the TextFieldCell to transparent. Returns self.

setBezeled:
- setBezeled:(BOOL)jlag

Puts a bezel around the text. If the current background Gray is transparent, it's
changed to NX_ WHITE. Bezeled transparent TextFields look strange, but if you want
to have one, invoke setBackgroundGray: with -1.0 AFTER invoking setBezeled:.

setTextAttributes:
- setTextAttributes:textObj

You rarely need to override this method; you never need to invoke it. Sets the
background and text gray levels. If the cell is disabled, then the gray level is brought
toward the background gray by 1/3. For example, if the background gray is white, and
the text gray is dark gray, the disabled text gray would be light gray. If the background
gray is black and the text gray is white, then the disabled gray would be light gray. Note
that if this cell is editable, and you have set the background gray to be transparent (in
other words, less than 0.0), then you will get the default background gray
(NX_LTGRAY). AI~o note that a TextFieldCell is transparent by default. Returns
textObj.

See also: - setTextGray:, - setBackgroundGray:, - setTextAttributes: (Cell)

2-636 Chapter 2: Class Specifications

setTextColor:
- setTextColor:(NXColor)Colorvalue

Sets the color that will be used to draw the text. Returns self.

setTextGray:
- setTextGray:(float)value

Sets the gray that will be used to draw the text. Returns self.

textGray
- (float)textGray

Returns the gray that will be used to draw the text. Returns self.

trackMouse:inRect:ofView:
- (BOOL)trackMollse:(NXEvent*)event

inRect:(const NXRect*)aRect
ofView:controlView

Does nothing since clicking in a TextFieldCell causes editing to occur.

write:
- write:(NXTypedStream *)stream

Writes the receiving TextFieldCell to the typed stream stream. Returns self.

Application Kit Classes: TextFieldCeli 2-637

2-638

View

INHERITS FROM Responder: Object

DECLARED IN appkitNiew.h

CLASS DESCRIPTION

View is an abstract class that provides its subclasses with a structure for drawing and
handling events. Most of the classes defined in the Application Kit are direct or indirect
subclasses of View.

Every View is assigned to a Window where it can be displayed. All the Views within
the Window are arranged in a hierarchy, with each View having a single superview and
zero or more subviews. Each View has its own area to draw in and its own coordinate
system, expressed as a transformation of its superview's coordinate system. A View
can scale, translate, or rotate its coordinates, flip the polarity of its y-axis, or use the
same coordinate system as its superview.

A View keeps track of its size and location in two ways: as a frame rectangle (expressed
in its superview's coordinate system) and as a bounds rectangle (expressed in its own
drawing coordinates). Both are NXRect structures, defined in the header file
appkit/graphics.h.

INSTANCE VARIABLES

Inherited from Object Class

Inherited from Responder id

Declared in View NXRect
NXRect
id
id
id
struct _v Flags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;

noClip:1;
translatedDraw: 1;
drawInSuperview: 1;
already Flipped: 1;
needsFlipped: 1;
rotatedFromBase: 1;
rotatedOrScaledFromBase: 1;
opaque: 1;
disableAutodisplay: 1;
needsDisplay: 1;
validGState: 1;
newGState: 1;

vFlags;

Application Kit Classes: View 2-639

frame

bounds

superview

subviews

window

v Flags.noClip

v Flags .translatedDraw

vFlags.draw InSuperview

vFlags.alreadyFlipped

vFlags.needsFlipped

v Flags.rotatedFromBase

A rectangle that specifies the size and location of
the View in its superview's coordinate system.

A rectangle that specifies the size and location of
the View in its own coordinate system.

The View's parent in the view hierarchy.

A List object that lists the View's immediate
children in the view hierarchy.

The Window where the View is displayed.

YES if drawing is not clipped to the frame.

YES if the bounds rectangle has been translated
(that is, the bounds origin is not (0,0)).

YES if the bounds origin equals the frame origin.

YES if the View's superview is flipped.

YES if the View is flipped.

YES if the View's coordinates are rotated from
base coordinates.

vFlags.rotatedOrScaledFromBase YES if the View's coordinates are rotated or
scaled from base coordinates.

vFlags.opaque YES if the View is opaque.

v Flags.disableAutodisplay YES if automatic display is disabled.

v Flags.needsDisplay YES if the View needs to be displayed.

v Flags. validGState YES if the View's graphics state is valid ..

vFlags.newGState YES if the View has a new graphics state.

METHOD TYPES

Initializing and freeing View objects
- initFrame:
- init
- free

2-640 Chapter 2: Class Specifications

Managing the View hierarchy - addSubview:
- addSubview::relativeTo:
- findAncestorSharedWith:
- isDescendantOf:
- opaqueAncestor
- removeFromSuperview
- replaceSubview:with:
- subviews
- superview
- window
- windowChanged:

Modifying the frame rectangle - frameAngle
- getFrame:
-moveBy::
-moveTo::
- rotateBy:
- rotateTo:
- setFrame:
- sizeBy::
- sizeTo::

Resizing subviews - resizeSubviews:
- setAutoresizeSubviews:
- setAutosizing:
- superviewSizeChanged:

Modifying the coordinate system - boundsAngle
- draw InSuperview
- getBounds:
- isFlipped
- isRotatedFromBase
- isRotatedOrScaledFromBase
- rotate:
- scale::
- setDrawOrigin::
- setDrawRotation:
- setDrawSize::
- setFlipped:
- translate::

Notifying ancestor Views - descendantFlipped:
- descendantFrameChanged:
- notify AncestorWhenFrameChanged:
- notifyWhenFlipped:
- suspendN otify AncestorWhenFrameChanged:

Application Kit Classes: View 2-641

Converting coordinates - centerScanRect:
- convertPoint:from View:
- convertPoint:to View:
- convertPointFromSuperview:
- convertPointToSuperview:
- convertRect:from View:
- convertRect:to View:
- convertRectFromSuperview:
- convertRectToSuperview:
- convertS ize: from View:
- convertSize:to View:

Graphics state objects - allocateGState
- freeGState
- gState
- initGState
- renewGState
- notifyTolnitGState:

Focusing - clipToFrame:
- doesClip
- setClipping:
- isFocus View
-lockFocus
- unlockFocus

Displaying -canDraw
- display
- display::
- display:::
- displayFromOpaqueAncestor:::
- displayltNeeded
- drawSelf::
- get VisibleRect:
- isAutodisplay
- setAutodisplay:
- isOpaque
- setOpaque:
- needs Display
- setNeedsDisplay:
- shouldDrawColor
- update

Scrolling - adjustScroll:
- autoscroll:
- calc UpdateRects::::
- invalidate::
- scrollPoint:
- scrollRect:by:
- scrollRectTo Visible:

2-642 Chapter 2: Class Specifications

Managing the cursor

Assigning a tag

Aiding event handling

Icon dragging

Printing

Setting up pages

Writing conforming PostScript

Archiving

- addCursorRect:cursor:
- discardCursorRects
- removeCursorRect:cursor:
- resetCursorRects

- findViewWithTag:
-tag

- acceptsFirstMouse
- hitTest:
- mouse:inRect:
- performKey Equivalent:

- dragFile:fromRect:slideBack:event:

- printPSCode:
- faxPSCode:
- copyPSCodelnside:to:
- openSpoolFile:
- spoolFile:

- knowsPagesFirst:last:
- getRect:forPage:
- placePrintRect:offset:
- heightAdjustLimit
- widthAdjustLimit

- beginPSOutput
- beginPrologueBBox:creationDate:createdBy:

fonts:forWhom:pages:title:
- endHeaderComments
- endPrologue
- beginSetup
- endSetup
- ad justPage WidthN ew:left:right: limit:
- adjustPageHeightNew:top:bottom:limit:
- beginPage:label:bBox:fonts:
- beginPageSetupRect:placement:
- drawSheetBorder::
- draw PageBorder::
- addToPageSetup
- endPageSetup
- endPage
- beginTrailer
- endTrailer
- endPSOutput

- awake
- read:
- write:

Application Kit Classes: View 2-643

INSTANCE METHODS

acceptsFirstMouse
- (BOOL)acceptsFirstMouse

Returns whether the View will accept the mouse down event which caused its window
to be made the key window. If this method returns YES, all mouse-down events are
passed to the View. Otherwise, the View will only receive mouse-down events when
its window is the key window. The default behavior is to return NO.

addCursorRect:cursor:
- addCursorRect:(const NXRect *)aRect cursor:anObj

Adds a cursor rectangle to the View's Window so that the cursor changes when it enters
the specified rectangle of the View: You send this message in response to a
resetCursorRects message. aRect describes the cursor rectangle in the View's
coordinates. anObj is a Cursor object, like NXIBeam or NXArrow. See View's
resetCursorRects for more information regarding when this message should be sent.
Returns self.

See also: - resetCursorRects

addSubview:
- addSubview:aView

Links aView into the View hierarchy by making it a subview of the receiving View,
placing it at the end of its subviews list. The receiving View is also made aView's next
responder. Returns nil if a View was not added as a subview because it does not inherit
from View. Otherwise, this method returns aView.

See also: - addSubview::relativeTo:, - subviews, - removeFromSuperview,
- initFrame:, - setNextResponder: (Responder)

addSubview: :relativeTo:
- addSubview:a View

: (int)place
relative To: other View

Links aView into the View hierarchy by making it a subview of the receiving View.
This method is just like addSubview: with the additional flexibility of precise
positioning of aView within the subview list. otherView is a member of the subview
list. place can be either NX_ABOVE or NX_BELOW, which specifies the placement
of aView relative to otherView. Since subviews are displayed from first to last in the
subview list, the last element is "above" all others. If other View is nil or is not a

2-644 Chapter 2: Class Specifications

member of the subview list, aView will be added to the top or bottom of the subview
list depending on the value of place. This method returns nil if a View was not added
as a subview because it does not inherit from View. Otherwise, it returns aView.

See also: - addSubview:, - subviews, - removeFromSuperview, - initFrame:,
- setNextResponder:

addToPageSetup

- addToPageSetup

Allows applications to add a scaling operator to the PostScript code generated when
printing; if you must add a scaling operator, this is the correct place to do so. This
method is invoked by printPSCode: and faxPSCode:. By default, this method simply
returns self; this method can be overridden by applications that implement their own
pagination.

See also: - beginPageSetupRect:placement:

adjustPageHeightNew: top: bottom: limit:

- adjustPageHeightNew:(float *)newBottom
top:(float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

Adjusts page height for automatic pagination when printing the View. This method is
invoked by printPSCode: and faxPSCode: to set newBottom, which will be the new
bottom of the strip to be printed for the current page. oldTop and oldBottom are the
current values for the horizontal strip to be printed. bottomLimit is the topmost value
newBottom can be set to. If this limit is exceeded, newBottom is set to oldBottom. By
default this method tries to not let the View be cut in two. All parameters are in the
View's own coordinate system. Returns self.

~! adjustPageWidthNew:left:right:limit:

- adjustPageWidthNew:(float *)newRight
left: (float)oldLeft
right: (float) 0 IdR ight
limit: (float)rightLimit

Adjusts page width for automatic pagination when printing the View. This method is
invoked by printPSCode: and faxPSCode: to set newRight, which will be the new
right edge of the strip to be printed for the current page. oldLeft and oldRight are the
current values for the vertical strip to be printed. rightLimit is the leftmost value
newRight can be set to. If this limit is exceeded, newRight is set to oldRight. By default
this method tries to not let the View be cut in two. All parameters are in the View's own
coordinate system. Returns self.

Application Kit Classes: View 2-645

adjustScroll :

- adjustScrolI:(NXRect *)newVisible

Allows you to correct the scroll position of a document. This method is invoked by a
Clip View immediately prior to scrolling its document view. You may want to override
it to provide specific scrolling behavior. new Visible will be the visible rectangle after
the scroll. You might use this for scrolling through a table as in a spreadsheet. You
could modify newVisible->origin such that the scroll would fall on column or row
boundaries. Returns self.

aIlocateGState

- a1locateGState

Explicitly tells the View to allocate a graphics state object. Graphics state objects are
Display PostScript objects that contain the entire state of the graphics environment.
They are used by the Application Kit as a caching mechanism to save PostScript code
used for focusing, purely as a performance optimization. You can allocate a graphics
state object for Views that will be focused on repeatedly, but you should exercise some
discretion as they can take a fair amount of memory. The graphics state object will be
freed automatically when the View is freed. Returns self.

See also: - freeGState

autoscroIl:
- autoscrolI:(NXEvent *)theEvent

Scrolls the View when the cursor is dragged to a position outside its superview. You
invoke this method from within a modal responder loop to cause scrolling to occur
when the cursor is outside the View's superview. The receiving View must be the
document view of a ClipView for this method to have any effect. theEvent->location
must be in window base coordinates. You can invoke this method repeatedly so that
scrolling continues even when there is no mouse movement. Returns nil if no scrolling
occurs; otherwise returns self.

See also: - autoscrolI: (ClipView), - beginModaISession:for: (Application)

awake
-awake

Invoked after unarchiving to allow the View to perform additional initialization.
Returns self.

2-646 Chapter 2: Class Specifications

beginPage:label:bBox:fonts:

- beginPage:(int)ordinaINum
label:(const char *)aString
bBox:(const NXRect *)pageReet
fonts:(const char *)fontNames

Writes a conforming Postscript page separator. This method is invoked by
printPSCode: and faxPSCode:.

ordinalNum specifies the page's position in the document's page sequence (from 1
through n for an n-page document).

aString is a string that contains no white space characters. It identifies the page
according to the document's internal numbering scheme. If aString is NULL, the
ASCII equivalent of ordinalN um is used.

pageReet is the rectangle enclosing all the drawing on the page about to be printed in
the default PostScript coordinate system of the page. If pageReet is NULL, "(atend)"
is output instead of a description of the bounding box, and the bounding box is output
at the end of the page.

fontNames is a string containing the names of the fonts used in this page. Each name
should be separated by a space. If the fonts used are unknown before the page is
printed,fontNames can be NULL. They will then be listed automatically at the end of
the page description. Returns self.

beginPageSetupRect:placement:

- beginPageSetupRect:(const NXRect *)aReet
placement:(const NXPoint *)loeation

Writes the page setup section for a page. This method is invoked by printPSCode: and
faxPSCode: after the starting comments for the page have been written. It outputs a
PostScript save, and generates the initial coordinate transformation to set this View up
for printing the aReet rectangle within the View. This method does a lockFocus on the
View, which must be balanced in endPage by an unlockFocus. The save output here
should be balanced by a PostScript restore in endPage. aReet is the rectangle in the
View's coordinates that is being printed. location is the offset in page coordinates of
the rectangle on the physical page. Returns self.

See also: - printPSCode, - endPage, - lockFocus, - addToPageSetup

Application Kit Classes: View 2-647

beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

- beginPrologueBBox:(const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication
fonts:(const char *)fontNames
forWhom:(const char *)user
pages: (int)numPages
title:(const char *)aTitle

Invoked by printPSCode: and faxPSCode: to write the start of a conforming
PostScript header.

boundingBox is the bounding box of the document. This rectangle should be in the
default PostScript coordinate system on the page. If it is unknown boundingBox should
be NULL and the system will accumulate it as pages are printed.

dateCreated is an ASCII string containing a human readable date. If dateCreated is
NULL the current date is used.

anApplication is a string containing the name of the document creator. If
anApplication is NULL then the string returned by Application's appName method is
used.

fontNames is a string holding the names of the fonts used in the document. Names
should be separated by a space. If the fonts used are unknown before the document is
printed,JontNames should be NULL. In this case each font that is referenced by a
findFont is written in the trailer.

user is a string containing the name of the person the document is being printed for. If
NULL the login name of the user is used.

numPages specifies the number of pages in the document. If unknown at the beginning
of printing, numPages should have a value of -1. In this case the pages are counted as
they are generated and the resulting count is written in the trailer.

aTitle is a string specifying the title of the document. If aTitle is NULL, then the title
of the View's Window is used. If the Window has no title, "Untitled" is output. Returns
self.

See also: - appName (Application)

2-648 Chapter 2: Class Specifications

beginPSOutput

- beginPSOutput

Performs various initializations before actual PostScript generation begins. This
method makes the Display PostScript context stored in the Application object's global
Printlnfo object into the current context. This has the effect of redirecting all PostScript
output from the Window Server to the spool file or printer. This method is invoked by
printPSCode: and faxPSCode: just before any PostScript is generated. Returns self.

beginSetup

- begin Setup

Writes the beginning of the document setup section, which begins with a
%%BeginSetup comment and includes a %%PaperSize comment declaring the type of
paper being used. This method is invoked by printPSCode: and faxPSCode: at the
start of the setup section of the document, which occurs after the prologue of the
document has been written, but before any pages are written. This section of the output
is intended for device setup or general initialization code. Returns self.

beginTrailer

- begin Trailer

Writes the start of a conforming PostScript trailer. This method is invoked by
printPSCode: and faxPSCode: immediately after all pages have been written.
Returns self.

boundsAngle

- (float)boundsAngle

Returns the angle of the View's bounds rectangle relative to its frame rectangle. If the
View's coordinate system has been rotated, this angle will be the accumulation of all
rotate: messages; otherwise, it will be 0.0.

See also: - rotate:, - setDrawRotation:

Application Kit Classes: View 2-649

calcUpdateRects::: :

- (BOOL)calcUpdateRects:(NXRect *)reets
:(int *)reetCount
:(NXRect *)enclRect
:(NXRect *)goodReet

You invoke this method to generate update rectangles for a subsequent display
invocation. reets is an array of 3 rectangles, and rectCount will be set to the number of
rectangles in reets that have been filled in, which will be either 0, 1, or 3. enclReet is a
rectangle that contains the entire area subject to update, and goodReet is a rectangle that
contains the area that does not need to be updated. goodRect will be set to the
intersection of goodRect and enclReet, or to a rectangle with an origin and size of zero
if they do not intersect. The update rectangles are computed. by finding the area in
enclReet that isn't included in goodReet. After the method invocation, if reetCount is
0, no update rectangles were generated. If reetCount is 1, the area that needs to be
updated is in rects[O]. If rectCount is 3, the areas that need to be updated are in reets[l]
and reets[2], and reets[O] is the same as enclReet.

Returns YES if any update rectangles were generated (in other words, if rectC ount is
greater than zero); otherwise returns NO.

See also: - scroIIRect:by:, NXIntersectionRectO

can Draw

- (BOOL)canDraw

Informs you of whether drawing will have any result. You only need to send this
message when you want to do drawing, but are not invoking one of the display methods.
You should not draw or send the lockFocus: message if this returns NO. This method
returns YES if your View has a Window object, your View's Window object has a
corresponding window on the Window Server, and your Window object is enabled for
display; otherwise it returns NO.

See also: - isDisplayEnabled (Window)

centerScanRect:

- centerScanRect:(NXRect *)aReet

Converts the comers of a rectangle to lie on the center of device pixels. This is useful
in compensating for PostScript overscanning when the coordinate system has been
scaled. This routine converts the given rectangle to device coordinates, adjusts the
rectangle to lie in the center of the pixels, and converts the resulting rectangle back to
the View's coordinate system. Returns self.

2-650 Chapter 2,' Class Specifications

clipToFrame:

- clipToFrame:(const NXRect *)frameRect

Allows the View to do arbitrary clipping during focusing. This method is invoked from
within the focusing mechanism if clipping is required. If you override this method, you
must use frameRect rather than the View's frame instance variable, because the origins
may not be the same due to focusing. The following example demonstrates clipping
the View to a circular region:

- clipToFrarne: (const NXRect *)frarneRect

float x, y, radius;

II Center the circle and pick an appropriate radius

x = frarneRect->origin.x + frarneRect->size.width/2.0;

y = frarneRect->origin.y + frarneRect->size.height/2.0;

radius = frarneRect->size.height/2.0;

II Create a circular clipping path

PSnewpath () ;

PSarc(x, y, radius, 0.0, 360.0);

PSclosepath();
PSclip () ;

return self;

If you override this method, you will probably need to send a setCopyOnScroll:NO to
the View's subviews to make them scroll properly. Returns self.

See also: - setCopyOnScroll: (ClipView)

convertPoint:from View:

- convertPoint:(NXPoint *)aPoint from View:aView

Converts a point from aView's coordinate system to the coordinate system of the
receiving View. If a View == nil, then this method converts from window base
coordinates. Both aView and the receiving View must belong to the same Window.
Returns self.

convertPoint:to View:

- convertPoint:(NXPoint *)aPoint toView:aView

Converts a point from the receiving View's coordinate system to the coordinate system
of aView. If aView == nil, then this method converts to window base coordinates. Both
a View and the receiving View must belong to the same Window. Returns self.

Application Kit Classes: View 2-651

convertPointFromSuperview:

- convertPointFromSuperview:(NXPoint *)aPoint

Converts a point from the coordinate system of the receiving View's superview to the
coordinate system of the receiving View. Returns self.

See also: - convertRectFromSuperview:, - convertPointToSuperview:

convertPointToSuperview:

- convertPointToSuperview:(NXPoint *)aPoint

Converts a point from the receiving View's coordinate system to the coordinate system
of its superview. Returns self.

See also: - convertPointFromSuperview:, - convertPoint:from View:

convertRect:from View:

- convertRect:(NXRect *)aRect from View:aView

Converts a rectangle from aView's coordinate system to the coordinate system of the
receiving View. aRect is a pointer to the rectangle to be converted. Both a View and the
receiving View must belong to the same Window. Returns self.

convertRect:to View:

- convertRect:(NXRect *)aRect toView:aView

Converts a rectangle from the receiving View's coordinate system to the coordinate
system of aView. aRect is a pointer to the rectangle to be converted. Both aView and
the receiving View must belong to the same Window. Returns self.

convertRectFromSuperview:

- convertRectFromSuperview:(NXRect *)aRect

Converts a rectangle from the coordinate system of the receiving View's superview to
the coordinate system of the receiving View. Returns self.

See also: - convertRectToSuperview:

convertRectToSuperview:

- convertRectToSuperview:(NXRect *)aRect

Converts a rectangle from the receiving View's coordinate system to the coordinate
system of its superview. Returns self.

See also: - convertRectFromSuperview:

2-652 Chapter 2: Class Specifications

convertSize:from View:

- convertSize:(NXSize *)aSize from View:aView

Converts asize (a vector) from the coordinate system of a View to the coordinate system
of the receiving View. Both a View and the receiving View must belong to the same
Window. Returns self.

See also: - convertSize:to View:

convertSize:to View:

- convertSize:(NXSize *)aSize toView:aView

Converts asize (a vector) from the receiving View's coordinate system to the coordinate
system of a View. Both aView and the receiving View must belong to the same Window.
Returns self.

See also: - convertSize:from View:

copy PSCodelnside:to:

- copyPSCodelnside:(const NXRect *)reet to:(NXStream *)stream

Generates PostScript code for the View and all its subviews for the area indicated by
reet. The PostScript code is written to the NXStream stream. Returns self, assuming
no exception is raised in the generation of PostScript code. If an exception is raised,
control is given to the appropriate error handler, and this method does not return.

See also: NX...;. RAISEO

descendantFlipped:

- descendantFlipped:sender

Notifies the receiving View that sender, a View below the receiving View in the view
hierarchy, had its coordinate system flipped. A descendantFlipped: message is sent
from the setFlipped: method if a notifyWhenFlipped: YES message was previously
sent to sender.

View's default implementation of this method simply passes the message to the
receiving View's superview, and returns the superview's return value. View subclasses
should override this method to respond to the message as required. In the Application
Kit, Clip View overrides this method to keep its coordinate system aligned with its
document view.

See also: - notifyWhenFlipped:, - setFlipped:, - descendantFlipped: (ClipView)

Application Kit Classes: View 2-653

descendantFrameChanged:

- descendantFrameChanged:sender

Notifies the receiving View that sender, a View below the receiving View in the view
hierarchy, was resized or moved. A descendantFrameChanged: message is sent from
the sizeTo:: and moveTo:: methods if a notifyAncestorWhenFrameChanged:YES
message was previously sent to sender.

View's default implementation of this method simply passes the message to the
receiving View's superview, and returns the superview's return value. View subclasses
should override this method to respond to the message as required. In the Application
Kit, the Clip View class overrides this method to notify the ScrollView to reset scroller
knobs when the document view's frame is changed.

See also: - notifyAncestorWhenFrameChanged:, - sizeTo::, - moveTo::

discard Cursor Rects

- discardCursorRects

Removes all cursor rectangles for the View. You rarely invoke this method; typically
you invalidate the cursor rectangles which forces them to get reset. Returns self.

See also: - resetCursorRects, - discardCursorRects (Window),
- invalidateCursorRectsFor View: (Window)

display

- display

Displays the View and its subviews. Returns self. This method is equivalent to:

[<receiver> display: (NXRect *)0 :0 :NO];

See also: - display:::, - drawSelf::

display::

- display:(const NXRect *)rects :(int)rectCount

Displays the View and its subviews. The rectangles are specified in the receiving
View's coordinate system. Returns self. This method is equivalent to:

[<receiver> display:rects :rectCount :NO];

See also: - display:::, - drawSelf::

2-654 Chapter 2: Class Specifications

display:::
- display: (const NXRect *)reets

: (int)reetCount
: (BOOL)clipFlag

Displays the View and its subviews by invoking the lockFocus, drawS elf: :, and
unlockFocus methods. reets is an array of drawing rectangles in the receiving View's
coordinate system; they're used to restrict what is displayed. reetCount is the number
of valid rectangles in reets (0, 1, or 3).

If reetCount is 3, then reets[O] should contain the smallest rectangle that completely
encloses reets[l] and reets[2] , the two rectangles that actually specify the regions to be
displayed.

If reetCount is 1, reets[O] should specify the region to be displayed.

If reetCount is 0 or reets is NULL, the View's visible rectangle is substituted for
reets[O] and a value of 1 is used for reetCount.

In any case, the rectangles in reets are intersected against the visible rectangle.

This method doesn't display a subview unless it falls at least partially inside reets[O] if
reetCount is 1, or inside either reets[l] or reets[2] if reetCount is 3. When this method
is applied recursively to each subview, the drawing rectangles are translated to the
subview's coordinate system and intersected with its bounds rectangle to produce a new
array. reets and reetCount are then passed as arguments to each View's drawSelf::
method.

If clipFlag is YES, this method clips to the drawing rectangles. Clipping isn't done
recursively for each subview, however. If this method succeeds in displaying the View,
the flag indicating that the View needs to be displayed is cleared. Returns self.

See also: - display, - display::, - drawSelf::, - needsDisplay, - update,
- displayFromOpaqueAncestor:::

displayFromOpaqueAncestor:: :

- displayFromOpaqueAncestor:(const NXRect *)reets
: (int)reetCount
: (BOOL)clipFlag

Correctly displays Views that aren't opaque. This method searches from the View up
the View hierarchy for an opaque ancestor View. The rectangles specified by reets are
copied and then converted to the opaque View's coordinates and display::: is sent to
the opaque View. If the receiving View is opaque, this method has the same effect as
display:::. Returns self.

See also: - display:::, - isOpaque, - setOpaque:

Application Kit Classes: View 2-655

displayIfNeeded

- displayIfNeeded

Descends the View hierarchy starting at the receiving View and sends a display
message to each View that needs to be displayed, as indicated by each View's
needsDisplay flag. This is useful when you wish to disable display in the Window,
modify a series of Views, and then display only the ones whose appearance has
changed. Returns self.

See also: - display, - needsDisplay

doesClip
- (BOOL)doesClip

Returns whether this View will be clipped to its frame when it is drawn. Clipping is on
by default.

See also: - setClipping:

dragFile:fromRect:slideBack:event:

- dragFile:(const char *)filename
fromRect:(NXRect *)reet
slideBack:(BOOL) aFlag
event:(NXEvent *)event

Allows a file icon to be dragged from the View to any application that accepts files. You
typically invoke this method from within your View's mouseDown: method when you
receive a mouse event on an icon representing a file. This method sends a message to
the WorkSpace Manager, and the WorkSpace Manager takes care of the actual file
dragging. The WorkSpace manager finds the icon for filename and tracks the mouse.
If the file is released over a window that is registered with the WorkSpace Manager, the
application for that window will receive an iconEntered:at ••. message. filename is the
complete name (including path) of the file to be dragged. If there is more than one file
to be dragged, you must separate the filenames with a single tab ('\t') character. reet
describes the position of the icon in the View's coordinates, and the width and height
of reet must both be 48.0. aFlag indicates whether the icon should slide back to its
position in the View if the file is not accepted. If aFlag is YES and filename is not
accepted and the user has not disabled icon animation, the icon will slide back;
otherwise it will not. event describes where the mouse-down event occurred.

This method returns self if the View successfully sent the file dragging message to the
WorkSpace Manager; otherwise it returns nil.

See also: - mouseDown: (Responder),
- iconEntered:at: : icon Window:iconX:icon Y:icon Width:iconHeight:pathList:
(Listener), - registerWindow:toPort: (Speaker)

2-656 Chapter 2: Class Specifications

drawlnSuperview
- drawlnSuperview

Makes the View's coordinate system identical to that of its superview. This can reduce
the amount of PostScript code that's generated to focus on the View. After invoking
this method, the View's bounds rectangle origin is the same as its frame rectangle
origin.

Although the View's superview may be flipped, the View's coordinate system won't be
flipped unless it receives a setFlipped: message. You should invoke
drawlnSuperview after creating the View and before applying any coordinate
transformations to it. Returns self.

See also: - setFlipped:

draw PageBorder::
- drawPageBorder:(float)width :(float)height

Allows applications that use the Application Kit pagination facility to draw additional
marks on each logical page. This method is invoked by
beginPageSetupRect:placement:, and the default implementation doesn't draw
anything. Returns self.

drawSelf::
- drawSelf:(const NXRect *)reets :(int)reetCount

Implemented by subclasses to draw the View. Each View subclass must override this
method to draw itself within its frame rectangle. The default implementation of this
method does nothing.

This method is invoked by the display methods (display, display::, and display:::);
you shouldn't send a drawSelf:: message directly to a View.

reets is an array of rectangles indicating the region within the View that needs to be
drawn. reetCount indicates the number of rectangles in the reets array, which is either
1 or 3. If reetCount is 1, then reets[O] specifies the region to be drawn. If reetCount is
3, then reets[O] contains the smallest rectangle that completely encloses reets[l] and
reets[2] , the two rectangles that actually specify the regions that need to be drawn. Note
that if reetCount is 3, you can just draw the contents of reets[O] , or you can draw the
contents of both reets[1] and reets[2], but there is no need to draw all three rectangles.
For optimum drawing performance, you shouldn't draw anything that doesn't intersect
with the reets rectangles, although it is possible to draw the entire contents of the View
and simply allow the contents of the View to be clipped.

Your implementation of drawS elf: : doesn't need to invoke lockFocus; focus is already
locked on an object when it's told to draw itself. Returns self.

See also: - display, - display::, - display:::

Application Kit Classes: View 2-657

drawSheetBorder: :
- drawSheetBorder:(float)width :(float)height

Allows applications that use the Application Kit pagination facility to draw additional
marks on each printed sheet. This method is invoked by
beginPageSetupRect:placement:, and the default implementation doesn't draw
anything. Returns self.

endHeaderComments
- endHeaderComments

Writes out the end of a conforming PostScript header. It prints out the
%%EndComments line and then the start of the prologue, including the Application
Kit's standard printing package. The prologue should contain definitions global to a
print job. This method is invoked by printPSCode: and faxPSCode: after
beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title: and
before endPrologue. Returns self.

endPage
-endPage

Writes the end of a conforming PostScript page. This method is invoked after each
page is printed. It performs an unlockFocus to balance the lockFocus done in
beginPageSetupRect:placement:. It also generates a PostScript showpage and a
restore. Returns self.

See also: - beginPageSetupRect: placement:

endPageSetup
- endPageSetup

Writes the end of the page setup section, which begins with a %%EndPageSetup
comment. This method is invoked by printPSCode: and faxPSCode: just after
beginPageSetupRect:placement: is invoked. Returns self.

2-658 Chapter 2: Class Specifications

endPrologue

- endPrologue

Writes out the end of the conforming PostScript prologue. This method is invoked by
printPSCode: and faxPSCode: after the prologue of the document has been written.
Applications can override this method to add their own definitions to the prologue. For
example:

- endPrologue

DPSPrintf(DPSGetCurrentContext(), "/1ittleProc {pop} def")i

return [super endPrologue]i

endPSOutput

- endPSOutput

Ends a print job. This method is invoked by printPSCode: and faxPSCode:. It closes
the spool file (if any), and restores the old PostScript context so that further PostScript
output is directed to the Window Server. Returns self.

See also: - beginPSOutput

end Setup

- endSetup

Writes out the end of the setup section, which begins with a %%EndSetup comment.
This method is invoked by printPSCode: and faxPSCode: just after beginSetup is
invoked. Returns self.

endTrailer

- endTrailer

Writes the end of the conforming PostScript trailer. This method is invoked by
printPSCode: and faxPSCode: just after beginTrailer is invoked. Returns self.

See also: - begin Trailer

Application Kit Classes: View 2-659

faxPSCode:

- faxPSCode:sender

Prints the View and ali its subviews to a fax modem. If the user cancels the job, or if
there are any errors in generating the PostScript, this method returns nil; otherwise it
returns self.

This method normally brings up the Fax panel before actually initiating printing, but if
sender implements a shouldRunPrintPanel: method, the View will invoke that
method to query sender. If sender then returns NO, then the Fax panel won't be
displayed, and the View will be printed using the last settings of the Fax panel.

See also: - printPSCode:, - shouldRunPrintPanel: (Object methods)

findAncestorSharedWith:

- findAncestorSharedWith:a View

Returns the closest common ancestor in the View hierarchy shared by a View and the
receiving View, or nil if there's no such ancestor. If aView and the receiving View are
identical, this method returns self.

See also: - isDescendantOf:

findViewWithTag:

- findViewWithTag:(int)aTag

Finds a descendant View of the receiving View with a tag of aTag. Returns self if the
receiving View's tag is aTag. Otherwise this method recursively looks at the tag of the
View's first subview, the first'subview's descendants, the View's second subview, and
so forth. This method returns the first View with matching tag, or nil if no subview or
descendant of a subview of the receiving View has a matching tag.

See also: - tag

frameAngJe

- (float)frameAngle

Returns the angle of the View's frame relative to its superview's coordinate system.

See also: - rotateTo:, - rotateBy:

2-660 Chapter 2: Class Specifications

free
-free

Releases the storage for the View and all its subviews. This method also invalidates the
cursor rectangles for the View's window, frees the View's graphics state object (if any),
and removes the View from the view hierarchy; the View will no longer be registered
as a subview of any other View.

See also: - allocFromZone: (Object), - initFrame:

freeGState
- freeGState

Frees the graphics state object that was previously allocated for the View. Returns self.

See also: - allocateGState:

getBounds:
- getBounds:(NXRect *)theRect

Copies the View's bounds rectangle into the structure specified by theRect. Returns
self.

See also: - boundsAngle

getFrame:

- getFrame:(NXRect *)theRect

Copies the View's frame rectangle into the structure specified by theRect. The frame
rectangle is specified in the coordinate system of the View's superview. Returns self.

getRect:forPage:

- (BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to determine the rectangle of the View to be printed for
page number page. You should override this method to fill in theRect with the
coordinates of the View (in its own coordinate system) that represent the page
requested. The View will later be told to display the theRect region in order to generate
the image for this page. This method is invoked by printPSCode: and faxPSCode: if
the View's knowsPagesFirst:last: method returns YES. The View should not assume
that the pages will be generated in any particular order.

This method returns YES if page is a valid page number for the View. It returns NO if
page is outside the View.

See also: - knowsPagesFirst:last:

Application Kit Classes: View 2-661

get VisibleRect:

- (BOOL)getVisibleRect:(NXRect *)theRect

Gets the visible portion of the View. A rectangle enclosing the visible portion is placed
in the structure specified by theRect. This method returns YES if part of the View is
visible, and NO if none of it is.

Visibility is determined by intersecting the View's frame rectangle against the frame
rectangles of each of its ancestors in the view hierarchy, after appropriate coordinate
transformations. Only those portions of the View that lie within the frame rectangles
of all its ancestors can be visible.

If the View is in an off-screen window, or is covered by another window, this method
may nevertheless return YES. This method does not take into account any siblings of
the receiving View or siblings of its ancestors.

If the View is being printed, this method places the portion of the View that is visible
on the page being imaged in the structure specified by theRect.

See also: - isVisible (Window), - getDocVisibleRect: (ScrollView),
- getDocVisibleRect: (ClipView)

gState

- (int)gState

Returns the graphics state object allocated to the View. If no graphics state object has
been allocated, or if the View has not been focused on since receiving the
allocateGState message, this method will return O. Graphics state objects are not
immediately allocated by invoking the allocateGState method, but are done in a "lazy"
fashion upon subsequent focusing.

See also: - allocateGState, - lockFocus

heightAdjustLimit

- (float)heightAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next
page during automatic pagination to prevent items from being cut in half. This limit
applies to vertical pagination. This method is invoked by printPSCode: and
faxPSCode:. By default, this method returns 0.2.

See also: - adjustPageHeightNew:top:bottom:limit:

2-662 Chapter 2: Class Specifications

hitTest:

init

- hitTest:(NXPoint *)aPoint

Returns the subview of the receiving View that contains the point specified by aPoint.
The lowest subview in the View hierarchy is returned. Returns the View if it contains
the point but none of its subviews do, or nil if the point isn't located within the receiving
View.

This method is used primarily by a Window to determine which View in the View
hierarchy should receive a mouse-down event. You'd rarely have reason to invoke this
method, but you might want to override it to have a View trap mouse-down events
before they get to its subviews.

aPoint is in the receiving View's superview's coordinates.

- init

Initializes the View, which must be a newly allocated View instance. This method does
not alter the default frame rectangle, which is all zeros. This method is equivalent to
initFrame:NULL. Note that if you instantiate a custom View from Interface Builder,
it will be initialized with the initFrame: method; initialization code in the init method
will not be performed. Returns self.

See also: - initFrame:

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes the View, which must be a newly allocated View instance. The View's frame
rectangle is made equivalent to that pointed to by frameRect. This method is the
designated initializer for the View class, and can be used to initialize a View allocated
from your own zone. Programs generally use instances of View subclasses rather than
direct instances of the View class. Returns self.

See also: - init, + alloc (Object), + allocFromZone: (Object), + new (Object)

initGState
- initGState

Implemented by subclasses of View to initialize the View's graphics state. The View
will receive this message if you previously sent it a notifyToInitGState: YES message.
By default this method simply returns self, but you can override it to send PostScript
code to initialize the View's graphics state. You could use this method to set a default
font or line width for the View. You should not use this method to send any coordinate
transformations or clipping operators.

See also: - allocateGState, - gState, - notifyToInitGState:

Application Kit Classes: View 2-663

invalidate: :

- invalidate:(const NXRect *)reets :(int)reetCount

Invalidates the View and its subviews for later display. This message is sent to the View
after scrolling if the View is a subview of a ClipView and the View's parent ClipView
previously received a setDisplayOnScroll:NO message. You can override this method
to optimize drawing performance by accumulating the invalid areas for later display.
reets is an array of rectangles in the receiving View's coordinate system, and reetCount
is the number of valid rectangles in reets.

If reetCount is 1, reets[O] specifies the region requiring redisplay. If reetCount is
greater than 1, then reets[O] contains the smallest rectangle that completely encloses the
remaining rectangles in the reets array, which specify the actual regions requiring
redisplay. Returns self.

See also: - rawScroll: (ClipView), - display, - display::, - display:::, - drawSelf::,
- setDisplayOnScroll: (Clip View)

isAutodisplay

- (BOOL)isAutodisplay

This method returns the View's automatic display status. After you change your data
in such a way that it is no longer accurately represented, you should invoke this method
to test the View's automatic display status. If automatic display is enabled, you should
send a display message to the View; otherwise you should send it a
setNeedsDisplay: YES message.

See also: - update, - display, - setAutodisplay, - needsDisplay,
- setNeedsDisplay:, - displaylfNeeded

isDescendantOf:

- (BOOL)isDescendantOf:a View

Returns YES if aView is an ancestor of the receiving View in the view hierarchy or if
it's identical to the receiving View. Otherwise, this method returns NO.

See also: - superview, - subviews, - findAncestorSharedWith:

isFlipped

- (BOOL)isFlipped

Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native
PostScript coordinates. By default, Views are not flipped.

See also: - setFlipped:

2-664 Chapter 2: Class Specifications

isFocusView
- (BOOL)isFocusView

Returns YES if the receiving View is the View that's currently focused for drawing;
otherwise returns NO. In other words, returns YES if drawing commands will be
drawn into this View.

See also: -lockFocus

isOpaque
- (BOOL)isOpaque

Returns whether the View is opaque. Returns YES if the View guarantees that it will
completely cover the area within its frame when it draws itself; otherwise returns NO.
This state is useful to ensure correct drawing of invalidated areas.

See also: - setOpaque:, - opaque Ancestor, - displayFromOpaqueAncestor:::

isRotatedFromBase
- (BOOL)isRotatedFromBase

Returns YES if the receiving View or any of its ancestors in the View hierarchy have
been rotated; otherwise returns NO.

isRotatedOrScaledFromBase
- (BOOL)isRotatedOrScaledFromBase

Returns YES if the receiving View or any of its ancestors in the View hierarchy have
been rotated or scaled; otherwise returns NO ..

knowsPagesFirst:last:
- (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Indicates whether this View can return a rectangle specifying the region that must be
displayed to print a specific page. This method is invoked by printPSCode: and
faxPSCode:. Just before invoking this method, the first page to be printed is set to 1,
and the last page to be printed is set to the maximum integer size. You can therefore
override this method to change the first page to be printed, and also the last page to be
printed if the View knows where its pages lie. If this method returns YES, the printing
mechanism will later query the View for the rectangle corresponding to a specific page
using getRect:forPage:.

See also: - getRect:forPage:

Application Kit Classes: View 2-665

lockFocus

- (BOOL)lockFocus

Locks the PostScript focus on the View so that subsequent graphics commands are
applied to the View. This method ensures that the View draws in the correct coordinates
and to the correct device. You must send this message to the View before you draw to
it, and you must balance it with an unlockFocus message to the View when you finish
drawing. Returns YES if the focus was already locked on the View, and NO if it wasn't.

lockFocus and unlockFocus are sent for you when you display the View with one of
the display methods; you don't have to include lockFocus or unlockFocus in your
drawS elf: : method.

See also: - display:::, - isFocusView, - unlockFocus

mouse:inRect:

- (BOOL)mouse:(NXPoint *)aPoint inRect:(NXRect *)aRect

Returns whether the cursor hot spot at the point specified by aPoint lies inside the
rectangle specified by aRect. To test if the cursor lies within a specific rectangle, you
should use this method rather than using the NXPointInRectO function; Cursor events
are specified by the coordinates corresponding to the top left corner of the pixel under
the cursor, so NXPointInRectO may return the wrong result. aPoint and aRect must
be expressed in the same coordinate system.

See also: - convertPoint:from View:, NXMouselnRectO, NXPointInRectO

moveBy::

- moveBy:(NXCoord)deltaX :(NXCoord)deltaY

Moves the origin of the View's frame rectangle by (deltaX, deltaY) in its superview's
coordinates. This method works through the moveTo:: method. Returns self.

See also: - moveTo::, - sizeBy::

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the View's frame rectangle to (x, y) in its superview's coordinates.
This method may also send a descendantFrameChanged: message to the View's
superview. Returns self.

See also: - setFrame:, - sizeTo::, - descendantFrameChanged:

2-666 Chapter 2: Class Specifications

needsDisplay

- (BOOL)needsDisplay

Returns whether the View needs to be displayed to reflect changes to its contents. If
automatic display is disabled, the View will not redisplay itself automatically, so you
can invoke this method to determine whether you need to send a display message to the
View. The flag indicating that the View needs to be displayed is cleared by the display
methods when the View is displayed.

See also: - setNeedsDisplay:, - update, - setAutodisplay, - isAutodisplay,
- display, - display IfNeeded

notify AncestorWhenFrameChanged:

- notify AncestorWhenFrameChanged:(BOOL)flag

Determines whether the receiving View will inform its ancestors in the view hierarchy
whenever its frame changes. If flag is YES, subsequent size To:: and moveTo::
messages to the View will send a descendantFrameChanged: message up the view
hierarchy. Ifflag is NO, no descendantFrameChanged: message will be sent to the
View's ancestors. The descendantFrameChanged: message permits Views to make
any necessary adjustments when a subview is resized or moved. Returns self.

See also: - descendantFrameChanged:, - sizeTo::, - moveTo::

notifyTolnitGState:

- notifyTolnitGState: (BOOL)flag

Determines whether the View will be sent initGState messages to allow it to initialize
new graphics state objects. Ifflag is YES, initGState messages will be sent to the View
at the appropriate time; otherwise, they will not. By default, the View is not sent
messages to initialize its graphics state objects. Returns self.

See also: - initGState

notifyWhenFlipped:

- notifyWhenFlipped:(BOOL)flag

Determines whether the receiving View will inform its ancestors in the View hierarchy
whenever its coordinate system is flipped. Ifflag is YES, a setFlipped: message to the
View will send a descendantFlipped: message up the View hierarchy. If flag is NO, .
no descendantFlipped: message will be sent to the View's ancestors. The
descendantFlipped: message permits Views to make any necessary adjustments when
the orientation of a subview' s coordinate system is flipped. Returns self.

See also: - descendantFlipped:, - setFlipped:

Application Kit Classes: View 2-667

opaqueAncestor

- opaqueAncestor

Returns the closest ancestor to the receiving View that is an opaque View. This method
will return the receiving View if it is opaque.

See also: - isOpaque, - displayFromOpaqueAncestor:::

openSpoolFile:

- openSpooIFile:(char *)filename

Opens the filename file for print spooling. This method is invoked by printPSCode:
and faxPSCode:; it shouldn't be directly invoked in program code. However, you can
override it to modify its behavior.

Iffilename is NULL or an empty string (filename[O] is '\0'), the PostScript code is sent
directly to the printing daemon, npd, without opening a file. (However, if the Window
is being previewed or saved, a default file is opened in Itmp).

If filename is provided, the file is opened. The printing machinery will then write the
PostScript code to that file and the file will be printed (or faxed) using Ipr.

This method opens a Display PostScript context that will write to the spool file, and sets
the context of the application's global PrintInfo object to this new context. It returns
nil if the file can't be opened; otherwise it returns self.

performKey Equivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Implemented by subclasses of View to allow them to respond to keyboard input. If the
View responds to the key, it should take the appropriate action and return YES.
Otherwise, it should return the result of passing the message along to super, which will
pass the message down the View hierarchy:

return [super performKeyEquivalent:theEvent];

This method returns YES if the View or any of its subviews responds to the key;
otherwise it returns NO.

The default implementation of this method simply passes the message down the View
hierarchy and returns NO if none of the View's subviews responds to the key. theEvent
points to the event record of a key-down event.

See also: - commandKey: (Window and Panel)

2-668 Chapter 2: Class Specifications

placePrintRect:offset:

- placePrintRect:(const NXRect *)aRect offset: (NXPoint *)location

Determines the location of the rectangle being printed on the physical page. This
method is invoked by printPSCode: and faxPSCode:. aRect is the rectangle being
printed on the current page. This method sets location to be the offset of the rectangle
from the lower left comer of the page. All coordinates are in the default PostScript
coordinate system of the page.

By default, if the flags for centering are YES in the global PrintInfo object, this routine
centers the rectangle within the margins. If the flags are NO, it defaults to abutting the
rectangle against the top left margin. Returns self.

printPSCode:

- printPSCode:sender

Prints the View and all its subviews. If the user cancels the job, or if there are any errors
in generating the PostScript code, this method returns nil; otherwise it returns self.

This method normally brings up the PrintPanel before actually initiating printing, but
if sender implements a shouldRunPrintPanel: method, the View will invoke that
method to query sender. If sender's shouldRunPrintPanel: method then returns NO,
then the PrintPanel will not be brought up as part of the printing process, and the View
will be printed using the last settings of the PrintPanel.

See also: - faxPSCode:, - copyPSCodelnside:to:, - shouldRunPrintPanel: (Object
methods)

read:

- read:(NXTypedStream *)stream

Reads the View and its subviews from the typed stream stream. Returns self.

remove Cursor Rect:cursor:

- removeCursorRect:(const NXRect *)aRect cursor:anObj

Removes a cursor rectangle from a window. aRect is given in the View's coordinates,
and anObj is the Cursor object for aRect. You rarely need to use this method; it's
usually easier to use Window's invalidateCursorRectsForView: method and let the
resetCursorRects mechanism restore the cursor rectangles. Returns self.

See also: - invalidateCursorRectsForView: (Window), - resetCursorRects

Application Kit Classes: View 2-669

removeFromSuperview

- removeFromSuperview

Unlinks the View from its superview and its Window, removes it from the responder
chain, and invalidates its cursor rectangles. Returns self.

See also: - addSubview:

renewGState

- renewGState

Forces the View to reinitialize its graphics state object. This method is lazy; the
graphics state object is not refreshed until the View actually draws. Returns self.

replaceSubview:with:

- replaeeSubview:oldView with:newView

Replace oldView with newView in the View's subview list. This method does nothing
and returns nil if oldView is not a subview of the View or if new View is not a View.
Otherwise, this method returns oldView.

See also: - addSubview:

resetCursor Reets

- resetCursor Reets

Implemented by subclasses to reset the View's cursor rectangles. You never send this
message, but this method must be overridden by any View that wants cursor rectangles.
When the Application object determines that the key window has invalid cursor
rectangles, it sends the resetCursorReets message to the key window. The key
window then sends the resetCursorReets message to each of its subviews. Each View
must then send the addCursorReet:eursor: message to itself for each visible cursor
rectangle., The View must clip the cursor rectangle against the visible rectangle, so your
override of this method might look something like this:

- resetCursorRects

NXRect visible;
if ([self getVisibleRect:&visible])

[self addCursorRect:&visible cursor:theCursor];

return self;

See also: - invalidateCursorReetsForView: (Window), - getVisibleReet:,
- addCursorReet:, NXInterseetionReetO

2-670 Chapter 2: Class Specifications

resizeSubviews:
- resizeSubviews:(const NXSize *)oldSize

Informs the View's subviews that the View's bounds rectangle size has changed. This
method is invoked from the sizeTo:: method if the View has subviews and has received
a setAutoresizeSubviews: YES message. By default, this method sends a
superviewSizeChanged: message to each subview. You should not invoke this method
directly, but you may want to override it to define a specific retiling behavior. oldSize
is the previous bounds rectangle size. Returns self.

See also: - sizeTo::, - setAutoresizeSubviews:, - superviewSizeChanged:

rotate:
- rotate:(NXCoord)angle

Rotates the View's drawing coordinates by angle degrees from its current angle of
orientation. Positive values indicate counterclockwise rotation; negative values
indicate clockwise rotation. The position of the coordinate origin, (0.0, 0.0), remains
unchanged; it's at the center of the rotation. Returns self.

See also: - translate::, - scale::, - setDrawRotation:

rotateBy:
- rotateBy:(NXCoord)deltaAngle

Rotates the View's frame rectangle by deltaAngle degrees from its current angle of
orientation. Positive values rotate the frame in a counterclockwise direction; negative
values rotate it clockwise. The position of the frame rectangle origin remains
unchanged; it's at the center of the rotation. Returns self.

See also: - rotateTo:

rotateTo:
- rotateTo:(NXCoord)angle

Rotates the View's frame rectangle to angle degrees in its superview's coordinate
system. The position of the frame rectangle origin remains unchanged; it's at the center
of the rotation. Returns self.

See also: - rotateBy:

Application Kit Classes: View 2-671

scale::

- scale:(NXCoord)x :(NXCoord)y

Scales the View's coordinate system. The length of units along its x and y axes will be
equal to x ang y in the View's current coordinate system. Returns self.

See also: - setDrawSize::, - translate::, - rotate:

scrollPoint:

- scroIlPoint:(const NXPoint *)aPoint

Scrolls the View, which must be a ClipView's document view. aPoint is given in the
receiving View's coordinates. After the scroll, aPoint will be coincident with the
bounds rectangle origin of the Clip View, which is its lower left comer, or its upper left
comer if the receiving View is flipped. Returns self.

See also: - setDocView: (ClipView)

scrollRect: by:

- scroIlRect:(const NXRect *)aRect by:(const NXPoint *)delta

Scrolls the aRect rectangle, which is expressed in the View's drawing coordinates, by
delta. Only those bits which are visible before and after scrolling are moved. This
method works for all Views and does not require that the View's immediate ancestor be
a Clip View or ScrollView. Returns self.

scrollRectTo Visible:

- scroIlRectToVisible:(const NXRect *)aRect

Scrolls aRect so that it becomes visible within the View's parent ClipView. The
receiving View must be a ClipView's document view. This method will scroll the
Clip View the minimum amount necessary to make aRect visible. aRect is a rectangle
in the receiving View's coordinates. Returns self if scrolling actually occurs; otherwise
returns nil.

See also: - setDocView: (ClipView)

setAutodisplay:

- setAutodisplay:(BOOL)jlag

Enables or disables automatic display of the View. Ifjlag is YES, subsequent messages
to the View that would affect its appearance are automatically reflected on the screen.
Ifjlag is NO, you must explicitly send a display message to reflect changes to the View.
By default, changes are automatically displayed. If automatic display is disabled, the

2-672 Chapter 2: Class Specifications

View will set a dirty flag which you can query with the needsDisplay method to
determine whether you need to send the View a display message. Returns self.

See also: - isAutodisplay, - needsDisplay, - setNeedsDisplay:, - display, - update,
- displaylfNeeded

setAutoresizeSubviews:

- setAutoresizeSubviews:(BOOL)jlag

Determines whether the resizeSubviews: message will be sent to the View upon receipt
of a sizeTo:: message. By default, automatic resizing of subviews is disabled. Returns
self.

See also: - resizeSubviews:, - sizeTo::, - superviewSizeChanged:

setAutosizing:

- setAutosizing:(unsigned int)mask

Determines how the receiving View's frame rectangle will change when its superview's
size changes. Create mask by ~Ring the following together:

Flag

NX_NOTSIZABLE
NX_MINXMARGINSIZABLE
NX_ WIDTHSIZABLE
NX_MAXXMARGINSIZABLE
NX_MINYMARGINSIZABLE
NX_HEIGHTSIZABLE
NX_MAXYMARGINSIZABLE

Returns self.

Meaning

The View does not resize with its superview.
The left margin between Views can stretch.
The View's width can stretch.
The right margin between Views can stretch.
The top margin between Views can stretch.
The View's height can stretch.
The bottom margin between Views can stretch.

See also: - sizeTo::, -resizeSubviews:, - setAutoresizeSubviews:

setClipping:

- setClipping:(BOOL)jlag

Determines whether drawing is clipped to the View's frame rectangle. Views are
clipped by default. When you know the View won't draw outside its frame, you can
tum off clipping to reduce the amount of PostScript code sent to the Window Server.
You can also use this method to enable clipping in a View that inherits from a subclass
that disables clipping. You should send a setClipping: message to the View before it
first draws, usually from the method that initializes the View. Returns self.

See also: -lockFocus, - drawlnSuperview, - initFrame:, - doesClip

Application Kit Classes: View 2-673

setDrawOrigin: :
- setDrawOrigin:(NXCoord)x :(NXCoord)y

Translates the View's drawing coordinates so that (x, y) corresponds to the same point
as the View's frame rectangle origin. If the View's drawing coordinates have been
rotated or flipped, this won't necessarily coincide with its bounds rectangle origin.
Returns self.

See also: - translate::, - setDrawSize::, - setDrawRotation:

setDrawRotation:
- setDrawRotation:(NXCoord)angle

Rotates the View's drawing coordinates around its frame rectangle origin so that angle
defines the relationship between the View's frame rectangle and its drawing
coordinates. Returns self.

See also: - rotate:, - setDrawOrigin::, - setDrawSize::

setDrawSize: :
- setDrawSize:(NXCoord)width : (NXCoord)height

Scales the View's drawing coordinates so that width and height define the size of the
View's frame rectangle in drawing coordinates. If the View's drawing coordinates have
been rotated, the View's frame rectangle size won't necessarily be the same as its
bounds rectangle size. Returns self.

See also: - scale::, - setDrawOrigin::, - setDrawRotation:

setFlipped:
- setFIipped:(BOOL)jlag

Flips the direction of the View's y coordinate. Ifjlag is YES, the View's origin will be
located at its upper left comer, and coordinate values will increase towards the bottom
of the View. You should send a setFIipped: message to a View only once, before it
draws, usually from the method that initializes it.

Although a Vi'ew is positioned in its superview's coordinate system, no View will have
a flipped coordinate system unless it receives a setFIipped: YES message of its own; it
can't inherit flipped coordinates from its superview.

This method may also send a descendantFIipped: message to the receiving View's
superview. Returns self.

See also: - notifyWhenFIipped:, - descendantFIipped:, - initFrame:, - isFIipped

2-674 Chapter 2: Class Specifications

setFrame:

- setFrame:(const NXRect *)frameRect

Repositions and resizes the View within its superview's coordinate system by assigning
it the frame rectangle specified by frameRect. Returns self.

See also: - initFrame:, - sizeTo::, - moveTo::

setNeedsDisplay:

- setNeedsDisplay:(BOOL)jlag

This method sets a flag indicating whether the View needs to be displayed. After the
View changes its internal state in such a way that it's no longer accurately reflected on
the screen, it should query itself with an isAutodisplay message. If automatic display
is enabled, the View should send a display message to itself. If automatic display is
disabled, the View should send a setNeedsDisplay:YES message to itself. This
message has no effect if automatic display is enabled. Returns self.

See also: - update, - setAutodisplay, - isAutodisplay, - needsDisplay:,
- display:::, - displaylfNeeded

setOpaque:

- setOpaque:(BOOL)jlag

Registers whether the View is opaque. If the View guarantees it will cover the entire
area within its frame when it displays itself, it should send itself a setOpaque: YES
message. This method is used to ensure correct drawing of invalidated Views. Returns
self.

See also: - is Opaque, - opaque Ancestor, - displayFromOpaqueAncestor:::

shouldDrawColor

- (BOOL)shouldDrawColor

Returns whether the View should be drawn using color. If the View is being drawn to
a window and the window can't store color, this method returns NO; otherwise it
returns YES.

sizeBy::

- sizeBy:(NXCoord)deltaWidth :(NXCoord)deltaHeight

Resizes the View by deltaWidth and deltaHeight in its superview's coordinates. This
method works by invoking the size To:: method. Returns self.

See also: - sizeTo::, - moveBy::

Application Kit Classes: View 2-675

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the View's frame rectangle to the specified width and height in its superview's
coordinates. It may also initiate a descendantFrameChanged: message to the View's
superview. Returns self.

See also: - setFrame:, - moveTo::, - sizeBy::, - descendantFrameChanged:

spoolFile:

- spooIFile:(const char *)filename

Spools the generated PostScript file to the printer. This method is invoked by
printPSCode: and faxPSCode:. Returns self.

subviews

- sub views

Returns the List object that contains the receiving View's subviews. You can use this
List to send messages to each View in the View hierarchy. You must not modify this
List directly; use addSubview: and removeFromSuperview to add and remove Views
from the View hierarchy.

See also: - superview, - addSubview:, - removeFromSuperview

superview

- superview

Returns the receiving View's superview.

See also: - window, - subviews, - addSubview:, - removeFromSuperview

superviewSizeChanged:

- superviewSizeChanged:(const NXSize *)oldSize

Informs the View that its superview's size has changed. This method is invoked when
the View's superview has received a resizeSubviews: message. This method will
automatically resize the View according to the parameters set by the setAutosizing:
message. You may want to override this method to provide specific resizing behavior.
oldSize is the previous bounds rectangle size of the receiving View's superview.
Returns self.

See also: - resizeSubviews:, - sizeTo::, - setAutoresizeSubviews:

2-676 Chapter 2: Class Specifications

suspendNotify AncestorWhenFrameChanged:

tag

- suspendNotify Ancestor WhenFrameChanged:(BOOL)jlag

Temporarily disables or reenables the sending of descendantFrameChanged:
messages to the View's superview when the View is sized or moved. You must have
previously sent the View a notifyAncestorWhenFrameChanged:YES message for
this method to have any effect. These messages do not nest. Returns self.

See also: - descendantFrameChanged:, - notifyAncestorWhenFrameChanged:,
- sizeTo::, - moveTo::,

- (int)tag

Returns the View's tag, a integer that you can use to identify objects in your application.
By default, View returns (-1). You can override this method to identify certain Views.
For example, your application could take special action when a View with a given tag
receives a mouse event.

See also: - findViewWithTag:

translate::

- translate:(NXCoord)x :(NXCoord)y

Translates the origin of the View's coordinate system to (x, y). Returns self.

See also: - setDrawOrigin::, - scale::, - rotate:

unlockFocus

- unlockFocus

Balances an earlier lockFocus message to the same View. If the lockFocus method
saved the previous graphics state, this method restores it. Returns self.

See also: - lockFocus, - display:::

update

- update

Invokes the proper update behavior when the contents of the View have been changed
in such a way that they are no longer accurately represented on the screen. If automatic
display is enabled, this method invokes display; otherwise this method sets a flag
indicating that the View needs to be displayed. Returns self.

See also: - setNeedsDisplay, - isAutoDisplay, - display, - displaylfNeeded

Application Kit Classes: View 2-677

widthAdjustLimit

- (float)widthAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next
page during automatic pagination to prevent items from being cut in half. This limit
applies to horizontal pagination. This method is invoked by printPSCode: and
faxPSCode:. By default, this method returns 0.2.

See also: - adjustPageHeightNew:top:bottom:limit:

window

-window

Returns the Window of the receiving View.

See also: - superview

windowChanged:

- windowChanged:newWindow

Invoked when the Window the View is in changes (usually from nil to non-nil or vice
versa). This often happens due to a removeFromSuperview sent to the View (or some
View higher up the hierarchy from it). This method is especially important when the
View is the first responder in the window, in which case this method should be
overridden to clean up any blinking carets or other first responder dependent activity
the View engages in. Note that resignFirstResponder is NOT called when a View is
removed from the View hierarchy (since the View does not have the opportunity to
reject resignation of the first responder). This method is invoked before the window
instance variable has been changed to new Window. Returns self.

write:
- write:(NXTypedStream *)stream

Writes the receiving View and its subviews to the typed stream stream. Returns self.

METHODS IMPLEMENTED BY VIEWS THAT ACCEPT COLOR

acceptCoior:atPoint:

- acceptColor:(NXColor)color atPoint:(NXPoint *)aPoint

Allows a View to accept a color. If your subclass of View implements this method, it
will be invoked when the user drags a color (as from an NXColorWell) into your View.
Colors are typically dragged using NXColorPanel's
dragColor:withEvent:from View: class method. aPoint describes the point (in the

2-678 Chapter 2: Class Specifications

View s window s coordinates) to which the color should be applied; you may want to
use convertPoint:from View: to convert aPoint to the View s coordinates. Your
implementation of the acceptColor:atPoint: method should take whatever action is
appropriate, which may include redisplaying the View. ,

See also: - acceptColor:atPoint: (NXColorWell), - convertPoint:fromView:,
+ dragColor:withEvent:from View: (NXColorPanel), NXSetCoiorO

CONSTANTS AND DEFINED TYPES

#define NX NOTSIZABLE (0)

#define NX MINXMARGINSIZABLE (1)

#define NX WIDTHSIZABLE (2)

#define NX MAXXMARGINSIZABLE (4)

#define NX MINYMARGINSIZABLE (8)

#define NX HEIGHTSIZABLE (16)

#define NX MAXYMARGINSIZABLE (32)

1* Are we drawing, printing, or copying PostScript to the scrap? *1

extern short NXDrawingStatus;

1* NXDrawingStatus values *1

#define NX DRAWING 1 1* we re drawing *1
#define NX PRINTING 2 1* we re printing *1
#define NX COPYING 3 1* we re copying to the scrap *1

Application Kit Classes: View 2-679

2-680

Window

INHERITS FROM Responder: Object

DECLARED IN appkit/Window.h

CLASS DESCRIPTION

The Window class defines objects that manage and coordinate windows for an
application; each object corresponds to a physical window provided by the Window
Server. A Window object plays a central role in an application:

• It communicates with the Window Server to create, move, resize, reorder, and free
a window on the screen. It also responds to event messages that inform the
application that the window has been affected by user actions.

• It manages a hierarchy of Views that draw inside the window and handle all
keyboard and mouse events associated with it. It determines how events are
assigned to Views and has methods that help regulate the View display mechanism.

• It keeps track of the current status of the window as the key window or main
window, as well as its location, size, and other window attributes.

• It provides a text object-afield editor-that can be assigned small-scale editing
tasks within the window. The field editor is used by NXBrowsers, Forms, Matrices,
and TextFields located in the Window.

Rectangles and Views

A Window is defined by aframe rectangle that encloses the entire window, including
its title bar, resize bar, and border, and by a content rectangle that encloses just its
content area. Both rectangles are specified in the screen coordinate system.

Corresponding to these rectangles, each Window has at least two Views in its view
hierarchy, a frame view that fills the entire frame rectangle and draws the border, title
bar, and resize bar, and a content view that fills the content area. The frame view is the
responsibility of the Window object and shouldn't be altered or sent messages by
application programs. The content view is the highest accessible View in the Window's
view hierarchy; other Views can be installed as its subviews but it can't be made the
subview of another View.

Application Kit Classes: Window 2-681

Event Handling

The Application object sends mouse and keyboard events to the Window, as well as
window-moved, window-exposed, window-resized, and screen-changed subevents of
the kit-defined event. The Window object handles the kit-defined subevents itself, and
distributes the keyboard and mouse events to View objects in its view hierarchy. A
Window receives keyboard events only if it's the key window.

The Window keeps track of the object that was last selected to handle keyboard events
as its first responder. The first responder is typically the View that displays the current
selection. In addition to keyboard events, it's sent action messages that have a
user-selected target (a nil target in program code). Views that don't display selectable
or editable material-such as Buttons, Sliders, and NXSplitViews-and respond only
to a limited set of events don't become the first responder. Views that can display a
selection-such as a Text object or a Matrix-are potential first responders. The
Window continually updates the first responder in response to the user's mouse actions.

Delegates

In addition to its Views and field editor, a Window can have a delegate to coordinate
activities within the Window and, on occasion, intervene to constrain the Window in
some way or respond to action messages the Window receives. The delegate should be
provided with methods that can respond to any or all of the notification methods listed
under "METHODS IMPLEMENTED BY THE DELEGATE" near the end of this class
specification. Before sending a notification message, the Window first checks to see
whether the delegate can respond. If not, no message is sent. There's no need to have
a delegate implement all the methods.

2-682 Chapter 2: Class Specifications

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Declared in Window

frame

contentView

delegate

firstResponder

Class

id

NXRect
id
id
id
id
id
id
id
int
int
float
struct _ w Flags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

struct _ w Flags2 {
unsigned int
unsigned int
unsigned int

isa;

nextResponder;

frame;
contentView;
delegate;
firstResponder;
lastLeftHit;
lastRightHit;
counterpart;
fieldEditor;
winEventMask;
windowNum;
backgroundGray;

style:4;
backing: 2;
buttonMask:3;
visible: 1;
isMain Window: 1;
isKeyWindow: 1;
isPanel:1;
hideOnDeactivate: 1;
dontFree WhenClosed: 1;
oneShot:1;

wFlags;

deferred: 1;
doc Edited: 1 ;
dynamicDepthLimit: 1;

wFlags2;

The Window's location and size (its frame
rectangle) in screen coordinates.

The View that fills the content area of the
Window.

The object that receives notification messages
from the Window.

The Responder that receives keyboard events and
untargeted action messages sent to the Window.
The first responder is typically a View in the
Window's view hierarchy, the one that displays
the current selection, and changes in response to
mouse-down events.

Application Kit Classes: Window 2-683

lastLeftHit

lastRightHit

counterpart

fieldEditor

winEventMask

windowNum

backgroundGray

wFlags.style

wFlags.backing

wFlags.buttonMask

wFlags.visible

. wFlags.isMain Window

wFlags.isKeyWindow

wFlags.isPanel

w Flags.hideOnDeactivate

2-684 Chapter 2: Class Specifications

The last View in the Window's view hierarchy to
receive a left mouse-down event.

The last View in the Window's view hierarchy to
receive a right mouse-down event.

The id of the Window's mini window, or, if the
Window is a mini window, the id of the Window it

. stands for. Since miniwindows aren't created
until they're needed, the counterpart may be nil.
(It will also be nil if the Window is a mini world
icon standing for an application.)

A place holder for a Text object that will display
and edit text for any Controls and Cells located
within the window.

The events the Window can receive from the
Window Server.

The window number, used by the Application Kit
to identify the window. This number isn't the
global number assigned by the Window Server. It
corresponds to a user object and is therefore local
to the Window's context.

The background color of the window.

The style of window; whether it's plain, titled, a
mini window, or has a frame suitable for a menu.

The type of backing for the on-screen display;
whether the Window is retained, nonretained, or
buffered.

Which controls the window has (close button,
miniaturize button, or resize bar).

True if the window is on-screen (in the screen
list).

True when the window is the main window .

True when the window is the key window.

True if the window is a panel.

True if the window should be removed from the
screen when the application deactivates.

wFlags.dontFree WhenClosed

wFlags.oneShot

w Flags2.deferred

wFlags2.docEdited

wFlags2.dynamicDepthLimit

METHOD TYPES

True if the Window is not to be freed when closed.

True if the Window Server should free the
window for this object when it's removed from
the screen.

True if the Window Server shouldn't create a
window for this object until it's needed.

True if the close button indicates that the
document has been edited but not saved.

True if the window has a dynamic depth limit that
can change to match the depth of the display
device.

Initializing a new Window instance - init
- initContent:style:backing:buttonMask:defer:
- initContent:style:backing:buttonMask:

defer: screen:

Freeing a Window object -free

Setting up the Window - setTitle:
- setTitleAsFilename:
- title
- setContentView:
- content View
- setBackgroundColor:
- backgroundColor
- setBackgroundGray:
- backgroundGray
- setHideOnDeactivate:
- doesHideOnDeactivate
- setMiniwindowIcon:
- mini window Icon
- setOneShot:
- isOneShot
- setFree WhenClosed:
- setExcludedFrom WindowsMenu:
- isExcludedFrom WindowsMenu

Application Kit Classes: Window 2-685

Querying window attributes -windowNum
- buttonMask
- style
- works WhenModal
- screen
- bestScreen

Window status - makeKeyWindow
- makeKey AndOrderFront:
- becomeKeyWindow
- isKeyWindow
- resignKey Window
- canBecomeKeyWindow
- becomeMain Window
- isMain Window .
- resignMain Window
- canBecomeMain Window

Rectangle support - getFrame:
- getFrame:andScreen:
+ getFrameRectforContentRect style:
+ getContentRect:forFrameRect: style:
+ minFrame Width:forStyle: buttonMask:

Moving and resizing the window - move To: :
- moveTo::screen:
- moveTopLeftTo::
- moveTopLeftTo::screen:
- dragFrom::eventNum:
- constrainFrameRect:toScreen:
- place Window:
- place Window: screen:
- place Window AndDisplay:
- sizeWindow::
- center

Reordering the window - make Key AndOrderFront:
- orderFront:
- orderBack:
- orderOut:
- orderWindow:relativeTo:
- isVisible

Converting coordinates - convertBaseToScreen:
- convertScreenToBase:

2-686 Chapter 2: Class Specifications

Managing the display

Window depths

Graphics state objects

The field editor

Cursor management

- display
- displaylfNeeded
- disableDisplay
- isDisplayEnabled
- reenableDisplay
- flushWindow
- flushWindowlfNeeded
- disableFlush Window
- reenableFlush Window
- displayBorder
- useOptimizedDrawing:
- update

+ defaultDepthLimit
- setDepthLimit:
- depthLimit
- setDynamicDepthLimit:
- hasDynamicDepthLimit
- canStoreColor

- gState

- endEditingFor:
- getFieldEditor:for:

- addCursorRect:cursor:forView:
- removeCursorRect:cursor:forView:
- invalidateCursorRectsFor View:
- disableCursorRects
- enableCursorRects
- discardCursorRects
- resetCursorRects

Handling user actions and events - close
- performClose:
- miniaturize:
- performMiniaturize:
- deminiaturize:
- setDocEdited:
- isDocEdited
- window Exposed:
- windowMoved:
- windowResized:
- screenChanged:

Setting the event mask - setEventMask:
- addToEventMask:
- removeFromEventMask:
- eventMask

Application Kit Classes: Window 2-687

Aiding event handling

Services menu support

Printing

Setting up pages

Writing conforming PostScript

Archiving

Assigning a delegate

2-688 Chapter 2: Class Specifications

- getMouseLocation:
- setTrackingRect:inside:owner:tag:left:right:
- discardTrackingRect:
- makeFirstResponder:
- firstResponder
- sendEvent:
- rightMouseDown:
- commandKey:
- tryToPerform:with:

- validRequestorForSendType:andRetumType:

- printPSCode:
- smartPrintPSCode:
- faxPSCode:
- smartFaxPSCode:
- openSpoolFile:
- spoolFile:
- copyPSCodeInside:to:

- knowsPagesFirst:last:
- getRect:forPage:
- placePrintRect:offset:
- heightAdjustLimit
- widthAdjustLimit

- beginPSOutput
- beginPrologueBBox:creationDate:

createdBy:fonts:forWhom:pages:title:
- endHeaderComments
- endPrologue
- beginSetup
- endSetup
- beginPage:label:bBox:fonts:
- beginPageSetupRect:placement:
- endPageSetup
- endPage
- begin Trailer
- end Trailer
- endPSOutput

- read:
- write:
- awake

- setDelegate:
- delegate

CLASS METHODS

defaultDepthLimit

+ (NXWindow Depth)defaultDepthLimit

Returns the default depth limit for the Window. This will be the smaller of:

• The depth of the deepest display device available to the Window Server, or
• The depth set for the application by the NXWindow DepthLimit parameter.

The value returned will be one of these enumerated values (defined in the header file
appkitl graphics.h):

NX_ TwoBitGrayDepth
NX_EightBitGray Depth

. NX_ TwelveB itRGB Depth
NX_TwentyFourB itRGB Depth

See also: - setDepthLimit:, - setDynamicDepthLimit:, - canStoreColor

getContentRect:forFrameRect:style:

+ getContentRect:(NXRect *)content
forFrameRect:(const NXRect *)frame
style: (int)aStyle

Calculates the content rectangle of a window that occupies, along with its border, title
bar, and resize bar, the frame rectangle specified by frame and has the style indicated
byaStyle. The rectangle is returned by reference in the structure specified by content.
Both rectangles are in screen coordinates. Returns self.

Use this method to get a rectangle to pass to the
initContent:style:backing:buttonMask:defer: method if you want a window
(including its border, title bar, and resize bar) to occupy a precise area of the screen.
Permitted values for aStyle are discussed under that method.

See also: + getFrameRect:forContentRect:style:,
- initContent:style: backing: buttonMask:defer:

Application Kit Classes: Window 2-689

getFrameRect:forContentRect:style:
+getFrameRect:(NXRect *)frame

forContentRect:(const NXRect *)content
style:(int)aStyle .

Calculates the frame rectangle that will be occupied by a window (including its border,
title bar, and resize bar) if it has the content rectangle specified by content and the style
indicated by aStyle. The frame rectangle is returned by reference in the structure
specified by frame. Both rectangles are in screen coordinates. Returns self.

Use this method to be sure the window will fit in the space available to it.

See also: + getContentRect:forFrameRect:style:,
- initContent:style: backing: buttonMask:defer:

minFrame Width:forStyle: buttonMask:
+ (NXCoord)minFrameWidth:(const char *)aTitle

forStyle:(int)aStyle
buttonMask:(int)aMask

Returns the minimum width that a Window's frame rectangle must have for it to display
all of aTitle, given the specified style and button mask. Permitted values for aStyle and
aMask are discussed under initContent:style:backing:buttonMask:defer:.

See also: - initContent:style:backing:buttonMask:defer:

INSTANCE METHODS

addCursorRect:cursor:forView:
- addCursorRect:(const NXRect *)aRect

cursor:anObject
for View:aView

Adds the rectangle specified by aRect to the Window's list of cursor rectangles, and
returns self. If the rectangle can't be added (for example, if the rectangle doesn't lie
within the content area of the Window), nil is returned.

This method is invoked by View's addCursorRect:cursor: method, which should be
used instead of this method inside of View implementations of the resetCursorRects
method.

See also: - addCursorRect:cursor: (View), - resetCursorRects (View)

2-690 Chapter 2: Class Specifications

addToEventMask:
- (int)addToEventMask:(int)newEvents

Adds newEvents to the Window's current event mask and returns the original event
mask. (newEvents and the original mask are joined through the bitwise OR operator.)

This method is typically used when an object sets up a modal event loop to respond to
certain events. The return value should be used to restore the Window's original event
mask when the modal loop done.

See also: - setEventMask:, - eventMask, - removeFromEventMask:

awake
-awake

Reinitializes the Window object by having the Window Server redisplay the window
and assign it an accurate window number. The Window then registers itself in the
Application object's window list.

An awake message is automatically sent to every object after it has been read in from
an archive file and all the objects it refers to are in a usable state. The message gives
the object a chance to complete any initialization that read: couldn't do. If you
override this method in a Window subclass, the subclass method should include a
message to incorporate this version of awake as well:

- awake

[super awake 1 ;

return self;

See also: - read:

background Color
- (NXColor)backgroundCo)or

Returns the background color of the window when it's located on a color display
device. The default is the color equivalent to the NX_LTGRAY gray value.

See also: - setBackgroundCo)or:

Application Kit Classes: Window 2-691

background Gray

- (float)backgroundGray

Returns the gray displayed in the background of the Window'~ content area. The
default is NX_LTGRAY.

See also: - set,BackgroundGray:

becomeKeyWindow

- becomeKeyWindow

Records the fact that the Window is now the key window, reestablishes its cursor
rectangles, and returns self. This method passes the becomeKeyWindowmessage on
to the Window's first responder, if the first responder implements a method that can
respond. The delegate receives a windowDidBecomeKey: notification message, if it
can respond.

See also: - resignKeyWindow, - becomeMainWindow, - setDelegate:

becomeMain Window

- become Main Window

Records the fact that the receiving Window is now the main window, and returns self.
This method sends the Window's delegate a windowDidBecomeMain: message, if the
delegate can respond.

See also: - resignMain Window, - becomeKeyWindow, - setDelegate:

beginPage:label: bBox:fonts:

- beginPage:(int)ordinaINum
label:(const char *)aString
bBox:(const NXRect *)pageRect
fonts:(const char *)fontNames

Writes a conforming PostScript page separator. This method is invoked automatically
when printing (or faxing) the Window; it should not be used in program code.
However, you can override it to modify the separator that it writes.

ordinalNum specifies the position of the page in the document (from 1 through n for an
n-page document).

aString is a string that identifies the page according to the document's internal
numbering scheme. It should contain no white space characters. If aString is NULL,
the ASCII equivalent of ordinalNum is used.

2-692 Chapter 2: Class Specifications

pageRect is a pointer to the rectangle, in the default user coordinate system, enclosing
all marks on the page about to be printed. If pageRect is NULL, bounding box
information for the page isn't written. Instead, the string "(atend)" is written to indicate
that the endPage method will write the bounding box at the end of the page description.

fontNames is a string listing the names of the fonts used on the page. The names should
be separated by spaces. If the fonts used are unknown before the page is printed,
fontNames will be NULL. The endPage method will then list the fonts at the end of
the page description.

See also: - endPage, - printPSCode:

beginPageSetupRect:placement:

- beginPageSetupRect:(const NXRect *)aRect
placement: (const NXPoint *)location

Writes the page setup section for a given page. This method is invoked when printing
(or faxing) the Window after the starting comments for the page have been written; it
should not be used in program code. However, you can override it to modify the section
that it writes.

This method writes out the PostScript save operator and generates the initial coordinate
transformation to prepare for printing the aRect rectangle within the Window. The save
operation is balanced by a restore that the endPage method writes. The aRect
rectangle is in the Window's base coordinate system. location is the offset of the
rectangle from the lower left comer of the physical page; it's specified in page
coordinates (equal to units of the base coordinate system).

See also: - endPageSetup, - endPage, - printPSCode:

beginPrologqeBBox:creationDate:createdBy:fonts:for Whom:pages:title:

- beginPrologueBBox:(const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication
fonts:(const char *)fontNames
forWhom:(const char *)user
pages: (int)numPages
title:(const char *)aTitle

Writes the start of a conforming PostScript header. This method is invoked when
printing (or faxing) the Window; it should not be used in program code. However, you
can override it to modify the header it writes.

boundingBox is a pointer to the bounding box of the document. This rectangle should
be in the default user coordinate system (identical to the Window's base coordinate
system but with the origin at the lower left comer of the page). If the bounding box is
unknown, boundingBox will be NULL. The system will then accumulate it as pages
are printed.

Application Kit Classes: Window 2-693

dateCreated-is an ASCII string containing a human-readable date. If it's NULL, the
current date is used.

anApplication is a string containing the name of the document creator. If it's NULL,
the string returned by the Application object's appName method is used.

JontNames is a string holding the names of the fonts used in the document. Names
should be separated by a space. If the fonts used are unknown before the document is
printed,JontNames will be NULL. In this case, each font that there's a findfont
operation for will be written in the trailer.

user is a string containing the name of the person printing the document. If it's NULL,
the login name of the user is used.

numPages specifies the number of pages in the document. If unknown at the beginning
of printing, it has a value of -1. In this case, the pages are counted as they're generated
and the total is written in the trailer.

aTitle is a string specifying the title of the document. If aTitle is NULL, the Window's
title is used.

See also: - endPrologue, - endHeaderComments, - printPSCode:

beginPSOutput

- beginPSOutput

Performs various initializations to prepare for generating PostScript code. This method
is invoked when printing (or faxing) the Window; it should not be used in program
code. However, you can override it to modify or add to the initialization it does.

This method first makes the Display PostScript context stored in the global PrintInfo
object (the one returned by NXApp's printInfo method) the current context. This has
the effect of redirecting all PostScript output from the Window Server to the spool file
or printer.

See also: - endPSOutput, - printPSCode:

beginSetup

- beginSetup

Writes the beginning of the document setup section. This method is invoked when
printing (or faxing) the Window; it should not be used in program code. However, you
can override it to modify the way it writes the section.

The document setup section is intended for general initialization code and to set up the
output device. It follows the document prologue but precedes any pages that are to be
printed. At the beginning of the section, this method writes a "%%BeginSetup"
comment and a "%%PaperSize" comment declaring the type of paper being used. It

2-694 Chapter 2: Class Specifications

also writes comments after querying the Printlnfo object with isManualFeed and
resolution messages.

See also: - endSetup, - printPSCode:

begin Trailer

- beginTrailer

Writes the start of a conforming PostScript trailer, and returns self. This method is
invoked when printing (or faxing) the Window after all the pages have been written; it
should not be used in program code. However, you can override it to modify the trailer
it writes.

See also: - endTrailer, - printPSCode:

bestScreen

- (const NXScreen *)bestScreen

Returns a pointer to the deepest screen that the Window currently is on, or NULL if the
Window is currently off-screen. A Window can be on more than one screen if the user
drags it so that it's displayed partly on one device and partly on another.

See also: - screen, - colorScreen (Application)

buttonMask

- (int)buttonMask

Returns a mask that indicates which buttons appear in the Window's title bar and
whether the Window has a resize bar. You can test the return value against these
constants:

NX_CLOSEBUTTONMASK
NX_RESIZEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

See also: - initContent:style:backing:buttonMask:defer:

canBecomeKeyWindow

- (BOOL)canBecomeKeyWindow

Returns YES if the receiving Window can be made the key window, and NO if it can't.

See also: - isKeyWindow

Application Kit Classes: Window 2-695

canBecomeMain Window

- (BOOL)canBecomeMain Window

Returns YES if the receiving Window can be made the main window, and NO if it can't.
A Window can become the main window if it's in the screen list, isn't a Panel, and
accepts keyboard events.

See also: - isMain Window

canStoreColor

- (BOOL)canStoreColor

Returns YES if the Window has a depth limit that would allow it to store color values,
and NO if it doesn't.

See also: - depthLimit, - shouldDrawColor (View)

center

- center

Moves the window to the center of the screen. This is used when putting up modal
panels by Application's runModalFor: method. Returns self.

close

- close

Removes the Window from the screen. If the Window is to be freed when it's closed
(the default), this method goes on to remove the Window object from the Application
object's list of Windows, have the Window Server destroy the window, and send the
object a free message.

This method is invoked by the Application Kit when the user clicks the Window's close
button. You should invoke it only when you have no other use for the Window (unless
the Window is not to be freed when it's closed).

Returns nil.

See also: - close (Menu), - setFreeWhenClosed:

2-696 Chapter 2: Class Specifications

commandKey:

~ (BOOL)commandKey:(NXEvent *)theEvent

Returns NO, to indicate that no objects within the Window can handle Command
key-down events.

If a Window has any Views that might want to respond to the key-down event as a
keyboard alternative, it must override this version of the method and initiate a
performKeyEquivaJent: message to the Views. For example:

- (BOOL)commandKey: (NXEvent *)theEvent

if ([contentView performKeyEquivalent:theEvent]

return (YES);

else
return (NO);

The Panel class implements a method like this so that the controls within a panel and
the commands within a menu can respond to keyboard alternatives.

A commandKey: message is initiated by the Application object when it receives a
key-down event while the Command key is pressed. It sends the message to each
Window in its window list, until one of them responds YES. A Window doesn't have
to be on-screen to receive the message.

The argument, theEvent, is a pointer to the key-down event.

See also: - performKeyEquivaJent: (View), - commandKey: (Panel)

constrainFrameRect:toScreen:

- (BOOL)constrainFrameRect:(NXRect *)theFrame
toScreen:(NXScreen *)screen

Modifies the frame rectangle of the Window so that enough of it will appear on the
specified screen to give users control over the Window's title bar. If screen is NULL,
the Window is constrained to the nearest screen.

A constrainFrameRect:toScreen: message is sent to a titled Window (with or without
a resize bar) whenever it's placed on-screen or resized by the application. The proposed
frame rectangle for the Window is passed in the structure referred to by theRect. If this
method modifies the rectangle, it returns YES. Otherwise, it returns NO.

You can override this method to prevent a particular Window from being constrained
to the screen, or to constrain it differently.

Application Kit Classes: Window 2-697

content View

-content View

Returns the id of the Window's current content view.

See also: - setContentView:

convertBaseToScreen:

- convertBaseToScreen:(NXPoint *)aPoint

Converts the point referred to by aPoint from the Window's base coordinate system to
the screen coordinate system, and returns self.

See also: - convertScreenToBase:

convertScreenToBase:

- convertScreenToBase:(NXPoint *)aPoint

Converts the point referred to by aPoint from the screen coordinate system to the
Window's base coordinate system, and returns self.

See also: - convertBaseToScreen:

copyPSCodelnside:to:

- copyPSCodelnside:(const NXRect *)reet to:(NXStream *)stream

Generates PostScript code for all the Views located inside the reet portion of the
Window. The rectangle is specified in the Window's base coordinates. The PostScript
code is written to stream.

This method generates PostScript code in the same way that printPSCode: and
faxPSCode: do, except that it writes it to stream. If an exception is raised, it doesn't
return.

See also: - printPSCode:, - faxPSCode:

2-698 Chapter 2: Class Specifications

delegate

- delegate

Returns the Window's delegate, or nil if it doesn't have one.

See also: - setDelegate:

deminiaturize:

- deminiaturize:sender

Removes the receiving miniwindow from the screen and places the real Window at the
front of its tier. The value passed in sender is ignored. Returns self.

See also: - miniaturize:

depthLimit

- (NXWindowDepth)depthLimit

Returns the depth limit of the Window. This will be one of the following enumerated
values (defined in the header file appkit/graphics.h):

NX_DefaultDepth
NX_ TwoBitGrayDepth
NX_EightBitGray Depth
NX_ TwelveBitRGBDepth
NX_ TwentyFourBitRGBDepth

If the return value is NX_DefaultDepth, you can find out what depth that corresponds
to by sending the Window class a defaultDepthLimit message.

See also: + defaultDepthLimit, - setDepthLimit:, - setDynamicDepthLimit:

disableCursor Rects

- disableCursorRects

Disables all cursor rectangle management within the Window. Typically this method
is used when you need to do some special cursor manipulation, and you don't want the
Application Kit interfering. Returns self.

See also: - enableCursorRects

Application Kit Classes: Window 2-699

disableDisplay

- disableDisplay

Prevents the display methods defined in the View class from displaying any Views
within the Window. This permits you to alter or update the Views before displaying
them again.

Displaying should be disabled only temporarily. Each disableDisplay message should
be paired with a subsequent reenableDisplay message. Pairs of these messages can be
nested; drawing won't be reenabled until the last (unnested) reenableDisplay message
is sent.

Returns self.

See also: - reenableDisplay, - isDisplayEnabled, - display::: (View)

disableFlush Window

- disableFlush Window

Disables the flush Window method for the Window. If the Window is a buffered
window, drawing won't automatically be flushed to the screen by the display methods
defined in the View class. This permits several Views to be displayed before the results
are shown to the user.

Flushing should be disabled only temporarily, while the Window's display is being
updated. Each disableFlush Window message should be paired with a subsequent
reenableFlush Window message. Message pairs can be nested; flushing won't be
reenabled until the last (unnested) reenableFlush Window message is sent.

Returns self.

See also: - reenableFlush Window, - flush Window, - disableDisplay

discardCursor Rects

- discardCursorRects

Removes all cursor rectangles from the Window, and returns self. This method is
invoked by resetCursorRects to clear out existing cursor rectangles before resetting
them. In general, you wouldn't invoke it in the code you write, but might want to
override it to change its behavior.

See also: - resetCursorRects

2-700 Chapter 2: Class Specifications

discardTrackingRect:

- discardTrackingRect:(int)trackNum

Removes the tracking rectangle identified by the trackNum tag through a call to
PScleartrackingrectO, and returns self. The tag was assigned when the tracking
rectangle was created.

See also: - setTrackingRect:inside:owner:tag:left:right:

display

- display

Displays all drawing done within the window, including the border, resize bar, and title
bar. Each visible View within the Window's view hierarchy will receive a display
message. If displaying had been disabled within the Window, this method reenables it.
Returns self.

See also: - display (View), - disableDisplay, - displaylfNeeded

display Border

- displayBorder

Redraws the Window's border, title bar, and resize bar, and returns self. This is
normally done automatically for you.

See also: - display

displaylfNeeded

- displaylfNeeded

Descends the view hierarchy in the Window, sending a display message to each View
that has been tagged as needing to be updated (that has its needsDisplay flag set). This
method is useful when you want to disable displaying in the Window, modify a series
Qf Views, then display only the ones that were modified. Returns self.

See also: - display, - setNeedsDisplay: (View), - update (View)

doesHideOnDeactivate

- (BOOL)doesHideOnDeactivate

Returns YES if the Window will disappear from the screen when the application is
deactivated, and NO if it won't.

See also: - setHideOnDeactivate:

Application Kit Classes: Window 2-701

dragFrom: :eventNum:

- dragFrom:(float)x
: (float)y
eventNum:(int)num

Lets the user drag a window from a point within its interior. By default, users can drag
any window that has a title bar. If you want the user to be able to drag a window without
a title bar, you can design a View that will invoke this method when it receives a
mouse-down event. The Window Server will intercept subsequent mouse-dragged
events, move the window to its new position, and inform the application through a
window-moved sub event when the user releases the mouse button.

The first two arguments, (x, y), give the cursor's location in base coordinates. The third
argument, num, is the event number for the mouse-down event. All three can be taken
directly from the event record for the mouse-down event. Returns self.

See also: - moveTo::

enable Cursor Rects

- enableCursor Rects

Reenables cursor rectangle management that had been disabled by the
disable Cursor Rects method. Returns self.

See also: - disableCursorRects

endEditingFor:

- endEditingFor:anObject

Makes the Window's field editor (a Text object) available for a new editing assignment
by detaching it from the object it's currently serving (normally its superview and
delegate). If the field editor is the first responder, the Window is made the new first
responder. This forces a textDidEnd:endChar: message to be sent to the field editor's
delegate. The field editor then is assigned a nil delegate and is removed from the view
hierarchy (its superview is made nil). This forces an end to editing even if the field
editor had refused to resign its status as the first responder.

To conditionally end editing, first try to make the Window the first responder:

if ([my Window makeFirstResponder:myWindow]) {
[my Window endEditingFor:nil]i

makeFirstResponder: returns nil if the current first responder won't resign. This is
the preferred way to verify all fields when an OK button is pressed in a panel, for
example.

2-702 Chapter 2,' Class Specifications

Returns self.

See also: - getFieldEditor:for:

endHeaderComments
- endHeaderComments

Writes out the end of a conforming PostScript header. This method is invoked when
printing (or faxing) the Window; it should not be invoked in program code. However,
you can override it to modify the comments it writes or add to the beginning of the
document prologue. The prologue contains definitions global to a print job.

This method writes the "%%EndComments" line and then writes the Application Kit's
standard printing package to begin the prologue proper. If there's an error in writing
the package, an NX_printPackageError exception is raised and this method will not
return.

See also: - printPSCode:,
- beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

endPage
-endPage

Writes the end of a conforming PostScript page. This method is invoked after each
page is written when printing (or faxing) the Window; it should not be used in program
code. However, you can override it to modify what it writes.

This method generates a restore operation after each page has been described and a
showpage operation when there are no more pages to be printed on the current sheet of
paper.

See also: - beginPage:label:bBox:fonts:, - beginPageSetupRect:placement:,
- printPSCode:

endPageSetup
- endPageSetup

Writes the "%%EndPageSetup" comment to end the page setup section. This method
is invoked automatically when printing (or faxing) the Window; it should not be used
in program code. However, you can override it to modify or add to what it writes.

See also: - beginPageSetupRect:placement:, - printPSCode:

Application Kit Classes: Window 2-703

endPrologue
- endPrologue

Writes the end of a conforming PostScript prologue. This method is invoked when
printing (or faxing) the Window; it should not be used in program code. However, you
can override it to modify the end of the prologue.

See also: - printPSCode:,
- beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

endPSOutput
- endPSOutput

Finishes a print job by closing the spool file (if any) and restoring the display context
so that further PostScript code will be directed to the Window Server. This method is
invoked when printing (or faxing) the Window; it should not be used in program code.
However, you can override it to modify its behavior.

See also: - beginPSOutput, - printPSCode:

endSetup
- end Setup

Writes the "%%EndSetup" comment that terminates the document setup section. This
method is invoked when printing (or faxing) the Window; it should not be used in
program code. However, you can override it to add to what it writes.

See also: - beginSetup, - printPSCode:

endTrailer
- end Trailer

Writes a PostScript conforming trailer. This method is invoked when printing (or
faxing) the Window; it should not be used in program code. However, you can override
it to modify or add to the trailer it writes.

See also: - beginTrailer, - printPSCode:

eventMask
- (int)eventMask

Returns the current event mask for the Window. Use this method when you need to
know which types of events the Window Server might associate with the window and
~end to the application.

See also: - setEventMask:, - addToEventMask:, - removeFromEventMask:

2-704 Chapter 2: Class Specifications

faxPSCode:

- faxPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) to a
fax modem. A return value of nil indicates that there were errors in generating the
PostScript code or that the user canceled the job.

In the current user interface, faxing is initiated from within the Print panel. However,
with this method, you can provide users with an independent control for faxing a
Window.

This method normally brings up the Fax panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Fax
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

See also: - smartFaxPSCode:, - printPSCode:, - shouldRunPrintPanel: (Object
Methods)

firstResponder

- firstResponder

Returns the current first responder for the Window.

See also: - makeFirstResponder:, - acceptsFirstResponder (Responder)

flush Window

- flush Window

Flushes the Window's off-screen buffer to the screen, if the receiving Window is a
buffered window and flushing hasn't been disabled by disableFlushWindow. This
message is automatically invoked when you send the display message to a View.
Returns self.

See also: - display:: (View), - disableFlushWindow

flush WindowltNeeded

- flush WindowIfNeeded

Flushes the Window's off-screen buffer to the screen if the receiving Window is a
buffered window, flushing isn't temporarily disabled, and there were some previous
flush Window messages that had no effect because flushing was disabled. Using this
method after a reenableFlush Window message, rather than using flush Window, will
help eliminate unnecessary calls to the Window Server. Returns self.

See also: - flush Window, - disableFlush Window, - reenableFlush Window

Application Kit Classes: Window 2-705

free
- free

Deallocates memory for the Window object, for all the objects in its view hierarchy, and
for all its instance variables, including the field editor.

getFieIdEditor:for:
- getFieldEditor:(BOOL)jlag for:anObject

Returns the field editor, the Text object associated with the Window. If there's no field
editor andjlag is YES, this method creates a new Text object and assigns it to the
fieldEditor instance variable before returning the new object's id. Ifjlag is NO, the
current value of the fieldEditor instance variable is returned, even if nil.

The fieldEditor remains nil until a Text object is created with this method.

Before returning the field editor, this method sends the Window's delegate a
windowWiIlReturnFieldEditor:toObject: message, giving it a chance to substitute
another object for the field editor. If it does, the substitute will be returned instead of
the field editor. The substitute is not assigned to the fieldEditor instance variable.

By making the field editor a temporary subview and becoming its temporary delegate,
Controls such as a TextField are able to use its services for entering, editing, and
selecting text. Other Views can use it in the same way.

See also: - endEditingFor:

getFrame:
- getFrame:(NXRect *)theRect

Places the Window's frame rectangle-its location and size in screen coordinates-in
the rectangle specified by theRect, and returns self.

See also: - getFrame:andScreen:

getFrame:andScreen:
- getFrame:(NXRect *)theRect andScreen:(const NXScreen *)theScreen.

Copies the Window's frame rectangle into the structure referred to by theRect. The
screen where the Window is located is provided in the structure referred to by
theScreen. The frame rectangle is specified relative to the lower left comer of the
screen. However, if theScreen is NULL, the frame rectangle is specified in absolute
coordinates (relative to the origin of the screen coordinate system). Returns self.

See also: - getFrame:

2-706 Chapter 2: Class Specifications

getMouseLocation:

- getMouseLocation:(NXPoint *)thePoint

Places the current location of the cursor in the structure specified by thePoint. Usually,
this information is available somewhere else, such as in the current event record. But
when the event record isn't recent enough or is unavailable, you can use this method to
get the location from the Window Server. The location is provided in the Window's
base coordinate system. Returns self.

See also: - currentEvent (Application)

getRect:forPage:
- (BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to provide the rectangle to be printed for page number
page. A Window receives getRect:forPage: messages when it's being printed (or
faxed) if its knowsPagesFirst:last: method returns YES.

If page is a valid page number for the Window, this method should return YES after
providing (in the variable referred to by theRect) the rectangle that represents the page
requested. The rectangle should be specified in the Window's base coordinates.

If page is not a valid page number, this method should return NO. By default, it returns
NO.

The Window may receive a series of getRect:forPage: messages, one for each page
that's being printed. It should not assume that the pages will be generated in any
particular order.

See also: - knowsPagesFirst:last:, - printPSCode:

gState
- (int)gState

Returns the PostScript graphics state object associated with the Window.

hasDynamicDepthLimit
- (BOOL)hasDynamicDepthLimit

Returns YES if the Window's depth limit can change when it changes screens, and NO
if it can't.

See also: - setDynamicDepthLimit:

Application Kit Classes: Window 2-707

heightAdjustLimit

in it

- (float)heightAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items
from being cut in half. The limit applies to vertical pagination. By default, it's 0.2.

This method is invoked during automatic pagination when printing (or faxing) the
Window; it should not be used in program code. However, you can override it to return
a different value. The value returned should lie between 0.0 and 1.0 inclusive.

See also: - widthAdjustLimit

- init

Initializes the receiver, a newly allocated Window object, by passing default parameters
to the initContent:style:backing:buttonMask:defer: method. The initialized object
is a plain, buffered window, and has a default frame rectangle. Returns self.

See also: - initContent:style:backing:buttonMask:defer:

initContent:style:backing:buttonMask:defer:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)buJferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Initializes the Window object immediately after it has been allocated by Object's alloc
or allocFromZone: method, and returns self. This method is the designated initializer
for the Window class. Its five arguments specify the Window's frame rectangle, style,
buffering type, controls, and whether or not the Window Server will defer creating a
window for the object until it's needed.

The first argument, contentRect, specifies the location and size of the Window's content
area in screen coordinates. If a NULL pointer is passed for this argument, a default
rectangle is used.

2-708 Chapter 2: Class Specifications

The second argument, aStyle, specifies the window's style. It can be:

NX_PLAINSTYLE
NX_ TITLED STYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_TOKENSTYLE

However, you'd generally choose from the first three styles in this list. Menu styles are
appropriate for windows created with methods defined in the Menu class;
miniwindows, mini world icons, and tokens (application icons) are created for you by
the Application Kit.

The third argument, bufferingType, specifies one of the three possibilities for buffering
the drawing done in the Window:

NX_NONRETAINED
NX_RETAINED
NX_BUFFERED

The fourth argument, mask, specifies the controls in the Window's title bar and frame.
You build the mask by joining (with the bitwise OR operator) the individual masks for
each type of button:

NX_CLOSEBUTTONMASK
NX_RESIZEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

You can get all three controls by using the NX_ALLBUTTONS mask. Although called
a "button," NX_RESIZEBUTTONMASK refers to the resize bar. All Windows with a
style of NX_RESIZEBARSTYLE must set this mask in order for the resize bar to work.

The fifth argument, flag, determines whether or not the Window Server will create a
window for the new object immediately. Ifflag is YES, it will defer creating the
window until it is ordered on-screen. All display messages sent to the Window or its
Views will be postponed until the window is created, just before it's moved on-screen.
Deferring the creation of the window improves launch time and minimizes the virtual
memory load on the Server.

The Window creates a direct instance of the View class to be its default content view.
You can replace it with your own object by using the setContentView: method.

See also: - orderFront:, - setTitle:, - setOneShot:

Application Kit Classes: Window 2-709

initContent:style:backing:buttonMask:defer:screen:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)buffering Type
buttonMask:(int)mask
defer: (BOOL)flag
screen:(const NXScreen *)aScreen

Initializes the Window object immediately after it has been allocated (by Object's alloc
or allocFrornZone: method), and returns self. This method is equivalent to
initContent:style:backing:buttonMask:defer:, except that the content rectangle is
specified relative to the lower left comer of aScreen.

If aScreen is NULL, the content rectangle is interpreted relative to the lower left comer
of the main screen. The main screen is the one that contains the current key window,
or, if there is no key window, the one that contains the main menu. If there's neither a
key window nor a main menu (if there's no active application), the main screen is the
one where the origin of the screen coordinate system is located.

See also: - initContent:style: backing: buttonMask:defer:

invalidateCursor RectsFor View:

- invalidateCursorRectsFor View:aView

Marks the Window as having invalid cursor rectangles. If the Window is the key
window, the Application object will send it a resetCursor Rects message to have it fix
its cursor rectangles before getting the next event. If the Window isn't the key window,
it will receive the message when it next becomes the key window. Returns self.

See also: - resetCursorRects

isDisplay Enabled

- (BOOL)isDisplayEnabled

Returns YES if the display methods are currently able to display Views in the receiving
Window's view hierarchy, and NO if they're not.

See also: - disableDisplay, - reenableDisplay, - display::: (View)

isDocEdited

- (BOOL)isDocEdited

, Returns YES if the Window's document has been edited, otherwise returns NO.

See also: - setDocEdited:

2-710 Chapter 2: Class Specifications

isExcludedFrom WindowsMenu

- (BOOL)isExcludedFrom WindowsMenu

Returns YES if the Window will not be listed in the application's Windows menu, and
NO if it will be.

See also: - setExcludedFrom WindowsMenu:

isKeyWindow

- (BOOL)isKeyWindow

Returns YES if the receiving Window is currently the key window, and NO if it isn't.

See also: - isMainWindow, - becomeKeyWindow, - resignKeyWindow

isMainWindow

- (BOOL)isMainWindow

Returns YES if the receiving Window is currently the main window, and NO if it isn't.

See also: - isKeyWindow, - becomeMain Window, - resignMain Window

isOneShot

- (BOOL)isOneShot

Returns YES if the physical window that the Window object manages is freed when it's
removed from the screen list, and NO if not. The default is NO.

See also: - setOneShot:

isVisible

- (BOOL)isVisible

Returns YES if the Window is in the Window Server's screen list, and NO if it's not.
A Window can be in the list and still not be visible, either because it's positioned
off-screen or because it's covered by other Windows. In either of these cases, isVisible
may, nevertheless, return YES.

See also: - getVisibleRect: (View)

Application Kit Classes: Window 2-711

knowsPagesFirst:last:

- (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Implemented by subclasses to indicate whether the Window knows where its own
pages lie. This method is invoked when printing (or faxing) the Window. Although it
can be implemented in a Window subclass, it should not be used in program code.

If this method returns YES, the Window will receive getRect:forPage: messages
querying it for the rectangles corresponding to specific pages. If it returns NO,
pagination will be done automatically. By default, it returns NO.

Just before this method is invoked, the first page to be printed is set to 1 and the last
page to be printed is set to the maximum integer size. An implementation of this
method can setfirstPageNum to a different initial page (for example, a chapter may start
on page 40), even if it returns NO. If it returns YES, lastPageNum can be set to a
different final page. If it doesn't reset lastPageNum, the subclass implementation of
getRect:forPage: must be able to signal that a page has been asked for beyond what is
available in the document.

See also: - getRect:forPage:, - printPSCode:

makeFirstResponder:

- makeFirstResponder:aResponder

Makes aResponder the first receiver of keyboard events and action messages sent to the
Window. If aResponder isn't already the Window's first responder, this method first
sends a resignFirstResponder message to the object that currently is, and a
becomeFirstResponder message to aRes ponder. However, if the old first responder
refuses to resign, no changes are made.

The Application Kit uses this method to alter the first responder in response to
mouse-down events; you can also use it to explicitly set the first responder from within
your program. aResponder should be a Responder of one type or another; it will
usually be a View in the Window's view hierarchy.

If successful in making aResponder the first responder, this method returns self. If not
(if the old first responder refuses to resign), it returns nil.

See also: - becomeFirstResponder (Responder), - resignFirstResponder
(Responder)

2-712 Chapter 2: Class Specifications

makeKey AndOrderFront:
- makeKeyAndOrderFront:sender

Moves the Window to the front of the screen list and makes it the key window. This
method can be used in action message. It's a shorthand for:

[receiver orderWindow:NX_ABOVE relativeTo:O];

[receiver makeKeyWindow];

Returns self.

See also: - orderFront:, - orderBack:, - orderOut:, - orderWindow:relativeTo:

makeKeyWindow
- makeKeyWindow

Makes the receiving Window object the key window, and returns self.

See also: - becomeKeyWindow, - isKeyWindow

miniaturize:
- miniaturize:sender

Removes the Window from the screen list and displays its mini window counterpart
on-screen. If the Window doesn't have a mini window counterpart, one is created.

A miniaturize: message is generated when the user clicks the miniaturize button in the
Window's title bar. This method has a sender argument so that it can be used in an
action message from a Control. It ignores this argument. Returns self.

See also: - deminiaturize:

miniwindowlcon
- (const char *)miniwindowlcon

Returns the name of the icon that's displayed on the Window's miniwindow
counterpart.

See also: - setMiniwindowlcon:

Application Kit Classes: Window 2-713

moveTo::

- moveTo~(NXCoord)x :(NXCoord)y

Repositions the Window on the screen. The arguments specify the new location of the
window-the lower left comer of its frame rectangle-in screen coordinates. Returns
self.

See also: - dragFrom::eventNum:, - moveTopLeftTo::

moveTo::screen:

- moveTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its lower left comer lies at (x, y) relative to a coordinate
origin at the lower left comer of aScreen. If aScreen is NULL, this method is the same
as moveTo::. Returns self.

moveTopLeftTo: :

- moveTopLeftTo:(NXCoord)x :(NXCoord)y

Repositions the Window on the screen. The arguments specify the new location of the
Window's top left comer-the top left comer of its frame rectangle-in screen
coordinates. Returns self.

See also: - dragFrom::eventNum:, - moveTo::

moveTopLeftTo: :screen:

- moveTopLeftTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its top left comer lies at (x, y) relative to a coordinate
origin at the lower left comer of aScreen. If aScreen is NULL, this method is the same
as moveTopLeftTo::. Returns self.

See also: - move To: :

openSpoolFile:

- openSpooIFile:(char *)filename

Opens the filename file for print spooling. This method is invoked when printing (or
faxing) the Window; it shouldn't be used in program code. However, you can override
it to modify its behavior.

Iffilename is NULL or an empty string (filename[O] is '\0'), PostScript code for the
Window will be sent directly to the printing daemon, npd, without opening a file.
(However, if the Window is being previewed or saved, a default file is opened in /tmp).

2-714 Chapter 2: Class Specifications

If afilename is provided, the file is opened. The printing machinery will then write the
PostScript code to that file and the file will be printed using Ipr.

This method opens a Display PostScript context that will write to the spool file, and sets
the context of the global Printlnfo object to this new context. It returns nil if the file
can't be opened.

See also: - printPSCode:

orderBack:
- orderBack:sender

Moves the Window to the back of its tier in the screen list. It may also change the key
window and main window. This method is a shorthand for:

[receiver orderWindow:NX BELOW relativeTo:O];

Returns self.

See also: - orderFront:, - orderOut:, - orderWindow:relativeTo:,
- makeKey AndOrderFront:

orderFront:
- orderFront:sender

Moves the Window to the front of the screen list. It may also change the key window
and main window. This method is a shorthand for:

[receiver orderWindow:NX_ABOVE relativeTo:O];

Returns self.

See also: - orderBack:, - orderOut:, - orderWindow:relativeTo:,
- makeKey AndOrderFront:

orderOut:
- orderOut:sender

Takes the Window out of the screen list. It may also change the key window and main
window. This method is a shorthand for:

[receiver orderWindow:NX_OUT relativeTo:O];

Returns self.

See also: - orderFront:, - orderBack:, - orderWindow:relativeTo:

Application Kit Classes: Window 2-715

orderWindow:relativeTo:
- orderWindow:(int)place relativeTo:(int)otherWin

Repositions the window in the Window Server's screen list. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_OUT, the window is removed from the screen list and otherWin is ignored.
If it's NX_ABOVE or NX_BELOW, otherWin is the window number of the window
that the receiving Window is to be placed above or below. If otherWin is 0, the
receiving Window will be placed above or below all other windows. Returns self.

See also: - orderFront:, - orderBack:, - orderOut:, - makeKeyAndOrderFront:

performClose:
- performClose:sender

Simulates the user clicking the close button by momentarily highlighting the button
then closing the window. Returns self.

See also: - performClick: (Button), - close, - performMiniaturize:

performMiniaturize:
- performMiniaturize:sender

Simulates the user clicking the miniaturize button by momentarily highlighting the
button then miniaturizing the window. Returns self.

See also: - performClick: (Button), - miniaturize:, - performClose:

placePrintRect:offset:
- placePrintRect:(const NXRect *)aRect offset: (NXPoint *)location

Determines the location of the rectangle being printed on the physical page. This
method is invoked when printing (or faxing) the Window; it should not be used in
program code. However, you can override it to change the way it places the rectangle.

aRect specifies the rectangle being printed on the current page; location is set by this
method to be the offset of the rectangle from the lower left comer of the page. All
coordinates are in the base coordinate system (that of the page itself).

By default, if the flags for centering are YES in the global PrintInfo object, this method
centers the rectangle within the margins. If the flags are NO, it abuts the rectangle
against the top and left margins.

See also: - getRect:forPage:, - printPSCode:

2-716 Chapter 2: Class Specifications

place Window:

- placeWindow:(const NXRect *)frameRect

Resizes the window without redrawing any of its contents. frameRect specifies a
structure that contains the new frame rectangle of the window in screen coordinates.
The rectangle encloses the entire window, including the border, title bar, and resize bar.

This method allows resizing from any window comer or from any point along the
window border, but it doesn't move what's displayed within the window or alter the
origin of the base coordinate system. Returns self.

See also: - sizeWindow::, - moveTo::, - placeWindowAndDisplay:

place Window:screen

- placeWindow:(const NXRect *)frameRect screen:(const NXScreen *)aScreen

Resizes the window, just as place Window: does, except that the frame rectangle is
specified relative to a coordinate origin at the lower left comer of aScreen. If aScreen
is NULL, this method is the same as place Window:. Returns self.

See also: - placeWindow:, - placeWindowAndDisplay:

place Window AndDisplay:

- placeWindowAndDisplay:(const NXRect *)frameRect

Resizes the window, just as place Window: does, but redisplays its contents before the
resized window is shown to the user. This prevents the resized window (with unaltered
contents) from being displayed before the Views that draw within the window are given
a change to adjust to its new size. Returns self.

See also: - place Window:

printPSCode:

- printPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view). A
return value of nil indicates that there were errors in generating the PostScript code or
that the user canceled the job.

This method normally brings up the Print panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Print
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

See also: - smartPrintPSCode:, - faxPSCode:, - shouldRunPrintPanel: (Object
Methods)

Application Kit Classes: Window 2-717

read:

- read:(NXTypedStream *)stream

Reads the Window and its Views from the typed stream stream.

See also: - write:

reenableDisplay

- reenableDisplay

Counters the effect of disableDisplay, reenabling the display methods defined in the
View class to display Views located within the Window. Returns self.

See also: - disableDisplay, - isDisplayEnabled, - display::: (View)

reenableFlush Window

- reenableFlush Window

Reenables the flush Window method for the Window after it was disabled through a
previous disableFlush Window message. Returns self.

See also: - disableFlush Window, - flush Window

removeCursor Rect:cursor:for View:

- removeCursorRect:(const NXRect *)aRect
cursor:anObj
for View:a View

Invoked by View's removeCursorRect:cursor: method. Do not use this method; use
removeCursorRect:cursor: instead.

See also: - removeCursorRect:cursor: (View), - resetCursorRects (View)

removeFromEventMask:

- (int)removeFromEventMask:(int)oldEvents

Removes the event types specified by oldEvents from the Window's event mask, and
returns the old mask.

This method is typically used when an object sets up its own modal event loop to
respond to certain events. The return value should be used to restore the Window's
original event mask when the modal loop is done.

See also: - eventMask, - setEventMask:, - addToEventMask:

2-718 Chapter 2: Class Specifications

resetCursorRects

- resetCursorRects

Removes all existing cursor rectangles from the Window, then recreates the cursor
rectangles by sending a resetCursorRects message to every View in the Window's
view hierarchy. Returns self.

This method is typically invoked by the Application object when it detects that the key
window's cursor rectangles are invalid. In program code, it's more efficient to send a
invalidateCursorRectsForView: message to fix incorrect cursor rectangles, rather
than resetCursorRects.

See also: - invalidateCursorRectsForView:, - resetCursorRects (View)

resignKeyWindow

- resignKeyWindow

Records the fact that the receiver is no longer the key window, then passes the
resignKey Window message on to the first responder, if the first responder can respond.
The Window's delegate is sent a windowDidResignKey: message, if it can respond.
Returns self.

The Application object sends a resignKeyWindow message to the current key window
whenever another Window is about to be made the new key window.

If you define a Window subclass and implement your own version of this method, it
should include a message to super to perform this version as well.

See also: - becomeKeyWindow, - resignMainWindow, - setDelegate:

resignMain Window

- resignMain Window

Records the fact that the receiving Window is no longer the main window, and sends
the Window's delegate a windowDidResignMain: message to notify it of the change
in status, if the delegate can respond. Returns self.

The Application object sends a resign Main Window message to the current main
window whenever another Window is about to become the new main window.

See also: - becomeMain Window, - resignKeyWindow

Application Kit Classes: Window 2-719

rightMouseDown:
- rightMouseDown:(NXEvent *)theEvent

Responds to uncaught right mouse-down events by passing the message on the
Application object. By default, a right mouse-down event in a window causes the main
menu to pop up under the cursor. Returns the Application object.

See also: - rightMouseDown: (Application)

screen

- (const NXScreen *)screen

Returns a pointer to the screen that the Window is on. If the Window is partly on one
screen and partly on another, the screen where most of it lies is the one returned.

See also: - bestScreen

screen Changed:

- screenChanged:(NXEvent *)theEvent

Responds to a screen-changed subevent (of the kit-defined event) by sending the
Window's delegate a windowDidChangeScreen: message, if the delegate can
respond. If the Window has a dynamic depth limit, this method also changes the depth
limit to match the new device.

A screen-changed subevent is generated when the user releases the mouse button after
dragging a window partially or all the way onto another screen.

sendEvent:

- sendEvent:(NXEvent *)theEvent

Dispatches mouse and keyboard events sent to the Window by the Application object.
This method is part of the main event loop and should never be invoked in program
code.

setBackgroundColor:

- setBackgroundColor: (NXColor)color

Sets the background color of the Window to color. If set, the background color is used
in place of the background gray when the Window is on a color screen. Returns self.

See also: - backgroundColor

2-720 Chapter 2: Class Specifications

setBackground Gray:

- setBackgroundGray:(float)value

Sets the background gray of the Window. value should lie in the range 0.0 (black) to
1.0 (white). To obtain pure shades of gray, use one of the following constants:

NX_BLACK
NX_DKGRAY
NX_LTGRAY
NX_WHITE

Returns self.

See also: - backgroundGray

setContent View:

- setContentView:aView

Makes aView the Window's content view after removing the former content view from
the Window's view hierarchy. aView is resized so that it exactly fills the content area
of the Window; its superview, nextResponder, and window instance variables are
altered to reflect its new status. This method returns the id of the former content view
so that you can free it or assign it another position in a view hierarchy. Once the content
view is set, you should not attempt to change its frame rectangle by sending it a
setFrame:, moveTo::, sizeTo::, or other message. The content view's frame is reset
by the Window whenever the window is resized.

See also: - contentView

setDeiegate:

- setDelegate:anObject

Makes anObject the Window's delegate, and returns self. The delegate is given a
chance to respond to action messages that work their way up the responder chain to the
Window (through Application's sendAction:to:from: method). It can also respond to
notification messages sent by the Window. See "METHODS IMPLEMENTED BY
THE DELEGATE" near the end of this class specification.

See also: - delegate, - tryToPerform:with:, - sendAction:to:from: (Application)

Application Kit Classes: Window 2-721

setDepthLimit:
- setDepthLimit:(NXWindow Depth)limit

Sets the depth limit of the Window to limit, which should be one of the following
enumerated values (defined in the header file appkit/graphics.h):

NX_TwoBitGrayDepth
NX_EightBitGrayDepth
NX_TwelveBitRGBDepth
NX_TwentyFourBitRGBDepth

Returns self.

See also: - depthLimit, + defaultDepthLimit, - setDynamicDepthLimit:

setDocEdited:
- setDocEdited:(BOOL)jlag

Sets whether or not the document displayed in the Window has been edited but not
saved. Ifjlag is YES, the Window's close button will display a broken "X" to indicate
that the document needs to be saved. Ifjlag is NO, the close button will be shown with
a solid "X". The default is NO. Returns self.

See also: - isDocEdited

setDynamicDepthLimit:

- setDynamicDepthLimit:(BOOL)jlag

Sets whether the Window's depth limit should change to match the depth of the display
device that it's on. Ifjlag is YES, the depth limit will depend on which screen the
Window is on. Ifjlag is NO, the Window will have the default depth limit. A different,
and nondynamic, depth limit can be set with the setDepthLimit: method. Returns self.

See also: - hasDynamicDepthLimit, + defaultDepthLimit, - setDepthLimit:

setEventMask:
- (int)setEventMask:(int)newMask

Assigns a new event mask to the Window and returns the original event mask. The
mask tells the Window Server which types of events the Window wants to receive. It's
formed by joining the masks for individual events using the bitwise OR operator. The
constants for individual event masks are listed below. Those that are included in the
default event mask for a Window are marked with an asterisk.

2-722 Chapter 2: Class Specifications

* NX_LMOUSEDOWNMASK
* NX_LMOUSEUPMASK
* NX_RMOUSEDOWNMASK
* NX_RMOUSEUPMASK

NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK

* NX_MOUSEENTEREDMASK
* NX_MOUSEEXITEDMASK
* NX_KEYDOWNMASK
* NX_KEYUPMASK

NX_FLAGSCHANGEDMASK
* NX_KITDEFINEDMASK
* NX_APPDEFINEDMASK
* NX_SYSDEFINEDMASK

NX_CURSORUPDATEMASK
NX_JOURNALEVENTMASK
NX_NULLEVENTMASK

Miniwindows and application icons have the same default event mask as other
Windows, except that all keyboard events are excluded. The default mask for a Menu
includes only left and right mouse-down, mouse-up, and mouse-dragged events and the
kit-defined event.

See also: - eventMask, - addToEventMask:, - removeFromEventMask:

setExcludedFrom WindowsMenu:

- setExciudedFrom WindowsMenu:(BOOL)jlag

Sets whether the Window willbe excluded from the Windows menu. Ifflag is YES, it
won't be listed in the menu. Ifjlag is NO, it will be listed when it or its mini window is
on-screen. The default is NO. Returns self.

See also: - isExciudedFrom WindowsMenu

setFree WhenClosed:

- setFreeWhenClosed:(BOOL)flag

Determines the Window's behavior when it receives a close message. Ifflag is NO, the
Window is just hidden (taken out of the screen list). Ifflag is YES, the Window is
hidden and then freed. The default for Windows is YES; the default for Panels and
Menus is NO. Returns self.

See also: - close, - .free

Application Kit Classes: Window 2-723

setHideOnDeactivate:
- setHideOnDeactivate: (BOOL)jlag

Determines whether the Window will disappear when the application is inactive. Ifjlag
is YES, the Window is hidden (taken out of the screen list) when the application stops
being the active application. Ifjlag is NO, the Window stays on-screen. The default
for Windows is NO; the default for Panels and Menus is YES. Returns self.

See also: - doesHideOnDeactivate:

setMiniwindowlcon:
- setMiniwindowlcon:(const char *)name

Sets the icon to be used during window miniaturization. There is a 48-by-48 pixel area
available on a miniaturized window for displaying an icon. The NXImage class will
look in the _ICON, _EPS, and _TIFF segments of the application executable to
create the icon upon miniaturization if it's not already available.

See also: - miniwin~owlcon, - windowWiIlMiniaturize:toMiniwindow:

setOneShot:
- setOneShot:(BOOL)jlag

Sets whether the physical window that the Window object manages should be freed
when it's removed from the screen list (and another one created if it's returned to the
screen). This is appropriate behavior for windows that the user might use once or twice
but not display continually. The default is NO. Returns self.

See also: - isOneShot

setTitle:
- setTitle:(const char *)aString

Changes the,string that appears in the Window's title bar to aStringe You don't have to
redisplay the Window to make the new title appear. Returns self.

See also: - title, - setTitleAsFilename:

2-724 Chapter 2: Class Specifications

setTitleAsFilename:
- setTitleAsFilename:(const char *)aString

Sets aString to be the title of the Window, but formats it as a pathname to a file. The
file name is displayed first, followed by an em dash and the directory path. The em dash
is offset by two spaces on either side. For example:

My File - INet/server/group/home

The string can be a full or relative pathname. If it lacks any'/' characters, it won't be
formatted.

Returns self.

See also: - title, - setTitle:

setTrackingRect:inside:owner:tag:left:right:
- setTrackingRect:(const NXRect *)aRect

inside: (BOOL)insideF lag
owner:anObject
tag: (int)trackNum
left: (BOOL)leftDown
right: (BOOL)rightDown

Sets up a tracking rectangle in the Window through the settrackingrect operator. The
first argument, aRect, is a pointer to the tracking rectangle and is specified in the
Window's current coordinate system. The second argument, insideFlag, indicates
whether the cursor starts off inside the rectangle (YES) or outside it (NO). The third
argument, anObject, is the id of the object, usually a View or an NXCursor, that will
handle the mouse-entered and mouse-exited events that are generated for the rectangle;
the Application object dispatches these events directly to the responsible object. The
fourth argument, trackNum, is a number that you assign to identify the rectangle.

If leftDown is YES, the Window Server will generate mouse-entered and mouse-exited
events for the rectangle only while the left mouse button is down; if rightDown is YES,
events are generated only while the right button is down.

Returns self.

See also: - discardTrackingRect:

Application Kit Classes: Window 2-725

size Window::
- sizeWindow:(NXCoord)width :(NXCoord)height

Resizes the window so that its content area has the specified width and height in base
coordinates. The lower left comer of the window remains constant. Returns self.

See also: - placeWindow:

smartFaxPSCode:
- smartFaxPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) to a
fax modem so that it will fit on a single sheet of paper. This method tries to set up the
various parameters of the printing machinery to create a pleasing result. The image is
centered horizontally and vertically, and the orientation of the paper (portrait or
landscape) is set to match the dimensions of the window. These settings are temporary,
however, and do not permanently affect the global PrintInfo object.

In the current user interface, faxing is initiated from within the Print panel. However,
with this method, you can provide users with an independent control for faxing a
Window.

This method normally brings up the Fax panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Fax
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

A return value of nil indicates that there were errors in generating the PostScript code
or that the user canceled the job.

See also: - faxPSCode:, - smartPrintPSCode:, - shouldRunPrintPanel: (Object
Methods)

smartPrintPSCode:

- smartPrintPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) on a
single sheet of paper. This method tries to set up the various parameters of the printing
machinery to create a pleasing result. The image is centered horizontally and vertically,
and the orientation of the paper (portrait or landscape) is set to match the dimensions
of the window. These settings are temporary, however, and do not permanently affect
the global PrintInfo object.

2-726 Chapter 2: Class Specifications

This method normally brings up the Print panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Print
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

A return value of nil indicates that there were errors in generating the PostScript code
or that the user canceled the job.

See also: - printPSCode:, - smartFaxPSCode:, - shouldRunPrintPanel: (Object
Methods)

spoolFile:

- spooIFile:(const char *)filename

Spools the generated PostScript code infilename to the printer. This method is invoked
automatically when printing (or faxing) the Window.

See also: - openSpoolFile:

style

- (int)style

Returns one of several values, indicating the Window's style:

NX_PLAINSTYLE
NX_ TITLEDSTYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_ TOKENSTYLE

See also: - initContent:style:backing:buttonMask:defer:

title

- (const char *)title

Returns the string that appears in the title bar of the window. If the title was formatted
by the setTitleAsFilename: method, the formatted string is returned.

See also: - setTitle:, - setTitieAsFilename:

Application Kit Classes: Window 2-727.

tryToPerform:with:
- (BOOL)tryToPerform:(SEL)anAction with:anObject

Overrides Responder's version of tryToPerform:with: to give the Window's delegate
a chance to respond to the action message. If successful in finding a receiver that
accepts the anAction message (that doesn't return nil), this me.thod returns YES.
Otherwise, it returns NO.

See also: - tryToPerform:with: (Responder)

update
- update

Implemented by subclasses to automatically update the Window and redisplay it.
Returns self.

A Window receives a update message:

• After each event, if the Window is in the screen list and the Application object has
been instructed to automatically update all Windows. The Application object sends
an update message to every visible Window after each event has been handled in
the main event loop.

• Before the Window is placed in the screen list.

• Before the Window receives a commandKey: message.

The message gives the Window a chance to make any changes in its state or display that
are contingent on the wayan event was handled.

Window's default version of the update method sends the delegate a
windowDidUpdate: message, if the delegate can respond. Subclass versions of the
method should send a message to super to incorporate Window's version after
completing the update and just before returning. The Menu class implements this
method to disable and enable menu commands as appropriate.

See also: - update Windows (Application), - setAutoupdate: (Application)

useOptimizedDrawing:

- useOptimizedDrawing:(BOOL)flag

Informs the Window whether to optimize focusing and drawing when Views are
displayed. The optimizations may prevent sibling subviews from being displayed in
the correct order. This matters only if the subviews overlap. Always setflag to YES if
there are no overlapping subviews within the Window. The default is NO. Returns self.

2-728 Chapter 2: Class Specifications

validRequestorForSendType:andReturnType:
- validRequestorForSendType:(NXAtom)typeSent

andReturnType: (NXAtom)typeReturned

Passes this message on to the Window's delegate, if the delegate can respond (and isn't
a Responder with its own next responder). If the delegate can't respond or returns nil,
this method passes the message to the Application object. If the Application object
returns nil, this method also returns nil, indicating that no object was found that could
supply typeSent data for a remote message from the Services menu and accept back
typeReturned data. If such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu. It's part of the
mechanism that passes validRequestorForSendType:andReturnType: messages up
the responder chain.

See also: - validRequestorForSendType:andReturnType: (Responder and
Application)

widthAdjustLimit
- (float)widthAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items
from being cut in half. The limit applies to horizontal pagination. By default, it's 0.2.

This method is invoked during automatic pagination when printing (or faxing) the
Window; it should not be used in program code. However, you can override it to return
a different value. The value returned should lie between 0.0 and 1.0 inclusive.

See also: - heightAdjustLimit

windowExposed:
- windowExposed:(NXEvent *)theEvent

Responds to a window-exposed event by displaying the portion of the window that the
event record indicates should be redrawn, and informing the delegate through a
windowDidExpose: message. Returns self.

See also: - display:: (View), - setDelegate:

Application Kit Classes: Window 2-729

windowMoved:

- windowMoved:(NXEvent *)theEvent

Responds to a window-moved event by recording the new location of the window, and
informing the Window delegate through a windowDidMove: message. Returns self.

If you define a Window subclass and implement your own version of this method, it
should include a message to super to apply this version as well.

See also: - dragFrom::eventNum:, - setDelegate:

windowNum

- (int)windowNum

Returns the window number of the window corresponding to the receiving Window
object. If the Window object doesn't currently have a window, the return value will be
equal to or less than O.

See also: - initContent:style:backing:buttonMask:defer:, - setOneShot:

windowResized:

- windowResized:(NXEvent *)theEvent

Responds to a window-resized event by recording the new dimensions of the window
and causing it to redisplay. Returns self.

Window-resized events are not real events; they're not placed in the event queue. The
frame view sends the Window object a windowResized: message after the user has
resized the window from the resize bar. While the window is being resized, the
Window's· delegate receives repeated windowWillResize:toSize: messages giving it
the opportunity to constrain the future size of the window. After the resizing is
completed, this windowResized: method sends the delegate a windowDidResize:
message.

See also: - display:: (View)

worksWhenModal

- (BOOL)worksWhenModal

Returns whether the Window is able to receive keyboard and mouse events even when
there's a modal panel (an attention panel) on-screen. The default is NO. Only Panels
should change this default.

See also: - setWorksWhenModal: (Panel)

2-730 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the receiving Window to the typed stream stream, along with its content view
and mini window counterpart. The delegate and field editor are not explicitly written,
but all subviews of the content view will be.

See also: - read:

METHODS IMPLEMENTED BY THE DELEGATE

windowDidBecomeKey:

- windowDidBecomeKey:sender

Responds to a message informing the delegate that the sender Window has just become
the key window.

See also: - becomeKeyWindow

windowDidBecomeMain:

- windowDidBecomeMain:sender

Responds to a message informing the delegate that the sender Window has just become
the main window.

See also: - becomeMain Window

windowDidChangeScreen:

- windowDidChangeScreen:sender

Responds to a message informing the delegate that the sender Window has received a
screen-changed subevent (of the kit -defined event).

See also: - screenChanged:

windowDidDeminiaturize:

- windowDidDeminiaturize:sender

Responds to a message informing the delegate that the user has double-clicked the
sender Window's miniwindow counterpart, returning the Window to the screen and
hiding the mini window.

See also: - deminiaturize:, - windowDidMiniaturize:

Application Kit Classes: Window 2-731

windowDidExpose:

- windowDidExpose:sender

Responds to a message informing the delegate that the sender Window received a
window-exposed subevent of the kit-defined event.

See also: - windowExposed:

windowDidMiniaturize:

- windowDidMiniaturize:sender

Responds to a message informing the delegate that the user has miniaturized the sender
Window.

See also: - windowWiIlMiniaturize:toMiniwindow:, - windowDidDeminiaturize:

windowDidMove:

- windowDidMove:sender

Responds to a message informing the delegate that the user moved the sender Window.

See also: - window Moved:

windowDidResignKey:

- windowDidResignKey:sender

Responds to a message informing the delegate that the sender Window is no longer the
key window.

See also: - resignKeyWindow

windowDidResignMain:

- windowDidResignMain:sender

Responds to a message informing the delegate that the sender Window is no longer the
main window.

See also: - resignMain Window

2-732 Chapter 2: Class Specifications

windowDidResize:

- windowDidResize:sender

Responds to a message informing the delegate that the user has finished resizing the
sender Window. The new size of the Window can be obtained by sending it a
getFrame: message.

See also: - windowWiIlResize:toSize:, - getFrame:

windowDidUpdate:

- windowDidUpdate:sender

Responds to a message that's sent when the sender Window receives an update
message.

See also: - update

window WillClose:

- windowWillClose:sender

Responds to a message informing the delegate that the sender Window is about to close.
If the delegate returns nil, the Window won't close.

windowWiIlMiniaturize:toMiniwindow:

- windowWillMiniaturize:sender toMiniwindow:miniwindow

Responds to a message informing the delegate that the user will miniaturize the sender
Window. The delegate can install a special content View for mini window, or set its title.
The default title is the same as sender's.

See also: - windowDidMiniaturize:, - miniaturize:

windowWiIlResize:toSize:

- windowWillResize:sender toSize:(NXSize *)/rameSize

Responds to a message informing the delegate that the user is trying to resize the sender
Window. During window resizing, the delegate is sent continuous
windowWiIlResize:toSize: messages as the user drags the window's outline. The
second argument,/rameSize, is a a pointer to an NXSize structure containing the size
(in screen coordinates) that the window will be resized to. If the delegate wants to
constrain the window size, it may update the structure to the desired size. The window
outline is displayed at the constrained size provided by the· delegate.

See also: - windowDidResize:, - windowResized:

Application Kit Classes: Window 2-733

windowWiIlReturnFieldEditor:toObject:

- windowWillReturnFieldEditor:sender toObject:client

Responds to a message informing the delegate that client has requested the sender
Window's field editor, the Text object that performs various editing tasks within the
Window. If the delegate's implementation of this method returns an object other than
nil, the Window substitutes it for the field editor and returns it to client.

See also: - getFieldEditor:for:

CONSTANTS AND DEFINED TYPES

/*

* Window styles
*/

#define NX PLAINSTYLE
#define NX TITLEDSTYLE

#define NX MENUSTYLE

#define NX MINIWINDOWSTYLE
#define NX MINIWORLDSTYLE

#define NX TOKENSTYLE
#define NX RESIZEBARSTYLE

#define NX FIRSTWINSTYLE
#define NX LASTWINSTYLE

#define NX NUMWINSTYLES \

o
1

2

3

4

5

6

NX PLAINSTYLE

NX RESIZEBARSTYLE

(NX_LASTWINSTYLE - NX FIRSTWINSTYLE + 1)

/*

* Control masks
*/

#define NX CLOSEBUTTONMASK
#define NX RESIZEBUTTONMASK

1

2

#define NX MINIATURIZEBUTTONMASK 4

#define NX_ALLBUTTONS \

(NX_CLOSEBUTTONMASKINX_RESIZEBUTTONMASKINX_MINIATURIZEBUTTONMASK)

/*

* Sizes of icon images and windows
*/

#define NX ICONWIDTH
#define NX ICONHEIGHT
#define NX TOKENWIDTH

#define NX TOKENHEIGHT

2-734 Chapter 2: Class Specifications

48.0
48.0
64.0

64.0

/*

* Window tiers

*/
#define NX NORMALLEVEL 0

#define NX FLOATINGLEVEL 3

#define NX DOCKLEVEL 5

#define NX SUBMENULEVEL 10

#define NX MAINMENULEVEL 20

Application Kit Classes: Window 2-735

2-736

Chapter 3
C· Functions

3-3 NeXTstep Functions
3-141 Single-Operator Functions

3-148 Run-Time Functions

3-1

3-2

Chapter 3
C Functions

This chapter gives detailed descriptions of the C functions provided by NeXT. Also
included here are some macros that behave like functions. For this chapter, the functions
and macros are divided into two groups:

• NeXTstep, which includes functions and macros defined in the Application Kit,
functions for using streams and typed streams, and Display PostScript functions

• Run-time functions for the Objective-C language

Within these divisions, functions are subgrouped with other functions that perform related
tasks. These subgroups are described in alphabetical order by the name of the first function
listed in the subgroup. Functions within subgroups are also listed alphabetically, with a
pointer to the subgroup's description.

For convenience, these functions are summarized in the NeXT Technical Summaries
manual. The summary lists functions by the same subgroups used in this chapter and
combines several related subgroups under a heading such as "Rectangle Functions" or
"Stream Functions." The calling sequence for each function is shown in the summary.

Note that under the SYNOPSIS heading in the function descriptions, the lowest-level
header file is specified in the #import statement; you might instead include a header file
like appkit/appkit.h, which includes many other, lower-level header files. For details on
these files, see Chapter 1, "Data Types and Constants."

NeXT step Functions

This section contains descriptions of two types of functions: those that implement NeXT's
system-dependent interface to the Display PostScript system and those that support the
various Application Kit classes. The Display PostScript system functions have a "DPS"
prefix; the Application Kit functions have an "NX" prefix. The descriptions of the "DPS"
functions assume knowledge of the Display PostScript system. For the primary
documentation of this system, refer to Extensions for the Display PostScript System and
Client Library Reference Manual, both by Adobe Systems Incorporated. See "Suggested
Reading" in Technical Summaries for information on Adobe documentation.

NeXTstep Functions 3-3

DPSAddFDO, DPSRemoveFDO

SUMMARY Add or remove monitored file descriptor

LIBRARY

SYNOPSIS

#import <dpsclientidpsclient.h>

void DPSAddFD(intfd, DPSFDProc handler, void *userData, int priority)
void DPSRemoveFD(intfd)

DESCRIPTION

DPSAddFDO adds a file descriptor to the list of those that the client library can check
each time it attempts to retrieve an event. The integer fd is the file descriptor (as
returned by openO) to be added. When data can be read from the file identified by fd,
the function handler is called (assuming an appropriate value of priority, as explained
below). The third argument, userData, is a pointer that the application can use to pass
some data to handler.

The integer priority lets you specify the execution priority of handler. A priority level
can be from 0 to 30. During normal execution of a program based on the Application
Kit, the function that returns events from the Window Server will checkfd if priority is
NX_BASETHRESHOLD (a value of 1) or higher. When the application displays an
attention panel,fd is checked only if priority is NX_RUNMODALTHRESHOLD (a
value of 5) or higher. During a modal event loop, fd is checked only if priority is
NX_MODALRESPTHRESHOLD (a value of 10) or higher.

Note: NX_BASETHRESHOLD, NX_RUNMODALTHRESHOLD, and
NX_MODALRESPTHRESHOLD are defined in the header file
appkiti Application.h.

The function registered as handler has the form:

voidfunc(intfd, void *userData)

where fd is the file descriptor of the file that's ready to be read and userData is a
reference to the data you specified in the call to DPSAddFDO.

DPSRemoveFDO removes the specified file descriptor from the list of those that the
application will check.

SEE ALSO

DPSAddPortO, DPSAddTimedEntryO

3-4 Chapter 3: C Functions

DPSAddPortO, DPSRemovePortO

SUMMARY

LIBRARY

SYNOPSIS

Add or remove monitored Mach port

#import <dpsclientl dpsclient.h>

void DPSAddPort(port_t newPort, DPSPortProc handler, int maxSize,
void *userData, int priority)

void DPSRemovePort(port_t port)

DESCRIPTION

DPSAddPortO adds a Mach port to the list of ports that an application based on the
Application Kit can check each time it attempts to retrieve an event. newPort identifies
the Mach port to be monitored. When a message arrives at the port, the function
handler is called (assuming an appropriate value of priority, as explained below). The
type DPSPortProc is defined in the header file dpsclient/dpsNeXT.h. The maxSize
argument declares the maximum size of the in-line data (including the message header)
that will be received in the message. The pointer userData can be used to pass some
data to handler.

The integer priority lets you specify the execution priority of handler. A priority level
can be from 0 to 30. During normal execution of a program based on the Application
Kit, the function that returns events from the Window Server will check newPort if
priority is NX_BASETHRESHOLD (a value of 1) or higher. When the application
displays a modal panel, newPort is checked only if priority is
NX_RUNMODALTHRESHOLD (a value of 5) or higher. During a modal event loop,
newPort is checked only if priority is NX_MODALRESPTHRESHOLD (a value of 10)
or higher.

Note: NX_BASETHRESHOLD, NX_RUNMODALTHRESHOLD, and
NX_MODALRESPTHRESHOLD are defined in the header file
appkitl Application.h.

The function registered as handler has the form:

voidfunc(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is a
reference to the data you specified in the call to DPSAddPortO.

If, within handler, you want to call msg_receiveO to receive further messages at the
port, you must first call DPSRemovePortO to remove the port from the system's port
set. (This is because your application can't receive messages from a port that's in a port
set.) After your application is finished receiving messages directly from the port, it can
call DPSAddPortO to have the system continue to monitor the port.

DPSAddPort() 3-5

The message buffer identified by msg is overwritten whenever your application gets
events, receives values from the Window Server, or receives data from a monitored
port. If you want to preserve the message, copy the contents of the message buffer into
local storage before you take an action that might overwrite it.

DPSRemovePortO removes the specified port from the list of those that the application
will check.

The Application Kit provides an object-oriented interface to Mach ports through the
Listener and Speaker classes. To send messages between two applications based on the
Application Kit, use Speaker and Listener objects. To monitor a Mach port directly,
use DPSAddPortO.

DPSAddTimedEntryO, DPSRemoveTimedEntryO

SUMMARY

LIBRARY

SYNOPSIS

Add or remove timed entry

#import <dpsclient/dpsclient.h>

DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler,
void *userData, int priority)

void DPSRemoveTimedEntry(DPSTimedEntry teNumber)

DESCRIPTION

DPSAddTimedEntryO registers handler as a "timed entry," a function that's called
repeatedly at a given time interval. period determines the number of seconds between
calls to the timed entry. Whenever an application based on the Application Kit attempts
to retrieve events from the event queue, it also checks (depending on priority) to
determine whether any timed entries are due to be called. user Data is a pointer that
you can use to pass some data to the timed entry.

The integer priority lets you specify the execution priority of handler. A priority level
can be from 0 to 30. During normal execution of a program based on the Application
Kit, the function that returns events from the Window Server will check if handler is
due to be called if priority is NX_BASETHRESHOLD (a value of 1) or higher. When
the application displays a modal panel, handler is checked only if priority is
NX_RUNMODALTHRESHOLD (a value of 5) or higher. During a modal event loop,
handler is checked only if priority is NX_MODALRESPTHRESHOLD (a value of 10)
or higher.

Note: NX_BASETHRESHOLD, NX_RUNMODALTHRESHOLD, and
NX_MODALRESPTHRESHOLD are defined in the header file
appkitl Application.h.

3-6 Chapter 3: C Functions

The function registered as handler has the form:

void func(DPSTimedEntry teNumber, double now, char *userData)

where teNumber is the timed entry identifier returned by DPSAddTimedEntryO, now
is the number of seconds since some arbitrary point in the past, and userData is the
pointer DPSAddTimedEntryO received when this timed entry was installed.

DPSRemoveTimedEntryO removes a previously registered timed entry.

RETURN

DPSAddTimedEntryO returns a number identifying the timed entry or -1 to indicate
an error.

DPSCreateContextO, DPSCreateContextWithTimeoutFromZoneO,
DPSCreateStreamContextO

SUMMARY Create PostScript execution context

LIBRARY

SYNOPSIS

#import <dpsciient/dpsciient.h>

DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DPSContext DPSCreateContext WithTimeoutFromZone(const char * hostN ame,
const char *serverName, DPSTextProc textProc, DPSErrorProc errorProc,
int timeout, NXZone *zone)

DPSContext DPSCreateStreamContext(NXStream * stream, int debugging,
DPSProgramEncoding progEnc, DPSNameEncoding nameEnc,
DPSErrorProc errorProc)

DESCRIPTION

DPSCreateContextO establishes a connection with the Window Server and creates a
PostScript execution context in it. The new context becomes the current context. The
first argument, hostName, identifies the machine that's running the Window Server; the
second argument, serverName, identifies the Window Server that's running on that
machine. With these two arguments and the help of the Mach network server
nmserver, the Mach port for the Window Server can be identified. If hostName is
NULL, the network server on the local machine is queried for the Window Server's
port. If serverName is NULL, a well-known name for the Window Server is used. If
both arguments are NULL, DPSCreateContextO checks to see whether access rights
to the Window Server's port have been inherited from the application's parent. (For
example, an application launched by the Workspace Manager™ gains a connection to

DPSAddTimedEntry() 3-7

the Window Server by inheriting it from the Workspace Manager.) If the rights weren't
inherited from the parent, DPSCreateContextO queries the local machine for the
Window Server's port using a well-known name.

The last two arguments, textProc and errorProc, refer to call-back procedures that
handle text returned from the Window Server and errors generated on either side of the
connection. See "Handling Output" in the Client Library Reference Manual by Adobe
Systems Incorporated for more details.

For an application that's based on the Application Kit, you could create an additional
context by making this call:

DPSContext context;

context = DPSCreateContext(NXGetDefaultValue([NXApp appName],

"NXHost") ,NXGetDefaultValue ([NXApp appName],
"NXPSName") ,

NULL, NULL);

This example queries the application's default values for the indentity of the host
machine and the Window Server. By doing this, the new context is created in the
correct Window Server even if that Server is not on the same machine as the application
process.

The context that DPSCreateContextO creates allocates memory from the default
allocation zone. Also, when there's difficulty creating the context,
DPSCreateContextO waits up to 60 seconds before raising an exception. If you want
to change either of these parameters, use
DPSCreateContextWithTimeoutFromZoneO. Its two additional arguments let you
specify the zone for the context to use when allocating context -specific data and a
timeout value in milliseconds.

DPSCreateStreamContextO is similar to DPSCreateContextO, except that the new
context is actually a connection from the client application to a stream. This connection
becomes the current context. PostScript code that the application generates is sent to
the stream (which may have memory, a file, or a Mach port as a destination) rather than
to the Window Server. The first argument, stream, is a pointer to an NXStream, as
created by NXOpenFileO or NXMapFileO. The debugging argument is intended for
debugging purposes but is not currently implemented. progEnc and nameEnc specify
the type of program and user-name encodings to be used for output to the stream. (See
Extensions for the Display PostScript System for more information.) The last
argument, errorProc, identifies the procedure that's called when errors are generated.

Few programmers will need to call either of these functions directly: The Application
Kit manages contexts for programs based on the Kit. For example, when an application
is launched, its Application object calls DPSCreateContextO to create a context in the
Window Server. Similarly, to print a View the Kit calls DPSCreateStreamContextO
to temporarily redirect PostScript code from the View to a stream.

3-8 Chapter 3: C Functions

RETURN

Each of these functions returns the newly created DPSContext, as defined in the header
file dpsclient/dpsfriends.h.

EXCEPTIONS

DPSCreateContextO and DPSCreateContextWithTimeoutFromZoneO raise a
dps_err_outOtMemory exception if they encounter difficulty allocating ports or other
resources for the new context. They raise a dps_err_cantConnect exception if they
can't return a context within the timeout period.

DPSCreateContextWithTimeoutFromZoneO ~ See DPSCreateContextO

DPSCreateStreamContextO ~ See DPSCreateContextO

DPSDefineUserObjectO, DPSUndefineUserObjectO

SUMMARY Return index for top object of operand stack

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

int DPSDetineUserObject(int index)
void DPSUndetineUserObject(int index)

DESCRIPTION

DPSDetineUserObjectO associates index with the PostScript object that's on the top
of the operand stack, thereby creating a user object. (See Extensions for the Display
PostScript System for a description of user objects.) If index is 0, the object is assigned
the next available index number. The function returns the new index, which can then
be passed to a pswrap-generated function that takes a user object.

To avoid coming into conflict with user objects defined by the client library or
Application Kit, use DPSDetineUserObjectO rather than the PostScript operator
detineuserobject or the single-operator functions DPSdetineuserobjectO and

. PSdetineuserobjectO.

DPSUndetineUserObjectO removes the association between index and the PostScript
object it refers to, thus destroying the user object. By destroying a user object that's no
longer needed, you can let the garbage collector reclaim the previously associated
PostScript object.

DPSCreateContextWithTimeout() 3-9

RETURN

DPSDefineUserObjectO, if successful in assigning an index, returns the index that the
object was assigned. If unsuccessful, it returns O.

DPSDiscardEventsO -7 See DPSGetEventO

DPSDoUserPathO, DPSDoUserPathWithMatrixO

SUMMARY

LIBRARY

SYNOPSIS

Send PostScript path to Window Server and execute

libNeXT _s.a

#import <dpsclient/dpsclient.h>

void DPSDoUserPath(void *coords, int numCoords, DPSNumberFormat numType,
char *ops, int numOps, void *bbox, int action)

void DPSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberFormat numType, char *ops, int numOps, void *bbox, int action,
float matrix[6])

DESCRIPTION

DPSDoUserPathO and DPSDoUserPathWithMatrixO send an encoded user path to
the Window Server and then execute the operator specified by action. (See "User
Paths" in Extensions for the Display PostScript System for the primary documentation
on user paths.) The two functions are identical except for the matrix argument required
by DPSDoUserPath WithMatrixO.

The encoded user path is described by the coords, ops, and bbox arguments. The bbox
and coords arguments specify the encoded user path's data string; the ops argument
refers to the encoded user path's operator string. The bbox argument identifies the
operands for the setbbox operator, and the coords argument identifies the coordinates
used by the operators encoded in the operator string. You pass the number of elements
in the coords and ops arguments using the numCoords and numOps arguments.

The numType argument specifies the type of the numbers used in the data string. The
header file dpsclient/dpsNeXT.h defines these constants for numType:

dps_float
dps_Iong
dps_short

3-10 Chapter 3: C Functions

You can also specify 16 and 32-bit fixed-point numbers. For 16-bit fixed-point
numbers, use dps_short plus the number of bits in the fractional portion. For 32-bit
fixed-point numbers, use dps _long plus the number of bits in the fractional portion.
See "Alternate Language Encodings" in Extensions for the Display PostScript System
for more information.

The ops argument refers to an array encoding the operators that will consume the
operands in the data string. These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_Iineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

The first operands in a user path (as identified by bbox) are consumed by the setbbox
operator; however, including dps _ setbbox in the operator string is optional. If you
don't include it, it will be included for you.

Once the user path has been constructed, the operator specified by action is executed.
These constants are provided for action:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

DPSDoUserPathWithMatrixO's matrix argument represents the optional matrix
operand used by the ustroke, inustroke, and ustrokepath operators. If matrix is
NULL, the argument is ignored.

DPSDoUserPath() 3-11

The following program fragment demonstrates the use of DPSDoUserPathO by
creating a user path (an isosceles triangle) within a bounding rectangle whose lower left
comer is located at (0, 0) and whose width and height are 200. It then strokes the path.

short coords[6] = {O, 0, 200,0,100, 200};
char ops[4] = {dps_ffioveto, dps_lineto,dps_lineto,

dps_closepath};

short bbox [4] = {O, 0, 2 ° 0, 2 ° ° } ;
DPSDoUserPath(coords, 6, dps_short, ops, 4, bbox, dps_ustroke);

DPSDoUserPathWithMatrixO ~ See DPSDoUserPathO

DPSFlushO

SUMMARY

LIBRARY

SYNOPSIS

Send PostScript code to Window Server

#import <dpsclient/dpsclient.h>

void DPSFlushO

DESCRIPTION

DPSFlushO flushes the application's output buffer, forcing any buffered PostScript
code or data to the Window Server. DPSFlushO is a cover for
DPSFlushContext(DPSGetCurrentContextO); for more information about these
functions, see their descriptions in the Client Library Reference Manual.

3-12 Chapter 3: C Functions

DPSGetEventO, DPSPeekEventO, DPSDiscardEventsO

SUMMARY

LIBRARY

SYNOPSIS

Access data from Window Server

#import <dpsclient/dpsclient.h>

int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask,
double timeout, int threshold)

void DPSDiscardEvents(DPSContext context, int mask)

DESCRIPTION

DPSGetEventO and DPSPeekEventO are macros that access event records in an
application's event queue. These routines are provided primarily for programs that
don't use the Application Kit. An application based on the Kit should use the
corresponding Application class methods (such as getNextEvent: and
peekNextEvent:into:) or the function NXGetOrPeekEventO so that it can be
journaled. DPSDiscardEventsO removes all event records of a specified type from the
queue.

DPSGetEventO and DPSPeekEventO differ only in how they treat the accessed event
record. DPSGetEventO removes the record from the queue after making its data
available to the application; DPSPeekEventO leaves the record in the queue.

DPSGetEventO and DPSPeekEventO take the same parameters. The first, context,
represents a PostScript execution context within the Window Server. Virtually all
applications have only one execution context, which can be returned using
DPSGetCurrentContextO. (See the Client Library Reference Manual for information
on DPSGetCurrentContextO.) Applications having more than one execution context
can use the constant DPS_ALLCONTEXTS to access events from all contexts
belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEventO or
DPSPeekEventO is successful in accessing an event record, the record's data is copied
into the storage referred to by anEvent.

mask determines the types of events sought. The header file dpsclient/event.h defines
these constants for mask:

DPSGetEvent() 3-13

Constant

NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_KITDEFINEDMASK
NX_SYSDEFINEDMASK
NX_APPDEFINEDMASK
NX_ALLEVENTS

Event Type

Key-down
Key-up
Flags-changed
Mouse-down, left or only mouse button
Mouse-up, left or only mouse button
Mouse-down, right mouse button
Mouse-up, right mouse button
Mouse-moved
Mouse-dragged, left or only mouse button
Mouse-dragged, right mouse button
Mouse-entered
Mouse-exited
Timer
Cursor-update
Kit-defined
System-defined
Application -defined
All event types

To check for multiple types of events, you can combine these constants using the
bitwise OR operator.

If an event matching the event mask isn't available in the queue, DPSGetEventO or
DPSPeekEventO waits until one arrives or until timeout seconds have elapsed,
whichever occurs first. The value of timeout can be in the range of 0.0 to
NX_FOREVER. If timeout is 0.0, the routine returns an event only if one is waiting in
the queue when the routine asks for it. If timeout is NX_ FOREVER, the routine waits
until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines
which other services may be provided during a call to DPSGetEventO or
DPSPeekEventO·

Requests for services are registered by the functions DPSAddTimedEntryO,
DPSAddPortO, and DPSAddFDO. Each of these functions takes an argument
specifying a priority level. If this level is equal to or greater than threshold, the service
is provided before DPSGetEventO or DPSPeekEventO returns.

DPSDiscardEventsO's two parameters, context and mask, are the same as those for
DPSGetEventO and DPSPeekEventO. DPSDiscardEventsO removes from the
application's event queue those records whose event types match mask and whose
context matches context.

RETURN

DPSGetEventO and DPSPeekEventO return 1 if they are successful in accessing an
event record and 0 if they aren't.

3-14 Chapter 3: C Functions

SEE ALSO

DPSAddFDO, DPSAddPortO, DPSAddTimedEntryO, DPSPostEventO,
NXGetOrPeekEventO

DPSNameFromTypeAndlndexO

SUMMARY Provide support for user names

LIBRARY

SYNOPSIS

#import <dpsciient/dpsciient.h>

const char *DPSNameFromTypeAndlndex(short type, int index)

DESCRIPTION

DPSNameFromTypeAndlndexO returns the text associated with index from the
system or user name table. If type is -1, the text is returned from the system name table;
if type is 0, it's returned from the user name table.

The name tables are used primarily by the Client Library and pswrap; few
programmers will access them directly. (See "System and user name encodings" in the
"Alternate Language Encodings" section of Extensions for the Display PostScript
System for more information.)

RETURN

This function returns a read-only character string.

DPSPeekEventO ~ See DPSGetEventO

DPSPostEventO

SUMMARY Post event without involving Window Server

LIBRARY

SYNOPSIS

#import <dpsciient/dpsciient.h>

int DPSPostEvent(NXEvent *anEvent, int atStart)

3-15

DESCRIPTION

D PSPostEventO lets you add an event record to your application's event queue without
involving the Window Server. anEvent is a pointer to the event record to be added.
atStm:t specifies where the new record will be placed in relation to any other records in
the queue. If atStart is TRUE, the record is posted in front of all other records and so
will be the next one your application receives. If atStart is FALSE, the record is posted
behind all other records and so won't be returned until records that precede it are
processed.

Note that event records you post using DPSPostEventO aren't filtered by an event filter
function set with DPSSetEventFuncO.

RETURN

DPSPostEventO returns 0 if successful in posting the event record; it returns -1 if
unsuccessful in posting the record because the event queue is full.

SEE ALSO

DPSSetEventFuncO

DPSPrintErrorO, DPSPrintErrorToStreamO

SUMMARY Handle errors

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

void DPSPrintError(FILE *fp, const DPSBinObjSeq error)
void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DESCRIPTION

DPSPrintErrorO and DPSPrintErrorToStreamO format and print error messages
received from a PostScript execution context in the Window Server. The error message
is extracted from the binary object sequence error. (The type DPSBinObjSeq is defined
in the header file dpsclient/dpsfriends.h.) DPSPrintErrorO prints the error message
to the file identified by fp; DPSPrintErrorToStreamO prints the error message to
stream. (The NXStream structure is defined in the header file streams/streams.h.)

You rarely will need to call these functions directly. However, if you reset the error
handler for a PostScript execution context, the new handler you install could use one of
these functions to process errors that it receives. See the Client Library Reference
Manual for more information on error handling.

3-16 Chapter 3: C Functions

DPSPrintErrorToStreamO ~ See DPSPrintErrorO

DPSRemoveFDO ~ See DPSAddFDO

DPSRemovePortO ~ See DPSAddPortO

DPSRemoveTimedEntryO ~ See DPSAddTimedEntryO

DPSSetDeadKeysEnabledO

SUMMARY Enable or disable dead key processing for a context's events

LIBRARY

SYNOPSIS

#import <dpsclient/ dpsclient.h>

void DPSSetDeadKeysEnabled(DPSContext context, intflag)

DESCRIPTION

DPSSetDeadKeysEnabledO turns dead key processing on or off for context. If flag is
0, dead key processing is turned off; otherwise, it's turned on (the default).

Dead key processing is a technique for extending the range of characters that can be
entered from the keyboard. In NeXTstep, it provides one way for users to enter
accented characters. For example, a user can type Alternate-e followed by the letter "e"
to produce the letter "e". The first keyboard input, Alternate-e, seems to have no
effect-it's the "dead key". However, it signals client library routines that it and the
following character should be analyzed as a pair. If, within NeXTstep, the pair of
characters has been associated with a third character, a keyboard event record
representing the third character is placed in the application's event queue, and the first
two event records are discarded. If there is no such association between the two
characters, the two event records are added to the event queue.

See the N eXT User's Reference manual for a listing of the keys that produce accent
characters.

DPSPrintErrorToStream() 3-17

DPSSetEventFuncO

SUMMARY Set function that filters events

LIBRARY

SYNOPSIS

#import <dpsclientidpsclient.h>

DPSEventFilterFunc DPSSetEventFunc(DPSContext context,
DPSEventFilterFunc June)

DESCRIPTION

DPSSetEventFuncO establishes the functionJunc as the function to be called when an
event record is returned from the PostScript context context in the Window Server. The
registered function is called before the event record is put in the event queue. If the
registered function returns 0, the record is discarded. If the registered function returns
1, the record is passed on for further processing.

Only event records coming from the Window Server are filtered by the registered
function. Records that you post to the event queue using DPSPostEventO aren't
affected.

The following decIaration is provided in the header file dpsclientidpsNeXT.h for
convenience:

typedef int (*DPSEventFilterFunc) (NXEvent *anEvent);

RETURN

DPSSetEventFuncO returns a pointer to the previously registered event function. This
lets you chain together the current and previous event functions.

SEE ALSO

DPSPostEventO

3-18 Chapter 3: C Functions

DPSSetTrackingO

SUMMARY

LIBRARY

SYNOPSIS

Tum event coalescing on or off

#import <dpsciient/dpsclient.h>

int DPSSetTracking(int flag)

DESCRIPTION

DPSSetTrackingO turns event coalescing on or off for the current context. Ifflag is 0,
event coalescing is turned off; otherwise, it's turned on (the default).

Event coalescing is an optimization that's useful when tracking the mouse. When the
mouse is moved, numerous events flow into the event queue. To reduce the number of
events awaiting removal by the application, adjacent mouse-moved events are replaced
by the most recent event of the contiguous group. The same is done for left and right
mouse-dragged events, with the addition that a mouse-up event replaces mouse
dragged events that come before it in the queue.

RETURN

DPSSetTrackingO returns the previous state of the event-coalescing switch.

DPSStartWaitCursorTimerO

SUMMARY Initiate count down for wait cursor

LIBRARY

SYNOPSIS

#import <dpsciient/dpsciient.h>

void DPSStartWaitCursorTimerO

DESCRIPTION

DPSStartWaitCursorTimerO triggers the mechanism that displays a wait cursor
when an application is busy and can't respond to user input. In most cases, wait cursor
support is automatic: You'll only need to call this function if your application starts a
time-consuming operation that's not initiated by a user-generated event.

Client library routines and the Window Server cooperate to display the wait cursor
whenever more than a preset amount of time elapses between the time an application
takes an event record from the event queue and the time the application is again ready

DPSSetTracking() 3-19

to consume events. However, when an application starts an operation that isn't initiated
by an event-such as one caused by receiving a Mach message or by processing data
from a file (see DPSAddPortO and DPSAddFDO)-the wait cursor mechanism is
bypassed. To ensure proper wait cursor behavior in these cases, call
DPSStartWaitCursorTimerO before beginning the time-consuming operation.

SEE ALSO

DPSAddFDO, DPSAddPortO, setwaitcursorenabled

DPSTraceContextO

SUMMARY

LIBRARY

SYNOPSIS

Control debugging tracing of context's input and output

#import <dpsclient/dpsclient.h>

int DPSTraceContext(DPSContext context, intjlag)

DESCRIPTION

DPSTraceContextO controls the tracing of data between a PostScript execution
context (or contexts) in the Window Server and an application process. When tracing
is enabled, a copy of the PostScript code generated by an application and the values
returned to it by the Window Server is sent to the UNIX@ standard error file, stderr.
This copy can be useful for program debugging and optimization.

The first argument, context, specifies the context to be traced. An application's single
context can be returned with DPSGetCurrentConte~tO. (See the Client Library
Reference Manual for information on DPSGetCurrentContextO.) Applications
having more than one execution context can use the constant DPS_ALLCONTEXTS
to trace all contexts belonging to them.

The second argument,jlag, determines whether tracing is enabled. Ifjlag is YES,
DPSTraceContextO chains a new context, known as the child context, to context, the
parent context. (See "Chained Contexts" in the "Application Support" section of the
Client Library Reference Manual.) The new context receives an ASCII version of the
PostScript code that's sent to the parent context. It also receives a copy of any values
returned from the parent context to the client process. In the tracing output, values
returned to the application are marked by the prepended string:

% value returned ==>

Ifjlag is NO, the child context is unchained and destroyed.

3-20 Chapter 3: C Functions

For applications based on the Application Kit, there are two preferable methods for
turning on tracing. You can use the NXShow PS command-line switch when you
launch an application from Terminal. Alternatively, when you run the application
under GDB, you can use the showps and shownops commands to control tracing
output.

Only one tracing context can be created for the supplied context. If you attempt to
create additional tracing contexts for a context that's already being traced, no new
context is created and DPSTraceContextO returns -1.

RETURN

DPSTraceContextO returns 0 if successful in creating a tracing context, or -1 if not.

DPSTraceEventsO

SUMMARY Control debugging tracing of a context's events

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

void DPSTraceEvents(DPSContext context, intjlag)

DESCRIPTION

DPSTraceEventsO controls the tracing of events. When event tracing is enabled,
information about each event that the application receives is sent to the UNIX standard
error file, stderr. This information can be useful for program debugging and
optimization.

The first argument, context, specifies the context to be traced. An application's single
context can be returned with DPSGetCurrentContextO. (See the Client Library
Reference Manual for information on DPSGetCurrentContextO.) Applications
having more than one execution context can use the constant DPS_ALLCONTEXTS
to trace all contexts belonging to them.

The second argument,jlag, determines whether event tracing is enabled. Ifjlag is YES,
event tracing is enabled; ifjlag is NO, it's disabled.

When tracing is enabled and the application receives an event, the event record's
components are listed. For example, for a left mouse-down event the listing might look
like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899
flags: OxO win: 6 ctxt: 76128 data: 1111,1

DPSTraceEvents() 3-21

The listing displays the fields of the event record: type, location, time, flags, local
window number, PostScript execution context, and data. (See dpsclient/event.h for the
structure of the event record.) The format of the data field listing depends on the event
type; for instance, in the preceding example the event number and the click count were
displayed. The following table lists the contents of the data field according to event
type.

Event Type

NX_LMOUSEDOWN
NX_LMOUSEUP
NX_RMOUSEDOWN
NX_RMOUSEUP

NX_KEYDOWN
NX_KEYUP

NX_MOUSEENTERED
NX_MOUSEEXITED

NX_MOUSEMOVED
NX_LMOUSEDRAGGED
NX_RMOUSEDRAGGED
NX_FLAGSCHANGED
And all other event types

Data

data.mouse.eventNum, data.mouse.click

data.key.repeat, data.key.charSet,
data.key.charCode, data.key.keyCode,
data.key.key Data

data.tracking.eventN urn,
data.tracking.trackingNum,
data. tracking. user Data

data.compound.slJbtype,
data.compound.misc.L[O],
data.compound.misc.L[l]

For applications based on the Application Kit, there are two more convenient methods
for turning on event tracing. You can use the NXTraceEvents command-line switch
when you launch an application from Terminal. Alternatively, when you run the
application under GDB, you can use the traceevents and tracenoevents commands to
control event-tracing output.

DPSUndetineUserObjectO ~ See DPSDetineUserObjectO

3-22 Chapter 3: C Functions

NXAllocError DataO, NXResetError DataO

SUMMARY

LIBRARY

SYNOPSIS

Manage the error data buffer

libNeXT _s.a

#import <objc/error.h>

void NXAllocErrorData(int size, void **data)
void NXResetErrorData(void)

DESCRIPTION

These functions handle the error buffer, which is used to pass error data to an error
handler. When an error occurs, NX _ RAISEO is called with two arguments that point
to an arbitrary amount of data about the error. If an error handler can't respond to the
error, the error code and associated data are passed to the next higher-level handler.

NXAllocErrorDataO allocates size amount of space in the error buffer, increasing the
size of the buffer if necessary. The data argument points to a pointer to the data in the
buffer. To empty and free the buffer, call NXResetErrorDataO. If you're using the
Application Kit, the buffer is freed for you upon each pass through the event loop.

SEE ALSO

NX _ RAISEO, NXDefaultTopLevelErrorHandlerO

NXAlphaComponentO ~ See NXRedComponentO

NXAtEOSO ~ See NXSeekO

NXAttachPopUpListO, NXCreatePopUpListButtonO

SUMMARY Set up a pop-up list

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/appkit.h>

void NXAttachPopUpList(id button, PopUpList popUpList)
id NXCreatePopUpListButton(PopUpList popUpList)

NXAllocErrorData() 3-23

DESCRIPTION

These functions make it easy to use the PopUpList class, which is described in more
detail in Chapter 3. NXCreatePopUpListButtonO returns a new Button object that
will activate the pop-up list specified by popUpList.

NXAttachPopUpListO modifies button so that it activates popUpList. In addition, if
button already has a target and an action, then they are used whenever a selection is
made from the pop-up list.

RETURN

NXCreatePopUpListButtonO returns a new Button object.

NXBeepO

SUMMARY Play the system beep

LIBRARY

SYNOPSIS

#import <appkit/public Wraps.h>

void NXBeep(void)

DESCRIPTION

This function plays the system beep. Users can select a sound to be played as the
system beep through the Preferences application.

NXBeginTimerO, NXEndTimerO

SUMMARY Set up timer events

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/timer.h>

NXTrackingTimer *NXBeginTimer(NXTrackingTimer *timer, double delay,
double period)

void NXEndTimer(NXTrackingTimer * timer)

3-24 Chapter 3: C Functions

DESCRIPTION

These functions start up and end a timed entry that puts timer events in the event queue
at specified intervals. They ensure that the modal event loop will get a stream of events
even if none are being generated by the Window Server.

NXBeginTimerO's delay argument specifies the number of seconds after which timer
events will begin to be added to the event queue; an event will then be added every
period seconds. The first argument, timer, is a pointer to an NXTrackingTimer
structure, which is defined in the header file appkit/timer.h. You don't have to
initialize this argument. If you pass a NULL pointer, memory will be allocated for the
structure. Since timer events are usually needed only within a modal event loop, it's
generally better to declare the structure as a local variable on the stack.

NXEndTimerO stops the flow of timer events. Its argument should be a pointer to the
NXTrackingTimer structure used by NXBeginTimerO. If memory had been allocated
for the structure, NXEndTimerO frees it.

RETURN

NXBeginTimerO returns a pointer to the NXTrackingTimer structure it uses.

NXBlackComponentO ~ See NXRedComponentO

NXBlueComponentO ~ See NXRedComponentO

NXBPSFromDepthO ~ See NXColorSpaceFromDepthO

NXBrightnessComponentO ~ See NXRedComponentO

NXChangeAlphaComponentO ~ See NXChangeRedComponentO

NXChangeBlackComponentO ~ See NXChangeRedComponentO

NXChangeBlueComponentO ~ See NXChangeRedComponentO

NXChangeBrightnessComponentO ~ See NXChangeRedComponentO

NXChangeBufferO ~ See NXStreamCreateO

NXChangeCyanComponentO ~ See NXChangeRedComponentO

NXChangeGrayComponentO ~ See NXChangeRedComponentO

NXChangeGreenComponentO ~ See NXChangeRedComponentO

NXChangeHueComponentO ~ See NXChangeRedComponentO

lVXBeep() 3-25

NXChangeMagentaComponentO ~ See NXChangeRedComponentO

NXChangeRedComponentO, NXChangeGreenComponentO,
NXChangeBlueComponentO, NXChangeCyanComponentO,
NXChangeMagentaComponentO, NXChangeYellowComponentO,
NXChangeBlackComponentO, NXChangeHueComponentO,
NXChangeSaturationComponentO, NXChangeBrightnessComponentO,
NXChangeGrayComponentO, NXChangeAlphaComponentO

SUMMARY

LIBRARY

SYNOPSIS

Modify a color by changing one of its components

libNeXT _s.a

#import <appkit/color.h>

NXColor NXChangeRedComponent(NXColor color, float red)
NXColor NXChangeGreenComponent(NXColor color, float green)
NXColor NXChangeBlueComponent(NXColor color, float blue)
NXCoior NXChangeCyanComponent(NXColor color, float cyan)
NXColor NXChangeMagentaComponent(NXColor color, float magenta)
NXColor NXChangeYellowComponent(NXColor color, float yellow)
NXColor NXChangeBlackComponent(NXColor color, float black)
NXColor NXChangeHueComponent(NXColor color, float hue)
NXColor NXChangeSaturationComponent(NXColor color, float saturation)
NXCoior NXChangeBrightnessComponent(NXColor color, float brightness)
NXCoior NX ChangeGrayComponent(NXColor color, float gray)
NXCoior NXChangeAlphaComponent(NXColor color, float alpha)

DESCRIPTION

These functions alter one component of a color value and return the new color. The first
argument, color, is the color to be altered and the second argument is the new value for
the altered component. For example, the code below specifies a color with a greater red
content than the standard brown:

NXColor redBrown = NXChangeRedComponent(NX_COLORBROWN, 0.9);

Note that the color argument is used as a reference for creating a new color value; it is
not itself changed.

Values passed for the altered component should lie between 0.0 and 1.0; out-of-range
values will be lowered to 1.0 or raised to 0.0. NX_NOALPHA can be passed to
NXChangeAlphaComponentO to remove any specification of coverage from the
color.

3-26 Chapter 3: C Functions

RETURN

These functions return an NXCoior structure that, except for the altered component,
represents a color identical to the one passed as an argument.

SEE ALSO

NXRedComponentO, NXSetColorO, NXConvertRGBAToColorO,
NXConvertColorToR GBAO, NXEqualColorO, NXReadColorO

NXChangeSaturationComponentO ~ See NXChangeRedComponentO

NXChange YellowComponentO ~ See NXChangeRedComponentO

NXChunkCopyO ~ See NXChunkMallocO

NXChunkGrowO ~ See NXChunkMallocO

NXChunkMallocO, NXChunkReallocO, NXChunkGrowO, NXChunkCopyO,
NXChunkZoneMallocO, NXChunkZoneReallocO, NXChunkZoneGrowO,
NXChunkZoneCopyO

SUMMARY Manage variable-sized arrays of records

LIBRARY

SYNOPSIS

#import <appkit/chunk.h>

NXChunk *NXChunkMalloc(int growBy, int initU sed)
NXChunk *NXChunkRealloc(NXChunk *pc)
NXChunk *NXChunkGrow(NXChunk *pc, int newUsed)
NXChunk *NXChunkCopy(NXChunk *pc, NXChunk *dpc)
NXChunk *NXChunkZoneMalloc(int growBy, int initUsed, NXZone *zone)
NXChunk *NXChunkZoneRealloc(NXChunk *pc, NXZone *zone)
NXChunk *NXChunkZoneGrow(NXChunk *pc, int new Used, NXZone *zone)
NXChunk *NXChunkZoneCopy(NXChunk *pc, NXChunk *dpc, NXZone *zone)

DESCRIPTION

A Text object uses these functions to manage variable-sized arrays of records. For
general storage management, use objects of the Storage or List class.

These functions are paired (for example, NXChunkZoneMallocO and
NXChunkMallocO): One function lets you specify a zone and one doesn't. Those
functions that don't take a zone argument operate within the default zone, as returned

NXChunkMalloc() 3-27

by NXDefaultMallocZoneO. In all other respects, the two types of functions are
identical. In the following discussion, statements concerning one member of a function
pair apply equally well to the other member.

Arrays that are managed by these functions must have as their first element an
NXChunk structure, as defined in appkit/chunk.h:

typedef struct _NXChunk {

short growby; /* Increment to grow by */
int allocated; /* Number of bytes allocated */
int used; /* Number of bytes used */

NXChunk;

For example, assuming an account structure has been declared, an accountArray
structure is declared as:

typedef struct _accountArray

NXChunk chunk;

account record[l];

accountArray;

The NXChunk structure stores three values: gr{~wby specifies how many additional
bytes of storage will be allocated when NXChunkReallocO is called; allocated stores
the number of bytes currently allocated for the array; and used stores the number of
bytes currently used by the array's elements.

Note: The values recorded in the NXChunk element don't take into account the size
of the NXChunk element itself. However, the functions described here preserve space
for this element. You don't need to take into account the size of the array's NXChunk
when using these functions.

Use NXChunkMallocO to initially allocate memory for the array. The amount of
memory allocated is equal to initUsed. If initUsed is 0, growby bytes is allocated. The
array'~ NXChunk element records the value of growby and the amount of memory
allocated for the array.

NX ChunkReallocO increases the amount of memory available for the array identified
by the pointer pc. The amount of memory allocated depends on the value of the
growby member of the array's NXChunk element. If the value is 0, the space for
elements is doubled; otherwise the array's size increases by growby bytes. The
allocated member of the array's NXChunk element stores the new size of the array.

NXChunkGrowO increases the size of the array identified by the pointer pc by a
specific amount. The new Used argument specifies the array's new size in bytes. If the
growby member of the array's NXChunkelement is 0, the array grows to the size
specified by newU sed. Otherwise, the array grows to the larger of growby and
newU sed. In either case, the size of the array changes only if the new size is larger than
the old one.

3-28 Chapter 3: C Functions

NXChunkCopyO copies the array identified by the pointer pc to the array identified by
the pointer dpc and returns a pointer to the copy. Since the new array may be relocated
in memory, the returned pointer may be different than dpc. ,.

RETURN

Each function returns a pointer to an array's NXChunk element. NXChunkMallocO
returns a pointer to the newly allocated array, NXChunkReallocO and
NXChunkGrowO return pointers to the resized arrays, and NXChunkCopyO returns
a pointer to the copy of the array.

NXChunkReallocO ~ See NXChunkMallocO

NXChunkZoneCopyO ~ See NXChunkMallocO

NXChunkZoneGrowO ~ See NXChunkMallocO

NXChunkZoneMallocO ~ See NXChunkMallocO

NXChunkZoneReallocO ~ See NXChunkMallocO

NXCloseO

SUMMARY Close a stream

LIBRARY

SYNOPSIS

. #import <streams/streams.h>

void NXClose(NXStream *stream)

DESCRIPTION

This function closes the stream given as its argument. If the stream had been opened
for writing, it's flushed first. (The NXStream structure is defined in the header file
stream/streams.h.)

If the stream had been a file stream, the storage used by the stream is freed, but the file
descriptor isn't closed. See the UNIX manual page on cIoseO for information about
closing a file descriptor. If the stream had been on memory, the internal buffer is
truncated to the size of the data in it. (Calling NXCloseO on a memory stream is
equivalent to NXCloseMemoryO with the constant NX_TRUNCATEBUFFER.)

NXClose() 3-29

EXCEPTIONS

NXCloseO raises an NX_illegalStream exception if the stream passed in is invalid.

SEE ALSO

NXCloseMemoryO

NXCloseMemoryO ~ See NXOpenMemoryO

NXCloseTypedStreamO ~ See NXOpenTypedStreamO

NXColorSpaceFromDepthO, NXBPSFromDepthO,
NXNumberOfColorComponentsO, NXGetBestDepthO

SUMMARY

LIBRARY

SYNOPSIS

Get information about color space and window depth

#import <appkit/graphics.h>

NXColorSpace NXColorSpaceFromDepth(NXWindow Depth depth)
int NXBPSFromDepth(NXWindowDepth depth)
int NXN umberOfColorComponents(NXColorSpace space)
BOOL NXGetBestDepth(NXWindowDepth *depth, int numColors, int bps)

DESCRIPTION

The first of these functions, NXColorSpaceFromDepthO, maps an enumerated value
for window depth into the corresponding enumerated value for color space. The depth
argument can be any of the following:

NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveB itRGB Depth
NX_TwentyFourBitRGBDepth

The value returned will be one of the NXColorSpace values in this list:

NX_ OneIsBlackColorSpace
NX_ Onels WhiteColorSpace
NX_RGBColorSpace
NX_ CMYKColorSpace

3-30 Chapter 3: C Functions

NX_TwoBitGrayDepth and NX_EightBitGrayDepth map to
NX_ Onels WhiteColorSpace.

The second function, NXBPSFromDepthO, extracts the number of bits per sample
(bits per pixel in each color component) from a window depth.

The third function, NXNumberOfCoiorComponentsO, similarly extracts the number
of color components from a color space. The value returned will be 1,3, or 4.

The fourth function, NXGetBestDepthO, finds the best window depth for an image
with a given number of color components, numC olors, and a given bits per sample, bps.
The depth is returned by reference in the variable specified by depth. It will be one of
the enumerated values listed above. If the depth provided exactly matches the
requirements of numColors and bps, or is deeper than required, this function returns
YES. If the depth isn't deep enough for numColors and bps, but is the best available,
it returns NO.

RETURN

NXCoiorSpaceFromDepthO returns the color space that matches a given window
depth. NXBPSFromDepthO returns the number of bits per sample for a given window
depth. NXNumberOfCoiorComponentsO returns the number of color components in
a given color space. NXGetBestDepthO returns YES if it can provide a window depth
deep enough for numColors and bps, and NO if it can't.

NXCompareHashTablesO ~ See NXCreateHashTableO

NXCo!orSpaceFromDepth() 3-31

NXCompleteFilenameO

SUMMARY Match an incomplete filename.

LIBRARY

SYNOPSIS

#import <appkit/SavePanel.h>

int NXCompleteFileIiame(char *path, int maxPathSize);

DESCRIPTION

NXCompleteFilename is used by the SavePanel class to determine the number of files
matching an incomplete pathname. path is a pointer to a buffer containing an
incomplete pathname. maxPathSize is the size of the buffer, not the length of path as
determined by strlen(path).

RETURNS

This function returns the number of files that match the incomplete name. By
reference, path returns up to maxPathSize characters of the path to the first file matching
the incomplete name.

NXContainsRectO ~ See NXMouselnRectO

NXConvertCMYKAToColorO ~ See NXConvertRGBAToCoiorO

NXConvertCMYKToCoiorO ~ See NXConvertRGBAToCoiorO

NXConvertCoiorToCMYKO ~ See NXColorToRGBAO

NXConvertColorToCMYKAO ~ See NXColorToRGBAO

NXConvertColorToGrayO ~ See NXColorToRGBAO

NXConvertColorToGrayAlphaO ~ See NXColorToRGBAO

NXConvertColorToHSBO ~ See NXColorToRGBAO

NXConvertCoiorToHSBAO ~ See NXColorToRGBAO

NXConvertColorToRGBO ~ See NXColorToRGBAO

3-32 Chapter 3: C Functions

NXConvertColorToRGBAO, NXConvertColorToCMYKAO,
NXConvertColorToHSBAO, NXConvertColorToGrayAlphaO,
NXConvertColorToRGBO, NXConvertColorToCMYKO,
NXConvertColorToHSBO, NXConvertColorToGrayO

SUMMARY

LIBRARY

SYNOPSIS

Convert a color value to its standard components

#import <appkit/color.h>

void NXConvertColorToRGBA(NXColor color, float *red, float *green, float *blue,
float *alpha)

void NXConvertColorToCMYKA(NXColor color, float *cyan, float *magenta,
float *yellow, float *black, float *alpha)

void NXConvertColorToHSBA(NXColor color, float *hue, float *saturation,
float *brightness, float *alpha)

void NXConvertColorToGrayAlpha(NXColor color, float *gray, float *alpha)
void NXConvertColorToRGB(NXColor color, float *red, float *green, float *blue)
void NXConvertColorToCMYK(NXColor color, float *cyan, float *magenta,

float *yellow, float *black)
void NXConvertColorToHSB(NXColor color, float *hue, float *saturation,

float *brightness)
void NXConvertColorToGray(NXColor color, float *gray)

DESCRIPTION

These functions convert a color value, color, to its standard components. The first
argument to each function is the NXCoior data structure to be converted. Subsequent
arguments point to float variables where the component values can be returned by
reference.

The conversion can be to any set of components that might be used to specify a color
value:

• Red, green, and blue (ROB) components
Cyan, magenta, yellow, and black (CMYK) components

• Hue, saturation, and brightness (HSB) components
• A single component for gray scale images

A color initially specified by one set of components can be converted to another set. For
example:

NXColor color;
float hue, saturation, brightness;

color = NXConvertRGBToColor(0.8, 0.3, 0.15);
NXConvertColorToHSB(color, &hue, &saturation, &brightness);

NXConvertColorToRGBA() 3 -33

The first four functions in the list above report the coverage component, alpha, included
in the color value, as well as the color components. The second four report only the
color components; they're macros and are defined on the corresponding functions, but
ignore the alpha argument.

The float values returned by reference will lie in the range 0.0 through 1.0. The value
returned for the coverage component will be NX_NOALPHA if color doesn't include
a coverage specification.

SEE ALSO

NXConvertRGBAToColorO, NXSetColorO, NXEqualColorO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXConvertGlobalToWinNumO ~ See NXConvertWinNumToGlobal 0

NXConvertGrayAlphaToColorO ~ See NXConvertRGBAToCoiorO

NXConvertGrayToColorO ~ See NXConvertRGBAToCoiorO

NXConvertHSBAToCoiorO ~ See NXConvertRGBAToCoiorO

NXConvertHSBToColorO ~ See NXConvertRGBAToCoiorO

3-34 Chapter 3: C Functions

NXConvertRGBAToColorO, NXConvertCMYKAToColorO,
NX ConvertHSBAToColorO, NX ConvertGray AlphaToColorO,
NXConvertRGBToColorO, NXConvertCMYKToColorO,
NXConvertHSBToColorO, NXConvertGrayToColorO

SUMMARY

LIBRARY

SYNOPSIS

Specify a color value

libNeXT_s.a

#import <appkit/color.h>

NXCoior NXConvertRGBAToColor(float red, float green, float blue, float alpha)
NXCoior NXConvertCMYKAToColor(float cyan, float magenta, float yellow,

float black, float alpha)
NXCoior NXConvertHSBAToColor(float hue, float saturation, float brightness,

float alpha)
NXCoior NXConvertGrayAlphaToColor(float gray, float alpha)
NXCoior NXConvertRGBToColor(float red, float green, float blue)
NXCoior NXConvertCMYKToColor(float cyan, float magenta, float yellow,

float black)
NXCoior NXConvertHSBToColor(float hue, float saturation, float brightness)
NXCoior NXConvertGrayToColor(float gray)

DESCRIPTION

These functions specify a color by its standard components and return an NXCoior
structure for the color. In the Application Kit, a color can be specified in any of four
ways:

• By its red, green, and blue components (ROB)
• By its cyan, magenta, yellow, and black components (CMYK)
• By its hue, saturation, and brightness components (HSB)
• On a gray scale

No matter how they're specified, all color values are stored as the NXCoior data type.
The internal format of this type is unspecified; it should be set only through these
functions or as one of the constants defined for pure colors, such as
NX_COLORORANGE or NX_COLORWHITE.

The NXCoior structure includes provision for a coverage component, alpha, which can
be specified at the same time as the color. The first four functions listed above specify
both color and coverage. The last four specify only color; they're defined as macros
that work through the corresponding functions by passing NX_NOALPHA for the
alpha argument.

Except for NX_NOALPHA, all values passed for color and coverage components
should lie in the range 0.0 through 1.0; higher values will be reduced to 1.0 and lower
ones raised to 0.0.

NXConvertRGBAToColor() 3-35

RETURN

Each of these functions and macros returns an NXColor structure for the color
specified ..

SEE ALSO

NXConvertColorToRGBAO, NXSetColorO, NXEqualColorO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXConvertRGBToColorO ~ See NXConvertRGBAToCoiorO

NXConvertWinNumToGlobalO, NXConvertGlobalTo WinNum 0

SUMMARY

LIBRARY

SYNOPSIS

Convert local and global window numbers

libNeXT _s.a

#import <appkitl publicWraps.h>

void NXConvertWinNumToGlobal(int winNum, unsigned int *globaINum)
void NXConvertGlobalToWinNum(int globalNum, unsigned int *winNum)

DESCRIPTION

These functions allow two or more applications to refer to the same window. In the rare
cases where this is necessary, the global window number, which has been automatically
assigned by the Window Server, is used rather than the local window number, which is
assigned by the application.

NXConvertWinNumToGlobalO takes the local window number and places the
corresponding global window number in the variable specified by globalNum. This
global number can then be passed to other applications that need to access the window.
To convert window numbers in the opposite direction, give the global number as an
argument for NXConvertGlobalTo WinNumO; this function places the appropriate
local number in the variable specified by winNum.

3-36 Chapter 3: C Functions

NXCopyBitsO

SUMMARY

LIBRARY

SYNOPSIS

Copy an image

#import <appkit/graphics.h>

void NXCopyBits(int gstate, NXRect *aRect, const NXPoint *aPoint)

DESCRIPTION

NXCopyBitsO uses the composite operator to copy the pixels in the rectangle specified
by aRect to the location specified by aPoint.

The source rectangle is defined in the graphics state designated by the gstate user
object. If gstate is NXNullObject, the current graphics state is assumed.
NXNullObject is declared in appkitl Application.h.

The aPoint destination is defined in the current graphics state.

SEE ALSO

composite operator

NXCopyCurrentGStateO ~ See NXSetGStateO

NXCopyHashTableO ~ See NXCreateHashTableO

NXCopyBits() 3-37

NXCopylnputDataO, NXCopyOutputDataO

SUMMARY Save data received in a remote message

LIBRARY

SYNOPSIS

#import <appkitl Listener.h>

char *NXCopylnputData(int parameter)
char *NXCopyOutputData(int parameter)

DESCRIPTION

These functions each return a pointer to memory containing data passed from one
application to another in a remote message. NXCopylnputDataO is used for data
received by a Listener object, and NXCopyOutputDataO is used for return data
received back by a Speaker.

Data received by a Listener in a remote message is guaranteed only for the duration of
the receiving application's response to the message. Return data passed back to a
Speaker is guaranteed only until the Speaker receives another return message.
Therefore, you must copy any data you wish to keep.

If the data is passed in-line (if it's not too large to fit within the Mach message), these
functions allocate memory "for the data, copy it, and return a pointer to the copy.
However, it's likely that more memory will be allocated than is required for the copy.
Both functions use vm _ allocateO, which provides memory in multiples of a page.

Therefore, for in-line data, it's more efficient for you to allocate the memory yourself,
using mallocO or NX _ MALLOCO, then copy the data using a standard library
function like strcpyO.

For out-of-line data (data that's too large to fit within the Mach message itself, so that
only a pointer to it is passed), it's generally more efficient to use NXCopylnputDataO
and NXCopyOutputDataO to save a copy. Both functions ensure that the Listener or
Speaker won't free the out-of-line data. Both return a pointer to the data without
actually copying it.

The memory returned by these functions should be freed using vm_ deallocateO, rather
than freeO.

The data to be saved is identified by parameter, an index into the list of parameters
declared for the Objective-C method that sends or receives the remote message. Indices
begin at 0, and byte arrays count as a single parameter even though they're declared as
a combination of a pointer to the array and an integer that counts the number of bytes
in the array.

The examples below illustrate how these these functions are used. In the first, a
Listener receives a translateGaelic::toWelsh::ok: message, a fictitious message

3-38 Chapter 3: C Functions

which requests the receiving application to exchange Gaelic text for the equivalent
Welsh version, If the application needs to save the original text, it would copy it, using
NXCopyInputDataO, in the method it implements to respond to the message:

char *originalText;

- (int)translateGaelic: (char *)gaelicText

: (int)gaelicLength

toWelsh: (char *)welshText
: (int *)welshLength

ok: (int *) flag

if (gaelicLength >= vm_page size
originalText = NXCopylnputData(O);

The application that sends a translateGaelic::toWelsh::ok: message would save the
returned text, using NXCopyOutputDataO, immediately after sending the remote
message:

char . *newText;
int newLength;

int error, success;

error = [mySpeaker translateGaelic:someText
:strlen(someText)
toWelsh:&newText

:&newLength

ok:&success];
if (!error && success)

newText = NXCopyOutputData(l);

RETURN

Both functions return a pointer to memory containing data identified by the parameter
index, or a NULL pointer if the data can't be provided.

NXCopyOutputDataO ~ See NXCopylnputDataO

NXCopyStringBufferO ~ See NXUniqueStringO

NXCopyStringBufferFromZoneO ~ See NXUniqueStringO

NXCountHashTableO ~ See NXHashlnsertO

NXCopylnputData() 3-39

NXCountWindowsO, NXWindowListO

SUMMARY Get information about an application's windows

LIBRARY

SYNOPSIS

#import <appkit/publicWraps.h>

void NXCountWindows(int *count)
void NXWindowList(int size, int list[])

DESCRIPTION

NXCountWindowsO counts the number of on-screen windows belonging to the
application; it returns the number by reference in the variable specified by count.

NXWindowListO provides an ordered list of the application's on-screen windows. It
. fills the list array with up to size window numbers; the order of windows in the array is
the same as their order in the Window Server's screen list (their front-to-back order on
the screen). Use the count obtained by NXCountWindowsO to specify the size of the
array for NXWindowListO.

NXCreateChildZone() ~ See NXZoneMallocO

3-40 Chapter 3: C Functions

NXCreateHashTableO, NXCreateHashTableFromZoneO,
NXFreeHashTableO, NXEmptyHashTableO, NXResetHashTableO,
NXCopyHashTableO, NXCompareHashTablesO,NXPtrHashO, NXStrHashO,
NXPtrIsEqualO, NXStrIsEqualO, NXNoEffectFreeO, NXReallyFreeO

SUMMARY

LIBRARY

SYNOPSIS

Create and free a hash table

#import <objc/hashtable.h>

NXHashTable *NXCreateHashTable(NXHashTablePrototype prototype,
unsigned capacity, const void * info)

NXHashTable *NX CreateHashTableFromZone(NXHashTablePrototype prototype,
unsigned capacity, const void *info, NXZone *zone)

void NXFreeHashTable(NXHashTable *table)
void NXEmptyHashTable(NXHashTable *table)
void NXResetHashTable(NXHashTable * table)
NXHashTable *NXCopyHashTable(NXHashTable *table)
BOOL NXCompareHashTables(NXHashTable *tablel, NXHashTable *table2)
unsigned NXPtrHash(const void *info, const void *data)
unsigned NXStrHash(const void *info, const void *data)
int NXPtrIsEqual(const void * info , const void *datal, const void *data2)
int NXStrIsEqual(const void *info, const void *datal, const void *data2)
void NXNoEffectFree(const void *info, void *data)
void NXReallyFree(const void *info, void *data)

DESCRIPTION

These functions set up, copy, and free a hash table. A hash table provides an efficient
means of manipulating elements of an unordered set of data. A data element is stored
by computing a hash function-or hashing-on the element to be stored. The value of
the hashing function, sometimes called the key, is used to determine the location at
which to store the data. The functions described under NXHashlnsertO insert,
remove, arid search for a data element; they also count the number of elements and
iterate over all elements in a hash table.

To create a hash table, call NXCreateHashTableO or
NXCreateHashTableFromZoneO. These functions differ only in that the first one
creates the hash table in the default zone, as returned by NXDefauItMalIocZoneO,'and
the second lets you specify a zone. Only NXCreateHashTableO will be discussed
below.

NXCreateHashTable() 3-41

The first argument to NXCreateHashTableO is a NXHashTablePrototype structure,
which is defined in objc/hashtable.h and shown below. This structure requires you to
specify three functions, a hashing function, a comparison function that determines
whether two data elements are equal, and a freeing function that frees a given data
element in the table:

typedef struct
unsigned (*hash) (const void *info, const void *data);
int (* isEqual) (const void * info, const void *datal,

const void *data2);
void (*free) (const void *info, void *data);
int style;

NXHashTablePrototype;

The hashing function must be defined such that if two data elements are equal, as
defined by the comparison function, the values produced by hashing on these elements
must also be equal. Also, data elements must remain invariant if the value of the
hashing function depends on them; for example, if the hashing function operates
directly on the characters of a string, that string can't change. The comparison function
must return true if and only if the two data elements being compared are equal. The
third function specifies how a data element is to be freed. The style field is reserved for
future use; currently, it should be passed in as O.

As shown, the third argument for NXCreateHashTableO, info, is passed as the first
argument to the hashing, comparison, and freeing functions. You can use info to
modify or add to the effects produced by these functions. For example, the comparison
function can be modified to return a certain value if the elements being compared are
similar to each other but not exactly equal.

For convenience, functions for hashing pointers, integers, and strings and for
comparing them have already been defined; two different freeing functions are also
provided. NXPtrHashO hashes the address bits of data and returns a key for storing
the data. NXPtrIsEqualO returns nonzero if datal is equal to data2 and 0 if they're
not equal. These functions can be used for pointers or for data of type int. Similarly,
NXStrHashO returns a key for the string passed in as data, and NXStrIsEqualO
checks whether two strings are equal. NXReallyFreeO frees the data element passed
in, allowing its key to be reused. NXNoEffectFreeO, as its name implies, has no effect.

The info argument for all six of these functions isn't used. If you want to hash data
other than pointers or strings, or if you want to use the info argument, you need to write
your own hashing, comparison, and freeing functions.

3-42 Chapter 3: C Functions

In addition to the hashing, comparison, and freeing functions, four different prototypes
have been predefined. The prototype for pointers (which can also be used for data of
type iot) and the one for strings both use the functions described above:

const NXHashTablePrototype NXPtrPrototype = {

NXPtrHash, NXPtrIsEqual, NXNoEffectFree, °
} ;

const NXHashTablePrototype NXStrPrototype = {
NXStrHash, NXStrIsEqual, NXNoEffectFree, °

} ;

The following example shows how to use NXPtrPrototype to create a hash table for
storing a set of pointers or data of type iot:

NXHashTable *myHashTable;
myHashTable = NXCreateHashTable(NXPtrPrototype, 0, NULL);

Note that you pass the NXPtrPrototype structure as an argument, not a pointer to it.
NXCreateHashTableO returns a pointer to an NXHashTable structure, which is
defined in the header file objc/hashtable.h.

The other two prototypes create a hash table for storing a set of structures; the first
element of each structure will be used as the key. NXPtrStructKeyPrototype expects
the first element to be a pointer, and NXStrStructKeyPrototype expects a string. The
free function for both these prototypes is NXReallyFreeO.

NXCreateHashTableO's second argument, capacity, is only a hint; you can just pass
o to create a minimally sized table. As more space is needed, it will be automatically
and efficiently allocated.

NXFreeHashTableO frees each element of the specified hash table and the table itself.
NXResetHashTableO frees each element but doesn't deallocate the table. This is
useful for retaining the table's capacity. NXEmptyHashTableO sets the number of
elements in the table to 0 but doesn't deallocate the table or the data in it.

NXCopyHashTableO returns a pointer to a copy of the hash table passed in.
NXCompareHashTablesO returns YES if the two hash tables supplied as arguments
are equal. That is, each element of tablel is in table2, and the two tables are the same
size.

NXCreateHashTable() 3-43

RETURN

NXCreateHashTableO, NX CreateHashTableFromZoneO, and
NXCopyHashTableO return pointers to the new hash tables they create.

NXCompareHashTablesO returns YES if the two hash tables supplied as arguments
are equal.

NXPtrHashO returns a key for storing a pointer in a hash table; NXStrHashO returns
a key for storing a string.

NXPtrIsEqualO and NXStrIsEqualO return nonzero if the two data elements passed
in are equal, and 0 if they're not.

SEE ALSO

NXHashlnsertO

NXCreateHashTableFromZoneO ~ See NXCreateHashTableO

NXCreatePopUpListButtonO ~ See NXAttachPopUpListO

NXCreateZoneO ~ See NXZoneMallocO

NXCyanComponentO ~ See NXRedComponentO

NXDefaultExceptionRaiserO, NXSetExceptionRaiserO,
NXGetExceptionRaiserO

SUMMARY

LIBRARY

SYNOPSIS

Set and return an exception raiser

#import <objc/error.h >

void NXDefaultExceptionRaiser(int code, canst void *datal, canst void *data2)
void NXSetExceptionRaiser(NXExceptionRaiser * procedure)
NXExceptionRaiser *NX GetExceptionRaiser(void)

3-44 Chapter 3: C Functions

DESCRIPTION

These functions set and return the procedure that's called when exceptions are raised
using NX _ RAISEO. By default, the NXDefaultExceptionRaiserO will be invoked by
NX _ RAISEO; this function is also what NXGetExceptionRaiserO returns unless
you've declared your own exception raiser by using NXSetExceptionRaiserO, as
described below.

NXDefaultExceptionRaiserO forwards the exception condition indicated by code and
any information about the exception pointed to by datal and data2 to the next error
handler. Error handlers exist in a nested hierarchy, which is created by using any
number of nested NX_DURING ... NX_ENDHANDLER constructs and by defining a
top-level error handler.

If the error has occurred outside of the domain of any handler,
NXDefaultExceptionRaiserO invokes an uncaught exception handling function. For
more information on the Application Kit's default uncaught exception handling
function or to define your own, see the description of
NXSetUncaughtExceptionHandlerO. If the uncaught exception handling function
can't be found, NXDefaultExceptionRaiserO exits.

To override the default exception raiser, call NXSetExceptionRaiserO and give it a
pointer to the exception raising function you want to use. This function must be of type
NXExceptionRaiser (that is, the same type as NXDefauItExceptionRaiserO), which
is defined in the header file streams/error.h as follows:

typedef void NXExceptionRaiser(int code, canst void *datal,
canst void *data2);

In other words, the function procedure must take three arguments of the types shown
above, and it must return void. Once you've called NXSetExceptionRaiserO,
subsequent calls to NXGetExceptionRaiserO will return a pointer to procedure; also,
subsequent calls to NX _ RAISEO will invoke procedure.

SEE ALSO

NX _ RAISEO, NXSetUncaughtExceptionRaiserO

NXDefaultMallocZoneO -7 See NXZoneMallocO

NXDefaultReadO -7 See NXStreamCreateO

NXDefaultStringOrderTable() -7 See NXOrderStringsO

NXDefaultExceptionR~iser() 3 -45

NXDefaultTopLevelError HandlerO, NXSetTopLevelError HandlerO,
NXTopLevelErrorHandlerO

SUMMARY

LIBRARY

SYNOPSIS

Define an error handler

#import <appkit/errors.h>

void NXDefaultTopLevelError Handler(NXHandler *errorState)
NXTopLevelErrorHandler

*NXSetTopLevelError Handler(NXTopLevelErrorHandler *procedure)
NXTopLevelErrorHandler *NXTopLevelError Handler(void)

DESCRIPTION

This group of a function and two macros defines the top-level error handler. The
top-level handler is called when an exception is forwarded through the nested
lower-level handlers up to the top level. The hierarchy of error handlers is created by
using any number of nested NX_DURING ... NX_ENDHANDLER constructs.

If, an application doesn't define its own top-level handler, by default it will use
NXDefaultTopLevelError HandlerO. This function is defined and used by the
Application Kit. Its only argument is a pointer to an NXHandler structure, which is
defined in the header file streams/error.h. This file also defines
NXDefaultTopLevelErrorHandlerO as being a global variable of type
NXTopLevelErrorHandler, which is defined as follows:

typedef void NXTopLevelErrorHandler(NXHandler *errorState);
extern NXTopLevelErrorHandler NXDefaultTopLevelErrorHandler;

NXDefaultTopLevelErrorHandlerO calls NXReportErrorO, which executes the
procedure defined to report the error that occurred. (See the description of
NXRegisterErrorReporterO in this chapter for details about NXReportErrorO.) If
an error occurred when an application's PostScript context was created or if its
PostScript connection is broken, NXDefaultTopLevelErrorHandlerO exits.

An application can override NXDefaultTopLevelErrorH~ndlerO by defining its own
top-level handler. This involves passing a pointer to an error-handling procedure to the
macro NXSetTopLevelErrorHandlerO. The new error-handling procedure must be
of type NXTopLevelErrorHandler, which means it must take a pointer to an NXHandler
as its only argument and it must return void.

NXTopLevelErrorHandlerO returns a pointer to the current top-level handler. After
a new one has been set using NXSetTopLevelErrorHandlerO, subsequent calls to
NXTopLevelError HandlerO will return a pointer to the new top-level error handler.

3 -46 Chapter 3: C Functions

The two macros, NXSetTopLevelErrorHandlerO and NXTopLevelErrorHandlerO,
are defined in the header file appkit/errors.h.

SEE ALSO

NX _ RAISEO, NXDefaultExceptionRaiserO, NXRegister Error ReporterO

NXDefaultWriteO -7 See NXStreamCreateO

NXDestroyZoneO -7 See NXZoneMallocO

NXDivideRectO -7 See NXSetRectO

NXDraw ALineO -7 See NXScanALineO

NXDrawButtonO, NXDrawGrayBezelO, NXDrawGrooveO,
NXDrawWhiteBezelO, NXDrawTiledRectsO, NXFrameRectO,
NXFrameRectWith WidthO

SUMMARY

LIBRARY

SYNOPSIS

Draw a bordered rectangle

#import <appkit/graphics.h>

void NXDrawButton(const NXRect *aRect, const NXRect *clipRect)
void NXDrawGrayBezel(const NXRect *aRect, const NXRect *clipRect)
void NXDrawGroove(const NXRect *aRect, const NXRect *clipRect)
void NXDrawWhiteBezel(const NXRect *aRect, const NXRect *clipRect)
NXRect *NXDrawTiledRects(NXRect *aRect, const NXRect *clipRect,

const int *sides, const float *grays, int count)
void NXFrameRect(const NXRect *aRect)
void NXFrameRectWithWidth(const NXRect *aRect, NXCoordframeWidth)

DESCRIPTION

These functions draw rectangles with borders. NXDrawButtonO draws the rectangle
used to signify a button on a NeXT computer, NXDrawTiledRectsO is a generic
function that can be used to draw different types of borders, and the other functions
provide ready-made bezeled, grooved, or line borders. These borders can be used to
outline an area or to give rectangles the effect of being recessed from or elevated above
the surface of the screen, as shown in Figure 3-1.

NXDrawButton() 3-47

.. ~
NXFrameRectO NXDrawButtonO NXDrawWhiteBezelO

NXFrameRectWithWidthO NXDrawGrooveO NXDrawGrayBezelO

Figure 3-1. Rectangle Borders

Each function's first argument specifies the rectangle within which the border is to be
drawn in the current coordinate system. Since these functions are often used to draw
the border of a View, this rectangle will typically be that View's bounds rectangle.
Some of the functions also take a clipping rectangle; only those parts of aRect that lie
within the clipping rectangle will be drawn.

As its name suggests, NXDrawWhiteBezelO fills in its rectangle with white;
NXDrawButtonO, NXDrawGrayBezelO, and NXDrawGrooveO use light gray.
These functions are designed for rectangles that are defined in unsealed, unrotated
coordinate systems (that is, where the y-axis is vertical, the x-axis is horizontal, and a
unit along either axis is equal to one screen pixel). The coordinate system can be either
flipped or unflipped. The sides of the rectangle should lie on pixel boundaries.

NXFrameRectO and NXFrameRectWithWidthO draw a frame around the inside of
a rectangle in the current color. NXFrameRectO draws a frame with a width equal to
1.0 in the current coordinate system; NXFrameRect With WidthO allows you to set the
width of the frame. Since the frame is drawn inside the rectangle, it will be visible even
if drawing is clipped to the rectangle (as it would be if the rectangle were a View
object). These functions work best if the sides of the rectangle lie on pixel boundaries.

In addition to its aRect and clipRect arguments, NXDrawTiledRectsO takes three
more arguments, which determine how thick the border is and what gray levels are used
to form it. NXDrawTiledRectsO works through NXDivideRectO to take successive
1.0 unit-wide slices from the sides of the rectangle specified by the sides argument.
Each slice is then drawn using the corresponding gray level from grays.
NXDrawTiledRectsO makes and draws these slices count number of times.
NXDivideRectO returns a pointer to the rectangle after the slice has been removed;
therefore, if a side is used more than once, the second slice is made inside the first. This
also makes it easy to fill in the rectangle inside of the border.

3-48 Chapter 3: C Functions

In the following example, NXDrawTiledRectsO draws a bezeled border consisting of
a 1.0 unit-wide white line at the top and on the left side, and a 1.0 unit-wide dark-gray
line inside a 1.0 unit-wide black line on the other two sides. The rectangle inside this
border is filled in using light gray.

int mySides [] {NX_YMIN, NX_XMAX, NX_YMAX, NX_XMIN,
NX_YMIN, NX_XMAX};

float myGrays [] {NX_BLACK, NX_BLACK, NX_WHITE, NX_WHITE,
NX_DKGRAY, NX_DKGRAY};

NXRect *aRect;

NXDrawTiledRects(aRect, (NXRect *)0, mySides, myGrays, 6);
PSsetgray(NX_LTGRAY) ;
PSrectfill(aRect->origin.x, aRect->origin.y,

aRect->size.width, aRect->size.height);

As shown, mySides is an array that specifies sides of a rectangle; for example,
NX_ YMIN selects the side parallel to the x-axis with the smallest y-coordinate value.
The constants shown in mySides are described in more detail in the description of
NXDivideRectO. my Grays is an array that specifies the successive gray levels to be
used in drawing parts of the border.

RETURN

NXDrawTiledRectsO returns a pointer to the rectangle that lies within the border.

SEE ALSO

NXDivideRectO

NXDrawGrayBezelO ~ See NXDrawButton{}

NXDrawGrooveO ~ See NXDrawButtonO

NXDrawTiledRectsO ~ See NXDrawButtonO

NXDrawWhiteBezelO ~ See NXDrawButtonO

NXEditor FilterO ~ See NXFieldFilterO

NXEmptyHashTableO ~ See NXCreateHashTableO

NXEmptyRectO ~ See NXMouselnRectO

NXDrawButton() 3-49

NXEndOITypedStreamO

SUMMARY Determine whether there's more data to be read

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

BOOL NXEndOffypedStream(NXTypedStream *typedStream)

DESCRIPTION

This macro indicates whether more data is available to be read from the typed stream
passed in as an argument. It should be called only on a typed stream opened for
reading. (The NXTypedStream type is declared in the header file objc/typedstream.h.
The structure itself is private since you never need to access its members.)

RETURN

NXEndOffypedStreamO returns TRUE if more data is available to be read and
FALSE otherwise.

EXCEPTIONS

NXEndOffypedStreamO raises a TYPEDSTREAM_CALLER_ERROR with the
message "expecting a reading stream" if the stream passed in wasn't opened for
reading.

SEE ALSO

NXOpenTypedStreamO

NXEndTimerO ~ See NXBeginTimerO

NXEqualColorO

SUMMARY

LIBRARY

SYNOPSIS

Test whether two colors are the same

libNeXT _s.a

#import <appkit/color.h>

BOOL NXEqualColor(NXColor oneColor, NXColor anotherColor)

3-50 Chapter 3: C Functions

DESCRIPTION

This function compares oneC olor to anotherColor and returns YES if they are, in fact,
the same color. Two colors can be the same, yet be represented differently within the
NXCoior structure. Therefore, NXCoior structures should be compared only through
this function, never directly.

The coverage components of the NXCoior structures are included in the comparison.

RETURN

This function returns YES if the two colors are visually identical, and NO if they're not.

SEE ALSO

NXSetColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXEqualRectO ~ See NXMouselnRectO

NXEraseRectO ~ See NXRectClipO

NXEqualColor() 3-51

NXFieldFilterO, NXEditorFilterO

SUMMARY Filter characters entered into Text object

LIBRARY

SYNOPSIS

#import <appkit/Text.h>

unsigned short NXFieldFilter(unsigned short theChar, intjlags,
unsigned short charSet)

unsigned short NXEditorFilter(unsigned short theChar, intjlags,
unsigned short charSet)

DESCRIPTION

These functions check each character the user types into a Text object's text. Use
NXFieldFilterO, the Text object's default character filter, when you want the user to be
able to move the selection from text field to field by pressing Return, Tab, or Shift-Tab.
Use NXEditorFilterO when you don't want Return, Tab, and Shift-Tab interpreted in
this way.

NXFieldFilterO passes on values generated by alphanumeric keys directly to the Text
object for display. Values generated by Return, Tab, Shift-Tab, and the arrow keys are
remapped to constants that have a special meaning for the Text object. The Text object
interprets any of these constants as a movement command, a command to end the Text
object's status as first responder. Based on the key pressed, the Text object's delegate
can control which other object should become the first responder. NXFieldFilterO
remaps to 0 all other values less than Ox20 and any values generated in conjunction with
the Command key.

NXEditorFilterO is identical to NXFieldFilterO except that it passes on values
corresponding to Return, Tab, and Shift-Tab directly to the Text object.

RETURN

NXFieldFilterO returns 0 (NX_ILLEGAL), the ASCII value of the character typed, or
a constant the Text object interprets as a movement command. The constants are:

NX_RETURN
NX,--TAB
NX_BACKTAB
NX_LEFT
NX_RIGHT
NX_UP
NX_DOWN

This function also returns 0 if a key is pressed while a Command key is held down.

3-52 Chapter 3: C Functions

NXEditorFilterO's return values are identical to those of NXFieldFilterO, except that
it also returns the values generated by Return, Tab, and Shift-Tab without first
remapping them.

NXFilePathSearchO

SUMMARY

LIBRARY

SYNOPSIS

Search for and read a file

libNeXT _s.a

#import <appkit/defaults.h>
#import <defaults.h>

int NXFilePathSearch(const char *envVarName, const char *defaultPath,
int leftToRight, const char *fileName, int (*juncPtr)O, void *funcArg)

DESCRIPTION

NXFilePathSearchO searches a colon-separated list of directories for one or more files
named fileName. The directory list is obtained from the environmental variable,
envVarName, if it's available. If not, defaultPath is used. If leftToRight is true, the list
of directories is searched from left to right; otherwise, it's searched right to left.

In each directory, if the file fileName can be accessed, the function specified by funcPtr
is called. The function is passed two arguments, the path to the file andfuncArg, which
can contain arbitrary data for the function to use.

RETURN

If the function specified by funcPtr is called and returns 0 or a negative value,
NXFilePathSearchO returns the same value. If the function returns a positive value,
NXFilePathSearchO continues searching through the directory list for other
occurrences offileName. If it searches through the entire directory list, it returns O. If
it can't find a list of directories to search, it returns -1.

NXFillO ~ See NXStreamCreateO

NXFilePathSearch() 3-53

NXFindPaperSizeO

SUMMARY

LIBRARY

SYNOPSIS

Find dimensions of specified paper type

#import <appkit/PageLayout.h>

const NXSize *NXFindPaperSize(const char *paperNarne)

DESCRIPTION

NXFindPaperSizeO returns a pointer to an NXSize structure containing the
dimensions of a sheet of paper of type paperN arne. The dimensions are given in points
(72 per inch). The NXSize structure is defined in the header file dpsclient/event.h as
follows:

typedef struct NXSize
NXCoord width;
NXCoord height;

NXSize;

paperNarne is a character string that corresponds to one of the standard paper types
used by conforming PostScript documents. For example, it could be "Letter", "Legal",
or "A4". By providing the precise size of these types, this function helps programs
adjust the on-screen display to the page size of the document being displayed.

RETURN

This function returns an NXSize pointer.

3-54 Chapter 3: C Functions

NXFlushO

SUMMARY

LIBRARY

SYNOPSIS

Flush a stream

#import <streams/streams.h>

int NXFlush(NXStream *stream)

DESCRIPTION

This function flushes the buffer associated with the stream passed in as an argument.
NXFlushO is called by NXCloseO, so you don't have to flush the buffer before closing
a stream with NXCloseO. In some cases, you might not want to close the stream but
you might want to ensure that data is actually written to the stream's destination rather
than remaining in the buffer.

RETURN

NXFlushO returns the number of characters flushed from the buffer and written to the
stream.

EXCEPTIONS

This function raises an NX_illegalStream exception if the stream passed in is invalid.
In addition, it raises an NX_illegalWrite exception if an error occurs while flushing the
stream.

NXFlushTypedStreamO

SUMMARY Flush a typed stream

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

void NXFlushTypedStream(NXTypedStream * TypedStream)

DESCRIPTION

This function flushes the buffer associated with the typed stream passed in as an
argument. NXFlushTypedStreamO is called by NXCloseTypedStreamO, so you
don't have to flush the buffer before closing a typed stream. (The NXTypedStream type
is declared in the header file objc/typedstream.h. The structure itself is private since
you never need to access its members.)

NXFlushO 3-55

EXCEPTIONS

NXFlushTypedStreamO raises a TYPEDSTREAM_ CALLER_ERROR with the
message "expecting a writing stream" if the typed stream wasn't opened for writing.

SEE ALSO

NXOpenTypedStreamO

NXFrameRectO -7 See NXDrawButtonO

NXFrameRectWithWidthO -7 See NXDrawButtonO

NXFreeAlertPanelO -7 See NXRunAlertPanelO

NXFreeHashTableO -7 See NXCreateHashTableO

NXFreeObjectBufferO -7 See NXReadObjectFromBufferO

NXGetAlertPanelO -7 See NXRunAlertPanelO

NXGetBestDepthO -7 See NXColorSpaceFromDepthO

NXGetcO -7 See NXPutcO

NXGetDefaultValueO -7 See NXRegisterDefaultsO

NXGetExceptionRaiserO -7 See NXDefaultExceptionRaiserO

NXGetMemoryBufferO -7 See NXOpenMemoryO

3-56 Chapter 3: C Functions

NXGetNamedObjectO, NXGetObjectNameO, NXNameObjectO,
NXUnnameObjectO

SUMMARY

LIBRARY

SYNOPSIS

Refer to objects by name

libNeXT _s.a

#import <appkitl Application.h>

id NXGetNamedObject(const char *name, id owner)
const char *NXGetObjectName(id theObject)
int NXNameObject(const char *name, id theObject, id owner)
int NXUnnameObject(const char *name, id owner)

DESCRIPTION

These functions permit programs that use the Application Kit to refer to objects by
name. Names are assigned with Interface Builder™ or with the NXNameObjectO
function described here. When you create an object with Interface Builder, Interface
Builder assigns it a default name that you can then edit or replace with a name of your
own choosing. Underscores shouldn't be used as part of a name.

To distinguish among different objects with the same name, each object can also be
assigned another object as an owner; the owner can be nil. By default, Interface Builder
assigns the Application object (NXApp) as the owner of a Window, and a View's
Window as the owner of that View.

NXGetNamedObjectO returns the id of the object having the name and owner passed
as arguments, or nil if there is no such object. Only one object can be identified by a
given combination of a name and owner. NXGetObjectNameO takes the id of an
object and returns that object's name.

NXNameObjectO assigns an object a name and owner. An object can be assigned any
number of different names and owners. However, if you attempt to assign a
combination of a name and owner already used to identify another (or the same) object,
the assignment fails.

NXUnnameObjectO disassociates an object from the combination of a name and
owner. Thereafter, NXGetNamedObjectO won't return the object when passed the
name and owner as arguments.

RETURN

NXGetNamedObjectO returns an object id, or nil if no object is identified by the
combination of name and owner passed as arguments.

NXGetObjectNameO returns the name of an object.

NXNameObjectO returns 1 if it successfully assigns a name to an object, and 0 ifnot.

NXGetNamedObject() 3-57

NXUnnameObjectO returns 1 if it disassociates an object from the combination of
name and owner passed as arguments, and 0 if the name and owner weren't associated
with an object to begin with.

NXGetObjectNameO ~ See NXGetNamedObjectO

NXGetOrPeekEventO

SUMMARY Access event record in event queue

LIBRARY

SYNOPSIS

#import <appkitl Application.h>

NXEvent *NXGetOrPeekEvent(DPSContext context, NXEvent *anEvent, int mask,
double timeout, int threshold, int peek)

DESCRIPTION

NXGetOrPeekEventO accesses an event record in an application's event queue and
returns a pointer to it. This function combines the facilities of DPSGetEventO and
DPSPeekEventO, but unlike these client library functions, it allows your application
to be journaled. Applications based on the Application Kit should use this function (or
the Application class methods such as getNextEvent: and peekNextEvent:into:) to
access event records.

The first argument, context, represents a PostScript execution context within the
Window Server. Virtually all applications have only one execution context, which can
be returned using DPSGetCurrentContextO. (See the Client Library Reference
Manual for information on DPSGetCurrentContextO.) Applications having more
than one execution context can use the constant DPS_ALLCONTEXTS to access
events from all contexts belonging to them. The second argument, anEvent, is a pointer
to an event record. If an event is found, its data is copied into the storage referred to by
this pointer.

mask determines the types of events sought. The header file dpsclient/event.h defines
these constants for general use:

3-58 Chapter 3: C Functions

Constant

NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_KITDEFINEDMASK
NX_SYSDEFINEDMASK
NX_APPDEFINEDMASK
NX_ALLEVENTS

Event Type

Key-down
Key-up
Flags-changed
Mouse-down, left or only mouse button
Mouse-up, left or only mouse button
Mouse-down, right mouse button
Mouse-up, right mouse button

, Mouse-moved
Mouse-dragged, left or only mouse button
Mouse-dragged, right mouse button
Mouse-entered
Mouse-exited
Timer
Cursor-update
Kit-defined
System-defined
Application-defined
All event types

To check for multiple types of events, you can combine these constants using the
bitwise OR operator.

If an event matching the event mask isn't available in the queue,
NXGetOrPeekEventO waits until one arrives or until timeout seconds have elapsed,
whichever occurs first. The value of timeout can be in the range of 0.0 to
NX_FOREVER. If timeout is 0.0, the routine returns an event only if one is waiting in
the queue when the routine asks for it. If timeout is NX_ FOREVER, the routine waits
until an appropriate event arrives before returning.

threshold is an integer in the range ° to 31 that determines which other services may be
provided during a call to NXGetOrPeekEventO. Requests for services are registered
by the functions DPSAddTimedEntryO, DPSAddPortO, and DPSAddFDO. Each of
these functions takes an argument specifying a priority level. If this level is equal to or
greater than threshold, the service is provided before NXGetOrPeekEventO returns.

The last argument, peek, specifies whether NXGetOrPeekEventO removes the event
from the event queue. If peek is 0, NXGetOrPeekEventO removes the record from the
queue after making its data available to the application; otherwise, it leaves the record
in the queue.

RETURN

If NXGetOrPeekEventO finds an event record that meets the requirements of its
parameters, it returns a pointer to it. Otherwise, it returns NULL.

SEE ALSO

NXJournalMouseO, DPSGetEventO, DPSPeekEventO, DPSDiscardEventO,
DPSAddTimedEntryO, DPSAddPortO, DPSAddFDO

NXGetOrPeekEvent() 3-59

NXGetTempFilenameO

SUMMARY Create a temporary file name

LIBRARY

SYNOPSIS

#import <appkit/appkit.h>

char *NXGetTempFilename(char *name, int pos)

DESCRIPTION

This function creates a unique file name by altering the name argument it is passed.
NXGetTempFilenameO replaces the six characters starting at the posth position
within name with digits it generates; it then checks whether the file name is unique. If
it is, the file name is returned; if not, different digits are tried until a unique name is
found. NXGetTempFilenameO is similar to the standard C function mktempO,
except that it can leave suffixes intact since you specify the location of the characters
that get replaced.

RETURN

NX GetTempFilenameO returns a unique file name.

NXGetTIFFlnfoO ~ See NXReadTIFFO

NXGetTypedStreamZoneO, NZSetTypedStreamZoneO

SUMMARY Set zones for streams

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

NXZone *NXGetTypedStrearnZone(NXTypedStream * stream)
void NXSetTypedStreamZone(NXTypedStream *stream, NXZone *zone)

DESCRIPTION

These functions let you associate a zone with a typed stream. Zones improve
application performance by optimizing locality of reference. See the description under
NXZoneMallocO for more on allocating and freeing zones.

3-60 Chapter 3: C Functions

If no zone is set for a typed stream, its zone is the default zone. Use these functions to
associate zones with the typed streams used to unarchive objects in your application.
You can, for example, use these functions to be sure that objects that interact are all
unarchived in the same zone.

Use NXSetTypedStreamZoneO to set the zone used for unarchiving objects from a
typed stream. Use NXGetTypedStreamZoneO to access the zone associated with a
particular typed stream.

RETURN

NXGetTypedStreamZoneO returns the zone set for stream.
NXSetTypedStreamZoneO sets zone as the zone for stream

NXGetUncaughtExceptionHandlerO ~ See
NXSetUncaughtExceptionHandlerO

NXGetWindowServerMemoryO

SUMMARY

LIBRARY

SYNOPSIS

Return by reference the amount of Window Server memory being used
by the current Window Server context

#import <appkitl Application.h>

int NXGetWindowServerMemory(DPSContext context, int *vmU sedP,
int *windowBackingP, NXStream *windowDumpStream)

DESCRIPTION

NXGetWindowServerMemoryO calculates the amount of Window Server memory
being used at the moment by the given Window Server context. If NULL is passed for
the context, the current context is used. The amount of PostScript virtual memory used
by the current context is returned in the int pointed to by vmU sedP; the amount of
window backing store used by windows owned by the current context is returned in the
int pointed to by windowBackingP. The sum of these two numbers is the amount of the
Window Server's memory that this context is responsible for.

To calculate these numbers, NXGetWindowServerMemoryO uses the PostScript
language operators dumpwindows and vmstatus. It takes some time to execute; thus,
calling this function in normal operation is not recommended.

NXGetWindowServerMemory() 3-61

If a non-NULL value is passed in for windowDumpStream, the information returned
from the dumpwindows operator is echoed to the NXStream given. This can be useful
for finding out more about which windows are using up your storage.

RETURN

Normally, NXGetWindowServerMemoryO returns O. If NULL is passed for context
and there's no current DPS Context, returns-1.

NXGrayComponentO ~ See NXRedComponentO

NXGreenComponentO ~ See NXRedComponentO

NXHashGetO ~ See NXHashlnsertO

NXHashlnsertO, NXHashlnsertlfAbsentO, NXHashMemberO, NXHashGetO,
NXHashRemoveO, NXCountHashTableO, NXlnitHashStateO,
NXNextHashStateO

SUMMARY Manipulate the elements of a hash table

LIBRARY

SYNOPSIS

#import <objcihashtable.h>

void *NXHashlnsert(NXHashTable *table, const void *data)
void *NXHashlnsertlfAbsent(NXHashTable *table, const void *data)
int NXHashMember(NXHashTable *table, const void *data)
void *NXHashGet(NXHashTable *table, const void *data)
void *NXHashRemove(NXHashTable *table, canst void *data)
unsigned NXCountHashTable(NXHashTable * table)
NXHashState NXlnitHashState(NXHashTable *table)
int NXNextHashState(NXHashTable *table, NXHashState *state, void **data)

DESCRIPTION I

These functions manipulate the elements of a hash table that was created using
NXCreateHashTableO. NXCreateHashTableO, which is described earlier in this
chapter, returns a pointer to the NXHashTable structure it creates. You pass a pointer
to this structure (which is defined in the header file objcihashtable.h) for each of the
functions described here.

3-62 Chapter 3: C Functions

NXHashlnsertO inserts data into the hash table specified by table. It checks whether
data is already in the table by using the function referred to by the isEqual member of
the NXHashTablePrototype; this prototype is defined when the table is created. (See
the description of NXCreateHashTableO for more information about defining the
isEqual function.) If data is already in the table, the new data is inserted anyway and
a pointer to the old data is returned. If data isn't already in the table, it's inserted and
NULL is returned.

NXHashlnsertIfAbsentO inserts data only if it isn't already in the table and then
retlirns a pointer to data. If data is already in the table, as determined using the function
referred to by isEqual, a pointer to the existing data is returned.

NXHashMemberO checks whether data is in the hash table specified by table. If so,
it returns a nonzero value; if not, it returns O. NXHashGetO returns a pointer to data
if it's in the table; if not, it returns NULL. You can use these functions if you have a
pointer to the data that might be stored in the table. You can also use them if data is
stored in the table as a structure containing the key for that data and if you have that
key. (In a hash table, the key determines where data is stored.) For example, suppose
my hash table contains data 'of type MyStruct and that you have a key:

typedef struct {
MyKey key;

} MyStruct;

MyStruct pseudo;
pseudo.key = yourKey;

You can then use your key on my hash table with either function:

int foundIt;
foundIt NXHashMember(myTable, &pseudo);

MyStruct *storedData;
storedData = NXHashGet(myTable, &pseudo);

NXHashRemoveO removes and returns a pointer to data unless it can't find data in the
table, in which case it returns NULL.

NXCountHashTableO returns the number of elements in the hash table specified by
table.

NXlnitHashStateO and NXNextHashStateO iterate through the elements of a hash
table. NXlnitHashStateO returns an NXHashState structure to start the iteration
process; this structure is then passed to NXNextHashStateO, which visits each
element of the hash table and finally returns O. (NXHashState is defined in the header
file objc/hashtable.h; you shouldn't use members of this structure as they may change
in the future.) The following example counts the elements in the hash table table:

NXHashlnsert() 3-63

unsigned count = 0;
MyData *data;
NXHashState state = NXInitHashState(table);

while (NXNextHashState(table, &state, &data))
count++;

As it progresses through the table, NXNextHashStateO reads each element of the table
into the location specified by its third argument.

RETURN

NXHashInsertO returns NULL if the given data isn't already in the table. Otherwise,
it returns a pointer to the existing data.

NXHashInsertIfAbsentO returns a pointer to the given data if it isn't already in the
table. Otherwise, a pointer to the existing data is returned.

NXHashMemberO returns a nonzero value if it finds the given data in the hash table
specified; if not, it returns o.

NXHashGetO returns a pointer to the given data if it's in the table; if not, it returns
NULL.

NXHashRemoveO returns a pointer to the data it removes unless it can't find the data,
in which case it returns NULL.

NXCountHashTableO returns the number of elements in the hash table.

NXInitHashStateO returns an NXHashState for use with NXNextHashStateO.

NXNextHashStateO returns 0 when it has visited every element of the hash table.

SEE ALSO

NXCreateHashTableO

NXHashlnsertlfAbsentO ---t See NXHashlnsertO

NXHashMemberO ---t See NXHashlnsertO

NXHashRemoveO ---t See NXHashlnsertO

NXHighlightRectO ---t See NXRectClipO

3-64 Chapter 3: C Functions

NXHomeDirectoryO, NXUserNameO

SUMMARY Get user's horne directory and name

LIBRARY

SYNOPSIS

#import <appkitl Application.h>

const char *NXHomeDirectory(void)
const char *NXUserName(void)

DESCRIPTION

These functions return the user's horne directory and name, both of which are cached
at launch time. If the user's id has changed since launch time or since the last time
either of these functions was called, the values are recomputed using the standard C
library function getpwuidO. (getpwuidO is described in its UNIX manual page.)

RETURN

NXHomeDirectoryO returns a pointer to the full pathname of the user's horne
directory. NXUserNameO returns a pointer to the user's name.

NXHueComponentO ~ See NXRedComponentO

NXlmageBitmapO, NXReadBitmapO, NXSizeBitmapO

SUMMARY Render and read bitmap images

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/tiff.h>

void NXlmageBitmap(const NXRect *rect, int pixelsWide, int pixelsHigh, int bps,
int spp, int conjig, int mask, const void *datal, const void *data2,
const void *data3, const void *data4, const void *data5)

void NXReadBitmap(const NXRect *rect, int pixelsWide, int pixelsHigh, int bps,
int spp, int conjig, int mask, void *datal, void *data2, void *data3, void *data4,
void * data5)

void NXSizeBitmap(const NXRect *rect, int *size, int *pixelsWide, int *pixelsHigh,
int *bps, int *spp, int *config, int *mask)

NXH omeDirectory() 3 -65

DESCRIPTION

The first of these functions, NXlmageBitmapO, renders an image from a bitmap,
binary data that describes the pixel values for the image. The second function,
NXReadBitmapO, reads the bitmap for a rendered image using information about the
image obtained from NXSizeBitmapO. NXReadBitmapO produces data that
NXlmageBitmapO can use to recreate the image. The third function,
NXSizeBitmapO, supplies the information required by NXReadBitmapO.

Bitmaps can also be rendered and read through the Application Kit's
NXBitmapImageRep class.

NXlmageBitmapO renders a bitmap image using an appropriate PostScript operator
image, colorimage, or alphaimage. It puts the image in the rectangular area specified
by its first argument, reet; the rectangle is specified in the current coordinate system and
is located in the current window. The next two arguments, pixelsWide and pixelsHigh,
give the width and height of the image in pixels. If either of these dimensions is larger
or smaller than the corresponding dimension of the destination rectangle, the image
will be scaled to fit.

The remaining arguments to NXlmageBitmapO describe the bitmap data, as explained
in the following paragraphs.

bps is the number of bits per sample for each pixel and spp is the number of samples
per pixel. Multiplying these two values yields the number of bits used to specify each
pixel.

A sample is data that describes one component of a pixel. In an ROB color system, the
red, green, and blue components of a color are specified as separate samples, as are the
cyan, magenta, yellow, and black components in a CMYK system. Color values in a
gray scale are a single sample. Alpha values that determine transparency and
opaqueness are specified as a coverage sample separate from color.

eonfig refers to the way data is configured in the bitmap. It should be specified as one
of two constants:

A separate data channel is used for each sample. The function
provides for up to five channels, datal, data2, data3, data4,
and data5.

Sample values are interwoven in a single channel; all values
for one pixel are specified before values for the next pixel.

Figure 3-2 illustrates these two ways of configuring data.

3-66 Chapter 3: C Functions

r 9 b ex. r 9 b ex. r 9 b ex.

Meshed

Planar

Figure 3-2. Planar and Meshed Configurations

As shown in the illustration, color samples (rgb) precede the coverage sample (a) in
both configurations.

In the NeXT step environment, gray-scale windows store pixel data in planar
configuration; color windows store it in meshed configuration. NXlmageBitmapO can
render meshed data in a planar window, or planar data in a meshed window. However,
it's more efficient if the image has a depth (bps) and configuration (config) that matches
the window.

mask specifies how the bitmap data is to be interpreted. It's formed by joining constants
for three kinds of information (using the bitwise OR operator):

NX_ALPHAMASK

NX_COLORMASK

Coverage (alpha) values are specified. If
NX_ALPHAMASK is present in mask, spp
should be at least 2-one more than the number
of color components.

Color samples are present. If
NX_COLORMASK isn't included in mask, a
gray scale is assumed.

NXlmageBitmap() 3-67

NX_MONOTONICMASK In a gray scale, NX_MONOTONICMASK
indicates that 1 equals white and 0 equals black,
as in the PostScript model. If mask doesn't
include NX_MONOTONICMASK, the inverse
scale is assumed (1 equals black, 0 equals white).
NeXT computers use the PostScript gray scale.

In a color system, NX_MONOTONICMASK
indicates that CMYK·(cyan, magenta, yellow,
black) samples are specified. Its absence
indicates RGB (red, green, blue) samples. This
permits the function to verify that the value given
for spp is correct. If NX_MONOTONICMASK
is present in mask, spp should be 4 (5 if alpha
values are also specified). If it isn't, spp should be
3 (4 if alpha values are also specified) ..

The remaining arguments, datal through data5, specify the actual bitmap data. If
config is NX_MESHED, only datal is read. If config is NX_PLANAR, each argument
should specify a separate sample.

NXReadBitmapO gets bitmap data for an existing image. It uses the PostScript
read image operator to read pixel values within the rectangle referred to by its first
argument, recto The rectangle is in the current window and is specified in the current
coordinate system. If the rectangle is rotated so that its sides are no longer aligned with
the screen coordinate system, NXReadBitmapO will read pixel values for the smallest
screen-aligned rectangle enclosing the rectangle specified by recto

NXReadBitmapO writes the bitmap data into the buffers specified by the datal, data2,
data3, data4, and data5 arguments. The number of actual buffers you must provide
depends on whether there's a separate channel for each sample (config) and on the
number of samples per pixel (spp). This information, as well as other information
about the image, should be obtained directly from the device using the
NXSizeBitmapO function.

When passed a pointer to a rectangle, NXSizeBitmapO gets values that
NXReadBitmapO needs to produce a bitmap for the rectangle. It yields values that can
be passed directly to NXReadBitmapO for the following parameters:

·pixelsWide
pixelsHigh
bps
spp
config
mask

It also provides the size, in bytes, that will be required for each channel of bitmap data.
NXSizeBitmapO works through the currentwindowalpha and sizeimage operators.
The following paragraphs describe the kinds of information you could obtain from each
of these operators if you were to use them directly.

3-68 Chapter 3: C Functions

If currentwindowalpha returns 0, the image may include some transparent paint and
you'll need to obtain coverage values in addition to color values in the bitmap. Include
NX_ALPHAMASK in mask, and make sure the alpha component is counted in spp.

The sizeimage operator provides values for the pixelsWide, pixelsHigh, and bps
parameters and for these device-dep~ndent values:

• The number of color samples per pixel-l (gray scale), 3 (RGB), or 4 (CMYK). If
there's also an alpha component, you'll need to add 1 to this number to obtain spp.

• A Boolean value that reflects whether samples are meshed within a single data
channel. If they're not meshed, the operator returns true in a multiproc parameter,
indicating that in the PostScript language multiple procedures would be required to
read the various samples.

NXlnitHashStateO ~ See NXHashlnsertO

NXlnsetRectO ~ See NXSetRectO

NXlntegralRectO ~ See NXSetRectO

NXlntersectionRectO ~ See NXUnionRectO

NXlntersectsRectO ~ See NXMouselnRectO

NXIsAINumO ~ See NXIsAlphaO

NXlmageBitmap() 3-69

NXIsAlphaO, NXIsAINumO, NXIsCntrIO, NXIsDigitO, NXIsGraphO,
NXIsLowerO, NXIsPrintO, NXIsPunctO, NXIsSpaceO, NXIsUpperO,
NXIsXDigitO, NXIsAsciiO

SUMMARY

LIBRARY

SYNOPSIS

Classify NeXTstep-encoded values

#import <NXCType.h>

int NXIsAlpha(unsigned c)
int NXIsAINum(unsigned c)
int NXIsUpper(unsigned c)
int NXIsLower(unsigned c)
int NXIsDigit(unsigned c)
int NXIsXDigit(unsigned c)
int NXIsS pace(unsigned c)
int NXIsPunct(unsigned c)
int NXIsPrint(unsigned c)
int NXIsGraph(unsigned c)
int NXIsCntrl(unsigned c)
int NXIsAscii(unsigned c)

DESCRIPTION

. These functions classify NeXTstep-encoded integer values. They return a nonzero
value if the tested value belongs to the indicated class of characters or 0 if it does not.

These functions are similar to the standard C library routines for testing ASCII
encoded integer values (see the UNIX manual page for ctype), except that they act on
the extended character set defined by NeXTstep encoding. For example, both isalphaO
and NXIsAlphaO classify the character "a" as a letter; however, only NXIsAlphaO
classifies "a" as a letter. The functions make these tests:

Function

NXIsAlpha(c)
NXIs Upper(c)
NXIsLower(c)
NXIsDigit(c)
NXIsXDigit(c)
NXIsAINum(c)
NXIsSpace(c)
NXIsPunct(c)
NXI sPrint (c)
NXIsGraph(c)
NXIsCntrl(c)
NXIsAscii(c)

3-70 Chapter 3: C Functions

Tests that cis:
a letter
an uppercase letter
a lowercase letter
a digit
a hexadecimal digit
an alphanumeric character
a space, tab, carriage return, newline, vertical tab, or formfeed
a punctuation character (neither control nor alphanumeric)
a printing character
a printing character; like NXIsPrintO except false for space
a control character (OxOO through OxlF, Ox7F, Ox80, OxFE, OxFF)
an ASCII character (code less than Ox7F)

RETURN

Each of these functions returns a nonzero value if the tested value belongs to the
indicated class of characters or a if it does not.

SEE ALSO

NXToAsciiO

NXIsAsciiO ~ See NXIsAlpbaO

NXIsCntrlO ~ See NXIsAlpbaO

NXIsDigitO ~ See NXIsAlpbaO

NXIsGrapbO ~ See NXIsAlpbaO

NXIsLowerO ~ See NXIsAlpbaO

NXIsPrintO ~ See NXIsAlpbaO

NXIsPunctO ~ See NXIsAlpbaO

NXIsServicesMenultemEnabledO ~ See NXSetServicesMenultemEnabledO

NXIsSpaceO ~ See NXIsAlpbaO

NXIsUpperO ~ See NXIsAlpbaO

NXIsXDigitO ~ See NXIsAlpbaO

NXlsAlpha() 3-71

NXJournalMouseO

SUMMARY Allow journaling during direct mouse tracking

LIBRARY

SYNOPSIS

#import <appkit/NXJournaler.h>

void NXJournaIMouse(void)

DESCRIPTION

This function lets an application that accesses the status of the mouse directly (by
calling functions such as PSstiIIdown() or PScurrentmouseO) participate in event
journaling. If your application tests the status of the mouse by analyzing event records
received through the Application Kit's normal distribution mechanism, you won't need
to call this function.

For an application to be journaled, it must ask for events. If a routine in your
application bypasses the Kit's event distribution system to test the mouse's position or
button status, it must call NXJournaIMouseO to ensure that its activities can be
journaled. For example, a routine that takes some action as long as the mouse button
is depressed should call NXJournaIMouseO before testing the mouse:

do
NXJournalMouse()i
PSstilldown(mouseDownEvent.data.mouse.eventNum, &stillDown) i

/* Do some action */

while (stillDown)i

NXJournaIMouseO asks for a journal-event, mouse-up, or mouse-dragged evt?nt,
sends a copy to the journaler (if one is recording), and then discards the event.

Note: In the example above, releasing the mouse button causes the loop to exit. If the
loop didn't call NXJournalMouseO, the mouse-up event would remain in the event
queue after the loop exited. With the addition of NXJournaIMouseO, this event is
discarded. For most applications, this difference is of no consequence.

SEE ALSO

NXGetOrPeekEventO

3-72 Chapter 3: C Functions

NXLogErrorO

SUMMARY

LIBRARY

SYNOPSIS

Write a formatted error string

#import <appkit/nextstd.h>

void NXLogError{const char *format, ...)

DESCRIPTION

NXLogErrorO is much like printfO. It writes a formatted string to the Console or
stderr, depending on whether the application was launched from the Workspace
Manager or some shell. NXLogErrorO calls syslogO, which marks the message with
the time of occurrence and the application's process identification number. See the
UNIX manual page for syslogO for more information.

SEE ALSO

NX _ RAISEO, NXDefaultExceptionRaiserO, NXRegisterErrorReporterO

NXMagentaComponentO ~ See NXRedComponentO

NXMallocCheckO ~ See NXZoneMallocO

NXMapFileO ~ See NXOpenMemory 0

NXMergeZoneO ~ See NXZoneMallocO

NXLogError() 3-73

NXMouselnRectO, NXPointlnRectO, NXlntersectsRectO, NXContainsRectO,
NXEqualRectO, NXEmptyRectO

SUMMARY

LIBRARY

SYNOPSIS

Test graphic relationships

libNeXT _s.a

#import <appkit/graphics.h>

BOOL NXMouselnRect(const NXPoint *aPoint, const NXRect *aRect,
BOOL jlipped)

BOOL NXPointInRect(const NXPoint *aPoint, const NXRect *aRect)
BOOL NXlntersectsRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXContainsRect(NXRect *aRect, const NXRect *bRect)
BOOL NXEqualRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXEmptyRect(const NXRect *aRect)

DESCRIPTION

These functions test the rectangles referred to by their arguments; they return YES if
the test succeeds and NO if it fails. The functions that take two arguments assume that
both arguments are expressed in the same coordinate system.

NXMouselnRectO is used to determine whether the hot spot of the cursor is inside a
given rectangle. It returns YES if the point referred to by its first argument is located
within the rectangle referred to by its second argument. If not, it returns NO. It
assumes an unsealed and unrotated coordinate system.

The hot spot is the point within the cursor image that's used to report the cursor's
location. It's situated at the upper left corner of a critical pixel in the cursor image, the
one cursor pixel that's constrained to always be on screen. NXMouselnRectO is
designed to return YES when this pixel is inside the rectangle, and NO when it's not.
Thus if the point referred to by aPoint lies along the upper or left edge of the rectangle,
this function should return YES. But if the point lies along the lower or right edge of
the rectangle, it should return NO. To make this determination, the function needs to
know the polarity of the y-axis. The third argument,jlipped, should be NO if the
positive y-axis extends upward, and YES if the coordinate system has been flipped so
that the positive y-axis extends downward. (For convenience, View's mouse:inRect:
method automatically determines whether the coordinate system is flipped. See the
View class specification in Chapter 2 for more information about this method.)

NXPointInRectO performs the same test as NXMouselnRectO but assumes a flipped
coordinate system. If the coordinate system is unflipped, it gives the wrong result if the
point is coincident with the maximum or minimum y-coordinate of the rectangle. You
should use NXMouselnRectO when testing the cursor's location.

NXContainsRectO returns YES if aRect completely encloses bRect. Otherwise, it
returns NO.

3-74 Chapter 3: C Functions

NXlntersectsRectO returns YES if the two rectangles overlap, and NO otherwise.
Adjacent rectangles that share only a side are not considered to overlap.

It's possible for NXlntersectsRectO to return NO even though the two rectangles
include some of the same pixels. This can happen when the rectangles don't have any
area in common, yet their outlines pass through some of the same pixels-for example,
when they share a side not at a pixel boundary. In the NeXT imaging model, any pixel
an outline passes through is treated as if it were inside the outline.

NXEqualRectO returns YES if the two rectangles are identical, and NO otherwise.

NXEmpty RectO returns YES if the rectangle encloses no area at all-that is, if it has
no height or no width (or if its width or height is negative). If the height and width are
both positive, it returns NO.

RETURN

These functions all return YES to indicate that the test succeeded and NO to indicate
that it did not.

SEE ALSO

NXUnionRectO, NXSetRectO

NXNameObjectO ~ See NXGetNamedObjectO

NXNameZoneO ~ See NXZoneMallocO

NXNextHashStateO ~ See NXHashlnsertO

NXNoEffectFreeO ~ See NXCreateHashTableO

NXNumberOfColorComponentsO ~ See NXColorSpaceFromDepthO

NXOffsetRectO ~ See NXSetRectO

NXMouselnRect() 3-75

NXOpenFileO, NXOpenPortO

SUMMARY

LIBRARY

SYNOPSIS

Open a file stream or a Mach port stream

#import <streams/streams.h>

NXStream *NX OpenFile(int jd, int mode)
NXStream *NXOpenPort(port_t port, int mode)

DESCRIPTION

These functions connect a stream to a file or a Mach port. (The NXStream structure is
defined in the header file streams/streams.h.)

NXOpenFileO opens a stream on the file specified by the file descriptor argument,jd,
which can refer to a pipe or a socket. (If the file is stored on disk, use NXMapFileO;
this function is described below under NXOpenMemoryO.) The mode argument
should be one of the three constants NX_READONLY, NX_ WRITEONLY, or
NX_READWRITE to specify how the stream will be used. The mode should be the
same as the one used when obtaining the file descriptor. (The system call openO, which
returns a file descriptor, takes O_RDONLY, 0_ WRONLY, or O_RDWR to indicate
whether the file will be used for reading, writing, or both. For more information on this
function, see its UNIX manual page.)

You can use NXOpenFileO to connect to stdin, stdout, and stderr by obtaining their
file descriptors using the standard C library function filenoO. (For more information
on this function, see its UNIX manual page.)

NXOpenPortO opens a stream associated with the Mach port specified by port. The
mode must be either NX_READONLY or NX_ WRITEONLY. The port must already
be allocated using the Mach function port allocateO. See the "Mach Functions"
section later in this chapter for more information about using this function.

Once the file or Mach port stream is open, you can read from or write to it. See the
descriptions of NXReadO and NXPutcO for more information about the functions
available for reading or writing to a stream.

When you're finished with the stream, close it with NXCloseO. If you've written to the
stream, the data will be automatically saved in the file. After calling NXCloseO on a
file stream, you still need to close the file descriptor. To de this, use the system call
c1oseO, giving it the file descriptor as an argument. (For more information about
c1oseO, see its UNIX manual page.)

3-76 Chapter 3: C Functions

RETURN

Both functions return a pointer to the stream they open or NULL if an error occurred
while trying to open the stream.

SEE ALSO

NXOpenMemoryO, NXReadO, NXPutcO, NXCloseO

NXOpenMemoryO, NXMapFileO, NXSaveToFileO, NXGetMemoryBufferO,
NXCloseMemoryO

SUMMARY

LIBRARY

SYNOPSIS

Manipulate a memory stream

#import <streams/streams.h>

NXStream *NXOpenMemory(const char * address , int size, int mode)
NXStream *NXMapFile(const char * pathN ame, int mode)
int NXSaveToFile(NXStream * stream, const char * name)
void NXGetMemoryBuffer(NXStream *stream, char **streambuf, int *len,

int *maxlen)
void NXCloseMemory(NXStream *stream, int option)

DESCRIPTION

These functions open, save, and close streams on memory. (The NXStream structure
is defined in the header file streams/streams.h.)

NXOpenMemoryO returns a pointer to the memory stream it opens. Its argument
mode specifies whether the stream will be used for reading or writing. If
NX_ WRITEONLY is specified, the first two arguments should be NULL and 0 to allow
the amount of memory available to be automatically adjusted as more data is written.
Any other value for address should be the starting address of memory allocated with
vm_allocateO. If NX_READONLY is specified, a memory stream will be set up for
reading the data beginning at the location specified by the first argument; the second
argument indicates how much data will be read. To use the stream for both writing and
reading, you can either use NULL and 0 or specify the location and amount of data to
be read; again, address should be the starting address of memory allocated with
vm _ allocateO.

NXMapFileO maps a file into memory and then opens a memory stream. A related
function, NXOpenFileO, connects a stream to a file specified with a file descriptor.
(This function is described earlier in this chapter.) Memory mapping allows efficient
random and multiple access to the data in the file, so NXMapFileO should be used
whenever the file is stored on disk. When you call NXMapFileO, give it the pathname

NXOpenMemory() 3-77

for the file and indicate whether you will be writing, reading, or both, by using one of
the mode constants described above. If you use the stream only for reading, just close
the memory stream when you're finished. If you write to the memory-mapped stream,
you need to call NXSaveToFileO, as described below, to save the data.

Once the memory stream is open, you can read from or write to it. See the descriptions
of NXReadO and NXPutcO for more information about reading or writing to a stream.

Before you close a memory stream, you can save data written to the stream in a file. To
do this, call NXSaveToFileO, giving it the stream and a pathname as arguments.
NXSaveToFileO writes the contents of the memory stream into the file, creating it if
necessary. After saving the data, close the stream using NXCloseMemoryO.

NXGetMemoryBufferO returns the memory buffer (streambuf) and its current and
maximum lengths (len and maxlen).

When you're finished with a memory stream, close it by calling NXCloseMemoryO.
Typically, NX_FREEBUFFER will be used as the second argument to free all memory
used by the stream, but there are two other constants available. If you've used the
stream for writing, more memory may have been made available than was actually
used; the constant NX_TRUNCATEBUFFER indicates that any unused pages of
memory should be freed. (Calling NXCloseO with a memory stream is equivalent to
calling NXCloseMemoryO and specifying NX_TRUNCATEBUFFER.)
NX_SAVEBUFFER doesn't free the memory that had been made available.

RETURN

NXOpenMemoryO and NXMapFileO return a pointer to the stream they open or
NULL if the stream couldn't be opened.

NXSaveToFileO returns -1 if an error occurred while opening or writing to the file and
a otherwise.

EXCEPTIONS

The functions in this group that take a stream as an argument raise an NX_illegalStream
exception if the stream is invalid. This exception is also raised if these functions are
used on a stream that isn't a memory stream.

SEE ALSO

NXReadO, NXPutcO, NXOpenFileO

NXOpenPortO ~ See NXOpenFileO

3-78 Chapter 3: C Functions

NX OpenTypedStreamO, NX CloseTypedStreamO,
NXOpenTypedStreamForFileO

SUMMARY Open or close a typed stream

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

NXTypedStream *NXOpenTypedStream(NXStream *stream, int mode)
void NXCloseTypedStream(NXTypedStream *typedStream)
NXTypedStream *NXOpenTypedStreamForFile(const char *fileName, int mode)

DESCRIPTION

These functions open, save the contents of, and close a typed stream. A typed stream
should be used for archiving-that is, for saving Objective-C objects for later use,
typically in a file. (The NXTypedStream type is declared in the header file
objc/typedstream.h. The structure itself is private since you never need to access its
members.)

The first argument for NXOpenTypedStreamO is an already opened NXStream
structure. See the descriptions of NXOpenMemoryO, NXOpenFileO, and
NXOpenPortO earlier in this chapter for more information about opening a stream.
The second argument to NXOpenTypedStreamO must be NX_READONLY or
NX_ WRITEONLY to specify how the typed stream will be used.

Once the typed stream is open, you can write to or read from it. See the descriptions of
NXReadTypeO, NXReadObjectO, and NXReadPointO later in this chapter for more
information about reading and writing. When you're finished with the typed stream,
you must first close the typed stream using NXCloseTypedStreamO and then close the
NXStream structure. See the descriptions of NXCloseO and NXCloseMemoryO for
more information about closing a stream.

To open a typed stream on a file, use NXOpenTypedStreamForFileO. This function
opens a memory stream and an associated typed stream. If mode is NX_READONLY,
the typed stream is initialized with the contents of the file specified by fileName. A
subsequent call to NXCloseTypedStreamO will close the NXTypedStream and
NXStream structures and free the buffer that had been used. If mode is
NX_ WRITEONLY, a typed stream on memory is opened, ready for writing. When you
finish writing, calling NXCloseTypedStreamO will flush the typed stream, save its
contents in the file specified by fileName, close both the NXTypedStream and the
NXStream structures, and free the buffer used.

RETURN

NXOpenTypedStreamO and NXOpenTypedStreamForFileO return a pointer to the
typed stream they open or NULL if the stream couldn't be opened.

NXOpenTypedStream() 3-79

EXCEPTIONS

NXOpenTypedStreamO and NXOpenTypedStreamForFileO raise a
TYPEDSTREAM_ CALLER_ERROR exception with the message
"NXOpenTypedStream: invalid mode" if the mode is anything other than
NX_READONLY or NX_ WRITEONLY.

NXOpenTypedStreamO raises a TYPEDSTREAM_ CALLER_ERROR exception
with the message "NXOpenTypedStream: null stream" if an invalid NXStream
structure is passed in.

SEE ALSO

NXOpenMemoryO, NXOpenFileO, NXCloseO, NXCloseMemoryO,
NXReadTypeO, NXReadObjectO, NXReadPointO

NXOpenTypedStreamForFileO ~ See NXOpenTypedStreamO

NX OrderStringsO, NXDefaultStringOrderTableO

SUMMARY Provide table-driven string ordering service

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/Text.h>

int NXOrderStrings(const unsigned char *sl, const unsigned char *s2,
BOOL caseSensitive, int length, NXStringOrderTable *table)

NXStringOrderTable *NXDefaultStringOrderTable(void)

DESCRIPTION

NXOrderStringsO returns a value indicating the ordering of the strings sl and s2, as
determined by the NXStringOrderTable structure table. If caseSensitive is NO, capital
and lowercase versions of a letter are considered to have identical rank. The
comparison considers at most the first length characters of each string. For
convenience, you can pass -1 for length if both strings are null-terminated. If table is
NULL, the default ordering table (as described below) is used. NX OrderStringsO
returns 1,0, or -1 depending on whether sl is greater than, equal to, or less than s2
according to table.

When comparing strings that are visible to the user, you should generally use
NXOrderStrings(sl, s2, YES, -1, NULL) as a replacement for strcmp(sl, s2) and
NXOrderStrings(sl, s2, YES, n, NULL) as a replacement for strncmp(sl, s2, n).

3-80 Chapter 3: C Functions

NXOrderStringsO consults an NXStringOrderTable structure when comparing
strings. This structure is declared in appkit/Text.h:

typedef struct {
unsigned char primary[256];
unsigned char secondary[256];
unsigned char primaryCI[256];
unsigned char secondaryCI[256];

NXStringOrderTable;

The first two arrays contain ordering information for case sensitive searches; the last
two are for case insensitive searches. NXOrderStringsO determines a character's rank
by using the character to index into the appropriate primary array. The value found at
that position determines the character's rank. For example, in the default ordering table
the value at the 'a' position is less than that at the 'b' position, but the values at the '0'

and '0' positions are identical. The secondary arrays provide additional ordering
information for ligature characters (such as 're' and 'fl'), in effect breaking the ligature
apart for the purposes of ordering. Thus, the two characters 'ae' and the single
character' re' are given equal rank.

NeXTstep provides a default order table, which can by accessed by calling
NXDefaultStringOrderTableO. If you want to create your own order table, it's best
to start with the default table and algorithmically modify it (perhaps in conjunction with
the NXCType routines-see /usr/include/NXCTypes.h). In this way, you'll benefit
from using character tables that have already been localized. The entry at the ° position
in each array must be 0.

RETURN

NXOrderStringsO returns 1, 0, or -1 depending on whether sl is greater than, equal
to, or less than s2 according to table. NXDefaultStringOrderTableO returns a pointer
to the default string order table.

NXOrderStrings() 3-81

NXPingO

SUMMARY Synchronize the application with the Window Server

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXPing(void)

DESCRIPTION

NXPingO helps applications synchronize their actions with the actions of the Window
Server; it enables an application to respond smoothly to user events.

An application can generate PostScript code faster than the Window Server can
interpret it. An application can therefore "get ahead" of the Server-it can get events
and respond to them before its responses to previous events are displayed to the user.
To the user, it appears that the application is slow, or that there's discontinuity between
an event and the response.

NXPingO causes the application to pause until the Window Server catches up. It
flushes the connection buffer so that all current PostScript code is sent to the Server and
returns only when all the code has been interpreted. It's a cover for the
DPSWaitContextO function when passed the context returned by
DPSGetCurrentContextO:

DPSWaitContext(DPSGetCurrentContext())

For more information on these two Display PostScript functions, see the Client Library
Reference Manual.

Waiting for the Window Server to catch up with the application is sometimes a good
idea, for two reasons:

• It lets the Server have full access to the CPU. The application stops competing with
it for system resources.

• It gives the application a chance to generate less, and more relevant, PostScript
code. An application won't fall even further behind the user while it waits for the
Window Server if it combines its responses to events or allows events to be
coalesced in the event queue.

3-82 Chapter 3: C Functions

NXPingO is most typically used in a modal loop. In a tracking loop, it should be called
just before getting each new event (after all the PostScript code has been generated in
response to the last event). The following schematic for a mouseDown: method
illustrates its use. (Comments that would be replaced by code in any real method are
shown in italic type.)

- mouseDown: (NXEvent *)thisEvent

BOOL shouldLoop = YES;
int oldMask = [windowaddToEventMask:NX_LMOUSEDRAGGEDMASK];

while (shouldLoop) {
/*
* Draw in response to the event
*/

NXPing ();
theEvent = [NXApp getNextEvent: (NX_LMOUSEUPMASK

I NX_LMOUSEDRAGGEDMASK)];
if (theEvent->type == NX LMOUSEUP)

shouldLoop = NO;

/*
* Replace dynamic drawing with a static display
*/

[window setEventMask:oldMask];
return self;

During the wait imposed by NXPingO, mouse-dragged (and mouse-moved) events will
be coalesced in the event queue. When the application next gets an event, it will be a
more up-to-date one than if NXPingO had not been used. Coalescing also serves to
reduce the total amount of PostScript code generated.

NXPingO also lets an application more efficiently group its responses to a number of
similar events. In the following example, the method that responds to key-down events
uses the peekNextEvent:into: method to take all available key-down events from the
event queue and display them at once. The use of NXPingO means that the example
will be invoked less often than it otherwise would. However, it will consolidate events
into fewer instructions for the Window Server.

NXPing() 3 -83

- keyDown: (NXEvent *)theEvent

/*
* Check theEvent->data.key.charSet and

* theEvent->data.key.charCode and set up the array of
* characters to displayed
*/

while (1)

/*

/* Peek at the next event */

NXEvent next;

theEvent = [NXApp peekNextEvent:NX_ALLEVENTS into:&next];

/* Break the loop if there is no next event */

if (! theEvent)

break;

/* Skip over key-up events */
else if (theEvent->type == NX_KEYUP)

[NXApp getNextEvent:NX_KEYUPMASK];

continue;

/* Respond only to key-down events */

else if (theEvent->type == NX KEYDOWN) {

/*

* Add the new character to the array to be displayed
*/

[NXApp getNextEvent:NX_KEYDOWNMASK];

/* Break the loop on all other events types */

else
break;

* Display the array of characters
*/

NXPing();

return self;

The wait imposed by NXPingO may mean that there are more key-down events in the
event queue each time this method is invoked. Since it's much more efficient for the
application to send fewer instructions to the Window Server to display longer strings,
this delay helps rather than hurts.

In the examples shown above, NXPingO is called just before the application is ready
to get another event. This is the most appropriate place for it, since it means that the
response to the last event will be complete-including the Window Server's part
before the response to the next event begins. It might be noted that both NXPingO and
the functions and methods that get events flush the output buffer to the Window Server.
However, the buffer isn't flushed if it's empty, so calling NXPingO before getting an
event doesn't cause an extra operation to be performed.

3-84 Chapter 3: C Functions

Using NXPingO has two negative consequences:

• It reduces the Window Server's throughput-the amount of PostScript code that it
can interpret in a given time period. This is mainly due to the increased
communication between the Server and the application.

• It reduces the granularity of the application's response to events. When events are
coalesced in the event queue, cursor movements are tracked at greater intervals.

Therefore, you should not use NXPingO in a simple event loop unless the time needed
to execute the PostScript code each event generates is longer than the time needed to
complete the loop.

Although NXPingO is most often used in modal loops, it's also appropriate to use it in
situations where information from the Window Server is needed before the application
can proceed. For example, you may want to call NXPingO before entering a section of
code that depends on previous PostScript instructions being executed without error.
Since your application won't get notified of any errors until the PostScript code is.
actually executed, NXPingO allows it to wait for the notification before proceeding.

SEE ALSO

DPSFlushO

NXPointlnRectO ~ See NXMouselnRectO

NXPortFromNameO, NXPortNameLookupO

SUMMARY Get send rights to an application port

LIBRARY

SYNOPSIS

#import <appkitl Listener.h>

port_t NXPortFromName(const char *name, const char *host)
port_t NXPortNameLookup(const char *name, const char *host)

DESCRIPTION

NXPortFromNameO and NXPortNameLookupO both return send rights to the port
that's registered with the Network Name Server under name for the host machine. If
host is a NULL pointer or an empty string, the local host is assumed. This is the most
common usage.

NXPortFromN ame() 3 -85

An application generally registers with the Network Name Server under the name it
uses for its executable file. For example, Digital Webster ™ registers under "Webster"
and Mail under "Mail".

If no port is registered for the name application, NXPortNameLookupO returns
PORT_NULL. However, NXPortFromNameO tries to have host's Workspace
Manager launch the application. If the application can be launched and if it registers
with the Network Name Server, send rights to its port are returned. This strategy is
almost always successful for the local host. It's more problematic for a remote host,
since the Workspace Manager is normally protected from messages coming from other
machines.

If, in the end, no port can be found for the name application, NXPortFromNameO, like
NXPortNameLookupO, returns PORT_NULL.

Applications should use these two functions, rather than the Mach netname _look _ upO
function, to get send rights to a public port. Although both functions currently use
netname _look _ upO to find the port, this may not always be true. In future releases,
Listener objects may "check in" with another service-such as the Bootstrap Server
rather than the Network Name Server. In this case, the two functions described here
will continue to find and return the port associated with name, but netname _look _ upO
will not.

RETURN

Both functions return send rights to the public port of the name application on the host
machine, or PORT_NULL if the port can't be found.

NXPortNameLookupO ~ See NXPortFromNameO

NXPrintfO ~ See NXPutcO

NXPtrHashO ~ See NXCreateHashTableO

NXPtrIsEqualO ~ See NXCreateHashTableO

3-86 Chapter 3: C Functions

NXPutcO, NXGetcO, NXUngetcO, NXScanfO, NXPrintfO, NXVScanfO,
NXVPrintfO

SUMMARY Read or write formatted data to or from a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

int NXPutc(NXStream * stream, char c)
int NXGetc(NXStream *stream)
void NXUngetc(NXStream *stream)
int NXScanf(NXStream *stream, const char *format, ...)
void NXPrintf(NXStream *stream, const char *format, ...)
int NXVScanf(NXStream * stream, const char *format, va_list argList)
void NXVPrintf(NXStream * stream, const char *format, va_list argList)

DESCRIPTION

These functions and macros read and write data to and from a stream that has already
been opened. (See the descriptions of NXOpenMemoryO and NXOpenFileO for
more information about opening a stream.) After writing to a stream, you may need to
call NXFlushO to flush data from the buffer associated with the stream. (See the
description of NXFlushO earlier in this chapter.)

The macros for writing and reading single characters at a time are similar to the
corresponding standard C functions: NXPutc() and NXGetcO work like putcO and
getcO. NXPutcO appends a character to the stream. Its second argument specifies the
character to be written to the stream. NXGetc() retrieves the next character from the
stream. To reread a character, call NXUngetc(). This function puts the last character
read back onto the stream. NXUngetcO doesn't take a character as an argument as
ungetcO does. NXUngetcO can only be called once between any two calls to
NXGetcO (or any other reading function).

The other four functions convert strings of data as they're written to or read from a
stream. NXPrintfO and NXScanfO take a character string that specifies the format of
the data to be written or read as an argument. NXPrintfO interprets its variables
according to the format string and writes them to the stream. Similarly, NXScanfO
reads characters from the stream, interprets them as specified in the format string, and
stores them in the variables indicated by the last set of arguments. The conversion
characters in the format string for both functions are the same as those used for the
standard C library functions, printfO and scanfO. For detailed information on these
characters and how conversions are performed, see the UNIX manual pages for printfO
and scanfO.

NXPutc() 3 -87

Two related functions, NXVPrintf 0 and NXVScanfO, are exactly the same as
NXPrintfO and NXScanfO, except that instead of being called with a variable number
of arguments, they are called with a va_list argument list, which is defined in the header
file stdarg.h. This header file also defines a set of macros for advancing through a
va list.

RETURN

NXPutcO and NXGetcO return the character written or read. NXScanfO and
NXVScanfO return EOF if all data was successfully read; otherwise, they return the
number of successfully read data items.

SEE ALSO

NXOpenMemoryO, NXOpenFileO, NXFlushO, NXReadO

3-88 Chapter 3: C Functions

NXReadO, NXWriteO

SUMMARY Read from or write to a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

int NXRead(NXStream *stream, void *buf, int count)
int NXWrite(NXStream *stream, const void *buf, int count)

DESCRIPTION

These functions read and write multiple bytes of data to a stream that has already been
opened. (See the descriptions of NXOpenMemoryO and NXOpenFileO for more
information about opening a stream.) After writing to a stream, you may need to call
NXFlushO to flush data from the buffer associated with the stream. (See the
description of NXFlushO earlier in this chapter.)

These functions write multiple bytes of data to and read them from a stream. To read
data from a stream, call NXReadO:

NXRect myRect;
NXRead(stream, &myRect, sizeof(NXRect));

NXReadO reads the number of bytes specified by its third argument from the given
stream and places the data in the location specified by the second argument.

In the following example, an NXRect structure is written to a stream.

NXRect myRect;

NXSetRect(&myRect, 0.0, 0.0, 100.0, 200.0);
NXWrite(stream, &myRect, sizeof(NXRect));

The second and third arguments for NXWriteO give the location and amount of data
(measured in bytes) to be written to the stream.

RETURN

These functions return the number of bytes written or read. If an error occurs while
writing or reading, not all the data will be written or read.

SEE ALSO

NXFlushO

NXRead() 3-89

NXReadArrayO, NXWriteArrayO

SUMMARY Read or write arrays from or to a typed stream

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

void NXReadArray(NXTypedStream *typedStream, const char *dataType, int count,
const void *data)

void NXWriteArray(NXTypedStream *typedStream, const char *dataType, int count,
void *data)

DESCRIPTION

These functions read and write arrays from and to a typed stream. They can be used
within read: or write: methods for archiving purposes. See the description of
NXReadObjectO in this chapter for more about these methods. Functions are also
available for reading and writing other data types; they're listed below under "SEE
ALSO."

Before using a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadArrayO and NXWriteArrayO read and write an array of count elements of
type dataType from or to typedStream. NXReadArrayO reads the array from the typed
stream into the location specified by data, which must have been previously allocated.
NXWriteArrayO writes the array specified by data to the typed stream. Both
functions use the characters listed under the description of NXReadTypeO for
dataType.

The following is an example of an integer array being written. To read the same array,
NXReadArrayO would be called with the same first three arguments as
NXWriteArrayO; the fourth argument would be a pointer to memory for the array.

int aa[4];

aa [0] = 0; aa [1] = 11; aa [2] = 22; aa [3] 33;

NXWriteArray(typedStream, "i", 4, aa);

EXCEPTIONS

Both functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if it isn't
correct. For example, if NXReadArrayO is called and the stream was opened for
writing, the exception is raised.

3-90 Chapter 3: C Functions

NXReadArrayO raises a TYPED STREAM_FILE_INCONSISTENCY exception if
the data to be read is not of the expected type.

SEE ALSO

NXOpenTypedStreamO, NXReadTypeO, NXReadObjectO, and NXReadPointO

NXReadBitmapO ~ See NXlmageBitmapO

NXReadColorO, NXWriteColorO

SUMMARY Read and write a color from a typed stream

LIBRARY

SYNOPSIS

#import <appkit/color.h>

NXCoior NXReadColor(NXTypedStream *stream)
void NXWriteColor(NXTypedStream * stream, NXCoior color)

DESCRIPTION

NXReadColorO reads a color from the typed stream, stream, and returns it.
NXWriteColorO writes a color value, color, to a typed stream. The stream can be
connected to a file, to memory, or to some other repository for data.

NXCoior values should be read and written only using these functions. When a color
is written by NXWriteColorO and then read back by NXReadColorO, the color is
guaranteed to be the same. This cannot be guaranteed if NXCoior structures are read
and written directly-for example, through standard C functions like freadO and
fwriteO. The internal format of an NXCoior data structure is not specified and
therefore may change in future releases.

RETURN

NXReadColorO returns the color value it reads.

EXCEPTION

NXReadColorO raises an NX_newerTypedStream exception if the data it's expected
to read is not of type NXColor.

SEE ALSO

NXSetColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXEqualColorO, NXRedComponentO, NXChangeRedComponentO

NXReadColor() 3-91

NXReadDefaultO ~ See NXRegisterDefaultsO

NXReadObjectO, NXWriteObjectO, NXWriteObjectReferenceO,
NXWriteRootObjectO

SUMMARY

LIBRARY

SYNOPSIS

Read or write Objective-C objects from or to a typed stream

#import <objc/typedstream.h>

id NXReadObject(NXTypedStream *typedStream)
void NXWriteObject(NXTypedStream *typedStream, id object)
void NXWriteObjectReference(NXTypedStream *typedStream, id object)
void NXWriteRootObject(NXTypedStream *typedStream, id rootObject)

DESCRIPTION

These functions initiate the archiving and unarchiving processes for Objective-C
objects. They read and write the object passed in from or to typedStream. When an
object is archived with these functions, its class is automatically written as well. In
addition, the data type of each of its instance variables is archived along with the value
of the variable. These functions also ensure that objects are written only once.

Before you use a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadObjectO begins the unarchival process by allocating memory for a new object
of the correct class. It then sends the object a read: message to initialize its instance
variables from the typed stream. read: messages should only be generated through
NXReadObjectO; they shouldn't be sent directly to objects. Application Kit objects
already have read: methods, but you need to implement read: methods for any classes
you create that add instance variables:

- read: (NXTypedStream *)typedStream

[super read:typedStream];

... /* code for reading instance variables declared in

this cla.ss */

The message to super ensures that inherited instance variables will be unarchived. The
body of the read: method unarchives the object's instance variables, using the
appropriate function for that data type. The functions available for unarchiving include

3 -92 Chapter 3: C Functions

NXReadTypesO, NXReadPointO, and NXReadArrayO, as well as
NXReadObjectO. See the descriptions of these functions in this chapter for
information about how to use them. A read: method can also check the version of the
class being unarchived. See the description of NXTypedStreamClassVersionO for
more information about how to do this.

After NXReadObjectO unarchives an object, it sends the object awake and
finishUnarchiving messages. You can implement an awake method to initialize the
object to a usable state. The finishUnarchiving method allows you to replace the
just-unarchived object with another one. If you implement a finishUnarchiving
method, it should free the unarchived object and return the replacement object.

NXWriteObjectO writes object to typedStream by sending the object a write:
message. As is the case with read: methods, write: methods shouldn't be sent directly
to objects, and they need to be implemented for classes that add instance variables.
They also need to begin with a message to super. The functions available for archiving
instance variables parallel those for unarchiving; they include NXWriteTypesO,
NXWritePointO, and NXWriteArrayO, all of which are described elsewhere in this
chapter. If the object being archived has id instance variables (including those that are
statically typed to a class), they're archived as described below.

In some cases, an object's id instance variables contain inherent properties of the object
to which they belong, or they might be necessary for the object to be usable. For
exampl~ a View's subview list is an intrinsic part of that View, just as a ButtonCell is
needed for a Button to work properly. For these kinds of instance variables, the
object-the View or the Button in the examples mentioned-uses NXWriteObjectO

. within its write: method. (Actually, Button objects inherit Control's write: method,
which archives the cell instance variable.) The function NXWriteTypesO can also be
used to archive id instance variables, by specifying the id data type format character.

In other cases, an object's id instance variables refer to other objects that act at the
. discretion of the object, such as its target or delegate, or that aren't inherently part of
the object. A View's superview and window instance variables aren't considered
intrinsic to the View since you might want to hook up the View to another superview
or to a different Window. For these kinds of instance variables, the object calls
NXWriteObjectReferenceO within its write: method. When archiving a data
structure that includes objects that have called NXWriteObjectReferenceO,
NXWriteRootObjectO must be used instead of NXWriteObjectO.

NXWriteObjectReferenceO specifies that a pointer to nil should be written for the
object passed in, unless that object is an intrinsic part of some member of the data
structure being archived. If the object is intrinsic, it will be archived and, after
unarchiving, the pointer will point to the object. NXWriteRootObjectO makes two
passes through the data structure being written. The first time, it defines the limits of
the data to be written by including instance variables intrinsic to the data structure and
by making a note of which objects have been written with
NXWriteObjectReferenceO. On the second pass, NXWriteRootObjectO archives
the data structure.

NXReadObject() 3-93

As an example, consider a View that has a Button as one subview and a TextField,
which is the target of the Button, as another subview. If you archive the Button, its
ButtonCell will be written. The archived ButtonCell's target instance variable will
point to nil. If you archive the View, however, the Button and the TextField will be
archived since they're subviews. The ButtonCell will be archived since it's needed by
the Button. The ButtonCell's target instance variable will point to the TextField since
it's an intrinsic part of the View.

RETURN

NXReadObjectO returns the id of the object read.

EXCEPTIONS

All functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_CALLER_ERROR exception with an
appropriate message if it isn't correct. For example, if NXReadObjectO is called and
the stream was opened for writing, an exception is raised.

If an error occurs while creating an instance of the appropriate class, NXReadObjectO
raises a TYPEDSTREAM_CLASS_ERROR. This function also raises a
TYPEDSTREAM_FILE_INCONSISTENCY exception if the data to be read is not of
type id.

If NXWriteObjectO is used to archive a data structure that includes objects with calls
to NXWriteObjectReferenceO, a
TYPEDSTREAM_ WRITE_REFERENCE_ERROR exception is raised.

SEE ALSO

NXOpeitTypedStreamO, NXReadArrayO, NXReadTypeO, NXReadPointO, and
NXTypedStreamClass VersionO

NXReadObjectFromBufferO, NXReadObjectFromBufferWithZoneO,
NXWriteRootObjectToBufferO, NXFreeObjectBufferO

SUMMARY

LIBRARY

SYNOPSIS

Read and write an object to a typed-stream memory buffer

#import <objc/typedstream.h>

id NXReadObjectFromBuffer(const char *buffer, int length)
id NXReadObjectFromBufferWithZone(const char *buffer, int length,

NXZone * zone)
char *NXWriteRootObjectToBuffer(id object, int *length)
void NXFreeObjectBuffer(char *buffer, int length)

3-94 Chapter 3: C Functions

DESCRIPTION

These functions allow you to easily read and write an object to a typed stream on
memory. They're particularly useful for archiving an object, writing it to the
pasteboard, and then unarchiving it from the pasteboard.

NXWriteRootObjectToBufferO opens a stream on memory (using
NXOpenMemoryO) and a corresponding typed stream. It then writes the object given
as its argument by calling NXWriteRootObjectO and closes the typed stream. (See
the description of NXWriteRootObjectO under NXReadObjectO above for more
information about how the object is written.) NXWriteRootObjectToBufferO also
closes the memory stream but retains the buffer, which is truncated to the size of the
object. NXWriteRootObjectToBufferO returns the size of the object (in the location
specified by length) and a pointer to the buffer itself.

NXReadObjectFromBufferO calls NXReadObjectFromBufferWithZoneO with
the default zone as its zone argument.

NXReadObjectFromBufferWithZoneO opens a stream on memory and a
corresponding typed stream with its zone set by the NXSetTypedStreamZoneO
function. The buffer and length arguments passed in should be taken from a previous
call to NXWriteRootObjectToBufferO. NXReadObjectO is called to read the object
from the buffer into the zone, after which the streams are closed.
NXReadObjecFromBufferWithZoneO saves the memory buffer and returns the
object it reads in the zone specified. Unless you're going to reread the buffer, you
should free it using the NXFreeObjectBufferO function.

NXFreeObjectBufferO frees the buffer specified by buffer, which should be length
bytes long. These arguments should be taken from a previous call to
NXWriteRootObjectToBufferO.

RETURN

NXReadObjectFromBufferO returns the object it reads from the buffer.

NXWriteRootObjectToBufferO returns a po~nter to the buffer it creates.

EXCEPTIONS

NXReadObjectFromBufferO and NXReadObjectFromBufferWithZoneO raise a
TYPEDSTREAM _FILE_INCONSISTENCY exception if the data to be read from the
buffer is not of type id.

SEE ALSO

NXOpenMemoryO, NXReadObjectO, and NXOpenTypedStreamO

NXReadObjectFromBufferWithZoneO ~ NXReadObjectFromBufferO

NXReadObjectFromBu!fer() 3 -95

NXReadPointO, NXWritePointO, NXReadRectO, NXWriteRectO,
NXReadSizeO, NXWriteSizeO

SUMMARY Read or write NeXT-defined data types to a typed stream

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXReadPoint(NXTypedStream *typedStream, NXPoint *aPoint)
void NXWritePoint(NXTypedStream *typedStream, const NXPoint *aPoint)
void NXReadRect(NXTypedStream *typedStream, NXRect *aRect)
void NXWriteRect(NXTypedStream *typedStream, const NXRect *aRect)
void NXReadSize(NXTypedStream *typedStream, NXSize *aSize)
void NXWriteSize(NXTypedStream *typedStream, const NXSize *aSize)

DESCRIPTION

These functions read and write NXPoint, NXSize, or NXRect structures from and to a
typed stream. They can be used within read: or write: methods for archiving purposes.
See the description of NXReadObjectO in this chapter for more about these methods.
Functions are also available for reading and writing other data types; they're listed
below under "SEE ALSO."

Before using a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadPointO, NXReadSizeO, and NXReadRectO take a typed stream as an
argument and place the data read from the stream into the location specified by the
second argument. They work through NXReadTypeO.

The three corresponding writing functions work through NXWriteTypeO to write the
data specified by their second argument to the typed stream. Note that the second
argument should be a pointer to the data. The following example shows the three kinds
of structures being written to an already opened typed stream; to read the same data,
the corresponding reading functions would be called with the same arguments .

. NXPoint zeroPoint = {o.o, O.O};

NXSize rectSize = {lOO.O, 200.0};
NXRect aRect = {zeroPoint, rectSize};

NXWritePoint(stream, &zeroPoint);
NXWriteSize(stream, &rectSize);
NXWriteRect(stream, &aRect);

3-96 Chapter 3: C Functions

EXCEPTIONS

All six functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type
isn't correct. For example, if NXReadPointO is called and the stream was opened for
writing, the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY
exception if the data to be read is not of the expected type.

SEE ALSO

NXOpenTypedStreamO, NXReadTypeO, NXReadArrayO, NXReadObjectO

NXReadRectO ~ See NXReadPointO

NXReadSizeO ~ See NXReadPointO

NXReadTIFFO, NXWriteTIFFO, NXGetTIFFInfoO

SUMMARY Read and write TIFF files

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/tiff.h>

void *NXReadTIFF(int imageNumber, NXStream *stream, NXTIFFInfo *info,
void *data)

void NXWriteTIFF(NXStream *stream, NXImageInfo *image, void *data)
int NXGetTIFFlnfo(int imageNumber, NXStream *stream, NXTIFFInfo *info)

DESCRIPTION

These functions read and write image data that's been stored in a TIFF file. This file
format is described in the Tag Image File Format Specification, Revision 5.0. (See
"Suggested Reading" in the Technical Summaries manual for information about how to
obtain the TIFF specification manual.)

All three functions take a pointer to an NXStream structure as an argument. This
stream should be opened on a TIFF file. (The NXStream structure is defined in the
header file streams/streams.h.)

NXReadTIFFO reads the image data for the image specified by imageNumber from
the stream. The info argument points to an uninitialized NXTIFFInfo structure, which
you should allocate on the stack. NXReadTIFFO calls NXGetTIFFlnfoO to read the

1VXReadTIFF() 3-97

information that describes the image into the NXTIFFInfo structure. This structure is
defined in the header file appkit/tiff.h. The image data will be stored in the memory
pointed to by data. If data is NULL, memory for the image data will be made available
using malloeO. If an error occurs while reading the data, the error field of the
NXTIFFInfo structure will be nonzero, and NXReadTIFFO will return NULL.

NXWriteTIFFO writes an image to the stream so that it can be saved in a TIFF file.
The NXImageInfo structure specified by image describes the image to be written, and
data points to the image data to be written. The NXImageInfo structure is defined in
appkit/tiff.h.

NXGetTIFFlnfoO reads the information for the image specified by imageNumber
from the stream. The information is stored in the un initialized NXTIFFInfo structure
pointed to by info, which you should allocate on the stack. This information provides
enough detail so that you can read the image data when desired, for example to edit it
programmatically. The total number of bytes for the image is returned unless there is
an error. If an error occurs, the error field of the NXTIFFInfo structure will have a
nonzero value and NXGetTIFFlnfoO will return O.

RETURN

NXReadTIFFO returns a pointer to the image data read unless an error occurs while
reading, in which case it returns NULL.

NX GetTIFFlnfoO returns the number of bytes needed to store the image or 0 if an
error occurred while reading the image information.

NXReadTypeO, NXWriteTypeO, NXReadTypesO, NXWriteTypesO

SUMMARY

LIBRARY

SYNOPSIS

Read or write arbitrary data to a typed stream

#import <obje/typedstream.h>

void NXReadType(NXTypedStream *typedStream, const char *type, void *data)
void NXWriteType(NXTypedStream *typedStream, const char *type,

const void *data)
void NXReadTypes(NXTypedStream *typedStream, const char *types, ...)
void NXWriteTypes(NXTypedStream *typedStream, const char *types, ...)

DESCRIPTION

These functions read and write strings of data from and to a typed stream. They can be
. used within read: or write: methods for archiving purposes. See the description of
NXReadObjectO in this chapter for more about these methods. Functions are also

3-98 Chapter 3: C Functions

available for reading and writing certain data types; they're listed below under "SEE
ALSO."

These functions are similar to the NXPrintfO and NXScanfO functions for streams
(and to the printfO and scanfO standard C functions). Before using a typed stream for
reading and writing, it must be opened; see the description of NXOpenTypedStreamO
for details on opening a typed stream. (The NXTypedStream type is declared in the
header file objc/typedstream.h. The structure itself is private since you never need to
access its members.)

These four functions take as arguments a pointer to a typed stream, a character string
indicating the format of the data to be read or written, and the address of the data. The
format string characters and their corresponding data types listed below are supported.

Format Character
c
s

f
d
@

*
%

{<type> }
[<count><type>]

Data Type
char
short
int
float
double
id
char *
NXAtom (see text below)
SEL
class
(corresponding data won't be read or written; see below)
struct
array

When writing, the "%" format character specifies that data should be written as a const
char pointer. When reading, the data is read and then converted to a unique string using
NXUniqueStringO. This function is described later in this chapter. The "!" identifier
should only be used on data that's the same size as an int. The corresponding data item
from the stream won't be read or written.

NXReadTypeO and NXWriteTypeO read and write the data specified by data as the
single data type specified by type. The functions NXReadTypesO and
NXWriteTypesO read and write multiple types of data; the types should be listed in
types using the appropriate format characters shown above, and matching data should
be provided in data. This example shows three different data types being written to an
already open typed stream:

float aa 3.0;
int bb 5;
char *cc "foo";

NXWriteTypes(typedStream, "fi*", &aa, &bb, &cc);

NXReadType() 3-99

If NXWriteTypeO had been used, three lines of code would have been necessary, one
for each data type. Both functions take pointers to the data to be written, unlike
printfO.

To read these three pieces of data from the NXTypedStream, NXReadTypesO would
be called with the same arguments as shown above for NXWriteTypesO:

NXReadTypes(typedStream, "fi*", &aa, &bb, &cc);

EXCEPTIONS

All four functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type
isn't correct. For example, if NXReadTypeO or NXReadTypesO is called and the
stream was opened for writing, the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY
exception if the data to be read is not of the expected type.

SEE ALSO

NXOpenTypedStreamO, NXReadObjectO, and NXReadPointO

NXReadTypesO ~ See NXReadTypeO

NXReadWordTableO, NXWrite WordTableO

SUMMARY Read or write Text object's word tables

LIBRARY

SYNOPSIS

#import <appkit/Text.h>

void NXReadWordTable(NXZone *zone, NXStream * stream ,
. unsigned char **preSeISmart, unsigned char **postSeISmart,
unsigned char * * charCategories , NXFSM * * wrapB reaks , int *wrapBreaksCount,
NXFSM **clickBreaks, int *clickBreaksCount, BOOL *charWrap)

void NXWriteWordTable(NXStream * stream , const unsigned char *preSeISmart,
const unsigned char *postSeISmart, const unsigned char *charCategories,
const NXFSM *wrapBreaks, int wrapBreaksCount, const NXFSM *clickBreaks,
int clickBreaksCount, BOOL charWrap)

3-100 Chapter 3: C Functions

DESCRIPTION

These functions read and write the Text object's word tables. Given stream, a pointer
to a stream containing appropriate data, NXReadWordTableO creates word tables in
the memory zone specified by zone. Conversely, given references to word table
structures, NXWriteWordTablesO records the structures in the stream referred to by
stream.

The word table arguments taken by these two functions are identical except for the
degree of indirection. For each table it will create, NXReadWordTableO takes the
address of a pointer. When the function returns, these pointers will point to the newly
created tables. On the other hand, NXWriteWordTablesO takes a pointer to each table
it will record to the stream.

preSelSmart and postSelSmart refer to smart cut and paste tables. These tables specify
which characters preceding or following the selection will be treated as equivalent to a
space. wrapBreaks refers to a break table, the table that a Text object uses to determine
word boundaries for line breaks. wrapBreaksCount gives the number of elements in
the array of NXFSM structures that make up the break table. Similarly, clickBreaks and
clickBreaksCount refer to a click table, the table that determines word boundaries for
word selection. Finally, charWrap refers to a flag indicating whether words whose
length exceeds the Text object's line length should be wrapped on a
character-by -character basis.

Word tables can be set through the defaults system. The global parameter
NXWordTablesFile determines which word table file an application will use. The value
for this parameter can either be a file name or the special values "English" or "C". The
special values cause built-in tables for those languages to apply.

EXCEPTIONS

NXReadWordTableO raises an NX_ wordTablesRead exception if it's unable to open
stream. NXWriteWordTableO raises an NX_wordTablesWrite exception if it's
unable to open stream or if charCategories, wrapBreaks, or clickBreaks is NULL.

NXReallyFreeO ~ See NXCreateHashTableO

NXReadWordTable() 3-101

NXRectClipO, NXRectClipListO, NXRectFillO, NXRectFillListO,
NXRectFillList With GraysO, NXEraseRectO, NXHighlightRectO

SUMMARY

LIBRARY

SYNOPSIS

Optimize drawing

#import <appkit/graphics.h>

void NXRectClip(const NXRect *aRect)
void NXRectClipList(const NXRect *rects, int count)
void NXRectFill(const NXRect *aRect)
void NXRectFillList(const NXRect *rects, int count)
void NXRectFillListWithGrays(const NXRect *rects, const float *grays, int count)
void NXEraseRect(const NXRect *aRect)
void NXHighlightRect(const NXRect *aRect)

DESCRIPTION

These functions provide efficient ways to carry out common drawing operations on
. rectangular paths.

NXRectClipO intersects the current clipping path with the rectangle referred to by its
argument, aRect, to determine a new clipping path. NXRectClipListO takes an array
of count number of rectangles and intersects the current clipping path with each of
them. Thus, the new clipping path is the graphic intersection of all the rectangles and
the original clipping path. Both functions work through the rectclip operator. After
computing the new clipping path, the current path is reset to empty.

NXRectFillO fills the rectangle referred to by its argument with the current color.
NXRectFillListO fills a list of count rectangles with the current color. Both work
through the rectfill operator.

NXRectFillListWithGraysO takes a list of count rectangles and a matching list of
count gray values. The first rectangle is filled with the first gray, the second rectangle
with the second gray, and so on. There must be an equal number of rectangles and gray
values. The rectangles should not overlap; the order in which they'll be filled can't be
guaranteed. This function alters the current color of the current graphics state, setting
it unpredictably to one of the values passed in grays.

As its name suggests, NXEraseRectO erases the rectangle referred to by its argument,
filling it with white. It does not alter the current color.

NXHighlightRectO uses the compositerect operator to highlight the rectangle
referred to by its argument. Light gray becomes white, and white becomes light gray.
This function must be called twice, once to highlight the rectangle and once to
unhighlight it; the rectangle should not be left in its highlighted state. When not

3-102 Chapter 3: C Functions

drawing on the screen, the compo siting operation is replaced by one that fills the
rectangle with light gray.

SEE ALSO

NXSetRectO, NXUnionRectO

NXRectClipListO ~ See NXRectClipO

NXRectFillO ~ See NXRectClipO

NXRectFillListO ~ See NXRectClipO

NXRectFillListWithGraysO ~ See NXRectClipO

NXRedComponentO, NXGreenComponentO, NXBlueComponentO,
NXCyanComponentO, NXMagentaComponentO, NXYellowComponentO,
NXBlackComponentO, NXHueComponentO, NXSaturationComponentO,
NXBrightnessComponentO, NXGrayComponentO, NXAlphaComponentO

SUMMARY

LIBRARY

SYNOPSIS

Isolate one component of a color

libNeXT _s.a

#import <appkit/color.h>

float NXRedComponent(NXColor color)
float NXGreenComponent(NXColor color)
float NXBlueComponent(NXColor color)
float NXCyanComponent(NXColor color)
float NXMagentaComponent(NXColor color)
float NXYellowComponent(NXColor color)
float NXBlackComponent(NXColor color)
float NXHueComponent(NXColor color)
float NXSaturationComponent(NXColor color)
float NXBrightnessComponent(NXColor color)
float NXGrayComponent(NXColor color)
float NXAlphaComponent(NXColor color)

DESCRIPTION

Each of these functions takes an NXCoior structure as an argument and returns the
value of one component of the color, as indicated by the function name.

NXRedComponent() 3-103

RETURN

Each functions returns a component of the color passed as an argument. The function
name indicates which component is returned. NXAlphaComponentO returns
NX_NOALPHA if a coverage component is not specified for the color. Otherwise, all
return values lie in the range 0.0 through 1.0.

SEE ALSO

NXChangeRedComponentO, NXSetColorO, NXConvertRGBAToColorO,
NXConvertColorToRGBAO, NXEqualColorO, NXReadColorO

NXRegisterDefaultsO, NXGetDefaultValueO, NXReadDefaultO,
NXRemoveDefaultO, NXSetDefaultO, NXUpdateDefaultO,
NXUpdateDefaultsO, NXWriteDefaultO, NXWriteDefaultsO,
NXSetDefaults U serO

SUMMARY Set or read default values

LIBRARY libdb.a

SYNOPSIS

#import <defaults.h>

int NXRegisterDefaults(const char *owner, const NXDefaultsVector vector)
const char *NXGetDefauItValue(const char *owner, const char *name)
const char *NXReadDefault(const char *owner, const char *name)
int NXRemoveDefault(const char * owner, const char * name)
int NXSetDefault(const char *owner, const char *name, const char *value)
const char *NXUpdateDefault(const char *owner, const char *name)
void NXUpdateDefaults(void)
int NXWriteDefault(const char *owner, const char *name, const char *value)
int NXWriteDefaults(const char *owner, NXDefaultsVector vector)
const char *NXSetDefaultsUser(const char *newUser)

DESCRIPTION

Through the defaults system, you can allow users to customize your application to
match their preferences by specifying values for default parameters. Each user has a
defaults database for storing these default values; it's named .NeXTdefaults and
resides in 1.NeXT.

The defaults registration table allows an application to efficiently read default values
for a set of parameters without having to open and close the .NeXTdefaults database
to obtain each value. The table consists of a list of pairs; each pair is composed of a
parameter name and a corresponding default value. The registration table is created at
run time by opening the database once to read default values for the parameters the

3-104 Chapter 3: C Functions

application will use. Every application should create its registration table early in the
program, before any default values are needed.

To create this table, call NXRegisterDefaultsO and give it two arguments: A character
string specifying the name of an application, or owner, and an NXDefaults Vector
structure. Like the registration table, this structure consists of a list of pairs of
parameter names and default values. (It's defined in the header file defaults.h.)

The NXDefaults Vector structure serves two purposes. First, it provides a complete list
of all parameters that the application will use. Values for all the parameters specified
are placed in the registration table at once, so the database doesn't need to be opened
and closed for subsequent uses of the parameters. (However, if the application later
asks for values for parameters that aren't registered, the database will be opened, read,
and closed again.) Second, the structure allows the programmer to suggest values for
the parameters. These values are used if the user hasn't stated a preference for a
specific value.

If the defaults database doesn't exist when NXRegisterDefaultsO is called, it's
automatically created and placed in the .NeXT directory; the directory is also created
if necessary.

A good place to call NXRegisterDefaultsO is in the initialize method of the class that
will use the parameters. The following example registers the values in
WriteNowDefaults for the owner WriteNow:

+ initialize

static NXDefaultsVector WriteNowDefaults

{"NXFont", "Helvetica"},

{"NXFontSize", "12.0"},
{NULL}

} ;

NXRegisterDefaults("WriteNow", WriteNowDefaults);

return self;

NXRegisterDefaultsO creates a registration table that contains a value for each of the
parameters listed in the NXDefaults Vector structure. (Note that NULL is used to signal
the end of the NXDefaultsVector structure.) This value will be the one listed in the
structure if there's no value for that parameter in the database, as described below.

A user's database may contain values for parameters stored multiple times, each with a
different owner. For example, the NXFont parameter can have the value Ohlfs with a
GLOBAL owner, Times for the owner WriteNow, and Courier for the owner Mail.
When searching a user's database for the parameters listed in the NXDefaultsVector
structure, NXRegisterDefaultsO ignores values owned by an application different
from the one used as its argument. If it finds a parameter and owner that matches those
passed to it as arguments, the corresponding value from the user's database rather than

NXRegisterDefaults() 3 -105

the value from the NXDefaults Vector structure is placed in the registration table. If no
parameter-owner match is found, NXRegisterDefaultsO searches the database's
global parameters-that is, those owned by GLOBAL-for a match, and, if it finds one,
places the corresponding value in the registration table. If a parameter isn't found in
the user's database, the parameter-value pair listed in the NXDefaultsVector structure
is placed in the registration table.

Note: When creating their own parameters, applications should use the full market
name of their product as the owner of the parameter to avoid colliding with already
existing parameters. Noncommercial applications might use the name of the program
and the author or institution.

If the application was launched from the command line, any parameter values specified
there will be used, overriding values listed in the database and the NXDefaults Vector
structure.

To summarize, this is the precedence ordering used to obtain a value for a given
parameter for the registration table:

1. The command line
2. The defaults database, with a matching owner
3. The defaults database, with the owner listed as GLOBAL
4. The NXDefaults Vector structure passed to NXRegisterDefaultsO

When your program needs to use a default value, you'll typically call
NXGetDefaultValueO. This function takes an owner and name of a parameter as
arguments and returns a char pointer to the default value for that parameter.
NXRegisterDefaultsO should already have been called, so NXGetDefaultValueO first
looks in the registration table, where usually it will find a matching parameter and
value. If NXGetDefaultValueO doesn't find a match in the registration table (which
would only be the case if you hadn't listed all parameters when you called
NXRegisterDefaultsO), it searches the .NeXTdefaults database for the owner and
parameter. If still no match is found, it searches for a matching global parameter, first
in the registration table and then in the database. If the value is found in the database
rather than the table, NXRegisterDefaultsO registers that value for subsequent use.

Occasionally, you may want to search only the database for a default value and ignore
the command line and the registration table. For example, you might want a value that
another application may have changed after the table was created. In these rare cases
call NXReadDefaultO, which takes an owner and the parameter as arguments and
looks in the database for an exact match. It doesn't look for a global parameter unless
GLOBAL is specified as the owner. If a match is found, a char pointer to the default
value is returned; if no value is found, NULL is returned. After obtaining a value from
the database with NXReadDefaultO, you may want to write it into the registration
table with NXSetDefaultO.

NXSetDefaultO takes as arguments an owner, the name of a parameter, and a value for
that parameter. The parameter and its default value are placed in the registration table,
but they aren't written into the .NeXTdefaults database.

3-106 Chapter 3: C Functions

NXRemoveDefaultO removes the specified default value from the database.

NXWriteDefaultO writes the value and default parameter specified as its arguments
into the database and places them in the registration table. Similarly,
NXWriteDefaultsO writes a vector of defaults into the database and registers it. Both
NXWriteDefaultO and NXWriteDefaultsO return the number of successfully written
values. To maximize efficiency, you should use one call to NXWriteDefaultsO rather
than several calls to NXWriteDefaultO to write multiple values. This will save the
time required to open and close the database each time a value is written.

Since other applications (and the user) can write to the database, at various points the
database and the registration table might not agree on the value of a given parameter.
You can update the registration table with any changes that have been made to the
database since the table was created by calling NXUpdateDefaultO or
NXU pdateDefaultsO. Both functions compare the table and the database. If a value
is found in the database that is newer than the corresponding value in the registration
table, the new value is written into the registration table.

NXU pdateDefaultO updates the value for the single parameter and owner given as its
arguments. NXUpdateDefaultsO, which takes no arguments, updates the entire
registration table. It checks every parameter in the registration table, determines
whether a newer value exists in the database, and puts any newer values it finds in the
registration table.

Ordinarily, the defaults database functions access the database belonging to the user
who started the application. NXSetDefaultsUserO changes the defaults database
accessed by subsequent calls to these functions. NXSetDefaultsUserO accepts the
name of a user whose database you wish to access; it returns a pointer to the name of
the user whose defaults database was previously set for access by these functions. All
entries in the registration table are purged; use NXGetDefaultValueO or
NXRegisterDefaultsO to get the new user's defaults for your application. When
NXSetDefaultsUsersO is called, the user who started the application must have \
appropriate access (read, write, or both) to the defaults database of the new user. This
function is generally called in applications intended for use by a superuser who needs
to update defaults databases for a number of users.

RETURN

NXRegisterDefaultsO returns 0 if the database couldn't be opened; otherwise it
returns 1.

NXGetDefaultValueO returns a char pointer to the requested default value or 0 if the
database couldn't be opened. .

NXReadDefaultO returns a char pointer to the default value; if a value is not found,
NULL is returned.

NXRemoveDefaultO returns 1 or 0 if the default couldn't be removed.

NXSetDefauItO returns 1 if it successfully set a default value and 0 if not.

NXRegisterDefaults() 3 -107

NXUpdateDefaultO returns the new value or NULL if the value did not need to be
updated.

NXWriteDefaultO returns 1 unless an error occurs while writing the default, in which
case it returns O.

NXWriteDefaultsO returns the number of successfully written default values.

NXSetDefaultsUserO returns the login name of the user whose defaults database was
being accessed before the function was called.

NXRegister Error ReporterO, NXRemoveError ReporterO, NXReportErrorO

SUMMARY Define an error reporter

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/errors.h>

void NXRegisterErrorReporter(int min, int max,
void (*proc)(NXHandler *errorState)

void NXRemoveErrorReporter(int code)
void NXReportError(NXHandler *errorState)

DESCRIPTION

These three functions set up an error reporting procedure, which typically includes
writing a message to stderr. When an error is raised (using NX_RAISEO), each of the
nested error handlers are notified successively until one can handle the error without
forwarding it to the next level. This handler executes its error handling code, which
usually includes calling NXReportErrorO.

NXReportErrorO's errorState argument contains information about the error,
including an error code that identifies the error. (The NXHandler structure is defined
in the header file streams/error.h.) NXReportErrorO uses this error code to search
the codes for which error reporters have been registered (see below). When it finds a
match, it calls the corresponding procedure. If no matching error code is found, an
unknown error code message is written to stderr.

The Application Kit registers its error reporters in the initialize class method of the
Application object. Other applications that subclass Application will use these
reporters by default, but they can also define their own set of errors and a reporter. To
create your own range of error codes and corresponding error messages, call
NXRegisterErrorReporterO. Its first two arguments define the range of numbers you
will use as error codes. Applications that are defining their own reporter should begin
their range at NX_APPBASE. The third argument points to the procedure that matches
an error code in that range with an error message.

3-108 Chapter 3: C Functions

NXRemoveErrorReporterO removes the error reporter that had been assigned to the
error code passed in as its argument.

SEE ALSO

NX _ RAISEO, NXDefaultTopLevelErrorHandlerO

NXRegisterPrintfProcO

SUMMARY Register a procedure for formatting data written to a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

void NXRegisterPrintfProc(char formatChar, NXPrintfProc *proc, void *procData)

DESCRIPTION

NXRegisterPrintfProc registersformatChar, a format character that corresponds to
*proc, which is a pointer to a function of type NXPrintfProc. The type definition for
an NXPrintfProc function is:

typedef void NXPrintfProc(NXStream *stream, void *item,
void *prodCata)

JormatChar can be any of the characters "vVwWyYzZ"; other characters are reserved
for use by NeXT. procData represents client data that will be blindly passed along to
the function.

After calling NXRegisterPrintfProcO,formatChar can be used in a format string for
the NXPrintfO or NXVPrintfO functions. When these functions encounter
formatChar in a format string, proc will be called to format the corresponding argument
passed to NXPrintfO. For example:

tabOver(NXStream stream, void *item, void *data)

NXRegisterPrintfProc('v', &tabOver, NULL)

NXPrintf(myStream, "%v", itemOne)

NXRegisterPrintfProc() 3 -1 09

This code registers "v" as the formatting character for tabOverO; with the NULL
argument, no client data will be passed to the tabOverO function. NXPrintfO then
passes the variable itemOne to tabOver for formatting, which formats the item and
places it in myStream.

SEE ALSO

NXPutcO

NXRemoteMethodFromSelO, NXResponsibleDelegateO

SUMMARY

LIBRARY

SYNOPSIS

Match an Objective-C method and a receiver to a remote message

#import <appkitl Listener.h>

NXRemoteMethod *NXRemoteMethodFromSel(SEL aSelector,
NXRemoteMethod * methods)

id NXResponsibleDelegate(Listener *aListener, SEL aSelector)

DESCRIPTION

These two functions are used within subclasses of the Listener class. When you define
a Listener subclass using the msgwrap utility, calls to these functions are generated
automatic all y.

NXRemoteMethodFromSelO looks up the aSelector method in a table of remote
methods that have been declared for the Listener subclass. The second argument,
methods, is a pointer to the beginning of the table. A pointer to the table entry for the
aSelector method is returned.

NXResponsibleDelegateO returns the id of the object that responds to aSelector
remote messages received by aListener. That object will be the Listener's delegate, or
the delegate of the Listener's delegate. A Listener normally entrusts the remote
messages it receives to its delegate, but if its delegate has a delegate of its own, the
Listener defers to that object. Thus if the Application object is the Listener's delegate,
the Application object's delegate will be given the first chance to respond to aSelector
messages.

RETURN

NXRemoteMethodFromSelO returns a pointer to the entry for the aSelector method
in a table of remote methods kept by a Listener subclass, or NULL if there is no entry
for the method.

3-110 Chapter 3: C Functions

NXResponsibleDelegateO returns the delegate that responds to aSelector remote
messages received by aListener. If the delegate of aListener's delegate can respond to
aSelector messages, it is returned. If not and aListener's delegate can respond to
aSelector messages, it is returned. If neither delegate responds to aSelector messages
(or aListener doesn't have a delegate), nil is returned.

NXRemoveDefaultO ~ See NXRegisterDefaultsO

NXRemoveErrorReporterO ~ See NXRegisterErrorReporterO

NXReportErrorO ~ See NXRegisterErrorReporterO

NXResetErrorDataO ~ See NXAllocErrorDataO

NXResetHashTableO ~ See NXCreateHashTableO

NXResetUserAbortO ~ See NXUserAbortO

NXResponsibleDelegateO ~ See NXRemoteMethodFromSelO

NXRunAlertPanelO, NXGetAlertPanelO, NXFreeAlertPanelO

SUMMARY Create or free an attention panel

LIBRARY

SYNOPSIS

#import <appkit/Panel.h>

int NXRunAlertPanel(const char *title, const char *msg, const char *defaultButton,
const char *alternateButton, const char *otherButton, ...)

id NXGetAlertPanel(const char *title, const char *msg, const char *firstButton,
const char *alternateButton, const char *otherButton, ...)

void NXFreeAlertPanel(id alertPanel)

DESCRIPTION

NXRunAlertPanelO and NXGetAlertPanelO both create an attention panel that alerts
the user to some consequence of a requested action; the panel may also let the user
cancel or modify the action. NXRunAlertPanelO creates the panel and runs it in a
modal event loop; NXGetAlertPanelO returns the id of a panel that you can use in a
modal session.

NXRunAlertPanel() 3 -111

These functions take the same set of arguments. The first argument is the title of the
panel, which should be at most a few words long. The default title is "Alert". The next
argument is the message that's displayed in the p'anel. It can use printfO-style
formatting characters; any necessary arguments should be listed at the end of the
function's argument list (after the otherButton argument). For more information on
formatting characters, see the UNIX manual page for printfO.

There are arguments to supply titles for up to three buttons, which will be displayed in
a row across the bottom of the panel. The panel created by NXRunAlertPanelO must
have at least one button, which will have the symbol for the Return key; if you pass a
NULL title to the other two buttons, they won't be created. If NULL is passed as the
defaultButton, "OK" will be used as its title. The panel created by NXGetAlertPanelO
doesn't have to have any buttons. If you supply a title for firstButton, it will be
displayed with the symbol for the Return key.

NXRunAlertPanelO not only creates the panel, it puts the panel on screen and runs it '
using the runModalFor: method defined in the Application class. This method sets up
a modal event loop that causes the panel to remain on screen until the user clicks one
of its buttons. NXRunAlertPanelO then removes the panel from the screen list and
returns a value that indicates which of the three buttons the user clicked:
NX_ALERTDEFAULT, NX_ALERTALTERNATE, or NX_ALERTOTHER. (If an
error occurred while creating the panel, NX_ALERTERROR is returned.) For
efficiency, NXRunAlertPanelO creates the panel the first time it's called and reuses it
on subsequent calls, reconfiguring it if necessary.

NXGetAlertPanelO doesn't set up a modal event loop; instead, it returns the id of a
panel that can be used to set up a modal session. A modal sessions is useful for
allowing the user to interrupt the program. During a modal session, you can perform
activities while the panel is displayed and check at various points in your program
wheiher the user has clicked one of the panel's buttons.

To set up a modal session, send the Application object a beginModaISession:for:
message with the id returned by NXGetAlertPanelO as its second argument. When
you want to check if the user has clicked one of the panel's buttons, use
runModaISession:. To end the modal session, use endModaISession:. When you're
finished with the panel created by NXGetAlertPanelO, you must free it by calling
NXFreeAlertPanelO. This function takes the id returned by NXGetAlertPanelO as
its only argument.

RETURN

NXRunAlertPanelO returns a constant that indicates which button in the attention
panel the user clicked.

NXGetAlertPanelO returns the id of an attention panel for use in a modal session.

3-112 Chapter 3: C Functions

NXSaturationComponentO ~ See NXRedComponentO

NXSaveToFileO ~ See NXOpenMemoryO

NXScanALineO, NXDraw ALineO

SUMMARY

LIBRARY

SYNOPSIS

Calculate or draw line of text (in Text object)

libNeXT _s.a

#import <appkit/Text.h>

int NXScanALine(id self, NXLayInfo *laylnfo)
int NXDrawALine(id self, NXLayInfo *laylnfo)

DESCRIPTION

A Text object calls the first two functions to calculate and draw a line of text. Each
function's first argument is a reference to the Text object's id. The second argument is
an NXLayInfo structure, which is defined in the header file appkit/Text.h.

To determine the placement of characters in a line, NXScanALineO takes into account
line width, text alignment, font metrics, and other data from the Text object. It stores
the results of its calculations in global variables.

A Text object calls NXDraw ALineO to draw a line of text. The global variables set by
NXScanALineO provide NXDraw ALineO with the information it needs to draw each
line of text.

RETURN

NXScanALineO returns 1 only if a word's length exceeds the width of a line and the
Text object's charWrap instance variable is NO. Otherwise, it returns O.

NXDraw ALineO has no significant return value.

NXScanfO ~ See NXPutcO

NXScanALine() 3-113

NXSeekO, NXTeIlO, NXAtEOSO

SUMMARY Set or report current position in a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

void NXSeek(NXStream * stream, long offset, int ptrN am e)
long NXTell(NXStream *stream)
BOOL NXAtEOS(NXStream *stream)

DESCRIPTION

These functions set or report the current position in the stream given as an argument.
This position determines which data will be read next or where the next data will be
written since the functions for reading and writing to a stream start from the current
position.

NXSeekO sets the position offset number of bytes from the place indicated by ptrName,
which can be NX_FROMSTART, NX_FROMCURRENT, or NX_FROMEND.

NXTellO returns the current position of the buffer. This information can then be used
in a call to NXSeekO.

The macro NXAtEOSO evaluates to TRUE if the end of a stream has been reached.
Since streams opened for writing don't have an end, this macro should only be used
with streams opened for reading.

Since position within a Mach port stream is undefined, NXSeekO and NXTellO
shouldn't be called on a Mach port stream. These functions also shouldn't be used on
a typed stream. The NX_ CANSEEK flag (defined in the header file
streams/streams.h) can be used to determine if a given stream is seekable.

RETURN

NXTellO returns the current position of the buffer.

NXAtEOSO evaluates to TRUE if the end of the stream has been detected and to
FALSE otherwise.

EXCEPTIONS

NXSeekO and NXTellO raise an NX_illegalStream exception if the stream passed in is
invalid.

NXSeekO raises an NX_illegalSeek exception if offset is less than 0 or greater than the
length of a reading stream. This exception will also be raised if ptrName is anything
other than the three constants listed above.

3-114 Chapter 3: C Functions

NXSetCoiorO

SUMMARY

LIBRARY

SYNOPSIS

Set the current color

#import <appkit/color.h>

void NXSetColor(NXColor color)

DESCRIPTION

This function uses PostScript operators to make color the current color of the current
graphics state. If color includes a coverage component (if NXAlphaComponentO
returns anything but NX_NOALPHA), it also sets the current coverage. However,
coverage will not be set when printing.

SEE ALSO

NXEqualColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXSetDefaultO ~ See NXRegisterDefaultsO

NXSetDefaultsUserO ~ See NXRegisterDefaultsO

NXSetExceptionRaiserO ~ See NXDefaultExceptionRaiserO

NXSetGStateO, NXCopyCurrentGStateO

SUMMARY

LIBRARY

SYNOPSIS

Set or copy current graphics state object

libNeXT _s.a

#import <appkit/publicWraps.h>

void NXSetGState(int gstate)
void NXCopyCurrentGState(int gstate)

NXSetColor() 3-115

DESCRIPTION

These functions set the current PostScript graphics state.

NXSetGStateO is a C function cover for the PostScript setgstate operator. It sets the
current graphics state to that specified by gstate.

NX CopyCurrentGStateO takes a snapshot of the current graphic state and assigns it
the number gstate. Generally, a snapshot should be taken only when the current path
is empty and the current clip path is in its default state .

. NXSetRectO, NXOffsetRectO, NXlnsetRectO, NXlntegralRectO,
NXDivideRectO

SUMMARY Modify a rectangle

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXSetRect(NXRect *aRect, NXCoord x, NXCoord y, NXCoord width,
NXCoord height)

void NXOffsetRect(NXRect *aRect, NXCoord dx, NXCoord dy)
void NXlnsetRect(NXRect *aRect, NXCoord dx, NXCoord dy)
void NXlntegralRect(NXRect *aRect)
NXRect *NXDivideRect(NXRect *aRect, NXRect *bRect, NXCoord slice, int edge)

DESCRIPTION

These functions modify the aRect argument. It's assumed that all arguments are
expressed within the same coordinate system.

The first function, NXSetRectO, sets the values in the NXRect structure specified by
its first argument, aRect, to the values passed in the other arguments. It provides a
convenient way to initialize an NXRect structure.

The next two functions, NXOffsetRectO and NXlnsetRectO, are illustrated in Figure
3-3.

3-116 Chapter 3: C Functions

dy
~ r----'-----I

I I
I I
I I

dx I I dx
~--~ ~--~

dx
I I
I I
I I
I I
I I .. ----r----.J

~
dy

.. ----t-----------. ------J

,dY

NXlnsetRectO NXOffsetRectO

Figure 3-3. Inset and Offset Rectangles

NXOffsetRectO shifts the location of the rectangle by dx along the x-axis and by dy
along the y-axis. NXlnsetRectO alters the rectangle so that the two sides that are
parallel to the y-axis are inset by dx and the two sides parallel to the x-axis are inset by
dy.

NXlntegralRectO alters the rectangle so that none of its four defining values (x, y,
width, and height) have fractional parts. The values are raised or lowered to the nearest
integer, as appropriate, so that the new rectangle completely encloses the old rectangle.
These alterations ensure that the sides of the new rectangle lie on pixel boundaries, if
the rectangle is defined in a coordinate system that has its coordinate origin on the
comer of four pixels and a unit of length along either axis equal to one pixel. If the
rectangle's width or height is 0 (or negative), it's set to a rectangle with origin at (0.0,
0.0) and with 0 width and height.

NXDivideRectO divides a rectangle in two. It cuts a slice off the rectangle specified
by aRect to form anew rectangle, which it stores in the structure specified by bRect.
The rectangle specified by aRect is modified accordingly. The size of the slice taken
from the rectangle is indicated by slice; it's taken from the side of the rectangle
indicated by edge. The values for edge can be:

o The slice is made parallel to the y-axis, along the side with the smallest x
coordinate values.

1 The slice is made parallel to the x -axis, along the side with the smallest y
coordinate values.

2 The slice is made parallel to the y-axis, along the side with the greatest x
coordinate values.

3 The slice is made parallel to the x-axis, along the side with the greatest y
coordinate values.

NXSetRect() 3-117

RETURN

NXSetRectO, NXOffsetRectO, NXlnsetRectO, and NXlntegralRectO have no
significant return values. NXDivideRectO returns a pointer to the new rectangle,
bRect.

SEE ALSO

NXUnionRectO, NXMouselnRectO

NXSetServicesMenulternEnabledO, NXIsServicesMenulternEnabledO

SUMMARY Determine whether an item is included in Services menus

LIBRARY

SYNOPSIS

#import <appkit/Listener.h >

int NXSetServicesMenuItemEnabled(const char *item, BOOL.flag)
BOOL NXIsServicesMenultemEnabled(const char *item)

DESCRIPTION

NXSetServicesMenuItemEnabledO is used by a service-providing application to
determine whether the Services menus of other applications will contain the item
command enabling users to request its services. If.flag is YES, the Application Kit will
build Services menus for other applications that include the item command. If .flag is
NO, item won't appear in any application's Services menu. item should be the same
character string entered in the "Menu Item:" field of the _services section. All service
providers are required to have this section.

Service-providing applications should let users decide whether the Services menus of
other applications they use should include the item command.

RETURN

NXSetServicesMenultemEnabledO returns 0 if it's successful in enabling or
disabling the item command, and a number other than 0 if not.
NXIsServicesMenuItemO returns YES if item is currently enabled, and NO if it's not.

NXSetTopLevelError HandlerO ~ See NXDefaultTopLevelError HandlerO

NXSetTypedStrearnZoneO ~ See NXGetTypedStrearnZoneO

3-118 Chapter 3: C Functions

NXSetUncaughtExceptionHandlerO, NXGetUncaughtExceptionHandlerO

SUMMARY

LIBRARY

SYNOPSIS

Handle uncaught exceptions

#import <objc/error.h >

void NXSetUncaughtExceptionHandler(NXUncaughtExceptionHandler *proc)
NXUncaughtExceptionHandler *NXGetUncaughtExceptionHandler(void)

DESCRIPTION

These macros provides a means of handling exceptions that are raised outside of an
NX_DURING ... NX_ENDHANDLER construct. You can use the Application object's
default procedure, or you can define your own handler using
NXSetUncaughtExceptionHandlerO.

If proc is NULL or if you never call NXSetUncaughtExceptionHandlerO, your
program will use the Application object's default procedure. This function writes an
uncaught exception message to stderr if the application was launched from a terminal.
If the application was launched by the Workspace Manager, the message is written
using syslogO with the priority set to LOG_ERR; this message will normally appear in
the Workspace Manager's console window. The default uncaught exception handler
then calls the function pointed to by NXTopLevelError HandlerO and passes it any
data about the exception supplied by NX_RAISEO, which was called when the
exception occurred. (See the description of NX_RAISEO.) If you haven't defined
your own top-level error handler, the program exits.

To create your own handler, you define an exception handling function and give the
name of that function as an argument to NXSetUncaughtExceptionHandlerO.
Subsequent calls to NXGetUncaughtExceptionHandlerO will return a pointer to the
function. These two macros are defined in the header file streams/error.h.

SEE ALSO

NX _RAISEO, NXDefaultTopLevelErrorHandlerO

NXSizeBitmapO ~ See NXlmageBitmapO

NXSetU ncaughtExceptionH andler() 3 -119

NXStrearnCreateFrornZoneO, NXStrearnCreateO, NXStrearnDestroyO,
NXDefaultReadO, NXDefaultWriteO, NXFillO, NXChangeBufferO

SUMMARY Support a user-defined stream

LIBRARY

SYNOPSIS

#import <streams/streamsimpI.h>

NXStream *NXStreamCreateFromZone(int mode, int createBuf, NXZone *zone)
NXStream *NXStreamCreate(int mode, int createBuj)
void NXStreamDestroy(NXStream *stream)
int NXDefaultRead(NXStream *stream, void *buJ, int count)
int NXDefaultWrite(NXStream *stream, const void *buf, int count)
int NXFill(NXStream *stream)
void NXChangeBuffer(NXStream *stream)

DESCRIPTION

These functions need only be used if you implement your own version of a stream. If
you're using a memory stream, a stream on a file, a stream on a Mach port, or a typed
stream, you don't need the functions described here. Instead, you can just use the
functions already defined for these types of streams; see the Technical Summaries
manual for a list of these functions.

The first argument to NXStreamCreateFromZoneO, mode, indicates whether the
stream to be created will be used for reading or writing or both. It should be one of the
following constants: NX_READONLY, NX_ WRITEONLY, or NX_READWRITE.
The argument createBuJ specifies whether the stream should be buffered. If it is TRUE,
a buffer is created of size NX_DEFAULTBUFSIZE, as defined in the header file
streams/streamsimpI.h. The argument zone specifies the memory zone where you
allocate memory for the new stream; see NXZoneMallocO for more on allocating
zones of memory. When implementing your own version of a stream, you may want to
provide a function to open such a stream; this function will probably call
NXStreamCreateFromZoneO, as NXOpenMemoryO, NXOpenPortO, and
NXOpenFileO do.

NXStreamCreateO calls NXStreamCreateFromZoneO with the default zone as its
zone argument.

NXStreamDestroyO destroys the stream given as its argument, deallocating the space
it had used. If a buffer had been created for stream, its storage is also freed. To avoid
losing data, a stream should be flushed using NXFlushO before it's destroyed. When
implementing your own version of a stream, you may want to provide a function to
close such a stream; this function will probably call NXStreamDestroyO, as
NXCloseOand NXCloseMemoryO do.

3-120 Chapter 3: C Functions

NXDefaultReadO and NXDefaultWriteO read and write multiple bytes of data on a
stream. NXDefaultReadO reads the next count number of bytes from stream, starting
at the position specified by the buffer pointer buf.' NXDefaultWriteO writes count
number of bytes to stream, starting at the position specified by but. These functions
return the number of bytes read or written. When implementing your own version of a
stream, you can use these functions with your stream unless you want to perform
specialized buffer management. If you implement your own versions of these functions
for reading and writing bytes, they should return the number of bytes read or written.

When reading from a buffered stream, NXFillO can be called to fill the buffer with the
next data to be read. Check whether buf_left is equal to 0 to determine whether all the
data currently in the buffer has been read. (See the header file streams/streams.h for
more information about buf_left, which is part of an NXStream structure.)

NXChangeBufferO switches the mode of a stream between reading and writing. If the
argument stream had been defined for reading, this function changes it to a stream that
can be written to; if stream had been defined for writing, it becomes a stream for
reading. In both cases, the pointer that points to either the next piece of data to be read
from the buffer or the next location to which data will be written is realigned
appropriately. Also, NX_READFLAG and NX_ WRITEFLAG are updated to reflect
the new mode of the stream.

RETURN

NXStreamCreateO returns a pointer to the stream it creates.

NXDefaultReadO and NXDefaultWriteO return the number of bytes read or written.

NXFillO returns the number of characters read into the buffer.

EXCEPTIONS

All functions that take a stream as an argument raise an NX_illegalStream exception if
the stream passed in is invalid.

NXFillO raises an NX_illegalRead exception if an error occurs while filling.

NXChangeBufferO raises an NX_illegalStream exception if NX_READFLAG and
NX_ WRITEFLAG have not been set to match the NX_ CANREAD and
NX_CANWRITE flags.

SEE ALSO

NXOpenFileO, NXOpenMemoryO, NXCloseO, NXFlushO, NXReadO

NXStreamDestroyO ~ See NXStreamCreateO

NXStrHashO ~ See NXCreateHashTableO

NXStreamCreateFromZone() 3 -121

NXStrIsEqualO ~ See NXCreateHashTableO

NXSystern VersionO

SUMMARY Return the system version for reading streams

LIBRARY

SYNOPSIS

#import <objc/typedstreams.h>

int NXSystem Version(NXTypedStream * stream)

DESCRIPTION

NXSystem Version returns the NeXT system version used for writing stream. The
system version is useful if the methods or data types defined for the class of the object
archived in stream have changed from one version to another, by enabling you to test
the version and switch code to handle the object depending on the version. This
function is only useful with streams opened for reading.

RETURN

This function returns an integer value corresponding to one of the system version
constants listed in Chapter 1, "Constants and Data Types."

NXTellO ~ See NXSeekO

NXTextFontlnfoO

SUMMARY

LIBRARY

SYNOPSIS

Calculate font ascender, descender, and line height

libNeXT _s.a

#import <appkit/Text.h>

void NXTextFontInfo(id!ontld, NXCoord *ascender, NXCoord *descender,
NXCoord *lineHeight)

3-122 Chapter 3: C Functions

DESCRIPTION

Given a Font object's id, NXTextFontlnfoO calculates the ascender, descender, and
line height values for that font. fontld is the Font object's id. ascender, descender, and
lineHeight are the addresses that will hold the ascender, descender, and line height
values after a call to NXTextFontlnfoO.

NXToAsciiO, NXToLowerO, NXToUpperO

SUMMARY Convert NeXTstep-encoded characters

LIBRARY

SYNOPSIS

#import <NXCType.h>

unsigned char *NXToAscii(unsigned c)
int NXToLower(unsigned c)
int NXToUpper(unsigned c)

DESCRIPTION

These functions convert characters encoded in the extended character set defined by
NeXTstep encoding. They are similar to the standard C library functions toasciiO,
tolowerO, and toupperO (see the UNIX manual page for ctype), which operate on
characters in the ASCII character set.

NXToLowerO converts an upper-case letter to its lower-case equivalent, and
NXToUpperO converts a lower-case letter to its upper-case equivalent. If there's no
opposite case equivalent-or if the character is already of the desired case-these
functions return the supplied argument unchanged.

NXToAsciiO converts its argument to a value that lies within the standard ASCII
character set. The lower 128 positions in the N eXT step encoding constitute the ASCII
character set, so no conversion is required for codes in this range. For the upper 128
character codes-the extended characters-NXToAsciiO makes these conversions:

NXToAscii() 3 -123

Extended Character

Agrave, Aacute, Acircumflex, Atilde, Adieresis, Aring
Ccedilla
Egrave, Eacute, Ecircumflex, Edieresis
Igrave, Iacute, Icircumflex, Idieresis
Ntilde
Ograve, Oacute, Ocircumflex, Otilde, Odieresis, Oslash
Ugrave, Uacute, Ucircumflex, Udieresis
Yacute
eth, Eth
Thorn, thorn
fi
fl
agrave, aacute, acircumflex, atilde, adieresis, aring
ccedilla
egrave, eacute, ecircumflex, edieresis
AE
igrave, iacute, icircumflex, idieresis
ntilde
Lslash
OE
ograve, oacute, ocircumflex, otilde, odieresis, oslash
ae
ugrave, uacute, ucircumflex, udieresis
dotlessi
yacute, ydieresis
lslash
oe
germandbls
multiply
divide
exc1amdown
quotesingle

Converts to

A
C
E
I
N
o
U
Y
TH
th
fi
fl
a
c
e
AE

n
L
OE
o
ae
u

Y
I
oe
ss
x
/

quotedblleft, guillemotleft, quotedblright, guillemotright, quotedblbase \
quotesinglbase
guilsinglleft <
guilsinglright >
periodcentered
brokenbar
bullet *
ellipsis
questiondown
onesuperior
two superior
three superior
emdash
plusminus
onequarter

3-124 Chapter 3: C Functions

?
1
2
3

+-
1/4

(continued)

Extended Character

onehalf
three quarters

Converts to

1/2
3/4

ordfeminine
ordmasculine
mu, copyright, cent, sterling, fraction, yen, florin, section, currency,
registered, endash, dagger, daggerdbl, paragraph, perthousand,
logicalnot, grave, acute, circumflex, tilde, macron, breve, dotaccent,
dieresis, ring, cedilla, hungarumlaut, ogonek, caron,

RETURN

a
o

NXToAsciiO returns by reference a valid ASCII character. NXToLowerO or
NXToUpperO returns an integer value that represents the converted character.

SEE ALSO

NXlsAlphaO

NXToLowerO ~ See NXToAsciiO

NXTopLevelErrorHandlerO ~ See NXDefaultTopLevelErrorHandlerO

NXToUpperO ~ See NXToAsciiO

NXToAscii() 3 -125

NXTypedStreamClassVersionO

SUMMARY Get the class version number of an archived instance

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

int NXTypedStreamClassVersion(NXTypedStream *typedStream,
const char *className)

DESCRIPTION

This function returns the class version number of an archived object. Class versioning
is useful if you create a class, archive an instance of it, then change the class-by
adding instance variables to it, for example. This function is used in a class's read:
method to select the appropriate code for initializing the instance being unarchived.
This function should be called only on a typed stream opened for reading with
NXReadObjectO.

NXTypedStreamClass VersionO can be called in your read: method after sending a
[super read:typedStream] message and before performing version-specific
initialization. Calling this function doesn't change the position of the read pointer in
typedStream. If you need to know the version of an object's superclass (or any class in
its inheritence hierarchy), call this function using the name of that class as className.

For NXTypedStreamClass VersionO to return a non-zero value, you should change the
class version to a new value whenever you change the class definition. The Object class
provides two methods for handling class versioning. Object's setVersion: class
method can be used in a subclass's initialize class method to set a new class version
when you change the instance variables. Object's version class method returns the
current version of your class.

The NXWriteObjectO function automatically archives the class version when it is
archiving an object. The default version number is 0. Thus if you have previously
archived instances of a class without setting the version, you can set the version of the
altered class to any integer value other than 0, then use this function to detect old and
new instances of the class.

In the following code example, MyClass 's initialize method sets the class version using
Object's setVersion: method:

@irnplernentation MyClass:MySuperClass

+ initialize

3-126 Chapter 3: C Functions

[MyClass setVersion:MYCLASS_CURRENT_VERSION];

return self;

In the next example, MyClass's read: method uses version numbers to un archive old
and new instances differently:

- read: (NXTypedStream *)typedStream

[super read:typedStream];
if (NXTypedStreamClassVersion(typedStream, "MyClass")

[MyClass version] {

/* read code for current version */

else
/* read code for old version */

See the description of NXReadObjectO earlier in this chapter for more information
about archiving. The NXTypedStream type is declared in the header file
objc/typedstream.h. The structure itself is private since you never need to access its
members.

SEE ALSO

NXReadObjectO

NXUngetcO ~ See NXPutcO

NXUnionRectO, NXlntersectionRectO

SUMMARY Compute third rectangle from two rectangles

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

NXRect *NXUnionRect(const NXRect *aRect, NXRect *bRect)
NXRect *NXlntersectionRect(const NXRect *aRect, NXRect *bRect)

DESCRIPTION

NXUnionRectO figures the graphic union of two rectangles-that is, the smallest
rectangle that completely encloses both. It takes pointers to the two rectangles as
arguments and replaces the second rectangle with their union. If one rectangle has zero
(or negative) width or height, bRect is replaced with the other rectangle. If both of the

NXUnionRect() 3-127

rectangles have 0 (or negative) width or height, bRect is set to a rectangle with its origin
at (0.0, 0.0) and with 0 width and height.

NXlntersectionRectO figures the graphic intersection of two rectangles-that is, the
smallest rectangle enclosing any area they both have in common. It takes pointers to
the two rectangles as arguments. If the rectangles overlap, it replaces the second one,
bRect, with their intersection. If the two rectangles don't overlap, bRect is set to a
rectangle with its origin at (0.0,0.0) and with a 0 width and height. Adjacent rectangles
that share only a side are not considered to overlap.

Both functions assume that all arguments are expressed within the same coordinate
system.

RETURN

NXUnionRectO returns its second argument (bRect), a pointer to the union of the two
rectangles unless both rectangles have 0 (or negative) width or height, in which case it
returns a pointer to a NULL rectangle.

If the two rectangles overlap, NXlntersectionRectO returns its second argument
(bRect), a pointer to their intersection. If the rectangles don't overlap, it returns a
pointer to a NULL rectangle.

SEE ALSO

NXlntersectsRectO

NXUniqueStringO, NXUniqueStringWithLengthO,
NXUniqueStringNoCopyO, NXCopyStringBufferO,
NXCopyStringBufferFromZoneO

SUMMARY Manipulate a string buffer

LIBRARY

SYNOPSIS

#import <objc/hashtable.h >

NXAtom NXUniqueString(const char *buffer)
NXAtom NXUniqueStringWithLength(const char *buffer, int length)
NXAtom NXUniqueStringNoCopy(const char * buffer)
char *NXCopyStringBuffer(const char *buffer)
char *NXCopyStringBufferFromZone(const char *buffer, NXZone *zone)

3-128 Chapter 3: C Functions

DESCRIPTION

The first three functions in this group create unique strings, which are allocated once
and then can be shared. The fourth and fifth function allocates memory for and returns
a copy of the given string.

Unique strings are identified by the type NXAtom, which indicates that they can be
compared using == rather than strcmpO. NXAtom strings shouldn't be deallocated or
modified; the Mach function vm _protectO is used to ensure that the strings are
read-only. (The type NXAtom is defined in objc/hashtable.h.)

NXUniqueStringO, NXUniqueStringWithLengthO, and
NXUniqueStringNoCopyO maintain a hash table of unique strings. Each function
checks if the string passed in is already in the table and if so, returns it. Because a hash
table is used, the average search time is constant regardless of how many unique strings
exist. If buffer doesn't exist in the hash table, NXUniqueStringO and
NXUniqueStringWithLengthO return a pointer to a copy of it as an NXAtom; .
NXUniqueStringNoCopyO inserts the string in the hash table but doesn't make a copy
of it. For efficiency, all unique strings are stored in the same area of virtual memory.

NXUniqueStringO assumes buffer is null-terminated; if it's NULL,
NXUniqueStringO returns NULL. NXUniqueStringWithLengthO assumes that
buffer is a non-NULL string of at least length non-NULL characters.

NXCopyStringBufferO allocates memory from the default memory zone for a copy of
buffer. Then buffer, which should be null-terminated, is copied using strcpyO.
NXCopyStringBufferFromZoneO is identical to NXCopyStringBufferO except that
memory is allocated from the specified zone.

RETURN

NXUniqueStringO and NXUniqueStringWithLengthO return a pointer to a copy of
buffer as an NXAtom.

NXUniqueStringNoCopyO returns a pointer to the string passed in.

NXCopyStringBufferO and NXCopyStringBufferFromZoneO return a pointer to a
copy of buffer.

NXUniqueStringNoCopyO ~ See NXUniqueStringO

NXUniqueStringWithLengthO ~ See NXUniqueStringO

NXUnnameObjectO ~ See NXGetNamedObjectO

NXUpdateDefaultO ~ See NXRegisterDefaultsO

NXUpdateDefaultsO ~ See NXRegisterDefaultsO

NXUniqueString() 3-129

NXU pdateDynamicServicesO

SUMMARY

LIBRARY

SYNOPSIS

Re-register provided services

libNeXT_s.a

#import <appkit/Listener.h>

void NXUpdateDynamicServices(void)

DESCRIPTION

NXUpdateDynamicServicesO is used by a service-providing application to re-register
the services it is willing to provide. A list of an application's dynamic services should
be maintained in the user's '"-'1.NeXT/services directory; this list is syntactically
identical to the list in the application's _services section. Thus, an application named
Foo should maintain its dynamic services in the '"-'1.NeXT/services/Foo file. Many
applications do not provide dynamic services; all the services they provide are known
at compile time, so their services are simply listed in their _services section. If the
services an application can provide may change at run time, the application can build a
list of additional services that it is willing to provide and then call
NXUpdateDynamicServicesO to make these services available. An example of a
dynamic service provider is Digital Librarian™; when you drag a folder named
"Business" into its Librarian Services window, the Digital Librarian will update its
services in order to provide a "Search in Business" service.

NXUser AbortedO, NXResetUser AbortO

SUMMARY

LIBRARY

SYNOPSIS

Report user's request to abort

#import <appkitl Application.h>

BOOL NXUserAborted(void)
void NXResetUserAbort(void)

DESCRIPTION

NXUser Aborted 0 returns YES if the user pressed Command-period since the
application last got an event in the main event loop, and NO if not. Command-period
signals the user's intention to abort an ongoing process. Applications should call this
function repeatedly during a modal session and respond appropriately if it ever returns
YES.

3-130 Chapter 3: C Functions

NXResetUserAbortO resets the flag returned by NXUserAbortedO to NO. It's called
in the Application object's run method before getting each new event.

RETURN

NXUser AbortedO returns YES if the user pressed Command-period, and NO
otherwise.

NXUserNameO ~ See NXHomeDirectoryO

NXVPrintfO ~ See NXPutcO

NXVScanfO ~ See NXPutcO

NXWindowListO ~ See NXCountWindowsO

NXWriteO ~ See NXReadO

NXWriteArrayO ~ See NXReadArrayO

NXWriteColorO ~ See NXReadColorO

NXWriteDefaultO ~ See NXRegisterDefaultsO

NXWriteDefaultsO ~ See NXRegisterDefaultsO

NXWriteObjectO ~ See NXReadObjectO

NXWriteObjectReferenceO ~ See NXReadObjectO

NXWritePointO ~ See NXReadPointO

NXWriteRectO ~ See NXReadPointO

NXWriteRootObjectO ~ See NXReadObjectO

NXWriteRootObjectToBufferO ~ See NXReadObjectFromBufferO

NXWriteSizeO ~ See NXReadPointO

NXWriteTIFFO ~ See NXReadTIFFO

NXWriteTypeO ~ See NXReadTypeO

NXWriteTypesO ~ See NXReadTypeO

NXUserAborted() 3-131

NXWriteWordTableO ~ See NXReadWordTableO

NXYellowComponentO ~ See NXRedComponentO

NXZoneCallocO ~ See NXZoneMallocO

NXZoneFromPtrO ~ See NXZoneMallocO

NXZoneFreeO ~ See NXZoneMallocO

NXZoneMallocO, NXZoneCallocO, NXZoneReallocO, NXZoneFreeO,
NXDefaultMallocZoneO, NXCreateZoneO, NXCreateChildZoneO,
NXMergeZoneO, NXDestroyZoneO, NXZoneFromPtrO, NXZonePtrlnfoO,
NXMallocCheckO, NXNameZoneO

SUMMARY Allocate memory

LIBRARY

SYNOPSIS

#import <zone.h>

void *NXZoneMalloc(NXZone *zonep, size_t size)
void *NXZoneCalloc(NXZone *zonep, size_t numElems, size_t byteSize)
void *NXZoneRealloc(NXZone *zonep, void *ptr, size_t size)
void NXZoneFree(NXZone *zonep, void *ptr)
NXZone *NXDefaultMallocZone(void)
NXZone *NXCreateZone(size_t startSize, size_t granularity, int canFree)
NXZone *NXCreateChildZone(NXZone *parentZone, size_t startSize,

size_t granularity, int canFree)
void NXMergeZone(NXZone * zonep)
void NXDestroyZone(NXZone *zonep)
NXZone *NXZoneFromPtr(void *ptr)
void NXZonePtrlnfo(void *ptr)
int NXMallocCheck(void)
void NXNameZone(NXZone *zonep, const char *name)

DESCRIPTION

These functions allocate and free memory space. They are similar to the standard C
library mallocO functions, but allow the application writer more control over memory
placement. By allocating frequently used objects from the same zone, the application
writer can ensure better locality of reference; this can significantly improve
performance on a paged virtual memory system. In other words, by grouping certain
objects close together, you can ensure that consecutive references are less likely to
result in memory paging activity.

3-132 Chapter 3: C Functions

To use these functions, you must first create a new zone using NXCreateZoneO. You
pass it a parameter startSize, which is the initial size of the new zone. The parameter
granularity determines the granularity by which the zone itself grows and shrinks. If
you are allocating a zone for small items, a good choice for both the initial size and
granularity might be vm_page_size. The parameter canFree determines whether the
allocator will free memory within the zone. If canFree is NO, memory cannot be freed
and the allocator. will be as fast as possible; but you will need to destroy the zone to
reclaim the memory. You can call NXCreateZoneO multiple times to create several
zones. NXCreateZoneO returns a pointer to the newly created zone.

NXZoneMallocO allocates size bytes from the zone zonep, and returns a pointer to the
allocated memory. NXZoneCallocO allocates enough zeroed memory for numElems
elements, each with a size of byteSize bytes from the zone zonep, and returns a pointer
to the allocated memory. NXZoneReallocO changes the size of the block pointed to
by ptr to size. The block of memory may be moved, but its contents will be unchanged
up to the lesser of the new and old sizes. All these functions return NULL upon failure.

NXCreateChildZoneO creates a new zone which obtains memory from another zone.
It returns a pointer to the new zone, or NX_NOZONE if you attempt to create a child
zone from a zone which is itself a child. NXMergeZoneO merges a child zone back
into its parent zone. The allocated memory that was within the child zone remains
valid.

NXZoneFreeO returns memory to the zone from which it was allocated.
NXDestroyZoneO destroys a zone, and all the memory from the zone is reclaimed.
NXDefaultMallocZoneO returns the default zone. This is the zone used by the
standard C library mallocO function. NXZoneFromPtrO returns the zone for a block
of memory. The pointer ptr must have been returned from a prior malloc or realloc call.
NXZonePtrlnfoO will print information to stdout about the malloc block for the
memory indicated by ptr. NXMallocCheckO verifies all internal malloc information,
and returns zero if there is no error. NXNameZoneO names the zone zonep with a copy
of name.

NXZonePtrlnfoO ~ See NXZoneMallocO

NXZoneReallocO ~ See NXZoneMallocO

NXZoneMalloc() 3-133

SUMMARY

LIBRARY

SYNOPSIS

Get a pointer to the objects stored in a List

libNeXT _s.a

#import <objc/List.h>

. id *NX_ADDRESS(List *aList)

DESCRIPTION

This macro takes a List object aList as its argument and returns a pointer to the first id
stored in the List. With this pointer, you get direct access to the contents of the List and
can avoid the overhead of messaging. NX _ ADDRESSO therefore provides an
alternative to List's objectAt: method for situations where somewhat greater
performance is required. In general, however, the method is the preferred way of
accessing the List.

RETURN

This macro returns a pointer to the contents of a List object.

SEE ALSO

The specification for the List class.

NX_ASSERTO

SUMMARY

LIBRARY

SYNOPSIS

Write an error message

#import <appkit/nextstd.h>

void NX_ASSERT(int exp, char *msg)

DESCRIPTION

This macro, which is defined in the header file appkit/nextstd.h, writes an error
message if the program was compiled with the NX_BLOCKASSERTS flag undefined
and if exp is false. The message msg is written to stderr if the application was launched
from a terminal. If the application was launched by the Workspace Manager, the
message is written using syslogO with the priority set to LOG_ERR. Normally,

3-134 Chapter 3: C Functions

syslogO writes messages to the Workspace Manager's console window. See the UNIX
manual page for syslogO for more information about this function and how to write
messages to places other than the console window.

If exp is true, no action is taken. Also, if the NX_BLOCKASSERTS flag is defined, a
call to NX _ ASSERTO has no effect.

NX_EVENTCODEMASKO

SUMMARY

LIBRARY

SYNOPSIS

Convert event type to mask

libNeXT_s.a

#import <dpsclient/event.h>

int NX_EVENTCODEMASK(int eventType)

DESCRIPTION

This macro converts an event type, as defined in dpsclient/event.h, to an event mask.
A window's event mask determines which types of events the Window Server will
associate with the window.

An event mask is an int that stores a set of one-bit flags. (See dpsclient/event.h for a
list of the predefined event masks.) By using NX_EVENTCODEMASKO to convert
an event into an event mask, you can easily test an event's type. For example, assume
anEvent is a pointer to an event record. You could find out if the record is for a
keyboard event by converting its type to an event mask and comparing the mask to a
mask for keyboard events:

if (NX_EVENTCODEMASK(anEvent->type) &
(NX_KEYDOWNMASKINX_KEYUPMASKINX_FLAGSCHANGEDMASK» {

/* anEvent is a keyboard event */

RETURN

This macro returns an integer mask.

NX_FREEO ~ See NX_MALLOCO

NX_HEIGHTO ~ See NX_XO

NXyVENTCODEMASK() 3-135

NX_MALLOCO, NX_REALLOCO, NX_FREEO

SUMMARY

LIBRARY

SYNOPSIS

Allocate memory

#import <appkit/nextstd.h>

type-name *NX _ MALLOC(type-name *var, type-name, int num)
type-name *NX _ REALLOC(type-name *var, type-name, int num)
void NX_FREE(void *pointer)

DESCRIPTION

These macros allocate and free memory space by making calls to the standard C library
functions mallocO, reallocO, and freeO. For more information about these functions,
see their UNIX manual pages.

NX _ MALLOCO and NX _ REALLOCO return a pointer of type type to the argument
var. The amount of memory these two functions allocate is determined by multiplying
num (which should be an int) by the number of bytes needed for the data type type.
NX _ REALLOCO should be used to change the size of the object var, just as realloc
would be used. For convenience, these macros are shown below as they are defined in
the header file appkit/nextstd.h:

#define NX_MALLOC(VAR, TYPE, NUM) \
«VAR) = (TYPE *) rnalloc«unsigned) (NUM)*sizeof(TYPE)))

#define NX_REALLOC(VAR, TYPE, NUM) \
«VAR) = (TYPE *) realloc «char *) (VAR) , \
(unsigned) (NUM) *sizeof (TYPE)))

NX _ FREEO deallocates the space pointed to by pointer. It does nothing if pointer is
NULL. It's also defined in appkit/nextstd.h, as shown below:

#define NX_FREE(PTR) free ((char *) (PTR));

RETURN

NX _ MALLOCO and NX _ REALLOCO return pointers to the space they allocate or
NULL if the request for space cannot be satisfied.

NX _ MAXXO --7 See NX _ XO

NX_MAXYO --7 See NX_XO

NX_MIDXO --7 See NX_XO

3-136 Chapter 3: C Functions

NX_MIDYO ~ See NX_XO

NX PSDEBUG

SUMMARY Print the current PostScript context

LIBRARY

SYNOPSIS

#import <appkit/nextstd.h>

void NX PSDEBUG

DESCRIPTION

NX _ PSDEBUG prints the current Display PostScript context to the standard output
device, along with the class, object, and method in which the macro appears. This
macro works only when the application is compiled with DEBUG defined.

NX_RAISEO, NX_RERAISEO, NX_ VALRETURNO, NX_ VOIDRETURN

SUMMARY

LIBRARY

SYNOPSIS

Raise an exception

#import <objc/error.h >

void NX _ RAISE(int code, const void *datal, const void *data2)
NX _ RERAISE(void)
NX_ VALRETURN(val)
NX VOID RETURN

DESCRIPTION

These macros initiate the error handling mechanism by alerting the appropriate error
handler that an error has occurred. Error handlers exist in a nested hierarchy, which is
created by using any number of nested NX_DURING ... NX_ENDHANDLER
constructs and by defining a top-level error handler.

The three arguments for NX _RAISEO provide information about the error condition.
The first argument is a constant that acts as a label for the error. (Error codes used by
the Application Kit are defined in the header file appkit/errors.h.) The next two
arguments point to arbitrary data about the error. Within an
NX_DURING ... NX_ENDHANDLER construct, this data is stored in a local variable

NX PSDEBUG 3-137

called NXLocalHandler (which is of type NXHandler, defined in the header file
streams/error.h). (See the description of NXAllocErrorDataO for more information
about managing the storage of error data.) NX_RAISEO calls the function pointed to
by NXGetExceptionRaiserO; see this function's description earlier in this chapter.

By default, an error handler should call NX_RERAISEO when it encounters an error
that it can't handle, as shown below. NX _ RERAISEO has the same functionality as
NX _ RAISEO, but it's called with no arguments. Since NX _ RERAISEO implies a
previous call to NX _ RAISEO, the error data will already be stored in the local handler,
eliminating the need for arguments.

NX DURING

/* code that may cause an error */

NX HANDLER

switch (/* NXLocalHandler code */

case

NX someErrorCode:

/* code to execute for" this type of error */

default: NX_RERAISE();

NX ENDHANDLER

NX _ VALRETURNO and NX _ VOIDRETURN can be used to exit a method or
function from within the block of code between NX_DURING and NX_HANDLER
labels. The only legal ways of exiting this block are falling out the bottom or using one
of these macros. NX_ VALRETURNO causes its method (or function) to return val,
while NX_ YOIDRETURN can be used to return from a method (or function) that has
no return value. Use these macros only within an NX_DURING ... NX_HANDLER
construct.

SEE ALSO

NXAllocError DataO, NXSetU ncaughtExceptionHandlerO,
NXDefaultTopLevelError HandlerO, NXRegisterErrorReporterO,
NXDefaultExceptionRaiserO

NX _ REALLOCO ~ See NX _ MALLOCO

NX _ RERAISEO ~ See NX _ RAISEO

NX_ VALRETURNO ~ See NX_RAISEO

NX_ VOIDRETURNO ~ See NX_RAISEO

NX_WIDTHO ~ See NX_XO

3-138 Chapter 3: C Functions

NX_XO, NX_YO, NX_ WIDTHO, NX_HEIGHTO, NX_MAXXO,
NX MAXYO, NX MIDXO, NX MIDYO

- I - -

SUMMARY Query an NXRect structure

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

NXCoord NX _ X(NXRect *aRect)
NXCoord NX_Y(NXRect *aRect)
NXCoord NX _ WIDTH(NXRect *aRect)
NXCoord NX _ HEIG HT(NXRect *aRect)
NXCoord NX_MAXX(NXRect *aRect)
NXCoord NX _ MAXY(NXRect *aRect)
NXCoord NX _ MIDX(NXRect *aRect)
NXCoord NX_MIDY(NXRect *aRect)

DESCRIPTION

These macros return information about the NXRect structure referred to by aRect. An
NXRect structure is defined by a point that locates the rectangle (x and y coordinates)
and an extent that determines its size (a width and height as measured along the x-and
y-axes).

RETURN

NX_XO and NX_YO return the x and y coordinates that locate the rectangle. These
will be the smallest coordinate values within the rectangle.

NX_HEIGHTO and NX_ WIDTHO return the width and height of the rectangle.

NX _ MAXXO and NX _ MAXY 0 return the largest x and y coordinates in the rectangle.
These are calculated by adding the width of the rectangle to the x coordinate returned
by NX _ XO and by adding the height of the rectangle to the y coordinate returned by
NX_YO.

NX_MIDXO and NX_MIDYO return the x and y coordinates that lie at the center of
the rectangle, exactly midway between the smallest and largest coordinate values.

SEE ALSO

NXSetRectO

NX _ ZONEMALLOCO, NX _ ZONEREALLOCO

SUMMARY

LIBRARY

SYNOPSIS

Allocate zone memory

#import <appkit/nextstd.h>

type-name *NX_ZONEMALLOC(NXZone zone, type-name *var,
type-name, int num)

type-name *NX_ZONEREALLOC(NXZone zone, type-name *var,
type-name, int num)

DESCRIPTION

These macros allocate and free memory space by making calls to the functions
NXZoneMallocO and NXZoneReallocO. For more information about these
functions, see their descriptions earlier in this chapter.

NX ZONEMALLOCO and NX ZONEREALLOCO return a pointer of type - -
type-name to the argument var allocated in zone. The amount of memory these two
macros allocate is determined by multiplying num (which should be an int) by the
number of bytes needed for the data type type-name. NX_ ZONEREALLOCO should
be used to change the size of the object var, just as reallocO or NXZoneReallocO
would be used. For convenience, these macros are shown below as they are defined in
the header file appkit/nextstd.h:

#define NX_ZONEMALLOC(Z, VAR, TYPE, NUM) \

((VAR) = (TYPE *) NXZoneMalloc((Z), \

(unsigned) (NUM) *sizeof (TYPE)))

#define NX_ZONEREALLOC(Z, VAR, TYPE, NUM) \

RETURN

((VAR) = (TYPE *) NXZoneRealloc ((Z), (char *) (VAR), \

(unsigned) (NUM) *sizeof (TYPE)))

NX_ZONEMALLOCO and NX_ZONEREALLOCO return pointers to the space
they allocate or NULL if the request for space cannot be satisfied.

3-140 Chapter 3: C Functions

Single-Operator Functions

The Display PostScript system provides a C function interface for each operator in the
PostScript language. These functions let you easily execute individual PostScript operators
from your application. Adobe Systems Incorporated provides the primary documentation
for these operators and for pswrap, the utility that creates a C function for one or more
PostScript operators. (See "Suggested Reading" in the Technical Summaries manual for
pswrap and other Display PostScript system documentation.)

NeXT has added several operators and their corresponding single-operator functions to the
basic Display PostScript system. The operators are documented in Chapter 4, "PostScript
Operators," and the functions are listed below. These functions are provided in the library
lib NeXT s.a.

In the Display PostScript system, each PostScript operator is represented by two
single-operator functions (or "procedures," as they are referred to in Adobe
documentation), one that takes a context argument and another that assumes the current
PostScript context. The functions that take a context argument have a "DPS" prefix; those
that assume the current context have a "PS" prefix. For example, the moveto operator is
represented by these functions:

DPSmoveto(DPSContext context, float x, float y)
PSmoveto(float x, float y)

To save space, only the single-operator functions prefixed with "PS" are listed here. The
header file dpsclient/dpswraps.h declares the function prototypes for all single-operator
functions having the "DPS" prefix; the header file dpsclient/wraps.h declares the
prototypes for "PS" functions.

Operand names available in the PostScript language, such as Copy or Sover for the
composite operator, are defined as symbolic constants for use from C, but in all uppercase
and preceded by "NX_" (for example, NX_COPY and NX_SOVER). These symbolic
constants are defined in the NeXT header file dpsNeXT.h, except for the event-related ones,
which are in dpsclient/event.h and appkit/appkit.h.

As with the basic Display PostScript single-operator functions, some of the C functions
listed below have parameters that match the operands of their corresponding PostScript
operators. For example, the setalpha operator accepts a number on the PostScript operand
stack, while the C function PSsetalphaO takes a float as an argument. The functions may
also have parameters that point to returned values, corresponding to results returned on the
operand stack by the PostScript operator. The buttondown operator returns a Boolean on
the stack indicating whether the left mouse button is down; PSbuttondownO has a
parameter that's a pointer to a Boolean, which upon return will contain 1 or 0 to indicate
the status of the mouse button.

Other C functions have no parameters where their corresponding PostScript operators
expect operands or leave results on the operand stack. These functions assume that they'll
be called with the appropriate objects already on the operand stack, and they'll leave any
PostScript objects they generate on the operand stack instead of returning them through

Single-Operator Functions 3-141

parameters. For example, the PSalpbaimageO function requires that you place the
appropriate operands on the operand stack before calling the function. You can learn which
operands the function expects by looking at the declaration of the corresponding operator.

To support the functions that use the operand stack rather than parameters, the Display
PostScript system has several additional functions for putting values on and getting values
off the stack:

Function Effect

PSsendintO Puts a single value of the specified type on the operand stack
PSsendfloatO
PSsendbooleanO
PSsendstringO

PS getintO Gets a single value of the specified type from the operand stack
PS getfloatO
PS getbooleanO
PS getstringO

PSsendintarrayO Puts a series of objects on the operand stack
PSsendfloatarrayO
PSsendchararrayO

PS getintarrayO Gets a series of objects from the operand stack
PS getfloatarrayO
PS getchararrayO

Note the following:

• In addition to the standard C types, pswrap uses two others: boolean and userobject.
A boolean variable is an int having either a zero or a nonzero value. The zero value is
equivalent to the PostScript value false, and the nonzero value is equivalent to the
PostScript value true. The userobject type is an int that refers to the value returned by
DPSDetineUserObjectO. See Extensions for the Display PostScript System for more
information on user objects.

• Functions that require a graphics state userobject parameter can use the constant
NXNullObject to refer to the current graphics state. NXNullObject is declared in
appkitl Application.b.

• Functions that pass an array as a parameter include an additional parameter indicating
the size of the array. The size parameter is used only by pswrap and is not sent to the
Window Server. It's your responsibility to provide enough space for the array's data.

If a function listed here is set up inconveniently for your purposes, you can always use
pswrap to make your own.

Warning: Those functions marked "/* Internal * /" below are reserved for use by the Application Kit.
Only call them in applications that don't make use of the Kit.

3-142 Chapter 3: C Functions

void PSadjustcursor(tIoat dx, tIoat dy)

void PSalphaimage(void)

void PSbasetocurrent(tIoat x, tIoat y, tIoat *px, tIoat *py)

void PSbasetoscreen(tIoat x, tIoat y, tIoat *px, tIoat *py)

void PSbuttondown(boolean *pflag)

void PScleartrackingrect(int trectNum, userobject gstate)

void PScomposite(tIoat x, tIoat y, tIoat width, tIoat height, userobject srcGstate, tIoat destx '

tIoat dest)" int op)

op values:

NX_CLEAR
NX_COPY
NX_SOVER
NX_DOVER
NX_SIN
NX_DIN
NX_SOUT
NX_DOUT
NX_SATOP
NX_DATOP
NX_XOR
NX_PLUSD
NX_PLUSL

void PScompositerect(tIoat destx' tIoat destY' tIoat width, tIoat height, int op)

op values: PScompositerectO supports NX_HIGHLIGHT in addition to the value~
listed under PScompositeO.

void PScountframebuffers(int *pcount)

void PScountscreenlist(int context, int *pcount)

void PScountwindowlist(int context, int *pcount)

void PScurrentactiveapp(int *pcontext) /* Internal * /

void PScurrentalpha(tIoat *pcoverage)

void PScurrentdefauItdepthlimit(int *plimit)

void PScurrentdeviceinfo(userobject window, int *pminbps, int *pmaxbps, int *pcolor)

Single-Operator Functions 3-143

void PScurrenteventmask(userobject window, int *pmask) /* Internal */

void PScurrentmouse(userobject window, float *px, float *py) /* Internal */

void PScurrentowner(userobject window, int *pcontext)

void PScurrentrusage(float *pnow, float *puTime, float *psTime, int *pmsgSend,
int *pmsgRcv, int *pnSignals, int *pnVCSw, int *pnlvCSw)

void PScurrenttobase(float x, float y, float *px, float *py)

void PScurrenttoscreen(float x, float y, float *px, float *py)

void PScurrentuser(int *puid, int *pgid)

void PScurrentwaitcursorenabled(boolean *pflag)

void PScurrentwindow(int *pnum)

void PScurrentwindowalpha(userobject window, int *palpha)

void PScurrentwindowbounds(userobject window, float *px, float *py, float *pwidth,
float *pheight)

void PScurrentwindowdepth(userobject window, int *pdepth)

void PScurrentwindowdepth(userobject window, int *plimit)

void PScurrentwindowdict(userobject window) /* Internal */

void PScurrentwindowlevel(userobject window, int *plevel)

void PScurrentwriteblock(int *pflag)

void PSdissolve(float srcx, float srcY' float width, float height, userobject srcGstate,
float destx ' float destY' float delta)

void PSdumpuserobjects(void)

void PSdumpwindow(int level, userobject window) /* Internal */

void PSdumpwindows(int level, userobject context) /* Internal * /

void PSfindwindow(float x, float y, int place, userobject otherWin, float *px, float *py,
int *pwinFound, boolean *pdidFind)

place values:

NX_ABOVE
NX_BELOW

3-144 Chapter 3: C Functions

void PSflushgraphics(void)

void PSframebuffer(int index, int nameLen, char name[j, int *pslot, int *punit,
int *pROMid, int *px, int *py, int *pw, int *ph, int *pdepth)

void PSfrontwindow(int *pnum) /* Internal */

void PShidecursor(void)

void PShideinstance(float x, float y, float width, float height)

void PSmachportdevice(int w, int h, int bbox[] , int bboxSize, float matrix[] , char *phost,
char *pport, char *ppixeIDict)

void PSmovewindow(float x, float y, userobject window) /* Internal */

void PSnewinstance(void)

void PSnextrelease(int size, char string[])
/* size is the maximum number of characters copied into string * /

void PSobscurecursor(void)

void PSorderwindow(int place, userobject otherWindow, int window) /* Internal */

place values:

NX_ABOVE
NX_BELOW
NX_OUT

void PSosname(int size, char string[])
/* size is the maximum number of characters copied into string * /

void PSostype(int *ptype)

void PSplacewindow(float x, float y, float width, float height, userobject window)
/* Internal * /

void PSplaysound(char *name, int priority)

void PSposteventbycontext(int type, float x, float y, int time, intflags, int window, int
subtype, int datal, int data2, int context, boolean *psuccess)

void PSreadimage(void)

void PSrevealcursor(void)

void PSrightbuttondown(int *pflag)

Single-Operator Functions 3-145

void PSrigbtstilldown(int eventnum, boolean *pflag)

void PSscreenlist(int context, int count, int windows[D

void PSscreentobase(float x, float y, float *px, float *py)

void PSscreentocurrent(float x, float y, float *px, float *py)

void PSsetactiveapp(int context) /* Internal * /

void PSsetalpba(float coverage)

void PSsetautofill(booleanflag, userobject window)

void PSsetcursor(float x, float y, float mx, float my)

void PSsetdefaultdepthlimit(int limit)

void PSseteventmask(int mask, userobject window) /* Internal * /

mask values:

NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK
NX_APPDEFINEDMASK
NX_SYSDEFINEDMASK

void PSsetexposurecolor(void)

void PSsetflushexposures(boolean flag)

void PSsetinstance(boolean flag)

void PSsetmouse(float x, float y)

void PSsetowner(userobject owner, userobject window)

void PSsetpattern(userobject patternDict)

3-146 Chapter 3: C Functions

void PSsetsendexposed(booleanjlag, userobject window) /* Internal */

void PSsettrackingrect(float x, float y, float width, float height, boolean leftFlag,
boolean rightFlag, boolean inside, int userData, int trectNum, userobject gstate)

void PSsetwaitcursorenabled(boolean jlag)

void PSsetwindowdepthlimit(int limit, userobject window)

void PSsetwindowdict(userobject window) /* Internal */

void PSsetwindowlevel(int level, userobject window)

void PSsetwindowtype(int type, userobject window)

void PSsetwriteblock(intjlag)

void PSshowcursor(void)

void PSsizeimage(float x, float y, float width, float height, int *pwidth, int *pheight,
int *pbitsPerComponent, float matrix[] , boolean *pmultiproc, int *pnColors)

void PSstilldown(int eventnum, boolean *pjlag)

void PStermwindow(userobject window) /* Internal */

void PSwindow(float x, float y, float width, float height, int type, int *pwindow)
/* Internal */

void PSwindowdevice(userobject window)

void PSwindowdeviceround(userobject window)

void PSwindowlist(int context, int count, int windows[])

Single-Operator Functions 3-147

Run-Time Functions

This section describes functions and macros that are part of NeXT's run-time system for the
Objective-C language. Some, such as sel_getUidO and objc_loadModulesO, might be
useful when called within an Objective-C program, but most are provided mainly to make
it possible to define other interfaces to the run-time system. For most programs,
Objective-C is itself a sufficient and complete interface to the run-time system; the
messages and class definitions in Objective-C source files are compiled to execute correctly
at run time without the aid of additional function calls.

The functions described here are divided into five groups, each with its own prefix:

• The basic run-time functions have an "objc_" prefix.

• Functions that operate on class objects have a "class_" prefix and take as their first
argument a structure of type Class. Class is the defined type (in objc/objc.h) for class
objects. However, to receive messages in Objective-C source code, class objects must
be of type· id, so id rather than Class is the type generally used in Objective-C
programs.

• Functions that operate on instances have an "object_" prefix and take as their first
argument the id of the instance.

• Functions that give information about method selectors have a "sel_" prefix.

• Functions that describe method implementations have a "method_" prefix.

NeXT reserves these prefixes for functions in the run-time system.

In addition to these functions, there are also a few macros that operate on the values passed
in a message. They begin with a "marg_" prefix (for "message argument").

class addClassMethodsO -7 See class getlnstanceMethodO - -

class addlnstanceMethodsO -7 See class getlnstanceMethodO - -

3-148 Chapter 3: C Functions

class _ createlnstanceO, class _ createlnstanceFromZoneO

SUMMARY

LIBRARY

SYNOPSIS

Create a new instance of a class

#import <objc/objc-c1ass.h>

id c1ass_createInstance(Class aClass, unsigned int indexedlvarBytes)
id class _ createInstanceFromZone(Class aC lass, unsigned int indexedlvarBytes,

NXZone *zone)

DESCRIPTION

These functions provide an interface to the object allocators used by the run-time
system. The default allocators, which can be changed by reassigning the _ alloc and
_zoneAlloc variables, create a new instance of aC lass, initialize its isa instance variable
to point to the class, and return the new instance. All other instance variables are
initialized to O.

The two functions are identical, except that class _ createInstanceFromZoneO
allocates memory for the new object from the region specified by zone;
c1ass_createInstanceO doesn't specify a zone. Object's new method uses
class _ createInstanceO to allocate memory for a new object. The alloc and
allocFromZone: methods use class _ createInstanceFromZoneO, with alloc taking
the memory from the default zone returned by NXDeaultMallocZoneO.

The second argument to both functions, indexedlvarBytes, states the number of extra
bytes required for indexed instance variables. Normally, it's O.

Indexed instance variables are instance variables that don't have a fixed size; usually
they're arrays whose length can't be computed at compile time. Since the components
of a C structure can't be of uncertain size, indexed instance variables can't be declared
in the class interface. The class must account for them outside the normal channels
provided by the Objective-C language.

class_create! nstance() 3 -149

All of the storage required for indexed instance variables must be allocated through this
function. The following code shows how it might be used in an instance-creating class
method:

+ new: (unsigned int)numBytes

self = class createlnstance((Class)self, numBytes);

length = numBytes;

- (char *)getArray

return(object_getlndexedlvars(self));

Indexed instance variables should be avoided if at all possible. It's a much better
practice to store variable-length data outside the object and declare one real instance
variable that points to it and perhaps another that records its length. For example:

+ new: (unsigned int)numBytes

self = [super new];

data = malloc(nurnBytes);

length = nurnBytes;

- (char *)getArray

return data;

RETURN

Both functions return a new instance of aC lass.

class _ createlnstanceFromZoneO ~ See class _ createlnstanceO

class _getClassMethodO ~ See class _getlnstanceMethodO

3-150 Chapter 3: C Functions

class _getlnstanceMethodO, class _getClassMethodO,
class _ addlnstanceMethodsO, class _ addClassMethodsO,
class _ removeMethodsO

SUMMARY

LIBRARY

SYNOPSIS

Get, add, and remove methods for the class

#import <objc/objc-c1ass.h>

Method class getlnstanceMethod(Class aClass, SEL aSelector)
Method c1ass_getClassMethod(Class aClass, SEL aSelector)
void c1ass_addlnstanceMethods(Class aClass, struct objc_method_list *methodList)
void c1ass_addClassMethods(Class aClass, struct objc_method_list *methodList)
void c1ass_removeMethods(Class aClass, struct objc_method_list *methodList)

DESCRIPTION

The first two functions, c1ass_getlnstanceMethodO and c1ass_getClassMethodO,
return a pointer to the class data structure that describes the aSelector method. For
class _getlnstanceMethodO, aSelector must identify an instance method; for
class _getClassMethodO, it must identify a class method. Both functions return a
NULL pointer if aSelector doesn't identify a method defined in or inherited by aClass.

The run-time system uses the next two functions, c1ass_addlnstanceMethodsO and
c1ass_addClassMethodsO, to implement Objective-C categories. Each function adds
the methods in methodList to the dictionary of methods defined for aC lass.
class _ addlnstanceMethodsO adds methods that can be used by instances of the class
and c1ass_addClassMethodsO adds methods used by the class object. Before adding
a method, both functions map the method name to a SEL selector and check for
duplicates. A warning is sent to the standard error stream if any ambiguities exist.

The last function, c1ass_removeMethodsO, removes the methods in methodList from
aClass. It can remove both class and instance methods.

RETURN

class _getlnstanceMethodO and class _getClassMethodO return a pointer to the data
structure that describes the aSelector method as implemented for aClass.

class_getInstanceMethod() 3-151

class _getlnstance VariableO

SUMMARY

LIBRARY

SYNOPSIS

Get the class template for an instance variable

#import <objc/objc-c1ass.h>

Ivar c1ass_getInstanceVariable(Class aClass, STR variableName)

RETURN

This function returns a pointer to the class data structure that describes the
variableName instance ~ariable. If aClass doesn't define or inherit the instance
variable, a NULL pointer is returned.

class_getVersionO ~ See class_setVersionO

class _poseAsO

SUMMARY

LIBRARY

SYNOPSIS

Pose as the superclass

#import <objc/objc-c1ass.h>

Class c1ass_poseAs(Class thelmposter, Class theSuperclass)

DESCRIPTION

class _poseAsO causes one class, thelmposter, to take the place of its own superclass,
theSuperclass. Messages sent to theSuperclass will actually be received by
thelmposter. The posing class can't declare any new instance variables, but it can
define new methods and even override methods defined in the superclass.

Posing is usually done through Object's poseAs: method, which calls this function.

RETURN

class _poseAsO returns its first argument, thelmposter.

3-152 Chapter 3: C Functions

class removeMethodsO ~ See class getInstanceMethodO
- -

class_set VersionO, class_get VersionO

SUMMARY Set and get the class version

LIBRARY

SYNOPSIS

#import <objc/objc-c1ass.h>

void c1ass_setVersion(Class aClass, int theVersion)
int c1ass_getVersion(Class aClass)

DESCRIPTION

These functions set and return the class version number. This number is used when
archiving instances of the class.

Object's setVersion: and version methods do the same work as these functions.

RETURN

c1ass_getVersionO returns the version number for aClass last set by
class _setVersionO.

marg_getRefO ~ See marg_getValueO

class _removeM ethods() 3 -153

· marg_getValueO, marg_getRefO, marg_setValueO

SUMMARY Examine and alter method argument values

LIBRARY

SYNOPSIS

#import <objc/objc-c1ass.h>

type-name marg_getValue(marg_list argFrame, int offset, type-name)
type-name *marg_getRef(marg_list argFrame, int offset, type-name)
void marg_setValue(marg_list argFrame, int offset, type-name, type-name value)

DESCRIPTION

These three macros get and set the values of arguments passed in a message. They're
designed to be used within implementations of the forward:: method, which is
described under the Object class in Chapter 2, "Class Specifications."

The first argument to each macro, argFrame, is a pointer to the list of arguments passed
in the message. The run-time system passes this pointer to the forward:: method,
making it available to be used in these macros. The next two arguments-an offset into
the argument list and the type of the argument at that offset--can be obtained by calling
method _getArgumentInfoO

The first macro, marg_getValue, returns the argument at offset in argFrame. The
return value, like the argument, is of type type-name. The second macro,
marg_getRef, returns a reference to the argument at offset in argFrame. The pointer
returned is to an argument of the type-name type. The third macro, marg_setValue,
alters the argument at offset in argFrameby assigning it value. The new value must be
of the same type as the argument.

Since method _getArgumentInfoO encodes the argument type according to the
conventions of the @encodeO compiler directive, the type must first be expanded to a
full type name before it can be used in these macros. The offset provided by
method _getArgumentInfoO can be passed directly to the macros without change.

RETURN

marg_getValue returns a type-name argument value. marg_getRef returns a pointer
to a type-name argument value.

marg_setValueO ~ See marg_getValueO

method _getArgumentlnfoO ~ See method _getNumberOfArgumentsO

3-154 Chapter 3: C Functions

method _getN umberOfArgumentsO, method _getSizeOfArgumentsO,
method _getArgumentlnfoO

SUMMARY Get information about a method

LIBRARY

SYNOPSIS

#import <objc/objc-c1ass.h>

unsigned int method getNumberOfArguments(Method aMethod)
unsigned int method _getSizeOfArguments(Method aM ethod)
unsigned int method_getArgumentInfo(Method aMethod, int index, char **type,

int *offset)

DESCRIPTION

The three functions described here all provide information about the argument structure
of a particular method. They take as their first argument the method's data structure,
aMethod, which can be obtained by calling class getInstanceMethodO or
class _getClassMethodO.

The first function, method _getNumberOfArgumentsO, returns the number of
arguments that aMethod takes. This will be at least two, since it includes the "hidden"
arguments, self and _ cmd, which are the first two arguments passed to every method
implementation.

The second function, method _getSizeOfArgumentsO, returns the number of bytes
that all of aMethod's arguments, taken together, would occupy on the stack. This
information is required by objc _ msgSendvO.

The third function, method getArgumentInfoO, takes an index into aMethod's
argument list and returns, by reference, the type of the argument and the offset to the
location of that argument in the list. Indices begin with O. The "hidden" arguments self
and _cmd are indexed at 0 and 1; method-specific arguments begin at index 2. The
offset is measured in bytes and depends on the size of arguments preceding the indexed
argument in the argument list. The type is encoded according to the conventions of the
@encodeO compiler directive.

The information obtained from method _getArgumentInfoO can be used in the
marg_getValue, marg_getRef, and marg_setValue macros to examine and alter the
values of an argument on the stack after aM ethod has been called. The offset can be
passed directly to these macros, but the type must first be decoded to a full type name.

RETURN

method _getNumberOfArgumentsO returns how many arguments the
implementation of aM ethod takes, and method _getSizeOfArgumentsO returns how
many bytes the arguments take up on the stack. method getArgumentInfoO returns
the index it is passed.

method _getNumberOfArguments() 3 -155

method getSizeOfArgumentsO ~ See method getNumberOfArgumentsO - -

objc_addClassO ~ See objc_getClassO

objc _getClassO, objc _getMetaClassO, objc _getClassesO, objc _ addClassO,
objc getModulesO

SUMMARY

LIBRARY

SYNOPSIS

Manage run-time structures

#import <objc/objc-runtime.h>

id objc_getClass(STR aClassName)
id objc_getMetaClass(STR aClassName)
NXHashTable *objc _getClasses(void)
void objc_addClass(Class aClass)
Module *objc getModules(void)

DESCRIPTION

These functions return and modify the principal data structures used by the run-time
system;

objc_getClassO returns the id of the class object for the aClassName class, and
objcJetMetaClassO returns the id of the metaclass object for the aClassName class.
The metaclass object holds information used by the class object, just as the class object
holds information used by instances of the class. Both functions print a message to the
standard error stream if aClassName isn't part of the executable image.

objc _getClassesO returns a pointer to a hash table containing all the Objective-C
classes that are currently part of the executable image. The NXHashTable return type
is defined in the objc/hashtable.h header file. objc_addClassO adds aClass to the list
of currently loaded classes.

The compiler creates a Module data structure for each file it compiles. The
objc _getModulesO function returns a pointer to a list of all the modules that are part
of the executable image.

RETURN

objc _getClassO and objc _getMetaClassO return the class and metaclass objects for
aClassName. objc getClassesO returns a pointer to a hash table of all current classes,
and objc JetModulesO returns a pointer to all current modules.

3-156 Chapter 3: C Functions

objc _getClassesO ~ See objc _getClassO

objc _getMetaClassO ~ See objc _getClassO

objc _getModulesO ~ See objc _getClassO

objc _loadModulesO, objc _ unloadModulesO

SUMMARY Dynamically load and unload classes

LIBRARY

SYNOPSIS

#import <objc/objc-Ioad.h>

long objc loadModules(char *jiles[], NXStream *stream,
void (*callback)(Class, Category), struct mach_header **header,
char *debugFilename)

long objc_unloadModules(NXStream *stream, void (*callback)(Class, Category))

DESCRIPTION

objc _loadModulesO dynamically loads object files containing Objective-C class and
category definitions into a running program. Its first argument,jiles, is a list of
null-terminated pathnames for the object files containing the classes and categories that
are to be loaded. They can be full paths or paths relative to the current working
directory. The second argument, stream, is a pointer to an NXStream where any error
messages produced by the loader will be written. It can be NULL, in which case no
messages will be written.

The third argument, callback, allows you to specify a function that will be called
immediately after each class or category is loaded. When a category is loaded, the
function is passed both the Category structure and the Class structure for that category.
When a class is loaded, it's passed only the Class structure. Like stream, callback can
be NULL.

The fourth argument, header, is used to get a pointer to the mach_header structure for
the loaded modules. It, too, can be NULL. All the modules injiles are grouped under
the same header.

The final argument, which also can be NULL, is the pathname for a file that the loader
will create and initialize with a copy of the loaded modules. This file can be passed to
the debugger and added to the executable image that it's debugging. For example:

(gdb) add-file debugFilename

Chapter 3: C Functions 3-157

obj_unloadModulesO unloads all the modules loaded by objc_loadModulesO, that
is, all the modules from the files list. Each time it's called, it unloads another set of
modules, working its way back from the modules loaded by the most recent call to
objc JoadModulesO to those loaded by the next most recent call, and so on.

The first argument to obj_unloadModulesO, stream, is a pointer to an NXStream
where error messages will be written. Its second argument, callback, allows you to
specify a function that will be called immediately before each class or category is
unloaded. Both arguments can be NULL.

RETURN

Both functions return 0 if the modules are successfully loaded or unloaded and 1 if
they're not.

objc _ msgSendO, objc _ msgSendSuperO, objc _ msgSendvO

SUMMARY

LIBRARY

SYNOPSIS

Dispatch messages at run time

#import <objc/objc-runtime.h>

id objc _ msgSend(id theReceiver, SEL theSelector, ...)
id objc_msgSendSuper(struct objc_super *superContext, SEL theSelector, ...)
id objc_msgSendv(id theReceiver, SEL theSelector, unsigned int argSize,

marg_list argFrame)

DESCRIPTION

The compiler converts every message expression into a call on one of the first two of
these three functions. Messages to super are converted to calls on
objc_msgSendSuperO; all others are converted to calls on objc_msgSendO.

Both functions find the implementation of the theSelector method that's appropriate for
the receiver of the message. For objc_msgSendO, theReceiver is passed explicitly as
an argument. For objc_msgSendSuperO, superContext defines the context in which
the message was sent, including who the receiver is.

Arguments that are included in the aSelector message are passed directly as additional
arguments to both functions.

Calls to objc _ msgSendO and objc _ msgSendSuperO should be generated only by the
compiler. You shouldn't call them directly in the Objective-C code you write.

3-158 Chapter 3: C Functions

The third function, objc _ msgSendvO, is an alternative to objc _ msgSendO that's
designed to be used within class-specific implementations of the forward:: method.
Instead of being passed each of the arguments to the aSelector message, it takes a
pointer to the arguments list, argFrame, and the size of the list in bytes, argSize.
argSize can be obtained by calling method _getArgumentSizeO; argFrame is passed
as the second argument to the forward:: method.

objc _ msgSendvO parses the argument list based on information stored for aSelector
and the class of the receiver. Because of this additional work, it's more expensive than
objc _ msgSendO.

RETURN

Each method passes on the value returned by the aSelector method.

objc_msgSendSuperO ~ See objc_msgSendO

objc _ msgSendvO ~ See objc _ msgSendO

objc_unloadModulesO ~ See objc_loadModulesO

object copyO ~ See object disposeO - -

object_copyFromZoneO ~ See object_disposeO

object disposeO, object copyO, object reallocO, object copyFromZoneO, - - - -
object _reallocFromZoneO

SUMMARY

LIBRARY

SYNOPSIS

Manage object memory

#import <objc/Object.h>

id object_dispose(Object *anObject)
id object_copy(Object *anObject, unsigned int indexedlvarBytes)
id object realloc(Object *anObject, unsigned int numBytes)
id object_copyFromZone(Object *anObject, unsigned int indexedlvarBytes,

NXZone *zone)
id object_reallocFromZone(Object *anObject, unsigned int numBytes,

NXZone *zone)

objc_msgSendSuper() 3-159

DESCRIPTION

These five functions, along with class _ createlnstanceO and
c1ass_createlnstanceFromZoneO, manage the dynamic allocation of memory for
objects. Like those two functions, each of them is simply a "cover" for-a way of
calling-another, private function.

object_disposeO frees the memory occupied by anObject after setting its isa instance
variable to nil, and returns nil. The function it calls to do this work can be changed by
reassigning the _ dealloc variable.

object_copyO and object_copyFromZoneO create a new object that's an exact copy
of anObject and return the new object. The second argument to both functions,
indexedlvarBytes, specifies the number of additional bytes that should be allocated for
the copy to accommodate indexed instance variables; it serves the same purpose as the
second argument to c1ass_createlnstanceO. The functions that object_copyO and
object_ copyFromZoneO call to do this work can be changed by reassigning the _copy
and _ zoneCopy variables.

object_reallocO and object_reallocFromZoneO reallocate storage for anObject,
adding numBytes if possible. The memory previously occupied by anObject is freed if
it can't be reused, and a pointer to the new location of anObject is returned. The
functions that object_reallocO and object_reallocFromZoneO call to do this work
can be changed by reassigning the _realloc and _zoneRealloc variables.

The Object class defines a method interface for the first three of these functions. The
free instance method corresponds to object_disposeO. And the copy and
copyFromZone: methods correspond to object _ copyO and object _ copyFromZoneO.

RETURN

object_disposeO returns nil, object_copyO and object_copyFromZoneO return the
copy, and object_reallocO and object_reallocFromZoneO return the reallocated
object.

3-160 Chapter 3: C Functions

object _getClassNameO

SUMMARY

LIBRARY

SYNOPSIS

Return the class name

#import <objc/objc.h>

STR object getClassName(id anObject)

DESCRIPTION

This function returns the name of anObject's class. anObject should be an instance
object, not a class object.

obje.ct _getlndexedI varsO

SUMMARY

LIBRARY

Return a pointer to an object's extra memory

SYNOPSIS

#import <objc/objc.h>

void *object getIndexedlvars(id anObject)

RETURN

object getIndexedI varsO returns a pointer to the first indexed instance variable of
anObj-;ct, or NULL if anObject has no indexed instance variables.

SEE ALSO

class _ createlnstanceO

object _getlnstance VariableO ~ See object _setlnstance VariableO

object _reallocO ~ See object _ disposeO

object_reallocFromZoneO ~ See object_disposeO

ob jeet _getC lassN ame() 3 -161

object _ setlnstance VariableO, object _getlnstance VariableO

SUMMARY

LIBRARY

SYNOPSIS

Set and get instance variables

#import <objc/Object.h>

Ivar object_setInstanceVariable(id anObject, STR variableNarne, void *value)
Ivar object_getInstanceVariable(id anObject, STR variableNarne, void **valuePtr)

DESCRIPTION

object_setInstanceVariableO assigns a new value to the variableNarne instance
variable belonging to anObject. The new value is passed in the third argument, value.
object_getInstanceVariableO gets the value of anObject's variableNarne instance
variable. The value is returned by reference through the third argument, valuePtr.

These functions provide a way of setting and getting instance variables, without having
to implement methods for that purpose. For example, Interface Builder calls
object _ setlnstance VariableO to initialize programmer-defined "outlet" instance
variables.

RETURN

Both functions return a pointer to the class template that describes the variableN arne
instance variable. A NULL pointer is returned if anObject has no instance variable
with that name.

The returned template has a field describing the data type of the instance variable. You
can check it to be sure that the value set is of the correct type.

sel_getNameO ~ See sel_getUidO

3-162 Chapter 3: C Functions

SUMMARY

LIBRARY

SYNOPSIS

Match method selectors with method names

#import <objc/objc.h>

SEL sel getUid(STR aNarne)
STR sel_getName(SEL aSelector)

DESCRIPTION

The first function, sel_getUidO, returns the unsigned integer that's used at run time to
identify the aN arne method. Whenever possible, you should use the @selectorO
directive to ask the compiler, rather than the run-time system, to provide the selector
for a method. This function should be used only if the name isn't known at compile
time.

The second function, sel_getNameO, is the inverse of the first. It returns the name that
was mapped to aSelector.

RETURN

sel_getUidO returns the selector for the aNarne method, or 0 if there is no known
method with that name. sel_getNameO returns a character string with the name of the
method identified by the aSelector selector. If aSelector isn't a valid selector, a NULL
pointer is returned.

sel_getUid() 3-163

sel_isMappedO

SUMMARY

LIBRARY

SYNOPSIS

Determine whether a selector is valid

#import <objc/objc.h>

BOOL sel isMapped(SEL aSelector)

RETURN

sel isMappedO returns YES if aSelector is a valid selector (is currently mapped to a
method implementation) or could possibly be one (because it lies within the same range
as valid selectors); otherwise it returns NO.

Because all of a program's selectors are guaranteed to be mapped at start-up, this
function has little real use. It's included here for reasons of backward compatibility
only.

_ allocO, _ deallocO, _reallocO, _ copyO, _ zoneAllocO, _ zoneReallocO,
_ zoneCopyO, _ errorO

SUMMARY

LIBRARY

SYNOPSIS

Set functions used by the run-time system

#import <objc/objc-runtime.h>

id (* _alloc)(Class aClass, unsigned int indexedlvarBytes)
id (* _dealloc)(Object *anObject)
id (* _realloc) (Obj ect *anObject, unsigned int numBytes)
id (* _copy)(Object *anObject, unsigned int indexedlvarBytes)
id (* zoneAlloc)(Class aClass, unsigned int indexedlvarBytes, NXZone *zone)
id (* _zoneRealloc)(Object *anObject, unsigned int numBytes, NXZone *zone)
id (* zoneCopy)(Object *anObject, unsigned int indexedlvarBytes, NXZone *zone)
void (* error)(Object *anObject, char *format, va_list ap)

3-164 Chapter 3: C Functions

DESCRIPTION

These variables point to the functions that the run-time system uses to manage memory
and handle errors. By reassigning a variable, a function can be replaced with another
of the same type. The example below shows a temporary reassignment of the
zoneAlloc function:

id (*theFunction) () ;
theFunction = _zoneAlloc;

zoneAlloc = someOtherFunction;

/*
* code that calls the class_createlnstanceFromZone() function,

* or sends alloc and allocFromZone: messages, goes here
*/
zoneAlloc = theFunction;

• _alloc points to the function, called through c1ass_createlnstanceO, used to
allocate memory for new instances, and _zoneAlloc points to the function, called
through class _ createlnstanceFromZoneO, used to allocate the memory for a new
instance from a specified zone.

• _dealloc points to the function, called through object_disposeO, used to free
instances.

• _realloc points to the function, called through object_reallocO, used to reallocate
memory for an object, and _ zoneRealloc points to the function, called through
object_reallocFromZoneO, used to reallocate memory from a specified zone.

• _copy points to the function, called through object _ copyO, used to create an exact
copy of an object, and _ zoneCopy points to the function, called through
object_copyFromZoneO, used to create the copy from memory in the specified
zone.

• _error points to the function that the run-time system calls in response to an error.
By default, it prints formatted error messages to the standard error stream and calls
abortO to produce a core file.

_copy -7 See _ alloc

dealloc -7 See alloc

error -7 See alloc

realloc -7 See alloc

zoneAlloc -7 See alloc

sel_getNameO 3-165

zoneCopy ~ See alloc - -

zoneRealloc ~ See alloc

3-166 Chapter 3: C Functions

Chapter 4
PostScript Operators

This chapter contains detailed descriptions of NeXT's extensions to the Display PostScript
system. It also lists the standard PostScript operators that have different or additional
effects in the NeXT implementation. For information on the standard PostScript language
operators, see the PostScript Language Reference Manual. See the Extensions for the
Display PostScript System manual for details on the operators Adobe Systems Incorporated
added for the Display PostScript system. Information on these and other references for the
PostScript language is listed in "Suggested Rea'aing" in the NeXT Technical Summaries
manual.

The operators marked "internal" shouldn't be used in applications based on the Application
Kit since your use of them will conflict with the Kit's.

This chapter presents the operators in alphabetical order and uses the same format as that
of the operator descriptions in the PostScript Language Reference Manual. The Technical
Summaries manual provides a complete summary of all 'PostScript operators, organized
into groups of related operators. Chapter 3, "C Functions," describes the C interface to the
operators listed in this chapter.

adjustcursor dx dy adjustcursor -

Moves the cursor location by (dx, dy) from its current location. dx and dy are given
in the current coordinate system. If the current device isn't a window, the invalidid
error is executed.

ERRORS
invalidid, stackunderf1ow, typecheck

SEE ALSO
currentmouse, setmouse

alpbaimage pixelswide pixelshigh bits/sample matrix proco [... procni multiproc ncolors

alphaimage -

Renders an image whose samples each contain one, three, or four color
components plus an alpha component. (Most programmers should use
NXlmageBitmapO instead of alphaimage.)

adjustcursor 4-1

banddevice

This operator is modeled on the colorimage operator as described in PostScript
Language Color Extensions (see "Suggested Reading" in the NeXT Technical
Summaries manual). It differs from colorimage in that it assumes an alpha
component in addition to the color components for each sample.

The sampled image is a rectangular array of pixelswide*pixelshigh pixels. For each
pixel, there must be ncolors color components and one alpha component. The only
valid possibilities for ncolors are 1 (gray scale), 3 (ROB), and 4 (CMYK). Each
color and alpha component is represented by bits/sample bits. Each color
component is premultiplied; that is, it's the result of the prior multiplication of the
color contribution and the corresponding alpha value. (See "Premultiplication" in
the Concepts manual for more information.)

alphaimage calls its procedure operand(s) repeatedly to get the color and alpha
values to be rendered. See PostScript Language Color Extensions for a discussion
of the data formats that these procedures must return.

multiproc is a boolean value referring to whether the color and alpha components
are each supplied separately (multiproc is true) or interleaved (multiproc isfalse).
In the single-procedure form (multiproc isfalse), the samples are OA (the gray and
alpha components), ROBA (ROB components plus an alpha component), or
CMYKA (CMYK components plus an alpha component). In the
multiple-procedure form (multiproc is true), the alpha procedure is last
(procnco[ors); for example, for ncolors=l, this operator has the form:

pixelswide pixelshigh bits/sample matrix dataproc alphaproc true 1
alphaimage

ERRORS
invalidid, Iimitcheck, rangecheck, stack underflow, typecheck, undefined,
undefinedresult

matrix width height proc banddevice - % undefined

This standard PostScript operator is not defined in the NeXT implementation of the
Display PostScript system.

4-2 Chapter 4: PostScript Operators

basetocurrent x y basetocurrent X' y'

basetoscreen

buttondown

Converts (x, y) from the current window's base coordinate system to its current
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetoscreen, currenttobase, currenttoscreen, screentobase,
screentocurrent

x y basetoscreen x' y'

Converts (x, y) from the current window's base coordinate system to the screen
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
basetocurrent, currenttobase, currenttoscreen, screentobase,
screentocurrent

- button down bool

Returns true if the left or only mouse button is currently down; otherwise it returns
false.

Note: To test whether the mouse button is still down from a mouse-down event,
use stilldown instead of button down; button down will return true even if the
mouse button has been released and pressed again since the original mouse-down
event.

ERRORS
none

SEE ALSO
currentmouse, rightbuttondown, rightstilldown, stilldown

basetocurrent 4-3

c1eardictstack - c1eardictstack -

Returns the dictionary stack to its initial state, in which it contains only systemdict,
shareddict, and userdict. c1eardictstack should be used instead of counting the
number of dictionaries to pop off-that is, instead of

{ countdictstack 2 ge { exit } end } loop

Note: Adobe has recently added this operator to the Display PostScript system.
This entry will be removed when c1eardictstack is documented in Adobe's
manuals.

ERRORS
dictstackunderflow

c1eartrackingrect trectnum gstate c1eartrackingrect -

Clears the tracking rectangle with the number trectnum, as set by settrackingrect,
in the device referred to by gstate. If no such rectangle exists, the invalidid error
is executed. If gstate is null, the current graphics state is assumed.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
settrackingrect

4-4 Chapter 4: PostScript Operators

composite srcx srcy width height srcgstate destx desty op composite -

Performs the compo siting operation specified by op between pairs of pixels in two
images, a source and a destination. The source pixels are in the window device
referred to by the srcgstate graphics state, and the destination pixels are jn the
current window. If srcgstate is null, the current graphics state is assumed. (If
srcgstate or the current graphics state doesn't refer to a window device, the
invalidid error is executed.) The remaining operands define the shape that contains
the source and destination pixels and the locations of that shape in the current
coordinate system of the respective graphics states. The result of an operation on
a source and destination pixel replaces the destination pixel.

The rectangle specified by srcx' srcY' width, and height defines the source image.
The outline of the rectangle may cross pixel boundaries due to fractional
coordinates, scaling, or rotated axes. The pixels included in the source are all those
that the outline of the rectangle encloses or enters; for more information, see the
general rule given in the Concepts manual, under "Imaging Conventions."

There's one destination pixel for each pixel in the source. The source and
destination images have the same size, shape, and orientation. (Even if the axes
have a different orientation in the source and destination graphics states, the images
will not; composite will not rotate images.) In screen coordinates, the difference
between srcx and destx -both truncated tloat values-is the x displacement
between all source and destination pixels; srcy and desty similarly determine the y
displacement.

The source image is clipped to the frame rectangle of the window in the source
graphics state, and the destination image is clipped to the frame rectangle and
clipping path of the window in the current graphics state.

op specifies the compo siting operation. The choices for op and the result of each
operation are given in Figure 4-1 on the following page. For a detailed explanation
of each operator, see "Types of Compo siting Operations" in the Concepts manual.

ERRORS
invalidid, rangecheck, stackundertlow, typecheck

SEE ALSO
compositerect, setalpha, setgray, sethsbcolor, setrgbcolor

composite 4-5

Source

opaque~
transparent

Destination
before

~ opaque

transparent

Operation Destination after

Copy ~
Clear D
PlusD

PlusL ~
Sover ~
Dover ~
Sin C!J
Din EJ
Sout ~
Dout ~
Satop ~
Datop ~
Xor ~

Source image.

Transparent.

Sum of source and destination images, with color values approaching 0 as a limit.

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Destination image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Destination image wherever both images are opaque, source image wherever source
image is opaque but destination image is transparent, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Figure 4-1. Compo siting Operations

4-6 Chapter 4: PostScript Operators

compositerect

copypage

destx desty width height op compositerect -

In general, this operator is the same as the composite operator except that there's
no real source image. The destination is in the current graphics state; src x' srcY'
width, and height describe the destination image in that graphics,state's current
coordinate system. The effect on the destination is as if there were a source image
filled with the color and coverage specified by the graphics state's current color
parameter. op has the same meaning as the op operand of the composite operator;
however, one additional operation, Highlight, is allowed.

On the MegaPixel Display, Highlight turns every white pixel in the destination
rectangle to light gray and every light gray pixel to white, regardless of the pixel's
coverage value. Repeating the same operation reverses the effect. (Highlight may
act differently on other devices. For example, on displays that assign just one bit
per pixel, it would invert every pixel.)

Note: The Highlight operation doesn't change the value of a pixel's coverage
component. To ensure that the pixel's color and coverage combination remains
valid, Highlight operations should be temporary and should be reversed before any
further compositing.

For compositerect, the pixels included in the destination are those that the outline
of the specified rectangle encloses or enters; for more information, see the general
rule given in the Concepts manual, under "Imaging Conventions." The destination
image is clipped to the frame rectangle and clipping path of the window in the
current graphics state.

If the current graphics state doesn't refer to a window device, the invalidid error is
executed.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
composite, setalpha, setgray, sethsbcolor, setrgbcolor

- copypage - % different in the NeXT implementation

This standard PostScript operator has no effect in the NeXT implementation of the
Display PostScript system.

ERRORS
none

SEE ALSO
erasepage, showpage

compositerect 4-7

countframebuffers

countscreenlist

countwindowlist

- countframebuffers count

Returns the number of frame buffers that the Window Server is actually using.

ERRORS
stackoverflow

SEE ALSO
framebuffer

context countscreenlist count

Returns the number of windows in the screen list that were created by the
PostScript context specified by context. This is in contrast with countwindowlist,
which returns the number of windows created by the context without regard to their
inclusion in the screen list.

If context is 0, all windows in the screen list are counted, without regard to the
context that created them.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
countwindowlist, screen list, windowlist

context countwindowlist count

Returns the number of windows that were created by the PostScript context
specified by context. This is in contrast with countscreenlist, which returns the
number of windows in the screen list that were created by the PostScript context
specified by context.

If context is 0, all windows are counted, without regard to the context that created
them.

ERRORS
stackunderflow, typecheck

SEE ALSO
countscreenlist, screenlist, windowlist

4-8 Chapter 4: PostScript Operators

currentactiveapp - currentactiveapp context % internal

Returns the active application's context. This operator is used by the window
packages to assist with wait cursor operation.

ERRORS
stackoverflow

SEE ALSO
setactiveapp

currentalpha - currentalpha coverage

Returns the coverage parameter of the current graphics state.

ERRORS
none

SEE ALSO
composite, setalpha

currentdefaultdepthlimit

currentdeviceinfo

- currentdefaultdepthlimit depth % internal

Returns the current context's default depth limit. This value determines a new
window's depth limit.

ERRORS
stackoverflow

SEE ALSO
setdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit,
currentwindowdepth

window currentdeviceinfo min max bool

Returns device-related information about the current state of window. min and max
are the smallest and largest number of bits per sample, respectively, and bool is a
boolean value indicating whether the device is a color device.

ERRORS
invalidid, stack underflow, typecheck

currentactiveapp 4-9

currenteventnnask

currentnnouse

currentowner

window currenteventmask mask % internal

Returns the current Window Server-level event mask for the specified window. For
windows created by the Application Kit, this mask may allow additional event
types beyond those requested by the application.

Normally you should use the Window object's eventMask method instead of the
currenteventmask operator. Use this operator only if you're bypassing the
Application Kit.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
seteventmask

window currentmouse x y % internal

Returns the current x and y coordinates of the mouse location in the base coordinate
system of the specified window. If the mouse isn't inside the specified window,
these coordinates may be outside the coordinate range defined for the window. If
window is 0, the current mouse position is returned relative to the screen coordinate
system.

Normally you should use the Window object's getMouseLocation: method
instead of the currentmouse operator. Use this operator only if you're bypassing
the Application Kit.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, buttondown, rightbuttondown,
rightstilldown, setmouse, stilldown

window currentowner context

Returns a number identifying the PostScript context that currently owns the
specified window. By default, this is the PostScript context that created the
window.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setowner, termwindow, window

4-10 Chapter 4: PostScript Operators

currentrusage

currenttobase

currenttoscreen

- currentrusage ctime utime stime msgsend msgrcv nsignals nvcsw nivcsw

Returns information about the current time of day and about resource usage by the
Window Server, as provided by the UNIX system call getrusageO. The items
returned, and their types, are as follows:

Name Type Value

ctime float Current time in seconds, modulo 10000
utime float User time for the Server process in seconds
stime float System time for the Server process in seconds
msgsend int Messages sent by the Server to clients
msgrcv int Message received by the Server from clients
nsignals int Number of signals received by the Server process
nvcsw int Number of voluntary context switches
nivcsw int Number of involuntary context switches

x y currenttobase x' y'

Converts (x, y) from the current coordinate system of the current window to its base
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
basetocurrent, basetoscreen, currenttoscreen, screentobase,
screentocurrent

x y currenttoscreen x' y'

Converts (x, y) from the current coordinate system of the current window to the
screen coordinate system. If the current device isn't a window, the invalidid error
is executed.

ERRORS
invalidid, stack underflow, typecbeck

SEE ALSO
basetocurrent, basetoscreen, currenttobase, screentobase,
screentocurrent

currentrusage 4-11

currentuser - currentuser uid gid

Returns the user id (uid) and the group id (gid) of the user currently logged in on
the console of the machine that's running the Window Server.

ERRORS
stackoverflow

currentwaitcursorenabled

currentwindow

currentwindowalpha

context currentwaitcursorenabled boof

Returns the state of context's wait cursor flag. If context is 0, returns the state of
the global wait cursor flag.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setwaitcursorenabled

- currentwindow window

Returns the window number of the current window. Executes the invalidid error
if the current device isn't a window.

ERRORS
invalidid

SEE ALSO
windowdeviceround

window currentwindowalpha state

Returns an integer indicating whether the Window Server is currently storing alpha
values for the specified window. Possible state values are:

-2 Window is opaque; alpha values are explicitly allocated.
o Alpha values are stored explicitly.
2 Window is opaque; no explicit alpha.

ERRORS
invalidid, stackunderflow, typecheck

4-12 Chapter 4: PostScript Operators

currentwindowbounds window currentwindowbounds x y width height

currentwindowdepth

Returns the location and size of the window in screen coordinates. You can pass 0
for window to determine the size of the entire workspace, that is, the smallest
rectangle that encloses all active screens.

x and y will be integers in the range from _215 to 215 -1; width and height will be
integers in the range from 0 to 10000.

Normally you should use the Window object's getFrame: method instead of this
operator (or the Application object's getScreenSize: method, for the size of the
screen). Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
movewindow, placewindow

window currentwindowdepth depth % internal

Returns window's current depth. The invalidid error is executed if window doesn't
exist.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
setwindowdepthlimit, currentwindowdepthlimit, setdefaultdepthlimit,
currentdefaultdepthlimit

currentwindowdepthlimit
window currentwindowdepthlimit depth % internal

Returns the window's current depth limit, the maximum depth to which the
window can be promoted. Unless altered by the setwindowdepthlimit operator, a
window's depth limit is equal to its context's default depth limit. The invalidid
error is executed if window doesn't exist.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
setwindowdepthlimit, currentwindowdepth, setdefaultdepthlimit,
currentdefaultdepthlimit

currentwindowbounds 4-13

currentwindowdict

currentwindowlevel

currentwriteblock

window currentwindowdict diet % internal

Returns the specified window's dictionary. Every window created by the
Application Kit has a dictionary associated with it. Since the Application Kit uses
this dictionary internally, direct manipulation of it will probably cause errors.
Avoid calling this operator.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
setwindowdict

window currentwindowlevel level

Returns window's tier. Executes the invalidid error if window doesn't exist.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
setwindowlevel

- currentwriteblock bool

Returns whether the Window Server delays sending data to a client application .
whenever the Server's output buffer fills. currentwriteblock assumes the current
context. If bool is true, the Server waits until the buffer can accept more data. If
bool isfalse, the Server discards data that can't be accepted immediately.

SEE ALSO
setwriteblock

4-14 Chapter 4: PostScript Operators

dissolve srcx srcy width height srcgstate destx desty delta dissolve -

The effect of this operation is a blending of a source and a destination image. The
first seven arguments choose source and destination pixels as they do for
composite. The exact fraction of the blend is specified by delta, which is a
floating-point number between 0.0 and 1.0; the resulting image is:

delta *source + (1- delta)*destination

If srcgstate is null, the current graphics state is assumed. If srcgstate or the current
graphics state does not refer to a window device, this operator executes the
invalidid error.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
composite

dumpwindow dumplevel window dumpwindow - % internal

dumpwindows

Prints information about window to the standard output file. Only dumplevel 0 is
implemented. The information printed is the position and number of bytes of
backing storage for the window.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
dumpwindows

dumplevel context dumpwindows - % internal

Prints information about all windows owned by context to the standard output file.
If context is 0, it prints information about all windows. Only dumplevel 0 is
implemented.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
dumpwindow

dissolve 4-15

erase page - erasepage - % different in the NeXT implementation

This standard PostScript operator has the following effect in the NeXT
implementation of the Display PostScript system: It erases the entire window to
opaque white.

ERRORS
invalidid

SEE ALSO
copypage, showpage

findwindow x y place otherwindow findwindow x' y' window boo I

flushgraphics

findwindow starts from a given position in the screen list and searches for the
uppermost window below the position that contains the point (x, y). The x and y
values are given in screen coordinates.

The starting position is determined by place and otherwindow. place can be Above
or Below, and otherwindow is the window number of a window in the screen list.
If you specify Above 0, findwindow checks all windows in the screen list.

If a window containing the point is found, findwindow returns true, along with the
window number and the corresponding location in the base coordinate system of
the window. Otherwise, it returns false, and the values of x', y', and window are
undefined.

ERRORS
rangecheck, stackunderflow, typecheck

- flushgraphics -

Flushes to the screen all drawing done in the current buffered window. If the
current window is retained or nonretained, flushgraphics has no effect.

Normally you should use the Window object's flush Window method instead of
this operator. Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, stackunderflow, typecheck

4-16 Chapter 4: PostScript Operators

framebuffer

frontwindow

hidecursor

index string framebuffer name slot unit ramid x y width height maxdepth

Provides information on the active frame buffer specified by index, where index
ranges from 0 to countframebuffers-l. string must be large enough to hold the
resulting name of the frame buffer. slot is the NeXTbus ™ slot the frame buffer is
physically occupying. If a board supports multiple frame buffers, unit uniquely .
identifies the frame buffer within a slot. The ROM product code is returned in
ramid. The bottom left comer of the frame buffer is returned in x and y (relative to
the screen coordinate system). The size of the frame buffer in pixels is returned in
width and height. maxdepth is the maximum depth displayable on this frame buffer
(for example, NX_TwentyFourBitRGB).

The Iimitcheck error is executed if string isn't large enough to hold name. The
rangecheck error is executed if index is out of bounds.

ERRORS
Iimitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO
countframebuffers

- frontwindow window % internal

Returns the window number of the frontmost window on the screen. If there aren't
any windows on the screen, frontwindow returns O.

ERRORS
none

SEE ALSO
orderwindow

- hidecursor -

Removes the cursor from the screen. It remains in effect until balanced by a call to
showcursor.

ERRORS
none

SEE ALSO
obscurecursor, showcursor

,framebuffer 4-17

hideinstance

initgraphics

machportdevice

x y width height hide instance -

In the current window, hideinstance removes any instance drawing from the
rectangle specified by x, y, width, and height. x, y, width, and height are given in
the window's current coordinate system.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
newinstance, setinstance

- initgraphics - % different in the NeXT implementation

This standard PostScript operator has these additional effects in the NeXT
implementation of the Display PostScript system:

• Sets the coverage parameter in the current window's graphics state to 1
(opaque)

• Turns off instance drawing

ERRORS
none

SEE ALSO
hideinstance, newinstance, setalpha, setinstance

width height bbox matrix hostname portname pixelencoding machportdevice

Sets up a PostScript device that can provide a generic rendering service for
device-control programs requiring page bitmaps from PostScript documents. For
each rendered page, machportdevice sends a Mach message containing the page
bitmap to a port that has been registered with the name server on the network. (See
/usr/include/windowserver/printmessage.h for the structure used in the print
message.)

width and height are integers that determine the number of device pixels for the
pag~. bbox is an array of integers in the form [llx lly urx ury]. The array specifies
the lower left and upper right comers of the rectangle in the device raster to use as
the boundary of the imageable area. (For the common case where the entire raster
is imageable, bbox may be expressed as a zero-length array, [], which
machportdevice interprets as [00 width height].) machportdevice requires the

4-18 Chapter 4: PostScript Operators

bounding box array bbox to be well formed and within the device pixel bounds of
[00 width height]; otherwise, a rangecheck results. The bitmap data is stored in
x-axis major indexing order. The device coordinate of the lower left comer of the
first pixel is (0,0), the coordinate of the next pixel is (1,0) and so on for the entire
scanline. Scanlines are long-word aligned.

matrix is the default transformation matrix for the device. hostname and portname
are strings that together identify the port that will receive the Mach messages.
pixelencoding is a dictionary describing the format for the image data rendered by
the Window Server. It should contain these entries:

Key

samplesPerPixel

bitsPerSample

colorSpace

isPlanar

defaultHalftone

initialTransfer

jobTag

Type Semantics

integer Currently must be 1

integer Currently must be 1 or 2

integer Color space specification (see below)

boolean true if sample values are stored in separate
arrays (currently must be false)

dictionary Passed to sethalftone during device creation
to set up device default halftone

procedure Passed to settransfer during device creation
to set up the initial transfer function for
device

integer Allows machportdevice to tag rendering
jobs. This value is included in the johTag
field of all printpage messages generated by
this device.

The value of colorSpace in the pixel-encoding dictionary should be one of the
following values, predefined in nextdict.

Name Value Description

NX_ OnelsBlackColorSpace ° Monochromatic, high sample value
is black.

NX_ Onels WhiteColorSpace 1 Monochromatic, high sample value
is white.

NX_RgbColorSpace 2 RGB, (1,1,1) is white.

NX_ CmykColorSpace 5 CMYK, (0,0,0,0) is white.

machportdevice 4-19

The current implementation of machportdevice supports only the followin.g
combinations of colorS pace and bitsPerSample:

colorSpace

NX_ OrieIsBlackColorSpace
NX_ OneIs WhiteColorSpace

bitsPerSample

1
2

These read-only pixel-encoding dictionaries are predefined in nextdict:

Name

NeXTLaser-300
NeXTLaser-400
NeXTMegaPixelDisplay

Description

NeXT Laser Printer at 300 dpi resolution
NeXT Laser Printer at 400 dpi.resolution
MegaPixel Display's 2 bits-per-pixel gray

portname is resolved from the nameserver on hostname by calling
netname_look_upO. This occurs during the execution of mach port device-not
for each page-so be sure that the receiving port has been checked in using
netname_check_inO prior to executing machportdevice. If the portname isn't
checked in on the given host, a rangecheck results.

If hostname is of length 0, the local host is assumed. If it is equal to '*' , a broadcast
lookup is performed by netname_look_upO. Note, however, that sending large
pages to remote hosts causes considerable network traffic, while sending large
pages to the local host won't require any copying of physical memory.

The pagebuffer data is passed out-of-line, appearing in the receiving application's
address space. (If the receiver is on the same host, the received pagebuffer
references the same physical memory as the Window Server's pagebuffer, and is
mapped copy-on-write.) The application should use vm_deallocateO to release
the pagebuffer memory when it's no longer needed. The receiver must
acknowledge receipt of the data by sending a simple msg_header_t (with msg_id
== NX_PRINTPAGEMSGID) back to the remote yort passed in the print
message. The Window Server will not continue executing the page description
until acknowledgement is received.

If more than one copy of the page is needed (through either the copypage or
#copies mechanism) each copy is sent as a separate message. In this case the same
pagebuffer will be sent in multiple messages. The letter, legal, and note page types
are gracefully ignored. (In general, an effort is made to gracefully ignore all
LaserWriter-specific commands, which are listed in Appendix D of the PostScript
Language Reference Manual.)

Messaging errors cause the invalidaccess error to be executed.

EXAMPLES
This example sets up a 400 dpi 8.5 by 11 inch page on a raster with upper left
origin (as with the NeXT 400 dpi Laser Printer) and sends its print page
messages to the port named "nlp-123" on the local host:

4-20 Chapter 4: PostScript Operators

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

width height % page bitmap dimensions in pixels

[] % use it all

[dpi 72 div 0 0 dpi -72 div 0 height] % device transform

() (nlp-123) % host (local) & port

NeXTLaser-400

machportdevice
% pixel-encoding description

This example sets up an 8 by 10 inch page on the same 8.5 by 11 inch page. It
specifies a 400 dpi raster with 1/4 inch horizontal margins and 1/2 inch vertical
margins:

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

/topdots dpi .5 mul cvi def

/leftdots dpi .25 mul cvi def

wj,.dth height
[

% page bitmap dimensions in pixels

leftdots

topdots

width leftdots sub

height topdots sub
]

[

% imageable area of bounding box

dpi 72 div

o
o
dpi -72 div

leftdots

height topdots sub

() (nlp-123)

NeXTLaser-400

machportdevice

% device transform

% host (local) & port

% pixel-encoding description

Note that in this example, we've chosen to put the user space origin at the lower
left comer of the imageable area (leftdots, height-topdots) in the device raster
coordinate system. Usually, the imageable area is meant to correspond with the
ultimate destination of the bits. For example, a printer may have a
constant-sized pagebuffer with a fixed orientation in the paper path, but be able
to accept various sizes of paper. In this case, the page bitmap size will always
be fixed, but the imageable area and default device transformation can be
adjusted to make the user space origin appear at the lower left comer of each
printed page.

ERRORS
invalidaccess, Iimitcheck, rangecheck, stackunderflow, typecbeck

machportdevice 4-21

movewindow x y window movewindow - % internal

newinstance

nextrelease

Moves the lower left comer of the specified window to the screen coordinates (x, y).
No portion of the repositioned window can have an x or y coordinate with an
absolute value greater than 16000. The operands can be integer, real, or radix
numbers; however, they are converted to integers in the Window Server by
rounding toward O.

The window need not be the frontmost window. This operator doesn't change
window's ordering in the screen list.

Normally you should use the Window object's moveTo:: method instead of this
operator. Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
currentwindowbounds, placewindow

- newinstance -

Removes any instance drawing from the current window.

ERRORS
invalidid

SEE ALSO
hideinstance, setinstance

- nextrelease string

Returns version information about this release of the NeXT Window Server.

ERRORS
stackoverflow

SEE ALSO
osname, ostype

4~22 Chapter 4: PostScript Operators

NextStepEncoding

obscurecursor

- NextStepEncoding array

Pushes the NextStepEncoding vector on the operand stack. This is a 256-element
array, indexed by character codes, whose values are the character names for those
codes. See Chapter 6 of the NeXT Technical Summaries manual for a table listing
the character names and corresponding characters of this vector.

ERRORS
stackoverflow

SEE ALSO
StandardEncodingVector

- obscurecursor -

Removes the cursor image from the screen until the next time the mouse is moved.
It's usually called in response to typing by the user, so the cursor won't be in the
way. If the cursor has already been removed due to an obscurecursor call,
obscurecursor has no effect.

ERRORS
none

SEE ALSO
hidecursor, revealcursor

NextStepEncoding 4-23

orderwindow place otherwindow window orderwindow - % internal

Orders window in the screen list as indicated by place and otherwindow. place can
be Above, Below, or Out.

• If place is Above or Below, the window is placed in the screen list immediately
above or below the window specified by otherwindow.

• If place is Above or Below and otherwindow is 0, the window is placed above
or below all windows in the screen list.

• If place is Above or Below, otherwindow must be a window in the screen list;
otherwise, the invalidid error is executed.

• If place is Out, otherwindow is ignored, and the window is removed from the
screen list, so it won't appear anywhere on the screen. Windows that aren't in
the screen list don't receive user events.

Since the workspace is a window in the screen list, Below 0 will make the specified
window disappear behind all other windows, including the workspace. To place a
window just above the workspace window, you can use Above
workspace Window. (workspace Window is a PostScript name whose value is the
window number of the workspace window.)

Note: orderwindow doesn't change which window is the current window.

Normally you should use the Window object's orderWindow:relativeTo: method
instead of the orderwindow operator. Use this operator only if you're bypassing
the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
frontwindow

4-24 Chapter 4: PostScript Operators

osname

ostype

- osname string

Returns a string identifying the operating system of the Window Server's current
operating environment. osname is defined in the status diet dictionary, a
dictionary that defines operators specific to a particular implementation of the
PostScript language. See the PostScript Language Reference Manual for more
information on statusdiet. osname can be executed as follows:

statusdict /osname get exec

The NeXT version of the Window Server returns the string:

(NeXT Mach)

ERRORS
none

SEE ALSO
nextrelease,ostype

- ostype int

Returns a number identifying the operating system of the Window Server's current
operating environment. ostype is defined in the statusdiet dictionary, a dictionary
that defines operators specific to a particular implementation of the PostScript
language. See the PostScript Language Reference Manual for more information on
statusdiet. ostype can be executed as follows:

statusdict /ostype get exec

The NeXT version of the Window Server returns the number 3 to indicate the
operating system is a variant of UNIX.

ERRORS
none

SEE ALSO
nextrelease, os name

osname 4-25

placewindow x y width height window placewindow - % internal

Repositions and resizes the specified window, effectively allowing it to be resized
from any comer or point. x, y, width, and height are given in the screen coordinate
system. No portion of the repositioned window can have an x or y coordinate with
an absolute value greater than 16000; width and height must be in the range from
o to 10000. The four operands can be integer or real numbers; however, they are
converted to integers in the Window Server by rounding toward O.

placewindow places the lower left comer of the window at (x, y) and resizes it to
have a width of width and a height of height. The pixels that are in the intersection
of the old and new positions of the window survive unchanged (see Figure 4-2).
Any other areas of the newly positioned window are filled with the window's
exposure color (see setexposurecolor).

This is what the window
looks like before placewindow
is called. Notice which pixels
survive unchanged after the
call to placeWindow. This
allows a window to be resized
from any corner or point.

Before placewindow

Figure 4-2. placewindow

(x, y)

width

the window
~ fore placewindow
~ otice which pixels

hanged after the

After placewindow

After moving or resizing a window with placewindow, you must execute the
initmatrix and initclip operators to reestablish the window's default
transformation matrix and default clipping path.

Normally you should use the Window object's placeWindow: method instead of
the placewindow operator. The place Window: method reestablishes the
window's transformation matrix and clipping path for you. Use the placewindow
operator only if you're bypassing the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
currentwindowbounds, movewindow, setexposurecolor

4-26 Chapter 4: PostScript Operators

playsound

posteventbycontext

soundname priority playsound -

Plays the sound soundname. The Window Server searches for a standard NeXT
soundfile of the name

soundname.snd

The search progresses through the following directories in the order given,
stopping when the sound is located.

-!Library ISounds
!LocalLibrary ISounds
/NextLibrary ISounds

No error occurs if the soundfile isn't found: The operator has no effect.

The soundfile's playback is assigned the priority level priority. The playback
interrupts any currently playing sound of the same or lower priority level.

ERRORS
stackunderflow, typecheck

type x y time flags window subType miscO misc} context posteventbycontext bool

Posts an event to the specified context. The nine parameters preceding the context
parameter coincide with the NXEvent structure members (see dpsclient/events.h).
The x and y coordinate arguments are passed directly to the receiving context
without undergoing any transformations. window is the Window Server's global
window number. Returns true if the event was successfully posted to context, and
false otherwise.

You might use this operator to post an application-defined event to your own
application. Use Mach messaging to communicate between applications.

ERRORS
stackunderflow, typecheck

playsound 4-27

read image x y width height proco [... procn_IJ string boo I readimage -

Reads the pixels that make up a rectangular image described by x, y, width, and
height in the current window. (Most programmers should use NXReadBitmapO
instead of this operator.)

Usually the image is the rectangle that has a lower left comer of (x, y) in the current
coordinate system and a width and height of width and height. If the axes have been
rotated so that the sides of the rectangle are no longer aligned with the edges of the
screen, the image is the smallest screen-aligned rectangle enclosing the given
rectangle. In any case, the pixels included in the image are determined by the rules
given in the Concepts manual, under "Imaging Conventions."

You would typically call sizeimage before readimage (sending it the same x, y,
width, and height values you'll use for readimage) to find out ncolors, the number
of color components that readimage must read. bool is a boolean value that
determines whether read image reads the alpha component in addition to the color
component(s) for each pixel. The total number of components to be read for each
pixel, together with the multiproc value returned by sizeimage, determine n, the
number of procedures that readimage requires. If multiproc is false, n equals 1.
Otherwise, n equals the number of color components plus the alpha component, if
present.

readimage executes the procedures in order, 0 through n-i, as many times as
needed. For each execution, it pushes on the operand stack a substring of string
containing the data from as many scanlines as possible. The length of the substring
is a multiple of

width * bits/sample * (samples/proc) / 8

rounded up to the nearest integer. (The width and bits/sample values are provided
by the sizeimage operator. samples is the number of color components plus 1 for
the alpha component, if present.)

The samples are ordered and packed as they are for the image, colorimage, or
alphaimage operator. For example, the alpha component is last and, if necessary,
extra bits fill up the last character of every scanline. Note that the contents of string
are valid only for the duration of one call to one procedure because the same string
is reused on each procedure call. The rangecheck error is executed if string isn't
long enough for one scanline.

ERRORS
rangecheck, stackunderflow, typecheck

SEE ALSO
alphaimage, sizeimage

4-28 Chapter 4: PostScript Operators

renderbands proc renderbands - % undefined

revealcursor

rightbuttondown

rightstilldown

This standard PostScript operator is not defined in the NeXT implementation of the
Display PostScript system.

- revealcursor -

Redisplays the cursor that was hidden by a call to obscurecursor, assuming that
the cursor hasn't already been revealed by mouse movement. If the cursor hasn't
been removed from the screen by a call to obscure cursor, revealcursor has no
effect.

ERRORS
none

SEE ALSO
obscurecursor

- rightbuttondown bool

Returns true if the right mouse button is currently down; otherwise it returns false.

Note: To test whether the right mouse button is still down from a mouse-down
event, use rightstilldown instead of rightbuttondown; rightbuttondown will
return true even if the mouse button has been released and pressed again since the
original mouse-down event.

ERRORS
none

SEE ALSO
buttondown, currentmouse, rightstilldown, stilldown

eventnum rightstilldown bool

Returns true if the right mouse button is still down from the mouse-down event
specified by eventnum; otherwise it returns false. eventnum should be the number
stored in the data component of the event record for an event of type
Rmousedown.

ERRORS
stackunderflow, typecheck

SEE ALSO
buttondown, currentmouse, rightbuttondown, stilldown

renderbands 4-29

screenlist

screentobase

array context screenlist subarray

Fills the array with the window numbers of all windows in the screen list that are
owned by the PostScript context specified by context. It returns the subarray
containing those window numbers, in order from front to back. If array isn't large
enough to hold them all, this operator will return the frontmost windows that fit in
the array.

If context is 0, all windows in the screen list are returned.

EXAMPLE
This example yields an array containing the window numbers of all windows
in the screen list that are owned by the current PostScript context:

current context

countscreenlist % find out how many windows

array % create array to hold them

current context screenlist % fill it in

ERRORS
invalidaccess, invalidid, rangecheck, stack underflow, typecheck

SEE ALSO
countscreenlist, countwindowlist, windowlist

x y screentobase x' y'

Converts (x, y) from the screen coordinate system to the current window's base
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, type check

SEE ALSO
basetocurrent, basetoscreen, currenttobase, currenttoscreen,
screentocurrent

4-30 Chapter 4: PostScript Operators

screentocurrent x y screentocurrent x' y'

setactiveapp

setalpha

Converts (x, y) from the screen coordinate system to the current coordinate system
of the current window. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, currenttobase, currenttoscreen,
screentobase

context setactiveapp - % internal

Records the active application's main (usually only) context. setactiveapp is used
by the window packages to assist with wait cursor operation.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currentactiveapp

coverage setalpha -

Sets the coverage parameter in the current window's graphics state to coverage.
coverage must be a number between 0 and 1, with 0 corresponding to transparent,
1 corresponding to opaque, and intermediate values corresponding to partial
coverage. This establishes how much background shows through for purposes of
compositing.

ERRORS
stackunderflow, typecheck, undefined

SEE ALSO
composite, currentalpha, setgray, sethsbcolor, setrgbcolor

screentocurrent 4-31

setautofill

setcursor

bool window setautofill -

Applies only to nonretained windows; sets the autofill property of window to true
orfalse. If true, newly exposed areas of the window or areas created by
placewindow will automatically be filled with the window's exposure color. If
false, these areas will not change (typically they will continue to contain the image
of the last window in that area). If the current device is not a window, this operator
executes the invalidid error.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
placewindow, setexposurecolor, setsendexposed

x y mx my setcursor -

Sets the cursor image and hot spot. Rather than executing this operator directly,
you'd normally use a NXCursor object to define and manage cursors.

A cursor image is derived from a 16-pixel-square image in a window that's
generally placed off-screen. The x and y operands specify the upper left comer of
the image in the window's current coordinate system. The mx and my operands
specify the relative offset (in units of the current coordinate system) from (x, y) to
the hot spot, the point in the cursor that coincides with the mouse location.
Assuming the current coordinate system is the base coordinate system, mx must be
an integer from 0 to 16, and my must be an integer from 0 to -16. After setcursor
is executed, the image in the window is no longer needed.

The cursor is placed on the screen using Sover compositing. The cursor's opaque
areas (alpha = 1) completely cover the background, while its transparent areas
(alpha < 1) allow the background to show through to a greater extent depending on.
the alpha values present in the cursor image.

Note: To make the off-screen window transparent, you can use compositerect
with Clear.

The rangecheck error is executed if the image doesn't lie entirely within the
specified window or if the point (mx, my) isn't inside the image. If the current
device isn't a window, the invalidid error is executed.

ERRORS
invalidid, rangecheck, stackunderflow, type check

SEE ALSO
hidecursor, obscurecursor, setmouse

4-32 Chapter 4: PostScript Operators

setdefaultdepthlimit depth setdefaultdepthlimit - % internal

Sets the current context's default depth limit to depth. The Window Server assigns
each new context a default depth limit equal to the maximum depth supported by
the system. When a new window is created, its depth limit is set to its context's
default depth limit.

These depths are defined in nextdict:

Depth Meaning

NX_ TwoBitGray
NX_EightBitGray

1 spp, 2bps, 2bpp, planar
1 spp, 8bps, 8bpp, planar

NX_ TwelveBitRGB
NX_ TwentyFourBitRGB

3 spp, 4bps, 16bpp, interleaved
3 spp, 8bps, 32bpp, interleaved

where spp is the number of samples per pixel; bps is the number of bits per sample;
and bpp is the number of bits per pixel, also known as the window's depth. (The
samples-per-pixel value excludes the alpha sample, if present.) planar and
interleaved refer to how the sample data is configured. If a separate data channel
is used for each sample, the configuration is planar. If data for all samples is stored
in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it's present;
thus, the number of bits per pixel for NX_TwelveBitRGB and
NX_TwentyFourBitRGB depths remains unchanged.

The constant NX_DefaultDepth is also available. If depth is NX_DefaultDepth,
the context's default depth limit is set to the Window Server's maximum visible
depth, which is determined by which screens are active.

The rangecheck error is executed if depth is invalid.

ERRORS
rangecheck, stackunderflow, typecheck

SEE ALSO
currentdefaultdepthlimit, setwindowdepthlimit,
currentwindowdepthlimit, currentwindowdepth

setdefaultdepthlimit 4-33

seteventmask mask window seteventmask - % internal

Sets the Server-level event mask for the specified window to mask. For windows
created by the window packages, this mask may allow additional event types
beyond those requested by the application. The following operand names are
defined for mask:

mask

Lmousedownmask
Lmouseupmask
Rmousedownmask
Rmouseupmask
~ousemovedmask

Lmousedraggedmask
Rmousedraggedmask
~ouseenteredmask

~ouseexitedmask

Keydownmask
Keyupmask
Flagschangedmask
Kitdefinedmask
Sysdefinedmask
Appdefinedmask
Allevents

Event Type Allowed

~ouse-down, left or only mouse button
~ouse-up, left or only mouse button
~ouse-down, right mouse button
~ouse-up, right mouse button
~ouse-moved

~ouse-dragged, left or only mouse button
~ouse-dragged, right mouse button
~ouse-entered

~ouse-exited

Key-down
Key-up
Flags-changed
Kit-defined
System-defined
Application-defined
All event types

Normally you should use the Window object's setEventMask: method instead of
the seteventmask operator. Use this operator only if you're bypassing the
Application Kit.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
currenteventmask

4-34 Chapter 4: PostScript Operators

setexposurecolor

setflushexposures

setinstance

- setexposurecoJor -

Applies to nonretained windows only; sets the exposure color to the color specified
. by the current color parameter in the current graphics state. The exposure color
(white by default) determines the color of newly exposed areas of the window and
of new areas created by pJacewindow. The alpha value of these areas is always 1
(opaque). If the current device is not a window, this operator executes the invalidid
error.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
pJacewindow, setautofill, setsendexposed

bool setflushexposures - % internal

Sets whether window-exposed and screen-changed subevents are flushed to clients.
If bool isfalse, no window-exposed or screen-changed events are flushed to the
client until setflushexposures is executed with bool equal to true. By default,
window-exposed and screen-changed events are flushed to clients.

ERRORS
invalidid, stack underflow, typecheck

bool setinstance -

Sets the instance-drawing mode in the current graphics state on (if bool is true) or
off (if bool isfalse).

ERRORS
stackunderflow, typecheck

SEE ALSO
hideinstance, newinstance

setexposurecolor 4-35

setmouse x y setmouse -

setowner

Moves the mouse location (and, correspondingly, the cursor) to (x, y), given in the
current coordinate system. If the current device isn't a window, the invalidid error
is executed.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
adjustcursor, basetocurrent, currentmouse, screentocurrent

context window setowner -

Sets the owning PostScript context of window to context. The window is
terminated automatically when context is terminated.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
currentowner, termwindow, window

setpattern patternname setpattern -

Sets the current pattern parameter in the graphics state to patternname. The pattern
overrides the current color in the graphics state. Pattern drawing is automatically
disabled when any other operator sets the current color in the graphics state (for
example, setgray, setrgbcolor, or setalpba). This operator should be used for
drawing user interface elements that can't be drawn in one of the four pure gray
values. By using a dither pattern rather than an intermediate shade of gray, you
avoid having windows promoted to greater depths on the basis of stan.dard
user-interface features. For example, Scroller uses a pattern to draw the gray shade
behind the knob.

Only the following three patterns (defined in nextdict) are permitted:

NX_MediumGrayPattern
NX_LightGrayPattern
NX_DarkGrayPattern

(50% dither of .333 and .666 gray)
(50% dither of .666 and 1.0 gray)
(50% dither of 0 and .333 gray)

The setpattern operator only works if the current device is a window; if it's
something other than a window (such as a printer, as set by macbportdevice) an
error occurs.

4-36 Chapter 4: PostScript Operators

setsendexposed

settrackingrect

This operator will be superseded by PostScript Level 2 's setpattern operator. (The
above patterns will continue to work, however.)

ERRORS
invalidid, stackundertlow

SEE ALSO
adjustcursor, basetocurrent, currentmouse, screentocurrent

bool window sets end exposed - % internal

Controls whether the Window Server generates a window-exposed subevent (of the
kit-defined event) for window under the following circumstances:

• Nonretained window: When an area of the window is exposed, or a new area
is created by pJacewindow

• Retained or buffered window: When an area of the window that had instance
drawing in it is exposed

By default, window-exposed subevents are generated under these circumstances.
In any case, the window-exposed subevent isn't flushed to the application until the
Window Server receives another event.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
settlushexposures, pJacewindow, setautofilI, setexposurecoJor

x y width height le/tbool rightbool insidebool userdata trectnum gstate
settrackingrect -

Sets a tracking rectangle in the window referred to by gstate to the rectangle
specified by x, y, width, and height (in the coordinate system of that graphics state).
(If gstate is null, the window referred to by the current graphics state is used.) The
application will thereafter receive mouse-exited and mouse-entered events as the
cursor leaves and reenters the visible portion of the tracking rectangle. Any
number of tracking rectangles may be set in a single window.

Note: You normally use the Window class's
setTrackingRect:inside:owner:tag:Jeft:right: method for general cursor
tracking. To track the cursor and change its image based on its location, you'd
normally use the Window class's cursor management methods such as
addCursorRect:cursor:for View:.

setsendexposed 4-37

trectnum is an arbitrary integer that can be any number except 0. It's used to
identify tracking rectangles; no two tracking rectangles can share the same
trectnum value. In the event record for a mouse-exited or mouse-entered event
generated as a result of this call to settrackingrect, the data component will
contain trectnum along with the event number of the last mouse-down event.

userdata is also an arbitrary integer that you assign to a tracking rectangle.
However, since several tracking rectangles can share the same userdata value, you
can use user data to identify an object in your application that will be notified when
a mouse-entered or mouse-exited event occurs in any of the tracking rectangles.

The tracking rectangle will remain in effect until c1eartrackingrect is called, or
until another tracking rectangle with the same trectnum is set.

You can specify that mouse-entered and mouse-exited events be generated only if
certain mouse buttons are down. If leftbool is true, the events will be generated
only when the left mouse button is down; likewise for rightbool and the right mouse
button. If both leftbool and rightbool are true, the events will be generated only if
both mouse buttons are down. If both leftbool and rightbool arefalse, the position
of the mouse buttons isn't taken into account in generating mouse-entered and
mouse-exited events.

settrackingrect causes the Window Server to repeatedly compare the current
cursor position to the previous one to see whether the cursor has moved from inside
the tracking rectangle to outside it or vice versa. insidebool tells settrackingrect
whether to consider the initial cursor position to be inside or outside the tracking
rectangle:

• If insidebool is true and the cursor is initially outside the tracking rectangle, a
mouse-exited event is generated.

• If insidebool is false and the cursor is initially inside the tracking rectangle, a
mouse-entered event is generated.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
c1eartrackingrect

setwaitcursorenabled bool context setwaitcursorenabled -

Allows applications to enable and disable wait cursor operation in the specified
context. If context is 0, setwaitcursorenabled sets the global wait cursor flag,
which overrides all per-context settings. If the global flag is set to false, the wait
cursor is disabled for all contexts.

4-38 Chapter 4: PostScript Operators

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currentwaitcursorenabled

setwindowdepthlimit depth window setwindowdepthlimit - % internal

Sets the depth limit of window to depth. These depths are defined in nextdict:

Depth

NX_ TwoBitGray
NX_EightBitGray
NX_ TwelveBitRGB
NX_ TwentyFourBitRGB

Meaning

1 spp, 2bps, 2bpp, planar
1 spp, 8bps, 8bpp, planar
3 spp, 4bps, 16bpp, interleaved
3 spp, 8bps, 32bpp, interleaved

where spp is the number of samples per pixel; bps is the number of bits per sample;
and bpp is the number of bits per pixel, also know as the window's depth. (The
samples-per-pixel value excludes the alpha sample, if present.) planar and
interleaved refer to how the sample data is configured. If a separate data channel
is used for each sample, the configuration is planar. If data for all samples is stored
in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it's present;
thus, the number of bits per pixel for NX_ TwelveBitRGB and
NX_TwentyFourBitRGB depths remains unchanged.

Another constant, NX_DefaultDepth, is defined as the default depth limit in the
Window Server's current context. If depth is NX_DefaultDepth, then the window's
depth limit is set to the context's default depth limit. If the resulting depth is lower
than the window's current depth, the window's data is dithered down to this depth,
which may result in the loss of graphic information.

The rangecheck error is executed if depth is invalid. The invalidid error is
executed if window doesn't exist.

ERRORS'
invalidid, rangecheck, stack underflow, typecheck

SEE ALSO
currentwindowdepthlimit, setdefaultdepthlimit,
currentdefaultdepthlimit, currentwindowdepth

setwindowdepthlimit 4-39

setwindowdict

setwindowlevel

setwindowtype

diet window setwindowdict - % internal

Sets the dictionary for window to diet. This is usually done by the Application Kit.

Every window created by the Application Kit has a dictionary associated with it.
Since the Application Kit uses this dictionary internally, direct manipulation of it
will probably cause errors. Avoid using this operator.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
currentwindowdict

level window setwindowlevel -

Sets the window's tier to that specified by level. Window tiers constrain the action
of the orderwindow operator; see orderwindow for more information.

You rarely use this operator. To make a panel float above other windows, use the
Panel class's setFloatingPanel: method.

Attempting to change the level of workspace Window executes the invalidaccess
error. (workspaceWindow is a PostScript name whose value is the window
number of the workspace window.)

ERRORS
invalidaccess, invalidid, rangecheck, stackundertlow, typecheck

SEE ALSO
currentwindowlevel, orderwindow

type window setwindowtype -

Sets the window's buffering type to that specified. Currently, the only allowable
type conversions are from Buffered to Retained and from Retained to Buffered. All
other possibilities execute the Iimitcheck error.

ERRORS
invalidaccess, invalidid, Iimitcheck, stackunderflow, typecheck

SEE ALSO
window

4-40 Chapter 4: PostScript Operators

setwriteblock

showcursor

bool setwriteblock -

Sets how the Window Server responds when its output buffer to a client application
fills. If bool is true, the Server defers sending data (event records, error messages,
and so on) to that application until there's once again room in the output buffer. In
this way, no output data is lost-this is the Server's default behavior. If bool is
false, the Server ignores the state of the output buffer: If the buffer fills and there's
more data to be sent, the new data is lost. setwriteblock operates on the current
context.

Most programmers won't need to use this operator. If you do use it, make sure that
you disable the Window Server's default behavior only during the execution of
your own PostScript code. If it's disabled while Application Kit code is being
executed, errors will result. .

ERRORS
stackovertlow, typecheck

SEE ALSO
currentwriteblock

- showcursor -

Restores the cursor to the screen if it's been hidden with hidecursor, unless an
outer nested hidecursor is still in effect (because it hasn't yet been balanced by a
showcursor). For example:

% cursor is showing initially

hidecursor % hides the cursor

hidecursor % cursor stays hidden

showcursor % cursor still hidden due to first hidecursor

showcursor

ERRORS
none

SEE ALSO
hidecursor

% displays the cursor

setwriteblock 4-41

showpage

sizeimage

- showpage - % different in the NeXT implementation

This standard PostScript operator has no effect if the current device is a windo~.

ERRORS
none

SEE ALSO
copypage,erasepage

x y width height matrix sizeimage pixelswide pixelshigh bits/sample matrix
multiproc ncolors

Returns various parameters required by the read image operator when reading the
image contained in the rectangle given by x, y, width, and height in the current
window. (See read image for more information.)

pixelswide and pixelshigh are the width and height of the image in pixels. The
operand matrix is filled with the transformation matrix from user space to the image
coordinate system and pushed back on the operand stack.

The other results of this operator describe the window device and are dependent on
the window's depth. Each pixel has ncolors color components plus one alpha
component; the value of each component is described by bits/sample bits. If
multiproc is true, read image will need multiple procedures to read the values of
the image's pixels. Here are the values that sizeimage returns for windows of
various depths:

Window Depth

NX_TwoBitGray
NX_EightBitGray
NX_TwelveBitRGB
NX_TwentyFourBitRGB

ERRORS
stackunderflow, typecheck

SEE ALSO
aiphaimage, readimage

ncolors

1
1
3
3

bits/sample

2
8
4
8

multiproc

true
true
false
false

4-42 Chapter 4: PostScript Operators

stilldown

termwindow

eventnum stilldown boo I

Returns true if the left or only mouse button is still down from the mouse-down
event specified by eventnum; otherwise it returns false. eventnum should be the
number stored in the data component of the event record for an event of type
Lmousedown.

ERRORS
stackunderflow, typecheck

SEE ALSO
buttondown, currentmouse, rightbuttondown, rightstilldown

window termwindow - % internal

Marks window for destruction. If the window is in the screen list, it's removed from
the screen list and the screen. The given window number will no longer be valid;
any attempt to use it will execute the invalidid error. The window will actually be
destroyed and its storage reclaimed only after the last reference to it from a
graphics state is removed. This can be done by resetting the device in the graphics
state to another window or to the null device.

Note: After you use the termwindow operator, if the terminated window had been
the current window, you should use the null device operator to remove references
to it.

Normally you should use the Window object's close method instead of the
termwindow operator. Use this operator only if you're bypassing the Application
Kit.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
window, windowdevice, windowdeviceround

stilldown 4-43

window x y width height type window window % internal

Creates a window that has a lower left comer of (x, y) and the indicated width and
height. x, y, width, and height are given in the screen coordinate system. No
portion of a window can have an x or y coordinate with an absolute value greater
than 16000; width and height must be in the range from 0 to 10000. Exceeding
these limits executes the rangecheck error. The four operands can be integer or
real numbers; however, they are converted to integers in the Window Server by
rounding toward O. This operator returns the new window's wIndow number, a
nonzero integer that's used to refer to the window.

type specifies the window's buffering type as Buffered, Retained, or
Nonretained.

The new window won't be in the screen list; you can put it there with the
orderwindowoperator. Windows that aren't in the screen list don't appear on the
screen and don't receive user events.

The window operator also does the following:

• Sets the origin of the window's base coordinate system to the lower left comer
of the window

• Sets the window's clipping path to the outer edge of the window

• Fills the window with opaque white and sets the window's exposure color to
white

Note: This operator does not make the new window the current window; to do that,
use windowdeviceround or windowdevice.

Normally you should use the Window object's
newContent:style:backing:buttonMask:defer: method instead of the window
operator. Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
setexposurecolor, termwindow, windowdeviceround

4-44 Chapter 4: PostScript Operators

windowdevice

windowdeviceround

window windowdevice -

Sets the current device of the current graphics state to the given window device. It
also sets the origin of the window's default matrix to the lower left comer of the
window. One unit in the user coordinate system is made equal to 1/72 of an inch.
The clipping path is reset to a rectangle surrounding the window. Other elements
of the graphics state remain unchanged. This matrix becomes the default matrix
for the window: initmatrix will reestablish this matrix.

windowdevice is rarely used in NeXT step since the coordinate system it
establishes isn't aligned with the pixels on the screen. Use the related operator
windowdeviceround to create a coordinate system that is aligned.

Don't use this operator lightly, as it creates a new matrix and clipping path. It's
significantly more expensive than a setgstate operator.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
windowdeviceround

window windowdeviceround -

Sets the current device of the current graphics state to the given window device. It
also sets the origin of the window's default matrix to the lower left comer of the
window. One unit in the user coordinate system is made equal to the width of one
pixel, approximately 1/92 inch. The clipping path is reset to a rectangle
surrounding the window. Other elements of the graphics state remain unchanged.
This matrix becomes the default matrix for the window: initmatrix will reestablish
this matrix.

Don't use this operator lightly, as it creates a new matrix and clipping path. It's
significantly more expensive than a setgstate operator.

ERRORS
invalidid, stackunderflow, typecbeck

SEE ALSO
windowdevice

windowdevice 4-45

windowlist array context windowlist subarray

Fills the array with the window numbers of all windows that are owned by the
PostScript context specified by context. It returns the subarray containing those
window numbers, in order from front to back. If array isn't large enough to hold
them all, this operator returns the frontmost windows that fit in the array.

EXAMPLE
This example yields an array containing the window numbers of all windows
that are owned by the current PostScript context:

current context

countwindowlist

array

current context windowlist

ERRORS
stackunderflow, typecbeck

SEE ALSO

% find out how many windows

% create array to hold them

% fill it in

countscreenlist, countwindowlist, screenlist

4-46 Chapter 4: PostScript Operators

Chapter 5
Data Formats

5-3 NXAsciiPboardType

5-4 NXPostScriptPboardType

5-4 NXTIFFPboardType
5-4 Unsupported Fields
5-4 The Matte Field
5-5 Multiple Images
5-5 Compression

5-5 NXRTFPboardType

5-6 NXSoundPboardType

5-6 NXFilenamePboardType

5-6 NXTabularTextPboardType

5-6 NXFontPboardType

5-7 NXRulerPboardType

5-1

5-2

Chapter 5
Data Formats

To make it easier for applications to share information, the NeXTstep pasteboard supports
a small number of standard data formats. Each format, or type, is identified by a global
variable:

Variable Name

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType
NXFontPboardType
NXRulerPboardType

Type Description

Plain ASCII text
Encapsulated PostScript code (BPS)
Tag Image File Format (TIFF)
Rich Text Format (RTF)
The Sound object's pasteboard type
ASCII text designating a file name
Tab-separated fields of ASCII text
Font and character information
Paragraph formatting information

Data in other formats can also be placed in the pasteboard. However, the sending and
receiving applications must both agree on the structure of the format, its name, and how to
interpret it. Other formats may be adopted as standards in the future.

Each of the standard formats is discussed below. In most cases, the discussion is short and
consists only of a reference to the primary source document for the format. In some cases,
more information is given on modifications to or interpretations of the format in the
NeXTstep environment.

NXAsciiPboardType

Text in this format consists only of characters from the ASCII character set as extended by
NeXTstep encoding. None of the characters is given a special interpretation (in contrast to
NXTabularTextPboardType and NXFilenamePboardType, for example). Standard ASCII
is documented on-line in /usr/pub/ascii and the ascii(7) lnanual page. NeXTstep encoding
is documented in Chapter 6 of the NeXT Technical Summaries manual.

NXAsciiPboardType 5-3

NXPostScriptPboardType

This type is defined as PostScript code in the Encapsulated PostScript Files format (EPS).
The PostScript language is documented by Adobe Systems Incorporated, principally in the
PostScript Language Reference Manual, published by Addison-Wesley. EPS conventions
are documented in Encapsulated PostScript Files Specification, by Adobe Systems
Incorporated.

NXTIFFPboardType

This type is for image data in Tag Image File Format (TIFF). TIFF is documented in Tag
Image File Format Specification, by Aldus Corporation and Microsoft Corporation.

TIFF support in the current NeXT step release follows version 5.0 of the TIFF standard and
is based on version 2.2 of Sam Leffler's freely distributed TIFF library. This library
provides a good set of routines for dealing with TIFF files that conform to the 5.0
specification.

NeXTstep TIFF support is embodied in the NXBitmapImageRep class and the
command-line program tiffutil. See "NXBitmapImageRep" in Chapter 2, "Class
Specifications" and the tiffutil manual page for more information.

Unsupported Fields

In the current release, some fields-principally those having to do with response curves
will be read correctly but ignored when imaging the data. Color palettes are not supported
except when the palette entries are 8 bits and the stored colors are 24 bits. These files will
be read correctly and converted to 24-bit images on the fly.

The Matte Field

The 5.0 TIFF specification has been extended to include a Matte field (tag 32995), which
indicates the presence or absence of a coverage component (alpha) in the data. This field
is a SHORT with a value of 1 or O. A value of 1 indicates that a coverage component is
present and that the color components are premultiplied by the alpha values. The coverage
component follows the color components in the data. The absence of this field or a value
of 0 indicates that no coverage component is present; the image is opaque.

TIFF files generated by release 1.0 of NeXT step did not contain a Matte field. Instead, to
indicate the presence of a coverage component, the value of the SamplesPerPixel field was
set to 2 and the value of the Photometric Interpretation field was set to 5. Release 2.0
software recognizes these files as containing alpha despite the lack of a Matte field. Thus
all TIFF files generated by 1.0 software will be interpreted correctly.

5-4 Chapter 5: Data Formats

Multiple Images

Multiple fonns of an image can now be stored in the same file-that is, under the same TIFF
header. "Multiple fonns" might mean the same image at different resolutions (for example,
72dpi and 400dpi) and at different bit depths or colors (for example, 2 bits per sample on a
gray scale and 4 bits per sample ROB).

This feature is useful when you want to create color icons for an application and its
documents. It's best to create both gray scale and color versions of the icons and store them
in the same section of the ICON segment. Both versions of the icon would be created at
72 dpi and would be 48 pixels wide by 48 pixels high. The gray-scale version would have
two components (gray and alpha), with each component stored at 2 bits. The color version
would have 4 components (red, green, blue, and alpha) and each component would be 4 bits
deep. (It's recommended that application and document icons be stored at 4 bits per
sample, not 8.)

Compression

NeXTstep software can both read and write compressed TIFF images. The Compression
field in a TIFF file can have any of the following values:

Compression Value

1
5

32773
32865

Compression Type

No compression
LZW (Lempel-Ziv & Welch) compression
PackBits compression
JPEO compression

JPEO compression can be used only for images that have a depth of at least 4 bits per
sample.

NXRTFPboardType

This is the pasteboard type for "rich text," text that follows the conventions of the Rich Text
Fonnat®, as described in Rich Text Format Specification by Microsoft Corporation.

To this specification, NeXT has added a control word to indicate how the user selected the
text before copying it to the pasteboard. The control word is

\smartcopy<num>

where <num> can be 1 or O. A value of 1 indicates that the user made the selection by
double-clicking a word, or double-clicking and dragging over a group of words. The range
of text in the pasteboard will be delimited by a word boundary on either side. The pasting
application can use this infonnation to correctly adjust the spacing around the word or
words that are pasted.

NXRTFPboardType 5-5

NXSoundPboardType

This format is defined by the SNDSoundStruct structure in the header file
sound/soundstruct.h. The structure and the methods for writing sound data to and reading
it from the pasteboard are discussed in more detail in Sound, Music, and Signal Processing.

NXFilenamePboardType

This format is a list of tab-separated file names (or pathnames), terminated by a null
character ('\0').

NXTabularTextPboardType

This format is ASCII text where tabs (ASCII Ox09) and returns or new lines (ASCII OxOD)
are interpreted as separators between text fields. In a matrix, tabs separate columns and
returns separate rows. The text is null-terminated.

NXFontPboardType

This format is used in the font pasteboard to record character properties that are copied and
pasted using the Copy Font and Paste Font commands. It consists of RTF control words
from the "Font Table" and "Character Formatting Properties" groups.

The following is an example of character data in this format:

{\rtfl\ansi{\fonttbl\fO\froman Times;}

\fO\bO\i\ulO\fs48}

The first two control words, \rtfl and \ansi, announce that the information enclosed within
the outer braces is RTF version 1 in ANSI character encoding. These two control words,
or their equivalent, are required by RTF conventions.

The group within the inner braces defines a font table, here with a single entry specifying
font 0 to be Times-Roman. The font is then specified as Times-Roman (font 0), not bold,
Oblique (italic), not underlined, and having a font size of 24 points (48 half points).

5-6 Chapter 5: Data Formats

Among the fonts that can be specified in a font table are these:

\fmodern Courier;
\fswiss Helvetica;
\fmodern OhIfs;

\ftech Symbol;
\froman Times;

Several synonyms are recognized for the Times-Roman font. Usually it's written as
"Times" or "Times-Roman".

If the font pasteboard contains RTF control words that don't belong to the "Font Table" or
"Character Formatting Properties" groups, they should be ignored. If control words specify
more than one value for a font characteristic, the last value specified should be used when
pasting.

NXRulerPboardType

This format is used in the ruler pasteboard to capture information about how a paragraph is
formatted. It consists of RTF control words from the "Paragraph Formatting Properties"
group.

The following is an example of this type:

{\rtfl\ansi

\pard\ql\tx1252\tx2716\tx4148\tx5592\tx7004\txl1520
\fi-540\li1260}

The first two control words are required by RTF conventions, as explained under
"NXFontPboardType" above. The next control word, \pard, resets the paragraph format to
the default. The paragraph is then specified to be left-aligned and a series of six tabs are
set. Next, the indentation of the first line is specified and, finally, the left indent. (The
example is for a paragraph with a hanging indent.)

If the ruler pasteboard contains RTF control words that aren't in the "Paragraph Formatting
Properties" group, they should be ignored. If it includes control words that first set then
reset a paragraph property, the final specification should be the one that's used.

NXRuierPboardType 5-7

5-8

~allocO 3-164
_ copyO 3-164
_ deallocO 3-164
_ errorO 3-164
_reallocO 3-164

Index

_ zoneAllocO 3-164
_ zoneCopyO 3-164

zoneRealloc 3-164

abortEditing method 2-183
abortModal method 2-77
acceptArrowKeys: method 2-327
acceptColor:atPoint: 2-361,2-365,2-678
acceptsFirstMouse method 2-115,2-273,2-365,

2-424, 2-502, 2-526, 2-644
acceptsFirstResponder method 2-327, 2-484,

2-570,2-627
accessoryView method 2-220,2-440,2-480,2-494
action method 2-66,2-146,2-183,2-207,2-273,

2-327,2-365,2-461,2-502
ActionCell class

specification 2-65
activate: method 2-77,2-366
activateSelf: method 2-78
activeApp method 2-78
activeWellsTakeColorFrom: method 2-364
active WellsTakeColorFrom:continuous method

2-365
addCol method 2-273
addColumn method 2-327
addCursorRect:cursor: 2-644
addCursorRect:cursor:forView: 2-690
addElement: method 2-55
addEntry: method 2-228
addEntry:tag:target:action: 2-228
addFontTrait: method 2-208
addItem: method 2-461
addItem:action:keyEquivalent: 2-298
add Object: method 2-20
addObjectlfAbsent: method 2-21
addPort method 2-247
addRow method 2-274
addSubview: method 2-107, 2-644
addSubview: :relativeTo: 2-644
addToEventMask: method 2-691

addToPageSetup method 2-645
addWindowsItem:title:filename: 2-78
adjustcursor operator 4-1
adjustPageHeightNew:top: bottom:limit: 2-570,

2-645
adjustPage WidthNew:left:right:limit: 2-645
adjustScroll: method 2-646
adjustSubviews method 2-424
alignment method 2-146,2-183,2-571
alignSelCenter: method 2-571
alignSelLeft: method 2-571
alignSelRight: method 2-572
alloc method 2-33,2-76,2-197,2-207,2-219,

2-358,2-439,2-454,2-479,2-494
allocateGState method 2-646
allocFromZone method 2-33, 2-358
allocFromZone: method 2-76,2-197,2-207,

2-219,2-439,2-454,2-479,2-494
allowBranchSel: method 2-327
allowEmptySel: method 2-274
allowMultipleFiles: method 2-435
allowMultiSel: method 2-328
alphaimage operator 4-1
altIcon method 2-115, 2-128
altlmage method 2-115,2-128 .
altTitle method 2-115, 2-128
app:openFile:type: 2-100
app:openTempFile:type: 2-100
app:powerOMn:andSave: 2-100
app:unmounting: 2-101
appAcceptsAnotherFile: method 2-101
appDidBecomeActive: method 2-101
appDidHide: method 2-101
appDidlnit: method 2-101
appDidResignActive: method 2-101
appDidUnhide: method 2-102
appDidUpdate: method 2-102
appIcon method 2-79
Application class

specification 2-71
Application Kit

functions 3-3
applicationDefined: method 2-79, 2-102
appListener method 2-79
appListenerPortName method 2-79

Index-l

appName method 2-79
appSpeaker method 2-80
app WilHnit: method 2-102
appWiIITerminate: method 2-102
appWillUpdate: method 2-102
arrangelnFront: method 2-80
autoscroll: method 2-169,2-646
availableFonts method 2-208
awake method 2-39,2-107,2-146,2-169,2-199,

2-298,2-502,2-522,2-531,2-646,2-691

backgroundColor method 2-169,2-274,2-391,
2-512,2-572,2-627,2-634,2-691

backgroundGray method 2-170,2-274,2-512,
2-572, 2-627, 2-634, 2-692

bandevice operator 4-2
basetocurrent operator 4-3
basetoscreen operator 4-3
becomeActiveApp method 2-80
becomeFirstResponder method 2-484, 2-572
becomeKeyWindow method 2-572, 2-692
becomeMain Window method 2-692
beginModaISession:for: 2-80
beginPage:label:bBox:fonts: 2-647,2-692
beginPageSetupRect:placement: 2-647,2-693
beginPrologueBBox:creationDate:createdBy:

fonts:forWhom: pages: title: 2-648, 2-693
beginPSOutput method 2-649, 2-694
begin Setup method 2-649,2-694
beginTrailer method 2-649,2-695
bestRepresentation method 2-392
bestScreen method 2-695
bitsPerPixel method 2-312
bitsPerSample method 2-412
BOOL data type 1-8
borderType method 2-107,2-512
boundsAngle method 2-649
Box class

specification 2-105
branchlcon method 2-346
branchlconH method 2-346
breakTable method 2-573
browser:columnIsValid: 2-341
browserDidScroll: method 2-342
browser:fiIlMatrix:inColumn: 2-342
browser:getNumRowslnColumn: 2-342
browser:loadCell:atRow:inColumn: 2-342
browser:selectCell:inColumn: 2-343
browser:titleOfColumn: 2-343
browserWillScroll: method 2-343
Button class

specification 2-113

Index-2

ButtonCell class
constants 2-140
specification 2-123

buttondown operator 4-3
buttonMask method 2-695
byteLength method 2-573
bytesPerPlane method 2-312
bytesPerRow method 2-313

C functions 3-3
NeXT step functions 3-3
run-time functions 3-148
single-operator functions 3-141

Cache data type 1-8
calcCellSize: method 2-146, 2-616
calcCellSize:inRect: 2-128,2-147,2-236,2-346,

2-522, 2-531
calcDrawlnfo: method 2-147
calcLine method 2-573
calcParagraphStyle:: 2-574
calcRect:forPart: 2-502
calcSize method 2-183,2-228,2-274
calcTargetFor Action: method 2-81
calcUpdateRects:::: 2-650
canBecomeKeyWindow method 2-695
canBecomeMain Window method 2-696
cancel: method 2-494
canDraw method 2-650
canStoreColor method 2-696
capacity method 2-21
Category data type 1-8
Cell class

constants 2-165
specification 2-141

cell method 2-107, 2-183
cellAt:: 2-274
cellBackgroundColor method 2-275
cellBackgroundGray method 2-275
cellCount method 2-275
cellList method 2-275
cellPrototype method 2-328
center method 2-696
centerScanRect: method 2-650
changeButtonTitle: method 2-461
changeCount method 2-455
changeFont: method 2-574
changePrinter: method 2-480
changeTabStopAt:to: 2-574
change Windows:title:filename: 2-81
char Category Table method 2-574
charFilter method 2-575
char Wrap method 2-575
checklnAs: method 2-248
checkOut method 2-248
checkSpaceForParts method 2-503

checkSpelling: method 2-575
Class data type 1-8
class method 2-34,2-40
class_addClassMethodsO 3-151
class _ addInstanceMethodsO 3-151
class _ createInstanceO 3-149
class _ createInstanceFromZoneO 3-149
class _getClassMethodO 3-151
class _getInstanceMethodO 3-151
class _getInstance VariableO 3-152
class_getVersionO 3-153
class_poseAsO 3-152
class _ removeMethodsO 3-151
class_setVersionO 3-153
clear: method 2-575
cleardictstack operator 4-4
clearSelectedCell method 2-275
clearTitleInRect:ofColumn: 2-328
cleartrackingrect operator 4-4
clickTable method 2-575
client library functions 3-3
clipToFrame: method 2-651
Clip View class

specification 2-167
close method 2-298,2-696
color method 2-358,2-366
colorMask method 2-358
colorScreen method 2-81
colorS pace method 2-313
columnOf: method 2-328
columnsAreSeparated method 2-328
commandKey: method 2-447,2-494,2-697
composite operator 4-5
composite:fromRect:toPoint: 2-392
composite:toPoint: 2-392
compositerect operator 4-7
constants 1-3
constrainFrameRect:toScreen: 2-697
constrainScroll: method 2-170
contentView method 2-107,2-698
context method 2-81, 2-468
continueTracking:at:inView: 2-147,2-531
Control class

specification 2-179
controlView method 2-67,2-147
convert:toFamily: 2-208
convert:toHaveTrait: 2-209
convert: toN otHaveTrait: 2-209
convertBaseToScreen: method 2-698
convertFont: method 2-209
convertOldFactor:newFactor: 2-440
convertPoint:from View: 2-651
convertPoint:to View: 2-651
convertPointFromSuperview: 2-652

convertPointToSuperview: method 2-652
convertRect:from View: 2-652
convertRect:to View: 2-652
convertRectFromSuperview: method 2-652
convertRectToSuperview: method 2-652
convertScreenToBase: method 2-698
convertSize:from View: 2-653
convertSize:toView: 2-653
convertWeight:of: 2-209
copies method 2-468
copy method 2-15,2-21,2-40,2-55,2-148,2-236,

2-313,2-381,2-634
copy: method 2-576
copyFont: method 2-576
copyFromZone method 2-129
copyFromZone: method 2-15,2-21,2-40,2-55,

2-148
copypage operator 4-7
copyPSCodeInside:to: 2-653,2-698
copyRuler: method 2-576
count method 2-15,2-21,2-55,2-461
countframebuffers operator 4-8
countscreenlist operator 4-8
countwindowlist operator 4-8
currentactiveapp operator 4-9
currentalpha operator 4-9
currentCursor method 2-371
currentdefaultdepthlimit operator 4-9

. currentdeviceinfo operator 4-9
currentEditor method 2-184
currentEvent method 2-81
currenteventmask operator 4-10
currentmouse operator 4-10
currentowner operator 4-10
currentPage method 2-469
currentrusage operator 4-11
currenttobase operator 4-11
currenttoscreen operator 4-11
currentuser operator 4-12
currentwaitcursorenabled operator 4-12
currentwindowoperator 4-12
currentwindowalpha operator 4-12
currentwindowbounds operator 4-13
currentwindowdepth operator 4-13
currentwindowdepthlimit operator 4-13
currentwindowdict operator 4-14
currentwindowlevel operator 4-14
currentwriteblock operator 4-14
cut: method 2-577

data formats 5-3
data method 2-313
data types 1-8
deactivate method 2-366

Index-3

deactivateAlIWells method 2-365
deactivateSelf method 2-82
declareTypes:num:owner: 2-455
defaultDepthLimit method 2-689
defaultParaStyle method 2-577
delayedFree: method 2-82
delegate method 2-82,2-248,2-329,2-393,2-419,

2-425,2-542,2-577,2-699
delete: method 2-578
deminiaturize: Method 2-699
depthLimit method 2-699
descendantFlipped: method 2-170, 2-653
descendantFrameChanged: method 2-170, 2-654
descentLine method 2-578
description method 2-55
directory method 2-494
disableCursorRects method 2-699
disableDisplay method 2-700
disableFlush Window method 2-700
discardCursorRects method 2-654, 2-700
discardTrackingRect: method 2-701
display method 2-115, 2-275, 2-298, 2-654, 2-701
Display PostScript See PostScript
display:: 2-654
display::: 2-655
displayAlIColumns method 2-329
displayBorder method 2-701
displayColumn: method 2-329
displayFromOpaqueAncestor::: 2-655
displaylfNeeded method 2-656, 2-701
dissolve operator 4-15
dissolve:fromRect:toPoint: 2-393
dissolve:toPoint: 2-394
divider Height method 2-425
doClick: method 2-329
docView method 2-171,2-513
doDoubleClick: method 2-329
doesAutosizeCells method 2-276
doesBecomeKeyOnlylfNeeded method 2-447
doesClip method 2-656
doesHideOnDeactivate method 2-701
doesNotRecognize: method 2-40
doubleAction method 2-276,2-330
doubleValue method 2-67,2-129,2-148,2-184,

2-531
doubleValueAt: method 2-228
"DPS" functions

client library functions 3-3
single-operator functions 3-141

DPSAddFDO 3-4
DPSAddPortO 3-5
DPSAddTimedEntryO 3-6
DPSBinObjGeneric data type 1-9
DPSBinObjReal data type 1-9

Index-4

DPSBinObjRec data type 1-8
DPSBinObjSeqRec data type 1-9
DPSContextRec data type 1-10
DPSContextType data type 1-10
DPSCreateContextO 3-7
DPSCreateContextWithTimeoutFromZoneO

3-7
DPSCreateStreamContextO 3-7
DPSDefinedType data type 1-10
DPSDefineUserObjectO 3-9
DPSDiscardEventsO 3-13
DPSDoUserPathO 3-10
DPSDoUserPath WithMatrixO 3-10
DPSErrorCode data type 1-11
DPSErrorProc data type 1-11
DPSEventFilterFunc data type 1-11
DPSExtendedBinObjSeq data type 1-11
DPSFDProc data type 1-12
DPSFlushO 3-12
DPSGetEventO 3-13
DPSNameEncoding data type 1-12
DPSNameFromTypeAndlndexO 3-15
DPSNumberFormat data type 1-12
DPSPeekEventO 3-13
DPSPortProc data type 1-12
DPSPostEventO 3-15
DPSPrintErrorO 3-16
DPSPrintErrorToStreamO 3-16
DPSProcs data type 1-12
DPSProgramEncoding data type 1-13
DPSRemoveFDO 3-4
DPSRemovePortO 3-5
DPSRemoveTimedEntryO 3-6
DPSResultsRec data type 1-13
DPSSetDeadKeysEnabledO 3-17
DPSSetEventFuncO 3-18
DPSSetTrackingO 3-19
DPSSpaceProcsRec data type 1-14
DPSSpaceRec data type 1-14
DPSStartWaitCursorTimerO 3-19
DPSTextProc data type 1-14
DPSTimedEntry data type 1-14
DPSTraceContextO 3-20
DPSTraceEventsO 3-21
DPSUndefineUserObjectO 3-9
DPSUserPathAction data type 1-15
DPSUserPathOp data type 1-15
dragColor:withEvent:from View: 2-356
dragFile:fromRect:slideBack:event: 2-656
dragFrom::eventNum: 2-702
draw method 2-314,2-350,2-376,2-382,2-412
drawArrow:: 2-503
drawAt: method 2-412
drawBarInside:flipped: 2-531

drawCell: method 2-184,2-276
drawCellAt: method 2-228
drawCellAt:: 2-276
drawCelllnside: method 2-184, 2-276
drawDivider: method 2-425
drawFunc method 2-578
drawln: method 2-314,2-382,2-413
drawlnside:inView: 2-129,2-148,2-237,2-347,

2-522, 2-532, 2-635
drawlnSuperview method 2-657
draw Knob method 2-503, 2-532
drawKnob: method 2-532
drawPageBorder:: 2-657
drawParts method 2-503
drawRepresentation:inRect: 2-394
drawS elf :: 2-171
drawSelf:: 2-108,2-184,2-276,2-330,2-366,

2-425, 2-504, 2-513, 2-578, 2-657
drawSelf:inView: 2-67,2-129,2-149,2-237,

2-347,2-522,2-532,2-616,2-635
drawSheetBorder:: 2-658
drawTitle:inRect:ofColumn: 2-330
drawWelllnside: method 2-366
dumpwindow operator 4-15
dumpwindows operator 4-15

edit:in View:editor:delegate:event: 2-149
elementAt: method 2-56
empty method 2-15,2-22,2-56
enableCursorRects method 2-702
endEditing: method 2-149
endEditingFor: method 2-702
endHeaderComments method 2-658, 2-703
endModalSession: method 2-82
endPage method 2-658, 2-703
endPageSetup method 2-658, 2-703
end Prologue method 2-659, 2-704
endPSOutput method 2-659, 2-704
endSetup method 2-659, 2-704
end Trailer method 2-659,2-704
entryType method 2-149
erasepage operator 4-16
error: method 2-41
errorAction method 2-276,2-628
eventMask method 2-704
excludeFromServicesMenu: method 2-568
extendPowerOffBy:actual: 2-248,2-542

faxPSCode: method 2-660, 2-705
filename method 2-495
filenames method 2-435
findAncestorSharedWith: method 2-660
findCellWithTag: method 2-277,2-299
findFont:traits:weight:size: 2-210

findlmageNamed: method 2-390
findlndexWithTag: method 2-229
findViewWithTag: method 2-660
findwindow operator 4-16
findWindow: method 2-82
finishLoading: method 2-34
finishReadingRichText method 2-579
finishUnarchiving method 2-41,2-199,2-395
finishUnarchiving: method 2-210
firstPage method 2-469
firstResponder method 2-705
firstTextBlock method 2-579
firstVisibleColumn method 2-330
flagsChanged: method 2-485
floatValue method 2-67,2-129,2-150,2-185,

2-504, 2-532
floatValueAt: method 2-229
flush graphics operator 4-16
flush Window method 2-705
flushWindowlfNeeded method 2-705
focusView method 2-82
Font class

constants 2-203
data types 2-203
specification 2-195

font method 2-108,2-150,2-185,2-277,2-461,
2-579

FontManager class
constants 2-215
data types 2-215
specification 2-205

fontNum method 2-200
FontPanel class

constants 2-223
specification 2-217

Form class
specification 2-225

FormCell class
specification 2-235

forward:: 2-42
frameAngle method 2-660
frame buffer operator 4-17
free method 2-15,2-22,2-29,2-35,2-43,2-56,

2-60,2-83,2-108,2-129,2-150,2-171,2-185,
2-200,2-237,2-249,2-277,2-314,2-330,2-350,
2-382,2-395,2-419,2-435,2-440,2-456,2-469,
2-480,2-495,2-542,2-579,2-661,2-706

freeGlobally method 2-456
freeGState method 2-661
freeKeys:values: 2-15
freeObjects method 2-15, 2-22, 2-60
frontwindow operator 4-17
functions See C functions

Index-5

getBoundingBox: method 2-382
getBounds: method 2-661
getButtonFrame:method 2-462
getCellFrame:at:: 2-277
getCellSize: method 2-277
getContentRect:for FrameRect:style: 2-689
getContentSize: method 2-513
getContentSize:forFrameSize:horizScroller:

vertScroller:borderType: 2-511
getDataPlanes: method 2-314
getDefaultFont method 2-569
getDocRect: method 2-171
getDoc VisibleRect: method 2-172, 2-513
getDrawRect: method 2-130,2-150
getEPS:length: 2-383
getEventStatus:soundStatus:eventStream:

soundfile: 2-419 .
getFamily:traits:weight:size:ofFont: 2-210
getFieldEditor:for: 2-706
getFilelconFor:TIFF:TIFFLength:ok

2-542
getFilelconFor:TIFF:TIFFLength:ok: 2-249
getFilelnfoFor:app:type:ilk:ok

2-543
getFilelnfoFor:app:type:ilk:ok: 2-249
getFontMenu: method 2-210
getFontPanel: method 2-211
getFrame: method 2-661, 2-706
getFrame:andScreen: 2-706
getFrame:ofColumn: 2-330
getFrame:of1nsideOfColumn: 2-331
getFrameRect:forContentRect:style: 2-690
getFrameSize:forContentSize:horizScroller:

vertScroller: borderType: 2-512
getlconRect: method 2-130,2-150
getlmage:rect: 2-395
getlntercell: method 2-277
getKnobRect:Oipped: 2-533
getLoadedCellAtRow:inColumn: 2-331
getLocation:forSubmenu: 2-299
getLocation:ofCell: 2-579
getLocation:ofView: 2-580
getMarginLeft:right:top:bottom: 2-469,2-580
getMaxSize: method 2-580
getMinSize: method 2-580
getMin Width:minHeight:maxWidth:

maxHeight: 2-580
getMouseLocation: method 2-707
getNextEvent: method 2-83
getNextEvent:waitFor:threshold: 2-83
getNumRows:numCols: 2-277
getOffsets: method 2-108

Index-6

getParagraph:start:end:rect: 2-581
getParameter: method 2-130,2-150
getPath:toColumn: 2-331
getPeriodicDelay:andlnterval: 2-116, 2-131,

2-151
getRect:forPage: 2-661,2-707
getRow:andCol:forPoint: 2-278
getRow:andCol:ofCell: 2-278
getScreens:count: 2-84
getScreenSize: method 2-84
getSel:: 2-581
getSize: method 2-395,2-413
getSubstring:start:length: 2-581
getTitieFrame:ofColumn: 2-331
getTitieFromPreviousColumn: method 2-332
getTitieRect: method 2-131, 2-151
getVisibleRect: method 2-662
getWidthOf: method 2-200
getWindow:andRect: 2-350
getWindowNumbers:count: 2-84
gState method 2-662, 2-707

hasAlpha method 2-413
hasDynamicDepthLimit method 2-707
hash method 2-43
HashTable class

specification 2-13
hasMatrix method 2-200
hasSubmenu method 2-304
heightAdjustLimit method 2-662, 2-708
hide: method 2-84
hideCaret method 2-582
hidecursor operator 4-17
hideinstance operator 4-18
hideLeftAndRightScrollButtons: method 2-332
highlight: method 2-116,2-504
highlight:inView:lit: 2-131,2-151,2-347,2-522,

2-617
highlightCellAt::lit: 2-278
highlightsBy method 2-131
hitPart method 2-504
hitTest: method 2-663
horizPagination method 2-469
horizScroller method 2-514
hostName method 2-84

icon method 2-116,2-131,2-151
iconEntered:at: :icon Window:iconX:icon Y:

icon Width:iconHeight:pathList: 2-250, 2-544
iconExitedAt:: 2-251,2-545
iconMovedTo:: 2-252,2-545
iconPosition method 2-116, 2-132

iconReleasedAt::ok: 2-252,2-545
id data type 1-15
ignoreMultiClick: method 2-185
image method 2-116,2-132,2-371
imageDidNotDraw:inRect: 2-409
IMP data type 1-15
incrementState method 2-152
indexOf: method 2-22
indexOfitem: method 2-462
init method 2-16,2-22,2-29,2-43,2-56,2-116,

2-132,2-152,2-237,2-253,2-299,2-304,2-315,
2-347,2-351,2-371,2-376,2-383,2-396,2-419,
2-447, 2-462, 2-469, 2-522, 2-533, 2-545, 2-635,
2-663, 2-708

initContent:style: backing: buttonMask:defer:
2-448,2-708

initContent:style: backing: buttonMask:defer:
screen: 2-710

initCount: method 2-23
initCount:elementSize:description: 2-57
initData:fromRect: 2-315
initData:pixelsWide:pixelsHigh:bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:
colorSpace: bytesPer Row: bitsPerPixel: 2-316

initDataPlanes:pixelsWide:pixelsHigh:
bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: bytesPer Row:
bitsPerPixel: 2-317

initDrawMethod:inObject: 2-376
initFrame method 2-229,2-332
initFrame: method 2-108,2-117,2-172,2-185,

2-278,2-366,2-426,2-505,2-514,2-526,2-582,
2-628, 2-663

initFrame:icon:tag:target:action:key:enabled:
2-117

initFrame:mode:ceIlClass:numRows:numCols:
2-279

initFrame:mode:prototype:numRows:
numCols: 2-279

initFrame:text:alignment: 2-582
initFrame:title:tag:target:action:key:enabled:

2-117
initFromFile: method 2-319,2-383,2-396
initFromImage: method 2-372
initFromImage:rect: 2-396
initFromSection: method 2-320, 2-383, 2-397
initFromStream: method 2-320, 2-384, 2-397
initFrom Window:rect: 2-351
initgraphics operator 4-18
initGState method 2-663
initialize method 2-35,2-76,2-169,2-197,2-247,

2-272, 2-569
initIconCell: method 2-132,2-152
initKeyDesc: method 2-16

initKeyDesc:valueDesc: 2-16
initKeyDesc:valueDesc:capacity: 2-16
initSize: method 2-398
initState method 2-17
initStreamState method 2-60
initTextCell method 2-304,2-523
initTextCell: method 2-132,2-152,2-237,2-347,

2-635
initTitle: method 2-299
insert:at: 2-57
insertColAt: method 2-280
insertEntry:at: 2-229
insertEntry:at:tag:target:action: 2-229
insertItem:at: 2-462
insertKey:value: 2-17
insertObject:at: 2-23
insertRowAt: method 2-280
insertStreamKey:value: 2-61
instanceMethodFor: method 2-36
instancesRespondTo: method 2-36
intValue method 2-68,2-133,2-152,2-185,2-533
intValueAt: method 2-230
invalidate:: 2-664
invalidateCursorRectsForView: method 2-710
isActive method 2-85,2-367
isAIIPages method 2-470
isAutodisplay method 2-664
isBackgroundTransparent method 2-280,2-628
isBezeled method 2-152, 2-628
isBordered method 2-118,2-133,2-153,2-628
isCacheDepthBounded method 2-398
isCellBackgroundTransparent method 2-280
isColorMatchPreferred method 2-398
isContinuous method 2-153,2-186,2-533
isDataRetained method 2-398
isDescendantOf: method 2-664
isDisplayEnabled method 2-710
isDocEdited method 2-710
isEditable method 2-153, 2-583, 2-628
isEnabled method 2-153,2-186,2-211,2-220
isEntryAcceptable: method 2-153
isEPSUsedOnResolutionMismatch method 2-399
isEqual: method 2-23, 2-45, 2-57
isExcludedFrom WindowsMenu method 2-711
isFlipped method 2-399,2-664
isFloatingPanel method 2-448
isFocus View method 2-665
isFontPanelEnabled method 2-583
isHidden method 2-85
isHighlighted method 2-153
isHorizCentered method 2-470
isHorizResizable method 2-583
isJournalable method 2-85
isKey: method 2-17

Index-7

isKeyWindow method 2-711
isKindOf: method 2-45
isKindOfGivenName: method 2-46
isLeafmethod 2-347,2-523
isLoaded method 2-348
isMain Window method 2-711
isManualFeed method 2-470
isMatchedOnMultipleResolution method 2-399
isMemberOf: method 2-46
isMemberOfGivenName: method 2-46
isMonoFont method 2-583
isMultiple method 2-211
isOneShot method 2-711
is Opaque method 2-133,2-154,2-237,2-348,

2-523, 2-533, 2-635, 2-665
isPlanar method 2-320
isRetainedWhileDrawing: method 2-584
isRotatedFromBase method 2-665
isRotatedOrScaledFromBase method 2-665
isRulerVisible: method 2-584
isRunning method 2-85
isS cal able method 2-399
isScrollable method 2-154
isS electable method 2-154, 2-584, 2-628
isTitled method 2-332,2-333
isTransparent method 2-118,2-133
isUnique method 2-400
isVertCentered method 2-470
isVertResizable method 2-584
is Visible method 2-711
itemList method 2-300
Ivar data type 1-16

journalerDidEnd: method 2-421
journalerDidUserAbort: method 2-421

keyDown method 2-333
keyDown: method 2-448,2-485,2-584
keyEquivalent method 2-118,2-133,2-154
keyUp: method 2-485
keyWindow method 2-85
knowsPagesFirst:last: 2-665,2-712

lastColumn method 2-333
lastObject method 2-23
lastPage method 2-470
lastRepresentation method 2-400
lastVisibleColumn method 2-333
launchProgram:ok: 2-253, 2-546
lineFromPosition: method 2-585
lineHeight method 2-585
List class .

specification 2-19

Index-8

Listener class
specification 2-241

listener method 2-419
listenPort method 2-253
loadColumnZero method 2-333
loadFromStream: method 2-400
loadNibFile:owner: 2-85
loadNibFile:owner:withNames: 2-86
loadNibFile:owner:withNames:fromZone: 2-86
loadNibSection:owner: 2-86
loadNibSection:owner:withNames: 2-87
loadNibSection:owner:withNames:

fromHeader: 2-87
loadNibSection:owner:withNames:fromHeader:

fromZone: 2-87
loadNibSection:owner:withNames:fromZone:

2-88
lockFocus method 2-401,2-666
lockFocusOn: method 2-401

machportdevice operator 4-18
mainMenu method 2-88
mainScreen method 2-88
main Window method 2-88
makeCellAt:: 2-280
makeFirstResponder: method 2-712
makeKeyAndOrderFront: method 2-713
makeKeyWindow method 2-713
makeObjectsPerform: method 2-24
makeObjectsPerform:with: 2-24
make WindowsPerform:inOrder: 2-89
marg_getRefO 3-154
marg_getValueO 3-154
marg_setValueO 3-154
master Journaler method 2-89
Matrix class

specification 2-267
matrix method 2-200
matrixlnColumn: method 2-333
maxValue method 2-526, 2-533
maxVisibleColumns method 2-334
Menu Cell class

specification 2-303
Menu class

specification 2-295
menuZone: method 2-297
messageReceived: method 2-253
Method data type 1-16
method _getArgumentlnfoO 3-155
method _getNumberOfArgumentsO 3-155
method _getSizeOfArgumentsO 3-155
methodFor: method 2-46
metrics method 2-201
minColumnWidth method 2-334

min Frame Width:forStyle: buttonMask: 2-690
miniaturize: method 2-713
miniwindowlcon method 2-713
min Value method 2-526, 2-534
modifyFont: method 2-211
modifyFontViaPanel: method 2-212
Module data type 1-16
mouse:inRect: 2-666
mouseDown: method 2-186,2-281,2-300,2-334,

2-367,2-426,2-485,2-505,2-527,2-585,2-629
mouseDownFlags method 2-154,2-186,2-281
mouseDragged: method 2-485
mouseEntered: method 2-372, 2-485
mouseExited: method 2-372,2-485
mouseMoved: method 2-486
mouseUp: method 2-486
moveBy:: 2-666
moveCaret: method 2-585
moveTo:: 2-172,2-585,2-666,2-714
moveTo::screen: 2-714
moveTopLeftTo:: 2-300,2-714
moveTopLeftTo: :screen: 2-714
movewindow operator 4-22
msgCalc: method 2-254,2-546
msgCopyAsType:ok: 2-254,2-546
msgCutAsType:ok: 2-254, 2-546
msgDirectory:ok: 2-254,2-546
msgFile:ok: 2-255,2-547
msgPaste: method 2-255,2-547
msgPosition:posType:ok: 2-255, 2-547
msgPrint:ok: 2-256,2-547
msgQuit: method 2-256,2-547
msgSelection:length:asType:ok: 2-256, 2-548
msgSetPosition:posType:andSelect

ok: 2-256
msgSetPosition:posType:andSelect:ok: 2-548
msgVersion:ok: 2-257,2-548

name method 2-47,2-201,2-402,2-456
needsDisplay method 2-667
new method 2-37,2-60,2-77,2-207,2-220,2-434,

2-439, 2-454, 2-480
newColorMask: method 2-357
newContent:style: backing: buttonMask:defer:

2-220,2-356,2-435,2-440,2-480,2-493
newContent:style:backing:buttonMask:defer:

colorMask: 2-357
newFont:size: 2-197
newFont:size:matrix: 2-198
newFont:size: style: matrix: 2-198
newinstance operator 4-22
newKeyDesc: method 2-60
newListFromFile: method 2-310,2-380
newListFromFile:zone: 2-310,2-380

newListFromSection: method 2-310,2-380
newListFromSection:zone: 2-311, 2-381
newListFromStream: method 2-311,2-381
newListFromStream:zone: 2-311,2-381
newName: method 2-454
nextrelease operator 4-22
nextResponder method 2-486
nextState:key:value: 2-17
NeXTstep functions 3-3
NextStepEncoding operator 4-23
nextStreamState:key:value: 2-61
noResponderFor: method 2-486
notify AncestorWhenFrameChanged: method

2-667
notifyTolnitGState: method 2-667
notifyWhenFlipped: method 2-667
notlmplemented: method 2-47
numColors method 2-413
numPlanes method 2-321
num VisibleColumns method 2-334
NX Color Panel class

specification 2-353
NX_ADDRESSO 3-134
NX_ASSERTO 3-134
NX_EVENTCODEMASKO 3-135
NX_FREEO 3-136
NX_HEIGHTO 3-139
NX_MALLOCO 3-136
NX _ MA~XO 3-139
NX_MAXYO 3-139
NX_MIDXO 3-139
NX_MIDYO 3-139
NX PSDEBUG 3-137
NX_RAISEO 3-137
NX _ REALLOCO 3-136
NX_RERAISEO 3-137
NX_ VALRETURNO 3-137
NX VOIDRETURN 3-137
NX_WIDTHO 3-139
NX_XO 3-139
NX_YO 3-139
NX_ZONEMALLOCO 3-140
NX_ZONEREALLOCO 3-140
NXAllocErrorDataO 3-23
NXAlphaComponentO 3-103
NXAppkitErrorTokens data type 1-16
NXAsciiPboardType 5-3
NXAtEOSO 3-114
NXAtom data type 1-17
NXAttachPopUpListO 3-23
NXBeepO 3-24
NXBeginTimerO 3-24
NXBitmaplmageRep class

specification 2-307

Index-9

NXBlackComponentO 3-103
NXBlueComponentO 3-103
NXBPSFromDepthO 3-30
NXBrightnessComponentO 3-103
NXBrowser class

specification 2-323
NXBrowserCell class

specification 2-345
NXCachedlmageRep class

specification 2-349
NXChangeAlphaComponentO 3-26
NXChangeBlackComponentO 3-26
NXChangeBlueComponentO 3-26
NXChangeBrightnessComponentO 3-26
NXChangeBufferO 3-120
NXChangeCyanComponentO 3-26
NXChangeGrayComponentO 3-26
NXChangeGreenComponentO 3-26
NXChangeHueComponentO 3-26
NXChangeMagentaComponentO 3-26
NXChangeRedComponentO 3-26
NXChangeSaturationComponentO 3-26
NXChangeYellowComponentO 3-26
NXCharMetrics data type 1-17
NXChunk data type 1-17
NXChunkCopyO 3-27
NXChunkGrowO 3-27
NXChunkMallocO 3-27
NXChunkReallocO 3-27
NXChunkZoneCopyO 3-27
NXChunkZoneGrowO 3-27
NXChunkZoneMallocO 3-27
NXChunkZoneReallocO 3-27
NXCloseO 3-29
NXCloseMemoryO 3-77
NXCloseTypedStreamO 3-79
NXCoior data type 1-17
NXColorSpace data type 1-18
NXColorSpaceFromDepthO 3-30
NXColorWell class

specification 2-363
NXCompleteFilenameO 3-32
NXCompositeChar data type 1-18
NXCompositeCharPart data type 1-18
NXContainsRectO 3-74
NXConvertCMYKAToColorO 3-35
NXConvertCMYKToColorO 3-35
NXConvertColorToCMYKO 3-33
NXConvertColorToCMYKAO 3-33
NXConvertColorToGrayO 3-33
NXConvertColorToGrayAlphaO 3-33
NXConvertColorToHSBO 3-33
NXConvertColorToHSBAO 3-33
NXConvertColorToRGBO 3-33

Index-l 0

NXConvertColorToRGBAO 3-33
NXConvertGlobalToWinNum 0 3-36
NXConvertGrayAlphaToColorO 3-35
NXConvertGrayToColorO 3-35
NXConvertHSBAToColorO 3-35
NXConvertHSBToColorO 3-35
NXConvertRGBAToColorO 3-35
NXConvertRGBToColorO 3-35
NXConvertWinNumToGlobalO 3-36
NXCoord data type 1-18
NXCopyBitsO 3-37
NXCopyCurrentGStateO 3-115
NXCopyHashTableO 3-41
NXCopylnputDataO 3-38
NXCopyOutputDataO 3-38
NXCopyStringBufferO 3-128
NXCopyStringBufferFromZoneO 3-128
NXCountHashTableO 3-62
NXCountWindowsO 3-40
NXCreateChildZoneO 3-132
NXCreateHashTableO 3-41
NXCreateHashTableFromZoneO 3-41
NXCreatePopUpListButtonO 3-23
NXCreateZoneO 3-132
NXCursor class

specification 2-369
NXCustomlmageRep class

specification 2-375
NXCyanComponentO 3-103
NXDefaultExceptionRaiserO 3-44
NXDefaultMallocZoneO 3-132
NXDefaultReadO 3-120
NXDefaultStringOrderTableO 3-80
NXDefaults Vector data type 1-19
NXDefaultTopLevelError HandlerO 3-46
NXDefaultWriteO 3-120
NXDestroyZoneO 3-132
NXDivideRectO 3-116
NXDraw ALineO 3-113
NXDrawButtonO 3-47
NXDrawGrayBezelO 3-47
NXDrawGrooveO 3-47
NXDrawTiledRectsO 3-47
NXDrawWhiteBezelO 3-47
NXEditorFilterO 3-52
NXEmptyRectO 3-74
NXEncodedLigature data type 1-19
NXEndOfTypedStreamO 3-50
NXEndTimerO 3-24
NXEPSlmageRep class

specification 2-379
NXEqualColorO 3-50
NXEqualRectO 3-74
NXEraseRectO 3- ~ 02

NXErrorReporter data type 1-19
NXEvent data type 1-19
NXEventData data type 1-20
NXExceptionRaiser data type 1-20
NXFieldFilterO 3-52
NXFilenamePboardType 5-6
NXFilePathSearchO 3-53
NXFillO 3-120
NXFindPaperSizeO 3-54
NXFlushO 3-55
NXFlushTypedStreamO 3-55
NXFontMetrics data type 1-21
NXFontPboardType 5-6
NXFrameRectO 3-47
NXFrameRectWithWidthO 3-47
NXFreeAlertPanelO 3-111
NXFreeHashTableO 3-41
NXFreeObjectBufferO 3-94
NXGetAlertPanelO 3-111
NXGetBestDepthO 3-30
NXGetcO 3-87
NXGetDefaultValueO 3-104
NXGetExceptionRaiser() 3-44
NXGetMemory!\ufferO 3-77
NXGetNamedObJect() 3-57
NXGetObjectNameO 3-57
NXGetOrPeekEventO 3-58
NXGetTempFilenameO 3-60
NXGetTIFFlnfo() 3-97
NXGetTypedStreamZoneO 3-60
NXGetUncaughtExceptionHandlerO 3-119
NXGetWindowServerMemory 0 3-61
NXGrayComponent() 3-103
NXGreenComponentO 3-103
NXHandler data type 1-22
NXHashGetO 3-62
NXHashlnsertO 3-62
NXHashlnsertIfAbsentO 3-62
NXHashMember() 3-62
NXHashRemoveO 3-62
NXHashState data type 1-22
NXHashTablePrototype data type 1-22
NXHighlightRectO 3-102
NXHomeDirectoryO 3-65
NXHueComponent() 3-103
NXlmage class

specification 2-385
NXlmageBitmap() 3-65
NXlmagelnfo data type 1-23
NXlmageRep class

specification 2-411
NXlnitHashState() 3-62
NXlnsetRect() 3-116
NXlntegralRect() 3-116

NXlntersectionRect() 3-127
NXlntersectsRectO 3-74
NXIsAINumO 3-70
NXIsAlpha() 3-70
NXIsAsciiO 3-70
NXIsCntrl() 3-70
NXIsDigitO 3-70
NXIsGraph() 3-70
NXIsLowerO 3-70
NXIsPrint() 3-70
NXIsPunctO 3-70
NXIsServicesMenuItemEnabledO 3-118
NXIsSpace() 3-70
NXIsUpperO 3-70
NXIsXDigitO 3-70
NXJ ournaler class

constants 2-422
data types 2-422
specification 2-417

NXJournalMouseO 3-72
NXKernPair data type 1-23
NXKernXPair data type 1-23
NXLigature data type 1-23
NXLogErrorO 3-73
NXMagentaComponent() 3-103
NXMallocCheckO 3-132
NXMapFile() 3-77
NXMergeZoneO 3-132
NXMouselnRect() 3-74
NXNameObjectO 3-57
NXNameZone() 3-132
NXNextHashStateO 3-62
NXNoEffectFreeO 3-41
NXNumberOfColorComponentsO 3-30
NXOffsetRectO 3-116
NXOpenFile() 3-76
NXOpenMemory() 3-77
NXOpenPortO 3-76
NXOpenTypedStream() 3-79
NXOpenTypedStreamForFileO 3-79
NXOrderStrings() 3-80
NXPing() 3-82
NXPoint data type 1-24
NXPointInRect() 3-74
NXPortFromName() 3-85
NXPortNameLookupO 3-85
NXPostScriptPboardType 5-4
NXPrintfO 3-87
NXPrintfProc data type 1-24
NXPtrHashO 3-41
NXPtrIsEqualO 3-41
NXPutcO 3-87
NXRead() 3-89
NXReadArray() 3-90

Index-II

NXReadBitmapO 3-65
NXReadColorO 3-91
NXReadDefaultO 3-104
NXReadObjectO 3-92
NXReadObjectFromBufferO 3-94
NXReadObjectFromBufferWithZoneO 3-94
NXReadPointO 3-96
NXReadRectO 3-96
NXReadSizeO 3-96
NXReadTIFFO 3-97
NXReadTypeO ·3-98
NXReadTypesO 3-98
NXReadWordTableO 3-100
NXReallyFreeO 3-41
NXRect data type 1-24
NXRectClipO 3-102
NXRectClipListO 3-102
NXRectFiIIO 3-102
NXRectFiIIListO 3-102
NXRectFiIIListWithGraysO 3-102
NXRedComponentO 3-103
NXRegisterDefaultsO 3-104
NXRegisterErrorReporterO 3-108
NXRegisterPrintfProcO 3-109
NXRemoteMethodFromSelO 3-110
NXRemoveDefaultO 3-104
NXRemoveErrorReporterO 3-108
NXReportErrorO 3-108
NXResetErrorDataO 3-23
NXResetUserAbortO 3-130
NXResponsibleDelegateO 3-110
NXRTFPboardType 5-5
NXRulerPboardType 5-7
NXRunAlertPanelO 3-111
NXSaturationComponentO 3-103
NXSaveToFileO 3-77
NXScanALineO 3-113
NXScanfO 3-87
NXScreen data type 1-24
NXSeekO 3-114
NXSetCoiorO 3-115
NXSetDefaultO 3-104
NXSetDefaultsUserO 3-104
NXSetExceptionRaiserO 3-44
NXSetGStateO 3-115
NXSetRectO 3-116
NXSetServicesMenultemEnabledO 3-118
NXSetTopLevelErrorHandlerO 3-46
NXSetUncaughtExceptionHandlerO 3-119
NXSize data type 1-24
NXSizeBitmapO 3':65
NXSoundPboardType 5-6
NXSpiit View class

specification 2-423

Index-12

NXStream data type 1-25
NXStreamCreateO 3-120
NXStreamCreateFromZoneO 3-120
NXStreamDestroyO 3-120
NXStreamErrors data type 1-25
NXStringTable class

specification 2-27
NXStrIsEqualO 3-41
NXSystemVersionO 3-122
NXTabularTextPboardType 5-6
NXTellO 3-114
NXTextFontlnfoO 3-122
NXTIFFlnfo data type 1-25
NXTIFFPboardType 5-4
NXToAsciiO 3-123
NXToLowerO 3-123
NXTopLevelErrorHandler data type 1-26
NXTopLevelErrorHandlerO 3-46
NXToUpperO 3-123
NXTrackingTimer data type 1-26
NXTrackKern data type 1-26
NXTypedStream data type 1-26
NXTypedStreamClassVersionO 3-126
NXUncaughtExceptionHandler data type 1-26
NXUngetc 3-87
NXUnionRectO 3-127
NXUniqueStringO 3-128
NXUniqueStringNoCopyO 3-128
NXUniqueStringWithLengthO 3-128
NXUnnameObjectO 3-57
NXUpdateDefaultO 3-104
NXUpdateDefaultsO 3-104
NXU pdateDynamicServicesO 3-130
NXUserAbortedO 3-130
NXUserNameO 3-65
NXVPrintfO 3-87
NXVScanfO 3-87
NXWindowListO 3-40
NXWriteO 3-89
NXWriteArrayO 3-90
NXWriteColorO 3-91
NXWriteDefaultO 3-104
NXWriteDefaultsO 3-104
NXWriteObjectO 3-92
NXWriteObjectReferenceO 3-92
NXWritePointO 3-96
NXWriteRectO 3-96
NXWriteRootObjectO 3-92
NXWriteRootObjectToBufferO 3-94
NXWriteSizeO 3-96
NXWriteTIFFO 3-97
NXWriteTypeO 3-98
NXWriteTypesO 3-98
NXWriteWordTableO 3-100

NXYellowComponentO 3-103
NXZoneCallocO 3-132
NXZoneFreeO 3-132
NXZoneFromPtrO 3-132
NXZoneMallocO 3-132
NXZonePtrInfoO 3-132
NXZoneReallocO 3-132
NZSetTypedStreamZoneO 3-60

objc _ addClassO 3-156
objc_getClassO 3-156
objc _getClassesO 3-156
objc _getMetaClassO 3-156
objc _getModulesO 3-156
objc_loadModulesO 3-157
objc _ msgSendO 3-158
objc_msgSendSuperO 3-158
objc_msgSendvO 3-158
objc _ unloadModulesO 3-157
Object class

specification 2-31
Object Methods class

specification 2-429
object_copyO 3-159
object_copyFromZoneO 3-159
object _ disposeO 3-159
object_getClassNameO 3-161
object_getIndexedIvarsO 3-161
object _getInstance VariableO 3-162
object_reallocO 3-159
object _ reallocFromZoneO 3-159
object _ setInstance VariableO 3-162
objectAt: method 2-24
obscurecursor operator 4-23
ok: method 2-495
opaqueAncestor method 2-668
openFile:ok: 2-89,2-257,2-548
OpenPanel class

specification 2-433
openSpoolFile method 2-714
openSpoolFile: method 2-668
openTempFile:ok: 2-89,2-258,2-549
orderBack: method 2-715
orderFront: method 2-715
orderFrontColorPanel: method 2-90
orderFrontFontPanel: method 2-212
orderOut: method 2-715
orderwindowoperator 4-24
orderWindow:relativeTo: 2-221,2-716
orientation method 2-470
osname operator 4-25
ostype operator 4-25

outputFile method 2-470
overstrikeDiacriticals method 2-586

PageLayout class
constants 2-444
specification 2-437

pageOrder method 2-471
pagesPerSheet method 2-471
Panel class

specification 2-445
panel:fllterFile:inDirectory: 2-497
panelConvertFont: method 2-221
panelValidateFilenames: method 2-497
paper Rect method 2-471
paperType method 2-471
paste: method 2-586
Pasteboard class

specification 2-451
pasteboard:provideData: method 2-458
pasteFont: method 2-586
pasteRuler: method 2-587
peekAndGetNextEvent: method 2-90
peekNextEvent:into: 2-90
peekNextEvent:into:waitFor:threshold: 2-90
perform: method 2-48
perform:with: 2-48
perform:with:afterDelay:canceIPrevious: 2-429
perform:with:with: 2-49
performClick: method 2-118,2-133
performClose: method 2-716
performKeyEquivalent: method 2-118,2-281,

2-486, 2-668
performMiniaturize: method 2-716
performRemoteMethod: method 2-549
performRemoteMethod:paramList: 2-258
performRemoteMethod:with:length: 2-549
performv:: 2-49
pickedAllPages: method 2-481
pickedButton: method 2-441,2-481
pickedLayout: method 2-441
picked Orientation: method 2-441
pickedPaperSize: method 2-441
pickedUnits: method 2-442
pixelsHigh method 2-414
pixelsWide method 2-414
placePrintRect:offset: 2-669, 2-716
placewindowoperator 4-26
place Window: method 2-717
place Window: screen method 2-717
place Window AndDisplay: method 2-717
playsound operator 4-27
pointSize method 2-201
pop method 2-371,2-372
popUp: method 2-462

Index-13

PopUpList class
specification 2-459

portName method 2-258
poseAs: method 2-38
positionFromLine: method 2-587
posteventbycontext operator 4-27
PostScript

client library functions 3-3
operators 4-1
single-operator functions 3 -141

postSelSmartTable method 2-587
powerOff: method 2-91,2-103
powerOffln:andSave: 2-91,2-259,2-550
prefersTrackingUntilMouseUp 2-530
prefersTrackingUntilMouseUp method 2-146
prepareGState method 2-384
preSelSmartTable method 2-588
printerHost method 2-471
printerName method 2-471
printerType method 2-471
PrintInfo class

specification 2-465
printInfo method 2-91
PrintPanel class

specification 2-477
printPSCode: method 2-669,2-717
priority method 2-259
prototype method 2-282
"PS" single-operator functions 3-141
pswrap 3-141
push method 2-373
putCell:at:: 2-282

rawScroll: method 2-172
read: method 2-18,2-24,2-50,2-57,2-61,2-68,

2-109,2-133,2-154,2-173,2-186,2-201,2-238,
2-259,2-282,2-300,2-304,2-321,2-351,2-373,
2-376,2-384,2-402,2-414,2-471,2-486,2-505,
2-514,2-534,2-550,2-588,2-629,2-636,2-669,
2-718

readFromFile: method 2-29
readFromStream: method 2-29
read image operator 4-28
readMetrics: method 2-201
readPrintlnfo method 2-442, 2-481
readRichText: method 2-588
readRichText:atPosition: 2-588
readRichText:forView: 2-617
readSelectionFromPasteboard: method 2-430,

2-588
readText: method 2-589
readType:data:length: 2-456
recache method 2-402
record Device method 2-420

Index-14

reenableDisplay method 2-718
'reenableFlushWindow method 2-718
reflectScroll: method 2-177,2-334,2-514
registerDirective:forClass: 2-569
registerServicesMenuSendTypes:

andReturnTypes: 2-91
registerWindow:toPort: 2-259,2-550
reloadColumn: method 2-335
remoteMethodFor: method 2-260
removeAt: method 2-57
removeCoIAt:andFree: 2-282
removeCursor Rect:cursor: 2-669
removeCursorRect:cursor:for View: 2-718
removeEntryAt: 2-230
removeFontTrait: method 2-212
removeFromEventMask: method 2-718
removeFromSuperview method 2-670
removeItem: method 2-462
removeItemAt: method 2-463
removeKey: method 2-18
removeLastElement method 2-58
removeLastObject method 2-24
removeObject: method 2-25
removeObjectAt: method 2-25
removePort method 2-260
removeRepresentation: method 2-402
removeRowAt:andFree: 2-282
removeStreamKey: method 2-61
remove WindowsItem: method 2-92
renderbands operator 4-29
renewFont:size:style:text:frame:tag: 2-589
renewFont:text:frame:tag: 2-589
renewGState method 2-670
renewRows:cols: 2-283
renewRuns:text:frame:tag: 2-590
replace:at: 2-58
replaceObject:with: 2-25
replaceObjectAt:with: 2-25
replaceSel: method 2-590
replaceSel:length: 2-590
replaceSel:length:runs: 2-590
replaceSelWithCell: method 2-591
replaceSelWithRichText: method 2-591
replaceSelWithView: method 2-591
replaceSubview:with: 2-670
replyPort method 2-92, 2-551
replyTimeout method 2-551
representationList method 2-402
requiredFileType method 2-495
reset method 2-348
resetCursorRect:in View: 2-155, 2-238
resetCursorRects method 2-173,2-187,2-283,

2-670, 2-719
resignActiveApp method 2-92

resignFirstResponder method 2-487,2-591
resignKeyWindow method 2-592,2-719
resign Main Window method 2-719
resizeSubviews: method 2-426,2-515,2-671
resizeText:: 2-592
resolution method 2-472
Responder class

specification 2-483
respondsTo: method 2-50
reuseColumns: method 2-335
revealcursor operator 4-29
rightbuttondown operator 4-29
rightMouseDown: method 2-92, 2-300, 2-487,

2-720
rightMouseDragged: method 2-487
rightMouseUp: method 2-487
rightstilldown operator 4-29
rotate: method 2-173, 2-671
rotateBy: method 2-671
rotateTo: method 2-173, 2-671
run method 2-92,2-247
runModal method 2-443,2-481,2-495
runModalFor: method 2-93
runModaIForDirectory:file: 2-436, 2-495
runModaIForDirectory:file:types: 2-436
runModalForTypes: method 2-436
runModalSession: method 2-93
runPageLayout: method 2-93
run-time functions 3-148

samplesPerPixel method 2-321
SavePanel class

specification 2-491
scale:: 2-174,2-672
scalingFactor method 2-472
scanFunc method 2-592
screen method 2-720
screen Changed: method 2-720
screenFont method 2-201
screenlist operator 4-30
screentobase operator 4-30
screentocurrent operator 4-31
scrollCellTo Visible:: 2-283
scroIlClip:to: 2-177
scrollColumnsLeftBy: method 2-335
scrollColumnsRightBy: method 2-335
scrollColumnTo Visible: method 2-335
Scroller class

constants 2-508
specification 2-499

scrollPoint: method 2-672
scroIlRect:by: 2-672
scrollRectTo Visible: method 2-672
scrollSelTo Visible method 2-592

scrollUpOrDown: method 2-336
Scroll View class

specification 2-509
SEL data type 1-27
sel_getNameO 3-163
sel_getUidO 3-163
sel JsMappedO 3-164
select:in View:editor:delegate:start:length:

2-155
selectAII method 2-336
selectAII: method 2-283, 2-592
selectCell: method 2-283
selectCeIlAt:: 2-284
selectCellWithTag: method 2-284
selectedCell method 2-187,2-284
selectedCol method 2-284
selectedColumn method 2-336
selectedlndex method 2-230
selectedItem method 2-463
selected Row method 2-284
selectedTag method 2-187
selectError method 2-593
SelectionCell class

specification 2-521
selectNull method 2-593
selectorRPC :paramTypes: 2-551
selectText: method 2-284, 2-495, 2-593, 2-629
selectTextAt: method 2-230
selectTextAt:: 2-285
self method 2-50
selFont method 2'-213
selGray method 2-593
sendAction method 2-213,2-285
sendAction:to: 2-188,2-285
sendAction:to:for AIICells: 2-285
sendAction:to:from: 2-94
sendActionOn:

method 2-155
sendActionOn: method 2-188
sendDoubleAction method 2-286
sendEvent: method 2-94, 2-720
sendOpenFileMsg:ok:andDeactivateSelf: 2-552
sendOpenTempFileMsg:ok:andDeactivateSelf:

2-552
sendPort method 2-552
sendTimeout method 2-553
separateColumns: method 2-336
servicesDelegate method 2-260
servicesMenu method 2-94
set method 2-202,2-373
setAccessoryView: method 2-221,2-359,2-443,

2-482, 2-496
setAction: method 2-68,2-155,2-188,2-213,

2-286,2-336,2-359,2-367,2-463,2-505

Index-I5

setAction:at: 2-230
setAction:at:: 2-286
setactiveapp operator 4-31
setAlignment: method 2-68,2-156,2-188,2-594
setAIIPages: method 2-472
setalpha operator 4-31
setAlpha: method 2-414
setAltIcon: method 2-119,2-134
setAltImage: method 2-119,2-134
setAItTitle: method 2-119, 2-134
setAppListener: method 2-94
setAppSpeaker: method 2-95
setArrowsPosition: method 2-506
setAutodisplay: method 2-672
setautofill operator 4-32
setAutoresizeSubviews: method 2-426, 2-673
setAutoscroll: method 2-286
setAutosizeCells: method 2-286
setAutosizing: method 2-673
setAutoupdate: method 2-95, 2-300
setAvaiiableCapacity: method 2-26,2-58
setBackgroundColor: method 2-174,2-287,

2-403, 2-515, 2-594, 2-629, 2-636, 2-720
setBackgroundGray: method 2-174,2-287,2-515,

2-595,2-629,2-636,2-721
setBackgroundTransparent: method 2-287,

2-629,2-635,2-636
setBecomeKeyOnlylfNeeded: method 2-449
setBezeled: method 2-68,2-156,2-230,2-629,

2-636
setBitsPerSample: method 2-414
setBordered: method 2-68,2-119,2-134,2-156,

2-230, 2-629
setBorderType: method 2-109,2-515
setBreakTable: method 2-595
setCacheDepthBounded: method 2-403
setCell: method 2-189
setCellBackgroundColor: method 2-287
setCellBackgroundGray: method 2-287
setCellBackgroundTransparent: method 2-287
setCellClass: method 2-115,2-182,2-227,2-273,

2-288,2-337,2-526,2-627
setCellPrototype: method 2-337
setCellSize: method 2-288
setCharCategoryTable: method 2-595
setCharFilter: method 2-595
setCharWrap: method 2-596
setClickTable: method 2-596
setClipping: method 2-673
setColor: method 2-359,2-367
setColorMask: method 2-359
setColorMatchPreferred: method 2-403
setContentView: method 2-109,2-721
setContext: method 2-472

Index-l 6

setContinuous: method 2-156,2-189,2-359,
2-367, 2-534

setCopies: method 2-472
setCopyOnScroll: method 2-174, 2-516
setcursor operator 4-32
setDataRetained: method 2-403
setdefaultdepthlimit operator 4-33
setDefaultFont: method 2-570
setDelegate: method 2-95,2-260,2-337,2-404,

2-420, 2-427, 2-496, 2-553, 2-596, 2-721
setDepthLimit: method 2-722
setDescentLine: method 2-596
setDirectory: method 2-496
setDisplayOnScroll: method 2-175,2-516
setDocCursor: method 2-175,2-516
setDocEdited: method 2-722
setDocView: method 2-175,2-516
setDoubleAction: method 2-288,2-337
setDoubleValue: method 2-134,2-156,2-189,

2-534
setDouble Value:at: 2-231
setDrawFunc: method 2-596
setDrawOrigin:: 2-175,2-674
setDrawRotation: method 2-176, 2-674
setDrawSize:: 2-176,2-674
setDynamicDepthLimit: method 2-722
setDynamicScrolling: method 2-517
setEditable: method 2-157,2-597,2-630
setEnabled: method 2-69,2-157,2-189,2-214,

2-222,2-238,2-288,2-337,2-368,2-527,2-630
setEntryType: method 2-157
setEntryWidth: method 2-231
setEPSUsedOnResolutionMismatch: method

2-404
setErrorAction: method 2-288,2-630
seteventmask operator 4-34
setEventMask: method 2-722
setEventStatus:soundStatus:eventStream:

soundfile: method 2-420
setExcludedFrom WindowsMenu: method 2-723
setexposurecolor operator 4-35
setFirstPage: method 2-472
setFlipped: method 2-404,2-674
setFloatingPanel: method 2-449
setFloatingPointFormat:left:right: 2-69, 2-158,

2-190
setFloatValue: method 2-135,2-158,2-189,2-506,

2-534
setFloatValue:: 2-506
setFloatValue:at: 2-231
setflushexposures operator 4-35
setFont: method 2-69,2-109,2-135,2-158,2'-190,

2-231,2-289,2-463,2-597
setFont:paraStyle: 2-597

setFontPanelEnabled: method 2-597
setFontPanelFactory: method 2-207
setFrame: method 2-675
setFrameFromContentFrame: method 2-109
setFreeWhenClosed: method 2-723
setHideOnDeactivate: method 2-724
setHighlightsBy: method 2-135
setHorizCentered: method 2-472
setHorizPagination: method 2-473
setHorizResizable: method 2-598
setHorizScroller: method 2-517
setHorizScrolierRequired: method 2-517
setHotSpot: method 2-373
setIcon: method 2-69,2-119,2-135,2-158
setIcon:at:: 2-289
setIcon:position: 2-119
setIconPosition: method 2-120, 2-136
setImage: method 2-120,2-136,2-374
setinstance operator 4-35
setIntercell: method 2-289
setInterline: method 2-231
setIntValue: method 2-136,2-159,2-190,2-534
setIntValue:at: 2-231
setItemList: method 2-301
setJournalable: method 2-95
setKeyEquivalent: method 2-120,2-136
setKeyEquivalentFont: method 2-137
setKeyEquivalentFont:size: 2-137
setLastColumn: method 2-338
setLastPage: method 2-473
setLeaf: method 2-348,2-523
setLineHeight:method 2-598
setLineScroll: method 2-517
setLoaded: method 2-348
setLocation:ofCell: 2-598
setMainMenu: method 2-95
setManualFeed: method 2-473
setMarginLeft:right:top:bottom: 2-473,2-598
setMatchedOnMultipleResolution: method

2-404
setMatrixClass: method 2-338
setMaxSize: method 2-599
setMaxValue: method 2-527, 2-534
setMaxVisibleColumns: method 2-338
setMenuZone method 2-297
setMinColumnWidth: method 2-338
setMiniwindowlcon: method 2-724
setMinSize: method 2-599
setMin Value: method 2-527, 2-535
setMode: method 2-289,2-360
setMonoFont: method 2-599
setmouse operator 4-36
setName: method 2-405
setNeedsDisplay: method 2-675

setNextResponder: method 2-487
setNextText: method 2-289,2-630
setNoWrap method 2-599
setNumColors: method 2-415
setNumSlots: method 2-58
setOffsets:: 2-110
setOneShot: method 2-724
setOnMouseEntered: method 2-374
setOnMouseExited: method 2-374
setOpaque: method 2-675
setOrientation:andAdjust: 2-473
setOutputFile: method 2-474
setOverstrikeDiacriticals: method 2-599
setowner operator 4-36
setPageOrder: method 2-474
setPageScroll: method 2-518
setPagesPerSheet: method 2-474
setPaneIFont:isMultiple: 2-222
setPaperRect:andAdjust: 2-474
setPaperType:andAdjust: 2-474
setParameter:to: 2-137,2-159
setParaStyle: method 2-600
setPath: method 2-339
setPathSeparator: method 2-339
setpattern operator 4-36
setPeriodicDelay:andlnterval: 2-120,2-137
setPixelsHigh: method 2-415
setPixelsWide: method 2-415
setPostSelSmartTable: method 2-600
setPreSelSmartTable: method 2-600
setPreviousText: method 2-290,2-630
setPrinterHost: method 2-475
setPrinterName: method 2-475
setPrinterType: method 2-475
setPrintInfo: method 2-95
setPriority: method 2-261
setPrompt: method 2-496
setPrototype: method 2-290
setReaction: method 2-290
setRecordDevice: method 2-421
setReplyPort: method 2-553
setReplyTimeout: method 2-554
setRequiredFileType: method 2-496
setResolution: method 2-475
setRetainedWhileDrawing: method 2-600
setScalable: method 2-405
setScalingFactor: method 2-475
setScanFunc: method 2-601
setScrollable: method 2-159,2-291
setSel:: 2-601
setSelColor: method 2-601
setSelectable: method 2-159,2-601,2-630
setSelFont: method 2-602
setSeIFont:isMultiple: 2-214

Index-I 7

setSeIFont:paraStyle: 2-602
setSelFontFamily: method 2-602
setSelFontSize: method 2-602
setSelFontStyle: method 2-603
setSelGray: method 2-603
setSeIProp:to: 2-604
setsendexposed operator 4-37
setSendPort: method 2-554
setSendTimeout: method 2-554
setServicesDelegate: method 2-262
setServicesMenu: method 2-96
setShowAlpha: method 2-360
setShowsStateBy: method 2-138
setSize: method 2-405,2-415
setSound: method 2-121,2-138
setState: method 2-121,2-159
setState:at:: 2-291
setStringValue: method 2-69,2-138,2-160,2-190,

2-535
setStringValue:at: 2-231
setStringValueNoCopy: method 2-138,2-160,

2-190
setStringValueNoCopy:shouldFree: 2-70,2-160,

2-190
setStyle: method 2-202
setSubmenu:forItem: 2-301
setTag: method 2-70, 2-160, 2-191, 2-605
setTag:at: 2-232
setTag:at:: 2-291
setTag:target:action:at:: 2-291
setTarget: method 2-70,2-160,2-191,2-291,

2-339, 2-360, 2-368, 2-463, 2-506
setTarget:at: 2-232
setTarget:at:: 2-292
setText: method 2-605
setTextAlignment: method 2-232
setTextAttributes: method 2-161, 2-636
setTextColor: meethod 2-631
setTextColor: method 2-605, 2-637
setTextDelegate: method 2-292, 2-631
setTextFilter: method 2-605
setTextFont: method 2-232
setTextGray: method 2-606, 2-631
setTextGray: metnhod 2-637
setTimeout: method 2-263
setTitle: method 2-110,2-121,2-138,2-238,2-496,

2-724
setTitle:at: 2-232
setTitle:at:: 2-292
setTitle:ofColumn: 2-339
setTitieAlignment: method 2-232, 2-238
setTitleAsFilename: method 2-725
setTitled: method 2-340
setTitleFont: method 2-233,2-238

Index-i8

setTitieNoCopy: method 2-121,2-139
setTitlePosition: method 2-110
setTitieWidth: method 2-238
settrackingrect operator 4-37
setTrackingRect:inside:owner:tag:left:right:

2-725
setTransparent: method 2-121,2-139
setType: method 2-122,2-139,2-161
setUnique: method 2-406
setUpdateAction:forMenu: 2-305
setVersion: method 2-38
setVertCentered: method 2-475
setVertPagination: method 2-475
setVertResizable: method 2-606
setVertScroller: method 2-518
setVertScrollerRequired: method 2-518
setwaitcursorenabled operator 4-38
setwindowdepthlimit operator 4-39
setwindowdict operator 4-40
setwindowlevel operator 4-40
setWindowsMenu: method 2-96
setwindowtype operator 4-40
setWorksWhenModal: method 2-449
setWrap: method 2-162
setwriteblock operator 4-41
sharedlnstance: method 2-358
shouldDrawColor method 2-675
shouldRunPrintPanel: method 2-430
showCaret method 2-606
showcursor operator 4-41
showGuessPanel: method 2-607
showpage operator 4-42
showsStateBy method 2-139
signature Port method 2-263
single-operator functions 3-141
sizeBy:: 2-675
sizeimage operator 4-42
sizelmage: method 2-311
sizelmage:pixelsWide:pixelsHigh:

bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: 2-312

sizeTo:: 2-111,2-176,2-191,2-233,2-292,2-340,
2-507,2-607,2-631,2-676

sizeToCells method 2-292
sizeToFit method 2-111,2-191,2-233,2-292,

2-301,2-340,2-527,2-607
sizeWindow:: 2-463,2-726
slaveJournaler method 2-96
Slider class

specification 2-525
SliderCell class

specification 2-529
smartFaxPSCode: method 2-726
smartPrintPSCode: method 2-726

sound method 2-122, 2-139
Speaker class

specification 2-537
speaker method 2-421
splitView:getMin Y:maxY:ofSubview At: 2-427
splitView:resizeSubviews: 2-427
splitViewDidResizeSubviews: method 2-428
spoolFile: method 2-676, 2-727
startArchiving: method 2-51
startReadingRichText method 2-607
startTrackingAt:in View: 2-162, 2-535
startUnloading method 2-38
state method 2-122,2-162
stilldown operator 4-43
stop: method 2-96
stopModal method 2-96
stopModal: method 2-97
stopTracking:at:in View:mouseIsUp: 2-162,

2-535
Storage class

specification 2-53
STR data type 1-27
stream method 2-608
StreamTable class

specification 2-59
stringValue method 2-70,2-140,2-162,2-191,

2-535
stringValueAt: method 2-233
style method 2-202, 2-727
subclassResponsibility: method 2-51
submenuAction: method 2-302
subscript: method 2-608
subviews method 2-676
superClass method 2-39,2-51
superscript: method 2-608
superview method 2-676
superviewSizeChanged: method 2-676
suspendNotify AncestorWhenFrameChanged:

method 2-677
Symtab data type 1-27
systemLanguages method 2-97

tag method 2-70,2-162,2-191,2-608,2-677
take Color From method 2-368
takeDoubleValueFrom: method 2-163,2-192
takeFloatValueFrom: method 2-163,2-192
takelntValueFrom: method 2-163,2-192
takeStringValueFrom: method 2-163,2-192
target method 2-70,2-164,2-193,2-293,2-340,

2-368, 2-464, 2-507
terminate: method 2-97
termwindow operator 4-43
testPart: method 2-507

Text class
constants 2-618
data types 2-618
specification 2-557

textColor method 2-608, 2-631
textDelegate method 2-293,2-631
textDidChange: method 2-293,2-612,2-631
textDidEnd:endChar: 2-222,2-293,2-443,2-497,

2-613,2-632
textDidGetKeys:isEmpty: 2-222,2-293,2-497,

2-613, 2-632
textDidRead:paperSize: 2-613
textDidResize:oldBounds:invalid: 2-613
TextField class

specification 2-625
TextFieldCell class

specification 2-633
textFilter method 2-609
textGray method 2-609,2-632,2-637
textLength method 2-609
textWiIlChange: method 2-293,2-444,2-482,

2-613,2-632
text WiIlConvert:fromFont:toFont: 2-614
textWiIlEnd: method 2-294,2-614,2-632
textWiIlFinishReadingRichText: method 2-614
textWiIlReadRichText:stream:atPosition: 2-614
textWiIlResize: method 2-615
textWiIISetSel:toFont: 2-615
textWiIlStartReadingRichText: method 2-615
textWiIlWrite:paperSize: 2-615
textWiIIWriteRichText:stream:forRun:

atPosition:emitDefauItRichText: 2-616
tile method 2-340,2-519
timeout method 2-263
title method 2-111,2-122,2-140,2-238,2-727
title Alignment method 2-239
titleAt: method 2-233
titleFont method 2-239
titleHeight method 2-340
titleOfColumn: method 2-341
titlePosition method 2-111
titleWidth method 2-239
titleWidth: method 2-239
toggleRuler: method 2-609
trackKnob: method 2-507
trackMouse:inRect:ofView: 2-140,2-164,2-239,

2-305,2-535,2-617,2-637
trackScrollButtons: method 2-507
translate:: 2-176, 2-677
tryToPerform:with: 2-97, 2-488, 2-728
type method 2-164
TypedstreamErrors data type 1-27
types method 2-457

Index-l 9

underline: method 2-610
unhide method 2-98,2-263
unhide: method 2-98
unhide WithoutActivation: method 2-98
unlockFocus method 2-406, 2-677
unmounting:ok: 2-98, 2-264, 2-554
unregisterWindow: method 2-264,2-555
unscript: method 2-610
update method 2-193,2-301,2-677,2-728
updateAction method 2-305
updateCell: method 2-193
updateCelllnside: method 2-193
update Windows method 2-98
updateWindowsltem: method 2-99
useCache WithDepth: method 2-406
useDraw Method:inObject: 2-407
useFont: method 2-199
useFromFile: method 2-407
useFromSection: method 2-408
useOptimizedDrawing: method 2-728
usePrivatePort method 2-264
useRepresentation: method 2-408
useScrollBars: method 2-341
useScrollButtons: method 2-341

validateEditing method 2-193
validateSize: method 2-294
validateVisibleColumns method 2-341
validRequestorForSendType:andReturnType:

2-99,2-488,2-610,2-729
valueForKey: method 2-18
valueForStreamKey: method 2-61
valueForStringKey: method 2-29
version method 2-39
vertPagination method 2-476
vertScroller method 2-519
View class

specification 2-639

widthAdjustLimit method 2-678, 2-729
Window class

specification 2-681
window method 2-678
window operator 4-44
windowChanged: method 2-611,2-678
windowdevice operator 4-45
windowdeviceround operator 4-45
windowDidBecomeKey: method 2-731
windowDidBecomeMain: method 2-731
windowDidChangeScreen: method 2-731
windowDidDeminiaturize: method 2-731
windowDidExpose: method 2-732
windowDidMiniaturize: method 2-732
windowDidMove: method 2-732

Index-20

windowDidResignKey: method 2-732
windowDidResignMain: method 2-732
windowDidResize: method 2-222, 2-733
windowDidUpdate: method 2-733
windowExposed: method 2-729
windowList method 2-99
windowlist operator 4-46
windowMoved: method 2-301,2-730
windowNum method 2-730
windowResized: method 2-730
windowsMenu method 2-99
windowWillClose: method 2-733
windowWillMiniaturize:toMiniwindow: 2-733
windowWillResize:toSize: 2-223, 2-733
windowWillReturnFieldEditor:toObject: 2-734
worksWhenModal method 2-223, 2-450, 2-730
write: method 2-18,2-26,2-52,2-58,2-61,2-70,

2-111,2-140,2-165,2-176,2-193,2-202,2-239,
2-265,2-294,2-302,2-305,2-321,2-351,2-374,
2-377,2-384,2-409,2-415,2-476,2-490,2-508,
2-519,2-536,2-555, 2-611, 2-632, 2-637, 2-678,
2-731

writePrintlnfo method 2-444, 2-482
writeRichText: method 2-611
writeRichText:forRun:atPosition:

emitDefaultRichText: 2-611
writeRichText:for View: 2-617
writeRichText:from:to: 2-612
writeSelectionToPasteboard:types: 2-431,2-612
writeText: method 2-612
writeTIFF: method 2-321,2-409
writeTIFF:allRepresentations: 2-409
writeTIFF:usingCompressinn: 2-322
writeTIFF:usingCompression:andFactor: 2-322
writeToFile: method 2-30
writeToStream: method 2-30
writeType:data:length: 2-457

zone method 2-52

NeXT Programming

NeXTstep Reference

NeXTstep is the innovative object-oriented programming environment
that makes it easy to develop advanced, user-oriented applications.
NeXTstep enhances developer productivity by providing object-oriented
building blocks that can be used in any application.

>$44.95 USA
>$57.95 CANADA

NeXTstep Reference includes comprehensive descriptions of the Application
Kit and other major components of NeXTstep:

• Objective-C class specifications
• Run-time system for the Objective-C language
• PostScript operations
• Constants and data types
• Standard data formats

The NeXT Developer's Library is essential reading for every NeXT step
enthusiast, providing authoritative, in-depth descriptions of the NeXT step
programming environment. Other titles in the NeXT Developer's Library
from Addison-Wesley Publishing Company include:

• NeXT Development Tools
• Sound, Music, and Signal Processing on a NeXT Computer: Concepts
• Sound, Music, and Signal Processing on a NeXT Computer: Reference
• NeXT Operating System Software

NeXT Computer, Inc., is a state-of-the-art computer manufacturer and
software developer located in Redwood City, California.

54495>

9 780201 581362
Text printed on recycled paper

Addison-Wesley Publishing Company, Inc. ISBN 0-201-58136-1
58136

	00-001
	00-002
	00-003
	00-004
	00-005
	00-006
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	02-153
	02-154
	02-155
	02-156
	02-157
	02-158
	02-159
	02-160
	02-161
	02-162
	02-163
	02-164
	02-165
	02-166
	02-167
	02-168
	02-169
	02-170
	02-171
	02-172
	02-173
	02-174
	02-175
	02-176
	02-177
	02-178
	02-179
	02-180
	02-181
	02-182
	02-183
	02-184
	02-185
	02-186
	02-187
	02-188
	02-189
	02-190
	02-191
	02-192
	02-193
	02-194
	02-195
	02-196
	02-197
	02-198
	02-199
	02-200
	02-201
	02-202
	02-203
	02-204
	02-205
	02-206
	02-207
	02-208
	02-209
	02-210
	02-211
	02-212
	02-213
	02-214
	02-215
	02-216
	02-217
	02-218
	02-219
	02-220
	02-221
	02-222
	02-223
	02-224
	02-225
	02-226
	02-227
	02-228
	02-229
	02-230
	02-231
	02-232
	02-233
	02-234
	02-235
	02-236
	02-237
	02-238
	02-239
	02-240
	02-241
	02-242
	02-243
	02-244
	02-245
	02-246
	02-247
	02-248
	02-249
	02-250
	02-251
	02-252
	02-253
	02-254
	02-255
	02-256
	02-257
	02-258
	02-259
	02-260
	02-261
	02-262
	02-263
	02-264
	02-265
	02-266
	02-267
	02-268
	02-269
	02-270
	02-271
	02-272
	02-273
	02-274
	02-275
	02-276
	02-277
	02-278
	02-279
	02-280
	02-281
	02-282
	02-283
	02-284
	02-285
	02-286
	02-287
	02-288
	02-289
	02-290
	02-291
	02-292
	02-293
	02-294
	02-295
	02-296
	02-297
	02-298
	02-299
	02-300
	02-301
	02-302
	02-303
	02-304
	02-305
	02-306
	02-307
	02-308
	02-309
	02-310
	02-311
	02-312
	02-313
	02-314
	02-315
	02-316
	02-317
	02-318
	02-319
	02-320
	02-321
	02-322
	02-323
	02-324
	02-325
	02-326
	02-327
	02-328
	02-329
	02-330
	02-331
	02-332
	02-333
	02-334
	02-335
	02-336
	02-337
	02-338
	02-339
	02-340
	02-341
	02-342
	02-343
	02-344
	02-345
	02-346
	02-347
	02-348
	02-349
	02-350
	02-351
	02-352
	02-353
	02-354
	02-355
	02-356
	02-357
	02-358
	02-359
	02-360
	02-361
	02-362
	02-363
	02-364
	02-365
	02-366
	02-367
	02-368
	02-369
	02-370
	02-371
	02-372
	02-373
	02-374
	02-375
	02-376
	02-377
	02-378
	02-379
	02-380
	02-381
	02-382
	02-383
	02-384
	02-385
	02-386
	02-387
	02-388
	02-389
	02-390
	02-391
	02-392
	02-393
	02-394
	02-395
	02-396
	02-397
	02-398
	02-399
	02-400
	02-401
	02-402
	02-403
	02-404
	02-405
	02-406
	02-407
	02-408
	02-409
	02-410
	02-411
	02-412
	02-413
	02-414
	02-415
	02-416
	02-417
	02-418
	02-419
	02-420
	02-421
	02-422
	02-423
	02-424
	02-425
	02-426
	02-427
	02-428
	02-429
	02-430
	02-431
	02-432
	02-433
	02-434
	02-435
	02-436
	02-437
	02-438
	02-439
	02-440
	02-441
	02-442
	02-443
	02-444
	02-445
	02-446
	02-447
	02-448
	02-449
	02-450
	02-451
	02-452
	02-453
	02-454
	02-455
	02-456
	02-457
	02-458
	02-459
	02-460
	02-461
	02-462
	02-463
	02-464
	02-465
	02-466
	02-467
	02-468
	02-469
	02-470
	02-471
	02-472
	02-473
	02-474
	02-475
	02-476
	02-477
	02-478
	02-479
	02-480
	02-481
	02-482
	02-483
	02-484
	02-485
	02-486
	02-487
	02-488
	02-489
	02-490
	02-491
	02-492
	02-493
	02-494
	02-495
	02-496
	02-497
	02-498
	02-499
	02-500
	02-501
	02-502
	02-503
	02-504
	02-505
	02-506
	02-507
	02-508
	02-509
	02-510
	02-511
	02-512
	02-513
	02-514
	02-515
	02-516
	02-517
	02-518
	02-519
	02-520
	02-521
	02-522
	02-523
	02-524
	02-525
	02-526
	02-527
	02-528
	02-529
	02-530
	02-531
	02-532
	02-533
	02-534
	02-535
	02-536
	02-537
	02-538
	02-539
	02-540
	02-541
	02-542
	02-543
	02-544
	02-545
	02-546
	02-547
	02-548
	02-549
	02-550
	02-551
	02-552
	02-553
	02-554
	02-555
	02-556
	02-557
	02-558
	02-559
	02-560
	02-561
	02-562
	02-563
	02-564
	02-565
	02-566
	02-567
	02-568
	02-569
	02-570
	02-571
	02-572
	02-573
	02-574
	02-575
	02-576
	02-577
	02-578
	02-579
	02-580
	02-581
	02-582
	02-583
	02-584
	02-585
	02-586
	02-587
	02-588
	02-589
	02-590
	02-591
	02-592
	02-593
	02-594
	02-595
	02-596
	02-597
	02-598
	02-599
	02-600
	02-601
	02-602
	02-603
	02-604
	02-605
	02-606
	02-607
	02-608
	02-609
	02-610
	02-611
	02-612
	02-613
	02-614
	02-615
	02-616
	02-617
	02-618
	02-619
	02-620
	02-621
	02-622
	02-623
	02-624
	02-625
	02-626
	02-627
	02-628
	02-629
	02-630
	02-631
	02-632
	02-633
	02-634
	02-635
	02-636
	02-637
	02-638
	02-639
	02-640
	02-641
	02-642
	02-643
	02-644
	02-645
	02-646
	02-647
	02-648
	02-649
	02-650
	02-651
	02-652
	02-653
	02-654
	02-655
	02-656
	02-657
	02-658
	02-659
	02-660
	02-661
	02-662
	02-663
	02-664
	02-665
	02-666
	02-667
	02-668
	02-669
	02-670
	02-671
	02-672
	02-673
	02-674
	02-675
	02-676
	02-677
	02-678
	02-679
	02-680
	02-681
	02-682
	02-683
	02-684
	02-685
	02-686
	02-687
	02-688
	02-689
	02-690
	02-691
	02-692
	02-693
	02-694
	02-695
	02-696
	02-697
	02-698
	02-699
	02-700
	02-701
	02-702
	02-703
	02-704
	02-705
	02-706
	02-707
	02-708
	02-709
	02-710
	02-711
	02-712
	02-713
	02-714
	02-715
	02-716
	02-717
	02-718
	02-719
	02-720
	02-721
	02-722
	02-723
	02-724
	02-725
	02-726
	02-727
	02-728
	02-729
	02-730
	02-731
	02-732
	02-733
	02-734
	02-735
	02-736
	03-001
	03-002
	03-003
	03-004
	03-005
	03-006
	03-007
	03-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041
	03-042
	03-043
	03-044
	03-045
	03-046
	03-047
	03-048
	03-049
	03-050
	03-051
	03-052
	03-053
	03-054
	03-055
	03-056
	03-057
	03-058
	03-059
	03-060
	03-061
	03-062
	03-063
	03-064
	03-065
	03-066
	03-067
	03-068
	03-069
	03-070
	03-071
	03-072
	03-073
	03-074
	03-075
	03-076
	03-077
	03-078
	03-079
	03-080
	03-081
	03-082
	03-083
	03-084
	03-085
	03-086
	03-087
	03-088
	03-089
	03-090
	03-091
	03-092
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098
	03-099
	03-100
	03-101
	03-102
	03-103
	03-104
	03-105
	03-106
	03-107
	03-108
	03-109
	03-110
	03-111
	03-112
	03-113
	03-114
	03-115
	03-116
	03-117
	03-118
	03-119
	03-120
	03-121
	03-122
	03-123
	03-124
	03-125
	03-126
	03-127
	03-128
	03-129
	03-130
	03-131
	03-132
	03-133
	03-134
	03-135
	03-136
	03-137
	03-138
	03-139
	03-140
	03-141
	03-142
	03-143
	03-144
	03-145
	03-146
	03-147
	03-148
	03-149
	03-150
	03-151
	03-152
	03-153
	03-154
	03-155
	03-156
	03-157
	03-158
	03-159
	03-160
	03-161
	03-162
	03-163
	03-164
	03-165
	03-166
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	xBack

