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1. SCOPE AND PURPOSE

The @M-1 is a hioch—-speed general-purpose digital computer that operates under
two levels of microprogram controle. The unique design of the @M-1 supports a
system of software-created user levels; whereby users at different levels B
approach architecture, machine language, and programming in ways most suited to
their own specific requirements of the hardware. The present document explains
these concepts and defines the QM-1 as it appears to the "hardware-level" user.

The "hardware-level” user approaches a programming interface whose functional
parts correspond to the facilities provided by the physical @M-1 computer
itselfy, without any restrictions to the full generality of the hardware imposed
by pre-definition of the contents of any of the machines control menories.

Even the contents of the Read-Only Memories, included for machines bootstrap and
diagnostic purposes, may be programmed by this user. The Hardware-Level User's
Manual, while not an engineering or maintenance document, is thus oriented
toward the QM-1 user whcse purpose is to define his own computer starting at
the lowest possible level.
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2. INTRODUCTION TO MICROPROGRAMMING AND THE QM-1

Every programmable device, or "machine", possesses an architecture and an
instructicn set. The architecture is its system of components and their
interconnecticonsy in the case of a computer, architectures are described

in terms of stores, registersy, arithmetic-logic units, data paths, 2tc.

A machine instruction is a command which causes elements of the architecture
tc operate in some predetermined manner; the instruction set of a machine

is simply a tist of all instructions which the machine recognizes.
Using these broad definitions = = sccmmmmccmccc e
and the simpltifted nodel! of a I MAIN STORE (MEMORY) 1
computer shown in Figure 2a, I I
a discussion of three phases ] - —— I
of the "instruction sequence” -—=-==\ 1 1 INSTRUCTIONS 1 ] =——==—- \
provides a basic explanation INPUT > ] --=meeemecrem e I QUTPUT >
of cemputer operation.s. 00 —e—m—— /r emeeme——— ] -——=—- /
I I DATA T 1
INSTRUCTION FETCH I eeee————— I
I I

Seaquences of machine instructions, e et -

in the form of binary numbers, are I 1 /\

typically stored in contiguous CPU supplies 1 I / \ Control unit
locations in main store (memory); address for I I I I signals main
instruction execution is initiated single word I 1 1 I store, IO units,
by fetching a machine instruction transfers I 1 1 T and other CPU
from a given location in memory N / 1 1 functions

and pltacing it into an instruction \/ I 1

register. The memory address from —— e ————————— -

which to fetch an instruction is I CENTRAL PROCESSING UNIT 1
contained in an instruction 1 (CPU) 1
location counter register, often | it
called a program counter; part I 1 Registers, 1

of the effect of every instruction I CONTRCOL 1 Shifters, 1

ts to update this register to 1 UNIT I Test Units, 1

point to the successor instruction, I I Adders, etc.l

and then to begin the memory = =ccceeeeeeao —————————— - ———

fetch for the next sequential

instruction. BLICK DIAGRAM OF A COMPUTER

Figure 2A



QM-1 HARDWARE LEVEL JSER'®S MANUAL NANODATA CORPORATION PAGE 0011

INSTRUCTION DECODE

A portion of the contents of the instruction register is designhated as the
operation code. This binary number is decoded by the controf unit to select
ameng a number of modules, each of which is responsible for accomplishing
the effect of one of the instructions in the computer®s instruction set. As
will be shown later, the method of decoding and the nature of these modules
is critical to the definition of microprogramming.

INSTRUCTION EXECUTION

The ultimate effect of any instruction-execution module is the generation
of electrical signals to the various computer components.

2.1 BASIC INSTRUCTIOJN SEQUENCE

These three phases of instruction fetch, decode, and execute, form the basic
instruction sequence (or “instruction cycle"). After initial start-up, all

computers follow an instruction sequence similar to that illustrated in
Figure 2B. '
I INSTRUCTION [---—--- -\ 1 [ A\ I INSTRUCTION I--=-==-=-\ 1 1
1 LGCATION I Step 1 >1 MEMORY I Step 2 >I REGISTER . 1 Step 4 >1 DECUDER 1
I COUNTER I--==-~~/ 1 Am————— /1 (DPCDDE) ]-—=—====-/1 1
/\ 11
/ 0\ Instruction Fetch I 1
I 1 Step 1 - A word is read from memory 2t the location Step 5
Step 3 specified by the (CPU's Instruction Location Counter. I 1
Add One Steo 2 - The word is placed in Instruction Register. \ /
I 1 Step 3 - The Location Counter is updated (Add One). \/
Instruction Decode e ———————
Step 4 - The QOperation Code (a portion of the I SELECTED 1
INSTRUCTION instruction word) is transferred to a decoder. I EXECUTION 1
SEQUENCE Stee 5 - The Decoder selects one of a number of I UNIT I
execution plans. e
Figure 2B Instruction Execute I 1

Step 6 - Carry out execution plan which may include Step 6
data fetch, data manipulation, data store, repeatediy. \ /
End of Sequence - Do next Instruction Fetch (Step 1. \/“
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2.2 MICROPRGGRAMMED CONTROL

Tre final phase is of particular interest hsre. The electrical signals

which the control unit sends to the architectural components are the most
bhasic, or “"primitive", commands in the computer; these signals have effects
such as opening and closing gates (for example, to transfer register contents),
inittatine memory cycles, and setting individual bits. In fact, the
instruction csequence itself is under the coatrol of such primitive operationss
ar implicit effect of every machine instruction is the execution of the next
instruction seaquence.

Jrly rarely do machine instructions correspond to a single architectural
sorimitives; most machine instructions result in the generation of a number

of orimitives, frequently arranged in a time sequence. For some instructions,
the arrancement of primitives can be fairly conplex. An example is a multiply
instruction on a machine which has only an adding component; the adder must be
used iteratively, and the internal! plan of the instructicn resembles a computer
program,

The later observation suggests an implementation of the primitive signal
control function. In the conventionaly, or "hard-wired" computer, 2

nardware degcodinc of the relevant portion of the instruction word selects
one of several locgic circuitsy each of which is responsible for generating
and segquencing the primitive signals of a given machine instruction. 1If,
howevery the primitive control functions are regarded as "micro-operations",
then a "microprocran®” can be written to plan the flow of an instruction.

The steps of this microprogram can then be implemented as primitive commands
executing out of a fast-access store, such as semiconductcr memory.
(Execution of such commands is simple to accomplish, since the micro-
operations correspond directly to architectural functions.)

Using a microprogcranmed approach to machine instruction implementation, the
instruction-deccde step cf machine operation changest® rather than decoding
the operation-cocde portion of the instruction to select one of several
hardware modulesy this binary number is used directly as an addressy OF
pointery, into the microprogram store (*control store")s; the location so
defined is proarammed as the entry point of the microprogram which implements
the original machine instruction. This process is illustrated in Figure Z2c.
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- - - T . . - . - . . - —— —— - - ——— - W > -

1 THE OPERATION CUDE OF A MACHINE INSTRUCTION DETERMINES THE ARRANGEMENT AND I
I TIMING OF THE 'SIGNALS WHICH CONTROL MOVEMENT OF DATA BETWEEN MEMORY, CPU I.

I REGISTERS,

HARD-WIRED COMPUTER

In a conventional (hard-wired)
computer, the opcode is decoded
and used to select among logic
circuits which provide the
control signals within computer.

INSTRUCTION REGISTER

- - - - ——— - ——
—— . ————— - Y ——_———— - -

——— - — - - -

-->1 CIRCUIT 1 I

\/ B
1 DECODER I--
----------- \

- ———— - - -
—— - i — o — ——
-—— - - - — -

- ——-—— - ——

Machine Instructions--and hence the
functional nature of the computer
ac seen by the programmer--are
determined by the machine decigner.

N L T mE T EmEm s e - -
B R R R R S L T

I ALTERNATIVE SCHEMES FOR 1
I INSTRUCTION DECODE 1
1 v Figqure 2C 1

o B B R o O
e eSSt LISFIESZZEESZzsSsS===z=

ARITHMETIC-LOGIC UNITS AND OTHER HARDWARE FACILITIES. I

e e e e T S T T D . S - e S W A - W Bl i . . . T T S K . W . - . T o — — . — T —— — —— - — - — ——— . . .

T . . 1 —— . o —— A . . -

In a microprogrammed computer, the opcode
is used as an address ("pointer") into a
fast "CONTROL STORE™. The microprogranm
starting at that address has been written
to provide the control signals.

INSTRUCTION REGISTER

. — " ———— - - — — — - .

- — - .~ o — — ——

I 1
I 1 CIONTROL STORE
| S R et
\ / I/////////I e bttt
\/ | e & I Mechanism to 1
--=>1 BEGIN I--\ I convert micro 1
(address 1 . I >1 instruction I
of 1 . l1--/ I into control I
micro I END I I signals 1
program)]===—eec—ee-] ———— e ————
17777777771
17777777771

- —-—-— - - - -

Machine Instructions--and hence the
functional nature of the computer as seen
by the programmer--are determined by the

.microprogrammer and may be redefined as

readily as the control store may be
reprogramned. If control store is
writable (rather than "read-only), the
user can microprogram at his convenience,
modifying his machine at computer speeds
instead of "soldering iron™ speeds.
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2.3 USES OF MICROPROGRAMMING

With the previously defined model of microprogram machine control, We can now
examine the uses and advantages of microprogramming. The strongest single
Justification for microprogramming !ies in the current disparity between the
speed of main store (core memory) and the speed of currently avaitable logical
components. For exampley, more than 10 sets of primitive functions nay be
executed in the time taken to read one word from core memory. Thus time exists
for more than 10 control store steps to implement a main store instruction.
This large ratio makes possible a significant increase in the power of the
instructions defined at the higher level over those required in the underlying
hardware. For this reason, microprogramming is now common in many computers.

Microprogramming provides other advantages as well. Since microprogramming in
conirol store serves to define the computer as seen at the conventional level,
the flexibility of microprogramming may be used to vary the machine defined.
Many of the advantages that result are tabulated in Figure 2D.

WI'QDPRDGQAMMIVS MAY BE USED T3 ADVANTAGES Figure 20

1. DEFINE A CCMPUTERS INSTRUCTIGN
SET independent of the basic
nardware developnent. This was
thke most common early use.

2. CAUSE THE HARDHARE TO FUNCTION
AS ANDTHER (PRE-EXISTING)
COMPUTER. This is the common
definition of emulation.

— ———— — ——— T ————— - — —— — . — — ——— - ——— - — - - -

a) Seperates the instruction definition
from the hardware specification.
b) Permits matching memory speed to logic
speeds when a large difference exists.
a) Emulated machines software may be used
without modification thus preserving
possibly larce software investments.
b) Host computer system may be faster or
less expensive than original machine.
c) Several macnines may be emulated at
dcfferent timesy, on same hardware host.
Increased efficiency: functions requiring
complex and time consuming software may be
performed directly on the machine, as a
single (special) instruction. Examples:
Floating point Arithmetic
deerating system functions
Arny programmed procedure commonly
used in a aiven application.

- ———— — - e - v — S — - — - —

3. EMULATE ANGTHER COMPUTER, BUT
WITH EXTRA INSTRUCTIONS AND/OR
SPECIAL FEATURES.
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e CREATE A SPECIAL-PURPCSE
COMPUTER TO MEET THE NEEDS OF
A PARTICULAR ENVIRONMENT,

—— ——— —— ——— - — = — T - S S > - —
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- ——— - ——— — - —— - - — . — - - ——— — ———-

Microprogram development is easier,
faster, and less expensive than
hardware development, and is performed
by personnel typically closer to end
needs than hardware personnel.

Result can be modified easily when
necessaryy, as needs change.

When application is phased outs host
hardware remains usable.

e - - —— - - - - . . —— - - - .-

Since a fully flexible microprogrammed design also
performs the instruction fetch and instruction decode
under microprogram controly main store becomes merely
a storage area which may (among other things) contain
instructions of a higher—level machine. Therefore a

fifth use of microprogramming

. WARITE USER PROGRAMS IN CONTROL
STORE, WITH MAIN STORE USED AS
A FAST MESSAGE BJUFFER, PAGE
BACKUP, FILE STORAGE, ETC.

———————— ——— ——— ——— - —— ——— A ——— . ———— i~ ——

w

1
I
I
I
1

——— . -

iss

Very fast processing times are possible
for suitable applications. Less
hardware may be necessary to do the job
since the hardware is used directly.

. — — —— T —— - - —— —— ———— ————— — - — — — - ———
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2.4 HORIZONTAL AND VERTICAL CONTROL

The desianer of a machine with microprogrammed control faces an immediate
decision as to the format of microinstructions to be used in the machine.
He may choose to use a widey unstructured microword, usually called a
Horizontal Microinstruction:

----------------------------------------------------- Each bit is
[.............HDRIZUNTAL MICRGINSTRJCT]HN.............l independent

----------------------------------------------------- of other bits.

When executed, each bit in a horizontal microinstruction results in a control
signal to a hardware component. This is generally found in more powerful
machines. The microinstruction may run to 100 or more bits (the 1BY 360/50
uses a microinstruction 90 pits wide).

Or the designer may choose a highly encoded microinstruction packed into a
much smaller word. The word contains a micro-opcode and several other
encoded fields. For this reason, it is often referred to as a Vertical
Microinstructicnt
-------------------------- Together, several
VERTICAL MICRCOINSTRJUCTION [ Micro- opcode /  xxx xxxx ] bits form an
-------------------------- encoded field.

When executed, the micro-opcode of a vertical microinstruction selects a
sequence of control signais, similar to the operation of a machine
instruction opcode but at a lower level (simpler sequences are invoked)}.
Vertical microinstructions are much shorter (the IBM 350/25 has a 15 bit
mtcroinstruction).

Each scheme for microproarammed control offers certain advantages. A choice

involves evaluation of many trade-offs. Some of the factors are tabulated in
Figure 2E.

TRADE-QOFFS BETWEEN AORIZONTAL AND VERTICAL CONTROL Figure 2E
HORIZONTAL MICRIINSTRUCTIDNS... VERTICAL MICROINSTRUCTIANS...
............................... ._-_..._..-,_.I . - ——— W - . - W W . e ——— - -
Allow ultnmate flexibility in I Provide a Iimited seiection of

control, since each signal (bit) I control patternss; the number of
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may be individually selected by I possibilities depends upon the

the microprogrammer, 1 width of the micro-opcode.

...................................... I —— i —————— - -~ - - - . —— - . -——

May be executed simply by 1 Require execution machinery

gating them to a registers to I similar to (but simpler than)

which signal lines are I that required to execute machine

attached directly. I instructions.

......................... - - _.I..-_...--_---------------_—_-----------_-__
" Allow paralle! operation of I Typically specify "single-thread"

Shardware components. operations.

—————— - —— — ————— — - - e W N -~ . - T - W . S - —— -

Are relatively difficult to
‘program.

- ——— . —— - - - W T D D S . - - - -

Are relatively simple to
program.

- — — - ——— - T " — . Y - - - — A A S —— - - . . - | . - ———— —— " - — " " — — - ———— ——

May specify a time-sequence of
control signals, so they may be
executed less frequentiy.

1

1

I

I

I

Must be executed fregquently, I

since they exercise each 1

hardware component at most once. I

--------------------------------------- 1 .

Are wide, typically on the 1 Require only enough bits to

‘prder of 100 bits. I contain the micro‘oppode and
: 1 perhaps some parameters --

1 typically 8 to 16 bitse.

1

I

1

1

1

I

I

1

e e s e . e o e . . S e e o o s i o e | i e — i ——— — . ——— - — —— - . W . e W - - - -

The last two ttems imply that
,storage of enough horizontal
microinstructions to run a
reasonably powerful emulation
may be prohibitively expensive
in number of bits.

[P ————— A ettt

The last two items imply that
storage of enough vertical '
microinstructions to run a
reasonably powerful emulation
may be acceptably inexpensive
in number of bits. :

- ——— e SIS S W M. W S W e Ve - w——

© CONCLUSIONS:

Horizontal microinstructions are preferable to vertical microinstructions
for flexibiltty and parallelismy, but they are more difficult to program,

require larger amounts of expensive storage, and are limited in what time
sequences may be programmed.

The @M-1 has been designed to make available the advantages of each scheme of
microprogrammed control and to avoid the disadvantages inherent in each. The
qnique features of the QM-1 that make this possible will be examined next.
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2.5 THE QM-1 CONTR3IL HIERARCHY

In the QM-1, a two-level
stages, achieving the advantages of both horizontal

in Main Store are executed by
in Control Store, under vertical control.

Machine instructions
microprograms

Microinstructions in Control Store are
by} nanoprograms in Nanostore, under horizontal control.

An itllustration of this concept is shown in Figure 2F - QM-1 Control
Main Store
———————————— Main Store instruction "ABC" is fetched
|—————————] arnd decoded under microprogram control.
]———————— I
1 ABC I Control Store
|- I\ —ese~-e-—e——-——-  Mijcroinstruction "XYZ"” is fetched and
- I A\ - I decoded by hardware under nanoprogram
/ . / \-=>1 XYZ //////1 control
] Yr77777777771N
------------ =1\ Nanostore
[ I \ e -
- I \ [ e I

- —— - ——————————

Microcrogram executing

\N=>Y///0/17/77777777771N
L/177/71777777717771 N\

"ABC" is shaded. et I A\
........ s —— —— \
Nanoprogram executing
"XYZ" is shaded.
Nanoprograms are directly executed by
hardware; control signals are sent to components =—==—=—eeeao-2>

Figure 2F Q4-1 CCNTROL HIERARCHY

in turn executed by

EXAMPLE OF TwO

PAGE 0018

design smooths the machine definition process over two

and vertical controlz:

{and defined by}

{and defined

Hierarchy.

Machine Control

- -

I Ta |
1o
1ot 1
PRI

LEVEL EMULATION



QM-1 HARDWARE LEVEL USER*®S MANUAL NANODATA CORPORATION PAGE 0013

This unique control hierarchy takes advantages of the best features of both
horizontal and vertical control as summarized in Figure 2G. In addition,
flexible time seguencing is possible at botn levels. And most important,
botn Control Store and Nanostore are fully writable semiconductor memories,
so that the QM-1 user can take advantage of all possible flexibility in the
system by dynamic reprogramming.

In particutar, Control Store is a fully general-purpose read/write store;
hence it is feasible, for some applications, to approach GM-1 Control Store
as the primary program store of the machine, executing programs which can
regard the passive Main Store as a secondary storage unit.

CONTROL HIERARCHY DIMENSIONAL ADVANTAGES Figure 26

AT HIGHEST LEVEL AT LOWEST LEVEL

End User has system ' Hardware Designer has system
simple to program. (==—=—=—-==-=-- —————————— > direct to implement.
Generalized Indirect Control Absolute Direct Control.
Powerful (high level} (-==—---rr—e—co——o—so==-= > Primitive (low level)
Instructions _ Functions.

Meaning of Main Store Meaning of Control

Contents Fully Redefinable (ememmmm—e—e———=====> Sjignals Fixed in Hardware.
Large Memory Available (eemmmmmem—ceeeccemm—e====> Small Store Reguired.

Low Cost/Bit <(--—=---=--—————-soo—mmmmooo- ————— > Fast Operation.
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3. USER AND MACHINE HIERARCHIES

The design of the QM-1 suggests the use of a system of "virtual macnines"”
arranged in a hierarchy of levels. Each tevel is supported by the machine
belows and in turn supports the machine above. GOnce a given machine is
defined by suitable software (or "firmware"), its implementation -- ie€ay
the nature of that software structure -- is transparent to the user of that
machine. For example, after suitable nanoprogramming is done to define a
"*micro-machine”, the very existence of Nanostore is irrelevant to the micro-
machine user.

Such a machine hierarchy is shown in Figure 3A and described in detail below.

(1) HARDWARE LEVEL Components THE QM-1 HIERARCHY
L S,
/ \ \
Logic Design (by NANODATA)
defines / \ \
/QqM?? NaM=?2 \IM-1
(2) NAND MACHINES 2= T REEE
/ \ O\
/ AN
Nanoprogramming / AN
defines / O\
/ N
(3) MICRO MACHINES % x o
/ / \
/ / \ Cr Microprogramming
Microprogramming / / \ is used to satisfy
defines / / \ Application
/ / \ directly.
(4) MAIN STORE MACHINES T REEE %
/ NN v
/ AN v
Main Store Programming / AN v
to satisfy / -\ v
/ N v
(5) APPLICATICONS T B X % Figure 3A
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4ARDWARE LEVEL

The basic hardware components of the dM-1 include several banks of registerss;

a system of three stores; arithmetic, Boolean, and shift componentss and twelve
independent buses. Bus connections between the components are programmable and
may be changed as often as required to best fit the current task. All these
units may be exercised independently, allowing a high degree of paraltelism.

Complete control over the hardware is provided by a 360-bit word read from the
dynamically writable Nanostore; the active nanoword provides a sequence of four
machine state vecteors, each of which drives the individual machine components
and their interconnections during a machine clock period of 80 nanoseconds.

NANJ-MACHINE LEVEL

Nanoprogramming is the process of defining a set of such control sequences
te implement microinstructions executed at the next level. The opcode of a
vertically formatted microinstructiony read from Control Storey is used to
select the entry point in Nanostore at which to begin executing the defining
nanoprogram. The microinstruction set used may be either that defined by
NANODATA (with possible user modifications/extensions for the current task)
or that defined by the useri the NANODATA supplied micro-language is
accompanited by systems software to support I0Q and process management.

MICRO-MACHINE LEVEL

Since microinstructions reside in the fully readable/writable Control Store,
microprogramming can be used to define the application directly. Due to the
flexibility provided at the nano level, a variety of micro-machines may be
defined to efficiently match the application. The micro-machine can ithen be
viewed as a conventional machine with 2 customized instruction set and a 160-
nanosecond memory.

MAIN-STORE-MACHINE LEVEL

For many applications, the above number of levels will be sufficients
applications software may be written in the defined microlanguage, executing
out of Control Store at very high speeds. For those applications in which
another level of flexibility is desiredy, however, microprogramming in Control
Store may be used to define the architecture and instruction set for software
in Main Store. At the micro level, Main Store is viewed simply as a passive
general-purpose data storej; the process is one of classical emulation.
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As indicated in Section 1, the purpose of this manual is to provide complete
functional specifications of the GM-I, and thus to define the "nano-machine®
~available to the hardware-level user. Many users will be concerned with the
machine at this most fundamental level. The NANODATA systems software staff,
for example, approaches the machine at this level.

When appropriate software, including both systems support functions and any one
of several micro language definitions, is included in the QM-1, the micro-level
user can program the machine without being concerned with the structure
beneath.

Thus this manual is dedicated to that new breed - the NANOPROGRAMMER. QOther
programmers may have interest in the manual in order to understand the hardware
that supports the level at which they write programs; the hardware-leve! user
will find the material in the next two sections essential.
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4. OM-1 FUNCTIONAL SPECIFICATIONS, PART I

4.1 GENERAL

sections &4 and 5 of this manual are a complete functional specification of
the QM-1 CPU in two parts. Part II tSection 5) is intended to be used as a
a8 programmer's reference guides, and includes control field mappings and
encodings as well as detailed functional description. Part 1 (Section 4}
explains QM-1 machine concepts, architecture, and operations, and provides
an overview of the 9M-1 and an introduction to Part 11.

In order to introduce the machine specifications to the first—-time reader,

Part I becomes proaressively more specific as more of the overall QM-1
structure is revealed. Hence the earlier sections of Part 1 have more detailed
explanations in Part II.

The machine described in Sections &4 and 5 (QM-1 FUNCTIONAL SPECIFICATIONS]

is the "hardware GM-1". 1Its architectural features and controis are those
available to the lowest level (nano-) programmer. Nanoprogramming may be
usefully viewed as the task of implementing a ("virtual"™) machine definition
for use at the next higher (micro) level. The description of the "nicro-
machine® will not necessarily resemble that of the QM-1, and in fact may be
quite different. Any number of the QM-1 resources may be dedicated to the
implementation of the micro-machine definition. The nanoprogrammer can assign
several of the 32 general-purpose registers (LOCAL STORE) available to him

as special-purpose architectural features of the micro-machiney, €.ge,
instruction register and location counter. The micro-machine architecture
will in general be an extension (rather than a restriction) of the QM~-1
architecture; for exzmpley, 2 micro-machine may be designed with a large

number of general-purrose registers (which the nanoprogrammer would probably
map into Control Store). The range of feasible micro-machine definitions

is limited only by the ingenuity of the nanoprogrammer and the efficiency
considerations of the emulation processj stack-machine architectures,
sophisticated arithmetic processors, and "wide-word" machines are, for example,
well within this range.
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4.2 MAJOR RESOURCES AND ORGANIZATION
4.2.1 MAJOR BUSING STRUCTURE AND LOCAL STORE

The major hardware units of the Q@M-1 -- stores, Arithmetic-Logic Unit, shifter,
register banks -- can each process or store 18 bits of data in parallel, and
are connected by a system of twelve 18-bit-wide data paths (buses). The
central major unit, Local Store, is a terminus for all twelve buses;i the other
end of each bus is connected to some other major unit. This structure is shown
in Figure 4.2.1A.

QM-1 MAJOR BUSING STRUCTURE (18 BIT WIDE ARCHITECTURE) Figure 4.2.1A

- ———— - - - . - — -

-------------------------- >I MAIN STORE I-=>I RMI UNIT I->---
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I I I cecese e ——————— I I I
I I I (IA =====>1 I cesne I 1
I I I coses I CONTROL [-->--.C0D. I 1
1 1 cecee I STORE 1 ceene I I
I 1 «CIDs == >1 I 1 I
I I escee mm e —— - I I
I L K 2 2 L 2R 2N 2 4 I
I .EID. = emmeemememe—ece—eee—————— .EO0D. 1
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r  mmees—me—e—ree—— o I
1 I /IN I
I I I I
S —— (mmmmem e —————————————  —e et e —— e —————————

Associated with each bus is a direction of data flow and, in general, a
distinct nanoprimitive control for the gating (transmission} of data. Since
the buses and their controls are physically independent, they may be exercised
in parallel, allowing a maximum of twelve program-controlled 18-bit bus
transfers to occur simultaneocusiy. Fach bus bears a three-letter jabel
structured as follows:

The first letter codes the The second letter The third letter provides
major unit which the bus defines the direction further descriptive
connects to Local Store: of data flow? informations:
M — Main Store 1 - Input (to the A - Address
C - Control Store named unit from D - Data
A - Arithmetic-Logic Unit Local Store) L - Left
(and high-order half R - Right
of shifter output) 0 - Output (from the X = "Multiplex" (used
S - Shifter (low order named unit to only for 41X which is
18 bits only) Local Store) shared for Main Store

E —-— External Store Address and data)
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Thus the twelve buses are labeled:

MIX - Main Store Input - Address/Data MOD - Main Store Qutput Data

C(IA - Control Store Input - Address

CID - Control Store Input - Data COD - Contro!l Store Qutput Data
AIL - ALU Input - Left

AlIR - ALU Input - Right AOD - ALU Dutput Data

SI10 - Shifter Input Data SOD - Shifter Output Data

EID - External Store Input Data EOD - External Store Jutput Data

Explanation of the EDA and EIA labels in the diagram is deferred to Section
4.2.5.

Much of the programner®!s attention involves the interaction of Local Store
with the other major unitsy via the busing structure. Local Store is a

bank of 32 18-bit registers, logically uniform with respect to busing.

EACH BUS 1S INDEPENDENTLY CONNECTABLE, UNDER PROGRAM CONTROL, TO ANY LOCAL
STCRE REGISTER. Connecting a bus to a register ("setting a bus control”)

is a primitive operation for the nanoprogrammer. Once a bus control has

been set, the bus remains connected to the register until the nanoprogram
changes that bus control. There is no restriction on the number or identity
of buses that may be connected to any (one) Local Store register at the csame
time, although each bus is connected to one and only one register at any given
time. Once a word appears on a bus, however, it remains available until

some specific action changes the bus source. (Thus, for example, it is
possible to gate the contents of a Control Store location into several Local
Store registers by successively changing the C3D bus control and executing the
appropriate GATE nanoprimitive.)

If the data on two or more buses are gated into the same Local Store register
simultaneously, the logical "(QgR" of the values appears in the register.

A convenient model of the busing structure represents each bus control as a
"rotary switch” attached to a data path; the position ¢f the switch as last
set connects the path to one of the 32 Local Store registers. A "GATE"
nanoprimitive activates data transmission on any path into Local Store.

Since the nanoprogrammer will typically use many of the Local Store registers
to support the functions of some higher level emulated machine (accunutators,
tocation counters, memory address registers, stack pecintersy, general-purpose
registers, etc.), the bus controls effectively allow the resource organization
of that machine to be dynamically redefined to best fit the current task.
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4.2.2 LOCAL STORE SPECIAL FEATURES

The Local Store registers are labeled RO through R31. 1In addition to their
standard properties as members of Local Store, certain of the Local Store

registers possess special capabilities as illustrated in Figure 4.2.2A.
SPECIAL FEATURES OF LOCAL STORE et —————
' ’ 1 I
v I
SIS ESSTSSTSSSSSZS=TSSTTTET 1
ROO 1 I 1
RC1 1 I I
I I I
--------- - - -—= -- I I
I I I I I
Tx=sTT======== 1 ' I 1
I INCREMENT I [=z==2=z=szas=ss=2==22s=z=ss=s=zsz=z=z=z===z] I
I MPC I R24 1 FOUR REGISTERS AVAILABLE I 1
I FEATURE 1 R25 1 WITH SPECIAL INCREMENT I zzzzsz==s==S
Tz=Zz===z= === R26 1 FEATURE TO FACILITATE USE I I INDEX 1
A R27 I AS MICRO PROGRAM CJOUNTERS I I ALU 1
I I::::::::;:::::::::::::::::::I 1 FEATURE |
I 1 1 I zz==z=zz=z=zz==
—————————————————————————————— I A
1 1 1
I===s=2sz2==2=22sz2==s=2s=z==z=z=z==z=z==] 1
===> R31 I MICRO INSTRUCTION REGISTER [====e= i
1 T s=E=ss=Z=TzTz ===z ===s======= 1 1
I I 1 1
I .........................
I I
I =SS =Z=Zs===z3zT=cT==ZTZT=S===sS=== 1

Figure 4.2.2A

T E e D T m e e e o m e e a - - - -
s s S SsESSs ST ST T s sz ===

“e2.2.1 MICRO INSTRUCTION REGISTER

The most important special

facility in Local Store involves R31. This is the

onty Local Store register that is dedicated to a specific purpose. R31 is the
Micro Instruction Register. When a Control Store word is executed as a
it can readily be gated into R31 so that the nanoprogarammer

microinstruction,
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may conveniently make use of the parameter information in the word (the micro-
opcode is automatically cleared to zeros). Thus, R31 serves as the Micro
Instruction Register (MIK).

To allow micreoinstruction parameters access toc the QM-I six-bit control
structures (to be presented in Section 4.3}, R31 is partitioned into three
6-bit fields:s C,A,B (high to low orderl. Hence R31 2lso serves the special
function of interfacing the QM-1 18-bit and six-bit architectures (see Section
5.3.61). C

4.2.2.2 MICRO PROGRAM COUNTERS

Stilt a different special capability applies to four other registers in Local
Store; R24, R25, R26 and R27. An Increment MPC feature is provided to
facilitate the use of any of these registers as a "Micro-Program Counter™
(location counter for microprograms executing out of Control Store). Controls
exist for directly incrementing any of these registers by one of the following
values:

+1

+2

"8" Fijeld of R31 (six bits sign-extended; 2's complement)

"AB" Field of R31 (low order 11 bits only; sign extended)

Other elements of the MP(C facility are discussed in sections 4.2.%y %.5.3, and
5.6.5.

4.2.2.3 INDEX ALU FEATURE

An "Index ALU"™ capability is available for all Local Store registers other than
the four MPC registers. Arithmetic operations may be performed on the contents
of these registers directly using one of several quantities (in 2!'s complement
form) without routing through the Arithmetic-Logic Unit. Selection of Index
source is made from the following list:

One of 12 External Store registers
Data on the CCD bus
Data on the MOD bus _

Further detail on the Index Alu Feature is given in Section 5.6.4
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6.2.3 ALU AND SHIFTER

4.2.3.1 ALU

The Arithmetic-Logic Unit can be controlled to perform ail of the 16 logical
tBoolean) operations, as well as certain arithmetic operations {including
addition and subtraction}, upon the two 18-bit operands present on the AIL
and AIR buses. (The carry-in value for arithmetic functions is supplied by
the CIH bit; see section 4.2.3.4). The I8-bit result proceeds through the
Shifter Extension to the AOD bus, where it is available for gating into a
Local Store register upon execution of the nanoprimitive “GATE ALU". The ALU
may be used to do 2's complement, 1's complement, or unsigned arithmetic.
(2%s complement arithmetic is most consistent with other CPU mechanismsl}.

A 16 BIT MODE permits the inputs to be sign extended from 16 to 18 bits so that
the operation of the ALU need not be changed when dealing with 16 bit data
values. '

A DECIMAL control facilitates decima! arithmetic by generating a "decimal
correction word" on the 50D bus while binary functions are performed in the
ALU. If the ALU propagates a carry out of a four-bit group (counting from the
low-order end), "0000" is forced onto the corresponding group on the SOD bus.
If no carry is propagated, "0110" is forced. The high-order two bits of SOD
are forced to zeros. When the DECIMAL control is active, the Shifter Extension
is automatically bypassed. The shifter input is also blocked, and has no
effect on the correction word value.

"ALU functions include PASS LEFT, for transferring the value on the AIL bus
directly to the Shifter Extension without incurring ALU propagation delay.
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4.2.3.2 SINGLE SHIFTS

The Shifter can be functioned to perform a large number of different shift
operations upon the data present on the SID bus. The result is placed

on the SOD bus, where it is available for gating into a Local Store register
upon execution of the nanoprimitive "GATE S$S4”. MWhen no shift operation is
specifiedy the Shifter functions as a direct connection from the SID bus to
the SOD bus, providing a convenient route for transfers between Local Store
registerse.

Shift operations as described above, involving only the Shifter and the SID
and SOD buses, are known as "single—length" shifts. The following types of
single-length shifts can be specified:

LEFT AND RIGHT LOGICALS
zeros inserted at one endy bits shifted off the
other end.
RIGHT ARITHMETIC:
sign bit (high-order bit] extended (copied) rightward,
bits shifted off right end.
LEFT AND RIGHT CIRCULAR:
rotations of the 18-bit quantity.

For each type of shift operation, shifts of any (meaningful) number of
positions are performed in parallel -- i.e., as a single hardware operation.
Hence single—length shifts of 0 through 18 positions can be performed directly.

Note: When single-length shifts are specified, the Shifter Extension
functions as a direct connection from the ALU output to the AOD bus.
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4.2.3.3 DOUBLE SHIFTS

When a double-length shift operation is specified, the Shifter Extension joins
the Shifter in treating the ALU output and the value on the SID bus as the
high—-order and low-order halves, respectively, of a 36-bit quantity. The high=-
order and low-order halves of the shifted result appear on the AOD and SOD
buses, respectively. In some types of double~length shifting, a 37th bit,
involved in the carry function, is also used. When included, it is placed

to the teft of the Shifter Extension. (Carry will be further treated tater.)
The following types of double-length shifts can be specified:

LEFT 2nd RIGHT LCGICAL:
Leros inserted at one end of a 37-bit quantity
~(carry included), bits shifted off other end.
RIGHT ARITHMETIC: _
Sign bit of 36-bit quantity (high-order bit of
ALU resuit) extended (copied] rightward: bits shifted
off right end of Shifter. Carry is not involved.
LEFT ARITHMETIC:
Same as LEFT LOGICAL, except that this operation can
set the Overflow condition (to be discussed), whereas
LEFT LOGICAL does not set Overflow.
LEFT and RIGHT CIRCULAR: '
Rotations of the 36-bit quantity tcarry not involved).

Double-length shifts of any number of positions (0 through 37) are
also performed in parallel.

Note: When double length shifts are specifiedy the AOD bus contains the high
order portion of the shifted quantity for as long as the double-shift
is in control and the inputs are stable.
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%.2.3.4 CARRY CONTRIOL

Two flip-flops are involved in carry functions within the ALU-shifting complex:
the “CARRY~IN HOLD" (LIH) and the "CARRY-0OUT HOLD"™ (COH)-

The 37th bit position involved in double logical and arithmetic shifts
{section 4.2.3.3) is knhown as the "SH END" position; it is logically located
at the high—-order (left) end of the double-length shift unit.

Two other elements are required in the model to be explained belows

a) Two independently programmable controls, "LEFT CTL" and “RIGHT CTL"
b) The following mutually exclusive nanoprimitive operationsz:

SET CIH CLEAR C1IH SH TC COH
SET COH CLEAR COH ALU TO COH
ALU TO BOTH (COA AND CIH)

Figure 4.2.3.4A aitds in understanding the ALU-shift-carry systen.

The output of CIH is permanently enabled as ALU carry-in, and has no
other function.

CIH can be loaded from one of two sources:
a) direct program loade: "SET CIH", "CLEAR CIH".
b} ALU carry—-outs; effected by "ALU TO BDTH".

The output of COH is permanently enabled to serve the following functionsse
a) sole input to the SH END bit position.
b} one of two inputs to the "LEFT CONTROL SWITCH", to be explained.
¢) sole source of the “carry test" value, one of the "local conditions”
that can be tested in a nanoprogram.

CGH can be loaded from one of three sourcesst
a) direct nanoprogram loads: "SET COH", "CLEAR COH".
b) ALU carry-out; effected by "ALU TO COH" or "ALU T0O BOTH".
¢) output of the "RIGHT CONTROL SWITCH", to be explained.

The output of the LEFT CONTROL SWITCH is the low-order bit positiaon of the
5CD bus. In its normal state, this switch connects the SOD-low=-bit to the
low—order bit position of the SHAIFTER output. MWhen the "LEFT CTL"™ is active,
however, the latter connection is broken, and SOD-low=bit is instead taken
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from the output of COH.

The output of the RIGHT CONTROL SWITCH serves the sole function of providing
a source for loading COH (by "SH T0 COH*"). In its normal state, this switch
loads COH from the output of the SH END bit position. When the "RIGHT CTL"®
is active, however, this connection is broken, and this switch instead loads
COH from the low-order bit of the SID bus.

Figure 4.2.3.4A
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4.2.3.5 TEST CONDITIONS

Including CARRY, there are six "local conditidns", generated by ALU and/or
shifting cperationsy which can be tested by nanoprimitives. They are:

CARRY () Output of COH, as discussed in Section 4.2.3.%.
SIGN {S) The high-order bit on the AOD bus.

RESULT (R) Normally the Logical OR of the low-order 17 bits on the
AO0 bus. However, when either of the special carry
controls, "RIGHT CTL"™ or "LEFT CTL", are set, "RESULT" is
the Logical OR of the low order 17 bits on the AJD bus
and all 18 bits on the SOD bus. Thus an absolutes zero
value, either 18 or 35 bits may be tested with the condition
of both S and R equal 0.

OVERFLOW (0O) This condition is the logical OR of shifting overflow
and ALU overflow. Shifting overflow arises only in
double teft arithmetic shifts, and is defined to arise
if and only if a serial (bit-by-bit) shift of thes same
number of positions would, at any timey, change the value
of the high-order (sign) bit of AOD. ALU overflow arises
{see Section 5.6.2), if and only if the bit-carry signals
propagated into the sign and carry-out positions are of
opposite values.

SHIFTER HIGH BIT (SHB) The high-order bit on the S0D bus.
SHIFTER LOW BIT (SLB) The low-order bit on the SCD bus.

Since it is highly desirable to have a convenient methcd of preserving
condition bits, a location is provided in the CPU for a copy of eacn of the
six local conditions. The nanoprogrammer can set a control such that when
GATE ALU is executed, the four local conditions CySyRy and O are automatically
copied into their corresponding "global condition™ bits, and f{under separate
control) when GATE SH is executed, the two local conditions SHB and SLB

are copied into their global counterparts. Then, independent nanoprimitive
tests can be made upon these "global conditions".
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4.,2.3.5 SIXTEEN-BIT MODE

A special CPU feature is included to facilitate manipulation of
byte-oriented data. A "16-BIT MODE" control can be set by the
nanoprogrammer, with the following effectss:

al The local conditions Sy R,y and SHB are redefined to
function as if the Shifter and Shifter Extension were each
16 bits wide, with the virtual units mapped onto the low-
order 16 bits of the 18-bit units (i.e., the S5-test is taken
from ADD bit 15 instead of AOD bit 17 -- using O-origin
numbering; etc.). The "double width” R test is based on the
lower 33 bits of the concatenated ADOD and SOD buses.

b) The RIGHT CONTROL SWITCH selects bit 16 of the AOD bus instead
of the output of the SH END bit to load COH.

¢} The ALJ Overflow condition and ALU carry-cut are redefined to
function as if the ALU were 16 bits widey, with the virtual ALU
mapped ontc the low-order 16 bits of the 18-bit ALU.
Note: shifting Overflow is not redefined.

dl The AIL and AIR buses automatically copy the 3rd-highest-order

0035

bit (i.e., the sign bit of a 16-bit word) into the two high-order
positions; thus arithmetic in 16-bit mocde also generates correct

18-bit results, for later use in 18-bit mode if desired.

Importants the "PASS LEFT" ALU function, which routes the contents
of AIL directly around the ALU, also bypasses this sign-extension

mechanisme.
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4.2.4 CONTROL STORE

Control Store is a fully readable/writable general-purpose 18-bit wide
store, impiemented in semiconductor memory. It is available in blocks
of 1K words, up to a2 maximum of 16K words.

The nanoprimitives "READ (CS", "WRITE (S", and "GATE CS" are provided to access
Control Store. The READ CS and WRITE CS nanoprimitives are accompanied by

a field which selects the source of the address in Control Store at which

a word is to be accessed. Sources of (S addresses are as follow?

CIA: The value on the CIA bus; for general -purpose
data accesse.
0Dz The value on the COD buss for convenient
indirect access.
MPC, MPC+1l, MP(+2, MP(C+B, MPC+AB (low-order 11 bits of R31):
(Increments sign-extended, 2's compliement.)
For microinstruction sequencing and branching,
and for reading microinstruction parameter listss
microtnstruction execution is discussed in
section 4.5.3. Selection of which of the
four MPC's is to be used is made by a
mechanism similar to a bus control (see section 4.3.2.3)
INDEX: The (18-bit) value taken from the INDEX ALU QOutput
bus (see section 5.4.2.1)

When a word has been read out of Control Store, it appears on the C3D bus,
available for gating intc a Local Store register by execution of the
nanoprimitive GATE {S. O0Once established, a COD value remains until changed
by the next READ CS or WRITE CS operation.

Writing a word into Control Store is accomplished by placing the datum
on the CID busy and then executing the nanoprimitive WRITE CS with the
appropriate CS address selected. The newly written value then appears on COD.

If READ CS and WRITE (S are executed simultaneously, READ CS is ignored.

Execution of READ CS from (or WRITE CS to) a nonexistent location generates
zeros on the (0D bus; nothing in Control Store is changed in either case.
NOTE: Negative addresses(bit 17 on) will execute READ CS from READ - ONLY
Centrol Storeli.e. ROCS; see section 4.8)
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4.2.5 EXTERNAL STORE

External Store is a bank of 32 registers, partitioned intoe several groups to
support specific functions: External portsy, Index registers, Main Store
addressing facilities, and interrupt control.

Although each type of ES register is associated with special hardware
facilities to implement its specific functiony all 32 ES registers are
uniformly accessible by the nanoprogram via the EBD and EID buses. To provide
this accessibility, two additional bus controls are associated with External
Store transfers, as follows: '

While the destination end of the EOD bus is connected to one of the 32 Local
Store reagisters by the ECD bus controly the source end of the same bus is
connected to one of the 32 External Store registers by a different bus control,
labeled EBA. The transfer from ES to LS is executed by the nanoprimitive

“"GATE ES". Similarly, the External Store connection of the EID bus is selected
by the EIA bus control. The transfer from LS to ES is executed by the
nanoprimitive "“LOAD ES".

. Functions of External Store registers are as follows:

EQO through E7:2 Eight Port Registers available for interfacing the QM-1
to its environment. These registers are directly connectable to Main
‘Store. (The GM-1 external interface is discussed in section 4.6.)

E8 through E19: Twelve Index ALY Operand sources. These include eight
registers for general use and four registers from the groups below,

El64E172 BASE ADDRESS register and FIELD LENGTH register associated with
Main Store addressing (discussed in section 4.2.6.3}). Inclusion of
these machine-control functions in El16 and E17 is a QM=-1 OPTION; if
such functions are not included, E16 and E17 are scratch registers.

E204E212 ALTERNATE BASE Address and FIELD Length registers.
E18 through E31: The remaining twelve registers are associated with
Interrupt control (see section 4.5.2.%). These registers include:
E18 and E19: Interrupt Enable Bits.
E22 --- E31¢ Interrupt Address Fields.

The overall layout of External Store is shown in Figure 4.2.5A
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4.2.6 MAIN STORE

4.2.6.1 GENERAL

Main Store is a general-purpose 18-bit-wide core storage, available in blocks
of 8K words up to 256K maximum (16K words minimum). Full cycle time is 800D
nanoseconds; since lower—level control operations occcur an order of magnitude
faster, Main Store is well suited to contain programs of virtual (emulated)

machines whose instructions require a moderately complicated interpretation
at fower levels. ,

For convenience and efficiency in Input/0Output processing, the two buses
associated with Main Store (MIX and MOD) may be connected not oniy to any of
the 32 Local Store registers, but also to any of the 8 Port Registers in
External Store. Thus for the MIX and MOD bus controls only, the Port Registers
are treated as extensions to Local Store; they are designated as R32 through
R39 when used in this way.
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4.2.6.2 MS OPERATIONS

To initiate a full (non-destructive) read operation in Main Store, the
nanoprogrammer first determines that Main Store is not busy ("MS BJSY" is one
of the "special conditicons” available for nanoprogram testingl, and then
simultaneously executes the two nanoprimitives "MSGO" and "MSRS" (for "Main
Store Restart"). Main Store accesses the location addressed by the valtue

on the MIX busy as modified by addressing facilities which are discussed

in the next section.

When the accessed word is availabley, another special test condition, "MS
DATA INVALID", becomes false, and the nanoprogram can gate out the word
through the MOD bus by executing the nanoprimitive "GATE MS"; access time
is 640 nanoseconds.

The same two nanoprimitives, MSGO and MSRS, are used to control other
operations of Main Store, as followss;

When MSGD is executed without MSRS, Main Store begins the first half-cycle
{"extraction part") of a split-cycle operation. As in the case of a full~-
read operation, the address is taken from the MIX bus. Main Store will remain
BUSY until the completion of the second half-cycle ("insertion part"}. 1In

the split-cycle mode of operation, however, the latter must be explicitly
invoked by the nanoprogram execution of MSRS; the data word to be inserted
(written) is taken from the MIX bus at the time MSRS is executed. This mode
of operation may be used in two ways:

To perform a Read/Modify/Write sequence, the nanoprogrammer initiates split-
cycle aperation as described above and then, when MS DATA INVALID becomes
false, gates out the extracted word (GATE MS}) for modification (for example
indexing) by CPU facilities. When the modified word is ready for insertion
back into its MS location, it is placed on the MIX bus and MSRS is axecuted.

Since MS BUSY will become false at the completion of the second half-
cycle, this operation can offer significant time savings over the
alternative full-read, data manipulation, full-write sequence, especially

if the modification period is relatively short.

Alternatively, to perform a "full write", the nanoprogrammer initiates
split cycle operation as described above and then AT ANY TIME THEREAFTER --
including immediately after MSGO -- places the word tc be inserted on the
MIX bus and executes MSRS. If MSRS is received during the first half-cycle
of split-cycle operation, Main Store will latch the data-in word from
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the MIX bus and "remnember" to initiate the second half-cycle as soon as
pcssible.

& distinct advantage to lessening the distinction between the full-write and
Read/Modify/Write functions is that the nanoprogram can initiate a Main Store
operation without making a2 commitment to either of the two functions; if the
nanoprogram subsequently decides that the operation is to be a full-write, no
time loss is incurred if the decision is made before the end of the first half-
cycle. (ln fact, the full-read function may alsoc be achieved in-the split-
~cycle mode, although with a slight degradation in cycle time due to routing
delays.) This facility is thus useful in implementing certain Main Store
modification look-ahead schemes.

Kotes:

l. Main Store ignorés any MSGO signal received when MS BUSY is true.
(See section 5.4.3.)

2. Main Store ignores any MSRS signal received when either:
a) MS is not BUSY; or .
bl MS is BUSY in fuill read mode§ or
c) the second half-cyclie in split-cycle
mode is already in progress. (See section 5.4.3.]

3. When either mode of operation is initiated:
a) MS BUSY becomes true}
b) MS DATA INVALID becomes true$ and
¢) MOD is cleared to zeros.

4. When the second half-cycle of split-cycle mode is initiated,
MBD takes on the value of the word being inserted. Note,
howevery, that MS DATA INVALID is set "true".
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4.2.6.3 MS ADDRESSING AND PROTECTION (QM-1 OPTIODN)

A JM-1 OPTION is the use of External Store register 16 as the BASE register
ana External Store register 17 as the FIELD LENGTH register associated with
the base-addressing, write-protection, and address-alarm facilities to be
described below. If this option is not present, then:

a) El16 and E17 are available for scratch use; and

b) the facilities described below operate as if the BASE register
permanently contained the value zero and the FIELD LENGTH regqister
permanently contained the value 2%%18-1.

Khenever Main Store uses the value on the MIX bus as an addressy, that value
is treated as a displacement; it is added to the contents of the BASF
register to yield the true (absolute) address to be accessed.

An MS ADDRESS VIOLATION Program Check is generated in either of the
following two cases:

a} When an MS access of any kind uses an absolute address which
falls outside the allowed range defined by the BASE and FIELD
LENGTH registers. The lowest physical address in the allowed
range is the value of the BASE register; the number of words
(consecutive locations) in the allowed range is given by the
contents of the FIELD LENGTH register(i.e. 0 < the number of words
accessable < c(FIELD LENGTHA) +1). Wraparound is disallowed.

b) When an MS access of any kind addresses a location which is
not physically present in Main Store.

For the convenience of programs used as "privileged” or "system” routines,

a nanoprimitive control ("CIRECT MS ACCESS") can momentarily force the
effective value of the BASE REGISTER to zero and the effective value of the
FIELD LENGTH REGISTER to 2%¥%18~1 (E16 and E17 themselves do not change value).

In addition to generating the Program Check, detection of M$S address violation
sets MOD to all ones and leaves the contents of the memory unchanged.

In all modes of Main Store operation, a Program Check is generated in the
case of failure of a parity test automatically made upon the extracted word.
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4.2.6.4 RMI UNIT (QM-1 OPTIONF FURTHER SPECIFICATIONS TO BE ANNOUNCED)

If desiredy the contents of the MOD bus can be routed through the RMI unit
before being gated into a Local Store register or a Channel Register.

The RMI unit - Rotate, Mask, and Index - is a very general data-transformation
device with special application in extracting fields and decoding information
when emulating a "Main Store Machine". The operation of the RMI unit passes

a word through three successive stages of transformation$

a) The initial value undergoes a right circular shift by the
number of positions specified in a ROTATE parameter.

b} The resulit of this operation is iogically ANDed with an
18-bit MASK parameter.

¢l The result of this operation is added (2%s complement) to
an 18-bit INDEX parameter to yieid the final result.

There are three sets of such parameters. They are loaded with three separate
AUX Actionsy and the data is taken form the COD busisee section 5.8.21).
Selection of one of the three parameter sets is associated with the GATE MS
nanoprimitivey a fourth option is to bypass the RMI unit.

Notes:

1. Since the MOD source value remains stable until changed by
a Main Store operation, the same word may be taken through
a succession of different RMI transformations (and alsoc routed
to different destinations} without re-cycling Main Store.

2. The RM] parameters may be changed as often as desired by the
nanoprogrammer.



QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 004%

4.3 SIX-BIT CONTROL STRUCTURE

4.3.1 GENERAL

The large number of hardware resources in the QM-1 and the flexibility with
which they may be used require a large variety of control information,
dynamically changeable during the execution of user programse.

Rather than having all such information placed in a store from which
instructions are executed, the concept of "residual control" is implemented.
Registers are provided in the machine for holding this hardware-controlling
information. These registers can be loaded at the explicit command of anm
executing program; their contents will remain in control of their assigned
hardware functions until relocaded (hence "residual control”)., In this manual,
the terms "residual control™ and "nanoprimitive control”™ are used with mutually
exclusive definitions. :

Residual control functions in the UM-1 are maintained in a bank of six-bhit
registers known as F-store. A complete system of nanoprimitive controls and
six-bit data paths exists for transferring quantities between F-registers and
a set of six-bit source and destination fields elsewhere in the machine, and
for manipulating these data.

The six-bit source and destination fields (from the point of view of F~store)
are collectively known as Auxiliary {(AUX) fields, although some are control
registers in their own right. ’

The same rules of simultaneous busing azpply to both 18-bit and six-bit
transfersy, such that if two or more AUX Fields are gated into the same

F Recister simultaneously, the logical "OR" of those source values appears
in the F Register. Two or more F Registers bussed to the same AUX Field,
however, produces the logical AND of the values.
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4.3.2 F-STORE
4.3.2.1 GENERAL

The 32 six-bit registers in F-store, numbered FO through F31, are all
uniformly accessible for the purpose of loading from six-bit source fields
and reading into six-bit destination fields. Execution of such six-bit
transfers and the associated addressing in F-store (as well! as selection

of source and destination fields) are accomplished entirely by nanoprimitive
control.,

Simitarlyy nanoprimitive controls may be applied uniformly to any register
in F=Store to INCREMENT (by one) or DECREMENT (by one) the contents of
that register (modulo 64).

It is convenient, however, toc approach F=Store as partitioned into three
groups, by function? bus control Ft*s, special F's, and G's. This is shown
in Figure 64.3.2.40.
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I FMPC SPECIAL I I CONSTANTS-KA,KB I
| CONTROLS I \ 1
I FIPH [ e AN | MISC. SOURCES I
e ittt I gurt \ - I
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SIX BIT ARCHITECTURE FIGURE 4.3.2A
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4.3.2.2 BUS CONTROL F's

The first fourteen F Registers are the bus controls(see section 4.2.11).
They are symbolically referenced in association with their bus names (FMOD,
FAOD, etc.)y, with the addition of FEIA and FEOA. The contents of tnese
registers are interpreted in one of three ways to achieve bus control,
depending on the nature of the associated bus.

The contents of an F-register associated with the DESTINATION end of a bus
(with the exception of FMOD) are used modulo 32 to address (connect) a
Local Store register (FSGD, FADD, FEOQOD, FCOD) or, in the case of FEIA, an
External Store register. (The high-order bit is ignored for bus control
purposes, although it is physically present in the F-register as loaded.)

The contents of an F-register associated with the SODURCE end of a bus

{with the exception of FMIX) are used moduio 64 to address (connect) a

Local Store register (FSID, FAIL, FAIR, FEID, FCIA, FCID). If the address is
greater than 31 (i.e., if the high-order bit is set), the bus is connected

to a permanent source of all ones, rather than to a Local Store register.

In the case of FEOA greater than 31, the EOD bus is connected to a source of
all zeros rather than to an External Store register. (i.e. If FEIA > 31 then
LOAD ES wraps around the E Registers; if FEJA > 31 GATE ES sends zeroes to LS.)

Since MIX and MOD have an addressing range beyond 32 (see section 4.2.6.1),
special rules are used in interpreting the bus control functions of FMIX

and FMOD; these F-registers are used modulo 64, with the eight Port

Registers (EQ0 through £7 ~- see section 4.2.5) treated as contiguous
extensions to Local Store for this purpose. Since the MIX and MOD buses

may not be connected to an External Store Register beyond the Port Registers,
the following rules apply:?

1. When FMIX contains a value greater than 39 (corresponding
to E7, the last Port Register), the MIX bus takes tne value
of all ones.

2. When FMOD contains a value greater than 39, GATE MS is a
null operation.
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4.3.2.3 SPECIAL F's

The next cix F-registers serve special control funetions, some of which have
been mentioned previouslye.

FACT: (Auxillary ACTion) FACT is used as a source value to specify
a variety of special action commands. These are described in
Section 5.8.2.

FUSR: (Control Store USeR partition number) Bits O thru 3 identify
the Control Store partition currently accessible by the CPU.
This function is meaningful only in those systems utilizing the
Contro! Store Address Translation option(see Appendix B). Bits
4 and 5 are ignored. When the CS Address Translation is not in
use FUSR is a general scratchpad 6 bit register.

FMPC: The contents of FMPC, modulo 4, select one of the four Micro
_Program Counters in Local Store tc be used for MPC gperations
{see section 4.2.2). The selection is according to?

FMPC (mod &) MpPC

0 R26
1 R25
2 R26
3 R27
FIDX: (IndeX) FIDX has one main function and three auxilliary oness:

—— - o — —— - ——— W T G- = . -

———— - —— o — - A= . W SR - I - W S G W G D - VI SN - W e G S A M W S A S S g

Bit 5: 16-BIT-MODE controls "1" for 1l6-bit mode, "O0" for 18.

Bit 4: Supervisor instruction State; "1" allows entry to
supervisory (restricted]) nanoprograms {section 4.5.2.2)

8it 3: NANDSTORE Mode Control (section 4.B}3
wO» for normal, "1" for read-only

Rits 2, 1, O0: Nanostore Page Index, used in Nancstore
addressing under Micro control. (Sections 4%.5.3, 46.5.%)
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FIST: (STatus) The six bits of FIST contain the "global! conditions"
mentioned in section 4.2.3. Since the FIST bits can be tested
by nanoprimitive controls which are independent of those used
to test the "local conditions", and since any F-register can be
loaded with a six-bit guantity, FIST may also be used as a
general—-purpose bit-testing facility.

The FIST test bits arec:

- ——— —— . — — ——— —————— T —— - —— . > .~ — . . - . - -

S —— —— " —— ;. — — —— T — " —— T — —— — . S - — . ——— — —— -

FIPH: (PHantom) FIPH is a special F that gives the nanoprogrammer
the ability to transfer a value from a source AUX to a
destination AUX without using two T-steps as would be required
when going through an F register, and without destroying the
value in an F register. This is possible because FIPH is not
truly a register. Having no data-storing capability, it is a
direct connection between the input and output bus structures
of F-store. If nanoprimitives are simultaneously executed to
INput to FIPH frem a six-bit source field and GUTput from FIPH
into a six-bit destination field, the result is a direct
transfer from the source field to the destination field. 1If
only a load into FIPH is executed, there is no effect (except
as a function code in 1/0 operations,section 4.6). If only
a gate out of FIPH is executed, the transferred value is zero.
Note: Transfers from source AUX to destination AJX via FIPH
must be placed in a STRETCHed T-step.
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4.3.2.& G'S

The last twelve recisters in F-store are known as G-fieldsy or G's. The

s have no direct dedicated machine~control functions in themselves, but
are used in programming systems to store back-up contro! information, as

focllowss '

Firsty since the G's are a part of F-store, any G may be loaded from any
source AUX, or read intoc any destination AUX. (Hence one use of G's is for
temporarys of scratch, storage in six-bit programming, without inhibiting
the use of machine functions.)

Seconds the Gt!'s have the special property that they are also addressable

as source AUX fieldsy, and hence may be transferred directly to any register
in F-Store({including G*s). Therefore the G's provide space for the programmer
to store control information that will subsequently be transferred into

tcr exchanged with) bus control Fts, special F's, and/or other control
registers (i.e., certain destination AUX fields). In this sense, the G's
serve the function of a "second level® of residual control.

Note: As a sources G's may be referred to as G's or as their corresponding
F's, depending on the transfer, e.g. 60 = F20. As a destination they may only
be Ft's.
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4.3.3 AUX FIELDS

‘Available source AUX fields (which can be loaded into F-store) ares

C: Ay, B2 The three six-bit fields of R31, as introduced
in Section 64,2.2.

KAy KB, Six-bit fields from the executing nanoword

KXy KT, to be discussed below and in Section 4.5.1.

KS: KA and KB ordinarily are used for constant

and/or scratch storage.
GO - G111 The 12 G's (see Section 4.3.2.4).

The following additional source AUX's are not registerss

ALUF: Output of six-bit ALU, to be discussed in Section

10 ID: A six-bit IDentification number associated with a
device on an external port; see Sections b.6y 5.5.2.

INCF1, DECF1, Increments and decrements of F-store elements
INCF2, DECF2:  (Sections 5.5.2, 5.6.6).

SW: Six external switches on the engineering control panel
(see Figure 5.9.1A) ’
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tvailable destination AUX fields (to which F-store can be output) ares

CyA,B2 See above.
KAg¢KB 2 See above.

KALC: A field which specifies the»operation of the
. ALU (ALU Control}. _

- KSHCz: A field which specifies shifting operations
{Shift Control).

KSHA < A field which specifies number c¢f positions
to shift (Shift Amount). ’

KS: A six-bit mask fteld associated with global
condition {(FIST) testing.

KTz A six-bit mask field associated with local
condition testing. ; :

KX¢$ A six-bit mask field associated with special
condition testing.

KAy KBy KALC, KSHC, KSHA, KS, KT, and KX are all six-bit fields in the
executing nanoword (see section 4.5.1).
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4.3.46 ALUF (QM-1 OPTIONS FURTHER SPECIFICATIONS TO BE ANNOUNCED)

A six-bit ALU, similar in characteristics to the 18-bit ALU, operates under
nanoprimitive control to generate arithmetic and logical functions from

two six-bit inputs. )

The left and right inputs to “ALUF" are any register in F-store (selected by
nanoprimitive controlisl.

The oqtput of ALUF mnay be loaded into any register in F-store.

1f the ALUF is not present, operations defined to gate its output produce
an all ones(63.) value (see section 5.6.7 for further description).
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4.4 TIMING

The Q@M-1 CPU is a synchronous device, driven by a single machine clock whose
period is 80 nanoseconds.

To allow the hardware-level user intimate access to and control of QM-I
hardware facilities, nanoprogram steps are executed at the machine ciock rate.

To avoid ambiguity in discussing three closely related conceptis, the following
terms are used in this manual:

T-PERIOD: A period of elapsed time equal to
the clock periods 80 nanoseconds.

T-STEP: An elementary event in program
controly a single step of nanoprogram
execution. A T-step consists of the
simultaneous (parailel) execution of some
number of nanoprimitive commands
{nanoprimitiveste A T-step generally
occurs in one T-period, but for certain
purposes it may be expanded (by the
"STRETCH" nanoprimitive) to last for two
T-periods.

T-VECTOR: A string of bits representing a set of
nanoprimitives to be executed concurrently
in a single T-step. The "active T-vector™
corresponds to the "current T-step”.
(Program control is presented in detail
in section 4.5.)

When there is no danger of confusing the three concepts of time (T-PERIODI,
event (T-STEP), and physical entity (T-VECTOR}, the term "T" may be used;
for example: "A 24-hour QM-1 working day is egquivalent to more than a
tritlion Tos." ("T" is derived from "TEE": Time, Event, Entity.)

All nanoprimitives may be classified as either "leading-edge" (LE) or
"{railing-edge" (TE), according to whether the function they define takes
effect at the beginning or the end, respectively, of the T-step in which
they are executed. 1In general, the effect of trailing-edge nanoprinitives
(the larger class) may be considered to occur at the end of the T-step in
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which they occur. For examples all nanoprimitives which transfer values into
registers {18-bit or six-bit) are trailing-edge. Leading-edge nanoprimitives,
on the other hand, initiate processes which have a duration of one or more
T-periodss examples are READ €S, MSGO. The duration of such processes are
measured from the beginning of the T-step in which their nanoprimitives are
executed. The "STRETCH"™ nanoprimitive separates the leading edge of a T-step
from the trailing edge by one extra T-period.

The difference between a T-step and a T-period is important when both fleading-
edge and trailing-edge nanoprimitives are programmed. For example, if READ CS
{leading—-edge) and GATE (S (trailing-edge) are programmed in the same T-step,
and that T-step is not STRETCHed, Control Store will not generate the new value
on the CDD bus in time for the GATE CS. 1If, however, the T-step is STRETCHed,
the value gated into Local Store will be that generated by the READ CS, since
the time span between the leading and trailing edges of a STRETCHed T-step is
two T-periods, enough for a Control Store cycle. (Timing considerations for
programming Control Store and other leading-edge operations will be discussed
in detail! in section 5.3)

All register transfers, both 18-bit and six-bit, are controlled by trailing-
edge nanoprimitives. Since these operations are synchronous, the same register
effectively can be loaded and read in the same T-step ("simultaneousiy”),
without loss of data. Given the model that register "REG"™ is to be gated to
register "DEST" and loaded from register "SOURCE" simultaneously, then the
state before the operation is that the data from SOURCE is present on the bus
from SOURCE to REG, and the data in REG is oresent on the bus from REG to DESTS
the effect of the nanoprimitives is then to latch ("clock in") the bus values
into REG and DEST. Propagation delays are such that DEST will have latched its
new value before the new value in REG has time to reach the bus from REG to
DEST. It is quite important, however, that the new values are on the buses and
ready for a repeat operation within one T—-period; this fact is fundamental in
nanoprogramming.

The basic timing structure of the QM-1 is derived not only from hardware
considerations, but also from the design objective of being able to nanoprogram
certain operations and sequences of operations efficientiy. The three most
important such sequences are listed below (in the symbolic program examples,
the T-steps are not stretchedl.

l. Closed loop through Local Store. For example, let the EOD and EID buses
both connect the same Local Store register and External Store register
(FEOD=FEID, FEOA=FEIA}, and then execute the following T-steps:
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Tne LOAD ES, GATE ES.
Tn+l s LOAD ES, GATE ES.

the result is a double exchange (final status = initial status) of the contents
of the two registers.

2. (losed loop through F—-storese.g.:

Tns AUX {(x) ====DF(y), Fly)—==D>AUX{X).
Tn+l: AUXIx)==—-D>F(y), Fly)=——==>AUX(x).

The result is a double exchange (final status = initial status) of the
contents of AUX{x) and Fly).

3. Bus setting immediately prior to bus use; e.g.:

Tns AUX {x)~-—-->FSOD.
Tn+l: GATE SH.

The Shifter output is gated into that Local Store register "pointed to" by
the number contained in AUX{x} at the beginning of T-step T(nl).

THE ABOVE THREF TYPES OF SEQUENCES ARE MUTUALLY CONSISTENT. For example, the
third illustration could be expanded to include the T-step:

Tn-1: Fly)--—-=>AUX(x].

which would set AUX(x) in time for the described sequence to occur with the
Ltocal Store register number specified by Flyl.

To achieve these objectives, the machine clock signal that controls six-bit
operations (the F clock) is phased differently from the signal that controls
18-bit operations (the R clock). Both are derived from the same single

machine clock that controls the T-vector (the T clock)l. This phasing is
normally transparent to the nanoprogrammer, and must be considered mainly when
dealing with the interface between the six-bit architecture and the 18-bit
architecture which exists in R31; the necessary programming rules are specified
in detail in section 5.3.5.
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4.5 NANOPROGRAM CONTROL

4.5.1 CONTROL MATRIX

The current T-step is specified by the contents of the active T-vector.
This T-vector remains active for one T-period (or two, if it inciudes the
STRETCH nanoprimitive). The active T-vector is one of four T-vectors
resident in a structure known as the Control Matrix. This structure is
shown in Figure 4.5.1A.

CONTROL MATRIX

(EXECUTES NANOWORD) —===————————reseee  mosssosossos—oso-oo——-—=

I I 11 PROGRAM [HECK I

--------------------- I —_——————-— I Il (ADDRESS 0) I

1 K VECTOR I I I 1 I -
I{INCLUDES AUX FLDS)I-——-= I I e >IT  NANOBRANCH (KN} J===—-=
] - 1 I N I I ADDRESS I I
. | 1 I A I —————remmme e I
ITl1 NANOPRIMITIVE 1 / I N 1 ———————— - 11 INTERRUPT ADDRESS 1 1
I-—— MACHINE CONTROLI /=-—-- I O I 7/ 1 NANOSTORE 11 (2) I 1
1 FROM CIRCULAR I / ) Y 1/--1 ADDRESS - 1
IT2 ACTIVATION I\ I T I\--1 SELECT 1 . 1
1— 0OF T VECTORS I \—=——- I 0O I \ I MECHANISM 1 . I
I . 1 \ I R I - I . v
I1T3 1 1 E I [swemmr e e e 1
I— I I I I1 INTERRUPT ADDRESS I I
1 1 I 1 11 (31) 1 I
IT4 I I | ettt b 1
e —————— ~==—=——— LOADED FROM II NANOPROGRAM (NPC) I I
A s e————— —>11 COUNTER 1 1
XS T T T E T T 2 T X 8 £ 8 LOADED FROM 1 : C3D BUS ——— ———— s e o e e o ‘ 1
I PROGRAM CONTRIL I  ——————m——m—e—e 1 A A 1
I Figure 4.5.1A I EQD BUS I SEQUENCE I I FROM KN 1

TSI STSsID =X —— - — —— - - ——————— —— - ——_—

At any given time, the Control Matrix contains 360 bits, corresponding to the
360 bits in a nanoword. This includes the four T-vectors, one of which is
active (72 bits in each T-vector) -- and a 72-bit entity, the "K-vector".
(The AUX registers KA, KB, KALC, KSHC, XSHA, KS, KT, and KX are all portions
of the K-vector.) Since the Control Matrix bits correspond to some 360-bit
word ("nanoword"”) in Nanostore, they may be referred to as the "active
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nanoword”. Because of this correspondence, every word in Nanostore is
togically partitioned as followsz

[K-vector] [T-vector{l)} [T-vectort2}] [T-vector{3)] [T-vector(4})]
(or, brieflys K, T1, T2, T3, T4 -~ high-order to low-order)

Mechanisms are provided for selecting 2 nanoword, fetching that word from
Nanostore, and loading it into the Control Matrix. When the nanoword is
toaded into the Control Matrixs its first T-vector (T1l) immediately becomes
the active T-vector (and its K-vector becomes active).

The normal operation of the Control Matrix activates the four T-vectors in
succession and circularly, with no loss of time between activations: T1, T2,
73, T4, Tl, etc. Unless a special high-priority facility (Program Clheck)
interruptssy this sequence continues until certain program-control
nanoprimitives are executed. These nanoprimitives can be programmed

to execute conditionally, so that the nanoprogrammer may create a useful loop
in a single nanoword. (For example, the F ZERO test may be used; see Section
5.7.) 11 the programmer does not need such looping, then the sequence

may of course be broken after the first activation of T4 (or earlier, if
desired).

For protection against infinite looping, a Control Matrix Time-Out facility
breaks the loop and generates a Program Check if the same nanoword circulates
in the Control Matrix for approximately one second (more than 12 million
T-pertodsl}e.

The two program control nanoprimitives of immediate interest are "S<IP" and
"GATE NS". Either can be executed conditionally, according to the T-vector
test facilities specified in section 5.7. The bit structure in the T-vector
is such that SKIP and GATE NS are mutually exclusive in the same T-step.
However, another nanoprimitive "GATE NS UNCONDITIONALLY" is provided to avoid
this restriction and to permit conditionally skipping Tl of the next nanoword.
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SKIP, when executed, modifies Control Matrix operation so that the next T-step
in succession is skipped overs activation of the succeeding .T-vector is
inhibited. The skipped T-step consumes one T-period of time (whether ,
STRETCHed or not), which shouid be observed when leading-edge processes are
programmed; the effect is the same as if the succeeding T-vector were
activated, but with all its specified nanoprimitives {including STRETCH)
nturned off". Note that a SKIP executed in T3 results in Tl being the next
T-vector activated; a SKIP in T4 goes to T2.

GATE NS is a trailing-edge nanoprimitive which, when executed, causes the
Control Matrix to be loaded with the nanoword resulting from the most

recently completed Nanostore access. The successor to the T-step in which
GATE NS is executed is generated by the first T-vector {T1) of the newly gated
nanoword; no time is lost in the transition. The K-vector is also loaded

from the K-vector of the nanoword as a result of the GATE NS.

Note: any six-bit transfers into K-vector AUX fields commanded in a T-step
in which GATE NS is also executed result in undefined values, unless the
"HOLD* control is on (see section 4.5.2.31}.

To supply a nanoword for gating into the Control Matrix, the leading-edge
nanoprimitive READ NS is executed. Nanostore completes the read operation
within two T-periods (but not within one T-period)i hence either of the

following program examples illustrate a successful shortest-time segquence of
the operations READ NS, GATE NS:

a) Tn: READ NS. {not stretched}
Tn+l: GATE NS. (not stretched)

b} Tn: STRETCH, READ NS, GATE NS.

The READ NS nanoprimitive has a secondary effect, involving the
wnanobranch" facility; this is discussed in section 4.5.2.3.
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4e5.2 NANJISTORE ADDRESSING
4.5.2.1 PRIORITY SELECT

Wwhen READ NS is executed, a priority-select mechanism supplies the actual
nanostore address from a list of potential addresses. FEach potential address
value is 10 bits wide, since Nanostore may contain as many as 1324 nanowords.

Nanostore is available in 256-word blocks, and can be arranged so that any of
eight possible 128-word "pages” is full, half-full, or empty. Execution of
READ NS from a nonexistant location generates a zero nanoword; if such a word
is lcaded into the Control Matrix, no nanoprimitive operations are inveked, and
a Control Matrix Time-Out Program Check eventually results.

Each source of potential nanostore address has a fixed priority relative to
the other sourcesi furthermores, an ACTIVE/INACTIVE status is associated with
each source at any given time. When invoked, the priority-select mechanism
selects the address from the highest-priority source that is currentiy ACTIVE
and supplies it to Nanostore. If the corresponding nanoword is then executed
(GATE NS occurs before the next READ NS), the address source is reset to
INACTIVE status. The source with lowest fixed priority is the NanoProgram
Counter (NPC)5 this is defined as permanently ACTIVE, and can be considered
a default.

The process can be modeled by a list of activation flags, each associated

with a nanostore-address source, ordered by the priority of the sources;
operation of the priority-select mechanism is equivalent to reading down

this listy, from high-priority to low—priority, until the first ACTIVE flag

is encountered. The address associated with that flag is then supplied to
Nanostore, and the flag is turned off (INACTIVE) upon successful use (GATE NS)
of the nanoword fetched from that location.

Figure 4.5.2.1A illustrates the model and identifies the various address
sources, to be discussed in the following sections.
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FIGURE 4.5.2.1A

PRIORITY SELECTION OF NANOSTDRE ADDRESS

FLAGS SOURCE (HIGHEST PRIORITY AT TOP)

[ 1 PROGRAM CHECK
1 NANOBRANCH
1] I I
. I I
. I INTERRUPTS (MAXIMUM 30) I
. I I
‘ I I

[X1} NANOPROGRAM COUNTER (NPC)
' {permanently active)

*

Upon execution of READ NS, the mechanism reads down from the top to first flag
that is active [Xl. Associated 10 bit address is sent to Nanostore. If the
corresponding nanoword is executed (GATE NS}, flag is turned off.

Note: The flag associated with NANOBRANCH is treated .in a special manner to be
described in section 4.5.2.3.



dM-1 HARDWARE LEVEL USER'S MANUAL NANDDATA CCRPORATION PAGE

4.5.2.2 PROGRAM CHECK

when a Program Check occurs, the following is automatically done:

1. Execution of the active nanoword is terminated.
2. The appropriate bit is set in the Program (heck Status fields
to identify the type of error.
3. The contents of RONSIO] are loaded into the Control Matrix to begin

execution of the service programe.

Since the entry point of RONS[O] is shared by the Program Check service
orogram and the Machine Start program (see section 4.8), the common program
must test for Program Check Status fields of zeros (cleared by the Machine
Start pushbutton) to determine the nature of its invocation. A "special

0061

condition®s set to “"TRUE" if any of the Program Check Status bits are on, can

be tested for this purpose (see section 5.7.1 and 5.7.2).

Generai Program Check Types are:

1. MS Parity Error

2. MS Address Error

3. Itlegat Micro Operation Entry

G4, Priviledged Operation{Supervisoryl Error

5. Nanoprogram(Microinstruction} Time QOut
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4.5.2.3 NANIJIBRANCH

The nanobranch facility is one means of continuing a nanoprogram beyond‘one
nanoword. Due to the high priority given to the nanobranch operation, a
branch~connected nanoprogram is never interruptible except by Program Check.

The source of the nanobranch address is a 1)-bit fields, KNy within the active
K-vector.

Control of the nanobranch activity status for priority selection is
accomplished through the BRANCH bit in the active K-vector, in conjunction
with the READ NS nanoprimitives

BEach time a READ NS is executed, the BRANCH bit is tested. If active,
the nanobranch address is taken. If inactive, the nanostore address is
taken from one of the lower priority sources as described in Section
%.5.2.1. Thus, the BRANCH bit serves as the activation flag for the
sefection of the nanobranch address.

The tnitial condition of the BRANCH bit is determined by its setting in the
nanoword gated into the control matrix. If set, BRANCH is ACTIVE as soon as
the nanoword (i.e., the one containing the BRANCH bit) is loaded into the
Control Matrix. The state of another bit, the "ALTERNATE" bit in the active
K vector determines the future condition of the BRANCH flag. When ALTERNATE
is not sety the BRANCH bit retains its initial status. However, when the
ALTERNATE bit is set, every execution of READ NS in the active nanoword
acquires the secondary function of inverting (complementing) the BRANCH
activity flag after initiating the Nanostore read operation.

Thus, the nanoprogrammer can specify four possible settings of these two bits
to control the selection of the nanobranch address:

ALTERNATE BRANCH ACTION
0 0 NANOBRANCH ADDRESS NEVER USED BY READ NS
0 1 NANOBRANCH ADDRESS ALWAYS USED BY READ NS
1 0 2NDy 4TH, 6TH, ETC. READ NS USES NANOBRANCH ADDRESS
1 1 15Ty 3RDy 5TH, ETC. READ NS USES NANOBRANCH ADDRESS

Note that this control is always determined on the READ NS execution and not on
the GATE NS as for other activation flags. Thus the SKIP and/or GATE NS
facilities may be used to effect a variety of conditional nanobranching.
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4.5.2.4 EXTERNAL INTERRUPTS

Interrupts are signals which can notify the program of the occurrence of events
external to the QM-1. A maximum of 30 such signals are directly detectable by
QM-1 hardware.

The 30 interrupts are ordered by priority level for Nanostore address selection
and are labeled Level 2 through Level 31; Level 2 is highest-priority
{immediately below nanobranchl, and Level 31 is lowest priority (immediately
above the NanoProgram Counter).

Assignment of levels to signal lines is INTERRUPT LEVEL ASSIGNMENTS
performed by NANODATA at installiation
time according to user specifications. Channel Level Assigned
A typical assignment is shown in the Number Data In Data Out Status
adjoining figure. 0 2 3 22

1 4 5 23
For an interrupt to become ACTIVE for P & 7 24
priority setection, it must be "“LATCHED", 3 8 9 25
"ENABLED"”, "PENDING"” and "ALLOWED". 4 10 12 26

5 13 11 27
An interrupt level is LATCHED when a 50 6 14 15 28
nse. pulse is sensed on its signal line. 7 16 17 29
Interrupt levels are individually ENABLED Levels 18-21, 30 and 31 may be
by the "1* state of the corresponding assigned to other external
Interrupt Enable bit. These 30 bits signals.
are stored in External Store registers Levels 2-11 - Nano Interrupts.
18 and 19 (see section 4.2.5}). Levels 12-31 - Micro Interrupts.

Every ENABLED level is tested for the presence of a LATCHED interrupt signal
by each execution of GATE NS. 1If this test succeeds, the level is set to
PENDING status. Once a level is PENDING, it remains in that state until

the priority-select mechanism eventually selects the Nanostore address
corresponding to that interrupt level, and the associated nanoword is loaded
into the Control Matrix to begin the service program; at that time the level
is also unLATCHED, and unPENDING.

A PENDING interrupt level automatically becomes ACTIVE for priority

selection if and only if its associated ALLOW INTERRUPT bit in the active
K-vector is "1" when the priority-select mechanism is invoked by READ NS.
There are two such bits ("ALLOW NAND INTERRJPT" and "ALLOW MICRO INTERRUPT"),
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The high 10 interrupt levels (2-12) are designated as NANO INTERRUPT levels.
The}remaining 20 levels (12-31) are designated as MICROD INTERRUPT levels.

If a nanobranch is not taken at the end of executing a nanoword, and if no
tnterrupts are active, the priority-seiect mechanism gives controi to the
NanoProgram Counter (see Figure 4.5.2.1A)% hence the ALLOW INTERRUPT bits are a
facility the programmer can use to insure that a chain of nanoword executions
invoked through the NPC is not interrupted. This subject is further discussed
‘in section 4.5.4.2.

All 1/0 interrupts mnay be blocked from priority selection by disabling 1/0
interrupts with the Auxilliary Action "disable” command as described in Section
5.8.2. The ALLOW INTERRUPT bits are then ignored and no I/0 interrupts will be
accepted. Following the Auxillary Action "enable® command, all blocked 1/0
interrupts again become eligible for priority selection, assuming all other
prerequisites exist, as described above.

" The Nanostore addresses associated with the MAPPING OF INTERRUPT ADDRESSES
tnterrupt levels are generated from six~-bit
fietds in ten External Store registers 22 - SIX-BIT FIELD: "ABCDEF*"
31 (see section 4.2.5). The mapping of the TEN-BIT ADDRESS: "OABOOOCDEF"

six-bit field into the 10-bit address is as

shown on the right. This mapping permits up to 16 interrupt entries in each
page of nanostore. To conserve entry points in Nanostore, several interrupt
tevels may be assigned the same address in nanostore by placing the common
address in the appropriate positions in External Store registers 22 - 31.

Finally, & facility exists for the programmer to "generate" interrupts
{simulate external interrupts) and also to "clear"” interrupt latches. One
interrupt level can be so affected in a nanoword. When the "GENERATE INT® bit
is set in the active K-vector, the selected level is latched or unlatched

at the beginning of T-period 12 if the "generate” option is used, the level
becomes LATCHED, PENDING, and ACTIVE in time to be selected for execution by

a READ NS executed in T-period 3 or later; if the "clear" option is used,

the level is unLATCHED immediately upon activation of the current nanoword.
The mechanism for selecting the level and the "generate”" vs. "clear" option

is presented in section 5.8.1.

Other External Interface facilities are discussed in section &4.6.
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4.5.3 NANJIPROGRAM COUNTER
4.5.3.1 GENERAL

When an nanobranch is not taken and no interrupts are active, the priority-
select mechanism supplies an address to Nanostore from the NanoProgram Counter,
the lowest element on the priority list.

The NPC is a 10-bit register which changes value only as a result of
nanoprimitive commands. The following (mutually exclusive} NPC control
operations are avaitable in the T-vector (all trailing-edge):

LOAD NPC (CS)
LOAD NPC (KN}
LOAD NPC (SEQUENCE)

The first operatton -- LOAD NPC (CS) -- invoives microinstruction execution,
since the address is a Control Store Opcode. This is discussed in the
next Section.

The LOAD NPC (KN) operation loads the NanoProgram Counter from the KN field

tn the active K-vector. Thus an executing nanoword can transfer nanoprogranm
execution to NS(KN) either directly (nanobranch) or through NPC (NP{ branch):
the interrelationship of these two facilities is discussed in section 4.5.4.

The LOAD NPC (SEQUENCE) operation adds one (modulo 1024) to the contents of
the NPC. Thus a nanoprogram executing at an NPC-specified Nanostore address
can conveniently continue execution through sequential Nanostore locations
(nanosequencing).
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4.5.3.2 MICROINSTRUCTION EXECUTION

One of the most important modes of program control is the invocation of a
nanoprogram by a microinstructioni the operation code of a machine nicro-
instruction, extracted from Contro! Store, is used to select the Nanostore

entry address of the nanoprogram {(of one or more nanowords) whose execution
defines that micraoinstruction.

Wwhen the nanoprimitive command LOAD NPC (CS) is executed, the following occurs
{(trailing—-edge):

a) The high~-order three bits of NPC are loaded with the Nanostore
Page Index from the low-order three bits of FIDX, a special
F-register (see section 4.3.2.3)3

b) the low-order seven bits of NPC are loaded from the high-order
seven bits of the (0D busj

¢) the low-order eleven bits of the COD bus are saved in a
dedicated register.

The nanoprimitive "LDAD R31" is available to cause the following action?

a) The high-order seven bits of R31 are cleared to zeros; and

b) the low-order eleven bits of R31 are loaded with the saved eleven
low-order bits of COD (this is the parameter part of the machine
microbinstructionl.

This event is concurrent with six-bit transfers executed in the last T-step
of the previous active nanoword; thus the new contents of the C, A, and B
fields #n R31 are available for gating to F-store in the first T-step of the
microinstruction, if desired (see section 5.3.51}.

The high-order seven bits of a machine microinstruction are thus defined as

the -micro-opcodes and provide the microprogrammer with a maximum of 128
microinstructions supported by a page of Nanostore; i.e., 128 NP(-addresses

are possible under a given value of the Nanostore page index in FIDX.

Different Nanostore pages may be used to define different micro-machines,
extend the microinstruction set of a given micro-machine, implement different
machine states, and/or contain continuations of nanoprograms. from another page.
For convenience in microinstruction sequencing, one of the Local Store MP(C's
will normally be used in addressing Control Store to generate the machine
microinstruction on the COD bus (see section 4.2.4]).
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Toc protect against the execution of illegal micro-opcodes (for exampley when
scme or all nanowords in a page are used for nanoprogram continuations and/or
interrupt entry points), a "LEGAL MICRO ENTRY™ bit is provided in the
K-vector. If this bit is off ("0"} in a nanoword loaded into the Control
matrix as the initial word of a nanoprogram invoked by a microinstruction, a
Procgram Check is generated.

To protect against infinite looping between two or more nanowords, a
Microinstruction Time—-0Out facility generates a Program Check if

microinstruction executions do not follow within approximately one second
of each other.

This section has used the term "machine microinstruction” to refer to a
Control Store word which is executed through NPC to invoke a nanoprogram.
For the microprogrammer, however, a "microinstruction™ may consist of
several Control Store words and contain a large number of parameters and/or
immediate operands; the only restriction is that one of the words (most
conveniently, the first of a contiguous string) must be a machine micro-
tnstruction. The invoked nanoprogram is able to fetch the other words from
Control Storey and, if appropriatey can use the CyA, and B fields of the R31
interface to route six-bit parameters to various control registers. -

Microinstructions defined using this technique can be quite powerful, and have
the advantage of economizing on micro-opcodes; for example, 2 “general
arithmetic and logic” microinstruction can be defined by routing a parameter
fteld to the ALU control register (KALC, in ‘the active K-vector).
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4.5.% NANOPROGRAM FLOMW
4.5.4.1 NANDPRJIGRAM CONNECTION

Nznoprogram execution controiied by the NPC may be considered to be
mpnanoprogram mainline” flow. A mainline is ordinarily initiated by
the invocation of a machine microiqstruction {section 4.5.3.2).

Using this model, the operation LOAD NPC (SEQUENCE) then can be used as a
straightforward method of continuing a mainline; the operation LOAD NPC (KN)
has the effect of transferring the location of the mainline to a different
place in Nanostore. Thus the following technique can be used to maximize

the number of micro-opcodes in a page: If a nanoprogram which defines a
micrcinstruction is longer than one nanoword, the first nanoword -exits

by transferring the mainline to a different page of Nanostore; the nanoprogram
consumes only one micro-opcode entry point in the initial page.

Since the nanobranch facility does not affect the state of the NanoProgram
Counter, the following technique provides a mainline nanoprogram with the
capability for caliing one level of subroutines in Nanostore, as follows:

A call is effected by a nanobranch to the first word of the sub—nanoprcgram,
which must proceed (if longer than one word) by nanobranch only; the called
sub~nanoprogram returns to mainline via the NPC, which has remained as a link.

A sub-nanoprogram can terminate the nanoprogram -— even conditionaily, if
desired, since its return to nanoprogram mainline is exactly the samne

as those steps of a return to microinstruction control that follow LOAD

NPC (CS). For exampley the mainline can perform normal microinstruction
prefetch operations and then conditionally (via SKIP)} execute LOAD NPC (CS)
before calling the sub-nanoprogrami the latter will return either to mainiine
or to new microinstruction control, depending upon whether LOAD NPC (CS) was
SKIPped or noty respectively.
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4.5.46.2 INTERRUPTIBILITY

One suggested mode of interruptibility is to allow low-priority interrupt
levels to take control only between microinstructionss this plan is enforced
by setting the ALLONW MICRO INTERRUPT bit (in the K-vector} only in the exiting
nanoword of a nanoprogram (i.eey that word which is ordinarily succeeded by

a nanoprogram invoked by the next machine microinstruction). In this mode,
the interrupt-service nanoprograms are free to make use of the NPC to
establish a maintine, and thus call subroutines, transfer to microinstruction
control, etc.; the lower-priority interrupts are more likely to require such
service (e.g., end of 10 operation).

A suggested paralliel mode of interruptibility is to allow mainline nanoprograms
to be interrupted between (some) nanowords, using the ALLOW NAND INTERRUPT bit.
(Note: branch-connected nanoprograms, including sub-nanoprograms as defined

in section 4.5.4.1, cannot be interrupted because of the high fetch-priority

of nanobranch.) When allowing the mainline nanoprogram to be interrupteds the
interrupt-service nanowords must proceed by nanobranch only, since any other
technique would destroy the value of the NPC and hence break the link for
returning to the interrupted (mainline} nanoprogram. The higher-priority’
interrupts are more tikely to be serviceable by this kind of progran {eeQ.r

- single-word transfer in a data stream).

Any-pragramming structure must allocate various machine resources to the
various levels of program control. For examnple, programming conventions could
be established such that bus controls are undefined between microinstructions
tfor free usability by interrupt service routines), but are expected to hold
between mainline nanowords; that certain G's do not change value between
microinstructionss etc.
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§.5.4.3 HOLD

For convenience in programming across nanowords, the "HOLD” and "HOLD 2" bits
in the active K-Vector are provided. They allow the nanoprogrammer to retain
various contro! values in the K vector portion of the Control Matrix during the
transition to the next nanoword.

If a HOLD bit is set ("1") in the active nanoword, then the corresponding K
fields in the control matrix do not change their values as a result of gating
the next nanoword into the control matrix. The action of the HOLD bits is
suppressed if the next nanoword is invoked by microinstruction entry (GATE NS
and LOAD R31 in the final T-Vector) or by program check interrupt.

For obvious reasons, the HOLD control and the ALLOW INTERRUPT controls should
normally be used with mutual exclusione.

The following is a list of K-Vector fields affected by the HOLD bits:

HOLD HOLD 2
KALC KA
KSHC KB
KSHA
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P
L.5

Tre

EXTERNAL INTERFACE

material in this section functionally specifies the interface between the

aM-1 computer itself and its environment. Information on NANODATA Channel
Control Units is presented in a Section 8 of this manual.

The
its

The
Jse

The

external interface consists of eight "external ports", each identified by
association with a Port Register (EQ through E7; see section 4.2.5).

following "outgoing" external interface facilities are bused for common
by the eight ports:

a) The "Phantom Bus™ {current input to the "phantom" register, FIPH)
supplies six bits of information

b) The "G-bus" supplies six bits of information taken from one of 16
sources: GO through G11, KSHA, B, KS, KX. The selection of the source
is performed by the "GSPEC™ field in the currently active T-vector,
and is further discussed in section 5.5.2 (where the value on the
G-bus is referred to as "G(GSPEC)™).

c) 10 Cltock - a syncronizing signal to external devices available at the
port during . each T-step. ‘

d) XIO Strobe - a syncronizing signal to external devices, generated only
when XIO is present.

e) MASTER CLEAR - a signal sent when the system is initially cleareds
this signal cannot be generated by program control.

followiﬁg "outgoing” external interface facilities are local to each ports

a) A path through which an external unit can read the contents of
the Port Register (18 bits in parallell). ,

b} The "Port-XIO" pulse.

c) The "Port-RIO" pulse.
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The following "incoming®” external interface facilities are also local
to each port: A
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a) A path through which an external! unit can supply data to the Port

Register {18 bits in paraliel}.

b) The "I0 ID" linesy through which an external unit can
supply six bits of information to the port.

c) Some number of interrupt levels, logically assigned to the port

by software in accordance with the physical system configuration.

Program control of the external interface involves these internal facilitiess:

KA

a) KA (of the active K-Vector),

b} The RIO nanoprimitive ("Read 10"},

c) The X100 nanoprimitive ("transmit 10"),

d) Six-bit transfer nanoprimitives, used to read 10 ID,

e) The interrupt structure, as presented in section 4.5.2.%.

s used modulo 8 to select one of the eight ports for nanoprimitive

control. If no external unit interfaces to the KA-selected port, incoming
values are zero and outgoing operations are nuill.

Execution of the XIO nanoprimitive causes a Port-XIO signal to be sent

the KA-selected port for the duration of the XIO,

all ports.

Execution of the RIO nanoprimitive has these effects:

al At leading edge, a Port-RID pulse is sent through the
KA-selfected porte.

b} At leading edge, the KA-selected Port Register is set to zeros.

¢) At trailing edge, the contents of the 18 incoming data |ines

through

and XIO Strobe to be sent to

associated with the latter register are gated into that register.

The 6-bit 10 ID of the currently interrupting device is available to the
program as an AUX (see section 5.5.2, and section 8).
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4.7 WRITING NANIJSTORE

Each 360-bit word in Nanostore is partitioned into 20 18-bit bytes for the
purpose of writing. When the RRITE NS nanoprimitive is to be used,

the Nanostore address is taken from the 10 bits of R31 -on
the high-order side of Bj}

the byte selection is the B field, used modulo 32;
the 18 bits of data to be written are taken from the EOD bus.

Each time an address is sent to Nanostore (with a Read NS or a WRITE NS},
160 ns later the full 360 bits is available for GATE NS. Therefore, if
WRITE NS is followed by GATE NS, the full Nanoword with the modification
will be gated into the Control Matrix, and execution begun in T1l.

If either a nonexistent word-location is addressed, or B is greater than

19 (bytes are addressed 0 through 19), WRITE KNS does not alter Nanostore.
Instead it acts like READ NS; it calls out zeroes on a bad word address, and
a non altered word on a bad byte address.

~If WRITE NS and READ NS appear in the same active T-vector, READ NS-is
ignored.

0073 -
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4.8 READ-ONLY MEMORIES AND MACHINE START

In addition to Nanostore and Control Store, the QM-1 contains a Read-Only
Nanostore (RONS) of 32 360-bit wordsy, and a Read-0Only Control Store (ROCS)
of 128 18-bit words. These memories are iogically distinct from NS and CS,
and are accessed as followsse

When the Nanostore Mode switch in FIDX is cleared ("0"), RONS is inaccessable.
When set ("1"), RONS address spaces are effectively subtituted for NS address
spaces on READ NS.

When bit 17 of a Control Store address is cleared ("0"), ROCS is inaccessible.
when set ("1"), ROCS addresses spaces are substituted for Control Store address
spaces on READ CS or WRITE CS5 the WRITE will not alter CS but will instead

act like a READ CS. NOTE: If incrementing a Contro! Store address causes a
"negative" result, ROCS will be accessed. A READ CS from a nonexistent ROCS
address places OONES onto the COD bus.

The contents of RONS AND ROCS are specified by the user and permanently
inserted by NANODATA at installation time. (NANODATA-suppliied machine
diagnostic routines must be included, and NANODATA-supplied system software
may be specified.)

Machine use of these memories is for nanoprogram entry at RONS[O] for
Program Check (section 4.5.2.2) and for Machine Start.

When the QM-1 MASTER CLEAR / START button is depressed,

a) FIDX is cleared;

b) the Program Check Status fields are cleared so that the program
starting at RONSIO] can recognize its invocation by Machine Start
rather than Program Check {(see section 4.5.2.2); and

c) RONS[O] is fetched and loaded into the Control Matrix to begin
execution.
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5 QM-1 FUNCTIONAL SPECIFICATIONS, PART Il

5.1 GENERAL

Sections 4 and 5 of this manual are a complete functional specification of
the QM-1 CPU in two parts. Part I (Section 4) has explained QM-I concepts,
architecture and operations. It has provided an overview of all of the
features of the machine. Part Il (Section 5) is intended as a programmerts
reference guide and will complete the description of those parts of the
machine covered only briefly in Part 1.

It is assumed that the reader has a general understanding of the @M-1 at this
point. Thus Part Il will concentrate more on the detailed operation of the
tndividual machine functions and less on their possible combined use.

The next two sections present, in summary form, all of the control functions
included in the machine. In most cases, the functions are activated by single
bits or contain a string of bits used as a numeric value. In the few remaining
cases, the encodings of the bits are given. References are provided for each
function to the section numbers where the function is specified in detail.
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5.2 SUMMARY OF NANDPRIMITIVE CONTROLS

5.2.1

The control

described. {The number of bits in the field is shown in parentheses.)

CONTROL FIELD {(Bits} SUMMARY OF CDNTRBL FUNCTION

KN (10) Address of possible successor nanoword.
Nanobranch address and source for NPC load.

SUPERVISOR {1} Program Check if on when this word is
invoked while not in Supervisor Mode.

LEGAL MICRDO ENTRY {1) Program Check if not on when this word
is invoked by a microinstruction.

BRANCH {1} Must be on if nanobranch planned from
this word. Complemented after each READ
NS when ALTERNATE is on.

ALTERNATE {1) Causes BRANCH to be complemented after
each READ NS.

HCGLD {1) 1Inhibits automatic loading of KALC,

KSHC, KSHA, and KS from next nanoword
to be executed, unless executed by
microinstruction or Program Check.

HCLD 2 (1) Inhibits automatic loading of KA and KB
from next nanoword to be executed, unless
executed by microinstruction or Program
Check.

{1) Allows higher-priority interrupts at end

ALLOW NANO INTERRUPT

K-~VECTOR CONTROL

function of
table belowy along with

each of the fields
references to sections

FIELDS

in the K-vector

of execution of this word, if nanobranch

is not taken.

is summarized
in which the function is

PAGE 0075

in the

References

sSsSs==2Ss=

4.5.2.2
4.5.3

4.5.2.3

4.5.2‘3

4.5.4.3

6.5.4.3
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ALLOW MICRO INTERRUPT (1)

GENERATE INTERRUPT
ALU STATUS ENABLE
SH STATUS ENABLE
DIRECT MS ACCESS

KA

KB

KALC
KSHC
KSHA

KS
KT
KX

SPARE

(1}

(1}

(1)

(1}

(6)

(6)

(6)
(6)
(6)

(6)

(6)

(6)

(2)

72 BITS

MANUAL NANODATA CORPORATION

Allows lower-priority interrupts at end
of execution of this word, if nanobranch
is not taken.

Generates or clears an interrupt level
according to GIGSPECI in T1.

Enables move of C,S,R,0 bits from local to
global upon GATE ALU; C treated specially.

Enables move of SHB, SLB bits from local
to global upon GATE SH.

Inhibits MS base addressing and field
length protection in this nanoword.

Constant and/or scratch field for nanowords
source and destination AUX.

Constant and/or scratch field for nanowords;
source and destination AUX.

ALU control; destination AUX.
Shift control; destination AUX.
Shift amount; destination AUX.

Global condition (and general) test masks
source and destination AUX.

Local condition test mask (also constant

and/or scratch); source and destination AUX.

Special condition test mask (also constant

and/or scratch); source and destination Aux.

Reserved for future use

PAGE 0077



QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0078

5.2.2 T-VECTOR CONTROL FIELDS

The controtl function of each of the fields in the active T-Vector is summarized
in the table belows along with references to sections in which the function is
described. A code showing the characteristic timing of the action associated
with the function is given; LE = Leading Edge, TE = Trailing Edge. (The number
of bits in the field is shown parenthetically.)

CONTROL FlELD - BITS SUMMARY OF CONTROL FUNCTICN TIME Refs.
STRETCH {1} Stretches time of this T-step 4.4
: from one T-period to two.

WRITE NS {1) MWrites 18 bits from EOD bus LE 4.7

‘ ' into Nanostore Seb.l .2

X1a {1} Sends pulse to external'interface; one LE 4.5
of eight external ports selected by KA.

RIO (1) Clears Port Register and sends pulse LE 4.6
through port, then gates external data
word into Port Register; selected by KA.

MSGO (1) Initiates MS operations split-cycle if LE 4.2.6.2
alone, full-read if MSRS simultaneous. 5.4.3

MSRS (1) 1f alone, requests second half-cycle of LE b.2.6.2
MS split-cycle operation; if with MSGO, 5.4.3
initiates full-read.

GATE MS . (1)} Gates MOD bus into Local Store or Port TE G.2.601
Registers;y modified by RMI SELECT. 5.4.3

RMI SELECT (2) Selects RMI parameters for GATE MS, LE G6.2.6.4

00 BYPASS including BYPASS. If RMI not
01 PARAMETER SET A tnstalled all encodings are BYPASS

10 PARAMETER SET B
11 PARAMETER SET ¢

GATE ES (1) Gates EOD bus into Local Store. TE 4.2.5
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LOAD ES {1} Loads an External Store register TE 4.2.5
from EID bus. »
TXX (1) Halts T-Clock with Program Step Switch. TE 5.8.3
READ CS (1) Reads Control Store; uses CS ADDR LE  6.2.64
' SELECT. ’ Selhel el
WRITE CS " (1) Writes Control Store; uses CS ADDR LE  4.2.4
SELECT. _ ' 5¢4e2.3
CS ADDR SELECT (3) Selects address for READ CS, WRITE LE 4,2.4
000 CIA CS. (MPC is selected by FMP(C) 5¢4e201
001 (CObd A and AB are sign extended operands.
010 MPC INDEX is output of INDEX ALU.
011 MPC+1
100 MPC+2
101 MPC+B
110 MPC+AB
111  INDEX
GATE (S (1} Gates COD bus into Local Store. TE G6.,2.6
. 5.4.2
GATE ALU {1) Gates AOD bus into Local Store. TE G.2.3
GATE SH | {1 Gates SOD bus into Local Store. TE 4.2.3
CARRY CTL ' {3) Controls Carry operation uithin the TE 4.2.3.4
000 NO OPERATION - ALU and Shifter ccmponents.

001 CLEAR (CIH
010 SET CIH

011 ALU TO BOTH
100 ALU TO COH
101 SET COH

110 CLEAR COH
111 SH TO COH

INJDEX {1} Gates INDEX ALU output into Local TE [
Store, selected by G(GSPEC). 5.
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INC MPC (1] Increments MPC selected by FMPC3 TE  4.2.2
modified by GSPEC. 5.4e2.1
5‘605
LOAD NPC (2i Loads‘or sequences NanoProgram TE 6.5.3
00 NO OPERATION Counter. 4.5.4
01 (CS)
10 {KN)
11 {SEQUENCE)
READ NS (1) Reads NS; address is from priority- LE 4.5
select mechanitsm. Influences BRANCH. 5.4.1.1
GATE NS UNCON- {1) Causes the nanoword last read to be TE 4.5.1
DITIDNALLY gated into the Control Matrix. 5.5.1
Independent of any TEST ACTION in T.
TEST ACTION {1) Conditional Action based on TE 4.5
0 SKIP Test Specifier 4.5.1
1 GATE NS Se7.2
TEST SPECIFIER (3) Specifies the conditions under LE 5.7.1
000 NEVER which TEST ACTION is to be executed
001 ALWAYS :
010 If FIST AND KS =0
011 1If FIST AND KS NCT =0
100 TIf LOCAL CONDS AND KT =0
101 If LOCAL CONDS AND KT NOT =0
110 - If SPECIAL CONDS AND KX = 0
111 If SPECIAL CONDS AND KX NOT =0
LOAD R31 {1} Enables R31 to be loaded with micro- TE 4.5.3.2
instruction parameters. 5.3.4
AUXILLARY ACTION (1} Initiates Action specified by the LE §.3.2.3
SeB8.2

contents of FACT (F register 14).
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GSPEC
0000
1011
1100
1101
1110
1111

FSELO
FSEL1
FSEL2

AUXO
AUX1
AUX2
AUX3

INO
IN1
IN2

guTl
guTe
ouT3

GO
Gl1
KSHA
B

KS
KT

(&)

(5)
(5)
(5)

(3)
(3)
(3)
(3)

(1)
(1)
(1)

(1)

(11
(1)

NANODATA CCRPORATION

Selects a G or pseudo-G for 6-bit
transfersy right inout to ALUF,

used in GENERATE INTERRUPT, External
Interface G~lines; also used with
INC MPC.

Selects F register for 6-bit transfers
in Group 0y 1, and 2 respectively.

Selects AUX for 6-bit transfers in

Group Oy 1y and 2 respectivelye.

(AUX2 applies to Group 2 input,
AUX3 applies to Group 2 output.}

Commands AUX tnto F register transfer
using AUX0O, AUX1l, AUX2 to FSELC,
FSEL1, FSEL2 respectively.

Commands F register dutput to AUX
transfer using FSELO, FSELl, FSELZ2 to
AUX0, AUX1, AUX3 respectively.

72 Bits

PAGE 0081

5.5.2

5.5.2
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5.3 FUNDAMENTAL TIMING CONSIDERATIONS
5.3.1  GENERAL

The "hardware ievel®™ QM-1 is a highly parailel machine. One of the tasks
facing the nanoprogrammer is to put together the functions he desires in such

a way as to utilize this parallelism to the fullest extent possible. Hence

he must have an intimate knowledge of the internal timing of the machine.

This section on timing considerations is included in order that nanoprogrammers
can answer questions regarding meaningful combinations of functions in the.

same or adjacent T-steps.

All T-vector control functions have been
classified as "Leading Edge™ (LE) or

“Trailing Edge®" (TE) functions depending T-CLOCK I I I
on the time of the action they initiate, PULSES I 1 I
relative to the period of the T-step in emmm—s mr—ce——— —seesses S-osso—-

which the control is active. The period
of any T-step is defined as the time = =—-——=--

between the machine clock puise which T-VECTOR NOT i T2 I NOT
causes the T-vector to become active and T2 ACTIVE I ACTIVE 1 ACTIVE
the next clfock pulse which causes the next —_—————— ——————
T-vector to become active. These pulses

are known as T-clock pulses or just T- T-STEP T2

Clocks and the T-step (T2 for example} is
as shouwn.

Leading edge functions are those which are triggered by the beginning edge
tor activation) of the T-step and trailing edge functions are those triggered
by the ending edge (or deactivation) of the T-step.

Examination of this situation for two successive T-steps shows that a trailing
edge for one T-step occurs at exactly the same time as the leading edge of the
next. Thus it would seem that a leading edge event could occur at exactly the
same time a trailing edge transition is happening. In actuallity, this problem
is avoided by having some functions "more trailing edge” than others. This is
necessary since the Machine State Vector (active K and T-vectors) must be in a
defined state before the 6-bit domain can operate properly. And the 6-bit
sections must be in a defined state for the 18-bit domain to operate properly.
Hence the necessity of two additional clocks derived from the T-Clock. These
are, not suprisingly, called the "F Register Clock” (or F-Clock) and the "LS
Register Clock"” {or R-Clock). The actual delays between these clocks are
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important only when the boundaries between the three domains within the machine
are crossed. The extreme case is in R31 operations since all three domains
meet in R31 (covered extensively in Section 5.3.5). :

Briefly, the clocks act as foltlows. The T-Clocks activate a T-Vector. All
leading edge functions are begun immediately. All decoding and set-up for
tratling edge functions also begins at this time. The next T—-Clock deactivates
this T-Vector (which will now be called the previous T-Vector) and activates
the next one. Approximately 20 nanoseconds after the T-Clock, the F~-Clock
occurss completing any 6-bit data transfers specified in the previous T-Vector.
Approximately 20 nanoseconds after the F-Clock, the R-Clock occurs. This
completes any 18-bit transfers specified in the previous T-Vector. This
seguence is shown in Figure 5.3.1A.

ACTIVE : 1 I
T-VECTOR 1 I

——— —— - — - Y = - . T ——— - —— - e -——— -

{--Start Leading Edge Functions

1 I
T-CLOCK 1 |
(~~Finish F Transfers
I 1
F-CLOCK I i
{--Finish R Transfers
1 ’ 1
R=CLOCK 1 I

-— i —— o~ - - - - - - - - - - — - - -

RELATIONSHIP OF MACHINE CLOCKS ' Figure 5.3.1A
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5¢3.2 LEADING EDGE FUNCTIONS

The Memory Reference Functions; Read/Write Nanostore, Read/Write Control Store,
Go/Restart Main Store, are all operations which do not cause data to be gated
but are necessary to make data available for gating. In order to make the data
available as soon as possible, these operations must be initiated as soon as
the T-Vector in which they are specified becomes active. Thus they are leading
edge functions. Care must be taken to assure that the address and/or data to
be used by the operation is stable before the function is initiated. Section
5.4 covers this in detail.

X10 and RIO are the only other leading edge functions. Both XIO and RIO
generate a signal to the External Port and must therefore begin on the leading
edge in order for the action they initiate to be completed by the end of the
T-period.
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5.3.3 TRAILING EDGE EVENTS
5.3.3.1 T-CLOCK EVENTS

LOAD NPC is executed on the trailing edge T-clock. The three possiblie sources
of new values to be transferred into the NanoProgram Counter are-the COD bus,
KN in the executing nanoword, and the current value of NPC. No special timing
problems arise with the LOAD NPC operation.

GATE NS and LUAD R31 are the only other functions executed on the trailing edge
T-Clock. Both are used to cause the transition between one instruction and the
next. Thus they must be completed before any other functions can begin.

A conflict is possible between each of these functions and some other function
in the machine. In the case of GATE NS, an F-transfer intoc a K, initiated in-
the same T-step as the GATE NS will cause an undefined result in the K unless
the K is "held" by the appropriate HOLD command. See section 4.5.4.3.

In the case of LOAD R31, an F transfer into R31, initiated in the same T-step
as LOAD R31 will cause an undefined result in R31. See Section 5.3.4. An R
transfer will override the effect of the LOAD R31.

ALl F transfers are completed by the trailing edge F-Clock. These include
F Register Increment and Decrement and ALUF operations since the results are
gated as an F transfer.

Simultaneous F transfers to the same F-Register do not cause undefined results
since they occur at exactly the same time. A logical "OR" of the transferred
values occurs.

5.3.3.3 R-CLECK EVENTS

All 18 bit transfers into Local Store or External Store are syncronized on the
traifing edge R-Clock. Simultaneous R transfers into the same Local Store
register will produce the logical "OR" of the transferred values.
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5.3.% R31 OPERATIONS

R31 is the primary interface between the 18—bit'arch§tecture and the &6-bit
architecture in the QM-1, since it is simultaneously a Local Store register
and also contains three 6-bit AUX fields:

——————— T — ————— o — -~ - - o e me -—— —— a——

R31 1 18 Bit Local Store Register I

- —— - - - - - - - ——-—

——— - - - - - ————— - — -

R31 1 C I A I ‘ B 1

e T I - . S T A S e n T S T M . S . A S - T e S S S W . S . G S G- S - e - G ——

Bit 17 16 15 164 13 12 11 10 09 08 07 06 05 04 03 02 01 0O

When serving in its additional special function as the Micro Instruction
Registers R31 is classified in the control matrix domain, since the

LOAD R31 command transfers the saved microinstruction parameter part
into R31 on the Leading Edge T-Clocks:

—— — - . T - i S ——— - G G L G G G G S T S - W - ——— - -

Because of this interface, care must be taken in organizing transfers
involving R31. The following programming rules are derived from the
clock relationships discussed in Section 5.3.1.

1. If the only transfers into R31 commanded in a T-step
are tn the 18 bit domain, then six-bit transfers out
of R31 commanded in the following T-step will occur
too soon to use the 18-bit value, and will instead
transfer an undefined value. This holds true unless
the T-step containing the six bit transfer command is
stretched, in which case such transfers do use the
new 18-bit value. ’

2. I1f the only transfers into R31 commanded in a T-step
are from the six-bit domain, these values are available
for transferring out to either domain in the next
T-stepe. :

0C8s
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3.

1f transfers into R31 from both the six-bit and the

18-bit domains are commanded in a T-step, an undef ined
value results in R31l.

When R31 is used within one domain onlys norma! timing

rules applyy 2s in section 6.4,

I1f six-bit transfers into R31 are concurrent with LOAD R31
parameter loading (i.e.y if such transfers are commanded
in the last T-step of a nanoword along with the LOAD R31
command} an undefined value results in R31.

PAGE 0087
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5.4 MEMORY REFERENCE FUNCTIDNS
5.4.1 NANISTORE OPERATIONS
5.4.1.1 READ NS

READ NS is a leading edge command that causes a 360-bit word to be read from
nanostore using the nanostore address selected previously by the nanostore
addressing mechanism (section 4.5.2). The address must have been established
in the previous T-step. This address must be stable for the T-step in which
READ NS occurs. Neither of these requirements cause any difficulty since the
LOAD NPC commands are properly syncronized to satisfy them.

For Nanostore data-out to be available in time for a traiiing-edge
GATE NS executed in a given T-period, the leading—edge operation
READ NS must occur in the prior T-period or earlier. Therefore
READ NS, GATE NS can be programmed as a sequence in one T-step if
and only if that T-step is STRETCHed.

READ NS, GATE NS executed in the same un-STRETCHed T-step result in
an undefined value loaded into the Control Matrix.

READ NS cannot be commanded in T1 of any nanoword that ALLOWs INTERRUPTs.
Undefined data results in this situation.



QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0089

5.4.1.2 WRITE NS

WRITE NS is a leading-edge nanoprimitive that initiates writing 18 bits into
nanostore from the EOD bus at the address specified by the contents of R3l.

The B field of R31 specifies which of the 20 byles of the nanoword is to be

written (0-19, modulo 32}. The 10 bits of R31 on the high order side of the
B8 field in R31 select the paricular nanoward to be written. With an invalid
nanostore address fout of rangel, WRITE NS does not alter Nanostore.

———— —— —— —— - - -

R31 IXX XX <=——-—NANOWORD ADDRESS—=———=> XX

BYTE ADDRESS 1 Bits marked XX
- are ignored.

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The WRITE NS address must be stable for 3 T-periods. (Attempts to initiate a
READ NS or another WRITE NS during such time are ignored.) Thus if WRITE NS
appears in T—-period T(n)y Nanostore will be written in time for a READ NS
executed in T-period T{n+2). The WRITE NS acts like a READ NS and brings up
the full modified Nanoword ready to be gated.

Assuming that WRITE NS is executed in T-period T{(n), results of the operation
are undefined ifs

1. The Nanostore word-address is modified by a command in T-period Tin-1J).
2. The byte-selector in B is modified by a command in T-period Ttn-1}.
3. The data on the EOD bus is modified by a command in T-period T{n-1).

It is possible to execute a nanoprogram by addressing it from R31 and using the
"WRITE NS*" primitive. This is accomplished by putting an invalid byte address

in bits 0-15 of R31 and executing a "WRITE NS*. The addressed nanoword is not

changed but the outputs are available for "GATE NS" into the control matrix.
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5.4.2 CONTROL STORE OPERATIDNS
5.6.2.1 ° CONTROL STORE ADDRESS SELECTION

cr\either READ CS or WRITE CS, the address used is determined by the value

of the CS ADDR SELECT field in the same T-Vector as the READ CS or WRITE CS.
Since both READ CS and WRITE CS are leading edge functions, the address must be
stable at the beginning of the T-step in which the command occurs. This has
different implications, depending on the address source. FEach of the cases

is covered below, assuming that the READ CS or WRITE CS occurs in T(n):

CS ADDR SELECT ) CONDITIONS
0 000 (1A ’ Address is taken from the iocal store register designated
by FCIA. No commands changing FCIA or CIA should appear
in T(N-1)
1 001 <cOD Here the address is taken directly from the CGD bus rather

than from a register. Since the only thing that can change
the data on the COD bus is a previous READ (S, this should
not occur in T(N-1) uniess STRETCHed.

2 010 MPC Address is taken from the local store register designated
by FMPC. No commands changing FMPC or MPC should appear
T(N-1). .

3 D011 MPC+l} Here the address depends on FMPC, MPC and the output of the

4 100 MP(+2 MPC Increment facility. Again, nothing that changes either

FMPC or MPC should occur in T(N-1).

5 101 MPC+B In this case, an added factor is involved - the contents of
6 110 MBP+AB R31. Thus nothing that changes the contents of R31 should
appear in T(N-1) '

7 111 INDEX Output from the INDEX ALUj inputs must appear in T(n-1),

’ and must remain stable for three T-Periods.
The Control Store Address determined by the above selection must be stable only
for the duration of the T-step in which READ CS or WRITE CS occurs. Thus

it is possible to specify in the same T-step, any Trailing Edge operations that
change the address.

Both READ and WRITE CS place the 18 bit value on COD. Attempts to read or write
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nonexistant focartions result in zeros on the COD buss but does not alter CS.

If READ CS and WRITE CS occur simultaneously, only the WRITE CS occurs.
READ CS and/or WRITE €S commands are valid in two successtve T-steps only if
the first T-step