
UNIX™ SUPPORT FROM BERKELEY

4.3 BSD with NFS

User's Supplementary
Doruments

USD

UNIX is a trademark of Bell Laboratories

UNIX User~ SupplemeUWy Duc;"'''l_:D).
. 4.3 Berkeley Software DiStri~~~:"'11'V: •..

February, .. 1986
~~;i:

,";.,.

..

. ~

'>I. "'''.',,:

This volume con~ docum.entswhi~h supplement the ~]n The .t(lt(x,i!.~:*;:i";; .
ence Manual for the Virtual VAX-II version of the system:as distnbtif;d .,,{,\q.~~r~: ~.
Volumes 2a and 2b as provided by Bell Laboratories. . ":. \'::'.

Getting Started

Unix for BegiIlllet'S - Second Edition .uS~1~C."
.-- "

An introduction to the most basic uses of the system.

Learn - Computer-Aided Instruction on UNIX (Second Edition)

" Describes a. computer-aided instruction p~ that walks new usersthrou~' _~of'
files, the editor, and docume~t prepararatlon software. . '. ::\ .v,::

Basic Utilities .".
An Introduction to the UNIX Shell U~~";'t;:'.": "

Steve Bourne's introduction to the capabilities of sh, .a:-COIDmand interpttter ~allY.:':""
popular for writing shell scripts. : """ ' \

An Introduction to the C shell .(... USD:4.
This introduction to csh, (a command interpreter popular for interactive W4rk) .4wd&s
many commonly· used UNIX commands, assumes little prior knowledFof UNOCr..,bas
a glossary useful for beginners.\'" ,"" ':

DC - An Interactive Desk Calculator USll,;5,.
A super HP calculator, if you do not need floating point ..

DC - An Arbitrary Precision Desk-Calculator Language

A front end for DC that provides infix notation, control flow, and built-in functions.

Communicating with tile World

Mail Reference Manual

Complete details on one of the programs for sending and reading your mail.

The Rand MH Message Handling System "1 • "~:':~.'''!~,': .
This system for manqing your computer mail uses lots of small pfograms:, iDstea~fjj(• ..., "i;:; :"
large one.

How to Read the Network Newsus6:9:t.;:.~~J
, ... ".' 'f~ " . .f

Describes how news works (generally) and some alternatives for reading it, readmtWs: an~
vnews.

How to Use USENET, Effectively USO:I0
~ ~~. (:' ")~ .,

",'I?es.C!ib~,' the~~t.,p~ls. ~~~~£of network news, plus answers to the ques
bons mO$t;~enil}_ed by newcomers to ifie network.

Not~srue Re&~h~' MUiuil' USD: 11
,'This fe~ture"Packed system for maintaining computer-aided discussion groups is also use-

fUl fQt.eding netnews.

Text ~ditiD,.~:g~(r'J

, A TutOrialerIifi6.%~O~lf.' ~elJJJ~hText Edit0r.'j<
An easy w'X~~.; ~ With the lint editor., ed.

Advanced Esfiti •. on Unix
'I'" ,,' '

, The"oaep:
t; ~ "

Edit: A Tutorial "
;< '.

. ' .. '

1"," ,r
', .. -! .. ' ~"

USO:12

USO:13

USO:14
" All' inttoaiction to edit. a line-oriented editor which is a version of ex, assuming no pre-
'vious mowledge of UNIX or text editing. , •• 1

An I~~d.to Display Editing with Vi USD: 1 5

'The document to l~ to use the vi screen editor.
Ex Reference Manual (Version 3.1) USO:16

, The final reference for the ex editor, which underlies both edit and vi.
JoveManuU~IX Users USO:17

'Jov~ is a s~~f.!(ioduif~ting, customizable display editor, based on EMACS. A plau-
sible alternative to vi.

SED - A Non-fnteractive Text Editor • USD: 18

"Describes a one":-pass variant of ed usefUl as a filter for processing large files .
. . . '- .

A WK - A Pattern Scanning and Processing Language (Second Edition) USD: 19

, A program for data selection and transformation.

Document Preparation

'Typing pocumentson UNIX: Using the -ms Macros with Trotf and Nroff U50:20
Describes and gives examples of the basic use of the typesetting tools and .. -ms", a fre
quently used package of formatting requests that make it easier to layout most documents.

A Revised Version of -ms . U50:21
'J. .~

A . brief description of the Berkeley revisions made to the -ms formatting macros for Droff
and trotf.
, -

Writiilg Papers with nroffusiDg -me
Another popUlar macro package for nroff.

-me Reference Manual

The final word on -me.
NROFFITROFF User's Manual

Extremely detailed information about these document formatting programs.
A TROFF Tutorial

U50:22

U5D:23

USO:24

U5D:2S
An, introduction to the most basic uses of troff for those who really want to mow such
things, or want to write their own macros.

More details about how to use eqn.

Tbl - A Program to Format Tables

A program for easily typesetting tabular material.
: r~;~11_~f ~:"!1 t: ,t.'~ ,t'

Refer - A Bibliography System .' __ .' _:" . ,_ .. y~!?~~9:'I;i_;J~,I/:'~
An introduction to one set of tools used to maintain bibHographic1ditabases. Th~!):najot'.';~:).)·n-l"';·~'i:r('J:t
program, refer. is used to automatically retrieve and format·the references baSeCtQW'ddcll;;;1J ' .. f';':> ':r

ment citations.

Some Applications of Inverted Indexes on the UNIX System

Mike Lesk's paper describes the refer programs in a somewhat larger context.

BIB - A Program for Formatting Bibliographies ,;;;.-.

This is an alternative to refer for expanding citations in d~ments.;· ~J .

Writing Tools - The STYLE and DICI'ION Programs I;' :

Amusements

A Guide to the Dungeons of Doom .,. Xl /'(JSQl~~jJili.ii·.r
An introduction to the popular game of rogue, a fantasy game which is 0.~.pCth.e!9j~.. ~'. ~:"
known users of VAX cycles.. ' . 'i' ~- ': Cl.:;,;i~;

Star Trek . ' il~lI USJ:):34,/ /.,.
You aI7 the Captain of the Starship Enterprise. Wipe out the Klingon~t and sav~ the
Federation.

r-.. -
') "J f~"'~~O~ " . ..1..

~:J-,~f,"; :l;"" ':;'i 10 ~;' ~U:.: 'In(~:.v

)" .-:./ :t~:; ,f': ~,' ,,; ?C(]_ griif.:~ ~1'~\~.

~~ ,;~"" J~i~~~~~'.~~~::~~\ ; l
'~I"L:- .cc.!. ~::1'\/ b~);;'·t:V":.i>! ... t'~·_

. :" .''5>1 .t'
noinr;::)t,:jt, "1511(j/

- ~' .. ~ G'1: b '(1L'

,.: 'f} Z1~::P:q 'j'
• ~ -~j ',j

1:;srr;.. ...1<7 'l5nWfif',

l£llO.r.t,,' ~~Jeil:;i5 51)':

".- rtO tr!o\~/ tcn!l efr;

UNIX User's Supplementary Documents
(USD)

4.3 Berkeley Software Distribution
Virtual VAX-II Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
. University of California
Berkeley, California 94720

UNIX User's Supplementary Documents
(USD)

4.3 Berkeley Software Distribution
Virtual VAX-II Version

April, 1986

, Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents USD: 1, 2. 3, 5, 6, 12, 13, 18, 19, 20, 24, 25, 26,
27, # 28. 30, and 32 are copyright 1979, AT&T Bell
Laboratories, Incorporated. Holders of UNIX™/32V, System
III, or System V software licenses are permitted to COpy these
documents, or any portion of them, as necessary for licensed
use of the software, provided this copyright notice and

. statement of permission are included.

Documents USD:8, 9, 10, 11, 17, and 31 are part of the user
contributed software.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
NOO039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

UNIX For Beginners USD:I-I

UNIX For Beginners - Second Edition

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated/or 4.3BSD by Mark Seiden) .

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating system.
It includes:

• basics needed for day-to-day use of the system - typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the file
system, printing files, redirecting 110, pipes, and the shell.

• document preparation - a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some
supporting software.

• UNIX programming - using the editor, programming the shell, programming in
C, other languages and tools.

• An annotated UNIX bibliography.

INTRODUCTION

From the user's point of view, the UNIX operat
ing system is easy to learn and use, and presents few
of the usual impediments to getting the job done. It
is hard, however, for the beginner to know where to
start, and how to make the best use of the facilities
available. The purpose of this introduction is to
help new users get used to the main ideas of the
UNIX system and start making effective use of it
quickly.

You should have a couple of other documents
with you for easy reference as you read this one.
The most important is The UNIX Programmer's
Manual; it's often easier to tell you to read about
something in the manual than to repeat its contents
here. The other useful document is A Tutorial Intro
duction to the UNIX Text Editor, which will tell you
how to use the editor to get text - programs, data,
documents - into the computer.

A word of warning: the UNIX system has
become quite popular, and there are several major
variants in widespread use. Of course details also

t UNIX is a trademark of AT&T Bell Laboratories.

change with time. So although the basic structure of
UNIX and how to use it is common to all versions,
there will certainly be a few things which are
different on your system from what is described
here. We have tried to minimize the problem, but
be aware of it. In cases of doubt, this paper
describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type.
what to do about mistakes in typing, how to log
out. Some of this is dependent on which system
you log into (phone numbers, for example) and
what terminal you use, so this section must
necessarily be supplemented by local informa
tion.

2. Day-to-day Use: Things you need every day to
use the system effectively: generally useful com
mands; the. file system.

3. Document Preparation: Preparing manuscripts
is one of the most common uses for UNIX sys
tems. This section contains advice, but not
extensive instructions on any of the formatting

USD:I-2

tools.

4. Writing Programs: UNIX is an excellent system
for developing programs. This section talks
about some of tbe tools, but qajn is not a
tutorial in any of the programming languages
provided by the system.

5. A UNIX Reading List. An annotated bibliogra
phy of documents that new users should be
aware of.

I. GETI'lNG STARTED

Loaiagln
You must have a UNIX login name, whicb you

can get from whoever administers your system. You
also need to know the phoDe number, unless your
system uses pennanently conneeted terminals. The
UNIX system is capable of dealing with a wide
variety of terminals: Terminet 300'5; Execuport, TI
and similar portables; video (CRT) terminals like
the HP264O, etc.; bigh-priced graphics terminals like
the Tektronix 4014; plotting terminals like those
from OSI and DASI; and even. the venerable Tele
type in its various forms. But note: Uhax is strongly
oriented toWards devices with lower case. If your
terminal produces only upper case (e.g., model 33
TeletypC, some video and portable terminals), life
will be so di8icult that you should look for another
terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upperllower case mode,
full duplex, even parity, and any olbers that local
wisdom advises. Establish a connection using what
ever magic is needed for your terminal; this may
involve dialing a telephone call or merely flipping a
switch. In either case, UNIX should type :" at
you. If it types garbage, you· may be ·at the wrong
speed; check the switches. If that fails, push the
··break" or "interrupt" key a few times. slowly~ If
that fails to produce a login message, consult a guru.

When you get a loam: message, type your login
name in lower cQSe. Follow it bya R.ETURN; the
system will not do anything until you type a
RETURN. If a password is required, you will be
asked for it, and (if possible) printing will be turned
oft' while you type it. Don't forset RETURN.

The culmination of your login eft'ortsis a
"prompt character," a single character that indicates
that the system is ready to accept commands from
you. The prompt character is u.sually a dollar sign $
or a percent sip~. (You may also set a message of
the day just before the prompt character, or a
notification that you have mail.)

UNIX For Beginners

Typilll Commands

Once you've seen the prompt character, you can
type commands, which' are requests that the system
do something. Try typing

date

followed by RETURN. You should get back some
thing like

MOD Jan 16 14:17:18 EST 1978

Don't forget the RETURN after the command, or
nothing will happen. If . you think you're being
ipored, type a RETURN; something should happen.
RETURN won't be mentioned again, but don't forget
it - it has to be there at the end of each line.

Another command you might try is who, which
tells you everyone who is currently logged in:

who

gives something like

lOb
ski

tty81
tty85
tty11

Jan 16 09:11
Jan 16 09:33
Jan 16 13:87

The time is when the user logged in; "ttyxx" is the
system's idea ofwbat t~nal the user·is on.

If you make' a mistake typing the command
name, and refer'. to a non-existent command, you
will be told. For ex.ample,·ifyou type

wholD

you will be told

whona: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or less
mysterious results.

Strange Tenninal leba ...

Sometimes you can set into a state where your
terminal acts strangely. For example, each letter
may be typed twice, or the RETURN may not cause
a line feed or a return to the left margin. You can
often fix this by logging out and logging back in. t
Or you can read the description of the command
stty in section 1 of the manual. To get intelligent
treatment of tab characters (which are much used in
UNIX) if your terminal doesn't have tabs, type the

t In Berkeley Unix. the command 'resel<control-j> 'will
often reset a tmninal apparently in a stJ'IIDIe state because a
fullsc:reen editor crashed.

UNIX For Beginners

command

stty -tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does
have computer-settable tabs, the command tabs will
set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before
RETURN has been typed, there are two ways to
recover. The sharp-character *' erases the last char
acter typed; in fact successive uses of # erase charac
ters back to the beginning of the line (but not
beyond). So if you type badly, you can correct as
you go:

.dd#atte##e

is the same as date.;

The at-sign @ erases all of the characters typed
so far on the current input line, so if the line is irre
trievably fouled up, type an @ and start the line
over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either *' or @ by a
baclCslash \, it loses its erase meaning. So to enter a
sharp or at-sign in something, type \# or \@. The
system will always echo a newline at you after your
at-sign, even if preceded by a backslash. Don't
worry - the at-sign has been recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash is
used extensively in UNIX to indicate that the follow
ing character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that you
can type as fast as you want, whenever you want,
even when some command is typing at you. If you
type during output, your input characters will appear
intermixed with the output characters, but they will
be stored away and interpreted in the correct order.
So you can type several commands one after another
without waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the char
acter "DEL" (perhaps called '·delete" or Urubout" on
your terminal). The "interrupt" or ubreak" key
found on most terminals can also be used. t In a few
programs, like the text editor, DEL stops whatever

* Many installations set tbe erase character for display tenni·
nals to tbe delete or backspace key. 'stty all" tells you what it
actually is.
t In Berkeley Unix, "control-c" is the usual way to stop pro
grams. "stty all" tells you the value of your" intr" key.

USD:I-3

the program is doing but leaves you in that program.
Hanging up the phone will stop most programs.;

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were on. *
It is usually not sufficient just to tum off the termi
nal. Most UNIX systems do not use a time-out
mechanism, so you'll be there forever unless you
hang up.

Mail

When you log in, you may sometimes get the
message

You have mail.

UNIX provides a postal system so you can communi
cate with other users of the system. To read your
mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first.; After each message, mail
waits for you to say what to do with it. The two
basic responses are d, which deletes the message,
and RETURN, which does not (so it will still be there
the next time you read your mailbox). Other
responses are described in the manual. (Earlier ver
sions of mail do not process one message at a time.
but are otherwise similar.)

How do you send mail to someone else? Sup
pose it is to go to Ujoe" (assuming "joe" is
someone's login name). The easiest way is this:

mail joe
now type in the text of the letter
on as many lines as you like ...
After the last line of the letter
type the character "control-d",
that is, hold down "control" and type
a letter "d".

And that's it. The ucontrol-d" sequence, often
called '·EOF' for end-of-file, is used throughout the
system to mark the end of input from a terminal, so
you might as well get used to it.

For practice, send mail to yourself. (This isn't
as strange as it. might sound - mail to oneself is a
handy reminder mechanism.)

* If you use the c shell, programs running in the background
continue running even if you hang up.
• "control-d" and "logout" are other alternatives. * The Berkeley mail program lists the headers of some
number of unread pieces of mail in the order of their receipt.

USD:1-4

There are other ways to send mail - you can
send a previously prepared letter, and you can mail
to a number of people all at once. For more details
see mail(1). (The notation mafl(1) means the com
mand mail in section 1 of the UNIX Programmer's
Manual.}

Writinl to other userst
At some point, out of the blue will come a mes

sage like

Message from joe tty07 •••

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit
action you won't be able to talk back. To respond,
type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will appear
on yours and vice versa. The path is slow, rather
like talking to the moon. (If you are in the middle
of something, you have to get to a state where you
can type a command. Normally, whatever program
you are running has to terminate or be terminated.
If you're editing, you can escape temporarily from
the editor - read the editor tutorial.)

A protocol is needed to keep what you type.
from getting garbled up with what Joe tYPes. Typi-

. cally it's like this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines as
he likes). When he's ready for a reply, he sig
nals it by typing (0), which stands for "over".
Now Smith types a reply, also terminated by
(0).
This cycle repeats until someone gets tired;
he then signals his intent to quit with (00),
for "over and out".
To terminate the conversation, each side
must type a "control-d" character alone on a
line. ("Delete" also works.) When the other
person types his "control-d", you will get the
message EOF on your terminal ..

If you write to someone who isn't logged in, or
who doesn't want to be disturbed, you'll be told. If
the target is logged in but doesn't answer after a
decent interval,simply type "control-d".

t Although 'write" works on Berkeley UNIX. there is a much
nicer way of communicating using display-terminals - "talk"
splits the screen into two sections. and both of you can type
simultaneously (see talk(I».

UNIX For Beginners

On-line Manual

The UNIX Programmer's Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print on
your terminal some manual section that might help,
This is also useful for getting the most up-to-date
information on a command. To print a manual sec
tion, type "man command-name", Thus to read up
on the wlao command, type

_who

and, of course, __
tells all about the man command.

Computer Aided Instruction
Your UNIX system may have available a pro

gram called learn, which provides computer aided
instruction on the file system and basic commands,
the editor, document preparation, and even C pro
gramming. Try typing the command

learn

If learn exists on your system, it will tell you what to
do from there. . .

ll. DAY-TO-DAY USE

Creating Files - The Editor
If you have to type a paper or a letter or a pro

gram, how do you get the information stored in the
machine? Most of these tasks are done with the
UNIX "text editor" ed. Since ed is thoroughly docu
mented in ed(l) and explained in A Tutorial Intro
duction to the UNIX Text Editor, we won't spend
any time here describing how to use it. All we want
it for right now is to make some files. (A file is just
a collection of information stored in the machine. a
simplistic but adequate definition.)

To create a file called junk with some text in it,
do the following:

ed junk (invokes the text editor)
a (command to "ed", to add text)
now type in
whatever text you want ...

(signals the end of adding text)

The "." that signals the end of adding text must be
at the beginning of a line by itself. Don't forget it,
for until it is typed, no other ed commands will be
recognized - everything you type will be treated as
text to be added.

At this point you can do various editing opera
tions on the text you typed in, such as correcting
spelling mislakes, rearranging paragraphs and the
like. Finally, you must write the information you

UNIX For Beginners

have typed into a file with the editor command w:

"
ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per
manently, so if you hang up and go home the infor
mation is lost. t But after w the information is there
permanently; you can re-access it any time by typing

edjunk

Type a q command to quit the editor. (If you try to
quit without writing, ed will print a ? to remind you.
A second q gets you out regardless.)

Now create a second file called temp in the same
manner. You should now have two files, junk and
temp.

What files are out there?

The Is (for "list") command lists the names (not
contents) of any of the files that UNIX knows about.
If you type

Is

the response will be

junk
temp

which are indeed the two files just 'created. The
names are sorted into alphabetical order automati
cally, but other variations are possible. For exam
ple, the command

Is -t

causes the files to be listed in the order in which
they were last changed, most recent first. The-I
option gives a "long" listing:

Is -I

will produce something like

-rw-rw-rw- 1 bwk 41 Jul 22 2:56 junk
-rw-rw-rw- 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file.
The 41 and 78 are the number of characters (which
should agree with the numbers you got from ed).
bwk is the owner of the file, that is, the person who
created it. The -rw-rw-rw- tells who has permis
sion to read and write the file, in this case everyone.

Options can be combined: Is -It gives the same
thing as Is -I, but sorted into time order. You can
also name the 'files you're interested in. and Is will
list the information about them only. More details

t This is not strictly true - if you hang up while editing, the
data you were working on is saved in a tile called ed.bup.
which you can continue with at your next session,

USD:I-5

can be found in Is(1).

The use of optional arguments that begin with a
minus sign, like -t and -It, is a common convention
for UNIX programs. In general, if a program accepts
such optional arguments, they precede any filename
arguments. It is also vital that you separate the vari
ous arguments with spaces: Is-I is not the same as
Is -I.

Printing Files

Now that you've got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are
needed.

One simple thing is to use the editor, since
printing is often done just before making changes
anyway. You can say

ed junk
l,$p

ed will reply with the count of the characters in junk
and then print all the lines in the file. After you
learn how to use the editor, you c!ln be selective
about the parts you print.

There are times when it's not feasible to use the
editor for printing. For example, there is a lImit on
how big a file ed can handle (several thousand lines).
Secondly, it will only print one file at a time, and
sometimes you want to print several, one after
another. So here are a couple of alternatives.

First is cat, the simplest of all the printing pro
grams. cat simply prints on the terminal the con
tents of all the files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated (hence
the name "cat") onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list. The
difference is that it produces headings with date.
time, page number and file name at the top of each
page, and extra lines to skip over the fold in the
paper, Thus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and print temp neatly.

pr can also produce multi-column output:

pr -3 junk

prints junk in 3-column format. You can use any
reasonable number in place of "3" and pr will do its
best. pr has other capabilities as well; see pr(1).

USD:l·6

It should be noted that pr is not a formatting
program in the sense of shuffiing lines around and
justifYing margins. The true formatters are nroff and
troff,which we will get to in the section on docu
ment preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under opr
and lpr. Which to use depends on what equipment
is attached to your machine.

ShuBJilll Files About

Now that you have some tiles in the file system
and some experience in printing them, you can try
bigger things. For example, you can move a tile
from one place to another (which amounts to giving
it a new name), like this:

my junk precious

This means that what used to be "junk" is now
··precious". If you do an Is command now, you will
get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost
forever. .

If you want ·to make a copy of a file (that is, to
have two versions of something), you can use the cp
command: .

cp precious tempI

makes a duplicate copy of precious in tempI.

Finally, when you get tired of creating and mov
ing files, there is a command to remove tiles from
the file system, called nn.

nn temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn't there, but otherwise nn, like most
UNIX commands, does its work silently. There is no
prompting or chatter, and error messages are occa
sionally cun. This terseness is sometimes discon
cening to newcomers, but experienced users find it
desirable.

What's in a Filename

So far we have used filenames without ever say
ing what's a legal name, so it's time for a couple of
rules. First, filenames are limited to 14 characters,
wbich is enough to be descriptive. t Second, although
you can use almost any character in a filename,
common sense says you should stick to ones that are

t In 4.2 BSDthe limit was extended 10 255 characters.

UNIX For Beginners

visible, and that you should probably avoid charac
ters that might be used with other meanings. We
have already seen, for example, that in the Is com
mand, Is -t means to list in time order. So if you
had a file whose name was ..t, you would have a
tough time listing it by name. Besides the minus
sign, there are other characters which have special
meaning. To avoid pitfalls, you would do well to
use only letters, numbers and the period until you're
familiar with the situation.

On to some more positive suggestions. Suppose
you're typing a large document like a book. Logi
cally this divides into many small pieces, like
chapters and perhaps sections. Physically it must be
divided too, for ed will not handle really big files.
Thus you should type the document as a number of
files. You might have a separate file for each
chapter, called

chapl
chap2
etc ...

Or. if each chapter were broken into several files,
you might have

chapl.l
copl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a panicular file
fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the whole
book? You could say

pr chapl.l chapl.2 copl.3

but you would get tired pretty fast, and would prob
ably even make mistakes. Fortunately, there is a
shoncut. You can say

pr chap*

The" means "anything at all," so this translates into
"print all files whose names begin with chap", listed
in alphabetical order.

This shonhand notation is not a property of the
pr command, by the way. It is system-wide, a ser
vice of the program that interprets commands (the
"shell," sh(1». Using that fact, you can see how to
list the names of the files in the book:

Is cbap*

produces

UNIX For Beginners

chapl.l
chapl.2
chapl.3

The * is not limited to the last position in a filename
- it can be anywhere and can occur several times.
Thus

rID *junk* *temp*

removes all files that contain junk or temp as any
part of their name. As a special case, * by itself
matches every filename, so

pr *
prints all your files (alphabetical order), and

rID *
removes all files. (You had better be very sure that's
what you wanted to say!)

The * is not the only pattern-matching feature
available. Suppose you want to print only chapters
I through 4 and 9. Then you can say

;:r chap(12349J*

The [--J means to match any of the characters inside
the brackets. A range of consecutive letters or digits
can be abbreviated; so you can also do this with

pr chap[1-49)*

Letters can also be used within brackets: [a-z)
matches any character in the range a through z.

The'! pattern matches any single character, so

Is?

lists all files which have single-character names, and

Is -I chap'!.l

lists information about the first file of each chapter
(chapU, chap2.l, etc.).

Of these niceties, * is certainly the most useful,
and you should get used to it. The others are frills,
but worth knowing.

If you should ever have to tum off the special
meaning of *, 1, etc., enclose the entire argument in
single quotes, as in

Is'?'

We'll see some more examples of this shortly.

What's in a Filename, Continued

When you first made that file called junk, how
did the system know that there wasn't another junk
somewhere else, especially since the person in the
next office is also reading this tutorial? The answer
is that generally each user has a private directory,
which contains only the files that belong to him.

USD:I-7

When you log in, you are "in" your directory.
Unless you take special action, when you create a
new file, it is made in the directory that you are

. currently in; this is most often your own directory,
and thus the file is unrelated to any other file of the
same name that might exist in someone else's direc
tory.

The set of all files is organized into a (usually
big) tree, with your files located several branches
into the tree. It is possible for you to "walk"
around this tree, and to find any file in the system.
by starting at the root of the tree and walking along
the proper set of branches. Conversely, you can
start where you are and walk toward the root.

Let's try the latter first. The basic tools is the
command pwd ("print working directory"), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like

lusr/your-n..,.e

This says that you are currently in the directory
your-name, which is in tum in the directory lusr,
which is in tum in the root directory called by con
vention just I. (Even if it's not called lusr on your
system, you will get something analogous. Make the.
corresponding mental adjustment and read on.)

If you now type

Is lusr/your-name

you should get exactly the same list of file names as
you get from a plain Is: with no arguments, Is lists
the contents of the current directory; given the name
of a directory, it lists the contents of that directory.

Next, try

Is lusr

This should print a long series of names, among
which is your own login name your-name. On many
systems, usr is a directory that contains the direc
tories of all the normal users of the system, like you.

The next step is to try

Is I

You should get a response something like this
(although again the details may be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root of
the tree.

USD:1-8

Now try

cat lusr/your-nameljunk

(if junk is still around in your directory). The name

lusr/your-mune/junk

is called the patJmame of the file that you normally
think of as "junk". "Pathname" has an obvious
meaning: it represents the full name of the path you
have to fonow from the root through the tree of
directories to get to a particular file. It is a universal
rule in the UNIX system that anywhere you can use
an ordinary filename, you can use a pathname.

Here is a picture which may make this clearer:

(root)

I \ 11\
bin etc usr dev tmp

/1\ 11\ 11\ /1\ /1\
/ \

/ \
adam eve mary
I / \ \

/ \ junk
junk temp

Notice that Mary's junk is unrelated to Eve's.

This isn't too exciting if an the files of interest
are in your own di~ctory, but if you werk with
someone else- or on several projects concurrently, it
becomes handy indeed. For example, your friends
can print your book by saying

pr lusr/your-name/chap*

Similarly, you can find out what files your neighbor
has by saying

Is lusr/neighbor-1IIUDe

or make your own copy of one of his files by

cp lusr/your-neighborlhis-file yourfile

If your neighbor doesn't want you poking
around in his files, or vice versa, privacy can be
arranged. Each file and directory has read-write
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See Is(1) and chmod(1) for details. As a matter of
observed fact, most users most of the time find
openness of more benefit than privacy.

As a final experiment with pathnames, try

Is Ibin lusrlbin

Do some of the names look familiar? When you run
a program, by typing its name after the prompt char
acter, the system simply looks for a file of that
name. It normally looks first in your directory
(where it typically doesn't find it), then in Ibin and
finally in lusrlbin. There is nothing magic about

UNIX For Beginners

commands like cat or Is, except that they have been
collected into a couple of places to be easy to find
and administer.

Whit if you work regularly with someone else
on common information in his directory? You
could just log in as your friend each time you want
to, but you can also say "I want to work on his files
instead of my own". This is done by changing the
directory that you are currently in:

cd lusr/your-friend

(On some systems, cd is spelled chdir.) Now when
you use a filename in something like cat or pr, it
refers to the file in your friend's directory. Changing
directories doesn't affect any permissions associated
with a file - if you couldn't access a file from your
own directory, changing to another directory won't
alter that fact. Of course, if you forget what direc
tory you're in, type

pwd

to finq out.

lt is usually convenient to arrange your own
files so that all the files related to one thing are in a
directory separate from other projects. For example,
when you write' your book, you might want to keep
all the text in a directory called book. So make one
with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now found
in (presumably)

lusr/your-name/book

To remove the directory book, type

no book!*
nodir book

The first command removes all files from the direc
tory; the second removes the empty directory.

You can go up one level in the tree of files by
saying

...... is the name of the parent of whatever directory
you are currently in. For completeness, "." is an
alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far pro
duce output on the terminal; some, like the editor,
also take their input from the terminal. It is univer
sal in UNIX systems that the terminal can be
replaced by a file for either or both of input and out-

UNIX For Beginners

put. As one example,

is

makes a list of files on your terminal. But if you say

is >fllelist

a list of your files will be placed in the file filelist
(which will be created if it doesn't already exist, or
overwritten if it does). The symbol> means "put
the output on the following file, rather than on the
terminal." Nothing is produced on the terminal. As
another example, you could combine several files
into one by capturing the output of cat in a file:

cat n fl f3 >temp

The symbol » operates very much like> does,
except that it means "add to the end of." That is,

cat n fl f3 »temp

means to concatenate n, fl and f3 to the end of
whatever is already in temp, instead of overwriting
the existing contents. As with >, if temp doesn't
exist, it "will be created for you.

In a similar way, the symbol < means to take
the input for a program from the following file,
instead of from the terminal. Thus, you. could make
up a script of commonly used editing commands
and put them into a file called script. Then you can
run the script on a file by saying

eel file <script

As another example, you can use eel to prepare a
letter in file let, then send it to several people with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX sys
tem is the idea of a pipe. A pipe is simply a way to
connect the output of one program to the input of
another program, so the two run as a sequence of
processes - a pipeline.

For example,

prfg h

will print the files f, g, and h, beginning each on a
new page. Suppose you want them run together
instead. You could say

cat f g h >temp
pr <temp
rmtemp

but this is more work than necessary. Clearly what
we want is to take the output of cat and connect it
to the input of pro So let us use a pipe:

catfg h I pr

USD:1-9

The vertical bar I means to take the output from
cat, which would normally have gone to the termi
nal, and put it into p~ to be neatly formatted.

There are many other examples of pipes. For
example,

Is I pr-3

prints a list of your files in three columns. The pro
gram we counts the number of lines, words and
characters in its input, and as we saw earlier, who
prints a list of currently-logged on people, one per
line. Thus

who I we

tells how many people are logged on. And of course

Is I we

counts your files.

Any program that reads from the terminal can
read from a pipe instead; any program that writes on
the terminal can drive a pipe. You can have as
many elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given; if no arguments are given they
will read from the terminal,. and thus can be used in
pipelines. pr is one example:

pr -3 abe

prints files a, band e in order in three columns. But
in

cat abe I pr-3

pr prints the information coming down the pipeline,
still in three columns.

The Shell

We have already mentioned once or twice the
mysterious "shell," which is in fact sh(1). t The shell
is the program that interprets what you type as com
mands and arguments. It also looks after translating
*, etc., into lists of filenames, and <, >, and I into
changes of input and output streams.

The shell has other capabilities too. For exam
ple, you can run two programs with one command
line by separating the commands with a semicolon;
the shell recognizes the semicolon and breaks the
line into two commands. Thus

date; who

does both commands before returning with a prompt
character.

t On Berkeley Unix systems, the usual shell for interactive
use is the c shell. csh(1).

USD:l-10

You can also have more than one program run
ning simultaneously if you wish. For example, if
you are doing something time-consuming, like the
editor script of an earlier section, and you don't
want to wait around for the results before starting
something else, you can say

ed file <script &:

The ampersand at the end of a command line says
"start this command running, then take further com
mands from the terminal immediately," that is,
don't wait for it to complete. Thus the script will
begin, but you can do something else at the same
time. Of course, to keep the output from interfering
with what you're doing on the tertninal. it would be
better to say

ed file <script >script.out &:

which saves the output lines in a file called
scripLOut.

When you initiate a command with &:, the sys
tem replies with a number called the process
number, which identifies the command in case you
later want to stop it. If you do, you can say

kiD process-number

If you forget the process number, the command ps
will tell you about everything you have running. (If
you are desperate, kill 0 will kill all your processes.)
And if you're curious about other People, pS a will
tell you about all programs that are currently run
ning.

You can say

(command-l; command-2; command-3) &:

to start three commands in the background, or you
can start a background pipeline with

command-l I command-2 &:

Just as you can tell the editor or some similar
program to take its input from a file instead of from
the tertninal, you can tell the shell to read a file to
get commands. (Why not? The shell, after all, is just
a program, albeit a clever one.) For instance, sup
pose you want to set tabs on your tertninal, and find
out the date and who's on the system every time you
log in. Then you can put the three necessary com
mands (tabs, date, wbo) into a file, let's call it
startup, and then run it with

sb startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the contents
of startup on the tertnina!.

If this is to be a regular thing, you can eliminate
the need to type sh: simply type, once only, the com
mand

UNIX For Beginners

chmod +x startup

and thereafter you need only say

startup

to run the sequence of commands. The chmod(1)
command marks the file executable; the shell recog
nizes this and runs it as a sequence of commands.

If you want startup to run automatically every
time you log in, create a file in your login directory
called .profile, and place in it the line startup. When
the shell first gains control when you log in, it looks
for the .profile file and does whatever commands it
finds in it.t We'll get back to the shell in the section
on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu
ment preparation. There are two major fortnatting
programs, that is, programs that produce a text with
justified right margins, automatic page numbering
and titling, automatic hyphenation, and the like.
nroff is designed to produce output on terminals and
line-printers. troff (pronounced "tee-roft") instead
drives a phototypesetter, which produces very high
quality output on photographic paper. This paper
was fo~atted wit.h troff.

Formatting Packqes

The basic idea of nroff and troff is that the text
to be formatted contains within it "fortnatting com
mands" that indicate in detail how the fortnatted
text is to look. For example, there might be com
mands that specify how long lines are, whether to
use single or double spacing, and what running titles
to use on each page.

Because nroff and troff are relatively hard to
learn to use effectively, several "packages" of canned
formatting requests are available to let you specify
paragraphs, running titles, footnotes, multi-column
output, and so on. with little effort and without hav
ing to learn nroff and troff. These packages take a
modest effort to learn, but the rewards for using
them are so great that it is time well spent.

In this section, we will provide a hasty look at
the "manuscript" package known as -Ms. Format
ting requests typically consist of a period and two
upper-case letters, such as .n, which is used to
introduce a title, or .PP to begin a new paragraph.

A document is typed so it looks something like
this:

t The c shell instead reads a file called .I011in

UNIX For Beginners

.n
tide of document
.AU
author name
.5H
section heading
.PP
Plll'lllJ'llph ...
.PP
another paralP'llph ...
.5H
another section heading
.PP
etc.

The lines that begin with a period are the formatting
requests. For example, .PP calls for starting a new
paragraph. The precise meaning of .PP depends on
what output device is being used (typesetter or ter
minal, for instance), and on what publication the
document will appear in. For example, -ms nor
mally assumes thl\t a paragraph is preceded by a
space (one line in nroff, 112 line in troff), and the first
word is indented. These rules can be changed if you
like, but they are changed by cha .. ~ging the interpre
tationof .PP, not by re-typing the document ..

To actually produce a document in standard
format using -ms, use the command

troff ~ms files

for the typesetter, and

nroff -ms files ...

for a terminal. The -ms argument telis troff and
nroff to use the manuscript package of formatting
requests.

There are several similar packages; check with a
local expert to determine which ones are in common
use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu
ment preparation. The list in the next few para
graphs is far from complete, so browse through the
manual and check with people around you for other
possibilities.

eqn and neqn let you integrate mathematics into
the text of a document, in an easy-to-learn language
that closely resembles the way you would speak it
aloud. For example, the eqn input

sum from i=O to n x sub i -=- pi over 2

produces the output
n

~x; = ~
;-0 2

USD:l-ll

The program tbl provides an analogous service
for preparing tabular material; it does all the compu
tations necessary to align complicated columns with
elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the format
ting package. It looks after all the details of
numbering references in sequence, filling in page and
volume numbers, getting the author's initials and the
journal name right, and so on.

spell and typo detect possible spelling mistakes
in a document. t spell works by comparing the words
in your document to a dictionary, printing those that
are not in the dictionary. It knows enough about
English spelling to detect plurals and the like, so it
does a very good job. typo looks for words which
are "unusual", and prints those. Spelling mistakes
tend to be more unusual, and thus show up early
when the most unusual words are printed first.

. grep looks through a set of files for lines that
contain a particular text pattern (rather like the
editor's context se~ch does, but on a bunch of files).
For example,

arep 'ing$' chap*

will find all lines that end with the letters jng in the
files chap*. (It is almost always a good practice to
put single quotes around the pattern you're search
ing for, in case it contains characters like * or $ that
have a special meaning to the shell.) grep is often
useful for finding out in which of a set of files the
misspelled words detected by spell are actually
located.

diff prints a list of the differences between two
files, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

wc counts the words, lines and characters in a
set of files. tr translates characters into other charac
ters; for example it will convert upper to lower case
and vice versa. This translates upper into lower:

tr A-Z a-z <input >output

sort sorts files in a variety of ways; cref makes
cross-references; ptx makes a permuted index
(keyword-in-context listing). sed provides many of
the editing facilities of ed, but can apply them to
arbitrarily long inputs. awk provides the ability to
do both pattern matching and numeric computa
tions, and to conveniently process fields within lines.
These programs are for more advanced users, and
they are not limited to document preparation. Put
them on your list of things to learn about.

t "typo' is not provided with Berkeley Unix.

USD:1-12

Most of these programs are either independently
documented (like eqn and tbl), or are sufficiently
simple that the description in the UNIX
Programmer's Manual is adequate explanation. .
Hints for PrepariBg Documents

Most documents go through. several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do what
ever possible to make the job of changing them easy.

First, when you do the purely mechanical opera
tions of typing, type so that subsequent editing will
be easy. Start each sentence on a new line. Make
lines short, and break lines at natural places, such as
after commas and semicolons, rather than randomly.
Since most people change documents by rewriting
phrases and adding, deleting and rearranging sen
tences, these precautions simplify any editing you
have to do later.

Keep the individual files of a document down to
modest size, perhaps ten to fifteen thousand charac
ters. ,Larger files edit more slowly, and of course if
you make a dumb mistake it's better to have clob
bered a small file than a big one. Split into files at
natural boundaries in the document, for the same
reasons that you start each sentence on a new line.

The second aspect of making change easy is to
not commit yourself to formatting details too early.
One of the advantages of formatting packages like
-illS is that they permit you to delay decisions to the
last possible moment. Indeed, until a document is
printed, it is not even decided whether it will be
typeset or put on a line printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set
of requests like .PP, and then define them appropri
ately, either by using one of the canned packages
(the better way) or by defining your own orotT and
trotT commands. As long as you have entered the
text in some systematic way, it can always be
cleaned up and re-formatted by a judicious combina
tion of editing commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any of
the programming languages available but a few
words of advice are in order. One of the reasons
why the UNIX system is a productive programming
environment is that there is already a rich set of
tools available. and facilities like pipes, YO redirec
tion, and the capabilities of the shell often make it
possible to do a job by pasting together programs
that already exist instead of writing from scratch.

UNIX For Beginners

The Sbell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ._

I tr •••
I tr 0-

I sort
I aniq
I comm

collect the files
put each word on a new line
delete punctuation, etc.
into dictionary order
discard duplicates
print words in text

but not in dictionary

More pieces have been added subsequently, but this
goes a long way for such a small effort.

The editor can be made to do things that would
normally require special programs on other systems.
For example, to list the first and last lines of each of
a set of files, such as a book, you could laboriously
type

eel
e cbapl.t

" Ip
$p
e chapl.2
Ip
$p
etc.

But you can do the job much more easily. One way
is to type

Is cbap· >temp

to get the list of filenames into a file. Then edit this
file to make the necessary series of editing com
mands (using the global commands of eel), and write
it into script. Now the command

eel <script

will produce the same output as the laborious hand
typing. Alternately (and more easily), you can use
the fact that the shell will perform loops, repeating a
set of commands over and over again for a set of
arguments:

for i in chap·
do

eel $i<script
done

This sets the shell variable i to each file name in
tum, then does the command. You can type this
command at the terminal, or put it in a file for later
execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language, with
variables, control flow (if-eise, While, for, case), sub-

UNIX For Beginners

routines, and interrupt handling. Since there are
many building-block programs, you can sometimes
avoid writing a new program merely by piecing
together some of the building blocks with shell com
mand files.

We will not go into any details here; examples
and rules can be found in An Introduction to the
UNIX Shell, by S. R. Bourne.

PropammiDI in C
If you are undertaking anything substantial, C is

the only reasonable choice of programming language:
everything in the UNIX system is tuned to it. The
system itself is written in C, as are most of the pro
grams that run on it. It is also a easy language to
use once you get started. C is introduced and fully
described in The C Programming Language by B.
W. Kernighan and O. M. Ritchie (Prentice-Hall,
1978). Several sections of the manual describe the
system interfaces, that is, how you do 110 and simi
lar functions. Read UNIX Programming for more
complicated things.

Most input and output in C is best handled with
the standard 110 library. which provides a set of 110
functions that exist in compatible form on most
machines that have C·· compilers. In general, it's
wisest to confine the system interactions in a pro
gram to the facilities provided by-this library.

C proJraJIlS that don't depend too much on spe
cial features of UNIX (such as pipes) can be moved
to other computers that have C compilers. The list
of such machines grows daily; in addition to the ori
ginal PDP-ll, it currently includes at least
Honeywell 6000, IBM 370 and PC families, Inter
data 8/32, Oata General Nova and Eclipse, HP
2100, Harris 17, Motorola 68000 family (including
macbines like Sun Microsystems and Apple Macin
tosh), VAX 11 family, SEL 86, and Zilog Z80. Calls
to the standard 110 library will work on all of tbese
machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential por
tability problems, and detects errors such as
mismatched argument types and uninitialized vari
ables.

For larger programs (anything whose source is
on more than one file) make allows you to specify
the dependencies among the source files and the pro
cessing steps needed to make a new version; it then
checks the times that the pieces were last changed
and does the minimal amount of recompiling to
create a consistent updated version.

The debugger adb is useful for digging through
the dead bodies of C programs, but is rather hard to
learn to use effectively. The most effective debug
ging tool is still careful thought, coupled with judi
ciously placed print statements. t
t The 'din' debuger. supplied stanilll with 4.2BSD. bas ex
tensive facilities for biBb-level debuginl of C proarams and is

USO:1-13

The C compiler provides a limited instrumenta
tion service, so you can find out where programs
spend their time and what parts are worth optimiz
ing. Compile the routines with the -p option; after
the test run, use prof to print an execution profile.
The command dme will give you the gross run-time
statistics of a program, but they are not super accu
rate or reproducible.

Other Lanpqes

If you have to use Fortran, there are two possi
bilities, You might consider Ratfor, which gives you
the decent control structures and free-form input
that characterize C, yet lets you write code that is
still portable to other environments. Bear in mind
that UNIX Fortran tends to produce large and rela
tively slow-running programs, Furthermore, sup
porting software like adb, prof, etc., are all virtually
useless with Fortran programs. There may also be ~
Fortran 77 compiler on your system. If so, this is a
viable alternative to Ratfor, and bas tbe non-trivial
advantage that it is compatible with C and related
programs. (The Ratfor processor and C tools can be
used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language,
you are in effect building a compiler, though prob- ,
ably a small one. In th~t case, you should be using
the yacc compiler-compiler, which helps you develop
a compiler quickly. The lex lexical analyzer genera
tor does the same job for tbe simpler languages that
can be expressed as regular expressions. It can be
used by itself, or as a front end to recognize inputs
for a yace-based program. Both yace and lex require
some sophistication to use, but the initial effort of
learning them can be repaid many times over in pro-
grams that are easy to change later on. .

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Lisp, Pas
cal, and Snobol. Whetber these are useful depends
largely on the local environment: if someone cares
about tbe language and has worked on it it mav be
in good shape. If not, the odds are str~ng th~t it
will be more trouble than it's worth.

v. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer's Manual. Bell Laboratories. 1978
(PS2:3); Lists commands, system routines and inter
faces, file formats, and some of the maintenance
proce~ures. You can't live without this, although
you Will probably only need to read section 1.

mucb easier to use tban "adb".

USD:1-14

D. M. Ritchie and K. L. Thompson, "The UNIX
Time-sharing System," CACM, July 1974. (PS2:1)*
An overview of the system, for people interested in
operating systems. Worth reading by anyone who
programs. Contains a remarkable number of one
sentence observations on how to do things right.

. The Bell System Technical Journal (BSTJ) Special
Issue on UNIX, July/August, 1978, contains many
papers describing recent developments, and some
retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several papers
describing the use of the Programmer's Workbench
(PWB) version of UNIX.

~meDtPT~oru

B. W. Kernighan, "A Tutorial Introduction to the
UNIX Text Editor" (USD:12) and "Advanced Edit
ing on UNIX," (USD: 13) Bell Laboratories, 1978. t
Beginners need the introduction; the advanced
material will help you get the most out of the editor.

M. E. Lesk, "Typing Documents on UNIX," Bell
Laboratories, 1978. (USD:20)t Describes the -ms
macro package, which isolates the novice from the
vagaries of Droll' and troll', and takes care of most
formatting situations. If this specific package isn't
available on your system, something similar prob
ably is. The most likely alternative is the PWBlUNIX
macro package -mm; see your local guru if you us~
PWBlVNIX.*

B. W. Kernighan and L. L. Cherry, "A System for
Typesetting Mathematics," Bell Laboratories Com
puting Science Tech. Rep. 17. (USD:26)t

M. E. Lesk, '101 - A Program to Format Tables,"
Bell Laboratories CSTR 49, 1976. (USD:28)t

J. F. Ossanna, Jr., "NROFFITROFF User's
Manual," Bell Laboratories CSTR 54, 1976.
(USD:24)t troff is the basic formatter used by -ms,
eqD and tbl. The reference manual is indispensable
if you are going to write or maintain these or similar
programs. But start with:

B. W. Kernighan, "A TROFF Tutorial." Bell
Laboratories, 1976. (USD:25)t An attempt to
unravel the intricacies of troll'.

t These documents (previously in Volume 2 of the Bell Labs
Unix distribution) are provided among the 'User Supplemen·
tary' Documents for 4.385D. available from the Usenix Asso
ciatioll. * These are among the 'Programmer Supplementary- Docu
ments for 4.385D. PSI is Volume I. PS2 is Volume 2.
"The macro package ·me is additionally available on Berkeley
Unix Systems. ·mm is typically not available.

UNIX For Beginners

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall, 1978. Contains
a tutorial introduction, complete discussions of all
language features, and the reference manuaL

B. W. Kernighan and R. Pike, The Unix Program
ming Environment, Prentice-Hall, 1984. Contains
many examples of C programs which use the system
interfaces, and explanations of "why" .

B. W. Kernighan and D. M. Ritchie, "UNIX Pro
gramming," Bell Laboratories, 1978. (PS2:3);
Describes how to interface with the system from C
programs: I/O calls, signals, processes.

S. R. Bourne, "An Introduction to the UNIX Shell,"
Bell. Laboratories, 1978. (USD:3)t An introduction
and reference manual for the Version 7 shell. Man
datory reading if you intend to make effective use of
the programming power of this shell.

S. C. lohnson, "Yacc - Yet Another Compiler
Compiler," Bell Laboratories CSTR 32, 1978.
(PSI: 1 S};

M. E. Lesk. ·'Lex - A Lexical Analyzer Generator,"
Bell Laboratories CSTR 3°, 1975. (PSl:16);

S. C. Johnson, "Lint, a C Program Checker," Bell
Laboratories CSTR 65, 1977. (PS 1:9);

S. I. Feldman. ·'MAKE - A Program for Maintain
ing Computer Programs," Bell Laboratories CSTR·
57, 1971. (PSl:12)*

J. F. Maranzano and S. R. Bourne, "A Tutorial
Introduction to ADB," Bell Laboratories CSTR 62.
1977. (PSl:10); An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. J. Weinberger, ·'A Portable
Fortran 77 Compiler," BeU Laboratories, 1978.
(PSl:2); A full Fortran 77 for UNIX systems.

LEARN - Computer-Aided Instruction on UNIX

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:2-1

This paper describes the second version of the learn program for interpreting
CAl scripts on the UNIxt operating system, and a set of scripts that provide a com
puterized introduction to the system.

Six current scripts cover basic commands and file handling, the editor, addi
tional file handling commands, the eqn program for mathematical typing, the "-ms"
package of formatting macros, and an introduction to the C programming language.
These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire
basic' UNIX skills. .Most usage involves the first two scripts, an introduction to
UNIX files and commands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in .
CPU utilization, and much faster in perceived time because of better overlap of
computing and printing. It also requires less file space than the first version. Many
of the lessons have been revised; new material has been added to reflect changes and
enhancements in UNIX itself. Script-writing is also easier because of revisions to the
script language.

1. Introduction.
Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons and

lesson fragments to teach people computer skills. Since it is teaching the same system on which it is
implemented, it makes direct use of UNIX facilities to create a controlled UNIX environment. The
system includes two main parts: (1) a driver that interprets the lesson scripts; and (2) the lesson
scripts themselves. At present there are seven scripts:

basic file handling commands
the UNIX text editors ed and vi

advanced file handling
the eqn language for typing mathematics
the "ms" macro package for document formatting
the C programming language

The purported advantages of CAl scripts for training in computer skills include the following:

t UNIX is a trademark of AT&T Bell Laboratories.

USD:2-2 LEARN - Computer-Aided Instruction on UNIX

(a) students are forced to perform the exercises that are in fact the basis of training in any
case;

(b) students receive immediate feeqback and confirmation of progress;

(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient for
them;

(e) the lessons may be improved individually apd the improvements are immediately available
to new users;

(f) since the student has access to a computer for the CAl script there is a place to do exer
cises;

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a text
book, lecture series, or taped course, rather than to a seminar. CAl has been used for many years in a
variety of educational areas. 1,2.3 The use of a computer to teach computer use itself, however, offers
unique advantages. The skills developed to get through the script are exactly those needed to use the
computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these
assumptions are outlined in the next section. The remaining sections describe the operation of the
script driver and the particular scripts now available. The driver puts few restrictions on the script
writer. but the current scripts are of a rather rigid and stereotyped form in accordance with the theory
in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should not
contain long pieces of explanation; they should instead frequently ask the student to do some task.
So teaching is always by example: the typical script fragment shows a small example of some tech
nique and then asks the user to either repeat that example or produce a variation on it. All are
intended to be easy enough that most students will get most questions right, reinforcing the desired
behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no
answer to a question. The student is given a chance to experiment before replying. The script checks
for the correct reply. Problems of this form are sparingly used.

say
The second type asks for a word or number as an answer. For example a lesson on files might

How many files are there in the cu"ent directory? Type "answer N", where N is the number of
files.

The student is expected to respond (perhaps after experimenting) with

answer 17
or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by
17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student, appropriate parts of the
input or output are monitored, and the student types ready when the task is done. Figure 1 shows a
sample dialog that illustrates the last of these, using two lessons about the cat (concatenate, i.e., print)
command taken from early in the script that teaches file handling. Most learn lessons are of this
form.

After each correct response the computer congratulates the student' and indicates the lesson
number that has just been completed, permitting the student to restart the script after that lesson. If

LEARN - Computer-Aided Instruction on UNIX

Figure I: Sample dialog from basic files script

(Student responses in italics; '$' is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
$ cat/ood

this is the file
named food.

$ ready

Good. Lesson 3.3a (I)

Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is na1l;led for
a President. Print the file, then type "ready".
$ cat President .
cat: can't open President
$ ready

Sorry, that's not right. Do you want to try again? yes
Try the problem again.
$ Is
.ocopy
Xl
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"

USD:2-3

the answer is wrong, the student is offered a chance to repeat the lesson. The "speed" rating of the
student (explained in section 5) is given after the lesson number when the lesson is completed success
fully; it is printed only for the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "understands"
what he or she is doing; accordingly, the current learn scripts only measure performance, not
comprehension. If the student can perform a given task, that is deemed to be "learning."4

US0:2-4 LEARN - Computer-Aided Instruction on UNIX

The main point of using the computer is that what the student does is checked for correctness
immediately. Unlike many CAl scripts, however, these scripts provide few facilities· for dealing with
wroDg answers. In practice, if most of the answers are not right the script is a failure; the universal
solution to student error is to provide anew. easier script. Anticipating possible wrong answers is an
endless job, and it is really easier as well as better to provide a simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be broken
into sufficiently small pieces. Anything not absorbed in a single chunk is JUSt subdivided.

To avoid boring the faster ·students, however, an effort is made in the files and editor scripts to
provide three tracks of different difficulty. The fastest sequence of lessons is aimed at roughly the
bulk and speed of a typical tutorial manual and should be adequate for· review and for well-prepared
students. The next track is intended for moSt users and is roughly twice as long. Typically, for exam
ple, the fast track might present an idea and ask for a variation on the example shown; the normal
track will first ask the student· to repeat the example that was shown· before attempting a variation.
The third and slowest track, which·. is often three or four times the length of the fast track, is intended
to be adequate for anyone. (The lessons of Figure 1 are from the third track.) The multiple tracks
also mean that a student repeating a course is unlikely to· hit the same series of lessons; this makes it
profitable for a shaky user to back up and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers
the student has given for the last few lessons, the program may switch tracks. The driver is actually
capable of foUowing an arbitrary directed graph of lesson sequences, as discussed in section 5. Some
more structured arrangement, however, is used in all current scripts to aid the script writer in organ
izing the material into lessons. It is sufficiently difficult to write lessons that the three-track theory is
not followed very closely except in the files and editor scripts. Accordingly, in some cases, the fast
track is produced merely· by skipping lessons from the slower track. In others, there is essentially only
one track. . ..

The m~nreason for using ~e learn program rather than simply writing the same material as a·
workbook is not the selection of tracks, but actual hands-on experience. Learning by doing is much
more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let
the student proceed unless it received correct answers to .the questions it set and it would not tell a
student the right answer. This somewhat Draconian approach has been moderated in version 2. Les
sons are sometimes badly worded or even just plain wrong; in such cases, the student has no recourse.
But if a student is simply unable to complete one lesson, that should not prevent access to the rest.
Accordingly, the current version of learn allows the. student to skip a lesson that he cannot pass; a
"no" answer to the "00 you want to try again?" question in Figure 1 will pass to the next lesson. It
is still true that learn will not tell the student the right answer.

Of course, there are valid objections to the assumptions above. In particular, some students
may object to not understanding what they are doing; and the procedure of smashing everything into
small pieces may provoke the retort "you can't cross a ditch in two jumps." Since writing CAl scripts
is considerably more tedious than ordinary manuals, however, it is safe to assume that there will
always be alternatives to the scripts as a way of learning. In fact, for a reference manual of 3 or 4
pages it would not be surprising to have a tutorial manual of 20 pages and a (multi-track) script of
100 pages. Thus the reference manual will exist long before the scripts. '

3. Scripts.

As mentioned above. the present scripts try at most to follow a three-track theory. Thus little of
the potential complexity of the possible directed graph is employed, since care must be taken in les
son construction to see that every necessary fact is presented in every possible path through the units.
In addition, it is desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For exam
ple, before the student is allowed to proceedtbrough the editor script the script verifies that the stu
dent understands files and is able to type. It is felt that the sooner lack of student preparation is

LEARN - Computer-Aided Instruction on UNIX USD:2-5

detected, the easier it will be on the student. Anyone proceeding through the scripts should be getting
mostly correct answers; otherwise, the system will be unsatisfactory both because the wrong habits are
being learned and because the scripts make little effort to deal with wrong answers. Unprepared stu
dents should not be encouraged to continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried.
In particular, the student must know how to connect to a UNIX system, set the terminal properly, log
in, and execute simple commands (e.g., learn itself). In addition, the.character erase and line kill con
ventions (# and @) should be known. It is hard to see how this much could be taught by computer
aided instruction, since a student who does not know these basic skills will not be able to run the
learning program. A brief description on paper is provided (see Appendix A), although assistance will
be needed for the first few minutes. This assistance, however, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above and
teaches the student about the Is, eat, mv, rm, ep and diff commands. It also deals with the abbrevi
ation characters *, 1, and [] in file names. It does not cover pipes or I/O redirection, nor does it
present the many options on the Is command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven
are review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages
typed at the student to begin each lesson total 4,476 words. The average lesson thus begins with a
60-word message. In general, the fast track lessons have somewhat longer introductions, and the slow
tracks somewhat shorter ones. The longest message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed, a sophisticated edi
tor using regular expressions for se~"·ching. 5 All editor features except encryption, mark names and ';'
in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a review les
son. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The' ed description in the reference manual is 2,572
words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is 7,407 words
of explanatory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed les
son is thus also about 60 words; the largest is 171 words and the smallest 10. The original ed script
represents about three man-weeks of effort.

The advanced file handling script deals with Is options, 110 diversion, pipes, and supporting pro
grams like pr, we, tail, spell and grep. (The basic file handling script is a prerequisite.) It is not as
refined as the first two scripts; this is reflected at least partly in the fact that it provides much less of a
full three-track sequence than they do. On the other hand, since it is perceived as "advanced," it is
hoped that the student will have somewhat more sophistication and be better able to cope with it at a
reasonably high level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run on a
terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based termi
nals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of tracks: of 76 les
sons, only 17 are in the second track and 2 in the third track. Most of these provide additional prac
tice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future.
Furthermore, the linear style of a single learn script is somewhat inappropriate for the macros, since
the macro package is composed of many independent features, and few users need all of them. It
would be better to have a selection of short lesson 'sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C,
but that document has since become obsolete. The current script has been partially converted to fol
low the order of presentation in The C Programming Language, 7 but this job is not complete. The C
script was never intended to teach C; rather it is supposed to be a series of exercises for which the
computer provides checking and (upon success) a suggested solution.

USD:2-6 LEARN - Computer-Aided Instruction on UNIX

This combination of scripts covers much of the material which any UNIX user will need to
know to make effective use of the system. With enlargement of the advanced files course to include
more on the command interpreter, there will be a relatively complete introduction to UNIX available
via learn. Although we make no pretense that learn will replace other instructional materials, it
should provide a useful supplement. to existing tutorials and reference manuals.

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the first two
Scripts, so these are more thoroughly debugged and polished. As a (random) sample of user experi
ence, the learn program has been used at Bell Labs at Indian HilI for 10,500 lessons in a four month
period. About 3600 of these are in the files script, 4100 in the editor, and 1400 in advanced files.
The passing rate is about 80%, that is, about 4 lessons are passed for every one failed. There have
been 86 distinct users of the files script, and 58 of the editor. On our system at Murray Hill, there
have been nearly 2000 lessons over two weeks that include Christmas and New Year. Users have
ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone
doing one or two lessons and then logging out, as do instances of someone pausing in a script for
twenty minutes or more. In the earlier version of learn, the average session in the files course took
32 minutes and covered 23 lessons. The distribution is quite broad and skewed, however; the longest
session was 130 minutes and there were five sessions shorter than five minutes. The average lesson
took about 80 seconds. These numbers are roughly typical for non-programmers; a UNIX expert can
do the scripts at approximately 30 seconds per lesson, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of
processor time per lesson, and a system expert typing quickly took 1 S seconds of real time per lesson.
A novice would probably take at least a qtinute. Thus a UNIX system could support ten ·students
working simultaneously with some sp~e capacity.

s. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer to
capture student responses and their effects, and simplifies the job of passing control to and recovering
control from the student. This section describes the operation and usage of the driver program, and
indicates what is required to produce a new script. Readers only interested in the existing scripts
may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named lib)
containing the script data. Within this directory are subdirectories, one for each subject in which a
course is available, one for logging (named log), and one in which user sub-directories are created
(named play). The subject directory contains master copies of all lessons, plus any supporting
material for that subject. In a given subdirectory, each lesson is a single text file. Lessons are usually
named systematically; the file that contains lesson n is called Ln .

When learn is executed, it makes a private directory 'for the user to work in, within the learn
portion of the file system. A fresh copy of all the files used in each lesson (mostly data for the student
to operate :upon) is made each time a student starts a lesson, so the script writer may assume that
everything is reinitialized each time a lesson is entered. The student directory is deleted after each
session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating cqmmands to be executed after the user has finished the lesson, to decide whether
the answer is right; and

LEARN - Computer-Aided Instruction on UNIX

Figure 2: Directory structure for learn

lib

play

files

editor

(other courses)

log

(5) a list of possible successor lessons.

student 1

student2

LO.la
LO.lb

files for studentl ...

files for student2 ...

lessons for files course

USD:2-7

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved
in script production is in planning lesson~, writing tutorial. paragraphs, and coding tests of student
performance.

The basic sequence of events is as follows. First, learn creates the working directory. Then, for
each lesson, learn reads the script' for the lesson and processes it a line at a time. The lines in the
script are: (1) commands to the script interpreter to print something, to create a files, to test some
thing, etc.; (2) text to be printed or put in a file; (3) other lines, which are sent to the shell to be exe
cuted. One line in each lesson turns control over to the user; the user can run any UNIX commands.
The user mode terminates when the user types yes, no, ready, or answer. At this point, the user's
work is tested; if the lesson is passed, a new lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.
Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.
#printfile

prints the contents of file; 'it is the same as cal file but has less overhead. Both forms of #print have
the added property that if a lesson is failed, the #print will not be executed the second time through;
this avoids annoying the student by repeating the preamble to a lesson.

#Create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used
for creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user
mode is terminated when the student types one of yes, no, ready or answer. At that time, the driver
resumes interpretation of the script.

#copyin
#uncopyin

USD:2-8 LEARN - Computer-Aided Instruction on UNIX

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is· to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready",
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#Copyout
#User
#Uncopyout
tail -3 .ocopy>Xl
#cmp X 1 roosevelt
#log
#next
3.2\) 2

Anything the student types between these commands is copied onto a file called . copy. This lets the
script writer interrogate the student's responses upon regaining control.

#Copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true believers
in the performance theory of learning usually prefer to the student's actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter (the
"shell") one line at a time. This won't do if, for example, a sequence of editor commands is provided,
since the input to the editor must be handed to the editor, not to the shell. Accordingly, the material
between #pipe and #unpipe commands is fed continuously through a pipe so that such sequences
work. If copyout is also desired the copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.
#Cmp file] file2

is an in-line implementation of cmp, which compares two files for identity.
#match stuff

The last line of the student's input is compared to Sluff, and the success or fail status is set according
to it: Extraneous things like the word answer are stripped before the comparison is made. There
may be several #match lines; this provides a convenient mechanism for handling multiple "right"
answers. Any text up to a # on subsequent lines after a successful #match is printed; this is illus
trated in Figure 4, another sample lesson.

#bad stuff

LEARN - Computer-Aided Instruction on UNIX

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND" ,where COMMAND is the command.
#Copyin
;¥User
;¥Uncopyin
#match m$
#match .m$
"mS" is easier.
#Iog
#next
63.1d 10

USD:2-9

This is similar to #match, except that it corresponds to specific failure answers; this can be used to
produce hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver ter
minates the #user command, and evaluation of the student's work can begin. This can be done either .

. by the built-in commands above, such as #match and #cmp, or by status returned by normal UNIX
commands, typically grep and test. The last command should return status true (0)· if the task was
done successfully and false (non-zero) otherwise; this status return tells the driver whether or not the
student has successfully passed the lesson.

Performance can be logged:
#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The com
mand

#log

by itself writes the logging information in the logging directory within the learn hierarchy, and is the
normal form.

#next

is followed by a few lines, each witli a successor lesson name and an optional speed rating on it. A
typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units,
25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for
each session with a student; the rating is increased by one each time the student gets a lesson right
and decreased by four each time the student gets a lesson wrong. Thus the driver tries to maintain a
level such that the users get 80% right answers. The maximum rating is limited to 10 and the
minimum to O. The initial rating is zero unless the student specifies a different rating when starting a
session.

USD:2-10 LEARN - Computer-Aided Instruction on UNIX

If the student passes a lesson, a new lesson is selected and the process repeats. If the student
fails, a false status is returned and the program reverts to the previous lesson and tries another alter
native. If it can not find another alternative, it skips forward a lesson. bye, bye .. which causes a
graceful exit from the learn system. Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limi
tation on cycles in that it will not present a lesson twice in the same session. If the student is unable
to answer one of the exercises correctly, the driver searches for a previous lesson with a set of alterna
tives as successors (following the #next line). From the previous lesson with alternatives one route
was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong answers.
Lesson writing is so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other
operating systems. These include the ease of manipulating files and directories, file redirection, the
ability to use the command interpreter as just another program (even in a pipeline), command status
testing and branching, the ability to catch signals like interrupts, and of course the pipeline mechan
ism itself. Although some parts of learn might be transferable to other systems, some generality will
probably be lost.

A bit of history: The first version of learn had fewer built-in words in the driver program, and
made more use ofthe facilities of UNIX. For example, file comparison was done by creating a cmp
process, rather than comparing the two files within learn. Lessons were not stored as text files, but as
archiv~s. There was no concept of the in-line document; even #print had to be followed by a file
name. Thus the initialization for each lesson was to extract the archive into the working directory
(typically 4-8 files), then #print the lesson text. .

The combination of such things made learn slower. The new version is about 4 or 5 times fas
ter. Furthermore, it appears even fastet: to the user because in a typical lesson, the printing of the
message comes first, and file setup with #Create can be overlapped with the printng, so that when the
program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text files.
They can be edited without any difficulty, and UNIX text manipulation tools can be applied to them.
The result has been that there is much less resistance to going in and fixing substandard lessons.

6. Conclusions
The following observations can be made about secretaries, typists, and other non-programmers

who have used learn:
(a) A novice must have assistance with the mechanics of communicating with the computer to get

through to the first lesson or two; once the first few lessons are passed people can proceed on
their own.

(b) -The terminology used in the first few lessons is obscure to those inexperienced with computers.
It would help if there were a low level reference card for UNIX to supplement the existing pro
grammer oriented bulky manual and bulky reference card.

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time for a
reasonably intelligent and motivated novice to proceed from ignorance to a reasonable ability to
create new files and manipulate old ones seems to. be a few days, with perhaps half of each day spent
on the machine.

The normal way of proceeding has been to have students in the same room with someone who
knows UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. The
burden on the counselor, however, is much lower than that on a teacher of a course. Ideally, the stu
dents should be encouraged to proceed with instruction immediately prior to their actual use of the

LEARN - Computer-Aided Instruction on UNIX USD:2-11

computer. They should exercise the scripts on the same computer and the same kind of terminal that
they will later use for their real work, and their first few jobs for the computer should be relatively
easy ones. Also, both training and initial work should take place on days when the UNIX hardware
and software are working reliably. Rarely is all of this possible, but the closer one comes the better
the result. For example, if it is known that the hardware is shaky one day, it is better to attempt to
reschedule training for another one. Students are very frustrated by machine downtime; when noth
ing is happening, it takes some sophistication and experience to distinguish an infinite loop, a slow
but functioning program, a program waiting for the user, and a broken machine. *

One disadvantage of training with learn is that students come to depend completely on the CAl
system, and do not try to read manuals or use other learning aids. This is unfortunate, not only
because of the increased demands for completeness and accuracy of the scripts, but because the
scripts do not cover all of the UNIX system. New users should have manuals (appropriate for their
level) and read them; the scripts oUght to be altered to recommend suitable documents and urge stu
dents to read them.

There are several other difficulties which are clearly evident. From the student's viewpoint, the
most serious is that lessons still crop up which simply can't be passed. Sometimes this is due to poor
explanations, but just as often it is some error in the lesson itself - a botched setupf a missing file, an
invalid test for correctness, or some system facility that doesn't work on the local system in the same
way it did on the development system. It takes knowledge and a certain healthy arrogance on the
part of the user to recognize that the fault is not his or hers, but the script writer's. Permitting the
student to get on with the next lesson regardless does alleviate this somewhat, and the logging facili
ties make it easy to watch for lessons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereot) - it was often excruci
atingly slow and made a significant drain on the system. The current version· so fat does not seem to
have that difficulty, although some scripts, notably eqn, are intrinsically slow. eqn, for example, must
doa lot of work even to print its introductions, let alone check the student responses, but delay is
perceptible in all scripts from time to time. .

Another potential problem is that it is possible to break learn inadvertently, by pushing inter
rupt at the wrong time, or by removing critical files, or any number of similar slips. The defenses
against such problems have steadily been improved, to the point where most students should not
notice difficulties. Of course, it will always be possible to break learn maliciously, but this is not
likely to be a problem.

One area is more fundamental - some UNIX commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd, which changes
to another directory. The prospect of a student who is learning about directories inadvertently mov
ing to some random directory and removing files has deterred us from even writing lessons on cd, but
ultimately lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M.
J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also provided
many of the ideas in the system. We are also indebted to Don Jackowski for serving as a guinea pig
for the second version, and to Tom Plum for his efforts to improve the C script.

References

1. D.L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educational
System: Plato IV," in Computer Assisted Instruction, Testing and Guidance, ed. Wayne Holtz
man, pp. 17-29, Harper and Row, New York, 1970.

• We have even known an expen programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

USD:2-12 LEARN - Computer-Aided Instruction on UNIX

2. D.C. Gray, J.P. Hulskamp, J.H. Kumm, S. Lichtenstein, and N.E. Nimmervoll, "COALA - A
Minicomputer CAl System," IEEE Trans. Education, vol. E-20(1), pp. 73·77, Feb. 1977.

3. P. Suppes, "On Using Computers to Individualize Instruction," in The Computer in American
Education, ed. D.O. Bushnell and D.W. Allen, pp. 11-24, John Wiley, New York, 1967.

4. B.F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review, vol. 31, pp. 377-398,
1961. Reprinted in Educational Technology, ed. J.P. DeCecco, Holt Rinehart & Winston (New
York, 1964)

S. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories, 1978. See sec
tion ed (1).

6. B.W. Kernighan, A Tutorial Introduction to the UNIX text editor, 1974. Bell Laboratories inter
nal memorandum

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Oiffs, New Jersey, 1978.

An Introduction to the UNIX Shell

An Introduction to the UNIX Shell

S. R. Bourne

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated/or 4.3BSD by Mark Seiden)

ABSTRACT

USD:3-1

The shellt is a command programming language that provides an interface to the
UNIXt operating system. Its features include control-flow primitives, parameter
passing, variab.1es and string substitution. Constructs such as while, if then else, case
and for are available. Two-way communication is possible between the shell and
commands. String-valued parameters, typically file names or flags, may be passed to
a command. A return code is set by commands that may be used to determine
control-flow, and the standard output from a command may be used as shell input .
. The shell can modify the environment in which· commands run. Input and output
can be redirected to files~ and processes that communicate through 'pipes' can be
invoked. Commands are found by searching directories in the file system in a
sequence that can be defined by the user. Commands can be read either from the
terminal or from a file, which allows command procedures to be stored for later use.

1.0 Introduction
The shell is both a command language and a programming language that provides an interface to the
UNIX operating system. This memorandum describes, with examples, the UNIX shell. The first sec
tion covers most of the everyday requirements of terminal users. Some familiarity with UNIX is an
advantage when reading this section; see, for example, "UNIX for beginners". 1 Section 2 describes
those features of the shell primarily intended for use within shell procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a program
ming language would be a help when reading this section. The last section describes the more
advanced features of the shell. References of the form "see pipe (2)" are to a section of the UNIX
manual. 2

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of
the command to be executed; any remaining words are passed as arguments to the command. For
example,

who

is a command that prints the names of users logged in. The command

* This paper describes sh(l). If it's the c shell (csh) you're interested in, a good place to begin is William
Joy's paper" An Introduction to the.C shell" (USD:4).
t UNIX is a trademark of AT&T Bell Laboratories.

USD:J..2 An Introduction to the UNIX Shell

Is -1

prints a list of files in the current directory. The argument -I tells Is to print status information, size
and the creation date for each file.

1.% Background COIDID8IIds
To execute a command the shell normally creates a new process and waits for it to finish. A com
mand may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to· compile the file pgm.c. The trailing " is an operator that instructs the shell
not to wait for the command to finish. To help keep track of such a process the shell·reports its pro
cess number following its creation. A list of currently active processes may be obtained using the ps
command.

1.3 Input oiItput redirection

Most commands produce output on the standard output that is initially connected to the terminal.
This output may be sent to a file by writing, for example,

'ls -1 >file

The notation >fi/e is interpreted by the shell and is not passed as an argument to Is. If file does not
exist then the shell "l'eates it; otherwise the original contents of file are replaced with the output from
Is. Output may be appended to a file using the notation

Is -1 »tile

. In this c8se file is also created if it does not already exist.
The standard input of a command may be taken from a file instead of the terminal by writing, for
example,

wc <file·

The command we reads its standard input (in this case redirected from file) and prints the number of
characters, words and lines found. If only the number of lines is required then

wc -1 <file

could be used.

1.4 Pipelines and fUten
The standard output of one command maybe connected to the standard input of another by writing
the 'pipe' operator, indicated by I ,as in, . .

Is -I I we

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is -1 > file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2» and are
run in parallel. Pipes are unidirectional and synchronization is achieved by halting we when there is
nothing to read and halting Is when the pipe is full.
A filter is a command that reads its standard input, transforms it in some way, and prints the result. as
output. One such filter, grep. selects from its input those lines that contain some specified string. For
example,

15 I grep old

prints those lines, if any, of the output from Is that contain the string old. Another useful filter is sort.

An Introduction to the UNIX Shell USD:3-3

For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old I wc -1

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,

Is -1 main.c

prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For example,

Is -1 *.C
generates, as arguments to Is, all file names in the current directory that end in .c. The character * is
a pattern that will match any string including the null string. In general patterns are specified as fol
lows.

* Matches any string of characters including the null string.

? Matches any single character.

[••• J Matches anyone of the characters enclosed. A pair of characters separated by a minus
will match any character lexically between the pair.

For example, .

[a-z]*

matches all names in the current directory beginning with one of the letters a through z.

lusr/fredltestl?

matches all names in the directory lusr/fred/test that consist of a single character. If no file name is
found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may
also be used to find files. For example,

echo lusr/fredl*/core

finds and prints the names of all core files in sub-directories of lusr/fred. (echo is a standard UNIX
command that prints its arguments, separated by blanks.) This last feature can be expensive, requiring
a scan of all sub-directories of lusr/fred.

There is one exception to the general rules given for patterns. The character'.' at the start of a file
name must be explicitly matched.

echo *

will therefore echo all file names in the current directory not beginning with '.' .

echo .*

will echo all those file names that begin with '.'. This avoids inadvertent matching of the names '.'
and ' . .' which mean 'the current directory' and 'the parent directory' respectively. (Notice that Is
suppresses information for the files '.' and ' . .' .)

USD:3-4 An Introduction to the UNIX Shell

1.6 QuotiDg

Characters that have a special meaning to the shell, such as < > * ? I A, are called metacharacters.
A complete list or metacharacters is given in append~ B. Any character preceded by a \ is quoted
and loses itsspeci.al meaning, if any. The \ is elided so that

echo \1

will echo a single? , and

echo \\

win echo a single \. To allow long strings to be continued over more than one line the sequence
\Dewline is ignored.
\ is convenient for quoting single characters. When more than one character needs quoting the above
mechanism is clumsy and error prone. A string of characters may be quoted by enclosing the string
between single quotes. For example,

echo xx' •••• 'xx
will echo

xx··.·xx
The quoted string may not contain a single quote but may contain newlines, which are preserved.
This quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some
but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Proinpdag

When the shell is used from a terminal it will issue a prompt before reading a command. By default·
this prompt is· '$ '. It may be changed ~y saying, for example.

PSl-yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed then
the shell will issue the prompt '> '. Sometimes this can be caused by mistyping a quote mark. If it is
unexpected then an interrupt (DEL) win retum the shell to read another command. This prompt may
be changed by saying, for example,

PS2-more

1.8 The sbeU and IoPD
Following login (1) the shell is called to read and execute commands typed at the terminal.. If the
user's login directory contains the file .profile then it is assumed to contain commands and is read by
the shell before reading any commands from the terminal.

1.9 Summary

• Is
Print the names of files in the current directory.

• Is >ftle
Put the output from Is into file.

• Is I we -I
Print the number of files in the current directory.

• Is I grep old .
Print those file names containing the string old.

Ari Introduction to the UNIX Shell USD:3·5

• Is I grep old I we -I
Print the number of files whose name contains the string old.

• cc pgm.c &
Run cc in the background.

1.0 SheD procedures
The shell may be used to read and execute commands contained in a file. For example,

sh file [args •••]

calls the sheD to read commands from file. Such a file is called a command procedure or shell pro
cedure. Arguments may be supplied with the call and are referred to in file using the positional
parameters 51, 51, •••• For example, jf the file wg contains

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod
(1) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is
created to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the
call is available as 5#. The name of the file being executed is available as SO.
A special shell parameter 5* is used to substitute for all positional parameters except 50. A typical
use of this is to provide some default arguments, as in,

nroft" - T450 -ms $*

which simply prepends some arguments to those already given.

1.1 Coatrol flow - for
A frequent use of shell procedures is to loop through the arguments (51, 51, •••) executing commands
once for each argument. An example of such a procedure is tel that searches the file lusr/lib/telaos
that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

USD:3-6

for i
do &reP $i /usrllib/teJnos; done

The command

tel fred

prints those lines in lusrlUb/telDos that contain the string fred.

tel fred bert

prints those lines containing fred followed by those for bert.

An· Introduction to the UNIX Shell

The for loop notation is recognized by the shell and has the general form

for name ia wI wl •••
do command-list
doae

A command-list is a sequence of one or more simple commands separated or terminated by a newline
or semicolon. Furthermore, reserved words like do and doae are only recopized following a newline
or semicolon. name is a shell variable that is set to the words w! w2 '.0 in tum each time the
command-list following do is executed. Ifia w! wl ••• is omitted then the loop is executed once for
each positional parameter; that is, ia $* is assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$i; dota~

The command

create alpba beta

ensures that two empty files' alpha and beta exist and are·empty. The notation >file may be used on
its own to create or clear the contents of a file. Notice also that a semicolon (or newline) is required
before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1;;
*) echo 'usage: append [from] to' ;;

esac

is an append command. When called with one argument as

append file

$# is the string ! and the standard input is copied onto the end of file using the cat command.

append file 1 file2

appends the contents of file! onto file2. If the number of arguments supplied to append is other than
1 or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list;;

esac:

The shell attempts to match word with each pattern. in tbeorder in which· the patterns appear. If a

An Introduction to the UNIX Shell USD:3-7

match is found the associated command-list is executed and execution of the case is complete. Since
* is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. T,he
first match found defines the set of commands to be executed. In the example below the commands
following the second * will never be executed.

case $# in
*) ... ;;
*) ... ;;

esac

Another example of the use of the case construction is to distinguish between different forms of an
argument. The following example is a fragment of a cc command.

for i
do case $i in

-[ocs]) ••• ;;
-*) echo 'unknown flag $i' ;;
*.c) /lib/cO $i ••• ;;
*)echo 'unexpected argument $i' ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command pro
vides for alternative patterns separated by a I. For example,

case $i in

esac

is equivalent to

-:-xl-y)

case $i in
-[xy])

esac

The usual quoting conventions apply so that

case $i in
\?) ...

will match the character? •

2.3 Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alter
native is to include this data within the shell procedure as a here document, as in,

for i
do grep $i «!

fred mh0123
bert mh0789

!
done

In this example the shell takes the lines between «! and! as the standard input for grep. The string
! is arbitrary, the document being terminated by a line that consists of the string following «.

USD:3-8 An Introduction to the UNIX Shell

Parameters are substituted in the document before it is made available togrep as illustrated by the
following procedure called etIg.

ed S3 <<%
glS llsllS2Ig
w
%

The call

edg string! string2 &Ie

is then equivalent to the command

ed &Ie «%
g/stringllsllstring2/g
w
%

and changes aU occurrences of string 1 in file to string2. Substitution can be prevented using \ to
quote the special character $ as in

ed S3 «+
1. \SslS 11$2/g
w
+

(This version of edg is equivalent to the titst except that ed will print a ? if there are no occurrences
of the string $1.) Substitution within a here document'may be prevented entirtlyby quoting'the,ter-,
minating string, for example, ,

&reP Si «\#

The document is presented without modiftcation to grep. If parameter substitution is not required in
a here document this latter form is more efficient.

2.4 SheD variables
The shell provides string-valued variables. Variable names begin with a letter and consist of letters,
digits and underscores. Variables may be given values by writing, for example,

user-fred box-mOOO acct-mhOOOO

which assigns values to the variables user, box andac:ct. A variable may be set to the null string by
saying, for example,

null-

The value of a variable is substituted by preceding its name with $; for example,

echo SU5er

will echo fred.
Variables may be used interactively to provide abbreviations for frequently used strings. For exam
ple,

b-/usr/fredlbin
mv pgm Sb

will move the &Ie pgm from the current directory to the directory lusr/fredlbin. A more general nota
tion.is available for parameter (or variable) substitution, as in,

An Introduction to the UNIX Shell

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp-/tmp/ps
ps a >${tmp}a

will direct the output of ps to the file Itmp/ps~ whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

USD:3-9

Except for $? the following are set initially by the shell. $? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most
commands return a zero exit status if they complete successfully, otherwise a non-zero
exit status is returned. Testing the value of return codes is dealt with later under if and
while commands.

$# The number of positional parameters (in decimal). Used, for example, in the append
command to check the- number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique
among all existing processes, this string is frequently used to ger....;rate unique temporary
file names. For example,

ps a >Itmp/ps$$

rm Itmp/ps$$'

$! The process number of the last process run in the background (in decimal).

$- The current shell flags, such as -x and -v.
Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it
issues a prompt. If the specified file has been modified since it was last looked at the
shell prints the message you have mail before prompting for the next command. This
variable is typically set in the file .profile, in the user's login directory. For example,

MAIL=/usrlspoollmaillfred

$HOME The default argument for the cd command. The current directory is used to resolve file
name references that do not begin with a I, and is changed using the cd command. For
example,

cd lusr/fredlbin

makes the current directory lusr/fred/bin.

cat wn

will print on the terminal the file wn in this directory. The command cd with no argu
ment is equivalent to

. cd $HOME

This variable is also typically set in the the user's login profile.

$PATH A list of directories that contain commands (the search path). Each time a command is

An Introduction to the UNIX Shell

executed by the shell a list of directories is searched for an executable file. If $PATH is
not set then the current directory, Ibin, and lusrlbin are searched by default. Otherwise
$PATH consists of directory names separated by :. For example,

PATH =:lusr/fredlbin:lbin:/usrlbin

specifies that the current directory (the null string before the first :), lusr/fredlbin, Ibin
and lusrlbin are to be searched in that order. In this way individual users can have
their own 'private' commands that are accessible independently of the current direc
tory. If the command name contains a I then this directory search is not used; a single
attempt is made to execute the command.

$PSI The primary shell prompt string, by default, '$ '.

$PS2 The shell prompt when further input is needed, by default, '> '.
$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command
The test command, although ,not part of the shell, is intended for use by shell programs. For example,

test -f file

returns zero exit status if file exists and nonozero exit status otherwise. In general test evaluates a
predicate and returns the result as its exit status. Some of the more frequently used test arguments
are given here, see test (1) for a complete specification.

test s true if the argument s is not the null string
test - f file true if file ex~sts
test - r file true if file is readable
test -w file true if file IS writable
test -d filetrue if file is a directory

2.6 Control flow - while
The actions of the for loop and the case branch are determined by data available to the shell. . A while
or until loop and an if then else branch are also provided whose actions are determined by the exit
status returned by commands. A while loop has the general form

while command-list I
do command-list]
done

The value tested by the while command is the exit status of the last simple command following while.
Each time round the loop command-list I is executed; if a zero exit status is returned then command
list] is executed; otherwise, the loop terminates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do '"
done

shift is a shell command that renames the positional parameters $2, $3, ••• as $1, $2, .•. and loses $1 .

Another kind of use for the while/until loop is to wait until some external event occurs and then run
some commands. In an until loop the termination condition is reversed. For example,

An Introduction to the UNIX Shell USD:3-11

until test - f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control 80w - if
Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence of a file
as in

if test - f file
then process file
else do something else
fi

An example of the use of if, case and for constructi~ns is given in section 2.10.
A multiple test if command of the form .

if ...
then •••
else if ..•

then •••
else if ...

fi
fi

fi

may be written using an extension of the if notation as,

if ...
then •••
elif •••
then •••
elif

fi

The following example is the touch command which changes the 'last modified' time for a list of files.
The command may be used in conjunction with make (l) to force recompilation of a list of files.

USD:3-12

Bag
for i
do case Si in

-c) ftag-N ;;
*)iftest -fSi

then In Si junk$S; rm junk$S
eUf test SBag
then echo file \ 'Si\' does not exist
else >Si
fi

esac
done

An Introduction to the UNIX Shell

The -c Bag is used in this command to force subsequent files to be created if they do not already
exist. Otherwise, if the file does not exist, an error message is printed. The shell variable flag is set
to some non-null string if the -c argument is encountered. The commands

In •. .;rm ...

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if command 1
then command2
fi

may be written,

command1 && command2
, . ,

Conversely,

command 1 " command2

executes command2 only if commandl fails. In each case the value returned is that of the last simple
command executed.

1.8 Command groupillg

Commands may be grouped in two ways,

{ command-list; }

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a separate
process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.

Tbecommands

cd x;rmjunk

have the same effect but leave the invoking shell in the directory x.

An Introduction to the UNIX Shell USD;3-13

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is
invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help
isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc •••

where proe is the name of the shell procedure. This flag may be used in conjunction with the - n flag
which prevents execution of subsequent commands. (Note that saying set - n at a terminal will
render the terminal useless until an end-of-file is typed.)

The command

set -x

will produce an execution trace. Following parameter substitution each command is printed as it is
executed. (Try these at the terminal to see what effect they have.) Both flags may be turned off by
saying

set -

and the current setting of the shell flags is available as $- .

2.10 The man command
The following· is the man command which is used to diplay -sections. of the UNIX manual on your ter
minal. It is called, for example, as

mansh
man -t ed
man 2 fork

In the first the manual section for sh is displayed.. Since no section is specified. section 1 is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fork
manual page from section 2. which covers system calls.

cd lusrlman

; 'colon is the comment command'
: 'default is nroff ($N), section 1 ($5)'
N=n 5-1

for i
do case $i in

[1-9]*)s-$i ;;

-1) N==t ;;

-n) N=n;;

-*) echo unknown flag \'$iY;;

*)iftest -f man$s1$i.$s
then ${N}roff manO/${N}aa man$s/$i.$s
else : look through all manual sections'

found=no

fi
esac

done

for j in 1 2 3 4 5 6 7 8 9
do if test - f man$j/$i.$j

then man $j $i .
found-yes

fi
done

. case Sfound in
no) echo '$i: manual page not found'

esac

An Introduction to the UNIX Shell

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argu
ment to a shell procedure of the form name- value that precedes the command name causes value to
be assigned to name before execution of the procedure begins. The value of name in the invoking
shell is not affected. For example,

user-fred command

will execute command with user set to fred. The - k flag causes arguments of the form name-value to
be interpreted in this way anywhere in the argument list. Such names are sometimes called keyword
parameters. If any arguments remain they are available as positional parameters $1, $2, .•..

The set command may also be used to set positional parameters from within a procedure. For exam
ple,

set - *

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the first
argument, -, ensures correct treatment when the first file name begins with a -.

An Introduction to the UNIX Shell USD:3-15

3.1 Parameter transmission
When a shell procedure is invoked both positional and keyword parameters may be supplied with the
call. Keyword parameters are also made available implicitly to a shell procedure by specifying in
advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of
all exportable variables for use within the invoked procedure. Modification of such variables within
the procedure does not affect the values in the invoking shell. It is generally true of a shell procedure
that it may not modify the state of its caller without explicit request on the part of the caller. (Shared
file descriptors are an exception to this rule.)
Names whose value is intended to remain constant may be declared readonly. The form of this com
mand is the same as that of the export command,

readonly name .••

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution
If a shell parameter is not set then the null string is substituted for it. For example, if the variable d
is not set

echo $d

or

echo Sed}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and '.' otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d-'.'}

will echo * if the variable d is not set. Similarly

echo ${ d-$l}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned
a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string '.'. (The notation ${ .•. = ... } is not
available for positional parameters.)

If there is no sensible default then the notation

echo $ { d?message }

will echo the value of the variable d if it has one, otherwise message is printed by the shell and execu
tion of the shell procedure is abandoned. If message is absent then a standard message is printed. A
shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acet?} ${bin?}

USD:3-16 An Introduction to the UNIX Shell

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been
evaluated. If any of the variables user, aeet or bin are not set then the shell will abandon execution of
the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The com~
mand pwd prints on its standard output the name of the current directory. For example, if the
current directory is lusr/fred/l)jn then the command

d-'pwd'

is equivalent to

d-/usr/fredlbin

The entire string between grave accents (•• :) is taken as the command to be executed and is replaced
with the output from the command. The command is written using the usual quoting conventions
except that a' must be escaped using a \. For example,

Is 'echo "$1-

is equivalent to .

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including here
documents) and the treatment of the resulting text is the same in both cases. This mechanism allows
string processing commands to·be used within shell procedures. An example of such a command is
basename which removes a specified suffix"from a string. For example,

basename· main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc command.

case SA in

*.c) B='basename $A .c·

esac

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

• for i in 'Is -f; do ...
The variable i is set to the names of files in time order, most recent first.

• set 'date'; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1. 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file
name generation for the arguments to commands. This section discusses the order in which these
evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is
executed the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g. 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is the string
$y then

An Introduction to the UNIX Shell USD:3-17

echo SX

will echo $y.

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank words
(blank interpretation). For this purpose 'blanks' are the characters of the string $IFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a
word unless it is quoted. For example, .

echo·

will pass on the null string as the first argument to echo, whereas

echo Snull

will call echo with no arguments if the variable Dull is not set or set to the null string.

• fil~ name generation

Each word is then scanned for the file pattern characters *, ? and [••• J and an alphabetical
list of file names is generated to replace the word. Each such file name is a separate argu
ment.

The evaluations just described also occur in the list of words associated with a for loop. Only substi
tution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' •• : a third quoting mechanisIr is
provided using double quotes. Within double quotes parameter and command substitution occurs
but file name generation and the interpretation of bl~ does not. The following characters have a
special meaning. within double quotes and may be quoted using \. .

$ parameter substitution
comm~d substitution
ends the quoted string

\ quotes the special characters $ • " \

For example,

echo "Sx"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "S."

will pass the positional parameters as a single argument and is equivalent to

echo "SI S2 •• :

The notation $@ is the same as $* except when it is quoted.

echo "S@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "SI" "S2" ••.
. .

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

USD:3-18 An Introduction to the UNIX Shell

metacharacter
\ $...
n n n n n t
y n n t n n
y y n y t n

t terminator
y interpreted
n not interpreted

Figure 1. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eva/ may be
used. For example, if the variable X has the value $y, and if y has the value pqr then

eval echo $X

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the result as
input to the shell. The input is read and the resulting command(s) executed. For example,

wg= 'eval who I grep'
$wg fred

is equivalent to

who I grep fred

. In this example, eva/ is required since there is no interpretation of metacharacters, such as I , follow-
ing substitution. . •

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is
being used interactively. An interactive shell is one whose input and output are connected to a termi
nal (as determined by guy (2». A shell invoked with the -i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or "memory fault". See
Figure 2 below for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an
error message will be printed by the shell. All remaining errors cause the shell to exit from a. com
mand procedure. An interactive shell will return to read another command from the terminal. Such
errors include the following.

• Syntax errors. e.g., if ••• then ••• done

• A signal such as interrupt. The shell waits for the current command, if any, to finish execution
and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is detected.

An Introduction to the UNIX Shell

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* lOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1»

Figure 3. UNIX signalst

USD:3-19

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself
ignores quit which is the only external signal that can cause a dump. The signals in this list of poten
tial interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap com
mand is· used if some cleaning up is required, such as removing temporary files. For example,

. trap 'rm Itmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm Itmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required;
otherwise. after the trap has been taken, the shell will resume executing the procedure at the place
where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is
never sent to the process. They can be caught, in which case the process must decide what action to
take when the signal is received. Lastly, they can be left to cause termination of the process without
it having to take any further action. If a signal is being ignored on entry to the shell procedure, for
example, by invoking it in the background (see 3.7) then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4) .. The cleanup
action is to remove the file junk$$.

t Additional signals have been added in Berkeley Unix. See sigvec(2) or sigDaI(3C) for an up-to-date list.

flag =
trap 'rm - f junk$$; exit' 1 2 3 15
fori
do case $i in

-c) flag=N ;;
*)if test -f $i

then In $i junk$$; rm junk$$
elif test $flag
then echo file \ '$i\' does not exist
else >$i
fi

esac
done

Figure 4. The touch command

An Introduction to the UNIX Shell

The trap command appears before the creation of the temporary file; otherwise it would be possible
for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on
exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap.
The following fragment is taken from the nohup command.

trap'" 1 2 3 15

which causes hangup, interrupt, flJJit and kill to· be ignored both by the procedure and by invoked
. commands.

Traps may be reset by saying

trap 23

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps
may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the trap com
mand. scan takes each directory in the current directory, prompts with its name, and then executes
commands typed at the terminal until an end of file or an interrupt is received. Interrupts are
ignored while executing the requested commands but cause termination when scan is waiting for
input.

d ... ·pwd'
for i in *
do if test -d dIi

then cd dIi
while echo "$i:"

trap exit 2
read x

fi
done

do trap : 2; eval $x; done

Figure 5. The scan command

An Introduction to the UNIX Shell USD:3-21

read x is a built-in command that reads one line from the standard input and places the result in the
variable x. It retur.ns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution
To run a command (other than a built-in) the shell first creates a new process using the system call
fork. The execution environment for the command includes input, output and the states of signals,
and is established in the child process before the command is executed. The built-in command exec
is used in the rare cases when no fork is required and simply replaces the shell with a new command.
For example, a simple version of the nohup command looks like

trap" 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created commands
and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only
subject to parameter and command substitution. No file name generation or blank interpretation
takes place so that, for example,

echo ••• >*.c

will write its output into a file whose name is *.c. Input output specifications are evaluated left to
right as they appear in the command.

> word

»·word

< word
« word

>& digit

<& digit

<&

>&-

The standard output (file descriptor 1) is sent to the file word which is created if it does
not already exist.

The standard- output is sent to file word. If the file exists then output is appended (by
seeking to the end); otherwise the file is created.

Tbe standard input (file descriptor 0) is taken from the file w(}rd.

The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation of the
document occurs. If word is not quoted then parameter and command substitution
occur and \ is used to quote the characters \ S ' and the first character of word. In the
latter case \newline is ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is used
as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified
by the digit instead of the default 0 or 1. For example, -

••• 2>file

runs a command with message output (file descriptor 2) directed to file .

••• 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descrip
tor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such ~

list *.c I Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file
Idev/null. This prevents two processes (the shell and the command), which are running in parallel,
from trying to read the same input. Chaos would ensue if this were not the case. For example,

USD:3-22 An Introduction to the UNIX Shell

ed file &

would aitow both the editor and the shell to read from· the same input at the same time.

The other modification to the environment of a background command is to turnoff the QUIT and
INTERRUPT signals so that they are ignored by the command. This allows these signals to be used
at the terminal without causing background commands to terminate. For this reasoa the UNIX con
vention for a signal is that if it is set to 1 (ignored) then it is never changed even for a short time.
Note that the shell command trap has no effect fot an ignored signal.

3.8 Invokillltlle shell
The following flags are interpreted by the shell when it is invoked: If the first character of argument
zero is a minus, then commands are read from the file .profile.

-c string
If the -c flag is present then commands are read from string.

-s If the -s flag is present or if no arguments remain then commands are read from the standard
input. Shell output is written to file descriptor 2.

-I If the -i flag is present or if the shell input and output are attached to a terminal (as told by
gtty) then this shell is interactive. In this case TERMINATE is ignored (so that kill.O does not
kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is interruptable).
In all cases QUIT is ignored by the shell.

Acknowledgements
The design of the shell is based in part on the original UNIX sheU3 and the PWBIUNIXshell, 4 some
features having been taken from both. Similarities also exist with the command interpreters of the
Cambridge Multiple Access SystemS and of CTSS.6 .

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the
shell. I am also grateful to the members of the Computing Science Research Center and to Joe
Maranzano for their comments on drafts of this document.

References

1. B. W. Kernighan, UNIX for Beginners, 1978. Reprinted as USD:l in UNIX User's Manual,
Usenix Association, (1986).

2. K.. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories, 1978. Seventh
Edition.

3. K.. Thompson, "The UNIX Command Language," in Structured Programming-Infotech State of
the Art Report, pp. 375-384, Infotech International Ltd., Nicholson House, Maidenhead,
Berkshire, England, March 1975.

4. J. R. Mashey, PWBIUNIX Shell Tutorial, September 30, 1977.

5. D. F. Hartley (Ed.), The Cambridge ¥u11iple Access System - Users Reference Manual, Univer
sity Mathematical Laboratory, Cambridge, England, 1968.

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System. M.I.T. Press, Cambridge, Mass.,
·1965.

An Introduction to the UNIX Shell

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word .•• do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part .•. esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor I I pipeline

command-list: andor
command-list;
command-list &
command-list; andor
command-list & andor

input-output: > file
<file
» word
« word

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list

empty:

word:

name:

digit:

empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

USD:3-23

USD:3-24

Appendix B - Meta-characters and Rese"ed Words

a) syntactic

I pipe symbol

U 'andt symbol

I I 'orr symbol

command separator

;; case delimiter

&: background· commands

() command grouping

< input redirection

« input from a here document

> output creation

» output append

b) patterns

,. match any character(s) including none

? match any single character

(_.) match any of the enclosed characters

c) substitution

${ ... } substitute sheU variable

substitute command output

d) quoting

\ quote the next character

quote the enclosed characters except for'

quote the enclosed characters except for $, \ ;,

e) reserved words

if then else elif fi
case in esac
for while until do done
{} ,

An Introduction to the UNIX Shell

An Introduction to the C shell USD:4-1

An Introduction to the C shell

William Joy
(revised/or 4.3BSD by Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNlxt systems. It incor
porates good features of other shells and a history mechanism similar to the redo of
INTERUSP. While incorporating many features of other shells which make writing
shell programs (shell scripts) easier, most of the features unique to csh are designed
more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a valu
able basic explanation of the shell here. Simple terminal interaction with csh is pos
sible after reading just the first section of this document. . The second section
describes the shell's capabilities which you can explore after you have begun to
become acquainted with ·the shell. Later sections introduce features which are use
ful, but not necessary for all users, of the shell.

Additional information includes an appendix listing special characters of the
shell and a glossary of terms and commands introduced in this manual.

Introduction

A shell is a command language interpreter. Csh is the name of one particular command inter
preter on UNIX. The primary purpose of csh is to translate command lines typed at a terminal into
system actions, such as invocation of other programs. Csh is a user program just like any you might
write. Hopefully, csh will be a very useful program for you in interacting with the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX User Reference
Manual. The csh documentation in section I of the manual provides a full description of all features
of the shell and is the definitive reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of com
mands, and words which have special meaning in discussing the shell and UNIX. Many of the words
are defined in a glossary at the end of this document. If you don't know what IS meant by a word,
you should look for itin the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in its
debugging and in the, debugging of its documentation. I would especially like to thank Michael Ubell
who made the crucial observation that history commands could be done well over the word structure
of input text, and implemented a prototype history mechanism in an older version of the shell. Eric
Allman has also provided a large number of useful comments on the shell, helping to unify those

t UNIX is a trademark of AT&T Bell Laboratories.

USD:4-2 An Introduction to the C shell

concepts which are present and to identify and eliminate useless and marginally useful features. Mike
O'Brien sugested the pathname hashing mechanism which speeds command execution. Jim Kulp
added the job control and directory stack primitives and added their documentation to this introduc
tion.

An Introduction to the C shell USD:4-3

1. Terminal usage of the shell

1.1. ne basic notion of commands
A shell in UNIX acts mostly as a medium through which other programs are invoked. While it

has a set of builtin functions which it performs directly, most commands cause execution of programs
that are, in fact, external to the shell. The shell is thus distinguished from the command interpreters
of other systems both by the fact that it is just a user program, and by the fact that it is used almost
exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a command
name followed by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the mail
program which sends messages to other users. The shell uses the name of the command in attempting
to execute it for you. It will look in a number of directories for a file with the name mail which is
expected to contain the mail program.

The rest of the words of the command are given as arguments to the command itself when it is
executed. In this case we specified also the argument bill which is interpreted by the mail program to
be the name of a user to whom mail is to be sent. In .normal terminal usage we might use the mail
command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist? .

Bill
EOT
%

Here we typed a message to send to bill and ended this message with a AD which sent an end
of-file to the mail program. (Here and throughout this document, the notation • ... x" is to be read
"control-x" and represents the striking of the x key while the control key is held down.) The mail pro
gram then echoed the characters 'EOT and transmitted our message. The characters '% ' were
printed before and after the mail command by the shell to indicate that input was needed.

After typing the '% ' prompt the shell was reading command input from our terminal. We typed
a complete command 'mail bill'. The shell then executed the mail program with argument bill and
went dormant waiting for it to complete. The mail program then read input from our terminal until
we signalled an end-of-file via typing a ~D after which the shell noticed that mail had completed and
signaled us that it was ready to read from the terminal again by printing another '% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete com
mand is typed at the terminal, the shell executes the command and when this execution completes, it
prompts for a new command. If you run the editor for an hour, the shell will patiently wait for you
to finish editing and obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command, which sets the
default erase and kill characters on your terminal - the erase character erases the last character you
typed and the kill character erases the entire line you have entered so far. By default, the erase char
acter is the delete key (equivalent to ""1') and the kill character is 'AU'. Some people prefer to make
the erase character the backspace key (equivalent to ,AH'). You can make this be true by typing

tset -e

which tells the program tset to set the erase character to tset's default setting for this character (a
backspace).

USD:44 . An Introduction to the C shell

1.2. Flag arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names, some arguments rather specify an optional capability of the com
mand which you wish to invoke. By convention, such arguments begin with the character '-'
(hyphen). Thus the command

Is
will produce a list of the files in the current working<directory. The option -s is the size option, and

Is -s
causes Is to also give, for each file the size of the file in blocks of S12·characters. The manual section
for each command in the UNIX reference manual gives the available options for each command. The
Is command has a large number of usefUl and interesting options. Most other commands have either
no options or ollly one or two options. .It is hard to remember options of commands which are not
used very frequently, so most UNIX utilities perform only one or two functions rather than having a
large number. of hard to remember options.

1.3. Output to files
Commands that normally read input or write output on the terminal can also be executed with

this input andlor output done to afile.
Thus suppose we wish to save the current date in a file called 'now'. The command

date

will print the current date on our terminal. This is because our terminal is the default standard out
put for the date- command and the date· command prints the date on its standard output. The shell
lets us redirect the standllrd output of a Command through.a notation using the metacharacter '>' and
the name of the file where output is to be placed. Thus the command

date> now

runs·the date command such that its standard output is the file 'now' rather than the terminal. Thus
this command places the current date and time into the file 'now'. It is important to know that the
date command was unaware that its output was going to a file rather than to the terminal. The shell
performed this redirection before the command began executing.

One other thing to note here is that the file 'now' need not have existed. before the date com
mand was executed; the shell would have created the file if it did not exist. And if the file did exist?
If it had existed previously these previous contents would have been discarded! A shell option
noclobber exists to prevent this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with '>' and all. other files. Thus the default is
for files to be permanent. If you wish to create a file which will be removed automatically, you can
begin its name with a '#' character, this 'scratch' character denotes the fact that the file will be a
scratch file.- The system will remove such files after a couple of days, or sooner if file space becomes
very tight. Thus, in running the dIlte command above, we don't really.want to save the output for
ever, so we would more likely do

date> #now

*Note that if your erase character is a 'fI', you will have to precede the '#' with a "t. The fact tbat the 'fI'
character is the old (pre<RT) standard erase character means that it seldom appears in a file name, and al
lows this convention to be used for scratch files. If you are using a CRT, your erase character should be a
·H, as we demonstrated in section 1.1 how this could be set up.

An Introduction to the C shell USD:4-5

1.4. Metacharacters in the shell
The shell has a large number of special characters (like '> ') which indicate special functions.

We say that these notations have syntactic and semantic meaning to the shell. In general, most char
acters which are neither letters nor digits have special meaning to the shell. We shall shortly learn a
means of quotation which allows us to use metacharacters without the shell treating them in any spe
cial way.

Metacharacters normally have effect only when the shell is reading our input. We need not
worry about placing shell metacharacters in a letter we are sending via mail, or when we are typing in
text or data to some other program. Note that the shell is only reading input when it has prompted
with '% ··(although we can type our input even before it prompts).

1.5. Input &om files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also possible
to redirect the standard input of a command from a file. This is not often necessary since most com
mands will read from a file whose name is given as an argument. We can give the command

sort < data

to run the sort command with standard input. where the command normally reads its input. from the
file 'data'. We would more likely say

sort data

letting the sort command open the file ~data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the standard
input~ it would sort lines as we typed them on the terminal· until we typed a AD to indicate an end-of-
file. . .

A most useful capability is the ability to combine the standard output of one command with the
standard input of another, i.e. to run the commands in a sequence known as a pipeline. For instance
the command

Is -s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters.
If we are interested in learning which of our files is largest we may wish to have this sorted by size
rather than by name. which is the default way in which Is sorts. We could look at the many options
of Is to see if there was an option to do this but would eventually discover that there is not. Instead
we can use a couple of simple options of the sort command. combining it with Is to get what we
want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

Is -s I sort-n

specifies that the output of the Is command run with the option -s is to be piped to the command
sort run with the numeric sort option. This would give us a sorted list of our files by size, but with
the smallest first. We could then use the -r reverse sort option and the head command in combina
tion with the previous command doing

Is -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run
this to the standard input of the sort command asking it to sort numerically in reverse order (largest
first). This output has then been run into the command head which gives us the first few lines. In
this case we have asked head for the fitst 5 . lines. Thus this command gives us the names and sizes of
our 5 largest files. .

USD:4-6 An Introduction to the C shell

The notation introduced above is called the pipe ~hanism. Commands separated by , I ' char
acters are connected together by the shen and the standard output of each is run into the standard
input of the next. The leftmost command in a pipeline win normally take its standard input from the
terminal and the rightmost will place its standard output on the terminal. Other examples of pipe
lines will be given later when we discuss the history mechanism; one important use of pipes which is
illustrated there is in the routing of information to the line printer.

1.6. FDeaames
Many commands to be executed will need the names of tiles as arguments. UNIX pathnames

consist of a number of components separated by'/'. Each component except the last names a direc
tory in which the next component resides, in effect specifying the path of directories to follow to
reach the tile. Thus the pathname

fete/motd

specifies a tile in the directory 'etc' which is a subdirectory of the root directory'/'o Within this direc
tory the tile named is 'motd~ which stands for 'message of the day~. A pathname that begins with a
slash is said to be an absolute pathname since it is specified from the absolute top of the entire direc
tory hierarchy of the system (the root). Pathnames which do not begin with '/' are interpreted as
starting in the current· working directory, which is. by default. your home directory and can be
changed dynamically by the cd change directory command. Such pathnames are said to be relative to
the working directory since they are found by starlin, in the working directory and descending to
lower levels of directories for each component of the pathname. If the pathname contains no slashes
at all then the tile is contained in the working directory itself and the pathname is merely the name of
the tile in this directory. Absolute pathnames have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and '.'s (periods). In fact, all
printing characters except 'j' (slash)· may appear in filenames. It is inconvenient to have most non- .
alphabetic characters in tilenames because many of these have special meaning to the shell. the char
acter ~.' (period) is not a shell .. metacharacter and is often used to separate the extension of a tile name
from the base of the name. Thus

prog.c prog.o prog.em prog.output

are four related tiles. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing '.' and following characters which are not '.' are stripped ott). The
file 'prog.c' might be the source for a C program, the tile 'prog.o· the corresponding object tile, the file
'prog.errs' the errors resulting from a compilation of the program and the tile 'prog.output' the output
of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.·

This expression is expanded by the shell, before the command to which it is an argument is executed,
into a list of names which begin with 'prog.'. The character '.' here matches any sequence (including
the empty sequence) of characters in a file name. The names which match are alphabetically sorted
and placed in the argument list of the c.ommand. Thus the command

echoprog.*

will echo the names

prog.c prog.errs prog.oprog.output

Note that the names are in sorted order here, and a different order than we listed them above. The
echo command receives four words as arguments, even· though we only typed one word as as argu
ment di~ctly. The four words were generated by filename expansion of the one input word.

Other notations for filename expansion are also available. The character '1' matches any single
character in a filename. Thus

An Introduction to the C shell USD:4-7

echo 1 11 ???

will echo a line of filenames; first those with one character names, then those with two character
names, and finally those with three character names. The names of each length will be independently
sorted.

Another mechanism consists of a sequence of characters between '[' and ')'. This metasequence
matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a '-' in this notation to denote a
range. Thus

chap.[l-S]

might match files

chap. 1 chap.2 chap.3 chap.4 chap.S

. if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent.
An important point to note is that if a list of argument words ·to a command (an argument list)

contains filename expansion syntax, and if this filename expansion syntax fails to match any existing
file names, then the shell considers this to be an error and prints. a diagnostic

No match.

and does not execute the command.
Another very important point is that files with the character'.' at the beginning are treated spe

cially. Neither '.' or '1' or the '[' 'r mechanism will match it. This prevents accidental matching of
the filenames • .' and ' . .' in the working directory which have special meaning to the system, as well as
other files such as .cshrc which are not normally visible. We will discuss the special role of the file
.cshrc later.

Another filename expansion mechanism gives access to the pathname of the home directory of
other users. This notation consists of the character (tilde) followed by another user's login name.
For instance the word '~ill' would map to the pathname '/usrlbill' if the home directory for 'bill' was
·/usrlbill'. Since, on large systems, users may have login directories scattered over many different disk
volumes with different prefix directory names, this notation provides a convenient way of accessing
the files of other users.

A special case of this notation consists of a alone, e.g. ·-/mbox'. This notation is expanded by
the shell into the file 'mbox' in your home directory, i.e. into '/usrlbilllmbox' for me on E:nie Co-vax,
the UCB Computer Science Department V AX machine, where this document was prepared. This can
be very useful if you have used cd to change to another directory and have found a file you wish to
copy using cpo If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile lusrlbill

since my home directory is lusrlbill.
There also exists a mechanism using the characters -, {' and '}' for abbreviating a set of words

which have common parts but cannot be abbreviated by the above mechanisms because they are not

USD:4-8 An Introduction to the C shell

files, are the names of files which do not yet exist, are not thus conveniently described. This mechan
ism will be described much later, in section 4.2, as it is used less frequently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacters pose
a problem in that we cannot use them directly as parts of words. Thus the command

echo •

will not echo the character '.'. It will either echo an sorted list of filenames in the current working
directory, or print the message 'No match' if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers, digits, 'I', '.' or
'-' in an argument word toa command is to enclose it with single quotation characters ''', i.e.

echo .. '

There is one special character '!' which is used by the history mechanism of the shell and which can
not be escaped by placing it within , .. characters. It and the character , .. itself can be preceded by a
single '\' to prevent their special meaning. Thus

echo \\!

prints

1

These two "lechanisms suffice to place any printing character into a word which is an· argument to a
shell command. They can be combined, as in

echo \-

which prints

since the first '\' escaped the first ,., and the '.' was enclosed between , .. characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several
ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to con
tinue for several minutes unless you stop it. You can send an INTERRUPT signal tothe cat command
by typing ·C on your terminal.· Since cat does not take any precautions to avoid or otherwise handle
this signal the INTERRUPT will cause it to terminate. The shell notices that cat has terminated and
prompts you again with '% '. If you hit INTERRUPT again, the shell will just repeat its prompt since it
handles INTERRUPT signals and chooses to continue to execute commands rather than terminating like
cat did, which would have the effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their stan
dard input. Thus the mail program in the first example above was terminated when we typed a AD
which generates an end-of-file from the standard input. The shell also terminates when it gets an
end-of-file printing 'logout'; UNIX then logs you off the system. Since this means that typing too many
AD's can accidentally log us off, the shell has a mechanism for preventing this. This ignoreeoj option
will be discussed in section 2.2.

*On some older Unix systems the DEL or RUBOUT key has the same effect. ·stty all" will tell you the INTR
key value.

An Introduction to the C shell USD:4-9

If a command has its standard input redirected from a file, then it will normally terminate when
it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a AD. This is because it read to the end-of-file
of our file 'prepared.text' in which we placed a message for 'bill' with an editor program. We could
also have done

cat prepared.text I mail bill

since the cat command would then have written the text through the pipe to the standard input of the
mail command. When the cat command completed it would have terminated, closing down the pipe
line and the mail command would have received an end-of-file from it and terminated. Using a pipe
here is more complicated than redirecting input so we would more likely use the first form. These
commands could also have been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the
possibility of continuing execution later. This is done by sending a STOP signal via typing a AZ. This
signal causes all commands running on the terminal (usually one but more if a pipeline is executing)
to become suspended. The shell notices that the command(s) have been suspended, types 'Stopped'
and then prompts for a new command. The previously executing command has been suspended, but
otherwise unaffected by the STOP signal. Any other commands can be executed while the original
command remains suspended. The suspended command can be continued using the fg command
with no arguments.. The shell will then retype the command to remind you which command is being
continued, and cause the command to resume execution. Unless any input files in use by the
suspended command have been changed in the meantime, the suspension has no effect whatsoever on
the execution of the command. This feature can be very useful during editing, when you need to look
at another file before continuing,. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and its name is
AZ
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[1] + Stopped mail harold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he wanted
to mention. The mail command was suspended by typing AZ. When the shell noticed that the mail
program was suspended, it typed 'Stopped' and prompted for a new command. Then the /s com
mand was typed to find out the name of the file. The jobs command was run to find out which com
mand was suspended. At this time the fg command was typed to continue execution of the mail pro
gram. Input to the mail program was then continued and ended with a AD which indicated the end of
the message at which time the mail program typed EOT. The jobs command will show which com
mands are suspended. The AZ should only be typed at the beginning of a line since everything typed
on the current line is discarded when a signal is sent from the keyboard. This also happens on INTER
RUPT, and QUIT signals. More information on suspending jobs and controlling them is given in sec
tion 2.6.

USD:4-10 An Introduction to the C shell

If you write or run programs which are not fully debugged then it may be necessary to stop
them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing a A\.
This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the running program's state
when it terminated due to the QUIT signal. You can examine this file yourself, or forward inf9rma
tion to the maintainer of the program telling himlher where the core file is.

If you run background commands <as explained in section 2.6) then these commands will ignore
INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill command. See sec
tion 2.6 for an example.

Jf you want to examine the output of a command without having it move off the screen as the
output of the

cat letc/passwd

command will, you can use the command

more letclpasswd

The more program pauses after each complete screenful and types '-More-' at which point you can
hit a space to get another screenful, a return to get another line, a '1' to get some help on other com
mands, or a 'q' to end the more program. You can also use more as a filter, i.e.

cat letclpasswd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the ~ key to stop the
typeout. The typeout' Will resume when you hit "Q or any other key, but AQ is normally used because
it only restarts the output and does not become input to the program which is running. This works
well on low-speed terminals, but at 9600 baud it is hard to type AS and AQ fast enough to paginate the
output nicely, and a program like more is usually used.

An additional possibility is to use the "0 flush output character; when this character is typed, all
output from the current command is thrown away (quickly) until the next input read occurs or until
the next shell prompt. This can be used to allow a command to complete without having to suffer
through the output on a slow terminal; "0 is a toggle, so flushing can be turned off by typing "0 again
while output is being flushed.

1.9. What DOW?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in
which it operates. The remaining sections will go yet further into the internals of the shell, but you
will surely want to try using the shell before you go any further. To try it you can log in to UNIX and
type the following command to the system:

chsh myname Ibinlcsh

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to get onto
thesystem. Thus I would use 'chsh billlbinlcsh'. You only bave to do tbis once; it takes effect at next
login. You are now ready to try using csh.

Before you do the 'chsh' command, the shell you are using when you log into the system is
'Ibinlsh'. In fact, much of the above discussion is applicable to 'Ibin/sh'. The next section will intro
duce many features particular to csh so you should change your shell to csh before you begin reading
it.

An Introduction to the C shell USD:4-11

2. Details on the shell for terminal users

2.1. Shell startup and termination
When you login, the shell is started by the system in your home directory and begins by reading

commands from a file .cshrc in this directory. All shells which you may start during your terminal
session will read from this file. We will later see what kinds of commands are usefully placed there.
For now we need not have this file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads commands from .cshrc.
read commands from a file .login also in your home directory. This file contains commands which
you wish to do each time you login to the UNIX system. My .login file looks something like:

set ignoreeof
set mail-(/usrlspoollmaillbill)
echo "S{prompt}users" ; users
alias ts \

'set noglob ; eval 'tset -s -m dialup:c 1 OOrv4pna -m plugboard:?hp2621 nl >II''';
_q~~~~m .
set timea 1 5 history- 10
msgs -f
if (-e Smail) then

endif

echo "S{prompt}mail"
mail

This file contains several commands to be executed by UNIX each time I . login. The first is a set
command which is interpreted directly by the shell. It sets the shell variable ignoreeof which causes
the shell to I;.ot log me off if I hit AD. Rather, I use the logout command to log of of the system. By
setting the mail variable, I ask the shell to watch for incoming mail to me. Every 5 minutes the shell
looks for this file and tells me if more mail has arrived there. An alternative to this is to put the com
mand

biffy

in place of this set; this will cause me to be notified immediately when mail arrives, and to be shown
the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out statistics
lines for commands which execute for at least 15 seconds of CPU time. The variable 'history' is set to
10 indicating that I want the shell to remember the last 10 commands I type in its history list,
(described later).

I create an alias "ts" which executes a tset(l) command setting up the modes of the terminal.
The parameters to tset indicate the kinds of terminal which I usually use when not on a hardwired
port. I then execute "ts" and also use the stty command to change the interrupt character to AC and
the line kill character to AU.

I then run the 'msgs' program, which provides me with any system messages which I have not
seen before; the '-f option here prevents it from teUing me anything if there are no new messages.
Finally, if my mailbox file exists, then I run the 'mail' program to process my mail.

When the 'mail' and 'msgs' programs finish, the shell will finish processing my .login file and
begin reading commands from the terminal, prompting for each with '% '. When I log off (by giving
the logout command) the shell will print 'logout' and execute commands from the tile '.logout' if it
exists in my home directory. After that the shell will terminate and UNIX will log me off the system.
If the system is not going down, I will receive a new login message. In any case, after the 'logout'
message the shell is committed to terminating and will take no further input from my terminal.

USD:4-12 An Introduction to the C shell

2.l. Shell variables

The shell maintains a set of variables. We saw above the variables history and time which had
values '10' and 'IS'. In fact, each shell variable has as value an array of zero or more strings. Shell
variables may be assigned values by the set command. It has several forms, the most useful of which
was given above and is

set name-value

Shell variables may be used to store values which are to be used in commands later through a
substitution mechanism. The shell variables most commonly referenced are, however, those which
the shell itself refers to. By changing the values of these variables one can directly affect the behavior
of the shell.

One of the most important variables is the variable path. This variable contains a sequence of
directory names where the shell searches for commands. The set command with no arguments shows
the value of all variables currently defined (we usually say set) in the shell. The default value for path
will be shown by set to be

% set
argv
cwd
home
path
prompt
shell
status
term
user
%

o
/usrlbill
/usrlbill
(. /usr/ucb Ibin /usrlbin)
%
Ibinlcsh
o.
clOOiv4pna
bill

This output indicates that the variable path points to the current directory ' .. and then '/usr/ucb',
'lbin' and '/usrlbin'. Commands which you may write might be in ' .. (usually one of your direc
tories). Commands developed at Berkeley, live in '/usr/ucb' while commands developed at Bell
Laboratories live in 'lbin' and '/usrlbin',

A number of locally developed programs on the system live in the directory '/usr/local'. If we
wish that all shells which we invoke to have access to these new programs we can place the command

set path=(. lusr/ucb Ibin lusrlbin lusr/local)

in our file .cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you insert into
your path and determines which commands are contained there. Except for the current directory '.',
which the shell treats specially, this means that if commands are added to a directory in your search
path after you have started the shell, they will not necessarily be found by the shell. If you wish to
use a command which has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will
find the newly added command, Since the shell has to look in the current directory '.' on each com
mand, placing it at the end of the path specification usually works equivalently and reduces overhead.

t Another directory that might interest you is lusr/new, which contains many useful user-contributed
programs provided with Berkeley Unix.

An Introduction to the C sheil USD:4-13

Other useful built in variables are the variable home which shows your home directory, cwd
which contains your current working directory, the variable ignoreeof which can be set in your .login
file to tell the shell not to exit when it receives an end-of-file from a terminal (as described above).
The variable 'ignoreeof is one of several variables which the shell does not care about the value of,
only whether they are set or unset. Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeof no value, but none is desired or required.
Finally, some other built-in shell variables of use are the variables noclobber and mail. The

metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents
of the named file. In this way you may accidentally overwrite a file which is valuable. If you would
prefer that the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date >! now

if you really wanted to overwrite the contents of 'now'. The '>!' is a special metasyntax indicating
that clobbering the file is ok. t

2.3. The shell's history list
The shell can maintain a history list into which it places the words of previous commands. It is

possible to use a notation to reuse commands or words from commands in forming new commands.
This mechanism can be used to repeat previous commands or to correct minor typing mistakes in
commands.

The following figure gives a sample session involving typical usage of the history mechanism of
the shell. In this example we have a very simple C program which has a bug (or two) in it in the file
'bug.c', which we 'cat' out on our terminal. We then try to run the C compiler on it, referring to the
file again as '!$', meaning the last argument to the previous command. Here the 'I' is the history
mechanism invocation metacharacter, and the '$' stands for the last argument, by analogy to '$' in the
editor which stands for the end of the line. The shell echoed the command, as it would have been
typed without use of the history mechanism, and then executed it. The compilation yielded error
diagnostics so we now run the editor on the file we were trying to compile, fix the bug, and run the C
compiler again, this time referring to this command simply as '!c', which repeats the last command
which started with the letter 'c'. If there were other commands starting with 'c' done recently we
could have said 'Icc' or even '!cc:p' which would have printed the last command starting with iCC'

without executing it.

After this recompilation, we ran the resulting 'a.out' file, and then noting that there still was a
bug, ran the editor again. After fixing the program we ran the C compiler again, but tacked onto the
command an extra '-0 bug' telling the compiler to place the resultant binary in the file 'bug' rather
than 'a. out'. In general, the history mechanisms may be used anywhere in the formation of new

tThe space between the '!' and the word 'now' is critical here, as '!now' would be an invocation of the histo
ry mechanism, and have a totally different effect.

U50:4-14

% catbug.e
mainO

(
printfrhello);

}
%cc!$
cc bug.e
"bus-c·. line 4: newline in string or char constant
~g.e·, line 5: syntax error
%ed !$
ed bug.e
29
4sI);r&Jp

w
30
q
%!c

printf("hello");

cc bug.e
% a.out
heUo% !e
ed bug.c
30
4s1loll0 \ \nlp

print« "hello \n ");
w
32
q
% Ie -0 bug
cc bug.e -0 bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = Oxl0S0b
bug: 2784+364+ 1028 = 4176b = OxlOSOb
% Is -1 1*
ts -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x·l bill
% bug
hello
% num bug.c I spp

3932 Dec 1909:41 a.out
3932 Dec 19 09:42 bug

spp: Command not found.
% ASppASSP
num bug.c I ssp

1 MainO
3 (
4
5 }

% I! Ilpr

printf("hello\n ");

num bug.c I ssp I Ipr
%

An Introduction to the C shell

An Introduction to the C shell USD:4-1S

commands and other characters may be placed before and after the substituted commands.
We then ran the 'size' command to see how large the binary program images we have created

were, and then an 'Is -1' command with the same argument list, denoting the argument list '.'.
Finally we ran the program 'bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file 'bug.c'. In
order to compress out blank lines in the output of 'num' we ran the output through the filter 'ssp', but
misspelled it as spp. To correct this we used a shell substitute, placing the old text and new text
between ... , characters. This is similar to the substitute command in the editor. Finally, we repeated
the same command with 'I!', but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command prints
out a number of previous commands with numbers by which they can be referenced. There is a way
to refer to a previous command by searching for a string which appeared in it, and there are other,
less useful, ways to select arguments to include in a new command. A complete description of all
these mechanisms is given in the C shell manual pages in the UNIX Programmer's Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input com
mands. This mechanism can be used to simplify the commands you type, to supply default argu
ments to commands, or to perform transformations on commands and their arguments. The alias
facility is 'similar to a macro facility. Some of the features obtained by aliasing can be obtained also
using shell command files, but these take place in another instance of the shell and cannot directly
affect the current shells environment or involve commands such as cd which must be done in the
current shell.

As an example, suppose that there is a new 'version of the mail program on the system' called
'newmail' you wish to use, rather than the standard mail prQgram which is called 'mail'. If you place
the shell command ' .

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a calIon 'newmail'. More generally, suppose we wish the command 'Is' to always show sizes of
files, that is to always do '-s'. We can do

alias Is Is -s

or even

, alias dir Is -s

creating a new command syntax 'dir' which does an 'Is -s'. If we say

dir Dill

then the shell will translate this to

Is -s Imntlbill

Thus the alias mechanism can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It is also possi
ble to define aliases which contain multiple commands or pipelines, showing where the arguments to
the original command are to be substituted using the facilities of the history mechanism. Thus the
definition

alias cd 'cd \!* ; Is '

would do an Is command after each change directory cd command. We enclosed the entire alias
definition in , .. characters to prevent most substitutions from occurring and the character ';' from

USD:4-16 An Introduction to the C shell

being recognized as a meta character. The '!' here is escaped with a '\' to prevent it from being inter
preted when the alias command is typed in. The '\!*' here substitutes the entire argument list to the
pre-aliasing cd command, without giving an error if there were no arguments. The ';' separating com
mands is used here to indicate that one command is to be done and then the next. Similarly the
definition

alias whois 'grep \r letclpasswd'

defines a command which looks up its first argument in the password file.

Wanaiq: The sheD· currently reads the .ahrc file each time it starts up. If you place a large
number of commands there, sheDs will tend to start slowly. A mechanism for saving the shell
environment after reading the .ahrc file and quickly restoring it· is under development, but for now
you should try to limit· the number of aliases you have to a reasOnable number... 10 or 1 S is reason
able, SO or 60 will cause a noticeable delay in starting up. sheDs, and make the system seem sluggish
when you execute commands from within the editor and other programs.

2.5. More .redirection; » and >&
There are a few more notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also have a diagnostic output which is normally
directed to the terminal even when the standard output is redirected to a file or a pipe. It is occasion

. ally desirable to direct the diagnostic output along with the standard output. For instance if you want
to redirect the output of a long running command into a file and wish to have a record of any error
diagnostic it produces you can do

command >& file

the '>&' here teDs the shell to route both the diagnostic output and the standaidoutput into 'file'.
Simil~ly you can give the cominand' .

command I & Ipr

to route both standard and di8gnostic output through the pipe to the line printer daemon /pr.:j
Finally, it is possible to use the form

command » file

to place output at the end of an existing file. t

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands
separated by semicolons, a single job is created by the shell consisting of these commands together as
a unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every line
typed to the shell creates a job. Some lines that create jobs (one per line) are

sort < data
Is -s I sort -n I head-S
mail harold

If the metacharacter '&' is typed at the end of the commands, then the job is started as a back
ground job. This means that the shell does not wait for it to complete but immediately prompts and

* A command of the form
command >Ic.! file

exists, and is usecl when ntJClobber is set and file already exists.
t If nocLobber is set. then an eJTOr will result if file does not exist, otherwise the shell will create file if it
doesn't exist. A form

command »! file
makes it not be an error for file to not exist when ntJCiobber is set.

An Introduction to the C shell USD:4-17

is ready for another command. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the shell one at a time. Thus

du> usage &

would run the du program, which reports on the disk usage of your working directory (as well as any
directories below it), put the output into the file 'usage' and return immediately with a prompt for the
next command without out waiting for du to finish. The du program would continue executing in
the background until it finished, even though you can type and execute more commands in the mean
time. When a background job terminates, a message is typed by the shell just before the next prompt
telling you that the job has completed. In the following example the du job finishes sometime during
the execution of the mail command and its completion is reported just before the prompt after the
mail job is finished.

% du > usage &
[1] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] - Done du> usage
%

If the job did not terminate normally the 'Done' message might say sqmething else like 'Killed'. If
you want the terminations of background jobs to be reported at the time they occur (possibly inter
rupting the output of other foreground jobs), you can set the notify variable. In the previous example
this would mean that the 'Done' message might have come right in the middle of the message to Bill.
Background jobs are unaffected by any signals from the keyboard like the STOP, INTERRUPT, or QUIT
sighals mentioned earlier. .

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the job as
well as the working directory where the job was started. Each job in the table is either running in the
foreground with the shell waiting for it to terminate, running in the background. or suspended. Only
one job can be running in the foreground at one time, but several jobs can be suspended or running
in the background at once. As each job is started, it is assigned a small identifying number called the
job number which can be used later to refer to the job in the commands described below. Job
numbers remain the same until the job terminates and then are re-used.

When a job is started in the backgound using '&', its number, as well as the process numbers of
all its (top level) commands, is typed by the shell before prompting you for another command. For
example,

% Is -s I sort -n > usage &
[2] 2034 2035
%

runs the 'Is' program with the '-s' options, pipes this output into the 'sort' program with the '-n'
option which puts its output into the file 'usage'. Since t~e '&' was at the end of the line, these two
programs were started together as a background job. After starting the job, the shell prints the job
number in brackets (2 in this case) followed by the process number of each program started in the
job. Then the shell immediates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing AZ which sends a
STOP signal to the currently running foreground job. A background job can become suspended by
using the stop command described below. When jobs are suspended they merely stop any further
progress until started again, either in the foreground or the backgound. The shell notices when a job
becomes stopped and reports this fact, much like it reports the termination of background jobs. For
foreground jobs this looks like

USD:4-18

% du > usage ... z
Stopped
%

An Introduction to the C shell

'Stopped' message is typed by the shell when it notices that the du program stopped. For background
jobs, using the stop command, it is

% sort usage &
[1] 2345
% stop %1
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are
doing (execute other commands) and then return to the suspended job. Also, foreground jobs can be
suspended and then continued as background jobs using the bg command, allowing you to continue
other work and stop waiting for the foreground job to finish. Thus

% du > usage .. z
Stopped
%bg
[1] du> usage &
%

starts'du' in the foreground, stops it before it finishes, then continues it in the background allowing
more foreground commands to be executed. This is especially helpful when a· foreground job ends up
taking longer than you expected ~nd you wish you had started it in the backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job name
arguments begin with the character '%', since some of the job control commands also accept process
numbers (printed by the ps command.) The default job (when no argument is given) is called the
current job and is identified by a '+' in the output of the jobs command, which shows you which jobs
you have. When only one job is stopped or running in the background (the usual case) it is always
the current job thus no argument is needed. If a job is stopped while running in the foreground it
becomes the current job and the existing current job becomes the previous job - identified by a '-' in
the output of jobs. When the current job terminates, the previous job becomes the current job. When
given, the argument is either '%-' (indicating the previous job); '0/0#', where # is the job number;
'%pref where pref is some unique prefix of the command name and arguments of one of the jobs; or
'%1' followed by some string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands and status
(,Stopped' or 'Running') of each backgound or suspended job. With the '-I' option the process
numbers are also typed.

An Introduction to the C shell

% du > usage &
[1] 3398
% Is -s I sort -n > myfile &
[2] 3405
% mail bill
AZ
Stopped
% jobs
[1] - Running
[2] Running.
[3] + Stopped
% fg %ls
Is -s I sort -n > myfile
% more myfile

du> usage
Is -s I sort -n > myfile
mail bill

USD:4-19

The fg command runs a suspended or background job in the foreground. It is used to restart a
previously suspended job or change a background job to run in the foreground (allowing signals or
input from the terminal). In the above example we used fg to change the 'Is' job from the back
ground to the foreground since we wanted to wait for it to finish before looking at its output file. The
bg command runs a suspended job in the background. It is usually used after stopping the currently
running foreground job with the STOP signal. The combination of the STOP signal and the bg com
mand changes a foreground job into a background job. The stop command suspends a background
job.

The kill command terminates a background or suspended job immediately. In addition to jobs,
it maybe given process numbers as arguments, as printed by ps, Thus, in the example above, the run
nIng du command could have been terminated by the command

% kill %1
[1] Terminated
%

du> usage

The notify command (not the variable mentioned earlier) indicates that the termination of a
specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground, input can be given to the job. If desired,
the job can be run in the background again until it requests input again. This is illustrated in the fol
lowing sequence where the's' command in the text editor might take a long time.

% ed bigfile
120000
1,Sslthiswordlthatwordl
AZ
Stopped
%bg
[1] ed bigfile &
%
... , some foreground commands

[1] Stopped (tty input) ed bigfile
%fg
ed bigfile
w
120000
q
%

USD:4-20 An Introduction to the C shell

So after the's' command was issued, the 'ed' job was stopped with AZ and then put in the background
using bg. Some time later when the's' command was finished, ed tried to read another command and
was stopped because jobs in the backgound cannot read from the terminal. The fg command
returned the 'ed' job to the foreground where it could once again accept commands from the termi
nal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the
terminal. This prevents messages from background jobs from interrupting foreground job output and
allows you to run a job in the background without losing terminal output. It also can be used for
interactive' programs that sometimes have long periods without interaction. Thus each time it out
puts a prompt for more input it will stop before the prompt. It can then be run in the foreground
using fg, more input can be given and, if necessary stopped and returned to the background. This
stty command might be a good thing to put in your .login file if youdo not like output from back
ground jobs interrupting your work. It also can reduce the need for redirecting the output of back
ground jobs if the output is not very big:

% stty tostop
% wc hugefile &
[1] 10387
% ed text
. . . sOlJ'le time later
q
[1] Stopped (tty output) wc hugefile
% fg wc ' .
.wc hugefile

13371 30123 302577
% stty -tostop

Thus after some time the 'wc' command, which counts the lines, words and characters in a file, had
one line of output. When it tried to write this to the terminal it stopped. By restarting it in the fore
ground we allowed it to write on the terminal exactly when we were ready to look at its output. Pro
grams which attempt to change the mode of the terminal will also block, whether or not tostop is set,
when they are not in the foreground. as it would be very unpleasant to have a background job change
the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows noth
ing about background jobs started in other login sessions or within shell files. The ps can be used in
this case to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The 'change
directory' command chdir (its short form cd may also be used) changes the working directory of the
shell, that is, changes the directory you are located in.

lt is useful to make a directory for each project you wish to work on and to place all files related
to that project in that directory. The 'make directory' command, mktiir. creates a new directory.
The pwd (,print working directory') command reports the absolute pathname of the working directory
of the shell, that is, the directory you are located in. Thus in the example below:

An Introduction to the C shell

%pwd
lusrlbill
% mkdir newpaper
% chdir newpaper
%pwd
lusrlbilVnewpaper
%

USD:4-21

the user has created and moved to the directory new paper. where, for example, he might place a
group of related files.

No matter where you have moved to in a directory hierarchy, you can return to your 'home'
login directory by doing just

cd

with no arguments. The name ' . .' always means the directory above the current one in the hierarchy,
thus

cd ..

changes the shell's working directory to the one directly above the current one. The name ' . .' can be
used in any pathname, thus,

•
cd . .Iprograms

means change to the directory 'programs' contained in the directory above the current one. If you
have. several directories for different projects under, say, your home directory, this shorthand notation"
permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable cwd.
The shell can also be requested to remember the previous directory when you change to a new work
ing directory. If the 'push directory' command pushd is used in place of the cd command, the shell
saves the name of the current working directory on a directory stack before changing to the new one.
You can see this list at any time by typing the 'directories' command dirs.

% pushd newpaper/references
-/newpaper/references -
% pushd lusrllib/tmac
lusrllib/tmac ·/newpaper/references -
%dirs
lusrllib/tmac ·/newpaper/references -
%popd
·/newpaper/references -
%popd

%

The .list is printed in a horizontal line, reading left to right, with a tilde n as shorthand for your
home directory-in this case '/usrlbill'. The directory stack is printed whenever there is more than
one entry on it and it changes. It is also printed by a dirs command. Dirs is usually faster and more
informative than pwd since it shows the current working directory as well as any other directories
remembered in the stack.

The pushd command with no argument alternates the current directory with the first directory
in the list. The 'pop directory'popd command without an argument returns you to the directory you
were in prior to the current one, discarding the previous current directory from the stack (forgetting
it). Typing popd several times in a series takes you backward through the directories you had been in
(changed to) by pushd command." There are other options to pushd and popd to manipulate the con
tents of the directory stack and to change to directories not at the top of the stack; see the csh manual
page for details.

USD:4-22 An Introduction to the C shell

Since the shell remembers the working directory in which each job was started, it warns you
when you might be confused by restarting a job in the foreground which has a different working direco

tory than the current working directory of the shell. Thus if you start a background job, then change
the shell's working directory and then cause the background job to run in the foreground, the shell
warns you that the working directory of the currently running foreground job is different from that of
the shell.

% dirs-l
Imntlbill
% cd myproject
% dirs
·/myproject
% ed prog.c
1143
-Z
Stopped
% cd ..
% Is
myproject
textfile
%fg

• ed prog.c (wd: ·/myproject)

This way the shell warns you when there is an implied change of working directory, even though no
cd command was issued. In the above example the 'ed' job was still in "mntlbilllproject' even though
the shell had changed to '/mntlbill'. A similar warning is given when such a foreground job ter
minates or is suspended (using the STOP signal) since the return to the shell again implies a change of
'working directory.

% fg
ed prog.c (wd: ·'myproject)
... after some editing

q
(wd now:·)
%

These messages are sometimes confusing if you use programs that change their own working direc
tories, since the shell only remembers which directory a job is started in, and assumes it stays there.
The '-I' option of jobs will type the working directory of suspended or background jobs when it is
different from the current working directory of the shell.

2.8. Useful built-in commands
We now give a few of the useful built-in commands of the shell describing how they are used.
The alias command described above is used to assign new aliases and to show the existing

aliases. With no arguments it prints the current aliases. It may also be given only one argument such
as

alias Is

to show the current alias for, e.g., 'Is'.

The echo command prints its arguments. It is often used in shell scripts or as an interactive
command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with the
history events can be used to reference previous events which are difficult to reference using the con
textual mechanisms introduced above. There is also a shell variable called prompt. By placing a'!'
character in its value the shell will there substitute the number of the current command in the history

An Introduction to the C shell USD:4-23

list. You can use this number to refer to this command in a history substitution. Thus you could

set prompt=\! % •

Note that the '!' character had to be escaped here even within , .. characters.

The limit command is used to restrict use of resources. With no arguments it prints the current
limitations:

cputime
filesize
datasize
stacksize
coredumpsize

Limits can be set, e.g.:

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.
The logout command can be used to terminate a login shell which has ignoreeof set.
The rehash command causes the shell to recompute a table of where commands are located.

This is necessary if you add a command to a directory in the current shell's search path and wish the
shell to find it, since otherwise the hashing algorithm may tell the shell that the command wasn't in
that directory when the hash table was computed. .

The repeat command can be used to repeat a command several times. Thus to make 5 copies
of the file one in the file five you could do

. repeat 5 cat one >:> five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program printenv exists
which will print out the environment. It might then show:

% printenv
HOME =/usrlbill
SHELL=lbinlcsh
PATH = :/usr/ucb:lbin:/usrlbin:/usr/local
TERM=adm3a
USER = bill
%

The source command can be used to force the current shell to read commands from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect right away.
The time command can be used to cause a command to be timed no matter how much CPU

time it takes. Thus

% time cp letc/rc lusrlbilllrc
O.Ou O.ls 0:01 8% 2+1k 3+2io Ipf+Ow
% time we letc/rc lusrlbilllrc

52 178 1347 letclrc
52 178 1347 lusrlbilllrc

104 356 2694 total
0.1u O.ls 0:00 13% 3+3k 5+3io 7pf+Ow
%

An Introduction to the C shell

indicates that the cp command used a negligible amount of user time (u) and about 1I10th of a sys
tem time (s); the elapsed time was 1 second (0:01), there was an average memory usage of.2k bytes of
program space and lk bytes of data space over the cpu time involved (2+ lk); the program did three
disk reads and two disk writes (3+2io). and took one page fault and was not swapped (lpf+Ow). The
word count command we on the other hand used 0.1 seconds of user time and 0.1 seconds of system
time in less than a second of elapsed time. The percentage '13%' indicates that over the period when
it was active the command 'we' used an average of 13 percent of the available CPU cycles of the
machine.

The unalias and unset commands can be used to remove aliases and variable definitions from
the shell, and unsetenv removes variables from the environment.

2.9. What else?
This concludes the basic discussion of the shell for terminal users. There are more features of

the shell to be discussed here, and all features of the shell are discussed in its manual pages. One use
ful feature which is discussed later is the /oreach built-in command which can be used to run the
same command sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and the
csh manual pages (sectionl) to become familiar with the other facilities which are available to you.

An Introduction to the C shell USD:4-25

3. Shell control structures and command scripts

3.1. Introduction
It is possible to place commands in files and to cause shells to be invoked to read and execute

commands from these files, which are called shell scripts. We here detail those features of the shell
useful to the writers of such scripts.

3.2. Make
It is important to first note what shell scripts are not useful for. There is a program called

make which is very useful for maintaining a group of related files or performing sets of operations on
related files. For instance a large program consisting of one or more files can have its dependencies
described in a makejiJe which contains definitions of the commands used to create these different files
when changes occur. Definitions of the means for printing listings, cleaning up the directory in which
the files reside, and installing the resultant programs are easily, and most appropriately placed in this
makejiJe. This format is superior and preferable to maintaining a group of shell procedures to main
tain these files.

Similarly when working on a document a make/lie may be created which defines how different
versions of the document are to be created and which options of nroff or troff are appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ' ... ' is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then· begins to read
commands from the script. These parameters are then available through the same mechanisms which
are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a '#' character)
then a 'lbinlcsh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell 'lbinlsh' will be used to execute it. This
allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution
After each input line is broken into words and history substitutions are done on it, the input

line is parsed into distinct commands. Before each command is executed a mechanism know as vari
able substitution is done on these words. Keyed by the character '$' this substitution replaces the
names of variables by their values. Thus

echo $argv

when placed in a command script would cause the current value of the variable argv to be echoed to
the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables. The
notation

$?name

expands to '1' if name is set or to '0' if name is not set. It is the fundamental mechanism used for
checking whether particular variables have been assigned values. All other forms of reference to

•

USD:4-26

undefined variables cause errors.
The notation

$#name

expands to the number of elements in the variable name. Thus

% set argv==(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv.
%

An Introduction to the C shell

It is also possible to access the components of a variable which has several values. Thus

$argv[l]

gives the first component of argv or in the example above 'a'. Similarly

$argv[$#argv]

would give 'c" and

$argv{1-2]

would give 'a b'. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv{n]

the nth parameter and

$.

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process number is unique in the sys
tem it can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell's standard input (not the
script it is reading). This is useful for writing shell scripts that are interactive, reading commands
from the terminal, or even writing a shell script that acts as a filter, reading lines from its input file.
Thus the sequence

echo 'yes or no?\c'
set a=($<)

would write out the prompt 'yes or no?' without a newline and then read the answer into the variable
'a'. In ,this case '$#a' would be '0' if either a blank line or end-of-file CD) was typed.

An Introduction to the C shell USD:4-27

One minor difference between 'Sn' and 'Sargv[n]' should be noted here. The form 'Sargv[n]'
will yield an error if n is not in the range 'l-S#argv' while 'Sn' will never yield an out of range sub
script error. This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form 'n-'; if there
are less than n components of the given variable then no words are substituted. A range of the form
'm-n' likewise returns an empty vector without giving an error when m exceeds the number of ele
ments of the given variable, provided the subscript n is in range.

3.5. Expressions
In order for interesting shell scripts to be constructed it must be possible to evaluate expressions

in the shell based on the values of variables. In fact, all the arithmetic operations of the language C
are available in the shell with the same precedence that they have in C. In particular, the operations
'=.' and '!.' compare strings and the operators '&&' and 'I I' implement the boolean and/or opera
tions. The special operators ,-... and ',... are similar to '= =' and "=' except that the string on the
right side can have pattern matching characters (like ., 1 or []) and the test is whether the string on
the left matches the pattern on the right.

The shell also allows file enquiries of the form

-1 filename

where '1' is replace by a number of single characters. For instance the expression primitive

-e filename

tell whether the file 'filename' exists. Other primitives test for read, write and execute access to the
file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form '{
command}, which returns true, i.e. 'I' if the command succeeds exiting normally with exit status 0,
or '0' if the command terminates abnormally or with exit status non-zero. If more detailed informa
tion about the execution status of a command is required, it can be executed and the variable
'Sstatus' examined in the next command. Since 'Sstatus' is set by every command, it is very tran
sient. It can be saved if it is inconvenient to use it only in the single immediately following com
mand.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script
A sample shell script which makes use of the expression mechanism of the shell and some of its

control structure follows:

USD:4-28

% cat copyc

:# Copyc copies those C programs in the specified list
:# to the directory -/backup if they differ from the files
already in -/backup
:#
set noglob
foreach i ($argv)

end

if ($i r *.c) continue # not a .c file so do nothing

if (! -r -/backup/$i:t) then

endif

echo Si:t not in backup ... not cp\'ed
continue

cmp -s Si -/backup/$i:t # to set Sstatus

if (Sstatus != 0) then
echo new backup of Si
cp $i */backup/$i:t

endif .

An Introduction to the C shell

This script makes use of the foreach command, which causes the shell to execute the commands
between the foreach and the matching end for each of the values given between '(' and ')' with the
named variable, in this case 'i' set to successive values in the list. Within this loop we may use the
command break to stop executing the loop and continUf! to prematurely terminate one iteration and
begin the next. After the for each loop the iteration variable (i in this case) has the value at the last
iteration.

We set the variable nog/ob here to prevent filename expansion of the members of argv. This is a
good idea, in general, if the arguments to a shell script are filenames which have already been
expanded or if the arguments may contain filename expansion metacharacters. It is also possible to
quote each use of a '$' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

eDdif

The placement of the keywords here is not flexible due to the current implementation of the shell. t

tThe following two formats are not currently acceptable to the shell:

and

if (expression)
then

command

endif

Won't work!

if (expression) then commandendif # Won't work

An Introduction to the C shell

The shell does have another form of the if statement of the form

if (expression) command

which can be written

if (expression) \
command

USD:4-29

Here we have escaped the newline for the sake of appearance. The command must not involve 'I "
'&' or ';' and must not be another control command. The second form requires the final '\' to
immediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by a single
else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the ':' modifier. We can use the modifier
':r'here to. extract a root of a filename or ':e' to extract the extension. Thus if the variable i has the
value '/mnt/foo.bar' then

% echo Si Si:r Si:e
Imnt/foo.bar Imnt/foo bar
%

shows how the ':r' modifier strips off the trailing' .bar' and the the ':e' modifier leaves only the 'bar'.
Other modifiers will take off the last component of a pathname leaving the head ':h' or all but the last
component of a pathname leaving the tail ':t'. These modifiers are fully described in the csh manual
pages in the User's Reference M~ual. It is also possible to use the command substitution mechanism
described in the next major section to perform modifications on strings to then reenter the shell's
environment. Since each usage of this mechanism involves the creation of a new process, it is much
more expensive to use than the ':' modification mechanism.; Finally, we note that the character '#'
lexically introduces a shell comment in shell scripts (but not from the terminal). All subsequent char
acters on the input line after a '#' are discarded by the shell. This character can be quoted using , .. or
'\' to place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take the
forms

* It is also imponant to note that the CWTent implementation of the shell limits the number of ':' modifiers
on a'S' substitution to 1. Thus

% echo $i $i:h:t
/alblc /aIb:t
%

does not do what one would expect.

USD:4-30

and

wbile (expression)
commands

end

switch (word)

case str1:
commands
breaksw

case stm:
commands
breaksw

default:
commands
breaksw

endsw

An Introduction to the C shell

For details see the manual section for csh. C programmers should note that we use breaksw to exit
from a switch while break exits a while or/oreq;ch loop. A common mistake to make in csh scripts is,
to use break rather than breaksw in switches. .

Finally. csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is run
ning the script. This is different from previous shells running under UNIX. It allows shell scripts to
fully participate in pipelines, but mandates extra notation for commands which are to take inline
data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an
example, consider this script which runs the editor to delete leading blanks from the lines in each
argument file:

% cat deblank
'# deblank - remove leading blanks
foreach i (Sargv)
ed - Si « 'EOr
1,Ssr[]*/1
w
q
'EOF'
end
%

The notation '« 'EOr means that the standard input for the ed command is to come from the text
in the shell script file up to the next line consisting of exactly ''EOr. The fact that the 'EOF' is
enclosed in ." characters, i.e. quoted, causes the shell to not perform variable substitution on the

An Introduction to the C shell USD:4-31

intervening lines. In general, if any part of the word following the '«' which the shell uses to ter
minate the text to be given to the command is quoted then these substitutions will not be performed.
In this case since we used the form '1,$' in our editor script we needed to insure that this '$' was not
variable substituted. We could also have insured this by preceding the '$' here with a '\', i.e.:

l,\$sr[]*/1

but quoting the 'EOP terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts
If our shell script creates temporary files, we may wish to catch interruptions of the shell script

so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label' and
we can remove the temporary files and then do an exit command (which is built in to the shell) to
exit from the shell script. If we wish to exit with a non-zero status We can do

exit(l)

e.g. to exit with status '1'.

3.10. What else?
There are other features of the shell useful to writers of shell procedures. The verbose and echo

options and the related -v and -x command line options can be used to help trace the actions of the
shell. The -n option causes the shell only to read commands and not to execute them and may some-
~es~~~ .

. One other thing to note is that csh will not execute shell scripts which do not begin with the
character '"If', that is shell scripts that do not begin with a comment. Similarly, the 'lbin/sh' on your
system may well defer to 'csh' to interpret shell scripts which ~gin with '#'. This allows shell scripts
for both shells to live in harmony.

There is also another quotation mechanism using ,., which allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted string and serves to make this string
into a single word as ", does.

USD:4-32 An Introduction to the C shell

4. Other, less commonly used, sheD features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the /oreach control structure at the terminal to aid in performing
a number of similar' commands. For instance, there were at one point three shells in use on the Cory
UNIX system at Cory HaD, '/bin/sh', '/bin/nsh', and 'lbin/csh'. To count the number of persons using
each shell one could have issued the commands

" grep -c csh$ letclpasswd
27
" grep -c nsh$ laclpasswd
128
" grep -c -v sh$ letclpasswd
430

" Since these commands are very similar we can use /oreach to do this more easily.

" foreach i rsh$' 'csh$' '-v sh$)
? grep -c $i letclpasswd
?end
27
128
430

" ·Note here that the sh.ell prompts for input with '? • when -reading th~ body of the loop. .. . '.
Very useful with loops are variables which contain lists of :filenames or other words. You can,

for example, do

% set a-(1s')
CKt echo $a
esh.n csh.rm
% Is
esh.n
csh.rm
"echo $#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory as value.
We can then iterate over these names to perform any chosen function.

The output of a command within ... characters is converted by the sheil to a list of words. You
can also place the .. , quoted string within , .. , characters to take each (non-empty) line as a component
of the variable; preventing the lines from being split into words at blanks and tabs. A modifier ':x'
exists which can be used later to expand each component of the variable into another variable split
tina it into separate words at embedded blanks and tabs."

4.1. Brac:es { __ } in argument expaasion

Another form of filename expansion, alluded to before involves the characters • {' and '}'. These
characters specify that the contained strings, separated by .,' are to be consecutively substituted into
the containina characters and the results expanded left to right. Thus

A { str l,str2, ... strn } B

expands to

An Introduction to the C shell USD:4-33

Astr 1 B Astr2B ... AstmB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e.
nested). The results of each expanded string are so~ed separately, left to right order being preserved.
The resulting filenames are not required to exist if no other expansion mechanisms are used. This
means that this mechanism can be used to generate arguments which are not filenames, but which
have common parts.

A typical use of this would be

mkdir -/{hdrs,retrofit,csh}

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is most
useful when the common prefix is longer than in this example, i.e.

chown root lusr/{ucb/{ex,edit},lib/{ex??-,how_ex}}

4.3. Command substitution
A command enclosed in .. , characters is replaced, just before filenames are expanded, by the out

put from that command. Thus it is possible to do

set pwd-'pwd'

to save the current directory in the variable pwd ttr to do

ex 'grep -1 TRACE -.c'

to run the editor ex supplying as arguments those files whose names end in '.c' which have the string
'TRACE' in them. - '.

4.4. Other details not covered here

In particular cirCumstances it may be necessary to know' the exact nature and order of different
substitutions performed by the shell. The exact meaning of certain combinations of quotations is also
occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX programs,
and debugging shell scripts. See the csh(1) manual section for a list of these options.

*Command expansion also occurs in input redirected with '«' and within ,., quotations. Refer to the
shell manual section for full details.

USD:4-34 An Introduction to the C shell

Appeadix - Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in expres
sions. See the csh manual section for a cpmplete list.

Syntactic metacharacters
. ,
I
()
&

2.4 separates commands to be executed sequentially
1.S separates commands in a pipeline
2.2,3.6 brackets expressions and variable values
2.S follows commands to be executed without waiting for completion

Filename metacharacters

I 1.6 separates components of a file's pathname
? 1.6 expansion character matching any single character
* 1.6 expansion character matching any sequence of characters
[] 1.6 expansion sequence matching any single character from a set

1.6 used at the beginning of a filename to indicate home directories
{} 4.2 used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
1.7 prevents meta*meaning of a group of characters
4.3 like', but allows variable and command expansion

Input/output metacharacters

< 1.S indicates redirected input
> 1.3 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution
2.3 indicates history substitution
3.6 precedes substitution modifiers
2.3 used in special forms of history substitution
4.3 indicates command substitution

Other metacharacters

1.3,3.6 begins scratch file names; indicates shell comments
1.2 prefixes option (flag) arguments to commands

% 2.6 prefixes job name specifications

An Introduction to the C shell USD:4-35

Glossary
This glossary lists the most important terms introduced in the introduction to the shell and gives

references to sections of the shell document for further information about them. References of the
form 'pr (1), indicate that the command pr is in the UNIX User Reference manual in section 1. You
can look at an online copy of its manual page by doing

man 1 pr

References of the form (2.S) indicate that more information can, be found in section 2.S of this
manual.

Your current directory has the name '.' as well as the name printed by the command
pwd; see also dirs. The current directory '.' is usually the first component of the
search path contained in the variable path, thus commands which are in '.' are found
first (2.2). The character '.' is also used in separating components of filenames (1.6).
The character '.' at the beginning of a component of a pathname is treated specially
and not matched by the filename expansion metacharacters '?', '.', and '[' 'J' pairs
(1.6).

Each directory has a file ' .. ' in it which is a reference to its parent directory. After
changing into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

, The current directory is printed by pwd (2.7). ,

a.out 'CompilerS which create exe~utable images, create them, by default, in the file a.out.
for historical reasons (2.3).

absolute pathname

alias

argument

argv

background

base

bg

A pathname which begins with- a 'r is absolute since it specifies the path of direc
tories from the beginning of the entire directory system - called the root directory.
Pathnames which are not absolute are called relative (see definition of relative path
name) (1.6).
An alias specifies a shorter or different name for a UNIX command, or a transforma
tion on a command to be performed in the shell. The shell has a command alias
which establishes aliases and can print their current values. The command unalias
is used to remove aliases (2.4).

Commands in UNIX receive a list of argument words. Thus the command

echo abc

consists of the command name 'echo' and three argument words 'a', 'b' and 'c'. The
set of arguments after the command name is said to be the argument list of the com
mand (1.1).

The list of arguments to a command written in the shell language (a shell script or
shell procedure) is stored in a variable called argv within the shell. This name is
taken from the con,ventional name in the C programming language (3.4).

Commands started without waiting for them to complete are called background com
mands (2.6).
A filename is sometimes thought of as consisting of a base part, before any '.' charac
ter, and an extension - the part after the '.'. See filename and extension (1.6) and
basename (1).

The bg command causes a suspended job to continue execution in the background
(2.6).

USD:4-36

bin

break

breaksw

builtin

case

cat

cd

chdir

chsh

emp

command

command name

An Introduction to the C shell

A directory containing binaries of programs and shell scripts to be executed is typi
cally called a bin directory. The standard system bin directories are '/bin' containing
the most heavily used commands and '/usrlbin' which contains most other user pro.
grams. Programs developed at UC Berkeley live in '/usr/ucb', while locally written
programs live in '/usrIlocal', Games are kept in the directory '/usr/games'. You can
place binaries in any directory. If you wish to execute them often, the name of the
directories . should be a component of the variable path.
Break is a builtin command used to ~t from loops within the control structure of
the shell (3.7).
The breaksw builtin command is used tc exit from a switch control structure, like a
break exits from loops (3.7).
A command executed directly by the shell is called a builtin command. Most com
mands in UNIX are not built into the shell, but rather exist as files in bin directories.
These commands are accessible because the directories in which they reside are
named in the path variable. .

A case command is used as a label in a switch statement in the shell's control struc
ture, similar to that of the language C. Details are given in the shell documentation
'csh (1)' (3.7).
The cat program catenates a list of specified files on the standard output. It is usu
ally used to look at the contents cf a singie file on the terminal, to 'cat a file' (1.8,
2.3).

The cd command is used to change the working directory. With no arguments, cd
changes your working directory to be your home d~ory (2.4, 2.7).
The chdir com~and is a synonym for cd. Cd is usually used because it is easier to
type.

The chsh command is used to change the shell which you use on· UNIX. By default,
you uSe an differeni version of the shell which resides in '/binlsh'. You can change
your shell to 'lbinlcsh' by doing

chsh your-login-name /binlcsh

Thus I would do

chsh bill Ibinlcsh

It is only necessary to do this once. The next time you log in to UNIX after doing this
command, you will be using csh rather than the shell in '/binlsh' (1.9).

Cmp is a program which compares files. It is usually used on binary files, or to see if
two files are identical (3.6). For comparing text files the program dijf, described in
'diff (1)' is used~

A function performed by the system, either by the shell (a builtin command) or by a
program residing in a file in a directory within the UNIX system, is called a command
(1.1). . .

When a command is issued, it consists of a command name, which is the first word
of.the command, followed by arguments. The convention on UNIX is that the first
word of a command names the function to be performed (1.1).

command substitution

component

The replacement of a comID.and enclosed in .. , characters by the text output by that
command is called command substitution (4.3).
A part of a pathname between 'I' characters is called a component of that pathname.
A variable which has multiple strings as value is said to have several componenl s;
each string isa component of the variable.

An Introduction to the C shell USD:4-37

continue

control-

core dump

cp

csh

.CShfC

cwd

date

debugging

default:

DELETE

detached

diagnostic

directory

A builtin command which causes execution of the enclosing Joreach or while loop to
cycle prematurely. Similar to the continue command in the programming language C
(3.6).

Certain special characters, called control characters, are produced by holding down
the CONTROL key on your terminal and simultaneously pressing another character,
much like the SHIFT key is used to produce upper case characters. Thus control- c is
produced by holding down the CONTROL key while pressing the 'c' key. Usually UNIX
prints an caret n followed by the corresponding letter when you type a control char
acter (e.g C' for control-c (1.8).
When a program terminates abnormally, the system places an image of its current
state in a file named 'core'. This core dump can be examined with the system
debugger 'adb (1 r or 'sdb (1)' in order to determine what went wrong with the pro
gram (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where 'Illegal instruction' is only one of several possible messages), you should
report this to the author of the program or a system administrator, saving the 'core'
file.

The cp (copy) program is used to copy the contents of one tile into another tile. It is
one of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execution. It
is usually used to change the setting of the variable path and to set alias parameters
which are to take effect globally (2.1). . .

The cwd variable in the· shell holds the absolute pathname of the current working
directory: It is changed by the shell whenever your current working directory changes
and should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts. The
shell has several options and variables which may be used to aid in shell debugging
(4.4).

The label deJault: is used within shell switch statements, as it is in the C language to
label the code to be executed if none of the case labels matches the value switched on
(3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be sent
to the current job. Many users change the interrupt character to be AC.
A command that continues running in the background after you logout is said to be
detached.
An error message produced by a program is often referred to as a diagnostic. Most
error messages are not written to the standard output, since that is often directed
away from the terminal (1.3, I.S). Error messsages are instead written to the diagnos
tic output which may be directed away from the terminal, but usually is not. Thus
diagnostics will usually appear on the terminal (2.5).

A structure which contains files. At any time you are in one particular directory
whose names can be printed by the command pwd. The chdir command will change
you to another directory, and make the tiles in that directory visible. The directory in
which you are when you tirst login is your home directory (1.1, 2.7).

directory stack The shell saves the names of previous working directories in the directory stack when
you change your current working directory via the pushd command. The directory
stack can be printed by ·using the dirs command, which includes your current

USD:4-38

dirs

du

echo

else

endif

EOF

escape

letc/passwd

exit

exit status

expansion

expressions

extension

An Introduction to the C shell

working directory as the first directory name on the left (2.7).

The dirs command prints the shell's directory stack (2.7).

The du command is a program (described in 'du (1)') which prints the number of
disk blocks is all directories below and including your current working directory (2.6).
The echo command prints its arguments (1.6, 3.6).

The else command is part of the 'if-then-else-endif control command construct (3.6).

If an if statement is ended with the word then. all lines following the if. up to a line
starting with the word endif or else are executed if the condition between parentheses
after the if is true (3.6).

An end-of-file is generated by the terminal by acontrol-d, and whenever a command
reads to the end of a file which it has been given as input. Commands receiving
input from a pipe receive an end-offile when the command· sending them input com
pletes. Most commands terminate when they receive an end-offile. The shell has an
option to ignore end-offile from a terminal input which may help you keep from log
ging out accidentally by typing too many control-d's (1.1, 1.8, 3.8).

A character '\' used to prevent the special meaning of a metacharacter is said to
escape the character from its special meaning. Thus

'echo \.

will echo the character. '.' while just

echo •

will echo the names of the file in the current directory. In this example, \ escape s '.'
(1. 7). There is also a non-printing character called escape, usually" labelled ESC or

" ALTMODE on terminal keyboards. Some older UNIX systems use this character to
indicate that output is to be suspended. Most systems use control-s to stop the out
put and control-q to start it.

This file contains information about the accounts currently on the system. It consists
of a line for each account with fields separated by':' characters (1.8). You can look
at this file by saying

cat letc/passwd

The commands finger and grep are often used to search for information in this file.
See 'finger (1)', 'passwd(S)" and 'grep (1)' for more details.

The exit command is used to force termination of a shell script, and is built into the
shell (3.9).

A command which discovers a problem may reflect this back to the command (such
as a shell) which invoked (executed) it. It does this by returning a non-zero number
as its exit status, a status of zero being considered 'normal termination'. The exit
command can be used to force a shell command script to give a non-zero exit status
(3.6).

The replacemeilt of strings in the shell input which contain metacharacters by other
strings is referred to as the process of expansion. Thus the replacement of the word
'.' by a sorted list of files in the current directory is a 'filename expansion', Similarly
the replacement of the characters '!!' by the text of the last command is a 'history
expansion'. Expansions are also referred to as substitutions (1.6,3.4,4.2).

Expressions are used in the shell to control the conditional structures used in the
writing of shell scripts and in calculating values for these scripts. The operators
available in shell expressions are those of the language C (3.5).

Filenames oftell consist of a base name and an extension separated by the character
• .'. By convention, groups of related files often share the same root name. Thus if

An Introduction to the C shell USO:4-39

fg

filename

'prog.c' were a C program, then the object file for this program would be stored in
'prog.o'. Similarly a paper written with the '-me' nroff macro package might be
stored in 'paper. me' while a formatted version of this paper might be kept in
'paper.out' and a list of spelling errors in 'paper. em' (1.6).

The job control command fg is used to run a background or suspended job in the
foreground (1.8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not including the
character 'I' which is used in pathname building. Most filenames do not begin with
the character 'o', and contain only letters and digits with perhaps a '.' separating the
base portion of the filename from an extension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

head

history

Filename expansion uses the metacharacters '.', '?' and '[' and ']' to provide a con
venient mechanism for naming files. Using filename expansion it is easy to name all
the files in the current directory, or all files which have a common root name. Other
filename expansion mechanisms use the metacharacter ,..,. and allow files in other
users' directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or other
users but are used to modify the action of the commands. These are referred to as
flag options, and by convention consist of one or more letters preceded by the char
acter '-' (1.2). Thus the Is (list files) command has an option '-s' to list the sizes of
files. This is specified

Is -s

The foreach command is used in shell scripts and at the terminal to specify repetition
of a sequence of ,?ommands while the value of a certain shell variable ranges through
a specified list (3.6, 4.1).

When commands are executing in the normal way· such that the shell is waiting for
them to finish before prompting for another command they are said to be foreground
jobs or running in the foreground. This is as opposed to background. Foreground
jobs can be stopped by signals from the terminal caused by typing different control
characters at the keyboard (1.8, 2.6).

The shell has a command goto used in shell scripts to transfer control to a given label
(3.7).

The grep command searches through a list of argument files for a specified string.
Thus

grep billletclpasswd

will print each line in the file /etc/passwd which contains the string 'bill'. Actually,
grep scans for regular expressions in the sense of the editors oed (1), and 'ex (1),.
Grep stands for 'globally find regular expression and print' (2.4).

The head command prints the first. few lines of one or more files. If you have a
bunch of files containing text which you are wondering about it is sometimes useful
to run head with these files as arguments. This will usually show enough of what is
in these files to let you decide which you are interested in (1.5).
Head is also used to describe the part of a path name before and including the last 'I'
character. The tail of a pathname is the part after the last 'I'. The ':h' and ':1'
modifiers allow the head or tail of a pathname stored in a shell variable to be used
(3.6).

The history mechanism of the shell allows previous commands to be repeated, possi
bly after modification to correct typing mistakes or to change the meaning of the
command. The shell has a history list where these commands are kept, and a history

USD:4-40

home directory

if

ignoreeof

input

interrupt

job

job control

job number

jobs

kill
.login

login shell

An Introduction to the C shell

variable which controls how large this list is (2.3).

Each user has a home directory, which is given in your entry in the password file,
letclpasswd. This is the directory which you are placed in when you first login. The
cd or chdir command with no arguments takes you back to this directory, whose
name is recorded in the shell variable home . You can also access the home direc
tories of other users in forming ,filenames using a filename expansion notation and
the character , ... (1.6).

A conditional command within the shell, the if command is used in shell command
scripts to make decisions about what course of action to take next (3.6).
Normally, your shell will exit, printing 'logout' if you type acontrol-d at a prompt of
'% '. This is the way you usually log off the system. You can set the ignoreeof vari-
able if you wish in your .login file and then use the command logout to logout. This
is useful if you sometimes accidentally type too many control-d characters, logging
yourself off (2.2).
Many commands on UNIX take information from the terminal or from files which
they then act on. This information is called input. Commands normally read for
input from their standard input which is, by default, the terminal. This standard
input can be redirected from a file using a shell metanotation with the character '<'.
Many commands will also read from a file specified as argument. Commands placed
in pipelines. will read from the output of the previous command in the pipeline. The
leftmost command in a pipeline re~t1s from the terminal if you neither redirect its
input nor give it a filename to use as standard input. Special mechanisms exist for·
supplying input to commands in shell scripts (1.5, 3.8).

An interrupt is a signal to a program that is generated by typing AC. (On older ver
sions .of UNIX the RUBOUT or DELETE key were used for this purpose.) It causes most
programs to .stop execution. Certain programs, such as the shell and the editors, han
dle an interrupt in special ways, usually by stopping what they are doing and prompt
ing for another command. While the shell is executing another command and wait
ing for it to finish, the shell does not listen to interrupts. The shell often wakes up
when you hit interrupt because many commands die when they receive an interrupt
(1.8, 3.9).

One or more commands typed on the same input line separated by T or ';' charac
ters are run together and are called a job. Simple commands run by themselves
without any T or ';' characters are the simplest jobs. Jobs are classified as fore
ground, background, or suspended (2.6).

The builtin functions that control the execution of jobs are called job control com
mands. These are bg, ft, stop, kill (2.6).

When each job is started it is assigned a small number called a job number which is
printed next to the job in the output of the jobs command. This number, preceded
by a '%' character, can be used as an argument to job control commands to indicate a
specific job (2.6).
The jobs command prints a table showing jobs that are either running in the back
ground or are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6).
The file .login in your home directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of commands
which are usefully placed here, especially set commands to the shell itself (2.1).

The shell that is started on your terminal when you login is called your login shell. It
is different from other shells which you may run (e.g. on shell scripts) in that it reads
the .login file before reading commands from the terminal and it reads the .logout

An Introduction to the C shell USD:4-41

logout

.logout

lpr

Is

mail

make

makefile

manual

metacharacter

mkdir·

modifier

more

file after you logout (2.1).

The logout command causes a login shell to exit. Normally, a login shell will exit
when you hit control-d generating an end-of-file, but if you have set ignoreeof in you
.login file then this will not work and you must use logout to log off the UNIX system
(2.8).

When you log off of UNIX the shell will execute commands from the file .logout in
your home directory after it prints 'logout'.

The command Ipr is the line printer daemon. The standard input of Ipr spooled and
printed on the UNIX line printer. You can also give lpr a list of filenames as argu
ments to be printed. It is most common to use lpr as the last component of a pipe
line (2.3).
The Is (list files) command is one of the most commonly used UNIX commands.
With no argument filenames it prints the names of the files in the current directory.
It has a number of useful flag arguments, and can also be given the names of direc
tories as arguments, in which case it lists the names of the files in these directories
(1.2).

The mail program is used to send and receive messages from other UNIX users (1.1,
2.1), whether they are logged on or not.

The make command is used to maintain one or more related files and to organize
functions to be performed on these files. In many ways make is easier to use, and
more helpful than shell command scripts (3.2).

The file containing commands for make is called makefile or Makefile (3.2).
The manual often referred-to is the 'UNIX manual'. It contains 8 numbered sections
with a description of each UNIX program (sectionl), system call(sectiOIi 2), subrou
tine (section 3), device (section 4), special data structure (section 5), game (section 6),
miscellaneous item (section 7) and system administration program (section 8). There
are also supplementary documents (tutorials and reference guides) for individual pro
grams which require explanation in more detail. An online version of the manual is
accessible through the man command. Its documentation can be obtained online via

man man

If you can't decide what manual page to look in, try the apropos (1) command. The
supplementary documents are in subdirectories of /usr/doc.

Many characters which are neither letters nor digits have special meaning either to
the shell or to UNIX. These characters are called metacharacters. If it is necessary to
place these characters in arguments to commands without them _ having their special
meaning then they must be quoted. An example of a metacharacter is the character
'>' which is used to indicate placement of output into a file. For the purposes of the
history mechanism, most unquoted metacharacters form separate words (1.4). The
appendix to this user's manual lists the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character '!' or of variables
using the metacharacter '$', are often subjected to modifications, indicated by placing
the character ':' after the substitution and following this with the modifier itself. The
command substitution mechanism can also be used to perform modification in a
similar way, but this notation is less clear (3.6).

The program more writes a file on your terminal allowing you to control how much
text is displayed at a time. More can move through the file screenful by screenful.
line by line, search forward for a string, or start again at the beginning of the file. It
is generally the easiest way of viewing a file (1.8).

noclobber

noglob

notify

onintr

output

path

pathname

pipeline

popd

An Introduction to the C shell

The shell has a variable noclobber which may be set in the file .login to prevent
accidental destruction of files by the '>' output redirection metasyntax of the shell
(2.2,2.5).
The shell variable nog/ob is set to suppress the filename expansion of arguments con
taining the metacharacters ,.." '.', '?', '[' and 'J' (3.6).

The notify command tells the shell to report on the termination of a specific back
ground job at the exact time it occurs as opposed to waiting until just before the next
prompt to report the termination. The notify variable, if set, causes the 'shell to
always report the termination of background jobs exactly when they occur (2.6).

The onintr command is built into the shell and is used to control the action of a shell
command script when an interrupt signal is received (3.9).
Many commands in UNIX result in some lines of text which are called their output.
This output is usually placed on what is known as the standard output which is nor
mally connected to the user's terminal. The shell has a syntax using the metacharac
ter '>' for redirecting the standard output of a command to a file (1.3). Using the
pipe mechanism and the metacharacter '" it is also possible for the standard output
of one command to become the standard input of another command (1.5). Certain
commands such as the line printer daemon p do not place their results on the stan
dard OUlput but rather in more useful places such as on the line printer (2.3). Simi
larly the write command places its output on another user's terminal rather than its
standard output (2.3). Commands also have a diagnostic output where they write
their error messages. Normally these go to the terminal even if the standard output
has been sent to a file or another command, but it is possible to direct error diagnos
tics along with standard output using a special metanotation (2.5).
The shell has a· variable path which gives the names of the directories in which it
searches for the commands which it is given. It always checks first to see if the com
mand it is given is built into the shell. If it is, then it need not search for the com
mand as it can do it internally. If the command is not builtin, then the shell searches
for a file with the name given in each of the directories in the path variable, left to
right. Since the normal definition of the path variable is

path (. lusr/ucb Ibin lusrlbin)

the shell normally looks in the current directory, and then in the standard system
directories '/usr/ucb', 'lbin' and '/usrlbin' for the named command (2.2). If the com
mand cannot be found the shell will print an error diagnostic. Scripts of shell com
mands will be executed using another shell to interpret them if they have 'execute'
permission set. This is normally true because a command of the form

chmod 755 script

was executed to turn this execute permission on (3.3). If you add new commands to
a directory in the path, you should issue the command rehash (2.2).
A list of names, separated by'/' characters, forms a pathname. Each component.
between successive 'I' characters, names a directory in which the next component file
resides. Pathnames which begin with the character'/' are interpreted relative to the
root directory in the filesystem. Other pathnames are interpreted relative to the
current directory as reported by pwd. The last component of a pathname may name
a directory, but usually names a file.
A group of commands which are connected together, the standard output of each
connected to the standard input of the next, is called a pipeline. The pipe mechanism
used to connect these commands is indicated by the shell metacharacter 'I' (1.5, 2.3).
The popd command changes the shell's working directory to the directory you most
recently left using the pushd command. It returns to the directory without having to

An Introduction to the C shell USD:4-43

port

pr

printenv

process

program

prompt

pushd

ps

pwd

quit

quotation

redirection

rehash

type its name, forgetting the name of the current working directory before doing so
(2.7).

The part of a computer system to which each terminal is connected is called a port.
Usually the system has a fixed number of ports, some of which are connected to tele
phone lines for dial-up access, and some of which are permanently wired directly to
specific terminals.

The pr command is used to prepare listings of the contents of files with headers giv
ing the name of the file and the date and time at which the file was last modified
(2.3).

The printenv command is used to print the current setting of variables in the
environment (2.8).

An instance of a running program is called a process (2.6). UNIX assigns each process
a unique number when it is started - called the process number. Process numbers
can be used to stop individual processes using the kill or stop commands when the
processes are part of a detached background job.

Usually synonymous with command; a binary file or shell command script which per
forms a useful function is often called a program.
Many programs will print a prompt on the terminal when they expect input. Thus
the editor 'ex (1), will print a ':' when it. expects input. The shell prompts for inpllt
with '% ' and occasionally with '? ' when reading commands from the terminal (1.1).
The shell has a variable prompt which may be set to a different value to change the
shell's main prompt. This is mostly used when debugging the shell (2.8).

The pushd command, which means 'push directory', changes the shell's working
directory and· also remembers the current working directory before the change is
made, allowing you to return to the same directory via the popd command later
without retyping its name (2.7). .

The ps command is used to show the processes you are currently running. Each pro
cess is shown with its unique process number, an indication of the terminal name it
is attached to, an indication of the state of the process (whether it is running,
stopped, awaiting some event (sleeping), and whether it is swapped out), and the
amount of CPU time it has used so far. The command is identified by printing some
of t1;1e words used when it was invoked (2.6). Shells, such as the csh you use to run
the ps command, are not normally shown in the output.

The pwd command prints the full path name of the current working directory. The
dirs builtin command is usually a better and faster choice.

The quit signal, generated by a control-\, is used to terminate programs which are
behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning, usually by
using the character " in pairs, or by using the character '\', is referred to as quotation
(1. 7). .

The routing of input or output from or to a file is known as redirection of input or
output (1.3).

The rehash command tells the shell to rebuild its internal table of which commands
are found in which directories in your path. This is necessary when a new program
is installed in one of these directories (2.8).

relati ve pathname
A pathname which does not begin with a '/' is called a relative pathname since it is
interpreted relative to the current working directory. The first component of such a
path name refers to some file or directory in the working directory, and subsequent
components between '/' characters refer to directories below the working directory.

USD:4-44

repeat

root

RUBOUT

scratch file

script

set

setenv

shell

shell script

signal

sort

source

An Introduction to the C shell

Pathnames that are not relative are called absolute pathnames (1.6).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the root
directory since it is the 'root' of the entire tree structure of directories. The name
used in pathnames to indicate the root is '/'. Pathnames starting with 'I' are said to
be absolute since they start at the root directory. Root is also used as the part of a
path name that is left after removing the extension, See filename for a further expla
nation (1.6).

The RUBOUT or DELETE key is often used to erase the previously typed character;
some users prefer the BACKSPACE for this purpose. On older versions of UNIX this
key served as the INTR character.

Files whose names begin with a '#' are referred to as scratch files, since they are
automatically removed by the system after a couple of days of non-use, or more fre
quently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command scripts. It is
often possible to perfonn simple tasks using. these scripts without writing a program
in a language such as C, by using the shell to selectively run other programs (3.3,
3.10),

The builtin set command is used to assign new values to shell variables and to show
the values of the current vari~bles. Many shell variables have special mraning to the
shell itself. Thus by using the set command the behavior of the shell can be affected
(2.1).

Variables in the environment 'environ (5)' can be changed by using the setenv builtin
command (2.8) .. The printenv command can be uSed to print the value of the vari
ables in the environment.

A shell is a command language intel1>reter .. It is possible to write and run your own
shell, as shells are no different than any other programs as far as the system is con-
cerned. This manual deals with the details of one particular shell, called csh.
See script (3.3, 3.10).

A signal in UNIX is a short message that is sent to a running program which causes
something to happen to that process. Signals are sent either by typing special control
characters on the keyboard or by using the kill or stop commands (1.8, 2.6).

The sort program sorts a sequence of lines in ways that can be controlled by argu
ment flags (1.5).

The source command causes the shell to read commands from a specified file. It is
most useful for reading files such as .cshrc after changing them (2.8).

special character
See metacharacters and the appendix to this manual.

standard We refer often to the standard input and standard output of commands. See input
and output (1.3, 3.8).

status

stop

string

A command normally returns a status when it finishes. By convention a status of
zero indicates that the command succeeded. Commands may return non-zero status
to indicate that some abnonnal event has occurred. The shell variable status is set to
the status returned by the last command. It is most useful in shell commmand
scripts (3.6).

The stop command causes a background job to become suspended (2.6).
A sequential group of characters taken together is called a string. Strings can contain
any printable characters (2.2).

An Introduction to the C shell USD:4-45

stty

substitution

suspended

switch

termination

then

time

tset

tty

un alias
UNIX

unset

The stty program changes certain parameters inside UNIX which determine how your
terminal is handled. See 'stty (1), for a complete description (2.6).
The shell implements a number of substitutions where sequences indicated by meta
characters are replaced by other sequences. Notable examples of this are history sub
stitution keyed by the metacharacter '!' and variable substitution indicated by '$'.
We also refer to substitutions as expansions (3.4).
A job becomes suspended after a STOP signal is sent to it, either by typing a control-z
at the terminal (for foreground jobs) or by using the stop command (for background
jobs). When suspended, a job temporarily stops running until it is restarted by either
the fg or bg command (2.6).

The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the switch
statement in the language C (3.7).

When a command which is being executed finishes we say it undergoes termination
or terminates. Commands normally terminate when they read an end-offile from
their standard input. It is also possible to terminate commands by sending them an
interrupt or quit signal (1.8). The kill program terminates specified jobs (2.6).

The then command is part of the shell's 'if-then-else-endif control construct used in
command scripts (3.6).

The time command can be used to measure the amount of CPU and real time con
sumed by a specified command as well as the amount of disk i/o, memory utilized,
and number of page faults and swaps taken by the command (2.1, 2.8).

The tset program is used to set standard erase and kill characters and to tell the sys
tem what kind of te,rminal you are using. It is often invoked in a ,login file '(2.1).

The word tty is a historical abbreviation for 'teletype' which is frequently used in
UNIX to indicate the port to which a given terminal is connected. The tty command
will print the name of the tty or port to which your terminal is presently connected.
The unalias command removes aliases (2.8).

UNIX is an operating system on which csh runs. UNIX provides facilities which allow
csh to invoke other programs such as editors and text formatters which you may wish
to use.
The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

wc

while
word

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of vari
ables is in controlling the behavior of the shell. See path, noclobber, and ignoreeof
for examples. Variables such as argv are also used in writing shell programs (shell
command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after they are
history expanded. This is often useful in debugging shell scripts. The verbose vari
able is set by the shell's -v command line option (3.10).

The wc program calculates the number of characters, words, and lines in the files
whose names are' given as arguments (2.6).

The while builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms an argument to a command is called a word,
Many characters which are neither letters, digits, '-', '.' nor 'I' form words all by
themselves even if they are not surrounded by blanks. Any sequence of characters
may be made into a word by surrounding it with , .. characters except for the charac
ters ,.. and 'r which require special treatment (1.1). This process of placing special

USD:4-46 An Introduction to the C shell

characters in words without their special meaning is called quoting.
working directory

At any given time you are in one particular directory, called your working directory.
This directory's name is printed by the pwd command and the files listed by Is are
the ones in this directory. You can change working directories using eMir.

write The write command is an obsolete way of communicating with other users who are
logged in to UNIX (you- have to take turns typing). If you are both using display ter
minals, use talk(1), which is much more pleasant.

DC - An Interactive Desk Calculator USD:5-1

DC - An Interactive Desk Calculator

Robert Mo"is

Lorinda Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provision for
manipulating scaled fixed-point numbers and for input and output in bases other
than decimal.

The size of numbers that can be manipulated is limited only by available core
storage. On typical implementations of UNIX, the size of numbers that can be han
dled varies from several hundred diJits on the smallest systems to several thousand
on the largest.

DC is an arbitrary ·precision arithmetic package implemented on the UNIX time-sharing system
in the form of an interactive deSk calculator. It works like a stacking calculator using reverse Polish
notation.· Ordinarily DC operates on decimal integers, but one may specify an input base, output
base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the familiar
style of higher-level programming languages and compiles output which is interpreted by DC. Some
of the commands described below were designed for the compiler interface and are not easy for a
human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking
the top number or two off the stack, performing the desired operation, and pushing the result on the
stack. If an argument is given, input is taken from that file until its end, then from the standard
input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional com
mands that are intended to be invoked by compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

Dumber

The value of the number is pushed onto the main stack. A number is an unbroken string of the
digits 0-9 and the capital letters A-F which are treated as digits with values 10-15 respectively.
The number may be preceded by an underscore to input a negative number. Numbers may
contain decimal points.

t UNIX is a trademark of AT&T Bell Laboratories.

USD:5-2 DC - An Interactive Desk Calculator

+_*%A

sx

Ix

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (I),
remaindered (%), or exponentiated n. The two entries are popped off the stack; the result is
pushed on the stack in their place. The result of a division is an integer truncated toward zero.
See the detailed description below for the treatment of numbers with decimal points. An
exponent must not have any digits after the decimal point.

The top of the main stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed onto it. Any
character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is capital
ized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated as an
error by the command L.

it

p

f

x

[••• J

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and executes
it as a string of DC commands.

puts the bracketed character string onto the top of the stack .
•

exits the program. If executing a string, the recursion level is popped by two. If q is capitalized,
the top value on the stack is popped and the string execution level is popped by that value.

<x >x =X !<.x !>x !=x

v

The top two elements of the stack are popped and compared. Register x is executed if they
obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is trun
cated to an integer. For the treatment of numbers with decimal points, see the detailed descrip
tion below.

DC - An Interactive Desk Calculator USD:5-3

c

i

o

k

z

?

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX com
mand terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i is
capitalized, the value of the input base is pushed onto the stack. No mechanism has been pro
vided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If 0 is
capitalized, the value of the output base is pushed .onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and exponentia
tion. The scale factor must be greater than or equal to zero and less than 100. If k is capital
ized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

IntenW Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form
of a string of digits to the base 100 stored one digit per byte (centennial digits). The string is stored
with the low-order digit at the beginning of the string. For example, the representation of 157 is 57,1.
After any arithmetic operation on a number, care is taken that all digits are in the range 0-99 and
that the number has no leading zeros. The number zero is represented by the empty string.

Negative numbers are represented in the 100's complement notation, which is analogous to
two's complement notation for binary numbers. The high order digit of a negative number is always
-1 and all other digits are in the range 0-99. The digit preceding the high order -1 digit is never a
99. The representation of -157 is 43,98,-1. We shall call this the canonical form of a number. The
advantage of this kind of representation of negative numbers is ease of addition. When addition is
performed digit by digit, the result is formally correct. The result need only be modified, if necessary,
to put it into canonical form. .

Because the largest valid digit is 99 and the byte can hold numbers· twice that large, addition can
be carried out and the handling of carries done later when that is convenient, as it sometimes is.

An· additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .00 1 is 1,3 where
the scale has been italicized to emphasize the fact that it is not the high order digit. The value of this
extra byte is called the scale fadOr of the number.

USD:5-4 DC - An Interactive Desk Calculator

The Allocator

DC uses adynamic string storage allocator for all of its internal storage. All reading and writing
of numbers internally is done through the allocator. Associated with each string in the allocator is a
four-word header containing pointers to the beginning of the stting. the end of the string, the next
place to write, and the next place to read. Communication between the allocator and DC is done via
pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the one
pointing to this string are on a list of free headers. Requests for strings are made by size. The size of
the string actually supplied is the next higher power of 2. When a request for a string is made, the
allocator first checks the free list to see if there is a string of the desired size. If none is found, the
allocator finds the next larger free string and splits it repeatedly until it has a string of the right size.
Left-over strings are put on the free list. If there are no larger strings, the allocator tries to coalesce
smaller free strings into larger ones. Since all strings are the result of splitting large strings, each
string has a neighbor that is next to it in core and, if free, can be combined with it to make a string
twice as long. This is an implementation of the 'buddy system' of allocation described in [2].

Failing to find a string of the proper .length after coalescing, the allocator asks the system for
more space. The amount of space on the system is the only limitation on the size and number of
strings in DC. If at any time in the process of trying to allocate a string, the allocator runs out of
headers, it also asks the system for more space.

There are routines in the allocator for reading; writing, copying, rewinding, forward-spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the charac
ters of a string are read or written in succession by a series of read or write calls. The write pointer is
interpreted as the end of the information-containing portion of a string and a call to read beyond that
point returns an end-of-string indication. . An attempt to write beyond the end of a string causes the
allocator to allocate a larger space and then copy the old string into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the opera
tion are popped from the main stack and their scale factors stripped off. Zeros are added or digits
removed as necessary to get a properly scaled result from the internal arithmetic routine. For exam
ple, if the scale of the operands is different and decimal alignment is required, as it is for addition,
zeros are appended to the operand with the smaller scale. After performing the required arithmetic
operation, the proper scale factor is appended to the end of the number before· it is pushed on the
stack.

A register called scale plays a part in the results of most arithmetic operations. scale is the
bound on the number of decimal places retained in arithmetic computations. scale may be set to the
number on the top of the stack truncated to an integer with the k command. K may be used to push
the value of scale on the stack. scale must be greater than or equal to 0 and less than 100. The
descriptions of the individual arithmetic operations will include the exact effect of scale on the com
putations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with
the lower scale to give both numbers the same scale. The number with the smaller scale is multiplied
by 10 if the difference of the scales is odd. The scale of the result is then set to the larger of the scales
of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addi
tion.

Finally, the addition is performed digit by digit from the low order end of the number. The car
ries are propagated in the usual way. The resulting number is brought into canonical form, which

DC - An Interactive Desk Calculator USD:5-5

may require stripping of leading zeros, or for negative numbers replacing the high-order configuration
99,-1 by the digit -1. In any case, digits which are not in the range 0-99 must be brought into that
range, propagating any carries or borrows that result.

Multiplication
The scales are removed from the two operands and saved. The operands are both made posi

tive. Then multiplication is performed in a digit by digit manner that exactly mimics the hand
method of mUltiplying. The first number is multiplied by each digit of the second number, beginning
with its low order digit. The intermediate products are accumulated into a partial sum which
becomes the final product. The product is put into the canonical form and its sign is computed from
the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is
larger than the internal register scale and also larger than both of the scales of the two operands, then
the scale of the result is set equal to the largest of these three last quantities.

Division
The scales are removed from the two operands. Zeros are appended or digits removed from the

dividend to make the scale of the result of the integer division equal to the internal quantity scale.
The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Otherwise the
top digit of the divisor is divided into the top two digits of the dividend. The result is used as the
first (high-order) digit of the quotient. It may tum out be one unit too low, but if it is, the next trial
quotient will be larger than 99 and this will be adjusted at the end of the ·process. The trial digit. is
multiplied by the divisor and the result subtracted from the dIvidend and the process is repeated to
get additional quotient digits until the remaining dividend is smaller than the divisor. At the end, the
digits of the quotient are put into the canonical form, with propagation of carry" as needed. The sign
is set from the sign of the operands.

Remainder
The division routine is called and division is performed exactly as described. The quantity

returned is the remains of the dividend at the end of the divide process. Since division truncates
toward zero, remainders have the same sign as the dividend. The scale of the remainder is set to the
maximum of the scale of the dividend and the scale of the quotient plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result
have a scale that is the larger of the internal quantity scale and the scale of the operand.

rule
The method used to compute sqrt(y) is Newton's method with successive approximations by the

Xn+1 = Ih(xn +L)
Xn

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1.
If the exponent is negative, then it is made positive and the base is divided into one. The scale of the
base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the
result is obtained as a product of those powers of the base that correspond to the positions of the
one-bits in the binary representation of the exponent. Enough digits of the result are removed to

USD:5-6 DC - An Interactive Desk·Ca1culator

make the scale of the result the same as if the indicated multiplication had been performed.

Input Conversion and Base
Numbers are converted to the internal representation as they are read in. The scale stored with

a number is simply the number of fractional digits input. Negative numbers are indicated by preced
ing the number with a (an underscore). The hexadecimal digits A-F correspond to the numbers
10-15 regardless of input base. The i command can be used to change the base of the input numbers.
This command pops the stack, truncates the resulting number to an integer, and uses it as the input
base for aD further input. The input base is initialized to 10 but may, for example be changed to 8 or
16 to do octal or hexadecimal to decimal conversions. The command I will push the value of the
input base on the stack.

Output Commands
The. command p causes the top of the stack to be printed. It does not remove the top of the

stack. AD of the stack and internal registers can be output by typing the command f. The 0 com
mand can be. used to change the output base. This command uses the top of the stack, truncated to
an integer as the base for all further output. The output base in initialized to 10. It will work
correctly for any base. The command 0 pushes the value of the output base on the stack.

Output Format and Base
The input and output bases only affect the interpretation of numbers on input and output; they

have no effect on arithmetic computations. Large numbers are output with 70 c~aracters per line; a \
indicates a continued line. All choices of input and output bases work correctly, although not all are
useful. A particularly useful output base is 100000, which has the effect of grouping digits in fives.
Bases of 8 and 16 can be used for decimal-octal or decimal-hexadecimal conversions. . .

Internal Registers
Numbers or strings may be stored in internal registers or loaded on the stack from registers with

the commands s and I. The command sx pops the top of the stack and stores the result in register x.
x can be any character. Ix puts the contents of register x on the top of the stack. The I command has
no effect on the contents of register x. The s command, however, is destructive.

Stack Commands
The command c clears the stack. The command d pushes a duplicate of the number on the top

of the stack on the stack. The command z pushes the stack size on the stack. The command X
replaces the number on the top of the stack with its scale factor. The command Z replaces the top of
the stack with its length.

Subroutine Definitions and Calls
Enclosing a string in (] pushes the ascii string on the stack. The q command quits or in execut

ing a string, pops the recursion levels by two.

Internal Registers - Programming DC
The load and store commands together with [) to store strings. x to execute and the testing

commands '<', '>', '=', '!<', '!>', '!=' can be used to program DC. The x command assumes the top
of the stack is an string of DC commands and executes it. The testing commands compare the top
two elements on the stack and if the relation holds, execute the register that follows the relation. For
example, to print the numbers 0-9,

[lip 1 + si lilO>a]sa
Osi lax

DC - An Interactive Desk Calculator USD:5-7

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as hav
ing individual stacks for each register. These registers are operated on by the commands Sand L. Sx
pushes the top value of the main stack onto the stack for the register x. Lx pops the stack for register
x and puts the result on the main stack. The commands sand 1 also work on registers but not as
push-down stacks. 1 doesn't effect the top of the register stack, and s destroys what was there before.

The commands to work on arrays are : and;. :x pops the stack and uses this value as an index
into the array x. The next element on the stack is stored at this index in x. An index must be greater
than or equal to 0 and less than 2048. ;X is the command to load the main stack from the array x.
The value on the top of the stack is the index into the array x of the value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to UNIX to exe
cute. One other compiler command is Q. This command uses the top of the stack as the number of
levels of recursion to skip.

DESIGN CHOICES

. The real reason for the use of a dynamic storage allocator was that a general purpose program
could be (and in fact has been) used for a variety of other tasks. The allocator has some value for
input and for compiling (i.e. the bracket [...] commands) where it cannot be known in advance how
long· a string will be. The result was t~'!t at a modest cost in execution time, all considerations of
string allocation and sizes of strings were removed from the remainder of the program and debugging
was made easier. The allocation method used wastes approximately 25% of available, space~ ,

The choice' of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet
the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space, debugging
was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to
subroutine execution to be implemented in essentially the same way. The result was a considerable
degree of logical separation of the final program into modules with very little communication between
modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already been
entered. An earlier implementation which had global notions of scale and base did not work out well.
If the value of scale were to be interpreted in the current input or output base, then a change of base
or scale in the midst of a computation would cause great confusion in the interpretation of the results.
The current scheme has the advantage that the value of the input and output bases are only used for
input and output, respectively, and they are ignored in all other operations. The value of scale is not
used for any essential purpose by any part of the program and it is used only to prevent the number
of decimal places resulting from the arithmetic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no
case should any significant digits be thrown away if, on appearances, the user actually wanted them.
Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give him the result
5.017 without requiring him to unnecessarily specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits
than their operands and it seemed reasonable to give as a minimum the number of decimal places in
the operands but not to give more than that number of digits unless the user asked for them by speci
fying a value for scale. Square root can be handled in just the same way as multiplication. The
operation of division gives arbitrarily many decimal places and there is simply no way to guess how
many places the user wants. In this case only, the user must specify a scale to get any decimal places
at all.

USD:5-8 DC - An Interactive Desk Calculator

The scale of remainder was chosen to make it possible to recreate the dividend from the quo
tient and remainder. This is easy to implement; no digits are thrown away.

Refereaces .
(1] L. L. Cherry, R. Morris. Be..; An Arbitrary Precision Desk-Calculator Language.
(2]1{. C. Knowlton, A Fast Storage Allocator, Comm. ACM8, pp. 623-625 (Oct. 1965).

Be - An Arbitrary Precision Desk-Calculator Language USD:6-1

Be - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Mo"is

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Be is a language and a compiler for doing arbitrary precision arithmetic on the
PDP-II under the UNIXt time-sharing system. The output of the compiler is inter
preted and executed by a collection of routines which can input, output, and do
arithmetic on indefinitely large integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overflow
does not occur until aU available core storage is exhausted.

The language, has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, co~,
arctan, log, expoQential, and Bessel functions of integer order.

Introduction

Some of the uses of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

Be is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time
sharing system [I]. The compiler was written to make conveniently available a collection of routines
(called DC [5]) which are capable of doing arithmetic on integers of arbitrary size. The compiler is
by no means intended to provide a complete programming language. It is a minimal language facil
ity.

There is a scaling provision that permits the use of decimal point notation. Provision is made
for input and output in bases other than decimal. Numbers can be converted from decimal to octal
by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of storage
available on the machine. Manipulation of numbers' with many hundreds of digits is possible even on
the smallest versions of UNIX.

The syntax of Be has been deliberately selected to agree substantiaily with the C language [2].
Those who are familiar with C will find few surprises in this language.

t UNIX is a trademark of AT&T Bell Laboratories.

USD:6-2 BC':" An Arbitrary Precision Desk-Calculator Language

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if
y<?u type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators -, *, I, %, and A can also be used; they indicate subtraction, multiplication, division,
remaindering, and exponentiation, respectively. Division of integers produces an integer result trun
cated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated
(the 'unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.
More complex expressions with several operators and with parentheses are interpreted just as in

Fortran, with A having the greatest binding power, then * and % and I, and finally + and -. Contents
of parentheses are evaluated before material outside the parentheses. Exponentiations are performed
from right to left and the other operators from left to right. The two expressions

aAbAc and aA(bAc)

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

aIb*c is equivalent to (aIb)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

x=x+3

has the effect of increasing by three the value of the contents of the register named x. When, as in
this case, the outermost operator is an =, the assignment is performed but the result is not printed.
Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling
below). The lines

x = sqrt(l91)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of'ibase', initially
set to 10, determines the base used for interpreting numbers read in. For example, the lines

ibase = 8
11

will produce the output line

BC - An Arbitrary Precision Desk-Calculator Language USD:6-3

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the
input base back to decimal by typing

ibase = 10

Because the number lOis interpreted as octal, this statement will have no effect. For those who deal
in hexadecimal notation, the characters A-F are permitted in numbers (no matter what base is in
effect) and are interpreted as digits having values 10-15 respectively. The statement

ibase - A

will change you back to decimal input base no matter what the current input base is. Negative and
large positive input bases are permitted but useless. No mechanism has been provided for the input
of arbitrary numbers in bases less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The lines

obase - 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted,
and they are sometimes useful. For example, large numbers can be output in groups of five digits by
setting 'obase' to 100000. Strange (i.e. 1,0, or negative). output bases are handled appropriately.

. . '. . .

'Very large numbers are split across lines with 70 characters per line. Lines which are continued
end with \. Decimal output conversion is practically instantaneous, but output of very large numbers
(i.e., more than 100 digits) with other bases is rather slow. Non-decimal output conversion of a one
hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion, respec
tively.

Scaling
A third special internal quantity called 'scale' is used to determine the scale of calculated quanti

ties. Numbers may have up to 99 decimal digits after the decimal point. This fractional part is
retained in further computations. We refer to the number of digits after the decimal point of a
number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the
result has a scale determined by the following rules. For addition and subtraction, the scale of the
result is the larger of the scales of the two operands. In this case, there is never any truncation of the
result. For multiplications, the scale of the result is never less than the maximum of the two scales of
the operands, never more than the sum of the scales of the operands and, subject to those two restric
tions, the scale of the result is set equal to the contents of the internal quantity 'scale'. The scale of a
quotient is the contents of the internal quantity 'scale'. The scale of a remainder is the sum of the
scales of the quotient and the divisor. The result of an exponentiation is scaled as if the implied mul
tiplications were performed. An exponent must be an integer. The scale of a square root is set to the
maximum of the scale of the argument and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with. digits being dis
carded when necessary. In every case where digits are discarded, truncation and not rounding is per-
formed. .

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to O. In
case you -need more than 99 fraction digits, you may arrange your own scaling.

USD:6-4 BC - An Arbitrary Precision DeskGCalculator Language

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like other vari
ables. The line

scale = scale + 1

increases the value of 'scale' by one,and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in internal
computation even when 'ibase' or 'obase' are not equal to 10. The internal computations (which are
still conducted in decimal, regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal or octal or any other kind of digits.

Functions
The name of a function is a single lower-case letter. Function names are permitted to collide

with simple variable names. Twenty-six different defined functions are permitted in addition to the
twenty-six variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or more
statements, which make up the body of the function, ending with a right brace }. Return of control
from a function occurs when a return statement is executed or when the end of the function is
reached. -fhe return statement can take either of the two forms

return
retum(x) .

In the first case, the value of the function is 0, and in the second, the value of the expression in
parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y~

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the func
tion and thrown away on return. The values of any variables with the same names outside the func
tion are not disturbed. Functions may be called recursively and the automatic variables at each level
of call are protected. The parameters named in a function definition are treated in the same way as
the automatic variables of that function with the single exception that they are given a value on entry
to the function. An example of a function definition is

define a(x,y){

}

auto z
z = x*y
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of arguments
is used.

Functions with no arguments are defined and called using parentheses with nothing between
them: bOo

If the function a above has been defined, then the line

BC - An Arbitrary Precision Desk-Calculator Language

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

USD:6-5

A single lower-case letter variable name followed by an expression in brackets is called a sub
scripted variable (an array element). The variable name is called the array name and the expression
in brackets is called the subscript. Only one-dimensional arrays are permitted. The names of arrays
are permitted to collide with the names of simple variables and function names. Any fractional part
of a subscript is discarded before use. Subscripts must be greater than or equal to zero and less than
or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return state
ments.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f(al])
define f(al])
auto al]

When an array name is so used, the whole contents of the array are copied for the use of the function,
and thrown away on exit from· the function. Array names which refer to whole arrays cannot be used
in any other contexts.

Control Statements

The 'if, the 'while', and the 'for' statements may be used to alter the flow within programs or to
cause iteration. The range of each of them is a statement or a compound statement consisting of a
collection of statements enclosed in braces. They are written in the following way

if (relation) statement
while(relation) statement
for(expressionl; relation; expression2) statemf!nt

or

if (relation) {statements} •
while(relation) {statements}
for(expression 1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, <=, >=, ==, or !=.
The relation == stands for 'equal to' and != stands for 'not equal to'. The meaning of the remaining
relational operators is clear.

BEWARE of using = instead of = = in a relational. Unfortunately, both of them are legal, so
you will not get a diagnostic message, but = really will not do a comparison.

The 'if statement causes execution of its range if and only if the relation is true. Then control
passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is true.
The relation is tested before each execution of its range and if the relation is false, control passes to
the next statement beyond the range of the while.

USD:6-6 BC - An Arbitrary Precision Desk-Calculator Language

The 'for' statement begins by executing 'expression 1 '. Then the relation is tested and, if true,
the statements in the range of the 'for' are executed. Then 'expression2' is executed. The relation is
tested, and so on. The typical use of the 'for' statement is for a controlled iteration, as in the state
ment

for(i-l; k=IO; j-i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control state
ments.

define f(n){
autoi, x
x-I
for(i:l; k=n; i=i+l) x=x*i
return(x)
}

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will compute
values of the binomial coefficient (m and n are assumed to be positive integers),

define b(n,m){
auto x, j
x-I
for(j=l; j<=m; j=j+l) x=x*(n-j+l)/j
retum(x) . .
} ,

The following function computes values of the exponential function by summing the appropriate
series without regard for possibie truncation errors:

scale ... 20
define e(x){

}

Some Details

auto a, b, C, d, n
a-I
b - I
c = 1
d-O
n .. 1
wbile(1 1){

}

a ... a*x
b = b*n
c=c+alb
n = n + 1
if(c==d) return(c)
d=c

There are some language features that every user should know about even if he will not use
them.

Normally statements are typed one to a line. It is also permissible to type several statements on
a line separated by semicolons.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-7

If an assignment statement is parenthesized, it then has a value and it can be used anywhere
that an expression can. For example, the line

(x=y+17)

not only malees the indicated assignment, but also prints the resulting value.
Here is an example of a use of the value of an assignment statement even when it is not

parenthesized.

x,.. a(i-i+l)

causes a value to be assigned to x and also increments i before it is used as a subscript.
The following constructs work in BC in exactly the same manner as they do in the C language.

Consult the appendix or the C manuals [2] for their exact workings.

x-y-z is the same as x=(y-z)
x -+ y x = x+y
x --y x = x-yo
x =* y x-x*y
x -I y x == xly
x .%y x == x%y
X =Ay x == xAy
x++ (x=x+l)-l
x- (x=x-l)+l
++x x = x+l
-x x = x-I

Even if you don't intend to use the constructs, if you type one inadvertently, s<?mething correct .but
unexpected may happen. .

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x =- y aDd X= -y. The first replaces x by x-y and the second by -yo

Three ImportaDt Things
1. To exit a BC program, type 'quit'.
2. There is a comment convention identical to that of C and of PUI. Comments begin with 'j'"

and end with '''/'.
3. There is a library of math functions which may be obtained by typing at command level

be -I

This command will load a set of library functions which, at the time of writing, consists of sine
(named's'), cosine ('c'), arctangent ('a'), natural logarithm ('I'), exponential ('e') and Bessel functions
of integer order ('j(n,x)'). Doubtless more functions will be added in time. The library sets the scale
to 20. You can reset it to something else if you like. The design of these mathematical library rou
tines is discussed elsewhere [3].

If you type

be file •••

BC will read and execute the named file or files before accepting commands from the keyboard. In
this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

BC - An Arbitrary Precision Desk-Calculator Language

References
[1] K Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, BeU Laboratories internal
memorandum, 1975.

[4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Science
Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

•

BC - An Arbitrary Precision Desk-Calculator Language USD:6-9

Appendix

1. Notation

In the following pages syntactic categories are in italics:, literals are in bold; material in brackets
[] is optional.

1. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators
may be blanks, tabs or comments. Newline characters or semicolons separate statements.

1.1. Comments

Comments are introduced by the characters /* and terminated by */.

1.1. Identtfiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by square
brackets, possibly enclosing an expression describing a subscript. Arrays are singly dimensioned and
may contain up to 2048 elements. Indexing begins at zero so an array may be indexed from 0 to
2047. Subscripts are truncated to integers. Function identifiers are followed by parentheses, possibly
enclosing arguments. The three types of identifiers do not conflict; a program can have a variable
named x, an array named x and a function named x, all of which are separate and distinct.

1.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length retum
while quit
for

1.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A-F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is
the same as the order of presentation here, with highest appearing first. Left or right associativity,
where applicable, is discussed with each operator.

USD:6-10 BC - An Arbitrary Precision Desk-Calculator Language

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions are
legal on the left side of an assignment. The value of a named expression is the value stored in the
place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression I
Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the number of
digits after the decimal point to be retained in arithmetic operations. scale has an initial value of
zero. ibase and obase are the input and output number radix respectively. Both ibase and obase have
initial values of 10.

3.1.2. Function calls

3.1.2.1. junction-name ([expression [,expression ...]])
A function call consists of a function name followed by parentheses contammg a comma

separated list of exp"ressions, which are the function arguments. A whole array passed as an argument
is specified by the array name followed by empty square brackets. All function arguments are passed
by value. Asa result, changes made. to the formal parameters have no effect on the actual arguments.
If the function tenriinates by executing a return statement, the value of the function is the value of
the expression in the parentheses of the return statement or is zero if no expression is provided or if
there is no return statement.

3.1.2.2. sqrt(expression)
The result is the square root of the expression. The result is truncated in the least significant

decimal place. The scale of the result is the scale of the expression or the value of scale, whichever is
larger.

3.1.2.3. length (expression)
The result is the total number of significant decimal digits in the expression. The scale of the

result is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to
alter the normal precedence.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-11

3.2. Unary operators
The unary operators bind right to left.

3.2.1. - expression
The result is the negative of the expression.

3.2.2. + + named-expression
The named expression is incremented by one. The result is the value of the named expression

after incrementing.

3.2.3. - named-expression
The named expression is decremented by one. The result is the value of the named expression

after decrementing.

3.2.4. named-expression + +
The named expression is incremented 'by one. The result is the value of the named expression

before incrementing.

3.2.S. named-expression-
The named expression is decremented by one. The result is the value of the named expression

before decrementing. .

3.3~ Exponentiation operator

. The expOnentiation operat,?r binds right to left.

3.3.1. expression A expression
The result is the tirst expression raised to the power of the second expression. The second

expression must be an integer. If a is the scale of the left expression and b is the absolute value. of the
right expression, then the scale of the result is:

min (axb, max (scale, a»

3.4. Multiplicative operators
The operators ., /, % bind left to right.

3.4.1. expression * expression
The result is the product of the two expressions. If a and b are the scales of the two expressions,

then the scale of the result is:

min (a+b, max (scale, a, b))

3.4.2. expression I expression
The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression
The % operator produces the remainder of the division of the two expressions. More precisely,

a%b is a-alb·b.
The scale of the resUlt is the sum of the scale ofthe divisor and the value of scale

USD:6-12 Be - An Arbitrary Precision Desk-Calculator Language

3.5. Additive operators
The additive operators bind left to right.

3.5.1. expression + expression
The result is the sum of the two expressions. The scale of the result is the maximun of the

scales of the expressions.

3.5.2. expression - expression
The result is the difference of the two expressions. The scale of the result is the maximum of

the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression == expression
This expression results in assigning the value of the expression on the right to the named expres

sion on the left.

3.6.2. named-expression == + expression

3.6.3. named-expression =- expression

3.6.4. named-expression. == * expression

3.6.5. named-expression =1 expression

3.6.6. named-expression ==% expression

3.6.7. named-expression::A expression
The result of the above expressions is equivalent to "named expression = named expression OP

expression", where OP is the operator after the = sign.

4. Relations
Unlike all other operators, the relational operators are only valid as the object of an if, while, or

inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression > = expression

4.5. ·expression == = expression

4.6. expression! = expression

5. Storage classes
There are only two storage classes in Be,· global and automatic (local). Only identifiers that are

to be local to a function need be declared with the auto command. The arguments to a function are
local to the function. All other identifiers are assumed to be global and available to all functions. All

BC - An Arbitrary Precision Desk-Calculator Language USD:6-13

identifiers, global and local, have initial values of zero. Identifiers declared as auto are allocated on
entry to the function and released on returning from the function. They therefore do not retain
values between function calls. auto arrays are specified by the array name followed by empty square
brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PLII. On
entry to a function, the old values of the names that appear as parameters and as automatic variables
are pushed onto a stack. Until return is made from the function, reference to these names refers only
to the new values.

6. Statements
Statements must be separated by semicolon or newline. Except where altered by control state

ments, execution is sequential.

6.1. Expression statements
When a statement is an expression, unless the main operator is an assignment, the value of the

expression is printed, followed by a newline character.

6.2. Compound statements
Statements may be grouped together and used when one statement is expected by surrounding

them with { }.

6.3. Quoted string statements
"any string"·

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement
Thesubstatement is executed if the relation is true.

6.5. While statements

while (relation) statement
The statement is executed while the relation is true. The test occurs before each execution of

the statement.

6.6. For statements

for (expression; relation; expression) statement
The for statement is the same as
first-expression
while (relation) {

}

statement
last-expression

All three expressions must be present.

6.7. Break statements

break
break causes termination of a for or while statement.

USD:6-14

6.8. Auto statemeats

auto identifier [,identifier]

BC - An Arbitrary Precision Desk·Calculator Language

The auto statement causes the values of the identifiers to be pushed down. The identifiers can
be ordinary identifiers or array identifiers. Array identifiers are specified by following the array name
by empty square brackets. The auto statement must be the first statement in a function definition.

6.9. Define statements

cIeftDe((parameter [,parameter . ..] J) {
statements}
The define statement defines a function. The parameters may be ordinary identifiers or array

names. Array names must be followed by empty square brackets.

6.10. Return statemeats

returD

return(expression)
The return statement causes termination of a function. popping of its auto variables, and

specifies the result of the function. The first form is equivalent to retum(O). The result of the func
tion is the result of the expression in parentheses.

6.11. Quit
The quit state~ent stops execution of a BC program and returns control to UNIX when it is

first encountered. Because it is not treated as an executable statement, it cannot be used in a function
definition or in an if, for, or whUe statement. .

MAIL REFERENCE MANUAL

1. Introduction

Kurt Shoens

Revised by

Craig Leres

Version 5.2

April 20, 1986

Mail provides a simple and friendly environment for sending and receiving mail. It
divides incoming mail into its constituent messages and allows the user to deal with them in
any order. In addition, it provides a set of ed-like commands for manipulating messages and
sending mail. Mail offers the user simple editing capabilities to ease the composition of out
going messages, as well as providing the ability to define and send to names which address
groups of users. Finally, Mail is able to send and receive messages across such networks as
the ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mail program to send and receive messages .
. The reader is not assumed to be familiar with other message handling systems, but should be
familiar with the UNIX' shell, the text editor, and some of the common UNIX commands.
"The UNIX Programmer's Manual," "An Introduction to Csh," and "Text Editing with Ex
and Vi" can be consulted for more information on these topics.

Here is how messages are handled: the mail system accepts incoming messages for you
from other people and collects them in a file, called your system mailbox. When you login,
the system notifies you if there are any messages waiting in your system mailbox. If you are a
csh user, you will be notified when new mail arrives if you inform the shell of the location of
your mailbox. On version 7 systems, your system mailbox is located in the directory
/usr/spool/mail in a file with your login name. If your login name is "sam," then you can
make csh notify you of new mail by including the following line in your .cshrc file:

set mail=/usr/spool/mail/sam

When you read your mail using Mail, it reads your system mailbox and separates that file into
the individual messages that have been sent to you. You can then read, reply to, delete, or
save these messages. Each message is marked with its author and the date they sent it.

I UNIX is a trademark of Bell Laboratories.

USD:7-2 Mail Reference Manual

2. Common usage
The Mail command has two distinct usages, according to whether one wants to send or

receive maiL Sending mail is simple: to send a message to a user whose login name is, say,
"root," use the shell command:

% Mail root

then type your message. When you reach the end of the message, type an EOT (control-d) at
the beginning of a line, which will cause Mail to echo "EOT" and return you to the Shell.
When the user you sent mail to next logs in, he will receive the message:

You have mail.

to alert him to the existence of your message.

If, while you are composing the· message you decide that you do not wish to send it after
all, you can abort the letter with a RUBOUT. Typing a single RUBOUT causes Mail to print

(Interrupt - one more to kill letter)

Typing a second RUBOUT causes Mail to save your partial letter on the file "dead.letter" in
your home directory and abort the letter. Once you have sent mail to someone, there is no
way to undo the act, so be careful.

The message your recipient reads will consist of the message you typed, preceded by a
line telling who sent the message (your login name) and the date and time it was sent.

If you want to send the same message to several other people, you can list their login
names on the command line. Thus,

% Mail sam bob john
Tuition fees are due next friday. Don't forget!!
<Control-d>
EOT
%

will send the reminder to sam, bob, and john.

If, when you log in, you see the message,

You have mail.

you can read the mail by typing simply:

% Mail

Mail will respond by typing its version number and date and then listing the messages you
have waiting. Then it will type a prompt and await your command. The messages are
assigned numbers starting with 1 - you refer to the messages with these numbers. Mail keeps
tack of which messages are new (have been sent since you last read your mail) and read (have
been read by you). New messages have an N next to them in the header listing and old, but
unread messages have a U next to them. Mail keeps track of new/old and read/unread mes
sages by putting a header field called "Status" into your messages.

To look at a specific message, use the type command, which may be abbreviated to sim
ply t. For example, if you had the following messages:

N 1 root Wed Sep 21 09:21 "Tuition fees·
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:

type 1

which might cause Mail to respond with, for example:

Message 1:

Mail Reference Manual

From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R

Tuition fees are due next Wednesday. Don't forget!!

USD:7-3

Many Mail commands that operate on messages take a message number as an argument like
the type command. For these commands, there is a notion of a current message. When you
enter the Mail program, the current message is initially the first one. Thus, you can often
omit the message number and use, for example,

t

to type the current message. As a further shorthand, you can type a message by simply giving
its " message number. Hence,

1

would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another.
You can read the next message in Mail by simply typing a newline. As a special case, you can
type a newline as your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the
reply command. Reply, like type, takes a message number as an argument. Mail then begins
a message adqressed to the user who sent you the message. You may then type in your hitter
in reply, followed by a <control-d> at the beginning of a line, as before. Mail will type EOT,"
then type the ampersand prompt to indicate its readiness to accept another command. In our
example, if, after typing the first message, you wished to reply to it, you might give the com
mand:

reply

Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode
described at the beginning of this section and Mail will gather up your message up to a
control-d. Note that it copies the subject header from the original message. This is useful in
that correspondence about a particular matter will tend to retain the same subject heading,
making it easy to recognize. If there are other header fields in the message, the information
found will also be used. For example, if the letter had "a "To:'~ header listing several reci
pients, Mail would arrange to send your replay to the same people as well .. Similarly, if the
original message contained a "Cc:" (carbon copies to) field, Mail would send your reply to
those users, too. Mail is careful, though, not too send the message to you, even if you appear
in the "To:" or "Cc:" field, unless you ask to be included explicitly. See section 4 for more
details.

After typing in your letter, the dialog with Mail might look like the following:"

reply
To: root
Subject: Tuition fees

Thanks for the reminder
EOT
&

USD:7-4 Mail Reference Manual

The reply command is especially useful for sustaining extended conversations over the
message system, with other "listening" users receiving copies of the conversation. The reply
command can be abbreviated to r.

Sometimes you will receive a message that has been sent to several people and wish to
reply only to the person who sent it. Reply with a capital R replies to a message, but sends a
copy to the sender only.

if you wish, while readiq your mail, to send a message to someone, but not asa reply
to one of your messages, you can send the message directly with the mail command, which
takes as arguments the names of the recipients you wish to send to. For example, to send a
message to "frank," you would do:

mail frank
This is to confirm our meeting next Friday at 4.
EOT
&

The mail command can be abbreviated to m.
Normally, each message you receive is saved in the file mbox in your login directory at

the time you leave Mail. Often, however, you will not want to save a particular message you
have received because it is only of passing interest. To avoid saving a message in mbox you
can delete it using the delete command. In our example,

delete 1

will prevent Mail 'from saving message 1 (from root) in mbpx., In addition to not saving
deleted messages, Mail will not let you type them, either. The effect is to make the message
4isappear altogether,along with its number. The delete command can be abbreviated to sim-
ply d. ' ,

Many features of Mail can be tailored to your liking with the ,set command. The set
command has two forms, depending on whether you are setting a binary option or a valued
option. Binary options are either on or off. For example, the "ask" option informs Mail that
each time you send a message, you want it to prompt you for a subject header~ to be included
in the message. To set the "ask" option, you would type

set ask

Another useful Mail option is' "hold." Unless told otherwise, Mail moves the messages
from your system mailbox to the file mbox in your home directory when you leave Mail. If
you want Mail to keep your letters in the system mailbox instead, you can set the "hold"
option.

Valued options are values which Mail uses to adapt to your tastes. For example, the
"SHELL" option tells Mail which shell you like to use, and is specified by

set SHELL-Ibinlcsh

for example. Note that no spaces are allowed in "SHELL-Ibinlcsh." A complete list of the
Mail options appears in section 5.

Another important valued option is "crt." If you use a fast video terminal, you will find
that when you print long messages, they tly by too quickly for you to read them. With the
"crt" option, you can make Mail print any message larger than a given number of lines by
sending it through the paging program more. For' example, most CRT users with 24-line
screens should do:

set crt=24

to paginate messages that will not fit on their screens. More prints a screenful' of information,
then types -MORE~. Type a space to see the next screenful.

Mail Reference Manual USD:7-5

Another adaptation to user needs that Mail provides is that of aliases. An alias is sim
ply a name which stan·dsfor one or more real user names. Mail sent to an alias is really sent
to the list of real users associated with it. For example, an alias can be defined for the
members of a project, so that you can send mail to the whole project by sending mail to just a
single name. The alias command in Mail defines an alias. Suppose that the users in a project
are named Sam, Sally, Steve, and Susan. To define an alias called "project" for them, you
would use the Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone whose user
name is inconvenient. For example, if a user named 'fBob Anderson" had the login name
"anderson,·" you might want to use:

alias bob anderson

so that you could send mail to the shorter name, "bob."

While the alias and set commands allow you to customize Mail, they have the drawback
that they must be retyped each time you enter Mail. To make them more convenient to use,
Mail always looks for two files when it is invoked. It first reads a system wide file
"/usrlliblMail.rc," then a user specific file, ".mailrc," which is found in the user's home direc
tory. The system wide file is maintained by the system administrator and contains set com
mands that are applicable to all users of the system. The" .mailrc" file is usually used by each
user to set options the way he likes and define individual aliases. For example, my .mailrc :.Ie .
looks like this:

set ask nosave .SHELL-Ibinlcsh

As you can see, it is possible to set many options in the same set. command. The "nosave"
option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery system send
mail. These aliases are stored in the file /usrllib/aliases and are accessible to all users of the
system. The lines in /usr/lib/aliases are of the form:

alias: namel' name2, name)

where alias is the mailing list name and the namej are the members of the list. Long lists can
be continued onto the next line by starting the next line with a space or tab. Remember that
you must execute the shell command newaliases after editing /usr/lib/aliases since the delivery
system uses an indexed file created by newaliases.

We have seen that Mail can be invoked with command line arguments which are people
to send the message to, or with no arguments to read mail. Specifying the -f flag on the com
mand line causes Mail to read messages from a file other than your system mailbox. For
example, if you have a collection of messages in the file "letters" you can use Mail to read
them with:

% Mail -f letters

You can use all the Mail commari.ds described in this document to examine, modify, or delete
messages from your "letters" file, which will be rewritten when you leave Mail with the quit
command described below. •

Since mail that you read is saved in the file mbox in your home directory by default,
you can read mbox in your home directory by using simply

% Mail-f

Normally, messages that you examine using the type command are saved in the file
"mbox" in your home directory if you leave Mail with the quit command described below. If
you wish to retain a message in your system mailbox you can use the preserve. command to

•

USD:7-6 Mail Reference Manual

tell Mail to leave it there. The preserve command accepts a list of message numbers, just like
type and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your
system mailbox automatically. If you wish to have such a message saved in mbox without
reading it, you may use the mbox command to have them so saved. For example,

mbox 2

in our example would cause the second message (from sam) to be saved in mbox when the
quit command is executed. Mbox is also the way to direct messages to your mbox file if you
have set the "hold" option described above. . Mbox can be abbreviated to mb.

When you have perused all the messages of interest, you can leave Mail with the quit
command, which saves the messages you have typed but not deleted in the file mbox in your
login directory. Deleted messages are discarded irretrievably, and messages left untouched
are preserved in your system mailbox so that you will see them the next time you type:

% Mail

The quit command can be abbreviated to simply q.

If you wish for some reason t'O leave Mail quickly without altering either your system
mailbox or mbox, you can type the x command (short for exit), which will immediately return
you to the Shell without changing anything.

If, instead, you want to execute a Shell comma ... d without leaving Mail, you can type the
command preceded by an exclamation point, just as in the text editor. Thus, for instance:

!date

will print the current date without leaving Mail.

Finally, the heJp command is available to print out a brief summary of the Mail com
mands, using only the single character command abbreviations.

3. Maintaining folders

Mail includes a simple facility for maintaining groups of messages together in folders.
This section describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your folders. Each
folder of messages will be a single file. For convenience, all of your folders are kept in a sin
gle directory of your choosing. To tell Mail where your folder directory is, put a line of the
form.

set folder- letters

in your .mailre file. If, as in the example above, your folder directory does not begin with a
'I,' Mail will assume that your folder directory is to be found starting from your home direc~
tory. Thus, if your home directory is lusrlperson the above example told Mail to find your
folder directory in /usr/person/letters.

Anywhere a file 'name is expected, you can use a folder name, preceded with '+.' For
example, to put a message into a folder with the save command, you can use:

save +classwoflC

to save the current message in the elasswork folder. If the classwork folder does not yet exist,
it will be created. Note that messages which are saved with the save command are automati
cally removed from your system mailbox.

In order to make a copy of a message in a folder without causing that message to be
removed from your system mailbox, use the copy command, which is identical in all other
respects to the save command. For example,

Mail Reference Manual USD:7-7

copy +classwork

copies the current message into the c1asswork folder and leaves a copy in your system mail
box.

The folder command can be used to direct Mail to the contents of a different folder.
For example,

folder +classwork

directs Mail to read the contents of the c1asswork folder. All of the commands that you can
use on your system mailbox are also applicable to folders, including type, delete, and reply.
To inquire which folder you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -f option described in section
2. For example: .

% Mail -f +classwork

will cause Mail to read your c1asswork folder without looking at your system mailbox.

USD:7-8 Mail Reference Manual

4. More about sending mail

4.1. nlde escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the
text editor on the partial message, print the message, execute a. shell command, or do some
other auxiliary function. Mail provides these capabilities through tilde escapes, which consist
of a tilde (1 at the bqinningof a line, Collowed by a single character which indicates the Cunc
tion to be performed. For example, to print the text of the message so Car. use:

-p

which will print a line of dashes, the recipients of your message, and the text of the message
so far. Since Mail requires two consecutive RUBOUT'S to abort a letter, you can use a single
RUBOUT to abort the output oC"p or any other - escape without killing your letter.

IC you are dissatisfied with the message as it stands, you can invoke the text editor on it
using the escape

which causes the message to be copied into a temporary file and an instance of the editor to
be spawned. After modifying the message to your satisfaction, write it out and quit the edi
tor. Mail will respond by typing

(continue)

after which you may continue typing text which will be appended to your message, or type
<control-d> to end the message .. A standard text editor- is provided by Mail. You can over- .
ride this default by setting the valued option "EDITOR" to something else. For example, you
might prefer: -

set EDITOR==/usr/ucblex

Many systems offer a screen editor as an alternative to the standard text editor, such as
the vi editor Crom UC Berkeley. To use the screen, or visual editor, on your current message,
you can use the escape,

-v works like '"e, except that the screen editor is invoked instead. A default screen editor is
defined by Mail. IC it does not suit you, you can set the valued option "VISUAL" to the path
name of a different editor.

It is often useful to be able to include the contents of some file in your message; the
escape

-r filename

is provided for this purpose, and causes the named file to be appended to your current mes
sage. Mail complains if the file doesn't exist or can't be read. If the read is successful, the
number of lines and characters appended to your message is printed, after which you may
continue appending text. The filename may contain shell metacharacters like * and? which
are expanded according to the conventions of your shell.

As a special" case of-r, the escape
-d

reads in the file "dead.letter" in your home directory. This is often useful since Mail copies
the text of your message there when you abort a message with RUBOUT.

To save the current text of your message on a fileyou.may use the

"w filename

Mail Reference Manual USD:7-9

escape. Mail will print out the number of lines and characters written to the file, after which
you may continue appending text to your message. Shell metacharacters may be used in the
filename, as in ~r and are expanded with the conventions of your shell.

If you are sending mail from within Mail's command mode you can read a message sent
to you into the message you are constructing with the escape:

~m4

which will read message 4 into the current m~ssage, shifted right by one tab stop. You can
name any non-deleted message, or list of messages. Messages can also be forwarded without
shifting by a tab stop with ~f. This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list
of message recipients, you can do so with the escape

~t namt 1 name2 ...

You may name as few or many additional recipients as you wish. Note that the users origi
nally on the recipient list will still receive the message; you cannot remove someone from the
recipient list with ·t.

If you wish, you can associate a subject with your message by using the escape

~s Arbitrary string of text

which replaces any previous subject with "Arbitrary string of text." The subject, if given, is
sent near the top of the message prefixed with "Subject:" You can see what the message will
look like by using ~p ..

For political reasons, one occasionally prefers to list certain people as recipients of car"
bon copies ora message rather than direct recipients. The escape

~c name 1 nanie2 ...

adds the named people to the "Cc:" list, similar to ~t. Again, you can execute .p to see what
the message will look like.

The recipients of the message together constitute the "To:" field, the subject the "Sub
ject:" field, and the carbon copies the "Cc:" field. If you wish to edit these in ways impossi
ble with the ~t, ~s, and ~c escapes, you can use the escape

11

which prints "To:" followed by the current list of recipients and leaves the cursor (or print
head) at the end of the line. If you type in ordinary characters, they are appended to the end
of the current list of recipients. You can also use your erase character to erase back into the
list of recipients, or your kill character to erase them altogether. Thus, for example, if your
erase and kill characters are the standard (on printing terminals) # and @ symbols,

11
To: root kurtH##bill

would change the initial recipients "root kurt"to "root bill." When you type a newline,- Mail
advances to the "Subject:" field, where the same rules apply. Another newline brings you to
the "Cc:" field, which may be edited in the same fashion. Another newline leaves you
appending. text to the end of your message. You can use ~p to print the current text of the
header fields and the body of the message.

To effect a temporary escape to the shell, the escape ,
~!command

is used, which executes command and returns· you to mailing mode without altering the text
of your message. If you wish, instead, to filter the body of your message through a shell com-
mand, then you can use .

Mail Reference Manual

-I command

which pipes your message through the command and uses the output as the new text of your
message. If the command produces no output, Mail assumes that something is amiss and
retains the old version of your message. -A frequently-used filter is the command jmt,
designed to format outgoing mail. -

To effect a temporary escape to Mail command mode instead, you can use the

-:Mail command
escape. This is especially useful for retyping the message you are replying to, using, for exam
ple:

-:t

It is also useful for setting options and modifying aliases.

If you wish (for some reason) to send a message that contains a line beginning with a
tilde, you must double it. Thus, for example,

lhis line begins with a tilde.

sends the line

7his line begins with a tilde.

Finally, the escape

'"?

pri,nts out a 'brief summary of the available tilde escapes.

On some terminals (particularly ones with no lower case) tilde's are difficult to type. '
Mail allo~ you to change the escape character with the "escape" option .. For example, I set

set escape-)

and use a right bracket instead of a tilde. If I ever need to send a line beginning with right
bracket, I double it, just as for~. Changing the escape character removes the special meaning
of-.

4.2. Network access

This section describes how to send mail to people on other machines. Recall that send
ing to a plain login name sends mail to that person on your machine. If your machine is
directly (or sometimes, even, indirectly) connected to the Arpanet, you can send messages to
people on the Arpanet using a name of the form

name@host.domain

where name is the login name of the person you're trying to reach, host is the name of the
machine on the Arpanet, and domain is the higher-level scope within which the hastname is
known, e.g. EDU (for educational institutions), COM (for commercial entities), GOV (for
governmental agencies), ARPA for many other things, BITNET or CSNET for those networks.

If your recipient logs in aD a machine connected to yours by UUCP (the Ben Labora';'
_ tories supplied network that communicates over telephone lines), sending mail can be a bit

more complicated. You must know the list of machines through which your message must
travel to amve at his site. So, if his machine is directly connected to yours, you can send
mail to him using the syntax:

host!name

where, again, host is the name of the machine and name is the -login name. If your message
must go through an intermediary machine first, you must use the syntax:

intermediary!host!name

Mail Reference Manual USD:7-1l

and so on. It is actually a feature of UUCP that the map of all the systems in the network is
not known anywhere (except where people decide to write it down for convenience). Talk to
your system administrator about good ways to get places; the uuname command will tell you
systems whose names are recognized, but not which ones are frequently called or well
connected.

When you use the reply command to respond to a letter, there is a problem of figuring
out the names of the users in the "To:" and "Cc:" lists relative to the current machine. If the
original letter was sent to you by someone on the local machine, then this problem does not
exist, but if the message came from a remote machine, the problem must be dealt with. Mail
uses a heuristic to build the correct name for each user relative to the local machine. So,
when you reply to remote mail, the names in the "To:" and "Cc:" lists may change somewhat.

4.3. Special recipients

As described previously, you can send mail to either user names or alias names. It is
also possible to send messages directly to files or to programs, using special conventions. If a
recipient name has a 'I' in it or begins with a '+', it is assumed to be the path name of a file
into which to send the message. If the file already exists, the message is appended to the end
of the file. If you want to name a file in your current directory (ie, one for which a 'I' would
not usually be needed) you can precede the name with 'j' So, to send mail to the file "memo"
in the current directory, you can give the command:

% Mail jmemo

If the name begins with a '+,' it is expanded into the full path name of the folder name in
your folder directory. This ability to send mail to files can be used for a variety of purposes,
such as maintaining a journal and keeping a record of mail sent to a certain group of users.
The second example can be done automatically by including the full pathname of the record
file in the alias command for the group. Using our previous alias example, you might give
the command:

alias project sam sally steve susan lusr/project/maiLrecord

Then, all mail sent to "project" would be saved on the file "/usr/project/maiLrecord" as well
as being sent to the members of the project. This file can be examined using Mail-/.

It is sometimes useful to send mail directly to a program, for example one might write a
project billboard program and want to access it using Mail. To send messages to the bill
board program, one can send mail to the special name "billboard' for example. Mail treats
recipient names that begin with a 'I' as a program to send the mail to. An alias can be set up
to reference a ',' prefaced name if desired. Caveats: the shell treats ',' specially, so it must be
quoted on the command line. Also, the " program' must be presented as a single argument to
mail. The safest course is to surround the entire name with double quotes. This also applies
to usage in the alias command. For example, if we wanted to alias 'rmsgs' to 'rmsgs -5' we
would need to say:

alias rmsgs "' rmsgs -s"

USD:7-12 . Mail Reference Manual

S. A4didonal features

This section describes some additional commands useful for reading your mail, setting
options, and handling lists of messages.

5.1. Messap lists
Several Mail commands accept a list of messages as an argument. Along with type and

delete, described in section 2, there is the from command, which prints· the message headers
associated with the message list passed to it. The from command is particularly useful in con
junction with some of the message list features described below.

A message list consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers, which directly specify mes
sages, or one of the special characters .. t" "." or "S" to specify the first relevant, current, or
last relevant message, respectively. Relevant here means, for most commands "not deleted"
and "deleted" for the undeJete command.

A range of messages consists of two message numbers (of the form described in the pre
vious paragraph) separated by a dash. Thus, to print the first four messages, use

type 1-4 . .
and to print all the messages from the current message to the last message, use

type.-S

A name is a user name. The user names given in the message list are collected together
and each mesSage selected by other means is checked to make sure it w~ sent by one of the
named users. If the message consists entirely of user names, then every message sent by one
those users that is relevant (in the sense described earlier) is· selected. Thus, to print.every
message sent to you by "root," do

type root

As a shorthand notation, you can specify simply"·" to get every relevant (same sense)
message. Thus,

type •

prints all undeleted messages,

delete •
deletes all undeleted messages, and

undelete •

undeletes all deleted messages.

You can search for the presence of a word in subject lines with I. For example, to print
the headers of all messages that contain the.word ··PASCAL," do:

from Ipascal

Note that subject searching ignores upperllower case differences.

5.2. List of commands

This ~on describes all the Mail commands available when receiving mail.

Used to preface a command. to be executed by the shell.

The - command goes to the previous message and prints it~ The - command may be
given a decimal number n as an. argument. in which case the nth previQus message is
gone to and printed.

Mail Reference Manual

Print Like print, but also print out ignored header fields. See also print and ignore.

Reply

USD:7-13

Note the capital R in the name. Frame a reply to a one or more messages. The reply
(or replies if you are using this on multiple messages) will be sent ONLY to the person
who sent you the message (respectively, the set of people who sent the messages you are
replying to). You can add people using the -t and -c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with "Re:" unless it
already began thus. If the original message included a "reply-to" header field, the reply
will go only to the recipient named by "reply-to." You type in your message using the
same conventions available to you through the mail command. The Reply command is
especially useful for replying to messages that were sent to enormous distribution -groups
when you really just want to send a message to the originator. Use it often.

Type Identical to the Print command.

alias Define a name to stand for a set of other names. This is used when you want to send
messages to a certain group of people and want to avoid retyping their names. For
example

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.

alternates
If you have accounts on several machines, you may find it convenient to use the
/usr/lib/aliases on all the machines except one to direct your mail to a single .account.
The alternates command is used to inform Mail that each. of these other addresses is
really you. Alternates takes a list of user names and remembers that they are all actually.
you. When you reply to messages that were sent to one of these alternate names, Mail
will not bother to send a copy of the message to this other address (which would simply
be directed back to you by the alias mechanism). If alternates is given no argument, it
lists the current set of alternate names. Alternates is usually used in the .mailrc file.

chdir The chdir command allows you to change your current directory. Chdir takes a single
argument, which is taken to be the pathname of the directory to change to. If no argu
ment is given, chdir changes to your home directory.

copy The copy command does the same thing that save does, except that it does not mark the
messages it is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the undelete com
mand.

dp These

commands delete the current message and print the next message. They are useful for
quickly reading and disposing of mail.

edit To edit individual messages using the text editor, the edit command is provided. The
edit command takes a list of messages as described under the type command and
processes each by writing it into the file Message.x where x is the message number being
edited and executing the text editor on it. When you have edited the message to your
satisfaction, write the message out and quit, upon which Mail will read the message back
and remove the file. Edit may be abbreviated to e.

else Marks the end of the then .. part of an if statement and the beginning of the part to take
effect if the condition of the if statement is false.

USD:1 .. 14 Mail Reference Manual

endif Marks the end of an if statement.
exit LeaveMail without updating the system mailbox or the file your were reading. Thus, if

you accidentally delete several messages, you can use exit to avoid scrambling your Maile
box.

file The same as folder.

folders
List the names of the folders in your folder directory.

folder
The folder command switches to a new mail file or folder. With no arguments, it tells
you which file you are currently reading. If you give it an argument, it will write out
changes (such as deletions) you have made in the current file and read the new file.
Some special conventions are recognized for the name:

Name

%
%name
&
+ folder

Meaning
Previous file read
Your system mailbox
Name's system mailbox
Your -/mbox file
A file in your folder directory

from The from command takes a list of messages and prints out the header lines for each one;
hence

. fromjoe

is the easy way to display all the message headers from "joe."

headers
When you start up Mail to read your mail, it lists the message headers that you have.
These headers tell you who each message is from, when they were sent, how many lines
and characters each message is, and the "Subject:" header field of each message, if
present. In addition, Mail tags the message header of each message that has been the
object of the preserve command with a "P." Messages that have been saved or written
are flagged with a "*." Finally, deleted messages are not printed at all. If you wish to
reprint the current list of message headers, you can do so with the headers command.
The headers command (and thus the initial header listing) only lists the first so many
message headers. The number of headers listed depends on the speed of your terminal.
This can be overridden by specifying the number of headers you want with the window
option. Mail maintains a notion of the current "window" into your messages for the
purposes of printing headers. Use the z command to move forward and back a window.
You can move Mail's notion of the current window directly to a particular message by
using, for example,

headersAO
to move Mail's attention to the messages around message 40. The headers command
can be abbreviated to b.

belp Print a brief and usually out of date help message about the commands in Mail. The
man page for mail is usually more up-ta-date than either the help message or this
manual.

bold Arrange to hold a list of messages in the system mailbox, instead of moving them to the
file mbox in your home directory. If you set the binary option hold, this will happen by
default.

Mail Reference Manual USD:7-15

if Commands in your ".mailrc" file can be executed conditionally depending on whether
you are sending or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and send.

ignore
Add the list of header fields named to the ignore list. Header fields in the ignore list are
not printed on your terminal when you print a message. This allows you to suppress
printing of certain machine-generated header fields, such as Via which are not usually of
interest. The Type and Print commands can be used to print a message in its entirety,
including ignored fields. If ignore is executed with no arguments, it lists the current set
of ignored fields.

list List the vaild Mail commaI::is.

mail Send .mail to one or more people. If you have the ask option·set, Mail will prompt you
for a subject to your message. Then you can tYPe in ·your message, using tilde escapes as
described in section 4 to edit, print, or modify your message. To signal your satisfaction
with the message and send it, type control-d at the beginning of a line, or a . alone on a
line if you set the option dot. To abort the message, type two interrupt characters
(RUBOUT by default) in a row or use the -q escape.

mboxIndicate that a list of messages be sent to mbox in your home directory when you quit.
This is the default action for messages if you do not have the hold option set.

next The next command goes to the next message and types it. If given a message list, next
goes to the first such message and types it. Thus,

next root

goes to the next message sent by "root" and types it. The next command can be abbre
viated to simply a newline, which means that one can go to and type a message by sim
ply giving its message number or one of the magic characters "." "." or "$". Thus,

prints the current message and

4

prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be held in your system mailbox when you
quit.

print Takes a message list and types out each message on the terminal.

quit LeaveMail and update the file, folder, or system mailbox your were reading. Messages
that you have examined are marked as "read" and messages that existed when you
started are marked as "old." If you were editing your system mailbox and if you have
set the binary option hold, all messages which have not been deleted, saved, or mboxed
will be retained in your system mailbox. If you were editing your system mailbox and

Mail Reference Manual

you did not have hold set, all messages which have not been deleted, saved, or preserved
will be moved to the file mbox in your home directory.

reply Frame a reply to a single message. The reply will be sent to the person who sent you the
message to which you are replying, plus all the people who received the original mes
sage, except you. You can add people using the -t and -c tilde escapes. The subject in
your reply is formed by prefacing the subject in the original message with "Re:" unless it
already began thus. If the original message included a "reply-to" header field, the reply
will go only to the recipient named by "reply-to." You type in your message using the
same conventions available to you through the mail command.

save It is often useful to be able to save messages on related topics in a file. The save com
mand gives you ability to do this. The save command takes as argument a list of mes
sage numbers, followed by the name of the file on which to save the messages. The mes
sages are appended to the named file, thus allowing one to keep several messages in the
file, stored in the order they were put there. The save command can be abbreviated to s.
An example of the save command relative to our running example is:

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected
by the next command described above, unless explicitly specified.

set Set an option or give an option a value. Used to customize Mail. Section 5.3 contains
a list of the options. Options can be binary, in which case they are on or ojJ,or valued.
To set a binary option option on, do

set option

To give the valued option option the value value, do

set option = value

Several options can be specified in a single set command.

shell The shell command allows you to escape to the shell. Shell invokes an interactive shell
and allows you to type commands to it. When you leave the shell, you will return to
Mail. The shell used is a default assumed by Mail; you can override this default by set
ting the valued option "SHELL," eg:

set SHELL==lbinlcsh

source
The source command reads Mail commands from a file. It is useful when you are trying
to fix your ".mailrc" file and you need to re-read it.

top The top command takes a message list and prints the first five lines of each addressed
message. It may be abbreviated to to. If you wish, you can change the number of lines
that top prints out by setting the valued option "toplines." On a CRT terminal,

set toplines= 10

might be preferred.

type Print a list of messages on your terminal. If you have set the option crt toa number
and the total number of lines in the messages you are printing exceed that specified by
crt, the messages will be printed by a terminal paging program such as more.

undelete
The undelete command causes a message that had been deleted previously to regain its
initial status. Only messages that have been deleted may be undeleted. This command
may be abbreviated to u.

Mail Reference Manual

unset Reverse the action of setting a binary or valued option.

visual

USD:7-17

It is often useful to be able to invoke one of two editors, based on the type of terminal
one is using. To invoke a display oriented editor, you can use the visual command. The
operation of the visual command is otherwise identical to that of the edit command.

Both the edit and visual commands assume some default text editors. These default edi
tors can be overridden by the valued options "EDITOR" and "VISUAL" for the stan
dard and screen editors. You might want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write The save command always writes the entire message, including the headers, into the file.
If you want to write just the message itself, you can use the write command. The write
command has the same syntax as the save command, 'and can be abbreviated ~o simply
w. Thus, we could write the second message by doing:

w 2 ftle.c

As suggested by this example, the write command is useful for such tasks as sending and
receiving source program text over the message system.

z Mail presents message headers in windowfuls as described under the headers command.
You can move Mail's attention forward to the next window by giving the

z+

command. Analogously, you can move to the previous window with:.

z-

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This sec
tion describes each of the options in alphabetical order, including some that you have not
seen yet. To avoid confusion, please note that the options are either all lower case letters or
all upper case letters. When I start a sentence such as: "Ask" causes Mail to prompt you for a
subject header, I am only capitalizing "ask" as a courtesy to English.

EDITOR
The valued option "EDITOR" defines the pathname of the text editor to be used in the
edit command and ~e. If not defined, a standard editor is used . •

SHELL
The valued option "SHELL" gives the path name of your shell. This shell is used for
the! command and ~! escape. In addition, this shell expands file names with shell meta
characters like • and ? in them.

VISUAL
The valued option "VISUAL" defines the pathname of your screen editor for use in the
visual command and ~v escape. A standard screen editor is used if you do not define
one.

append
The "append" option is binary and causes messages saved in mbox to be appended to
the end rather than prepended. Normally, Mailwill mbox in the same order that the sys
tem puts messages in your system mailbox. By setting "append," you are requesting
that mbox be appended to regardless. It is in any event quicker to append.

ask "Ask" is a binary option which causes Mail to prompt you for the subject of each mes
sage you send. If you respond with simply a newline, no subject field will be sent.

USD:7-18 Mail Reference Manual

askcc"Askcc" is a binary option which causes you to be prompted for additional carbon copy
recipients at the end of each message. Responding with a newline shows your satisfac
tion with the current list.

autoprint
"Autoprint" is a binary option which causes the delete command to behave like dp -
thus, after deleting a message, the next one will be typed automatically, This is useful to
quickly scanning and deleting messages in your mailbox.

debug
The binary option "debug" causes debugging information to be displayed. Use of this
option is the same as useing the

-d command line flag.

dot "Dot" is a binary option which, if set, causes Mail to interpret a period alone on a line
as the terminator of a message you are sending.

escape
To allow you to change the escape character used when sending mail, you can set the
valued option "escape." Only the first character of the "escape" option is used, and it
must be doubled if it is to appear as the first character of a line of your message. If you
change your escape character, then ~ loses all its special meaning, and need no longer be
doubled at the beginning of a line.

folder
The name of the directory to use for storing folders of messages. If this name begins
with a 'I' Mail considers it to be an absolute pathname; otherwise, the folder directory is .
found relative to your home directory.

bold The binary option "hold;' causes messages that have been read but not manually dealt
with to be held in the system mailbox. This prevents such messages from being automat
ically swept into your mbox.

ignore
The binary option "ignore" causes RUBOUT characters from your terminal to be ignored
and echoed as @'s while you are sending mail. RUBOUT characters retain their original
meaning in Mail command mode. Setting the "ignore" option is equivalent to supply-
ing the -i flag on the command line as described in section 6. .

ignoreeof
An option related to "dot" is "ignoreeof' which makes Mail refuse to accept a control-d
as the end of a message. "Ignoreeof' also applies to Mail command mode.

keep The "keep" option causes Mail to truncate your system mailbox instead of deleting it
when it is empty. This is useful if you elect to protect your mailbox, which you would
do with the shell command:

chmod 600 lusrlspool/maillyoumame

where yourname is your login name. If you do not do this, anyone can probably read
your mail, although people usually don't.

keepsave
When you save a message, Mail usually discards it when you quit. To retain all saved
messages, set the "keepsave" option.

metoo
When sending mail to an alias, Mail makes sure that if you are included in the alias,
that mail will not be sent to you. This is useful if a single alias is being used by all
members of the group. If however, you wish to receive a copy of aU the messages you
send to the alias, you can set the binary option "metoo."

Mail Reference Manual USD:7-19

noheader
The binary option "noheader" suppresses the printing of the version and headers when
Mail is first invoked. Setting this option is the same as using -N on the command line.

nosave
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to
the file "dead.letter" in your home directory. Setting the binary option "nosave"
prevents this.

quiet The binary option "quiet" suppresses the printing of the version when Mail is first
invoked, as well as printing the for example "Message 4:" from the type command.

record
If you love to keep records, then the valued option "record" can be set to the name of a
file to save your outgoing mail. Each new message you send is appended to the end of
the file.

screen
When Mail initially prints the message headers, it determines the number to print by
looking at the speed of your terminal. The faster your terminal, the more it prints. The
valued option "screen" overrides this calculation and specifies how many message
headers you want printed. This number is also used for scrolling with the z command.

sendmail
To alternate delivery system, set the "sendmail" option to the full pathname of the pro
gram to use. Note: this is not for everyone! Most people should use the default
delivery system. .

toplines .
. The valued option "toplines" defines the number of lines that the "top" command will

print out instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke sendmail with the -v flag, which
causes it to go into versbose mode and announce expansion of aliases, etc. Setting the
"verbose" option is equivalent to invoking Mail with the -v flag as described in section
6.

•

USD:1-20 Mail RefereDt:e Maaual

6. Commaadliae OptioDS

This section describes command line options for Mail and what they are used for.

-N Suppress the initial printing of headers.

-d. Tum on debugging information. Not of general interest.

-f file
Show the messages in file instead of your system mailbox. If file is omitted, Mail reads
mbox in your home directory.

-i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious
RUBOUT or DELETE characters. It's usually more effective to change your interrupt
character to control-c, for which see the stty shell command.

-n Inhibit reading of lusrlliblMail.rc. Not generally useful, since lusrllib/Mail.rc is usually
empty.

-s string
Used for sending mail. String is used as the subject of the message being composed. If
string contains blanks, you must surround it with quote marks.

-u name

-y

Read names's mail instead of your own. Unwitting others often neglect to protect their
mailboxes, but discretion is advised. Essentially, -u user is a shorthand way of doing -f
lusr/spool/user .

Use the -v flag when invoking sendmail. This feature may also be enabled by setting the
the option ·ve~bose·. . ..

The following command line flags. are also recognized, but are intend~d for use by pro
grams invoking Mail and not for people.

-T file
Arrange to print on file the contents of the article-id fields of all messages that were
either read or deleted. -T is for the readnews program and should NOT be used for
reading your mail.

-h number
Pass on bop count information. Mail will take the number, increment it, and pass it
with -b to the mail delivery system. -h only has effect when sending mail and is used
for network mail forwarding.

-rname
Used for network mail fQfWarding: interpret name as the sender of the message. The
name and -r are simply sent along to the mail delivery system. Also, Mail will wait for
the message to be sent and return the exit status. Also restricts formatting of message.

- Note that -h and -r, which are for network mail forwarding, are not used in practice
since mail forwarding is now handled separately. They may disappear soon.

7. Format of messages

This section describes the format of messages. Messages begin with a from line, which
consists of the word "From" followed by a user name, followed by anything, followed by a
date in the format returned by the ctime library routine descnbed in section 3 of the Unix
Programmer's Manual. A possible ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a· time zone indication,
which should be. three capital letters, such as PDT. .

Mail Reference Manual USD:7-21

Following the from line are zero or more header field lines. Each header field line is of
the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: article-id, bee, ee, from, reply-to, sender, subject, and to.
Other header fields are also significant to other systems; see, for example, the current Arpanet
message standard for much more on this topic. A header field can be continued onto follow
ing lines by making the first character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line. The part that follows
is called the body of the message, and must be ASCII text, not containing null characters.
Each line in the message body must be terminated with an ASCII newline character and no
line may be longer than 512 characters. If binary data must be passed through the mail sys
tem, it is suggested that this data be encoded in a system which encodes six bits into a print
able character. For example, one could use the upper and lower case letters, the digits, and
the characters comma and period to make up the 64 characters. Then, one can send a 16-bit
binary number as three characters. These characters should be packed into lines, preferably
lines about 70 characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This
blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a mes
sage each time it is forwarded through a machine. .

It should be noted that some network transport protocols enforce limits to the lengths of
messages.

USD:7·22 Mail Reference Manual

8. Glossary

This section contains the definitions of a few phrases peculiar to Mail.

alias An alternative name for a person or list of people.

flag An option, given on the command line of Mail, prefaced·with a -. For example, -f is a
flag.

header field

mail

At the beginning of a message, a line which contains information that is part of the
structure of the message. Popular header fields include to, cc, and subject.

A collection of messages. Often used in the phrase, "Have you read your mail?"

mailbox
The place wl\ere your mail is stored, typically in the directory /usr/spoollmail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option '"
A piece of special purpose information used to tailor Mail to your taste. Options are
specified with the set command.

•

Mail Reference Manual USD:7-23

9. Summary of commands, options, and escapes

This section gives a quick summary of the Mail commands, binary and valued options,
and tilde escapes.

The following table describes the commands:

Command

Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
endif
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

Description
Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only'
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changin~ anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of it list· of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/examine list of ignored header fields
List valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don't include headers
Scroll to next/previous screenful of headers

USD:1-24 Mail Reference Manual

The following table describes the options. Each option is shown as being either
a binary or valued option.

Option Type Description
EDITOR valued Pathname of editor for ~e and edit
SHELL valued Pathname of shell for shell, ~! and!
VISUAL valued Pathname of screen editor for ~v, visual
append binary Always append messages to end of mbox
ask binary
askcc binary
autoprint binary

Prompt user for Subject: field when sending
Prompt user for .additional Cc's at end of message
Print next message after delete

crt
debug
dot
escape
folder
hold
ignore

valued
binary
binary
valued
valued
binary
binary

Minimum number of lines before using more
Print out debugging information
Accept . alone on line to terminate message input
Escape character to be used instead of ~
Directory to store folders in .
Hold messages in system mailbox by default
Ignore RUBOUT while sending mail

ignoreeof binary Don't terminate letters/command input with tD
Don't unlink system mailbox when empty
Don't delete saved messages by default

keep binary
keepsave binary
meto\) binary Include sending user in aliases
noheader binary Suppress initial printing of version and headers

Don't save partial letter in dead. letter . nosave
quiet
record
screen

'binary
binary
valued
valued

Suppress printing of Mail version and message numbers
. File to save all outgoing mail in

sendmail valued
Size of window of message headers for z, etc.
Choose alternate mail delivery system
Number of lines to print in top toplines valued

verbose binary Invoke sendmail with the -v flag

The following table summarizes the tilde escapes available while sending mail.

Escape Arguments Description
~! command Execute shell command
~c name ... Add names to Cc: field
~d Read dead. letter into message
~e Invoke text editor on partial message
~f messages Read named messages
n Edit the header fields
~m messages Read named messages, right shift by tab
-p Print message entered so far
~q Abort entry of letter, like RUBOUT
-r filename Read file into message
~s string Set Subject: field to string
~t name ... Add names to To: field
~v Invoke screen editor on message
-w filename Write message on file
-I command Pipe message through command

string Quote a - in front of string

Mail Reference Manual USD:7-25

The following table shows the command line flags that Mail accepts:

Flag Description
-N Suppress the initial printing of headers
- T file Article-id's of read/deleted messages to file
-d Tum on debugging
-f file Show messages in file or -Imbox
-h number Pass on hop count for mail forwarding
-i Ignore tty interrupt signals
-n Inhibit reading of lusrllib/Mail.rc
-r name Pass on name for mail forwarding
-s string Use string as subject in outgoing mail
-u name Read name's mail instead of your own
-v Invoke sendmail with the -v flag

Notes: -T, -tI, -h, and -r are not for human use.

THERANDMH
MESSAGE HANDLING

SYSTEM:
USER'S MANUAL

UCI/UCB Version

Marshall T. Rose
John L. Romine

Based on the original manual by
Borden, Gaines, and Shapiro

April 20, 1986
6.4 #2[UCI]

CONTENTS

READ THIS

FOREWORD .. ii

ACKNOWLEDGMENTS ... iii

PREFACE ... iv

SUMMARY .. v

Section

1. INTRODUCTION .. .

2. OVERVIEW•....................•.......... "' .. . 3

3. TUTORIAL 5

4. DETAILED DESCRIPTION ... ~... 7

THE USER PROFILE .. 7

MESSAGE NAMING .. 9

OTHER MH CONVENTIONS ... 10

MH COMMANDS ;.. 11
ALI .. 12
ANNO .. 13
BURST ... 14

COMP ... 16
DIST ... 18
FOLDER .. 20
FORW .. 23
INC ... 26
MARK .. 28
MHL ... 30
MHMAIL ~.. 34
MHOOK ~... 35
MHPATH' ... 39
MSGCHK ... 41

MSH ... 42
NEXT ... 45
PACKF ... 46

PICK ... 47
PREY .. 51
PROMPTER .. 52
RCVSTORE ... 54
REFILE .. 55
REPL .. 57
RMF ... 60
RMM .. 61
SCAN .. 62
SEND .. 64
SHOW .. 66
SORTM .. 68
VMH ... :............................... 69
WHATNOW ... 71
WHOM ... 73

MORE DETAILS ... 74
MH-ALIAS .. 75
MH-FORMAT ... 78
MH-MAIL ... ; ;.. 82
MH-PROFILE 85
AP ... :....... 91
CONFLICT .. 93
DP ... 94
INSTALL-MH .. 95
POST .. 96

5. REPORTING PROBLEMS ... 98

6. ADVANCED FEATURES .. 99

USER-DEFINED SEQUENCES .. 99
Pick and User-Defined Sequences .. 99
Mark and User-Defined Sequences ... 100
Public and Private User-Defined Sequences .. 100
Sequence Negation ... 100
The Previous Sequence 101
The Unseen Sequence .. 101

COMPOSITION OF MAIL ... 101
The Draft Folder 102
What Happens if the Draft Exists ... 103
The Push Option at What now? Level............................. 104
Options at What now? Level............... 104
Digests 1 04

FOLDER HANDLING ... 105
Relative Folder Addressing 106

The Folder-Stack 106

Appendix
A. Command Summary '.. 107
B. Message Name BNF .. 110

REFERENCES III

READ THIS

Although the MH system was originally developed by the Rand Corporation, and is now in the
public domain, the Rand Corporation assumes no responsibility for MH or this particular version of
MH.

In addition, the Regents of the University of California issue the following dis~laimer in regard
to the UCI/UCB version of MH:

"Although each program has been tested by its contributor, no warranty, express or implied,
is made by the contributor or the University of California, as to the accuracy and functioning
of the program and related program material, nor shall the fact of distribution constitute any
such warranty, and no responsibility is assumed by the contributor or the University of Cali
fornia in connection herewith."

This version of MH is in the public domain, and as such, there are no real restrictions on its
use. The MH source code and documentation have no licensing restrictions whatsoever. As a cour
tesy, the authors ask only that you provide appropriate credit to the Rand Corporation and the
University of California for having developed the software.

MH is a software package that is supported neither by the Rand Corporation nor the University
of California. However, since we do use the software ourselves and plan to continue using (and.
improving) MH, bug reports and their associated fixes should be reported back to us so that we may
include ~hem in future releases. The current computer mailbox for MH is Bug-MH@UCI.EDU (in
the ARPA Internet), and ••. !uc:bvax!ucivax!bug-mh (UUCP). Presently, there are. two Internet discus
sion groups, MH-Users@UCI.EDU and MH-Workers@UCI.EDU. If there is sufficient interest.
corresponding U senet news groups may be established along with the appropriate gateways.

The Rand· MH Message Handling System USD:8-i

FOREWORD

This document describes the Rand MH Message Handling System. Its primary purpose is to
serve as a user's manual. It has been heavily based on a previous version of the manual, prepared by
Bruce Borden, Stockton Gaines, and Norman Shapiro.

MH is a particularly novel system, and thus it is often more prone to change than other pieces
of production software. As such, some specific points in this manual may' not be correct in the future.
In all cases, the on-line sections of this manual, available through the UNIX I man command, should
present the most current information.

When reading this document as a user's manual, certain sections are more interesting than oth
ers. The Preface and Summary are not particularly interesting to those interested in learning MH.
The Introduction is slightly more interesting, as it touches upon the organization of the remainder of
this document. The most useful sections are the Overview, Tutorial, and Detailed Description. The
Overview should be read by all MH users, regardless of their expertise (beginning, novice, advanced,
or hacker). The Tutorial should be read by all beginning and novice MH users, as it presents a nice
description of the MH system. The Detailed Description should be read by the day-to-day user of
MH, as it spells out all of the realities of the MH system. The Advanced Features section discusses
some powerful MH capabilities for advanced users. Appendix A is particularly useful for novices, as
it summarizes the invocation syntax of all the MH commands.

There are also' several other documents which may be useful to you: The Rand MH Message
Handling System: Tutorial, which is a tutorial for MH; The Rand MH Message Handling System: The
UCl BBoards Facility, which describes the BBoards handling under MH; MH.5: How to process 200
messages a day and still get some real work done,which was presented at the 1985 Summer Usenix
Conference and Exhibition in Portland, Oregon; MH: A Multifarious User Agent, which has been
accepted for publication by Computer Networks; MZnet: Mail Service for Personal Micro-Computer
Systems, which was presented at the First International Symposium on Computer Message Systems in
Nottingham, U.K.; and, Design of the TTl Prototype Trusted Mail Agent, which describes a
proprietary "trusted" mail system built on MH. All of these documents exist in the mh.6 distribution
sent to your site. There's also a document, Changes to the Rand MH Message Handling System:
MH.6, which describes user-visible changes made to MH since the last major release.

This manual is very large, as it describes a large, powerful system in gruesome detail. The
important thing to remember is:'

DON'T PANIC2

As explained in the tutorial, you really need to know only 5 commands to handle most of your mail.

Very advanced users may wish to consult The Rand MH Message Handling System:
Administrator's Guide, which is also present in the mh.6 distribution sent to your site.

I UNIX is a trademark of AT&T Bell Laboratories.

~ Note the large. friendl.v letters.

USD:8-ii The Rand MH Message Handling System

ACKNOWLEDGMENTS

The MH system described herein is based on the original Rand MH system. It has been exten
sively developed (perhaps too much so) by Marshall T. Rose and John L. Romine at the University of
California, Irvine. Einar A. Stefferud, Jerry N. Sweet, and Terry P. Domae provided numerous
suggestions to improve the UeI version of MH. Of course, a large number of people have helped
MHI along. The list of "MH immortals" is too long to list here. However, Van Jacobson deserves a
special acknowledgement for his tireless work in improving the performance of MH. Some programs
have been speeded-up by a factor of 10 or 20. All of users of MH, everywhere, owe a special thanks
to Van.

This manual is based on the original MH manual written at Rand by Bruce Borden, Stockton
Gaines, and Norman Shapiro.

The Rand MH Message Handling System USD:8-iii

PREFACE

This report describes a system for dealing with messages transmitted on a computer. Such mes
saaes might originate with other users of the same computer or might come from an outside source
through a network to which the user's computer is connected. Such computer-based message systems
are becoming increasingly widely used, both within and outside the Department of Defense.

The message handling system MH was developed for two reasons. One was to investigate some
research ideas concerning how a message system might take advantage of the architecture of the
UNIX time-sharing operating system for Digital Equipment Corporation PDP-II and VAX comput
ers, and the special features of UNIX's command-level interface with the user (the "shell"). The
other reason was to provide a better and more adaptable base than that of conventional designs on
which to build a command and control message system. The effort has succeeded in both regards,
although this report mainly describes the message system itself and how it fits in with UNIX.

The present report should be of interest to three groups of readers. First, it is a complete refer
ence manual for the users of MH. Second, it should be of interest to those who have a general
knowledge of computer-based message systems, both in civilian and military applications. Finally. it
should be of interest to those who build large subsystems that interface with users, since it illustrates
a new approach to such interfaces.

The original MH system was developed by Bruce Borden, using an approach suggested by Stock
ton Gaines and Norman Shapiro. Valuable assistance was provided by Phyllis Kantar in the later
stages of the system's implementation. Several colleagues contributed to. the ideas included in this
system, particularly Robert Anderson and David Crocker. In' addition, valuable. experience in mes
sage systems, ·and a valuable source of ideas, was available to us in the form of a previous message
system for UNIX called MS, designed at Rand by David Crocker.

This report was originally prepared as part of the Rand project entitled "Data Automation
Research", sponsored by Project AIR FORCE.

USD:8-iv The Rand MH Message Handlin. System

SUMMARY

Electronic communication of text messages is becoming commonplace. Computer-based mes
sage systems-software packages that provide tools for dealing with messages-are used in many con
texts. In particular, message systems are becoming increasingly important in command and control
and intelligence applications ..

This report describes a message handling system called MH. This system provides the user with
tools to compose, send, receive, store, retrieve, forward, and reply to messages. MH has been built on
the UNIX time-sharing system, a popular operating system developed for the DEC PDP-II and VAX
classes of computers.

A complete description of MH is given for users of the system. For those who do not intend to
use the system, this description gives a general idea of what a message system is like. The system
involves some new ideas about how large subsystems can be constructed.

The interesting and unusual features of MH include the following: The user command interface
to MH is the UNIX "shell" (the standard UNIX command interpreter). Each separable component
of message handling, such as message composition or message display, is a 'separate command. Each
program is driven from and updates a private user environment, which is stored as a file between pro"
gram invocations. This private environment also contains information to "custom tailor" MH to the
individual's tastes. MH stores each message as a' separate file under UNIX, and it utilizes the tree
structured UNIX file system to organize. groups of files within separate directories or "folders". All of.
the UNIX facilities for dealing with files and dire~ories, such as renaming,. copying, deleting, catalog
ing, off-line printing, etc;, are applicable to messages and directories of messages (folders). Thus,
important capabilities needed in a message system are available in MH without the need (often seen
in other message systems) for code that duplicates the facilities of the supporting operating system. It
also allows users familiar with the shell to use MH with minimal effort.

The Rand MH Message Handlhig System USD:8-v

1. INTRODUCTION

Although people can travel cross-country in hours and can reach others by telephone in seconds,
communications still depend heavily upon paper, most of which is distributed through the mails.

There are several major reasons for this continued dependence on written documents. First, a
written document may be proofread and corrected prior to its distribution, giving the author com
plete control over his words. Thus, a written document is better than a telephone conversation in this
respect. Second, a carefully written document is far less likely to be misinterpreted or poorly
translated than a phone conversation. Third, a signature offers reasonable verification of authorship,
which cannot be provided with media such as telegrams.

However, the need for fast, accurate, and reproducible document distribution is obvious. One
solution in widespread use is the telefax. Another that is rapidly gaining popularity is electronic mail.
Electronic mail is similar to telefax in that the data to be sent are digitized, transmitted via phone
lines, and turned back into a document at the receiver. The advantage of electronic mail is in its
compression factor. Whereas a telefax must scan a page in very fine lines and send all of the black
and white information, electronic mail assigns characters fixed codes which can be transmitted as a
few bits of information. Telefax presently has the ·advantage of being able to transmit an arbitrary
page, including pictures, but electronic mail is beginning to deal with this problem. Electronic mail
also integrates well with current directions in office automation, allowing docum~nts prepared with
sophisticated e9uipment at one site to be quickly transferred and printed· at another site. .

Currently, most electronic mail is intraoi'ganizational, with mail transfer remaining within one
computer. As computer networking becomes more common, hQwever, it is becoming more feasible to
communicate with anyone whose computer can be linked to your own via a network.

The pioneering efforts on general-purpose electronic mail were by organizations using the 000
ARP Anet[1]. The capability to send messages between computers existed before the ARPAnet was
developed, but it was used only in limited ways. With the advent of the ARPAnet, tools began to be
developed which made it convenient for individuals or organizations t<;> distribute messages over
broad geographic areas, using diverse computer facilities. The interest and activity in message sys
tems has now reached such proportions that steps have been taken within the 000 to coordinate and
unify the development of military message systems. The use of electronic mail is expected to increase
dramatically in the next few years. The utility of such systems in the command and control and intel
ligence environments is clear, and applications in these areas will probably lead the way. As the costs
for sending and handling electronic messages continue their rapid decrease, such uses can be expected
to spread rapidly into other areas and, of course, will not be limited to the 000.

A message system provides tools that help users (individuals or organizations) deal with mes
sages in various ways. Messages must be composed, sent, received, stored, retrieved, forwarded, and
replied to. Today's best interactive computer systems provide a variety of word-processing and infor
mation handling capabilities. The message handling facilities should be well integrated with the rest
of the system, so as to be a graceful extension of overall system capability.

The message system described in this report, MH, provides most of the features that can be
found in other message syst~ms and also incorporates some new ones. It has been built on the UNIX
time-sharing system[2], a popular operating system for the DEC PDP-III and VAX-II classes of
computers. A "secure" operating system similar to UNIX is currently being developed[3], and that
system will also run MH.

I PDP and V AX are trademarks of Digital Equipment Corporation.

The Raad MH Message Handling System USD:8-2

This report provides a complete description of MH and thus may serve as a user's manual,
although parts of the report will be of interest to nOD-users as well. Sections 2 and 3, the Overview
and Tutorial, present the key ideas of MH and will give those not familiar With message systems an
idea of what such systems are like.

MH consists of a set of commands which use some special files and conventions. The final sec
tion is divided into three parts. The irst part covers the information a user needs to know in addi
tion to the commands. Then, each of the MH commands is described in detail. Finally, other
obscure details are revealed. A summary of the commands is given in Appendix A, and the syntax of
message sequences is given in Appendix B.

A novel approach has been taken in the design of MH. Instead of creating a large subsystem
that appears as a single command to the user (such as MS[4]), MH is a collection of separate com
mands which are run as separate programs. The file and directory system of UNIX are used directly.
Messages are stored as individual files (datasets), and collections of them are grouped into directories.
In contrast, most other message systems store messages in a complicated data structure within a
monolithic file. With the MH approach, UNIX commands can be interleaved with commands invok
ing the functions of the message handler. Conversely, existing UNIX commands can be used in con
nection with messages. For example, all the usual UNIX editing, text-formatting, and printing facili
ties can be applied directly to individual messages. MH, therefore, consists of a relatively small
amount of new code; it makes extensive use of other UNIX software to pf9vide the capabilities found
in other message systems.

2. OVERVIEW

There are three main aspects of MH : the way messages are stored (the message database),
the user's profile (which directs how certain actions of the message handler take place), and the com
mands for dealing with messages.

Under MH, each message is stored as a separate file. A user can take any action with a message
that he could with an ordinary file in UNIX. A UNIX directory in which messages are stored is
called a folder. Each folder contains some standard entries to support the message-handling func
tions. The messages in a folder have numerical names. These folders (directories) are entries in a
particular directory path, described in the user profile, through which MH can find message folders.
Using the UNIX "link" facility, it is possible for one copy of a message to be "filed" in more than
one folder, providing a message index facility. Also, using the UNIX tree-structured file system, it is
possible to have a folder within a folder, nested arbitrarily deep, and have the full power of the MH
commands available.

Each user of MH has a user profile, a file in his $HOME (initial login) directory called
.mh-profile. This profile contains several pieces of information used by the MH commands: a path
name to the directory that contains the message folders and parameters that tailor MH commands to
the individual user's requirements. There is also another file, called the' user context, which cont .. .ins
information concerning which folder the user last referenced (the "current" folder). It also contains
most of the necessary state information concerning how the user is dealing with his messages, ena
bling MH to be implemented as a set of individual UNIX commands, in· contrast to the usual
approach of a monolithic subsystem. .

In MH, incoming mail is appended to the end of a file in a system spooling area for the user.
This area is called the mail drop directory, and the file is called the user's mail drop. Normally when
the user logins in, s/he is informed of new mail (or the MH program msgchk may be run). The user
adds the new messages to his/her collection of MH messages by invoking the command inc. The inc
(incorporate) command adds the new messages to a folder called ·'inbox", assigning them names
which are consecutive integers starting with the next highest integer available in inbox. inc also pro
duces a scan summary of the messages thus incorporated. A folder can be compacted into a single
file, for easy storage, by using the packf command. Also, messages within a folder can be sorted by
date and time with the sortm command.

There are four commands for examining the messages in a folder: show, prev, next, and scan.
The show command displays a message in a folder, prev displays the message preceding the current
message, and next displays the message following the current message. MH lets the user choose the
program that displays individual messages. A special program, mhl, can be used to display messages
according to the user's preferences. The scan command summarizes the messages in a folder, nor
mally producing one line per message, showing who the message is from, the date, the subject, etc.

The user may move a message from one folder to another with the command refile. Messages
may be removed from a folder by means of the command rmm. In addition, a user may query what
the current folder is and may specify that a new folder become the current folder, through the com
mand folder. All folders may be summarized with the folders command. A message folder (or sub
folder) may be removed by means of the command rmf

A set of messages based on content may be selected by use of the command pick. This com
mand searches through messages in a folder and selects those that match a given set of criteria.
These messages are then bound to a "sequence" name for use with other MH commands. The mark
command manipulates these sequences.

USD:8-3 The Rand MH Message Handling System

The Rand MH Message HandBng System USD:8-4

There are five commands enabling the user to create new messages and send them: camp, dist,
/orw, repJ, and send. The camp command provides the facility for the user to compose a new mes
sage; dist redistributes mail to additional addressees; /orw enables the user to forward messages; and
repJ facili.tates the generation of a reply to an incoming message. The last three commands may
optionally annotate the original message. Messages may be arbitrarily annotated with the anno com
mand. Once a draft has been constructed by one of the four above composition programs, a
user-specifiable program is run to query the user as to the disposition of· the draft prior to sending.
MH provides the simple whatnow program to start users off. If a message is not sent directly by one
of thest commands, it may be sent at a later time using the command send. MH allows the use of
any UNIX editor when composing a message. For rapid entry, a special editor, prompter, is pro
vided. For programs, a special mail-sending program, mhmail, is provided.

MH supports a personal aliasing facility which gives users the capability to considerably shorten
address typein and use meaningful names for addresses. The ali program can be used to query MH
as to the expansion of a list of aliases. After composing a message, but prior to sending, the whom
command can be used to determine exactly who a message would go to.

MH provides a natural interface for telling the user's shen the names of MH messages and fold
ers. The mhpath program achieves this capability.

The burst command can be used to "shred" digests of messages into individual messages.

All af the elements summarized above are described in more detail in the following sections.
Many of the normal facilities of UNIX provide. additional capabilities. for dealing with messages i~
various ways. For example, it is possible to print messages on the line-printer without requiring any
additional code within MH . Using standard UNIX facilities, any terminal output can 1)e redirected
to a file for repeated or future viewing.· In general, tbe flexibility and capabilities .of the UNIX inter~
fac~ with the user are preserved as a result of the integration of MH into the UNIX .struct~re.

3. TUTORIAL

This tutorial provides a brief introduction to the MH commands. It should be sufficient to
allow the user to read his mail, do some simple manipulations of it, and create and send messages.

A message has two major pieces: the header and the body. The body consists of the text of the
message (whatever you care to type in). It follows the header and is separated from it by an empty
line. (When you compose a message, the form that appears on your terminal shows a line of dashes
after the header. This is for convenience and is replaced by an empty line when the message is sent.)
The header is composed of several components, including the subject of the message and the person
to whom it is addressed. Each component starts with a name and a colon; components must not start
with a blank. The text of the component may take more than one line, but each continuation line
must start with a blank. Messages typically have "To:", "cc:", and "Subject:" components. When
composing a message, you should include the "To:" and "Subject:" components; the "cc:" (for people
you want to send copies to) is not necessary.

The basic MH commanQs are inc, scan, show, next, prev, rmm, comp, and repl. These are
described below.

inc

When you get the message "You have mail", type the command inc. You will get a "scan list
ing" such as:

1+ 7/13 Cas revival of measurement work
8 101 9 Norm NBS people and publications
9 11126 To:norm question «Are there any functions

This shows the messages you received since the last time you executed this command (inc adds
these new messages to your inbox folder). You can see this list again, plus a list of any other mes
sages you have, by using the scan command.

scan

The scan listing shows the message number, followed by the date and the sender. (If you are the
sender, the addressee in the "To:" component is displayed. You may send yourself a message by
including your name among the "To:" or "cc:" addressees.) It also shows the message's subject; if the
subject is short, the first part of the body of the message is included after the characters «.

show

This command shows the current message, that is, the first one of the new messages after an inc.
If the message is not specified by name (number), it is generally the last message referred to by an
MH command. For example, .

show 5 will show message 5.

You can use the show command to copy a message or print a message.

USD:8-5 The Rand MH Message Handling System

TIle Rand ·MH Message Handling System USD:8-6

show > x will copy the message to file x.
show I ipr will print the message, usinc the ipr command.
next will show the message that follows the current message.
prev will show the message previous to the current message.
rmm will remove the ~rrent message.
rmm 3 will remove message 3.

camp
The camp command puts you in the editor to write or edit a message. Fill in or delete the

"To:", "cc:", and "Subject:" fields, as appropriate, and type the body of the message. Then exit nor
mally from the editor. You will be asked "What now?". Type a carriage return to see the options.
Typing send will cause the message to be sent; typing quit will cause an exit from camp, with the mes
sage draft saved.

If you quit without sending the message, it will be saved in a file called <name>/Mailldraft
(where <name> is your SHOME directory). You can resume editing the message later with
"comp -use"; or you can send the message later, using the send command.

camp -editor prompter
• This command uses a different editor and is useful for preparing "quick and dirty" messages. It

prompts you for each component of the header. Type the information for that component, or type a
carriage return to omit the component. After that, type the body of the message. Backspacing is the
only form of editing allowed wit.h this editor. When the body is complete, type a carriage return fol
lowed ·by <EOT> (usually <CTRL-O». This completes the initial preparation of the message; from
then on, use the same pr.ocedures as with comp (above). .

repi
repl n

This command makes up an initial· message form with a header that is appropriate for replying
to an existing message. The message being answered is the current message if no message number is
mentioned, or n if a number is specified. After the header is completed, you can finish the message as
in camp (above).

This is enough information to get you going using MH. There are more commands, and the
commands described here have more features. Subsequent sections explain MH in complete detail.
The system is quite powerful if you want to use its sophisticated features, but the foregoing com
mands suffice for sending and receiving messages.

There are numerous additional capabilities you may wish to explore. For example, the pick
command will select a subset of messages based on specified criteria such as sender andlor subject.
Groups of messages may be designated, as described in Sec. IV, under Message Naming. The file
.mh..profile can be used to tailor your use of the message system to your needs and preferences, as
described in Sec. IV, under The User Profile. In general, you may learn additional features of the sys
tem selectively, according to your requirements, by studying the relevanf sections of this manual.
There is no need to learn all the details of the system at once.

4. DETAILED DESCRIPTION

This section describes the MH system in detail, including the components of the user profile, the
conventions for message naming, and some of the other MH conventions. Readers who are generally
familiar with computer systems will be able to follow the principal ideas, although some details may
be meaningful only to those familiar with UNIX.

THE USER PROFILE

The first time an MH command is issued by a new user, the system prompts for a "Path" and
creates an MH "profile".

Each MH user has a profile which contains tailoring information for each individual program.
Other profile entries control the MH path (where folders and special files are kept), folder and mes
sage protections, editor selection, and default arguments for each MH program. Each user of MH
also has a context file which contains current state information for the MH package (the location of
the context file is kept in the user's MH directory, or may be named in the user profile). When a
folder ber"mes the current folder, it is recorded in the user's context. (Other state information is
kept in the context file, see the manual entry for mh-profile (5) for more details.) In general, the term
"profile entry" refer to entries in either the profile or context file. Users of MH needn't worry about
the distinction, MH handles these things automatically.

The MH profile is stored in the file .mh_profile in the user's SHOME directoryl. It has the for
mat of a message without any body. That is, each profile entry is on one line, with a keyword fol
lowed by a colon (:) followed by text particular to the keyword.
... This file must not have blank lines.
The keywords may have any combination of upper and lower case. (See the information of mh-mail
later on in this manual for a description of message formats.)

For the average MH user, the only profile entry of importance is "Path". Path specifies a direc
tory in which MH folders and certain files such as "draft" are found. The argument to this keyword
must be a legal UNIX path that names an existing directory. If this path is not absolute (i.e., does
not begin with a /), it will be presumed to start from the user's SHOME directory. All folder and
message references within MH will relate to this path unless full path names are used.

Message protection defaults to 644, and folder protection to 711. These may. be changed by
profile entries "Msg-Protect" and "Folder-Protect", respectively. The argument to these keywords is
an octal number which is used as the UNIX file model.

When an MH program starts running, it looks through the user's profile for an entry with a key
word matching the program's name. For example, when comp is run, it looks for a "camp" profile
entry. If one is found, the text of the profile entry is used as the default switch setting until all
defaults are overridden by explicit switches passed to the program as arguments. Thus the profile
entry "comp: -form standard.list" would direct comp to use the file "standard.list" as the message
skeleton. If an explicit form switch is given to the comp command, it will override the switch
obtained from the profile.

I By defining the environment variable $MH, you can specify an alternate profile to be used by MH commands.

2 See chmod (1) in the UNIX Programmer's Manual (5].

USD:8-7 The Rand MH Message Handling System

The Rand MH Message Handling System USD:8-8

In UNIX, a program may exist under several names, either by linking or aliasing. The actual
invocation name is used by an MH program when scanning for its profile defaults3• Thus, each MH
program may have several names by which it can be invoked, and each name may have a different set
of default switches. For example, if comp is invoked by the name icomp, the profile entry "icomp"
will control the default switches for this invocation of the comp program. This provides a powerful
definitional facility for commonly used switch settings.

The default editor for editing within comp, rep/, Jorw, and dist, is usually prompter, but might be
something else at your site, such as lusrlucblex or Ibinle. A different editor may be used by specify
ing the profile entry "Editor: ". The argument to "Editor" is the name of an executable program or
shell command file which can be found via the user's SPATH defined search path, excluding the
current directory. The "Editor:" profile specification may in tum be overridden by a
'-editor <editor>' profile switch associated with comp, repl, Jorw, or dist. Finally, an explicit editor
switch specified with any of these four commands will have ultimate precedence.

During message composition, more than one editor may be used. For example, one editor (such
as prompter) may be used initially, and a second editor may be invoked later to revise the message
being composed (see the discussion of comp in Section 5 for details). A profile entry
"<lasteditor>-next: <editOr>" specifies the name of the editor to be used after a particular editor.
Thus "comp: -e prompter" causes the initial text to be collected by prompter, and the profile entry
"prompter-next: ed" names ed as the editor to be invoked for the next round of editing.

Some of the MH commands, such as show, can be used on message folders owned by others, if
those folders are readable. However, you cannot write in someone else's folder. All the MH com
mand actions not requiring write permission may be used with a "read-only" folder.

Table 1" lists examples of some of the currently defined profile entries, typical arguments, and
the programs that reference the entries. .

3 Unfortunately, the shell does not preserve aliasing information when calling a program. hence if a program is invoked
by an alias different than its name, the program will examine the profile entry for its name, not the alias that the user invoked
it as. The correct solution is to create a (soft) link in your $HOMElbin directory to the MH program of your choice. By giving
this link a different name, you can use an alternate set of defaults for the command.

USD:8-9 The Rand MH Message Handling System

Table I

PROFILE COMPONENTS

Keyword and Argument

Path: Mail
Current-Folder: inbox
Editor: /usr/ucb/ex
Msg-Protect: 644
Folder-Protect: 711
<program>: default switches
prompter-next: ed

MH Programs that
use Component

All
Most
comp, dist, Jorw, repl
inc
inc, pick, refile
All
comp, dist, Jorw, repi

Path should be present. Current-Folder is maintained automatically by many MH commands
(see the Context sections of the individual commands in Sec. IV). All other entries are optional,
defaulting to the values described above.

MESSAGE NAMING

Messages may be referred to explicitly or implicitly when using MH commands. A formal syn..,
tax of message names is given in Appendix B, but the following description should be sufficient for
most MH users. Some details of message naming that apply only to certain commands are included
in the description of those commands.

Most of the MH commands accept arguments specifying one or more folders, and one or more
messages to operate on. The use of the word "msg" as an argument to a command means that
exactly one message name may be specified. A message name may be a number, such as 1, 33, or
234, or it may be one of the "reserved" message names: first, last, prev, next, and cur. (As a short
hand, a period (.) is equivalent to cur.) The meanings of these names are straightforward: "first" is the
first message in the folder, "last" is the last message in the folder, "prev" is the message numerically
previous to the current message; "next" is the message numerically following the current message;
"cur" (or ".") is the current message in the folder. In addition, MH supports user-de fined-sequences;
see the description of the mark command for more information.

The default in commands that take a "msg" argument is always "cur".

The word "msgs" indicates that several messages may be specified. Such a specification consists
of several message designations separated by spaces. A message designation is either a message name
or a message range. A message range is a specification of the form name l-name2 or name 1 :n, where
namel and name2 are message names and n is an integer. The first form designates aU the messages
from namel to name2 inclusive; this must be a non-empty range. The second form specifies up to n
messages, starting with namel if name I is a number, or first, cur, or next, and ending with namel if
name I is last or prev. This interpretation of n is overridden if n is preceded by a plus sign or a
minus sign; + n always means up to n messages starting with name I, and -n always means up to n
messages ending with name 1. Repeated specifications of the same message have the same effect as a
single specification of the message. Examples of specifications are:

The RaDdMH Message Handling System

1 57-11 22
first 6 8 next
first-I 0
last:5

USD:8-10

The message name "all" is a shorthand for "first-last", indicating all of the messages in the
folder.

In commands that accept "msgs" arguments, the default is either cur or all, depending on which
makes more sense.

In all of the MHcommands, a plus sign preceding an argument indicates a folder name. Thus,
"+inbox" is the name of the user's standard inbox. If an explicit folder argument is given to an MH
command, it will become the current folder (that is, the "Current-Folder." entry in the user's profile
will be changed to this folder). In the case of the reji./e command, which can have multiple output
folders, a new source folder (other than the default current folder) is specified by '-src + folder'.

OTHER MH CONVENTIONS

One very powerful feature of MH is that the MH commands may be issued from any current
directory, and the proper path to the appropriate folder(s) will be taken from the user's profile. If the
MH path is not appropriate for a specific folder or file, the automatic prepending of the MH path can
be avoided by beginning a folder or file name with I, or with .1 or .J component. Thus any specific
absolute path may be specified along with any path relative to the current working directory.

. Arguments to the various programs may be given in any order, with the exception of a few
switches whose arguments' must follow immediately, such as'-src. +folder' for reflle ..

Whenever an MH command prompts the user, the valid options win be listed in response to a
<RETURN>. (The first of the listed options is the default if end-of-file is encountered, such as from
a command file.) A valid response is any unique abbreviation of one of the listed options.

Standard UNIX documentation conventions are used in this report to describe MH command
syntax. Arguments enclosed in brackets ([» are optional; exactly one of the arguments enclosed
within braces ({ }) must be specified, and all other arguments are required. The use of ellipsis dots
(...) indicates zero or more repetitions of the previous item. For example, "+folder ... " would indi
cate that one or more "+folder" arguments is required and "[+folder ...]" indicates that 0 or more
"+ folder" arguments may be given.

MH departs from UNIX standards by using switches that consist of more than one character,
e.g. '-header'. To minimize typing, only a unique abbreviation of a switch need be typed; thus, for
'-header', '-hea' is probably sufficient, depending on the other switches the command accepts. Each
MH program accepts the switch '-help' (which must be spelled out fully) and produces a syntax
description and a list of switches. In the list of switches,parentheses indicate required characters.
For example, all '-help' switches will appear as "-(help)", indicating that no abbreviation is accepted.
Furthermore, the '-help' switch tells the version of the MH program you invoked.

Many MH switches have both on and off forms, such as '-formal' and '-noformal'. In many of
the descriptions which follow, only one form is defined; the other form, often used to nullify profile
switch settings. is assumed to be the opposite.

USD:s..ll The Rand MH Message Handling System

MHCOMMANDS

The MH package comprises several programs:

ali (1)
anno (1)
burst (1)
comp (1)
dist (1)
folder (1)
folders (1)
forw (I)
inc (1)
mark (1)
mhl (I)
mhmail (1)
mhook (1)
mhpath (1)
msgchk (1)
msh (I)
next (1)
packf (1)
pick (I)
prev (I)
prompter (1)
rcvst!Jre (1)
refile (1)
repl (1)
rmf (I)
rmm (I)
scan (1)
send (I)
show (1)
sortm (1)
vmh(1)
whatnow (1)
whom (1)

- list mail aliases
- annotate messages
- explode digests into messages
- compose a message
- redistribute a message to additional addresses
- setllist current folder/message
- list all folders
- forward messages
- incorporate new mail
- mark messages

. - produce formatted listings of MH messages
- send or read mail
- MH receive-mail hooks
- print full pathnames of MH messages and folders
- check for messages
- MH shell (and BBoard reader)
- show the next message
- compress a folder into a singlp. file
- select messages by content
- show the previous message
- prompting editor front end
- incorporate new mail asynchronously
- file messages in other folders
- reply to a message
- remove folder
- remove messages
- produce a one line per message scan listing
- send a message
- show (list) messages
- sort messages
- visual front-end to MH
- prompting front-end for send
- report to whom a message would go

These programs are described below. The form of the descriptions conforms to the standard
form for the description of UNIX commands.

AU(l) The Raad MH Messaae Handling System USD:8-12

NAME
ali - list mail aliases

SYNOPSIS
ali [-alias aliasfile] [-list] [-nolist] [-normalize) [-nonormalize] [-user] [-nouser] aliases ...

[-help]

DESCKIPTION

Files

Ali searches the named mail alias files for each of the given aliases. It creates Ii list of
addresses for those aliases, and writes that list on standard output; If the '-list' option is
specified. each address appears on a separate line; otherwise, the addresses are separated by
commas and printed on as· few lines as possible.

The '-user' option directs ali to perform its processing in an inverted fashion: instead of list
ing the addresses that each given alias expands to, ali will list the aliases that expand to each
given address. If the '-normalize' switch is given, ali will try to track down the official host-
name of the address. .

Each alias is processed as described in mh.;.mias (5).

SHOMEI.mh-profile
letc/passwd
letc/group

The user profile
List of users
List of groups

Profile Compoaeats
None

See Also

Defaults

Context

Bup

(mh.6)

mh-alias(S)

'-alias lusr/new/lib/mhiMailAliase(
'-nolist'
'-nonormalize'
'-nouser'

None

The '-user' option with '-nonormalize' is not entirely accurate, as it does not replace local
nicknames for hosts with their official site names.

MH UCI/UCB version

USD:8-13 The Rand MH Message Handling System ANNO(1)

NAME
anno - annotate messages

SYNOPSIS
anno [+folder] [msgsJ [-component field] [-inplace] [-noinplace] [-text body] [-help]

DESCRIPTION

Files

Anno annotates the specified messages in the named folder using the field and body. Annota
tion is optionally performed by dist, Jorw, and repl, to keep track of your distribution of, for
warding of, and replies to a message. By using anno, you can perform arbitrary annotations
of your own. Each message selected will be annotated with the lines

field: date
field: body

The '-inplace' switch causes annotation to be done in place in order to preserve links to the
annotated message.

The field specified should be a valid 822-style message field name, which means that it should
consist of alphanumerics (or dashes) only. The body specified is arbitrary text.

If a '-component field' is not specified when anna is invoked, an no will prompt the user for
the name of field for the annotation.

SHOME/.mh-profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

(mh.6)

Current-Folder:

dist (l), forw (l), repl (l)

'+folder' defaults to the current folder
'msgs' defaults to cur
'-noinplace'

If a folder is given, it will become the current folder. The first message annotated will become
the current message.

MH UCIIUCB version

BURST(l) The Rand MH Message Handling System VSD:8·14

NAME
burst - explode digests into messages

SYNOPSIS
burst [+folder] [msgs] [-inplace] [-noinplace] [-quiet] [-noquiet] [-verbose] [-noverbose]

[-help]

DESCRIPTION

Files

Burst considers the specified messages in the named folder to be Internet digests, and
explodes them in that folder.

If '-inplace' is given, each digest is replaced by the "table of contents" for the digest (the ori
ginal digest is removed). Burst then renumbers all of the messages following the digest in the
folder to make room for each of the messages contained within the digest. These messages
are placed immediately after the digest.

If '-noinplace' is given, each digest is preserved, no table of contents is produced, and the
messages contained within the digest are placed at the end of the folder. Other messages are
not tampered with in any way.

The • -quiet' switch directs burst to be silent about reporting messages that are not in digest
format.

The '-verbose' switch direocts burst to tell the user the general actions that it is taking to
explode the digest.

It turns out that burst works equally well on forwarded messages and blind-carbon-copies as
on Internet digests, provided that the former two were generated by forw or send.

$HOME/.mh-profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder

See Also

DeCaults

Imh.6)

Current-Folder:
Msg-Protect: To set mode when creating a new message

Proposed Standard for Message Encapsulation (aka RFC-934),
inc(1), msh(1), pack(I)

'+ folder' defaults to the current folder
'msgs' defaults to cur
'-noinplace'
'-noquiet'
'-noverbose'

MH VCI/VCB version

USD:8-1S The Rand MH Message Handling System BURST(1)

Context

Bags

Imh.6)

If a folder is given, it will become the current folder. If '-inplace' is given, then the first mes
sage burst becomes the current message. This leaves the context ready for a show of the table
of contents of the digest, and a next to see the first message of the digest. If '-noinplace' is
given, then the first message extracted from the first digest burst becomes the current message.
This leaves the context in a similar, but not identical, state to the context achieved when us
ing '-inplace'.

The burst program enforces a limit on the number of messages which may be burst from a sin
gle message. This number is on the order of 1000 messages. There is usually no limit on the
number of messages which may reside in the folder after the bursting.

Although burst uses a sophisticated algorithm to determine where one encapsulated message
ends and another begins, not all digestifying programs use an encapsulation algorithm. In de
generate cases, this usually results in burst finding an encapsulation boundary prematurely and
splitting a single encapsulated message into two or more messages. These erroneous digestify
ing programs should be fixed.

Furthermore, any text which appears after the last encapsulated message is not placed· in a
seperate message by burst. In the case of digestified messages, this text is usaUy an "End of
digest" string. As a result of this possibly un-friendly behavior on the part of burst, note that
when the '-inplace' option is used, this trailing information is lost. In practice, this is not a
problem since correspondents usually place remarks in text prior to the first encapsulated
message, and this information is not lost.

MH UCI/UCB version

COMP(1) The Rand MH Message Handling System USD:8·16

NAME
comp - cOmpose a message

SYNOPSIS
comp [+folder) [msg] [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder]

[-editor editor) [-noedit] [-file file] [-form formfile] [-use] [-nouse]
[-whatnowproc program] [-nowhatnowproc] [-help]

DESCRIPTION

Files

(mh.6J

Camp is used to create a new message to be mailed. It copies a message form to the draft
being composed and then invokes an editor on the draft (unless '-noedit' is given, in which
case the initial edit is suppressed).

The default message form contains the following elements:

To:
cc:
Subject:

If the file named "components" exists in the user's MH directory, it will be used instead of
this. form. The file specified by '-form formfile' will be used if given. You may also start
camp using the contents of an existing message as the for:m. If you supply either a '+ folder'
or 'msl' argument, that message will be used as the form. You may not supply both. a
'-form formfile' and a '+folder' or 'msg' argument. The line of dashes or a blank line must be
left between the header and· the body of the message for the message to be identified properly
when it is sent (see send (1). The switch '-use' directs camp to continue editing an already
started message. That is, if a comp (or dist, repl, or forw) is terminated without sending the
draft, the draft can be edited again via "comp -use".

If the draft already exists, comp will ask you as to the disposition of the draft. A reply of quit
will abort comp, leaving the draft intact; replace will replace the existing draft with the
appropriate form; list will display the draft; use will use the draft for further composition; and
refile +folder will file the draft in the given folder, and give you a new draft with the
appropriate form. (The '+folder' argument to refile is required.) .

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

The '-file file' switch says to use the named file as the message draft.

Upon exiting from the editor, comp will invoke the whatnow program. See whatno»' (1) for a
discussion of available options. The invocation of this program can be inhibited by using the
'-nowhatnowproc' switch. (In truth of fact, it is the whatnow program which starts the initial
edit. Hence, '-nowhatnowproc' will prevent any edit from occurring.)

lusr/new/lib/mh/components
or <mh-dir>!components
$HOME/.mh-profile
<mh-dir>/draft

The message skeleton
Rather than the standard skeleton
The user profile
The draft file

MH UCI/UCB version

USD:8-17 The Rand MH Message Handling System COMP(1)

Profile Components

Path: To determine the user's MH directory
To find the default draft-folder

See Also

Defaults

CODtext

Bugs

(mh.6J

Draft-Folder:
Editor:
Msg-Protect:
fileproc:
whatnowproc:

To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to ask the "What now?" questions

dist(1), forw(1), repl(1), send(1), whatnow(1)

'+folder' defaults to the current folder
'msg' defaults to the current message
, -nodraftfolder'
'-nouse'

None

If whatnowproc is whatnow, then comp uses a built-in whatnow, it does not actually run the
whatnow program. Hence, if you define your own whatnowproc, don't call it whatnow since
comp won't run it.

MH' UCIIUCB version

DIST(l} The Raud MH Message Handling System USD:8-18

NAME
dist - redistribute a message to"additional addresses

SYNOPSIS
disl [+folder] [msg] [-annotate] [-noannotate1 {-draftfolder +folder1 [-draftmessage msg]

{-nodraftfolder] [-editor editor] [-noedit) [-form formfile] [-inplace1 (-noinplace]
[-whatnowproc program) [-nowhatnowproc1 I-help]

DESCRJP110N

(mh.6)

Dist is similar to forw. It prepares the specified message for redistribution to addresses that
(presumably) are nol on the original address list.

The default message form contains the following elements:

Resent-To:
Resent-cc:

If the file named "distcomps" exists in the user's MH directory, it will be used -instead of this
form. In either case, the file specified by '-form formfile' will be used if given. The form
used will be prepended to the message being resent.

If the draft already exists, dist will ask you as to the disposition of the draft. A reply of quit
will abort· dist, leaving the draft intact; replace will replace· the existing draft wit~ a blank
skeleton; I:I1d list will display the draft.

Only those addresses in "Resent-To:", "Resent-cc:", and "Resent-Bee:" will be sent. Also, a
"Resent-Fcc: folder" will be honored (see send (1». Note that with dist, the draft should
contain only "Resent-xxx:" fields and no body. The headers and the body of the original
message are copied to the draft when the message is sent. Use care in constructing the
headers for the redistribution.

If the '-annotate' switch is given, the message being distributed will be annotated with the
lines:

Resent: date
Resent: addrs

where each address list contains as many lines as required. This annotation will be done only
if the message is sent directly from dist. If the message is not sent immediately from dist.
"comp -use" may be used to re-edit and send the constructed message, but the annotations
won't take place. The '-inplace' switch causes annotation to be done in place in order to
preserve links to the annotated message.

See comp (1) for a description of the '-editor' and '-noedit' switches. Note that while in the
editor, the message being resent is available through a link named "@" (assuming the default
whatnowproc). In addition. the actual pathname of the message is stored in the environment
variable Witalt, and the pathname of the folder containing the message is stored in the
environment variable Smhfolder.

The '-draftfolder . + folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

MH Vel/UCB version

USD:8-19 The Rand MH Message Handling System DIST(l)

Files

Upon exiting from the editor, dist will invoke the whatnow program. See whatnow (1) for a
discussion of available options. The invocation of this program can be inhibited by using the
'-nowhatnowproc' switch. (In truth of fact, it is the whatnow program which starts the initial
edit. Hence, '-nowhatnowproc' will prevent any edit from occurring.)

lusr/new/lib/mh/distcomps
or <mh-dir>/distcomps
$HOME/.miLprofile
<mh-dir>/draft

The message skeleton
Rather than the standard skeleton
The user profile
The draft file

Profile Components
Path: To determine the user's MH directory

To find the default current folder

See Also

Defaults

Context

History

Bugs

Imh.6)

Current-Folder:
Draft-Folder:
Editor:
fileproc:
whatnowproc:

To find the default draft-folder
To override the default editor
Program to refile the message
Program to ask the "What now?" questions

comp(1), forw(1)," repl(1), send(1), whatnow(1)

'+ folper' defaults to the current folder
'msg' defaults to cur
, -noannotate'
, -nodraftfolder'
'-noinplace'

If a folder is given, it will become the current folder. The message distributed will become
the current message.

Disl originally used headers of the form "Distribute-xxx:" instead of "Resent-xxx:". In order
to conform with the ARPA Internet standard, RFC-822, the "Resent-xxx:" form is now used.
Dis! will recognize "Distribute-xxx:" type headers and automatically convert them to
"Resent-xxx:" .

Dist does not rigorously check the message being distributed for adherence to the transport
standard, but post called by send does. The post program will balk (and rightly so) at poorly
formatted messages, and dis! won't correct things for you.

If whatnowproc is whatnow, then dist uses a built-in whatnow, it does not actually run the
whatnow program. Hence, if you define your own whatnowproc, don't call it whatnow since
dist won't run it.

If your current working directory is not writable, the link named "@" is not available.

MH VCI/UCB version

FOLDER(l) The Rand MH Message Handling System USD:8-20

NAME
folder, folders - setllist current folder/message

SYNOPSIS
folder (+folder] [msg) [-all] [-fast] [-nofast] [-header] [-noheader] [-pack] [-nopack]

[-recurse] [-norecurse] [-total] [-nototal] [-print] [-noprint] [-list1 [-nolist] [-push]
(-pop] (-help1

folders

DESCRIPTION

(mh.6)

Since the MH environment is the shell, it is easy to lose track of the current folder from day
to day.

When folder is given the '-print' switch (the default), the current folder and/or message may
be set, or all folders may be listed. When a '+folder' argument is given, this corresponds to a
"cd" operation in the CShell; when no '+folder' argument is given, this corresponds roughly
to a "pwd" operation in the CSheli.

Folder will list the current folder, the number of messages in it, the range of the messages
(low-high), and the current message within the folder, and will flag extra files if they exist.
An example of the output is:

inbox+ has 16 messages (3- 22); cur= 5.

If a '+folder' and/or 'msg' are specified, they will become the current folder andlor message.
Specifying '-all' will produce a line for each folder in the user's MH directory, sorted alpha
betically. These folders are preceded by the read-only folders, which occur as "atr-cur-"
entries in the user's MH context. For example,

Folder # of messages (range) cur msg (other files)
/fsdlrs/m/tacc has 35 messages (1- 35); cur= 23.
/mdiphyllMaillEP has 82 messages (1-108); cur= 82.
ft' has no messages.
inbox+ has 16 messages (3- 22); cur=
mh has 76 messages (1- 76); cur=
notes has 2 messages (1- 2); cur=
ucom has 124 messages (1-124); cur=

TOTAL= 339 messages in 7 folders

5.
70.

1.
6; (others) ..

The "+" after inbox indicates that it is the current folder. The "(others)" indicates that the
folder 'ucom' has files which aren't messages. These files may either be sub-folders, or files
that don't belong under the MH file naming scheme.

The header is output if either an '-all' or a '-header' switch is specified; it is suppressed by
'-noheader'. Also, if folder is invoked by a name ending with "s" (e.g., folders), '-all' is
assumed. A '-total' switch will produce only the summary line.

If a '+folder' andlor 'msg' is given along with the '-all' switch, folder will, in addition to set
ting the current folder and/or message, list the top-level folders for the current folder (with
'-norecurse') or list all folders under the current folder recursively (with '-recurse').

MH VCI/VCB version

VSD:8-21 The Rand MH Message Handling System FOLDER(l)

Files

If '-fast' is given, only the folder name (or names in the case of '-all') will be listed. (This is
faster because the folders need not be read.) .

The '-pack' switch will compress the message names in a folder, removing holes in message
numbering.

The '-recurse' switch will list each folder recursively. Use of this option effectively defeats
the speed enhancement of the '-fast' option, since each folder must be searched for sub fold
ers. Nevertheless, the combination of these options is useful.

If the specified (or default) folder doesn't exist, the user will be queried if the folder should be
created. (This is the easy way to create an empty folder for use later.)

The '-push' switch directs folder to push the current folder onto the folder-stack, and make
the '+folder' argument the current folder. If '+folder' is not given, the current folder and the
top of the folder-stack are exchanged. This corresponds to the "pushd" operation in the
CShell.

The '-pop' switch directs folder to discard the top of the folder-stack, after setting the current
folder to that value. No '+folder' argument is allowed. This corresponds to the "popd"
operation in the CShell. The '-push' switch and the '-pop' switch are mutually exclusive: the
last occurrence of either one overrides any previous occurrence of the other.

The '-list' switch directs folder to list the contents of theJolder-stack. No '+folder' argument
is allowed. After a successful '-push' or '-pop', the '-list' action is taken. This corresponds
to the "dirs" operation in the CShell.

$HOME/.mh-profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

(mh.6)

Current-Folder:
Folder-Protect:
Folder-Stack:
lsproc:

refile(1), mhpath(1)

To set mode when creating a new folder
To determine the folder stack
Program to list the contents of a folder

'+folder' defaults to the current folder
'msg' defaults to none
'-nofast'
'-noheader'
'-nototal'
'-nopack'
'-norecurse'
'-print' is the default if no '-list', '-push', or '-pop' is specified

If '+folder' andlor 'msg' are given, they will become the current folder and/or message.

MH VCIIVCB version

FOLDER(l) The Rand MH Message Handling System VSD:8-22

History

Imh.6)

In previous versions of MH, the '-fast' switch prevented context changes from occurring for
the current folder. This is no longer the case: if '+folder' is given, then folder will always
change the current folder to that.

MH vel/veB version

USD:8-23 The Rand MH Message Handling System FORW(l)

NAME
forw - forward messages

SYNOPSIS
forw [+folder] [msgs] [-annotate] [-noannotate} [-draftfolder +folder] [-draftmessage msg]

[-nodraftfolder] [-editor editor] [-noedit] [-filter filterfile] [-form formfile] [-format]
[-noformat] [-inplace} [-noinplace] [-whatnowproc program] [-nowhatnowproc]
[-help}

forw [+folder] [msgs] [-digest list] [-issue number] [-volume number]
[other switchGs for forw] [-help]

DESCRIPTION

(mh.6)

Forw may be used to prepare a message containing other messages. It constructs the new
message from the components file or ·-form formfile' (see comp), with a body composed of
the message(s) to be forwarded. An editor is invoked as in comp, and after editing is com
plete, the user is prompted before the message is sent.

The default message form contains the following elements:

To:
cc:
Subject:·

If the file named "forwcomps" exists in the user's MH directory, it will be used instead of this
form. In either case, the file specified by '-form formfile' will be used if given.

If the draft already exists, forw will ask you as to the disposition of the draft. A reply of quit.
will abort forw, leaving the draft intact; replace will replace the existing draft with a blank
skeleton; and list will display the draft.

If the '-annotate' switch is given, each message being forwarded will be annotated with the
lines

Forwarded: date
Forwarded: addrs

•

where each address list contains as many lines as required. This annotation will be done only
if the message is sent directly from forw. If the message is not sent immediately from forw,
"comp -use" may be used to re-edit and send the constructed message, but the annotations
won't take place. The '-inplace' switch causes annotation to be done in place in order to
preserve links to the annotated message.

See comp (l) for a description of the '-editor' and '-noedit' switches.

Although forw uses the '-form formfile' switch to direct it how to construct the beginning of
the draft, the '-filter filterfile', '-format', and '-noformat' switches direct forw as to how each
forwarded message should be formatted in the body of the draft. If '-noformat' is specified,
then each forwarded message is output exactly as it appears. If '-format' or '-filter filterfile' is
specified, then each forwarded message is filtered (re-formatted) prior to being output to the
body of the draft. The filter file for forw should be a standard form file for mhl, as forw will

MH UCI/UCB version

FORW(1) The Rod MH Message Handling System USD:8-24

Files

(mb.6)

invoke mhl to format the forwarded messages. The default message filter (what you get with
'-format') is:

width ... 80,overtlowtext-,overflowoffset= 10
leftadjust,compress,compwidth ... 9
From:
Date:formatfield ... "%«nodate{ text})%{ text} % I %(putstr(tws(text} »%> ..
To:
cc:
SUbject:
.
body:nocomponent,overflowotfset-O,noleftadjust,nocompress

If the file named "mhl.forward" exists in the user's MH directory, it will be used instead of
this form. In either case, the file specified by '-filter filterfile' will be used if given. To sum
marize: '-noformat' will reproduce each forwarded message exactly, '-format' will use mhl
and a default filtemle, "mhi.forward", to format each forwarded message. and '-filter filterfile'
will use the named filterfile to fonnat each forwarded message with mhl.

Each forwarded message is separated with an encapsulation delimiter so that when received,
the message is suitable for bursting by burst '(1).

For users of prompter (1)" by specifying prompter's '·prepend' switch in the .mh-profile file,
any commentary text is entered before the forwardeq messages. (A major win!)

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information. .

Upon exiting from the editor, forw will invoke the whatnow program. See whatnow (1) for a
discussion of available options. The invocation of this program can be inhibited by using the
'-nowhatnowproc'switch. (In truth of fact, it is the whatnow program which starts the initial
edit. Hence, '-nowhatnowproc' will prevent any edit from occurring.)

The '-digest list', '-issue number', and '-volume number' switches implement a digest facility
for MH. See the MH user's manual for more information.

lusr/newllib/mhlforwcomps
or <mh-dir>/forwcomps
lusr/new/lib/mhldigestcomps
or <mh-dir>/digestcomps
lusr/newllib/mhlmh1.forward
or <mh-dir>lmhl.forward
SHOMEI.mh-profile
<mh-dir>/draft

The message skeleton
Rather than the standard skeleton
The message skeleton if '-digest' is given
Rather than the standard skeleto~
The message filter
Rather than the standard filter
The user profile
The draft file

MH ueI/UCB version

USD:8-2S The Rand MH Message Handling System FORW(1)

Profile Components
. Path:

See Also

Defaults

Context

Bup

Imh.6}

Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

To determine the user's MH directory
To find the default current folder
To find the default draft-folder
To override the default editor
To sei mode when creating a new message (draft)
Program to refile the message
Program to filter messages being forwarded
Program to ask the "What now?" questions

Proposed Standard Jor Message Encapsulation (aka RFC-934),
comp(1), dist(I), repl(I), send(1), whatnow(I)

"+folder' defaults to the current folder
"msgs' defaults to cur
" -noannotate'
" -nodraftfolder'
"-noformat'
" -noinplace'

If a folder is given, it will become the current folder. The .first message forwarded will be
come the current message.' .

If whatnowproc is whatnow, then Jorw uses a built-in whatnow, it does not actually run the
whalnow program. Hence, if you define your own whatnowproc, don't call it whatnow since
Jorw won't run it.

When Jorw is told to annotate the messages it forwards, it doesn't actually annotate them until
the draft is successfully sent. If from the whatnowproc, you push instead of send, it's possible
to confuse Jorw by re-ordering the file (e.g., by using "folder -pack') before the message is suc
cessfully sent~ Dist and repl don't have this problem.

MH UCI/UCB version

INC(l) The Rand MH Message Handlillg System USD:8-26

NAME
inc - incorporate new mail

SYNOPSIS
inc [+folder] [-audit audit-file] [-noaudit] [-changecur] [-nochangecur) {-form formatftle]

(-format string] [-file name] [-silent] I-nosilent] {-truncatell-notruncate]
[-width columns] (-help)

DESCIlIPTlON

(mh.6]

Inc incorporates mail from the user's incoming mail drop into an MH folder. If '+folder'
isn't specified, the folder named "inbox" in the user's'" MH directory will be used. The new
messages being incorporated are assigned numbers starting with the next highest number in
the folder. If the specified (or default) folder doesn't exist, the user will be queried prior to its
creation. As the messages are processed, a scan listing of the new mail is produced.

If the user's profile contains a "Msg-Protect: nnn" entry, it will be used as the protection on
the newly created messages, otherwise the MH default of 0644 will be used. During all opera
tions on messages, this initially assigned protection will be preserved for each message, so
chmod(1) may be used to set a protection on an individual message, and its protection will be
preserved thereafter.

,If the switch '-audit audit-file' is specified (usually,as a,default switch in the profile), then inc
will append a header line ana a line per m~ssage to'the end of the specified audit-file with 'the
format:' ,

«inc» date
<scan line for first message>
<scan line for second message>

<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually, repl,
forw, comp, and dist may also produce audits to this (or another) file, perhaps with
"Message-Id:" information to keep an exact correspondence history. "Audit-file" will be in
the user's MH directory unless a full path is specified.

Inc will incorporate even improperly formatted messages into the user's MH folder, inserting
a blank line prior to the offending component and printing a comment identifying the bad
message.

In all cases, the user's mail drop will be zeroed, unless the '-notruncate' switch is given.

If the profile entry "Unseen-Sequence" is present and non-empty, then inc will add each of
the newly incorporated messages to each sequence named by the profile· entry. This is similar
to the "Previous-Sequence" profile entry supported by all MH commands which take 'msgs'
or 'msg' arguments. Note that inc will not zero each sequence prior to adding messages.

The interpretation of the '-form formatfile', '-format string', and '-width columns' switches is
the same as in scan (1).

By using the '-file name' .switch, one can direct inc to incorporate messages from a tile other
than the user's maildrop. Note that the name file will NOT be zeroed, unless the '-truncate'
switch is given.

MH VCI/UCB version

USD:8-27 The Rand MH Message Handling System INC(l) .

Files

If the environment variable $MAILDROP is set, then inc uses it as the location of the user's
maildrop instead of the default (the '·file name' switch still overrides this, however). If this
environment variable is not set, then inc will consult the profile entry "MaiIDrop" for this
information. If the value found is not absolute, then it is interpreted relative to the user's
MH directory. If the value is not found, then inc will look in the standard system location for
the user's maildrop.

The '-silent' switch directs inc to be quiet and not ask any questions at all. This is useful for
putting inc in the background and going on to other things.

$HOME/.mlLprofile
/usr/new/lib/mh/mtstailor
/usr/spooVmaiV$USER

The user profile
tailor file
Location of mail drop

Profile Components

Path: To determine the user's MH directory
To determine the user's mailboxes

See Also

Defaults

Context

Bugs

(mh.6]

Altemate-Mailboxes:
Folder-Protect: To set mode when creating a new folder
Msg-Protect:
Unseen-Sequence:

To set mode when creating a new message and audit-file
To name sequences denoting unseen messages

mhmail(1), scan(1), mh-mail(5), post(8)

'+folder' defaults to "inbox"
'-noaudit'
'-changecur'
'-format' defaulted as described above
'-nosilent'
'-truncate' if '-file name' not given, '-notruncate' otherwise
'-width' defaulted to the width of the terminal

The folder into which messages are being incorporated will become the current folder. The
first message incorporated will become the current message, unless the '-nochangecur' option
is specified. This leaves the context ready for a show of the first new message.

The argument to the '-format' switch must be interpreted as a single token by the shell that
invokes inc. Therefore, one must usually place the argument to this switch inside
double-quotes.

MH VCI/UCB version

-------------- -----

MARK.(1) ne RaDCI MH Message Handlin. System USD:8-18

NAME
mark - mark messages

SYNOPSIS
mark [+folder] [msgs] [-sequence name ...] [-add] [-delete) [-list] {-public] [-nopublic]

[-zero] [-nozerol[-help]

DESCIUPrION

The mark command manipulates message sequences. by adding or deleting message numbers
from folder-specific message sequences, or by listing those sequences and messages. A mes
sage sequence isa keyword, just like one of the "reserved" message names, -such as "first" or
"next". Unlike the "reserved" message names, which have a fixed semantics on a per-folder
basis, the semantics of a message sequence may be defined, modified, and removed by the
user. Message sequences are folder-specific, e.g., the sequence name "seen" in the context of
folder "+inbox" need not have any relation whatsoever to the sequence of the same name in
a folder of a different name.

Three action switches direct the operation of mark. These switches are mutually exclusive:
the last occurrence of any of them overrides any previous occurre~ce of the other two.

The '-add' switch tens mark to add messages to sequences or to create a new sequence. For
each sequence named via the '-sequence name' argpment (whid).must occur at least once) the

. messages named vi~ 'msgs' (which defaults to "eilr" if no'msgs' are given), are added to the
sequence .. The messages to be added need not be absent from the sequence. If the '-zero'
switch is specified. the seq.uence will be eD;lptied pnor to adding the messages. Hence,
'-add -zero' means that each sequence should be initialized to the indicated messages, while
'-add -nozero' means that each sequence should be appended to by the indicated messages.

(mh.6)

The '-delete' switch tells mark to delete messages from sequences, and is the dual of '-add'.
For each of the named sequences, the named messages are removed from the sequence.
These messages need not be already present in the sequence. If the '-zero' switch is specified,
then all messages in the folder are appended to the sequence prior to removing the messages.
Hence, '-delete -zero' means that each sequence should contain all messages except those
indicated, while '-delete -nozero' means that only the indicated messages should be removed
from each sequence. As expected, the command 'mark -sequence seen -delete all' deletes
the sequence "seen" from the current folder. .

When creating (or modifying) a sequence, the '-public' switch indicates that the sequence
should be made readable for other MH users. In contrast, the '-nopublic' switch indicates
that the sequence should be private to the user's MH environment.

The '-list' switch tells mark to list both the sequences defined for the folder and the messages
associated with those sequences. Mark will list each sequence named via '-sequence name'
(or all of them if '-sequence' isn't used), and the messages associated with that sequence. The
'-zero' switch does not affect the operation of '-list'.

The current restrictions on sequences are:

The name used to denote a message sequence must consist solely of alphabetic characters,
and can not be one of the "reserved" message names (e.g., "first", "cur", and so forth).

Only a certain number of sequences may be defined for a given folder. This number is

MH vel/UCB version

USD:8-29 The Rand MH Message Handling System MARK(1)

usually limited to lO.

The name used to denote a message sequence can not occur as part of a message range,
e.g., constructs like "seen:20" or "seen-lO" are forbidden.

FUes
SHOMEI.mh-profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

DeC.ults

Context

(mh.6)

Current-Folder:

pick (1)

'+ folder' defaults to the current folder
'-add' if'msgs' is specified, '-list' otherwise
'msgs' defaults to cur (or all if '-list' is specified)
'-nopublic' if the folder is read-only, '-public: otherwise
'-nozero'

If a fold~r is given, it will become the current folder.

MH VCI/UCB version

MHL(1) The Rand MH Message Haadling System USD:8-30

NAME
mhl - produce formatted listings of MH· messages

SYNOPSIS
/usr/newllib/mhlmhl [-bell] (-nobell1 [-clear] [-noclear] [-folder +folder] [;..form formfile]

[-length lines] [-width columns] [-moreproc program] [-nomoreproc] [files ...] [-help]

DESCRJPTION

Mhl is a formatted message listing program. It can be used as a replacement for more (1)
(the default showproc). As with more, each of the messages specified as arguments (or the
standard input) will be output. If more than one message file is specified, the user will be
prompted prior to each one, and a <RETURN> or <EOT> will begin the output, with
.<RETURN> clearing the screen (if appropriate), and <EOT> (usually CTRL-D) suppressing
the screen clear. An <INTERRUPT> (usually CTRL-C) will abort the current message out
put, prompting for the next message (if there is one), and a <QUIT> (usually CTRL-\) will
terminate the program (without core dump).

The '-bell' option tells mhl to ring the terminal's bell at the end of each page, while the
'-clear' option tells mhl to clear the scree at the end of each page (or output a formfeed after
each message). Both of these switches (and their inv"!TSe counterparts) take effect only if the
profile entry moreproc is defined but empty, and mhl is outputting to a terminal. If the

.' . moreproc entry is ·definedand non-empty, and mhl is outpu'ttingto a terminal, then mhl will.
cause the moreproc to be placed between the terminal and mhl and the switches are ignored.
Furthermore, if the '-clear' switch. is used and mhl's output is directed to a terminal, ·then mhl
will consUlt the STERM and STERMCAP environment variables to determine the user's ter
minal type in order to find out how to clear the screen. If the '-clear' switch is used and
mhl's output is not directed to a terminal (e.g., a pipe or a file), then mhl will send a formfeed
after each message.

(mh.6)

To override the default moreproc and the profile entry, use the '-moreproc program' switch.

The '-length length' and '-width width' switches set the screen length and width, respectively.
These default to the values indicated by STERMCAP, if appropriate, otherwise they default
to 40 and 80, respectively.

The default format file used by mhl is called mhl./ormat (which is first searched for in the
user's MH directory, and then sought in the /usr/new//ib/mh directory), this can be changed
by using the '-form formatftle' switch.

Finally. the '-folder +folder' switch sets the MH folder name, which is used for the "mes
sagename:" field described below. The environment variable Smhfolder is consulted for the
default value, which show, next, and prev initialize appropriately.

Mhl operates in two phases: 1) read and parse the format file, and 2) process each message
(file). During phase 1, an internal description of the format is produced as a structured fist.
In phase 2, this list is walked for each message, outputting message information under the for
mat constraints from the format file.

The "mhl.format" fomi file contains information controlling screen clearing, screen size,
wrap-around control, transparent text, component ordering, and component formatting.
Also, a list of components to ignore may be specified. and a couple of "special" components
are defined to provide added functionality. Message output will be in the order specified by

MH VCI/UCB version

USD:8-31 The Rand MH Message Handling System

the order in the format file.

Each line of mhl.format has one of the formats:

;comment
:cleartext
variable[, variable ...]
component: [variable, ...]

MHL(l)

A line beginning with a ';' is a comment, and is ignored. A line beginning with a ':' is clear
text, and is output exactly as is. A line containing only a ':' produces a blank line in the out
put. A line beginning with "component:" defines the format for the specified component, and
finally, remaining lines define the global environment.

For example, the line:

width- 80,length = 40,clearscreen,overflowtext = ••••• ,overflowoffset= 5

•
defines the screen size to be 80 columns by 40 rows, specifies that the screen should be cleared
prior to each page, that the overflow indentation is 5, and that overflow text should be flagged
with ".

Following are all of the cUrrent variables and their arguments. If they follow a component,
they apply ·only to that component, otherwise; their affect is global. Since the whole format is
parsed before any output processing, the last global switch setting for a variable applies to the
whole message if that variable is used in a global context (i.e., bell, clearscreen, width, length).

variable
width
length
offset
overflowtext

type
integer
integer
integer
string

overflowoffset integer
compwidth integer

uppercase

nouppercase
clearscreen
noclearscreen
bell
nobell
component

flag

flag
flaglG
flaglG
flaglG
flaglG
stringlL

nocomponent flag

center flag

nocenter Oag
leftadjust flag

noleftadjust flag

semantics
screen width or component width
screen length or component length
positions to indent "component: "
text to use at the beginning of an
overflow line
positions to indent overflow lines
positions to indent component text
after the first line is output
output text of this component in all
upper case
don't uppercase
clear the screen· prior to each page
don't c1earscreen
ring the bell at the end of each page
don't bell
name to use instead of "component" for
this component
don't output "component: " for this
component
center component on line (works for
one-line components only)
don't center
strip off leading whitespace on each
line of text
don't leftadjust

MH VCI/VCB version

MHL(l) The Rand MH Message Handling System USD:8-3l

'_L LI

compress
nocompress
formatfield
addrfield
datefield

flag
flag
string
flag
flag

change t;lewlines in text to spaces
don't compress
format string for this component
field contains addresses
field contains dates

To specify the value of integer-valued and string-valued variables, follow their name with an
equals-sign and the value. Intqer-valued variables are given decimal values, while
string-valued variables are given arbirtray text bracketed by double-quotes. If a value is
suffixed by "/G" or "/L", then its value is useful in a global-only or local-only context
(respectively).

A line of the form:

ignores-component, ...

specifies a list of components which are never output.

The component "MessageName" (case-insensitive) will output the actual message name (fil~
name) preceded by the folder name if one is specified or found in the environment. The for
mat is identical to that produced by the '-header' option to show.

The component "Extras"· will output all of the components of the message which were not
-matched by explicit components,- or included in the ignore list. _ If this component is not
specified, an ignore list is not needed since- all non-~pecified components will be ignored.

If "nocomponent" is NOT specified, then the component name will be output as it appears in
the format file.

The default format is:

: - using template mhI.format -
overflowtext= ••••• ,overflowoft'set= 5
leftadjust,compwidth-9
ignores-msgid,message-id,received
Date:formatfield= '%«nodate{ text})%(text} % I %(putstr(pretty {text}))%>"
To:
cc:

From:
Subject:

extras:nocomponent

body:nocomponent,overflowtext ... ,0verflowoft'set=O,noleftadjust

The variable "formatfield" specifies a format string (see mh-/ormat(5». The ~ariables
"addrfield" and "datefield" (which are mutually exclusive), control the interpretation of the
escapes.

By default, mhl does not apply any formatting string to fields containing address or dates (see
mh-mail (5) for a list of these fields). Note that this results in faster operation since mhl
must parse both addresses and dates in order to apply a format string to them. If desired.

....... ..1',... .. 1 .. ',... _____ .! __

USD:8-33 The Rand MH Message Handlinl System MHL(l)

mhl can be given a default format string for either address or date fields (but not both). To
do this, on a global line specify either the variable addrfteld or the variable datefield, along
with the variable formatfield.

lusr/newllib/mhlmhl.format
or <mh-dir>/mhl.format
SHOMEI.mlLprofile

The message template
Rather than the standard template
The user profile

PrufiIe COIII)IOIleDts

moreproc: Program to use as interactive front-end

See Also

Defaalts

CODtext

"Bap

(mh.6)

show(1), ap(8), dP(8)

'-bell'
'-noclear'
'-length 40'
'-width 80'

None

There should be some way to pass 'ben: and 'clear' information to the" front-end. . .

On hosts where MH was configured with the BERK option, address parsing is not enabled.

MH UCI/UCB version

MHMAlL(1) The Rand MH Message Handling System USD:8--34

NAME
mhmail - send or read mail

SYNOPSIS
mhmail (addrs ... I-body text] [-ce addrs ...] [-from addr] [-subject subject]] {-help]

DESClUP110N

FUes

MHmaii is intended as a replacement for the standard Bell mail program (bellmail (1», com
patible with MH. When invoked without arguments, it simply invokes inc (1) to incorporate
new messages from the user's maildrop. When one or more users is specified, a message is
read from the standard input and spooled to a temporary file. MHmail then invokes post (8)
with the name of the temporary file as its argument to deliver the message to the specified
user.

The '-subject subject' switch can be used to specify the "Subject:" field of the message. The
'-body text' switch can be used to specify the text of the message; if it is specified, then the
standard input is not read. Normally, addresses appearing as arguments are put in the "To:"
field. If the '-ce' switch is used, all addresses following it are placed in the "cc:" field.

By using '-from addr', you can specify the "From:" header of the draft. Naturally, post will
fill-in the. "Serider:'~ header correctly.

This program is intended fotthe use of programs such as 'at (1), which expect to send' mail
automatically to various users. Normally, real people (as opposed to the "unreal" ones)' will
prefer to use comp (1) and send (1) to send messages.

lusr/new/mh/inc
lusr/newllib/mh/post
Itmp/mhmail*

Program to incorporate a maildrop into a folder
Program to deliver a message
Temporary copy of message

Profile CompoaeDts
None

See Also
inc(1), post(8)

Defaults
None

CODtext

If inc is invoked, then inc's context changes occur.

(~h.6J MH Vel/VeB version

USD:8-35 The Rand MH Message Handling System MHOOK(l)

NAME.
mhook - MH receive-mail hooks

SYNOPSIS
$HOME/.maildelivery

lusr/new/lib/mh/rcvdist address ... [-help]

lusr/new/lib/mh/rcvpack file [-help]

lusr/new/lib/mh/rcvtty [command ...] [-help]

DESCRIPTION

A receive-mail hook is a program that is run whenever you receive a mail message. You do
NOT invoke the hook yourself, rather the hook is invoked on your behalf by SendMail, when
you include the line .

"I lusr/newllib/mh/slocal"
in your .forward file in your home directory.

The .maildelivery file, which is an ordinary ASCII file; controls how local delivery is per
formed .. This file is read by slocal.

The format of each line in the . maildelivery file is

field pattern action result smng

where

field:
The name of a field that is to be searched for a pattern. This is any field in the
headers of the message that might be present. In addition, the following special fields
are also defined:

pattern:

source: the out-of-band sender information
addr. the address that was used to cause delivery to the recipient
default: this matches only if the message hasn't been delivered yet
*: this always matches

The sequence of characters to match in the specified field. Matching is
case-insensitive but not RE-based.

action:
The action to take to deliver the message. This is one of

file or >:
Append the message to the file named by string. The standard maildrop
delivery process is used. If the message can be appended to the file, then this
action succeeds.

When writing to the file, a new field is added:

Delivery-Date: date

MH VCI/VCB version

MHOOK(1) ne Rand MH Messaae Handling System USD:8-36

which indicates the date and time that message was appended to the file.

pipe or I:
Pipe the message as the standard input to the command named by string,
using the Bourne shell sh (1) to interpret the string. Prior to giving the string
to the shell, it is expanded with the following built-in variables:

$(sender): the return address for the message
$(address): the address that was used to cause delivery to the recipient
$(size): the size of the message in bytes
$(reply-to):either the "Reply-To:" or "From:" field of the message
$(info): miscellaneous out-of-band information

When a process is invoked, its environment is: the user/group id:s are set to
recipient's id:s; the working directory is the recipient's directory; the umask is
0077; the process has no /dev/tty; the standard input is set to the message; the
standard output and diagnostic output are set to /dev/nul1; all other
file-descriptors are closed; the environment variables SUSER, SHOME,
$SHELL are set appropriately, and no other environment variables exist.

The process is given a certain amount of time to execute. If the process does
not exit within this limit, the process will be terminated with extreme preju
dice. The amount of time is calculated as «size x 60) + 300) seconds, where
size is the number of bytes. in the message:

The exit status of the process is consulted in' determining the success of the
action. An exit status of zero means that· the action succeeded. Any other
exit status (or abnormal termination) means that the action failed.

In order to avoid any time limitations, you might implement a process that
began by forking. The parent would return the appropriate value immedi
ately, and the child could continue on, doing whatever it wanted for as long as
it wanted. This approach is somewhat risky if the parent is going to return an
exit status of zero. If the parent is going to return a non-zero exit status, then
this approach can lead to quicker delivery into your maildrop.

qpipe or <carel>:

destroy:

Similar to pipe, but executes the command directly, after built-in variable
expansion, without assistance from the shell.

This action always succeeds.

result:

(mh.6)

Indicates how the action should be performed:

A:

R:

Perform the action. If the action succeeded, then the message is considered
delivered.

Perform the action. Regardless of the outcome of the action, the message is
not considered delivered.

MH UCI/UCB version

USD:8-37 The Rand MH Message Handling System MHOOK(1)

rmh.6J

?:
Perfonn the action only if the message has not been delivered. If the action
succeeded, then the message is considered delivered.

The file is always read completely, so that several matches can be made and several actions
can be taken. The .maildelivery file must be owned either by the user or by root, and must be
writable only by the owner. If the .maildelivery file can not be found, or does not perfonn an
action which delivers the message, then the file lusr/new/lib/mh/maildelivery is read according
to the same rules. This file must be owned by the root and must be writable only by the root.
If this file can not be found or does not perfonn an action which delivers the message, then
standard delivery to the user's maildrop, lusrlspool/mail/$USER, is perfonned.

Arguments in the .maildelivery file are separated by white-space or comma. Since
double-quotes are honored, these characters may be included in a single argument by enclos
ing the entire argument in double-quotes. A double-quote can be included by preceeding it
with a backslash.

To summarize, here's an example:

. "#field pattern action result string
"# lines starting with a '"#' are ignored, as are blank lines
"# .
"# file mail with mmdf2 in the "To:" line into file mmdf2.log

. To mmdf2 file A mmdf2.log
"# Messages from mmdf pipe to the program err-message-archive
From mmdf . pipe A err-message-archive
"# Anything with the "Sender:" address "uk-mmdf-workers"
"# file in mmdf2.log if not filed already
Sender uk-mmdf-workers file ? mmdf2.log
"# "To:" unix - put in file unix-news
To Unix > A unix-news
"# if the address is jpo=mmdf - pipe into mmdf-redist
addr jpo=mmdf I A mmdf-redist
"# if the address is jpo=ack - send an acknowledgement copy back
addr jpo=ack I R "resend -r $(reply-to)"
"# anything from steve - destroy!
From steve destroy A
"# anything not matched yet - put into mailbox
default - >? mailbox
"# always run rcvalert
* R rcvalert

Four programs are currently standardly available, revdist (redistribute incoming messages to
additional recipients), rcvpack (save incoming messages in a pack!d file), and revtty (notify
user of incoming messages). The fourth program, revstore (1) is described separately. They
all reside in the lusrlnewl/iblmhl directory .

. The revdist program will resend a copy of the message to all of the addresses listed on its com
mand line.

The rcvpaek program will append a copy of the message to the file listed on its command line.
Its use is obsoleted by the .maildelivery.

MH UCI/UCB version

MHOOK(l) The Rand MH Message Handling System USD:8·38

See Also

CORtext

History

Bugs

(mh.6)

The rClltty program executes the named file with the message as its standard input, and gives
the resulting output to the terminal access daemon for display on your terminal. If the termi
nal access daemon is unavailable on your system. then rcvtty will write the output to your ter
minal if. and only if,your terminal has "world-writable" permission. If no file is specified, or
is bogus, etc., then. the rcvtty program will give a one-line scan listing to the terminal access
daemon.

lusr/newllib/mhlmtstailor
SHOMEI.maildelivery
lusr/newllib/mhlmaildelivery

rcvstore (1)

None

tailor file
The file controlling local delivery
Rather than the standard file

For compatibility with older versions of MH, if slocal can't find the user's .maildelivery file, it
will attempt to execute an old-style rcvmail hook in the user's SHOME directory. In particu
lar, it will first attempt to execute

.. mhJeceive file maildrop directory user

failing th~t it will attempt to .execut~

SHOMElbinlrc:vmail user file sender

before giving up and writing to the user's maildrop.

In addition, whenever a hook or process is invoked, file-descriptor three (3) is set to the mes
sage in addition to the standard input.

Only two return codes are meaningful. others should be.

MH UCI/UCB version

USD:8-39 The Rand MH Message Handling System MHPATH(l)

NAME
mhpath - print full pathnames of MH messages and folders

SYNOPSIS
mhpath [+folder] [msgs] [-help]

DESCRIPrlON

Imh.61

Mhpath expands and sorts the message list 'msgs' and writes the full pathnames of the mes
sages to the standard output separated by newlines. If no 'msgs' are specified, mhpath outputs
the folder pathname instead.

Contrasted with other MH commands, a message argument to mhpath may often be intended
for writing. Because of this: 1) the name "new" has been added to mhpath's list of reserved
message names (the others are "first", "last", "prev", "next", "cur", and "all"). The new
message is equivalent to the message after the last message in a folder (and equivalent to 1 in
a folder without messages). The "new" message may not be used as part of a message range.
2) Within a message list, the following designations may refer to messages that do not exist: a

. single numeric message name, the single message name "cur", and (obviously) the single mes

. sage name "new". All other message designations must refer to at least one existing message.
3) An empty folder i ... not in itself an error.

Message numbers greater than the highest existing message in a folder as part of a range
designation are replaced with the next free message number.

Examples: The current folder foo contains messages 3 5 6. Cur is 4.

% mhpath
Ir/phyllMaillfoo

% mhpath all
Ir/phyllMaillfoo/3
Ir/phyllMaillfoo/5
Ir/phyllMaillfoo/6

% mhpath 2001
Ir/phyllMaillfool7

% mhpath 1-2001
Ir/phyllMaillfoo/3
Ir/phyllMail/foo/S
Ir/phyllMaillfoo/6

% mhpath new
Ir/phyllMail/fool7

% mhpath last new
Ir/phyllMaillfoo/6
Ir/phyllMaillfool7

% mhpath last-new
bad message list "last-new".

MH UCI/UCB version

MHPATH(1) The Rand MH Messale Handlinl Systell

Files

% mhpath cur .
Ir/phyllMaillfoo/4

% mhpath 1-2
no messages in range "1-2".

% mhpath first:2
Ir/phyl/Maillfoo/3
Ir/phyllMaillfoolS

% mhpath 1 2
Ir/phyllMailIfoo/l
Ir/phyllMailIfoo/2

MHpath is also useful in back-quoted operations:

% cd 'mhpath +inbox'

% echo 'mhpath +'
Ir/phyllMail

SHOMEI.mh-proftle The user profile

.ProftIe CemponenQ
Path: To determine the' user's MH directory

To find the default current folder

See AJse

Defaults

Context

Bugs

Current-Folder:

folder(l)

'+folder' defaults to the current folder
'msgs' defaults to none

None

Like all MH commands, mhpath expands and sorts [msgs]. So don't expect

mv 'mhpath 50 I 500'

to move 50 I to 500. Quite the reverse. But

mv 'mhpath 50 I' 'mhpath 500'

will do the trick.

USD:8-40

Out of range message 0 is treated far more severely than large out of range message numbers.

(mb.6) MH UCI/UCB version

USD:8-41 The Rand MH Message Handling System MSGCHK(l)

NAME
msgchk - check for messages

SYNOPSIS
msgchk [users ... J [-help]

DESCRIPTION

The msgchk program checks all known mail drops for mail waiting for you to receive. For
those drops which have mail for you, msgchk will indicate if it believes that you have seen the
mail in question before.

Files
$HOME/.mh-profile
lusr/new/lib/mhlmtstailor
lusrlspool/mail/$USER

Profile Components

None

See Also
inc(1)

Defaults

'user' defaults to the current user

Context

None

The user profile
tailor file
Location of mail drop

MH UCI/UCB version

MSH(l) The Rand MH Message Handlina System VSD:8-42

NAME
msh - MH shell (and BBoard reader)

SYNOPSIS
msh [-prompt string) [-scan] [-noscan] [-topcur] [-notopcur] [file] [-help]

DESClUPl'ION

(mh.61

msh is an interactive program that implements a subset of the normal MH commands operat
ing on a single file in packld format. That is, msh is used to read a file that contains a
number of messages, as opposed to the standard MH style of reading a number of files, each
file being a separate message in a folder. msh's chief advantage is that the normal MH style
does not allow a tile to have more than one message in it. Hence, msh is ideal for reading
BBoards, as these tiles are delivered by the transport system in this format. In addition, msh
can be used on other files, such as message archives which have been packed (see pack! (1».
Finally, msh is an excellent MH tutor. As the only commands available to the user are MH
commands, this allows MH beginners to concentrate on how commands to MH are formed
and (more or less) what they mean.

When invoked, msh reads the named file, and enters a command loop. The us.er may type
most of the normal MH commands. The syntax and semantics of tht:Se commands typed ··to
msh are identical to their. MH counterparts. In cases where the nature of msh would be
inconsistent (e.g., specifying a '+folder' with some commands), msh will duly inform. the user.
The commands that msh currently supports (in some slightly modified or restric~ed forms)
are:

ali
burst
comp
dist
folder
forw
inc
mark
mhmail
msgchk
next
packf
pick
prev
refile
repl
rmm
scan
send
show
sortm
whatnow
whom

In addition, msh has a "help" command which gives a brief overview. To terminate msh.
type CTRL-D, or use the "quit" command. If msh is being invoked from bbc, then typing
CTRL-D will also tell bbc to exit as well, while using the "quit" command will return control

MH VCI/VCB version

USD:8-43 The Rand MH Message Handling System MSH(l)

Files

to bbc, and bbc will continue examining the list of BBoards that it is scanning.

If the file is writable and has been modified, then using "quit" will query the user if the file
should be updated.

The '-prompt string' switch sets the prompting string for msh.

You may wish to use an alternate MH profile for the commands that msh executes; see mh
profile (5) for details about the $MH environment variable.

When invoked from bbc, two special features are enabled: First, the '-scan' switch directs msh
to do a 'scan unseen' on start-up if new items are present in the BBoard. This feature is best
used from bbc, which correctly sets the stage. Second, the mark command in msh acts spe
cially when you are reading a BBoard, since msh will consult the sequence "unseen" in deter
mining what messages you have actually read. When msh exits, it reports this information to
bbc. In addition, if you give the mark command with no arguments, msh will interpret it as
'mark -sequence unseen -delete -nozero all' Hence, to discard all of the messages in the
current BBoard you're reading, just use the mark command with no arguments.

When invoked from vmh, another special feature is enabled: The 'topcur' switch directs msh
to have the current message "track" the top line of the vmh scan window. Normally, msh has
the cUrrent message "track" the center of the. window (under '-notopcur', which is the
default).

msh supports an output redirection facility. Commands may be followed by one of

> file write output to file
» file append output to file
I command pipe output to UNIX command

If file starts with a ' , (tilde), then a csh-like expansion takes place. Note that command is
interpreted by sh (1). Also note that msh does NOT support history substitutions, variable
substitutions, or alias substitutions.

When parsing commands to the left of any redirection symbol, msh will honor '\' (back-slash)
as the quote next-character symbol, and '"' (double-quote) as quote-word delimiters. All
other input tokens are separated by whitespace (spaces and tabs).

$HOME/.mh-profile
lusr/new/lib/mh/mtstailor

The user profile
tailor file

Profile Components

Path: To determine the user's MH directory
To set Diode when creating a new 'file'
Program to file messages

See Also

Imh.61

Msg-Protect:
fileproc:
showproc:

bbc(l)

Program to show messages

MH UCI/UCB version

- -----------~~~~-

MSH(1) The Rand MH Message Handling System - USD:8-44

Defaults

Context

'file' defaults to ".Imsgbox"
'-prompt (msh) ,
'-noscan'
'-notopcur'

None

The argument to the '-prompt' switch must be interpreted as a single token by the shell that
invokes msh. Therefore, one must usually -place the argument to this switch inside
double-quotes.

There is a strict limit of messages per file in packf'd format which msh can handle. Usually,
this limit is 1000 messages.

Please remember that msh is not the CShell, and that a lot of the nice facilities provided by
the latter are not present in the former .

. In particular, msh does not under.;tand back-quoting, so the only effective way to use pick in
side msh is to always use the '-seq select'switch. Clever users of MH will put the line

(mh.6)

pick: -seq select -list

in their .mh-profile -file so that pick works equally well from both the shell and msh.

The msh program inherits most (if not all) -of the bugs from the MH commands it imple
ments.

MH UCI/UCB version

USD:8-45 The Rand MH Message Handling System NEXT(l)

NAME
next - show the next message

SYNOPSIS
next [+folder] [-header] [-noheader] [-showproc program] [-noshowproc]

[switches for showproc] [-help]

DESCRIPTION

Files

Next performs a show on the next message in the specified (or current) folder. Like sho ·, it
passes any switches on to the program showproc, which is called to list the message. This
command is almost exactly equivalent to "show next". Consult the manual entry for
show (1) for all the details.

$HOME/.mh-profile The user profile

Profile Components
• Path: To determine the user's MH directory

To find the default current folder
Program to show the message

See Also

Defaults

Context

Bugs

(mh.6J

Current-Folder:
showproc:

show(1), prev(l)

'+ folder' defaults to the current folder
'-format'
'-header'

If a folder is specified, it will become the current folder. The message that is shown (i.e., the
next message in sequence) will become the current message.

next is really a link to the show program. As a result, if you make a link to next and that link
is not called next, your link will act like show instead. To circumvent this, add a profile-entry
for the link to your MH profile and add the argument next to the entry.

MH UCI/UCB version

PACKF(l) The Rand MH Message Handling System USD:8-46

NAME
packf - compress a folder into a single file

SYNOPSIS
packf [+folder] [msgs] [-file name] [-help]

DESCRImON

Files

Pack! takes messages from a folder and copies them to a single file. Each message in the file
is separated by four CTRL-A's and a newline. Messages packed can be unpacked using inc.

If the name given to the '-file name' switch exists, then the messages specified will be
appended to the end of the file, otherwise the file will be created and the messages appended.

SHOME/.miLprofile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder

See Also

Defaults

Context

(mh.6]

Current-Folder:
Msg-Protect: To set mode when creating a new 'file'

inc(l)

'+folder' defaults to the current folder·
'msgs' defaults to all
'-file .Imsgbox'

If a folder is given, it will become the current folder. The first message packed will become
the current message.

MH UCI/UCB version

USD:8-47 The Rand MH Message Handling System PICK(l)

NAME
pick - select messages by content

SYNOPSIS
pick -cc [+folder] [msgs] [-help]

-date
-from
-search
-subject
-to
--component

[-before date] [-after date] [-datefield field]

pattern [-and ... J [-or ...] [-not ... J [-lbrace ... -rbrace]

[-sequence name ...] [-public] [-nopublic] [-zero] [-nozero]
[-list] [-nolist]

typically:

DESCRIPTION

scan 'pick -from jones'
pick -to holloway -sequence select
show 'pick -before friday'

Pick searches messages within a folder for the specified contents, and then identifies those
messages. Two types of search primitives are available: pattern matching and date constraint
operations.

A modified grep(l) is used to perform the matching, ·so the full regular expression (see ed(l»
facility is available within 'pattern'. With '-search', 'pattern' is used directly, and with the
others, the grep pattern constructed is:

"component[\t]*:. *pattern"

This means that the pattern specified for a '-search' will be found everywhere in the message,
including the header and the body, while the other pattern matching requests are limited to
the single specified component. The expression

'-component pattern'

is a shorthand for specifying

'-search ~'component[\t]*:.*pattern" ,

It is used to pick a component which is not one of "To:", "cc:", "Date:", "From:", or "Sub
ject:". An example is 'pick -reply-to pooh'.

Pattern matching is performed on a per-line basis. Within the header of the message, each
component is treated as one long line, but in the body, each line is separate. Lower-case
letters in the search pattern will match either lower or upper case in the message, while upper
case will match only upper case.

Independent of any pattern matching operations requested, the switches '-after date' or
'-before date' may also be used to introduce date/time contraints on all of the messages. By
default, the "Date:" field is consulted, but if another date yielding field (such as "BB-Posted:"
or "Delivery-Date:") should be used, the '-datefield field' switch may be used. Pick will actu
ally parse the date fields in each of the messages specified in 'msgs' (unlike the '-date' switch
described above which does a pattern matching operation), and compare them to the

MH UCI/UCB version

PICK(1) The Rand MHMessage Handling System VSD:8-48

(mh.')

date/time specified by use of the '-after' and '-before' switches. If '-after' is given, then only
those messages whose "Date:" field value is chronologically after the date specified will be
considered. The '-before' switch specifies the complimentary action.

Both the '-after' and '-before' switches take legal 822-style date specifications as arguments.
Pick will default certain missing fields so that the entire date need· not be specified. These
fields are (in order of defaulting): timezone, time and time%one, date, date and timezone. All
defaults are taken from the current date, time, and timezone. In addition to 822-style dates,
pick will also recognize any of the days of the week ("S\1Dday", "monday", and so on), and
the special dates "today". "yesterday". and "tomorrow". AU days· of the week are judged to
refer to a day in the past (e.g., telling pick "saturday" on a "tuesday" means "last saturday"
not "this saturday"). Finally, in addition to these special specifications, pick will also honor a
specification of the fo~ "-dd", which means "dd days ago".

Pick suppons complex boolean operations on the searching primitives with the '-and', '-or',
'-not', and '-lbrace .•. -rbrace' switches. For example,

pick -after yesterday -and -lbrace -from .freida -ot -from fear -rbrace

identifies messages recently sent by "frie~a" or "fear".

The matching primitives take precedence over the '-not' switch, which in tum takes pre
cedence over ':"and' which in tum takes precedence over '-or'. To override the default pre
cedence, the '-lbrace' and '-rbrace' switches are provided, which act just like opening and
closing parentheses in logical expressions ..

Once the search has been performed, if the '-list' switch is given. the message numbers of the
selected messages are written to the standard output separated by newlines. This is extremely
useful for quickly generating arguments for other MHprograms by using the "backquoting"
syntax of the shell For example, the command

scan 'pick +tOOo -after "31 Mar 830123 PST"

says to scan those messages in the indicated folder which meet the appropriate criterion.
Note that since pick's context changes are written out prior to scan's invocation, you need
not give the fQlder argument to scan as well.

Regardless of the operation of the '-list' switch, the '-sequence name' switch may be given
once for each sequence the user wishes to define. For each sequence named, that sequence
will be defined to mean exactly those messages selected by pick. For example,

pick -from frated -seq fred

defines a new message sequence for the current folder called "fred" which contains exactly
those messages that were selected. .

Note that whenever pick processes a '-sequence name' switch, it sets '-nolist'.

By default, pick will zero the sequence before adding it. This action can be disabled with the
'-r.ozero' switch, which means that the messages selected by pick will be added to the
sequence, if it already eXists, and any messages already a pan of that sequence will remain so.

The '-public' and '-nopublic' switches are used by pick in the same way mark uses them.

MH VCI/VCB version

USD:8-49 The Rand MH Message Handling System PICK(l)

Files
SHOMEI.mh..profile

Prd .. c

The user .profile

SeeAllo

Def'aaIts

Coatext

(mh.6)

Path:
Current-Folder:

mark(l)

To detennine the user's MH directory
To find the default current folder

'+folder' defaults to the current folder
'msp' defaults to all
'-datefield date'
'-Dopublic' if the folder is read-only, '-public' otherwise
'-zero'
'-list' is ~ default if no '-sequence', '-nolist' otherwise

If a folder is given, it will become the current folder.

In previous versions of MH, the pick command would show, scan, or refi/e the selected mes
sages. This was rather "iDyerted logic" from the UNIX point of view, so pick was changed to
define sequences and output· those sequences. Hence, pick can be used to generate the argu
ments for all other MH commands, instead of giving pick endless switches for invoking those
commands itself. .

Also, previous versions of pick balked if you didn't specify a search string or a date/time con
straint. The current version does not, and merely matches the messages you specify. This
lets you type something like:

show 'pick last:20 -seq fear'

instead of typing

mark -add -nozero -seq fear last:20
show fear

Finally, timezones used to be ignored when comparing dates: they aren't any more.

MH UCI/UCB version

PICK(l) The Rand MH Message Handline System USD:8·50

.Iap

(mh.6)

The argument to the '-after' and '-before' switches must be interpreted as a single token by
the shell that invokes pick. Therefore, one must usually place the argument to this switch in
side double-quotes. Furthermore, any occurance of '-datefteld' must occur prior to the
'-after' or '-before' switch it applies to.

If pick is used in a back-quoted operation, such as

scan 'pick -from jones'

and pick fails (e.g., no messages are from "jones"), then the shell will still run the outer com
mand (e.g., "scan"). Since no messages were matched, pick produced no output, and the ar
gument given to the outer command as a result of backquoting pick is empty. In the case of
MH programs. the outer command now acts as if the default 'msg' or 'msgs' should be used
(e.g., "all" in the case of scan). To prevent this unexpected behavior, if '-list' was given. and
if its standard output is not a tty, then pick outputs the illegal message number "0" when it
fails. This lets the outer command fail gracefully as well.

MH VCI/UCB version

USD:8-S1 The Rand MH Message Handling System PREV(1)

NAME
prev - show the previous message

SYNOPSIS
prev [+folder] [-header] [-noheader) [-showproc program] [-noshowproc)

(-switches for showproc] [-help]

DESCIlIPTION

FIla

Prev performs a show on the previous message in the specified (or current) folder. Like show,
it passes any switches on to the program named by showproc, which is called to list the mes
sage. This command is almost exactly equivalent to "show prev". Consult the manual entry
for show (I) for all the details.

SHOMEI.mh-profile The user profile

ProfiJeC

See Alto

DefaaJb

Coatext

(mb.6)

Path:
Current-Folder:
showproc:

show(I), next(1)

To determine the user's MH directory
To find the default current folder
Program to show the message

'+ folder' defaults to the current folder
'-format'
'-header'

If a folder is specified. it will become the current folder. The message that is shown (i.e .• the
previous message in sequence) will become the current message.

prev is really a link to the show program. As a result. if you make a link to prev and that link
is not called prev, your link will act like show instead. To circumvent this, add a profile-entry
for the link to your MH profile and add the argument prev to the entry.

MH VCI/UCB version

PROMP1'ER(l)

prompter - prompting editor front-end

SYNOPSIS
prompter [-erase chr] [-Jcill chr) [-prepcmd] [-noprepend)J-rapid] {-norapid1 file [-help]

DISCRJPrION

(mh.6J

This program is normally not invoked directly by users but takes the plac:e of an editor and
adS as an editor front-eD4. It operates on an 822-style message draft skeleton specified by
file. normally provided by comp~ dist. /orw, or r~pI.

Prompter is an editor which allows rapici composition of messages. It is panicu1arly useful to
network and low-speed (less than 2400 baud) users of MH. It is an MH program in that it
can have its 0W1l profile entry with switches. but it is not invoked directly by the user. The
commands comp. dist, /orw, and repi invoke prompter as an editor. either when invoked with
'-editor prompter', or by the protbe entry "Editor: prompter", or when Jiven the command
'edit prompter' at "What nowT'level. '

For each empty compoDeO.t prompter finds in the draft, the user is prompted for a response:.A
<RETURN> win cause the whole component to be left out. Otherwise, a '\' preceding a
<RETURN> will continue the response on the next line, allowing for multiline components.
Continuation lines IllUSt begin with a spac:e or tab.

Ea,¢1non-emPlY component is copied to the draft and displayed on the terminal~

The start of the messap body is' denoted by a blank line or a Iiile of dasl1es. If the body is
non-empty, the prompt, which isn't written to the file. is

"-Enter additional text",

or (if '-prepend' was given)

"-Enter initial text".

Message-body typiDg is terminatedwilh an end-of-fi1e (usually CTlU.-D). At this point con
trol is returned to the calling program, where the user is asked "What now?". See whamow
for the valid options to this query.

By using the '-prepend' switch. the user can add type-in to the beginning of the message body
and have the rest oflhe body fonow. This is useful for the/orw command.

By using the '-rapid" switc:h. if the draft already contains text in the message-body, it is not
displayed on the user's terminal. This is useful for low-speed terminals.

The line editing cbaracters for kill and erase may be specified by the user via the arguments
'-kiD c:br' and '-erase chr', where chr maybe a cbatac:ter. or '\nnn', where "nnn'~ is the octal
value for the character. . .

An interrupt (usually CTRL-C) during .componeDt typing will abon prompter and the .\lH
command that invoked it. An interrupt during message-body typing is equivalent to
CTRL-D, -for historic:al reasons. This means that prom[Jler should Dnishup and exit.

MH UCllUCB 'fenian

USD:8-S3 The Rand MH Message Handling System PROMPTER(1)

The first non-flag argument to prompter is taken as the name of the draft file, and subsequent
non-flag arguments are ignored ..

Files
$HOMEI.mh-profile
/tmp/prompter*

Profile Components
prompter-next:
Msg-Protect:

See Also

The user profile
Temporary copy of message

To name the editor to be used on exit from prompter
To set mode when creating a new draft

comp(1), dist(1), forw(1), repl(1), whatnow(1)

Defaults

Context

BUIS

(mh.6)

'-prepend'
. '-norapid'

None

Prompter uses stdio (3), so it will lose if you edit files with nulls in them.

MH VCl/VCB version

RCVSTOR.E(l) The Rand MH Message Badling Sptem USD:8-54

NAME
rcvstore - incorporate new mail asynchronously

SYNOPSIS
lusr/new/liblmhlrcvstore {+folder] {..:create1 (-nocreate] I-sequence name ...] [-public]

{-nopublic] [-zero] (-nozero1 [-help]

DESCIUPfION

Files

Rcvstore incorporates a message from the standard input into an MH folder. If'+folder'isn't
specified, the folder named "inbox" in the user's MH directory will be used instead. The new
message being incorporated is assigned the next highest number in the folder. If the specified
(or default) folder doesn't exist. then it will be created if the '-create' option is specified, oth
erwise rcvstore will exit.

If the user's profile contains a "Msg-Protect: nnn" entry, it will be used as the protection on
the newly created messages, otherwise the MH default of 0644 will be used. During all opera
tions on messages; this initially assigned protection will be preserved for each message, so
chmod(1) may be used to set a protection on an individual message, and its protection will be
preserved thereafter.

Rcvstore will incorporate anytbing except zero length messages into th~ user's MH folder.

If the 'profile entry "Unseen-Sequence" is present and'non-empty, then rcvstore will add the
newly, inco'rporated message to eacb sequence named by the profile entry. 'This is similar to
~e "Previous-Sequence" profile entry supponed by aU MH commands whicb take 'msgs' or
'msg' arguments. Note thatrcvstore will not zero each sequence prior to adding messages. '

Funhermore, the incoming messages may be added to user-defined sequences as they arrive
by appropriate uSe of the '-sequence' option. As with pick, use of the '-zero' and '-nozero'
switches can also be used to zero old sequences or not. Similarly, use of the '-public' and
'-nopublic switches may be used to force additions to public and private sequences.

$HOME/.mh-profile The user profile

Profilec

See Also

Defaults

Context

(mb.6)

Path:
Folder-Protect:
Msg-Protect:
Unseen-Sequence:

To determine the user's MH directory
To set mode wbencreating a new folder
To set mode when creating a new message
To name sequences denoting unseen messages

inc(1), pick(1), mb-mail(5)

'+folder' defaults to "inbox"
'-create'
'-nopublic' if the folder is read-only, '"",public' otherwise
'-nozero'

No context changes will be attempted, with the exception of sequence manipulation.

MH UCI/UCB version

USD:8-SS The Rand MH Message Handling System REFILE(1)

NAME
refile - file message in other folders

SYNOPSIS
refile [msgs] [-draft] [-link] [-nolink] [-preserve] [-nopreserve] [-src +folder] [-file file]

+ folder ... [-help] .

DESCRIPTION

Files

Imh.6)

Refile moves (mv (1) or links (In (1» messages from a source folder into one or more desti
nation folders. If you think of a message as a sheet of paper, this operation is not unlike
filing the sheet of paper (or copies) in file cabinet folders. When a message is filed, it is linked
into the destination folder(s) if possible, and is copied otherwise. As long as the destination
folders are all on the same file system, multiple filing causes little storage overhead. This
facility. provides a good way to cross-file or multiply-index messages. For example, if a mes
sage is received from Jones about the ARPA Map Project, the command

refile cur +jones +Map

would allow the message to be found in either of the two folders 'jones' or 'Map.'.

The option '-file file' directs refi/e to use the specified file as the source message. to be filed,
rather than a message from a folder. Note that the file should be a validly formatted message,
just like any other MH message. It should NOT be in mail drop format (to convert a file in
m~l drop format to a fold.er of MH messages, see inc (1».

If a destination folder doesn't exist, refile will ask if you want to create it. A negative
response will abort the file operation.

The option '-link' preserves the source folder copy of the message (i.e., it does a In(1) rather
than a mv(l», whereas, '-nolink' deletes the filed messages from the source folder. Normally,
when a message is filed, it is assigned the next highest number available in each of the desti
nation folders. Use of the '-preserve' switch will override this message renaming, but name
conflicts may occur, so use this switch cautiously.

If '-link' is not specified (or '-nolink' is specified), the filed messages will be removed
(unlink (2» from the source folder, similar to the way mv (1) works.

If the user has a profile component such as

rmmproc: Ibinlrm

then instead of simply renaming the message file, refile will call the named program to delete
the file.

The '-draft' switch tells refile to file the <mh-dir>/draft.

SHOME/ .mh-profile The user profile

MH VCI/VCB version

REFILE(l) TIle Rand MH Message Haadliq System USD:8-S6

PndUec

See AJIe

[mh.6)

Path:
Current-Folder:
Folder-Protect:
rmmproc:

folder(l)

To determine the user's MH directory
To find the default current folder
To set mode when creating a new folder
Program to delete the message

'-sre +folder' defaults to the current folder
'msgs' defaults to cur
'-nolink'
'-nopreserve'

If '-src +folder' is given, it will become the current folder. If neither '-link' nor 'aU' is
specified, the current message in the source folder will be set to the last message specified;
otherwise, the current message won't be changed.

If the Previo~Sequence profile entry is set, in addition to defining the named sequences.
from the souree folder, refi.·c will also define those sequences for the destination folders. See
mh-projiJe (1) for information concerning the previous sequence.

MH UCI/UCB version

USD:8-S7 The Rand MH Message Handling System REPL(l)

NAME
repl - reply to a message

SYNOPSIS
repl [+folder] [msg] [-annotate] [-noannotate] [-cc alVto/cc/me] [-nocc alVto/cc/me]

[-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]
[-fcc +folder] [-filter filterfile] [-form formfile] [-format] [-noformat] [-inplace]
[-noinplace] [-query] [-noquery] [-width columns] [-whatnowproc program]
[-nowhatnowproc] [-help]

DESClUPI'ION '.

(mh.6]

Repl aids a user in producing a reply to an existing message. Repl uses a reply template to
guide its actions when constructing the message draft of the reply. In its simplest form (with
no arguments), it will set up a message-form skeleton in reply to the current message in the
current folder, and invoke the whatnow shell. The default reply template will direct rep/ to
construct the composed message as follows:

To: <Reply-To> or <From>
cc: <cc>, <To>, and yourself
SUbject: Re: <Subjec:>
In-reply-to: Your message of <Date>.
. <Message-Id> .

where field names enclosed in angle brackets « » indicate the contents of the named field
from the message to which the teply is being made. The '-cc type' switch takes an argument
which specifies who gets placed on the "cc:" list of the reply. The '-query' switch modifies
the action of '-cc type' switch by interactively asking you if each address that normally would
be placed in the "To:" and "cc:" list should actually be sent a copy. (This is useful for
special-purpose replies.) Note that the position of the '-cc' and '-nocc' switches, like all other
switches which take a positive and negative form, is important.

If the file named "replcomps" exists in the user's MH directory, it will be used instead of the
default form. In either case, the file specified by '-form formfile' will be used if given.

If the draft already exists, rep! will ask you as to the disposition of the draft. A reply of quit
will abort rep!, leaving the draft intact; replace will replace the existing draft with a blank
skeleton; and list will display the draft.

See comp (1) for a description of the '-editor' and '-noedit' switches. Note that while in the
editor, the message being replied to is available through a link named "@" (assuming the
default whatnowproc). In addition, the actual pathname of the message is stored in the
environment variable $editalt, and the pathname of the folder containing the message is
stored in the environment variable Smhfolder.

Although rep! uses the '-form formfile' switch to direct it how to construct the beginning of
the draft, the '-filter filterfile' switch directs rep! as to how the message being replied-to
should be formatted in the body of the draft. If '-filter' is not specified, then the message
being replied-to is not included in the body of the draft. If '-filter filterfile' is specified, then

. the mesSage being replied-to is filtered (re-formatted) prior to being output to the body of the
draft. The filter file for repl should be a standard form file for mhl, as repl will invoke mhl to
format the message being replied-to. There is no default message filter ('-filter' must be fol
lowed by a file name). A filter file that is commonly used is:

MH UCI/UCB version

REPL(l) The Rand MH Message HaAdliAg System USD:8-S8

Files

[mh.6J

body:nooomponent,compwidth = 9 ,offset = 9

which says to output a blank line and then the body of the message being replied-to, indented
by one tab-stop.

If the '-annotate' switch is given, the message being replied-to will be annotated with the
lines

Replied: date
Replied: addrs

where the address list contains one line for each addressee. The annotation will be done only
if the message is sent directly from repl. If the message is not sent immediately from repl.
"comp -use" may be used to re-edit and send the constructed message, but the annotations
won't take place. The '-inplace' switch causes annotation to be done in place in order to
preserve links to the annotated message.

With the '-format' switch one can indicate if Intemet;:,.style formatting should be used (or not
be used with '-noformat'). If present (the default), then lines beginning with the fields "To:",
"cc:", and "Bee:" will be standardized and have duplicate addresses removed. In addition,
the '-width columns' switch will guide repfs formatting of these fields.

. .
The '-fcc +folder' switch can be used to automatically specify a folder to receive Fcc:-s. More

. than one folder, each preceeded by '':''fcc' can b~ named:

A reply template is simply a format file. See mh-/ormat (5) for the details.

In addition to the standard escapes, repl also recognizes the following additional escape:
escape substitution
fcc any '-fcc folder' switches

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

Upon exiting from the editor, repl will invoke the whatnow program. See whatnow (1) for a
discussion of available options. The invocation of this program can be inhibited by using the
'-nowhatnowproc' switch. (In truth of fact, it is the whatnow program which starts the initial
edit. Hence, '-nowhatnowproc' will prevent any edit from occurring.)

lusr/new/lib/mh/replcomps
or <mh~dir>/replcomps
SHOME/.mb-profile
<mh-dir>/draft

The reply template
Rather than the standard template
The user profile
The draft file

MH UCIIUCB version

USD:8-59 The Rand MH Message Handling System REPL(l)

Profile Components
Path:

,
To determine the user's MH directory
To determine the user's mailboxes

See Also

Defaults

Context

Bugs

(mh.6)

Alternate-Mailboxes:
Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

To find the default current folder
To find the default draft-folder
To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to filter message being replied-to
Program to ask the "What now?" questions

eomp(1), dist(1), forw(1), send(1), whatnow(1), mh-format(5)

'+ folder' defaults to the current folder
'msg' defaults to cur
'-noce all' at ATHENA sites, '-ce all' otherwise
'-format'
, -noannotate'
, -nodraftfolder'
'-noinplace'
'-noquery'
'.,.width 72'

If a folder is given, it will become the current folder. The message replied-to will become the
current message.

If any addresses occur in the reply template, addresses in the template that do not contain
hosts are defaulted incorrectly. Instead of using the localhost for the default, repl uses the
sender's host. Moral of the story: if you're going to include addresses in a reply template, in
clude the host portion of the address.

If whatnowproc is whatnow, then repl uses a built-in whatnow, it does not actually run the
what now program. Hence, if you define your own whatnowproc, don't call it whatnow since
repl won't run it.

If your current working directory is not writable, the link named "@" is not available.

MH UCI/UCB version

RMF(1) The Rand MH Message Handling System VSD:8-60

NAME
nnf - remove folder

SYNOPSIS
rmf [+folder] [-interactive] [-nointeractive] [-help}

DESCRIPTION

FileS

Rmf removes all of the messages (files) within the specified (or default) folder, and then
removes the folder (directory) itself. If there are any files within the folder which are not a
part of MH, they will not be removed, and an error will be produced. If the folder is given
explicitly or the '-nointeractive' option is given, then the folder will be removed without
confirmation. Otherwise, the user will be asked for confirmation. If rmf can't find the current
folder, for some reason, the folder to be removed defaults to '+inbox' with confirmation.

Rmfirreversibly deletes messages that don't have other links, so use it with caution.

If the folder being removed is a subfolder, the parent folder will become the new current
folder, all'd rmf will produce a message telling the user this has happened. This provides an
easy mechanism for selecting a set of messages, operating on the list, then removing the list
and returning to the current folder from which the list was extracted.

Rmf of a read-Only· folder will delete the private sequence and cur information (i.e.,
"atr-,seq-folder" entries) from the profile without affecting the folder itself.

SHOME/.mb-profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder Current-Folder:

See Also
. rmm(l)

Defaults

Context

Bugs

(mh.6)

'+folder' defaults to the current folder, usually with confirmation
'-interactive' if +folder' not given, '-nointeractive' otherwise

Rmf will set the current folder to the parent folder if a subfolder is removed; or if the current
folder is removed, it will make "inbox" current. Otherwise, it doesn't change the current
folder or message.

Although intuitively one would suspect that rmfworks recursively, it does not. Hence if you
have a sub-folder within a folder, in order to rmf the parent, you must first rmf each of the
children.

MH VCI/VCB version

USD:8-61 The Rand MH Message Handling System RMM(l)

NAME
rmm - remove messages

SYNOPSIS
nnm [+folder} [msgs} [-help}

DESCRIPTION

Files

Rmm removes the specified messages by renaming the message files with preceding commas.
Many sites consider files that start with a comma to be a temporary backup, and arrange for
cron (8) to remove such files once a day. •

If the user has a profile component such as

rmmproc: /bin/nn

then instead of simply renaming the message file, rmm will call the named program to delete
the file. Note that at most installations, cron (8) is told to remove files that begin with a
comma once a night.

Some users of csh prefer the following:

alias rmm 'reftle +d'

where folder +d is a folder for deleted messages, al).d

alias mexp 'rm 'mhpath +d all"

is used to "expunge" deleted messages.

The current message is not changed by rmm, so a next will advance to the next message in
the folder as expected.

$HOME/.mh-profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder
Program to delete the message

See Also

'Defaults

Context

(mh.6)

Current-Folder:
nnmproc:

rmf(l)

'+ folder' defaults to the current folder
'msgs' defaults to cur

If a folder is given, it will become the current folder.

MH VCI/UCB version

---~ ---- -~- ~

SCAN(1) The. Raad MH Message Haadlinl System USD:8-61

NAME
scan - produce a one line pet message scan listing

SYNOPSIS
scan [+folder] [msp) [-clear] [-noclear] [-form formatftle] (-format string] I-header]

[-noheaderJ I-width columns] [-help]

DESCRIPTION

(mh.6)

Scan produces a one-line-per-message listing of the specified messages. Each scan line con
tains the message number (name), the date, the "From:" field, the "Subject" field, and, if
room allows. some of the body of the message. For example:

15+ 71 5 Dcrocker nDed «Last week I asked some of
16 - 71 5 dcrocker message id format «I recommend
18 71 6 Obrien Re: Exit status from mkdir
19 71 7 Obrien "scan" listing format in MH

The '+' on message 15.indicates that it is the current message. The '-' on message 16 indi
cates that it has been replied to. as indicated by a "Replied:" component produced by an
'-annotate' switch to the repl command.

If there is sufficient room left· on the scan line after the SUbject, the line will be filled with text
from the body. preceded.by «, and terininated by» if the body is sufficiently sbort. Scan
actually reads each of the specified messages and parses them to extract the desired fields. .
During parsing, appropriate error messages will be produced if there are format errors in any
of the messages.

The '-header' switch produces a header line prior to the scan listing. Currently, tbe name of
the folder and the current date and time are output (see the HISTORY section for more
information).

If the '-clear' switch is used and scan's output is directed to a terminal, then scan will consult
the STERM and STERMCAP environment variables to determine your terminal type in
order to and out how to clear the screen prior to exiting. If the '-clear' switch is used and
scan's output is not directed to a terminal (e.g., a pipe or a file), then scan will send a
formfeed prior to exiting.

For example, the command:

(scan -clear -header; show all -show pr -0 Ilpr

produces a scan listing of the current folder, followed by a formfeed, followed by a formatted
listing of all messages in the folder, one per page. Omitting' -show pr -f will cause the mes
sages to be concatenated, separated by a one-line header and two blank lines~

If scan encounters a message without a "Date:" field, rather than leaving that portion of the
scan listing blank, the date is filled-in with· the last write date of the message. and post-fixed
with a··'. This is particularly handy for scanning a draft folder, as message drafts usually
aren't allowed to have dates in them.

To override the output format used by scan, the·-format string' or ·-format file' switches are
used. This permits individual fields of the scan listing to be e~tracted with ease. The string is

MH UCI/UCB version

USD:8-63 The Rand MH Message Handling System SCAN(l)

Files

simply a format string and the file is simply a format file. See mh-format (5) for the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
body the (compressed) first part of the body

On hosts where MH was configured with the BERK option, scan has two other switches:
'-reverse', and '-noreverse'. These make scan list the messages in reverse order. In addition,
scan will update the MH context prior to starting the listing, so interrupting a long scan listing
preserves the new context. MH purists hate both of these ideas.

SHOMEI.mh-profile The user profile

ProftIe COIDponeIIts

Path: To determine the user's MH directory
To determine the user's mailboxes

See Also

Defaults

Context

History

Bup

Imb.61

Alternate-Mailboxes:
Current-Folder: To find the default current folder

inc(1), pick(1), show(1), mh-format(5)

~ + folder' defaults to the folder current .
. 'msgs' defaults to all
'-fonitat' defaulted as described above
, -noh.eader'
'-width' defaulted to the width of the terminal

If a folder is given, it will become the current folder.

Prior to using the format string mechanism, '-header' used to generate a ,heading saying what
each column in the listing was. Format strings prevent this from happening.

The argument to the '-format' switch must be interpreted as a single token by the shell that
invokes scan. Therefore, one must usually place the argument to this switch inside
double-quotes.

MH VCIIVCB version

'.

SEND(l) The Rand MH Message Handliq System USD:8-64

NAME
send - send a message

SYNOPSIS
send [-alias aliasfile] [-draft] [-draftfolder +folder) [-draftmessage msg] [:-nodraftfolder]

[-filter filterfile] [-nofilter] [-format] [-noformat] [-forward] [-noforward] [-msgid]
[-nomsgid] [-push] [-nopushJ [-verbose] [-noverbose] [-watch] [-nowatch]
(-width columns) [file ...] [-help]

DESCRIPTION

(mh.6)

Send will cause each of the specified files to be delivered (via post (8» to each of the destina
tions in the "To:", "cc:", "Bee:", and "Fcc:" fields of the message. If send is re-distributing a
message, as invoked from dist, then the corresponding "Resent-xxx" fields are examined
instead.

If '-push' is specified, send will detach itself from the user's terminaL and perform its actions
in the background. If push 'd and the draft can't be sent, then the '-forward' switch says that
draft should be forwarded with the failure notice sent to the user. This differs from putting
send in the background because the output is trapped and analyzed by MH.

If '-verbose' is specified, send will indicate the interactions occurring with the transport sys
tem, prior to actual delivery. If '-watch' is specified send will monitor the delivery of local
and network mail. Hence. by specifying both switches, a large detail of information can be
gathered about each step of the message's entry into the transport system.

The '~folder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

Send with no file argument will query whether the draft is the intended file, whereas '-draft'
will suppress this question. Once the transport system has successfully accepted custody of
the message, the file. will be renamed with a leading comma; which allows it to be retrieved
until the next draft message is sent. If there are errors in the formatting of the message, send
will abort with a (hopefully) helpful error message .

•
If a "Bcc:" field is encountered, its addresses will be used for delivery, and the "Bee:" field
will be removed from the message sent to sighted recipients. The blind recipients will receive
an entirely new message with a minimal set of headers. Included in the body of the message
will be a copy of the message sent to the sighted recipients. If '-filter filterfile' is specified.
then this copy is filtered (re-formatted) prior to being sent to the blind recipients.

Prior to sending the message, the fields "From: user@local", and "Date: now" will be
appended to the headers in the message. If the· environment variable $SIGNATURE is set.
then its value is used as your personal name when constructing the "From:" line of the mes
sage. If this environment variable is not set, then send will consult the profile entry "Signa
ture" for this information. On hosts where MH was configured with the UCI option, if $SIG
NATURE is not set and the "Signature" profile entry is not present, then the file
SHOMEI.signature is consulted. If '-msgid' is specified, then a "Message-ID:" field will also
be added to the message.

If send is re-distributing a message (when invoked by dis!), then "Resent-" will be
prepended to each of these fields: "From:", "Date:", and ·'Message-ID:". If the message

MH vel/UCB version

USD:8-65 The Rand MH Message Handling System SEND(l)

Files

already contains a "From:" field, then a "Sender: user@local" field will be added as well. (An
already existing "Sender:" field is an error!)

By using the '-format' switch, each of the entries in the "To:" and "cc:" fields will be
replaced with "standard" format entries. This standard format is designed to be usable by all
of the message handlers on the various systems around the Internet. If '-noformat' is given,
then headers are output exactly as they appear in the message draft.

If an "Fcc: folder" is encountered, the message will be copied to the specified folder for the
. sender in the format in which it will appear to any non-Bcc receivers of the message. That is,
it will have the appended fields and field reformatting. The "Fcc:" fields will be removed
from all outgoing copies of the message.

By using the '-width columns' switch, the user can direct send as to how long it should make
header lines containing addresses.

By using the '-alias aliasfile' switch, the user can direct send to consult the named files for
alias definitions (more than one file, each preceded by '-alias', can be named). See
mh-alias (5) for more information.

$HOME/.mh-profile The user profile

Profile Components .

See Also

Defaults

Context

rmh.61

Path: To determine the user's MH directory
Draft-Folder: To find the default draft-folder
Signature: To determine the user's mail signature
mailproc:~Program to post failure notices
postproc: Program to post the message

comp(1), dist(l), forw(1), repl(l), mh-alias(5), post(8)

'file' defaults to <mh-dir>/draft
'-alias lusr/new/lib/mhlMailAliases'
, -nodraftfolder'
'-no filter'
'-format'
'-forward'
'-nomsgid'
'-nopush'
'-noverbose'
'-nowatch'
'-width 72'

None

MH U CI/U CB version

SHOW(l) The Rand MH Message Handling System USD:8-66

NAME
show - show (list) messages

SYNOPSIS
show [+folder1 [msgs] [-draft] [-header] [-noheader] [-showproc program] {-noshowprocl

[switches for showproc] [-help]

DESCRIPTION

Files

Show lists each of the specified messages to the standard output (typically, the terminal).
Typically, the messages are listed exactly as they are, with no reformatting. A program named
by the showproc profile component is invoked to do the listing, and any switches not recog
nized by show are passed along to that program. The default program is known as more (1).
To override the default and the showproc profile component, use the '-showproc program'
switch. For example, '-show pr' will cause the pr (1) program to list the messages. The lvfH
command mhl can be used as a showproc to show messages in a more uniform format. Nor
mally, this program is specified as the showproc is the user's .miLprofile. See mhl (1) for the
details. If the '-noshowproc' option is specified, 'lbin/cat' is used instead of showproc.

The '-header' switch tells show to display a one-line description of the message being shown.
This description includes the folder and the message number.

If no 'msgs' are specified, the current message is used. If more than one message is specified,
more will prompt for a <RETURN> prior to listing each message. more will list each mes
sage, a page at a time. When the end of page is reached, more will ring the bell and wait for a
<SPACE> or <RETURN>. If a <RETURN> is entered, more will print the next line,
whereas <SPACE> will print the next screenful. To exit more, type "q".

If the standard output is not a terminal, no queries are made, and each file is listed with a
one-line header and two lines of separation.

"show -draft" will list the file <mh-dir>/draft if it exists.

If the profile entry "Unseen-Sequence" is present and non-empty, then show will remove
each of the messages shown from each sequence na~ed by the profile entry. This is similar to
the "Previous-Sequence" profile entry supported by all MH commands which take 'msgs' or
'msg' arguments.

$HOME/.miLprofile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder

See Also

[mh.6]

Current-Folder:
Unseen-Sequence:
showprQc:

To name sequences denoting unseen messages
Program to show messages

mhl(l), more(l), next(l), pick(l), prev(l), scan(l)

MH VCI/VCB version

USD:8-67 The Rand MH Message Handling System .SHOW(1)

Defaults

Coatext

Bup

[mh.6)

'+ folder' defaults to the current folder
'msgs' defaults to cur
'-format'
'-header'

If a folder is given, it will become the current folder. The last message shown will become the
current message.

The '-header' switch doesn't work when 'msgs' expands to more than one message. If the
showproc is mhl, then is problem can be circumvented by referencing the "messagename"
field in the mhl format file.

Show updates .the user's context before showing the message. Hence if show will mark mes
sages as seen prior to the user actually seeing them. This is generally not a problem, unless
the user relies on the "unseen" messages mechanism, and interrupts show while it is showing
"unseen" messages.

Ifshowproc is mhl, then show uses a built-in mhl: it does not actually run the mhl program.
Hence, if you define your own showproc, don't call it mhl since show won't run it.

If more (1)is your showproc (the default), then avoid running show in the background" with
only its standard output piped to another process, as in

show I imprint &

Due to a bug in more, show will go into a "tty input" state. To avoid this problem, re-direct
show's diagnostic output as well. For users of csh:

show I & imprint &

For users of sh:

show 2>&1 I imprint &

MH UCIIUCB version

SORTM(1) The Rand MH Message Handling System USD:8-68

NAME
sortm - sort messages

SYNOPSIS
sortm [+folder] [msgs] [-datefield field] [-verbose] [-noverbose] [-help]

DESClUPTION

Files

Sortm sorts the specified messages in the named folder according to the chronological order of
the "Date:" field of each message. Messages which are in the folder, but not specified by
'msgs', are moved to the end of the folder. If a message does not exist (the folder has a gap),
sortm may fill the gap if convenient.

The '-verbose' switch directs sortm to tell the user the general actions that it is taking to place
the folder in sorted order.

The '-datefield field' switch tells sortm the name of the field to use when making the date
comparison. If the user has a special field in each message, such as "BB-Posted:" or
"Delivery-Date:", then the '-datefield' switch can be used to direct sortm which field to
examine.

SHOME/.mb-profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder

See Also

Defaults

Context

History

Bugs

Imh.6)

Current-Folder:

folder (1)

'+ folder' defaults to the current folder
'msgs' defaults to all
'-datefield date'
'-noverbose' ..
If a folder is gi Yen, it will become the current folder. If the current message is moved, sortm
will preserve its status as current.

Timezones used to be ignored when comparing dates: they aren't any more.

If sortm encounters a message without a date-field, or if the message has a date-field that
sortm cannot parse, then sortm attempts to keep the message in the same relative position.
This does not always work. Far instance, if the first message encountered lacks a date which
can be parsed, then it will usually be placed at the end of the messages being sorted.

When sortm complains about a message which it can't temporarlly order, it complains about
the message number prior to sorting. It should indicate what the message number will be
after sorting.

MH UCI/UCB version

USD:8-69 The Rand MH Message Handling System VMH(1)

NAME
vmh - visual front-end to MH

SYNOPSIS
• vmh [-prompt string] [-vmhproc program] [-novmhproc] [switches for vm~proc] [-help]

DESCRIPTION

(mb.6)

vmh is a program which implements the server side of the MH window management protocol
and uses curses (3) routines to maintain a split-screen interface to any program which imple
ments the client side of the protocol. This laner program, called the vmhproc, is specified
using the '-vmhproc program' switch.

The upshot of all this is that one can run msh on.a display terminal and get a nice visual
interface. To do this, for example, just add the line

mshproc: vmh

to your .mh..profile. (This takes advantage of the fact that msh is the default vmhproc for
vmh.)

In order to facilitate things, if the '-novmhproc' switch is given. and vmh can't run on the
user's terminal, the vmhproc is run directly without the window management protocol.

After imtializing the protocol, vmh prompts the user'for,a command to be' given to the client.
Usually, this results in output being sent to one or more win<iows. If a output to a window
would cause it to scroll, vmh prompts the user for instructions. roughly permining the capabil
ities of less or more (e.g., the ability to scroll backwards and forwards):

SPACE
RETURN
y
d
u
g

G

CTRL-L
h
q

advance to the next windowful
* advance to the next line
* retreat to the previous line
* advance to the next ten lines
• retreat to the previous ten lines
* go to an arbitrary line

(preceed g with the line number)
• go to the end of the window

(if a line number is given, this acts like 'g')
refresh the entire screen
print a help message
abort the window

(A '.' indicates that a numeric prefix is meaningful for this command.)

Note that if a command resulted in more than one window's worth of information being
displayed, and you allow the command which is generating information for the window to
gracefully finish (i.e., you don't use the 'q' command to abort information being sent to the
window), then vmh will give you one last change to peruse the windo.w. This is useful for
scrolling back and forth. Just type 'q' when you're done.

To abnormally terminate vmh (without core dump). use <QUIT> (usually CTRL~\). For
instance, this does the "right" thing with bbc and msh.

MH VCl/VCB version

VMH(1) The RamI MH Message Handling System USD:8-70

SHOMEI.mh..profile The user profile

PrefiIe CfIIIlPOIIeIlts

See AlsO

DefuIts

COIItext

Bu ..

[mh.6)

Path: To determine the user's MH directory

msh(l)

'-prompt (vmh) ,
'-vmbproc msh'

None

The argument to the '-prompt' switch must be interpreted as a single token by the shell that
invokes vmh. Therefore, one must usually place the argument to this switch inside
double-quotes.

At present, there is no way to pass signals (e.g., interrupt, quit) to the client. However, gen
erating QUIT when vmh is reading a command from the terminal is sufficient to tell the client
to go away quic14y.

Acts strangely (lo$Cs peer or botches windc;>w management protocol with peer) on random oc
casions •.

MH veIIVCB version

•

USD:8-71 The Rand MH Message Handling System WHATNOW(l)

NAME
whatnow - prompting front-end for send

SYNOPSIS
whatnow [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]

[-prompt string] [file] [-help]

DESCRIPTION

Files

[mh.6)

Whatnow is the default program that Queries the user about the disposition of a composed
draft. It is normally invoked by one of comp, dist, jorw, or repl after the initial edit.

When started, the editor is started on the draft (unless '-noedit' is given, in which case the
initial edit is suppressed). Then, whatnow repetitively prompts the user with "What now?"
and awaits a response. The valid responses are
display to list the message being distributed/replied-to on

the terminal
edit to re-edit using the same editor that was used on the

preceding round unless a profile entry
"<lasteditor>-next: <editor>"· names an alternate editor

edit <editor> to invoke <editor> for further editing
list to list the draft on the terminal
push to ~nd the message in the background
quit to terminate the session and preserve the draft
quit -delete to terminate, then delete the draft
refile +folder to refile the draft into the given folder
send to send the message
send -watch to cause the delivery process to be monitored
whom to list the addresses that the message will go to
whom -check to list the addresses and verify that they are

acceptable to the transport service

For the edit response, any valid switch to the editor is valid. Similarly, for the send and
whom responses, any valid switch to send (1) and whom (1) commands, respectively, are
valid. For the push response, any valid switch to send (1) is valid (as this merely invokes
send with the '-push' option). For the refile response, any valid switch to the fileproc is valid.
For the display and list responses, any valid argument to the lproc is valid. If any non-switch
arguments are present, then the pathname of the draft will be excluded from the argument list
given to the Iproc (this is useful for listing another MH message).

See mh-profile (5) for further information about how editors are used by MH. It also
discusses how complex environment variables can be used to direct whatnow's actions.

The '-prompt string' switch sets the prompting string for whatnow.

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

$HOME/.m~profile
<mh-dir>/draft

The user profile
The draft file

MH VCI/VCB version

WHATNOW(l) The Raad MH Message HandliDa System USD:8-72

Profile c_peaents
Path: To determine the user's MH directory

To find the default draft-folder

See Also

Context

(mh.6J

Draft-Folder:
Editor:
<lasteditor>-next:
ftleproc:
Iproc:
sendproc:
whomproc:

send(1), wbom(1)

To override the default editor
To name an editor to be used after exit from <lasteditor>
Program to reftle the message
Program to list the contents of a message
ProJI'lUl to use to send the message
PtoJI'lUl to determine who a message would go to

"

'-prompt "What Now? '"

None

The argument to the '-prompt' switch must be interpreted as a single token by the shell that
invokes whatnow. Therefore, one' must usually place the argument to this ,switch inside
double-quotes.
. . .
If sendproc is send, then whatnow uses a built-in send, it does not actually run the send pro
gram.. Henc~, if you define your own sendproc, don't call it send, since whatnow won't run it.

MH UCI/UCB version

USD:8-73 The Rand MH Message Handling System WHOM(1)

NAME
whom - report to whom a message would go

SYNOPSIS
whom [-alias aliasfile] [-check] [-nocheck] [-draft] [-draftfolder +folder] [-draftmessage msg]

[-nodraftfolder] [file] [-help]

DESClUPTION

Flies

Whom is used to expand the headers of a message into a set of addresses and optionally ver
ify that those addresses are deliverable at that time (if '-check' is given).

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

By using the '-alias aliasfile' switch, the user can direct send to consult the named files for
alias definitions (more than one file, each preceeded by '-alias', can be named). See
mh-alias (5) for more information.

SHOMEI.mh-profile The user profile

Profile Compoaents
Draft-Folder:
postproc:

. To find the default draft-folder
Program to post the message

See Also

Defaalts

Context

Bup

[mb.6)

mh-alias(5), post(8)

'file' defaults to <mh-dir>/draft
'-nocheck'
'-alias /usr/newllib/mhlMailAliases'

None

With the • -check' option, whom makes no guarantees that the addresses listed as being ok are
really deliverable, rather, an address being listed as ok means that at the time that whom was
run the address was thought to be deliverable by the transport service. For local addresses,
this is absolute; for network addresses, it means that the host is known; for uucp addresses, it
(often) means that the UUCP network is available for use.

MH VCl/VCB version

The Rand MH Message Handling System USD:8-14

MORE DETAILS

This section describes some of the more intense points of the MH system, by expanding on
topics previously discussed. The format presented conforms to the standard form for the description
of UNIX documentation.

USD:8-75 The Rand MH Message Handling System MH-ALIAS(5)

NAME
mh-alias - alias file for MH message system

SYNOPSIS
any MH command

DESCRIPTION

(mh.6]

This describes both MH personal alias files and the (primary) alias file for mail delivery, the
file

/usr/new/lib/mhlMailAliases

It does not describe aliases files used by the message transport system. Each line of the alias
file has the format:

or

or

where:

alias : address-group

alias ; address-group

< alias-file

address-group
I
I
I
I

: = address-list
"<" file
"=" UNIX-group
"+" UNIX-group

address-list : = address
I address-list, address

Continuation lines in alias files end with '\' followed by the newline character.

Alias-file and file are UNIX file names. UNIX-group is a group name (or number) from
/etc/group. An address is a "simple" Internet-style address. Througout this file, case is
ignored, except for alias-file names.

Ifthe line starts with a '<', then the file named after the '<' is read for more alias definitions.
The reading is done recursively, so a '<' may occur in the beginning of an alias file with the
expected results.

If the address-group starts with a '<', then the file named after the' <' is read and its contents
are added to the address-list for the alias.

If the address-group starts with an '=', then the file fetc/group is consulted for the
UNIX-group named after the '='. Each login name occurring as a member of the group is
added to the address-list for the alias.

In contrast, if the address-group starts with a.' +', then the file fetc/group is consulted to
determine the group-id of the UNIX-group named after the '+'. Each login name occurring
in the fetc/passwd file whose group-id is indicated by this group is added to the address-list

MH VCI/UCB version

MH-ALIAS(S) The RaINI MH Message HaaclUng System USD:8-76

(mh.6)

for the alias.

If the address-group is simply' ... then the file letclpasswd is consulted and all login names
with a userid greater than some magic number (usually 200) are added to the address-list for
the alias.

In match, a trailing * on an alias will match just about anything appropriate. (See example
below.)

An approximation of the way aliases are resolved at posting time is (it's not really done this
way):

1) Build a list of all addresses from the message to be delivered,. eliminating duplicate
addresses.

2) If this draft originated on the local host, then for those addresses in the message
that have no host specified, perform alias resolution.

3) For each line in the alias file, compare "alias" against all of the existing addresses.
If a match, remove the matched "alias" from the address list, and add each new
address in the address-group to, the addr\.ss list if it is not already on the list. The
alias itself is not usually output, rather the address-group that the alias maps to is
output instead. If ~'alias'" is terminated'with a ';' instead of a ':', then both the "alias"
and the address are' output in the correct format. '(This makes replies possible since .
MH aliases and personal aliaSes are unknown to the mail transport system.)

Since the alias file is read line by line, forward references work, but backward references are
not recognized. thus, there is no recursion.

Example:
</usr/newllib/mhIBBoardAliases
sgroup: fred, fear, freida
fred: frated@UCI
UNIX-committee: <unix.aliases
staff: -staff
wheels: +wheel
everyone: •
news.·: news

The first line says that more aliases should immediately be read from the file
lusrlnewlliblmhlBBoardAliases. Following this, "fred" is defined as an alias for
"frated.@UCI", and "sgroup" is defined as an alias for the three names "frated@UCI",
"fear"" and "freida". Next, the definition of "UNIX-committee" is given by reading the file
unix. aliases in the users MH directory, "staff" is defined as all users who are listed as
members of the group "staff" in the letclgroup file, and "wheels" is detinedas all users whose ..
group-id in letclpasswd is equivalent to the "wheel" group. Finally, "everyone" is defined as
all users with a user-id in letclpasswd greater than 200, and all aliases of the form
·'news.<anything>" are defined to be "news".

The key thing to understand about aliasing 'in MH is that aliases in MH alias files are
expanded into the headers of messages posted. This aliasing occurs first, at posting time.
without the knowledge of the message transport system. In contrast, once the message tran
sport system is given a message to deliver to a list of addresses, for each address that appears

MH UCI/UCB version

USD:8-77 The Rand MH Message Handling System MH-ALIAS(5)

to be local, a system-wide alias file is consulted. These aliases are NOT expanded into the
headers of messages delivered.

Helpful Hints

Files

To use aliasing in MH quickly, do the following:

First, in your .mlLprofile, choose" a name for your primary alias file, say "aliases", and
add three lines:

ali: -alias aliases
send: -alias aliases
whom: -alias ailases

Second, create the file "aliases" in your MH directory.

Third, start adding aliases to your "aliases" file as appropriate.

/usr/new/lib/mh/MailAliases Primary alias file

Profile Components
None

See Also

Defaults

Context

History

Bugs

(mh.61

ali(l), send(l), whom(1), group(5), passwd(5), confiict(8), post(8)

None

None

In previous releases of MH, only a single, system-wide mh-alias file was supported. This led
to a number of problems, since only mail-system administrators were capable of (un)defining
aliases. Hence, the semantics of mh-alias were extended to support personal alias files. Users
of MH no longer need to bother mail-system administrators for keeping information in the
system-wide alias file, as each MH user can create/modify/remove aliases at will from any
number of personal files.

Although the forward-referencing semantics of mh-alias files prevent recursion, the
"< alias-file" command may defeat this. Since the number of file descriptors is finite (and
very limited), such infinite recursion will terminate with a meaningless diagnostic when all the
fds are used up.

MH UCIIUCB version

MH ... FORMAT(5) De Rand MH Message HandUIlI System USD:8-78

NAME
mh-format - format file for MH messaae system

SYNOPSIS
some MH commands

DESClUP110N

(mh.6)

Several MH commands utilize either a format string or a format file during their execution.
For example, scan (1) uses a format string which directs it how to generate the scan listing for

, each message; repl (1) uses a format file which directs it how to generate the reply to a mes
sage, and so on.

Format strings are designed to be efficiently parsed by MH since they represent an integral
part of MH. This means that novice. casual, or even advanced users of MH should deal with
them. It suffices to have your local MH expert actually write new format commands· or
modify existing ones. This manual section explains how to do just that.

A format string is similar to .a print! (3) string, but uses multi-letter '%' -escapes. When
specifying a string, the usual C backslash characters are honored: '\b', '\r, '\n', '\r', and '\t'.
Continuation lines in format files end with '\' followed by the newline character.

The interpretation model is based on ~ simple machine with, two registers. num and str. The
. former contains an integer value, the latter a string value. When an escape is processed; if it
requires an argument, it reads the current value of either num or Sir, and, if it returns a value,
it wntes either num or str.

Escapes are of three types: components, junctions, and, control. A component escape is
specified as '%{ name r, and is created for each header found in the message being processed.
For example '%{date} refers to the "Date:" field of the appropriate message. A component
escape is always string valued.

A control escape is one of: '%<escape', '%1', and '%>', which correspond to if...:then-else con
structs: if 'escape' is non-zero (for integer-valued escapes), ornon-empty (for string-valued
escapes), then everything up to '%1' or ,%>' (whichever comes first) is interpreted; otherwise,
then skip to '%I'or '%>' (whichever comes first) and start interpreting again.

A function escape is specified as '%(name)', and is statically defined. Here is the list:
escape argument returnsinterpretation
nonzero integer integer num is non-zero
zero integer integer num is zero
eq integer integer num •• width
ne integer integer num!. width
gt integer integer width> num
null string integer str is empty
nonnuU string integer SIr is non-empty
putstr string print str
putstrf string print str in the specified width

(e.g., %20(putstrf{ subject})
putnum integer printnum
putnumf integer print num in the specified width

(e.g., %4(ptJtnumf(msg»
msg integer message number

MH VCI/UeD version

USD:8-79 The Rand MH Message Handling System MH-FORMAT(5)

cur integer message is current
size integer size of message
strlen string integer length of str
me string the user's mailbox
plus integer add width to num
minus integer subtract num from width
charleft integer space left in output buffer
timenow integer seconds since the UNIX epoch

When str is a date, these escapes are useful:
escape argument returnsinterpretation
sec string integer seconds of the minute
min string integer minutes of the day
hour string integer hours of the day (24 hour clock)
mday string integer day of the month
mon string integer month of the year
wday string integer day of the week (Sunday=O)
year string integer year of the century
yday string integer day of the year
dst string integer daylight savings in effect
zone string integer timezone
sday string integer day of the week known

1 for explicit in date
o for implicit (MH figured it out)
-1 for unknown (MH couldn't figure it out) .

clock string integer seconds since the UNIX epoch
rclock string integer seconds prior to current time
month string string month of the year
lmonth string string month of the year (long form)
tzone string string timezone
day string string day of the week
weekday string string day of the week (long)
tws string string official 822 rendering of the date
pretty string string a more user-friendly rendering
nodate string date wasn't parseable

When str is an address, these escapes are useful:
escape argument returnsinterpretation
pers string string the personal name of the address
mbox string string the local part of the address
host string string the domain part of the address
path string string the route part of the address
type string integer the type of host

-1 for uucp
o for local
1 for network
2 for unknown

nohost string integer no host was present in the address
ingrp string integer the address appeared inside a group
gname string string name of the group· (present for first

address only)
note string string commentary text
proper string string official 822 rendering of the address

(mh.6J MH VCI/VCB version

MH-FORMA T(S) The Rand MH Message Handling System USD:8-SO

Files

friendly string string a more user-friendly rendering
mymbox string the' address refers to the user's mailbox

print str in an address list formataddr string

With all this in mind, here's the default format string for scan. It's been divided into several
pieces for readability. The first part is:

%4(putnumf(msg»%«cur)+%1 %>%<{replied}-%I %>

which says that the message number should be printed in four digits, if the message is the
current message then a '+' else a space should be printed, and if a "Replied:" field is present
then a '-' else a space should be printed. Next:

%02(putnumf(mon { date}))/%02(putnumf(mday{ date} »

the hours and minutes are printed in two digits (zero filled). Next,

%«date} %1*>

If no "Date:" field was present, then a '.' is printed, otherwise a space. Next,

. %«mymbox{from})To:%l4(putstrf(friendly{to}»

if the message is fr9m me, print 'To:' followed by a "user-friendly" rendering of the first
address in the "To:" field. Continuing,

%1%17(putstrf(friendly{from} »%>

if the message isn't from me, then the print the "From:" address is printed. And finally,

%{ subject} < <%{ body} > >

the subject and initial body are printed.

Although this seems complicated, in point of fact, this method is flexible enough to extract
individual fields and print them in any format the user desires.

If the '-form formatfile' switch is given, scan will treat each line in the named file as a format
string and act accordingly. This lets the user employ canned scan listing formats. Take a
look at the three files lusr/new/lib/mh/scan.time, lusr/new/lib/mh/scan.size. and
lusr/new/lib/mh/scan. timely.

None

Profile Components
None

See Also
ap(8), dp(8)

Defaults

None

(mh.61 MH UCI/UeB version

USD:8-81 The Rand MH Message Handling System MH-FORMAT(5)

Context
None

On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6) MH UCI/UCB version

MH-MAJL(5) The Rand MH Message HaDdling System USD:8-81

NAME
mh-mail - message format for MH message system

SYNOPSIS
any MH command

DESClUPl'ION

MH processes messages in a particular format. It should be noted that although· neither Bell
nor Berkeley mailers produce message files in the format that MH prefers. MH can read mes
sage files in that antiquated format.

Each user possesses a mail drop box which initially receives all messages processed by
post (8), Inc (1) will read from that drop box and incorporate the new messages found there
into the user's own mail folders (typically '+inbox'). The mail drop box consists of one or
more messages.

Messages are expected to consist of lines of text. Graphics and binary data are not handled .
• No data compression is accepted. All t~xt is clear ASCII 7-bit data.

The general ~'memo" framework of RFC-822 is used. A message consists of a block of infor
mation in a rigid format, followed by general text with no specified format. The rigidly for
matted' first part of a 'message is called the header, and the free-format portion is called the
body. The' header must always exist, but ,the body is optional. These parts are separated by
an empty line, i.e., two consecutive newline characters. WithinMH, ,the header and body
may be separated by a line consisting of dashes:

(mh.6)

To:
cc:
Subject:

The header is composed of one or more header items. Each header item can be viewed as a
single logical line of ASCII characters. If the text of a header item extends across several real
lines, the continuation lines are indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword or name, along with
associated text. The keyword begins at the left margin, may NOT contain spaces or tabs, may
not exceed 63 characters (as specified by RFC-822), and is terminated by a colon (':'). Cer
tain components (as identified by their keywords) must follow rigidly defined formats in their
text portions.

The text for most formatted components (e.g., "Date:" and "Message-Id:") is produced
automatically. The only ones entered by the user are address fields such as "To:", "cc:", etc.
Internet addresses are assigned mailbox names and host computer specifications. The rough
format is "local@domain", such as "MH@UCI", or "MH@UCI-ICSA.ARPA". Multiple
addresses are separated by commas. A missing host/domain is assumed to be the local
host/domain.

As mentioned above, a blank line (or a line of dashes) signals that all following text up to the
end of the file is the body. No formatting is expected or enforced within the body.

Following is a list of header components that are considered meaningful to various MH

MH VCI/VCB version

USD:8-83 The Rand MH Message Handling System MH-MAIL(5)

rmh.61

programs.
Date:

From:

Sender:

To:

cc:

Bee:

Fcc:

Added by post (8), contains date and time of the message's entry into the transport
system.

Added by post (8), contains the address of the author or authors (may be more than
one if a "Sender:" field is present). Replies are typically directed to addresses in the
"Reply-To:" or "From:" field (the former has precedence if present).

Added by post (8) in the event that the message already has a "From:" line. This line
contains the address of the actual sender. Replies are never sent to addresses in the
"Sender:" field.

Contains addresses of primary recipients.

Contains addresses of secondary recipients.

Still more recipients. However, the "Bee:" line is not copied onto the message as
delivered,so these recipients are not listed. MH uses an encapsulation method for
blind copies, see send (1). .

Causes post (8) to copy the message into the specified folder for the sender. if the
message was successfully given to the transport system.

Message-ID:
A unique message identifier added by post (8) if the '-msgid' flag is set.

Subject:
Sender's commentary. It is displayed by scan (l).

In-Reply-To:
A commentary line added by repl (1) when replying to a message.

Resent-Date:
Added when redistributing a message by post (8).

Resent-From:
Added when redistributing a message by post (8).

Resent-To:
New recipients for a message resent by dist (1).

Resent-cc:
Still more recipients. See "cc:" and hResent-To:".

Resent-Bec:
Even more recipients. See "Bcc:" and "Resent-To:".

MH VCI/VCB version

MH-MAIL(5) The Rand MH Message Handling System USD:8-84

Resent-Fcc:
Copy resent message into a folder. See "Fcc:" and "Resent-To:".

Resent-~essage~Id:
A unique identifier glued on by post (8) if the '-msgid' flag is set. See "Message-Id:"
and "Resent-To:".

Resent:
Annotation for dist (1) under the' -annotate' option.

Forwarded:
Annotation for /orw (1) under the '-annotate' option.

Replied:
Annotation for repl (1) under the '-annotate' option.

Files
lusrlspoollmaillSUSER Location of mail drop

Profile CompoaeJIts
None

See Alto .
Standard/or the Formal 0/ ARPA Internet Text Messages (aka RfC-Si2)

Defaults
None

Coatext
None

Imh.6) MH UCI/UCB version

USD:8-85 The Rand MH Message Handling System MH-PROFILE(5)

NAME
.miLprofile - user customization for MH message system

SYNOPSIS
any MH command

DESCRIPTION

(mh.6)

Each user of MH is expected to have a file named .mh_profile in his or her home directory.
This file contains a set of user parameters used by some or all of the MH family of programs.
Each line of the file is of the format

profile-component: value

The possible profile components are exemplified below. Only 'Path:' is mandatory. The oth
ers are optional; some have default values if they are not present. In the notation used below,
(profile, default) indicates whether the information is kept in the user's MH profile or MH
context, and indicates what the default value is.

Path: Mail
Locates MH transactions in directory "Mail". (profile, no default)

context: context
Declares the location of the MH context file, see the HISTORY section below.
(profile, default: <mh-dir>/context) .

Current-Folder: inbox
Keeps track of the current open folder. (context, default: +inbox)

Previous-Sequence: pseq
Names the sequences which should be defined as the 'msgs' or 'msg' argument
given to the program. If not present, or empty, no sequences are defined.
Otherwise, for each name given, the sequence is first zero'd and then each
message is added to the sequence. (profile, no default)

Sequence-Negation: not
Defines the string which, when prefixed to a sequence name, negates that
sequence. Hence, "notseen" means all those messages that are not a member
of the sequence "seen". (profile, no default)

Unseen-Sequence: unseen
Names the sequences which should be defined as those messages recently
incorporated by inc. Show knows to remove messages from this sequence
once it thinks they have been seen. If not present, or empty, no sequences are
defined. Otherwise, for each name given, the sequence is first zero'd and then
each message is added to the sequence. (profile, no default)

mh-sequences: .miLsequences
The name of the file in each folder which defines public sequences. To disable
the use of public sequences, leave the value portion of this entry blank.
(profile, default: .mlLsequences)

atr-seq-folder: 172 178-181 212

MH VCI/VCB version

MH-PROFILE(5) The Rand MH Message Handling System USD:8-S6

Keeps track of the private sequence called seq in the specified folder. (con
text, no default)

Editor: lusrlucb/ex
Defines editor to be used by comp (1), dist (1), forw (1), and repl (1).
(profile, default: prompter)

Msg-Protect: 644
Defines octal protection bits for message files. See chmod (1) for an explana
tion of the octal number. (profile, default: 0644)

Folder-Protect: 711
Defines protection bits for folder directories. (profile, default: 0711)

program: default switches
Sets default switches to be used whenever the mh program program is
invoked. For example, one could override the Editor: profile component
when replying to messages by adding a component such as:

repl: -editor Ibin/ed
(profile, no defaults)

lasteditor-next: nexteditor
Names "nexteditor" to be the. default editor after using "lasteditor". This
takes effect at "What now?" level in comp, dist, forw, and repl. After editing
the draft with "lasteditor". the default editor is set to be "nexteditor". If the
user types "edit" without any arguments to "What now?". then "nexteditor"
is used. (profile. no default)

bboards: system
Tells bbc which BBoards you are interested in. (profile, default: system)

Folder-Stack: folders

mhe:

The contents of the folder-stack for the folder command. (context, no
default)

If present, tells inc to compose an MHE auditfile in addition to its other tasks.
MHE is Brian Reid's Emacs front-end for MH. An early version is supplied
with the mh.6 distribution. (profile, no default)

Alternate-Mailboxes: mh@uci-7S0a, bug-mh*

(mh.6)

Tells rep/ and scan which addresses are really yours. In this way, repl knows
which addresses should be included in the reply, and scan knows if the mes
sage really originated from you. Addresses must be separated by a comma,
and the hostnames listed should be the "official" hostnames for the mailboxes
you indicate, as local nicknames for hosts are not replaced with their official
site names. For each address, if a host is not given, then that address on any
host is considered to be you. In addition, an asterisk ('*') may appear at
either or both ends of the mailbox and host to indicate wild-card matching.
(profile, default: your user-id)

Draft-Folder: drafts
. Indicates a default draft folder for comp, dis[, forw, and repl. (profile, no

MH vellVCB version

USD:8-87 The Rand MH Message Handling System MH-PROFILE(5)

(mh.6]

default)

digest-issue-list: 1
Tells forw the last issue of the last volume sent for the digest list. (context, no
default)

digest-volume-list: 1
Tellsforw the last volume sent for the digest list. (context, no default)

MailDrop: .mail
Tells inc your maildrop, if different from the default. This is superceded by
the SMAILDROP environment variable. (profile, default:
lusrlspoollmaill$USER)

Signature: Rand MH System (agent: Marshall Rose)
Tells send your mail signature. This is superceded by the SSIGNATURE
environment variable. On hosts where MH was configured with the Vel
option, if $SIGNATURE is not set and this profile entry is not present, the
file SHOMEI.signature is consulted. (profile, no default)

The following profile elements are used whenever an 'MH program invokes sume other pro
gram such as more (1). The .mh-profile can be used to select alternate programs if the user
wishes. The default values are given in the examples.

fileproc:
incproc:
installproc:
lproc:
mailproc:
mhlproc:
moreproc:
mshproc:
packproc:
postproc:
rmmproc:
rmfproc:
sendproc:
showproc:
whatnowproc:
whomproc:

lusr/new/mh/refile
lusr/new/mh/inc
lusr/new/lib/mh/install-mh
lusr/ucb/more
lusr/new/mh/mhmail
lusr/new/lib/mh/mhl
lusr/ucb/more
lusr/new/mh/msh
lusr/new/mh/packf
lusr/newllib/mh/post
none
lusr/t;lew/mh/rmf
lusr/new/mh/send
lusr/ucb/more
lusr/new/mh/whatnow
lusr/new/mh/whom

If you define the environment variable $MH, you can specify a profile other than .mh-projile
to be read by the MH programs that you invoke. If the value of $MH is not absolute, (i.e.,
does not begin with a I), it will be presumed to start .from the current working directory.
This is one of the very few exceptions in MH where non-absolute pathnames are not con
sidered relative to the user's MH directory.

Similarly, if you define the environment variable $MHCONTEXT, you can specify a context
other than the normal context file (as specified in the MH profile). As always, unless the value
ofSMHCONTEXT is absolute, it will be presumed to start from your MH directory.

MH programs also support other environment variables:

MH UCI/UCB version

MH-PROFILE(S) The Rand MH Message Handling System VSD:8-88

(mh.6)-

SMAILDROP : tells inc the default maildrop
This supercedes the "MaiIDrop:" profile entry.

SSIGNA TURE : tells send and post your mail signature
This supercedes the "Signature:" profile entry.

SHOME : tells all MB programs your home directory

SSHELL : tells bbl the default shell to run

STERM : tells MB your terminal type
The STERMCAP environment variable is also consulted. In particular, these tells
scan and mhl how to clear your terminal, and how many columns wide your terminal
is. They also tell mhl how many lines long your terminal screen is.

$editalt : the alternate message
This is set by dist and repl during edit sessions so you can peruse the message being
distributed or replied-to. The message is also available through a link called "@" in
the current directory if your current working directory and the folder the message
lives in are on the same UNIX filesystem.

Smhdraft : the path to the working draft
This is set· by comp, dist, jorw, and repl to tell the whainowproc which file to ask .
"What now?" questions about. In addition, dist, jorw, and repl set $inhfolder if
appropriate. Flirther, dist and repl set $mhaltmsg to tell the whatnowproc about an
alternate message associated with the draft (the message peing distributed or
replied-to), and dist sets $mhdist to tell the whatnowproc that message re-distribution
is occurring. Also, Smheditor is set to tell the whatnowproc the user's choice of editor
(unless overridden by '-noedit'). Similarly, $mhuse may be set by compo Finally,
Smhmessages is set bydist, jorw, and repl if annotations are to occur (along with
Smhannotate, and $mhinplace). It's amazing all the information that has to get passed
via environment variables to make the "What now?" interface look squeaky clean to
the MB user, isn't it? The reason for all this is that the MB user can select any pro
gram as the whatnowproc, including one of the standard shells. As a result, it's not
possible to pass information via an argument list.
If the WHATNOW option was set during MB configuration (type '-help' to an MH
command to find out), and if this environment variable is set, if the commands refi/e.
send, show, or whom are not given any 'msgs' arguments, then they will default to
using the file indicated by Smhdraft. This is useful for getting the default behavior
supplied by the default whatnowproc. .

$mhfolder : the folder containing the alternate message
This is set by dist and repl during edit sessions so you can peruse other messages in
the current folder besides the one being distributed or replied-to. The $mhfolder
environment variable is also set by show, prev, and next for use by mhl:

SMHBBRC:
If you define the environment variable $MHBBRC, you can specify a BBoards infor
mation file other than .bbrc to be read by bbc. If the value of $MHBBRC is not abso
lute. (Le., does not begin with a I), it will be presumed to start from the current
working directory.

SMHFD:

MH VCl/VCB version

VSD:8-89 The Rand MH Message Handling System . MH-PROFILE(5)

FUes

If the OVERHEAD option was· set during MH configuration (type '-help' to an MH
command to find out), then if this environment variable is set, MH considers it to be
the number of a file-descriptor which is opened, read-only to the MH profile. Simi
larly, if the environment variable $MHCONTEXTFD is set, this is the number of a
file-descriptor which is opened read-only to the MH context. This feature of MH is
experimental, and is used to examine possible speed improvements for MH startup.
Note that these environment variables must be set and non-empty to enable this
feature. However, if OVERHEAD is enabled during MH configuration, then when
MH programs call other MH programs, this scheme is used. These file-descriptors
are not closed throughout the execution of the MH program, so children may take
advantage of this. This approach is thOUght to be completely safe and does result in
some performance enhancements.

$HOME/.mh-profile
or$MH
<mh-dir>/context
or $CONTEXT
<folder>/.mbJequences

The user profile
Rather than the standard profile
The user context
Rather than the standard context
Public sequences for <folder>

Profile Components
All

See Also

Defaults

Context

History

(mh.6)

mh(l), environ(5)

None

All

In previous versions of MH, the current-message value of a writable folder was kept in a file
called "cur" in the folder itself. In mh.3, the .mh-profiie contained the current-message
values for all folders, regardless of their writability.

In all versions of MH since mh.4, the .mh-profiie contains only static information, which MH
programs will NOT update. Changes in context are made to the context file kept in the users
MH directory. This includes, but is not limited to: the "Current-Folder" entry and all private
sequence information. Public sequence information is kept in a file called .mh...sequences in
each folder.

To convert from the format used in releases of MH prior to the format used in the mh.4
release, install-mh should be invoked with the '-compat' switch. This generally happens au
tomatically on MH systems generated with the "COMPA T' option during MH configuration.

The .mh-profiie may override the path of the context file, by specifying a "context" entry (this
must be in lower-case). If the entry is not absolute (does not start with a /), then it is inter
preted relative to the user's MH directory. As a result, you can actually have more than one
set of private sequences by using different context files.

MH VCI/UCB version

MH-PROFILE(S) The Rand MH Message Handling System USD:8-90

Bup

[mh.6)

The shell quoting conventions are not available in the .miL.profile. Each token is separated
by whitespace.

There is some question as to -what kind of arguments should be placed in the profile as op
tions. In order to provide a clear answer, recall command line semantics of all MH programs:
conflicting switches (e.g., '-header and '-noheader') may occur more than one time on the
command line, with the last switch taking eifect. Other arguments, s!Jeh as message se
quences, filenames and folders, are always remembered on the invocation line and are not su
perseded by following arguments of the same type. Hence, it is. safe to place only switches
(and their arguments) in the profile.

If one finds. that an MH program is being invoked again and again with the same arguments,
and those arguments aren't switches, then there are a few possible solutions to this problem.
The first is to create a (soft) link in your $HOMElbin directory to the MH program of your
choice. By giving this link a different name, you can create a new entry in your profile. and
use an alternate set of defaults for the MH command. Similarly, you could create a small
shell script which called the MH program of your choice with an alternate set of invocation
line switches (using links and an alternate profile entry is preferable to this solution).

Finally, the csh user could create an alias for the command of the form:

alias cmd 'cmd argi arg2 ... '

In this' way, the user can avoid lengthy type-in to the shell, and still give-MH commands safe
ly. (Recall that some MH commands invoke others, and that -in all cases, the profile is read.
meaning that aliases are disregarded beyond an initial command invocation)

MH UCI/UCB version

USD:8-91 The Rand MH Message Handling System AP(8)

NAME
ap - parse addresses 822-style

SYNOPSIS
lusr/new/lib/mhlap [-form formatfile] [-format string] [-normalize] [-nonormalize]

[-width columns] addrs ... [-help]

DESCRIPTION

Files

Ap is a program that parses addresses according to the ARPA Internet standard. It also
understands many non-standard formats. It is useful for seeing how MH will interpret an
address.

The ap program treats each argument as one or more addresses, and prints those addresses
out in the official 822-format. Hence, it is usually best to enclose each argument in
double-quotes for the shell.

To override the output format used by ap, the '-format string' or '-format file' switches are
used. This permits individual fields of the address to be extracted with ease. The string is
simply a format stringand thefile is simply a format file. See mh-/ormat (5) for the d~tails.

In addition to the standard escapes, scan also recognizes the following additional escape: .
escape substitution
error a diagnostic if the parse failed

If the '-normalize' switch is gi~en, ap will try to track down the official hostname of the
address. .

Here is the default format string used by ap:

%< { error} %{ error}: %{ text} % I %(putstr(proper{ text}))%>

which says that if an error was detected, print the error, a ':', and the address in error. Other
wise, output the 822-proper format of the address.

$HOMEI.mh-profile
lusr/new/lib/mhlmtstailor

The user profile
tailor file

Profile Components

None

See Also

Defaults

Context

(mh.6)

dp(8),
Standard/or the Format 0/ ARPA Internet Text Messages (aka RFC-822)

'-format' defaults as described above
'-normalize'
'-width' defaults to the width of the terminal

None

MH UCIIUCB version

AP(8)

(mh.6)

The Rand MH Message HaudUq System USD:8-91

The argument to the • -format' switch must be interpreted as a single token by the shell that
invokes ap. Therefore, one must usually place the argument to this switch inside
double-quotes.

On hosts where MH was configured with the BERK. option, address parsing is not enabled.

MH UCI/UCB version

VSD:8-93 The Rand MH Message Handling System CONFLICT(8)

NAME
conflict - search for alias/password conflicts

SYNOPSIS
lusr/new/lib/mh/conflict [-mail name] [-search directory] [aliasfiles ...] [-help]

DESCRIPTION

Files

Conflict is a program that checks to see if the interface between MH and transport system is
in good shape

Conflict also checks for maildrops in lusrlspool/mail which do not belong to a valid user. It
assumes that no user name will start with '.', and thus ignores files in lusrlspool/mail which
begin with '.'. It also checks for entries in the group (5) file which do not belong to a valid
user, and for users who dO' not have a valid group number. In addition duplicate users and
groups are noted.

If the '-mail name' switch is used, then the results will be sent to the specified name. Other
wise, the results are sent to the standard output.

The '-search directory' switch can be used to search directories other than lusrlspool/mail ana
to report anomalies in those directories. The '-search directory', switch can appear more than
one time in an invocation to conflict.

Conflict should be run undercron (8), .or whenever system accounting takes place.

lusr/new/lib/mh/mtstailor
letc/passwd
letc/group
lusr/new/mh/mhmail
lusrlspool/mail/

tailor file
List of users
List of groups
Program to send mail
Directory of mail drop

Profile Components

None

See Also
mh-alias(5)

Defaults
'aliasfiles' defaults to lusr/new/lib/mh/MailAliases

Context

None

fmh.61 MH VCI/UCB version

- - ------------~

DP(8) The Rand MH Message Handling System USD:8-94

NAME
dp - parse dates 822-style

SYNOPSIS
lusr/newllib/mhldp [-form formatfile] [-fonnat string) [-width columns] dates ... [-help]

DESC1tJPTION

Files

Dp is a program that parses dates according to the ARPA Internet standard-. It also under
stands many DOD-standard formats, such as those produced by TOPS-20 sites and some
UNIX sites usingctime (3). It is useful for seeing how MH will interpret a date.

The dp program treats each argument as a single date, and prints the date out in the official
822-format. Hence, it is usually best to enclose each argument in double-quotes for the shell.

To override the output format used by dp, the '-format string' or '-format file' switches are
used. This permits individual fields of the address to be extracted with ease. The string is
simply a format stringand thefile is simply a format file. See mh-format (5) for the details.

Here is the default format string used by dp:

%«nodate{tex..t})error: %(text}%I%(putstr(pretty{text}»%>

which says that if an error was det~ed, print the error, a ':', and the date in error. Other-
wiSe, output ~ 822-proper format of the date. - - .

SHOMEI.mh-profile The user profile

Profile COJDponeftts
None

See Also

Defaults

Context

Bap

Imh.'1

ap(8)
Standard for the Format of ARPA Internet Text Messages (aka RFC-822)

'-format' default as described above
'-width' default to the width of the terminal

None

The argument to the '-format' switch must be interpreted as a single token by the shell that
invokes dp. Therefore, one must usually place the argument to this switch inside
double-quotes.

MH VClIVCD version

USD:8-9S The Rand MH Message Handling System INSTALkMH(8)

NAME
install-mh - initialize the MH 'environment

SYNOPSIS
lusr/new/lib/mhlinstall-mh [-auto] [-compat]

DESCRIPTION

Files

When a user runs any MH program for the first time, the program will invoke install-mh
(with the '-auto' switch) to query the user for the initial MH environment. The user does
NOT invoke this program directly. The user is asked for the name of the directory that will
be designated as the user's MH directory. If this directory does not exist, the user is asked if
it should be created. Normally, this directory should be under the user's home directory, and
has the default name of Mail!. After install-mh has written the initial .mh-profile for the
user, control returns to the original MH program.

As with all MH commands, install-mh first consults the SHOME environment variable to
determine the user's home directory. If SHOME is not set, then the letclpasswd file is con
sulted.

When converting from mh.3 to mh.4, install-mh is automatically invoked with the '-compat'
switch.

SHOME/.mh..proftle The user profile

Profile Compoueats
Path: To set the user's MH directory

Context
With '-auto', the current folder is changed to "inbox".

(mh.6) MH UCI/UCB version

POST(8) TIle RaH MH Message Handling SysteDI USD:8-96

NAME
post - deliver a message

SYNOPSIS
lusr/newllib/mhlpost [-alias aliasfile] [-filter filterftle] [-nofi.lter] [-format] [-nof.ormat]

[-msgid] [-nomsgid] [-verbose] [-noverbose] I-watcb] (-nowatcb] [-widtb columns]
file [-help)

DESClUPTION

Files

Post is the program called by send (1) to deliver the message in file to local and remote users.
In fact, all of the functions attributed to send on its manual page are performed by post, with
send acting as a relatively simple preprocessor. Thus, it is post which parses the various
header fields, appends From: and Date: lines, and interacts with the SendMail transport sys
tem. Post will not normally be called directly by the user.

Post searches the "To:", "CC:", "Bee:", "Fcc:", and "Resent-xxx:" header lines of the specified
message for destination addresses, cbecks these addresses for validity, and formats them so as
to conform to ARPAnet Internet Message Format protocol, unless the '-noformat' flag is set.
This will normally cause "@!ocal-sile" to be appended to each local' destination address, as
well as any lOCal return addresses. The '-width columns' switch can be used to indicate the
preferred length of the h~ader components that contain addr~ses.

If a "Bcc:"field is encountered, its addresses will be used for delivery, and the "ikc:"field
will be removed from. the message sent to sighted recipients. . The blind recipients will receive
an entirely new message with a minimal set of headers. Included in the body of the message
will be a copy of the message sent to the sigbted recipients. If '-filter filterftle' is specified,
then this copy is filtered (re-formatted) prior to being sent to the blind recipients.

The '-alias aliasfile' switch can be used to specify a file that post should take aliases from.
More than one file can be specified, each being preceded with '-alias'. In any event, the pri
mary alias file is read first.

The '-msgid' switch indicates that a "Message-ID:" or "Resent-Message-ID:" field should be
added to the header.

The '-verbose' switch indicates that the user should be informed of each step of the
posting/filing process .

•
The '-watch' switch indicates that the user would like to watch the transport system's han
dling of the message (e.g., local and "fast" delivery).

Post consults the environment variable SSIGNATURE to determine the sender's personal
name in constructing the "From:" line of the message.

lusr/new/lib/mh/mtstailor
lusr/new/mhlrefile
lusr/newllib/mhlmhl
lusr/newllib/mh/MailAliases

tailor file
Program to process Fcc:s
Program to precess Bcc:s
Primary alias file

Profile ComponelltS
post does NOT consult the user's .mh-profile

(mh.6) MH VCIIVCB version

USD:8-97 The Rand MH Message Handling System POST(8)

See Also

Defaults

Context

Imh.61

Standard/or the Format 0/ ARPA Internet Text Messages (aka RFC-822),
mhmail(1), send(l), mh-mail(5), mh-alias(5)

'-alias lusr/new/lib/mhlMailAliases'
'-format'
'-nomsgid'
'-noverbose'
'-width 72'
, -nofilter'

None

"Reply-To:" fields are allowed to have groups in them according to the 822 specification, but
post won't let you use them.

MH UCI/UCB version

s. REPORTING PROBLEMS

If problems are encountered with an MH program, the problems should be reported to the local
maintainers of MH. When doing this, the name of the program should be reported, along with the
yersion information for the program. To find out what version of an MH program is being run.
invoke the program with the '-help' switch. In addition to listing the syntax of the command, the
program will list information pertaining to its version. This information includes the version of MH,
the host it was generated on, and the date the program was loaded. A second line of information,
found on versions of MH after #5.380 include MH configuration options. For example,

version: MH 6.1 #I[UCI1 (nrtc-gremlin) of Wed Nov 601:13:53 PST 1985
options: [BSD42] [MHE] [NETWORK] [SENDMTS] [MMDFII] [SMTP] [POP]

The '6.1 #1{UCIl' indicates that the program is from the UCI mh.6 version of MH. The program was
generated on the host 'nrtc-gremlin' on 'Wed Nov 601:13:53 PST 1985'. It's usually a good idea to
send the output of the '-help' switch along with your report.

If there is no local MH maintainer, try the address Bug-MH. If that fails, use the Internet mailbox
Bug-MH@UC •• EDU.

The Rand MH Message Handling System USD:8-98

6. ADVANCED FEATURES

This section describes some features of MH that were included strictly for advanced MH users.
These capabilities permit MH to exhibit more powerful behavior for the seasoned MH users.

USER-DEFINED SEQUENCES

User-defined sequences allow the MH user a tremendous amount of power in dealing with
groups of messages in the same folder by allowing the user to bind a group of messages to a meaning
ful symbolic name. The User may choose any name for a message sequence, as long as it consists of
alphanumeric characters and does not conflict with the standard MH reserved message names (e.g.,
"first", etc). After defining a sequence, it can be used wherever an MH command expects a 'msg' or
'msgs' argument. Although all MH commands expand user-defined sequences as appropriate, there
are two commands that allow the user to define and manipulate them: pick and mark.

Pick and User-Defined Sequences

Most users of MH will use user-defined sequences only with the pick command. By giving the
'-sequence name' switch to pick (which can occur more than once on the command line), each
sequence named is defined as those messages which pick matched according ·the the selection criteria
it·was given. Hence,. .

pick -from frated -seq fred

finds all those messages in the current folder which were from "frated", creates a sequence called
"fred", and then adds them to the sequence. The user could then invoke

scan fred

to get a scan listing of those messages. Note that by default, pick creates tne named sequences before
it adds the selected messages to the sequence. Hence, if the named sequence already existed, the
sequence is destroyed prior to being re-defined (nothing happens to the messages that were a part of
this sequence, they simply cease to be members of that sequence). By using the '-nozero' switch, this
behavior can be inhibited, as in

pick -from frated -seq sgroup
pick -from fear -seq sgroup -nozero
pick -from freida -seq sgroup -nozero

finds all those messages in the current folder which were from "frated". "fear'" or "freida". and
defines the sequence called "sgroup" as exactly those messages. These operations amounted to an
"inclusive-or" of three selection criteria, using pick, one can also generate the "and" of some selec
tion criteria as well:

pick -from frated -seq fred
pick -before friday -seq fred fred

This example defines the sequence called "fred" as exactly those messages from "frated" that were

USD:8-99 The Rand MH Message Handling System

The Rand MH Message Handling System USD:8-100

dated prior to "friday".l

Pick is normally used as a back-quoted command, for example,

scan 'pick -from postmaster'

Now suppose that the user decides that another command should be issued, using exactly those mes
sages. Since, pick wasn't given a '-sequence name' argument in this example, the user would end-up
typing the entire back-quoted command again. A simpler way is to add a default sequence name to
the .mh-profile. For example,

pick: -seq select -list

will tell pick to always define the sequence "select" whenever it's run. The '-list' is necessary since the
'-sequence name' switch sets '-nolist' whenever the former is encountered. Hence, this profile entry
makes pick define the "select" sequence and otherwise behave exactly as if there was no profile entry
at all.

Mark and User-Defined Sequences

The mark command lets the user perform low-level manipulation of sequences, and also pro
vides a well-needed debug facility to the implementors/developers/maintainers of MH (the
MH-hacks). In the future, a user-friendly "front-end" for mark will probaoly be developed to give
the MH u~e.r a way to take better advantage. of the underlying facilities.

Public and Private 'User-Defined Sequences

There are two kinds of sequences: public sequences, and private sequences. Public sequences of
a folder are accessible to any NiH user that can read that folder and are kept in the .mh-sequences file
in the folder. Private sequences are accessible only to the MH user that defined those sequences and
are kept in the user's MH context file. By default, pick (and mark) create public sequences if the
folder for which the sequences are being defined is writable by the MH user. Otherwise, private
sequences are created. This can be overridden with the '-public' and '-private' switches.

Sequence Negation
In addition to telling an MH command to use the messages in the sequence "seen", as in

refile seen +old

it would be useful to be easily able to tell an MH command to use all messages except those in the
sequence. One way of doing this would be to use mark and define the sequence explicitly, as in

mark -delete -zero seen -seq notseen

which, owing to mark's cryptic interpretation of '-delete' and '-zero', defines the sequence "not
seen" to be all messages not in the sequence "seen". Naturally, anytime the sequence "seen" is

and

I Of course, it is much easier to simply use the built-in boolean operation of pick to get the desired results:

pick -from frated' -or -from fear -or -from freida -seq sgroup

pick -from frated -and -before friday -seq fred

do exactly the same thing as the five commands listed above. Hence, the ~-nozero' option to pick is only useful to manipulate
existing sequences.

USD:8-101 The Rand MH Message Handling System

cbanged, "notseen" willhav,e to be updated. Another way to achieve this is to define the entry
"Sequence-Negation:" in the .mh..profile. If the entry was

Sequence-Negation: not

then anytime an MH command was given "notseen" as a 'msg' or 'msgs' argument, it would substi
tute all messages that are not a member of the sequence "seen". That is,

refile notseen + new

does just that. The value of the "Sequence-Negation:" entry in the profile can be any string. Hence,
experienced users of MH do not use a word, but rather a special character which their shell does not
interpret (users of the CShell use a single caret or circumflex (usually shift-6), while users of the
Bourne. shell use an exclamation-mark). This is because there is nothing to prevent a user of MH
from defining a sequence with this string as its prefix, if the string is nothing by letters and digits.
Obviously, this could lead to confusing behavior if the "Sequence-Negation:" entry leads MH to
believe that two sequences are opposites by virtue of their names differing by the prefix string.

The Previous Sequence
Many times. users find .themselves issuing a series of commands .. on .. the sam.e sequences of mes., .. ~.

sages. If the user first defined these messages as a sequence, then considerable typing may ~e saved.
If the user doesn't have this foresight, MH.provides a handy way of having MH remember the 'msgs'

. or 'msg' argument last given to an MH command.· If the entry "Previous-Sequence:" is defin~d in .
the .11th-profile, then when the command finishes, it will define the sequence(s) named in the value of
this· entry as being exactly those messages that were specified. Hence, a profile entry of

Previous-Sequence: pseq

directs any MH command that accepts a 'msg' OT 'msgs' argument to define the sequence "pseq" as
those messages when it finishes. More than one sequence name may be placed in this entry,
separated with spaces. The one disadvantage of this approach is that the MH progams have to
update the sequence information for the folder each time they run (although most programs read this
information, usually only pick and mark have to write this information out).

The Unseen Sequence
Finally, some users like to distinguish between messages which have been previously seen by

them. Both inc and show honorthe profile entry "Unseen-Sequence" to support this activity. When
ever inc places new messages in a foider, if the entry "Unseen-Sequence" is defined in the
.mh-profile, then when the command finishes, inc will add the new messages to the sequence(s)
named in the value of this entry. Hence, a profile entry of

Unseen-Sequence: unseen

directs inc to add new messages to the sequence "unseen". Unlike the behavior of the
"Previous-Sequence" entry in the profile however, the sequence(s) will Dot be zero'd.

Similarly, whenever show (or next or preY) displays a message, they remove those messages
from any sequences named by the "Unseen-Sequence" entry in the profile.

COMPOSITION OF MAIL

There are a number of interesting advanced facilities for the composition of outgoing mail.

The Rand MH Message Handling System USD:8-i02

The Draft Folder

The comp, dist, forw, and repl commands have two switches, '-draftfolder + folder' and
'-draftmessage msg'. If '-draftfolder +folde()s used, these commands are directed to construct a
draft message in the indicated folder. (The "Draft-Folder:" profile entry may be used to declare a
default draft folder for use with comp, dist, forw, and repl) If '-draftmessage msg' is not used, it
defaults to 'new' (unless the user invokes comp with '-use', in which case the default is 'cur'). Hence,
the user may have several message compositions in progress simultaneously. Now, all of the MH
tools are available on each of the user's message drafts (e.g., show, scan, pick, and so on). If the folder
does not exist, the user is asked if it should be created (just like with refile). Also, the last draft mes
sage the user was composing is known as 'cur' in the draft folder.

Furthermore, the send command has these switches as well. Hence, from the shell, the user can
send off whatever drafts desired using the standard MH'msgs' convention with '-draftmessage msgs'.
If no 'msgs' are given, it defaults to 'cur'.

In addition, all five programs have a '-nodraftfolder' switch, which undoes the last occurrence of
'-draftfolder folder' (useful if the latter occurs in the user's MH profile).

If the user does not give the '-draftfolder +folder' switch, then all these commands act "nor
mally". Note that the '-draft' switch to send and show still refers to the file called 'draft' in the user's
MH directory. In the interests of economy of. expression, when using comp or send, the user needn't
prefix the draft 'msg' or 'msgs' with '-draftmessage'. Both of these commands accept a 'file' or 'files'
argument, and they will, if given '-draftfolder + folder' treat these arguments as 'msg' or 'msgs'.2
Hence,

send -draftf +drafts first

is the same as

send -draftf +drafts -draftm first

To make all this a bit more clear, here are some examples. Let's assume that the following
entries are in the MH profile:

Draft-Folder: +drafts
sendf: -draftfolder +drafts

Furthermore, let's assume that the program sendf is a (symbolic) link in the user's SHOME/binl
directory to send. Then, any of the commands

comp
dist
forw
repl

constructs the message draft in the 'draft' folder using the 'new' message number. Furthermore, they
each define 'cur' in this folder to be that message draft. If the user were to use the quit option at
'What now?' level, then later on, if no other draft composition was done, the draft could be sent with
simply

2 This may appear to be inconsistent. at first. but it saves a lot of typing.

USD:8-103 The Rand MH Message Handling System

send!

Or, if more editing was required, the draft could be edited with

comp -use

IDSt~ if other drafts had been composed in the meantime, so that this message draft was no longer
known as 'cur' in the 'draft' folder, then the user could scan the folder to see which message draft in
the folder should be used for editing or sending. Oever users could even employ a back-quoted pick
to do the work:

comp -use 'pick +drafts -to bug-mh'

or

sendf 'pick +drafts ·to bug-mho

Note that in the camp example, the output from pick must resolve to a single message draft (it makes
no sense to talk about composing two or more drafts with one invocation of camp). In contrast, in
the send example, as many message drafts as desired can appear, since send doesn't mind sending
more than one .:Imt at a time.

Note that the araum~t '-draftfolder +folder' is not included in the profile entry for send, since
when camp, et~ al., invoke send directly, .they supply send with the UNIX pathname of tlie message

. draft, and DOt a 'draftmessage msg' argument. As far.as send is concerned, a draft folder is not being used . . .
. -

It is important to realize that MH treats the draft folder like a standard MH folder in nearly all
respects. There are two exceptions: first, under no circumstancs will the '-draftfolder folder' switch
cause the named folder to become the current folder. 3 Second, although conceptually send deletes the
'msgs' named in the draft folder, it does not call 'delete .. prog' to perform the deletion.

What Happens if the Draft Exists

When the camp, dist, forw, and repl commands are invoked and the draft you indicated already
exists, these programs will prompt the user for a reponse directing the program's action. The prompt
is

Draft "/usr/src/uci/mhlmhbox/draft .. exists (xx bytes).
Disposition?

The appropriate responses and their meanings are: !!place: deletes the draft and starts afresh: list:
lists the draft; refile: files the draft into a folder and starts afresh; and, quit: leaves the draft intact and
exits. In addition, if you specified '-draftfolder folder' to the command. then one other response will
be accepted: ~: finds a new draft, just as if '-draftmessage new' had been given. Finally, the camp
command will accept one more response: ~: re-uses the draft, just as if '-use' had been given.

3 Obviously. iftlle folder appeared in the context of a standard '+folder' argument to an MH program, as in

scan +drafts

it might become the current folder, depending on the context changes of the MH program in question.

The Rand MH Message Handling System USD:8-104

The Push Option at What now? Level

The push option to the "What now?" query in the comp, dist, forw, and repl commands, directs
the command to send the draft in a special detached fashion, with all.. normal output discarded. If
push is used and the draft can not be sent, then MH will send the user a message, indicating the name
of the draft file, and an explanation of the failure.

The user can also invoke send from the shell with the '-push' switch, which makes send act like
it had been push 'd by one of the composition commands.

By using push, the user can free the shell to do other things, because it appears to the shell that
the MH command has finished. As a result the shell will immediately prompt for another command,
despite the fact that the command is really still running. Note that if the user indicates that annota
tions are to be performed (with '-annotate' to dist, forw, or rep!), the annotations will be performed
after the message has been successfully sent. This action will appear to occur asynchronously. Obvi
ously, if one of the messages that is to be annotated is removed before the draft has been successfully
sent, then when MH tries to make the annotations, it won't be able to do so. In previous versions of
MH, this resulted in an error message mysteriously appearing on the user's terminal. In mh.5 and
later versions, in this special circumstance, no error will be generated.

If send is push 'd, then the '-forward' switch is examined if a failure notice is generated. If
given, then the draft is forwarded with the failure notice sent to the user. This allows rapid burst 'ing
of the failure notice to retrieve the unsent draft. .

Options at What now? Level

By default, the message composition programs call a program called whatnow before the initial
draft composition. The MH user can specify any program for this. Following is some information
about the default "What now?" level. More detailed information can be found in the whatnow (I)
manual entry.

When using the comp, dist, forw, and repl commands at "What now?" level. the edit, list.
headers, refi/e, and (for the dist and repl commands) the display options will pass on any additional
arguments given them to whatever program they invoke.

In mh.} (the original Rand MH) and mh.2 (the first VCI version of MH), MHo used a compli
cated heuristic to determine if the draft should be deleted or preserved after an unsuccessful edit. In
mh.3, MH was changed to preserve the draft always, since comp, et. aI., could usually look at a draft.
apply another set of heuristics, and decide if it was important or not. With the notion of a draft
folder, in which one by default gets a 'new' message draft. the edit deletion/preservation algorithm
was re-implemented, to keep the draft folder from being cluttered with aborted edits.

Also, note that by default, if the draft cannot be successfully sent, these commands return to
"What now?" level. But, when push is used, this does not happen (obviously). Hence. if these com
mands were expected to annotate any messages, this will have to be done by hand, later on, with the
anna command.

Finally, if the '-delete' switch is not given to the quit option, then these commands will inform
the user of the name of the unsent draft file.

Digests

The forw command has the beginnings of a digestifying facility, with the '-digest list'.
'-issue number', and '-volume number' switches.

If forw is given "list" to the '-digest' switch as the name of the discussion group, and the
'-issue number' switch is not given, then forw looks for an entry in the user's MH context called
"digest-issue-list" and increments its value to use as the issue number. Similarly. if the
'-volume number' switch is not given. then forw looks for "digest-volume-list" (but does not

USD:8-10S The Rand MH Message Handling System

increment its value) to use as the volume number.

Having calculated the name of the digest and the volume and issue numbers, Jorw will now process
the components file using the same format string mechanism used by repl. The current '%' -escapes
are:

escape type
digest string
issue integer
volume integer

substitution
digest name
issue number
volume number

In addition, to capture the current date, any of the escapes valid for dp (8) are also valid for Jorw.

The default components file used by Jorw when in digest mode is:

\ •. so lusr/new/lib/mhldigestcomps included inline here so it looks good
From: %{ digest}-Request
To: %{ digest} Distribution: dist-%{ digest};
Subject: %{digest} Digest V%(putnum(msg» #%(putnum(cur»
Reply-To: %{digest}

%{ digest} Digest %(putstr(weekday{ date} », %2(putnumf(mday{ date}» \
%(putstr(month{ date}» 19%02(putnumf(year{ date}» .

Volume ~(putnum(msg» : Issue %(putnum(cur»

Today's Topics:

Hence, when the '-digest' switch is present, the first step taken by Jorw is to expand the format strings
in the component file. The next step is to compose the draft using the standard digest encapsulation
algorithm (even putting an "End of list Digest" trailer in the draft). Once the draft is composed by
Jorw, Jorw writes out the volume and issue profile entries for the digest, and then invokes the editor.

Naturally, when composing the draft, Jorw will honor the '-filter filterfile' switch, which is given to
mhl to filter each message being forwarded prior to encapsulation in the draft. A good filter file to
use, which is called mhl.digesl, is:

width=80,overllowotfset= 10
leftadjust,compress,compwidth = 9
Date: formatfield = "%«nodate(text})%{ text) %1 %(putstr(tws{ text) »%>"
From:
Subject:

body:nocomponent,overtlowotfset= O,noleftadjust,nocompress

FOLDER HANDLING

There are two interesting facilities for manipulating folders: relative folder addressing, which
allows a user to shorten the typing of long folder names; and the folder-stack, which permits a user to
keep a stack of current folders.

The Rand MH Message Handling System VSD:8-106

Relative Folder Addressing

By default, when '+folder' is given, and the folder name is not absolute (does not start with I, .I,
or . .1), then the UNIX pathname of the folder is interpreted relative to the user's MH directory.
Although this mechanism works fine for top-level folders and their immediate sub-folders, onee the
depth of the sub-folder tree grows, it becomes rather unwieldly:

scan +mhlmh.4/draftltlames

is a lot of typing. MH can't do anything if the current folder was "+inbox", but if the current folder
was, say, "+mh/mh.4/draft", MH has a short-hand notation to reference a sub-folder of the current
folder. Using the '@folder' notation, the MH user can direct any MH program which expects a
'+folder' argument to look for the folder relative to the current folder instead of the user's MH direc
tory. Hence, if the current folder was "+mhlmh.4/draft", then

scan @tlames

would do the trick handily. In addition, if the current folder was "+mhlmh.4/draft",

scan @ . .Ipick

would scan the folder "+mh/mh.4/pick", since, in the UNIX fashion, it references the folder "pick"
which is a sub-folder of the folder that is the parent of the current folder. Since most advanced AiH
users seem 'to exhibit a large degree of locality in referencing folders when they process mail, this con
vention should receive a wide range of uses.

The Folder-Stack

The folder-stack mechanism in MH gives the MH user a facility similar to the CShell 's
directory-stack. Simply put,

folder -push + foo

makes "foo" the current folder, saving the folder that was previously the current folder on the
folder-stack. As expected,

folder -pop

takes the top of the folder-stack and makes it the current folder. Each of these switches lists the
folder-stack when they execute. It is simple to write a pushf command as a shell script. It's one line:

exec folder -push $@

Probably a better way is to link folder to the $HOME/bin/ directory under the name of pushf and
then add the entry

pushf: -push

to the .mh..profile.

The manual page for folder discusses the analogy between the CShefl directory stack commands
and the switches in folder which manipulate the folder-stack. The folder command uses the context
entry 'Folder-Stack:' to keep track of the folders in the user's stack of folders.

USo-.8-t07 The Rand MH Message Handlin. System

Appendix A
COMMAND SUMMARY

Appendix A

ali [-alias aliastlle] [-list] [-nolist] [-normalize] [-nononnalize] (-user1 [-nouser] names ...
[-help)

anna [+folder] [msgs] [-component field] [-inplace1 [-noinplace) {-text body] [-help]

burst [+folder] [msgs] [-inplace] [-noinplace1 (-quiet1 [-noquiet) [-verbose] [-no verbose]
[-help]

comp [+folderJ [msg] [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder]
[-editor editor] [-noedit) [-file file] [-form formfile] [-use] [-nouse]
[-whatnowproc program) [-nowhatnowproc] [-help]

dist [+folder] [msg) (-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg]
,£-nodraftfolder] [-editor editor1 [-noedit) [-form formfile] [-inplace] [-noinplace]
(-whatnowproc program) [-nowhatnowproc] [-help) .

folder (+folder] [msg] [-all) [-fast] [... nofast1 ["':headet] [-noheader] [-pack] [-nopack1
[-recurse] I-norecurse) [_total] [-nototal] [-print] [-nopt'int] I list] [-nolist] [-push]
[-pop] (-help]

folders

forw [+folder) [msgs] [-annotate] [-noannotate] [-<lraftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [-editor editor] [-noedit] [-filter filterfile] [-form formfile] [-format]
[-noformat1 [-inplace] [-noinplace] [-whatnowproc program] [-nowhatnowproc]
[-help]

forw [+folder] [msgs] [-digest list] [-issue number] [-volume number]
[other switches for forw] [-help]

inc [+folder] [-audit audit-file1 [-noaudit1 [-changecur) [-nochangecur] [-file name]
[-form formatfile] {-format string] [-silent] [-nosilent] [-truncate] [-notruncate]
[-width columns] [-help]

mark [+folder] [msgs] [-sequence name ...] [-add] [-delete] [-list] [-public] [-nopublic]
[-zero] [-nozero] [-help]

Appendix A The Rand MH Message Handling System USD:8-108

lusr/new/lib/mhlmhl [-bell] [-nobell] [-clear] [-noclear] [-folder +folder] [-form formfile]
[-length lines] [-width columns] [-moreproc program] [-nomoreproc] [files ...] [-help]

mhmail [addrs ... [-body text] [-cc addrs ...] [-from addr] [-subject subject]] [-help]

mhpath .[+ folder] [msgs] [-help]

msgchk [users ...] [-help]

msh [-prompt string] [-scan] [-noscan] [-topcur] [-notopcur] [file] [-help]

next [+folder] [-header] [-noheader] [-showproc program] [-noshowproc]
[switches for showproc] [-help]

packf [+folder] [msgs] [-file name] [-help]

pick -cc [+folder] [msgs] [-help]
-date [-before date] [-after date] [-datefield field]
-from
-search pattern [-and ...] [-or ...] [-not ...] [-lbrace ... -rbrace]
-subject
-to [-sequence name ...] [-public] [-nopublic] [-zero] [-nozero]
--component [-list] [-nolist] .

. '.

preY [+foldet] [-header} [-no header] [-showprOc program] [-noshowproc]
[switches for showproc] [-help]

prompter [-erase chr] [-kill chr] [-prepend] [-noprepend] [-rapid] [-norapid] file [-help]

lusr/new/lib/mh/rcvstore [+folder] [-create] [-nocreate] [-sequence name ...] [-public]
[-nopublic] [-zero] [-nozero] [-help]

refile [msgs] [-draft] [-link] [-nolink] [-preserve] [-nopreserve] [-src +folder] [-file file]
+folder ... [-help]

repl [+folder] [msg] [-annotate] [-noannotate] [-cc alllto/cc/me] [-nocc all/to/cc/me]
[-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]
[-fcc +folder] [-filter filterfile] [-form formfile] [~format] [-noformat] [-inplace].
[-noinplace] [-query] [-noquery] [-whatnowproc program] [-nowhatnowproc]
[-width columns] [-help]

rmf [+folder] [-interactive] [-nointeractive] [-help]

rmm [+folder] [msgs] [-help]

USD:8-109 The Rand MH Message Handling System Appendix A

scan [+folder] [msgs] [-clear) [-noclear] [-form formatfile) (-format string] [-header1
[-noheader] [-width columns1 [-help]

send [-alias aliasfile] [-draft) [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder]
[-filter filterfile] [-nofilter] [-format] [-noformat] [-forward1 (-noforward] [-msgid]
[-nomsgid] [-push] [-nopush] [-verbose) [-noverbose) [-watch] [-nowatchl
{-width columns] [file •.• J [-help]

show [+folder] [msgs] {-draft] [-header] [-noheader] [-showproc program] (-noshowproc]
[switches for showproc] [-help]

sortm [+foJder) [msgs1 [-datefield field) [-verbose] [-noverbose) (-help1

vmh [-prompt string] [-vmhproc program) (-novmhproc] [switches for vmhproc] [-help)

whatnow [-draftfolder +folder1 [-draft message msg] [-nodraftfoiderl [-editor editor] [-noedit]
[-prompt string] [file) [-help]

whom [-alias aliasfile] [-check] {-nocheck] (-draft] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [file] [-help]

lusr/newllib/mhlap [-form formatfile1 [-format string] [-normalize] [-nonormalize]
[-width columns] addrs ... hhelp] .

lusr/newllib/mhicontlicq-maif name] [-search di~ectory] [aliasfiles· ...] [-help]

lusr/newllib/mh/dp [-form formatfile] [-format string] [-width columns) dates ... [-help]

lusr/new/lib/mhlinstall-mh [-auto] [-compat]

lusr/newllib/mhlpost (-alias aliasfile] {-filter filterfile] [-nofilter1 [-format] [-noformat]
[-msgid] [-nomsgid] [-verbose] I-noverbose] [-watch] {-nowatch] [-width columns]
file [-help]

Appendix B The Rand MH Message Handling System

msgs :=

msgspec :=

msg :=

msg-name :=

msg-range '-.-

Appendix B
MESSAGE NAME BNF

msgspec
msgs msgspec

msg
msg-range
msg-sequence
user-defined-sequence

msg-name
<number>

"first"
"last"
"cur"
u ".

"next" .
"prev"

msg"-"msg
"all"

msg-sequence := msg":"signed-number

signed-number : = "+ "<number>
"-"<number>
<number>

Where <number> is a decimal number greater than zero.

Msg-range specifies all of the messages in the given range and must not be empty.

USD:8-110

Msg-sequence specifies up to <number> of messages, beginning with "msg" (in the case of first. cur.
next, or <Dumber», or ending with "msg" (in the case of prev or last). +<number> forces "starting
with msg", and -<number> forces "ending with number". In all cases, "msg" must exist.

User-defined sequences are defined and manipulated with the pick and mark commands.

USD:8-111 The Rand MH Message Haadliq System Appendix B

REFERENCES

1. Crocker, D. H., J. J. Vittal, K. T. Pogran, and D. A. Henderson, Jr.,"Standard for the Format of
ARPA Network Text Messages," RFC733, November 1977.

2. Thompson, K.., and D. M. Ritchie, ''The UNIX Time-sharing System," Communications of the
ACM, Vol. 17, July 1974, pp. 365 .. 375.

3. McCauley, E. J., and P. J. Drongowski, "KSOS-The Design of a Secure Operating System,"
AFIPS Conference Proceedings, National Computer Conference, Vol. 48, 1979, pp. 345-353.

4. Crocker, David H., Framework and Functions of the "MS" Personal Message System, The Rand
Corporation, R .. 2134-ARPA, December 1977.

5. Thompson, K., and D. M. Ritchie, UNIX Programmer's Manual, 6th ed., Western Electric Com
pany, ~ay 1975 (a.vailable only to UNIX licensees).

6. Crocker, D. H., "Standard for the Format of ARPA Internet Text Messages," RFC822, August
1982.

What is the Network News?

How to Read the Network News

Mark R. Horton
AT&T Bell Laboratories
Columbus. ·OH 43213

Revised by Rick Adams for 2.10.3

USENET (Users' Network) is a bulletin board shared among many computer systems around
the world. USENET is a logical network, sitting on top of several physical networks, among them
UUCP, BLICN, BERKNET, X.25, and the ARPANET. Sites on USENET include many universities,
private companies and research organizations. Most of the members of USENET are either universi
ty computer science departments or part of AT&T. Currently, there are over 2000 USENET sites in
the USA, Canada, Europe, Japan and Korea with more joining every day. Most are running the
UNIXt operating system. .

. The network news, or simply netnews, is the set of programs that provide access to th~ news' and
transfer it from orie machine to the next. Netnews was originally written at Duke University and has
been modified extensively by the University of California at Berkeley and others. Netnews allows ar
ticles to be posted for limited or very wide distribution. This document contains a list of newsgroups'
that were active at the time the document was written. It exists to assist you in determining which
newsgroups you may want to subscribe to. When creating a new article, the level of distribution can
be controlled by use of the "Oistribution" field. This will prevent notices of apartments for rent in
New Jersey being broadcast to California (or even Europe).

Any user can post an article, which will be sent out to the network to be read by persons in
terested in that topic. You can specify which topics are of interest to you by putting them in a sub
scription list. Then, whenever you ask to read news, the news reading program will present all unread
articles of interest. There are also facilities for browsing through old news, posting follow-up articles,
and sending direct electronic mail replies to the author of an article.

This paper is a tutorial, aimed at the user who wants to read and possibly post news. The sys
tem administrator who must install the software should see the companion document USENET Ver
sion B Installation.

WhyUSENET?
USENET is useful in a number of ways. Someone wishing to announce a new program or pro

duct. can reach a wide audience. A user can ask "Ooes anyone have an x?'" and will usually get
several responses within a day or two. Bug reports and their fixes can be made quickly available
without the usual overhead of sending out mass mailings. Discussions involving many people at
differ~nt locations can take place without having to get eve,ryone together.

Another facility with similar capabilities to netnews is the electronic mailing list. A mailing list
is a collection of electronic mailing addresses of users who are interested in a particular topic. By

tUNIX is a trademark of AT&T Bell Laboratories,

How to Read the Network News USD:9-1

USD:9-2 How to Read the Network News

sending electronic mail to the list, all users on the list receive a copy of the article. While the mailing
list facility is quite useful, USENET offers a number of advantages not present in mailing lists. Get
ting yourself on a mailing list is not always easy. You have to figure out who maintains the list and
ask them to put you on it. Often. these people are out of town or busy, and don't put you on the list
for several days. Sometimes you have to send mail to the entire mailing list, hoping that one of the
readers will tell you who maintains the list. Once you are on the list, you often find yourself in the
middle of a discussion. Netnews keeps old articles around until they expire (usually about two weeks)
so you can browse through old news to catch up on what you missed. Similarly, referring to an old
article is easy, without having to keep a personal file of all old mail to the list.

Another advantage is appreciated by the other users of the system. There is less overhead in
having only one copy of each message sent to each maclline, rather than having separate copies sent
to each of several users on the same machine. This cuts down on computer time to process the mes
sages, and on-line costs for telephone calls to transfer messages from one machine to another (when
phone lines are used), Another advantage is in the disk space consumed. When only one message is
sent to each system, only one copy of the message is kept on disk. In a mailing list environment,
each user has a copy in a mailbox.

How do I Read News?
In the USENET jargon, interest topics are called news groups. A newsgroup list appears in a

later section, current as this paper was written. You have your own subscription list of newsgroups to
which you are said to subscribe.

The simplest way to read news is to type the command:

readnews

Other possibilities include: a full-screen-oriented news reading program, vnews(1), (described in the
. Appendix) and the notesfiJe system, which can also be .used for news (described in a separate paper.)

Each newsgroup to which you subscribe will be presented, one article at a time. As each article is
presented, you will pe shown the header (containing the name of the author, the subject, and' the
length of the article) and you will be asked if you want more. There are a number of possible cboices
you can make at this point. The three most common (y, a,and q) are suggested by the program. (To
see a complete list of possible responses, type? for help.) You can type y for "yes" (or simply hit
<RETURN» and the rest of the message will be displayed. (If the message is long, it may stop before
it runs off the top of the screen. Type <SPACE> or <RETURN> to see more of the message. Anoth
er choice you can make is D for "no". This means you are not interested in the message - it will not
be offered to you again. A third option is q for "quit". This causes a record to be made of which ar
ticles you read (or refused) and you will exit netnews. When you have read all the news, this happens
automatically. The q command is mainly useful if you are in a hurry and don't have time to read all
the news right now. (Many users put a readnews(l) or checknews(l) command in their .profile or .10-
gin files so that they will see new news each time they log in.)

If you are reading news for the first time, you may find yourself swamped by the volume of un·
read news, especially if the default subscription is all. Don't let this bother you. If you are getting
newsgroups in which you have no interest, you can change your subscription list (see below). Also,
bear in mind that what you see is probably at least two weeks' accumulation of news. If you want to
just get rid of all old news and start anew, type

readnews -p -n all > /dev/null &

which will throwaway all old news, recording that you have seen it all. (The & puts it in the back
ground; chances are that there is so much old news on your machine that you won't want to wait for
it all.) Or, you can use the K command to mark all articles in the current newsgroup as read.

Once you catch up with (or ignore) all the old news, the news will come in daily at a more
manageable rate. (If the daily rate is still too much you may wish to unsubscribe to some of the
higher volume, less useful newsgroups.) Finally, note that while an article is printing, you can hit your
interrupt character (usually <CONTROL-C> or <DELETE», which will throw away the rest of the

News Version B2.1O.3 February 26, 1986

How to Read the Network News USD:9-3

article.

Among the other commands you can type after seeing the header of an article are:

x Exit readnews. This is different from 'I, in that the q command will update the record
of which articles you have read, but x will pretend you never started readnews.

N Go on to the next newsgroup. The remaining articles in the current newsgroup are con
sidered unread, and will be offered to you again the next time you read news.

s file The article is saved in a disk file with the given name. In practice, what usually hap
pens is that an article is printed, and then readnews goes on to print the header of the
next article before you get a chance to type anything. So you usually want to write out
the previous message (the last one you have read in full); in this case, use the form s
filename.

e Erase the memory of having seen this article. It will be offered to you again next time,
as though you had never seen it. The e- case variation (erase memory of the previous
ly read article instead of the current article) is useful for checking follow-ups to see if
anyone has already said what you wanted to say.

r Reply to the author of the message. You will be placed in the editor, with a set of
headers derived from the message you are replying to. Type in your message after the
blank line. If you wish to edit the header list to add more recipients or send carbon
copies, for instance; you can edit the header lines. Anyone listed on a line beginning
with "To" or "Cc" will receive a copy of your reply. Note that the path used to receive
a piece of news may not be the fastest way to reply by mail. If speed is important and
you know a faster way, edit it in place of what the reply command supplied. A mail
command will then be started up, addressed to the persons listed in the header. You
are then returned to readnews. The case r- is also useful to reply to the. previous mes
sage. Another variation on this is rd- which puts you in SMAlLER (or mai/(l) by de
fault) to type in your reply directly.

f Post a follow-up message to the same newsgroup. This posts an article on this news
group with the same title as the original article. Use common sense when posting
follow-ups. (Read Matt Bishop's paper "How to use USENET Effectively" for extended
discussion of when and when not to post - many follow-up articles should have just
been replies.) You will be placed in the editor. Enter your message and exit. The case
f- is also useful to follow up the previous message. In each case, the editor you are
placed in will be vi(l) unless you set EDITOR (in your environment) to some other edi
tor. You should enter the text of the follow-up after the blank line.

+ The article is skipped for now. The next time you read news, you will be offered this
article again.

Go back to the previous article. This toggles, so that two -'s get you the current article.

b Back up one article in the current group. This is not necessarily the previous article.

U Unsubscribe from this newsgroup. Your .newsrc(5) file will be edited to change the: for
that newsgroup to an! preventing you from being shown that newsgroup again.

? If you type any unrecognized command, a summary of valid commands will be printed.

Changing your Subscription List

If you take no special action you will subscribe to a default subscription list. This default varies
locally. To find out your local default, type

readnews -s

Typically this list will include all newsgroups ending in "general", such as general, and net.general.
(As distributed, the default is general,all.general. Another popular default is all.) You can change this
by creating a file in your home directory named .newsrc which contains as its first line a line of the

News Version B2.10.3 February 26. 1986

USD:9-4 How to Read the Network News

form:
options -n newsgroup,newsgroup,newsgroup ...

If your lines get too long, you can continue them on subsequent lines by beginning those lines with a
space. (The netnews system will put extra lines' in this file to record which articles you have read.
You should ignore these lines unless you want to edit them.) For example, if you are creating a sub
scription list for the first time, and have already read news, you will find some text already in your
.newsrc fi.le, recording which articles you have read. You should put your options line before the first
line of the fi.le.) Thus,

options -n general,net.general,mod.human-nets

will subscribe to those three newsgroups.

An! can be used to exclude certain newsgroups and the· word all can be used as a wild card,
representing any newsgroup. You can also use all as a prefix or suffix to match a class of newsgroups.
For example,

options -n ~!mod.al1.!net.jokes,!aU.unix-all
will result in a subscription to all newsgroups except for ARPANET news, jokes, and any UNIX infor
mation. The metacharacter. is like I to the shell, and all is like *.

A simpler way to subscribe to news is to subscribe to all, and then use the U readnews com
mand to unsubscribe to newsgroups you don't want to read. This way you will see new newsgroups
that are created, get a chance to evaluate them, and then unsubscribe to those that don't interest you.

The order of the newsgroups in your .newsrc (after the options line) is the order in which news
groups will be shown. If you want something other than the default, move the . lines around until you
are satisfied with the order. Be careful to keep the options line as the first line in the fi.le.

Submitting Articles

To submit a new news article type

postnews

First, it will ask you if this is a follow-up to an article. Answer yes or DO. If yes, you really should
have done an f from readnews, but it will try and figure out which article you are following up to. It
will ask for the newsgroup in which you read the article and the article number. If you can't
remember, go back to read news and find out. It is important that discussions are kept together. It is
very frustrating for someone to read a follow-up that says: "I agree. It's very dangerous to leave that
program as distributed. to and not have any idea what the poster was referring to.

If you answer DO, postnews(1) will ask you for the subject of the new article. This should be as
informative as possible. For example, "'67 Porsche for sale in New Jersey" is much better than "Car
for sale" or even "For sale". It will then ask which newsgroups you want the article posted in. If you
are unsure, type? instead of a specific newsgroup and it will show you the list of currently available
groups. Then, you will be asked how far your article should be distributed. It is important to keep
this as small as possible to accomplish the purpose of your article. Remember that many newsgroups
are read in Europe, Australia, and Asia in addition to the United States and Canada. It does no good
(to use the previous example) to post a "Car for sale in New Jersey" article with a distribution of
world. There is almost no chance that a person in Sweden or Korea would be interested in buying
your car (even if it is a Porsche). It is a waste of money and computer resources to transmit the arti
cle that far. For this specific case, the appropriate distribution would be Dj or only in New Jersey. If
there were no local distribution available, at least it should be confined to usa. If you are unsure of
the distributions available at your site, type? instead of a distribution and you will receive a list of
distributions valid for your site. If the distribution is world, your article will be read (perhaps with
disgust) by thousands of people around the world.

Then you will be placed in the editor. Enter the· text of your article, after the blank line, and
exit the editor. The article will be posted to the newsgroups specified. If you challge your mind

News Version B2.10.3 February 26, 1986

How to Read the Network News USD:9-5

about the headers while you are still in the editor, you can edit them as well. Extra headers can also
be added before the blank line.

Browsing through Old News

There are a number of command line options to the readnews command to help you find an old
article you want to see again. The -n newsgroups option restricts your search to certain newsgroups.
The -x option arranges to ignore the record of articles read, which is kept in your . newsrc file. This
will cause all articles in all newsgroups to which you subscribe to be displayed, even those which you
have already seen. It also causes readnews to not update the .newsrc file. The -a date option asks for
news received after the given date. Note that even with the -a option, only articles you have not al
ready seen will be printed, unless you combine it with the -x option. (Articles are kept on file until
they expire, typically after two weeks.) The -t keywords option restricts the query to articles mention
ing one of the keywords in the title of the article. Thus, the command

readnews -n net. unix -x -a last thursday -t setuid

asks for all articles in newsgroup net.unix since last Thursday about the setuid feature. (Be careful
with the -t option. The above example will not find articles about "suid", nor will it find articles
with no title or whose author did not use the word "setuid" in the title.)

Other useful options include the -I option (which lists only the headers of articles - a useful
form for browsing through lots of messages.) The -p option prints the messages without asking for
any input; this is siD)ilar to some older news programs on many UNIX systems and is useful for
directing output to a printer. The -r option produces articles in reverse order, from newest to oldest.

User Interfaces

The' user interface of a program is the view it presents to the user,' that' is, what it prints and
what it allows you to type. Readnews has options allowing you to use different user interfaces. The
interface described above. is, called the "msgs" int¢ace because it mimics the styie of the, Berkeley
,msgs(l) program. (This program, in tum, mimics a program at MIT of the same name.) The'key ele-
ment of the msgs interface is that after printing the header, you are asked if you want the rest of the
message.

Another interface is available with the -c option. In this case, the entire message is printed,
header and body, and you are prompted at the end of the message. The command options are the
same as the msgs interface, but it is usually not necessary to use the - suffix on the r, s, or f com
mands. This interface is called the "/bin/mail" (pronounced ""bin mair") interface, because it mimics
the UNIX program of that name.

A third interface is the Mail(1) (pronounced ""cap mail") interface, available with the -M op
tion. This invokes the Mail program directly, and allows you to read news with the same commands
as you read mail. (This interface may not work on your system - it requires a special version of Mail
with a - T option.)

A fourth interface, is the MH news/mail program from Rand. That program can be used direct
ly to read network news.

A fifth interface, "news, which works well on display terminals, is described in the Appendix.

A sixth possibility is the notesfi/e system, described in a separate paper. It is also display
oriented.

A seventh possibility is to use your favorite mail system as an interface. There are a number of
different mail reading programs, including Ibinlmail(l), Mail, msg(l), and MH. Any mail system
with an option to specify an alternative mailbox can be used to read news. For example, to use Mail
without the -M option, type

readnews -c "Mail -f %.

The shell command in quotes is invoked as a child of readnews. The -f option to Mail names the al
ternative mailbox. Readnews will" put the news in a temporary file, and give the name of this file to

News Version B2.1 0.3 February 26. 1986

USD:9-6 How to Read the Network News

the mailer in place of the OAt. There is an important difference when using this kind of interface. The
mailers do not give any indication of which articles you read and which ones you skipped. Readnews
will assume you read all the articles, even if you didn't, and mark them all read. By contrast, the -M
option uses the -T option to Mail, asking Mail to tell readnews which articles you read .

•
Getting News wben you Log In

Most users like to be told when they first log in if there is any news. This way they are remind
ed of news, but are not interrupted by it during the day. If you log in once in the moming, you can
think of getting the news as reading the morning newspaper. It is common to put a checknews or
readnews command in your .profile or .login file of commands that are executed when you log in.

Since there might not be any news, and since the readnews command goes to a considerable
amount of work to find all unread news (assuming you are going to read it), there is another com
mand, called checknews, which tells you if there is any news. The checknews command is smaller and
faster than readnews, and was designed especially for a login file. There are also options to be silent if
there is (or is not) news, and to start up readnews automatically if there is news.

The options to checknews are:
-y Print "There is news" if there is any unread news.
-v If -y is also given, instead of printing "There is news", prints "News: newsgroup ... " giving

the name of the first newsgroup containing. unread news. If general is the first newsgroup
pr~nted, this can be· used to tell users whether the unread news is important.

-n Print "No news" if there is no unread news.
-e If there is any unread news, start up readnews. Any additional arguments after the -e will

be passed to readnews.
Thus,

checknews -yn

tells you whether there is any unread news.
checknews -e -M

starts up read news with the Mail interface if there is news, and otherwise does nothing.
checknews -y

tells you if there is news, and is silent if there is no news.

Creating New Newsgroups

New newsgroups are proposed by the users and created by site administrators. To create a
newsgroup, first make sure this is the right thing to do. Normally a suggestion is first posted to
net.news.group,net.relatedgroup for a net newsgroup (net.relatedgroup should be the group which you
are proposing to subdivide.) For example, to propose creating net.tv.soaps, post the original article to
net.tv,net.news.group). Followups are made to net.news.group only. (You can force this by putting the
line:

Followup-To: net.news.group

in the headers of your original posting). If it is established. that there is general interest in such a
group, and a name is agreed on, then ask your local netnews administrator to create the newsgroup.
(It can actually be created by any netnews administrator anywhere on the net, within the scope of the
newsgroup.) Once the newsgroup is created and the first article has been posted, the newsgroup is
available for all interested persons to post to.

News Version B2.1 0.3 February 26, 1986

How to Read the Network News USD:9-7

List of Newsgroups

This section lists the news groups that are currently active. It is intended to help you decide
what you want to subscribe to. Note that the list is constantly changing. Note also that this list only
describes those groups available on a network-wide basis. Since not all installations choose to receive
all newsgroups, it is recommended that each installation edit the list of local newsgroups to be correct
before distributing this document to their users. If this is not possible, a local appendix can be creat
ed.

Local
Local groups are kept on the current machine only. Local names can be identified by the lack of

a prefix, that is, there are no periods in local newsgroup names.
general News to be read by everyone on the local machine. For example: "The system will be

down Monday morning for PM." Or, "A new version of program x has been installed."
This newsgroup is usually mandatory - you are required to subscribe to this newsgroup.
(The list of mandatory newsgroups varies locally.) This requirement assures that important
announcements reach all users. (Formerly msgs.)

Network Wide

These are the groups as of the last editing of this manual. The list is undoubtably already out of
date. A current list can be obtained by typing? to the "Newsgroups? .. prompt in postnews.
net. abortion All sorts of discussions on abortion.
net.ai Artificial intelligence discussions.
net. analog Analog design developments, ideas, and components.
net.announce Moderated, general announcements of interest to all.
net.announce.newusers Moderated, explanatory postings for new users.
net. announce. arpa-internet Announcements froin the Arpa world. .
ne~.arch Computer architecture.
net.astro Astronomy discussions and information.
net.astro.expert Discussion by experts in astronomy.
net. audio High fidelity audio.
net.auto Automobiles, automotive products and laws.
net.auto.tech Technical aspects of automobiles, et. al.
net. aviation Aviation rules, means, and methods.
net. bicycle Bicycles, related products and laws.
net.llio Biology and related sciences.
net. books Books of all genres, shapes, and sizes.
net. bugs General bug reports and fixes.
net.bugs.2bsd Reports of UNIX· version 2BSD related bugs.
net.bugs.4bsd Reports of UNIX version 4BSD related bugs.
net.bugs.usg Reports of USG (System III, V, etc.) bugs.
net.bugs.uucp Reports of UUCP related bugs.
net. bugs. v7 Reports of UNIX V7 related bugs.
net. cog-eng Cognitive engineering.
net. college College, college activities, campus life, etc.
net. columbia The space shuttle and the STS program.
net. comics The funnies, old and new.
net. consumers Consumer interests, product reviews, etc.
net. cooks Food, cooking, cookbooks. and recipes.
net. crypt Different methods of data en/decryption.
net.cse Computer science education.
net. cycle Motorcycles and related products and laws.
net. database Database and data management issues and theory.

News Version B2.lO.3 February 26. 1986

USD:9-S

net.dcom
net.decus
net. emacs
net. eunice
net.followup
net.games
net.games.board
net.games.chess
net.games.emp
net.games.frp
net.games.go
net.games.hack
net.games.pbm
net. games. rogue
net.games.trivia
net. games. video
net. garden
net. general
net. graphics
net.ham-radio
net. ham-radio. packet
net.info-terms
net.internat
net.invest
net.jobs
net.jokes
net.jokes.d
net. kids
net.lan
net.1ang
net.lang.ada
net.lang.apl
net.lang.c
net.lang.f77
netJang.forth
net.lang.1isp
net.lang.mod2
net.lang. pascal
net.lang.prolog
net.lang.st80
netJegal
net.1si
net.mag
net. mail
net. mail. headers
net.math
net.math.stat
net. math. symbolic
net.med
net.micro
net. micro. 16k
net.micro.6809
net.micro.6Sk

News Version B2.l0.3

How to Read the Network News

Data communications hardware and software.
DEC* Users' Society newsgroup.
EMACS editors of different flavors.
The SRI Eunice system.
Followups to articles in net.general.
Games and cortlPuter games.
Discussion and hints on board games.
Chess & computer chess.
Discussion and hints, about Empire.
Discussion about Fantasy Role Playing games.
Discussion about Go.
Discussion, hints, etc. about the Hack game.
Discussion about Play by Mail games.
Discussion and hints about Rogue.
Discussion about trivia.
Discussion about video pmes.
Gardening, methods and results.
Important and timely announcements of interest to all.
Computer graphics, art, animation, image processing.
Amateur Radio practices, contests, events, rules, etc.
Discussion about packet radio setups.
All sorts of terminals.
Discussion about international standards
Investments and the handling of money.
Jobannouncements, requests, etc.
Jokes and the like. May be somewhat offensive.
Discussions on the content of net.jokes articles
Children, their behavior and activities.
Local area network hardware and software.
Different computer languages.
Discussion about Ada*.
Discussion about APL.
Discussion about C.
Discussion about FORTRAN.
Discussion about Forth.
Discussion about LISP.
Discussion about Modula-2.
Discussion about Pascal.
Discussion about PROLOG.
Discussion about Small talk SO.
Legalities and the ethics of law.
Large scale integrated circuits.
Magazine summaries, tables of contents, etc.
Proposed new mail/network standards.
Gatewayed from the ARPA header-people list.
Mathematical discussions and puzzles.
Statistics discussion.
Symbolic algebra discussion.
Medicine and its related products and regulations.
Micro computers of all kinds.
National Semiconductor 32000 series chips
Discussion about 6S09's.
Discussion about 6Sk's.

February 26, 19S6

How to Read the Network News

net.micro.apple
net.micro.amiga
net.micro.atari
net.micro.att
net.micro.cbm
net.micro.cpm
net.micro.hp
net.micro.mac
net.micro.pc
net.micro.ti
net.micro. trs-80
net. mise
net.motss
net.movies
net. music
net. music. classical
net. music. folk
net.music.gdead
net.music.synth
net. net-people
net. news
net.news.adm
net.news.b
net.news.config
net.news.group
net. news. newsite
net.news.notes
net.news.sa
net.news.stargate
net.nlang
net.nlang.africa
net.nlang.celts
net.nlang.greek
net.nlang.india
net. origins
net.periphs
net. pets
net. philosophy
net. physics
net.poems
net. politics
net. politics. theory
net. puzzle
net. railroad
net.rec
net.rec. birds
net.rec.boat
net.rec.bridge
net.rec.nude
net.rec.photo
net.ree.scuba
net.rec.ski
net.rec.skydi ve

News Version B2.10.3

Discussion about Apple micros.
Talk about the new Amiga micro.
Discussion about Atari micros.
Discussions about AT&T microcomputers .
Discussion about Commodore micros.
Discussion about the CP/M operating system.
Discussion about Hewlett/Packard's.
Material about the Apple Macintosh & Lisa.
Discussion about IBM personal computers.
Discussion about Texas Instruments.
Discussion about TRS-80's.
Various discussions too short-lived for other groups.
Issues pertaining to homosexuality.
Reviews and discussions of movies.
Music lovers' group.
Discussion about classical music.
Folks discussing folk music of various sorts.
A group for (Grateful) Dead-heads.
Synthesizers and computer music.

USD:9-9

Announcements, requests, etc. about people on the net.
Discussions of USENET itself.
Comments directed to news administrators.
Discussion about B news software.
Postings of system down times and interruptions.
Discussions and lists of newsgrol,JpS
Postings of new site announcements.
Notesfile software from the Univ. of Illinois.
Comments direeted to system administrators.
Discussion about satellite transmission of news.
Natural languages, cultures, heritages, etc.
Discussions about Africa & things African.
Group about Celtics.
Group about Greeks.
Group for discussion about India & things Indian
Evolution versus creationism (sometimes hot!).

• Peripheral devices.
Pets, pet care, and household animals in general.
Philosophical discussions.
Physical laws, properties, etc.
For the posting of poems.
Political discussions. Could get hot.
Theory of politics and political systems.
Puzzles, problems, and quizzes.
Real and model train fans' newsgroup.
Recreational/participant sports.
Hobbyists interested in bird watching.
Hobbyists interested in boating.
Hobbyists interested in bridge.
Hobbyists interested in naturist/nudist activities.
Hobbyists interested in photography.
Hobbyists interested in SCUBA diving.
Hobbyists interested in skiing.
Hobbyists interested in skydiving.

February 26, 1986

USD:9-10

net.ree. wood
net.religion
net. religion. christian
net.religion.jewish
net.research
net.roots
net. rumor
net.sci
net.sf-lovers
net.singles
net.social
net. sources
net.sources.bugs
net. sources. games
net. sources. mac
net. space
net. sport
net.sport.baseball
net.sport.football
net.sport.hockey
net.sport.hoops
net.startrek
net.suicide
net.taxes
net. test
net. text
net.travel
net.tv
net.tv.drwho
net. tv .soaps
net. unix
net.unix-wizards
net.usenix
net.veg
net.video
net. wanted
net. wanted.sources
net. wines
net. wobegon
net.women
net.works
mod.ai
mod. compilers
mod. computers
mod. computers. apollo
mod.computers.ibm-pc
mod.computers.laser-printers
mod. computers. macintosh
mod. computers. pyramid
mod. computers. ridge
mod. computers. sequent
mod.computers.sun
mod.computers. vax

News Version B2.10.3

How to Read the Network News

Hobbyists interested in woodworking.
Religious, ethical, and moral implications of actions.
Discussion about form and nature of Christianity
Information and discussion about Judaism.
Research and computer research.
Genealogical matters.
For the posting of rumors.
General purpose scientific discussions.
Science fiction lovers' newsgroup.
Newsgroup for single people, their activities, etc.
Like net.singles, but for everyone.
For the posting of software packages & documentation.
For bug6xes and features discussion.
Postings of recreational software.
Software for the Apple Macintosh.
Space, space programs, space related research, etc.
Spectator sports.
Discussion about baseball.
Discussion about football.
Discussion about hockey.
Discussion about basketball.
Star Trek, the TV show and the movies.
Suicide, laws, ethics, and its causes an'! effects (!).
Tax laws and advice.
For testing of network software. Very boring.
Text processing.
Traveling aU over the world.
The boob tube, its history, and past and current shows.
Discussion about Dr. Who.
Postings about soap operas.
UNIX neophytes group.
Discussions, bug reports, and fixes on and for UNIX.
USENIX Association events and announcements.
Vegetarians.
Video and video components.
Requests for things that are needed.
Requests for software, termcap entries, etc.
Wines and spirits .
.. A Prairie Home Companion" radio show discussion.
Women's rights, discrimination, etc.
Assorted workstations.
Discussions about Artificial Intelligence
Discussion about compiler construction, theory, etc.
Discussion about various computers and related.
ApoUo computer systems.
The IBM PC, PC-XT, and PC-AT.
Laser printers, hardware and software.
Apple Macintosh micros.
Pyramid 90x computers.
Ridge 32 computers and ROS.
Sequent systems, (esp. Balance 8000).
Sun "workstation" computers
DEC's VAX· line of computers & VMS.

February 26, 1986

How to Read the Network News

mod. computers. workstations
mod. graphics
mod.human-nets
mod.legal
mod.map
mod.motss
mod. movies
mod.music
mod.newprod
mod.newslists
mod. os
mod.os.os9
mod. os. unix
mod.politics
mod.politics.arms-d
mod. protocols
mod.protocols.appletalk
mod. protocols. kermit
mod.protocols.tcp-ip
mod.rec
mod.rec.guns
mod. recipes
mod. risks
mod. sources
mod.sources.doc
mod.std
mod.std.c
mod. std. mumps
'mod.std. unix
mod. techreports
mod.telecom
mod.test
mod.vlsi

News Version B2.10.3

USD:9-11

Various workstation-type computers.
Graphics software, hardware, theory, etc.
Computer aided communications digest.
Discussions of computers and the law.
Various maps, including UUCP maps.
Moderated newsgroup on gay issues and topics.
Moderated reviews and discussion of movies.
Moderated reviews and discussion of things musical.
Announcements of new products of interest to readers.
Postings of news-related statistics and lists.
Disussions about operating systems and related areas.
Discussions about the os9 operating system.
Moderated discussion of Unix· features and bugs.
Discussions on political problems, systems, solutions.
Arms discussion digest.
Various forms and types of FTP protocol discussions.
Applebus hardware & software discussion.
Information about the Kermit package.
TCP and IP network protocols.
Discussions on pastimes (not currently active).
Discussions about firearms.
A "distributed cookbook" of screened recipes.
Risks to the public from computers & users.
Moderated postings of public-domain sources.
Archived public-domain documentation.
Moderated discussion about various standards.
Discussion about C language standards.
Discussion for theXl1.l committee on Mumps.
Discussion for the PlOO3 'committee on Unix.
Announcements and lists of technical reports.
Telecommunications digest.
Testing of moderated newsgroups - no moderator.
Very large scale integrated circuits.

February 26, 1986

USD:9-12 How to Read the Network News

Appendix - How to use vnews

Overview
Vnews is a program for reading USENET news. It is based on readnews but has a CRT-oriented

(full screen) user interface. The command line options are identical. The list of available commands
is quite similar, although since vnews is a visual interface, most vnews commands do not have to be
terminated by a newline.

Vnews uses all but the last two lines of the screen to display the current article. The next to the
last line is the secondary prompt line, and is used to input string arguments to commands. The last
line contains several fields. The first field is the prompt field. If vnews is at the end of an article, the
prompt is "next?"; otherwise the prompt is "more?". The second field is the newsgroup field, which
displays the current newsgroup, the number of the current article, and the number of the last article
in the newsgroup. The third field contains the current time, and the last field contains the word
"mail" if you have mail. When you receive new mail, the bell on the terminal is rung and the word
"MAIL" appears in capita11eners for 30 seconds.

Commands
Most of the readnews commands have vnews counterparts and vice versa. Some differences are:

• It lacks a "digest" command (to deal specially with collections of articles bundled togeth
er). This would be nice to have, but it does not seem to be a major deficiency since you
can move around in the digest with vnews commands.

• To get to the previous group, use the N command with a - argument.
• Vnews has commands for moving around in the article which readnews does not have since

they aren't applicable. .

• It has a "parent"command which will go to the article that the current article is a follow
up to, and a "write" command that writes out the body of an article without the header.

• You can refer to the current article from the shell or while writing a follow-up as SA.
• The "decrypt" command (for decoding possibly offensive material) always does rot13

which seems to be the default standard but the readnews version of it occasionally gets
confused.

Commands that differ from read news
Each vnews command may be preceded by a count. Some commands use the count; others ig

nore it. If count is omitted, it defaults to one. Some commands prompt for an argument on the
second line from the bottom of the screen. Standard UNIX erase and kill processing is done on this
argument. The argument is terminated by a return. An interrupt «DELETE> or <BREAK» gets
you out of any partially entered command.

<CR>
A carriage return prints more of the current article, or goes on to the next article if you are at
the end of the current article. A <SPACE> is equivalent to <CR>.

<CONTROL-B>
Go backwards count pages.

<CONTROL-F>
Go forward count pages.

<CONTROL-D:.>
Go forwards half a page.

<CONTROL-U>
Go backwards half a page.

News Version B2.10.3 February 26, 1986

How to Read the Network News USD:9-13

<CONTROL-N>
Go forwards count lines.

<CONTROL-Z>
Go backwards count lines.

<CONTROL-L>
Redraw the screen. <CONTROL-L> may be typed at any time.

b Back up one article in the current group.
1 Redisplay the article after you have sent a follow-up or reply.
D Move on to the next item in a digest. "." is equivalent to D. This is convenient if your terminal

has a keypad.
p Show the parent article (the article that the current article is a follow-up to). This doesn't work

if the current article was posted by A-news or notesfiles. To switch between the current and
parent articles, use the - command. Unfortunately, if you use several p commands to trace the
discussion back further, there is no command to return to the original level.

ug Unsubscribe to the current group. This is a two character command to ensure that it is not
typed accidentally and to leave room for other types of unsubscribes (e.g., unsubscribe to discus
sion).

v Print the current version of the news software.
D Decrypts a joke. It only handles rotl3 jokes. The D command is a toggle; typing another D re

encrypts the joke.

News Version B2.1O.3 February 26. 1986

1. Introduction

How to Use USENET Effectively

Malt Bishop
Research Institute for Advanced Computer Science

Mail Stop 230-5
NASA Ames Research Center

Moffett Field, CA 94035

USENET is a worldwide bulletin board system in which thousands of computers pass articles
back and forth. Of necessity, customs have sprung up enabling very diverse people and groups to
communicate peaceably and effectively using USENET. These customs are for the most part written,
but are scattered over several documents that can be difficult to find; in any case, even if a new user
can find all. the documents, he most likely will have neither the time nor the inclination to read them
all. This document is intended to collect all these conventions into one place, thereby making it easy
for new users to learn about the world of USENET. (Old-timers, too, will benefit from reading this.)

You should read this document and understand it thoroughly before you even think about post
ing anything. If you have questions, pleaSe ask your USENET administrator (who can usually be
reached by sending mail to usenet)· or a more knowledgeable USENET user. Believe me, you will
save yourself a lot of $rief.

The mechanics of posting an article to USENET are explained in Mark Horton's excellent paper
How to Read the Network NewS; if you have not read that yet, stop here and do so. A lot of what fol
lows depends on your knowing (at least vaguely) the mechanics of posting news.

Before we discuss these customs, we oUght to look at the history of USENET, what it is today,
and why we need these conventions.

2. All About USENET
USENET began on a set of computers in North Carolina's Research Triangle. The programs in

volved (known as "netnews" then, and "A news" now) exchanged messages; it was a small, multi
computer bulletin board system. As time passed, administrators of other systems began to connect
their computers to this bulletin board system. The network grew. Then, at Berkeley, the news pro
grams were rewritten (this version became known as "B news") and the format changed to conform to
ARPA standards (again, this became the "B protocol for news".t) This version of news was very
widely distributed, and at this point USENET began to take on its current shape.

USENET is a logical network (as opposed to a physical network.) It is also a very amorphous
network, in that there is no central administration or controlling site. There is not even an official list
of members, although there is a very complete unofficial one. A site gets access to USENET by
finding some other site already on USENET that it can connect to and exchange news articles. So
long as this second site (called a neighbor of the first site) remains willing and able to pass articles to
and from the first site, the first site is on USENET. A site leaves the USENET only when no one is
willing or able to pass articles to, or accept articles from, it.

t See Standard for Interchange of USENET Messages for a description of the two fomuits.

How to Use USENET Effectively USD:I0-1

USD:Io-2 How to Use USENET Effectively

As a result, USENET has no equivalent of a "sysop" or central authority controlling the bulletin
board. What· little control is exercised is wielded by the person· at each site who is ·responsible for
maintaining the USENET connecions (this person is called the ··USENET administrator.") Because
most USENET administrators are (relatively) new to USENET, and because administering USENET
locally involves a great deal of work, most USENET administrators tend to follow the lead of other,
mote experience<1,adJDinistrators (often known somewhat irreverently as "net gurus.o9) This is not an
abdication of responsibility, but a means of keeping the amount of work little enough so it can be
done without interfering with the local USENET administrator'S job. An example of this is the list of
currently active newsgroups circuJated every month or so. It is not "official" - no one has that au
thority - but as the maintainer is doing the work that every other USENET administrator would have
to do otherwise, it is accepted as a valid list. If the maintaiiler changes the list in a way another
USENET administrator finds unaccept;1ble. that administrator can simply ignore the list. (Incidental
ly, the "net gurus" became known as such because of the work they have contributed to USENET.
Their experience is a valuable resource for each USENET administrator.)

Because the USENET has grown so wildly, a number of problems have appeared. One of these
problems is technical, and a number of the coDventions this document describes spring from attempts
to keep this problem under control.

The technical problem arises due to the transport mechanism used by most USENET sites.
Most computers on USENET do not have access to targe..area networks like ARPANET. As a result
the only viable transport mechanism these sites can use is a set of programs collectively known as
UUCJ' and which communicate over dialup telephone lines. InitiaUy, news programs generated one
UUCP command per ·artide. With the explosion of the USENET, the .number of articles simply
swamped many sites; phone lines would be tied up aU day transmitting news,and many articles
would be processed at the same time, slowing down the computers. noticeably.

The solution was to batch messageS. -This way, many articles are ~t via UUCP with one com
mand, and the command on the· receiving machine would split the file into separate articles, which .
could then be processed individually. While this inaease4 the size of the files being sent, it cut down
on the number of UUCP commands sent, and since sending a command· involves quite a bit of over··
head, this decreased the duration of phone calls, an(i to a lesser degree the load on the computer. At
some sites, such as Purdue, this was not quite enouah, so a simple spooler was implemented to pro
cess the individual articles one at a time. This reduced the system load toa very acceptable amount.

However, the problem has not gone away by any means. In one sense it has become worse; as
more articles are posted to the network, phone costs and system load averages increase. and system
administrators require USENET administrators to cut back or eliminate newsgroups and to transmit
news only at night (which means long propagation delays). In short. everyone who has anything to do
with administering any USENET site is very concerned about the future of USENET, both in general
and at his own site.

Many of the rules you will read address this concern. The fear that USENET may collapse is
not a bogeyman, but very real. We hope it will not collapse, and the rules below outline some ways
to prevent problems and increase the likelihood that enough sites will remain on USENET to keep it
alive. There is no central authority that can force you to follow them, but by doing so you will help
keep USENET a valuable resource to the computer community.

3. Decldiq to Post

Before you decide to post an article, you should consider a few things.

3.1. Do DOt repeat postiap

This applieS even if you did not post the information the 6.rst time around. If you know the
answer to a: question someone asked, tirstread the followups, and if you have something more to con
tribute, mail it to the questioner; if you think it should be seen by others, ask the questioner to sum
marize the answers he receives in a subsequent article. Onct: of the bigest problems on USENET is

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:I0-3

that many copies of the same answer to a simple question are posted.

If you want to repost something because you believe it did not get to other USENET sites due
to transmission problems (this happens sometimes, but a lot less often than commonly believed), do
some checking before you repost. If you have a friend at another USENET site, call him and ask if
the article made it to his site. Ask your USENET administrator if he knows of any problems in the
USENET; there are special newsgroups to which USENET administrators subscribe in which prob
lems are reported, or he can contact his counterparts at other sites for information. Finally, if you
decide you must repost it, indicate in the article subject that it is a reposting, and say why you are re
posting it (if you don't, you'll undoubtedly get some very nasty mail.)

Reposting announcements of products or services is flatly forbidden. Doing so may convince
other sites to tum off your USENET access. .

When school starts, hoards of new users descend upon the USENET asking questions. Many of
these questions have been asked, and answered, literally thousands of times since USENET began.
The most common of these questions, and their answers, have been collected in the hope that the new
users will read them and not re-post the same questions. So, if you want to ask a question, check Ap
pendix I (Answers to Frequently Ask.ed Questions) to be sure it isn't one that has been asked and
answered literally hundreds of times before you started reading the USENET.

3.2. Do not post anything when upset, angry, or intoxicated

Posting an article is a lot like driving a car - you have to be in control of yourself. Postings
which begin "Jane, you ignorant slut, ... " are very definitely considered in poor tastet. Unfortunate-
ly, they are also far too common. ".'

. . The psychology of this is interesting. One popular belief is that since ·we interact with USENET
via computers, we ·all often forget that a computer did not do the posting; a human did. A contnbut
ing factor is that you don'l have to look the target of abuse in the eye when you post an abusive mes
sage; eye~to-eye contact has an amazing effect on inhibiting obnoxious behavior. As a result, discus
sions on the USENET often degenerate into a catfight far more readily than would a face-to-face dis
cussion.

Before you post an article, think a minute; decide whether or not you are upset, angry, or high.
If you are, wait until you calm down (or come down) before deciding to post something. Then think
about whether or not you really want to post it. You will be amazed what waiting a day or even a
few hours can do for your perspective.

Bear in mind that shouting hasn't convinced anyone of anything since the days of Charlemagne,
and being abusive makes people hold even more tenaciously to their ideas or opinions. Gentleness,
courtesy, and eloquence are far more persuasive; not only do they indicate you have enough
confidence in your words to allow them to speak for you, but also they indicate a respect for your au
dience. This in tum makes it easier for your audience to like or respect you - and people tend to be
far more interested in, and receptive to, arguments advanced by those they like or respect than by
writers who are abusive. Finally, remember that some discussions or situations simply cannot be
resolved. Because people are different, agreed-upon facts often lead to wildly different feelings and
conclusions. These differences are what makes life so wonderful; were we all alike, the world would
be a very boring place. So, don't get frantic; relax and enjoy the discussion. Who knows, you might
even learn something!

3.3. Be sure your posting is appropriate to USENET

Some things are inappropriate to post to USENET. Discussing whether or not some other dis
cussion is appropriate, or if it is in the right newsgroup, is an example. Invariably, the "meta
discussion" generates so many articles that the discussion is simply overwhelmed and vanishes; but

t Unless you are critiquing Saturday Night Live.

News Version B2.10.3 February 24, 1986

USD:I0-4 How to Use USENET Effectively

the meta-discussiOD liDgers on for several weeks, driving most of the readers of that newsgroup out of
their collective minds. -Help preserve the sanity of your fellow USENET readers by mailing such
comments to the people iavolved, rather than postiq them.

Another example of inappropriate postings is the infamous "spelling tlame." Every few months
someone takes another poster to task for poor spelling or grammar. Soon, everyone jumps on the
bandwagon, tcarina apart one another's postings for such errors. To put it mildly, this angers almost
everyone involved for no real reason. Please remember that we all make mistakes, and there are a lot
of people for whom English is a second language. So, try to keep your spelling and grammar com
ments to yourself - but if you find you simply caDDOt, mail them to the poster rather than posting
them. -

Far more insidious are requests similar to "How can I splice into the local cable TV transmis-.
sion line?" Postiq to USENET is akin to publishina, so don't ask for or post instructions on how to
do something illepl. And please don't quote the First Amendment, or the laws allowing freedom of
speech in your country; while the posting programs will not stop you, the aftermath could be very un
pleasant - lawsuits and court trials usually are, and the USENET would certainly collapse as sites
dropped from it to protect themselves from legal liability. You wouldn't want that on your consci
ence, would you? Of course not •.

Related to this is the next rule.

3.4. Do not post other people's work. without penaissioa

Posting something to USENET puts it in the public domain for an practical purposes. So, be
careful about posting things like UNlXt-relatedmaterial (specifically source code) or company- docu
ments; consider licensing and nondisclosure agreements first. ,Some _people regard the posting of
,"diffs" based 'on licensed code to bea suitable compromise,- as they are only useful to those who have
the base code· already. '

Copyrighted works are a separate problem. Both United States and international law provide
protection for copyrighted works; other than . short -extracts for purposes of criticism, you cannot copy
a copyrighted work in whole or in part without'permission of the copyright holder-(who may, or may'
not, be the author.) Without this protection, artists could not make any money and hence would have
limited incentive to make the fruits of their art available at an. Postiq a copyrighted work without
permission is theft, even though the property stolen is not tangible in most cases. Hence, posting
movie and book reviews, song lyrics, or anything else which is copyrighted without the permission of
the copyright holder, could cause you personally. your company, or the USENET itself to be held li
able for damages. Please be very careful that you obey the law when posting such material!

3.S. DOD't forget that opiaioas are those of the poster aad Dot his eDlpioyer.

Every so often, someone will post a particularly disgusting art.icle, and a number of responses
will ask if all employees of the oriainal poster's company share his (revolting) opinion, or suggest that
action be taken against that company. Please remember that all opinions or statements in articles are
to be attributed to the poster only, and in particular, do not necessarily represent the opinions of the
poster's employer, the owner of the computer on which the article originated, or anyone involved
with any aspect of USENET - and consequently the responsibility for any USENET message rests
with the poster and with no one, else. The appropriate response is not _ to attack the company or its
other employees; let the. poster know what you think of his posting via mail. If the postings continue,
take advantage of the news software's presenting you with the author's name and the subject line and
then asking if you want to see the article; start looking for the poster's name or the offensive subject
in the articles presented to you and skip them. If you really get otf'ended,you _ can unsubscribe from a
newsgroup.

tUNIX is a trademark of AT&T Bell Laboratories.

News Version B2.10.3 February 24. 1986

How to Use USENET Effectively USD:I0-5

Part of the price of freedom is allowing others to make fools of themselves. You wouldn't like
to be censored, so don't advocate censorship of others. No one is forcing you to read the postings.

In some countries, posting or receiving certain types of articles may be a criminal offense. As a
result, certain newsgroups which circulate freely within the United States may not be circulated in
other nations without risking civil or criminal liabilities. In this case, the appropriate action for sites
in that country is neither to accept nor to transmit the newsgroup. No site is ever forced to accept or
pass on any newsgroup.

4. Where to Post

The various newsgroups and distributions have various rules associated with their use. This sec
tion will describe these rules and offer suggestions on which newsgroups to post your message.

4.1. Keep the distribution as limited as possible

A basic principle of posting is to keep the distribution of your article as limited as possible.
Like our modem society, USENET is suffering from both an information glut and information pollu
tion. It is widely believed that the USENET will cease to function unless we are able to cut down the
quantity of articles. One step in this direction is not to post something to places where it will be
worthless. For example, if you live in Hackensack, New Jersey, the probability of anyone in Korea
wanting to buy your 1972 Toyota is about as close to zero as you can get. So confine your posting to
the New Jersey area. .

To do this, you can either post to a local group, or post to a net-wide group and use the distribu
tion feature to limit how widely your article will go. When you give your posting program (usually
postnews(l» a distribution, you are (in essence) saying that machines which do not recognize that dis
tribution should not gettbe article; (Think of it as a subgroup based on locality' and you'll get the
idea.) For example, if. you are posting in the San· Francisco Bay Area, and you post your article to

. net.auto but give ba as the distribl,ltion, thc= article will not be sent beyond the San Francisco Bay Area·
(to whiCh the ba distribution is iocal) even though you put it in a nCt-wide newsgroup. Had you given
the distribution as ca (the California distribution), your article would have been sent to all Californi
an sites on USENET. Had you given the distribution as net, your article would have been sent to all
sites on USENET.

4.2. Do not post the same article twice to different groups

If you have an article that you want to post to more than one group, post to both at the same
time. Newer versions of the news software will show an article only once regardless of how many
newsgroups it appears in. But if you post it once to each different group, all versions of news
software will show it once for each newsgroup. This angers a lot of people and wastes everybody's
time.

4.3. Do not post to "mod." or ''net.announce" newsgroups

You may not post directly to certain newsgroups; you cannot post to some at all. Newer ver
sions of the news software will inform you when either of these restrictions apply, but older versions
of news software will not.

The mod. newsgroups are bona fide moderated newsgroups. If you want to have the appropriate
moderator post something, mail it to him. (If you do not know his address, ask your USENET ad
ministrator. In some cases, the software will automatically mail, rather than post, your article to the
moderator.)

The newsgroup net.announce and its subgroups are moderated newsgroups designed for impor
tant announcements. It is used to post important announcements that.everyone on USENET can
read. (Net.general was meant to provide such a place, but so many inappropriate messages have been
posted there that a lot of people began to unsubscribe; hence, this moderated newsgroup was set up.
Very few messages are posted to it, so don't be afraid to subscribe; you will not be overwhelmed.) To

News Version B2.10.3 February 24, 1986

USD:I0-6 How to Use USENET Effectively

post to this group, mail your aDDouncement to the moderator, aud he will either post it or sugaest an
alternative (such as a more appropriate newsgI'OUp.) Messages for Det.aaaouDee should. be short, im
portant enoush so that everyODe on USENET should see the headers, not cross-posted to any other
newsgroup, and signed; messages which are political, commercial, or religious in nature will be reject-
e~ .

4.4. Do Dot post to "Det.paera1"

or course, there are exceptions to this rule, but almost all articles posted to lleLgeDeraI do not
belong there. Only articles of general interest and importance to everyone on USENET should be
posted there. "Everyone" includes the USENET readers in Europe, Asia, Australia, Canada, the Un
ited States, and possibly other places.

This means that announcements of services or products, test messages, seminar announcements,
program sources and bug reports, requests for addresses, aud so forth do not go to net.paeral. If you
wish to post a follow-up to an article you saw ill aet.geaeraI, put the followup posting in net.followup.
(Again, newer versions of news software will do this automatically, but do not rely on this feature as
your software may be old.)

Similarly, never post to Det.general and another newsgroup. If your article belongs in any other
newsgroup, put it there, and not in net.paeral. (There is one exception to this rule - articles may be
cross-posted to net.general and net.alUlouDce. Since Det.aDIlOtIIIC8 is moderated, though, the exception
does not matter to you.)

4.5. Ask SODleoae if you cu't figure out where topolt your article

If you cannot figure. out where. to post something, look in ilet.aDDOUDC8.newusen for the list· of
. active newsgroups. (This is posted biweekly. If you can't find it, look at the list in How to Read the
Network NewS; but be aware that list is undoubtedly out of date already.) If your article does not seem
to fit in any of the listed groups, post it to net.mise or don't post it.

If you stiD are not sute whichnewsgroup to post your article to, ask an old-timer .. If your site
doesn't have any old-timers (or none of the old-timers will admit to being old-timers),.contact any of
the following people:

Gene Spaft"ord (spaf@gatech.CSNET, spaf@gatech.UUCP)
Mark Horton (mark@cbosgd.UUCP)
Rick Adams (rick@seismo.CSS.OOV, . rick@seismo.UUCP)
Chuq Von Rospach (chuq@Sun.UUCP)
Matt Bishop (mab@riacs.ARPA, mab@riacs.UUCP)

We will be happy to help you. But, please, do not post the article to the net before you ask us!

4.6. Be sure there is a c:oosensus before creatioa a DeW aew5group
Creating a new newsgroup is, in general, a very bad idea. Currently, there are so many articles

being posted that the USENET is in danae of collapse as site after site decides to cease to accept and
retransmit certain newsgroups. Moreover, there is no established procedure for deleting a newsgroup,
so once created, newsgroups tend to stay aroun<i They also tend to encourage people to think up
new newsgroups, and the cycle repeats. Try to avoid thinking up new newsgroups.

If, however. you believe a new group should be created, be sure you have' a consensus that the
group is needed (either. a mailing list has enough traffic and readers to justify turning it into a news
group, or a discussion in a current newsgroup becomes so large for a period of time long enoush to
warrant splitting it into a newsgroup.) Then post an article to net.news.group as well as any other
groups related to your proposed new group, and discuss the topics you are proposing be covered in
your new group, what it should be called, whether it is really needed, and so forth. Try to resolve all
objections, and take into account all suggestions and comments; 6.Dauy. have everyone mail you a
"yes" or "no" vote on whether the group should be created. Try to get at least 40 or 50 "yes" votes
before creating the group; if you want to be safe, get around 100.

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:I0-7

4.7. Watch out for oewsgroups which have special rules about posting

Some newsgroups have special rules. This section summarizes them.

net. books Do not post anything revealing a plot or a plot twist without putting the word
"spoiler" somewhere in the "Subject" field. This will let those who do not wish
to have a surprise spoiled skip the article.

net.followup

net.jokes

net.movies

net.news.group

net. sources

net.sources.bugs

net.test

net.wanted

net. wanted.sources

This group is for followups to articles posted in net.general or for results of sur
veys. No discussions are allowed.

If you want to post an offensive joke (this includes racial, religious, sexual, and
scatalogical humor, among other kinds) rotate it. (If you do not know what this
means, look in the section Writing Your Posting.)

Do not post anything revealing a plot or a plot twist without putting the word
"spoiler" in the "Subject" field. This will let those who do not wish to have a
surprise spoiled skip the article.

Discussions about whether or not to create new groups, and what to name
them, go here. Please mail your votes to the proposer; don't post them.

Source code postings go here. Discussions are not allowed. Do not post bug
fixes here.

BJ,lg reports and bug fixes to sources posted in net.sources go here.

Use the smallest distribution poSsible. In the body of the message, say what
you are testing.

Requests for things other than source code go here. Please use the smallest dis
tributio~ poSsible .. Post· offers here, too.

Requests for sources go he~.

5. Writing the Article

Here are some suggestions to help you communicate effectively with others on the USENET.
Perhaps the best advice is not to be afraid to consult a book on writing style; two of the best are How
to Write for the World of Work by Cunningham and Pearsall, and Elements of Style by Strunk and
White.

5.1. Write for your audience

USENET is an international network, and any article you post will be very widely read. Even
more importantly, your future employers may be among the readers! So, try to make a good impres
sion.

A basic principle of all writing is to write at your readers' reading level. It is better to go below
than above. Aiming where "their heads ought to be" may be fine if you are a college professor (and a
lot of us would dispute even that), but it is guaranteed to cause people to ignore your article. Studies
have shown that the average American reads at the fifth grade level and the average professional reads
at the twelfth grade level.

5.2. Be clear and concise
Remember that you are writing for a very· busy audience; your readers will not puzzle over your

article. So be very clear and very concise. Be precise as well; choose the least ambiguous word you
can, taking into account the context in which you are using the word. Split your posting into sections
and paragraphs as appropriate. Use a descriptive title in the "Subject" field, and be sure that the title
is related to the body of the article. If the title is not related, feel free to change it to a title that is.

News Version B2.lO.3 February 24, 1986

USD:I0-8 How to Use USENET Effectively

5.3. Proofread your article

This is a matter of courtesy; since you want others to read your article, the least you can do is
check that it says what you mean in a clear, concise manner. Check for typographical errors, silly
grammar errors, and misspellings; if you have a spelling checking program, use it. Also be sure the
article is easy to read. Use white space - blanks, tabs, and newlines - and both upper and lower case
letters. Do not omit the definite and indefinite articles, either; not only do "a", "an", and "the"
make a posting much easier to read, their omission can make a posting ambiguous.

5.4. Be extra careful with aDDouucemeats of products or services
When writing a product or service announcement, bear in mind that others will be paying most

of the telephone bills. So, if you are announcing several things, combine all the announcements into
one article. Mark the posting as a product or service announcement in the title in the "Subject" field.
Advertising hyperbole is not appropriate here; remember that your audience is to a large degree
technically literate, and your product will stand or fall 00 its technical merits. Be aware that posting
obnoxious or inappropriate advertisements is very serious and if you do it, you may find your neigh
bors yanking· your USENET access.

5.5. Indicate sarcasm and humor

Remember that people cannot see you when they read your posting; hence, all the subtle
nuances of body and facial motion are hidden. 11 can be quite difficult to tell when you are being sar
castic or humorous. To deal with this problem, the USENET readers and posters have developed a
special sign.. Mark passages you intend to be taken as humorous with- the "smiley face", while looks
like this: .":-)". (Think of a head faciog you lying on its right side and look again if you don't under
stand why that symbol was :Chosen.) As for sarcasm, there is no universal symbol for that (unless the
sarcasm is meant humorously, in which case use the smiley face again.) But mark your passage so
everyone will realize. you are being sarcastic. ".

5.6. Mark postiogs which spoil surprises

High on the list of obnoxious messages are those that spoil the plot of a book or movie by giving
away an unexpected detail. If you post such an article, please put the word "spoiler" in the "SUbject"
field of your posting, so people who do not wish to have a surprise ruined can skip the article.

5.7. Rotate offensive postings

If you feel you must post a message that may offend people, you can do one of two things. You
can post it to the newsgroup aet.ilame or you can take steps to be sure the message will only be read
by those who explicitly ask for it to be shown to them. In the latter case, the USENET convention is
to encrypt these messages by shifting each letter 13 characters, so that (for example) "a" becomes
"n". (In more precise terms, this is a Caesar cipher of shift 13; on the USENET, it is called rot13.)
When you do this, put the word "rotl3" in the "Subject" field. The news reader you are using almost
certainly has a command to encrypt and decrypt such messages; if not, use the UNIX command

tr a-zA-Z n-za-mN-ZA-M

5.8. The shorter your signature, the better

. Keep signatures concise; 2 or 3 lines are usually plenty. Include your name and addresses on
any major networks (such as ARPANET, BITNET, or CSNET). This helps people contact you quick
ly and easily, usually more so than by following the return path of the article. Do not include pic
"tures, graphics or clever quotations that make the signature longer, this is not the appropriate place
for them, and many sites resent paying the phone bills for such signatures.

News Version B2.lO.3 February 24, 1986

How to Use USENET Effectively

6. Conclusion and Summary
Here is a list of the rules given above:
.. Deciding to post

• Do not repeat postings
• Do not post anything when upset, angry, or intoxicated
• Be sure your posting is appropriate to USENET

• Do not post other people's work without permission

USD:IO-9

• Don't forget that opinions are those of the poster and not his company
. .. Where to Post

• Keep the distribution as limited as possible
• Do not post the same article twice to different groups
• Do not post to mod., or net.announce newsgroups

• Do not post to net.general
• Ask someone if you can't figure out where to post your article
• Be sure there is a consensus before creating a new newsgroup
• Watch out for newsgroups which have special rules about posting

.. Writing the Article

• Write for your audience

• ~e clear and concise
• Proofread your article
• Be extra careful with announcements of products or services

• Indicate sarcasm and humor
• Mark postings which spoil surprises
• Rotate offensive postings
• The shorter your signature, the better

The USENET can be a great place for us all. Sadly, not enough people are following the cus
toms that have been established to keep the USENET civilized. This document was written to edu
cate all users of the USENET on their responsibilities. Let's clean up the USENET, and tum it into a
friendly, helpful community again!

Acknowledgements: The writing of this document was inspired by Chuq von Rospach's posting on
USENET etiquette, and it draws on previous work by Mark Horton, A. Jeff Offutt, Gene Spafford,
and Chuq von Rospach.

News Version B2.t 0.3 February 24. 1986

USD:l()"IO How to Use USENET Effectively

Appendix L ADswers to Frequently Asked Quesdoas

originally from Jerry Schwan (jerry@eagle. UUCPJ
modified by Gene Spafford (spaf@gatech.UUCP)
modified by Matt Bishop (mab@riacs.ARPA)

This doe1iment discusses some items that OCCW' repeatedly on USENET. They frequently are
submitted by new users. and result in many foUowups, sometimes swamping: groups for weeks. The
purpose of this note is to head. off these annoying events by answerin& some questions and warning
about the inevitable consequence of asking others. If you 4on't like my answers, let me know and I
may include revisions in Cuture versions oC this note.

1. What does UNIX stand for?

It is not an acronym, but is a pun on "MUL TICS." MUL TICS is a large operating: system that
was being developed shortly before UNIX was created.

2. What is the derivation of "Coo" as a filler word?

The favorite story is that it comes from "fubar" which is an acronym for "fouled up beyond all
recognition," which is supposed to be a military term. (Various forms of this exist, "fouled" usu
ally being replaced by a stronger word.) "Foo" and "Bar" have the same derivation.

3. Is a machine at "foo" on the net?

These questions belong in net.news.coaig if anywhere, but in fact. your best bet is usually to
. phone somebody at "foo" to find out. If you don't know anybody at "foo" you can always try
calling and asking for the "computer center." Also, see the newsgroup mod.map. where maps of
USENET'andthe UUCP network are posted regularly.

4. Whai does "re" at the end of files like .newsrc mean?
According to Dennis Ritchie, "The ~e rc comes from RUNCOM, which was the. rough
equivalent on the MIT CTSS system of what UNIX calls shell scriptS. Of course RUNCOM
derives from run commands. .. .

5. What do "- (nt)" and "Orphaned Response" in an item's title mean?

It means that the item was created by "notefil~," an alternative news handling interface that
many people prefer. If you want to find out more you can read the "Notesfi/e System Reference
Manual" or contact uiuedes/essick.

6. What does ":-)" mean?

This is the net convention for a "smiley face." It means that something is being said in jest. If it
doesn't look like a smiley face to you, Oop your head over to the left and look again.

7. How do I decrypt jokes in Bet.jokes?

The standard cipher used in net.jokes in called "roU3." Each letter is replaced by the letter 13
further alonl in the alphabet (cycling around at the end). Most systems have a built in command
to decrypt such articles; readnews(l) and vnews(l) have the D command, rn(l) (another popular
public-domain full screen news reader) has the X or <tONTllOL-X> commands, notes(1) has % or
R. If your system doesn't have a program to encrypt and decrypt these, you can quickly create a
shell script using tr(1):

tr A-Za-z N-ZA-Mn-za-m

On some versions of UNIX, the tr command should be written as:
tr "[a-m][n-zj[A-M][N-Z1" "[n-z](a-m1[N-Z](A-M]"

8. Bet.general: Is John Doe out there anywhere?

I suspect that these items are people looking for freshman roommates that they haven't seen in
ten years. If you have some idea where the person is you are usually better off callin& the orpni
zation. For example, if you call any Bell Labs location and request John Doe's number; They

News Version B2.1O.3 February 24, 1986

How to Use USENET Effectively USD:I0-l1

can give it to you even if he works at a different location. If you must try the net, use newsgroup
net.net-people, not net.general.

9. net.math: Proofs that 1 .. O.
Almost everyone has seen one or more of these in high school. They are almost always based on
either division by 0 or taking the square root of a negative number.

to. net.games: Where can I get the source for empire(6) or rogue(6)?
You can't. The authors of these games, as is their right, have chosen not to make the sources
available.

11. net.unix-wizards: How do I remove files with non-ASCII characters in their names?
You can try to find a pattern that uniquely identifies the file. This sometimes fails because a
peculiarity of some shells is that they strip off the high-order bit of characters in command lines.
Next, you can try an "rm _i", or "rm -r" (see rm(l).) Finally, you can mess around with i-node
numbers and find(1).

12. net.unix-wizards: Th_ere is a bug in the way UNIX handles protection for programs that run setuid.
There are indeed problems with the treatment of protection in setuid programs. When this is
brought up, suggestions for changes range from implementing a full capability list arrangement to
new kernel calls for allowing more control over when the effective id is used and when the real id
is used to control accesses. Sooner or later you can expect this to be improved. For now you just
have to live with it.

13. net.women: What do you think about abortion?
Although abortion might appear to be an appropriate topic for net.women, more heat than light is
generated when it is brought up. Since the newsgroup net.abortion has been created, all abortion
related discussion should take place there.

14. net.singles: What do "MOTOS," "MOTSS,", "MOTAS", and "SO" stand for?

Member of the opposite sex, member of the same sex, member of the appropriate sex, and
significant other, respectively.

15 net.columbia: Shouldn't this name be changed?
The name was devised to honor the first space shuttle. It was realized at the time the group began
that the name would quickly become out of date. The intent was to create a bit of instant nostal
gia.

16. net.columbia: Shouldn't this group be merged with net.space? No. Net.columbia is for timely
news bulletins. Net.space is for discussions.

17. How do I use the "Distribution" feature?
When postnews(1) prompts you for a distribution, it's asking how widely distributed you want
your article. The set of possible replies is different, depending on where you are, but at Bell Labs
in Murray Hill, New Jersey, possibilities include:

mh3bc I local to this machine
mh Bell Labs, Murray Hill Branch
nj all sites in New Jersey
btl All Bell Labs machines
att All AT&T machines
usa Everywhere in the USA
na Everywhere in North America
net Everywhere on USE NET in the world (same as ·world")

If you hit <RETURN>, you'n get the default, which is the first part of the newsgroup name. This
default is often not appropriate - please take a moment to think about how far away people are
likely to be interested in what you have to say. Used car ads, housing wanted ads, and things for
sale other than specialized equipment like computers certainly shouldn't be distributed to Europe

News Version B2.10.3 February 24, 1986

USD:I0 .. 12 H~w to Use USENET Effectively

and Korea, or even to the next state.
The newsgroup na.forsale exists for postings of sale announcements. Its distribution is limited to
North America; posters should restrict this distribution even further, if possible and appropriate.

18. Why do some people put funny lines ("bUg killers") at the beginning of their articles?
Some earlier versions of news had a bug which would drop the first 512 or 1024 bytes of text of
certain articles. The bug was triggered whenever the article started with whitespace (a blank or a
tab). A fix many people adopted was to begin their articles with a line containing a character oth
er than white space. This gradually evolved into the habit of including amusing first lines.
The original bug has since been fixed in newer version of news, and sites running older versions of
news have applied a patch to prevent articles from losing text. The ~'bug-killer" lines are there
fore probably no longer needed, but they linger on.

19. What is the address or phone number of the "foo" company?
Try the white and yellow pages of your phone directory, first; a sales representative will surely
know, and if you're a potential customer they will be who you're looking for. Phone books for
other cities are usually available in libraries of any size. Whoever buys or recommends things for
your company will probably have some buyer's guides or national company directories. Call or
visit the reference desk of your library; they have several company and organization directories
and many will answer questions like this over the phone. Remember if you only know the city
where the company is, you·can telephone to find out their full address or a dealer. The network is
not a free resource, although it may look like that to some people. It is far better to spend a few
minutes of your own time researching an answer rather than broadcast your laziness andlor inep
titude to the net.

News Version B2.1O.3 February 24, 1986

Report No. UIUCDCS·R·82·1081

NOTESFILE REFERENCE MANUAL
(abridged)

by

Raymond B. Essick IV
Rob Kolstad

February 14, 1983
(Revised: October 20, 1985)

(Printed: April 8, 1986)

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA·CHAMPAIGN

1304 W. SPRINGFIELD AVENUE
URBANA, ILLINOIS 61801·2987

Supported in part by NASA Project NAS-l·138

TABLE OF CONTENTS

1 Introduction , .. 1

2 Using Notesfiles .. 1
2.1 Invocation .. _1
2.2 Notesfile Names and Wildcards•... 2
2.3 The -f Option ... 3
2.4 General ... 3

2.4.1 Help .. 3
2.4.2 Exiting .. 3
2.4.3 Shells .. 4
2.4.4 Comments & Suggestions .. 4

2.5 The Index Page ... : ... 4
2.5.1 Scrolling the Index Page .. 5
2.5.2 Choosing Notes & Responses .. 5

2.6 Notes & Responses .. 5
2.6.1 Reading Notes .. 5
2.6.2 Reading Responses .. 7
2.6.3 Writing Notes & Responses ... 7
2.6.4 Mailing Notesfile Text ... 8
2.6.5 Forwarding Text To Other Notesfiles ... 8
2.6.6 Saving Text in Local Files ... 8
2.6.7 Deletion : .. , 8

. 2.6.8 Online. Communication ... 8
2.6.9 Editing Note Titles .. : ; 9
2.6.10 Editing NoteslResponses ~ .. 9

2.7 Other Commands ... 9
2.7.1 Returning to the Index Page .. 9
2.7.2 Searching Titles for Keywords ... 9
2.7.3 Searching for Authors .. 9
2.7.4 Stacking Notesfiles ... 9
2.7.5 Accessing Archives ... : 10
2.7.6 Policy Note .. 10

2.8 The Sequencer .. ; .. 10
2.8.1 Seeing New Notes and Responses .. 10
2.8.2 Alternate Sequencers ... 11
2.8.3 Automatic Sequencing .. 11

2.9 Environment Variables ... 12

3 Other Notesfile Utilities .. 1 3
3.1 Hard Copy Output ... 13
3.2 Piped Insertion of Notes ... 13
3.3 User Subroutines ... 13

3.3.1 Nfcomment ... 13
3.3.2 Nfabort , .. 14

3.4 Statistics .. 14
3.5 Checking for New Notes ... 15

APPENDICES

1 Introduction.

Notesfiles support computer managed discussion forums. Discussions can have many
different purposes and scopes: the notesfile system has been designed to be flexible enough to handle
differing requirements.

Each notesfile discusses a single topic. The depth of discussion within a notesfile is ideally
held constant. While some users may require a general discussion of personal workstations, a
different group may desire detailed discussions about the I/O bus structure of the WICA T 68000 (a
particular workstation). These discussions might well be separated into two different notesfiles.

Each notesfile contains a list of logically independent notes (called base notes). A note is a
block of text with a comment or question intended to be seen by members of the notesfile commun
ity. The note display shows the text, its creation time, its title, the notesfile's title, the author's name
(some notesfiles allow anonymous notes), the number of "responses", and optionally a "director mes
sage". Each base note can have a number of "responses": replies, retorts, further comments, criti
cism, or related questions concerning the base note. Thus, a notesfile contains an ordered list of
ordered lists. This arrangement has historically been more convenient than other proposals (e.g.,
trees were studied on the PLATO (trademark of Control Data" Corporation) system).

The concept of a notesfile was originally implemented at the University of Illinois, Urbana
Champaign, on the PLATO system. The UNIX (trademark of Bell Laboratoris) notesfile system
includes these ideas with adaptations and enhancements made possible by the UNIX environment.

The UNIX notesfile system was designed and implemented by Ray Essick at the University of
Illinois, Urbana-Chainpaigu. It provides· users with the abilities to read notes and responses, write
notes and responses, forward note text to other users (via mail) or other notesfiles, save note text in
their own files, and sequence through a set of notesfiles seeing just new text. Each notesfile has a set
of "directors" who manage the notesfile: they delete old notes, compress the file wh~n needed, grant
and restrict access to the notes file, and set different notesfile parameters (e.g., title, "director mes
sage", policy note, whether notes' authors can be anonymous). Some notes files contain correspon
dence from other computers. Like the UNIX "USENET", notes and responses are exchanged (often
over phone lines) with remote machines. The notesfile system provides automatic exchange and
updating of notes in an arbitrarily connected network.

This document details the use of notesfiles from invocation through intersystem notes
exchanges. The last chapter summarizes the entire set of commands for easy reference. An appendix
contains detailed checklists for the installation of a notesfile system.

2 Using Notestiles.

The notesfile system is invoked with a single command line. Most notesfile commands
require only a single character (like the vi editor). Those that require more than one character are
terminated by a carriage return.

2.1 Invocation.

Invoke the notesfile system with:

notes [-sxi] [-a subsequencer] [-t termtype] [-f nfile] [topicl] [topic2 ...]

The topic list (e.g., topic!) specifies the notesfiles to read. Invoking the notes system with NO

Notesfile Reference Manual USD:11-2

arguments yields a . list of some available topics. When more than one topic is specified, the user
encounters each topic sequentially (Le., topic2 is entered upon completion of topic 1).

The ·s switch activates the "notesfile sequencer" which is discussed in section 2.8. Specify
"·x" to use the extended sequencer. The "·i" flag selects yet another sequencing mode. The "-a"
option specifies a particular subsequencer. This allows several users sharing a signon to maintain
their own sequencing timestamp information.

The -t option directs the notesfile system to use "termtype" as the user's terminal type, over
riding the TERM shell variable.

The -f option directs the notesfile system to read the contents of the file "nfile" for a list of
notesftles to read. See section 2.3 ("The ·f Option") for more information on the format of this file.

2.2 Notesfile Names and Wildcards.

Notesfiles can be specified in several ways. The most common way is to merely give the
name of the notesfile, such as "geneial". These notesfiles typically reside in the directory
"/USt/spool/notes". Notesfiles may also be specified by their complete path name; thus you could also
refer to "general" by its full pathname "/usr!spool/notes/general". Using complete naming, notesfiles
can be placed anywhere in the filesystem. This allows "private" notesfiles to be stored in personal
directories.

The notesfile system supports pattern matching for names in the. same manner as the shell.
By. using ·the shell meta-characters ".", "?", "[" aDd "r, the user can specify a number of notesfiles
with a single entry. To read all the notesfiles that pertain to unix, enter the following line (the quotes
are required to protect the metacharacters from interpretation by the shell):

notes "·unix·"

There are several ways to read tbe notesfiles test 1, test2, test3 and test4:

notes test 1 test2 test3 test4
notes "test?"
notes "test{1234r

Entries can also be eliminated from the list of notesfiles to look at. By prefixing a notes file
name (possibly containing wildcard characters) with a 'I', the notesfiles are excluded from the list to
be examined. If one wished to look.at all of the "test" notesfiles except test3, one could specify:

notes "test?" Itest3

If you use the c shell, you will have to escape the '!', the history character:

notes "test?" \!test3

These features are available from the normal entry (notes) and the automatic sequencer entry
(see section 2.8). Most notesfile programs recognize this format. Among those which do not are pro
grams which must receive exactly one notesfile name.

USD:11-3 Notesfile Reference Manual

2.3 The -f OptioD.

The "-P' option of the notesfile system specifies a file of notesfile names to read. The file con
sists of lines containing notesfile names:

nfgripes
net. unix-wizards
net.general
fa.telecom

The names start at the left margin; they are indented here for readability. Wildcard characters (".",
"?", "[", and "]") are acceptable in this context. Full names such as "/usr/spooVnotes/general" are
also accepted. Notesfiles can be eliminated through the "!" feature as described in section 2.2. The
sequencer mode can be changed (see section 2.8) by inserting a line of the form:

-s

Again, this starts at the left margin. The "s" can be any of: "s", "x", "i", or "n". When a
line of this form is read from the file, the sequencer mode is set to the corresponding mode: The nor
mal "s"equencer, the e"x"tended sequencer, the "i"ndex sequencer, and "n"o sequencer.

To always enter nfgripes, micronotes, and bicycle while only entering the networked notesfiles
"net. *" when new notes are present, one might use "notes -f myfile" with this "myfile":

-x
nfgripes
micronotes
bicycle
-s
net. *

2.4 General.

Almost all notesfile commands consist of exactly one character (no carriage return). Only
commands that are longer than one character require a terminating carriage return (currently, choos
ing a note to read is the only non-single character command).

The commands were chosen to be easy to remember. Upper case forms of commands usually
function like their lower case counterparts but with some additional feature or power (i.e., "w" writes
a response, "W" includes the current displayed text in the response).

Some commands are available almost everywhere in the notesfile system. These include those
for help, exiting, forking a shell, and making a comment for the suggestion box.

2.4.1 Help.

Typing "?" anywhere will list the available options in an abbreviated format.

2.4.2 ExitiDg.

Type u q" ("quit") to leave the current notesfile. Capital "Q" leaves the current notesfile and
refrains from entering your last entry time into the sequencer table (see section "The Sequencer").
The notesfile system proceeds to the next topic in the invocation list. The Uk" and UK" keys function
exactly as "q" and "Q".

Notesfile Reference Manual USD:II-4

Use control-D ("signoff") to leave the notesfile system completely (without updating entry
time information). The "z" command (which functions only when reading notes or responses or
when on the index page) behaves similarly to control-D: the user exits the notesfile system immedi~
ately, but unlike control-D, updates the entry time information for the current notesfile.

2.4.3 Shells.

Fork a shen at any time by typing "!'. (just like many other Unix programs).

1.4.4 Comments" Sugestioas.

Type capital "B" ("suggestion Box") while on the index. page or reading notes to make a com
ment or suggestion about the notesfile program. . Your suggestion will be stored in another notesfile
reviewed frequently by the notesfile system manager.

1.5 The Index Page.

When the notes system is invoked without the -s option, the user sees an index of the most
recent notes. A sample page is shown below:

Workstation Discussion 2:03 pm Jan 4, 1982

12/9/81

12/10

111/82

2 Stanford SUN
3*WICAT 68000
4 M68000
5 Dolphin
6 CDC Staridalone
8 IBM Personal Computer
9 Personal computen barmful?
10 Ethernet interfaces 3 mhz?
11 Requirements for uiucdcs
12 Happy New Year!

4 borton
kolstad

1 borton
3 duke!johnson
1 smith.

henry
8. Anonymous
23 essick
10 botten
5 mjk

. The upper left corner shows the notesfile's title. In this example, tbe notesfile discusses per
sonal workstations. Tbe current time and date are displayed in the upper right comer. Approxi
mately ten note titles are displayed (if available). More notes are displayed on longer screens (such as
the Ann Arbor Ambassador). Each note is displayed with its date (if different from the previous
date), note number, title, number of responses (if any), and author. The tint note above was written
by user "horton" on December 9th, is entitled "Stanford SUN" and has four responses. Note 7 has
been deleted for some reason (by either its author or a notesfile director). Note 5 was written by user
"johnson'" whose signon resides on the "duke" system. Note 9 was written by an author who pre
ferred to remain unidentified. Notes with director messages (sometimes denoting importance) are
displayed with a next to the note number (see note 3 above).

From the index page the user may:

• Scroll the index forward or backward.
• Read a note.
• Write a note.
• Go to the next unread note.
• Search for notes or responses after a specific date/time.

USD:l1-S

• Search for keywords within notes' titles.
• Search for notes/responses by a specific author.
• Go to another notesfile.
• Consult the notesfile's archive.
• Read the policy note.
• Check on anonymous and networked status.
• Register a complaint/suggestion about notesfiles.
• Fork a shell.
• Exit the notes program.
• Invoke notesfile director options (if the user is a director).

2.S.1 Scrolling tbe Index Page.

Scroll the index page by:

+, <return>, <space> forward one page
• forward to the most recent page (. is multiple +'s)

backward one page
:II backward all the way (. is multiple -'s)

2.5.2 Choosing Notes &: Responses.

Notesfile Reference Manual

While on the index page, choose a note to read by typing its number followed by a carriage
return. (This is the only command that requires a carriage return after it.) Usually the space bar is

. used to scan text. To skip to a particular note or response, ~ the features below.

While reading a note, ";" or "+" advances to the first response of the note. The next note is
displayed if there are no responses. The D:umber .keys ("1", "2", ... , "9") advance that many
responses. If there are fewer responses, the last response is displayed. The return key skips the
responses and goes to the next note. Press" -" or backspace to see the previous page of the current
note; if the page currently displayed is the first, the notesfile program displays the first page of the pre
vious note.

While a response is on the screen, the ";" and "+" keys display the next response. As with
reading a note, if there are no further responses these keys advance to the next note. The number
keys ("t", ... , "9") will advance the appropriate number of responses. If there are fewer responses,
the last response is displayed. The "-" or backspace keys display the previous page of the current
response. If the current page is the first page of the response, these keys display the first page of the
previous response. Enter" -" to see the base note of the current note string. Press the return key to
proceed to the next note.

2.6 Notes & Responses.

2.6.1 Reading Notes.

After selecting a note from the index page (or entering the notesfile with your "sequencer"
on), the note is displayed. A sample display is shown below:

Notesfile Reference Manual

Note IS
horton

Wicat System 150

Workstation Discussion
WICAT ISO

2 responses
4:03 pm Dec 11, 1981

USD:l1-6

8 MHz 68000, Mem. mgmt, Multibus architecture, 256k to 1.5 Mb RAM,16/32164Kbyte EPROM,
10 ms interval timer, 2 RS232 (l9.6k async, S6k sync), 16 bit parallel intelligent disk controller,
10 Mbyte winchester (S.2S'\ 3600 rpm, access: 3 ms trk-trk, 70 avg, 150 max),
960Kb floppy (5.2S", 300 rpm, KCesS 10 mstrk-trk, 267 avg, 583 max)
Options: battery backed clock, graphics with touch panel, video disk control,
High Speed Serial Network Interface
UnixlV7 avail, Pascal, C, APL, ADA, Cobol, Fortran, Lisp, Basic, Asm

This is note number 15 in the "Workstation Discussion" file. User "horton" wrote this note
at 4:03 pm on December 11 th~ 1981. Two responses have been written. The note's title is "WICA T
150". If a director had written the note, the "director message" might have been displayed beneath
the note's title. Director's notes sometimes contain important information or new policies.

Since notes and responses can each be up to 3 Mbytes long, the display routine breaks text
into pages automatically. FOr all but the last page of a long note or response, the lower right corner
of the display shows the percentage of the note that has been shown. For all but the first page of
Ion:: text, the message "[Continued)" appears in the upper left portion of the display. Use the space
bar to see the next :page of a long note or response. When the . last page is displayed, the space key
funCtions as the ";" key: it proceeds to the . next response. The"·" and backspace keys back up the
display to the previous page. Only the first 50 pages of text are managed this way; typirlg "-:" from
the fifty-second page wHI return to the fiftieth page. The "." key returns to the first page of the note.

While reading a note, it is possible to:
• Display the next, previous, or first page of the note.
• Write a response to the displayed note.
• Read next note or previous note.
• Read next unread response or note.
• Return to the index page.
• Skip to a given response.
• Delete the note (if you are its author or a file director).
• Edit the note's title (if it is yours).
• Edit the note (if it is yours and there are no responses).
• Copy the note to another notesfile.
• Save the note in your file space.
• Mail the note to someone.
• Talk ("write") to the author of the note.
• Search for keywords in note titles.
• Search for notes/responses by a particular author.
• Toggle the director message (if privileged).
• 'Fork a shell.
• Go to another notesftle.
• Make a comment or suggestion about notes61es.
• Exit the Dotesftle program.

USD:11-7 Notesfile Reference Manual

2.6.2 Reading Responses.

Response displays are similar to those of main notes with the exception that "Response x of
y" replaces the note's title. The first response to note 15 is shown below:

Note 15
koehler

Workstation Discussion
Response lof2 11:53 pm Dec 11, 1981

Does anyone have any insight about the relative speeds of the Winchester disks available
on these systems? The previous disk seems to have track to track response times commensurate
with reasonably fast 8- floppies. I wonder if some of the manufacturers are using disks that
will not meet reasonable specifications for response time for these kinds of applications.

On the other hand, with intelligent layout of file sectors, the I/O system
could romp and stomp on often used files .•.

----------_._----------------------_.-
The commands for manipulating the text of a long response are the same as those for looking

at long notes. Typing space will move to the next page. Typing"·" or backspace will display the pre
vious page, within the same limitations as for reading notes (only 50 pages are kept). Press ",." to go
back to the first page of the text.

The options available while reading responses include:
• Display the next, previous, or 6.rst page of the response.
• Go to a different response (usually the next one).
• Go to the next unread note/response.
• Reread the base note.
• Reread the previous note ..
• Return to the index page.
• Copy the response to another notesfile.
• Mail the response to someone.
• Save the response in your file space.
• Talk to the response's author.
• Write another response to the note.
• Search for keywords in note titles.
• Search for notes/responses by particular authors.
• Delete the response (if you are its author or a file director).
• Edit the response (if it is yours and there are no later responses).
• Fork a shell
• Go to another notesfile.
• Register a suggestion or complaint about the notesfile program.
• Exit the notesfile progfam.

2.6.3 Writing Notes &: Responses.

Write new base notes by hitting "w" while reading the index page. The notesfile system will
then invoke an editor ("ed" by default; use either of the shell variables NFED or EDITOR to change
it). After the prompt, compose the text you wish to enter, then write the text to the disk and leave
the editor. The system will prompt you for various options if they are available: anonymity, director
message status, and the note's title.

To write a response to a note type "w" while that note or any of its responses is displayed.
The same steps used to write a base n~te should then be followed.

Notesfile Reference Manual USD:l1-8

2.6.4 Mailing Notesfile Text.

Both notes and responses can be mailed to other users (with optional appended text). The
capital "M" ("mail") command gives you the opportunity to edit the text then send it to anyone. Its
inferior counterpart, "m", allows you to mail a message to anyone. To mail to the author of the text,
use capital up" ("Personal comment") to send the text and your comments; use "p" for a simple
letter.

To use a specific mail program, set the environment variable MAILER. If this is not set, a
standard mail program is used.

2.6~ Forwarding Text To Other Notesfiles.

There are several methods for forwarding text from one notesfile to another. Single notes or
responses can be copied with the "c" or "C" command while entire note strings can be forwarded
with the ur' and "F' commands.

The "r' ("forward") command is given when a base note is displayed on the screen. When
given, the "r' command causes the base note and aU of its responses to be copied to another notesfile.
The user is prompted for the destination notesfile. The copied note and all of the copied responses
contain header information detailing their origin. Where "r' copies the note string without change,
the "F' command allows the user to edit the te~t of the note and each response before inserting it
into the target notesfile.

The "c" ("copy") command prompts for a destination notesfile then copies the currently
displayed note or response·to the target notesfile. The user is ·allowed to choose between forwarding
the note as a response or as a new base note. The "c" command does not give the user a chance to
edit the text before inserting it in the new notestile. The extended copying command "C" allows edite

ing of the note text before it is copied to the other notesfile.

Both the "c" and "C" commands provide for the forwarded text to be entered as either a new
note or as a response to an existing note. In the latter case, an index page is given to the user for
choosing the appropriate note to which to respond.

2.6.6 Saving Text in Local Files.

The "s" ("save") command appends the current displayed text to a file of your choice (which
is created if not present). Notesfiles prompts for the tile name; typing only a carriage return aborts
the command - no text is saved. Capital "S" appends the base note and all its responses. The
number of lines saved and the name of the file written are printed when the command completes.

2.6.7 Deletion.

Capital "0" ("delete") deletes a note or response if it is yours and has no subsequent
responses. Notes already sent to the network can not be deleted by non-directors. Directors can
delete any note or response with the "Z" ("zap") command.

2.6.8 Online Communication.

Typing "t" ("talk") attempts to page the author of the current displayed text. The Unix
"write" command to him/her is issued if the author is local and non-anonymous. If the environment
variable WRITE is defined, the program it s~ities is used to write to the author.

USD:11-9 Notesfile Reference'Manual

2.6.9 Editing Note Titles.

While reading a base note, type "e" ("edit") to change the note's title (provided you are the
author of the note or a notesfile director).

2.6.10 Editing Notes/Responses.

"E" allows editing of the text of a note or response. It is not permitted to edit an article if it
has subsequent responses or if it has been sent to the network. If the "later responses" are deleted, it
is possible to edit the original text.

2.7 Other Commands.

2.7.1 Returning to the Index Page.

Type '~i" ("index") while reading notes or responses to return to the index page.

2.7.2 Searching Titles for Keywords.

While reading, you can search backwards for keywords appearing in note titles. Typing "x"
("x is the unknown title") prompts for the substring to be found. Searching begins at the current note
(or from the last note shown on the index page) and proceeds towards note 1. The search is insensi
tive to upper/lowercase distinctions. Use upper case "X" to continue the search. The search can be
aborted by hitting the RUBOUT (or DELETE) key.

2.7.3 Searching for Authors.

The "a" command searches backwards for notes or responses written by a specific author.
Notesfiles prompts for the author's name. The "A" command continues the search backwards. The
author name may be preceded by an optional 'system!'. Abort the search by hitting the RUBOUT (or
DELETE) key.

The entire name need not be specified when searching for articles by a particular author.
Author searching uses substring searching. Searching for the author "john" will yield articles written
by a local user "john", a remote user "somewhere!johnston", and any articles from the "uiucjohnny"
machine. Author searching is case sensitive.

2.7.4 Stacking Notesfiles.

Sometimes it is useful to be able to glance at another notesfile while reading notes. Using
"n", the user can save (stack) his current place and peruse another notesfile.

When on the index page or while reading notes/responses, type "n" ("nest") to read another
notesfile. Notesfiles prompts for the notesfile to read. If the notesfile exists, the place is marked in
the old notesfile and the new one's index is displayed.

Type any of the standard keys to leave the nested notesfile. Both "q" and "Q" leave the
nested notesfile and return to the previously stacked notesfile. Control-d ("signotr') causes the
notesfile program to exit regardless of the depth of nesting.

Sequencing is turned off' in the new notesfile regardless of its state in the old notesfile. The
depth of the stack of notesfiles is limited only by the amount of memory available to the user.

·-.... -----------

Notesfile Reference Manual USD:ll·H

2.1.5 Accessing Archives.

As notesfiles grow, it becomes impractical to keep every discussion. In some cases, the ole
discussions are deleted; other cases require these old discussions to be saved somewhere. Each activt
notesfile can have an archive notesfile. An archive notesfile contains the old discussions from the
. active notesfile.

The archive of an active notesfile is accessed by explicitly naming the notesfile
(/usrlspoolloldnoteslmicronotes for example) or through the "Nn command from the active notesfile.

2..1.6 Policy Note.

A notesfi1e director can write an optional policy note to describe the purpose of a notesfile.
Read the policy note by typing "p" ("policy") from the index page.

1.8 The Sequencer.

Most users prefer to scan notesfiles and see only those notes written since their last reading.
The notesfile "sequencer" provides this capability. It is activated by the "·s" option ("sequencer") on
the command line. When the sequencer is activated, the notesfile system automatically remembers
the last time the user read noies in each notesfile. Subsequent entries to the notesfile can use the "last
time" information to show only new notes and responses. If there is nothing new in a notesfile, the
sequencer proceeds to the next notesfile specified in the command line.

The normal sequencer does not give the user a chance to read the notesfile if there are no new
notes or responseS; 'sometimes i.t is desirable to be able·to do so. Use the "·x" option to enable the
sequencer and enter the notesfile even ifthere are no new notes.

No keys need be pressed if there are no new notes in the entire list and the normal ("·s")
sequencer mode is selected. With the extended (".x'·) sequencer, the user must type "q", "Q", or
control-d for each notesfile regardless of whether there are new notes.

The "·i" mode of sequencing is similar to the "·s'· mode. Using the "·i" mode, notesftles
without new entries are passed over. The user starts reading on the index page of notesfiles which
contain new notes.

1.8.1 Seeing New Notes and Responses.

The sequencer always shows the base note of a modified note string, whether or not is has
been shown before, in order to establish the context of the new response(s). The "j" command skips
to the next modified text (note or response).

If the rest of a particular note string seems uninteresting, skip to the next modified note string
with the "1" ("big Jump") command. This skips any new responses on the current note string. It is
common to follow closely only a few note strings, skipping others using the "J" command.

The "last time" information is kept in a special file for each user. When the sequencer is
enabled, the time for the note~file is loaded into a variable and used to specify which notes and
responses are new. If the sequencer is not enabled. this variable is initialized to January I, 1970.
The "r and 44 r keys use this variable to determine which notes and responses are "new".

If the sequencer is enabled. after exiting a notesDlethe "last time" information is updated to
the time that the user entered this notesfile. The entry time is used rather than the exit time to ensure
that all notes are seen, including ones written during the just completed session. If the sequencer is

USD:ll-ll Notesftle Reference Manual

disabled, the "last time" information is not modified. The "last time" information for a particular
notesfile is updated as that notesfile is exited; using "Q" or control-D later will have no effect on the
sequencer information for notesfiles already read.

The "0" and "0" commands allow the user to modify the variable used to determine whether
notes and responses are "new". The "0" command allows the user to set this variable to any date he
wishes. Use the "0" command to set this variable to show only notes and responses written that day.
The "last time" file kept for each user is never modified by the "0" and "0" commands.

When no more new notes or responses exist, both the "j" and •• J" commands will take the
user to the index page. To exit the notesfile, use the "q" command. Exiting with "q" will update the
user's "last entry" time. Exiting with capital "Q" will NOT modify the "last entry" time for that
notesfile (neither will control-D).

The "1" and "L" command behave similarly to "j" and "J". The difference is that while "j"
and "J' take the user to the last index page when no more new notes or responses exist, the "I" and
"L" commands will leave the notesfile as if a "q" had been typed. Thus when no more new notes
exist, the "I" command is like typing "jq".

2.8.2 Altemate Sequeacers.

If several people share a login account, it is convenient for each to have a set of sequencing
timestamps. This is accomplished through the use of the subsequencer option of notesfiles ..

Specifying the -a option and a subsequencCr name causes notes to use a different sequencing
timestamp file. Many different subsequencer ilames can be used with each login aCcount. '

The main sequencer file for, a given account is distinct from each of its subsequencer files.
Each of the subsequencer files 'is normally distinct. If the subsequencer names are not unique in their
first 6 characters, subsequencer files may collide.

2.8.3 Automatic SequeDclag.

An alternate entry to the notes program. allows the user to invoke notes with the sequencer
enabled and a list of notesfiles to be scanned with a single, simple command. The "autoseq" com
mand is invoked by typing

autoseq

and reads the environment variable "NFSEQ" to find the names of all notesfiles to be scanned. On
some systems, the "autoseq" command may be known as "readnotes", "autonotes" or some similar
variant; substitute the appropriate name in the following paragraphs. The "NFSEQ" variable should
be defined in .profile for Bourne shell users as follows:

NFSEQ-"pbnotes,micronotes,helpnotes, works"
export NFSEQ

For users of the C shell, the following line should be added to the .login file:

setenv NFSEQ "pbnotes,micronotes,helpnotes, works"

With NFSEQ assigned this value, a call to autoseq will process the notesfiles "pbnotes",
"micronotes", "helpnotes", and "works" with the sequencer turned on.

The full naming conventions, pattern matching capabilities, and '!' exclusion described in

Notesfile Reference Manual USD:l!-l

section 2.2 ("Notesfile Names and Wildcards") are available in autoseq. To read all notesfiles wit
"unix" in their names, and the four test notesfiles ("test!" though "test4"), the NFSEQ variabl
might be defined as:

NFSEQ="*unix*,test[1234]" .
If the first character of an entry in the NFSEQ list is ":", the notesfile system reads the file

name following for a list of notesfiles. To have the automatic sequencer read the filt
"/usr/essicki.nfseq" for a list of notesfiles to scan, define NFSEQ as:

NFSEQ.":/usr/essicki.nfseq"

For this feature to work, the file must have group read privileges. The notesfile program rum
"set-uid" and can not read files which are readable only by the owner.

The following definitions are also valid. The first one reads the notesfiles specified in the file
"/usr/essickl.nfseq" and then reads the notesfiles pbnotes and micronotes. The second definition will
read the notesfile pbnotes, those specified in "/usr/essicki.nfseq", micronotes and the ones specified in
"/usr/essick/.other". If the notesfile program is unable to read the file specified, it skips to the next
entry. For a description of the format of these files. see the section 2.3, "The -f Option".

NFSEQ = ":/usr/essicki .nfseq,pbnotes,micronotes;'

NFSEQ= "pbnotes,:/usr/essick/.nfseq,micronotes,:/usriessick/.other"

The automatic sequencer uses the "-s" mode of sequencing. The user' does not enter
notesfiles which have no new text. By specifying "-x" or "-i" on the command line, the user can use
the.approp.riate sequencer mode.

The subsequencer option of notes is available from the autoseq program by specifying "-a
name" on the command line, and has identical semantics with use of this option when invoking
notes.

2.9 Environment Variables.

The notesfile program reads several environment variables to tailor the system to the user's
preferences. Below is a list of the variables, their purpose, and their default values. These defaults
are for UNIX 4.xBSD and may be slightly different for other versions of UNIX.

• UNFED" specifies which editor will be invoked when the user writes a note or
response. If this variable is not specified, the notesfile system looks for the
environment variable "EDITOR" (which many other programs use). If neither
UNFED" nor "EDITOR" are defined, a default editor is used (lbinled).

• "NFSEQ" is a list of notesfiles that the user wishes to scan using the automatic
sequencing entry to notesfiles. The use of this variable is described in the sec
tion on sequencing. If unspecified. the system uses a standard set which usually
includes "general" and "net. general" .

• "PAGER" is the paging program ("more", "pg") which is used for scrolling the help
files. The default paging program is lusr/ucb/more.

• "MAILER" determines the mail program to use. This defaults to lusr/ucb/mail.
• "WRITE" is used to specify the program for communication between users. If

undefined, the Unix program "write" is used.
• "TERM" determines the type of terminal in use., This must be set for notes to know

USD:11-13 Notesfile Reference Manual

what screen handling conventions to use. In most cases the value will be
correctly initialized by the system at login time .

• "SHELL" specifies which shell the user is running. This will almost always be set by
the operating system.

3 Other Notesfile Udlities.

The notesfile distribution includes utility programs to provide hard copy output, additional
interfaces to user programs, and statistics. They are described below.

3.1 HardCopy Output.

The program "nfprint" sends to standard output a nicely formatted listing of the notesfile in
its command line. Its format is:

nfprint [-Inn] [-p] [-t1 topic [note# 1 [note#-note# 1 [... 1

The "-I" option specifies an alternate page size (the default is 66). The optional note number list
specifies that only certain notes of the notesfile are to be printed. The list can specify individual
notes and ranges. The notes are printed in the order specified.

The -p option specifies that each notestring is to begin on a new page. The -t option signifies
that only a table of contents is to be generated. .

3.2 Piped I~. of Notes.

The nfpipe program ent~rs text from the standard input into a notesfile:

nfpipe topic [-t title] [-d] [-a]

The -t option allows specification of a title. The -d and -a options specify the director and
anonymous flags respectively (if available). If no title is specified, one is manufactured from the first
line of the note.

3.3 User Subroutiaes.

3.3.1 Nfcommeat.

The nfcomment subroutine is callable from a user's C program. It allows any user program to
enter text into a notesfile:

nfcomment (nfname, text, title, dirtlag, anontlag)

The parameters are:

char *nfname;
char *text;
char *title;
int dirtlag;
int anonfiag;

1* name of notesfile */
/* null terminated text to be entered */
/* if non-null, title of note */
/* != 0·> director flag on (if allowed) */
/* != 0 -> anonymous note (if allowed) */

Notesfile Reference Manual USD:l1·14

If the text pointer is NULL, the text of the note will be read from standard input. If no title
is specified the subroutine will manufacture a title from the first line of the note. This routine is use~
ful for error reports, user comments about programs, and automatic logging of statistics or internal
states.

This routine can be loaded with a C program by specifying '-lnfcom' on the 'cc' command
line.

3.3.2 Nfabort.

Nfaoort allows users to generate core images of their process, save the core image in a
"known" place, and log that fact in a notes1ile. This proves useful for intermittent failures; The pro
grammer regularly scans the notes1ile and can examine the core dump at leisure. Some of the prob~
lems of recreating conditions which cause errors are eliminated by this approach.

Nfabort is callable from the user program. It accepts the followi1:'lg parameters:

nfabort (nfname, message, title, cname, exitcode)

The parameters are:

char *nfname; '* name of notesfile *'
char *message; '* text string to insert *'
char *title; '* title of the message */
char *cname; '* prefix for core image destination */
int exitcode; '* code for exitO */

The core image is placed in the file specified by concatenating the "cnanie" argument and a
unique integer (the process id of the current process). The notesfile specified by the "nfname" param
eter receives a note whose body consists of the text pointed to by "message" and a line telling the
complete pathname of the core image. The title of the note is specified by the "title" parameter.
After the core image is generated and the note has been written, nfabort terminates with the exit code
specified by the "exitcode" parameter.

Nfabort generates default values for each of the string parameters if NULL pointbrs are
passed. This routine can be loaded with a C program by specifying '-lnfcom' on the 'cc' command
line.

3.4 Statistics.

The notesfile system keeps statistics on where notes and responses originate, the number of
network accesses, duplications and orphaned responses. Combined with the use of the log main
tained by the notesfile networking software, monitoring notesfile traffic is quite easy.

The -s option specifies that only a summary is to be produced, skipping the individual
reports. Wildcard constructs with '*', '?', ,[" and T are recognized by nfstats. Invoke the statistics
program with:

nfstats [-s] topic 1 [...]

Typical output is:

USD:11-15 Notesfile Reference Manual

rbenotes on uiucdcs at 6:24 pm May 7, 1982
NOTES RESPS TOTALS

Local Reads 359 115 474
Local Written 53 55 108
Networked in 0 0 0
Networked out 0 0 0
Network Dropped 0 0 0
Network Transmissions: 0 Network Receptions: 0
Orphaned Responses Received: 0 Entries into notesfile: 109
Total time in notesfile: 66.57 minutes Average Time/entry: 0.61 minutes
Created at 10:04 pm May 5, 1982, Used on 3 days

A combined set of statistics is produced at the end of listings of more than one notesfile. The
statistics are largely self explanatory.

3.5 Checkinl for New Notes.

The checknotes program checks the notesfiles specified by the NFSEQ environment variable
to determine if there are new notes. The exit code is arranged to make the program useful in shell
scripts: 0 (TRUE) is there are new notes, 1 (FALSE) otherwise.

Use the "-q" option to receive a message

There are new notes

. if one or more of the ·notesfiles have notes/responses written since the user's last entry time into that
notesfile. . .

The "-n" option is similar to the "-q" option, with the exception that it yields output when
there ate DO new notes. The output of checknotes with the "-n" option is:

There are no new notes

Use "-v" to print the name of each Dotesfile with new notes/responses. The "-s" option is
suitable for use in conditional expressions in shell scripts; DO output is generated by this option.

A Tutorial Introduction to the UNIX Text Editor USD:12-1

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIxt operating system is done with the text-editor
ed. This memorandum is a tutorial guide to help beginners get started with text
editing.

Although it does not cover everything, it does discuss enough for most users'
day-ta-day needs. This includes printing, appending, changing, deleting, moving and
inserting entire lines of text; reading and writing files; context searching and line
addressing; the substitute command; the global commands; and the use of special
characters for advanced editing.

Introduction
Ed is a "text editor", that is, an interactive pro

gram for creating and modifying "text", Ilsing direc~
tions provided by a user at a terminal. The text is
often a document like this one, or a program or
perhaps data for a program.

This introduction is meant to simplify learning
ed. The recommended way to learn ed is to read
this document, simultaneously using ed to follow the
examples, then to read the description in section I of
the UNIX Programmer's Manual. all the while exper
imenting with ed. (Solicitation of advice from
experienced users is also useful.)

Do the exercises! They cover material not com
pletely discussed in the actual text. An appendix
summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For this
reason, no attempt is made to cover more than Ii
part of the facilities that ed offers (although this frac
tion includes the most useful and frequently used
parts). When you have mastered the Tutorial, try
Advanced Editing on UNIX. Also, there is not
enough space to explain basic UNIX procedures. We
will assume that you know how to log on to UNIX,
and that you have at least a vague understanding of
what a file is. For more on that, read UNIX for
Beginners.

tUNIX is a trademark of AT&T Bell Laboratories.

You must also know what character to type as
the end-of-line on your particular terminal. This
character is the RETURN key on most terminals.
Throughout, we will refer to this character, whatever
it is, as RETURN.

Getting Started

We'll assume that you have logged in to your sys
tem and it has just printed the prompt character,
usually either a $ or a %. The easiest way to get ed
is to type

ed (followed by a return)

You are now ready to go - ed is waiting for you to
tell it what to do.

Creating Text - the Append command "a"

As your first problem, suppose you want to -
create some text starting from scratch. Perhaps you
are typing the very first draft of a paper; clearly it
will have to start somewhere, and undergo
modifications later. This section will show how to
get some text in, just to get started. Later we'll talk
about how to change it. .

When ed is first started, it is rather like working
with a blank piece of paper - there is no text or
information present. This must be supplied by the
person using ed; it is usually done by typing in the
text, or by reading it into ed from a file. We will

USD:12-2

start by. typing in some text, and return shonly to
how to read files.

First a bit of terminology. In ed jargon, the text
being worked on is said to be "kept in a buffer."
Think of the bufl'er as a work space, if you like, or
simply as the information that you are going to be
editing. In efl'eet the buffer is like the piece of
paper, on which we will write things, then change
some of them, and finally 61e the whole thing away
for another day.

The user tells ed what to do to bistext by typing
iDStntctioDS called "commands." Most commands
consist of a sinIIe leuer,which must be typed in
lower case. Each command is typed on a separate
line. (Sometimes the command is preceded by
infonnation about what line or lines of text are to be
a1l'ected - we wiD discuss these shortly.) Ed makes
no response to most commands - there is no
prompting or typing of messages like "ready". (This
silence is preferred by experienced users, but some
times a hangup for beginners.)

The first command is append. written as the
letter

a

all by itself. It meaDS "append (or add) text lines to
the bufl'er, as I tyPe them in.." Appending is rather
like writing fresh material on a piece of paper.

So to enter lines of text ·into the butTer, just type
an a followed by a RETURN, followed by the lines of
text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line
that contains only a period. The" ." is used to tell
ed that you have finished appending. (Even experi
enced users forget that terminating sometimes.
If ed seems to be ignoring you, type an extra line
with just on it. You may then tindyou've added
some garbage lines to your text, which you'll have to
take out later.)

After the append command has been done, the
buffer will contain the three lines

Now is the time
for all sood men
to come to the aid of their party.

The "a" and •• ... aren't there, because they are not
text.

To add more text to what you already have, just
issue another a command, and continue typing.

A Tutorial Introduction to the UNIX Text Editor

Enw Messages -. "?"

If at any time you make· an error in the com
mands you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with prac
tice, you can usually figure out how you goofed.

WriOIll text oat as a file - the Write command "w"

It's likely that you'U want to save your text for
later use. To write out the contents of the buffer
onto a tile, use the write command

w

followed by the filename you want to write on. This
will copy the buft'er's contents· onto the specified file
(destroying any previous information on the file).
To save the text on a file named junk, for example,
type

wjunk

Leave a space between w and the tile name. Ed will
respond by printing the number of characters it
wrote OUL In this case. ed would respond with

68

(Remember that blariks and the reium character at
the end of each line are included in the character
counL)' Writing a file just makes a copy of the t~xt -
the buffer's contents are not disturbed, so you can go
on adding lines to iL This is an important point.
Ed at all times works on a copy of a file, not the file
itself. No change in the contents of a file takes place
until you give a w command. (Writing out the text
onto a file from time to time as it is being created is
a good idea, since if the system crashes or if you
make some horrible mistake, you will lose all the
text in the buffer but any text that was written onto
a file is relatively safe.)

Lea"iaa ed - the Quit command "q"

To terminate a session with ed, save the text
you're working on by writirtg it onto a file using the
w command, and then type the command

q

which stands for quit. The systemwiU respond with
the prompt character ($ or %). At this point your
butrer vanishes, with all its text, which is why you
want to write it out before quitting. t

t Actually. ed win Print? if you tn' to qllit without writing.
At tbat poilU, write if you want: if nOlo another 4 wilt get you
outreprdltss.

A Tutorial Introduction to the UNIX Text Editor

Exercise 1:
Enter ed and create some text using

a
.•. text ...

Write it out using w. Then leave ed with the q com·
mand, and print the file, to see that everything
worked. (To print a file, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

Reading text from a file - the Edit command "eH

A common way to get text into the buffer is to
read it from a file in the file system. This is what
you do to edit text that you saved with the " com·
mand in a previous session. The edit command e
fetches the entire contents of a file into the buffer.
So· if you had saved the three lines "Now is ~e
time", etc., with a w command in an earlier session,
the ed command

e junk

would fetch the entire contents of the file junk into
the buffer, and respond

68

which is the number of characters in junk. If any
thing was already in the buffer, it is deleted first.

If you use the e command to read a file into the
buffer, then you need not use a file name after a su~
sequent w command; ed remembers the last file
name used in an e command, and " will write on
this file. Thus a good way to operate is

ed
e file
[editing session]
w
q

This way, you can simply say w from time to time.
and be secure in the knowledge that if you got the
file name rigbtat the beginning, you are writing into
the proper file each time.

You can find out at any time what file name ed
is remembering by typing the file command f. In
this example, if you typed

f

ed would reply

junk

. USD:12-3

Reading text from a file - the Read command "1"

Sometimes you want to read a file into the buffer
without destroying anything that is already there.
This is done by the read command r. The command

r junk

will read the file junk into the buffer; it adds it to the
end of whatever is already in the buffer. So if you
do a read after an edit:

e junk
r junk

the buffer will contain two copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number of
characters read in, after the reading operation is
complete.

Generally speaking, r is much less used than e.

,Exercise 2:

Experiment with the e co~mand - try' reading
and printing various files. You may get an error'
?name, where n8me is the name of a file; this means
that the file doesn't exist, typically because you
spelled the file. name wrong, or perhaps that you are
not allowed to read or write it. Try alternately read
ing and appending to see that they work similarly.
Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buff'er - the Print com·
mand "pH

To print or list the contents of the buffer (or
parts 'of it) on the terminal. use the print command

p

The way this is done is as follows. Specify the lines
where you want printing to begin and where you
want it to end, separated by a comma. and followed
by the letter p. Thus to print the first two lines of
the buffer. for example. (that is. lines 1 through 2)

say

1.21' (starting line ... l, ending line-2 1')

Ed will respond with

Now is the time
for all good men

Suppose you want to print all the lines in the
buffer. You could use l,3p as above if you knew
there were exactly 3 lines in the buffer. But in gen
eral, you don't know how many there are, so what
do you use for the ending line number? Ed provides
a shorthand symbol for "line number of last line in
butrer" - the doUar sign S. Use it this way:

1,$1'

This will print all the lines in the buffer (line 1 to
last line.) If you want to stop the printing before it is
finished, push the DEL or Delete key; ed will type

?

and wait for the next command.

To print the last line of the buffer, you could use

$,$1'

but ed lets you abbreviate this to

$1'

. You can print any single line by typing the line
number followed by ap~ Thus

11'

produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you
can print any single line by typing just the line
number - no need to type the letter p. So if you say

$

ed will print the last line of the buffer.

You can also use $ in combinations like

$-1,$1'

which prints the last two lines of the buffer. This
helps when you want to see how far you got in typ
ing.

Exercise 3:

As before, create some text using the a command
and experiment with the p command. You will find,
for example, that you can't print line 0 or a line
beyond the end of the buffer, and that attempts to
print a buffer in reverse order by saying.

A Tutorial Introduction to the UNIX Text Editor

3,11'

don't work.

The current line - "Dot" or "."
Suppose your buffer still contains the six lines as

above, that you have just· typed

1.31'

and ed has printed the three lines for you. Try typ
mgjust

I' (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the butrer. In fact it is the
last (most recent) line that you have done anything
with. (You just printed it!) You can repeat this p
command without line numbers, and it will continue
to print line 3.

The reason is that ed maintains a record of the
last line that you did anything to (in this case, line 3,
which you just printed) so that it can be used
instead of an explicit line number. This most recent
line is referred to by the shorthand symbol

(p~nounced "dot")~

Dot is a line number in the· same way that $ is; it
means exactly "the current line", or loosely, "the
line you most recently did something to." You. can
use it in several ways - one possibility is to say

.,$p

This will print all the lines from (including) the
current line to the end of the buffer. In our example
these are lines 3 through 6.

Some commands change the value of dot, while
others do not. The p command sets dot to the
number of the last line printed; the last command
will set both . and $ to 6.

Dot is most useful when used in combinations
like this one:

.+ 1 (or equivalently, .+ 1 p)

This means "print the next line" and is a handy way
to step slowly through a buffer. You can also say

.-1 (or .-lp)

which means "print the line be/ore the current line."
This enables you to go backwards if you wish.
Another useful one is something like

.-3,.-lp

which prints the previous three lines.

Don't forget that ail of these change the value of
dot. You can find out what dot is at any time by

A Tutorial Introduction to the UNIX Text Editor

typing

.-
Ed will respond by printing the value of dot.

Let's summarize some things about the p com
mand and dot. Essentially p can be preceded by 0,
1, or 2 line numbers. If there is no line number
given, it prints the "current line", the line that dot
refers to. If there is one line number given (with or
without the letter p), it prints that line (and dot is
set there); and if there are two line numbers, it
prints all the lines in that range (and sets dot to the
last line printed.) If two line numbers are specified
the first can't be bigger than the second (see Exercise
2.)

Typing a single return will cause printing of the
next line - it's equivalent to .+ Ip. Try it. Try typ
ing a -; you will find that it's equivalent to .-lp.

Deleting lines: the "d" command

Suppose you want to get rid of the three extra
lines in the buffer. This is done by the delete com
mand

d

Except that d deletes lines instead of printing them,
its action is similar to that of p. The lines to be
deleted are specified for d exactly as they are for p:

staning line. ending line d

Thus the command

4,Sd

deletes lines 4 through the end. There are now three
lines left, as you can check by using

l,$p

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the last
line deleted is the last line in the buffer. In that
case, dot is set to $.

Exercise 4:

Experiment with a, e, r, W, p and d until you are
sure that you know what they do, and until you
understand how dot, $, and line numbers are used.

If you are adventurous, try using line numbers
with a, rand W as well. You will find that a will
append lines after the line number that you specify
(rather than after dot); that r reads a file in after the
line number you specify (not necessarily at .the end
of the buffer); and that W will write out exactly the
lines you specify, not necessarily the whole buffer.
These variations are sometimes handy. For instance
you can insert a file at the beginning of a buffer by
saying

USD:12-5

Or filename

and you can enter lines at the beginning of the
buffer by saying

Oa
... text.

Notice that .w is very different from

w

Modifying text: the Substitute command "s"

We are now ready to try one of the most impor
tant of all commands - the substitute command

s

This is the command that is used to change indivi
dual words or letters within a line or group of lines.
It is what you use, for example. for correcting spel
ling mistakes and typing errors.

Suppose that by a typing error, line I says

Now is th time

- the e has been left off the. You can use s to fix
this up as follows:

lslthlthe/

This says: "in line I, substitute for the characters th
the characters the." To verify that it works (ed will
not print the result automatically) say

p

and get

Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution took
place, since the p command printed that line. Dot is
always set this way with the s command.

The general way to use the substitute command
is

starting-line. ending-line slchange this/to this/

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between starting-line
and ending-line. Only the first occurrence on each
line is changed, however. If you want to change
every occurrence, see Exercise 5. The rules for line
numbers are the same as those for p, except that dot
is set to the last line changed. (But there is a trap
for the unwary: if no substitution took place, dot is
not changed. This causes an error ? as a warning.)

Thus you can say

USD:12-6 A Tutorial Introduction to the UNIX Text Editor

l.$slspelinglspellingl

and correct the first spelling mistake on each line in
the text. (This is useful for people who are cone
sistent misspellers!)

If no line numbers are given, the s command
assumes we mean "make the substitution on line
dot", so it changes things only on the current line.
This leads to the very common sequence

slsometbinglsomething elselp

which makes some correction on the current line,
and then prints it,· to make sure it worked out right.
If it didn't, you can try again. (Notice that there is a
p on the same line as the s command. With few
exceptions, p can follow any command; no other
multi-command lines are legal.)

It's also legal to say

sI •.. 1/

which means "change the first string of characters to
"nothing", i.e., remove them. This is useful for
deleting extra words in a line or removing extra
letters from words. For instance, if you had

Nowxx is the time

you can say

slxx//p

to get

Now is the time

Notice that II (two adjacent slashes) means "no
characters", not a blank. There is a difference! (See
below for another meaning of II.)

Exercise 5:

Experiment with the substitute command. See
what happens if you substitute for some word on a
line with several occurrences of that word. For
example, do this:

a
the other side of the coin

slthelon thelp

You will get

on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a· g (for "global") to the s
command, like this:

sI ... I ..• Igp

Try other characters instead of slashes to delimit the
two sets of characters in the s command - anything
should work except blanks or tabs.

(If you get funny results using any of the charac~
ters

$ • \ &

read the section on "Special Characters".)

Context searching - "I ... r'

With the substitute command mastered, you can
move on to another highly important idea of ed -
context searchi~g.

Suppose you have the original three line text in
the buft'er:

Now is the time
for ali good men
to come to the aid of their party.

Suppose you want to find the line that contains their
so you can change it to the. Now with only three
lines in the buffer, it's pretty easy to keep track of
what line the word their is on. But if the buffer con
tained several hundred lines, and you'd been making
changes, deleting and rearranging lines, and so on,
you would no longer really know what this line
number would be. Context searching is simply a
method of specifying the desired line. regardless of
what its number is. by specifying some context on it.

The way to say "searcli for a line that contains
this particular string of characters"is ~o type

Istring of characters we want to find 1

For example, the ed command

Itheirl

is a context search which is sufficient to find the
desired line - it will locate the next occurrence of
the characters between slashes ("their"). It also sets
dot to that line and prints the line for verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking for
the string at line .+1, searches to the end of the
buffer, then continues at line I and searches to line
dot. (That is, the search "wraps around" from $ to
1.) It scans all the lines in the buffer until it either
finds the desired line or gets back to dot again. If
the given string of characters can't be found in any
line, ed types the error message

?

Otherwise it prints the line it found.

You can do both the search for the desired line
and a substitution all at once, like this:

Itheirls/their/thelp

which will yield

to come to the aid of the party.

A Tutorial Introduction to the UNIX Text Editor

There were three parts to that last command: con
text search for the desired line, make the substitu
tion, print the line.

The expression Itheir/ is a context search expres
sion. In their simplest form, all context search
expressions are like this - a string of characters sur
rounded by slashes. Context searches are inter
changeable with line numbers, so they can be used
by themselves to find and print a desired line, or as
line numbers for some other command, like s. They
were used both ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

!Now/+l
Igood!
/party/-l

are all context search expressions, and they all refer
to the same line (line 2). To make a change in line
2, you could say

!Now/:ot-l s!goodlbadl

or

/goodls!goodlbadl

or

Iparty/ -1 s! goodlbadl

The choice is dictated only by convenience. You
could print all three lines by, for instance

!Now/,lparty/p

or

!Now/ ,!Nowl + 2p

or by any number of similar combinations. The first
one of these might be better if you don't know how
many lines are involved. (Of course, if there were
only three lines in the buffer, you'd use

1,$p

but not if there were several hundred.)

The basic rule is: a context search expression is
the same as a line number, so it can be used wher
ever a line number is needed.

Exercise 6:

Experiment with context searching. Try a body
of text with several occurrences of the same string of
characters, and scan through it using the saine con
text search.

USD:12-7

Try using context 'searches as line numbers for
the substitute, print and delete commands. (They
can also be used with r, lV, and a.)

Try context searching using ?text? instead of
/text!. This scans lines in the buffer in reverse order
rather than normal. This is sometimes useful if you
go too far while looking for some string of characters
- it's an easy way to back up.

(If you get funny results with any of the charac
ters

$ • \ &

read the section on "Special Characters".)

Ed provides a shorthand for repeating a context
search for the same string. For example, the ed line
number

Istring!

will find the next occurrence of string. It often hap
pens that this is not the desired line, so the search
must be repeated. This can be done by typing
merely

/I

This shorthand stands for "the' most recently used
context search expression." It can also be used as '
the first string of the substitute command, as in

/string lis! /string21

which will find the next occurrence of string 1 and
replace it by string2. This can save a lot of typing.
Similarly

1?

means "scan backwards for the same expression."

Change and Insert - "c" and "j"

This section discusses the change command

c

which is used to change or replace a group of one or
more lines, and the insert command

which is used for inserting a group of one or more
lines.

"Change", written as

c

is used to replace a number of lines with different
lines, which are typed in at the terminal. For exam
ple, to change lines .+1 through $ to something else.
type

.+l,$c
. type the lines of text you want here

USD:12-8 A Tutorial Introduction to the UNIX Text Editor

The lines you type between the c command and the.
will take the place of the original lines between start
line and end line. This is most useful in replacing a
line or several lines which have errors in them.

If only one line is specified in the c command,
then just that line is replaced. (You can type in as
many replacement lines as you like.) Notice the use
of. to end the input - this works just like the. in
the append command and must appear by itself on a
new line. If no line number is given, line dot is
replaced. The value of dot is set to the last line you
typed in.

"Insert" is similar to append - for instance

Istring/i
· . . type the lines to be inserted here . . .

will insert the given text be/ore the next line that
contains "string". The text between i and • is
inserted be/ore the specified line. If no line number
is specified dot is used. Dot is set to the last line
inserted.

Exercise 7:

"Change" is rather like a combination of delete
followed by insert. Experiment to verify. that

start. end d
i
· .. text. ..

is almost the same as

start. end c
· .. text . ..

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
· .. text . ..

appends after the given line, while

line-number i
· .. text.

inserts be/ore it. Observe that if no line number is
given, i inserts before line dot, while a appends after
line dot.

Moving text around: the "m." command

The move command m is used for cutting and
pasting - it lets you move a group of lines from one
place to another in the buffer. Suppose you want to

put the first three lines of the buffer at the end
instead. You could do it by saying:

l,3w temp
Sr temp
1,3d

(Do you see why?) but you can do it a lot easier with
the til command:

1,3m!

The general case is

start line. end line m after this line

Notice that there is a third line to be specified - the
place where the moved stuff gets put. Of course the
lines to be moved can be specified by context
searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

ISecond! ,lend of .secondlm/Firstl-l

Notice the -1: the moved text goes after the line
mentioned. Dot gets set to the last line moved.

The global commands "g" and "v"

The global command g is used to execute one or
more ed commands on all those lines in the buffer
that match some specified string. For example

g/peling/p

prints all lines that contain peling. More usefully,

g/peling/sl/pelling/gp

makes the substitution everywhere on the line, then
prints each corrected line. Compare this to

l,$slpeiing/pelling/gp

which only prints the last line substituted. Another
subtle difference is that the g command does not
give a? if peling is not found where the s command
will.

There may be several commands (including a. c,
i, r, W, but not g); in that case, every line except the
last must end with a backslash \:

g/xxxl.-lslabc/defl\
.+2s1ghiIjkll\
.-2,.p

makes changes in the lines before and after each line
that contains xxx, then prints all three lines,

The v command is the same as g, except that the
commands are executed on every line that does not

A Tutorial Introduction to the UNIX Text Editor

match the string following v:

vi Id

deletes every line that does not contain a blank.

Special Characters
You may have noticed that things just don't

work right when you used some characters like ., .,
$, and others in context searches and the substitute
command. The reason is rather complex, although
the cure is simple. Basically, ed treats these charac
ters as special, with special meanings. For instance,
in a context search or the first string of the substitute
command only. • means "any character," not a
period, so

Ix.yl

means "a line with an x, any character. and a y," not
just "a line with an x, a period, and a y." A com
plete list of the special characters that can cause
trouble is the following:

s • \

Warning: The backslash character \ is special to ed.
For safety's sake, avoid it where possible. If you
have to use one of the special characters in a substi
tUte command, you can tum oft' its magic' meaning
temporarily by preceding it with the backslash.
Thus

sI\ \ \. \.tbac:kslash dot starl

will change \ •• into "backslash dot star" ~

Here is a hurried synopsis of the other special
characters. First, the circumflex A signifies the begin
ning of a line. Thus

rstringl

finds strinl only. if it is at the beginning of a line: it
will find

string

but not

tbe string. ..

The dollar-sign S is just the opposite of the
circumflex; it means the end of a line:

IstringSl

will only find an occurrence of strinl that is at the
end of some line. This implies, of course, that

rstringSl

will find only a line that contains just string. and

r.SI

finds a line containing exactly one character.

USD:12-9

The character ., as we mentioned above, matches
anything;

Ix.yl .
matches any of

X+y
x-y
xy
x.y

This is useful in conjunction with ., which is a
repetition character; a. is a shorthand for "any
number of a's," so •• matches any number of any
things. This is used like this:

sI •• /stuffl

which changes an entire line, or

sI •• ,1I

which deletes all characters in the line up to and
including the last comma. (Since.. nnds the longest
possible match, this goes up to the last comma.)

(is used with) to form "character classes"; for
example, .

1[012345678911 . .
matches any single digit - anyone of the characters
inside the braces will cause a match. This can be
abbreviated to [0-9).

Finally, the & is another shorthand character - it
is used only on the right-hand part of a: substitute
command where it means "whatever was matched
on the left-hand side". It is used to save typing.
Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. You
could just retype the line, but this is tedious. Or
you could say

slA
/(/

slS/)/

using your knowledge of - and S. But the easiest
way uses the &:

sI •• /(&)/

This says "match the whole line, and replace it, by
itself surrounded by parentheses. " The & can be
used several times in a line; consider using

s1 •• /&? &!!I

to produce

Now is tbe time? Now is the time!!

You don't have to match the whole line, of
course: if the buffer contains

USD:12-10 A Tutorial Introduction to the UNIX Text Editor

the end of the world

you could type

Iworld/slllL is at hand!

topt'Oduce

the end of the world is at hand

Observe this expression carefully, for it illustrates
how to take advantage of ed to . save typing. The
strina IfIGrIdI found the desired line; the shorthand
1/ found the saine word in the liDe; aDd the It saves
you from mMl it apia.

The It is a special character only within the
replacement text of a substitute command, and has
no special meaniDI elsewhere. You can turn oW the
special meanina of It by PrecediDa it with a \:

slampersand/\&I

will convert the word "ampersand" into the literal
symbol It in the current line.

Summary 0(COIIUII8Dds aU tiDe NUIIIhrs
. The general form of ed commands is the com-.

maud narite, perhaps preceded by one or two line
numbers, and, in the case of e, r, and w, follow~ by
a file name. Only one command is aUowed per bne,
but a p command may follow any 'oiber command
(except for e., r, w and V.
a: Append, that is, add lines to the buWer (at l~ne
dot unless a di1ferent line is specified). AppendlOg
continues \lDtil • is typed on a new line. Dot is set
to the last line appended.

c: Change the specified lines to the new text which
follows. The new lines are terminated by a ., as
with a. If no lines are specified, replace line dot.
Dot is set to last line changed.

d: Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted line,
unless S is deleted, in which case dot is set to S.
e: Edit new file. Any previous contents of the buWer
are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows f
the remembered name will be set to it.

g: The command

&I-Icom.mands

will execute the commands on those lines that .con
tain -, which can be any context search expression.

i: Insert lines before specified line (or dot) until a . is
typed on a new line. Dot is set to last line inserted.

m: Move lines specified to after the line named after
m. Dot is set to the last line moved.

p: Print specified lines. If Dooe specified, print line
dot. A single line number is equivalent to line
number p. A single return prints .+1, the next line.

q: Quit ed. Wipes out all text in buWer if you give it
twice in a row without first giving a· w command.

r: Read a file into buWer <at end unless specified else
where.) Dot set to last line read.

s: The command

slstriDsllstrina21

substitutes the characters striql into stringl in the
specified lines. If no lines are. specified, m~e ~e
substitution in lin~ dot. Dot IS set to last hne 10

which a substitution took place, which means that if
no substitution took place, dot is not changed. 5

chanaesonly the first occurrence of stringl on a line:
to change all of them, type a gafter the final slash.

r. The command

vl-lcommands

executes commands on those lines that do not con
tain -.
w: Write out buWer onto a file. Dot is not changed.

, .-: Print value of dOl. (= by itself prints the value
ofS.)
!: The line

!command·line

causes eommand-line to be executed as a UNIX com
mand.

I-I: Context search. Search for next line which
contains this string of characters. Print it. Dot is
set to the line where string was found. Search starts
at .+1, wraps around from S to 1, and continues to
dot, if necessary.
1-1: Context searcb in reverse direction. Start
search at .-1, scan to 1, wrap around to S.

Advanced Editing on UNIX

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXt facilities for preparing and editing text. It provides expla
nations and examples of

• special characters, line addressing and global commands in the editor eel;

• comman~ for ··cut and paste" operations on tiles and parts of tiles, including
the mY, cp, cat and rm commands, and the r, W, m abd t commands of the edi
tor,

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non';programmers, . new users with any
background should find helpful hints on how to get their jobs done more eaSily. -

1. INTRODUCTION
Although UNIX provides remarkably effective

tools for text editing, that by itself is no guarantee
that everyone will automatically make the most
effective use of them. In particular, people who are
not computer specialists - typists, secretaries, casual
users - often use the system less effectively than
they might. (There is a good argument that new
users would better use their time learning a display
editor, like vi. or perhaps a version of emacs. like
jove, rather than an editor as ignorant of display ter
minals as ed.)

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [1],
providing explanations and examples of how to edit
using ed with less effort. (You should also be fami
liar with the material in UNIX For Beginners [2].)
Further information on all commands discussed here
can be found in section I of the The UNIX User's
Manual [3].

Examples are based on observations of users
and the difficulties they encounter. Topics covered
include special characters in searches and substitute

t UNIX is a trademark of AT&T 8eU Laboratories.

commands, line addressing, the global commands,
and line moving and copying. There are also brief
discussions of effective use of related tools, like
those for file manipulation, and those based on ed,
like pep and sed.

A word of caution. There is only one way to
learn to use something, and that is to use it. Read
ing a description is no substitute for trying some
thing. A paper like this one should give you ideas
about what to try, but until you actually try some
thing, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to the
system for many people, so it is worthwhile to know
how to get the most out of ed for the least effort.

The next few sections will discuss shortcuts
and labor-saving devices. Not all of these will be
instantly useful to anyone person, of course, but a
few will be, and the others should give you ideas to
store away for future use. And as always, until you
try these things, they will remain theoretical
knowledge, not something you have confidence in.

USD:13-2

The List command 'I'
ed provides two commands for printing the

contents of the lines you're editing. Most people are
familiar with p, in combinations like

l.$p

to print all the lines you're editing, or

slabcldef/p

to change 'abc' to 'def on the current line. Less
familiar is the list command I (the letter '1'), which
gives slightly more information than p. In particu
lar, I makes visible characters that are normally
invisible, such as tabs and backspaces. If you list a
line that contains some of these, I wiD print each tab
as ~ and each backspace as <E. t This makes it much
easier to correct the sort of typing mistake that
inserts extra spaces adjacent to tabs, or inserts a
backspace followed by a space.

The I command also 'folds' long lines for
printing - any line that exceeds 72 characters is
printed on Illultiple lines; each printed line except
the last is terminated by a backslash \, so you can
tell it was folded. This is useful for printing long
lines on short terminals.

Occasionally the I command: will print in a
line a· string of numbers preceded by a backslash,
such as \01 or \16. These combinations are used to
make visible characters that normally don't print,
like form feed or vertical tab or bell. Each such
combination is a single character. When you see
such characters, be wary - they may have surprising
meanings when printed ~n some terminals. Often
their presence means that your finger slipped while
you were typing; you almost never want them.

The Substitute Command '5'
Most of the next few sections will be taken up

with a discussion of the substitute command s.
Since this is the command for changing the contents
of individual lines, it probably has the most com
plexity of any ed command, and the most potential
for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute command.
With

slthislthatl

and

slthislthatlg

the first one replaces the first 'this' on the line with
'that'. If there is more than one 'this' on the line,

t These composite characters are created by overstrik
ing a minus and a > or <, so they only appear as < or
> on display terminals.

Advanced Editing on UNIX

the second form with the trailing It changes all of
them.

Either form of the 5 command can be followed
by p or I to 'print' or 'list' (as described. in the previ
ous section) the contents of the line:

slthislthatlp
slthislthatll
slthislthatlgp
slthislthatlgl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any 5 command can be preceded by
one or two 'line numbers' to specify that the substi
tution is to take place on a group of lines. Thus

1,$slmispeWmisspeIV

changes the first occurrence of 'mispell' to 'misspell'
on every line of the file. But

1,$slmispeIVmisspeIVg

changes .every occurrence in every line (and this is
·more likely to be what you wanted in this particular
case).

You should also notice that if you add a p or I
to the end of any of these substitute commands. only

. the last line that got changed will. be printed, not all
the lines. We will talk -later about how to print all
the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution in a
line, only to realize too late that it was a ghastly mis
take. The 'undo' command u lets you 'undo' the last
substitution: the last line that was substituted can be
restored to its previous state by typing the command

u

The Metacharacter '.'
As you have undoubtedly noticed when you

use ed, certain characters have unexpected meanings
when they occur in the left side ora substitute com
mand, or in a search for a particular line. In the
next several sections, we will talk about these special
characters, which are often called 'metacharacters'.

The first one is the period 'e'. On the left side
of a substitute command, or in a search with '1 .. ./',
'e' stands for any single character. Thus the search

Ix.yl

finds any line where 'x' and 'y' occur separated by a
single character, as in

Advanced Editing on UNIX

x+y
x-y
xcy
x.y

and so on. (We will use c to stand for a space
whenever we need to make it visible.)

Since .. ' matches a single character, that gives
you a way to deal with funny characters printed by 1.
Suppose you have a line that, when printed with the
I command, appears as

.... th\07is

and you want to get rid of the \07 (which represents
the bell character, by the way).

The most obvious solution is to try

51\07/1

but this will fail. (Try it.) The brute force solution,
which most people would now take, is to re-type the
entire line. This is guaranteed, and is actually quite
a reasonable tactic if the line in question isn't too
big, but for a very long line, re-typing is a bore.
This is where the metacharacter ',' comes in handy.
Since '\07' really represents a single character, if we
say

s1th.islthisl

the job is done. The',' matches the mysterious
character between the 'h' and the 'r, whatever it is.

Bear in mind that since ': matches any single
character, the command

slJ,1

converts the first character on a line into a ',', which
very often is not what you intended.

As is true of many characters in ed, the ',' has
several meanings, depending on its context. This
line shows all three:

.s1JJ

The first',' is a line number, the number of the line
we are editing, which is called 'line dot'. (We will
discuss line dot more in Section 3.) The second',' is
a metacharacter that matches any single character on
that line. The third ',' is the only one that really is
an honest literal period. On the right side of a sub
stitution, ',' is not special. If you apply this com
mand to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

USD:13-3

The Backslash '\'

Since a period means 'any character', the
question naturally arises of what to do ·when you
really want a period. For example, how do you con
vert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash turns off
any special meaning that the next character might
have; in particular, '\: converts the ',' from a
'match anything' into a period, so you can use it to
replace the period in

Now is the time.

like this:

s1\J?1

The pair of characters '\.' is considered by ed to be
a single real period.

The backslash can also be used when searching
for lines that contain a special character. Suppose
you are looking for a line that contains

.PP

The search

I.PPI

isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the ',' matches the letter 'A'. But if you say

I\.PPI

you will find only lines that contain '.PP·.

The backslash can also· be used to tum off spe
cial meanings for characters other than ','. For
example, consider finding a line that contains a
backslash. The search

1\1

won't work, because the '\' isn't a literal '\', but
instead means that the second '/' no longer delimits
the search. But by preceding a backs lash with
another one, you can search for a literal backslash.
Thus

1\\1

does work. Similarly, you can search for a forward
slash 'I' with

1\11

The backslash turns off the meaning of the immedi
ately following 'f' so that it doesn't terminate the 1 .. .1
construction prematurely.

USD:13-4

As an exercise, before reading further, find two
substitute commands each of which will convert the
line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each
works as advertised.

.sI\\\J/
slx.JxI
sI •• y/yl

A couple of miscellaneous notes about
backslashes and special characters. First, you can
use any character to delimit the pieces of an s com
mand: there is nothing sacred about slashes. (But
you must use slashes for context searching.) For
instance, in a line that contains a lot of slashes
already. like

Ilexec IIsys.fort.go II etc ...

you could use a colon as the delimiter - to delete all
the slashes, type

s:l::g

Second, if # and @. are your character erase.
and line kill characters,. you have to type \# and \@;
this is true whether you're talking to edor any other
program.

When you are adding text with a or i or c,
backslash is not special, and you should only put in
one backslash for each one you really want.

The Dollar Sip '$'

The next metacharacter, the '$', stands for 'the
end of the line'. As its most obvious use, suppose
you have the line

Now is the

and you wish to add the word 'time' to the end.
Use the S like this:

sI$/o timel

to get

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will get

Now is thetime

As another example, replace the second
comma in the following line with a period without
altering the first:

Advanced Editing on UNIX

Now is the time, for all good men,

The command needed is

sI,$IJ

The $ sign here provides context to make specific
which comma we mean. Without it, of course, the s
command would operate on the first comma to pro
duce

into

Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time?

as we did earlier, we can use

sI.S/?!

Like'.', the'S' has multiple meanings depend
ing on context. In the line

SslS/SI

the first'S' refers to the last line of the file, the
second refers to the end of that line, ~nd the third is
a literal dollar sign, to be added to that line.

The Circumflex
The circumflex (or hat or caret) ,~, stands for

the beginning of the line. For example, suppose you
are looking for a line that begins with 'the'. If YOI'
simply say

Ithel

you will in all likelihood find several lines that con
tain 'the' in the middle before arriving at the one
you want. But with

rthel

you narrow the context, and thus arrive at the
desired one more easily.

The other use of ,~. is of course to enable you
to insert something at the beginning of a line:

siAl 01

places a space at the beginning of the current line.

Metacharacters can be combined. To search
for a line that contains only the characters

.PP

you can use the command

I\.PP$I

Advanced Editing on UNIX

The Star '.'
Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some
indeterminate number of spaces between the x and
the y. Suppose the job is to replace all the spaces
between x and y by a single space. The line is too
long to retype, and there are too many spaces to
count. What now?

This is where the metacharacter '.' comes in
bandy. A character followed by a star stands for as
many consecutive occurrences of that character as
possible. To refer to all the spaces at once, say

slxe.y/xeyl

The construction 'e.' means 'as many spaces as pos
sible'. Thus 'xe.y'means 'an x, as many spaces as
possible, then a y'.

The star can be used with any character, not
just space. If the original example was i~stead

text x,----y text

then all '-' signs can be replaced by a single space
with the command

slx-.y/xeyl

Finally, suppose that the line was

text x y text

Can you see what trap lies in wait for the unwary?
If you blindly type

slx •• y/xeyl

what will happen? The answer, naturally, is that it
depends. If there are no other x's or y's on the line,
then everything works. but it's blind luck, not good
management. Remember that ': matches any single
character? Then' •• ' matches as many single charac
ters as possible, and unless you're careful, it can eat
up a lot more of the line than you expected. If the
line was, for example, like this:

text x text x •••••••••••••••• y text y text

then saying

slx •• y/xeyl

will take everything from the first 'x' to the last 'y',
which, in this example, is undoubtedly more than
you wanted.

The solution, of course, is to tum off the spe
cial meaning of'.' with '\::

slx\ •• y/xeyl

Now everything works, for '\ •• ' means 'as many
periods as possible'.

USD:13-5

There are times when the pattern ' ••• is exactly
what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use ' •• ' to eat up everything after the 'for':

slefor •• IJ

There are a couple of additional pitfalls associ
ated with '.' that you should be aware of. Most not
able is the fact that 'as many as possible' means zero
or more. The fact that zero is a legitimate possibil
ity is sometimes rather surprising. For example, if
our line contained

text xy text x

and we said

slxe.y/xeyl

y text

the first 'xy' matches this pattern, for it consists of
an 'x', zero spaces, and a 'y'. The result is that the
substitute acts on the first 'xy', and does not touch
the later one that actually contains some intervening
spaces.

The. way around this, if it matters, is to specify
a pattern like .

Ixee.yl

which says 'an x, a space, then as many more spaces
as possible, then a y', in other words, one or more
spaces.

The other startling behavior of '.' is again
related to the fact that zero is a legitimate number of
occurrences of something followed by a star. The
command

slx./y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a legal
number of matches, and there are no x's at the
beginning of the line (so that gets converted into a
'y'), nor between the 'a' and the 'b' (so that gets can
verted into a 'y'), nor ... and so on. Make sure you
really want zero matches; if not, in this case write

slxx./y/g

'xx.' is one or more x's.

USD:13-6

The Brackets it J'
Suppose that you want to delete any numbers

that appear at the beginning of all lines of a tile.
You might first think of trying a series of commallds
like

1,Ssf'hll
1.$sf'2.11
1,$sI"3.11

and so on, but this is clearly going to take forever if
the numbers are at all long. Unless you want to
repeat the commands over and over until finally all
numbers are gone, you must get all the digits on one
pass. This is the purpose of the brackets [and].

The construction

(0123456789)

matches any single digit the whole thing is called
a 'character class'. With a character class, the job is
easy. The pattem '{0123456789].' matches zero or
more digits (an entire number), so

1,Ssl'[0123456789].1I"

deletes all digits from the beginning of all lines.

Any characters can appear within a character
class, and just to confuse the issue there are essen
tially no special characters inside the brackets; even
thebackslash doesn't have a special meaning. To
search for special characters, for example, you can
say

I[.\S-[]I

Within [...], the T is not special. To get a T into a
character class, make it the first character.

It's a nuisance to have to spell out the digits,
so you can abbreviate them as [0-9]; similarly, [a-z]
stands for the lower case letters, and [A-Z] for upper
case.

As a final frill on character classes, you can
specify a class that means 'none of the following
characters'. This is done by beginning the class with
a'''''':

rO-9]

stands for 'any character except a digit'. Thus you
might find the first line that doesn't begin with a tab
or space by a search like

rn space)(tab)]1

Within a character class, the circumflex has a
special meaning only if it occurs at the beginning.
Just to convince yourself, verify that

r[-]I

finds a line that doesn't begin with a circumflex.

Advanced Editing on UNIX

The Ampersand '&'

The ampersand '&' is used primarily to save
typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s1thelthe best!

but it seems silly to have to repeat the 'the'. The '&'
is used to eliminate the repetition. On the right side
of a substitute, the ampersand means 'whatever was
just matched', so you can say

slthe/& best!

and the '&' will stand for 'the'. Of course this isn't
much of a saving if the thing matched is just 'the'.
but if it is something truly long or awful, or if it is
something like '.. which matches a lot of text, you
can save some tedious typing. There is also much
less chance of making a typing error in the replace
ment text. For example, to parenthesize a line,
regardless of its length,

51 •• /(&)/

The ampersand can occur more than once on
the right side:

slthe/& best and & worst!

makes

Now is the best and the worst time

and

s1 •• I&? &!!I

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to tum off' the special meaning:

slampersandl\&/

converts the word into the symbol. Notice that '&'
is not special on the left side of a substitute, only on
the right side.

Substituting Newlines

ed provides a facility for splitting a single line
into two or more shorter lines by 'substituting in a
newline'. As the simplest example, suppose a line
has gotten unmanageably long because of editing (or
merely because it was unwisely typed). If it looks
like

text xy text

Advanced Editing on UNIX

you can break it between the 'x' and the 'y' like this:

slxy/x\
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that '\' turns
off special meanings, it seems relatively intuitive
that a '\' at the end of a line would make the new
line there no longer special.

You can in fact make a single line into several
lines with this same mechanism. As a large exam
ple, consider underlining the word 'very' in a long
line by splitting 'very' onto a separate line, and
preceding it by the roft or nroft formatting command
'.ul'.

text a very big text

The command

sloveryol\
.ul\
very\
/

converts the line into four shoner lines, preceding
the word 'very' by the line '.ul', and eliminating the
spaces around the 'very', all at the same time.

When a newline is substituted in, dot is ieft
pointing at the last linecreaied. . .

Joininl Lines

Lines may also be joined together, but this is
done with the j command instead of s. Given the
lines

Now is
othe time

and supposing that dot is set to the first of them,
then the command

j

joins them together. No blanks are added, which is
why we carefully showed a blank at the beginning of
the second line.

All by itself, a j command joins line dot to
line dot+ 1, but any contiguous set of lines can be
joined. Just specify the starting and ending line
numbers. For example,

l,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \(._ \)

(This section should be skipped on first ·read
ing.) Recall that '&' is a shonhand that stands for
whatever was matched by the left side of an s com
mand. In much the same way you can capture

USD:13-7

separate pieces of what was matched; the only
difference is that you have to specify on the left side
just what pieces you're interested in.

Suppose, for instance, that you have a file of
lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the
name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing com
mands, but it is tedious and error-prone. (It is
instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pat
tern (in this case, the last name, and the initials),
and then rearrange the pieces. On the left side of a
substitution, if pan of the pattern is enclosed
between \(and \), whatever matched that pan is
remembered, and available for use on the right side.
On the right side, the symbol '\ I' refers to whatever
matched· the first \(... \) pair, '\2' to the second
\(... \), and so on.

The command

I ,$~\(r,].\),c.\(•• \)/\2c \ 11

although hard to read, does the job. The first \(.:.\)
matches the last name, which is any string up to the
comma; this is referred to on the right side with '\ 1 '.
The second \(... \) is whatever follows the comma
and any spaces, and is referred to as '\2'.

Of course, with any editing sequence this com
plicated, it's foolhardy to simply run it and hope.
The global commands II and v discussed in section 4
provide a way for you to print exactly those lines
which were affected by the substitute command, and
thus verify that it did what you wanted in all cases.

J. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is that of
line addressing in ed, that is, how you specify what
lines are to be affected by editing commands. We
have already used constructions like.

l,$slxly/

to specify a change on all lines. And most users are
long since familiar with using a single newline (or
return) to print the nelf.t line, and with

/thing!

to find a line that contains 'thing'. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of

USD:13-8

'thing'. This is especially handy when you realize
that the thing you want to operate on is back up the
page from where you are currently editing.

The slash and question mark are the only
characters you can use to delimit a context search,
though you can use essentially any character in a
substitute command.

Address Arithmetic

The next step is to combine the line numbers
like ':, 'S', 'I ... r and '?.?' with '+' and '-', Thus

$-1

is a command to print the next to last line of the
current tile (that is, one line before line'S'), For
example, to recall how far you got in a previous
editing session,

$-5,Sp

prints the last six lines. (Be sure you understand
why it's six, not five.) If there aren't six, of course,
you'll get an error message.

As another example,

.-3,.+31'

prints from three lines before where you are now (at
line dot) to three lines after, thus giving you a bit of
context. By the way, the '+' can be omitted:

.-3,.31'

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use '-' and '+' as line
numbers by themselves.

by itself is a command to move back up one line in
the file. In fact, you can string several minus signs
together to move back up that many lines:

moves up three lines, as does '-3'. Thus

-3,+3p

is also identical to the examples above.

Since '-' is shorter than "-I', constructions
like

-,.slbad!good!

are useful. This changes 'bad' to 'good' on the previ
ous line and on the current line.

'+' and '-' can be used in combination with
searches using '1 .. .1' and '? .. ?', and with '$'. The
search

Ithing/-

finds the line containing 'thing', and positions you

Advanced Editing on UNIX

two lines before it.

Repeated Searches

Suppose you ask for the search

Ihorrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted. so it is
necessary to repeat the search again. You don't
have to re-type the search. for the construction

II

is a shorthand for 'the previous thing that was
searched for', whatever it was. This can be repeated
as many times as necessary. You can also go back
wards:

'n

searches for the same thing, but in the reverse direc
tion.

Not only can you repeat the search, but you
can use '/I' as the left side of a substitute command,
to mean 'the most recent pattern'.

Ihorrible thing/
.... ed prints line with 'ho"ible thing' ...

S//good!p

To go backwards and change aline, say

??s//good!

Of course, you can still use the '&' on the right hand
side of a substitute to stand for whatever got
matched:

I/s//&o&/p

finds the next occurrence of whatever you searched
for last, replaces it by two copies of itself, then
prints the line just to verify that it worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don't specify the lines
it is to act on, and on what line you will be posi
tioned (i.e., the value of dot) when a command
finishes. If you can edit without specifying unneces
sary line numbers, you can save a lot of typing.

As the most obvious example, if you issue a
search command like

/thing/

you are left pointing at the next line that contains
'thing'. Then no address is required with commands
like 5 to make a substitution on that line, or p to
print it, or I to list it, or d to delete it, or a to
append text after it, or c to change it, or i to insert
text before it.

Advanced Editing on UNIX

What happens if there was no 'thing'? Then
you are left right where you were - dot is
unchanged. This is also true if you were sitting on
the only 'thing' when you issued the command. The
same rules hold for searches that use '?.?'; the only
difference is the direction in which you search.

The delete command d leaves dot pointing at
the line that followed the last deleted line. When
line'S' gets deleted, however, dot points at the new
line'S'.

The line-changing commands a, c and i by
default all affect the current line - if you give no
line number with them, a appends text after the
current line, c changes the current line, and i inserts
text before the current line.

a, c, and i behave identically in one respect -
when you stop appending, changing or inserting, dot
points at the last line entered. This is exactly what
you want for typing and editing on' the fly. For
example, you can say

a
... text ...
... botch ...

sIbotchicorrectl
a

. ... more text .~.

(minor error)

(fix botched line)

without specifying any line. number for the substitute
com~and or for the second append command. Or
you can say

a
... text ...
... horrible botch ...

c
... fixed up line ...

(major error)

(replace entire line)

You should experiment to determine what
happens if you add no lines with a, c or i.

The r command will read a file into the text
being edited, either at the end if you give no
address. or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or to read a file in
at the beginning of the text. (You can also say Oa or
Ii to start adding text at the beginning.)

The w command writes out the entire file. If
you precede the command by one line number, that
line is written, while if you precede it by two line
numbers, that range of lines is written. The w com
mand does not change dot: the current line remains
the same, regardless of what lines are written. This
is true even if you say something like

r\.ABI A.AElw abstract

which involves a context search.

USD:13-9

Since the w command is so easy to use, you
should save what you are editing regularly as you go
along just in case the system crashes, or in case you
do something foolish, like clobbering what you're
editing.

The least intuitive behavior, in a sense, is that
of the s command. The rule is simple - you are left
sitting on the last line that got changed. If there
were no changes, then dot is unchanged.

To illustrate, suppose that there are three lines
in the buffer, and you are sitting on the middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line. which is the last one changed.
But if the three lines had been

xl
y2
y3

and the same command had been issued while dot
pointed at the second line, then the result would be

.. to change and print only the first line, and that is
where dot would be set.

Semicolon ';'

Searches with '1 .. .1' and '? ... ?' start at the
current line and move forward or backward respec
tively until they either find the pattern or get back to
the current line. Sometimes this is not what is
wanted. Suppose, for example, that the buffer con
tains lines like this:

ab

bc

Starting at line I, one would expect that the com
mand

Ia/,Ib/p

prints all the lines from the 'ab' to the 'bc' inclusive.
Actually this is not what happens. Both searches
(for 'a' and for 'b') start from the same point, and
thus they both find the line that contains 'ab'. The
result is to print a single line. Worse, if there had
been a line with a 'b' in it before the 'ab' line, then
the print command would be in error. since the

USD:13-10

second line number would be less than the first, and
it is illegal to try to print lines in reverse order.

This is because the comma separator for line
numbers doesn't set dot as each address is pro
cessed; each search starts from the same place. In
ed, the semicolon ';' can be used just like comma.
with the single difference that use of a semicolon
forces dot to be set at that point as the line numbers
are being evaluated. In effect, the semicolon 'moves'
dot. Thus in our example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'be', because
after the 'a' is found, dot is set to that line. and then
'b' is searched for, starting beyond that line.

This property is . most often useful in a very
simple situation. Suppose you want to find the
second occurrence of 'thing'. You could say

Ithing/
1/

but this prints the first occurrence as well as the
second, and is a nuisance when you know very well
that it is only the second one you're interested in.
The solution is to say

Ithing/;J/

This- says to find the first occurrence of 'thing', set
dot to that line, then find the second and print only'
that.

Oosely related is searching for the second pre
vious occurrence of something, as in

?something?~??

Printing the third or fourth or ... in either direction
is left as an exercise.

Finally, bear in mind that if you want to find
the first occurrence of something in a file, starting at
an arbitrary place within the file, it is not sufficient
to say

1 ;Jthing/

because this fails if 'thing' occurs on line 1. But it is
possible to say

O;/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what it
was before the command began. Naturally, some
changes are irrevocable - if you are reading or writ-

Advanced Editing on UNIX

ing a file or making substitutions or deleting lines,
these will be stopped in some clean but unpredict
able state in the middle (which is why it is not usu
ally wise to stop them). Dot mayor may not be
changed.

Printing is more clear cut. Dot is not changed
until the printing is done. Thus if you print until
you see an interesting line, then hit delete, you are
not sitting on that line or even near it. Dot is left
where it was when the p command was started.

4. GLOBAL COMMANDS

The global commands II and v are used to per
form one or more editing commands on aU lines
that either contain (I) or don't contain (v) a specified
pattern.

As the simplest example, the command

g/UNIXlp

prints all lines that contain the word 'UNIX'. The
pattern that goes between the slashes can be any
thing that could be used in a line search or in a sub
stitute command; exactly the same rules and limita
tions apply.

As another example, then,

g(\Jp

prints all the formatting commands in a file (lines
that begin with .. ').

The v command is identical to g, except that it
operates on those line that do not contain an
occurrence of the pattern. (Don't look too hard for
mnemonic significance to the letter 'v'_) So

vr\.Ip

prints all the lines that don't begin' with '.' - the
actual text lines.

The command that follows g or v can be any
thing:

g/A\Jd

deletes all lines that begin with ',', and

g/·S/d

deletes all empty lines.

Probably the most useful command that can
follow a global is the substitute command, for this
can be used to make a change and print each
affected line for verification. For example, we could
change the word 'Unix' to 'UNIX' everywhere, and
verify that it really worked, with

g!UnixlsllUNIXlgp

Notice that we used 'II' in the substitute command
to mean 'the previous pattern', in this case, ·Unix'.
The p command is done on every line that matches
the pattern, not just those on which a substitution

Advanced Editing on UNIX

took place.

The global command operates by making two
passes over the file. On the first pass, all lines that
match the pattern are marked. On the second pass,
each marked line in tum is examined, dot is set to
that line, and the command executed. This means
that it is possible for the command that follows a I
or v to use addresses, set dot, and so on, quite freely.

g/'"\.PP/+

prints the line that follows each '.PP' command (the
signal for a new paragraph in some fonnatting pack
ages). Remember that '+' means 'one line past dot'.
And

g/topicl?\.SH? 1

searches for each line that contains 'topic', scans
backwards until it finds a line that begins '.SH' (a
section heading) and prints the line that follows that,
thus showing the section headings under which
'topic' is mentioned. Finally,

g/'"\.EQI + '/\.EN/-p

prints all the lines that lie between lines beginning
with '.EQ' and' .EN' formatting commands.

The I and v commands can al~ be preceded
by line numbers, in :which caSCthe linessearchCd are.
only those in the range specified.

Maid-One Global COIIIIIWIds
\

It is possible to do more than one command
under the control of a global command, although the
syntaX for expressing the opel ... tion is not especially
natural or pleasant. As an example, suppose the
task is to change 'x' to 'y' and 'a' to 'b' on all lines
that contain 'thing'. Then

glthing/slxlyl\
slalbl

is sufficient. The '\' signals the I command that the
set of commands continues on the next line; it ter
minates on the first line that does not end with '\'.
(As a minor blemish, you can't use a substitute com
mand to insert a newline within a I command.)

y: ou should watch out for this problem: the
command

g/xlsl/y/\
slalbl

does not work as you expect. The remembered pat
tern is the last pattern that was actually executed, so
sometimes it will be 'x' (as expected), and sometimes
it will be 'a' (not expected). You must spell it out,
like this:

glxlslxly/\
slalbl

USD:13-11

It is also possible to execute a, c and i com
mands under a global command; as with other
multi-line constructions, all that is needed is to add
a '\' at the end of each line except the last. Thus to
add a '.nf and '.sp' command before each '.EQ' line,
type

g/'"\.EQ/i\
.nt\
.sp

There is no need for a final line containing a ': to
tenninate the i command, unless there are further
commands being done under the' global. On the
other hand, it does no hann to put it in either.

5. CUT AND PASTE WITH UNIX COMMANDS

One editing area in which non-programmers
seem not very confident is in what might be called
'cut and paste' operations - changing the name of a
file, making a copy of a file somewhere else, moving
a few lines from one place to another in a file,
inserting one file in the middle of another, splitting a
file into pieces, and splicing two or more files
together.

Yet most of these operations are actually quite
easy, if you keep your wits about YOll and. go cau-'
tiously. The·next sever8l sections ialk about cut and
paste. We will begin with the UNIX commands for
moving entire files around, then discuss eel com
mands for operating on pieCes of files.

Changing the Name of a File

You have a file named 'memo' and you want
it to be called 'paper' instead. How is it done?

The UNIX program that renames files is called
mv (for 'move'); it 'moves' the file from one name to
another, like this:

mv memo paper

That's all there is to it: mv from the old name to the
new name.

mv oldname newname

Warning: if there is already a tile around with the
new name, its present contents will be silently clob
bered by the infonnation from the other file. The
one exception is that you can't move a file to itself

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a file -
an entirely fresh version. This might be because you
want to work on a tile, and yet save a copy in case
something gets fouled up, or just because you're

USD:13-12

paranoid.

In any case, the way to do it is with the cp
command. (cp stands for 'copy'; the system is big
on shon command names, which are appreciated by
heavy users, but sometimes a strain for novices.)
Suppose you have a tile called 'good' and you want
to save a copy before you make some dramatic edit
ing changes. Choose a name - 'savegood' might be
acceptable - then type

cp good savegood

This copies 'good' onto 'savegood', and you now
have two identical copies of the tile 'good'. (If
'savegood' previously contained something, it gets
overwritten.)

Now if you decide at some time that you want
to get back to the original state of 'good', you can
say

mv savegood good

(if you're not interested in 'savegood' any more), or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp makes
a duplicate copy. Both. of them clobber the 'target'
file if ,it already'exists. so you had better be sure
that's what you want to do before you do it.

Removing a File

If you decide you are really done with a file
forever, you can remove it with the rm command:

rm savegood

throws away (irrevocably) the file called 'savegood'.

Putting Two or More Files Together

The next step is the familiar one of collecting
two or more files into one big one. This will be
needed, for example, when the author of a paper
decides that several sections need to be combined '
into one. There are several ways to do it, of which
the cleanest, once you get used to it, is a program
called cat. (Not ail programs have two-letter
names.) cat is short for 'concatenate', which is
exactly what we want to do.

Suppose the job is to combine the files 'file I'
and 'file2' into a single file called 'bigfile'. If you say

cat tile

the contents of 'file' will get printed on your termi
naL If you say

cat tile 1 tile2

the contents of 'file l' and then the contents of 'tile2'
will both be printed on your terminal, in that order.
So cat combines the tiles, all right, but it's not much

Advanced Editing on UNIX

help to print them on the terminal - we want them
in 'bigfile'.

Fortunately, there is a way. You can tell the
system that instead of printing on your terminal,
you want the same information put in a tile. The
way to do it is to add to the command line the char
acter > and the name of the file where you want the
output to go. Then you can say

cat tile I tile2 >bigfile

and the job is done. (As with cp and my, you're put
ting something into 'bigfile', and anything that was
already there is destroyed.)

This ability to 'capture' the output of a pro
gram is one of the most useful aspects of the system.
Fortunately it's not limited to the cat program -
you can use it with any program that prints on your
terminal. We'll see some more uses for it in a
moment.

Naturally, you can combine several files, not
just two:

cat file I tile2 tile3 ... > bigfile

collects a whole bunch.

and

Question: is there any difference between

cp good savegood

cat good >savegood,

Answer. for most purposes, no. You might reason
ably ask why there are two I)rograms in that case,
since cat is obviously all you need. The answer is
that cp can do some other things as well, which you
can investigate for yourself by reading the manual.
For now we'll stick to simple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the end
of another. We have enough building blocks now
that you can do it; in fact before reading further it
would be valuable if you figured out how. To be
specific, how would you use cp, mv and/or cat to add
the file 'good l' to the end of the file 'good'?

You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good I >good

doesn't work. (Don't practice with a good 'good'!)

The easy way is to use a variant of >, called
». In fact, » is identical to > except thElt instead
of clobbering the old file, it simply tacks stuff on at
the end. Thus you could say

Advanced Editing on UNIX

cat good 1 »good

and 'goodl' is added to the end of 'good'. (And if
'good' didn't exist, this makes a copy of 'good 1 '
called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces of
files - individual lines or groups. of lines. This is
another area where new users seem unsure of them
selves.

Filenames
The first step is to ensure that you know the

ed commands for reading and writing files. Of
course you can't go very far without knowing rand
w. Equally useful, but less well known, is the 'edit'
command e. Within ed, the command

e newfile

says 'I want to edit a new file called newfiJe. without
leaving the editor.' The e command discards what
ever you're currently working on and starts over on
newfiJe. It's exactly the same as if you had quit with
the q command, then re-entered ed with a new file
name, except that. if you have a pattern remem
bered, then a command like /I will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subse
quent e, r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed filet
... (editing) ..•

w (writes back in file 1)
e file2 (edit new file, without leaving editor)
... (editing on file2) ..•

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the name
of any file more than once. (As an aside, if you
examine the sequence of commands here, you can
see why many UNIX systems use e as a synonym for
eeL)

You can find out the remembered file name at
any time with the f command; just type f without a
file name. You can also change the name of the
remembered file name with f; a useful sequence is

ed precious
f junk
... (editing) ..•

which gets a copy of a precious file, then uses f to
guarantee that a careless w command won't clobber
the original.

USD:13-13

Insertinl One File into Another

Suppose you have a file called 'memo', and
you want the file called 'table' to be inserted just
after the reference to Table 1. That is, in 'memo'
somewhere is a line that says

Table 1 shows that ...

and the data contained in 'table' has .to go there,
probably so it will be formatted properly by nroft' or
trof[Now what?

This one is easy. Edit 'memo', find 'Table 1',
and add the file 'table' right there:

ed memo
!Table 11
Table 1 shows that ... [response from ed]
.r table

The critical line is the last one. As we said earlier,
the r command reads a file; here you asked for it to
be read in right after line dot. An r command
without any address adds lines at the end, so it is
the same as Sr.

WridDl oat Part of a File

The other side of the coin is writing out part
of the document you're editing. For example,
maybe you want to copy out into a separate file that
table from the previous· example, so it can be for
matted and tested separately. Suppose that in the .
file being edited we have

.TS
... [lots of stuff]

.TE

which is the way a table is set up for the lbl pro
gram. To isolate the table in a separate file called
'table', first find the start of the table (the '.TS· line),
then write out the interesting part:

n.TSI
.TS fed prints the line it found]
.,r\. TElw table

and the job is done. If you are confident, you can
do it all at once with

n.TSI;r\.TE/w table

and now you have two copies, one in the file you're
still editing, one in the file 'table' you've just written.

The point is that the w command can write
out a group of liiles, instead of the whole file. In
fact, you can write out a single line if you like; just
give one line number instead of two. For example.
if you have just typed a horribly complicated line
and you know that it (or something like it) is going
to be needed biter, then save it - don't re-type it.
In the editor, say

USD:13-14

a
.. Jots of stuff •.•
... horrible line •..

.w temp
a
•• .more stuft'._

.rtemp
a
• ..more stuft'._

This last example is worth studying, to be sure you
appreciate what's going on.

MOl'iDI Liaes Aroud
Suppose you want to move a paragraph from

its present position in a paper to the end. How
would you do it? As a concrete example, suppose
each paragraph in the paper begins with the format
ting command,'.PP'. Think about it and write down
the details before reading on.

The brute force way (not necessarily bad) is to
write the paragraph onto a temporary file, delete it
from its current position, then read, in the temporary
file at'the end. Assuming that you are sitting on the
• . PP· command that begins the paragraph, this is the
sequence of commands: ' .

.,f\.PP/-w temp

.,1I-d
Sr temp

That is, from where you are now ('.') until one line
before the next' .PP' ('r\.PP/-') write onto 'temp'.
Then delete the same lines. Finally, read 'temp' at
the end. '

As we said, that's the brute force way. The
easier way (often) is to use the move command m
that ed provides - it lets you do the whole set of
operations at one crack, without any temporary file.

The m comnuuid is like many other ed com
mands in that it takes up to two line numbers in
front that tell what lines are to be affected. It is also
Jollowed by a line number that tells where the lines
are to go. Thus

line 1, line2 m line3

says to move all the lines between 'line l' and 'line2'
after 'lineY. Naturally, any of 'linel' etc., can be
patterns between slashes, S signs, or other ways to
specify lines.

Suppose again that you're sitting at the first
line of the paragraph. Then you can say

.,1"\.PP/-mS

That's all.

Advanced Editing on UNIX

As another example of a frequent operation,
you can reverse the order of two' adjacent lines by
moving the, first one to after the second. Suppose
that you are positioned at the first. Then

m+

does it. It says to move line dot to after one line
after line dot. If you are. positioned on the second
line,

m-

does the interchange.

As you can see, the m command is more suc
cinct and direct than writing, deleting and re
reading. When is brute force better anyway? This is
a matter of personal taste- do what you have most
confidence in. The main difficulty with the m com
mand is that if you use patterns to specify both the
lines you are moving and the target, you have to
take care that you specify them properly, or you may
well not move the lines you thOUght you did. The
result of a botched m command can be a ghastly
mess. Doing the job a step at a time makes it easier
for you to verify at each step that you accomplished
what you wanted to. It's also a good idea to issue a
" command before doing anything complicated;
then if you goof, it's easy to back up to wh~re you
were .

Marks

ed provides a facility for marking a line 'with a
particular name so you can later reference it by
name regardless of its actual line number. This can
be handy for moving lines, and for keeping track of
them even after they've been moved. The mark
command is k; the command

kx

marks the current line with the name 'x'. If a line
number precedes the t, that line is marked. (The
mark name must be a single lower case letter.) Now
you can refer to the marked line with the address

IX

Marks are most useful for moving things
around. Find the first line of the block to be moved,
and mark it with 'a. Then find the last line and
mark it with 'b. Now position yourself at the place
where the stuft' is to go and say

'ao 'bm.

Bear in mind that only one line· can have a
particular mark name associated with it at any given
time.

Advanced Editing on UNIX

Cepying Lines

We mentioned earlier the idea of saving a line
that was hard to type or used often, so as to cut
down on typing time. Of course this could be more
than one line; then the saving is presumably even
greater.

ed provides another command, called t (for
'transfer') for making a copy of a group of one or
more lines at any point. This is often easier than
writing and reading.

The t command is identical to the m com
mand, except that instead of moving lines it simply
duplicates them at the place you named. Thus

1,1

duplicates the entire contents that you are editing.
A more' common use for t is for creating a series of
lines that differ only slightly. For example, you can
say

a

t.
slxly/
t.
sly/v

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it 3 bit)

The Temperary Escape 'r
Sometimes it is convenient to be able to tem

porarily escape from the editor to do some other
UNIX command, perhaps one of the file copy or
move commands discussed in section 5, without
leaving the editor. The 'escape' command! pro
vides a way to do this.

If you say

!any UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by printing
another !; at that point you can resume editing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another!.

On Berkeley UNIX systems, there is an addi
tional (and preferable) mechanism called job control
which lets you suspend your edit session (or, for that
matter, any program), return to the shell from which
you invoked that program, and issue any commands,
then resume the program from the point where it
was stopped. See An Introduction to the C Shell for
more details.

USD:13-15

7. SUPPORTING TOOLS

There are several tools and techniques that go
along with the editor, all of which are relatively easy
once you know how ed works, because they are all
based on the editor. In this section we will give
some fairly cursory examples of these tools, more to
indicate their existence than to provide a complete
tutorial. More information on each can be found in
[3].

Gnp

Sometimes you want to find all occurrences of
some word or pattern in a set of files, to edit them
or perhaps just to verify their presence or absence.
It may be possible to edit each tile separately and
look for the pattern of interest, but if there are many
files this can get very tedious, and if the files are
really big, it may be impossible because of limits in
ed.

The program grep was invented to get around
these limitations. The, search patterns that we have

. described in the paper are often called 'regular
expressions', and 'grep' stands for-

gjre/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particular
pattern. Thus

&reP 'thing' file I file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file I', 'fUe2', etc. grep also indicates the file in
which the line was found, so you can later edit it if
you like.

The pattern represented by 'thing' can be any
pattern you can use in the editor, since grep and eel
use exactly the same mechanism for pattern search
ing. It is wisest always to enclose the pattern in the
single quotes ' .. : if it contains any non-alphabetic
characters, since many such characters also mean
something special to the UNIX command interpreter
(the 'shell'). If you don't quote them, the command
interpreter will try to interpret them before grep gets
a chance.

There is also a way to find lines that don 'I
contain a pattern:

grep -v 'thing' file I file2 ...

finds all lines that don't contains 'thing'. The-y
must occur in the position shown. Given grep and
grep -v, it is possible to do things like selecting all
lines that contain some combination of patterns.
For example, to get all lines that contain 'x' but not
'y':

grep x file... I grep -v y

(The notation I is a 'pipe', which causes the output

USD:13-16

of the drst command to be used as input to the
second command; see [2].)

Editinl Scripts
If a fairly complicated set of editing opera

tions is to be done on a whole set of files, the easiest
thing to do is to make up a 'script', i.e., a file that
contains the operations you want to perform, then
apply this script to each tile in tum.

For example, suppose you want to change
every 'Unix' to 'UNIX' and every 'Gcos' to 'GeOS'
in a large number of files. Then put into the file
'script' the lines

g!Unixlsl/UNIXIg
g/Gcoslsl/GeOSlg
w
q

Now you can say

ed tile I <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice tbat the whole job has to be
planned in advance.

And of course by using the "UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed
sed ('stream editor') is a version of the editor

with restricted capabilities but which is capable of
processing unlimited amounts of input. Basically
sed copies its input to its output, applying one or
more editing commands to each line of input.

As an example, suppose that we want to do
the 'Unix' to 'UNIX' part of the example given
above, but without rewriting the files. Then the
command

sed 'slUnixiUNIXlg' file I file2 .,.

applies the command 'slUnixiUNIXlg' to all lines
from 'tile I " 'file2', etc., and copies all lines to the
output. The advantage of using sed in such a case is
that it can be used with input too large for ed to
handle. All the output can be collected in one place,
either in a file or perhaps piped into another pro
gram.

If the editing transformation is so complicated
that more than one editing command is needed,
commands can be supplied from a file, or on the
command line, with a slightly more complex syntax.
To take commands from a file, for example,

sed -f cmdfile input-files ...

Advanced Editing on UNIX

sed has funher capabilities. including condi
tional testing and branching, which we cannot go
into here, but which are described in detail in Sed ,..
A Non-interactive Text Editor.

Acknowledgement
I am grateful to Ted Dolotta for his careful

reading and valuable suggestions.

References
(1] Brian W. Kernighan, A Tutorial Introduction

to the UNIX Text Editor, Bell Laboratories
internal memorandum.

(2) Brian W. Kernighan, UNIX For Beginners,
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer's. Manual. Bell
Laboratories.

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no prior
familiarity with computers or with text editing. Its aim is to lead the begin
ning UNIXt user through the fundamental steps of writing and revising a file of
text. Edit, a version of the text editor ex. was designed to provide an infor
mative environment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

September 1981

tUNIX is a trademark of Bell Laboratories.

USD:14-2

Introduction 3

Session 1 4
Making contact with UNIX 4
Logging in 4
Asking for edit 4

Contents

The "Command not found" message 5
Asummary 5
Entering text 5
Messages from edit 5
Text input mode 6
Making corrections 6
Writing text to disk 7
Signing off 7

Session 2 8
Adding more text to the file 8
Interrupt 8
Making corrections 8
Listing what's in the buffer (p) 9
Finding things in the·· buffer 9
The current line . 10
Numbering lines (nu) 10
Substitute command (s) 10
Another way to list what's in the buffer (z) 11
Saving the modified text 12 "

Session 3 13
Bringing text into the buffer (e) 13
Moving text in the buffer (m) 13
Copying lines (copy) 14
Deleting lines (d) 14
A word or two of caution 15
Undo (u) to the rescue 15
More about the dot (.) and buffer end ($) 16
Moving around in the buffer (+ and -) 16
Changing lines (c) 17

Session 4 18
Making commands global (g) 18
More about searching and substituting 19
Special characters 19
Issuing UNIX commands from the editor 20
Filenames and file manipulation 20
The file (t) command 20
Reading additional files (r) 21
Writing parts of the buffer 21
Recovering files 21
Other recovery techniques 21
Further reading and other information 22
Using ex 22

Index 23

Edit: A Tutorial

Edit: A Tutorial USD:14-3

Introduction
Text editing using a terminal connected to a computer allows you to create, modify, and print

text easily. A text editor is a program that assists you as you create and modify text. The text editor
you will learn here is named edit. Creating text using edit is as easy as typing it on an electric type
writer. Modifying text involves telling the text editor what you want to add, change, or delete. You
can review your text by typing a command to print the file contents as they are currently. Another
program (which we do not discuss in this document), a text formatter, rearranges your text for you
into "finished form."

These lessons assume no prior familiarity with computers or with text editing. They consist of a
series of text editing sessions which lead you through the fundamental steps of creating and revising
text. After scanning each lesson and before beginning the next, you should try the examples at a ter
minal to get a feeling for the actual process of text editing. If you set aside some time for experimen
tation, you will soon become familiar with using the computer to write and modify text. In addition
to the actual use of the text editor, other features of UNIX will be very important to your work. You
can begin to learn about these other features by reading one of the other tutorials that provide a gen
eral introduction to the system. You will be ready to proceed with this lesson as soon as you are fam
iliar with (1) your terminal and its special keys, (2) how to login, (3) and the ways of correcting typing
errors. Let's first define some terms:

program

. UNIX

edit

file

filename

disk

buffer

A set of instructions, given to the computer, describing the sequence of steps the com
puter performs in order to accomplish a specific task. The task must be specific, such as
balancing your checkbook or editing your text. A a:eneral task, such as working for
world peace, is something we can all do, but not something we can currently write pro
$11lDls to do.

UNIX is a special type of program, ~led . an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit is the name of the UNIX text editor you will be learning to use, and is a program
that aids you in writing or revising text. Edit was designed for beginning users, and is a
simplified version of an editor named ex.
Each UNIX account is allotted space for the permanent storage of information, such as
programs, data or text. A file is a logical unit of data, for example, an essay, a program,
or a chapter from a book, which is stored on a computer system. Once you create a file,
it is kept until you instruct the system to remove it. You may create a file during one
UNIX session, end the session, and return to use it at a later time. Files contain anything
you choose to write and store in them. The sizes of files vary to suit your needs; one file
might hold only a single number, yet another might contain a very long document or
program. The only way to save information from one session to the next is to store it in
a fil,e, which you will learn in Session 1.

Filenames are used to distinguish one file from another, serving the same purpose as the
labels of manila folders in a file cabinet. In order to write or access information in a file,
you use the name of that file in a UNIX command, and the system will automatically
locate the file.

Files are stored on an input/output device called a disk, which looks something like a
stack of phonograph records. Each surface is coated with a material similar to that on
magnetic recording tape, and information is recorded on it.

A temporary work space, made available to the user for the duration of a session of text
editing and used for creating and modifying the text file. We can think of the buffer as a
blackboard that is erased after each class, where each session with the editor is a class.

USD:l4-4 Edit: A Tutorial

Session 1

Making contact with UNIX

To use the editor you must first make contact with the computer by logging in to UNIX. We'll
quickly review the standard UNIX login procedure for the two ways you can make contact: on a termi
nal that is directly linked to the computer, or over a telephone line where the computer answers your
call.

Directly·linked terminals

Tum on your terminal and press the RETURN key. You are now ready to login.

Dial p terminals

If your terminal connects with the computer over a telephone line, tum on the terminal, dial the
system access number, and, when you helU' a high-pitched tone, place the telephone handset in the
acoustic coupler, if you are using one. You are now ready to login.

Logging in

The message inviting you to login is:

login:

Type your login name, which identifies you to UNIX, on the same line as the login message,. and press
RETURN. If the terminal you are using has both upper and lower case, be sure you enter your login
name in lower case; otherwise UNIX assumes your terminal has only upper case and will not recognize
lower case letters you may type. UNIX types "login:" and you reply with your login name, for example

. "susan":

login: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the responses from
UNIX.)

UNIX will next respond with a request for a password as an additional precaution to prevent
unauthorized people from using your account. The password will not appear when you type it, to
prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX will
respond with

Login incorrect.
login:

in which case you should start the login process anew. Assuming that you have successfully logged in,
UNIX will print the message of the day and eventually will present you with a % at the beginning of a
fresh line. The % is the UNIX prompt symbol which tells you that UNIX is ready to accept a com
mand.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con·
venient time to choose a name for the file of text you are about to create. To begin your editing ses~
sion, type edit followed by a space and then the filename you have selected; for example, "text".
After that, press the RETURN key and wait for edit's response:

Edit: A Tutorial

% edit text (followed by a RETURN)
"text" No such file or directory

USD:14-S

If you typed the command correctly, you will now be in communication with edit. Edit has set aside
a buffer for use as a temporary working space during your current editing session. Since "text" is a
new file we are about to create the editor was unable to find that file, which it· confirms by saying:

"text" No such file or directory

On the next line appears edit's prompt ":", announcing that you are in command mode and edit
expects a command from you. You may now begin to create the new file.

The "Command not found" message
If you misspelled edit by typing, say, "editor", this might appear:

% editor
editor: Command not found
%

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named "editor".
Since there is no program named "editor", UNIX reported that the program was "not found". A new
% indicates that UNIX is ready for another cbmmand, and you may then enter the correct comman.d.

A summary

Your exchange with UNIX; as you logged in and made contact with edit should look something
like this: .

Entering text

login: susan
Password:
.•. A Message of General Interest ...
% edit text
"text" No such file or directory

You may now begin entering text into the buffer. This is done by appending (or adding) text to
whatever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, since you are adding text to nothing you are creating text. Most
edit commands have two equivalent forms: a word that suggests what the command does, and a
shorter abbreviation of that word. Many beginners find the full command names easier to remember
at first, but once you are familiar with editing you may prefer to type the shorter abbreviations. The
command to input text is "append". (It may be abbreviated "a".) Type append and press the
RETURN key.

% edit text
: append .

Messages from edit
If you make a mistake in entering a command and type something that edit does not recognize,

edit will respond with a message intended to help you diagnose your error .. For example, if you
misspell the command to input text by typing, perhaps, "add" instead of "append" or "a", you will
receive this message:

USD:14-6 Edit: A Tutorial

: add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part of
your command confused edit. The message above means that edit was unable to recognize your mis
typed command and, therefore, did not execute it. Instead, a new u:" appeared to let you know that
edit is again ready to execute a command.

Text input mode
By giving the command "append" (or using the abbreviation "a"), you entered text input mode,

also known as append mode. When you enter text input mode, edit stops sending you a prompt. You
will not receive any prompts or error messages while in text input mode. You can enter pretty much
anything you want on the lines. The lines are transmitted one by one to the buffer and held there
during the editing session. You may append as much text as you want, and when you wish to stop
entering text lines you should type a period as the only character on the line and press the RETURN key.
When you type the period and press RETURN, you signal that you want to stop appending text, and
edit responds by allowing you to exit text input mode and reenter command mode. Edit will again
prompt you for a command by printing ":".

Leaving append mode do,es not destroy the text in the buffer. You have to leave append mode
to do any of the other kinds of editing,such as changing, adding, or printing text. If you type a
period as the first character and type any other character on the same line, edit will believe you want
to remain in append mode and will not let you out. As this can be very frustrating, be sure to type
only the period ano the RETURN key.

This is a good place to learn an important lesson about computers and text: a blank space is a
character as far as a computer-is concerned. If you so much as type a period followed by a blank (that
is, type a period and then the space bar on the keyboard), you wiII remain in append mode with the
last line of text being:

Let's say that you enter the lines (try to type exactly what you see, including "thiss"):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a RETURN that gets you out of append mode.

Making corrections
If you have read a general introduction to UNIX, you will recall that it is possible to erase indivi

dual letters that you have typed. This is done by typing the designated erase character as many times
as there are characters you want to erase.

The usual erase character varies from place to place and user to user. 0ften it is the backspace
(control-H), so you can correct typing errors in the line you are typing by holding down the CTRL key
and typing the "H" key. (Sometimes it is the DEL key.) If you type the erase character you will
notice that the terminal backspaces in the line you are on. You can backspace over your error, and
then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace to the
beginning of the line or you can use the at-sign"@" to erase everYthing on the line:

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign (@), you erase the entire line typed so rar and are given a fresh line to type

Edit: A Tutorial USD:14-1

on. You may immediately begin to retype the line. This, unfortunately, does not work after you type
the line and press RETURN. To make corrections in lines that have been completed, it is necessary to
use the editing commands covered in the next sessions.

Writing text to disk

You are now ready to edit the text. One common operation is to write the t~xt to disk as a file
for safekeeping after the session is over. This is the only way to save information from one session to
the next, since the editor's buffer is temporary and will last only until the end of the editing session.
Learning how to write a file to disk is second in importance only to entering the text. To write the
contents of the buffer to a disk file, use the command "write" (or its abbreviation "w"):

: write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist, a new file will be
created automatically and the presence of a "[New file]" will be noted. The newly-created file will be
given the name specified when you entered the editor, in this case "text". To confirm that the disk
file has been successfully written, edit will repeat the filename and give the number of lines and the
total number of characters in the file. The buffer remains unchanged by the "write" command. All
of the lines that were written to disk will still be in the buffer, should you want to modify or add to
them.

Edit must have a name for the file to be written. If you forgot to indicate the name of the file
whe~ you began to edit, edit will print in response to your write command:

No current filename

If this happens, you can specify the filename in a new write command: .

: write text

After the "write" (or "'If"),. type a space and then the name of the file ..

Signing oft'

We have done enough for this first lesson on using the UNIX text editor, and are ready to quit
the session with edit. To do this we type "quit" (or "q") and press RETURN:

: write
"text" [New file] 3 lines, 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal, we also need to exit from UNIX. In
response to the UNIX prompt of" % " type the command

% logout

This will end your session with UNIX, and will ready the terminal for the next user. It is always
important to type logout at the end of a session to make absolutely sure no one could accidentally
stumble into your abandoned session and thus gain access to your files, tempting even the most
honest of souls.

This is the end of the first session on UNIX text editing.

USD:14-8

Login with UNIX as in the first session:

login: susan (carriage return)

Session 2

Password: (give password and carriage return)

•• 0 A Message of General Interest ...
%

Edit: A Tutorial

When you indicate you want to edit, you can specify the name of the file you worked on last time.
This will start edit working, and it will fetch the contents of the file into the buffer, so that you can
resume editing the same file. When edit has copied the file into the buffer, it will repeat its name and
tell you the number of lines and characters it contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 characters of
text into the buffer. Edit awaits your further instructions, and indicates this by its prompt character,
the colon (:). In this session, we will append more text to our file, print the contents of the buffer,
and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append command
to enter text input mode. When "append" is the first command of your editing session, the lines you
enter are placed at the end of the buffer. Here we'll use the abbreviation for the append command,
"a'~:

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the "a" (or "append") command, you need to
type a line containing only a period (.) to exit append mode.

Interrupt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will send
this message to you:

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to prompt you
for a new command. If you are appending text at the time, you will exit from append mode and be
expected to give another command. The line of text you were typing when the append command was
interrupted will not be entered into the buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect charac
ter or cancel the entire line of input by erasing in the usual way. Refer either to the last few pages of
Session 1 if you need to review the procedures for making a correction. The most important idea to
remember is that erasing a character or cancelling a line must be done before you press the RETURN
key.

Edit: A Tutorial USD:14-9

Listing what's in the buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines in the
buffer. To print the contents of the buffer, type the command:

: 1,$p

The "1"t stands for linel of the buffer, the "S" is a special symbol designating the last line of the
buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer. The com
mand "I ,Sp" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can't be printed, which can be done by strik
ing a key while the CTRL key is pressed. In printing lines, edit uses a special notation to show the
existence of non-printing characters. Suppose you had introduced the non-printing character
"control-A" into the word "illustrate" by accidently pressing the CTRL key while typing "a". This can
happen on many terminals because the CTRL key and the "A" key are beside each other. If your
finger presses between the two keys, control-A results. When asked to print the contents of the buffer,
edit would display

it does illustrAAte the editor.

To represent the control-A,edit shows "AA". The sequence "A" followed by a capital letter stands for
the one character entered by holding down the CTRL key and typing the letter which appears after the
"A". We'll soon discuss the commands that can be uS.ed to correct this typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, a deliberate
error so we can learn to make corrections. Let's correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find "thiss" in the
text we have entered by looking at a listing of the lines. Physically speaking, we search the lines of
text looking for "thiss" and stop searching when we have found it. The way to tell edit to search for
something is to type it inside slash marks:

: Ithissl

By typing Ithissl and pressing RETURN, you instruct edit to search for "thiss". If you ask edit to
look for a pattern of characters which it cannot find in the buffer, it will respond "Pattern not found".
When edit finds the characters ·'thiss", it will print the line of text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the line.

tThe numeral "one" is the top left-most key, and should not be confused with the letter "el".

USD:14-10 Edit: A Tutorial

The current line

Edit keeps track of the line in the buffer where it is located at all. times during an editing ses~
sion. In general, the line that has been most recently printed, entered, or changed is the current loca
tion in the buffer. The editor is prepared to make changes at the current location in the buffer, unless
you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in the file,
where the editor left off copying the lines from the file to the buffer. If your first editing command is
"append", the lines you enter are added to the end of the file, after the current line - the last line in
the file.

You can refer to your current location in the buffer by the symbol period (.) usually known by
the name "dot". If you type "." and carriage return you will be instructing edit to print the current
line:

And thiss is some more text.

If you' want to know the number of the current line, you can type.= and press RETURN, and edit
will respond with the line number:

. -.. -
2

If you type the number of any line and press RETURN, edit will position you at that line and print its
contents:

:2
And thiss is some more text.

You should experiment with these commands to gain experience in using them to make changes.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of each
printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Note that the shortest abbreviation for the number command is "nu" (and not "n", which is used for
a different command). You may specify a range of lines to be listed by the number command in the
same way that lines are specified for print. For example, 1,$nu lists all lines in the buffer with their
corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from "thiss" to "this". As far
as edit is concerned, changing things is a matter of substituting one thing for another. As a stood for
append, so s stands for substitute. We will use the abbreviation "s" to reduce the chance of mistyping
the substitute command. This command will instruct edit to make the change:

2s/thiss/thisl

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want edit to make
a substitution. Inside the first set of slashes are the characters that we want to change, followed by
the characters to replace them, and then a closing slash mark. To summarize:

2s1 what is to be changed I what to change it to I

If edit finds an exact match of the characters to be changed it will make the change only in the first
occurrence of the characters. If it does not find the characters to be changed. it will respond:

Edit: A Tutorial USD:14-11

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters that
you want to change, it will make the substitution and automatically print the changed line, so that
you can check that the correct substitution was made. In the example,

: 2s/thiss/thisl
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact match is
found, "thiss" will be changed to "this". Strictly speaking, it was not necessary above to specify the
number of the line to be changed. In

: slthiss/thisl

edit will assume that we mean to change the line where we are currently located (". "). In this case,
the command without a line number would have produced the same result because we were already
located at the line we wished to change.

For another illustration of the substitute command, let us choose the line:

Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters "strange, but" so the line
reads:

Text editing is nice.

A command that will first position edit at the de.sired line and then· make the substitution is:

: Istrange/s/strange, but /I

What we have done here is combine our search with our substitution. Such combinations are per
fectly legal, and speed up editing quite a bit once you get used to them. That is, you do not neces
sarily have to use line numbers to identify a line to edit. Instead, you may identify the line you want
to change by asking edit to search for a specified pattern of letters that occurs in that line. The parts
of the above command are:

Istrangel
s
Istrange, but /I

tells edit to find the characters "strange" in the text
tells edit to make a substitution
substitutes nothing at all for the characters "strange, but"

You should note the space after "but" in "1st range, but I". If you do not indicate that the space
is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we realize from
this that a blank space is a real character to a computer, and in editing text we need to be aware of
spaces within a line just as we would be aware of an "a" or a "4".

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other'commands
may be more convenient for viewing large sections of text. You can ask to see a screen full of text at
a time by using the command z. If you type

:lz

edit will start with line 1 and continue printing lines, stopping either when the screen of your termi
nal is full or when the last line in the buffer has been printed. If you want to read the next segment
of text, type the command

USD:14-12 Edit: A Tutorial

:z

If no starting line number is given for the z command, printing will start at the "current" line, in this
case the last line printed. Viewing lines in the buffer one screen full at a time is known as paging.
Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to' pause in our work, and so we should end the second session.
If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (:quit! overrides)

This is edit's warning that you have not written the modified contents of the buffer to disk. You run
the risk of losing the work you did during the editing session since you typed the latest write com
mand. Because in this lesson we have not written to disk at all, everything we have done would have
been lost if edit had obeyed the q command. If you did not want to save the work done during this
editing session, you would have to type "q!" or ("quit!") to confirm that you indeed wanted to end
the session immediately, leaving the file as it was after the most recent "write" command. However,
since you want to save what you have edited, you need to type:

:w
"text" 6 lines, 171 characters

and then follow with the commands to quit and logout:

:q
0/. logout

and hang up the phone or tum oft'the terminal when UNIX asks for a name. Terminals connected to
the port selector will stop after the logout command, and pressing keys on the keyboard will do noth
ing.

This is the end of the second session on UNIX text editing.

Edit: A Tutorial USD:14-13

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. You should try to login without looking at the notes,
but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named "text"
into the buffer. If you did forget to tell edit the name of your file, you can get it into the buffer by typ
ing:

:e text
-text- 6 lines, 171 characters

The command edi~ which may be abbreviated e, tells edit that you want to erase anything that might
already be in the buffer and bring a copy of the file "text" into the buffer for editing. You may also
use the edit (e) command to change files in the middle of an editing session, or to give edit the name
of a new file that you want to create. Because the edit command clears the buffer, you will receive a
warning if you try to edit a new file without having saved a copy of the old file. This gives you a
chance to write the contents of the buffer to disk before editing the next file.

Moving text in· the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means of the
move (m) command. The first two examples are for illustration only, though after you have read this
Session you are welcome to return to them for practice. The command

:2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move command
is that you specify the first line to be moved, the last line to be moved, the move command "m", and
the line. after which the moved text is to be placed. So,

: 1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer. To
move only one line, say, line 4, to a location in the buffer after line 5, the command would be "4m5".

Let's move some text using the command:

:S,$ml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many lines
were affected by the move and prints the last moved line for your inspection. If you want to see
more than just the last line, you can then use the print (p), z, or number (nu) command to view more
text. The buffer should now contain: .

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

USD:14-14

You can restore the original order by typing:

:4,$ml

or, combining context searching and the move command:

: I And this is some/,!This is textlmlrhis is some samplel

Edit: A Tutorial

(Do not type both examples here!) The problem with combining context searching with the move
command is that your chance of making a typing error in such a long command is greater than if you
type line numbers.

CopyiDg lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original lines
where they were. Copy has the same format as the move command, for example:

:l,5copy $

makes a copy of lines 2 through 5, placing the added lines after the buffer's end ($). Experiment with
the copy command so that you can become familiar with how it works. Note that the shortest abbre
viation for copy is co (an'd not the letter "c", which has another meaning).

Deleting lines (d)

Suppose you want to delete the line,

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number folIo~ed
by delete or d. This example deletes line 4, which is "This is text added in Session 2." if you typed
the commands suggested so far.

:4d
It doesn't mean much here, but

Here '<4" is the number of the line to be deleted, and '<delete" or "d" is the command to delete the
line. After executing the delete command, edit prints the line that has become the current line (". ").

If you do not happen to know the line number you can search for the line and then delete it
using this sequence of commands:

: ladded in Session 2)
This is text added in Session 2.
:d
It doesn't mean much here, but

The '<'added in Session 2.1" asks edit to locate and print the line containing the indicated text, start
ing its search at the current line and moving line by line until it finds the text. Once you are sure that
you have correctly specified the line you want to delete, you can enter the delete (d) command. In
this case it is not necessary to specify a line number before the '<d". If no line number is given. edit
deletes the current line (". "), that is, the line found by our search. After the deletion, your buffer
should contain:

Edit: A Tutorial

This is some sample text.
And this is some more text.
Text editing is nice.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn't mean much here, but

To delete· both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:1,3d
2 lines deleted

USD:14-15

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for delete. If
you delete more than one line you will receive a message telling you the number of lines deleted, as
indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be deleted. If
you do not you might. combine the search command with the delete command:

: lAnd this is somel,lText editing is nice./d

A word or two of caution
In using the search function to locate lines to be deleted you should be absolutely sure the char

acters you give as the basis for the search will take edit to the line you want deleted. Edit will search
for the first occurrence of the characters starting from where you last edited - that is, from the line
you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which edit will
do as easily as if you had meant it. For this reason, it is usually safer to specify the search and then
delete in two separate steps, at least until you become familiar enough with using the editor that you
understand how best to specify searches. For a beginner it is not a bad idea to double-check each
command before pressing RETURN to send the command on its way.

Undo (u) to the rescue
The undo (u) command has the ability to reverse the effects of the last command that changed

the buffer. To undo the previous command, type "u" or "undo". Undo can rescue the contents of
the buffer from many an unfortunate mistake. However, its powers are not unlimited, so it is still
wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer - for example,
delete, append, move, copy, substitute, and even undo itself. The commands write (w) and edit (e),
which interact with disk files, cannot be undone, nor can commands that do not change the buffer,
such as print. Most importantly, the only command that can be reversed by undo is the last "undo
able" command you typed. You can use control-H and @ to change commands while you are typing
them, and undo to reverse the effect of the commands after you have typed them and pressed
RETURN.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command we
gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will reverse the
effects of the deletion, causing those two lines to be replaced in the buffer.

USD:14-16

:u
2 more lines in file after undo
And this is some more text.

Edit: A Tutorial

Here again, edit informs you if the command affects more than one line, and prints the text of the
line which is now "dot" (the current line).

More about tbe dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its context. It can ~ used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being edited:

. -.. -
If we type ".=" we are asking for the number of the line, and if we type "." we are asking for the text
of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the buffer in
commands such as print, copy, and move. The dollar sign as a command asks edit to print the last
line in the buffer. If the dollar sign is combined with the equal sign ($=) edit will print the line
number corresponding to the last line in the buffer.

"." and "S", then, represent line numbers. Whenever :lppropriate, these symbols can be used in
place of line numbers in commands. For example

:..$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and -)

When you are editing you often want to go back and re-read a previous line. You could specify
a context search for a line you want to read if you remember some of its text, but if you simply want
to see what was written a few, say 3, lines ago, you can type

-3p
This tells edit to move back to a position 3 lines before the current line (.) and print that line. You
can move forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.

You may use "+" and "-" in any command where edit accepts line numbers. Line numbers
specified with" +" or "-" can be combined to print a range of lines. The command

: -1,+2copyS

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied lines will
be placed after the last line in the buffer (S), and the original lines referred to by "-I" and "+2"
remain where they are.

Try typing only "-"; you will move back one line just as if you had typed "-lp". Typing the
command "+" works similarly. Y~)U might also try typing a few plus or minus signs in a row (such as
"+++") to see edit's response. Typing RETURN alone on a line is the equivalent of typing "+ Ip"; it
will move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a ,. +"
or a carriage return alone on the line, edit will remind you that you are at the end of the buffer:

Edit: A Tutorial USD:14-17

At end-of-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these messages:

Nonzero address required on this command
or

Negative address - first buffer line is 1

The number associated with a buffer line is the line's "address", in that it can be used to locate the
line.

Changing lines (c)

You can also delete certain lines and insert new text in their place. This can be accomplished
easily with the change (c) command. The change command instructs edit to delete specified lines and
then switch to text input mode to accept the text that will replace them. Let's say you want to change
the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you type: .

': 1,2c:
2 lines changed ,
This'text was created with the UNIX text editor.

In the command 1,2c: we specify that we want to change the range of lines beginning with 1 and end
ing with 2 by giving line numbers as with the print command. These lines will be deleted. After you
type RETURN to end the change command, edit notifies you if more than one line will be changed and
places you in text input mode. Any text typed on the following lines will be inserted into the position
where lines were deleted by the change command. You will remain in text input mode until you exit in
the usual way, by typing a period alone ona line. Note that the number of lines added to the buffer
need not be the same as the number of lines deleted.

This is the end of the third session on text editing with UNIX.

USD:14-18 Edit: A Tutorial

Session 4

This lesson covers several topics, starting with commands that apply throughout the buffer, char
acters with special meanings, and how to issue UNIX commands while in the editor. The next topics
deal with files: more on reading and writing, and methods of recovering files lost in a crash. The final
section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if you
have a number of instances of a word to change it appears that you have to type the command
repeatedly, once for each time the change needs to be made. Edit, however, provides a way to make
commands apply to the entire contents of the buffer - the global (g) command.

To print all lines containing a certain sequence of characters (say, "text") the command is:

:g/textlp

The "g" instructs edit to make a global search: for all lines in the buffer containing the characters
"text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying the lines
to be affected. Then, on the same line, type the command to be executed for the identified lines.
Global substitutions are frequently useful. For example, to change all instances of the word "text" to
the word "material" the command would be a combination of the global search and the substitute
command:

': g/text/s/text/materiallg

. Note the "g" at the end of the global command, which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command only the first
instance of "text" in each line will be changed (the normal' result of the substitute command). The
"g" at the end of the command is independent of the "g" at the beginning. You may give a com
mand such as:

: 5s/textlmateriallg

to change every instance of "text" in line 5 alone. Further, neither command wiII change "text" to
"material" if "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want the lines
to be printed, type a "p" at the end of the global command:

: g/textls/textlmaterial/gp

You should be careful about using the global command in combination with any other - in essence,
be sure of what you are telling edit to do to the entire buffer. For example,

:g/ Id

• 72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your document,
since most lines have spaces between words and thus would be deleted. After executing the global
command, edit will print a warning if the command added or deleted more than one line. For
tunately. the undo command can reverse the effects of a global command. You should experiment
with the global command on a small file of text to see what it can do for you.

More about searching and substituting
In using slashes to identify a character string that we want to search for or change, we have

always specified the exact characters. There is a less tedious way to repeat the same string of charac
ters. To change "text" to "texts" we may type either

Edit: A Tutorial USD:14-19

: Itextis/text/textsl

as we have done in the past, or a somewhat abbreviated comma~d:

:/textislltextsl

In this example, the characters to be changed are not specified - there are no characters, not even a
space, between the two slash marks that indicate what is to be changed. This lack of characters
between the slashes is taken by the editor to mean "use the characters we last searched for as the
characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

:/doesl
It doesn't mean much here, but
:11
it does illustrate the editor.

(You should note that the search command found the characters "does" in the word "doesn't" in the
first search request.) Because no characters are specified for the second search, the editor scans the
buffer for the next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the buffer
to the beginning, until the specified character string is found. If you want to search in the reverse
direction, use question marks (?) instead of slashes to surround the charact~ you are searching for;

It is also possible to repeat the last substitution without having, to retype the entire command.
An amperSand (&) used as a command repeats the most recent substitute' command~ using the same
search and replacement patterns. After altering the current . line by typing .

: s/textitexts/

you type

:/texti&

or simply

:11&

to make the same change on the next line in the buffer containing the characters "text".

Special characters
Two characters have special meanings when used in specifying searches: "S" and "A". "S" is

taken by the editor to mean "end of the line" and is used to identify strings that occur at the end of a
line.

: g1text.S/sllmateriaIJp

teBs the editor to search for all lines ending in "text:' (and nothing else, not even a blank space), to
change each final "text." to "material.", and print the 'changed lines.

The symbol "A" indicates the beginning of a line. Thus,

:srll.1

instructs the editor to insert "1." and a space at the beginning of the current line.
The characters "S" and "A" have special meanings only in the context of searching. At other

times. they are ordinary characters. If you ever need to search for a character that has a special
meaning, you must indicate that the character is to lose temporarily its special significance by typing
another special character, the backslash (\), before it.

USD:14-20 Edit: A Tutorial

: sI\$/dollarl

looks for the character "S" in the current line and replaces it by the word "dollar", Were it not for
the backslash, the "S" would have represented "tHe end of the line" in your search rather than the
character "S". The backslash retains its special significance unless it is preceded by another
backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful to you
or ask for a list of your files. Removing and listing files are not functions of the editor, and so they
require the use of UNIX system commands (also referred to as "shell" commands, as "shell" is the
name of the program that processes UNIX commands). You do not need to quit the editor to execute
a UNIX command as long as you indicate that it is to be sent to the shell for execution. To use the
UNIX command no to remove the file named "junk" type:

:!rm junk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell command. If
the buffer contents have not been written since the last change, a warning will be printed before the
command is executed: •

[No write since last change]

The editor prints a "!" when the command is completed. Other tutorials describe useful features of
the system, of which an editor is only one part.

Filenames and file. manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as the
current filename. Edit remembers as the current filename the name given when you entered the edi
tor. The current filename changes whenever the edit (e) command is used to specify a new file. Once
edit has recorded a current filename, it inserts that name into any command where a filename has
been omitted. If a write command does not specify a file, edit, as we have seen, supplies the current
filename. If you are editing a file named "draft]"' having 283 lines in it, you can have the editor
write onto a different file by including its name in the write command:

:w chapter3
"chapter3" [new file) 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write command.
Thus, if the next write command does not specify a name, edit will write onto the current file
("draft3") and not onto the file "chapter3".

The file (1) command

To ask for the current filename, type file (or 0, In response, the editor provides current infor
mation about the buffer, including the filename, your current position, the number of lines In the
buffer, and the percent of the distance through the file your current location is.

:f
"text" [Modified] line 3 of 4 -75%-

If the contents of the buffer have changed since the last time the file was written, t.he editor will teU
you that the file has been "[Modified]'". After you save the changes by writing onto a disk file, the
buffer will no longer be considered modified:

Edit: A Tutorial

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 -7S%-

Reading additional files (r)

USD:I4-21

The nad (r) command allows you to add the contents of a file to the buffer at a specified loca
tion, essentially copying new lines between two existing lines. To use it, specify the line after which
the new text will be placed, the read (r) command, and then the name of the file. If you have a file
named "example", the command

:$r example
"example" 18 lines, 473 characters

reads the file "example" and adds it to the buffer after the last line. The current filename is not
changed by the read command.

Writing parts of tbe buft'er

The write (w) command can· write all or part of the buffer to a file you specify. We are already
familiar with writing the entire contents of the buffer to a disk file. To write only part of the buffer
onto a file, indicate the beginning and ending lines before the write command, for example

: 45,$,,: ending

Here all lines from 4S through the end of the buffer are written onto the file named ending. The lines
remain in the buffer as part of the document you are editing, and you may continue to edit the entire
buffer. Your original file is unaffected "by youi command to write part of the buffer to another file.
Edit still remembers whether you have saved changes to the buffer in your original file or not.

Recovering files

Although it does not happen very often, there are times UNIX stops working because of some
malfunction. This situation is known as a crash. Under most circumstances, edit's crash recovery
feature is able to save work to within a few lines of changes before a crash (or an accidental phone
hang up). If you lose the contents of an editing buffer in a system crash, you will normally receive
mail when you login that gives the name of the recovered file. To recover the file, enter the editor
and type the command reeover (ree), followed by the name of the lost file. For example, to recover
the buffer for an edit session involving the file "chap6", the command is:

: recover cbap6

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of the
saved buffer carefully before writing it back onto the original file. For best results, write the buffer to
a new file temporarily so you can examine it without risk to the original file. Unfortunately, you can
not use the recover command to retrieve a file you removed using the shell com~and rm.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your work by
using the command preserVe (pre), which saves the buffer as if the system had crashed. If you are
writing a file and you get the message "Quota exceeded", you have tried to use more disk storage
than is allotted to your account. Proceed with caution because it is likely that only a part of the
editor's buffer is now present in the file you tried to write. In this case you should use the shell
escape from the editor (!) to remove some files you don't need and try to write the file again. If this is
not possible and you cannot find someone to help you, enter the command

: preserve

USD:14-22 Edit: A Tutorial

an~ wait for the reply,

F"'tle preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you do,
the buffer will be lost, and you may not be able to save your file. If the reply is "File preserved." you
can leave the editor (or logout) to remedy the situation. After a preserve, you can use the recover
command once the problem has been corrected, or the -r option of the edit command if you leave the
editor and want to return.

If you make an undesirable change to the buffer and type a write command before discovering
your mistake, the moditied version will replace any previous version of the file. Should you ever lose
a good version of a document in this way, do not panic and leave the editor. As long as you stay in
the editor, the contents. of the buffer remain accessible. Depending on the nature of the problem, it
may be possible to restore the buffer to a more complete state with the undo command. After fixing
the damaged buffer, you can again write the tile to disk.

FlII'ther readiDI and other iaformatioa
Edit is an editor designed for beginning and casual users. It is actually a version of a more

powerful editor called ex. These lessons are intended to introduce you to the editor and its more
commonly-used commands. We have not covered all of the editor's commands, but a selection of
commands that should be sufficient to accomplish most of your editing tasks. Y oucan find out more
about the editor in the Ex Reference Manual, which is applicable to both ex and edit. One way to
become familiar with the manual is to begin by reading the description of commands that you already
know. .

Usiog ex

As you become more e?tperienced with using the editor, you may still find that edit continues to
meet your needs. However, should you become interested in using ex, it is easy to switch. To begin
an editing session with ex, use the name ex in your command instead of edit.

Edit commands also work in ex, but the editing environment is somewhat different You
should be aware of a few differences between ex and edit. In edit, only the characters "A", "S", and
"\" have special meanings in searching the buffer or indicating characters to be changed by a substi
tute command. Several additional characters have special meanings in ex, as described in the Ex
Reference Manual. Another feature of the edit environment prevents users from accidently entering
two alternative modes of editing, open and visual, in which the editor behaves quite differently from
normal command mode. If you are using ex and you encounter strange behavior, you may have
accidently entered open mode by typing "0". Type the ESC key and then a "Q" to get out of open or
visual mode and back into the regular editor command mode. The document An Introduction to
Display Editing with Vi provide full details of visual mode.

An Introduction to Display Editing with Vi

William Joy

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi
the screen of your terminal acts as a window into the file which you are edit
ing. Changes which you make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most
of the commands to vi move the cursor around in the file. There are com
mands to move the. cursor forward and backward in units of characters,
words, sentences and paragraphs. A small set of operators, like d for delete
and c for change, are combined with the motion commands to· form opera
tions such as delete word or change paragraph, in a simple and natural way.
This regularity and the mnemonic assignment of commands to keys makes the
editor command set easy to remember and to use.

Vi will work on a large number of display terminals, and new terminals
are easily driven after editing a terminal description file. While it is advanta
geous to have an intelligent terminal which can locally insert and delete lines
and characters from the display, the editor will function quite well on dumb
terminals over slow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different
display updating algorithms to make best use- of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals,
storage tubes and "glass tty's" using a one line editing window; thus vi's com
mand set is available on all terminals. The full command set of the more
traditional, line oriented editor ex is available within vi; it is quite simple to
switch between the two modes of editing.

1. Getting started

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should
be running vi on a file you are familiar with while you are reading this. The first part of this
document (sections 1 through 5) describes the basics of using vi. Some topics of special
interest are presented in section 6, and some nitty-gritty details of how the editor functions
are saved for section 7 to avoid cluttering the presentation here.

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

USD:15·2 An Introduction to Display Editing with Vi

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card. summarizes the commands of vi in a very compact format. You should have the
card handy while you are learning vi.

1.1. Specifying terminal type

Before you can start vi you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not
appear here, you should consult with one of the staff members on your system to find out the
code for your terminal. If your terminal does not have a code, one can be assigned and a
description for the terminal can be created.

Code
2621
2645
act4
act5
adm3a
adm31
c100
dm1520
dm2500
dm3025
fox

. h1500
h19
ilOO
mime
tl061
vt52

Fuji name
Hewlett·Packard 2621 AlP
Hewlett-Packard 264x
Microterm ACT-IV
Microterm ACT -V
Lear Siegler ADM·3a
Lear Siegler ADM·3l
Human Design Concept 100
Datamedia 1520
Datamedia 2500
Datamedia 3025
Perkin-Elmer Fox
Hazeltine 1500·
Heathkit h 19
Infoton ·100
Imitating a smart act4
Teleray 1061
Dec VT·52

Type
Intelligent
Intelligent
Dumb
Dumb
Dumb
Intelligent
Intelligent
Dumb
Intelligent
Intelligent
. Dumb
Intelligent
Intelligent
Intelligent
Intelligent
Intelligent
Dumb

Suppose for example that you have a Hewlett-Packard HP2621 A terminal. The code
used by the system for this terminal is '2621'. In this case you can use one of the following
commands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the csh shell. If you are using the standard Bourne shell sh then
you should give the commands

$ TERM-2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the tset program. If you dial in on a mime, but often use hardwired ports, a typ
ical line for your .login file (if you use csh) would be

setenv TERM 'tset - -d mime'

or for your ,profile file (if you use sh)

TERM- 'tset - -d mime'

Tset knows which terminals are hardwired to each port and needs only to be told that when
you dial in you are probably on a mime. Tset is usually used to change the erase and kill
characters, too.

An Introduction to Display Editing with Vi USD:lS-3

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a
file ~ou are familiar with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and
the text of your file should appear on the screen. If something else happens refer to the foot
note.;

1.3. ne editor's copy: the buft'er
The editor does not directly modify the file which you are editing. Rather, the editor

makes a copy of this file, in a place called the buffer, and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes you make back into
the original file.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in italics. We will represent
special characters in SMALL CAPlT ALS.

1.5. ArroW keys

The editor command set is indept.udent of the terminal you are using. On most termi
nals with cursor positioning keys, these keys will. also work within the editor. If you don't
have cursor positioning keys, or even if" you do, you can use the h j k and I keys as cursor
positioning keys (these are labelled with arrows on an adm3a). *

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to ~nd to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left comer
of your terminal. Try hitting this key a few times. The editor will ring the bell to indicate
that it is in a quiescent state.; Partially formed commands are cancelled by ESC, and when
you insert text in the file you end the text insertion with ESC. This key is a fairly harmless
one to hit, so you can just hit it if you don't know what is going on until the editor rings the
bell.

* If you gave the system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when it sends control codes for one kind of terminal to some other kind of ter
minal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you
back to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and
try apin.

Another thing which can &0 wrong is that you typed the wrong tile name and the editor just printed an
error diapostic. In this case you should follow the above procedure for getting out of the editor, and try
again this time spelling the tile name correctly.

If the editor doesn't seem to respond to the commands which you type here, try sending an interrupt to
. it by hitting the DEL or RUB key on your terminal, and then hitting the :q command again followed by a car-
riage return. .

• As we will see later, h moves back to the left (like control-h which is a backspace), j moves down (in the
same column), k moves up (in the same column), and I moves to the right. * On sman terminals where it is possible, the editor will quietly tlash the.screen rather than ringing the bell.

USD:15-4 An Introduction to Display Editing with Vi

The CR or RETURN key is important because it is used to terminate certain commands.
It is usually at the right side of the keyboard, and is the same command used at the end of
each shell command.

Another very useful key is the DEL or RUB key.' which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don't know or don't like what is going on. Try hitting
the '/' key on your terminal. This key is used when you want to specify a string to be
searched for. The cursor should now be positioned at the bottom line of the terminal after a
'/' printed as a prompt. You can get the cursor back to the current position by hitting the
DEL or RUB key; try this now.· From now on we will simply refer to hitting the DEL or RUB
key as "sending an interrupt ... ••

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as
computing a new position in the file after a search or running a command to reformat part of
the buffer. When this is happening you can stop the editor by sending an interrupt.

1.7. Getting oat of the editor
After you have worked with this introduction for a while, and you wish to do something

else, you can give the command ZZ to the editor. This will write the contents of the editor's
buffer back into the file you are editing, if you made any changes, and then quit from the edi
tor. You can also end an editor session by giving the command :q!CR;t this is a dangerous
but occasionally essential command which ends the editor session and discards all your
c~anges. You need to know about this command in case you change the editor's copy of a file
you wish only to look at. Be very careful not to give this command when you really want to
save the changes you have made.

2. Moving around in. the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful
of these is generated by hitting the control and 0 keys at the same time, a control-O or 'AD'.
We will use this two character notation for referring to these control keys from now on. You
may have a key labelled ,A, on your terminal. This key will be represented as 't' in this docu
ment; , .. , is exclusively used as part of the '''x' notation for control characters.;

As you know now if you tried hitting AD, this command scrolls down in the file. The D
thus stands for down. Many editor commands are mnemonic and this makes them much
easier to remember. For instance the command to scroll up is AU. Many dumb terminals
can't scroll up at all, in which case hitting AU clears the screen and refreshes it with a line
which is farther back in the file at the top.

If you want to see more of the file below where you are, you can hit AE to expose one
more line at the bottom of the screen, leaving the cursor where it is. The command Ay (which
is hopelessly non-mnemonic, but next to AU on the keyboard) exposes one more line at the
top of the screen.

There are other ways to move around in the file; the keys AF and AD move forward and
backward a page, keeping a. couple of lines of continuity between screens so that it is possible
to read through a file using these rather than AD and AU if you wish.

• Backspacing over the 'I' will also cancel the search .
•• On some systems. this interruptibility comes at a price: you cannot type ahead when the editor is com
puting with the cursor on the bottom line.
t All commands which read from the last display line can also be terminated with a ES<' as well as an CR. * If you don't have a .~. key on your terminal then there is probably a key labelled 't'; in any case these
characters are one and the same.

An Introduction to Display Editing with Vi USD:15-5

Notice the difference between scrolling and paging. If you are trying to read the text in
a file, hitting AF to move forward a page will leave you only a little context to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con
tinue to read the text as scrolling is taking place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type' the character 1 followed by a string of characters terminated by CR. The editor will
position the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are, and is
otherwise lilce I. t

If the search string you give the editor is not present in the file the editor will print a
diagnostic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an t. To match only at the end of a line, end the search string with a $. Thus
ItsearchCR will search for the word 'search' at the beginning of a line, and Ilast$cR searches
for the word 'last' at the end of a line.·

The command G, when preceded by a number will position the cursor at that line in the
file. Thus IG will move the cursor to the first line of the file. If you give G no count, then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the
editor will place only the character ,-. on each remaining line. This indicates that the last line
in the file is on the screen; that is, the ,-. lines are past the end of the file.

You can find out the state of the file you are editing by typing a AG. The editor will
.show you the name of the file you are editing, the number of the current line, the number of
lfnes in the buffer, and the percentage of the way through the buffer which you are. Try doing
this now, and remember the number of the line you are on. Give a G command to get to the
end and then another G command to get back where you were.

You can also get back to a previous position by using the command - (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving
a G or a search with 1 or ? and then a - to get back to where you were. If you accidentally hit
n or any command which moves you far away from a context of interest, you can quickly get
back by hitting -.

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys
(4 or 5 keys with arrows going in each direction) try them and convince yourself that they
work. If you don't have working arrow keys, you can always use h, j, k, and l. Experienced
users of vi prefer these keys to arrow keys, because they are usually right underneath their
fingers.

Hit the + key. Each time you do,.notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if
you go off the bottom or top with these keys then the screen will scroll down (and up if

t These searches will normally wrap around the end of the file, and thus find the string even if it is not on a
line in the direction you search provided it is anywhere else in the file. You can disable this wraparound in
scans by giving the command :se DOlmlpscanCR, or more briefly :se DOWSCR.

• Actually, the string you give to search for here can be a regular expression in the sense of the editors ex (I)
and ed(l). If you don't wish to learn about this yet, you can disable this more general facility by doing
:se lIomagiCCR; by putting this command in EXINIT in your environment, you can have this always be in
effect (more about EXINIT later.)

USD:15-6 An Introduction to Display Editing with Vi

2.4. MovillJ witbia a llae

Now try picking a word on some line on tile screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key.
This will· advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word
rather than to the beginning of the next word. Also try SPACE (the space bar) which moves
right one character and the BS (backspace or AH) key which moves left one character. The key
h works as "H does and is useful if you don't have a BS key. (Also, as noted just above, I will
move to the right.)

If the line had punctuation in it you may have noticed that that the wand b keys
stopped at each group of punctuation. You can also go back and forwards words without
stopping at punctuation by using W and B rather than the lower case equivalents. Think of
these as bigger words. Try these on a few lines with punctuation to see how they differ from
the lower case w andb.

The word keys wrap around the end of line, rather than stapping at the end. Try ,mov
ing to 'Ii word on a line below where you are by repeatedly bitting w.

1.5. Samaaary

SPACE
AB
"D
AE
"F
AG
AH
AN
Ap
AU
Ay
+

I
?
B
G
H
M
L
W
b
e
D

w

advance the cursor one position
backwards to previous page
scrolls down in the file
exposes another line at the bottom
forward to next page
tell what is going on
backspace the cursor
next line, same column
previous line, same column
scrolls up in the file
exposes another line at the top
next line, at the beginning
previous line, at the beginning
scan for a following string forwards
scan back~rds
back a word, ignoring punctuation
go to specified line, last default
home screen· line
middle screen line
last screen line
forward a word, ignoring punctuation
back a word
end of current word
scan for next instance of I Of ? pattern
word after this word .

An Introduction to Displar Editing with Vi USD:lS-7

2.6. View
If you want to use the editor to look at a file, rather than to make changes, invoke it as

view instead of vi. This will set the readonly option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting
One of the most useful commands is the i (insert). command. After you type i, every

thing you type until you bit ESC is inserted into the file. Try this now; position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal
it will seem, for a minute, that some of the characters in your line bave been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'SESC' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand bow this works; i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and then give the com
mand 0 to create a new line after the line you are on, or the command 0 to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC
is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in
that one is given by' a lower case key and·tJte other is given by an upper case key. In these
cases, the uppercase key often differs from the lower case key in its sense of direction, with
the upper case· key working backward and/or up, while the lower case key moves forward
and/or down. .

Whenever you are typing in text, you can give many lines of input or just a few charac
ters. To type in more than one line of text, hit a RETURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a slow and dumb
terminal the editor may choose to wait to redraw the tail of the screen, and will let you type
over the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the sys
tem command level (usually "8 or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, AX, or AU) to erase the input
you have typed on the current line. t The character AW will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over
• are not erased; the cursor moves backwards, and the characters remain on the display. This is

often useful if you are planning to type in something similar. In any case the characters
disappear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and
then a again. .

Notice also that you can't erase characters which you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction; just hit ESC and move the cursor back to the previous line. After making the

l' hi fact, the character AH (backspace) always works to erase the last input character here. regardless of
what your erase character is.

USD:15-8 An Introduction to Display E~iting with Vi

correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections
You can make small corrections in existing text quite easily. Find a single character

which is wrong or just pick any character. Use the arrow keys to find the character, or get
near the character with the word motion keys and then either backspace (hit the as key or AH
or even just h) or SPACE (using the space bar) until the cursor is on the character which is
wrong. If the character is not needed then hit the x key; this deletes the character from the
file. It is analogous to the way you x out characters when you make mistakes on a typewriter
(except it's not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command re, where e is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character. give the command s which substi
tutes a string of characters, ending with ESC, for it. If there are a small number of characters
which are wrong you can precede s with a count of the number of characters to be replaced.
Counts are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operaton
You already know almost enough to make changes at a higher level. All you need to

know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hitting. a few times. Notice that this repeats the effect of the dw. The command.
repeats the last command which made a change. You can remember it by analogy with an
ellipsis ' •• :.

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE.
This deletes a single character, and is equivalent to the x command. .

Another very useful· operator is c- or change. The command cw thus changes the text of
a single word. You follow it by the replacement text ending with an ESC. Find a word which.
you 'can change to another, and try this now. Notice that the end of the text to be changed
was marked with the character'S' so that you can see this as you are typing in the new
material. .

3.4. Operating on lines
It is often the case that you want to operate on lines. Find a line which you want to

delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as a place holder.
It helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close
up the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous
contents and replacing them with text you type up to an ESC. t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
Sdd deletes 5 lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen. or d3L to delete through the third from the bottom line.
Try some commands like this now.* Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

t The command S is a convenient synonym for for ce, by analogy with s. Think of S as a substitute on
lines, while s is a substitute on characters.
• One subtle point here involves using the I search after a d. This wiD normally delete characters from the
current position to the point of the match. If what is desired is to delete whole lines including the two
points, give the pattern as IpatJ +0, a line address.

An Introduction to Display Editing with Vi USD:15-9

3.5. Undoing
Now suppose that the last change which you made was incorrect; you could use the

insert, delete and append commands to put the correct material back. However, since it is
often the case that we regret a change or make a change incorrectly, the editor provides a u
(undo) command to reverse the last change which you made. Try this a few times, and give it
twice in a row to notice that an u also undoes a L

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line
back. The U command restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the sec
tion on recovering lost text below.

3.6. Summary

i
o
u

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually''H or I), erases a character during an insert
your kill (usually @, AX, or AU), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text·
deletes the object you specify

. inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Lew level character motions
Now move the cursor to a line where there is a punctuation or a bracketing character

such as a parenthesis or a comma or period. Try the command tx where x is this character.
This command finds the next x character to the right of the cursor in the current line. Try
then hitting a ;, which finds the next instance of the same character. By using the f command
and then a sequence of ;'s you can often get to a particular place in a line much faster than
with a sequence of word motions or SPACEs. There is also a F command, which is like f, but
searches backward. The; command repeats F also. .

When you are operating on the text in a line it is often desirable to deal with the charac
ters up to, but not including, the first instance of a character. Try dtx for some x now and
notice that the x .chara<:ter is deleted. Undo this with u and then try dtx; the t here stands
for to, i.e. delete up to the next x, but not the x. The command T is the reverse of t.

When working with the text of a.single line, an t moves the cursor to the first non-white
position on the line, and a S moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab rI) characters in it. These characterS are represented as a
number of spaces expanding to a tab stop, where tab stops are every 8 positions." When the
cursor is at a tab, it sits on the last of the several spaces which represent that tab. Try

• This is settable by a command of the form :Ie ts-XCR, where x is 4 to set tabstops every four columns.
This has e1fect on the screen representation within the editor.

USD:IS-10 An Introduction to Display Editing with Vi

moving the cursor back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is On the screen non-printing characters resemble a· ... •
character adjacent to another, but spacing or backspacing over the character will reveal that
the two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control Characters, depending on the character and the
setting of the beautify option, if you attempt to insert them in your file. You can get a con
trol character in" the file by beginning an insert and then typing a "'V before the control charac
ter. The '"V quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences,
paragraphs, and sections. The operations (and) move to the beginning of the previous and
next sentences respectively. Thus the command d) will delete the rest of the current sentence;
likewise cl(will delete the previous sentence if you are at the beginning of the current sen
tence, or the current sentence up to where you are if you are not at the beginning of the
current sentence.

A sentence is defined to end at a'.', '!' or '1' which is followed by" either the end of a
line, or by two spaces. Any number of closing ')', 'r, .. , and ... characters may appear after
the '.', '!' or '1' before the spaces or" end of line.

. The operations { 81'ld } move over paragraphs and the operations II and D move over
sections. t .

. A. paragraph. begins after each empty line. and also at each of a set of paragraph macros,
specified by th~ pairs' of characters in the definition of the .string valued option paragraphs.
The default setting for this option defines the paragraph macros of the -ms and -mm macro
packages, i.e. the • .IP', • .LP', • .PP' and • .QP', • .P· and • .LI' macros.* Each paragraph boundary
is also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally '.NH',
·.SH', '.H' and '.HU·, and each line with a formfeed At in the" first column. Section boun
daries are always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you ~e on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranginl ancl duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is
saved, and a set of named buffers a-z which you can use to save copies of text and to move
text around in your file and between files.

t The II and D operations requite the operation character to be doubled because they can move the cursor
far from where it currently is. While it is easy to get back with the comtnand -, these commands would still
be frustratial if they were easy to bit accidentally. * You can easily cban&e or extend this set of macros by asspna a dift'erenl string to the paragraphs option
in your EXINIT. See section 6.2 for details. The '.bp' directive is also considered to stan a paragraph.

An Introduction to Display Editing with Vi USD:IS-il

The operator y yanks a copy of the object which follows into the unnamed buffer. If
preceded by a buffer name, ·xy, where x here is replaced by a letter a-z, it places the text in
the named buffer. The text can then be put back in the file with the commands p and P; p
puts the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence
which partially spans more than one line, then when you put the text back, it will be placed
after the cursor (or before if you use Pl. If the yanked text forms whole lines, they will be put
back as whole lines, without changing the 'current line. In this case, the put acts much like a 0

or 0 command.

Try the command VP. This makes a copy of the current line and leaves you on this
copy, which is placed before the current line. The command Y is a convenient abbreviation
for yy. The command Yp will also make a copy of the current line, and place it after the
current line. You can give Y a count of lines to yank, and thus duplicate several lines; try
3VP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to
be stored as in • aSdd deleting 5 lines into the named buffer a. You can then move the cursor
to the eventual resting place of the these lines and do a • ap or • aP to put them back. In fact,
you can switch and edit another file before you put the lines back, by giving a command of
the form :e namecR where name is the name of the other file you want to edit. You will have
to write back the contents of the current editor buffer (or discard them) if you have made
changes before the editor will let you switch to the other fil... An ordinary delete command
saves the text in the unnamed buffer, so that an ordinary put can move it elsewhere. How
ever, .the unnamed buffer is lost when you change files, so to move text from one file to
another you should use an unnamed buffer.

4.4. Sumlnai'y.

t first non-white on line
$ end of line
) forward sentence
} forward paragraph
]) forward section
(backward sentence
{ backward paragraph
[(backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
F x f backward in line
P put text back, before cursor or above current line
Tx t backward in line ••

5. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter vi and to write out our file using either ZZ or :WCR.
The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the

USD:lS·12 An Introduction to Display Editing with Vi

changes. You can also reedit the same file (starting over) by giving the command :e!cR.
These commands should be used only rarely, and with caution, as it is not possible to recover
the changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command
:e namecR. If you have not written out your file before you try to do this, then the editor will
tell you this, and delay editing the other file. You can then give the command :wCR to save
your work and then the :e namecR command again, or carefully give the command
:e! namecR, which edits the other file discarding the changes you have made to the current
file. To have the editor automatically save changes, include set autowrite in your EXINIT,
and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:!cmdcR. The system will run the single command cmd and when the command finishes, the
editor will ask you to hit a RETURN to continue. When you have finished looking at the out
put on the screen, you should hit RETURN and the editor will clear the screen and redraw it.
You can then continue editing. You can also give another : command when it asks you for a
RETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the com
mand :shCR. This will give you a new shell, and when you finish with the shell, ending it by
typing a AD, the editor will clear the screen and continue.

On systems wh:oh support it, AZ will suspend the editor and return to the (top level)
shell. When the. editor is resumed, the screen will be redrawn.

5.3. Marking and returning

The command - returned to the previous place after a motion of the cursor by a com
mand such as I, ?or G. You can also mark lines in the file with single letter tags and return
to these marks later by naming the tags. Try marking the current line with the command mx,·
where you should pick some letter for x, say ·a'. Then move the cursor to a different line (any
way you like) and hit 'a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form 'x rather than ·x. Used without an operator, 'x will move to the
first non-white character of the marked line; similarly - moves to the first non-white character
of the line containing the previous context mark -.

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a AL,
the ASCII form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing AR to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window,
a . if you want it at the center, or a - if you want it at the bottom.

An Introduction to Display Editing with Vi USD:15-13

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the s!owopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
sloWCR. If your system is sluggish this helps lessen the amount of output coming to your ter
minal. You can disable this option by :se nosloWCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the com
mand :se rednwCR.. This simulation generates a great deal of output and is generally tolerable
only on lightly loaded systems and fast terminals. You can disable this by giving the com
mand
:se norednWCR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelli
gent terminals. The editor can expand the window easily when you insert in the middle of
the screen on these terminals. If possible, try the editor on an intelligent terminal to see how
this works.

You can .control the size of the window which is redrawn each tim~ the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

;11[J1I"
. .

Thus if you are searching for a particular instance of a common string in a file you can pre-·
cede the first search command by a small number, say 3, and the editor will draw three line
windows around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose,
by giving a number on a z command, after the z and before the following RETURN, • or -.
Thus the command zS. redraws the screen with the current line in the center of a five line
window.t

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially
confuse the editor about what is displayed on the screen. You can still edit the text on the
screen if you wish; clear up the confusion by hitting a AL; or move or search again, ignoring
the current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slowtermi
nals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

The options are of three kinds: numeric options, string options, and toggle options.
You can set numeric and string options by a statement of the form

t Note that the command Sz. has an entirely dilferent elfect. placinlline S in the center of a new window.

USD:15-14

Name
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slowopen
term

Default
noai
noaw
noic
nolisp
nolist
nomagic
nonu
para-IPLP~PQPbpP U
nore
sect-NHSHH HU
sw-s
nosm
slow
dumb

set opt-val

An· Introduction to Display Editing ,with Vi

Description
Supply indentation automatically
Automatic write before :0, :ta, At. !
Ignore case in searching
(() } commands deal with S-expressions
Tabs print as "I; end of lines marked with $
The characters. [and • are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <. > and input AD and ,.
Show matching (or { as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

and togle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR..

You can get a list of all options yvhich" you h8ve changed by the com~and :setcR, or the
value of a single option by the command :set opt?ca. A list of all "possible options and their
values is generated by :set alICR.. Set can be abbreviated se. Muluple options can be placed
on One line, e.g. :se ai a'tV nUCR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished" by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A
typical list includes a set command, and possibly a few map commands. Since it is advisable
to get these commands on one line, they can be separated with the I character, for example:

set ai aw tersel map @ dd I map # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line,
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command) This string should be placed in the variable EXINIT in
your environment. If you use the shell csh, put this line in the file .login in your home direc
tory:

setenv EXINIT °set ai aw terse I map @ dd\map # XO

If you use the standard shell sh, put these lines in the file .profile in your home directory:

EXINIT.oset ai aw terse I map @ ddlmap # XO

export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set.

t All commands which start with.: are ex commands.

An Introduction to Display Editing with Vi USD:15-15

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1-9. You can get the n'th previous deleted text back in your file by the
command "np. The" here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number 1 for now), and p is the put command, which puts text in the
buffer after the cursor. If this doesn't bring back the text you wanted, hit u to undo this and
then. (period) to repeat the put command. In general the. command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer,
the • command increments the number of the buffer before repeating the command. Thus a
sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you.
You can omit the u commands here to gather up all this text in the buffer, or stop after any.
command to keep just the then recovered text. The command P can also be used rather than
p to put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes.
You will normally receive mail when you next login giving you the name of the file which has
been saved for you. You should then change to the directory where you were when the system
crashed and give a command of the form:

% vi·-r name

replacing name with the name of the file which you were editing. This will recover your work
to a point near where you left off. t

You can get a listing of the files which are saved for you by giving the command:

% vi -r .

If there is more than one instance of a particular file saved, the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover
ing the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system,
and the mail program must exist to receive mail. The invocation "vi -r" will not always list
all saved files, but they can be recovered even if they are not listed.

6.5. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near
the right margin automatically. You can cause this to happen by giving the command :se
wm=lOCR. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined
lines, and leaves the cursor at this white space. You can kill the white space with x if you
don't want it.

t In rare cases, some of the lines of the Iile may be lost. The editor will give you the numbers of these lines
and the text of the lines win be replaced by the string 'LOST'. These lines will almost always be among the
last few which you changed. You can either choose to discard the changes which you made (if they are easy
to remake) or to replace the few lost lines by hand.

USD:lS·16 An Introduction to Display Editing with Vi

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most dis
tinguishes editing of programs from editing of text is the desirability of maintaining an
indented structure to the body of the program. The editor has a autoindent facility for help
ing you generate correctly indented programs.

To enable this facility you can give the command :se BiCR. Now try opening a new line
with 0 and type some characters on the line after a few tabs. If you now start another line,
notice that the editor supplies white space at the beginning of the line to line it up with the
previous line. You cannot backspace over this indentation, but you can use AD key to back-
tab over the supplied indentation. .

Each-time you type AI) you back up one position, normally to an 8 column boundary.
This amount is settable; the editor has an option called shiftwidth which you can set to
change this value. Try giving the command :se SW-4cR and then experimenting with autoin
dent again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you specify right or left by one shiftwidth. Try« and » which shift one line left
or right, and <L and >L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put
the cursor at a left or right parenthesis and hit %. This will show you the matching
parenthesis. This works also for braces { and }, and brackets [and l.

If you are editing C programs, you can use the II and)) keys to advance or retreat to a
line starting with a {, i.e. a function declaration at a time. When)) is used with an operator it
stQPS after a line which starts with }; this is sometimes useful with YII.

6.7. Filtering portions of the buffer

You can run system commands over portions of the butTer· using the operator !. You
can use this to sort lines in the buffer, or to reformat portions of the butTer- with a pretty
printer. Try typing in a list of random words, one per line and ending them with a blank line.
Back up to the beginning of the list, and then give the command !)sortCR. This says to sort
the next paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing uSP

If you are editing a LISP program you should set the option lisp by doing :se liSpCR.
This changes the (and) commands to move backward and forward over s-expressions. The {
and) commands are like (and) but don't stop at atoms. These can be used to skip to the
next list, or through a comment quickly.

The autoindent option works ditTerently for LISP, supplying indent to align at the first
argument to the last open list. If there is no such argument then the indent is two spaces
more than the last level .

. There is another option which is useful for typing in LISP, the showmatch option. Try
setting it with :se smCR and then try typing a '(' some words and then -a ')'. 1'ol0tice that the
cursor shows the position of the T which matches the')' briefly. This happens only if the
matching '(' is on the screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed
in with lisp and autoindent set. This is the ::: operator. Try the command :::% at the begin
ning of a function. This will realign all the lines of the function declaration.

When you are editing LISP" the ((and)] advance and retreat to lines beginning with a (,
and are useful for dealing with entire function definitions.

An Introduction to Display Editing with Vi USD:15-17

6.9. Macros
Vi has a parameterless macro facility, which lets you set it up so that when you hit a

single keystroJce, the editor will act as though you had hit some longer sequence of keys. You
can set this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x
to invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINIT) with a command of
the form:

:map Ihs rhscR

mapping Ihs into rhs. There are restrictions: Ihs should be one keystroke (either 1 char
acter or one function key) since it must be entered within one second (unless notimeout
is set, in which case you can type it as slowly as you wish, and vi will wait for you to
finish it before it echoes anything). The Ihs can be no longer than 10 characters, the rhs
no longer than 100. To get a space, tab or newline into Ihs or rhs you should escape
them with a AV. (It may be necessary to double the AV if the map command is given
inside vi, rather than in ex.) Spaces and tabs .inside the rhs need not be escaped.

Thus 10 make the q key write and exit the editor, you can give the command

:map q :wqAV"VCR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A "V's is needed because without it the CR would end the.: command, rather than

.. becoming part of the map definition. There are two "V's because from within vi, two AV'S
must be typed to get one. The first CR is part of the rlis, the second terminates the : com
mand. .

Macros can be deleted with

unmap lhs

If the Ihs of a macro is "#0" through "#9", this maps the particular function key instead
of the 2 character "#" sequence. So that terminals without function keys can access such
definitions, the form "#X" will mean function key x on all terminals (and need not be typed
within one second.) The character "#" can be changed by using a macro in the usual way:

:map AV"V"I #

to use tab, for example. (This won't affect the map command, which still uses #, but just the
invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a '!' after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for ,. to be the same as 4 spaces in input mode, you can
type:

:map ,. AVti~~~

where I is a blank. The -V is necessary to prevent the blanks from being taken as white space
between the Ihs and rhs.

7. Word Abbreviations

A feature similar to macros in input mode is word abbreviation. This allows you to
type a short word and have it expanded into a longer word or words. The commands are
:abbreviate and ;unabbreviate (:ab and :una) and have the ~e syntax as :map. For example:

USD:lS-1S An Introduction to Display Editing with Vi

:ab eees Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eees' were typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is· no need for an abbreviation to be a single keystroke,
as it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which
we have introduced here. You can find these commands easily on the quick reference card.
They often save a bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation iD the display
The editor folds long logical lines onto many physical lines in the display. Commands

which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command I moves the cursor to a specific column, and may be useful for getting

• near the middle of a long line to split it in half. Try SOlon a line which is more than 80
columns long. t .

The editor only puts full lines on the display; if there is not enough room on the display
to fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as
a place holder. When you delete lines on a dumb terminal, the "editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maxim-

" izethe information on the sc:;reen by giving the AR command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se DueR to enable this, and the command :se nonueR to tum it off. You
can have tabs represented as AI and the en<is of lines indicated with '$' by giving the com
mand :se listeR; :se DolisteR turns this off.

Finally, lines consisting of only the character , ... are displayed when the last line in the
file is in the middle of the screen. These represent physical lines which are past the logical
end of tile.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

new window size
scroll amount
line/column number
repeat effect

:I?[[))"
AD AU
z G I
most of the rest

The editor maintains a notion of the current default window size. On terminals which
run at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals
which are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines
as the default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a

t You can make long lines very easily by using J to join to.gether shon lines.

An Introduction to Display Editing with Vi USD:15-19

new window size as count all often cause the screen to be redrawn. If you anticipate this, but
do not need as large a window as you are currently using, you may wish to change the screen
size by specifying the new size before these commands. ,In any case, the number of lines used
on the screen will expand if you move off the top with a - or similar command or off the bot
tom with a command such as RETURN or "'D. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands AD and AU likewise remember the amount of scroll last specified,
using half the basic window size initially. The simple insert commands use a count to specify
a repetition of the inserted text. Thus lOa+-ESC will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as .oR), the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus 5w advances five
words on the current line, while 5RETURN advances five lines. A very useful instance of a
count as a repetition is a count given to the • command, which repeats the last changing com
mand. If you do dw and then 3., you will delete first one and then three words. You can then
delete two more words with 2..

8.3. More file manipulation collUll8Dds
The following table lists the file manipulation commands which you can use when you

are in vi.. •

:w
.:wq
:x
:e name
:e!
:e + name
:e +n
:e #
:w name
:w! name
:X,JIW name
:r name
:r !cmd
:n
:n!
:n args
:ta lag

write back changes
write and quit
write (if necessary) 'and quit (same as ZZ).
edit file name
reedit, discarding'changes '
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at lag

All of these commands are followed by a CR or ESC. The most basic commands are :w and :e.
A normal editing session on a single file will end with a ZZ command. If you are editing for
a long period of time you can give :w commands occasionally after major amounts of editing,
and then finish with a ZZ. When you edit more than one file, you can finish with one with
a:wand start editing a new file by giving a:e command, or set aUlowrile and use :n <file>.

If you make changes to the editor's copy of a file, but do not wish to write them back,
then you must give an ! after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a + n \lrgu
ment to start at line n. In actuality, n may be any editor command not containing a space,
usefully a scan like +/pal or +?pal. In forming new names to the e command, you can use

t But not by a 4L which just redraws the screen as it is.

USD:lS·20 An Introduction to Display Editing with Vi

the character % which is replaced by the current filename, or the character # which is
replaced by the alternate file name. The alternate file name is generally the last name you
typed other than, the current file. Thus if you try to do, a :e and get' a diagnostic that you
haven't written the file, you can give a :w command and then a :e # command to redo the pre
vious :e.

You can write part of the bu1fer to a file by finding out'the'lines that bound the range to
be written using AG, and giving these numbers after the: and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the fotiD. ·x,) on the " com
mand here.

You can read another file into the bu1fer after the current line by using the :r command.
You can similarly read in the output from a command, just use!cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the com
mand line, and then edit each ODe in tum using the command:a It is also possible to
respecify the list of files to be edited by giving the :n command a list of file names, or a pat
tern to be expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes
a data base of function names and their locations, which can be created by programs such as
ctags, to quickly find a function whose name you give. If the :ta command will require the
editor to switch files, then you must :w or abandon any changes before switching. You can
repeat the :ta command without any arguments to look for the same tag again.

8.4. More about searching for strinp

When .you are searching for strings in the file with , and ? the editor normally places,
you at 'the next or 'previous occurrence 'of the string. If you are using an operator such as d, c
or y, then you may well wish to affect lines up to the line before the line containing the pat
tern. You C8Sl' give a search of the· form "patl-n to refer to the n'th line before the next line
containiDa pat, or you can use instead of _. to refer to the lines after the one containing pat.
If you don't give a line oifset, then the editor will affect characters up to the match place,
rather than whole lines; thus use .. +0" to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se iccR. The command :se DeiceR. turns this off.

Strings given to searches may actually be regular expressions. If you do not want or
need this facility, you should

set nomagic

in your EXINIT. In this case, only the characters t and $ are special in patterns. The charac
ter \ is also then special (as it is most everywhere in the system), and may be used to get at
the an extended pattern matching facility. It is also necessary to use a \ before a , in a for
ward scan or a ? in a backward scan, in any case. The following table gives the extended
forms when mqie is set.

t
$

\<
\>
[str]
[tstr)
[x-y1
•

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in SIr
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mooe, then the. (and * primitives are given with a preceding \.

An Introduction to Display Editing with Vi USD:15-21

8.5. More about input mode
There are a number of characters which you can use to make corrections during input

mode. These are summarized in the following table.·

AH deletes the last input character
AW deletes the last input word, defined as by b
erase your erase character, same as AH
kiD your kill character, deletes the input on this line
\ escapes a following AH and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
AD backtabs over autoindent
OAD kills all the autoindent
f'D same as ~D, but restores indent nextline
AV quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing AH to correct a single
character, or by typing one or more AW'S to back over incorrect words. If you use '# as your
erase character in the normal system, it will work like AH.

Your system kill character, normally @, AX or AU, will erase all the input you have given
on the current line. In general, you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to· end the
insertion, move over and make the correction, and then return to where you were to continue.
The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say '# or @) then you must precede it
with a \, just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a AV. The AV echoes as a t
character on which the cursor rests. This indicates that the editor expects you to type a con
trol character. In fact you may type any character and it will be inserted into the file at that
point.·

If you are using autoindent you can backtab over the indent which it supplies by typing
a AD. This backs up to a shi/twidth boundary. This only works immediately after the sup
plied autoindent.

When you are using autoindent you may wish to place a label at the left margin of a
line. The way to do this easily is to type t and then AD. The editor will move the cursor to
the left margin for one line, and restore the previous indent on the next. You can also type a
o followed immediately by a AD if you wish to kill all the indent and not have it come back
on the next line.

8.6. Upper case only terminals
If your terminal has only upper case, you can still use vi by using the normal system

convention for typing on such a terminal. Characters which you normally type are converted
to lower case, and you can type upper case letters by preceding them with a \. The characters
{ - } I . are not available on such terminals, but you can escape them as \(\ t \) \! Y. These

• This is not quite true. The implementation of the editor does not allow the NULL C@) character to ap
pear in files. Also the LF (linefeed or .J) character is used by the editor to separate lines in the file, so it
cannot appear in the middle of a line. You can insen any other character, however, if you wait for the edi
tor to echo the t before you type the character. In fact, the editor will treat a following letter as a request
for the corresponding control character. This is the only way to type "S or .Q. since the system normally
uses them to suspend and resume output and never gives them to the editor to process.

USD:15-22 An Introduction to Display Editing. with Vi

characters are represented on the display in the same way they are typed.*

8.7. Vi ad ex
Vi is actually one mode of editing within the editor ex. When you are running vi you

can escape to the line oriented editor of ex bygiviDg the command Q. All of the: commands
which were introduced above are· available in ex. Likewise; most ex commands can be
invoked from vi using:. Just give them without the : and foHow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish
by giving a command x after the : which ex prompts you with, or you can reenter vi by giving
ex a vi command.

There area number of things which you can do more easily in ex than in vi. Systematic
changes in line oriented material are particularly easy. You can read the advanced editing
documents for the editor ed to find out a lot more about this style of editing. Experienced
users often mix their use of ex command mode and vi command mode to speed the work
they are doing.

8.8. Open mode: vi on hardcopy terminals and "afass tty's" *
If you are on a hardcopy terminal or a terminal which does not have a cursor which can

move off the bottom line, you can still use the command set of vi. but in a differellt mode.
When you give a vi command, the editor will tell you that it is using open mode. This name
comes from the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way. in which the text is
displayed.

In open mode the editor uses a single line window into the file, and moving backward
and forWard in the file causes new lines to be displayed, always below the -current line. Two
commands of vi work differently in Open: z and AR. The z command does not take parame
ters, but rather draws a window of co.ntext around the current line and then returns you to the
current line.

If you are on a hardcopy terminal, the AR command will retype the current line. On
such terminals, the editor normally uses two lines to represent the current line. The first line
is a copy of the line as you started to edit it, and you work on the line below this line. When
you delete characters, the editor typeS a number of \'s to show you the characters which are
deleted. The editor also reprints the current line soon after such changes so that you can see
what the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in
the full screen mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler
helped bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through
2.7, and created the.framework that users see in the present editor. Mark Horton added mac
ros and other features and made the editor work on a large number of terminals and Unix
systems.

* The \ character youpve wiD not echo until you type anotber key.

Ex Reference Manual
Version 3.7

Wi/Ham Joy

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and
display oriented editing. This reference manual describes the command
oriented part of ex; the display editing features of ex are described in An
Introduction to Display Editing with Vi. Other documents about the editor
include the introduction Edit: A tutorial, the Ex/edit Command Summary,
and a Vi Quick Reference card.

1. Starting ex
Each instance of the editor has a set of options, which can be set to tailor it to your lik

ing. The command edit invokes a version of ex designed for more casual or beginning users
by changing the default settings of some of these options. To simplify the description which
follows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ
ment. It there is a TERM CAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the
TERMCAP variable contains a path name (beginning with a /) then the editor will seek the
description of the terminal in that file (rather than the default letcltermcap). If there is a
variable EXINIT in the environment, then the editor will execute the commands in that vari-·
able, otherwise if there is a file .exrc in your HOME directory ex reads commands from that
file, simulating a source command. Option setting commands placed in EXINIT or .exrc will
be executed before each editor session.

A command to enter ex has the following prototype:t

ex [-] [-v] [-t tag] [-r] [-I] [-wn] (-x] [-R] (+command] name .. ,

The most common case edits a single file with no options, Le.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The -v option is equivalent to using vi rather
than ex. The -t option is equivalent to an initial lag command, editing the file containing the
tag and positioning the editor at its definition. The -r option is used in recovering after an

The financial suppon of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.
t Brackets '[' 'f surround optional parameters here.

USD:16-2 Ex Reference Manual

editotor system crash, retrieving the last saved version of the named file or, if no file is
specifi~ typing a list of saved files. The -I option sets up for editing usp, setting the
showmatch and lisp options. The -w option sets the default window size to n. and is useful
on dialups to start in small windows. The -x option causes ex to prompt for a key, which is
used to encrypt and decrypt the contents of the tile, which should already be encrypted using
the same key, see crypt(l). The -R option sets the readonly option at the start. Name argu
ments indicate ftles to be edited. An argument of the form +commami indicates that the edi
tor should begin by executing the specified command. If command is omitt~ then it
defaults to '"$", positioning the editor at the last line of the first file initially. Other useful
commands here are scanning patterns of the form "'pat" or line numbers, e.g. "+ 100" start
ing at line 1 00.

%. File lIlaDipuiatiOD

%,1. CurreDt file

Ex is normally editing the contents of a single file, whose name is recorded in the
cu"ent file name. ~ performs all editing actions in a buifer (actually a temporary file) into
which the text of the file is initially read. Changes made to the buffer have no effect on the
file being edited unless and until the buffer contents are written out to the file with a write
command. After the buifer contents are written, the previous contents of the written file are
no longer accessible. When a· file is edited, its name becomes the current file name, and its
contents are read into the buifer.

The current tile is almost always considered to be edited. This means that the contents
of the buifer are logically connected with the current file name, so that writing the current
buifer contents onto that· file, even if it exists, is a reasonable action.· If the current file is not
edited then ex will not normally write on it if it already exists. *

2.2. Alternate file
Each time a new value is given to the current file name, the previous current file nameis

saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven-·
tions. In addition, the character 'C)Q' in filenames is replaced by the current file name and the
character ''II' by the alternate file name. t

%,4. Multiple files and named buft'ers

If more than one file is given on the command line. then the first file is edited as
described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the
argument list may be edited with the next command. The argument list may also. be
respecified by specifying a list of names to the next command. These names are expanded,
the resulting list of names becomes the new argument list, and ex edits the first file on the
list.

For saving blocks of text while editing. and especially when editing more than one file,
ex has a group of named buffers. These are similar to the normal buffer, except that only a
limited number of operations are available on them. The buft'ershave name~ a through z.:t

• The file command will say "'{Not edited)" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name sup..

. plied on an edit command after a No write since last change diaan~ is received. * It is also possible to·refer to A throush Z: the upper case bulfers aretbe same 8$ the lower but COmmands
append to named butTers rather than replacinl if upper case names are I,lsed.

Ex Reference Manual USD:16-3

2.S. Read only

It is possible to use ex in read only mode to look at files that you have no intention of
modifying. This mode protects you from accidently overwriting the file. Read only mode is
on when the readonly option is set. It can be turned on with the -R command line option, by
the view command line invocation, or by setting the readonly option. It can be cleared by
setting noreadonly. It is possible to write, even while in read only mode, by indicating that
you really know what you are doing. You can write to a different file, or can use the ! form of
write, even while in read only mode.

3. Exceptioaal Conditions

3.1. Errors and interrupts •
When errors occur ex (optionally) rings the terminal bell and, in any case, prints an

error diagnostic. If the primary input is from a file, editor processing will terminate. If an
interrupt signal is received, ex prints "Interrupt" and returns to its command level. If the
primary input is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will at~empt to preserve the buffer. The next time you log in you should be
able to recover the work you were doing, losing at most a few lines of changes from the last
point before the hangup or editor crash. To recover a file you can use the -r option. If you
were' editing the file resume, then you should change to the directory where you were when
the'crash occurred, giving the command .

ex -r resume

, After checking that the retrieved file is indeed ok, you can write it over the previous contents
of that file.

You will normally get mail from the system telling you when a file has been saved after
a crash. The command

ex-r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are
entered in command mode when a ':' prompt is present, and are executed each time a com
plete line is sent. In text input mode ex gathers input lines and places them in the file. The
append, insert. and change commands use text input mode. No prompt is printed when you
are in text input mode. This mode is left by tYPing a'.' alone at t.he beginning of a line, and

,command mode resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at ,a time on any terminal while visual works on CRT terminals with random posi
tioning cursors, using the screen as a (single) window for file editing changes. These modes
ar~ described (only) in An Introduction to Display Editing with Vi.

USD:l6-4 Ex Reference Manual

5. Commaad structure
Most· command names are English wordst and initial prefixes of the words are accept

able abbreviatioos. The ambiguity of abbreviations is resolved in favor of the more com-
monly used commands. * . .

5.1. ComlD8Dd parameters
Most commands accept prefix addresses SpeCifying the lines in the file upon which they

are to have etrect. The forms of these addresses will be discussed below. A number of com
mands also may take a trailiog count specifying the number of lines to be iovolved in the
command.t Thus the command "lOp" will print the tenth line in the butrer while "delete 5"
will delete five lines from the buft'er, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.*

5.1. CODlIll8D4l variants

A number of commands have two distinct variants. The variant form of the command
is invoked by placing an '!' immediately after the command name. Some of the default vari
ants may be controlled by options; in this case, the '!' serves to toggle the default.

5.3. Flags after comDlaJuis •
The characters 'fI', 'p' and '1' may be placed after many commands. ** In this case, the

command abbreviated by these characters is executed after the command cpmpletes. Since
ex normally prints the new current line after each change, 'p' is rarely necessary. Any
number of '+' or '-' characters may alsO be given with these flags. If they appear, the
SpeCified otrse~ is applied to the current line value ·before th~ printing command is executed.

5.4. CoriuneDts
It is poSsible to give editor commands which are ignored. This is useful when making

complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with " is ignored. Comments beginning with " may
also be placed at the ends of commands, except in cases where they could be confused as part
of text (shell escapes and the substitute and map commands).

5.5. Multiple commands per Hne
More than one command may be placed on a line by separating each pair of commands

by a '" character. However the global commands, comments, and the shell escape '!' must be
the last command on a line, as they are not terminated by a "'.

5.6. Reporting large cbaDges
Most commands which change the contents of the editor buffer give feedback if the

scope of the change exceeds a threshold given by the report option. This feedback helps to
detect undesirably large changes so that they may be quickly and easily reversed with an
undo. After commands with more global effect such as global or visual, you will be informed
if the net change in the number of lines in the buffer during this command exceeds this thres
hold.

• As an example, the command substitute can be abbreviated '5' while the shonest available abbreviation
for the set command is 'se'.
t Counts are routlded down ifnec:essary. * Examples would be option names in a set command i.e. "set number", a file lWne in an edit command. a
regular expression in a substitute command, or a tarpt address for a copy command, i.e. "1,5 copy 25" .
.. A 'p' or 'I' must be preceded by a blank or tab except in the single SJ)eew·case 'dp'.

Ex Reference Manual USD:16·5

6. Command addressing

6.1. Addressing primitives

n

$
%

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the
current line, thus'.' is rarely used alone as an address.

The nth line in the editor's buffer, lines being numbered sequentially
from 1.

The last line in the buffer.

+n -n
lpatl ?pat?

An abbreviation for "l,S", the entire buffer.

An offset relative to the current buffer line. t
Scan forward and backward respectively for a line containing pat, a reg
ular expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line contain
ing pat, then the trailing I or ? may be omitted. If pat is omitted or
explicitly empty, then the last regular expression specified is located.;

-'x Before each non-relative motion of the current line '.', the previous
current line is marked with a tag, subsequently referred to as ,..,. This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command, using single lower case
letters x and the marked lines referred to as "x'.

6.1. Combining addressing primitives

. Addresses to commands consist of a ~ries of addressing primitiveS, separated by',' or
';'. Such· address lists are evaluated left-ta-right. When addresses are separated by';' tne'
current line'.' is set to the value of the previous addressing expression before the next address
is interpreted.'. If more addresses are given than the' command requires, then all but the last
one or two are ignored. If the command takes two addresses, the first addressed line must
precede the second in the buffer. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with. use from within visual mode, ex ignores a ":" preceding any com
mand .

.In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word
is typed as a complete word, it will be changed to rhs.

t The forms ',+3' '+3' and '+++' are all equivalent; if the current line is line 100 they all address line 103, * The forms V and \1 scan using the last reauJar expression used in a scan; after a substitute /I and 11
would scan using the substitute's regular expression,
t Null address specifications are permiued in a list of addresses. the default in this case is the current line
':; thus ',100' is equivalent to ' .. 100', It is an error to give a prefix address to a command which expectS
none,

• •

USD:16-6 Ex Reference Manual

(•) append
text

abbr. a

at
text

Reads the input text and places it after the specified line. After the command, '.'
addresses the last line input or the specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

The variant flag to append toggles the setting for the· autoindent option during the input
of text.

The members of the argument list are printed, with the current argument delimited by
'[' and 'J'.

(• , •) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(• , .) copy addr flags abbr: co
A copy of the specified lines is placed after addr. which may be '0'. The current line '.'
addresses the last line of the copy. The command t is a synonym for copy.

(• , .)deJete buffer count flags abbr. d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file

abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.
If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the

t I.e., that it is not a binary file such as a directory, a block or character special file other than Idev/tty. a
terminal, or a binary or executable tile (as indicated by the tirst word).

Ex Reference Manual USD:16-7

e! file

trailing newline character, it will be supplied and a complaint will be issued. This com
mand leaves the current line '.' at the last line read.;

The variant form suppresses the complaint about modifications having been made and
not written from the editor buffer, thus discarding all changes which have been made
before editing the new file.

e +nfile

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been '[Modified)' since the last write com
mand, whether it is read only, the current line, the number of lines in the buffer, and
the percentage of the way through the buffer of the current line.·

file file
The current file name is changed to file which is considered '[Not edited)'.

(1 , $) globallpall cmds abbr: g
First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with • .' initially set to each marked line.

The command list consists of the remaining commands on the current input line and
may continue to multiple lines by ending all but the last such line with a '\'. If .cmds
(and possibly the trailing I delimiter) is omitted, each line" matching pat is printed.
Append. insert. and change commands and associated input are permitted; the '.' ter
minating input may be omitted if it would be on the last line of the command list.
Open and visual commands are permitted in the command list and take input from the
terminal.
The global command itself may not appear in cmds. The undo command is also not
permitted there, as undo instead can be used to reverse the entire global command.
The options aUloprinl and autoindent are inhibited during a global. (and possibly the
trailing I delimiter) and the value of the report option is temporarily infinite, in defer
ence to a report for the entire global. Finally, the context mark ,.., is set to the value of
'.' before the global command begins and is not changed during a global command,
except perhaps by an open or visual within the global.

g! I pall cmds abbr: v
The variant form of global runs cmds at each line not matching pal.

(.)insert
text

abbr: i

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line: This com
mand differs from append only in the placement of text.

* If executed from within open or visual, the current line is initially the first line of the file.
• In the rare case that the current file is '[Not edited], this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer. .

USD:16-8 Ex Reference Manual

if
text

The variant toggles autoindent during the insen.

(• , .+ 1) join count flags abbr: j

J!

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a '.' at
the end of the line, or none if the first following character is a')'. If there is already
white space at the end of the line, then the white space at the start of th~ next line will
be discarded.

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.) k x
The k command is a synonym for mark. It does not require a blank or tab before the
following letter.

(• , •) list count flags
Prints the specified lines in a more unam~iguous way: tabs are printed as "'T and the

" end of each line is. marked with a trailing'S' .. The current line is left at the las~ line
printed. " "

.. ,"[hs"rhs
The map command is used to define macros for use in visual mode. Lhs should be a
single character, or the sequence "#0", for n a digit, referring to function key n. Wben
this character or function key is typed in visual" mode, it will be as though the
corresponding rhs had been typed. On terminals without function keys, you can type
"#0". "See section 6.9 of the "Introduction to Display Editing with Vi" for more details.

(.) mark x
Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form "x' then addresses this line. The current line is not
affected by this command.

(.,.)moveadt/r abbr:.

next

D!

The move command repositions the specified tines to be after addr. The first of the
moved lines becomes the current line.

abbr: n

The next Dle from the command line argument list is edited.

Tbe variant· suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

Ex Reference Manual USD:16-9

nfi/elist
n + command fi/elist

The specified fi/elist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(• , •) number count flags abbr: # or nu
Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(•) open flags abbr: 0

(•) open / pat / flags
Enters intraline editing open mode at each addressed line. If pat is given, then the cur
sor will be placed initially at the beginning of the string matched by the pattern. To exit
this mode use Q. See An Introduction to Display Editing with Vi for more details.

preserve
The current editor buffer is saved as though the system had just crashed. This com
mand is for use only in emergencies when a write command has resulted in an error and
you don't know how to save your work. After a preserve you should seek help.

(. , .) print count abbr: p or P
Prints the specified lines with non-printing characters printed as control characters 'AX';
delete (octal 177) is represented as ""1'. The current line is left at the last line printed. .

(.) put buffer .. abbr: pu

quit

'I!

Puts back previously deleted or yanked lines. Normally used with delete to effect move- .
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then
the last deleted or yanked text is restored.· By using a named buffer, text may be
restored that was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write com
mand was issued, and does not quit.f Normally, you will wish to save your changes, and
you should give a write command; if you wish to discard them, use the q! command
variant.

Quits from the editor, discarding changes to the buffer without complaint.

(•) read file abbr: r
Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current tile name is used. The current file name is not changed
unless there is none in which case file becomes the current name. The sensibility res
trictions for the edit command apply here also. If the file buffer is empty and there is
no current name then ex treats this as an edit command.

• But no modifying commands may intervene between the delete or yank and the put. nor may lines be
moved between files without using a named buffer. .
t Ex will also issue a diagnostic if there are more tiles in the argument list.

USD:16-10 Ex Reference Manual

Address '0' is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter
minates. After a read the current line is the last line read.;

(•) read !command
Reads the output of the command command into the buffer after the specified line.
This is not a variant form of the command, rather a read specifying a command rather
than a filename; a blank or tab before the ! is mandatory.

recover file
Recovers file from the system save area. Used after a accidental hangup of the phone**
or a system crash** or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rew!
Rewinds the argument list discarding any changes made to the current buffer.

set parameter

shell

With no arguments, prints those options whose values have been c~anged from their
defaults; with parameter all it prints all of the option values.

Giving an option- name foll()wed by a. '?' causes the current yalue of that option to be
printed.' The '1' is unnecessary unless the option is Boolean valued. Boolean options
are given values either by the form 'set option' to turn them on or 'set nooption' to tum
them off; string and numeric options are assigned via the form 'set option-value'.

More than one parameter may be given to set; they are interpreted left-ta-right.

abbe: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be
nested.

(• , •) substitute IpatJrepl! options count flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pat
tern repl. If the global indicator option character 'g' appears, then all instances are sub
stituted; if the confirm indication character 'c' appears, then before each substitution the
line to be substituted is typed with the string to be substituted marked with 'f charac
ters. By typing an 'y' one can cause the substitution to be performed, any other input
causes no change to take place. After a substitute the current line is the last line substi
tuted.

Lines may be split by substituting new-line characters into them. The newline in repl
must be escaped by preceding it with a '\'. Other metacharacters available in pat and
repl are described below.

* Within open and visual the current line is set to the first line read rather than the last .
•• The system saves a copy of the file you were editing only if you have made changes to the file.

Ex Reference Manual USD:16-11

stop
Suspends the editor, returning control to the top level shell. If autowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(• , •) substitute options count jlags abbr: s
If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(.,.)taddrjlags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.;
The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using 'Ipatl' to be immune to minor changes in the file. Such scans are always per
formed as if nomagic was set.
The tag names in the tags file ~LlSt be sorted alphabetically.

unabbreviate word abbr: una
Delete word from the list of abbreviations.

undo abbr: u
Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are
open and visual.) Also, the commands write and edit which interact with the file system
cannot be undone. Undo is its own inverse.
Undo always marks the previous value of the current line '.' as , ... After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap lhs

The macro expansion associated by map for lhs is removed.

(1 , $) v Ipatl cmds

A synonym for the global command variant g!, running the specified cmds on each line
.which does not match pat.

v~rsion abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

; If you have modified the current file before giving a tag command, you must write it out; giving another
tag command, specifying no tag will reuse the previous tag.

USO:16·12 Ex Reference Manual

(•) visual type count flags abbr: vi
Enters visual mode at the specified line. Type is optional and may be '-' , 'f or ' .. as in
the z command to specify the placement of the specined line on the screen. By default.
if type is. omitted. the specmed line is placed as the first on the screen. A count specifies
an initial window size; the default· is the value of the option window. See the document
An Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $) writefile abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file.· If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that
there has been "No write since last change" even if the buffer had not previously been
modified.

(1 , $) write» file abbr: w»

Writes the bWfer contents 'at the end of an existing file.

w!name
. Overrides the checking of the normal write command, and will write to any file which
the system permits.

(1 , $) w !command
Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name
Like a write and then a quit command.

wq! name
The variant overrides checking on the sensibility of the write command, as w! does.

xit name
If any changes have been made and not written, writes the buffer out. Then, in any
case, quits.

(• , •)yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer
Dame is specified, the lines go to a more volatile place; see the put command description.

• The editor writes to a file only if it is the current file and is edited. if the file does \lOt exist. or if the file is
actually a teletype, Idevltty. IdevlnuJl. Otherwise, you must give the variant foml wf lOforce the write.

Ex Reference Manual USD:16-13

(.+1) z count
Print the next count lines, default window.

(•) z type count
Prints a window of text with the specified line at the top. If type is '-' the line is placed
at the bottom; a '.' causes the line to be placed in the center.· A count gives the number
of lines 10 be displayed rather than double the number specified by the scroll option. On
a CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command
The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters 'qQ' and '#' are expanded as in filenames and the
character '!' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.
If there has been "[No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning.
A single '!' is printed when the command completes.

(addr , addr) ! command
Takes the specified address range and supplies it as standard input to command; the
resulting output then replaces the input lines.

($)-
Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count flags
(. , .) < count flags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shifiwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white
characters are discarded in a left-shift. The current line becomes the last line which
changed due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+1)
(.+1,.+1)1

An address alone causes the addressed.lines to be printed. A blank line prints the next
line in the file.

(• , •) & options count flags
Repeats the previous substitute command.

• Forms 'z.' and 'zf also exist; 'z*' places the current line in the center, surrounds it with lines of' -' char
acters and leaves the current line at this line. The form 'zf prints the window before 'z-' would. The char
acters '+', 'f and '-' may be repeated for cumulative effect. On some v2 editors, no type may be given.

USD:16-14 Ex Reference Manual

(• , •) .. options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patteras

8.1. Regular expressions
A regular expression specifies a set of strings of characters. A member of this set of

strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous
regular expression used elsewhere (referred to as the previous scanning regular expression.)
The previous regular expression can always be referred to by a null re, e.g .• , r or "n'.

8.2. Magic and IIOmaaiC

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default settiq of magic gives quick access to
a powerful set of regular expression metacharacters. The disadvantage of magic is that the
user must remember that these metacharacters are magic and precede them with the charac
ter '\' to use them as "ordinary" characters. With nomagic, the default for edit, regular
expressions are much simpler, there being only two metacharacters. The power of the other
metacharacters is still available by preceding the (now) ordinary character with a "'. Note
that '\' is thus always a meta character.

The remainder of the discuss~on of regular expressions assumes that that the setting of
this option is magic. t . :

8;.3. Basic reauJar expression sUIIIIIW'Y ..
The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters 't' at the beginning of a
line, 'S' at the end of line ••• ' as any character other than the first, ':, ',', '[',
and are not ordinary characters and must be escaped (preceded) by'" to
be treated as such.

t At the beginning of a pattern forces the match to succeed only at the begin
ning of a line.

S At the end of a regular expression forces the match to succeed only at the end
of the line.

\<

\>

(string]

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under
line and after a character not one of these.

Similar to "<', but matching the end of a "variable" or "word", i.e. either
the end of the line or before character which is neither a letter, nor a digit,
nor the underline character.
Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by '-' in string
defines the set of characters collating between the specified lower and upper
bounds, thus '[a-z]' as a regular expression matches any (single) lower-ease

t To discern what is true with nomagic it suffices to remember that the only special characters in this case
will be 't' at the beginning of a regular expression, 'SO at the end of a :repIar expression, and '\'. With
"omag;c the characters ,-, and '8r.' also lose their special meaninp related to the replacement panem of a
substitute.

•

Ex Reference Manual USD:16-15

letter. If the first character of string is an T then the construct matches
those characters which it otherwise would not; thus '[ta-z), matches anything
but a lower-case letter (and of course a newline). To place any of the charac
ters T, '[', or '-' in string you must escape them with a preceding '\'.

8.4. Combining regular expression primitives
The concatenation of two regular expressions matches the leftmost and then longest

string which can be divided with the first piece matching the first regular expression and the
second piece matching the second. Any of the (single character matching) regular expressions
mentioned above may be followed by the character •• ' to form a regular expression which
matches any number of adjacent occurrences (including 0) of characters matched by the regu
lar expression it follows.

The character .~, may be used in a regular expression, and matches the text which
defined the replacement part of the last substitute command. A regular expression may be
enclosed between the sequences .\(' and ·w with side effects in the substitute replacement
patterns.

8.5. Substitute replacement patterns
The basic -metacharacters for the replacement pattern are '&' and ,-.; these are given as

'\&' and .\ when nomagic is set. Each instance of '&' is replaced by the characters which
the regular expression matched. The metacharacter .-. stands, in the replacement pattern, for
the defining text of the previous replacement yattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character '\'. The sequence '\n'is replaced by the text matched by the n-th regular
subexpression enClosed between '\(' and ·W.t The sequences "u' and '\1' cause the immedi"
ately following character in the replacement to be converted to upper- or lower-case respec
tively if this character is a letter. The sequences '\U' and '\1' turn such conversion on, either
until '\E' or '\e' is encountered, or until the end of the replacement pattern.

9. Option descriptions

auto indent, ai default: noai
Can be used to ease the preparation of structured program text. At the beginning of
each append, change or insert command or when a new line is opened or created by an
append, change, insert, or substitute operation within open or visual mode, ex looks at
the line being appended after, the first line changed or the line inserted before and calcu
lates the amount of white space at the start of the line. It then aligns the cursor at the
level of indentation so determined.
If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following
line will start aligned with the first non-white character of the previous line. To back
the cursor up to the preceding tab stop one can bit AD. The tab stops going backwards
are defined at multiples of the shiftwidth option. You cannot backspace over the
indent, except by sending an end-of-file with a AD.
Specially processed in this mode is a line with no characters added to it, which turns
into a completely blank line (the white space provided for the autoindent is discarded.)
Also specially processed in this mode are lines beginning with an T and immediately
followed by a AD. This causes the input to be repositioned at the beginning of the line,
but retaining the previous indent for the next line. Similarly, a '0' followed by a AD

t When nested. parenthesized subexpressions are present, n is detennined by counting occurrences of '\('
starting from the left.

U5D:16·16 Ex Reference Manual

repositions at· the beginning but without retaining the previous indent.

.A.utoindent doesn't happen in global commands or when the input is not a terminal.

autopriat, ap default: ap

Causes the current line to be printed after each delete , copy, join, move, substitute, t,
undo or shift command. This has the same effect as supplying a trailing 'p' to each such
command. .A.utoprint is suppressed in globals, and only applies to the last of many com
mands on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rewind, stop, tag, or! command, or a At (switch files) or ") (tag goto)
command in visual. Note, that the edit and ex commands do Dot autowrite. In each
case, there is an equivalent way of switching when autowrite is set to avoid the
autowrite (edit for next, rewind! for .I rewind, stop! for stop, lag! for tag, shell for!,
and :e f# and a :tat command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
. input .. A complaint is registered the first time a backspace character is discarded. Beau

tify does not apply to command input.

directory, dir default: dir-/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,'
,then the'editor will exit'abruptly when it fails to be able to,create its buffer thete .

edcompadble . defaUlt: noedcompatible

Causes the presence of absence of II and e suffixes on substitute commands to be remem
bered, and to be· toggled by repeating the suffices. The suffix r makes the substitution be
as in the ~ command, instead of like &.

errorbells, eb default: noeb

Error messages are preceded by a bell.· If possible the editor always places the error
message in a standout mode of the terminal (such as inverse video) instead of ringing
the bell.

hardtabs, ht default: ht-8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

igaoreease, ie default: noic

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

lisp . default: nolisp

.A.utoindent indents appropriately for lisp code, and the () { } II and II commands in
open and visual are modified to have meaning for lisp.

• Bell ringing in open and visual on errors is Dot suppressed by settiq noeb.

Ex Reference Manual USD:16-17

list default: nolist
All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic default: magic for ex and vit
If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only 'r and'S' having special effects. In addition the metacharacters and '&' of
the replacement pattern are treated as normal characters. All the normal metacharacters
may be made magic when nomagic is set by preceding them with a '\'.

default: mesg
Causes write permission to be turned off to the terminal while you are in visual mode, if
namesg is set.

mocieline default: nomodeline
If modeline is set, then the first 5 lines and the last nve lines of the file will be checked
for ex command lines and the comands issued. To be recognized as a command line,
the line must have the string ex: or Yi: preceeded by a tab or a space. This string may be
anywhere in the line and anything after the : is intet;peted. as editor commands. This
option defaults to off because of unexpected behavior when editting files such as
letclpasswd.

number, nu default: nonumber
Causes all output lines to be printed with their line numbers. In addition each input
line will be· prompted for by supplying the line nu~ber it will have .

open. . default: open

. If noopen, the commands open and visual are not permitted. This is set for edit to
prevent confusion resulting from accidental entry to open or visual mode ..

optimize, opt default: optimize
Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP LIbp
Specifies the paragraphs for the { and } operations in open and visual. The pairs of
characters in the option's value are the names of the macros which start paragraphs.

-prompt default: prompt
Command mode input is prompted for with a':'.

redraw default: noredraw
The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t NOmtlgic for edit.

.
USD:16-18 Ex Reference Manual

remap default: remap

If on, macros are repeatedly tried until they are unchanged. For example, if 0 is
mapped to 0, and 0 is mapped to I, then if remap is set, 0 will map to I, but if
noremap is set, it will map to O. .

report default: report-Sf
Specifies a threshold for feedback from commands. Aay command which modifies more
than the specified. number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visutJI which have potentially more far
reaching scope, the net change in· the number of lines in the buffer is presented at the

.end of the command, subject to this same threshold. Thus notincation is suppressed
during a globa/ command on the individual commands performed.

scroD default: scroll .. 1f2 window

Determines the number of logical lines scrolled when an end-of-ftle is received from a
terminal input in command mode, and the number of lines printed by a command mode
z command (double the value of serol/).

default: sections-SHNHH HU

Specifies the section macros for the ((and II operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

sbell,sb default: sh-Ibinlsb

Gives the path name of the sh.eU forked for the sbell escape command '!', and by the
. shell command. The default is taken from $HELL in the environment, if present.

sbiftwidtb, sw default: sw .. 8
. Gives the width a software tab stop, used in reverse tabbing with "D when using autoin
dent to append text, and by the shift commands.

sbowmatcb, sm default: n05m

In open and visual mode, when a) or } is typed, move the cursor to the matching (or
{ for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen. slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and
unintelligent. See A.n Introduction to Display Editing with Vi for more details.

tabstop, ts default: ts",8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display. •

tagjengtb, tI default: tl '" 0
Tags are not significant beyond this many characters. A value of zero (the default)
means that all characters are significant.

t 2 for edit.

Ex Reference Manual USD:16-19

tags default: tags=tags lusrllib/tags

A path of files to be used as tag files for the tag command. A requested tag is searched
for in the specified files, sequentially. By default, files called tags are searched for in the
current directory and in lusrllib (a master file for the entire system).

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window-speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300,wI200,w9600
These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitab!~ for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, WI default: ws

SearcheS . using the regular expressions in addressing will wrap around past the end of the
file.

wraplllal'lin, WID default: wm=O

Defines· a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow ..

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the
previous inserted and deleted text in open or visual. 100 characters in a shell escape com
mand, 63 characters in a string valued option, and 30 characters in a tag name, and a limit of
250000 lines in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and
the total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesignwbich led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals
and Unix systems.

•

JOVE Manual for UNIX Users USD:17-1

JOVE Manual for UNIX Users

Jonathan Payne
(revised for 4.3BSD by Doug Kingston and Mark Seiden)

1. Introduction
JOVE· is an advanced, self-documenting, customizable real-time display editor. It (and this tutorial
introduction) are based on the original EMACS editor and user inanual written at M.I.T. by Richard
Stallman+.
JOVE is considered a display editor because normally the text being edited is visible on the screen and
is updated automatically as you type your commands.
It's considered a real-time editor because the display is updated very frequently, usually after each
character or pair of characters you type. This minimizes the amount of information you must keep
in your head as you edit.
JOVE is advanced because it provides facilities that go beyond simple insertion and deletion: filling of
text; automatic indentations of programs; view more than one tile at once; and dealing in terms of
characters, words, lines, sentences and paragraphs. It is much easier to type one command meaning
• go to the end of the paragraph· than to find the desired spot with repetition of simpler commands.
Se/f-documenting means that at almost any time you can easily find out what a command does, or to
find all the commands that pertain to a topic.
Customizable mear'! that you can change the definition of JOVE commands in little ways. For exam
ple, you can rearrange the command set; if you prefer to use arrow keys for the four basic cursor
motion commands (up,. down, left and right), you can.· Another sort of customization is writing new
commands by combining built in commands.

1. The Organization of the ~n
JOVE divides the screen up into several sections. The biggest of these sections is used to display the
text you are editing. The terminal's cursor .shows the position of point, the location at which editing
takes place. While the cursor appears to point at a character, point should be thOUght of as between
characters; it points before the character that the cursor appears on top of. Terminals have only one
cursor, and when output is in progress it must appear where the typing is being done. This doesn't
mean that point is moving; it is only that JOVE has no way of showing you the location of point
except when the terminal is idle.
The lines of the screen are usually available for displaying text but sometimes are pre-empted by
typeout from certain commands (such as a listing of all the editor commands). Most of the time, out
put from commands like these is only desired for a short period of time, usually just long enough to
glance at it. When you have finished looking at the output, you can type Space to make your text
reappear. (Usually a Space that you type inserts itself, but when there is typeout on the screen, it
does nothing but get rid of that). Any other command executes normally, after redrawing your text.

1.1. The Message Line
The bottom line on the screen, called the message line, is reserved for ·printing messages and for
accepting input from the user, such as filenames or search strings. When JOVE prompts for input, the
cursor will temporarily appear on the bottom line, waiting for you to type a string. When you have
finished typing your input, you can type a Return to send it to JOVE: If you change your mind about
running the command that is waiting for input, you can type Control-G to abort, and you can

·JOVE stands for Jonathan's Own Version of Emacs.
+Although JOVE is meant to be compatible with EMACS, and indeed many of the basic commands are very
similar, there are some major differences between the two editors, and you should not rely on their behav
ing identically.

USD: 1 7·2 JOVE Manual for UNIX Users

continue with your editing.

When JOVE is prompting for a filename, all the usual editing facilities can be used to fix typos and
such; in addition, JOVE has the following extra functions:

AN Insert the next filename from the argument list.

"'p Insert the previous filename from the argument list.

.oR Insert the full pathname of the file in the current buffer.

Sometimes you will see -more- on the message line. This happens when typeout from a command is
too long to fit in the screen. It means that if you type a Space the next screenful of typeout will be
printed. If you are not interested, typing anything but a Space will cause the rest of the output to be
discarded. Typing CoG will discard the output and print Aborted where the -more- was. Typing any
other command will discard the rest of the output and also execute the command.

The message line and the list of filenames from the shell command that invoked JOVE are kept in a
special buffer called Minibujthat can be edited like any other buffer.

2.2. The Mode Line

At the bottom of the screen, but above the message line, is the mode line. The mode line format
looks like this:

JOVE (major minor) BufI'er: bufr "file" *
major is the name of the current major mode. At any time, JOVE can be in only one major mode at a
time. Currently there are only four major modes: Fundamental, Text, Lisp and C.

minor is a list of the minor modes that are turned on. Abbrev means that Word Abbrev mode is on;
AI means that Auto Indent mode is on; Fill· means that Auto Fill mode is on; OvrWt means that Over
Write mode is on. Def means that you are in the process of defining a keyboard macro. This is not
really a mode, but it's useful to be reminded' about it. The meanings of these modes are described
later in this docuJ;11ent.

bufr is the name of the currently selected buffer. Each buffer has its own name and holds a file being
edited; this is how JOVE can hold several files at once. But at any given time you are editing only one
of them, the selected buffer. When we speak of what some command does to "the buffer", we are talk·
ing about the currently selected buffer. Multiple buffers makes it easy to switch around between
several files, and then it is very· useful that the mode line tells you which one you are editing at any
time. (You will see later that it is possible to divide the screen into multiple windows, each showing a
different buffer. If you do this, there is a mode line beneath each window.)

file is the name of the file that you are editing. This is the default filename for commands that expect
a filename as input.

The asterisk at the end of the mode line means that there are changes in the buffer that have not been
saved in the file. If the file has not been changed since it was read in or saved, there is no asterisk.

3. Command Input Conventions

3.1. NotationaJ Conventions for ASCII Characters

In this manual, "Control" characters (that is, characters that are typed with the Control key and some
other key at the same time) are represented by "C·" followed by another character. Thus, C-A is the
character you get when you type A with the Control key (sometimes labeled CTRL) down. Most con
trol characters when present in the JOVE buffer are displayed with a caret; thus, AA for C-A. Rubout
(or DEL) is displayed as t, escape as Ar.

3.2. Command and Filename Completion

When you are typing the name of a JOVE command, you need type only enough letters to make the
name unambiguous. At any point in the course of typing the name, you can type question mark (1) to

JOVE Manual for UNIX Users USD:17-3

see a list of all the commands whose names begin with the characters you've already typed; you can
type Space to have JOVE supply as many characters as it can; or you can type Return to complete the
command if there is only one possibility. For example, if you have typed the letters "au" and you
then type a question mark, you will see the list

auto-execute-command
auto-execute-macro
auto-fill-mode
auto-indent-mode

If you type a Return at this point, JOVE will complain by ringing the bell, because the letters you've
typed do not unambiguously specify a single command. But if you type Space, JOVE will supply the
characters "to-" because all commands that begin "au" also begin "auto-no You could then type the
letter "f followed by either Space or Return, and JOVE would complete the entire command.

Whenever JOVE is prompting you for a filename, say in the find-file command, you also need only type
enough of the name to make it unambiguous with respect to files that already exist. In this case,
question mark and Space work just as they do in command completion, but Return always accepts
the name just as you've typed it, because you might want to create a new file with a name similar to
that of an existing file.

4. Commands and Variables

JOVE is composed of commands which have long names such as next-line. Then keys such as C-N are
connected to commands through the command dispatch table. When we say that C-N moves the cur
sor down a line, we are glossing over a distinction which is unimportant for ordinary use, but essen
tial for simple customiiation: it is the command next-line which knows how to move a down line,
and C-N moves down a line because it is connected to that command. The name for this connection
is a binding; we say that the key C-N is bound to the command next-line.
Not all commands are bound to keys. To invoke a command that isn't bound to a key, you can type
the sequence ESC X, which is bound to the command execute-named-command. You will then be
able to type the name of whatever command you want to execute on the message line.

Sometimes the description of a command will say "to change this, set the variable mumble-foo". A
variable is a name used to remember a value. JOVE contains variables which are there so that you can
change them if you want to customize. The variable's value is examined by some command, and
changing that value makes the command behave differently. Until you are interesting in customizing
JOVE, you can ignore this information.

4.1. Prefix Characters

Because there are more command names than keys, JOVE provides prefix characters to increase the
number of commands that can be invoked quickly and easily. When you type a prefix character JOVE
will wait for another character before deciding what to do. If you wait more than a second or so,
JOVE will print the prefix character on the message line as a reminder and leave the cursor down there
until you type your next character. There are two prefix characters built into JOVE: Escape and
Control-X. How the next character is interpreted depends on which prefix character you typed. For
example, if you type Escape followed by B you'll run backward-word, but if you type Control-X fol
lowed by B you'll run select-buffer. Elsewhere in this manual, the Escape key is indicated as "ESC",
which is also what JOVE displays on the message line for Escape.

4.2. Help

To get a list of keys and their associated commands, you type ESC X describe-bindings. If you want
to describe a single key, ESC X describe-key will work. A description of an individual command is
available by using ESC X describe-command, and descriptions of variables by using ESC X describe
variable. If you can't remember the name of the thing you want to know about, ESC X apropos will
tell you if a command or variable has a given string in its name. For example, ESC X apropos
describe will list the names of the four describe commands mentioned briefly in this section.

USD: 1 7-4 JOVE Manual for UNIX Users

5. Basic Editi ... Commaacls

5.1. InsertiDl Text
To insert printing characters into the text you are editing, just type them. AU printing characters you
type are inserted into the text at the cursor (that is, at point), and the cursor moves forward. Any
characters after the cursor move forward too. If the text in the buffer is FOOBAR, with the cursor
before the B, then if you type XX, you get FOOXXBAR, with the cursor still before the B.

To correct text you have just inserted, you can use Rubout. Rubout deletes the character before the
cursor (not the one that the cursor is on top of or under; that is the character after the cursor). The
cursor and all characters after it move backwards. Therefore, if you typins a printing character and
then type Rubout, they cancel out.

To end a line and start typins a new one, type Return. Return operates by inserting a line-separator,
so if you type Return in the middle of a line, you break the line in two. Because a line-separator is
just a sinpecharacter, you can type Rubout at the besinning of a line to delete the line-separator and
join it with the preceding line. .

As a special case, if you type Return at the end of a line and there are two or more empty lines just
below it, JOVE does not insert a line-separator but instead merely moves to the next (empty) line.
This behavior is convenient when you want to add several lines of text in the middle of a buffer. You
can use the Control-O (newline-and-backup) command to "open" several empty lines at once; then you
can insert the new text, fiIlins up these empty lines. The advantage is that JOVE does not have to
redraw the bottom part of the screen .for each Return you type. as it would ordinarily. That
"redisplay" can be both slow and distracting.

If you add too, many characters to one line, without· b(ea}dng it with Return, the line will grow too
long to display on one screen line. When this happens, JOVE puts an "1" at the extreme right margin,
and doesn't bother to display the rest of the line unless the cursor happens to be in it. The"!" is not
part of your text; conversely, even though you can't see the rest of your line. it's still there, and if you
break the line, the "!O will go away: .

Direct insertion works for printing characters and space, but' other characters act as editing com
mandsand do not insert themselves. If you need to insert a control character, Escape, or Rubout,
you must first quote it by typing the Control-Q command first.

5.2. Moving the Cunor

To do more than insert characters, you have to know how to move the cursor. Here are a few of the
commands for doing that.

•
C-A Move to the beginning of the line.

C-E

C-F

C-B

C-N

C-p

ESC <
ESC>

ESC ,
ESC.

Move to the end of the line.

Move forward over one character.

Move backward over one character.

Move down one line, vertically. If you start in the middle of one line, you end in the
middle of the next.

Move up one line, vertically.

Move to the beginning of the entire buffer.

Move to the end of the entire buffer.

Move to the beginning of the visible window.

Move to the end of the visible window.

JOVE Manual for UNIX Users

5.3. Erasing Text

Rubout

C-D

C-K

Delete the character before the cursor.

Delete the character after the cursor.

Kill to the end of the line.

USD:17-5

You already know about the Rubout command which deletes the character before the cursor.
Another command, Control-D, deletes the character after the cursor, causing the rest of the text on
the line to shift left. If Control-D is typed at the end of a line, that line and the next line are joined
together.

To erase a larger amount of text, use the Control-K command, which kills a line at a time. If
Control-K is done at the beginning or middle of a line, it kills all the text up to the end of the line. If
Control-K is done at the end of a line, it joins that line and the next line. If Control-K is done twice,
it kills the rest of the line and the line separator also.

5.4. Files - Saving Your Work

The commands above are sufficient for creating text in the JOVE buffer. The more advanced JOVE
commands just make things easier. But to keep any text permanently you must put it in a file . . Files
are the objects which UNIXt uses for storing data for a length of time. To tell JOVE to read text into
a file, choose a filename, such as [oo.bar, and type C-X C-R [oo.bar<return>. This reads the file
[oo.bar so that its contents appear on the screen for editing. You can make changes, and then save
the file by typing C-X C~S (save-file). This makes the changes permanent and actually changes the file
[oo.bar. Until then, the changes are only inside JOVE, and the file [00. bar is not really changed. If the
fil~ [oo.bar doesn't exist, and you want to create it, read it as if it did exist. When you save your text
with C"X C-S the .file will be created. .

5~5. Exitini and Pausing - Leaving JOVE

The command C-X C-e'(exit-jove) will terminate the JOVE session and' return to the shell.· If there are
modified but unsaved buffers, JOVE will ask you for confirmation, and you can abort the command,
look at what buffers are modified but unsaved using C-X C-B (list-buffers), save the valuable ones, and
then exit. If what you want to do, on the other hand, is preserve the editing session but return to the
shell temporarily you can (under Berkeley UNIX only) issue the command ESC S (pause-jove), do your
UNIX work within the c-shell, then return to JOVE using the [g command to resume editing at the
point where you paused. For this sort of situation you might consider using an interactive shell (that
is, a shell in a JOVE window) which lets you use editor commands to manipulate your UNIX com
mands (and their output) while never leaving the editor. (The interactive shell feature is described
below.)

5.6. Giving Numeric Arguments to JOVE Commands
Any JOVE command can be given a numeric argument. Some commands interpret the argument as a .
repetition count. For example, giving an argument of ten to the C-F command (forward-character)
moves forward ten characters. With these commands, no argument is equivalent to an argument of 1.

Some commands use the value of the argument, but do something peculiar (or nothing) when there is
no argument. For example, ESC G (goto-line) with an argument n goes to the beginning of the n'th
line. But ESC G with no argument doesn't do anything. Similarly, C-K with an argument kills that
many lines, including their line separators. Without an argument, C-K when there is text on the line
to the right ·of the cursor kills that text; when there is no text after the cursor, C-K deletes the line
separator.

The fundamental way of specifying an argument is. to use ESC followed by the digits of the argument,
for example, ESC 123 ESC G to go to line 123. Negative arguments are allowed, although not all of
the commands know what to do with one.

t UNIX is a trademark of AT&T Bell Laboratories.

USD:17-6 JOVE Manual for UNIX Users

Typing C-U means do the next command four times. Two such C-U's multiply the next command by
sixteen. Thus, C-U C-U C-F moves forward sixteen characters. This is a good way to move forward
quickly, since it moves about 1/4 of a line on most terminals. Other useful combinations are: C-U
C-U C-N(move down a good fraction of the screen), C-U C-U C-O (make "a lot" of blank lines), and
C-U C-K (kill four lines - note that typing C-K four times would kill 2lines).

There are other, terminal-dependent ways of specifying arguments. They have the same effect but
may be easier to type. If your terminal has a numeric keypad which sends something recognizably.
different from the ordinary digits, it is ppssible to program JOVE to to allow use of the numeric
keypad for specifying arguments.

5.7. The Mark an4 the Region
In general, a command that processes an arbitrary part of the buffer must know where to start and
where to stop. In JOVE, such commands usually operate on the text between point and the mark.
This body of text is called the region. To specify a region, you set point to one end of it and mark at
the other. It doesn't matter which one comes earlier in the text.
C-@ Set the mark where point is.

C-X C-X Interchange mark and point.

For example. if you wish to convert part of the buffer to all upper-case, you can use the C-X C-U
command, which operates on the text in the region. You can first go to the beginning of the text to
be capitalized. put the mark there, move to the end, and then type C-X C-U. Or, you can set the
mark at the end of the text, move to the beginning, and then type. C-X C-U. C-X C-U runs the com
mand case-region-upper, whose name signifies that the region, or everything between point and mark,
is to. be capitalized.

The way to set the mark is with the C-@ command or (on some terminals) the C-Space command .
. They set the mark where point is. Then you can move point away, leaving mark behind. When the
mark is set, "[Point pushed)" is printed on the message line.. .

Since terminals have only one cursor, there is no way for JOVE to show you where the mark is located.
You have to remember. The usual solution to this problem is to set the mark and then use it soon,
before you forget where it is. But you can see where the mark is with the command C-X C-X which
puts the mark where point was and point where mark was. The extent of the region is unchanged,
but the cursor and point are now at the previous location of the mark. .

5.S. The Ring of Marks

Aside from delimiting the region, the mark is also useful for remembering a spot that you may want
to go back to. To make this feature more useful, JOVE remembers 16 previous locations of the mark.
Most commands that set the mark push the old mark onto this stack. To return to a marked loca
tion, use C-U C-@. This moves point to where the mark was, and restores the mark from the stack
of former marks. So repeated use of this command moves point to all of the old marks on the stack,
one by one. Since the stack is actually a ring, enough uses of C-U C-@ bring point back to where it.
was originally.

Some commands whose primary purpose is to move point a great distance take advantage of the stack
of marks to give you a way to undo the command. The best example is ESC <, which moves to the
beginning of the buffer. If there are more than 22 lines between the beginning of the buffer and
point, ESC < sets the mark first, so that you can use C-U C-@ or C-X C-X to go back to where you
were. You can change the number of lines from 22 since it is kept in the variable mark-threshold. By
setting it to 0, you can make these commands always set the mark. By setting it to a very large
number you can prevent these commands from ever setting the mark. If a command decides to set
the mark, it prints the message {Point pushed].

JOVE Manual for UNIX Users USD:17-7

5.9. Killing and Moving Text

The most common way of moving or copying text with JOVE is to kill it, and get it back again in one
or more places. This is very safe because the last several pieces of killed text are all remembered, and
it is versatile, because the many commands for killing syntactic units can also be used for moving
those units. There are also other ways of moving text for special purposes.

5.10. Deletion and Killing
Most commands which erase text from the buffer save it so that you can get it back if you change
your mind, or move or copy it to other parts of th~ buffer. These commands are known as kill com
mands. The rest of the commands that erase text do not save it; they are known as delete commands.
The delete commands include C-D and Rubout, which delete only one character at a time, and those
commands that delete only spaces or line separators. Commands that can destroy significant amounts
of nontrivial data generally kill. A command's name and description will use the words kill or delete
to say which one it does.

C-D Delete next character.

Rubout

ESC \

C-X C-O

C-K

C-W

ESCD

ESC Rubout
ESCK

C-X.Rubout

5.11. Deletion

Delete previous character.

Delete spaces and tabs around point.

Delete blank lines around the current line.

Kill rest of line or one or more lines.

Kill region (from point to the mark).

Kill word.

Kill word· backwards.

Kill to end of sentence.

Kill to beginning of sentence.

The most basic delete commands are C-D and Rubout. C-D deletes the character after the cursor, the
one the cursor is ·on top of' or ·underneath·, The cursor doesn't move. Rubout deletes the charac
ter before the cursor, and moves the cursor back, Line separators act like normal characters when
deleted. Actually, C-D and Rubout aren't always delete commands; if you give an argument, they kill
instead. This prevents you from losing a great deal of text by typing a large argument to a C-D or
Rubout.

The other delete commands are those which delete only formatting characters: spaces, tabs, and line
separators. ESC \ (delete-while-space) deletes all the spaces and tab characters before and after point,
C-X C-O (delete-blank-lines) deletes all blank lines after the current line, and if the current line is
blank deletes all the blank lines preceding the current line as well (leaving one blank line, the current
line),

5.12. Killing by Lines

The simplest kill command is the C-K command. If issued at the beginning of a line, it kills all the
text on the line, leaving it blank. If given on a line containing only white space (blanks and tabs) the
line disappears. As a consequence, if you go to the front of a non-blank line and type two C-K's, the
line disappears completely.

More. generally, C-K kills from point up to the end of the line, unless it is at the end of a line. In that
case, it kills the line separator following the line, thus merging the next line into the current one.
Invisible spaces and tabs at the end of the line are ignored when deciding which case applies, so if
point appears to be at the end of the line, you can be sure the line separator will be killed.

C-K with an argument of zero kills all the text before point on the current line.

USD:17·8 JOVE Manual for UNIX Users

5.13. Other Kill Commands
A kill command which is very general is C-W (kill-region), which kills everythina between point and
the mark.· With this command, you can kill· and save contiguous characters, if you first set the mark
at one end of them and go to the other. ead.

Other syntactic units can be killed, too; words, with ESC Rubout and ESC D; and, sentences, with
ESC K and C-X Rubout.

5.14. UD-ldJliq

Un-killing (yankina) is getting back text which was killed. Theusuai way to move or copy text is to
kill it and thenua-kill it one or more times.

C-Y Yank: (re-insert) last killed text.

ESC Y Replace re-inserted killed text with the previously killed text.

ESC W Save region as last killed text without killing.

Killed text is pushed onto a ring buffer called the Idll ring that remembers the last 10 blocks of text
that were killed. (Why it is called a ring buffer will be explained below). The command C-Y (yank)
reinserts the text of the most recent kill. It leaves the cursor at the end of the text, and puts the mark
at the beginning; Thus, a single C·Y undoes the C-W.

If you wish to copy a block of text, you miallt want to use ESC W (copy-region),. which copies the
region into the kill ring without removina it from the buffer. This is approximately equivalent to C
W followed by C-Y, except ,that ESC W does not markthe.buft'er as "changed". and. does not cause· the
screen to be rewritten.

There is only one kill ring shared among all the buft"ers. After· visiting a new file, whatever was last
killed in the previous file is still OD top of the ~ riJig. This is important for moving text between
files.

5.15. AppeudiDi Kills
Normally, each kill command pushes a new bloCk onto the kill.ring. However~ two or more kill com
mands immediately in a row (without any other intervening commands) combine their text into a sin
gle entry on the ring, so that a single C-Y command gets it all back as it was .before it was killed.
This means that you don't have to kill all the text in one command; you can keep killing line after
line, or word after word, until you have killed it all, and you can still get it all back at once.

Commands that kill forward from poirtt add onto the end of the previous killed text. Commands that
kill backward from point add onto the beginning. This way, any sequence of mixed forward and
backward kill commands puts all the killed text into one entry without needing rearrangement.

5.16. UD-killiDI Earlier Kills
To recover killed text that is no longer the most recent kill, you need the ESC Y (yank-pop) com
mand. The ESC Y command can be used only after a C-Y (yank) command or another ESC Y. It
takes the un-killed text inserted by the C-Y and replaces it with the text from an earlier kill. So, to
recover the text of the next-to-the-last kill, you first use C-Y to recover the last kill, and then discard
it by use of ESC Y to move back to the previous kill.

You can think of all the last few kills as living OD a ring. After a C-Y command, the text at the front
of the ring is also present in the buffer. ESC Y "rotates" the riDg bringing the previous string of text
to the front and this text replaces the other text in the buffer as well. Enouall ESC Y commands can
rotate any part of the ring to the front, so you can get at any killed text so long as it is recent enough
io be still in the riDge Eventually the ring rotates all the way around and the most recently killed text
comes to the front (and into the buffer) again. ESC Y with a negative argument rotates the ring back
wards.

*Often users switdl this bindilll from C-W to C·X C-K because it is toO easy to hit CoW accidentally.


~~~~~-.- -----------

JOVE Manual for UNIX Users USD:17-9 

When the text you are looking for is brought into the buffer, you can stop doing ESC Y's and the text 
will stay there. It's really just a copy of what's at the front of the ring, so editing it does not change 
what's in the ring. And the ring, once rotated, stays rotated, so that doing another C-Y gets another 
copy of what you rotated to the front with ESC Y. 

If you change your mind about un-killing, C-W gets rid of the un-killed text, even after any number 
of ESC Y's. 

6. Searching 

The search commands are useful for finding and moving to arbitrary positions in the buffer in one 
swift motion. For example, if you just ran the spell program on a paper and you want to correct 
some wOfd, you can use the search commands to move directly to that word. There are two flavors 
of search: string search and incremental search. The former is the default flavor-if you want to use 
incremental search you must rearrange the key bindings (see below). 

6.1. Conventional Search 

C-S 

C-R 

Search forward. 

Search backward. 

To search for the string "FOO" you type "C-S FOO<retum>". If JOVE finds FOO it moves point to 
the end of it; otherwise JOVE prints an error message and leaves point unchanged. C-S searches for
ward from point so only occurrences of FOO after point are found. To search in the other direction 
use C-R. It is exactly the same as C-S ex"",t it searches in the opposite direction, and if it finds the 
string, it leaves point at the beginning otit, not at the end as in C-S. 

While JOVE is searching it prints the search string on the message line~ This is so you. know what 
JOVE is doing. When the system is heavily loaded and editing in exceptionally large buffers, searches 
can take several (sometimes many) seconds. 

- - . 
JOVE remembers the last search string. you use~ so if you want to search for the same string you can 
type "C-S <return>". If you mistyped the last search string, you can ·type C-S followed by C-R. C-R,
as usual, inserts the default search string into the minibuffer, and then you can fix it up. 

6.2. Incremental Search 

This search command is unusual in that is is incremental; it begins to search before you have typed 
the -complete search string. As you type in the search string, JOVE shows you where it would be 
found. When you have typed enough characters to identify the place you want, you can stop. 
Depending on what you will do next, you mayor may not need to terminate the search explicitly with 
a Return first. 

The command to search is C-S ([-search-forward). C-S reads in characters and positions the cursor at 
the first occurrence of the characters that you have typed so far. If you type C-S and then F, the cur
sor moves in the text just after the next "F". Type an ·0·, and see the cursor move to after the next 
"Fa". After another ·0", the cursor is after the next "FOO·. At the same time, the "Faa· has 
echoed on the message line. 

If you type a mistaken character, you can rub it out. After the Foo, typing a Rubout makes the ·0· 
disappear from the message line, leaving only "FO·. The cursor moves back in the buffer to the 
"FO". Rubbing out the "0" and "F" moves the cursor back to where you started the search. 

When you are satisfied with the place you have reached, you can type a Return, which stops search
ing, leaving the cursor where the search brought it. Also, any command not specially meaningful in 
searches stops the searching and is then executed. Thus, typing C-A would exit the search and then 
move to the beginning of the line. Return is necessary only if the next character you want to type is a 
printing character, Rubout, Return, or another search command, since those are the characters that 
have special meanings inside the search. 

Sometimes you search for "Foo" and find it, but not the one you hoped to find. Perhaps there is a 
second Foo that you forgot about, after the one you just found. Then type another C-S and the 



USD:17-10 JOVE Manual for UNIX Users 

cursor will find the next FOO. This can be done any number of times. If you overshoot, you can 
return to previous finds by rubbing out the C.g's. 

After you exit a search, you can search for the same string again by typing just CoS C-S: one C-S comG 

mand to start the search and then another C-S to mean "search again for the same string". 

If your string is not found at all, the message line says "Failing I-search". The cursor is after the place 
where JOVE found as much of your string as it could. Thus, if you search for FOOT and there is no 
FOOT, you might see the cursor after the FOO in FOOL. At this point there are several things you 
can do. If your string was mistyped, you can rub some of it out and correct it. If you like the place 
you have found, you can type Return or some other JOVE command to "accept what the search 
oft'ered" , Or you can type C-G, which undoes the search altogether and positions-you back where you 
started the search. 
You can also type C-R at any time to start searching backwards. If a search fails because the place 
you started was too late in the file, you should do this. Repeated C-R's keep looking backward for 
more occurrences of the last search string. A C-S starts going forward again. C-R's can be rubbed 
out just like anything else. 

6.3. Searching with Regular Expressions 

In addition to the searching facilities described above, JOVE can search for patterns using regular 
expressions. The handling of regular expressions in JOVE is like that of ed(1) or vi(1), but with some 
notable additions. The extra metacharacters understood by JOVE are \<, \>, \ I and \ {. The first 
.two of these match the beginnings and endings of words; Thus the search pattern, ." \<Exec" would 
match all words beginning with the letters "Exec". 

An \ I signals the beginning of an alternative - that is, the pattern "foo\ Ibar" would match either 
"foo" or "bar", The "curly brace" is a way of introducing several sub-alternatives into a pattern. It 
parallels the [] construct of regular expressions, except it specifies a list of alternative words instead of 
just alternative characters. So the pattern "foo\ {bar,baz\ }bie" matches "foobarbie" or "foobazbie", 

JOVE only regards metacharacters as special if the variable match-regular-expressions is set to "on". 
The ability to have JOVE ignore these characters is useful if you're editing a document about patterns 
and regular expressions or when a novice is learning JOVE. 

Another variable that aft'ects searching is case-ignore-search. If this variable is set to "on" then upper 
case and lower case letters are considered equal. 

7. Replacement Commands 
Global search-and-replace operations are not needed as often in JOVE as they are in other editors, but 
they are available. In addition to the simple Replace operation which is like that found in most edi
tors, there is a Query Replace operation which asks, for each occurrence of the pattern, whether to 
replace it. 

7.1. Global replacement 

To replace every occurrence of FOO after point with BAR, you can do, e.g., "ESC R 
FOO<return> BAR" as the replace-string command is bound to the ESC R. Replacement takes place 
only between point and the end of the buft'er so if you want to cover the whole buffer you must go to 
the beginning first. 

7.2. Query Replace 

If you want to change only some of the occurrences of FOO, not all, then the global replace-string is 
inappropriate; Instead, use, e.g., "ESC Q. FOO<return>BAR" , to run the command query-replace
string. This displays each occurrence of FOO and waits for you to say whether to replace it with a 
BAR. The things you can type when you are shown an occurrence of FOO are: 

Space to replace the FOO. 



JOVE Manual for UNIX Users 

Rubout 
Return 

Period 

to skip to the next FOO without replacing this one. 

to stop without doing any more replacements. 

to replace this FOO and then stop. 

to replace all remaining FOO's without asking. 

USD:17-11 

! orP 

C-R orR to enter a recursive editing level, in case the FOO needs to be edited rather than just 
replaced with a BAR. When you are done, exit the recursive editing level with C-X 
C-C and the next FOO will be displayed. 

C-w 

U 

to delete the FOO, and then start editing the buffer. When you are finished editing 
whatever is to replace the FOO, exit the recursive editing level with C-X C-C and the 
next FOO will be displayed. 

move to the last replacement and undo it. 
Another alternative is using rep/ace-in-region which is just like rep/ace-string except it searches only 
within the region. 

8. Commands for English Text 
JOVE has many commands that work on the basic units of English text: words, sentences and para
graphs. 

8.1. Word Commands • 
JOVE has commands for moving over or operating on words. By convention, they are all ESC com-
mands. ' 

ESC F Move Forward over a word. 

ESCB 

ESC 0 
ESC Rubout 

Move Backward over a word. 

Kill forward to the end of a word. ' 

Kill backward to the beginning of a word. 

Notice how these commands form a group that parallels the character- based commands, C-F, CoB, 
C-O, and Rubout. 
The commands ESC F and ESC B move forward and backward over words. They are thus analogous 
to Control-F and Control-B, which move over single characters. Like their Control- analogues, ESC F 
and ESC B move several words if given an argument. ESC F with a negative argument moves back
ward like ESC B, and ESC B with a negative argument moves forward. Forward motion stops right 
after the last letter of the word, while backward motion stops right before the first letter. 

It is easy to kill a word at a time. ESC 0 kills the word after point. To be precise, it kills everything 
from point to the place ESC F would move to. Thus, if point is in the middle of a word, only the 
part after point is killed. It some punctuation comes after point, and before the next word, it is killed 
along with the word. If you wish to kill only the next word but not the punctuation, simply do ESC F 
to get to the end, and kill the word backwards with ESC Rubout. ESC 0 takes arguments just like 
ESCF. 
ESC Rubout kills the word before point. It kills everything from pojnt back to where ESC B would 
move to. If point is after the space in -FOO, BAR-, then -FOO, • is killed. If you wish to kill just 
-FOO·, then do a ESC B and a ESC 0 instead of a ESC Rubout. 

8.2. Sentence Commands 
The JOVE commands for manipulating sentences and paragraphs are mostly ESC commands, so as to 
resemble the word-handling commands. 
ESC A Move back to the beginning of the sentence. 



USD:11-12 

ESCE 

ESCK 

C-X Rubout 

Move. forward to the end of the sentence. 

Kill forward to the end of the sentence. 

Kill back to the beginning of the sentence. 

JOVE Manual for UNIX Users 

The commaq.ds ESC A and ESC E move to the beginning and end of the current sentence. respec
tively. They were chosen to resemble Control-A and Control-E, which move to the beginning and end 
of a line. Unlike them, ESC A and ESC E if repeated or given numeric arguments move over succes
sive sentences. JOVE considers a sentence to end wherever there is a w.", .'t", or T followed by the 
end of a line or by one or more spaces. Neither ESC A nor ESC E moves past the end of the line or 
spaces which delimit the sentence. 

Just as C-A and C-E have a kill command, C-K, to go with -them, so ESC A and ESC E have a 
corresponding kill command ESC K which kills from point to the end of the sentence. With minus 
one as an argument it kills back to the beginning of the sentence. Positive arguments serve as a 
repeat count. 

There is a special command, C-X Rubout for killing back to the beginning of a sentence, because this 
is useful when you change your mind in the middle of composing text. 

8.3. Paragraph Commands 

The JOVE commands for handling paragraphs are 

ESC [ Move back to previous paragraph beginning. 

ESC ] Move forward to next paragraph end. 

ESC [ moves to the beginning of the current or previous paragraph, while ESC] moves to the end of 
the current or next paragraph. Paragraphs are delimited by lines of differing indent, or lines with text 
formatter comm~ds, or blank lines. JOVE knows how to, deal with most indented paragraphs 
correctly, although it can get confused by one- or two-line paragraphs delimited only by indentation. 

8.4 •. Text Indentation Commands 

Tab 

LineFeed 

ESCM 

Indent "appropriately" in a mode-dependent fashion. 

Is the same as Return, except it copies the indent of the line you just left. 

Moves to the line's first non-blank character. 

The way to request indentation is with the Tab command. Its precise effect depends on the major 
mode. In Text mode, it indents to the next tab stop. In C mode, it indents to the "right" position for 
C programs. 

To move over the indentation on a line, do ESC M (first-nan-blank). This command, given anywhere 
on a line, positions the cursor at the first non-blank, non-tab character on the line. 

8.S. Text Filling 

AUla Fill mode causes text to be filled (broken up into lines that fit in a specified width) automatically 
as you type it in. If you alter existing text so that it is no longer properly filled, JOVE can fill it again 
if you ask. 

Entering Auto Fill mode is done with ESC X auto-fill-mode. >From then on, lines are broken 
automatically at spaces when they get longer than the desired width. To leave AUla Fit/mode, once 
again execute ESC X auto-fiJl-mode. When Auto Fill mode is in effect, the word Fill appears in the 
mode line. 

If you edit the middle of a paragraph, it may no longer correctly be filled. To refill a paragraph, use 
the command ESC J (fill-paragraph). It causes the paragraph that point is inside to be filled. All the 
line breaks are removed and new ones inserted where necessary. 

The maximum line width for filling is in the variable right-margin. Both ESC J and auto-fill make 
sure that no line exceeds this width. The value of right-margin is initially 12. 



JOVE Manual for UNIX Users USD:17-13 

Normally ESC J figures out the indent of the paragraph and uses that same indent when filling. If 
you want to change the indent of a paragraph you set left-margin to the new position and type C
U ESC J. fill-paragraph, when supplied a numeric argument, uses the value of left-margin. 
If you know where you want to set the right margin but you don't know the actual value, move to 
where you want to set the value and use the right-mar gin-here command. left-margin-here does the 
same for the left-margin variable. 

8.6. Case Conversion Commands 

ESCL 

ESCU 
ESCC 

Convert following word to lower case. 
Convert following word to upper case. 

Capitalize the following word. 

The word conversion commands are most useful. ESC L converts the word after point to lower case, 
moving past it. Thus, successive ESC L's convert successive words. ESC U converts to all capitals 
instead, while ESC C puts the first letter of the word into upper case and the rest into lower case. All 
these commands convert several words at once if given an argument. They are especially convenient 
for converting a large amount of text from all upper case to mixed case, because you can move 
through the test using ESC L, ESC U. or ESC C on each word as appropriate. 
When given a negative argument, the word case conversion commands apply to the appropriate 
number of words before point, but do not move point. This is convenient when you have just typed 
a word in the wrong case. You can give the case conversion command and continue typing. 
If a word case conversion command is given in the ..aiddle. of a word, it applies only to the part of the 
word which follows the cursor, treating it as a whole word. 
The other case con¥ersion functions are case-region~upper andcase-region:..lower, which convert every
thing betw.een point and mark to the specified case. Point and mark remain unchanged. . 

8.7. Commands·for Fixing Typos 
In this section we describe the commands that are especially useful for the times when you catch a 
mistake on your text after you have made it, or change your mind while composing text on line. 
Rubout Delete last character. 
ESC Rubout Kill last word. 
C-X Rubout 

C-T 
C-XC-T 
ESC Minus ESC L 
ESC Minus ESC U 
ESC Minus ESC C 

8.8. Killing Your Mistakes 

Kill to beginning of sentence. 

Transpose two characters. 
Transpose two lines. 
Convert last word to lower case. 
Convert last word to upper case. 
Convert last word to lower case with capital initial. 

The Rubout command is the most important correction command. When used among printing (self
inserting) characters, it can be thought of as canceling the last character typed. 
When your mistake is longer than a couple of characters, it might be more convenient to use ESC 
Rubout or C-X Rubout. ESC Rubout kills back to the start of the last word, and C-X Rubout kills 
back to the start of the last sentence. C-X Rubout is particularly useful when you are thinking of 
what to write as you type it, in case you change your mind about phrasing. ESC Rubout and C-X 
Rubout save the killed text for C-Y and ESC Y to retrieve. 
ESC Rubout is often useful even when you have typed only a few characters wrong, if you know you 
are confused in your typing and aren't sure what you typed. At such a time, you cannot correct with 
Rubout except by looking at the screen to see what you did. It requires less thought to kill the whole 



USD:17-14 JOVE Manual for UNIX Users 

word and start over again, especially if the' system is heavily loaded. 

If you were typing a command or command parameters, C-G will abort the command with no further 
processing. 

8.9. Transposition 

The common error of transposing two characters can be fixed with the C-T (transpose-characters) 
command. Normally, C-T transposes the two characters on either side of the cursor and moves the 
cursor forward one character. Repeating the command several times "drags" a character to the right. 
(Remember that point is considered to be between two characters, even though the visible cursor in 
your terminal is on only one of them.) When given at the end of a line, rather than switching the last 
character of the line with the lines£parator, which would be useless, C-T transposes the last two char
acters on the line. So, if you catch your transposition error right away, you can fix it with just a C-T. 
If you don't catch it so fast, you must move the cursor back to between the two characters. 

To transpose two lines, use the C-X C-T (transpose-lines) command. The line containing the cursor is 
exchanged with the line above it; the cursor is left at the beginning of the line following its original 
position. 

8.10. Checking and Correcting Spelling 

When you write a paper, you should correct its spelling at some point close to finishing it. To correct 
the entire buffer, do ESC X spell-buffer. This invokes the UNIX spell program, which prints a list of 
aU the misspelled words. JOVE catches the list and. places it in a JOVE buffer called Spell. You are 
given an opportunity to delete from that buffer any words that aren't really errors; then JOVE looks up 
each misspelled word and remembers where it is in the buffer being corrected. Then you can go for
ward to each misspelled word with C-X C-N (next-error) and backward with C-X C-P (previous-error). 
See the section entitled E"or Message Parsing.' . 

9. File Handling 

The basic unit of stored data is the file. Each program, each paper, lives usually in its own file. To 
edit a program or paper, the editor must be told the name of the file that contains it. This is called 
visiting a file. To make your changes to the file permanent on disk, you must save the file. 

9.1. Visiting Files 

CoXC-V 

C-XC-R 

C-X C-S 
ESC· 

Visit a file. 

Same as C-X C-V. 

Save the visited file. 

Tell JOVE to forget that the buffer has been changed. 

Visiting a file means copying its contents into JOVE where you can edit them. JOVE remembers the 
name of the file you visited. Unless you use the multiple buffer feature of JOVE, you can only be visit
ing one file at a time. The name of the current selected buffer is visible in the mode line. 

The changes you make with JOVE are made in a copy inside JOVE. The file itself is not changed. The 
changed text is not permanent until you save it in a file. The first time you change the text, an aster
isk appears at the end of the mode line; this indicates that the text contains fresh changes which will 
be lost unless you save them. 

To visit a file, use the command C-X C-V. Follow the command with the name of the file you wish 
to visit, terminated by a Return. You can abort the command by typing C-G, or edit the filename 
with many of the standard JOVE commands (e.g., C-A, C-E, C-F, ESC F, ESC Rubout). If the 
filename you wish to visit is similar to the filename in the mode line (the default filenpme), you can 
type C-R to insert the default and then edit it. If you do type a Return to finish the command, the 
new file's text appears on the screen, and its name appears in the mode line. In addition, its name 
becomes the new default filename. 



JOVE Manual for UNIX Users USD:17-15 

If you wish to save the file and make your changes permanent, type C-X CaS. After the save is 
finished. C-X CaS prints the filename and the number of characters and lines that it wrote to the file. 
If there are no changes to save (no asterisk at the end of the mode line), the file is not saved; other
wise the changes saved and the asterisk at the end of the mode line will disappear. 

What if you want to create a file? Just visit it. JOVE prints (New file) but aside from that behaves as if 
you had visited an existing empty file. If you make any changes and save them, the file is created. If 
you visit a nonexistent file unintentionally (because you typed the wrong filename), go ahead and visit 
the file you meant. If you don't save the unwanted file, it is not created. 

If you alter one file and then visit another in the same buffer, JOVE offers to save the old one. If you 
answer YES. the old file is saved; if you answer NO, all the changes you have made to it since the last 
save are lost. You should not type ahead after a file visiting command, because your type-ahead 
might answer an unexpected question in a way that you would regret. 
Sometimes you will change a buffer by accident. Even if you undo the effect of the change by editing, 
JOVE still knows that "the buffer has been changed". You can tell JOVE to pretend that there have 
been no changes with the ESC - command (make-buffer-unmodified). This command simply clears 
the "modified" flag which says that the buffer contains changes which need to be saved. Even if the 
buffer really is changed JOVE will still act as if it were not. 
If JOVE is about to save a file and sees that the date of the version on disk does not match what JOVE 
last read or wrote, JOVE notifies you of this fact, and asks what to do, because this probably means 
that something is wrong. For example, somebody else may have been editing the same file. If this is 
so, there is a good chance that your work or his work will be lost if you don't take the proper steps. 
You should first find out exactly what is going on. If you determine that somebody else has modified 
the file, save your file under a different filename and then DIFF the two files to merge the two sets:of 
changes. (The "patch" command is useful for applying the results of context. diffs directly). Also get 
in touch with the other person so that the files don't diverge any further: 

9.2. How to Undo Drastic Chaliges to a File 

If youbave made several extensive changes to a file and then change your mind about them, and you 
haven't yet saved them, you can get rid of them by reading in the previous version of the file. You 
can do this with the C-X C-V command, to visit the unsaved version of the file. 

9.3. Recovering from system/editor crashes 
JOVE does not have Auto Save mode, but it does provide a way to recover your work in the event of 
a system or editor crash. JOVE saves information about the files you're editing every so many 
changes to a buffer to make recovery possible. Since a relatively small amount of information is 
involved it's hardly even noticeable when JOVE does this. The variable ·sync-frequency" says how 
often to save the necessary information, and the default is every 50 changes. 50 is a very reasonable 
number: if you are writing a paper you will not lose more than the last 50 characters you typed, 
which is less than the average length of a line. 

9.4. Miscellaneous File Operations 

ESC X write-file <file><retum> writes the contents of the buffer into the file <file>, and then visits 
that file. It can be thOUght of as a way of "changing the name" of the file you are visiting. Unlike C
X CaS, write-file saves even if the buffer has not been changed. C-X C-W is another way of getting 
this command. 
ESC X insert-file <file><retum> inserts the contents of <file> into the buffer at point, leaving point 
unchanged before the contents. You can also use C-X C-I to get this command. 
ESC X write-region <file><retum> writes the region (the text between point and mark) to the 
specified file. It does not set the visited filename. The buffer is not changed. 

ESC X append-region <file><retum> appends the region to <file>. The text is added to the end of 
<file>. 



USD:17-16 JOVE Manual for UNIX Users 

10. Using Multiple Buffers 

When we speak of "the buffer", which contains the text you are editing. we have given the impression 
that there is only one. In fact, there may be many of them, each with its own body of text. At any 
time only one buffer can be selected and available for editing, but it isn't hard to switch to a different 
one. Each buffer individually remembers which file it is visiting, what modes are in effect, and 
whether there are any changes that need saving. 

CoX B Select or create a buffer. 

C-XC-F 
CoX CoB 

C-XK 

Visit a file in its own buffer. 

List the existing buffers. 

Kin a buffer. 

Each buffer in JOVE has a single name, which normally doesn't change. A buffer's name can be any 
length. The name of the currently selected buffer and the name of the file visited in it are visible in 
the mode line when you are at top level. A newly started JOVE has only one buffer, named Main, 
unless you specified files to edit in the shen command that started JOVE. 

10.1. Creating and Selecting Buffers 

To create a new buffer, you need only think of a name for it (say, FOO) and then do CoX B 
FOO<return>, which is the command CoX B (select-buffer) followed by the name. This makes a new, 
empty buffer (if one by that name didn't previously exist) and selects it for editing. The new buffer is 
not visiting any file, so if you try to save it you will be asked for the filename to use. Each buffer has 
its own major mode; the new buffer's major mode is Text mode by default. 

To return to buffer FOO later after having switched to another, the same command CoX B 
FOO<return> is used, since .C-X B can tell whether a buffer named FOO exists already or not. C-X 
B Main<return> reselects the buffer Main that JOVE started out with. Just CoX B<return> reselects 
the previous buffer. Repeated CoX B<retum>'s alternate between the last two buffers selected. 

You can also read a file into its own newly created buffer, all with one command: CoX C-F (find-file), 
followed by the filename. The name of the buffer is the last element of the file's pathname. C-F 
stands for "Find", because if the specified file already resides in a buffer in your JOVE, that buffer is 
reselected. So you need not remember whether you have brought the file in already or not. A buffer 
created by CoX C-F can be reselected later with CoX B or CoX C-F, whichever you find more con
venient. Nonexistent files can be created with CoX C-F just as they can with COX C-V. 

10.2. Using Existing Buffers 

To get a list of all the buffers that exist, do CoX CoB (list-buffers). Each buffer's type, name, and 
visited filename is printed. An asterisk before the buffer name indicates a buffer which contains 
changes that have not been saved. The number that appears at the beginning of a line in a CoX CoB 
listing is that buffer's buffer number. You can select a buffer by typing its number in place of its 
name. If a buffer with that number doesn't already eiist, a new buffer is created with that number as 
its name. 

If several buffers have modified text in them, you should save some of them with CoX CoM (write
modified-files). This finds all the buffers that need saving and then saves them. Saving the buffers 
this way is much easier and more efficient (but more dangerous) than selecting each one and typing 
C-X CDS. If you give CoX C-M an argument, JOVE will ask for confirmation before saving each buffer. 

ESC X rename-buffer <new name><return> changes the name of the currently selected buffer. 

ESC X erase-buffer <buffer name><return> erases the contents of the <buffer name> without delet
ing the buffer entirely. 

10.3. Killing Buffers 

After you use a JOVE for a while, it may fill up with buffers which you no longer need. Eventually you 
can reach a point where trying to create any more results in an ·out of memory" or "out of lines" 



JOVE Manual for UNIX Users USD:17-17 

error. When this happens you will want to kill some buffers with the C-X K (delete-buffer) command. 
You can kill the buffer FOO by doing C-X K FOO<return>. If you type C-X K <return> JOVE will 
kill the previously selected buffer. If you try to kill a buffer that needs saving JOVE will ask you to 
confirm it. 
If you need to kill several buffers, use the command kill-some-buffers. This prompts you with the 
name of each buffer and asks for confirmation before killing that buffer. 

11. Controlling the Display 

Since only part of a large file will fit on the screen, JOVE tries to show the part that is likely to be 
interesting. The display control commands allow you to see a different part of the file. 

C-L Reposition point at a specified vertical position, OR clear and redraw the screen with 
point in the same place. 

C-V Scroll forwards (a screen or a few lines). 

ESC V 

C-Z 
ESCZ 

Scroll backwards. 

Scroll forward some lines. 

Scroll backwards some lines. 

The terminal screen is rarely large enough to display all of your file. If the whole buffer doesn't fit on 
the screen, JOVE shows a contiguous portion of it, containing point. It continues to show approxi
mately the same portion until point moves outside of what is displayed; then JOVE chooses a new por
tion centered around the new point: This is JOVE's guess as to what you are most interested in seeing, 
but if the guess is wrong, you can use the display control commands to see a different portion. The 
available screen area through which you can see part of the buffer is called the window, and the choice 
of where in the buffer to start displaying is also called the window. (When there is only one window, 
it plus ~he mode line and the input line take up thewhole screen). . 

First we describe how JOVE chooses a new window position on its own. The goal is usually to place 
point half way down the window. This is controlled by the variable scroll-step, whose value is the 
number of lines above the bottom or below the top of the window that the line containing point is 
placed. A value of 0 (the initial value) means center point in the window. 

The basic display control command is C-L (redraw-display). In its simplest form, with no argument, 
it tells JOVE to choose a new window position, centering point half way from the top as usual. 

C-L with a positive argument chooses a new window so as to put point that many lines from the top. 
An argument of zero puts point on the very top line. Point does not move with respect to the text; 
rather, the text and point move rigidly on the screen. . 

If point stays on the same line, the window is first cleared and then redrawn. Thus, two C-L's in a 
row are guaranteed to clear the current window. ESC C-L will clear and redraw the entire screen. 

The scrolling commands C-V, ESC V, C-Z, and ESC Z, let you move the whole display up or down a 
few lines. C-V (next-page) with an argument shows you that many more lines at the bottom of the 
screen, moving the text and point up together as C-L might. C-V with a negative argument shows 
you more lines at the top of the screen, as does ESC V (previous-page) with a positive argument. 

To read the buffer a window at a time, use the C-V command with no argument. It takes the last line 
at the bottom of the window and puts it at the top, followed by nearly a whole window of lines not 
visible before. Point is put at the top of the window. Thus, each C-V shows the "next page of text", 
except for one line of overlap to provide context. To move backward, use ESC V without an argu
ment, which moves a whole window backwards (again with a line of overlap). 

C-Z and ESC Z scroll one line forward and one line backward, respectively. These are convenient for 
moving in units of lines without having to type a numeric argument. 



USD:17-18 JOVE Manual for UNIX Users 

11.1. Multiple Windows 

JOVE allows you to split the screen into two or more windows and use them to display parts of 
different files, or different parts of the same file. 
C-X 2 Divide the current window into two smaller ones. 
C-X 1 Delete all windows but the current one. 

C-XD 
C-XN 
C-XP 
C-XO 
C-X A 

ESC C-V 

Delete current window. 
Switch to the next window. 
Switch to the previous window. 

Same as C-X P. 
Make this window bigger. 
Scron the other window. 

When using multiple window mode, the text portion of the screen is divided into separate parts called 
windows, which can display different pieces of text. Each window can display different files, or parts 
of the same file. Only one of the windows is active; that is the window which the cursor is in. Edit
ing normally takes place in that window alone. To edit in another window, you would give a com
mand to move the cursor to the other window, and then edit there. 
Each window displays a mode line for the buffer it's displaying. This is useful to keep track of which 
window corresponds with which file. In addition. the mode line serves as a separator between win
dows. By setting the variable mode-line-should-standout to "on" you can have JOVE display the 
mode-line in reverse vid..;.\) (assuming your particular terminal has the reverse video capability). 

The command C-X 2 (split-cu"ent-window) enters multiple window mode. A new mode line appears 
across the middle of the screen, dhriding the text display area into two halves. Both windows contain 
the same buffer and display the same position in it, namely where point was at the time you issued 
the command. The cursor moves to the second window. 
To return to viewing only one window,. use the command C-X 1 (delete-other-windows). The current 
window expands to fill the whole screen, and the other windows disappear until the next C-X 2. (The 
buffers and their contents are unaffected by any of the window operations). 
While there is more than one window, you can use C-X N (next-window) to switch to the next win
dow, and C-X P (previous-window) to switch to the previous one. If you are in the bottom window 
and you type C-X N, you will be placed in the top window, and the same kind of thing happens when 
you type C-X P in the top window, namely you will be placed in the bottom window. C-X 0 is the 
same as C-X P. It stands for "other window" because when there are only two windows, repeated use 
of this command will switch between the two windows. 
Often you will be editing one window while using the other just for reference. Then, the command 
ESC C-V (page-next-window) is very useful. It scrolls the next window, as if you switched to the next 
window, typed C-V, and switched back. without your having to do all that. With a negative argu
ment, ESC C-V will do an ESC V in the next window. 
When a window splits, both halves are approximately the same size. You can redistribute the screen 
space between the windows with the C-X A (grow-window) command. It makes the currently selected 
window grow one line bigger, or as many lines as is specified with a numeric argument. Use ESC X 
shrink-window to make the current window smaller. 

11.2. Mukiple Windows and Multiple Buffers 

Buffers can be selected independently in each window. The C-X B command selects a new buffer in 
whichever window contains the cursor. Other windows' buffers do not change. 
You can view the same buffer in more than one window. Although the same buffer appears in both 
windows, they have different values of point, so you can move around in one window while the other 
window continues to show the same text. Then, having found one place you wish to refer to, you can 
go back into the other window with C-X 0 or C-X P to make your changes. 



JOVE Manual for UNIX Users USD:17-19 

. 
If you have the same buffer in both windows, you must beware of trying to visit a different file in one 
of the windows with CoX CoY, because if you bring a new file into this buffer, it will replaced the old 
file in both windows. To view different files in different windows, you must switch buffers in one of 
the windows first (with CoX B or CoX C-F, perhaps); 
A convenient "combination" command for viewing something in another window is CoX 4 (window
find). With this command you can ask to see any specified buffer, file or tag in the other window. 
Follow the CoX 4 with either B and a buffer. name, F and a filename, or T and a tag name. This 
switches to the other window and finds there what you specified. If you were previously in one
window mode, multiple-window mode is entered. CoX 4 B is similar to CoX 2 CoX B. CoX 4 F is 
similar to CoX 2 CoX C-F. CoX 4 T is similar to CoX 2 CoX T. The difference is one of efficiency, 
and also that CoX 4 works equally well if you are already using two windows. 

12. Processes Under JOVE 

Another feature in JOVE is its ability to interact with UNIX in a useful way. You can run other UNIX 
commands from JOVE and catch their output in JOVE buffers. In this chapter we will discuss the 
different ways to run and interact with UNIX commands. 

12.1. Non-interactive UNIX commands 

To run a UNIX command from JOVE just type "CoX !" followed by the name of the command ter
minated with Return. For example, to get a list of all the users on the system, you do: 

C-X! who<return> 

Then JOVE picks a reasonable buffer in which the output from the command will be placed. E.g.,· 
·who" uses a buffer called who; ·ps alx" uses ps; and "fgrep ·n foo*.c· uses fgrep. If JOVE .wants to 
use a buffer that already exists it first erases the old contents. If the buffer it selects holds a file, not 
output from a previous shell command, you must first delete that buffer with CoX K:. 
Once JOVE has picked a buffer it puts that buffer in a window so you can see the command's output 
as it is running. If the·re is only one window JOVE will automatically make another one. Otherwise, 
JOVE tries to pick the most convenient window which isn't the current one. 
It's not a good idea to type anything while the command is running. There are two reasons for this: 
(i) JOVE won't see the characters (thus won't execute them) until the command finishes, so you may 

forget what you've typed. 
(ii) Although JOVE won't know what you've typed, it will know that you've typed something, and 

then it will try to be 'smart" and not update the display until it's interpreted what you've typed. 
But, of course, JOVE won't interpret what you type until the UNIX command completes, so 
you're left with the uneasy feeling you get when you don't know what the hell the computer is 
doing*. 

If you want to interrupt the command for some reason (perhaps you mistyped it, or you changed your 
mind) you can type Co]. Typing this inside JOVE while a process is running is the same as typing C-C 
when you are outside JOVE, namely the process stops in a hUrry. 
When the command finishes, JOVE puts you back in the window in which you started. Then it prints 
a message indicating whether or not the command completed successfully in its (the command's) 
opinion. That is, if the command had what it considers an error (or you interrupt it with C-]) JOVE 
will print an appropriate message. 

*This is a bug and should be fixed. but probably won't be for a while. 



USD:17-20 JOVE Manual for UNIX Users 

12.2. Limitations of Non-Interactive Processes 
The reason these are called non-interactive processes is that you can't type any input to them; you 
can't interact with them; they can't ask you questions because there is no way for you to answer. For 
example, you can't run a command interpreter (a shell), or mail or crypt with C-X ! because there is 
no way to provide it with input. Remember that JOVE (not the process in the window) is listening to 
your keyboard, and JOVE waits until the process dies before it looks at what you type. 
C-X ! is useful for running commands that do some output and then exit. For example, it's very use
ful to use with the C compiler to catch compilation error messages (see Compiling C Programs), or 
with the grep commands. 

12.3. Interactive Processes - Run a SheD ill a Window 

Some versions of JOVEt have the capability of running interactive processes. This is more useful than 
non-interactive processes for certain types of jobs: 
(i) You can go off and do some editing while the command is running. This is useful for com

mands that do sporadic output and run for fairly long periods of time. 
(ii) Unlike non-interactive processes, you can type input to these. In addition, you can edit what 

you type with the power of all the JOVE commands before you send the input to the process. 
This isa really important feature, and is especially useful for running a shell in a window. 

(iii) Because you can continue with normal editing while one of the processes is running, you can 
create a bunch of contexts and manage them (select them, delete them. or temporarily put them 
aside) with JOVE'S window and buffer mechanisms. 

Although we may have given an image of processes being attached to windows, in fact they are 
attached to buffers. Therefore, once an i-process is running you can select another buffer into that 
window, or if you wish you can delete the window altogether. If you reselect that buffer later it will . 
be up to date. That is, even though the buffer wasn't visible it was still receiving output from the 
process. You don't have to worry about missing. anything when the buffer isn't visible. 

12.4. Advantages of Running Processes in JOVE Windows. 

There are several advantages to running a shell in a window. What you type isn't seen immediately 
by the process; instead JOVE waits until you type an entire line before passing it on to the process to 
read. This means that before you type <return> all of JOVE's editing capabilities are available for 
fixing errors on your input line. If you discover an error at the beginning of the line, rather than eras
ing the whole line and starting over, you can simply move to the error, correct it, move back and con
tinue typing. 
Another feature is that you have the entire history of your session in a JOVE buffer. You don't have 
to worry about output from a command moving past the top of the screen. If you missed some out
put you can move back through it with ESC V and other commands. In addition, you can save your
self retyping a command (or a similar one) by sending edited versions of previous commands, or edit 
the output of one command to become a list of commands to be executed ("immediate shell scripts"). 

12.5. Differences between Normal and I-process Buffers 

JOVE behaves differently in several ways when you are in an i-process buffer. Most obviously, 
<return> does different things depending on both your position in the buffer and on the state of the 
process. In the normal case, when point is at the end of the buffer, Return does what you'd expect: it 
inserts a line-separator and then sends the line to the process. If you are somewhere else in the 
buffer, possibly positioned at a previous command that you want to edit, Return will place a copy of 
that line (with the prompt discarded if there is one) at the end of the buffer and move you there. 
Then you can edit the line and type Return as in the normal case. If the process has died for some 
reason, Return does nothing. It doesn't even insert itself. If that happens unexpectedly, you should 

t For example, the version provided with 4.3B5D. 



JOVE Manual for UNIX Users USD:17-21 

type ESC X list-processes<retum> to get a list of each process and its state. If your process died 
abnormally, list-processes may help you figure out why. 

12.6. How to Run a Shell in a Window 

Type ESC X i-shell<retum> to start up a shell. As with C-X !, JOVE will create a buffer, called 
shell-I, and select a window for this new buffer. But unlike C-X ! you will be left in the new win
dow. Now, the shell process is said to be attached to shell-I, and it is considered an i-process buffer. 

13. Directory Handling 

To save having to use absolute pathnames when you want to edit a nearby file JOV&aallows you to 
move around the UNIX filesystem just as the c-shell does. These commands are: 

cd dir Change to the specified directory. 

pushd [dir] Like cd, but save the old directory on the directory stack. With no directory argu
ment, simply exchange the top two directories on the stack and cd to the new top. 

popd 

dirs 

Take the current directory off the stack and cd to the directory now at the top. 

Display the contents of the directory stack. 

The names and behavior of these commands were chosen to mimic those in the c-shell. 

14. Editing C Programs 
This section details the support provided by JOVE for working on C programs. 

14.1. Indentation Commands 
To save having to layout C programs "by· hand", JOVE has an idea of the correct· indentation of a line, 
based on the surrounding context. When you are in C Mode, JOVE treats tabs specially - typing a tab 
at the beginning of a new line means "indent to the right place". Closing braces are also handled spe
cially, and are indented to match the corresponding open brace. 

14.2. Parenthesis and Brace Matching 

To check that parentheses and braces match the way you think they do, turn on Show Match mode 
(ESC X show-match-mode). Then, whenever you type a close brace or parenthesis, the cursor moves 
momentarily to the matching opener, if it's currently visible. If it's not visible, JOVE displays the line 
containing the matching opener on the message line. 

14.3. C Tags 

Often when you are editing a C program, especially someone else's code, you see a function call and 
wonder what that function does. You then search for the function within the current file and if 
you're lucky find the definition, finally returning to the original spot when you are done. However, if 
are unlucky, the function turns out to be external (defined in another file) and you have to suspend 
the edit, grep for the function name in every .c that might contain it, and finally visit the appropriate 
file. 

To avoid this diversion or the need to remember which function is defined in which file, Berkeley 
UNIX has a program called ctags(l), which takes a set of source files and looks for function 
definitions, producing a file called tags as its output. 

JOVE has a command called C-X T (find-tag) that prompts you for the name of a function (a tag), 
looks up the tag reference in the previously constructed tags file, then visits the file containing that tag 
in a new buffer, with point positioned at the definition of the function. There is another version of 
this command, namely find-lag-at-point, that uses the identifier at point. 
So, when you've added new functions to a module, or moved some old ones around, run the ctags 
program to regenerate the tags file. JOVE looks in the file specified in the tag-file variable. The default 



USD:17-22 JOVE Manual for UNIX Users 

is • .ftags·, that is, the tag file in the current directory. If you wish to use an alternate tag file, you use 
C-U C-X T, and JOVE will prompt for a file name. If you find yourself specifying the same file again 
and again. you can set tag-fi/e to that file. and run find-tag with no numeric argument. 
To begin an editing session looking for a particular tag, use the -£ tag command line option to JOVE. 
For example, say you wanted to look at the file containing the tag SkipChar, you would invoke JOVE 

as: 

% jove -t SkipChar 

14.4. Compiling Your'Program 
You've typed in a program or altered an existing one and now you want to run it through the com
piler to check for errors. To save having to suspend the edit. run the compiler, scribble down error 
messages, and then resume the edit, JOVE allows you to compile your code while in the editor. This is 
done with the C-X C-E (compile-it) command. If you run compile-it with no argument it runs the 
UNIX make program into a buffer; If you need a special command or want to pass arguments to 
make, run compile-it with any argument (C-U is good enough) and you will be prompted for the com
mand to execute. 
If any error messages are produced, they are treated specially by JOVE. That treatment is the subject 
of the next section. 

14.5. Error Message Parsing and Spelling Checking 
JOVE knows how to interpret the error messages from many UNIX' commands; In particular, the mes
sages from cc, grep and lint can be understood. After running the compile-it command, the parse-

. e"ors command is automatically executed, and any errors found are displayed in a new buffer. The 
files whose names are found in parsing the error messages are each brought into JOVE buffers and the 
point is positioned at the first error in the first file. The commands cu"em-e"or, C-X C-N (next
error),and C-X C-P (previous-error) can be used to traverse the list of errors. 

If you already have a file called e"s containing, say, 'C compiler messages then you can get JOVE to 
interpret the messages by invoking it as: 

%jove-pe"s 

JOVE has a special mechanism for checking the the spelling of a document; It runs the UNIX spell pro
gram into a buffer. You then delete from this buffer all those words that are not spelling errors and 
then JOVE runs the parse-spelIing-e"ors command to yield a list of errors just as' in the last section. 

15. Simple Customization 

15.1. Major Modes 
To help with editing particular types of file, say a paper or a C program, JOVE has several major 
modes. These are as follows: 

15.1.1. Text mode 
This is the default major mode. Nothing special is done. 

15.1.2. C mode 
This mode affects the behavior of the tab and parentheses characters. Instead of just inserting the 
tab, JOVE determines where the text "ought" to line up for the C language and tabs to that position 
instead. The same thing happens with the close brace and close parenthesis; they are tabbed to the 
"right" place and then inserted. Using the auto-execute·command command, you can make JOVE 
enter C Mode whenever you edit a file whose name ends in .c. 



JOVE Manual for UNIX Users USD:17-23 

15.1.3. Lisp mode 
This mode is analogous to C Mode, but performs the indentation needed to layout Lisp programs 
properly. Note also the grind-s-expr command that prettyprints an s-expression and the kill-mode
expression command. 

15.2. Minor Modes 

In addition to the major modes, JOVE has a set of minor modes. These are as follows: 

15.2.1. Auto Indent 

In this mode, JOVE indents each line the same way as that above it. That is, the Return key in this 
mode acts as the Linefeed key ordinarily does. 

15.2.2. Show Match 

Move the cursor momentarily to the matching opening parenthesis when a closing parenthesis is 
typed. 

15.2.3. Auto Fill 

In Auto Fill mode, a newline is automatically inserted when the line length exceeds the right margin. 
This way, you can type a whole paper without having to use the Return key. 

15.2.4. Over Write 

In this mude, any text typed in will replace the previous contents. (The default is for new text to be 
inserted and "push" the old along.) This is useful for editing an already-formatted diagram in which 

.' you 'want to changesome'things without moving' other things around on the sCreen. 

15.2.5. Word Abbrev 

In this mode, every word you tYPe is compared to a list of word abbreviations; whenever you type an 
abbreviation, it is replaced by the text that it abbreviates. This can save typing if a particular word 
or phrase must be entered many times. The abbreviations and their expansions are held in a file that 
looks like: 

abbrev:phrase 

This tile can be set up in your -I.joverc with the read-word-abbrev-file command. Then, whenever you 
are editing a buffer in Word Abbrev mode, JOVE checks for the abbreviations you've given. See also 
the commands read-word-abbrev-file, write-word-abbrev-file, edit-word-abbrevs, define-global-word
abbrev. defi1le-mode-word-abbrev, and bind-macro-to-word-abbrev, and the variable auto-case-abbrev. 

15.3. Variables 
JOVE can be tailored to suit your needs by changing the values of variables. A JOVE variable can be • 
given a value with the set command, and its value displayed with the print command. 

The variables JOVE understands are listed along with the commands in the alphabetical list at the end 
of this document. 

15.4. Key Re-binding 

Many of the commands built into JOVE are not bound to specific keys. The command handler in 
JOVE is used to invoke these commands and is activated by the execute-extended-command command 
(ESC X). When the name of a command typed in is unambiguous, that command will be executed. 
Since it is very slow to have to type in the name of each command every time it is needed, JOVE 
makes it possible to bind commands to keys. When a command is bound to a key any future hits on 
that key will invoke that command. All the printing characters are initially bound to the com,mand 
self-insert. Thus, typing any printing character causes it to be inserted into the text. Any of the 



USD:17-24 JOVE Manual for UNIX Users 

existing commands can be bound to any key. (A key may actually be a control character or an escape 
sequence as explained previously under Command Input Conventions). 
Since there are more commands than there are keys, two keys are treated as prefix commands. When 
a key bound to one of the prefix commands is typed, the next character typed is interpreted on the 
basis that it was preceded by one of the prefix keys. Initially AX and ESC are the prefix keys and 
many of the built in commands are initially bound to these "two stroke" keys. (For historical reasons, 
the Escape key is often referred to as "Meta"). 

15.5. Keyboard Macros 
Although JOVE has many powerful commands. you often find that you have a task that no individual 
command can do. JOVE allows you to define your own commands from sequences of existing ones "by 
example"; Such a sequence is termed a macro. The procedure is as follows: First you type the start
remembering command, usually bound to C-X (. Next you "perform· the commands which as they 
are being executed are also remembered, which will constitute the body of the macro. Then you give 
the stop-remembering command, usually bound to C-X). You now have a keyboard macro. To run 
this command sequence again, use the command execute-keyboard-macro, usually bound to C-X E. 
You may find this bothersome to type and re-type, so there is a way to bind the macro to a key. 
First, you must give the keyboard macro a name using the name-keyboard-macro command. Then 
the binding is made with the bind-macra.ta.key command We're still not finished because all this 
hard work will be lost ~f you leave JOVE. . What you do is to save your macros into a file with the 
write-macros-ta.file command. There is a corresponding read-macros-/rom-file command to retrieve 
your macros in the next editing session. 

15.6. InitializatioD Files 
Users will. likely want to modify the default key bindings to their liking. Since it would be quite 
annoying to have to set up the bindings each time JOVE is started up, JOVE has the ability to read in a 
·startup· file. Whenever JOVE· is starteq, it reads commands from'the file .joverc in the user's home 
directory. These commands are read as if they were typed to the command handler (ESC X) during 
an edit. There can be only one command per line in the startup file. If there is a file 
lusrllibljoveljoverc, then this file will be read before the user's .jovercfile. This can be used to set up 
a system-wide default startup mode for JOVE that is tailored to the needs of that system. 
The source command can be used to read commands from a specified file at any time during an edit
ing session, even from inside the . joverc file. This means that a macro can be used to change the key 
bindings, e.g., to enter a mode, by reading from a specified file which contains all the necessary bind
ings. 



JOVE Manual for UNIX Users USD:17-25 

16. Alphabetical List of Commands and Variables 

16.1. Prefix-l (Escape) 

This reads the next character and runs a command based on the character typed. If you wait for 
more than a second or so before typing the next character~ the message "ESC" will be printed on the 
message line to remind you that JOVE is waiting for another character. 

16.2. Prefix·2 (C-X) 

This reads the next character and runs a command based on the character typed. If you wait for 
more than a second or so before typing another character~ the message "C_X" will be printed on the 
message line to remind you that JOVE is waiting for another character. 

16.3. Prefix·3 (Not Bound) 

This reads the next character and runs a command based on the character typed. If you wait for 
more than a second or so before typing the next character~ the character that invoked Prefix-3 will be 
printed on the message line to remind you that JOVE is waiting for another one. 

16.4. allow-"S-and· "Q (variable) 

This variable~ when set, tells JOVE that your terminal does not need to use the characters C-S and C-Q 
for flow control, and that it is okay to bind things to them. This variable should be set depending 
upon what kind of terminal you have. 

16.5. allow-bad·filenames (variable) 

If set, this. variable permits· filenames to contain "bad" characters such as those from the set 
*&%!"'[](}. 'These files are harder to deal with, because the characters mean something to the shell. 
The (iefault value is "off".· 

16.6. append-region (Not Bound) 

This appends the region to a specified file. If the file does not already exist it is created. 

16.7. apropos (Not Bound) 

This types out all the commands, variables and macros with the specific keyword in their names. For 
each command and macro tha~ contains the string, the key sequence that can be used to execute the 
command or macro is printed; with variables, the current value is printed. So, to find all the com
mands that are related to windows, you type "ESC X apropos window<Return>". 

16.8. auto-c:ase-abbrev (variable) 

When this variable is on (the default), word abbreviations are adjusted for case automatically. For 
example, if "jove" were the abbreviation for "jonathan's own version of emacs", then typing "jove" 
would give you "jonathan's own version of emacs", typing "Jove" would give you "Jonathan's own 
version of emacs", and typing "JOVE" would give you "Jonathan's Own Version of Emacs". When 
this variable is "off', upper and lower case are distinguished when looking for the abbreviation, i.e., in 
the example above, "JOVE" and "Jove" would not be expanded unless they were defined separately. 

16.9. auto-execute-c:ommand (Not Bound) 

This tells JOVE to execute a command automatically when a file whose name matches a specified pat
tern is visited. The first argument is the command you want executed and the second is a regular 
expression pattern that specifies the files that apply. For example, if you want to be in show-match
mode when you edit C source files (that is, files that end with ".c· or" .h:) you can type 

ESC Xauto-execute-command show-match-mode .*.[ch]$ 



USD:17 .. 26 JOVE Manual for UNIX Users 

16.10. aato-execute-macro (Not Bound) 
This is like auto-execute-command except you use it to execute macros automatically instead of built
in commands. 

16.11. auto-fiB-mode (Not Bound) 

This turns on Auto Fill mode (or off if it's currently on) in the selected buffer. When JOVE is in Auto 
Fill mode it automatically breaks lines for you when you reach the right margin so you don't have to 
remember to hit Return. JOVE uses 78 as the right margin but you can chaqe that by setting the 
variable right-margin to another value. See the set command to learn how to do this. 

16.12. auto-iDdeat-mode (Net Bound) 

This turns on Auto Indent mode (or off if it's currently on) in the selected buffer. When JOVE is in 
Auto Indent mode, Retum indents the new line to the same position as the line you were just on. 
This is useful for lining up C code (or any other language (but what else is there besides C?». This ·is 
out of date because of the new command called newline-and-indent but it remains because of several 
"requests" on the part of, uh, enthusiastic and excitable users, that it be left as it is. 

16.13. backward-character (C-B) 

This moves point backward over a single character. If point is at the beginning of the line it moves 
to the end of the previous line. 

16.14. backward-paragrapb (ESC o· 
This moves point backward to the beginning of the current or previous paragraph. Paragraphs are 
bounded by lines that begin with a 'Period or Tab, or by blank lines; a, change in indentation may also 
signal a break between paragraphs, except that JOVE' allows the first line of a paragraph to be indented 
differently from the other lines. 

16.15. backward-s-expressioa (ESC C-B) 

This moves point backward over a .s-expression. It is just like forward-s-expression with a negative. 
argument. 

16.16. backward-sentence (ESC A) 

This moves point backward to the beginning of the current or previous sentence. JOVE considers the 
end of a sentence to be the characters ".", "r or "1" followed by a Return or by one or more spaces. 

16.11. backward-word (ESC B) 
This moves point backward to the beginning of the current or previous word. 

16.18. bad-fileaame-extensioas (variable) 

This contains a list of words separated by spaces which are to be considered bad filename extensions, 
and so will not be counted in filename completion. The default is ".0" so if you have jove.c and 
jove.o in the same directory, the filename completion will not complain of an ambiguity because it 
will ignore jove.o. . .. 

16.19. beginning-of-file (ESC <) 

This moves point backward to the beginning of the buffer. This sometimes prints the ·Point Pushed" 
message. If the top of the . buffer isn't on the screen JOVE will set the mark so you can go back to 
where you were if you want. 



JOVE Manual for UNIX Users USD:17-27 

16.20. beginning-of-Iine (C-A) 

This moves point to the beginning of the current line. 

16.21. beginning-of-window (ESC ,) 

This moves point to the beginning of the current window. The sequence "ESC," is the same as "ESC 
<" (beginning of file) except without the shift key on the "<", and can thus can easily be remembered. 

16.22. bind-to-key (Not Bound) 

This attaches a key to an internal JOVE command so that future hits on that key invoke that com
mand. For example, to make "C-W" erase the previous word, you type "ESC X bind-ta-key kill
previous-word C-W" . 

16.23. bind-macro-to-key (Not Bound) 

This is like bind-lo-key except you use it to attach keys to named macros. 

16.24. bind-macro-to-word-abbrev (Not Bound) 

This command allows you to bind a macro to a previously defined word abbreviation. Whenever you 
type the abbreviation, it will first be expanded as an abbreviation, and then the macro will be exe
cuted. Note that if the macro moves around, you should set the mark first (C-@) and then exchange 
the point and mark last (C-X C-X). # 

16.25. Dufl'er-position (Not Bound) 

This displays the current file name, current line number, total number of lines, percentage of the way 
through the file, and the position of the cUrsor in the current line. 

16.26. c-mode (Not Bound) 

This turns on C mode in the currently selected buffer. This is one of currently four possible major 
modes: Fundamental, Text, C, Lisp. When in C or Lisp mode, Tab, or, and")" behave a little 
differently from usual: They are indented to the "right" place for C (or Lisp) programs. In JOVE, the 
"right" place is simply the way the author likes it (but I've got good taste). 

16.27. case-character-capitalize (Not Bound) 

This capitalizes the character after point, i.e., the character undo the cursor. If a negative argument is 
supplied that many characters before point are upper cased. 

16.28. case-ignore-search (variable) 

This variable, when set, tells JOVE to treat upper and lower case as the same when searching. Thus 
"jove" and "JOVE" would match, and "JoVe" would match either. The default value of this variable 
is "off"'. 

16.29. case-region-Iower (Not Bound) 

This changes all the upper case letters in the region to their lower case equivalent. 

16.30. case-region-opper (Not Bound) 

This changes all the lower case letters in the region to their upper case equivalent. 

16.31. case-word-capitalize (ESC C) 

This capitalizes the current word by making the current letter upper case and making the rest of the 
word lower case. Point is moved to the end of the word. If point is not positioned on a word it is 
first moved forward to the beginning of the next word. If a negative argument is supplied that many 
words before point are capitalized. This is useful for correcting the word just typed without having to 



USD:1 7-2S· JOVE Manual for UNIX Users 

move point to the. beginning of the word yourself. 

16.32. C8H-word-lower (ESC L) 
This lower-cases the current word and leaves point at the end of it. If point is in the middle of a 
word the rest of the word is converted. If point is not in a word it is first moved forward to the 
beginning of the next word. If a negative argument is supplied that many words be/ore point are con
verted to lower case. This is useful for correcting the word just typed without having to move point 
to the beainning of the word yourself. 

16.33. cue-word .... pper (ESC U) 

This upper-cases the current word and leaves point at the end of it. If point is in the middle of a 
word the rest of the word is converted. If point is not in a word it is first moved forward to the 
beginning of the next word. If a negative argument is supplied that many words before point are con
verted to upper case. This is useful for correcting the word just typed without having to move point 
to the beginning of the word yourself. 

16.34. c:haracter-to-oetal-iasert (Not Bound) 
This inserts a Back-slash followed by the ascii value of the next character typed. For example, "C-G" 
inserts the string "\007". 

16.35. eel (Not Bound) 

This ~anges the current directory. 

16.36. d_-and-redraw (ESC .C-L) 

This clears the entire screen and redraws all the windows. Use this when JOVE gets confused about 
what's on· the. screen, or when the screen gets filled with garbage characters or output from another 
program. 

16.37. c:ommeat-format (variable) 

This variable tells JOVE how to format your comments when you run the command jill-comment. Its 
format is this: 

<open pattem>%!<line header>%c<line trailer>%!<close pattern> 

The %!, %c, and %! must appear in the format; everything else is optional. A newline (represented by 
%n) may appear.in the open or close patterns. %% is the representation for %. The default comment 
format is for C comments. See ji/1-com1nent for more. 

16.38. compile-it (C-X C .. E) 

This compiles your program by running the UNIX command "make" into a buffer, and automatically 
parsing the error messages that are created (if any). See the parse-e"ors and parse-special-e"ors com
mands. To compile a C program without ".make", use ·e-u C-X C-E" and JOVE will prompt for a 
command to run instead of make. (And then the command you type will become the default com
mand.) You can use this to parse the output from theC compiler or the "grep" or "lint" programs. 

16.39. continue-process (Not Bound) 
This sends SIGCONT to the current interactive process, if the process is currently stopped. 

16.40. c:opy-regioa (ESC W) 

This takes all tbe text in the region and copies it onto the kill ring buffer. This isjust like running 
kill-region followed by the yank command. See the kill-region and yank commands. 



JOVE Manual for UNIX Users USD:17-29 

16.41. current-error (Not Bound) 

This moves to the current error in the list of parsed errors. See the next-error and previous-error com
mands for more detailed information. 

16.42. date (Not Bound) 

This prints the date on the message line. 

16.43. define-mode-word-abbrev (Not Bound) 

This defin~ a mode-specific abbreviation. 

16.44. define-global-word-abbrev (Not Bound) 

This defines a global abbreviation. 

'16.45. delete-bialik-lines (C-X C-O) 

This deletes all the blank lines around point. This is useful when you previously opened many lines 
with ·C-O· and now wish to delete the unused ones. 

16.46. delete-buffer (C-X K) 

This deletes a buffer and frees up all the memory associat~d with it.· Be careful! Once a buffer has 
been deleted it is gone forever. JOVE will ask you to confirm if you try to delete a buffer that need! 
saving. This command is useful for when JOVE runs out of space to store new buffers. 

16.47. delete-macro (Not Bound) 

This deletes a macro from the list of named macro~. It is an error to delete the keyboard-macro. 
Once the. macro is deleted it is gone forever. If you are about to save m~cros to a file and decide you 
don't want to save a particular one, delete it. .. 

16.48. delete-next-character (C-D) 
This deletes the character that's just after point (that is, the character under the cursor). If point is at 
the end of a line, the line separator is deleted and the next line is joined with the current one. 

16.49. delete-other-windows (C-X 1) 

This deletes all the other windows except the current one. This can be thought of as going back into 
One Window mode. 

16.50. delete-previous-character (Rubout) 

This deletes the character that's just before point (that is, the character before the cursor). If point is 
at the beginning of the line, the line separator is deleted and that line is joined with the previous one. 

16.51. delete-white-spac:e (ESC \) 

This deletes all the Tabs and Spaces around point. 

16.52. delete-current-window (C-X D) 

This deletes the current window and moves point into one of the remaining ones. It is an error to try 
to delete the only remaining window. -

16.53. describe-bindings (Not Bound) 

This types out a list containing each bound key and the command that gets invoked every time that 
key is typed. To make a wall chart of JOVE commands, set send-typeout-to-buffer to 'on" and JOVE 

will store the key bindings in a buffer which you can save to a file and then print. 



USD:17-30 JOVE Manual for UNIX Users 

16.!4. descriJte.ceDUlWld (Not loud) 
This prints some info on aspecifted command. 

16.55. describe-key (Not Bound) 
This waits for you to type a key and then tells the name of the command that gets invoked every time 
that key is hit. Once you have the name of the command you can use the describe-command com
mand to find out exactly what it does. 

16.56. describe-variable (Not BoIIDd) 

This prints some info on a specified variable. 

16.57. di", (ESC (0-9D 
This reads a numeric argument. When you type "ESC" followed by a number, "digit" keeps reading 
numbers until you type some other command. Then that command is executes with the numeric 
argument you specified. 

16.58. dicit-I (Not Bound) 
This pretends you typed "ESC 1". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed froin the keyboard. This 
can save having type "ESC" when yOI,l want to specify an argument. • 

16.59 •. diait-1 (Not Bound) 
This pretends you typed "ESC 2-" •. This is usef1il for terminals that have keypads that send .special 
sCquences for numbers typed on the keypad as opposed to nUinbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16~60. cHait-3 (Not Bound) 

This pretends you typed "ESC 3", This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.61. digit"'" (Not Bound) 

This pretends you typed "ESC 4", This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed· to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.61. digit-5 (Not Bound) 

This pretends you typed "ESC· 5". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.63. digit-6 (Not Bound) 
This pretends you typed "ESC 6". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.04. digit-7 (Not Bound) 

This pretends you typed "ESC 7". This is useful for terminals that have keypads. that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 



JOVE Manual for UNIX Users USD:17-31 

16.65. digit-8 (Not Bound) 

This pretends you typed "ESC 8". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as ppposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.66. digit-9 (Not Bound) 

This pretends you typed "ESC 9". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.67. digit-O (Not Bound) 

This pretends you typed "ESC 0". This is useful for terminals that have keypads that send special 
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This 
can save having type "ESC" when you want to specify an argument. 

16.68. din (Not Bound) 
This prints out the directory stack. See the "cd", "pushd", "popd" commands for more info. 

16.69. disable-biff (variable). 

When this is set, JOVE disables biff when you're editing and enables it again when you get out of JOVE, 
or when you pause to the parent shell or push to a new shell. (This means arrival of new mail will not 
be immediately apparent but will not cause indiscriminate writing on the display). The default is 
"off". 

16.70. dstop-process (Not BoUlid) 

Send the "dsusp" . character to the current process. This is tbe character that suspends a process ·on 
the next read from the terminal. Most people have it set to C-Y. This only works if you have the 
interactive process feature, and if you are in a buffer bound to a process. 

16.71. edit-word-abbrevs (Not Bound) 

This creates a buffer with a list of each abbreviation and the phrase it expands into, and enters a 
recursive edit to let you change the abbreviations or add some more. The format of this list is 
"abbreviation:phrase" so if you add some more you should follow that format. It's probably simplest 
just to copy some already existing abbreviations and edit them. When you are done you type ·C-X 
C-e" to exit the recursive edit. 

16.72. end.-o(-ftle (ESC » 
This moves point forward to the end of the buffer. This sometimes prints the "Point Pushed" mes
sage. If the end of the buffer isn't on the screen JOVE will set the mark so you can go back to where 
you were if you want. 

16.73. end-of-Iine (C-E) 

This moves point to the end of the current line. If the line is too long to fit on the screen JOVE will 
scroll the line to the left to make the end of the line visible. The line will slide back to its normal 
position when you move backward past the leftmost visible character or when you move off the line 
altogether. 

16.74. end-of-window (ESC .) 

This moves point to tbe last character in the window. 



JOVE Manual for UNIX Users 

16.75. eof..proeess (Not Bound) 
Sends EOF to the current interactive process. This only works on versions of JOVE which run under 
4.2-3 BSD VAX UNIX. You can't send EOF to processes OD the 2.9 BSDPDP-ll UNIX; 

16.76. erase-buft'er (Not Bound) 
This erases the contents of the specified buffer. This is like delete-buffer except it only erases the con
tents of the buffer, not the buffer itself. If you try to erase a buffer that needs saving you will be 
asked to confirm it. 

16.77. error .. wiadow-size (variable) 
This is the percentqe of the screen to use for the error-window on the screen. When you execute 
compile-it error-window-size percent of the screen will IOta the error window. If the window already 
exists and is a different size, it is made to be this size. The default value is 20%. 

16.78.exdaaap-poiDt-aacl-DI8I'k (C-X C-X) 

This moves point to mark and makes mark the old point. This is for quickly moving from one end 
of the region to another. 

16.79. execute-aamed-com1ll8lld (ESC X) 

This is the way to execute a command that isn't bound to any key. When you are prompted with ": • 
you can type, the name of the command. You, don't have to type the entire, name. Once the com
mand is unambiguous you can type Space and JOVE win fill in the rest for you. If you are not sure of 
the name of the command, type "1" and JOVE will print a list of all the commands that you could pos
sibly'match given what you~ve already typed. If you don't have any idea, what the command's name 
is but you know it has something to do with windows (for example), you can do "ESC X apropos win
dow" ~d JOVE win print .. list of all the commands that are related to windows. If you find yourself 
constantly executing the same commands this way you probably want to bind them to keys so that 
you can execute them more quickly. See the bind-ttrkey command. 

16.80. execute-keyboard-macl'o (C-X E) 

This executes the keyboard macro. If you supply a numeric argument the macro is executed that 
many times. 

16.81. execute-macro (Not Bound) 
This executes a specified macro. If you supply a numeric argument the macro is executed that many 
times. 

16.82. exit-jove (C-X C-C) 
This exits JOVE. If any buffers need saving JOVE will print a warning message and ask for 
confinnation. If you leave without saving your buffers all your work will be lost. If you made a mis
take and really do want to exit then you can. If you are in a recursive editing' level exit-jove will 
return you from that. . 

16.83. ftie-creation-mocle (variable) 
This variable has an octal value. It contains the mode (see chmod(l)) with which files should be 
created. This mode gets modified by your current umask setting (see umask(l). The default value is 
usually 0666 or 0644. ' 

16.84. files-should-end-witb-aewU.e (variable) 
This variable indicates that all files should always have a newline at the end .. This is often necessary 
for line printers and the like. When set, if JOVE is writinlafile whose last character .is not a newline, 



JOVE Manual for UNIX Users USD:17.;33 

it will add one automatically. 

16.85. fill-comment (Not Bound) 

This command fills in your C comments to make them pretty and readable. This filling is done 
according the variable comment-format. 

1* 
* the default format makes comments like this. 

*' This can be changed by changing the format variable. Other languages may be supported by changing 
the format variable appropriately. The formatter looks backwards from dot for an open comment 
symbol. If found, all indentation is done relative the position of the first character of the open sym
bol. If there is a matching close symbol, the entire comment is formatted. If not, the region between 
dot and the open symbol is reformatted. 

16.86. fill-pllf8II'8ph (ESC J) 

This rearranges words between lines so that all the lines in the current paragraph extend as close to 
the right margin as possible, ensuring that none of the lines will be greater than the right margin~ The 
default value for right-margin is 78, but can be changed with the set and. right-mar gin-here com
mands. JOVE has a complicated algorithm for determining the beginning and end of the paragraph. 
In the normal case JOVE will give all the lines the same indent as they currently have, but if you wish 
to force a new indent you can supply a numeric argument to fill-paragraph (e.g., by typing C-U ESC]) 
and JOVE will indent each line to the column specified by the left-margin variable. See also the left
margin variable and left-marg;n-here command. 

16.87. fill-region (~otBound) 
This is like fill-paragraph, except it operates on a region instead of just a paragraph. 

16.88. filter-region (Not Bound) 
This sends the text in the region to a UNIX command, and replaces the region with the output from 
that command. For example, if you are lazy and don't like to take the time to write properly 
indented C code, you can put the region around your C file and filter-region it through cb, the UNIX 
C beautifier. If you have a file that contains a bunch of lines that need to be sorted you can do that 
from inside JOVE too, by filtering the region through the sort UNIX command. Before output from 
the command replaces the region JOVE stores the old text in the kill ring, so if you are unhappy with 
the results you can easily get back the old text with "C-y". 

16.89. find-file (C-X C-F) 
This visits a file into its own bUffer and .nen selects that buffer. If you've already visited this file in 
another buffer, that buffer is selected. If the file doesn't yet exist, JOVE will print "(New file)" so that 
you know. 

16.90. find-tag (C-X n 
This finds the file that contains the specified tag. JOVE looks up tags by default in the "tags" file in the 
current directory. You can change the default tag name by setting the tag-file variable to another 
name. If you specify a numeric argument to this command. you will be prompted for a tag file. This 
is a good way to specify another tag file without changing the default. If the tag cannot be found the 
error is reported and point stays where it is. 

16.91. find-tag-at-point (Not Bound) 

This finds the file that contains the tag that point is currently on. See find-tag. 



USD:17-34 JOVE Manual for UNIX Users 

16.92. first~DOn~blank (ESC M) 

This moves point back to the indent of the current line. 
; 

16.93. forwar4-character (C-F) 

This moves forward over a single character. If point is at the end of the line it moves to the begin
ning of the.next one. 

16.94. forward-paragraph (ESC » 
This moves point forward to the end of the current or next paragraph. Paragraphs are bounded by 
lines that begin with a Period or Tab, or by blank lines; a change in indentation may also signal a 
break between paragraphs, except that JOVE allows the first line of a paragraph to be indented 
differently from the other lines. 

16.95. fonrard-s--expression (ESC C-F) 

This moves point forward over a &-expression. If the first significant character after point is "(", this 
moves past the matching ")". If the character begins an identifier, this moves just past it. This is 
mode dependent, so this will move over atoms in LISP mode and C identifiers in C mode. JOVE also 
matches .. {" . 

16.96. forward-sentence (ESC E) 

This moves point forward to the end of the current or next sentence. JOVE considers the end of a sen
tence to be the characters ..... , "!" or "1" followed by a Return, or one or more spaces. 

16.97. fonvard-word(ESC F) 

This moves point forward to the end of the current or next word. 

16.98. fundamental-mode (Not Bound) 

This sets the major mode to Fundamental. This affects what JOVE considers as characters that make 
up words. For instance, Single-quote is not part of a word in Fundamental mode, but is in Text 
mode. 

16.99. goto-line (ESC G) 

If a numeric argument is supplied point moves to the beginning of that line. If no argument is sup
plied. point remains where it is. This is so you don't lose your place unintentionally, by accidentally 
hitting the "G" instead of "F". 

16.100. grind-s--exPf (Not Bound) 

When point is positioned on a "(", this re-indents that LISP expression. 

16.101. grow-window (C-X A) 

This makes the current window one line bigger. This only works when there is more than one win
dow and provided there is room to change the size. 

16.102. paren-flash 0 } J) 
This handles the C mode curly brace indentation, the Lisp mode paren indentation, and the Show 
Match mode paren/curly brace/square bracket flashing. 

16.103. handle-tab (Tab) 

This handles indenting to the "right" place in C and Lisp mode, and just inserts itself in Text mode. 



JOVE Manual for UNIX Users USD:17-35 

16.104. i-search-forward (Not Bound) 

Incremental search. Like search-forward except that instead of prompting for a string and searching 
for that string all at once, it accepts the string one character at a time. After each character you type 
as part of the search string, it searches for the entire string so far. When you like what it found, type 
the Return key to finish the search. You can take back a character with Rubout and the search will 
back up to the position before that character was typed. C-G aborts the search. 

16.105. i-search-reverse (Not Bound) 

Incremental search. Like search-reverse except that instead of prompting for a string and searching 
for that string all at once, it accepts the string one character at a time. After each character you type 
as part of the search string, it searches for the entire string so far. When you like what it found, type 
the Return key to finish the search. You can take back a character with Rubout and the search will 
back up to the position before that character was typed. C-G aborts the search. 

16.106. insert-file (C-X C-I) 

This inserts a specified file into the current buffer at point. Point is positioned at the beginning of the 
inserted file. 

16.107. intemal-tabstop (variable) 

The number of spaces JOVE should print when it displays a tab character. The default value is 8. 

16.108. interrupt-process (Nb( Bound) 

This sends the interrupt character (usuallyC-C) to the interactive process in the current buffer. This 
is only for versions of JOVE that have the interactive processes feature. This only works when you are 
inside a buffer that's attached to a process .. 

16.109. i-shell (Not Bound) 

This starts up an interactive shell in a window. JOVE uses • shell-l • as the name of the buffer in which 
the interacting takes place. See the manual for information on how to use interactive processes. 

16.110. i-shell-command (Not Bound) 

This is like shell-command except it lets you continue with your editing while the commatrd is run
ning. This is really useful for long running commands with sporadic output. See the manual for 
information on how to use interactive processes. 

16.111. kill-next-word (ESC D) 

This kills the text from point to the end of the current or next word . 

• 16.112. kill-previous-word (ESC Rubout) 

This kills the text from point to the beginning of the current or previous word. 

16.113. kill-process (Not Bound) 

This command prompts for a buffer name or buffer number (just as select-buffer does) and then sends 
the process in that buffer a kill signal (9). 

16.114. kill-region (C-W) 

This deletes the text in the region and saves it on the kill ring. Commands that delete text but save it 
on the kill ring all have the word "kill" in their names. Type ·C-Y· to yank back the most recent kill. 



USD: 1 7-36 JOVE Manual for UNIX Users 

16.115. JdD-s-expressioD (ESC C-K) 
This kills the text from point to the end of the cUrrent or next s-expression. 

16.116. Jdll-some-buft'en (Not BoaDd) 
This goes through all the existing buffers and asks whether or not to kill them. If you decide to kill a 
buffer, and it turns out that the buffer is modiJied, JOVE will offer to save it first. This is useful for 
wben JOVE runs out of memory to stOre lines (this only happens on PDP-II's) and you have lots of 
buffers that you are no longer using. 

16.117. JdlJ.oto-hgiDDiq-of-seateaee(C-X Ruhout) 
This kills from point to the'beginning of the current or previous sentence. 

16.118. JdIl-to-eDd-of-Une (C-I) 

This kills from point to the end of the current line. When point is at the end of the line the line 
separator is deleted and the next line is joined with current ODe. If a numeric argument is supplied 
that many lines are killed; if the araument is negative that many lines before point are killed; if the 
argument is zero the text from point to the beginning of the line is killed. 

16.119. JdIl-m-ead-of-seDteaee (ESC K) 
This kills from point to the end of the current or next sentence. If a negative numeric argument is 
supplied it kills from point to the beginning of the current or, previous sentence. 

16.120. Ieft-margiD. (variable) 

This is bow far lines should be indented when auto-indent mode is ali, 'or when the newline-and
indent, command is- run (usually by typing LineFeed). It is also used by fill-paragraph and auto-fill 
mode. If the value is zero (the default) then the left margin is detemiined from the surrounding lines. 

16.121. Ieft-maraiD-here (Not BoaDd) 
This sets the left-margin variable to the current position of point. This is an easy way to say, "Make 
the left margin begin here,· without having to count the number of spaces over it actually is. 

16.122. lisp..mode (Not Bound) 
, ~ 

This turns on Lisp mode. Lisp mode is one of four mutually exclusive major modes: Fundamental, 
Text, C, and Lisp. In Lisp mode, the characters Tab and ) are treated specially, similar to the way 
they are treated in C mode. Also, Auto Indent mode is affected, and handled specially. 

16.123. list-bders (C-X C-B) 
This types out a list containing various information about each buffer. Right now that list looks like 
this: 

(* means the buffer needs saving) 
NO Lines Type Name File 

1 
2 
3 

1 File 
1 Sc.ratch 
519 File 

Main 
* Minibuf 
* commands.doc 

[No file] 
(No file] 
commands. doc 

The first column lists tbe buffer's number. When JOVE promptS for a buft"er name you can either type 
in the full name, or you can simply type the buffer's number. The second column is the number of 
lines in the buffer. The third says what type of buffer. There are four types: "file", "Scratch", ·Pro
cess·, "I-Process". "File" is simply a buffer that holds a file; "Scratch" is for buffers that JOVE uses 
internally; • Process " is one that holds the output from a UNIX command; "I·Process· is one that ,bas 
an interactive process attached to it. The next column contains the name of the buffer, And the last 



JOVE Manual for UNIX Users USD:17-37 

column is the name of the file that's attached to the buffer. In this case, both Minibuf and 
commands. doc have been changed but not yet saved. In fact Minibuf won't be saved since it's an 
internal JOVE buffer that I don't even care about. 

16.124. list-processes (Not Bound) 

This makes a list somewhat like "list-buffers" does, except its list consists of the current interactive 
processes. Right now the list looks like this: 

Buffer Status Command name 

shell-l 
fgrep 

Running 
Done 

i-shell 
fgrep -n Buffer *.c 

The first column has the name of the buffer to which the process is attached. The second has the 
status of the process; if a process has exited normally the status is "Done" as in fgrep; if the process 
exited with an error the status is "Exit N" where N is the value of the exit code; if the process was 
killed by some signal the status is the name of the signal that was used; otherwise the process is run
ning. The last column is the name of the command that is being run. 

16.125. mailbox (variable) 

Set this to the full pathname of your mailbox. JOVE will look here to decide whether or not you have 
any unread mail. This defaults to lusr!spoollmaill$USER, where $USER is set to your login name. 

16.126. mail-check-frequency (variable) 

This is how often (in seConds) JOVE should check your mailbox for incoming mail. See also the mail-
box and disable-biff variables. . -

. 16.127. make-backup-files (variable) 

If this variable is set, then whenever JOVE writes out a file, it will move the previous version of the 
file (if there was one) to "#filename". This is often convenient if you save a file by accident. The 
default value of this variable is "off". Note: this is an optional part of JOVE, and your guru may not 
have it enabled, so it may not work. 

16.128. make-buffer-unmodified (ESC 1 
This makes JOVE think the selected buffer hasn't been changed even if it has. Use this when you 
accidentally change the buffer but don't want it considered changed. Watch the mode line to see the 
* disappear when you use this command. 

16.129. make-macro-interactive (Not Bound) 

This command is meaningful only while you are defining a keyboard macro. Ordinarily, when a com
mand in a macro definition requires a trailing text argument (file name, search string, etc.), the argu
ment you supply becomes part of the macro definition. If you want to be able to supply a different 
argument each time the macro is used, then while you are defining it, you should give the make
macro-interactive command just before typing the argument which will be used during the definition 
process. Note: you must bind this command to a key in order to use it; you can't say ESC X make
macro-interacti ve. 

16.130. mark-threshold (variable) 

This variable contains the number of lines point may move by before the mark is set. If, in a search 
or something, point moves by more than this many lines, the mark is set so that you may return 
easily. The default value ofthis variable is 22 (one screenful, on most terminals). 



USD:17-38 JOVE Manual for UNIX Users 

16.131. marks-shoul4·fIoat (variable) 

When this variable is .. otf", the position of a mark is remembered as a line number within the buffer 
and a character number within the line. If you add or· delete text before the mark, it will no longer 
point to the text you marked originally because that text is no longer at the same line and character 
number. When this variable is "on'" the position of a mark is adjusted to compensatefor each inser
tion· and deletion. This makes marks much more sensible to use, at tbecost of slowing down inser
tion and deletion somewhat. The default value is "on". 

16.132. matcb-replar-expressioas (variaWe) 

When set, JOVE wiD match resuIar expressions in search patterns. This makes JPtcial the characters ., 
., [, ], A, and $, and the two-character sequences \<, \>. \ {, \} and \ ,. See the ed(l) manual page, 
the tutorial "Advanced Editing in UNIX ., and the section above "Searching with Regular Expres
sions" for more information. 

16.133. meta-key (variable) 

You should set this variable to "on" if your terminal has a real Meta key. If your terminal has such a 
key, then a key sequence like ESC Y can be entered by holding down Meta and typing Y. 

16.134. mode-line (variable) 

The format of the mode line can be. determined by setting this variable. The items in the line are 
specified \ISing a printf(3) format, with the special things being marked as "%x". Digits may be used 
between the 'x' may be: 

C check for new mail, and displays "[New mail]" if there 
is any (see also the mail-check-interval and 
disable-biff variables) 

F the current file name, with leading path stripped 
. M the cUrrent list ·of major and minor modes 
b the current buffer name 
c the fill character (-) . 
d the current directory 
e end of string-this must be the last item in the string 
f the current file name 
I the current load average (updated automatically) 
m the buffer-modified symbol (*) 
n the current buffer number 
s space, but only if previous character is not a space 
t the current time (updated automatically) 
[ ] the square brackets printed when in a recursive edit 
( ) items enclosed in %( ... '*») wiD only be printed on 

the bottom mode line, rather than copied when the 
window is split 

In addition, any other character is simply copied into the mode line. Characters may be escaped with 
a backslash. To get a feel for all this, try typing "ESC X print mode-line" and compare the result with 
your current mode line. 

16.135. lDOde-line-should-standout (variable) 

If set, the mode line will be printed in reverse video, if your terminal supports it. The default for this 
variable is "off". 



JOVE Manual for UNIX Users USD:17-39 

16.136. name-keyboard-macro (Not Bound) 

This copies the keyboard macro and gives it a name freeing up the keyboard macro so you can define 
some more. Keyboard macros with their own names can be bound to keys just like built in com
mands can. See the read-macros-fiJe-fiJe and write-macros-to-fiJe commands. 

16.137. newline (Return) 

This divides the curren~ line at point moving all the text to the right of point down onto the newly 
created line. Point moves down to the beginning of the new line. 

16.138. newline-and-backup (C-O) 

This divides the current line at point moving all the text to the right of point down onto the newly 
created line. The difference between this and wnewline· is that point does not move down to the 
beginning of the new line. 

16.139. newHne-and-indent (LineFeed) 
This behaves the same was as Return does when in Auto Indent mode. This makes Auto Indent 
mode obsolete but it remains in the name of backward compatibility. 

16.140. next-error (C-X C-N) 

This moves to the next error in the list of errors that were parsed with parse-e"ors or parse-special· 
mors. In one window the list of errors is shown with the current one always at the top. In another 
window is the file that contains the error. Point is positioned in this window on the line where the 
error occUrred. . 

16.141. next-line (C-N) 

This moves down to the next line. 

16.142. next-page (C-V) 

This displays the next page of the buffer by taking the bottom line of the window and redrawing the 
window with it at the top. If there isn't another page in the buffer JOVE rings the bell. If a numeric 
argument is supplied the screen is scrolled up that many lines; if the argument is negative the screen 
is scrolled down. 

16.143. next-Window (C-X N) 

This moves into the next window. Windows live in a circular list so when you're in the bottom win
dow and you try to move to the next one you are moved to the top window. It is an error to use this 
command with only one window. 

16.144. number-Iines-in-window (Not Bound) 

This displays the line numbers for each line in the buffer being displayed. The number isn't actually 
part of the text; it's just printed before the actual buffer line is. To tum this off' you run the com
mand again; it toggles. 

16.145. over-wrIte-mode (Not Bound) 

This turns Over Write mode on (or off if it's currently on) in the selected buffer. When on, this mode 
changes the way the self-inserting characters work. Instead of inserting themselves and pushing the 
rest of the line over to the right, they replace or over-write the existing character. Also, Rubout 
replaces the character before point with a space instead of deleting it. When Over Write mode is on 
·OvrWtW is displayed on the mode line. 



USD:17-40 JOVE Manual for UNIX Users 

16.146. page-next.window (ESC C-V) 

This displays the next page in the next window. This is exactly the same as ·C-X N CaV C-X P", 

16.147. paren-fJash-delay (variable) 

How long, in tenths of seconds. JOVE should pause on a matching parenthesis in Show Match mode. 
The default is S. 

16.148. parse-errors (Not Bound) 

This takes the list of C compilation errors (or output from another program in the same format) in 
the current buffer and parses them for use with the next-error and previous-error and current-error 
commands. This is a very useful tool and helps with compiling C programs and when used in con
junction with the • grep" UNIX command very helpful in making changes to a bunch of files. This 
command understands errors produced by ce, cpp, and lint; plus any other program with the same 
format (e,g., "grep _nO). JOVE visits each file that has an error and remembers each line that contains 
an error. It doesn't matter if later you insert or delete some lines in the buffers containing errors; 
JOVE remembers where they are regardless. next-error is automatically executed after one of the parse 
commands, so you end up at the first error. 

16.149. parse-special-errors (Not Bound) 

This parses errors in an unknown format. Error parsing works with regular expression search strings 
with \('s around the the file name and the line number. So, you can use parse-special-errors to parse 
li"!es that are in a slightly different format by typing in your own search string. If you don't know 
how to use regular expressions you can't use this command. 

16.150. parse-spelling-errors-in-buft'er (Not Bound) 

This parses a list of words in the current buffer and looks them up in another buffer that you specifY. 
This will probably go away soon. 

16.1S1. pause-jove (ESC S) 

This stops JOVE and returns control to the parent shell. This only works for users using the C-shell, 
and on systems that have the job control facility. To return to JOVE you type "fg" to the C-shell. 

16.1S2. physical-tabstop (variable) 

How many spaces your terminal prints when it prints a tab character . 

• 
16.1S3. pop-mark. (Not Bound) 

This gets executed when yeu run set-mark with a numeric argument. JOVE remembers the last 16 
marks and you use pop-mark to go backward through the ring of marks. If you execute 'pop-ntJ/lrk 
enough times you will eventually get back to where you started. 

16.154. popel (Not Bound) 

This pops one entry off the directory stack. Entries are pushed with the pushd command. The names 
were stolen from the C-shell and the behavior is the same. 

16.1SS. previous-error (C-X C-P) 

This is the same as next-error except it goes to the previous error. See next-error for documentation. 

16.1S6. previous-line (C-P) 

This moves up to the previous line. 



--------~~-- --~ 

JOVE Manual for UNIX Users USD:17-41 

16.157. previous-page (ESC V) 

This displays the previous page of the current buffer by taking the top line and redrawing the window 
with it at the bottom. If a numeric argument is supplied the screen is scrolled down that many lines; 
if the argument is negative the screen is scrolled up. 

16.158. previous-window (C-X P aDd C-X 0) 

This moves into the next window, Windows live in a circular list so when you're in the top window 
and you try to move to the previous one you are moved to the bottom window, It is an error to use 
this command with only one window. 

16.159. print (Not Bound) 

This prints the value of a JOVE variable. 

16.160. print-message (Not Bound) 

This command prompts for a message, and then prints it on the bottom line where JOVE messages are 
printed. 

16~161. process-bind-to-key (Not Bound) 

This command is identical to bind-to-key, except that it only affects your bindings when you are in a 
buffer attached to a process. When you enter the process buffer, any keys bound with this command 
will automatically take their new values. When you switch to a non-process buffer, the old bindings 
for those keys will be restored. For example, you might want to execute 

, ' 

process-bind.;to-key stop-process ·Z 
process-bind-to-key interrupt-process ·C 

Then, when you start up an interactive process and switch into that buffer, C-Z will execute'stop
process and C-C will execute interrupt- process. When you switch back to a non-process buffer, C-Z 
will go back to executing scroll-up (or whatever you have it bound to). 

16.162. process-newline (Return) 

This-this only gets executed when in a buffer that is attached to an interactive-process. JOVE does two 
different things depending on where you are when you hit Return. When you're at the end of the 1-
Process buffer this does what Return normally does, except it also makes the line available to the pro
cess. When point is positioned at some other position that line is copied to the end of the buffer 
(with the prompt stripped) and point is moved there with it, so you can then edit that line before 
sending it to the process. This command must be bound to the key you usually use to enter shell 
commands (Return), or else you won't be able to enter any. 

16.163. process-prompt (variable) 

What a prompt looks like from the i-shell and i-shell-command processes. The default is "% ", the 
default C-shell prompt, This is actually a regular expression search string. So you can set it to be 
more than.one thing at once using the \1 operator. For instance, for LISP hackers, the prompt can be 
"% \1-> \1<[0-9]>: ", 

16.164. push-shell (Not Bound) 

This spawns a child shell and relinquishes control to it. This w~rks on any version of UNIX, but this 
isn't as good as pause-jove because it takes time to start up the new shell and you get a brand new 

. environment every time. To return to JOVE you type WC_D", 



USD:17-42 JOVE Manual for UNIX Users 

16.165. imsIad(Not Bound) 

This pushes a directory onto the directory staclc and cd's into it. It asks for the directory name but if 
you don't specify one it switches the top two entries no the stack. It purposely behaves the same as 
C-shen's pushd. 

16.166. pwd (Not Bound) 

This prints the working directory. 

16.167. quaclruple-aumeric-arpment (C-U) 

This multiplies the numeric argument by 4. So, ·C-U C-P" means forward 4 characters and ·C-U C
U C-N" means down 16 lines. 

16.168. query-replace-string (ESC Q) 
This replaces the occurrences of a specified string with a specified replacement string. When an 
occurrence is found point is moved to it and then JOVE asks what to do. The options are: 

Space to replace this occurrence and go on to the next one. 
Period to replace this occurrence and then stop. 
Rubout to skip this occurrence and go on to the next one. 
C-R to enter a recursive edit. This lets you. temporarily 

suspend the replace, do some editing, and then return 
to continue where you left oft'. To continue with the 
Query Replace type "C-X C-e" as if you were trying to' 
exit JOVE. Normally you would but when you are'in a 
recursive edit all it does is exit that recursive ' 
editing level. ' 

C-W to d:el~e the matched string and' then enter a recursive 
edit. 

U to undo the last replacement. 
P or ! to go ahead and replace the remaining occurrences without 

asking. 
Return to stop the Query Replace. 

The search for occurrences starts at point and goes to the end of the buft'er, so to replace in the entire 
buft'er you must first go to the beginning. 

16.169. quit-process (Not Bound) 

This is the same as typing "C-\" (the Quit character) to a normal UNIX process, except it sends it to 
the current process in JOVE. This is only for versions of JOVE that have the interactive processes 
feature. This only works when you are inside a buffer that's attached to a process. 

16.170. quoted-insert (C-Q) 

This lets you insert characters that normally would be executed as other JOVE commands. Por exam-
. pie, to insert "C-P" you type "C-Q C-P". 

16.171. read-word-altbrev-lile (Not Bound) 

This reads a specified file that contains a bunch of abbreviation definitions, and makes those abbrevi
ations available. If the selected buffer is not already in Word Abbrev mode this command puts it in 
that mode. 



JOVE Manual for UNIX Users USD:17-43 

16.172. read-macros-from-file (Not Bound) 
This reads the specified file that contains a bunch of macro definitions,. and defines all the macros that 
were currently defined when the file was created. See write-macros-to-fi/e to see how to save macros. 

16.173. redraw-display (C-L) 

This centers the line containing point in the window. If that line is already in the middle the window 
is first cleared and then redrawn. If a numeric argument is supplied, the line is positioned at that 
offset from the top of the window. For example, "ESC 0 C-L" positions the line containing point at 
the top of the window. 

16.174. reeursi.e-edit (Not Bound) 
This enters a recursive editing level. This isn't really very useful. I don't know why it's available for 
public use. I think I'll delete it some day. 

16.175. rename-buffer (Not Bound) 
This lets you rename the current buffer. 

16.176. replace-ia-regiOD (Not Bound) 
This is the same as replace-string except that it is restricted to occurrences between Point and Mark. 

16.177. replace-string (ESC R) 

This replaces all occurrences of a specified string with a specified replacement string. This is just like 
query-replace-stri,,:g except it replaces without asking. 

16.178. right-llUU'gin (variable) .. 

Where the right Margin is for Auto Filt mode and the justify-paragraph and justify-region commands. 
The default is 78. 

16.179. right-llUU'gin-here (Not Bound) 
This sets the right-margin variable to the current position of point. This is an easy way to say, "Make 
the right margin begin here,' without having to count the number of spaces over it actually is. 

16.180. sa.e-file (C-X C-5) 

This saves the currentbuifet· to the associated file. This makes your changes permanent so you 
should be sure you really want to. If the buffer has not been modified save-file refuses to do the save. 
If you really do want to write the file you can use "C-X C-W' which executes write-file. 

16.181. scroll-doWD (ESC Z) 

This scrolls the screen one line down. If the line containing point moves past the bottom of the win
dow point is moved up to the center of the window. If a numeric argument is supplied that many 
lines are scrolled; if the argument is negative the screen is scrolled up instead. 

16.182. scroll-step (variable) 
How many lines should be scrolled if the previous~line or next-line commands move you off the top or 
bottom of the screen. You may wish to decrease this variable if you are on a slow terminal. 

16.183. scroIl .... p (C-Z) 

This scrolls the screen one line up. If the line containing point moves past the top of the window 
point is moved down to the center of the window. If a numeric argument is supplied that many lines 
are scrolled; if the argument is negative the screen is scrolled down instead. 



USO:17-44 JOVE Manual for UNIX Users 

16.184. search-exit-dlar (variable) 

Set this to the character you want to use to exit incremental search. The· default is Newline, which 
makes i-search compatible with normal string search. 

16.185. search-forwanl (C-S) 

This searches forward for a specified search string and positions point at the end of the string if it's 
foUDd. If the string is not found point remains UDChanged. This searches from point to the end of 
the buft'er, so any matches before point will be missed. 

16.186. sareh-reYene (C-R) 

This searChes backward for a specified search string and posinoas point at the beginning if the string 
if it's found. If the string is not found point remaias unchanged. This searches from point to the 
beginning of the butrer, so any matches after point will be missed. 

16.187. selec:t-bu8"er (C .. X B) 

This selects a new or already existing. butrer making it the current one. You can type either the buffer 
name or number. If you type in the name you need only type the name until it is unambiguous, at 
whidl point typing Escape or Space will complete it for you. If you want to create a new buffer you 
can type R.eturn instead of Space, and a new empty butrer will be created. 

16.188. self-insert (Most PriDting Characters) 

This inserts the character. that invoked it into the buffet at point. Initially all. but a few of the print
ing characters are bound to selfinsert. 

16.189. send-typeoat-to-buft'er (variable) 

When this is set JOVE will send output that normally overwrites the· scfeen (temporarily) to a buffer 
instead. This affects commands like· list-buffers, list-processes, and other commands that use com-
mand completion. The default value is "off". . 

16.190. set (Not Bound) 
This gives a specified variable a new value. Occasionally you'll see lines like ·set this variable to that 
value to do this". Wen, you Use the set command to do that. 

16.191. set-mark (C-@) 
This sets the mark at the current position in the buffet. It prints the message "Point pushed" on the 
message line. It says that instead of "Mark set" because when you set the mark the previous mark is 
still remembered on a ring of 16 marks. So "Point pushed" means point is pushed onto the ring of 
marks and becomes the value of "the mark". To go through the ring of marks you type ·C-U C-@", 
or execute the pop-mark command. If you type this enough times you will get back to where you 
started. 

16.192. sheD (variable) 

The shell to be used with all the shell commands command. If your SHELL environment variable is 
set, it is used as the value of shell; otherwise "lbinlcsh· is the default. 

16.193. shell-eommand (C-X !) 

This runs a UNIX command and places the output from that command in a buffer. JOVE creates a 
butfer that matches the name of the command you specify and then attaches that buffer to a window. 
So, when you have only one window running this command will cause.JOVE to split the window and 
attach the new buffer to that window. Otherwise, JOVE finds the most convenient of the available 
windows and uses that one instead. If the buft'et already exists it is first emptied, except that if it's 



JOVE Manual for UNIX Users USD:17-45 

holding a file, not some output from a previous command, JOVE prints an error message and refuses 
to execute the command. If you really want to execute the command you should delete that buffer 
(saving it first, if you like) or use shell-command-t(J.obuffer, and try again. 

16.194. shell-command-to-buffer (Not Bound) 

This is just like shell-command except it lets you specify the buffer to use instead of JOVE. 

16.19S. sheU-Oags (variable) 

This defines the flags that are passed to shell commands. The default is ".e". See the shell variable to 
change the default shell. 

16.196. show.match-mode (Not Bound) 

This turns on Show Match mode (or off if it's currently on) in the selected buffer. This changes -r 
and ")" so that when they are typed the are inserted as usual, and then the cursor flashes back to the 
matching" r or "r (depending on what was typed) for about half a second, and then goes back to just 
after the -}" or ")" that invoked the command. This is useful for typing in complicated expressions in 
a program. You can change how long the cursor sits on the matching paren by setting the "paren
flash.delay" variable in tenths of a second. If the matching" {" or T isn't visible nothing happens. 

16.197. shrink-window (Not Bound) 

This makes the current window one line shorter, if possible. Windows must be at least 2 lines high, 
one for the text and the other for the mode line. 

16.198. souice (Not Bound) 

This reads a bunch of JOVE commands from a file. The format of the file' is the same as that in your 
initialization file (your ".joverc") in yoUr main directory. There should be one command· per line and· 
it should be as though you typed "ESC X" while in JOVE. For example, here's part of my initializa
tion file: 

bind-ta.key i-search-reverse "'R 
bind-ta.key i-search-forward "'S 
bind-ta-key pause-jove "'(S -

What they do is make "c-R" call the i-search-reverse command and "C_S" call i-search-Jorward and 
"ESC S .. call pause-jove. 

16.199. spell-buffer (Not Bound) 

This runs the current buffer through the UNIX spell program and places the output in buffer "Spell". 
Then JOVE lets you edit the list of words, expecting you to delete the ones that you don't care about, 
i.e., the ones you know are spelled correctly. Then the parse-spelling-e"ors-in-buffer command comes 
along and finds all the misspelled words and sets things up so the error commands work. 

16.200. split-current-window (C-X 2) 

This splits the current window into two equal parts (providing the resulting windows would be big 
enough) and displays the selected buffer in both windows. Use "C-X I" to go back to 1 window 
mode. 

16.201. start-rememberinl (C-X 0 
This starts remembering your key strokes in the Keyboard macro. To stop remembering you type 
·C-x t. Because ofa bug in JOVE you can't stop remembering by typing "ESC X stop-remembering"; 
stop-remembering must be bound to "C-X r in order to make things work correctly. To execute the 
remembered key strokes you type "C-X E" which runs the execute-keyboard-macro command. Some
times you may want a macro to accept different input each time it runs. To see how to do this, see 



USD:t7-46 JOVE Manual for UNIX Users 

the make-macro.interaclive command. 

16.202. stop-process (Not Do_d) 

This sends a stop signal (C-Z, for most people) to the current process. It only works if you have the 
interactive process feature, and you are in abutrer attached to a process. 

16.203. stop-remembering (C-X » 
This stop the definition of the keyboard macro. Because of a bug in JOVE, this must be bound to "C
X )". Anything else will not work properly. 

16.204. string-length (Not Boud) 

This prints the number of characters in the string that point sits in. Strings are surrounded by double 
quotes. JOVE knows that "\007" is considered a si. character, namely ·C..o", and also knows about 
other common ones, like "\r" (Return) and "\n" (LineFeed). This is mostly useful only for C pro
grammers. 

16.205. suspend-jove (ESC S) 

This is a synonym for pause-jove. 

16.206. sync-frequency (variable) 

The temporary files used by JOVE are forced out to disk every. sync-/requency· modifications. The 
default is SO, which really makes good sense. Unless your system is very unstable, you probably 
shouldn't fool with this. " 

16.207. tag-Ale (variable) 

This the name of the file in " which JOVE should look up tag definitions .. ·The default value is ".ftags". 

16.208. text-mode (Not Boud) 

This sets the major mode to Text. Currently the other modes are Fundamental, C and Lisp mode. 

16.209. traD$pose-characters (C-T) 

This. sWitches the character before point with the one after point, and then moves forward one. This 
doesn't work at the beginning· of the line, and at the end of the line it switches the two characters 
before point. Since point is moved forward, so that the character that was before point is still before 
point, you can use "C-r to drag a character down the length of a line. This command pretty quickly 
becomes very useful. 

16.210. transpose-lines (C-X C-T) 

This switches the current line with the one above it, and then moves down one so that the line that 
was above point is still above point. This, like lranspose-characters, can be used to drag a line down a 
page. 

16.211. _bind-key (Not Boud) 

Use this to unbind any key sequence. You can use this to unbind even a prefix command, since this 
command does not use "key-map completion". For example, "ESC X unbind-key ESC r unbinds the 
sequence "ESC (". This is useful for "turning off" something set in the system-wide" .joverc" file. 

16.212. update-tiJne..frequency (variable) 

How often the mode line is updated (and thus the time and load average, if you display them). The 
default is 30 seconds. 



• 

JOVE Manual for UNIX.Users USD: 1 7-47 

16.213. use-i/d-char (variable) 

If your terminal has insert/delete character capability you can tell JOVE not to use it by setting this to 
"off". In my opinion it is only worth' using insert/delete character at low baud rates. WARNING: if 
you set this to "on" when your terminal doesn't have insert/delete character capability, you will get 
weird (perhaps fatal) results. 

16.214. venion (Not Bound) 

Displays the version number of this JOVE. 

16.215. visible-bell (variable) 

Use the terminal's visible bell instead of beeping. This is set automatically if your terminal has the 
capability. 

16.216. visible-spaces-in-window (Not Bound) 

This displays an underscore character instead of each space in the window and displays a greater-than 
followed by spaces for each tab in the window. The actual text in the buffer is not changed; only the 
screen display is affected. To tum this off you run the command again; it toggles. 

16.217. visit-file (C-X C-V) 

This reads a specified file into the current buffer replacing the old text. If the buffer needs saving 
JOVE will offer to save it for you. Sometimes you use this to start over, say if you make lots of 
changes and then change your mind. If that's the case you don't want JOVE to save your buffer and 
you answer· "NO" to the question.' . . 

16.218. window-find (C-X 4) . 

This lets you select another buffer in another window three different ways. This waits for. another 
character which can be one of the following: 

T Finds a tag in the other window. 
F Finds a file in the other window. 
B Selects a buffer in the other window. 

This is just a convenient short hand for "CoX 2" (or "C-X 0" if there are already two windows) fol
lowed by the appropriate sequence for invoking each command. With this, though, there isn't the 
extra overhead of having to redisplay. In addition, you don't have to decide whether to type "C-X 2" 
or "C-X 0" since "C-X 4" does the right thing. 

16.219. word-abbrev-mode (Not Bound) 

This turns on Word Abbrev mode (or off if it's currently on) in the selected buffer. Word Abbrev 
mode lets you specify a word (an abbreviation) and a phrase with which JOVE should substitute the 
abbreviation. You can use this to define words to expand into long phrases, e.g., "jove" can expand 
into "Jonathan's Own Version of Emacs"; another common use is defining words that you often 
misspell in the same way, e.g., "thier" -> "their" or "teh" => "the". See the information on the auto
case-abbrev variable. There are two kinds of abbreviations: mode specific and global. If you define a 
Mode specific abbreviation in C mode, it will expand only in buffers that are in C mode. This is so 
you can have the same abbreviation expand to different things depending on your context. Global 
abbreviations expand regardless of the major mode of the buffer. The way it works is this: JOVE looks 
first in the mode specific table, and then in the global table. Whichever it finds it in first is the one 
that's used in the expansion. If it doesn't find the word it is left ul'ltouched. JOVE tries to expand 
words as they are typed, when you type a punctuation character or Space or Return. If you are in 
Auto Fill mode the expansion will be filled as if you typed it yourself. 



USO:17-48 JOVE Manual for UNIX Users 

16.220. wrap-search (variable) 

If set, searches will "wrap around" the ends of the buffer instead of stopping at the bottom or top. 
The default is • off" . 

16.221. write-ftles-on-make (variable) 

When set, all modified files will be written out before calling make when the compileoit command is 
executed. The default is • on W • 

16.222. write-word-abbrev-ftle (Not Bound) 

This writes the currently defined abbreviations to a specified file. They can be read back in and 
automatically defined with read-word-abbrev-file. 

16.223. write-file (C-X C-W) 

This saves the current buffer to a specified file, and then makes that file the default file name for this 
buffer. If you specify a file that already exists you are asked to confirm over-writing it. 

16.224. write-macros-to-file (Not Bound) 

This writes the currently defined macros to a specified file. The macros can be read back in with 
read-macros-from-file so· you can define macros and still use them in other instantiations of JOVE. 

16.225. write-modified-files (C-X C-M) 

This saves all the buffers that need saving. If you supply a numeric argument it asks for each buffer 
whether you really want to save .it. 

16.226. write-region (~ot Bound) 

This writes the text in the region toa specified file. "If the file already exists you are asked to confirm 
over-writing it. 

16.227. yank (C-Y) 

This undoes the last kill command. That is, it inserts the killed text at point. When you do multiple 
kill commands in a row, they are merged so that yanking them back with "C_Y" yanks back all of 
them. 

16.228. yank-pop (ESC Y) 

This yanks back previous killed text. JOVE has a kill ring on which the last 10 kills are stored. yank 
yanks a copy of the text at the front of the ring. If you want one ofthe last ten kills you use "ESC Y" 
which rotates the ring so another different entry is now at the front. You can use "ESC Y" only 
immediately following a "CoY" or another "ESC V". If you supply a negative numeric argument the 
ring is rotated the other way. If you use this command enough times in a row you will eventually get 
back to where you started. Experiment with this. It's extremely useful. 



SED - A Non-interactive Text Editor 

SED - A Non-interactive Text Editor 

Lee E. McMahon 

AT &.T Ben Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

USD:18-1 

Sed is a non-interactive context editor that runs on the UNIXt operating sys
tem. Sed is designed to be especially useful in three cases: 

1) To edit files too large for comfortable interactive editing; 
2) To edit any size file when the sequence of editing commands is too com

plicated to be comfortably typed in interactive mode. 
3) To perform multiple 'global' editing functions efficiently' in one pass 

through the input. 

This memorandum constitutes a manual for users of sed. 

Introdudloa 
Sed is a non-interactive context editor designed to be especially useful in three cases: 

1) To edit files too large for comfortable interactive editing; 
2) To edit any size file when the sequence of editing commands is too complicated to be com

fortably typed in interactive mode; 
3) To perform multiple 'global' editing functions efficiently in one pass through the input. 

Since only a few lines of the input reside in core at one time, and no temporary files are used, the 
effective size of file that can be edited is limited only by the requirement that the input and output fit 
simultaneously into available secondary storage. 
Complicated editing scripts can be created separately and given to sed as a command file. For com
plex edits, this saves considerable typing, and its attendant errors. Sed running from a command file 
is much more efficient than any interactive editor known to the author, even if that editor can be 
driven by a pre-written script. 
The principal loss of functions compared to an interactive editor are lack of relative addressing 
(because of the line-at-a-time operation), and lack of immediate verification that a command has done 
what was intended. 

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interactive and 
non-interactive operation, considerable changes have been made between ed and sed; even confirmed 
users of ed will frequently be surprised (and probably chagrined), if they rashly use sed without read
ing Sections 2 and 3 of this document. The most striking family resemblance between the two editors 
is in the class of patterns ('regular expressions') they recognize; the code for matching patterns is 
copied almost verbatim from the code for edt and the description of regular expressions in Section 2 
is copied almost verbatim from the UNIX Programmer's Manual[I]. (Both code and description were 
written by Dennis M. Ritchie.) 

t UNIX is a trademark of AT&T Bell Laboratories. 



SED - A Non-interactive Text Editor 

1. Overall"OperatioD 
Sed by default copies the standard input to the standard output, perhaps performing one or more 
editiag commands on each line before writing it to the output. This behavior may be modified by 
flags on the command line; see Section 1.1 below. • 

The general format of an editing command is: 

[address I ,address21Ifunction][arguments] 

One or both addresses may be omitted; the format of addresses is given in Section 2. Any number of 
blanks or tabs may separate the addresses from the function. The function must be present; the avail
able commands are discussed in Section 3. The arpments may be required or optional, according to 
which function is given; again, they are discussed in Section 3 under each individual function. 

Tab characters and spaces at the beginning of lines are ignored. 

1.1. C ...... Uae Flap 

Three flags are recognized on the command line: 
-II! tens sed not to copy an lines, but only those specified by p functions or p flags after s func

tions (see SectiOD 3.3); 
-e: tens sed to take the next argument as an editing command; 
.. f. teUs sed to take the next argument as a file name; the file should contain editing com

mands, one to a line. 

1.2. Order of ApplicatiOD of EditiDl ComDl8Dds 
Before any editing is done (in fact. before any input file is even opened), an ,the editing commands are 
compiled into a" form which will be moderately efficient during "the execution phase (when the com
mands are ~ctuany applied to lines of the input file). The commands are compiled in the order in 
which they are encountered; this is generally the order in wbich they will be attempted at executio~ 
time. The commands are applied one at a time; the input to each command is the output of all 
preceding commands. 

The default linear order of application of editing commands can be changed by the tlow-of-control 
commands, t and b (see Section 3). Even when the order of application is changed by these com
mands, it is still true that the input line to any command is the output of any previously applied com
mand. 

1.3. Pattera-space 

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line of 
the input text, but more than one line can be read into the pattern space by using the N command 
(Section 3.6.). 

1.4. Examples 
Examples are scattered throughout the text. Except where otherwise noted, the examples all assume 
the following input text: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

(In no cue is the output of the sed commands to be considered an improvement on Coleridge.) 



SED - A Non-interactive Text Editor 

Example: 

The command 

2q 

will quit after copying the first two lines of the input. The output will be: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

1. ADDRESSES: Selecting lines for editing 

USD:lS-3 

Lines in the input file(s) to which editing commands are to be applied can be selected by addresses. 
Addresses may be either line numbers or context addresses. 

The application of a group of commands can be controlled by one address (or address-pair) by group
ing the commands with curly braces (' { } ')(Sec. 3.6.). 

1.1. Line-number Addresses 

A line number is a decimal integer. As each line is read from the input, a line-number counter is 
incremented; a line-number address matches (selects) the input line which causes the internal counter 
to equal the address line-number. The counter runs cumulatively through mUltiple input files; it is 
not reset when a new input file is opened. 

As a special case, the character $ matches the last line of the last input file. 

1.1. Context Addresses 

A context address is a pattern ('regular expression') enclosed in slashes ('1'). The regUlar expressions 
. recognized by sed are constructed as follows: 

1) An ordinary character (not one of those discussed below) is. a regular expression, and 
matches that character. 

2) A circumflex ,A, at the beginning of a regular expression matches the null character at the 
beginning of a line. 

3) A dollar-sign '$' at the end of a regular expression matches the null character at the end of 
a line. 

4) The characters '\n' match an imbedded newline character, but not the newline at the end 
of the pattern space. . 

5) A period '.' matches any character except the terminal newline of the pattern space. 
6) A regular expression followed by an asterisk ,*, matches any number (including 0) of adja

cent occurrences of the regular expression it follows. 
7) A string of characters in square brackets '[ ]' matches any character in the string, and no 

others. If, however, the first character of the string is circumflex 'A', the regular 
expression matches any character except the characters in the string and the terminal 
newline of the pattern space. 

8) A concatenation of regular expressions is a regular expression which matches the concate
nation of strings matched by the components of the regular expression. 

9) A regular expression between the sequences '\('and '\)' is identical in effect to the una
dorned regular expression, but has side-effects which are described under the s com
mand below and specification 10) immediately below. 

10) The expression '\d' means the same string of characters matched by an expression 
enclosed in '\(' and '\)' earlier in the same pattern. Here d is a single digit; the string 
specified is that beginning with the dth occurrence of '\(' counting from the left. For 
example, the expression 'A\(.*\)\I' matches a line beginning with two repeated 
occurrences of the same string. 

11) The null regular expression standing alone (e.g., '/1') is equivalent to the last regular 
expression compiled. 



USD:18-4 SED - A Non-interactive Text Editor 

To use one of the special characters r $ . • [ ] \ I) as a literal (to match an occurrence of itself in the 
input), precede the special character by a backslash '\'. 

For a context address to 'match' the input requires that the whole pattern within the address match 
some portion of the pattern space. 

2.3. Number of Addresses 
The commands in the next section can have 0, 1, or 2 addresses. Under each command the max
imum number of allowed addresses is given. For a command to have more addresses than the max
imum allowed is considered an error. 

If a command has no addresses, it is applied to every line in the input. 

If a command has one address, it is applied to all lines which match that address. 

If a command bas two addresses, it is applied to the first line which matches the first address, and to 
all subsequent lines until (and including) the first subsequent line which matches the second address. 
Then an attempt is made on subsequent lines to again match the first address, and the process is 
repeated. 

Two addresses are separated by a comma. 

Examples: 
lanI 
lan.·anI 
rani 

matches lines 1, 3, 4 in our sample text 
matches line 1 
matches no lines 

1.1 matches all lines 
1\.1 matches line 5 
Ir*anl 
1\(an\).*\l1 

.matches lines 1,3,4 (number.,. zero!) 
matches line 1 

3. FUNCnONS 
All functions are named by a single character. In the following summary, the maximum number of 
allowable addresses is given enclosed in parentheses, then the single character function name, possible 
arguments enclosed in angles « », an expanded English translation of the single-character name, 
and finally a description of what each function does. The angles around the arguments are not part of 
the argument, and should not be typed in actual editing commands. 

3.1. Whole-line Oriented Functions 

(2)d - delete lines 

The d function deletes from the file (does not write to the output) all those lines 
match_ by itsaddress(es). 

It also has the side effect that no further commands are attempted on the corpse of a 
deleted line; as soon as the d function is executed, a new line is read from the input; 
and the list of editing commands is re-started from .the beginning on the new line. 

(2)n - next line 

(1)a\ 

The n function reads the next line from the input, replacing the current line. The 
current line is written to the output if it should be. The list of editing commands is 
continued following the n command. 

<text> - append lines 

The a function causes the argument <text> to be written to the output after the line 
matched by its address. The a command is inherently multi-line; a must appear at 



SED - A Non-interactive Text Editor USD:18-5 

(l)i\ 

the end of a line, and <text> may contain any number of lines. To preserve the one
command-to-a-line fiction, the interior newlines must be hidden by a backslash char
acter ('\') immediately preceding the newline. The <text> argument is terminated by 
the first unbidden newline (the first one not immediately preceded by backslash). 

Once an a function is successfully executed, <text> will be written to the output 
regardless of what later commands do to the line which triggered it. The triggering 
line may be deleted entirely; <text> will still be written to the output. 

The <text> is not scanned for address matches, and no editing commands are 
attempted on it. It does not cause any change in the line-number counter. 

<text> - insert lines 

(2)c\ 

The i function behaves identically to the a function, except that <text> is written to 
the output before the matched line. All other comments about the a function apply to 
the i function as well. 

<text> - change lines 

The c function deletes the lines selected by its address(es), and replaces them with the 
lines in <text>. Like a and i. c must be followed bya newline hidden by a backslash; 
and interior new lines in <text> must be hidden by backslashes. 

The c command may have two addresses, and therefore select a range of lines. If it 
does, all the lines in the range are deleted, .but· only one copy of <text> is written . to 
the output, not one copy per line deleted. As with a and i.<text> is not scanned for 
address matches, and no editing commands are attempted on it. It does not change 
the line-number counter. 

After a line has been deleted by a c function, no further commands are attempted on 
the corpse. 

If text is appended after a line by a or r functions, and the line is subsequently 
changed, the text inserted by the c function will be placed before the text of the a or r 
functions. (The r function is described in Section 3.4.) 

Note: Within the text put in the output by these functions, leading blanks and tabs will disappear, as 
always in sed commands. To get leading blanks and tabs into the output, precede the first desired 
blank or tab by a backslash; the backslash will not appear in the output. 

Example: 

The list of editing commands: 
n 
a\ 
XXXX 
d 

applied to our standard input, produces: 
In Xanadu did Kubhla Klian 
XXXX 
Where Alph, the sacred river, ran 
XXXX 
Down to a sunless sea. 

In this particular case, the same effect would be produced by either of the two following command 
lists: 



USD:18-6 

n 
i\ 
XXXX 
d 

n 
c\ 
XXXX 

SED - A Non-interactive Text Editor 

3.1. Substitute Foudiou 
One very important function chanaes parts of lines selected by a context search within the line. 

(2)s<pattem><replacem.ent><t1ap> - substitute 

The s function replaces part of a line (selected. by <pattern» with <replacement>. It 
can best be read: . 

Substitute for <pattern>, <replacement> 

The <pattern> argument contains a pattern, exactly like the patterns in addresses (see 
2.2 above). The only difference between <pattern> and a context address is that the 
context address must be delimited by slash ('I') characters; <pattern> may be 
delimited by any character othel'than space or newline. 

By default, only the first string matched by <pattern> is replaced, but see the g flag 
below. 

The <replacement> argument begins immediately after the second delimiting charac
ter of <pattern>, and must be followed immediately by another instance of the 
delimiting character. (Thus there are exactly three instances of the delimiting charac
ter.) 

. The <replace~ent> is not a pattern, and the characters which are special in patterns 
do not have special meaning in <replacement>. Instead, other characters are special: 

It is replaced by the string' matched by <pattern> 

\d (where d is a single digit) is replaced by the dth substring matched by parts 
of <pattern> enclosed in '\(' and 'W. If nested substrings occur in 
<pattern>, the dth is ~rmined by counting opening delimiters ('\('). 

As in patterns, special characters may be made literal by preceding 
them with backslash ('\'). 

The <flags> argument may contain the following flags: 

g - substitute <replacement> for all (noDooOverlapping) instances of <pattern> 
in the line. After a successful substitution, the scan for the next 
instance of <pattern> begins just after the end of the inserted charac
ters; characters put into the line from <replacement> are not res
canned. 

p - print the line if a successful replacement was done. The p flag causes the 
line to be written to the output if and only if a substitution was actu
ally made by the s function. Notice that if several s functions, each 
followed by a p flag, successfully substitute in the same input line, 
multiple copies of the line will be written to the output: one for each 
successful substitution. 

w <filename> - write the line to a file if a successful replacement was done. 
The w flag causes lines which are actually substituted by the s function 
to be written to a file named by <filename>. If <filename> exists 
before sed is run, it is overwritten; if not, it is created. 

A single space must separate w and <filename>. 



SED - A Non-interactive Text Editor USD:18-7 

The possibilities of multiple, somewhat different copies of one input 
line being written are the same as for p. 

Examples: 

A maximum of 10 different file names may be mentioned after w flags 
and w functions (see below), combined. 

'The following command, applied to our standard input, 
s/tolby/w changes 

produces, on the standard output: 
In Xanadu did Kubhla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and, on the file 'changes': 
Through caverns measureless by man 
Down by a sunless sea. 

If the nocopy option is in effect, the command: 
s/[.,;?:]/*P&*/gp 

produces: 
A stately pleasure dome decree*P:* 
Where Alph*P,* the sacred river*P,* ran 
Down to 'a sunless sea·P.·· 

Finally, to illustrate the effect of the g flag, the command: 
/XIs/anlAN/p 

produces (assuming nocopy mode): 
In XANadu did Kubhla Khan 

and the command: 
/XIs/ani AN/gp 

produces: 
In XANadu did Kubhla KhAN 

3.3. Input-output Functions 
(2)p - print 

The print function writes the addressed lines to the standard output file. They are 
written at the time the p function is encountered, regardless of what succeeding edit
ing commands may do to the lines. 

(2)w <filename> - write on <ptename> 

The write function writes the addressed lines to the file named by <filename>. If the 
file previously existed, it is overwritten; if not, it is created. The lines are written 
exactly as they exist when the write function is encountered for each line, regardless of 
what subsequent editing commands may do to them. 

Exactly one space must separate the w and <filename>. 

A maximum of ten different files may be mentioned in write functions and w flags 
. after s functions, combined. 



USD:18-8 SED - A NOD-interactive Text Editor 

(t)r <filename> - read the COl1tents of a file 

The read function reads the contents of <filename>, and appends them after the line 
matched by the address. The file· is read and appended regardless of what subsequent 
editing commands do to the line which matched its address. If r and a functions are 
executed on the same line, the text from the a functions and the r functions is written 
to the output in the order that the functions are executed. 

Exactly one space must separate the r and <filename>. Ifa file mentioned by a r 
function cannot be opened, it is considered a null file, not an error, and no diagnostic 
is given. 

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care should be 
taken that no more than ten files be mentioned in w functions or flags; that number is reduced by one 
if any r functions are present. (Only one read file is open at one time.) 

Examples 

Assume that the file 'note 1 ' has the following cootents: 

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson and 
most eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol 
dynasty in China. 

Then the following command: 

lKublalr note 1 

produces: 

In Xanadu did Kubla Khan .. 
Note: Kubla Khan (m..ore properly Kublai Khan; 1216·1294) was the grandson and 

. most eminent successor of Oenghiz (Chingiz) Khan, and founder of *e Mongol 
dynasty in China. . . 

A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

3.4. Multiple Input-Une Functions 

Three functions, all spelled with capital letters, deal specially with pattern spaces containing imbed
ded newlines; they are intended principally to provide pattern matches across lines in the input. 

(2)N - Next line 

The next input line is appended to the current line in the pattern space; the two input 
lines are separated by an imbedded newline. Pattern matches may extend across the 
imbedded newline(s). . 

(2)0 - Delete first part of the pattern space 

Delete up to and including the first newline character in the current pattern space. If 
the pattern space becomes empty (the only newline was the terminal newline), read 
another' line from the input. In any case, begin the list of editing commands again 
from its beginning. 

(2)P - Print first part of the pattern space 

Print up to and including the first newline in the pattern space. 

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded newa 
lines in the pattern space. 



SED - A Non-interactive Text Editor USD:18-9 

3.5. Hold and Get Functions 
Four functions save and retrieve part of the input for possible later use. 

(2)h - hold pattern space 

The h functions copies the contents of the pattern space into a hold area (destroying 
the previous contents of the hold area). 

(2)H - Hold pattern space 

The H function appends the contents of the pattern space to the contents of the hold 
area; the fonner and new contents are separated by a newline. 

(2)g - get contents of hold area 

The g function copies the contents of the hold area into the pattern space (destroying 
the previous contents of the pattern space). 

(2)G - Get contents of hold area 

The G function appends the contents of the hold area to the contents of the pattern 
space; the fonner and new contents are separated by a newline. 

(2)x - exchange 

The exchange command interchanges the contents of the pattern space and the hold 
area. 

Example 

The commands 

Ih 
lsi did.·11 
Ix 
G 
s/\nI :1 

applied to our standard example, produce: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

3.6. FIow-of-Control Functions 
These functions do no editing on the input lines, but control the application of functions to the lines 
selected by the address part. 

(2)! - Don't 

The Don't command causes the next command (written on the same line), to be 
applied to all and only those input lines not selected by the adress part. 

(2){ - Grouping 

The grouping command '{' causes the next set of commands to be applied (or not 
applied) as a block to the input lines selected by the addresses of the grouping com
mand. The first of the commands under control of the grouping may appear on the 
same line as the '{' or on the next line. 



USD:ls..10 SED - A Non-interactive Text Editor 

The group of commands is terminated by a matching '}' standing on a line by itself. 

Groups can be nested. 

(O):<label> - place a label 

The label function marks a place in the list of editing commands which may be 
referred to by band t functions. The <label> may be any sequence of eight or fewer 
characters; if two ditferent colon functions have identical labels, a compile time diag
nostic will be generated; and no execution attempted. 

(2)b<label> - branch to label 

The branch function causes the sequence of editing commands being applied to the 
current input line to be restarted immediately after the place where a colon function 
with the same <label> was encountered. If no colon function with the same label can 
be found after all the editing commands have been compiled. a compile time diagnos
tic is produced. and no execution is attempted. 

A b function with no <label> is taken to be a branch to the end of the list of editing 
commands; whatever should be done'with the current input line is done, and another 
input line is read; the list of editing commands is restarted from the beginning on the 
new line. 

(2)t<label> - test substitutions 

The t function tests whether any successful substitutions have been made on the 
current input line; if so, it branches to <label>; if not, it does nothing. The flag 
which indica~es that a successful substitution ~ been executed is reset by:, 

1 ) reading a new input line, or 
2) executing a t function. 

3.7. Miscellaneous Functions 

(l ) == - equals 

The = function writes to the standard output the line number of the line matched by 
its address. 

(l)q - quit 

Reference 

The q function causes the current line to be written to the output (if it should be), any 
appended or read text to be written, and execution to be terminated. 

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Laboratories, 
1978. 



Awk - A Pattern Scanning and Processing Language 

Awk - A Pattern Scanning and Processing Language 
(Second Edition) 

Alfred V. Aho 

.Brian W. Kernighan 

Peter J. Weinberger 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

USD:19-1 .. 

Awk is a programming language whose basic operation is to search a set of files 
for patterns, and to perform specified actions upon lines or fields of lines which con
tain instances of those patterns. Awk makes certain data selection and transforma
tion operations easy to express; for example, the awk program 

length> 72 

prints all input lines whose . length exceeds 72 characters; the program 

NF%2==O 

prints all lines with an even number of fields; and the program 

( $1 = log($I); print} 

replaces the first field of each line by its logarithm. 
Awk patterns may include arbitrary boolean combinations of regular expres

sions and of relational operators on strings, numbers, fields, variables, . and array ele
ments. Actions may include the same pattern-matching constructions as in patterns, 
as well as arithmetic and string expressions and assignments, if-else, while, for state
ments, and mUltiple output streams. 

This report contains a user's guide, a discussion of the design and implementa-
tion of awk, and some timing statistics. • 

1. Introduction 
Awk is a programming language designed to 

make many common information retrieval and text 
manipulation tasks easy to state and to perform. 

The basic operation of awk is to scan a set of 
input lines in order, searching for lines which match 
any of a set of patterns which the user has specified. 
For each pattern, an action can be specified; this 
action will be performed on each line that matches 
the pattern. 

Readers familiar with the UNlxt program 

t UNIX is a trademark of AT&T Bell Laboratories. 

grep I will recognize the approach, although in awk 
the patterns may be more general than in grep, and 
the actions allowed are more involved than merely 
printing the matching line. For example, the awk 
program 

(print $3, $2) 

prints the third and second columns of a table in 
that order. The program 

$2 ~ IAIBIC! 

prints all input lines with an A, B. or C m the 



USD:19·2 

second field. The program 

$1 != prey { print; prey = $1 } 

prints all lines in which the first field is different 
from the previous first field. 

1.1. Usage 

The command 

awk program (files) 

executes the awk commands in the stnng PfOllUl 
on the set of named files, or on the standard input if 
there are no files. The statements can also be placed 
in a file pfiJe, and executed by the command 

awk -( pfile [files) 

1.2. Program Structure 

An awk program is a sequence of statements 
of the form: 

pattern 
pattern 

{ action} 
{ action} 

Each line of input is matched against each of the 
patterns in turn. For each pattern that matches, the 
associated action is executed. When all the patterns 
have been tested, the next line is fetched and the 
matching starts over. 

Either the pattern or the action· may be left 
out, but not both. If there is no action for a pattern. 
the matching line is simply copied to the output. 
(Thus a line which matches several patterns can be 
printed several times.) If there is no pattern for an 
action, then the action is performed for every input 
line. A line which matches no pattern is ignored. 

Since patterns and actions are both optional, 
actions must be enclosed in braces to distinguish 
them from patterns. 

1.3. Records and Fields 

Awk input is divided into "records" ter
minated by a record separator. The default record 
separator is a newline, so by default awk processes 
its input a line at a time. The number of the current 
record is available in a variable named NR. 

Each input record is considered to be divided 
into "fields." Fields are normally separated by white 
space - blanks or tabs - but the input field separa
tor may be changed, as described below. Fields are 
referred to as $1, $2, and so forth, where $1 is the 
first field, and $0 is the whole input record itself. 
Fields may be assigned to. The number of fields in 
the current record is available in a variable named 
NF. 

The variables FS and RS refer to the input . 
field and record separators; they may be changed at 

Awk - A Pattern Scanning and Processing Language 

any time to any single character. The optional 
command-line argument -Fc may also be used to set 
FS to the character c. 

If the record separator is empty, an empty 
input line is taken as the record separator, and 
blanks, tabs and newlines are treated as field separa
tors. 

The variable FILENAME contains the name 
of the current input file. 

1.4. Printing 

An action may have no pattern, in which case 
the action is executed for all lines. The simplest 
action is to print some or all of a record; this is 
accomplished by the awk command print. The awk 
program 

{ print} 

prints each record,thus copying the input to the out
put intact. More useful is to print a field or fields 
from each record. For instance, 

print $2, $1 

pnnts the first two fields in reverse order. Items 
separated by a comma in the print statement will be 
separat~ by the current output field separator when 
output. Items not separated by commas will be con
catenated, so 

print $1 $2 

runs the first and second fields together. 

The predefined variables NF and NR can be 
used; for example 

{ print NR, NF, SO } 

prints each record preceded by the record number 
and the number of fields. 

Output may be diverted to multiple files; the 
program 

{ print $1 >"Coo1"; print $2 >"Coo2" } 

writes the first field, $1, on the file Cool. and the 
second field on file C002. The > > notation can also 
be used: 

print $1 »"Coo" 

appends the output to the file Coo. (In each case, the 
output files are created if necessary.) The file name 
can be a variable or a field as well as a constant; for 
example, 

print $1 >$2 

uses the contents of field 2 as a file name. 

Naturally there is a limit on the number of 
output files; currently it is 1 O. 



Awk - A Pattern Scanning and Processing Language 

Similarly, output can be piped into another 
process (on UNIX only); for instance, 

print I "mail bwk" 

mails the output to bwIL 

The variables OFS and ORS may be used to 
change the current output field separator and output 
record separator. The output record separator is 
appended to the output of the print statement. 

Awk also provides the prind' statement for 
output formatting: 

prind' rormat expr, expr, _ 

formats the expressions in the list according to the 
specification in rormat and prints them. For exam
ple, ' 

prind' "W.lf' ~10Id\n", $1, $2 

prints $1 as a floating point number 8 digits wide, 
with two after the decimal point, and $2 as a 10-
digit long decimal number, followed by a newline. 
No output separators are produced automatically; 
you must add them yourself, as in this example. 
The version of pri..if is identical to that used, with 
C.2 

2. Patterns 
A panern in front of an action acts as a seleC.

tor that determines whether the action is to be exe
cuted. A variety of expressions may be used as pat
terns: regular expressions, arithmetic relational 
expressions, string-valued expressions, and arbitrary 
boolean combinations of these. 

2.1. BEGIN and END 

The special panern BEGIN matches the begin
ning of the input, before the first record is read. 
The pattern END matches the end of the input, after 
the last record has been processed. BEGIN and 
END thus provide a way to gain control before and 
after processing, for initialization and wrapup. 

As an example, the field separator can be set 
to a colon by 

BEGIN (FS - ":" } 
... rest of program ... 

Or the input lines may be counted by 

END (print NR } 

If BEGIN is present, it must be the first panern; 
END must be the last if used. 

2.2. Regular Expressions 

The simplest regular expression is a literal 
string of characters enclosed in slashes, like 

USD:19-3 

Ismitbl 

This is actually a complete awk program which will 
print all lines which contain any occurrence of the 
name "smith". If a line contains "smith" as part of 
a larger word, it will also be printed, as in 

blacksmithing 

Awk regular expressions include the regular 
expression forms found in the UNIX text editor ed I 
and grep (without back-referencing). In addition, 
awk allows parentheses for grouping, I for alterna
tives, + for "one or more", and? for "zero or one", 
all as in lex. Character classes may be abbreviated: 
[a-zA-ZO-9) is the set of all letters and digits. As an 
example, the awk program 

I[Aa)ho l(Ww)einberger I(KkJernigbanl 

will print all lines which contain any of the names 
"Abo," "Weinberger~' or "Kernighan," whether capi
talized or not. 

Regular expressions (with· the extensions listed 
above) must be enclosed in slashes, just as in ed and 
sed. Within a regular expression, blanks and the 
regular expression metacharacters are significant. To 
turn of 'the magic meaning' of one of the regular 
expression characters, precede it with a backslash. 
An exaJIlple is the pattern 

1\1.-\/1 

which matches any string of characters enclosed in 
slashes. ' 

One can also specify that any field or variable 
matches a regular expression (or does not match it) 
with the operators - and !-. The program 

$1 - IUJ)ohnl 

prints all lines where the first field matches "john" 
or "John." Notice that this will also match "John
son", "St. Johnsbury", and so on. To restrict it to 
exactly fjJJou, use 

$1 - rUJlobnSI 

The caret ~ refers to the beginning of a line or field; 
the dollar sign $ refers to the end. 

2.3. Relational Expressions 

An awk pattern can be a relational expression 
involving the usual relational operators <, <=, ==. 
!=, >=, and >. An example is 

$2 > $] + ]00 

which selectS lines where the second field is at least 
100 greater than the first field. Similarly, 

NF % 2 =- 0 

prints lines with an even number of fields. 



USD:19-4 

In relational tests, if neither operand is 
numeric, a string comparison is made; otherwise it is 
numeric. Thus, 

51 >= ·5· 

selects lines that begin with an 5, t, U. etc. In the 
absence of any other information, fields are treated 
as strings, so the program 

51 > 52 

will perform a string comparison. 

2.4. Combinations of Patterns 

A pattern can be any boolean combination of 
patterns, using the operators II (or), "" (and), and ! 
(not). For example, 

51 >= '5' &II: $1 < "t" &Ii 51 !- "smith" 

selects lines where the first field begins with "s", but 
is not "smith", && and II guarantee that their 
operands win be evaluated from left to right; evalua
tion stops as soon as the truth .or falsehood is deter
mined. 

2.5. Pattern Ranges 
The "pattel1l" .that selects an action may also 

consist of two patterns separated by a comma, as in 

patl, paU ( __ } 

In this case, the action is performed for each line 
between an occurrence of patl and the next 
occurrence of pat2 (inclusive). For example, 

Istart!, Istop! 

prints all lines betWeen start and stop, while 

NR === 100, NR =- 200 { ••• } 

does the action for lines 100 through 200 of the 
input. 

3. Actions 

An awk action is a sequence of action state
ments terminated by newlines or semicolons. These 
action statements can be used to do a variety of 
bookkeeping and string manipulating tasks. 

3.1. Built-in Functions 

Awk provides a "length" function to compute 
the length of a string of characters. This program 
prints each record, preceded by its length: 

{print length, $G} 

lengtb by itself is a "pseudo-variable" which yields 
the length of the current record; leagtb(argumcat) is 
a function which yields the length of its argument, as 
in the equivalent 

Awk - A Pattern Scanning and -Processing Language 

(print lengtb(SO), SO} 

The argument may be any expression. 

Awk also provides the arithmetic functions 
sqrt, 101, exp, and iat, for square root, base e loga
rithm, exponential, and integer part of their respec
tive arguments. 

The name of one of these built-in functions, 
without argument or parentheses, stands for the 
value of the function on the whole record. The pro
gram 

lengtb < 10 /I lengtb > 20 

prints lines whose length is less than 10 or greater 
than 20. 

The function substr(s, 1ft, a) produces the sub
string of s that begins at position m (origin 1) and is 
at most n characters long. If n is omitted, the sub
string goes to the end of s. The function 
index(sl, s2) returns the position where the string s2 
occurs in 51, or zero if it does not. 

The functioh sprintf(f. el. e2, ••• ) produces the 
value of the expressions el, e2. etc., in the print! for
mat specified by ·1. Thus, for example, 

11: = sprintf("'IoS.2f 'IoI0Id", 51, 52) 

sets x to the string produced by· formatting the 
values oUf and 52. 

3.2. Variables, Expressions, and Assignments 

Awk variables take on numeric (floating point) 
or string values according to context. For example, 
in 

x = 1 

x is clearly a number, while in 

x = -smith" 

it is clearly a string. Strings are convened to 
numbers and vice versa whenever context demands 
it. For instance, 

x = "3" + "4" 

assigns 7 to x. Strings which cannot be interpreted 
as numbers in a numerical context will generally 
have numeric value zero, but it is unwise to count 
on this behavior. 

By default, variables (other than built-ins) are 
initialized to the null string, which has numerical 
value zero; this eliminates the need for most BEGIN 
sections. For example, the sums of the first two 
fields can be computed by 

{ 51 += $1; s2 += $2 } 
END{ print 51. s2 } 



-,\wk - A Pattern Scanning and Processing Language 

Arithmetic is done intemally in floating point. 
The arithmetic operators are +, -, ., I, and ~ (mod). 
The C increment + + and decrement - operators 
are also available, and so are the assignment opera
tors +-, --, .-, I., and ~.. These operators may 
all be used in expressions. 

3.3. FleW VariaWes 

Fields in awk share essentially aU of the pr0-

perties of variables - they may be used in arith
metic or string operations, and may be assigned to. 
Thus one can replace the first field with a sequence 
number like this: 

{ $1 - NR; print } 

or accumulate two fields into a third, like this: 

{ 51 - 52 + S3; priat $0 } 

or assign a string to a field: 

{ if ($3 > 1_> 
S3.- 'too ..... 

priat 
} 

which replaces the third field by "too big" when it 
is, and m any case prints the record. . 

Field references may be numerical expres
sioDS,'as in' 

{ priat $I, $(1+1), $(I+a) } 

Wbether a field is deemed numeric or strinl depends 
on context; in ambiguous cases like 

if ($1 -- 52) _ 

fields are treated as strings. 

Each input line is split into fields automati
cally as necessary. It is also possible to split any 
variable or string into fields: 

a • spUt(s, uny, sep) 

splits the the smDlI into uny[lJ. ... , uny[al. The 
number of elements found is returned. If the sep 
argument is provided, it is used as the field separa
tor; otherwise FS is used as the separator. 

3.4. Striq Concatenadon 
Strings may be concatenated. Forexample 

1eqth($1 $2 $3) 

returns the length of the first three fields. Or in a 
priat statement, 

print $1 • is • $2 

prints the two fields separated by •• is ft. Variables 
and numeric expressions may also appear in con
catenations. 

USD:19:'S 

3.5. Arrays 

Array elements are not declared; they spring 
into existence by being mentioned. Subscripts may 
have any non-null value, including non-numeric 
strinp. As an example of a conventional numeric 
subscript, the statement 

x(NR) • $0 

assigns the current input record to the NR-th ele
ment of the array x. In fact, it is possible in princi
ple (though perhaps slow) to process the entire input 
in a random order with the awk program 

( x(NR) - $0 } 
END{ ... program .•. } 

The first action merely records each input line in the 
array x. 

Array elements may be named by non
numeric values, which gives awk a capability rather 
like the associative memory of Snobol tables. Sup
pose the input contains fields with values like apple. 
onqe, etc •. Then the program 

/apple! {x('apple'}++} 
/oranpI {x("onqe")++} 
END' L print x(~app1e"),x("onqe.J } 

inc:rements counts for the named array elements, 
and prints them at·the.end·ofthe input. 

3.6. Flow-of-COldrol Statements 

Awk provides the basic flow-of-control state
ments if-else, wbile. for, and statement grouping 
with braces. as in C. We showed the if statement in 
section 3.3 without describiq iL The condition in 
parentheses is evaluated; if it is true, the statement 
following the if is done. The else pan is optional. 

The while statement is exactly like that of C. 
For example, to print aU input fields one per line, 

i-I 
while (I <- NF) { 

print $i 
++i 

} 

The for statement is also exactly that of C: 

'for (i - 1; I <- NF; i++) 
print $i 

does the same job as the while statement above. 

There is an alternate form of the for statement 
which is suited for accessiDi the elements of an asso
ciative array: 

for (J in array) 
sttltement 

does suuement with i set in tum to each element of 
array. The elements are accessed in an apparently 



USD: 1 9-6 

random order. Chaos will ensue if i is altered, or if 
any new elements are accessed during the loop. 

• The ~pression in the condition part of an if, 
wbile Of for can include relational operators like <, 
<-, >. >-, -- ("is equal to"), and !- ("not equal 
toj; regular ~ression matches with the match 
operators - and !-; the logical operators II, &&, and 
!; and of course parentheses for grouping. 

The break statement causes an immediate exit 
from an enclosing while or for; the CGDtiDue state
ment causes the next iteration to begin. 

The statement next causes awk to skip 
immediately to the next record and begin scanning 
the patterns from the top. The statement exit causes 
the program to behave as if the end of the input had 
occurred. 

Comments may be placed in awk programs: 
they begin with the character ., and end with the 
end of the line, as in 

print X. y" this is a COIDIIleIIt 

4. Desip 
The "UNIX system already provides several 

programs that operate by passing input throup a 
selection mechanism. Grep, the first and simplest, 

, merely prints all lines wbicll match a· single specified 
pattern. Egrep provides more "general patterns, i.e., 
regular expressions in fUll generality; fgrep searches 
for a set of keywords with a particularly fast algo
rithm. Sed 1 provides most of the editing facilities 
of the editor ed, applied to a stream of input. None 
of these programs provides numeric capabilities, log
ical relations, or variabJes. 

Lex 3 provides general regular expression 
recognition capabilities, and, by serving as a C pr0-

gram generator, is essentially open-ended in its capa
bilities. The use of lex, however, requires a 
knowledge of C programmin& and a lex program 
must be compiled and loaded before use, which 
discourages its use for one-s1lot applications. 

Awk is an attempt to fill in another part of the 
matrix of possibilities. It provides general regular 
expression capabilities and an implicit input/output 
loop. But it also provides convenient numeric pro
cessing, variables, more general selection, and con
trol flow in the actions. It does not require compila
tion or a knowledge of C. Finally, awk provides a 
convenient way to access fields within lines; it is 
unique in this respect. 

A wk also tries to integrate strings and 
numbers completely, by treating all quantities as 
both string and numeric, deciding which representa
tion is appropriate as late as possible. In most cases 
the user can simply ignore the differences. 

Awk - A Pattern Scanning and Processing Language 

Most of the effort in developing awk went 
into deciding whatawk should or should not do (for 
instance. it doesn't do string substitution) and what 
the syntax should be (no explicit operator for con
catenation) rather than on writing or debugging the 
code. We have tried 10 make the syntax powerful 
but easy to use and weU adapted to scanning files. 
For example, the absence of declarations and impli
cit initializations, while probably a bad idea for a 
general-purpose programming language, is desirable 
in a language that is meant to be used for tiny pro
grams that may even be composed on the command 
line. 

In practice, awk usage seems to fall into two 
broad categories. One is what might be called 
"report generation" - processing an input to extract 
counts, sums, sub-totals, etc. This also includes the 
writing of trivial data validation programs, such as 
verifying that a field contains only numeric informa
tion or that certain delimiters are properly balanced. 
The combination of textual and numeric processing 
is invaluable here. 

A second area of use is as a data transformer, 
converting d:.!a from the form produced by one pro
gram into that expected by another. The simplest 
examples merely select fields, perhaps with rear
rangements. 

5. ImplenieDtati ... 

The actual implementation of awk uses the 
language development tools available on the UNIX 
operating system. The grammar is specified with 
yace;4 the lexical analysis is done by lex; the regular 
expression recognizers are deterministic finite auto
mata constructed directly from the expressions. An 
awk program is translated into a parse tree which is 
then directly executed by a simple interpreter. 

Awk was designed for ease of use rather than 
. processing speed; the delayed evaluation of variable 
types and the necessity to break input into fields 
makes bigh speed difficult to achieve in any case. 
Nonetheless, the program has not proven to be .. 
unworkably slow. 

Table I below shows the execution (user + sys
tem) time on a PDP-llnO of the UNIX programs 
we, grep, egrep, fgrep, sed, lex, and awk on the fol
lowing simple tasks: 

L count the number oflines. 

2. print all lines containing "doug". 

3. print aU lines containing "doug", "ken" or 
"dmr". 

4. print the third field of each line. 

S. print the third and second fields of each line, 
in that order. 

6. append all lines containing "doug", "ken", 
and "dmr" to files "jdoug", "jken", and 



Awk - A Pattern Scanning and Processing Language 

"jdmr", respectively. 

7. print each line prefixed by "line-number : ". 

8. . sum the fourth column of a table. 

The program we merely counts words, lines and 
cbaracters in its input; we have already mentioned 
the others. In all cases the input was a file contain
ing 10,000 lines as created by the command Is -/; 
each line bas the form 

-rw-nr-nr- 1 a .. 123 Oct 15 17:05 xxx 

The totallenath of this input is 452,960 characters. 
Times for /ex do not include compile or load. 

As misht be expected, awk is not as fast as the 
specialized tools we, sed, or the programs in the 
grep family, but is faster than the more genetal tool 
lex. In all cases, the tasks were about as easy to 
express as awk programs as programs in these other 
lanauaaes; tasks involving fields were considerably 
easier to express as awk programs. Some of the test 
programs are shown in awk, sed and lex. 

Refereaees 

1. K.. Thompson and D. M. Ritchie, UNIX 
Progr:ammer's Manual, Bell Laboratories,May· 
1975. Sixth Edition 

2. B. W. Kernighan and D. M. Ritchie, The C 
Progrsunming LImgutzge. Prentice-Hall, Engle
wood ~ New Jersey, 1978. 

3. M. E. Lest, "Lex - A Lexical Analyzer Gen
erator," Compo Sci. Tech. Rep. No. 39, Bell 
Laboratories. Murray Hill, New Jersey, 
October 1975. Reprinted as PSl:l6 in UNIX 
Programmer's Manual, Usenix Association, 
(1986). 

4. S. C. Johnson, "Yacc - Yet Another 
Compiler-Coinpiler," Compo Sci. Tech. Rep. 
No. 32, Bell Laboratories. Murray Hill, New 
Jersey, July 1975. Reprinted as PSl:lS in 
UNIX Programmer's Manual, Usenix Associa
tion, (1986). 

USD:19-7 



USD:l9-& Awk - A Pattern Scanniq an4 ProCessing Lanpage 

Task 
2 3 4 S 6 7 & 

we 8.6 
grep 11.7 13.1 . 
egrep 6.2 11.S 11.6 
fgrep 7.7 13.& 16.1 
sed 10.2 11.6 U.& 29.0 30.S 16.1 
lex 6S.1 ISO. 1 144.2 67.7 70.3 104.0 81.7 92.8 
awk IS.O 2S.6 29.9 33.3 38~9 46.4 71.4 31.1 

Tallie L Execution Times of Programs. (Times are in sec.) 

The PJ'OII'IIDS for some of these jobs are 
shown below. The lex prosrams are generally too 
10Dl to show. 
AWK: 

1. END{priDt NR} 

1. Ideu.rI 

3. lkeatdoualdrarl 

4- {print $3} -

s. {print S3. 52} 

6.. IbDI {print >"jkea"} . 
ldoq/ {print > "JdoaI"} 
Idrarl {print > "jdJar"} 

7. {prtat NR ": • SO} 

8. {Saal - _ + 54} 
END{print _} 

SED: 

1. $-

2. IdoqIp 

3. IdOlJl/, 
140aaId 
1bDI, 
IbDId 
Idrar/, 
Idrar/d 

4- 1(" I. ( 1.1" I. [ 1.\(1" I.\) •• lsll\l/, 

5. 1(" I. [ 1*\«" I.\) [ J.\(r J.\) .*'511\2 \11, 

6. IbDIw jkeD 
ldeu.rlw JdeuI 
Idrar/w jdJar 

LEX: 

1. ~{ 
iati; 
~} 
~~ 
\D i++; . 
~~ 
yywrap() ( 

prilltfr'W\D", i); 
} 

1. H 
• ... OUI •• $ priatf{"I9M\D" ,)')'text); 

; 
\a ; 



Using the -ms Macros with Troff and Nroff 

Typing Documents on the UNIX System: 
Using the -ms Macros with Troif and Nroif 

M. E. Lesk 

AT&T Ben Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

USD:20-1 

This document describes a set of easy-to-use macros for preparing documents 
on the UNIX system. Documents may be produced on either the phototypesetter or 
a OD a computer terminal, without changing the input. 

The macros provide facilities for paragraphs, sections (optionally with 
automatic numbering), page titles, footnotes, equations, tables, two-column format, 
and cover pages for papers. 

This memo includes, as an appendix, the text of the "Guide to Preparing 
Documents with -ms" which contains additional examples of features of -ms. 

This manual is a reviSion of, and replaces, '"Typing Documents OD UNIX," 
dated November 22, 197 4~ 

Introduction. This memorandum describes a package. of commands to produce papers 
using the troff and nroff formatting programs on the UNIX system. As with other roff -derived pro
grams, text is prepared interspersed with formatting commands. However, this package, which itself 
is written in troff commands, provides higber-level commands than those provided with the basic 
troJf program. The commands available in this package are listed in Appendix A. 

Text. Type normaHy, except that instead of indenting for paragraphs, place a line reading 
... PP" before each paragraph. This will produce indenting and extra space. 

Alternatively, the command .LP that was used here will produce a left-aligned (block) paragraph. The 
paragraph spacing can be changed: see below under "Registers." 

Beginnin,. For a document with a paper-type cover sheet, the input should start as fol
lows: 

[optional overall format .RP - see below] 
.TL 
Title of document (one or more lines) 
.AU 
Author(s) (may also be several lines) 
.AI 
Author's institution(s) 
.AB 
Abstract; to be placed OD the cover sheet of a paper. 
Line length is 516 of normal; use .n here to change . 
• AE (abstract end) 
text ..• (begins with .PP, which see) 

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit the 



USD:20-2 Usinl the -IDS Macros with TroW and Nroff 

correspolldiaa IeIds and command lines. The word ABSTRACT can be suppressed by writing".AB no" 
for ".AS". Several interspersed .AU aDd .AI lines can be used for multiple, authors.' The headings 
are not compulsory: beaiDDiDa with a .~P command is perfectly OK and will just start printing aD 
ordinary parqraph. Wamlng: You can't just begin a document with a line of text. Some-ms 
command must precede aDY text input. When in doubt, use .LP to Jet proper initialization, although 
aDy of the commands .PP, .tP, . TL, .SH, .NH is good' enoUlh. rtgUJ'e 1 shows the legal arrangement 
of commands at the start of a document. 

COW!f' Sheets Il1Ul Fint Pages. The first line of a document signals the general 
format of the first page. In particular, if it is • .RP- a cover sheet with title aDd abstract is prepared. 
The default format is use1W for scanning drafts. 

In general -IDS is arranged. so that only ODe form of a document need be stored, containing all 
information; the first command gives the format, aDd UlUlecessary items for that format are ignored. 

WarDing: dOD't put extraDeous material between the .Tt and .AE commands. Processing of the 
titling items is special, aDd other data placed in them may not behave as you expect. Don't (orget 
that some -IDS command must precede aDY input text. 

Page hefuIi"". The -IDS macros, by default, will print a pace heading containing a 
page number (if greater thaJl 1). A default pace footer is provided only in Moff, wbere the date is 
used. The user can make minor adjustments to the page headings/footings by redefining the strings 
LH, CH, and RH which are the left, center and right portions of the page headings, respectively, and 
the strings LP, CF, aDd RF, which are the left, center aDd right portions of the page footer. For more 
complex formats, the user can redefine the macros PT aDd BT, which are invoiced respectively at the 
top and bottom of each page. The margins (taken from registers }1M and PM for the top and bottom 
margin respectively) are normally 1 inch; the pageheader/footer are in the middle of that space. The 
user who redefines· these macros should be carefUl not to cIlaDp parameters sucbas point size or font 
without.resettiDg them to ·default values. . . 

Multi-column formats. If pie, 
you place the command .... 2e" in your docu
ment, the document will be printed in double 
column format beginning at that point. This 
feature is not too usefUl in computer terminal 
output, but is often desirable on the typesetter. 
The command '·.1 C" will go back to one
column format and also skip to a new page. 
The' .... 2e· command is actually a special case 
of the command 

.Me [column width [gutter width]] 

which makes multiple COlUDlDS with the 
specified column and gutter width; as many 
columns as will fit across the page are used. 
Thus trlple, quadruple, .•• column pages can be 
printed. Wbenever the number of columns is 
cbanged (except going from fUll width to some 
larger number of columns) a new page is 
started. 

Headings. To produce a special 
beading, there are two commands. If you type 

.NH 
type section heading here 
may be several lines 

you will get automatically numbered section 
beadings (1, 2, 3, .•• ), in boldface. For exam-

.NH 
Care and Feeding of Department Heads 

produces 

1. Care aDd Feedilll of DepartmeDt Heads 

Alternatively, 

.SH 
Care and Feeding of Directors 

will print the beading with no number added: 

Care and FeediDc of Directors 

Every section beading, of either type, 
should be followed by a paragrapb begi.Dning 
with .PP or .LP, indicating the end of the bead
ing. Headings may contain more thaD one line 
oCtext. 

The .NH command also supports more 
complex numbering schemes. If a numerical 
argument is given, it is taken to be a "lev.el" 
number and ail appropriate sub-section number 
is aenerated. Luaer level numbers indicate 
deeper su~ as in this example: 



· Using the -ms Macros with Troff and Nroff 

.NH 
Erie-Lackawanna 
.NH2 
Morris and Essex Division 
.NHl 
Gladstone Branch 
.NHl 
Montclair Branch 
.NH2 
Boonton Line 

generates: 

2.1. Morrisud Essex Division 

2.1.1. GladstoDe Braaeh 

2.1.2. MODtdm Brueh 

2.2. Booatoa Liae 
AD explicit ".NH 0" will &"eset the 

numbering of level 1 to one, as here: 

.NHO. 
Penn Central 

1. PeIiD CeJdnI 
Indented ptU'agraphs. (Para~ 

graphs with hanging numbers, e.g. references.) 
The sequence 

.IP [1] 
Text for first paragraph, typed 
normally for as long as you would 
like on as many lines as needed. 
.IP [2] 
Text for second paragraph, .•• 

produces 

[1] Text for first paragraph, typed normally 
for as long as you would like on as many 
lines as needed. 

[2] Text for second paragraph, .•• 

A series of indent~ paragraphs may be fol
lowed by an ordinary paragraph beginning with 
.PP or .LP, depending on whether you wish 
indenting or not. The command .LP was used 
here. 

More sophisticated uses of .IP are also 
possible. If the label is omitted, for example, a 
plain block indent is produced. 

.IP 
This material will 
just be turned into a 

USO:20-3 

block indent suitable for quotations or 
such matter. 
.LP 

will produce 

This material will just be turned into a 
block indent suitable for quotations or 
such matter. 

If a non-standard amount of indenting is 
required, it may be specified after the label (in 
character positions) and will remain in effect 
until the next .PP or .LP. Thus, the general 
form of the .IP command contains two addi
tional fields: the label and the indenting length. 
For example, 

.IP first: 9 
Notice the longer label, requiring larger 
indenting for these paragraphs . 
.IP second: 
And so forth. 
.LP "" 

produces this: 

first: Notice the longer" label, reqwnng 
larger indenting for these paragraphs. 

second: ADd so forth. 

It is also possible to produce multiple nested 
indents; the command .RS indicates that the 
next .IP starts from the current indentation 
level Each.RE will eat up one level of indent
ing so you should balance .RS and .RE· com
mands. The .RS command should be thought 
of as "move right" and the .RE command as 
"move left... As an example 



USD:20-4 

.IP 1. 
Bell Laboratories 
.M 
.IP 1.1 
Murray Hill 
.IP 1.2 
Holmdel 
.IP 1.3 
Whippany 
.M 
.IP 1.3.1 
Madison 
.RE 
.IP 1.4 
Chester 
.RE 
.LP 

will result in 
1. Bell laboratorieS 

1.1 Murray Hill 

1.2 Holmdel 
1.3 Whippany 

1.3.1 Madison 
1.4 Chester 

All of these variations on .. LP leave"" the right 
margin untouched.· Sometimes, for purposes 

" such as setting off a quotation, a paraaraph 
indented on both rilbt and left is required. 

A single paragraph like this is 
obtained by preceding it with .QP. 
More complicated material (several 
paragraphs) should be bracketed 
with .QS and .QE. 

Empiuuis. To get italics (on the 
typesetter) or underlining (on the terminal) say 

.I 
as much text as you want 
can be typed here 
.R 

as was dOlle for these three words. The.R com
mand restores the normal (usually Roman) 
font. If only one word is to be italicized, it 
may be just given on the line with the .I com
manel, 

.I word 

and in this case no .R is needed to restore the 
previous font. Boldface can be produced by 

Using the -IDS Macros with Troff and Nroff 

.B 
Text to be set in boldface 
goes here 
.R 

and also will be underlined on the terminal or 
line printer. As with .I,a single word can be 
placed in boldface by placing it on the same 
line as the .B command. 

A few size changes can be specified simi
larly with the commands .LG (make larger), 
.SM (make smaller), and .NL (return to normal 
size). The size change is two points; the com
mands maybe repeated for iDcreased eftiIct (here 
one .NL canceled two .SM commands). 

If actual underlinins as opposed to itali
cizing is required on the typesetter, the com
mand" 

.ULword 

will underline a word. There is no way to 
underline multiple words On the typesetter. 

Footnotes. Material placed between 
lines with the commands .FS (footnote) and 
.FE (footnote end) will be collected. remem
bered, and finally placed at the bottom of the 
cuirent page*. By default, footnotes are 
1 11 1 2th the length of normal text, but this can 
be changed using the FL register (see below). 

Displays and Tables. To 
prepare displays of lines, such as tables, in 
which the lines should not be re-arranged, 
enclose them in the commands .DS and .DE 

.DS 
table lines, like the 
examples here, are placed 
between .DS and .DE 
.DE 

By default. lines between .DS and .DE are 
indented and left-adjusted. You can also 
center lines, or retain. the left margin. Lines 
bracketed by .DS C and .DE commands are 
centered (and not re-arranged); lines bracketed 
by .DS L and .DE are left-adjusted, not 
indented, and not re-arranged. A plain .DS is 
equivalent to .DS I, which indents and left
adjusts. Thus, 

• Like this. 



Using the -ms Macros with TroW and NroW 

whereas 

these lines were preceded 
by .DS C and followed by 

a .DE command; 

these lines were preceded 
by .DS L and followed by 
a .DE command. 

Note that .DS C centers each line; there is a 
variant .DS B that makes the display into a 
left-adjusted block of text, and then centers 
that entire block. Normally a display is kept 
together, on one page. If you wish to have a 
long display which may be split across page 
boundaries, use .CD, .LD, or .m in place of 
the commands .DS C, .DS L, or .DS I respec
tively .. An extra argument to the .DS I or .DS 
command is taken as an amount to indent. 
Note: it is tempting to assume that .DS R will 
right adjust lines, but it doesn't work. 

Boxi"g words Or lines. To 
draw rectangular boxes around words the com
mand, 

, .BXword 

will print ~ as shown. The boxes will not " 
be neat on' a terminal, and this should not be 
used as a substitute for italics. 
Longer pieces of text may be boxed by enclos
ing them with .B 1 and .B2: 

.Bl 
text. •• 
.B2 

as has been done here. 

Keepi"g bloclc.r together. If 
you wish to keep a table or other block of lines 
together on a page, 'there are "keep - release" 
commands. If a block of lines preceded by .KS 
and followed by .KE does not fit on the 
remainder of the current page, it will begin on, 
a new page. Lines bracketed by .DS and .DE 
commands are automatically kept together this 
way. There is also a "keep floating" command: 
if the block to be kept together is preceded by 
.KF instead of .KS and does not fit on the 
current page, it will be moved down through 
the text until the top of the next page. Thus, 
no large blank space will be introduced in the 
document. 

NrojfrI'rojf commtmds. 
Among the useful commands from the basic 
formatting programs are the fonowing. They 

USD:20-S 

all work with both typesetter and computer ter
minal output: 

.bp - begin new page. 

.br - "break", stop running text 
from line to line • 

. sp n - insert n blank lines. 

.na - don't adjust right margins. 

Date. By default, documents produced 
on computer terminals have the date at the 
bottom of each page; documents produced on 
the typesetter don't. To force the date, say 
".DA". To force no date, say ".NO". To lie 
about the date, say ... DA July 4, 1776" which 
puts the specified date at the bottom of each 
page. The command 

.ND May 8, 1945 

in -.RP- format places the specified date on the 
cover sheet and nowhere else. Place this line 
before the title. 

Signature li"e. You can obtain 
a signature line by placing the command .SO in 
the document. The authors' names will be' out
put in place of the .SO line. An argument to 
.SO is. used as a tYPing identification line, and 
placed after the signatures. The .SO command 
is ignored in released paper format. 

Registers. Certain of the registers 
used by -ms can be altered to change default 
settings. They should be changed with .Dr 
commands, as with 

.Dr PS 9 

to make the default point size 9 paint. If the 
eWect is needed immediately, the normal troff 
command should be used in addition to chang
ing the number register. 
Register Defines Takes 

effect 
Default 

PS point size next para. 10 
VS line spacing next para. 12 pts 
LL line length next para. 6" 
LT title length next para. 6" 
PD para. spacing next para. 0.3 VS 
PI para. indent next para. 5 ens 
FL footnote length next FS 11/12 LL 
CW column width next 2C 7/15 LL 
GW intercolumn gap next 2C 1115 LL 
PO page offset next page 26/27" 
8M top margin next page 1" 
FM bottom margin next page 1" 

You may also alter the strings LH, CH, and 
lUI which are the left, center, and right head
ings respectively; and similarly LF, CF, and RF 



USD:2(};.6 

wbich are striqs. in the page footer. The page 
number on output is taken from register PN, to 
permit chanling its output $lyle. . For more 
complicated headers and· footers the macros PT 
and BT can be redefined, as explained earlier. 

A.ccerw. To simplify typing certain 
foreip words, strinlS representina common 
accent marks are defiaed. They precede the 
letter over which the mark is to appear. Here 
are the strings: 

Input Output 
'*'e & 
''''e ~ '-:u fl 
''''e e 

Input 

''''a 
'*Ce ,-,c 

Output 
a 

Use. After your dqcument is prepared 
and stored on a file, you can print it on a ter
minal with the command-

nrojf -ms file 

and you caD print it on the typesetter with the 
command 

trojf -ms file' 

(many options·are possible). In each case, .if 
your document is stored in several files, just list . 

. all the filenames where ·we· have uSed "file". If 
equations or tables are used, eqn andlor tbl 
must be invoked as PreprOCeSS01S. 

References tuU.I further 
study. If you have to do Greek or 
mathematics, see eqn [1] for equation set
ting. To aid eqn users, -ms provides 
definitions of .EQ and .EN which normally 
center the equation and set it off sli&htly. An 
argument on .EQ is taken to be an equation 
number and placed in the right margin near the 
equation. In addition, there are three special 
arguments to EQ: the letters C, I, and L indi
cate centered (default), indented, and left 
adjusted equations, respectively. If there· is 
both a format argument and an equation 
number, live the format argument first, as in 

.EQ L (1.3a) 

for a Ieft-adjusted equation numbered (1.3a). 

Similarly. the macros • TS and . TE are 
defined to separate tables (see [2]) from text 
with a little space. A very long table with a 

• If .2e wu used, pipe tbe It10ff OUtpUt tbrouth col; 
make the first line of the iaput ".pi IusrIbiDIc:01.'' 

Using the ... ms Macros with TroW and NroW 

. 
heading may be broken across pages by begin
ning it with • TS H instead of.TS, and placing 
the line .TH in the table data after the heading. 
If the table has no headina repeated from page 
to page, just use the· ordinary .TS and .TE mac
ros. 

To learn more about trojf see [3] . for a 
general introduction, and [41 for the full details 
(experts only). Information on related UNIX 
commands is in [S1. For jobs that do not seem 
well-adapted to -ms, consider other macro 
packages. It is often far easier to write a 
specific macro packages for such tasks as imj
tatina particular journals than to try to adapt 
-ms. 

A.cknowledgment. Many thallks 
are due to Brian Kernighan for his help in the 
desip and implementation of this package, 
and for his assistance in preparing this manual. 

Refereaces 

[1] B. W. Kernighan and L. L. Cherry, 
Typesetting Mathematics - Users Guide 
(2nd edition), Bell LaboratorieS Comput .. · 
~g Science Report DO. 17. 

12] )if. E. Lesk, Tbl - A Program to Format 
TDbleS, Bell LaboratorieS Computing Sci
ence Report no. 45. 

[3] B. W. Kernighan, A TrojJ TutOrial, Bell 
Laboratories, 1976. 

[4] 1. F. Ossanna, NrojflTrojJ Reference 
Manual, . Bell Laboratories Computing 
Science Report DO. 51. 

[51 K. Thompson and D. M. Ritchie, UNIX 
Programmer's Manual, Bell Laboratories, 
1978. 



Using the -ms Macros with Troff' and Nroff' USD:20-7 

Appendix A 
List of Commands 

IC Return to ~ingle column format. LO Increase type size. 
2C Start double column format. LP Left aligned block paragraph. 
AB Begin abstract. 
AE End abstract. 
AI Specify author's institution. 
AU Specify author. ND Change or cancel date. 
B Begin boldface. NH Specify numbered heading. 
DA Provide the date on each page. Nt Return to normal type size. 
DE End display. PP Begin paragraph. 
DS Start display (also CD, LD, ID). 
EN End equation. R Return to regular font (usually Roman). 
EQ Begin equation. RE End one level of relative indenting. 
FE End footnote. RP Use released paper format. 
FS Begin footnote. RS Relative indent increased one level. 

SO Insert signature line. 
I Begin italics. SH Specify section heading. 

SM Change to smaller type size. 
IP Begin indented paragraph. TL Specify title. 

,KE Release keep. 
KF Begin floating keep. UL Underline one word. 
KS Start keep. 

Register Names 

The following register names are used by -ms internally. Independent use of these names in 
one's own macros may produce incorrect output. Note that no lower case letters are used in any -ms 
internal name. 

#T 
IT 
AV 
CW 

, 
IC 
2C 
Al 
A2 
A3 
A4 

DW OW 
EF HI 
FL H3 
FM H4 
FP HS 

AS CB 
AB CC 
AE CD 
AI CF 
AU CH 
B CM 
BO CS 
BT cr 
C D 
CI DA 
C2 DE 
CA DS 

HM 
HT 
IK 
1M 
IP 

DW 
DY 
El 
E2 
E3 
E4 
ES 
EE 
EL 
EM 
EN 
EQ 

Number registers used in -ms 
IQ LL NA 
IR LT NC 
KI MM NF 
L1 MN NS 
LE MO 01 

String registers used in -ms 
EZ I KF 
FA 11 KQ 
FE 12 KS 
FJ 13 LB 
FK 14 LD 
FN IS LO 
FO ID LP 
FQ IE ME 
FS 1M MF 
FV IP MH 
FY IZ MN 
HO KE MO 

OJ 
PD 
PF 
PI 
PN 

MR 
ND 
NH 
Nt 
NP 
00 
OK 
PP 
PT 
PY 
QF 
R 

PO 
PQ 
PX 
RO 
ST 

RI 
R2 
R3 
R4 
RS 
RC 
RE 
RF 
RH 
RP 
RQ 
RS 

T. 
TB 
TO 
TN 
TQ 

RT 
SO 
SI 
S2 
SO 
SH 
SM 
SN 
SY 
TA 
TE 
TH 

TV 
VS 
YE 
yy 
ZN 

TL 
TM 
TQ 
TS 
IT 
UL 
WB 
WH 
WT 
XD 
XF 
XK 



USD:20-8 Using the -ms Macros with Troti' and Nrotl' 

Order of Commands in Input 

RP 

NH,SH 

PP,LP 

~ 
text 000 

r 
Figure 1 



A Guide to Preparing 
Documents with - ms 

M. E. Lesk 

Bell Laboratories August 1978 

This guide gives some simple examples of do· 
cument preparation on Bell Labs computers, 
emphasizing the use of the -ms macro pack· 
age. It enormously abbreviates information in 
1. Typing Documents on UNIX and GCOS. by 

M. E. Lesk; 
2. Typesetting Mathematics - User's Guide. 

by B. W. Kernighan and L. L. Cherry: and 
3. Tbl - A Program to Format Tables, by M. 

E. Lesk. 
These memos are' all included in the UNIX 
Programmer's Manual, Volume 2. The new 
user should also have A Tutorial Introduction to 
the UNIX Text Editor, by B. W. Kernighan. 

For more detailed information, read Advanced 
Editing on UNIX and A Troff Tutorial, by B. W. 
Kernighan, and (for experts) NrofflTroff Refer. 
ence Manual by J. F. Ossanna. Information on 
related commands is found (for UNIX users) in 
UNIX for Beginners by B. W. Kernighan and 
the UNIX Programmer's Manual by K. Thomp
son and D. M. Ritchie. 

Contents 
A TM .... . ...... 2 
A released paper .. .......... . 
An internal memo, and headings .. . 
Lists, displays, and footnotes .... . 
Indents, keeps, and double column . 
Equations and registers 
Tables and usage ............ . 

3 
4 
5 
6 
7 
8 

Throughout the examples, input is shown in 
this Helvetica sans serif font 

while the resulting output is shown in 
this Times Roman font. 

UNIX Document no. 1111 

2 

Commands for a TM 

.TM 1978-5b3 99999 99999-11 

.NO April 1, 1976 

.TL 
The Role of the Allen Wrench in M:Jdern 
Electronics 
.AU "MH 2G-111" 2345 
J. Q. Pencilpusher 
.AU "MH 1 K-222" 5432 
X. Y. Hardwired 
.AI 
.MH 
.OK 
Tools 
Design 
.AS 
This abstract should be.short enough to 
fit on a single page cover sheet. 
It must attract the reader into sending for 
the complete memorandum. 
.AE 
.CS 10 2 1 2 5 6 7 
.NH 
Introduction. 
.PP 
Now the first paragraph of actual text ... 

Last line of text. 
.SG MH-1234-JQP/XYH-unix 
.NH 
References ... 

Commands not needed in a particular format are ig· 
nored. 

@ Bell LaboralOries Cover Sheet for TM 

Thts "'tormal/on IS tor emp/ov"s ot St''' Labora/ortes. (GEl 1J.9-J) 

: Tille· The Role of the Allen Wrench 
I in Modern Electronics 

Date-April I, 1976 

I 

Ii Other Keywords· Tools 
Design 

I 

TM- 1978-5b3 

I 
Author Location Ext. Charging Case- 99999 
J. Q. Pencilpusher MH 2G-ll1 2345 Filing Case- 99999. 
X. Y. Hardwired MH lK-222 5432 

ABSTRACT 

This abstract should be short enough to 
fit on a single page cover sheet. It must 
attract the reader into sending for the com
plete memorandum. 

Pages Text 10 Other 2 Total 12 

No. Figures 5 No. Tables 6 No. Refs. 7 

E·1932·U 16·73) SEE REVERSE SIDE FOR DISTRIBUTION LIST 



3 

A R~leased Paper with Mathematics 

.EO 
delim $$ 
.EN 
.RP 

... (as for a TM) 

. CS 10 2 1 2 5 6 1 

.NH 
Introduction 
.PP 
The solution to the torque handle equation 
.EO (1) 
sum from 0 to inf F ( x sub i ) - G ( x ) 
. EN 
is found with the transformation $ x - rho over 
theta $ where $ rho - G prime (xl $ and $thetaS 
is derived ._ 

The Role of the Allen Wrench 
in Modem Electronics 

J. Q. Prncilpu$h~ 

X. Y. HarriwirH 

Bell Laboratories 
Murray Hill. New Jersey 07974 

ABSTRACT 

This abstract should be short enough to fit on a 
sinlle page cover sheet. It must attract the 
reader into sending for the complete memoran
dum. 

April 1. 1976 

The Role of the Allen Wrench 
in Modern Electronics 

J. Q. Prncllpusht!r 

X. Y. Harriwlmi 

Bell Laboralories 
Murray Hill. New Jersey 07974 

1. lauoductioa 
The solution to the torque handle el:\uauon .. 

I.F(x;)-G(x) (l) 
o 

is found with the transformation x-t where p-G'(x) and 

{I is derived from well-known pnnClples. 

4 

An Internal Memorandum 

.1M 

.NO January 24, 1 956 

.TL 
The 1956 Consent Oecree 
.AU 
Able, Baker & 
Charley. Attys . 
.PP 
Plaintiff. United States of America. having tiled 
its complaint herein on January 14, 1949; the 
defendants havi"g appeared and filed their 
answer to such complaint denying the 
substantive allegations thereof: and the parties. 
by their attorneys .... 

Bell Labonlories 

Subject: The 1956 Coatent Decree date: January 24, 1956 

from: Able, Baker &: 
Charley, AllyS. 

Plaintiff'. United States of America. having filed its com
plaint herein on January 14. 1949: the defendants haVing 
appeared and filed their answer (0 such complaint denying 
the substantive allegations thereof; and the parties. by their 
attorneys. having severally consented to the entry of this 
Final Judgment. without trial or adjudication of any issues 
of fact or law herein and without this Final Judgment ,;on
stitutlng any evidence or admission by any party in respect 
of any such issues; 

Now. therefore before any testimony has been taken 
herein. and without trial or adjudication of any Issue of fact 
or law herein. and upon the consent of all parties hereto. II 
is hereby 

Ordered. adjudged and decreed as follOWS: 

I. [Sbermaa Act! 
This Coun has jurisdiction of the subject matter herein 

and of all the parties hereto. The complaint states a claim 
upon which relief may be granted against each of the 
defendants under Sections 1. 2 and 3 of the Act of 
Congress of July 2. 1890. entitled" An act to protect trade 
and commerce against unlawful restraints and monopo
lies." commonly known as the Sherman Act. as amended. 

n. [Detinitionsl 
For the purposes of this Final Judgment: 
(a) "Western" shall mean tne deiendant Western Elec

tric Company, Incorporated. 

Other formats possible (specify before .TLl are: .MR 
("memo for record"), .MF ("memo for file") .. EG 
("engineer's notes") and .TR (Computing Science 
Tech. Report). 

.NH 
Introduction. 
. PI=' 
text text text 

1. Introduction 
text [ext rext 

Headings 

.SH 
Appendix I 
.FlO 

text text text 

Appendix I 

text text rext 



5 

A Simple List 

.IP 1. 
J. Pencilpusher and X. Hardwired, 
.I 
A New Kind of Set Screw, 
.A 
Proc.IEEE 
.B 15 
(1916), 23-255. 
.IP 2. 
H. Nails and A. Irons, 
.I 
Fasteners for Printed Circuit Boards. 
.A 
Proc. ASME 
. B 23 
(1914),23-24. 
.LP (terminates list) 

1. J. Pencilpusher and X. Hardwired, A New Kind 
of Set Screw, Proc. IEEE 75 (976),23-255. 

2. H. Nails and R. Irons, Fasteners for Printed Cir
cuit Boards, Proc. ASME 23 (I 974), 23-24. 

Displays 

text text text text text text 
.DS 
and now 
for something 
completely different 
.DE 
text text text text text text 

hoboken harrison newark roseville avenue grove 
street east orange brick church orange highland ave
nue mountain station south orange maplewood 
millburn short hills summit new providence 

and now 
for something 
completely different 

murray hill berkeley heights gillette stirling milling
ton lyons basking ridge bernardsville far hills 
peapack gladstone 

Options: .DS L: left-adjust; .DS C: line-by-Iine 
center; .DS B: make block, then center. 

Footnotes 

Among the most important occupants 
of the workbench are the long-nosed pliers. 
Without these basic tools· 
.FS 
• As first shown by Tiger & Leopard 
(1915). 
.FE 
few assemblies could be completed. They may 
lack the popular appeal of the sledgehammer 

Among the most important occupants of the work
bench are the long-nosed pliers. Without these basic 
tools· few assemblies could be completed. They 
may lack the popular appeal of the sledgehammer 

• As first shown by Tiger &: Leopard U97S). 

6 

Multiple IndC?nts 

This is ordinary text to point out 
the margins of the page. 
.IP 1 . 
First level item 
.AS 
.IP a) 
Second level. 
.IP b) 
Continued here with another second 
level item, but somewhat longer. 
.AE 
.IP 2. 
Aeturn to previous value of the 
indenting at this point. 
.IP 3 . 
Another 
line. 

This is ordinary text to point out the margins of the 
page. 
1. First level item 

a) Second level. 
b) Continued here with another second level 

item, but somewhat longer. 
2. Return to previous value of the indenting at this 

point. 
3. Another line. 

Keeps 

Lines bracketed by the following commands are kept 
together. and will appear entirely on one page: 

.KS not moved .KF may float 

.KE through text .KE in text 

Double Column 

.TL 
The Declaration of Independence 
.2C 
.PP 
When in the course of human events, it becomes 
necessary for one people to dissolve the 
pOlitical bonds which have connected them with 
another, and to assume among the powers of the 
earth the separate and equal station to which 
the laws of Nature and of Nature's God entitle 
them, a decent respect to the opinions of 

The Declaration of Independence 

When in the course of they should declare the 
human events, it be- causes which impel them 
comes necessary for one to the separation. 
people to dissolve the We hold these truths 
political bonds which to be self-evident. that 
have connected them all men are created 
with another, and to as- equal. that they are en
sume among the powers dowed by their creator 
of the earth the separate with certain unalienable 
and equal station to rights, that among these 
which the laws of Nature are life, liberty, and the 
and of Nature's God en- pursuit of happiness. 
title them, a decent That to secure these 
respect to the opinions rights, governments are 
of mankind requires that instituted among men, 



7 

Equations 

A displayed eQuation is marked 
with an equation number at the right margin 
by adding an argument to the EO line: 
.EO (1.3) 
x sup 2 over a sup 2 ._. sqrt {p z sup 2 +qz+rl 
.EN 

A displayed equation is marked with an equiJlion 
number at the right margin by adding an ilrgument 
to the EO line: 

( I.) 

.EO I (2.2a) 
bold V bar sub nu·-·'ett [ pile {a above b above 
c I right] + left ( matrix { col ( A(11) above. 
above. I col ( . above. above .1 col /. above. 
above A(33) II right] cdot left [ pile { alpha 
above beta above gamma I right] 
.EN 

. - _ [al [A (l1). . ]. tal v. b+ . . . (3 
c . . A())) y 

(2.2a) 

.EO L 
F hat ( chi) • mark ... ·1 del V I sup 2 
. EN 
.EO L 
lineup"· {left ( {partial VI over (partial x I right) 
I sup 2 + {left ( {partial vi over (partial yl right 
) I sup 2 ······Iambda .> int 
.EN 

[(x) - 17 vj2 

-[::r+{ :.~r A-CO 

$ a dot $, $ b dotdot$, $ xi tilde times y vec$: 

(with delim S$ on, see panel 3), 

See also the equations in the second table. panel 8. 

Some Registers You Can Change 

Line length 
.nr LL'7i 

Title length 
.nr LT 7i 

Point size 
.nr PS 9 

Vertical spacing 
.nr VS 11 

Column width 
.nr CW)i 

Intercolumn spacing 
.nr GW .5i 

Margins - head and foot 
.nr HM .75i 
.nr FM .75i 

Paragraph indent 
.nr PI 2n 

Paragraph spacing 
.nr PO 0 

Page offset 
.nr PO O.5i 

Page heading 
.ds CH Appendix 

(center) 
.ds RH 7-25-76 

(right) 
.ds LH Private 

Cleftl 

Page footer 
.ds CF Draft 
. ds LF "1 
.ds RF Simi ar 

Page numbers 
.nr % 3 

8 

Tables 

(~ indieiltcs a tilb) .TS 
allbox; 
css AT&T Common Stock 
ccc 
n n n. 
AT&T Common Stock 
Year ~ Price ~ Dividend 
1971 ~41-S4~$2.60 
2(f)41·54®2.70 
3 (f) 46·55 (f) 2.87 
4 (1)40·53 ®3.24 
5 (1)45·52 (f)3.40 

Year Price 
1971 41-54 

2 41-54 
3 46-55 ' 
4 40-5) 
5 45-52 
6 51-59 

Dividend 
$2.60 

2.70 
2.87 
3.24 
3.40 
.95* 

6 (1)51-59 (f).9S" " (first quaner only) 
.TE 
• (first quarter only) 

The meanings of the key-letters describing the align
ment of each entry are: 

C center n numerical 
r right-adjust a subcolumn 
I left-adjust s spanned 

The global table options are center, expand, box, 
doublebox, allbox, tab (x) and linesize (n l. 

.TS (with delim $5 on, see panel 3) 
double box, center; 
cc 
II . 
Name ~ Definition 

.. sp 
Gamma ~SGAMMA (z) ... int sub 0 sup inf \ 

t sup {z·11 e sup -t dtS . 

! 

! 

i 

Sine ~Ssin (x) - 1 over 2i ( e sup ix • e sup -ix )$ 
Error®$ roman ert (zl ... 2 over sqrt pi \ 

int sub 0 sup z e sup I-t sup 21 dtS 
Bessel ®S J sub 0 (zl - 1 over pi \ 

int sub 0 sup pi cos ( z sin theta I d theta S 
Zeta ~ $ zeta (s) ... \ 

sum from k=1 to inf k sup -s _.( Re-s > 1}S 
.TE 

Name 

Gamma 

Sine 

Error 

Bessel 

Zeta 

Definition 

Usage 

Documents with just text: 
troff oms files 

With equations only: 
eqn files Itroff oms 

With tables onlv: 
tbl files I troff oms . 

With both tables and equations: 
tbl filesleqn/troff oms 

The above generales STARE output on GCOS: replace 
- st with - ph for trpesetter output. 



A Revised Version of -ms 

A Revised Version of -ms 

Bill Tuthill 

Computing Services 
University of California 

Berkeley, CA 94720 

USD:21-1 

The -ms macros have been slightly revised and rearranged for the Berkeley Unix distribution. 
Because of the rearrangement, the new macros can be read by the computer in about half the time 
required by the previous version of -ms. This means that output will begin to appear between ten 
seconds and several minutes more quickly, depending on the system load. On long files, however, the 
savings in total time are not substantial. The old version of -ms is still available as -mos. 

Several bugs in -ID$ have been fixed, including a bad problem with the .1 C macro, minor 
difficulties with boxed text, a break induced by .EQ before initialization, the failure to set tab stops in 
displays, and several bothersome errors in the refer macros. Macros used only at Bell Laboratories 
have been removed. There are a few extensions to previous -ms macros, and a number of new mac
ros, but all the documented -ms macros still work exactly as they did before, and have the same 
name's as before. Output produced with -ms should look like output produced with -mos. 

One important new feature is automatically numbered footnotes. Footnote numbers are printed 
by means of a pre-defined string (\--), which you invoke separately from .FS and .FE. Each time it is 
used, this string increases the footnote number by one, whether or not you use .FS and .FE in your 
text. Footnote numbers will be superscripted on the phototypesetter and on daisy-wheel terminals, 
but on low-resolution devices (such as the Ipr and a crt), they will be bracketed. If you use \-- to 
indicate numbered footnotes, then the .FS macro will automatically include the footnote number at 
the bottom of the page. This footnote, for example, was produced as follows: 1 

This footnote, for example, was produced as follows:\-• 
. FS 

.FE 

If you are using \ __ to. number footnotes, but want a particular footnote to be marked with an aster
isk or a dagger, then give that mark as the first argument to .FS: t 

then give that mark as the first argument to .FS: \( dg 
.FS \(dg 

.FE 

Footnote numbering will be temporarily suspended, because the \-- string is not used. Instead of a 
dagger, you could use an asterisk - or double dagger;, represented as \(dd. 

Another new feature is a macro for printing theses according to Berkeley standards. This macro 
is called .TM, which stands for thesis mode. (It is much like the .th macro in -me.) It will put page 
numbers in the upper right-hand comer; number the first page; suppress the date; and doublespace 
everything exce}?t quotes,displays, and keeps. Use it at the top of each file making up· your thesis. 

I If YOII never use the .. , .... string. no footnote numbers will appear anywhere in the text. including down here. 
The output footnotes will look exactly like footnotes produced with -mos. 

t In the footnote. the dager will appear where the footnote number would otherwise appear, as on the left. 



USD:21·2 A Revised Version of -ms 

Callina .TM defines the .cr macro for chapter titles, which skips to a new page and moves the 
pagenumber to the center footer. The .Pl (P one) macro caD be used even without thesis mode to 
print the header on page 1, which is suppressed except in thesis mode. If you want roman numeral
page numberina. use an ".af PN i" request. 

There· is a new macro especiaJly for bibliography entries, called .XP, which stand.$ for exdented 
paraaraph. It will exdent the first line of the paragraph by \n(PI units, usually Sn (the same as the 
indent for the ft.rst line ofa .PP). Most bibliographies are printed this way. Here are some examples 
of exdeDted parapapbs: 

Lumley, Lyle S., Sex in CrustacetlllS: Shell Fish Hilbits. Harbinaer Press, Tampa Bay and San Diego, 
October 1919. 243 pages. The pioneering work in this field. 

Leil'adinger, Harry A. t "Mollusk Matina Season: 52 Weeks, or AU Year?" in Acta Biologica. vol. 42, 
DO. 11, November 1980. A provocative thesis, but the conclusions are wrong. 

or course, you will have to take care of italicizing the book tide and journal, and quoting the title of 
the journal article. Indentation or exdentation can be chanpd by setting the value of number register 
PL . 

If you need to produce endnotes rather than footnotes, put the references in a file of their own. 
This is similar.to what you would do if you were typing the paper on a conventional typewriter. Note 
that you can use automatic footnote numbering without actually havil1l .FS and .FE pairs in your 
text. If you place footnotes in a separate file, you can use .IP macros with \.. as a haqing tag; this 
will give you Dumbers at the left-hand margin. With some styles of endDotes, you wOuld want to de 

,' .. PP ,rather then.IP macros~ aDd specify \ •• before the ~eteDee begins. 

There are four Dew macros to help produce a table of cont~ .Table of contents entries'muSt 
be enclosed in .XS and .XE pairs, with optional .XA macros for additional entries; arguments to .XS 
and .XA specify the page number, to be printed at the right. A ftnal .PX macro prints out the table 
of contents. Here is a sample of typical input and output text: ' 

.XS ii 
Introduction 
.xA 1 
Chapter 1: Review of the Literature 
.XA 23 
Chapter 2: Experimental Evidence 
.XE 
.PX 

Table of CODteats 

Introduction ................................•.................•.•...........•........................................ 
Chapter 1 = Review of the Utera.ture ..•..•••••.••••••••..••.••••.•••••••..•••••••••••••.••.•...•••..•.•.. 
Chapter 2: Experimental Evidence .•••..••••• , ••••.•• ~ ................................................... . 

ii 
I 

23 

The .XS and .xE pairs may also be used in the text, after a section header for instance, in which case 
page numbers are supplied at1tomatically. However, most documents that require a table of contents 
are too 10na to produce in one run, which is necessary if this method is to work. It is recommended 
that you do a table of contents after fiDishing your document. To print out the table of contents, use 
the .PXmacro; if you forget it, nothing will happen. 

As an aid in producing text that wiD format correctly with both ..... and troft', there are some 
new 5tPng definitions that define quotation marks and dashes for eac1l of these two formatting pro-
grams. The \.- string wiD yield two hyphens in ...... but in .... it wiD produce an em dash- like 
this one. The \.Q and \.U strings will produce .. and " in ... bu.t .. m aroft (In typesettin& the 
double quote is traditionaUy considered bad form.) 



A Revised Version of -ms USD:21-3 

There are now a large number of optional foreign accent marks defined by the -ms macros. All 
the accent marks available in -mos are present, and they all work just as they always did. However, 
there are better definitions available by placing .AM at the beginning of your document. Unlike the 
-mos accent marks, the accent strings should come after the letter being accented. Here is a list of 
the diacritical marks, with examples of what they look like. 

name of accent input output 

acute accent e\. e 
grave accent e\. e 
circumflex 0\-. (') 

cedilla c\-, C 
tilde n\-- it 
question \-? J 
exclamation \-! 
umlaut u\-: ii 
digraph s \-S f3 
hacek c\_v v 

c 
macron a\-_ a 
underdot s\-. ~ 
o-slash 0\-1 rJ 
angstrom a\-o 

. a 
yogh kni\-3t kni3t 
Thorn \-(Th P 
thorn \_(th p 
Eth \-(D- D 
eth \-(d- h 
hooked 0 \-q 9 
ae ligature \-(ae z 
AE ligature \-(Ae A?: 
oe ligature \-(oe ce 
OE ligature \-(Oe CE 

If you want to use these new diacritical marks, don't forget the .AM at the top of your file. Without 
it, some will not print at all, and others will be placed on the wrong letter. 

It is also possible to produce custom headers and footers that are different on even and odd 
pages. The .OH and .EH macros define odd and even headers, while .OF and .EF define odd and 
even footers. Arguments to these four macros are specified as with .tl. This document was produced 
with: 

.OH \fIThe -IDX Macros"Page %\fP' 

.EH \fIPage %lhe -mx Macros\fP' 

Note that it would be a error to have an apostrophe in the header text; if you need one, you will have 
to use a different delimiter around the left, center, and right portions of the title. You can use any 
character as a delimiter, provided it doesn't appear elsewhere in the argument to .OH, .EH, .OF, or 
EF. 

The -ms macros work in conjunction with the tbl, eqn, and refer preprocessors. Macros to deal 
with these items are read in only as needed, as are the thesis macros (.TM), the special accent mark 
definitions (.AM), table of contents macros (.XS and .xE), and macros to format the optional cover 
page. The code for the -ms package lives in lusrllib/tmac/tmac.s, and sourced files reside in the direc
tory lusr/ucbllib/ms. 

April IS, 1986 





Writing Papers with NROFF using -me 

Eric P. Allman· 

Project INGRES 
Electronics Research Laboratory 

University of California, Berkeley 
Berkeley. California 94720 

This ~ent describes the text processing facilities available on the UNIXt operating system 
via NROFFt and the -me macro package. It is assumed that the reader already is generally familiar 
with the UNIX operatinl system and a text editor such as ex. This is intended to be a casual intro
duction. and as Sl::h not all material is covered. In particular. many variations and additional 
featureS of the -me macro package are not explained. For a complete discussion of this and other 

. issues. see .The -me Refer~nce Manual and The NROFFffROFF Reference Manual. 
NROFF. a computer proaram that. runs on the UNIX operating system. ·reads an input' file' 

prepared by the user and outputs a formatted paper suitable for publication Orframinl- The input 
consists of text, or words to be printed, and requests, which live instructions to the NROFF program 
tellinl how to format the printed copy. ' 

Section 1 describes the basics of text processinl- Section 2 describes the basic requests. Section 
3 introduces displays. Annotations. such as footnotes. are handled in section 4. The more complex 
requests which are not discussed in section 2 are covered in section S. Finally, section 6 discusses 
things you will need to know if you want to typeset documents. If you are a novice, you probably 
won't want to read beyond section 4 until you have tried some of the basic features out. 

When you have your raw text ready, call the NROFF formatter by typing as a request to the 
UNIX shell: 

moil" -me -Ttypefiles 

where type describes the type of terminal you are outputting to. Common values are dtc fora DTC 
3005 (daisy-wheel type) printer and lpr for the line printer. If the -T flaa is omitted, a "lowest com
mon denominator" terminal is assumed; this is good for previewing output on most terminals. A 
complete description of options to the NROFF command can be found in The NROFF ffROFF Refer-
enceManual. ' 

The word' argument is used in this manual to mean a word or number which appears on the 
saine line as a request which modifies the meaning of that request. For example, the request 

.sp 

spaces one line, but 

*Author's eummt address: Britton Lee, IDe., 1919 Addison Suite lOS. Berkeley. California 94704. 
tUNlX is a trademark of AT&T BeD Laboratories 

Writing Papers with NROFF using -me USD:ll-l 



USD:l2-2 WritiDa Papers with NROFF usilll -IDe 

.sp4 

spaces foUl' lines. The number 4 is an argument to the .sp request which -says to space four lines 
instead of one. Arguments are separated from the request and from each other by spaces. 

1. Basics of Text Proc:essiag 

The primary fUnction of NROfF is to collect _ words from input lines, fill output lines with 
those words, justify the right hand maqiD by insertiaa extra spaces in the line, and output the 
result. For example, the input: 

.. Now is the time 
for aU good men 
to come to the aid 
of their party. 
Four score and seven 
years ago, ••• 

will be read, packed onto output lines, and justifted to produce: 

Now is the time for aU-good men to come to the aid of their party. Four score 
and seven years ago, •••• 

Sometimes you may want to start a new output line even though the-line you are -on is not yet fuU; 
for example. at the end of a paragraph. To do this you can cause a break, which starts a new out
put line. Some requests cause a break automatically, as do blank input lines and input lines begin-
ning with a space. . . 

Not aU input lines are text to be formatted. Some of the' input lines are reqUests which 
desCribe how to format the text. Requests always have a period or an apostrophe (',.,,) as the first 
character of the input line. . 

The text formatter also does more complex things, such as automatically numbering pages, 
skipping over page folds. putting footnotes in the correct place, and so forth. 

I can oft"eryou a few hints for preparing text for input to NROfF. First, keep the input lines 
short. Short input lines are easier to edit, and NROfF will pack words onto longer lines for you 
anyhow. In keeping with this, it is helpful to begin a new line after every period, comma, or 
phrase, since common corrections are to add or delete sentences or phrases. Second, do not put 
spaces at the end of lines, since this can sometimes confuse the NROFFprocessor; Third, do not 
hyphenate words at the end of lines (except words that should have hyphens in them, such as 
"mother-in-law"); NROFF is smart enough to hyphenate words for you as needed, but is not smart 
enough to take hyphens out and join a word back together. Also, words such as "mother-in-law" 
should not be broken over a line, since then you will get a space where not wanted, such as 
"mother- in-law". 

2. Basic Requests 

2.1. Parapaphs 

Paragraphs are begun by using the .pp request. For example, the input: 

.pp 
Now is the time for aU good men 
to come to the aid of their party. 
Four score and seven years ago •••. 

produces a blank line followed by an indented first line. The result is: 



Writing Papen with NROFF using -me USD:22-3 

Now is the time for all good men to come to the aid of their party. 
Four score and seven years ago, ... 

Notice that the sentences of the paragraphs must not begin with a space, since blank lines 
and lines beginning with spaces cause a break. For example, if I had typed: 

.pp 
Now is the time for all good men 

to come to the aid of their party. 
Four score and seven years ago, ... 

The output would be: 

Now is the time for all good men 
to come to the aid of their party. Four score and seven years ago, ... 

A new line begins after the word "men" because the second line began with a space character. 

There are many fancier types of paragraphs, which will be described later. 

2.2. Headers and Footers 

Arbitrary headers and footers can be put at the top and bottom of every page. Two 
requests of the form .he title and Jo title define the titles to put at the head and the foot of 
every page, respectively. The titles are called three-part titles, that is, there is a left-justified 
part, a centered part, and a right-justified part. To separate these three parts the first character 
of title (whatever it may be) is used as a delimiter .. Anych~cter may be used, but backslash 
and double quote marks should be avoided. The percent sign is replaced by the current· page 

. number whenever found in the title. For example, the input: . 

. he '"%-

.fo 'Jane Jones""My Book' 

results in the page number centered at the top of each page, "Jane Jones" in the lower left 
comer, and "My Book" in the lower right comer. 

2.3. Double Spacing 

NROFF will double space output text automatically if you use the request .Is 2, as is done 

in this section. You can revert to single spaced mode by typing .ls 1. 

2.4. Page Layout 

A number of requests allow you to change the way the printed copy looks, sometimes 
called the layout of the output page. Most of these requests adjust the placing of "white space" 
(blank lines or spaces). In these explanations, characters in italics should be replaced with 
values you wish to use; bold characters represent characters which should actually be typed. 

The .bp request starts a new page. 

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a single 
line) or can be of the form Ni (for N inches) or Ne (for N centimeters). For example, the input: 

.sp l.Si 
My thoughts on the subject 
.sp 

leaves one and a half inches of space, followed by the line "My thoughts on the subject", fol
lowed by a single blank line. 

The .in +N request changes the amount of white space on the left of the page (the indent). 
The argument N can be of the form +N (meaning leave N spaces more than you are already 



USD:ll-4 Writilll Papers with NllOFF us ... -me 

leaviDg), -N (meaning leave less thaD you do now), or just N (meaning leave exactly N spaces). 
N can be of the form Ni or Ne also. For example, the input: 

initial text 
.inS 
some text 
.in +li 
more text 
.in -2c 
final text 

produces "some text" in'Ciented exactly five spaces from the left margin, "more text" indented 
five spaces plus one inch from the left margin (fifteen spaces on a pica typewriter), and "final 
text" indented five spaces plus one inch minus two centimeters from the margin. That is, the 
output is: 

initial text 
some text 

more text 
final text 

The .ti +N (temporary indent) reque~t is used like Ja +N when the indent should apply to 
one line only, after which it should revert to the previous indent. For example, the input: 

.in Ii 

.ti 0 
Ware, James R. The Best of Confucius. 
Halcyon House, 1950. 
,All exceU~t book oontainiili translations of 
most of Confucius' most deliahtful sayings. 
A definite must for anyone interested in the early foundations 
of Chinese philosophy. ' 

produces: _ 
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book containing 

translations of most of Confucius' most delightful sayings. A definite must for 
anyone interested in the early foundations of Chinese philosophy. 

Text lines can be centered by using the .ce request. The line after the .ce is centered (hor
izontally) on the page. To center more than one line. use .c:e N (where N is the number of lines 
to center); fonowed by the N lines. If you want to center many lines but don't want to count 
themy type: 

.ce 1000 
lines to center 
.ceO 

The .c:e 0 request tells NROFF to center zero more lines, in other words, stop centering. 
All of these requests cause a break; that is, they always start a new line. If you want· to 

start a new line without performing any other action, use .br. 

l.5. UaderliDilll 
Text can be underlined using the .w request. The.1II request causes the next input line to 

be underlined when output. You can underline multiple lines by stanng. a cbunt of input lines 
to underline, followed by those lines (as with the.ce request). For example. the input: 



Writing Papers with NROFF using -me 

.u12 
Notice that these two input lines 
are underlined. 

will underline those eight words in NROFF. (In TROFF they will be set in italics.) 

3. Displays 

USD:22-S 

Displays are sections of text to be set off from the body of the paper. Major quotes, tables, 
and figures are types of displays, as are all the examples used in this document. All displays 
except centered blocks are output single spaced. 

3.1. Major Quotes 

Major quotes are quotes which are several lines long, and hence are set in from the rest of 
the text without quote marks around them. These can be generated using the commands .(q 
and .)q to surround the quote. For example, the input: 

As Weizenbaum points out: 
.(q 
It is said that to explain is to explain away. 
This maxim is nowhere so well fulfilled 
as in the areas of computer programming, ... 
. )q 

generates as output: 

As Weizenbawn points out: 
It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in the 
areas of computer programming, ... 

3.2. Lists 

A list is an indented, single spaced, unfilled display. Lists should be used when the 
material to be printed should not be tilled and justified like normal text, such as columns of 
figures or the examples used in this paper. Lists are surrounded by the requests .(1 and .)1. For 
example, type: 

Alternatives to avoid deadlock are: 
.(1 
Lock in a specified order 
Detect deadlock and back out one process 
Lock all resources needed before proceeding 
.)1 

will produce: 
Alternatives to avoid deadlock are: 

3.3. Keeps 

Lock in a specified order 
Detect deadlock and back out one process 
Lock all resources needed before proceeding 

A keep is a display of lines which are kept on a single page if possible. An example of 
where you would use a keep might be a diagram. Keeps differ from lists in that lists may be 
broken over a page boundary whereas keeps will not. 

Blocks are the basic kind of keep. They begin with the request .(b and end with the 
request .)h. If there is not room on the current page for everything in the block, a new page is 



USD:ll-6 Writing Papers with NROFF using -me 

begun. This has the unpleasant effect of leaving blank space at the bottom of the page. When 
this is not appropriate, you can use the alternative, calledjloating keeps. 

Floating keeps move relative to the text. Hence, they are good for things which will be 
referred to by name, such as "See figure 3", A floating keep will appear at the bottom of the 
current page if it will fit; otherwise, it will appear at the top of the next page. Floating keeps 
begin with the line .(z and end with the line .)z. For an example of a floating keep, see figure 1. 
The .hl request is used to draw a horizontal line so that the figure stands out from the text. 

3.4. Fancier Displays 

Keeps and lists are normally collected in.. nofi/l mode. so that they are good for tables and 
such. If you want a display in fill mode (for text), type .(1 F (Throughout this section, com
ments applied to .(1 also apply to .(b and .(z). This kind of display will be indented from both 
margins. For example, the input: 

.(1 F 
And now boys and girls, 
a newer, bigger, better toy than ever before! 
Be the first on your block to have your own computer! 
Yes kids. you too can have one of these modem 

. data processing devices. 
You too can produce beautifully formatted papers 
without even batting an eye! 
,)1 

will be output as: 
And now boys and girls. a newer, bigger,better toy than ever before! Be the 
first on your block to have your own computer! . Yes kids, you too can have 
one of these modem data processing devices. You too can produce beautiful-

. ly formatted papers without even batting an eye! 

Usts and blocks are also normally indented (floating keeps are normally left justified). To 
get a left-justified list, type .(1 L. To get a list centered line-for-line, type .(1 C. For example, to 
get a filled, left justified list, enter: 

.(z 

.hI 
Text of keep to be floated . 
. sp 
.ce 
Figure 1. Example of a Floating Keep . 
. hI 
.)z 

Figure 1. Example of a Floating Keep. 



Writing Papers with NROFF using -me 

.(1 L F 
text of block 
.)1 

The input: 

.(1 
first line of unfilled display 
more lines 
.)1 

produces the indented text: 

first line of unfilled display 
more lines 

Typing the character L after the .(1 request produces the left justified result: 

first line of unfilled display 
more lines 

Using C instead of L produces the line-at-a-time centered output: 

first line of unfilled display 
more lines 

USD:22-7 

Sometimes it may be that you want to center several lines as a group, rather than center
ing them one line at a time. To do this use centered blocks, which are surrounded by the 
requests .(c and .>c. All the . lines are centered as a unit, such that the longest line is centered 
and the rest are lined up around that line. Notice that lines do not move relative to each other 
using centered blocks, whereas they dousing the C argument to keeps. 

Centered blocks are not keeps, and may be used in conjunction with keeps. For example, 
to center a group of lines as a unit and keep them on one page, use: 

.(b L 

.(c 
first line of unfilled display 
more lines 
.)C 
.)b 

to produce: 

first line of unfilled display 
more lines 

If the block requests (.(b and .)b) had been omitted the result would have been the same, but 
with no guarantee that the lines of the centered block would have all been on one page. Note 
the use of the L argument to .(b; this causes the centered block to center within the entire line 
rather than within the line minus the indent. Also, the center requests must be nested inside 
the keep requests. 

4. Annotations 

There are a number of requests to save text for later printing. Footnotes are printed at the 
bottom of the current page. Delayed text is intended to be a variant form of footnote; the text is 
printed only when explicitly called for, such as at the end of each chapter. Indexes are a type of 
delayed text having a tag (usually the page number) attached to each entry after a row of dots. 
Indexes are also saved until called for explicitly. 



WridnlPaperswitb NROFF asiDI-tne 

4..1. Footnotes 
Footnotes. begin with 1he request .(1 lad end with the request .)f. The current footnote 

Dumber is maintained automatically, and·ean be used by typing \... to produce a footnote 
number'. The number is automatically incremented after every footnote. For example, the 
input 

.(q 
A.man who is DOt·upriaht 
and at the same time is presumptuous; 
one who is DOtdiJ.iseD.t and at the same time is ianofIDt; 

. one who is untnltlUU1and at the same time is. incompetent; 
such men I do not count among acquaintances. \.. 111 

.(r 
\ -·James R. Ware, 
.ul 
The Best. of Confucius, 
Halcyon House, 1950. 
Page 77 . 
. )f 
.)q 

generates the result: 
A man who is Dot UPriaht and at the same time is presumptuous; one who is not diligent and at 
the same time is iporut; ODe who is UDtruthful and at the same time is incompetent; such men 
I do not COUJU am~1 aequaintance5.2 

It is.important that the footnote appe8rs inside the quote, so that you can be sure that the foot
note will appear on the same page as the quote. 

4.2. Delayed Text 

Delayed text is very similar to a footnote except that it is printed when called for expli
citly. This allows a list of references to appear (for example) at the end of each chapter, as is 
the convention in some disciplines. Use \ *# on delayed text instead of \ ** as on footnotes. 

If you are using delayed text as your standard reference mechanism, you can still use foot
notes, except that you may want to reference them with special characters· rather than' 
numbers. 

4.3. IIIdexes 

An ··index" (actually more like a table of contents, since the cmtries are not sorted alpha
betically) resembles delayed text, in that it is saved until called for. However, each entry has 
the page number (or some other tag) appended to the last line of the index entry after a row of 
dots. 

Index entries begin with the request .(x and end with .)x. The .)x request may have a 
argument, which is the value to print as the "page number". It defaults to the current page 
number. If the page Dumber given is an underscore (,,_t,) no page Dumber or line of dots is 
printed at all. To get the line of dots without a page number, type .)x •• , whichspeci.ties an 
explicitly null page number. 

lUke this. 

2James R. Ware. The Best of Confucius. HaicyoD House. 1950. Pap 77. 
*Such as aa asterisk. 



Writing Papers with NROFF using -me 

The oXp request prints the index. 

For example, the input: 

.(x 
Sealing wax 
.)x 
.(x 
Cabbages and kings 
.)x _ 
.(x 
Why the sea is boiling hot 
.)x 2.5a 
.(x 
Whether pigs have wings 
.)x •• 
. (x 
This is a terribly long index entry, such as might be used 
for a list of illustrations, tables, or figures; I expect it to 
take at least two lines . 
. )x 
.xp 

generates: 

USD:22-9 

Sealing wax ..........•.....•..... ;.................................................................................................. ...... 9 
Cabbages and kings 
Why the sea is boiling hot- ......•........•.......... ~ ...•................•....... :............................................ 2. Sa 
Whether pigs have wings ............................••.•....•...................................................•............ 
This is a terribly long index entry, such as might be used for a list of illustrations, 

tables, or figures; I expect it to take at least two lines. ............................................. 9 

The .(x request may have a single character argument, specifying the "name" of the 
index; the normal index is x. Thus, several "indices" may be maintained simultaneously (such 
as a list of tables, table of contents, etc.). 

Notice that the index must be printed at the end of the paper, rather than at the begin
ning where it will probably appear (as a table of contents); the pages may have to be physically 
rearranged after printing. 

S. Fancier Features 

A large number of fancier requests exist, notably requests to provide other sorts of para
graphs, numbered sections of the form 1.2.3 (such as used in this document), and multicolumn 
output. 

5.1. More Paragraphs 

Paragraphs generally start with a blank line and with the first line indented. It is possible 
to get left-justified block-style paragraphs by using .lp instead of .pp, as demonstrated by the 
next paragraph. 

Sometimes you want to use paragraphs that have the body indented, and the first line exdented 
(opposite of indented) with a label. This can be done with the .ip request. A word specified on 
the same line as .ip is printed in the margin, and the body is lined up at a prespecified position 
(normally five spaces). For example, the input: 



USD:ll·10 Writing Papers with NROFF using -me 

.ip one 
This is the first paragraph. 
Notice how the first line 
of the resulting paragraph lines up 
with the other lines in the paragraph . 
.ip two 
And here we are at the second paragraph already. 
You may notice that the argument to .ip 
appears 
in the margin . 
.lp 
We can continue text ... 

produces as output: 

.. 

one This is the first paragraph. Notice how the first line of the" resulting paragraph lines up 
with the other lines in the paragraph. 

two And here we are at the second paragraph already. You may notice that the argument to 
Jp appears in the margin. 

We can continue text without starting a new indented paragraph by using the .Ip request. 

If you have spaces in the label of a J, request, you must use an "unpaddable space" 
instead of a regular space. This is typed as a backslash character ("''') followed by a space. 
For example," to print the label "Part 1", enter: 

.ip "Part' 1 fi 

If a label of an uidented paragraph (that IS. the argument to .i,) is longer than the space 
allocated for the label •• i, will begin a new line after the label. For example, the input: 

.ip longlabel 
This paragraph had a long label. 
The first character of text on the first line 
will not line up with the text on second and subsequent lines, 
although they will line up with each other. 

will produce: 

longlabel 
This paragraph had a long label. The first character of text on the first line will .not line 
up with the text on second and subsequent lines, although they will line up with each 
other. 

It is possible to change the size of the label by using a second argument which is the size 
of the label. For example, the above example could be done correctly by saying: 

.ip longlabel 10 

which will make the paragraph indent 10 spaces for this paragraph only. If you have many 
paragraphs to indent all the same amount, use the number register ii. For example, to leave 
one inch of space for the label, type: 

.nr ii 1i 
somewhere before the first call to J,. Refer to the reference manual for more information. 

If .i, is used with no argument at all no hanging tag will be printed. For example, the 
input: 



Writing Papers with NROFF using -me 

.ip [aJ 
This is the first paragraph of the example. 
We have seen this sort of example before . 
. ip 
This paragraph is lined up with the previous paragraph, 
but it has no tag in the margin. 

produces as output: 

USD:ll-ll 

[aJ This is the first paragraph of the example. We have seen this sort of example before. 

This paragraph is lined up with the previous paragraph, but it has no tag in the margin. 

A special case of Jp is .np, which automatically numbers paragraphs sequentially from 1. 
The numbering is reset at the next .pp, Jp, or .sh (to be described in the next section) request. 
For example, the input: 

.np 
This is the first point. 
.np 
This is the second point. 
Points are just regular paragraphs 
which are given sequence numbers automatically 
by the .np request . 
• pp 
This paragraph will reset numbering by .. np . 
. np 

. For example, 
we have reverted to numbering from one now. 

generates: 

( 1 ) This is the first point. 

(2) This is the second point. Points are just regular paragraphs which are given Sequence 
numbers automatically by the .np request. . 

This paragraph will reset numbering by .np. 

(1) For example, we have reverted to numbering from one now. 

The .bu request gives lists of this sort that are identified with bullets rather than numbers. 
The paragraphs are also crunched together. For example, the input: 

.bu 
One egg yolk 
.bu 
One tablespoon cream or top milk 
.bu 
Salt, cayenne, and lemon juice to taste 
.bu 
A generous two tablespoonfuls of butter 

produces3: 

• One egg yolk 

'By the way, if you put the first three iDp'edieJits in a a heavy, deep pan aDd whisk the iftgredients madly over a medium 
flame (never takin& your band 06 the haadle of the pot) until the mix~ reaches the consistency of custard (just a minute or 
two), then mix in the butter oft'-heat. you will have a wonderfUl Hollaadaise sauce. 



USD:22-12 Writiq Papers with NJlOFF using -me 

• One tablespoon cream or top milk 
• Salt; cayenne. and lemon juice to taste 
• A generous two tablespoonfuls of butter 

5.2. SedIoa HeadiDp 

Section numbers (such as the ones used in this document) can be automatically generated 
using the .sla request. You must teU .slathe depth of the section number and a section title. 
The depth speciftes how many numbers are to appear (separated by decimal points) in the sec
tion number. For example. the section number 4.2.5 has a depth of three. 

Section numbers are incremented· in a fairly intuitive fashion. If you add a number 
(increase the depth), the new number starts out at one. If you subtract section numbers (or 
keep the same number) the bal number is incremented. For example, the input 

.sh 1 "The Preprocessor" 

.sh 2 "Basic Concepts" 

.sh 2 "Control Inputs" 

.sh 3 

.sh 3 

.sh 1 "Code Generation" 

.sh3 
produces as output the result: 

L TIle Preprocessor 
1.1 •. Basjc Coacepts 
1.2. Coatrollnputs 
1.2.1. 
1.2.1. 
2. Code GeaeradoD 
2.1.1. 

You can specify the section number to begin. by placing the section number after the sec
tion title, using spaces instead of dots. For example, the request: 

.sh 3 "Another section" 7 3 4 

will begin the section numbered 7.3.4; all subsequent .sla requests will number relative to this 
number. 

There are more complex features which will cause each section to be indented proportion
ally to the depth of the section. For example, if you enter: 

.Dr si N 

each section will be indented by an amount N. N must have a scaling factor attached, that is, 
it must be of the form Nx, where x is a character telling what units N is in .. Common values 
for x are i for inches, c for centimeters, and a for ens (the width of a single character). For 
example, to indent each section one"half inch, type: 

.nr si O.Si 
After this, sections will be indented by one-half inch per level of depth in the section number. 
For example, this document was produced using the request 

.Dr si 3n 

at the beginning of the input file, giving three spaces of indent per section depth. 

Section headers without automatically generated numbers can be done using: 

.uh -ritle" 



Writing Papers with NROFF using -me USD:22-13 

which will do a section heading, but will put no number on the section. 

5.3. Parts of the Basic Paper 

There are some requests which assist in setting up papers. The.tp request initializes for a 
title page. There are no headers or footers on a title page, and unlike other pages you can 
space down and leave blank space at the top. For example, a typical title page might appear 
as: 

.tp 

.sp 2i 

.(1 C 
THE GROWTH OF TOENAILS 
IN UPPER PRIMATES 
.sp 
by 
.sp 
Frank N. Furter 
.)1 
.bp 

The request .th sets up the environment of the NROFF processor to do a thesis, using the 
rules established at Berkeley. It defines the ('"I)rrect headers and footers (a page number in the 
upper right hand comer only), sets the margins correctly, and double spaces. 

The .+c T request can be used to start chapters. Each chapter is automatically numbered 
from one, and a heading is printed at the top of each chapter with the chapter number and the 
chapter name T. For example, to begin a chapter called ··Conclusions", use the request: 

.+c ·CONCLUSIONS· 

which will produce, on a new page, the lines 

CHAPTER 5 
CONCLUSIONS 

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the 
first page of a chapter. Although the .+c request was not designed to work only with the .th 
request, it is tuned for the format acceptable for a PhD thesis at Berkeley. 

If the title parameter T is omitted from the .+c request, the result is a chapter with no 
heading. This can also be used at the beginning of a paper, for example, .+c was used to gen
erate page one of this document. 

Although papers traditionally have the abstract," table of contents, and so forth at the 
front of the paper, it is more convenient to format and print them last when using "NROFF. 
This is so that index entries can be collected and then printed "for the table of contents (or 
whatever). At the end of the paper, issue the .++ P request, which begins the preliminary part 
of the paper. After issuing this request, the .+c request will begin a preliminary section of the 
paper. Most notably, this prints the page number restarted from one in lower case Roman 
numbers .• +c may be used repeatedly to begin different parts of the front material for exam
ple, the abstract, the table of contents, acknowledgments, list of illustrations, etc. The request 
.++ B may also be used to begin the bibliographic section at the end of the paper. For exam
ple, the paper might appear as outlined in figure 2. (In this figure, comments begin with the 
sequence \ •. ) 

5.4. Equations and Tables 

Two special UNIX programs exist to format special types of material. Eqn and neqn set 
equations for the phototypesetter and NROFF respectively. Tbl arranges to print extremely 



USD:12·14 Writing Papers with NROFF using -me 

.th \ R set for thesis mode 

.fo "'DRAfT" \ .. define footer for each page 

.tp \" begin title page 

.(1 C \" center a large block 
THE GROWTH OF TOENAILS 
IN UPPER PRIMATES 
.sp 
by 
.sp 
Frank Furter 
.)1 
.+c INTRODUCTION 
.(x t 
Introduction 
.)x 
text of chapter one 
.+c "NEXT CHAPTER" 
.(x t 
Next Chapter 
.)x 
text of chapter two 
.+c CONCLUSIONS 
.(x t 
Conclusions 
.)X 
text of chapter three 
.++ B 
.+c BIBLIOGRAPHY 
.(x t 
Bibliography 
.)x 
text of bibliography 

\ .. end centered part 
\ " begin chapter named "INTRODUCTION" 
\ " make an entry into index 't' 

\" end of index entry 

\" begin another chapter 
\" enter into index 't' again 

\" begin bibliographic information 
\" begin another 'chapter' 

. + + P \" begin preliminary material 

.+c "TABLE OF CONTENTS" 

.xp t \. print index 't' collected above 

. +c PREFACE \ " begin another preliminary section 
text of preface 

Figure 2. Outline of a Sample Paper 

pretty tables in a variety of formats. This document will only describe the embellishments to 
the standard features; consult the reference manuals for those processors for a description of 
their use. 

The eqn and neqn programs are described fully in the document Typesetting Mathematics 
- User's Guide by Brian W. Kernighan and Lorinda L. Cherry. Equations are centered, and are 
kept on one page. They are introduced by the .EQ request and terminated by the .EN request. 



Writing Papers with NROFF using -me USD:22·15 

The .EQ request may take an equation number as an optional argument, which is printed 
vertically centered on the right hand side of the equation. If the equation becomes too long it 
should be split between two lines. To do this, type: 

.EQ (eq 34) 
text of equation 34 
.ENC 
.EQ 
continuation of equation 34 
.EN 

The C on the .EN request specifies that the equation will be continued. 

The tbl program produces tables. It is fully described (including numerous examples) in 
the document Tbl - A Program to Format Tables by M. E. Lesk. Tables begin with the .TS 
request and end with the .TE request. Tables are normally kept on a single page. If you have 
a table which is too big to fit on a single page, so that you know it will extend to several pages, 
begin the table with the request .TS H and put the request .TH after the part of the table which 
you want duplicated at the top of every page that the table is printed on. For example, a table 
definition for a long table might look like: 

.TSH 
css 
n n n. 
THE TABLE TITLE 
.TH 
text of the table 
.TE 

5.5. Two Column Output 

You can get two column output automatically by using the request .2c. This causes 
everything after it to be output in two-column form. The request .be will start a new column; 
it differs from .bp in that .bp may leave a totally blank column when it starts a new page. To 
revert to single column output, use .lc. 

5.6. Defining Macros 

A macro is a collection of requests and text which may be used by stating a simple 
request. Macros begin with the line .de xx (where xx is the name of the macro to be defined) 
and end with the line consisting of two dots. After defining the macro, stating the line .xx is 
the same as stating all the other lines. For example, to define Ii macro that spaces 3 lines and 
then centers the next input line, enter: 

.de SS 

.sp 3 

.ce 

and use it by typing: 

.SS 
Title Line 
(beginning of text) 

Macro names may be one or two characters. In order to avoid conflicts with names in 
-me, always use upper case letters as names. The only names to avoid are TS, TH, TE, EQ, 
and EN. 



USD:11-16 Writing Papers with NROFF using -me 

5.7. Annotations Inside Keeps 
Sometimes you may want to put a footnote or index entry inside a keep. For example, if 

. you want to maintain a "list of figures" you will want to do something like: 

.(z 

.(c 
text of figure 
.)C 
.ce 
Figure 5 . 
• (x f 
Figure 5 
.)x 
.)z 

which you may hope will give you a figure with a label and an entry in the index r (presumably 
a list of figures index). Unfortunately, the index entry is read and interpreted when the keep is 
read, not when it is printed, so the page number in the index is likely to be wrong. The solu
tion is to use the magic string \! at the beginning of all the lines dealing with the index. In 
other words, you should use: 

.(z 

.(c 
Text offi~e 
.)C 
.ce 
Figure 5. 
\!.(x f 
\!Figure 5 
\!.)x 
.)z 

which will defer the processing of the index until the figure is output. This will guarantee that 
the page number in the index is correct. The same comments apply to blocks (with .(b and .)b) 
as well. 

6. TKOFF and the Photosetter 

With a little care, you can prepare documents that will print nicely on either a regular termi
nal or when phototypeset using the TROFF formatting program. 

6.1. Fonts 

A font is a style of type. There are three fonts that are available simultaneously, Times 
Roman, Times Italic, and Times Bold, plus the special math font. The normal font is Roman. 
Text which would be underlined in NROFF with the .111 request is set in italics in TROFF. 

There are ways of switching between fonts. The requests .r, .i, and .b switch to Roman, 
italic, and bold fonts respectively. You can set a single word in some font by typing (for exam
ple): 

.i word 

which will set word in italics but does not affect the surrounding text. In NROFF, italic and 
bold text is underlined. 

Notice that if you are setting more than one word in whatever font, you must surround 
that word with double quote marks (" ') so that it will appear to the NROFF processor as a sin
gle word. The quote marks will not appear in the formatted text. If you do want a quote mark 



Writing Papers with NROFF using -me USD:22-17 

to appear, you should quote the entire string (even if a single word), and use two quote marks 
where you want one to appear. For example, if you want to produce the text: 

"Master Contror 
in italics, you must type: 

.i "" "Master Control\ I""" 

The \1 produces a very narrow space so that the "I" does not overlap the quote sign in TROFF, 
like this: 

• Master Contror 

There are also several "pseudo-fonts" available. The input: 

.(b 

.u underlined 

.bi "bold italics· 

.bx ·words in a box" 

.)b 

generates 

underlined 
boIIl iIDlk:r 
Iwords in a bOx I 

In NROFF these all just underline the text. Notice that pseudo font requests set only the single 
parameter in the pseudo font; ordinary font requests w~n begin setting all text in the special 
font if you do not provide a parameter. No more than one word should. appear with these 
three font requests in the middle of lines .. This is because of the way TROFF justifies text. For 
. example, if you were to issue the requests: 

.bi "some bold italics· 
and 
.bx "words in a box' 

in the middle of a line TROFF would produce sQiJIIflebiritiditillilics and Iwords in a boxl, 
which I think you will agree does not look good. 

The second parameter of all font requests is set in the original font. For example, the 
font request: 

.b bold face 

generates "bold" in bold font, but sets "face" in the font of the surrounding text, resulting in: 

boldface. 

To set the two words bold and face both in bold face, type: 

.b "bold face" 

You can mix fonts in a word by using the special sequence \c at the end of a line to indi
cate "continue text processing"; this allows input lines to be joined together without a space 
between them. For example, the input: 

.u under \c 

.i italics 

generates underitalics, but if we had typed: 

.u under 

.i italics 

the result would have been under italics as two words. 



USD:12-t8 WritiDg Papers with NROFF usiDa -me' 

6.2. PoiDt Sizes 
The phototypeSetter supports different sizes of type, measured in points. The default 

point size is 10 points for most text, 8 points for footnotes. To change the pointsize, type: 

.sz +N 
where N is the size wanted in points. The vertical spacing (distance ~een the bottom of 
most letters (the baseline) between adjacent lines) is set to be proportional to the type size. 

These pointsize changes are temporary!!! For example, to reset the pointsize of basic text 
to twelve point. use: " 

.1Ii pp 12 

.Dr sp 12 

.Dr tp 12 

to reset the default pointsize of paragraphs, section headers, and titles respectively. If you only 
want to set the names of sections in a larger pointsize, use: 

.nr sp 11 

alone - this sets section titles (e.g., PoiDt Sizes above) in a larger font than the default. 

A single word or phrase can be set in a smaller pointsize than the surrounding text using 
the .1m request. This is especiaJly convenient for words that are all capitals, due to the optical 
illusion that makes them look even larger than they actually are: For example: 

.sm UNIX 

prints as UNIX" rather than UNIX. 

Warning: changing point sizes on the phototypesetter is a slow mechanical operation. On 
laser printers it may require loading new fonts. Size changes should be considered carefully. 

6.3. Quotes 

It is conventional when using the typesetter to use pairs of grave and acute accents to gen
erate double quotes, rather than the double quote character ('" '). This is because it looks 
better to use grave and acute accents; for example, compare "quote" to "quote". 

In order to make quotes compatible between the typesetter and terminals, you may use 
the sequences '*(lq and '*(rq to stand for the left and right quote respectively. These both 
appear as • on most terminals, but are typeset as " and "respectively. For example, use: 

'*(1qSome thinas aren't true 
even if they did happen.' *(rq 

to generate the result: 

"Some thinas aren't true even if they did happen." 

As a shorthand, the special font request: 

.q "quoted text" 

will generate "quoted text". Notice that you must surround the material to be quoted with 
double quote marks if it is more than one word. 

AckaowledpleDts 



Writing Papers with NROFF using -me USD:22-19 

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the 
-me macros to produce non-trivial papers during the development stages; Ricki Blau, Pamela Hum
phrey, and Jim Joyce for their help with the documentation phase; peter kessler for numerous com
plaints years after I was "done" with this project, most accompanied by fixes (hence forcing me to fix 
several small bugs); and the plethora of people who have contributed ideas and have given support 
for the project. 

This document was TROFF'ed on April 20, 1986 and applies to version 2.27 of the -me macros. 





-ME REFERENCE MANUAL 

Release 2.27 

Eric P. Allman* 

Project INGRES 
Electronics Research Laboratory 

University of California, Berkeley 
Berkeley, California 94720 

This document describes in extremely terse form the features of the -me macro package for ver
sion seven NROFF/TROFF. Some familiarity is assumed with those ·programs: Specificaily, the reader 
should understand breaks, fonts, pointsizes, the use and definition of number registers and strings, 
how to define macro~, and scaling factors for ens, points, v's (vertical line spaces), etc. .. . 

For a more casual introduction to text processing using NROFF, refer to the document Writing 
Papers with NROFFusirr.g -me. 

There are a number of macro parameters that may be adjusted. Fonts may be set to· a font 
. number only. Font 8 means bold font in TROFF; in NROFF font 8 is underlined· unless the -rb3 flag 

is specified to use "true bold" font (most versions of NROFF do not interpret bold font nicely). Font 
o is no font change; the font of the surrounding text is used instead. Notice that fonts 0 and 8 are 
"pseudo-fonts"; that is, they are simulated by the macros. This means that although it is legal to set a 
font register to zero or eight, it is not legal to use the escape character form, such as: 

\£8 

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For 
example, the request to set the paragraph indent to eight one-en spaces is: 

.nr pi 8n 

and not 

.nr pi 8 

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parameter 
values are given in brackets in the remainder of this document. 

Registers and strings of the form $x may be used in expressions but should not be changed. 
Macros of the form $x perform some function (as described) and may be redefined to change this 
function. This may be a sensitive operation; look at the body of the original macro before changing 
it. 

All names in -me follow a rigid naming convention. The user may define number registers, 
strings, and macros, provided that s/he uses single chara~ter upper case names or double character 

-Author's current address: Britton Lee, Inc., 1919 Addison Suite lOS, Berkeley, California 94704. 
tNROFF and TROFF may be trademarks of AT&T Bell Laboratories. 

-me Reference Manual USO:23-1 



·USD:2J.2 -me Reference Manual 

names consisting of letters and digits, with at least one upper case letter. In no case should special 
characters be used in user-defined names. 

On dai;y wheel type printers in twelve pitch, the -rxlflag can be stated to make lines default to 
one eighth inch (the normal spacing for a newline in twelve-pitch). This is normally too small for 
easy readability, so the default is to space one sixth inch. 

The -rv2 flag will indicates that this is being output on a C/ AJT phototypesetter; this changes the 
page offset and inserts cut marks. 

This documentation was TROFF'ed on April 20, 1986 and applies to version 2.27 of the -me 
macros. 

1. Paragraphing 

These macros are used to begin paragraphs. The standard paragraph macro is .pp; the others are 
all variants to be used for special purposes. 

The first call to one of the paragraphing macros defined in this section or the .sh macro (defined 
in the next session) initializes the macro processor. After initialization it is not possible to use any of 
the following requests: .sc, .10, .th, or .ae. Also, the effects of changing parameters which will have a 
global effect on the format of the page (notably page length and header and footer margins) are not 
well defin~d and should be avoided . 

. Ip Begin left-justified paragraph. Centering ·and underlining are turned off if they 
were on, the font is set to \n(pf [1] the type si£e is set to \n(pp [lOp], and a 
\n(ps space is inserted before the paragraph [0.35v in TROFF, 1 v or 0.5v iI;l 
NROFF depending on device resolution]. The indent is reset to \n($i [0] plus 

. \n(po [0] unless the paragraph is inside a display. (see .ba). At least the first 
two lines of the .paragraph are kept together on a page . 

• pp Like .Ip, except that it puts \n(pi [5n] units of indent. This is the standard 
paragraph macro. 

.ip T I 

.np 

.bu 

2. Section Headings 

Indented paragraph with hanging tag. The body of the following paragraph is 
indented I spaces (or \n(ii [5n] spaces if I is not specified) more than a non
indented paragraph (such as with .pp) is. The title Tis exdented (opposite of 
indented). The result is a paragraph with an even left edge and T printed in 
the margin. Any spaces in T must be unpaddable. If T will not fit in the 
space provided, .ip will start a new line. 

A variant of .ip which numbers paragraphs. Numbering is reset after a .Ip, 
.pp, or .sh. The current paragraph number is in \n($p. 

Like .np except that paragraphs are marked with bullets (.). Leading space is 
eliminated to create compact lists. 

Numbered sections are similar to paragraphs except that a section number is automatically gen
erated for each one. The section numbers are of the fomi 1.2.3. The depth of the section is the count 
of numbers (separated by decimal points) in the section number. 

Unnumbered section headings are similar, except that no number is attached to the heading . 

• sh +N Tab c d e f Begin numbered section of depth N. If N is missing the current depth (main
tained in the number register \n($O) is used. The values of the individual 
parts of the section nllmber are maintained in \n($1 through \n($6. There is 
a \n(ss [1 v] space before the section. T is printed as a section title in font 
\n(sf [8] and size \n(sp [IOp1. The "name" of the section may be accessed via 
\*($0. If \n(si is non-zero, the base indent is set to \n(si times the section 



-me Reference Manual 

.sx +N 

.ub T 

.$pTBN 

.$OTBN 

• $1 -.$6 

3. Headers and Footers 

USD:23-3 

depth, and the section title is exdented. (See .ba.) Also, an additional indent 
of \n(so [0] is added to the section title (but not to the body of the section). 
The font is then set to the paragraph font, so that more information may 
occur on the line with the section number and title. .sb insures that there is 
enough room to print the section head plus the beginning of a paragraph 
(about 3 lines total). If a through J are specified, the section number is set to 
that number rather than incremented automatically. If any of a through fare 
a hyphen that number is not reset. If T is a single underscore ("_") then the 
section depth and numbering is reset, but the base indent is not reset and 
nothing is printed out. This is useful to automatically coordinate section 
numbers with chapter numbers. 

Go to section depth N [-1], but do not print the number and title, and do not 
increment the section number at level N. This has the effect of starting a new 
paragraph at level N. 

Unnumbered section heading. The title T is printed with the same rules for 
spacing. font, etc., as for .sb. 

Print section heading. May be redefined to get fancier headings. T is the title 
passed on the .sb or .ub line; B is the secti"on nuinber for this section, and N is 
the depth of this section, These parameters are not always present; in particu
lar, .sb passes all three, .ub passes only the first, and .sx passes three, but the 
first two are null strings. Care should be taken if this macro is redefined; it is 
quite complex and subtle. 

This macro is called automatically after every call to .$p. It is· normally 
undefined, but may be used to automatically put every section title into the 
table of contents or for some similar function. T is the section title for the 
section title which was just printed, B is the section number, and N is the sec
tion depth . 

Traps called just before printing that depth section. May be defined to (for 
example) give variable spacing before sections. These macros are called from 
.$p, so if you redefine that macro you may lose this feature. 

Headers and footers are put at the top and bottom of every page automatically. They are set in 
font \n(tf [3] and size \n(tp [lOp]. Each of the definitions apply as of the next page. Three-part titles 
must be quoted if there are two blanks adjacent anywhere in the title or more than eight blanks total. 

The spacing of headers and footers are controlled by three number registers. \n(bm [4v] is the 
distance from the top of the page to the top of the header, \n(fm [3v] is the distance from the bottom 
of the page to the bottom of the footer, \n(tm [7v] is the distance from the top of the page to the top 
of the text, and \n(bm [6v] is the distance from the bottom of the page to the bottom of the text 
(nominal). The macros .ml, .m2, .m3, and .m4 are also supplied for compatibility with ROFF docu
ments . 

. he 't'm ',' 
• fo 'l"m'" 

. eh 't'm ',' 

. ob 1'm'" 

• ef 't'm ',' 
.of 't'm'" 

Define three-part header, to be printed on the top of every page . 

Define footer, to be printed at the bottom of every page, 

Define header, to be printed at the top of every even-numbered page . 

Define header, to be printed at the top of every odd-numbered page . 

Define footer, to be printed at the bottom of every even-numbered page . 

Define footer, to be printed at the bottom of every odd-numbered page. 



USD:lJ..4 

.lax 
• m! +N 

• m2 +N 

• m3 +N 

.m4+N 

.ep 

.$h 

.$f 

.$H 

4. Displays 

• 

-me . Reference Manual 

Suppress headers and footers on the next page . 
Set the space between the top of the page and the'header [4v) . 

Set the space between the header and the first line of text [2v] . 

Set the space between the bottom of the text and the footer [2v] . 

Set the space.between the Cooter and the bottom of the page [4v] . 

End this page. but do notbeain the next page, Useful for forcing out foot
notes, but other than that hardly every used. Must be followed by a ,bp or the 
end of input . 

Called at every page to print the header. May be redefined to provide fancy 
(e.g., multi-line) headers, but doing so loses the Cunction of the .he, Jo, ,eh, 
.oh, .ef, and .of requests, as well as the chapter-style title feature of .+c. 

Print footer; same commen~ apply as in .sh • 

A normally undefined macro which is called at the top of each page (after put
ting out the header, initial saved floating keeps, etc.); in other words, this 
macro is called immediately before printing text on a page. It can be used for 
column headings and the like: 

All displays except centered blocks and block quotes are preceded and followed by an extra 
\o(bs [same as \n(ps1 space. Quote spacing is stored in a separate register; centered blocks have no 
default initial or trailing space.· The vertical spacing of all displays except quotes and centered blocks 
is stored in register \o($R instead of\n(Sr. 

. .0 m f . Begin list. Usts are single spaced. unfilled text. Iff is F, the list will be· filled~ 
If m [I] is I the list is indented by \n(bi [4m]; if M the list is indented to the 
left margin; if L the list is left justified with respect to the text {different from 
M only iC the base indent (stored in \Ji($i and set with .ba) is not zero); and if 
C the Hstis centered on a line-by-line basis. The list is set in font \o(df [0]. 
Must be matched by a .)1. This macro is almost like .(b except that no 
attempt is made to keep the. display on one page . 

• )1 End list. 

.(q 

• )q 

.(bmf 

.)b 

.(z mf 

Begin major quote. These are single spaced, filled, moved in from the text on 
both sides by \o(qi [4n], preceded and followed by \n(qs [same as \n(bs] 
space, and are set in point size \n(qp [one point smaller than surrounding 
text). 

End major quote . 

Begin block. Blocks are a form of keep, where the text of a keep is kept 
together on one page if possible (keeps are useful for tables and figures which 
should not be broken over a page). If the block wiD not tit on the current 
page a new page is begun, unless that would leave more than \o(bt [0] white 
space at the bottom of the text. If \n(bt is zero, the threshold feature is 
turned off. Blocks are not filled unless f is F, when they are filled. The block 
will be left-justified if m is L,indented by \o(bi [4m] if m is I or absent, cen
tered (line-for-line) if m is C, and left justified to the margin (not to the base 
indent) if m is M. The block is set in font \n(df [0]. 

End block. 

Begin floating keep. Like .(b except that the keep is floated to the bottom of 
the page or the top of the next page. Therefore, its position relative to the 



-me Reference Manual USD:23-5 

text changes. The floating keep is preceded and followed by \n(zs [1 v] space. 
Also, it defaults to mode M . 

• )z End floating keep . 

• (c Begin centered block. The next keep is centered as a block, rather than on a 
line-by-line basis as with .(b C. This call may be nested inside keeps . 

• )c End centered block. 

S. Annotations 

.(d 

.)d n 

.pd. 

.(f 

.)en 

.$s 

.(x x 

.)x PA 

.xp x 

6. Columned Output 

~2c +S N 

. lc 

.bc· 

Begin delayed text. Everything in the next keep is saved for output later with 
.pd, in a manner similar to footnotes. 

End delayed text. The delayed text number register \n($d and the associated 
string \ *# are incremented if \ *# has been referenced. 

Print delayed text. Everything diverted via .(d is printed and truncated. This 
might be used at the end of each chapter. 

Begin footnote. The text of the footnote is floated to the bottom of the page 
and set in font \n(ft' [1] and size \n(fp [8p]. Each entry is preceded by \n(fs 
[0.2v] space, is indented \n(fi [3n] on the first line, and is indented \n(fu [0] 
from the right margin. Footnotes line up underneath two column· output. If 
the text of the footnote will not all fit on one page it will be carried over to 
the next page. 

End footnote. The number register \n($f and the associated string \ - are 
incremented if they have been referenced. 

The macro to output the footnote separator. This macro may be redefined to 
give other size lines or other types of separators. Currently it draws a 1.Si 
line. 

Begin index entry. Index entries are saved in the index x [x] until called up 
with .xp. Each entry is preceded by a \n(xs [O.2v] space. Each entry is 
"undented" by \n(xu [O.Si]; this register tells how far the page number extends 
into the right margin. 

End index entry. The index entry is finished with a row of dots with A [null] 
right justified on the last line (such as for an author's name), followed by P 
[\n%]. If A is specified, P must be specified; \n% can be used to print the 
current page number. If P is an underscore, no page number and no row of 
dots are printed. 

Print index x [x]. The index is formatted in the font, size, and so forth in 
effect at the time it is printed, rather than at the time it is collected. 

Enter two-column mode. The column separation is set to +S [4n, O.Si in 
ACM mode] (saved in \n($s). The column width, calculated to fill the single 
column line length with both columns, is stored in \n($1. The current column 
is in \n($c. You can test register \n($m [1] to see if you are in single column 
or double column mode. Actually. the request enters N [2] column output. 

Revert to single-column mode . 

Begin column. This is like .bp except that it begins a new column on a new 
page only if necessary, rather than forcing a whole new page if there is another 
column left on the current page. 



USD:lJ..6 

7. Fonts aacI Sizes 
.sz +P 

.r WX 

.1 W X 

.b WX 

.rb W X 

.0 WX 

.q WX 

.bi W X 

.bx W X 

sm WX 

8. Roff Support 

• ix +N 

.bl N 

• pa +N 

.ro 

.ar 

.01 

.01 N 

.sk 

-me Reference Manual 

The pointsize is set to P [lOp], and the line spacing is set proportionally. The 
ratio of line spacing to pointsize is stored in \n(Sr. The ratio used internally 
by displays and annotations is stored in \o(SR (although this is not used by 
.sz). This size is notsticky beyond many macros: in particular, \n(pp (para
graph pointsize) modifies the pointsize every time a new paragraph is begun 
using the *, .lp. .ip, .np. or .bu maeros. Also, \n(fp (footnote pointsize), 
\n(qp (quote pointsize), \n(sp (section header pointsize), and \n(tp (title 
pointsize) may modify the pointsize. 

Set Win roman font, appending X in the previous font. To append different 
font requests, use X ... \c. If no parameters, change to roman font. 

Set W in italics, appending X in the previous font. If no parameters, change 
to italic font. Underlines in NROFF. 

Set W in bold font and append X in the previous font. If no parameters, 
switch to bold font. In NROFF, underlines. 

Set W in bold font and append X in the previous font. If no parameters, 
switch to bold font. .rb differs from .b in that .rb does not underline in 
NROFF. 

Underline Wand append X. This is a true underlining, as opposed to the .01 
request, which changes to "underline font" (usually italics in TROFF). It 
won't work right if W is spread or broken (including hyphenated). In other 
words, it is safe in nofill mode only~ . 

Quote W and append X. In NROFF this just surrounds W with double quote 
marks (' • '), but in TROFF uses directed quotes. 

Set W in bold italics and append X. Actually, sets W in italic and overstrikes 
once. Underlines in NROFF. It won't work right if W is spread or broken 
(including hyphenated). In other words, it is safe in nofill mode only. 

Sets W in a box, with X appended. Underlines in NROFF. It won't work 
right if W is spread or broken (including hyphenated). In other words, it is 
safe in nofill mode only. 

Sets W in a smaller pointsize, with X appended. 

Indent, no break. Equivalent to 1n N . 

Leave N contiguous white space, on the next page if not enough room on this 
page. Equivalent to a .sp N inside a block. 

Equivalent to .bp . 

Set page number in roman numerals. Equivalent to .af o/e i. 

Set page number in Arabic. Equivalent to .af o/e 1 . 

Number lines in margin from one on each page . 

Number lines from N, stop if N ... O . 

Leave the next output page blank, except for headers and footers. This is 
used to leave space for a full-page diagram which is produced externally and 
pasted in later. To get a partial-paae paste-in display, say .sv N, where N is 
the amount of space to leave; this space will be output immediately if there is 
room, and. will otherwise be output at the top or the next page. However, be 
warned: if N is greater than the amount of available space on an empty page, 



-me Reference Manual USD:23-7 

no space will ever be output. 

9. Preprocessor Support 

.EQ m T Begin equation. The equation is centered if m is C or omitted, indented \n(bi 
[4m] if m is I, and left justified if m is L. T is a title printed on the right mar
gin next to the equation. See Typesetting Mathematics - User's Guide by 
Brian W. Kernighan and Lorinda L. Cherry. . 

.EN c 

.TS h 

. TH 

.TE 

. PS h w 

. PE 

.IS 

.IE 

.IF 

GS 
GE 

GF 

10. Miscellaneous 

. re 

.ba +N 

.xl +N 

.II +N 

.hl 

.lh 

End equation. If c is C the equation must be continued by immediately fol
lowing with another .EQ, the text of which can be centered along with this 
one. Otherwise, the equation is printed, always on one page, with \n(es [O.Sv 
in TROFF, 1 v in NROFF] space above and below it. 

Table start. Tables are single spaced and kept on one page if possible. If you 
have a large table which will not fit on one page, use h = H and follow the 
header part (to be printed on every page of the table) with a .TH. See Tbl - A 
Program to Format Tables by M. E. Lesk. 

With .TS H, ends the header portion of the table . 

Table end. Note that this table does not float, in fact, it is not even 
guaranteed to stay on one page if you use requests such as .sp intermixed with 
the text of the table. If you want it to float (or if you use requests inside the 
table), surround the f!ntire table (including the .TS and .TE requests) with the 
requests .(z and .)z. 

Begin pic picture. H is the height and w is the width, both in basic units . 
Ditroff only. 

End picture . 

Begin ideal picture . 

End ideal picture . 

End ideal picture (alternate form) . 

Begin gremlin picture. 

End gremlin picture. 

End gremlin picture (alternate form). 

Reset tabs. Set to every O.Si in TROFF and every 0.8i in NROFF . 

Set the base indent to +N [0] (saved in \n($i). All paragraphs, sections, and 
displays come out indented by this amount. Titles and footnotes are 
unaffected. The .sh request performs a .ba request if \n(si [0] is not zero, and 
sets the base indent to \n(si*\n($O. 

Set the line length to N [6.0i]. This differs from .II because it only affects the 
current environment. 

Set line length in all environments to N [6.0i]. This should not be used after 
output has begun, and particularly not in two-column output. The current 
line length is stored in \n($1. 

Draws a horizontal line the length of the page. This is useful inside floating 
keeps to differentiate between the text and the figure. 

Print a letterhead at the current position on the page. The format of the 
letterhead must be defined in the file lusr/Ub/me/letterhead.me by your local 



USD:l3-8 

.10 

11. StaDdanl Papers 

.tp 

.th 

.++mH 

.+c T 

. Sc T 

XKNT 

.scAN 

-me Reference· Manual 

systems staB: Some environments may require ditroff for this macro to func
tion properly. 

This macro loads another set of macros (in lusr/lib/mellocal.me) which is 
intended to be a set of locally defined macros. These macros should all be of 
the form .*X, where X is any letter (upper or lower case) or digit. 

Begin title page. Spacing at the top of the page can occur, and headers and 
footers are suppressed. Also, the pqe number is not incremented for this 
page. * 

Set thesis. mode. This defines the modes acceptable for a doctoral dissertation 
at Berkeley. It double spaces, defines the header to be a single page number, 
and changes the margins to be l.S inch on the left and one inch on the top . 
• ++ and .+c should be used with it. This macro must be stated before initial
ization, that is, before the first call of a paragraphing macro or .sh. 

This request defines the section of the paper which we are entering. Tbe sec
tion type is defined by m. C means that we are entering the chapter portion 
of the paper, A means that we are entering the appendix portion of the paper, 
P means that the material following should be the preliminary portion 
(abstract, table of contents, etc.) portion of the paper, AB means that we are 
entering the abstract (numbered independently from 1 in Arabic numerals), 
and B means that we are entering the bibliOgraphic portion at the end of the 
paper. Also, the variant~ RC and RA are allowed, which specify renumbering 

. of pages from one at the beginning of each .cbapter or appendix, respectively: 
The H parameter defines the new header. If there are any spaces in it, the 
entire header must be quoted. If you want the header to have the chapter 
number in it, Use the string \ \ \ \D(ch. For example, to number appendixes 
A.l etc.~ type .++ RA '\ \ \ \n(ch.%'. Each section (chapter, appendix, etc.) 
should be preceded by the .+c request. It should be mentioned that it is 
easier when using TROFF to put the front material at the end of the paper, so 
that the table of contents can be collected and put out; this material can then 
be physically moved to the beginning of the paper. 

Begin chapter with title T. The chapter number is maintained in \n(ch. This 
register is incremented every time .+c is called with a parameter. The title 
and chapter number are printed by.$c. The header is moved to the footer on 
the first page of each chapter. If T is omitted, .Sc is not called; this is useful 
for doing your own "title page" at the beginning of papers without a title page 
proper. .$c calls .$C as a hook so that chapter titles can be inserted into a 
table of contents automatically. The footnote Dumbering is reset to one . 

Print chapter number (from \n(cb) and T. This macro can be redefined to 
your liking. It is defined by default to be acceptable for a PhD thesis at 
Berkeley. This macro calls $C, which can be defined to make index entries, or 
whatever. 

This macro is called by .Sc. It is normally undefined, but can be used to 
automatically insert index entries, or whatever. K is a keyword, either 
"Chapter" or "Appendix" (dependins on the .++ mode); N is the chapter or 
appendix number, and T is the chapter Of appendix title. 

This macro (short for .acm) sets up the NROFF environment for camera"ready 
papers as used by the ACM. This format is 25% larger, and has no headers or 
footers. The author's name A is printed at the bottom of the page (but off'the 



-me Reference Manual 

12. Predefined Strings 

\*# 

\*[ 

\*) 

\*< 

\*> 
\*(dw 

\*(mo 

\*(td 

\*(lq 

\*(rq 

\*-

USD:13-9 

part which will be printed in the conference proceedings), together with the 
current page number and th~ total number of pages N. Additionally, this 
macro loads the file lusrllib/me/acm.me, which may later be augmented with 
other macros useful for printing papers for ACM conferences. It should be 
noted that this macro will not work correctly in version 7 TROFF, since it sets 
the page length wider than the physical width of the CI AIT phototypesetter 
roll. 

Footnote number, actually \ *[\n(Sf\ *). This macro is incremented after each 
call to .)f. 

Delayed text number. Actually [\n($d]. 

Superscript. This string gives upward movement and a change to a smaller 
point size if possible, otherwise it gives the left bracket character ('('). Extra 
space is left above the line to allow room for the superscript. 

Unsupcrscript. Inverse to \ *(. For example, to produce a superscript you 
might type x\*[2\*), which will produce xl. 

Subscript. Defaults to • <' if half-carriage motion not possible. Extra space is 
left below the line to allow for the subscript. 

Inverse to \*<. 
The day of the week, as a word. 

The month, as a· word. 

Today's date, directly printable. Th~' date is of the form April. 20, 1986. 
Other forms of the date can be used by using \n(dy (the day of the month; for 
example, 20), \*(mo (as noted above) or \n(mo (the same, but as an ordinal 
number, for example, April is 4),and \n(yr (the last two digits of the current 
year). 

Left quote marks. Double quote in NROFF. 

Right quote. 

3/4 em dash in TROFF; two hyphens in NROFF. 

13. Special Characters and Marks 

There are a number of special characters and diacritical marks (such as accents) available 
through -me. To reference these characters, you must call the macro .sc to define the characters 
before using them. 

.sc Define special characters and diacritical marks, as described in the remainder 
of this section. This macro must be' stated before initialization. The special 
characters available are listed below. 

Name Usage 
Acute accent \ *' 
Grave accent \ *-
Umiat \*: 
Tilde \*'" 
Caret \*A 
Cedilla \*, 
Czech \*v 
Circle \*0 
There exists \ *( qe 

Example 
a\*-
e\*-
u\*: 
n\*'" 
e\*-
c\*, 
e\*v 
A\*o 

a 
e 
ii 
ii 
e 
c 
v 
e 
A 
3 



USD:2J..lO -me Refere1ice Manual 

For all \*(qa 

Acknowledgmeats 
I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the 

-me macros to produce non-trivial papers during the development stages; Ricki Blau, P.amela Hum
phrey, and lim Joyce for their help with the documentation phase; peter kessler for numerous com
plaints, most accompanied by fixes; and the plethora of people who have contributed ideas and have 
given support for the project. 



-me Reference Manual USD:23-11 

Summary 

This alphabetical list summarizes all macros, strings, and number registers available in the -me 
macros. Selected troff commands, registers, and functions are included as well; those listed can gen
erally be used with impunity. 

The columns are the name of the command, macro, register, or string; the type of the object, 
and the description. Types are M for macro or builtin command (invoked with. or' in the first 
input column), S for a string (invoked with \* or \*0, R fora number register (invoked with \n or 
\nO, and F for a troffbuiltin function (invoked by preceding it with a single. backslash). 

Lines marked with § are troff internal codes. Lines marked with t or :I: may be defined by the 
user to get special functions; :I: indicates that these are defined by default and changing them may 
have unexpected side effects. Lines marked with 0 are specific to ditroff(device-independent troff). 

NAME TYPE DESCRIPTION 
\(space) F§ unpaddable space 
\. F§ comment (to end of line) 
\ *# S optional delayed text tag string 
\$N F§ interpolate argument N 
\n($O R section depth 
.$0 Mt invoked after section title printed 
\n($1 R first section number 
.$1 Mt invoked before printing depth 1 section 
\n($2 R second section number 
:$2. Mt . invoked before printing depth 2 section 
\n($3 R third section number . 
. $3 . Mt invoked before printing depth 3 section 
\n($4 R fourth section number . . 
.$4 Mt invoked before printing depth 4 section 
\n($5 R fifth section number 
.$5 Mt invoked before printing depth 5 section 
\n($6 R sixth section number 
.$6 Mt invoked before printing depth 6 section 
.$C M t called at beginning of chapter 
.$H Mt text header 
\n($R R:j: relative vertical spacing in displays 
\n($c R current column number 
.$c M:j: print chapter title 
\n($d R delayed text number 
\n($f R footnote number 
.$f M:j: print footer 
.$h - M:j: print header 
\n($i R paragraph base indent 
\n($l R colulllnwidth 
\n($m R number of columns in effect 
\ *($n S section name 
\n($p R numbered paragraph number 
.$p M:j: print section heading (internal macro) 
\n($r R:j: relative vertical spacing in text 
\n($s R column indent 
.$s M:j: footnote separator (from text) 
\n% R§ current page number 
\& F§ zero width character, usefulfor hiding controls 
\(xx F§ interpolate special character xx 
.(b M begin block 



USD:l3-12 

NAME 
.(c 
.(d 
.(f 
.0 
.(q 
.(x 
.(z 
.)b 
.)C 
.)d 
.)f 
.)1 
.)q 
.)x 
.)z 
\"'x 
\*(xx 
\** 
.++ 
.+c 
\*, 
\
\"'
\0 . 
.. 1c 
.2c 
\"': 
\"'< 
\*> 
.EN 
.EQ 
\L'tI 
.OE 
.OF 
.OS 
.IE 
.IF 
.IS 
.PE 
.PF 
.PS 
.TE 
.TH 
.TS 
\*[ 
\n(.$ 
\n(.i 
\n(J 
\n(.s 
\"'r 
\"'(' 
\C 

-me Reference Manual 

TYPE DESCRIPTION 
M begin centered block 
M begin delayed text 
M begin footnote 
M begin list 
M begin quote 
M begin index entry 
M begin floating keep 
M end block 
M end centered block 
M end delayed text 
M end footnote 
M end list 
M end quote 
M end index entry 
M end floating keep 
F§ interpolate string x 
F§ interpolate string xx 
S optional footnote tag string 
M set paper section type 
M begin chapter 
S cedilla 
F§ minus sign 

. S 3/4 em dash 
F§ unpaddable digit-width space 
M . revert to single column output 
M begin two column output 
S umiat 
S begin subscript 
S end subscript 
M end equation 
M begin equation 
F§ vertical line drawing function for distance d 
M ° end gremlin picture 
MO end gremlin picture (with f1yback) 
M ° start gremlin picture 
MO end ideal picture 
MO end ideal picture (with f1yback) 
M ° start ideal picture 
M· end pic picture 
MO end pic picture (with f1yback) 
M 0 start pic picture 
M end table 
M end header of table 
M begin table 
S begin superscript 
R§ number of arguments to macro 
R§ current indent 
R§ current line length 
R§ current point size 
S acute accent 
S grave accent 
F§ acute accent 



-me Reference Manual USD:23-13 

NAME TYPE DESCRIPTION 
\( F§ grave accent 
\*] S end superscript 
\A F§ 1/12 em narrow space 
\*A S caret 
.ac M ACM'mode 
.ad M§ set text adjustment 
.af M§ assign format to register 
.am M§ append to macro 
.ar M set page numbers in Arabic 
.as M§ append to string 
.b M bold font 
.ba M set base indent 
.bc M begin new column 
.bi M bold italic 
\n(bi R display (block) ipdent 
.bl M blank lines (even at top of page) 
\n(bm R bottom title margin 
.bp M§ begin page 
.br M§ break (start new line) 
\n(bs R display (block) pre/post spacing 
\n(bt R block keep threshold 
.bx M boxed 
\c . F§ . continue input 
.ce M§ center lines 
\n(ch R current chapter number 
.de M§ define macro 
\n(df R display font 
.ds M§ define string 
\n(dw R§ current day of week 
\*(dw S current day of week 
\n(dy R§ , day of month 
\e F§ printable version of \ 
.ef M set footer (even numbered pages only) 
.eh M set header (even numbered pages only) 
.eI M§ else part of conditional 
.ep M end page 
\n(es R equation pre/post space 
\if F§ inline font change to font f 
\f(jJ F§ inline font change to font.lf 
.fc M§ set field characters 
\n(1I" R footnote font 
.fi M§ fill output lines 
\n(fi R footnote indent (first line only) 
\n(fm R footer margin 
.fo M set footer 
\n(fp R footnote pointsize 
\n(fs R footnote prespace 
\n(fu R footnote undent (from right margin) 
\h'd' F§ 10<;aI horizontal motion for distance d 
.hc M§ set hyphenation character 
.he M set header 
.hI M draw horizontal line 



USD:23-14 -me Reference Manual 

NAME TYPE DESCRIPTION 
\n(hm R header margin 
.hx M suppress headers and footers on next page 
.hy M§ set hyphenation mode 
.i M italic font 
.ie M§ conditional with else 
.if M§ conditional 
\n(ii R indented paragraph indent 
.in M§ indent (transient, use .ba for pervasive) 
.ip M begin indented paragraph 
.ix M indent, no break 
\I'd' F§ horizontal line drawing function for distance d 
.Ie M§ set leader repetition character 
.1h MO interpolate local letterhead 
.n M set line length 
.10 M load local macros 
.lp M begin left justified paragraph 
\"'(lq S left quote marks 
.Is M§ .set multi-line spacing 
.mt M set space from top of page to header 
.m2 M set space from header to text 
.m3 M set space from text to footer 
.m4 M set space from footer to bottom of page 
.me M§ insert margin character . 
.mk M§ mark vertical position 
\n(mo R§ month of year 
\"'(mo S current month 
\nx F§ interpolate number register x 
\n(xx F§ interpolate number register xx 
.nl M number lines in margin 
.n2 M number lines in margin 
.na M§ tum off text adjustment 
.ne M§ need vertical space 
.nf M§ don't fill output lines 
.nh M§ tum off hyphenation 
.np M begin numbered paragraph 
.nr M§ set number register 
.ns M§ no space mode 
\*0 S circle (e.g., for Norse A) 
.of M set footer (odd numbered pages only) 
.oh M set header (odd numbered pages only) 
.pa M begin page 
.pd M print delayed text 
\n(pf R paragraph font 
\n(pi R paragraph indent 
.pl M§ set page length 
.pn M§ set next page number 
.po M§ page offset 
\n(po R simulated page offset 
.pp M begin paragraph 
\n(pp R paragraph pointsize 
\n(ps R paragraph prespaee 
.Q M quoted 



-me Reference Manual USD:23-1S 

NAME TYPE DESCRIPTION 
\$(qa S for all 
\$(qe S there exists 
\n(qi R quote indent (also shortens line) 
\n(qp R quote pointsize 
\n(qs R quote pre/post space 
.r M roman font 
.rb M real bold font 
.re M reset tabs 
.rm M§ remove macro or string 
.m M§ rename macro or string 
.ro M set page numbers in roman 
\$(rq S right quote marks 
.rr M§ remove register 
.rs M§ restore spacing 
.rt M§ retum to vertical position 
\sS F§ inline size change to size S 
.SC M load special characters 
\n(sf R section title font 
.sh M begin numbered section 
\n(si R relative base indent per section depth 
.sk M skip next page 
.sm M set argument in a smaller pointsize 
.SO M§ source input file 
\n(so R additional section title offset' 
.sp M§ vertical space 
\n(sp R section title pointsize 
\n(ss R section prespace 
.sx M change section depth 
.SZ M set pointsize and vertical spacing 
.ta M§ set tab stops 
.tc M§ set tab repetition character 
\$(td S today's date 
\n(tf R title font 
.th M set thesis mode 
.ti M§ temporary indent (next line only) 
.tl M§ three part title 
\n(tm R top title margin 
.tp M begin title page 
\n(tp R title pointsize 
.tr M§ translate 
.u M underlined 
.uh M unnumbered section 
.ul M§ underline next line 
\v'd' F§ local vertical motion for distance d 
\$v S inverted 'v' for czeck "e" 
\w'S F§ return width of string S 
.xl M set line length (local) 
.xp M print index 
\n(xs R index entry prespace 
\n(xu R index undent (from right margin) 
\n(yr R§ year (last two digits only) 
\n(zs R floating keep pre/post space 



USD:23-16 

NAME 
\{ 
\1 
\} 
\*'" 

-me Reference Manual 

TYPE DESCRIPTION 
F§ begin conditional group 
F§ 1/6 em narrow space 
F§ end conditional group 
S tilde 



Introduction 

NROFF/TROFF User's Manual 

Joseph F. Ossanna 
(updated for 4.3BSD by Mark Seiden) 

Bell Laboratories 
Murray Hill, New Jersey 07974 

NROFF and TROFF are text processors under the UNIX Time-Sharing System that format text for 
typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. (Device
independent TROFF, part of the Documenter's Workbench, supports additional output devices.) They 
accept lines of text interspersed with lines of format control information and format the text into a 
printable, paginated document having a user-designed style. NROFF and TROFF offer unusual free
dom in document styling, including: arbitrary style headers and footers; arbitrary style footnotes; mul
tiple automatic sequence numbering for paragraphs, sections, etc; multiple column output; dynamic 
font and point-size control: arbitrary horizontal and vertical local motions at any po;nt: and a family 
of automatic overstriking, bracket construction, and line drawing functions. 

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare 
input acceptable to both. Conditional input is provided that enables the user to embed input 
expressly destined for either program. NROFF can prepare output directly for a variety of terminal 
ty~es and is capable of utilizing the full resolution of each terminal. 

Usage 

The general form of invoking NROFF (or TROFF) at UNIX command level is 

nlOft' options files (or troft' options files) . 

where options represents any of a number of option arguments and files represents the list of files con
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a 
file name corresponding to the standard input. If no file names are given input is taken from the 
standard input. The options, which may appear in any order so long as they appear before the files, 
are: 

Option 

-i 

-mname 

-nN 

-olist 

-q 

-raN 

-sN 

-z 

Effect 

Read standard input after the input files are exhausted. 

Prepends the macro file /usr/lib/tmac.name to the inputjiles. 

Number first generated page N. 

Print only pages whose page numbers appear in list, which consists of comma
separated numbers and number ranges. A number range has the form N-M and 
means pages N through M; a initial -N means from the beginning to page N; and 
a final N- means from N to the end . 

. Invoke the simultaneous input-output mode of the rd request. 

Number register a (one-character) is set to N. 

Stop every N pages. NROFF will halt prior to every N pages (default N= 1) to 
allow paper loading or changing, and will resume upon receipt of a newline. 
TROFF will stop the phototypesetter every N pages, produce a trailer to allow 
changing cassettes, and will resume after the phototypesetter START button is 
pressed. 

Efficiently suppress formatted output. Only produce output to standard error 
(from tm requests or diagnostics). 



USD:24-2 NROFF/TROFF User's Manual 

NROFFOnly 

-Tname Specifies the name of the output terminal type. Currently defined names are 37 
for the (default) Model 37 Teletype4l'l. tn300 for the GE TermiNet 300 (or any ter
minal without half·line capabilities), 300S for the OASI-3OOS, 300 for the OASI· 
3OO~ and 450 for the OASI-4S0 (Diablo Hyterm). 

-e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

-h On output, use tabs during horizontal spacing to increase speed. Device tabs set· 
ting are assumed to be (and input tabs are initially set to) every 8 character 
widths. 

TROFFOnly 

-a Send a printable (ASCII) approximation of the results to the standard output. 

-It TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the 
run. 

-t Direct output to the standard output instead of the phototypesetter. 

-w Wait until phototypesetter" available, if currently busy. 

Each option is invoked as a separate argument; for example, 

aroff -o4.8-1q -TJOOS -mabc filel file2 

requests formatting of " pageS 4,8,9, and '10 of a document contained in the files namedfilel andfile2, 
specifies the output terminal as a OASI·3OOS, and invokes the macro package abc. 

Various pre- ~d post-processors are available for use with NROFF and TROFF. These include th~ 
equation preprocessors NEQN and EQNl (forNROFF and TROFF respectively), and the table
construction preprocessor TBL2. A reverse-line postprocessor COL3 is available for multiple-column 
NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape 
sequences that NROFF produces by default. TK3 is a 37 Teletype simulator postprocessor for printing 
NR.OFF outp.ut on a Tektronix 4014. rcs is a phototypesetter-simulator postprocessor for TROFF that 
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in 

tbl files I eqn I troll -t options I tc 

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output 
to TROFF's input; and the third indicates the piping of TROFF's output to TC. 

The remainder of this manual consists of: a Summary and outline; a Reference Manual keyed to the 
outline; and a set of Tutorial Examples. Another tutorial is [5]. 

References 

(1] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Labora-
tories. 

[2] M. E. Lesk, Tbl- A Program to Format Tables, Bell Laboratories internal memorandum. 

(3J Intemalon-line documentation (man pages) on UNIX. 

(4] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories. 

[5] Your site may have similar programs for more modem displays. 



NROFFITROFF User's Manual 

SUMMARY OF REQUESTS AND OUTLINE OF THIS MANUAL 

Request Initial If No 
Form Value· Argument NoteS# Explanation 

1. General Explanation 

2. Font and Character Size Control 

.ps±N 10 point previous 

.fz F±N off 

.fz SF±N off 

.5S N 12/36em ignored 

E 
E 
E 
E 

Point size; also \S±N. t 
font F to point size ±N. 
Special Font characters to point size ±N. 
Space-character size set to N /36 em. t 

USD:24-3 

.cs FNM off 

.bel F N off 
P 
P 

Constant character space (width) mode (font F). t 
Embolden font F by N-l units.t 

.bel S F N off P 

.ft F Roman previous E 

.fpN F R,I,B,S ignored 

3. Page Control 

.pl ±N 11 in 11 in v 

.bp±N N=1 B;,v 

.pn ±N N=1 ignored 

.po ±N 0; 26/27 in previous v 

.neN N=IV D,v 

.mkR none internal 0 

. rt ±N none internal D,v . 

4.. Text· Filling, Adjusting, and Centering 

.br B 
• ft fill B,E 
~f ~ aE 
. ad c adj,both adjust E 
. na adjust E 
. ce N off N= 1 B,E 

5. Vertical Spacing 

.vs N 1/6in; 12pts previous E,p 

.Is N N=l previous E 

.sp N N=lV B,v 

.sv N N=lV v 

. os 

.ns space D 

.rs D 

6. Line Length and Indenting 

Embolden Special Font when current font is F.t 
Change to font F = x, xx, or ·1-4. Also \lx, \(xx, \!N. 
Font named F mounted on physical position lSNs4. 

Page length. 
Eject current page; next page number N. 
Next page number N. 
Page offset. 
Need N vertical space (V = vertical spacing). 
Mark current vertical place in register R .. 
Return (upward only) to .marked vettical place. 

Break . 
Fill output lines. 
No filling or adjusting of output lines . 
Adjust output lines with mode c . 
No output line adjusting. 
Center following N input text lines . 

Vertical base line spacing (V). 
Output N-l Vs after each text output line. 
Space vertical distance N in either direction. 
Save vertical distance N. 
Output saved vertical distance . 
Tum no-space mode on. 
Restore spacing; tum no-space mode off. 

.11 ±N 6.5 in previous E,m Line length . 

. in ±N N = 0 previous B,E,m Indent . 

. ti ±N ignored B,E,m Temporary indent. 

7. Macros, Strings, Diversion, and Position Traps 

.de xx yy .yy=.. Define or redefine macro xx; end at call of yy . 

. am xx yy. .yy=.. Append to a macro. 

·Values separated by";" are for NROFF and TROFF respectively. 
*Notes are explained at the end of this Summary and Index 
tNo effect in NROFF. 

:;The use of " • " as control character (instead of '.") suppresses the break function. 



U80:244 

Reqriest Initial 
Form Value 

.ds xx string-

.as xx string. 

.rmxx 

.rnxxyy 

.dixx 

.cia xx 
• wh N xx 
.chxx N 
• dtN xx 
.it N xx 
.em xx none 

8. Number Registers 

.arR=NM-

.at R c arabic 
• rr R 

IINo 
Argument 

ignored 
ignored 
ignored 
ignored 
end 
end 

oft" 
oft" 
none 

9. Tabs, Leaders, uti Fields 

• ta Nt ... 
.tec 
.lec 
.Ie a b 

0.8; O.Sin none 
none none 

none 
oft" oft" 

Notes 

D 
D 
v , 
D,l' 
E 

8 

NROFFITROFF User's Manual 

Explanation 

Define a string xx containing string. 
Append string"to string xx. 
Remove request, macro, or string. 
Rename request, macro, or string xx to yy . 
Divert output to macro xx. 
Divert and append to xx. 
Set location trap; negative is w.r.t. page bottom . 
Change trap location . 
Set a diversion trap • 
Set an input-line count trap. 
End macro is xx. 

Define and set number register R; auto-increment by M . 
Assign format to register R (c-I, i, I, a, A). 
Remove register R . 

E,m Tab settings; left type, unless I=R(right), C(centered) . 
E Tab repetition character . 
E Leader repetition character . 

Set field delimiter a and pad character b . 
. " 

10. Input and Output Conventions and Character Translations 

.ee"c \ \ Set escape character . 
• eo on - " Tum" off escape character mechanism . 
• Ig N -; on on Ligature mode on if N>O • 
• ul N oft" N-I E Underline (italicize in TROFF) N input lines . 
• CD N oft" N= 1 E Continuous underline in NROFF; like ul in TROFF . 
• ut F Italic Italic Underline font set to F (to be switched to by ul) . 
• " c E Set control character to c . 
.c2 c E Set nobreak control character to c . 
• tr abed.... DOne 0 Translate a to b, etc. on output. 

11. Local Horizontal and Vertical" Motions, and the Width Function 

11. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

13. Hyphenation • 

. nh hyphenate - E No hyphenation . 
• hy N hyphenate hyphenate E Hyphenate; N = mode. 

Hyphenation indicator character c . 
Exception words. 

• he: c \% \% E 
.hw wordl ... ignored 

14. Three Part Titles • 

• tl 'left 'center 'right' Three part title . 
• pc: c lYe off Page number character. 

" .It ±N 6.5 in previous E,m Length of title. 

IS. Output Une Numbering • 

• nm±NMSI off E Number mode on or off, set parameters . 
• Dn N N-I E Do not number next N lines. 



NROFFfTROFF User's Manual 

II No Request 
Form 

Initial 
Value Argument Notes Explanation 

16. Conditional Acceptance of Input 

.if c anything 

• if !c anything 
. if N anything u 
• if !N anything u 

If condition c true, accept anything as input, 
for multi-line use \{anything\}. 
If condition c false, accept anything . 
If expression N > 0, accept anything . 
If expression N ~ 0, accept anything . 
If string} identical to string2, accept anything . 

USD:24-5 

• if 'stringl'string2' anything 
. if rstring}'string2' anything 
• ie c anything u 

If string} not identical to string2, accept anything . 
If portion of if-else; all above forms (like if) . 

• el anything 

17. Environment Switching. 

.e'f N N-O previous 

18. Insertions from the Standard Input 

.rd prompt - prompt=BEL 
• ex 
19. Input/Output File Switching' 

.so filename 
• DX filename end-of-file -
• pi program 

Else portion of if-else . 

Environment switched (push down) . 

Read insertion . 
Exit from NROFF /TROFF . 

Switch source file (push down) . 
Next file. 
Pipe output to program (NROFF only) . 

20. MiscellaneoUs 

.mccN E,m Set margin character c and separation N . 

.tm string 
• ig yy 
.pm t 

off 
newline 
.YY= .• 

Print string on terminal (UNIX standard error output). 
Ignore till call of yy . 

all Print macro names and sizes.; 

. ab string 

. fl 

if t present, print only total of sizes. 
Print a message and abort . 

B Flush output buffer . 

21. Output and Error Messages 

Notes-

B Request normally causes a break. 
D Mode or relevant parameters associated with current diversion level. 
E Relevant parameters are a part of the current environment. 
0 Must stay in effect until logical output. 
P Mode must be still or again in effect at the time of physical output. 

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored. 

Alpbabetical Request and SeedOD Number Cross Reference 

ab 20 e2 10 di 7 ex 18 hw 13 Ig 10 ne 3 os S rei 18 
ad 4 cc 10 ds 7 fe 9 hy 13 Ii 10 nf 4 pc 14 nn 7 
af 8 ce 4 dt 7 Ii 4 ie 16 11 6 nh 13 pi 19 m 7 
am 7 eh 7 ee 10 fl 20 if 16 Is S nmlS pi 3 rr 8 
as 7 cs 2 el 16 fp 2 ig 20 It 14 nn 15 pm20 rs S 
bd 2 culO em7 ft 2 in 6 me 20 nr 8 pn 3 rt 3 
bp 3 da 7 eo 10 fz 2 it 7 mk3 ns S po 3 so 19 
br 4 de 7 ev 17 he 13 Ie 9 na 4 nx 19 ps 2 sp S 

55 2 uf 10 
sv S ul 10 
ta 9 vs S 
te 9 wh 7 
ti 6 
tl 14 
tm 20 
tr 10 



USD:24-6 NROFFITROFF User's Manual 

Escape Sequentes for Characters, Indiaators, and Functions 

Section 
Reference 

10.1 
10.1 
2.1 
2.1 
2.1 
7 . 

11.1 
11.1 
11.1 
11.1 
4.1 

10.6 
10.7 
7.3 

13 
2.1 
7.1 
9.1 

12.3 
4.2 

iLl 
2.2 

11.1 
11.3 
12.4 
12.4 
8 

12.1 
4.1 

11.1 
2.3 
9.1 

11.1 
11.1 
11.2 
5.2 

12.2 
16 
16 
10.7 

Escape 
Sequence Meaning 

\ \ \ (to prevent or delay the interpretation of \ ) 
\e Printable version of the current escape character. 
\' ' (acute accent); equivalent to \(aa 
\' ' (grave accent); equivalent to \(13 
\- - Minus sign in the current font 
\. Period (dot) (see de) 
\(space) Unpaddable space-size space character 
\0 Digit width space 
\ I 1/6em narrow space character (zero width in NROFF) 
,,0, 1/12em half-narrow space character (zero width in NROFF) 
\& Non-printing, zero width character 
\!. Transparent line indicator 
\ - Beginning of comment 
\$N Interpolate argument 1 S.NS.9 
\ % Default optional hyphenation character 
\(xx Character named xx 
\.x, \.(xx Interpolate string x or xx 
\8 Non-interpreted leader character 
\b'abc ... ' Bracket building function 
\c Interrupt text processing 
\d Forward (down) 1/2em vertical motion O!2line in NROFF) 
. \lx, \f(xx, \fN . Change to font named x or xx, or position N' 
\h'N' Local horizontal motion; move right N (negative left) 
\kx Mark horizontal input place in register x 
\1'Nc' Horizontal line drawing function (optionally with c) 
\L'Ne' Vertical line drawing function (optionally with c) 
\nx, \n(xx Interpolate number register x or xx 
\o'abe ... ' Overstrike characters a. b. c • ... 
\p Break and spread output line 
\r Reverse 1 em vertical motion (reverse line in NROFF) 
\sN, \s±N Point-size change function· 
\t Non-interpreted horizontal tab 
\u Reverse (up) 1/2 em vertical motion (1/2 line in NROFF) 
VlN' Local vertical motion; move down N (negative up) 
\w'string' Interpolate width of string 
\x'N' Extra line-space function (negative before. positive after) 
\zc Print c with zero width (without spacing) 
\ { Begin conditional input 
\} End conditional input 
\(newline) Concealed (ignored) newline 
\X X, any character not listed above 

The escape sequences \\, \., \-, \$, \., \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2). 



NROFFITROFF User's Manual 

Predefined General Number Registers 

Section 
Reference 

3 
19 
11.2 
7.4 
7.4 

11.3 
15 

4.1 
11.2 
11.2 

Register 
Name Description 

Ofo Current page number. 
c. Number of lines read from current input file. 
ct Character type (set by width function). 
dl Width (maximum) of last completed diversion. 
dn Height (vertical size) of last completed diversion. 
dw Current day of the week (1-7). 
dy Current day Qfthe month (1-31). 
hp Current horizontal place on input line (not in ditrofi) 
In Output line number. 
mo Current month (1-12). 
nl Vertical position of last printed text base-line. 
sb Depth of string below base line (generated by width function). 
st Height of string above base ~ine (generated by width function). 
yr Last two digits of current year. 

Predefined Read-Only Number Registers 

Section 
Reference 

7.3 

11.1 
5.3 

ll.l 
5.2 

19 

Register 
Name 

.$ 

. A 
• H 
.L 
. P 
. T 
.V 
.a 
.C 

Description 

Number of arguments available at the current macro level. 
Set to I in TROFF, if -a option used; always 1· in NROFF . 
Available horizontal resolution in basic units . 
Set to current line-spacing (Is) . parameter 
Set to I if the current page is being printed; otherwise O . 
Set to I in NROFF, if -T option used; always 0 in TROFF . 
A vailable vertical resolution in basic units. 
Post-line extra line-space most recently utilized using \x'N', 
Number of lines read from current input file. 

USD:24-7 

7.4 
2.2 

• d 
.f 

Current vertical place in current diversion; equal to nl, if no diversion . 
Current font as physical quadrant (1-4) . 

4 . h 
6 . i 
4.2 . j 
4.1 . k 
6 • 1 
4 .n 
3 • 0 

3 . p 
2.3 .s 
7.5 .t 
4.1 .u 
5.1 • V 

11.2 .w 
. x 
• y 

7.4 . z 

Text base-line high-water mark on current page or diversion. 
Current indent . 
Current adjustment mode and type . 
Length of text portion on current partial output line . 
Current line length . 
Length of text portion on previous output line. 
Current page offset . 
Current page length . 
Current point size. 
Distance to the next trap. 
Equal to 1 in fill mode and 0 in nofi11 mode. 
Current vertical line spacing . 
Width of previous character. 
Reserved version-dependent register . 
Reserved version-dependent register . 
Name of current diversion . 



USD:24-8 NllOfFlTllOFF User's Manual 

REFERENCE MANUAL 

1. General Explanation 

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with 
control lines, which set parameters or otherwise control subsequent processing. Control lines begin 
with a control character-normally • (period) or • (acute accent)-followed by a one or two character 
name that specifies a basic request or the substitution of a user.defined macro in place of the control 
line. The control character • suppresses the break function-the forced output of a partially filled 
line-caused by certain requests. The control character may be separated from the request/macro 
name by white space (spaces andlor tabs) for resthetic reasons. Names must be followed by either 
space or newline. Control lines with unrecognized names are ignored. 

Various special functions may be introduced anywhere in the input by means of an escape character, 
normally \. For example, the function \DR causes the interpolation (insertion in place) of the con
tents of the number register R in place of the function; here R is either a sinaIe character name as in 
\ax, or left-parenthesis-introduced, two-character name as in \n(XX'. 

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, (for historical reasons, 
corresponding to the Graphic Systems phototypesetter which had a horizontal resolution of 1/432 
inch and a vertical resolution of 1/144 inch.) NROFF internally uses 240 units/inch, corresponding to 
the least common multiple of the horizontal and vertical resolutions of various typewriter-like output 
devices. TROFF rounds horizontal/vertical· numerical parameter input to its own internal 
horizontal/vertical resolution. NROFF similarly rounds numerical input to the actual resolution of 
the output device indicated by the - T option (default Model 37 Teletype) . 

. 1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the scale indi
cator suffixes shown in the following table,· where S is the current type size in Points, V is the current 
v~rticallilie spacing in· basic units,and C is a . nominal character widih in basic units~ 

Scale Number of basic units 
Indicator Meaning TROFF NROFF 

i Inch 432 240 
c Centimeter 432xSO/127 240xSO/127 
P Pica .. 1/6 inch 72 240/6 
m Em at Spoints 6xS C 
n En .. Em/2 3xS C. same as Em 
p Point .. 1/72 inch 6 240/72 
u Basic unit 1 1 
v Vertical line space V V 

none Default, see below 

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent; 
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same 
and constructed characters such as -> (-) are often extra wide. The default scaling is ems for the 
horizontally-oriented requests and functions 11, in, ti, ta, It, po, DIe, \h. and \1; Vs for the vertically
oriented requests and functions pi, wh, ch, dt, sp, SV, ne, rt, \v. \x, and \L; p for the vs request; and u 
for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number register 
containing an ~ready appropriately scaled number is interpolated to provide numerical input, the 
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling. 
The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded 
to an integer number of basic units. 

The absolute position indicator I may be prefixed to a number N to generate the distance to the veni
cal or horizontal p.tace N. For vertically-oriented requests and functions, I N becomes the distance in 
basic units from the current vertical place on the page or in a diversion (§7.4) to the vertical place N. 
For all other requests and functions, I N becomes the distance from the current horizontal place on 



NROFFITROFF User's Manual USD:24-9 

the input line to the horizontal place N. For example, 

.sp 13.1c 
will space in the required direction to 3.2 centimeters from the top of the page. 

1.4. Numerical expressions. Wherever numerical input is expected, an expression involving 
parentheses, the arithmetic operators +, -, I, ., ,. (mod), and the logical operators <, >, <a, >-, == 
(or --), " (and), : (or) may be used. Except where controlled by parentheses, evaluation of expres
sions is left-ta-right; there is no operator precedence. In the case of certain requests, an initial + .or -
is stripped and interpreted as an increment or decrement indicator respectively. In the presence of 
default scaling, the desired scale indicator must be attached to every number in an expression for 
which the desired and default scaling differ. For example, if the number register x contains 2 and the 
current point size is 10, then 

.n (4.15i+\oxP+3)/lu 

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points. 

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the 
argument may take the forms N, + N, or -Nand that the corresponding effect is to set the affected 
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an 
initial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable 
numerical input is either ignored or truncated to a reasonable value. For example, most requests 
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests ps, 
ft, po, VI, Is, 11. in, and It restore the previous parameter value in the absence of an argument. 

Single character arguments are indicated by single lower case letters and one/two character arguments 
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-
character mnemonics: . 

2. Font and ChaJacter . Size Control 

2.1. Character set. The TROFF character set consists of a typesetter-dependent basic character set plus 
a Special Mathematical Font character set-each having 102 characters. An example of these charac
ter sets is shown in the Appendix Table I. All printable ASCII characters are included, with some on 
the Speciat Font. With three exceptions, these ASCII characters are input as themselves, and non
ASCII characters are input in the form \(xx where xx is a two-character name given in the Appendix 
Table II. The three ASCII exceptions are mapped as follows: 

ASCII Input Printed by TROFF 
Character Name Character Name 

, 
acute accent . close quote . grave accent • open quote 

- minus - hyphen 

The characters " " and - may be input by \', y, and \- respectively or by their names (Table II). The 
ASCII characters @, #, ., " " <, >, \, {, }, ., ", and _ exist only on the Special Font and are printed as 
a l-em space if that font is not mounted. 

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, 
additional characters as may be available on the output device, such characters as maybe able to be 
constructed by overstriking or other combination, . and those that can reasonably be mapped into 
other printable characters. The exact behavior is determined by a driving table prepared for each 
device. The characters " " and _ print as themselves. 

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and 
the Special Mathematical Font (8) on physical typesetter positions 1, 2, 3, and 4 respectively. These 
fonts are used in this document. The cu"ent font, initially Roman, may be changed (among the 
mounted fonts) by use of the ft request, or by imbedding at any desired point either \tX, \f(xx, or \fN 
where x and xx are the name of a mounted font and N is a numerical font position. It is not 



USD:24-10 NROFFITROFF User's Manual 

necessary to change to the Special Font; characters on that font are automatically handled. A request 
fora named but not-mounted font is ignored. TROFF can be informed that any particular font is 
mounted by use of the fp request. The list of known fonts is installation dependent. In the subse
quent discussion of font-related requests, F represents either a one/two-character font name or the 
numerical font position, 14. The current font is available (as numerical position) in the read-only 
number register .t. 
NROFF understands font control and normally underlines Italic characters (see § 1 0.5). 

2.3. Character size.- Character point sizes available ~e typesetter dependent, but often include 6, 7, 8, 
9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps 
request is used to change or restore the point size. Alternatively the point size may be changed 
between any two characters by imbedding a \sN at the desired point to set the size to N, or a \s±N 
(l~s9) to increment/decrement the size by N; \sO restores the previous size. Requested point size 
values that are between two valid sizes yield the larger of the two. The current size is available in the 
.s register. NROFF ignores type size control. 

Request Initial If No 
Form Value Argument 

.ps ±N 10 point previous 

• fz F±N off. 

.fz S F±N off' 

.ss N 12/36em ignored 

. cs FNM off 

• bd F N off 

Notes· Explanation 

E Point size set to ±N. Alternatively imbed \sN or \s±N. 

E 

E 

E 

P 

P 

Any positive size value may be requested; if invalid, the 
next larger valid size will result, with a maximum of 36. 
A paired sequence + N, - N will work because the previ
ous requested value is also remembered. Ignored in 
NROFF . 

The characters in font F will be adjusted to be in size 
±N. Characters in the Special Font encountered during' 
the use of font F will have the same size modification. 
(Use the .fz S request if different treatment of Special 

. Font characters is required). .fz must follow any .fp 
request for the position. 

The characters in the Special Font will be in size ±N 
independent of previous .fz requests. 

Space-character size is set to N/36ems. This size is the 
minimum word spacing in adj\lsted text. Ignored in 
NROFF . 

Constant character space (width) mode is set on for font 
F (if mounted); the width of every character will be 
taken to be N /36 ems. If M is absent, the em is that of 
the character's point size; if M is given, the em is M
points. All affected characters are centered in this 
space, including those with an actual width larger than 
this space. Special Font characters occurring while the 
current font is F are also so treated. If N is absent, the 
mode is turned off. The mode must be still or again in 
effect when the characters are physically printed. 
Ignored in NROFF . 

The characters in font F will be artificially emboldened 
by printing each one twice, separated by N - 1 basic 
units. A reasonable value for N is 3 when the character 
size is in the vicinity of 10 points. If N is missing the 
embolden mode is turned off. The column heads above 

-Notes are explained at the end of the Summary and Index above. 



NROFF/TROFF User's Manual 

.beI S F N off 

.ft FRoman previous 

.fp N F R,I,B,S ignored 

3. Page control 

P 

E 

USD:24-11 

were printed with .bd I 3. The mode must be still or 
again in effect when the characters are physically 
printed. Ignored in NROFF. 

The characters in the Special Font will be emboldened 
whenever the current font is F. This manual was 
printed with .bd S B 3. The mode must be still or again 
in effect when the characters are physically printed. 

Font changed to F. Alternatively, imbed \fF. The font 
name P is reserved to mean the previous font. 

Font position. This is a statement that a font named F 
is mounted on position N (1-4). It is a fatal error if F is 
not known. The phototypesetter has four fonts physi
cally mounted. Each font consists of a film strip which 
can be mounted on a numbered quadrant of a wheel. 
The default mounting sequence assumed by TROFF is 
R, I, B, and S on positions I, 2, 3 and 4. 

Top and bottom margins are not automatically provided; it is conventional to define two macros and 
to set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial 
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs 
or when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of 
the first page. must be completed before this transition. In the following, references to the current 
diversion (§7.4) mean that the mechanism being described works during .both ordinary and diverted 
output (the former considered as the top diversion level). 

. . 
The usable page width on the Graphic Systems phototypesetter was about 7.54 inches, beginning 
about 1/27 inch from the left edge of the 8 inch wide, continuous roll paper, but these characteristics 
are typesetter- dependent. The physical limitations on NROFF output are output-device dependent. 

Request Initial If No 
Form Value Argument Notes Explanation 

.pl ±N 11 in 11 in 

.bp ±N N=1 

.pn ±N N=1 ignored 

.po ±N 0; 26/27 int previous 

.ne N N=IV 

v Page length set to ±N. The internal limitation is about 
75 inches in TROFF and about 136 inches in NROFF. 
The current page length is available in the .p register. 

B*, v Begin page. The current page is ejected and a new page 
is begun. If ±N is given, the new page number will be 
±N. Also see request ns. 

Page number. The next page (when it occurs) will have 
the page number ±N. A pn must occur before the initial 
pseudo-page transition to affect the page number of the 
first page. The current. page number is in the % register. 

v Page offset. The current left margin is set to ±N. The 
TROFF initial value provides about 1 inch of paper mar
gin including the physical typesetter margin of 
1/27 inch. In TROFF the maximum (line
length)+(page-offset) is about 7.54 inches. See §6. The 
current page offset is available in the .0 register. 

D,v Need N vertical space. If the distance, D, to the next 
trap position (see §7.5) is less than N, a forward vertical 

-The use of" • " as control character (instead of" ,") suppresses the break function. 

tValues separated by";" are for NROFF and TROFF respectively. 



USD:24-12 

.mkR none internal D 

.rt±N none internal D,v 

4. Text Filling, Adjusting, and Centering 

NROFFITROFF User's Manual 

space of size D occurs, which will spring the trap. If 
there are no remaining traps on the page, D is the dis
tance to the bottom of the page. If D < V, another line 
could still be output and spring the trap. In a diversion, 
D is the distance to the diversion trap, if any, or is very 
large. 

Mark the current vertical place in an internal register 
(both associated with the current diversion level), or in 
register R. if given. See rt request. 

Return upward only to a marked vertical place in the 
current diversion. If ±N (w.r.t. current place) is given, 
the place is ±N from the top of the page or diversion or, 
if N is absent, to a place marked by a previous mk. 
Note that the sp request (§S.3) may be used in all cases 
instead of rt by spacing to the absolute place stored in a 
explicit register; e. g. using the sequence .mk R ... 
• sp I \nRu. 

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a 
output text line until some word doesn't fit. An attempt is then made to hyphenate the word to 
assemble a part of it into the output line. The spaces between the words on the output line are then 
increased to spread out the line to the current line length minus any current indent. A word is any 
string of characters delimited by the space character or the beginning/end of the input line. Any adja
cent pair of words that must be kept together (neither split across output lines nor spread apart in the 
adjustment process) can be tied together by separating them with the unpaddable space character"\ " 
(backslash-space). The adjusted word spacings are uniform in TROFF and the minimum interWord 
spacing can be controlled with the 55 request (§2). In NROFF, they are normally nonuniform because 
of quantization to character-size spaces; however, the command line option -e causes uniform spacing 
with full output device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or 
controlled. The text length on the last line output is available in the .n register, and text base-line 
position on the page for this line is in the 01 register. The text base-line high-water mark (lowest 
place) on the current page is in the .h register. The .k register (read-only) contains the horizontal size 
of the text portion (without indent) of the current partially-collected output line (if any) in the current 
environment. 

An input text line ending with " ?, or! is taken to be the end of a sentence, and an additional space 
character is automatically provided during filling. Multiple inter-word space characters found in the 
input are retained, except for trailing spaces; initial spaces also cause a break. 

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of 
the word and have the resulting output line spread out to fill the current line length. 

A text input line that haepens to begin with a control character (§1O.4) can be made to not look like a 
control line by preceding it by the non-printing, zero-width filler character \&. Still another way is to 
specify output translation of some convenient character into the control character using tr (§1O.5). 

4.2. Interrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by ter
minating the partial line with a \c. The next encountered input text line will be considered to be a 
continuation of the same line of input text. Similarly, a word within filled text may be interrupted by 
terminating the word (and line) with \c; the next encountered text will be taken as a continuation of 
the interrupted word. If the intervening control lines cause a break, any partial line will be forced out 
along with any partial word. 



NROFFrrROFF User's Manual USD:24-13 

IINo Request 
Form 

Initial 
Value Argument Notes Explanation 

.br B 

.ft fill on B,E 

.nf fill on B,E 

.adc adj,both adjust E 

.Da adjust E 

.ce N off N=l B,E 

s. Vertical Spacing 

Break. The filling of the line currently being collected is 
stopped and the line is output without adjustment. 
Text lines beginning with space characters and empty 
text lines (blank lines) also cause a break. 

Fill subsequent output lines. The register .u is I in fill 
mode and 0 in nofill mode. 

Nofill. Subsequent output lines are neither filled nor 
adjusted. Input text lines are copied directly to output 
lines without regard for the current line length. 

Line adjustment is begun. If fill mode is not on, adjust
ment will be deferred until fill mode is back on. If the 
type indicator c is present, the adjustment type is 
changed as shown in the following table. The type indi
cator can also be a value saved from the read-only .j 
number register, which is set to contain the current 
adjustment mode and type. 

Indicator Adjust Type 
I adjust left margin only 
r adjust right margin only 
c center 

b or n adjust both margins 
absent unchanged 

Noadjust. Adjustment is turned off; the' right margin 
will be ragged. The adjustment type. for ad is not 
changed. Output line filling still occurs if fill mode is 
on. 

Center the next N input text lines within the current 
(line-length minus indent). If N = 0, any residual count 
is cleared. A break occurs after each of the N, input 
lines. If the input line is too long, it will be left 
adjusted. 

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can 
be set using the vs request with a resolution of 1/144inch = 1/2 point in TROFF, and to the output' 
device resolution in NROFF. V must be large enough to accommodate the character sizes on the 
affected output lines. For the common type sizes (9-12 points), usual typesetting practice is to set V 
to 2 points greater than the point size; TROFF default is 100point type on a 12-point spacing (as in 
this document). The current V is available in the .v register. Multiple-V line separation (e. g. double 
spacing) may be requested with Is. 

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing 
it to have extra vertical space before and/or after it, the extra-line-space function \x'N' can be imbed
ded in or attached to that word. In this and other functions having a pair of delimiters around their 
parameter (here '), the delimiter choice is arbitrary, except that it can't look like the continuation of a 
number expression for N. If N is negative, the output line containing the word will be preceded by N 
extra vertical space; if N is positive, the output line containing the word will be followed by N extra 
vertical space. If successive requests for extra space apply to the same line, the maximum values are 
used. The most recently utilized post-line extra line-space is available in the .a register. 



USD:24-14 NROFF/TROFF User's Manual 

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors 
the no-space mode and which does not space past a trap. A contiguous block of vertical space may be 
reserved using sv. 

Request Initial If No 
Form Value Argument Notes Explanation 

.VS N 1/6in;12pts previous E,p Set vertical base-line spacing size V. Trapsient extra 
vertical space available, with \x'N' (see above). 

.Is N previous 

.sp N N=lV 

.sv N N=lV 

.os 

.ns space 

.rs space 

Blank text line. 

6. Line Length and Indenting 

E 

B,v 

v 

D 

D 

B 

Line spacing set to ±N. N-l Vs (blank lines) are 
appended to each output text line. The (read-only) 
number register .L is set to contain the current line
spacing value. Appended blank lines are omitted, if the 
text or previous appended blank line reached a trap 
position. 

Space vertically in either direction. If N is negative, the 
motion is backward (upward) and is limited to the disa 
tance to the top of the page. Forward (downward) 
motion is truncated to the distance to the nearest trap. 
If the no-space mode· is on, no spacing occurs (see ns, 
and rs below). 

Save a contiguous vertical block of size N. If the diSa 
tance to the next trap is greater than N, N vertical space 
is output. No-space mode has no effect. If this distance 
is less than N, no vertical space is immediately output, 
but N is remembered for later output (see os). Subse- . 

. quent sv requests will overwrite any still remembered N . 

. Output saved vertical space. No-space mode has no 
effect. Used to finally output a block of vertical space 
requested by an earlier sv request. 

No-space mode turned on. When on, the no-space 
mode inhibits sp requests and bp requests without a next 
page number. The no-space mode is turned off when a 
line of output occurs, or with rs. 

Restore spacing. The no-space mode is turned off. 

Causes a break and outputs a blank line just like sp 1. 

The maximum line length for fill mode may be set with 11. The indent may be set with in; an indent 
applicable to only the next ou~put line may be set with ti. The line length includes indent space but 
not page offset space. The line.length minus the indent is the basis Tor centering with ceo The effect 
of II, in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode 
the length of text on an output line is less than or equal to the line length minus the indent. The 
current line length and indent are available in registers .1 and .i respectively. The length of three-part 
titles produced by tl (see §14) is independently set by It. 

Request Initial If No 
Form Value Argument Notes Explanation 

.11 ±N 6.5 in previous E,m Line length is set to ±N. In TROFF'the maximum (line
length)+(page-offset) is about 7.54 inches . 

. in ±N N=O previous B,E,m Indent is set to ±N. The indent is prepended to each 
output line. 



NROFFITROFF User's Manual USD:24-15 

.ti ±N ignored B,E,m Temporary indent. The next output text line will be 
indented a distance ±N with respect to the current 
indent. The resulting total indent may not be negative. 
The current indent is not changed. 

7. Macros, Strings, Diversion, and Position Traps 

7.1.Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or 
with a trap. A string is a named string of characters. not including a newline character. that may be 
interpolated by name at any point. Request. macro. and string names share the same name list. 
Macro and string names may be one or two characters long and may usurp previously defined 
request. macro. or string names. Any of these entities may be renamed with rn or removed with rm. 
Macros are created by de and di. and appended to by am and da; di and da cause normal output to be 
stored in a macro. Strings are created by ds and appended to by as. A macro is invoked in the same 
way as a request; a control line beginning .xx will interpolate the contents of macro xx. The 
remainder of the line may contain up to nine arguments. The strings x and xx are interpolated at any 
desired point with \.x and \-<xx respectively. String references and macro invocations may be 
nested. 

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not 
by diversion) the input is read in copy mode. The input is copied without interpretation except that: 

• The contents of number registers indicated by \n are interpolated. 
• Strings indicated by \. are interpolated. 
• Arguments indicated by \$ are interpolated. 
• Concealed newlines indicated by \(newline) are eliminated. 
• Comments indicated by \ - are eliminated. 
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9) .. 
• \ \ is interpreted as \. . . 
• \. is interpreted as A:. 

These interpretations can be suppressed by prepending a \. For example. since \ \ maps into a \, \ \n 
will copy as \n which will be interpreted as a number register indicator when the macro or string is 
reread. 

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up 
to nine arguments. The argument separator is the space character. and arguments may be surrounded 
by double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in 
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a 
line, a concealed newline may be used to continue on the next line. 

When a macro is invoked the input level is pushed down and any arguments available at the previous 
level become unavailable until the macro is completely read and the previous level is restored. A 
macro's own arguments can be interpolated at any point within the macro with \$N, which interpo
lates the Nth argument (lSNS9). If an invoked argument doesn't exist, a null string results. For 
example, the macro xx may be defined by 

.de xx \ -begin definition 
Today is \ \$1 the \ \$2. 

\ -end definition 

and called by 

.XX Monday 14th 

to produce the text 

Today is Monday the 14th. 

Note that the \$ was concealed in the definition with a prepended \. The'number of currently avail
able arguments is in the .$ register. 



USD:24-16 NROFFrrROFF User's Manual 

No arguments are available at the top (non-macro) level in this implementation. Because string 
referencing is implemented as a input-level push down, no argUments are available from within a 
string. No arguments are available within a trap-invoked macro. 

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy 
time) and it is advisable to conceal string references (with an extra \) to delay interpolation until 
argument reference time. 

7.4. Di'versions. Processed output may be diverted· into a macro for purposes such as footnote process
ing (see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional 
changing of pages or columns. A single diversion trap may be set at a specified vertical position. The 
number registers do and dl respectively contain. the vertical and horizontal size of the most recently 
ended diversion. Processed text that is diverted into a macro retains the vertical size of each of its 
lines when reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bel) 
text that is diverted can be reread correctly only if these modes are again or still in effect at reread 
time. One way to do this is to imbed in the diversion the appropriate cs or bel requests with the tran
sparent mechanism described in §1O.6. 

Diversions may be nested and certain parameters and registers are associated with the current diver
sion level (the top non-diversion level may be thought of as the Oth diversion level). These are the 
diversion trap and associated macro, no-space mode, the internally-s~ved marked place (see mk and 
rt), the current vertical place (.d register), the current high-water text base-line (.h register), and the 
current diversion name (.z register). 

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input. 
line-count trap. Macro-invocati()D. traps. may be .planted using wb at any page position including the 
. top; This trap position may be changed using ch. Trap positions at or below the bottom of the page. 
have no effect unless or until moved to within the page or ~ndered effective by an increase in page 
length. Two traPs may be planted at the same position only by first planting them at different posi
tions and then moving one of the traps; the first planted trap will conceal the second unless and Until 
the first one is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals 
the second trap. The macro associated with a page trap is automatically invoked when a line of text 
is output whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page 
springs the top.of-page trap, if any. provided there is a next page. The distance to the next trap posi
tion is available in the .t register, if there are no traps between the current position and the bottom of 
the page, the distance returned is the distance to the page bottom. 

A macro-invocation trap effective in the current diversion may be planted using dt. The.t register 
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of 
input .. line-count traps, see the it request below. 

Request Initial If No 
Form Value Argument Notes Explanation 

.de xx yy 

.am xx yy 

.ds xx string-

.yy-•• 

.YY= •• 

ignored 

Define or redefine the macro xx. The contents of the 
macro begin on the next input line. Input lines are 
copied in copy mode until the definition is terminated 
by a line beginning with .yy, whereupon the macro yy is 
called. In the absence of yy, the definition is terminated 
by a line beginning with ••••. A macro may contain de 
requests provided the terminating macros differ or the 
contained definition terminator is concealed. • ••• can be 
concealed as \ \ .. which will copy as \ •• and be reread as 

Append to macro (append version of de) . 

Define a string xx containing string. Any initial 
double;.quote in string is stripped off to permit initial 



NROFFITROFF User's Manual 

. as xx string

.rmxx 

.m xx yy 

.di xx 

.daxx 

.wh N xx 

.ch xx N 

.dtNxx 

.it N xx 

.emxx none 

8. Number Registers 

ignored 

ignored 

ignored 

end 

end 

off 

off 

none 

D 

o 
v 

v 

D,v 

E 

USD:24-17 

blanks. 

Append string to string xx (append version of ds) . 

Remove request, macro, or string. The name xx is 
removed from the name list and any related storage 
space is freed. Subsequent references will have no 
effect. 

Rename request, macro, or string xx to yy. If yy exists, 
it is first removed. 

Divert output to' macro. xx. Normal text processing 
occurs during diversion except that page offsetting is not 
done. The diversion ends when the request di or da is 
encountered without an argument; extraneous requests 
of this type should not appear when nested diversions 
are being used. 

Divert, appending to xx (append version of di). 

Install a trap to invoke xx at page position N; a negative 
N will be interpreted with respect to the page botlom. 
Any macro previously planted at N is replaced by xx. A 
zero N refers to the top of a page. In the absence of xx, 
the first found trap at N, if any. is removed. 

Change the trap position for macro xx to be N. In the 
absence of N~ the trap, if any, is removed. 

Install a diversion trap at· position N in the current 
diversion to invoke macro xx. Another dt will redefine 
the diversion trap. If no arguments are given, the diver
sion trap is removed. 

Set an input-line-count trap to invoke the macro xx 
after N lines of text input have been read (control or 
request lines don't count). The text may be in-line text 
or text interpolated by inline or trap-invoked macros. 

The macro xx will be invoked when all input has ended. 
The effect is the same as if the contents of xx had been 
at the end of the last file processed. 

A variety of parameters are available to the user as predefined, named number registers (see Summary 
and Index, page 7). In addition, the user may define his own named registers. Register names are 
one or two characters long and do not conflict with request, macro, or string names. Except for cer
tain predefined read-only registers, a number register can be read, written, automatically incremented 
or decremented, and interpolated into the input in a variety of formats. One common use of user
defined registers is to automatically number sections, paragraphs, lines, etc. A number register may 
be used any time numerical input is expected or desired and may be used in numerical expressions 
(§ 1.4). 

Number registers are created and modified using nr, which specifies the name, numerical value, and 
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. 
If the registers x' and xx both contain Nand ha-ve the auto-increment size M, the following access 
sequences have the effect shown: 



USD:24-18 NROFF/TROFF User's Manual 

Effect on Value 
Sequence Register Interpolated 
\ox none N 
\n(xx none N 
\n+x x incremented by M N+M 
\n-x x decremented by M N-M 
\n+(xx xx incremented by M N+M 
\n-(xx xx decremented by M N-M 

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, 
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential 
alphabetic according to the format specified by at. 

Request Initial 1/ No 
Form Value Argument Notes Explanation 

.nrR±NM- u 

.at R c arabic 

.rr R ignored 

9. Tabs, Leaders, and Fields 

The number register R is assigned the value ±N with 
respect to the previous value, if any. The increment for 
auto-incrementing is set to M. 

Assign format c to register R. The available formats 
. are: 

Numbering 
Format Sequence 

1 0,1,2,3,4,5, ... 
001 ·000,001,002,003,004,005, ... 

i O,i,ii,iii,i '1/, v, ... 
J O,I,II,III,IV, V, ... 
a· O,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ... 
A O,A.B, C, ... ,Z,AA,AB, ... ,ZZ,AAA, ... 

An arabic format having N digits specifies a field width 
of N digits (example 2 above). The read-only registers 
and the width function (§11.2) are always arabic. 

Remove register R. If many registers are being created 
dynamically, it may become necessary to remove no 
longer used registers to recapture internal storage space 
for newer registers. 

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the 
leader character) can both be used to generate either horizontal motion or a string of repeated charac
ters. The length of the generated entity is governed by internal tab stops specifiable with tao The 
default difference is that tabs generate motion and leaders generate a string of periods; tc and Ie offer 
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting, 
right adjusting, and centering. In the following table: D is the distance from the current position on 
the input line (where a tab or leader was found) to the next tab stop; next-string consists of the input 
characters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the 
width of next-string. 



NROFFITROFF User's Manual USD:24-lQ 

Tab Length of motion or Location of 
type repeated characters next-string 
Left D Following D 

Right D-W Right adjusted within D 
Centered D-W/2 Centered on right end of D 

The length of generated mot~on is allowed to be negative, but that of a repeated character string can
not be. Repeated character strings contain an integer number of characters, and any residual distance 
is prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as 
next-string terminators. 

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab 
and leader respectively, and are equivalent to actual tabs and leaders in copy mode. 

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings 
separated by padding indicator characters. The field length is the distance on the input line from the 
position where the field begins to the next tab stop. The difference between the total length of all the 
sub-strings and the field length is incorporated as horizontal padding space that is divided among the 
indicated padding places. The incorporated padding is allowed to be negative. For example, if the 
field delimiter is # and the padding indicator is ., #·xxx·right# specifies a right-adjusted string with 
the string xxx centered in the remaining space. 

Request Initial If No 
Form Value Argument Notes Explanation 

.ta Nt ... 8n; 0.5in none E,m Set tab stops and types. t=R, right adjusting; t=C,· 
centering; t absent, left adjusting. TROFF tab stops are 
preset every 0.5in.; NROFF every 8 character widths. . 
The stop values are separated by spaces, and a value 
preceded by + is treated as an increment to the previ
ous stop value. 

.tc c none 

.Ie c 

.fe a b off 

none E 

none E 

off 

The tab repetition character becomes c, or is removed 
specifying motion. 

The leader repetition character becomes c, or is 
removed specifying motion. 

The field delimiter is set to a; the padding indicator is 
set to the space character or to b, if given. In the 
absence of arguments the field mechanism is turned off. 

10. Input and Output Conventions and Character Translations 

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1. 
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§1O.3) are discussed 
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are 
accepted, and may be used as delimiters or translated into a graphic with tr (§ 1 0.5). All others are 
ignored. 

The escape character \ introduces escape sequences-causes the following character to mean another 
character, or to indicate some function. A complete list df such sequences is given in the Summary 
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same 
name. The escape character \ can be input with the sequence \ \. The escape character can be 
changed with ec, and all that has been said about the default \ becomes true for the new escape char
acter. \e can be used to print whatever the current escape character is. If necessary or convenient, 
the escape mechanism may be turned off with eo, and restored with ec. 



USD:24--20 NROFF/TROFF User's Manual 

If No Request 
Form 

Initial 
Value Argument Notes Explanation 

.ec c \ \ Set escape character to \, or to c, if given. 

.eo on Turn escape mechanism off. 

10.2. Ligatures. Five ligatures are available in the current TROFF character set - ft, fl, ff, ffi, and ftl. 
They may be input (even in NROFF) by \(fi, \(fl, \(fl, \(Fi, and \(FI respectively. The ligature mode 
is normally on in-TROFF, and automatically invokes ligatures during input. 

Request Initial If No 
Form Value Argument Notes Explanation 

JgN off; on on Ligature mode is turned on if N is absent or non-zero, 
and turned off if N=O. If N=2, only the two-character 
ligatures are automatically invoked. Ligature mode is 
inhibited for reque.st, macro, string, register, or file 
names, and in copy mode. No effect in NROFF. 

10.3. Backspacing. underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character 
is replaced by a backward horizontal motion having the width of the space character. Underlining as 
a form of line-drawing is discussed in § 12.4. A generalized overstriking function is described in 
§12.1. 

NROFF automatically underlines characters in the underline font, specifiable with uf, normally Times 
Italic on font position 2 (see §2.2). In addition to rt and \eF, the underline font may be selected by ul 
and cu. Underlining is restricted to an output-device-dependent subset of reasonable characters. 

Request Initial If No 
Forin Value Argument Notes Explanation 

.ulN off N=l 

.cu N off N=l 

.of F Italic Italic 

E 

E 

Underline _ in NROFF (italicize in TROFF) the next N 
input text lines. Actually, switch to underline font, sav
ing the- current font for later restoration; other font 
changes within the span of a ul will take effect, but the 
restoration will undo the last change. Output generated 
by tl (§14) is affected by the font change, but does not 
decrement N. If N> 1, there is the risk that a trap inter
polated macro may provide text lines within the span; 
environment switching can prevent this. 

A variant of uI that causes every character to be under
lined in NROFF. Identical to ul in TROFF. 

Underline font set to F. In NROFF, F may not be on 
position 1 (initially Times Roman). 

lOA. Control characters. Both the control character . and the no-break control character . may be 
changed, if desired. Such a change must be compatible with the design of any macros used in the 
span of the change, and particularly of any trap-invoked macros. 

Request Initial If No 
Form Value Argument Notes Explanation 

.cc c E The basic control character is set to c, or reset to ...... 

.e2 c E The nobreak control character is set to c, or reset to "-. 

10.5. Output translation. One character can be made a stand-in for another character using tr. All 
text processing (e. g. character comparisons) takes place with the input (stand-in) character which 
appears to have the width of the final character. The graphic translation occurs at the moment of 
output (including diversion). 



NROFFrrROFF User's Manual USD:24-21 

Request 
Form 

.tr abed .... 

Initial 
Value 

none 

II No 
Argument Notes Explanation 

o Translate a into b, c into d, etc. If an odd number of 
characters is given, the last one will be mapped into the 
space character. To be consistent, a particular transla
tion must stay in effect from input to output time. 

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and tran
sparently output (without the initial \!); the text processor is otherwise unaware of the line's presence. 
This mechanism may be used to pass control information to a post-processor or to imbed control 
lines in a macro created by a diversion. 

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. 
g. a string definition, or nofilled text) can be split into many physical lines by ending all but the last 
one with the escape \. The sequence \(newline) is always ignored-except in a comment. Comments 
may be imbedded at the end of any line by prefacing them with \.. The newline at the end of a com
ment cannot be concealed. A line beginning with \. will appear as a blank line and behave like .sp 1; 
a comment can be on a line by itself by beginning the line with • \ •. 

11. Local Horizontal and Vertical Motions, and the Width Function 

11.1. Local Motions. The functions \v'N' and \h'N' can be used for local vertical and horizontal 
motion respectively. The distance N may be negative; the positive directions are rightward and down
ward. A local motion is one contained within a line. To avoid unexpected vertical dislocations, it is 
necessary that the net vertical local motion within a word in ft1led text and· otherwise within a line 
balance t~ zero. The above and certain other escape sequences providing local motion are summar-

. ized in the following table. . 

Vertical . Effect in Horizontal Effect in 
Local Motion TROFF . NROFF. Local Motion TROFF NROFF 

. \v'N' Move distance N \h'N' Move distance N 
\(space) U npaddable space-size space 

\u 112 em up 112 line up \0 Digit-size space 
\d 112 em down 112 line down 
\r 1 em up 1 line up \1 1/6 em space ignored 

\A 1/12 em space ignored 

As an example, E2 could be generated by the sequence E\s-2\v'-O.4m"2\v'O.4m\s+2; it should be 
noted in this example that the 0.4 em vertical motions are at the smaller size. 

11.2. Width Function. The width function \w'string' generates the numerical width of string (in basic 
units). Size and font changes may be safely imbedded in string, and will not affect the current 
environment. For example, .ti -\w1. 'u could be used to temporarily indent leftward a distance equal 
to the size of the string "I. ". 

The width function also sets three number registers. The registers st and sb are set respectively to the 
bighest and lowest extent of string relative to the baseline; then, for example, the total height of the 
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means 
that all of the characters in string were short lower case characters without descenders (like e); 1 
means that at least one character has a descender (like y); 2 means that at least one character is tall 
(like H); and 3 means that both tall characters and characters with descenders are present. 

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the 
input line to be stored in register x. As an example, the construction \kxword\h'l \nxu + 2u'word will 
embolden word by backing up to almost its beginning and overprinting it, resulting in word. 



USD:24-22 NROFF/TROFF User's Manual 

12. Overstrike, Bracke4 Line-drawing, and Zero-width Functions 

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the 
overstrike function \o'string', The characters in string are overprinted with centers aligned; the total 
width is that of the wIdest character. string should not contain local vertical motion. As examples, 
\o'e'- produces e, and \o'\(mo\(sl' produces i. 
12.2. Zero-width characters. The function \lc will output c without spacing over it, and. can be used to 
produce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce ~, and 
\(br\z\(rn\(ul\(br will produce the smallest possible constructed box O. 
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction 
pieces ( r l 1 J 1 • I 1 J r 1 ) that can be combined into various bracket styles. The function 
\b'string' may be used to pile up vertically the characters in string (the first character on top and the 
last at the bottom); the characters are vertically separated by 1 em and the total pile is centered 
1/2em above the current baseline (1f2 line in NROFF). For example, 

\b'\(lc\(If'E\ I \b'\(rc\(rf'\x'-o.5m'\x'O.5m' produces [E]. 
12.4. Line drawing. The function \1'Nc' will draw a string of repeated c's towards the right for a dis
tance N. (\1 is \(lower case L). If c looks like a continuation of an expression for N, it may insulated 
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). 
If N is negative, a backward horizontal motion of size N is made before drawing the string. Any 
space resulting from' N /(size of c) having a remainder is put at the beginning (left end) of the string. 
In the case of characters that are designed to be connected such as baseline-rule _, underrule ,and 
root-en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c 
is centered on a distance N. As an example, a macro to underscore a string can be written 

.de us 
\\$1\ 1'1 O\(ul' 

or one to draw a box around a string 

.de bx 
\(br\ I \\$1\ I \(br\ 1'1 O\(rn'\ 1'1 O\(ul' 

such that 

.us ·underlined words· 

and 

.bx ·words in a box· 

yield underlined words and lwords in a boxl. 

The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically 
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a con~ 
tinuous line. The default character is the box rule I (\(br); the other suitable character is the bold 
vertical I (\(bv). The line is begun without any initial motion relative to the current base line. A 
positive N specifies a line drawn downward and a negative N specifies a line drawn upward. After the 
line is drawn no compensating motions are made; the instantaneous baseline is at the end of the line. 



NROFFITROFF User's Manual USD:24-23 

The horizontal and vertical line drawing functions may be used in combination to produce large 
boxes. The zero-width· box-rule and the Ill-em wide underrule were designed to form comers when 
using l-em vertical spacings. For example the macro 

.de eb 

.sp -1 \ ·compensate for next automatic base-line spacing 

.nf \ • avoid possibly overflowing word buffer 
\h'-.5n\L'1 \\nau-l\I\\n(.lu+ln\(ul\L'-1 \\nau+l\1' 1 Ou-.5n\(u)' \·draw box 
.ft 

will draw a box around some text whose beginning vertical place was saved in number register a (e. g. 
using .mk a) as done for this paragraph. 

13. Hyphenation. 

The automatic hyphenation may be switched off and on. When switched on with by, several variants 
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphe
nation points, or may be prepended to suppress hyphenation. In addition, the user may specify a 
small exception word list. 

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic 
strings are considered candidates for automatic hyphenation. Words that w~re input containing 
hyphens (minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are 
always subject to splitting after those characters, whether or not automatic hyphenation is on or off. 

Request Initial If No 
Form Value Argument Notes Explanation 

.nh 

.hyN 

.he c 

. hw word] ... 

hyphenate 

on,N=l 

\0/0 

14. Three Part Titles. 

on,N=l 

\% 

ignored 

E 

E 

E 

Automatic hyphenation is turned off. 

Automatic hyphenation is· turned on for N~ 1, or off for 
N= O. If N= 2, lasi lines (ones that will cause a trap) are 
not hyphenated. For N= 4 and 8, the last and first two 
characters respectively of a word are not split off. These 
values are additive; i. e. N = 14 will invoke all three res
trictions. 

Hyphenation indicator character is set to c or to the 
default \ %. The indicator does not appear in the out
put . 

Specify hyphenation points in words with imbedded 
minus signs. Versions of a word with terminal s are 
implied; i. e. dig-it implies dig-its. This list is exam
ined initially and after each suffix stripping. The space 
available is small-about 128 characters. 

The titling function tl provides for automatic placement of three fields at the left, center, and right of 
a line with a title-length specifiable with It. tl may be used anywhere, and is independent of the nor
mal text collecting process. A common use is in header and footer macros. 

Request Initial If No 
Form Value Argument Notes Explanation 

.tl 'left 'center 'right , The strings left, center, and right are respectively left
adjusted, centered, and right-adjusted in the current 
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially %) is found within any of the fields it is replaced 
by the current page number having the format assigned 



USD:24-24 NROFFITROFF User's Manual 

to register 'AI. Any character may be used as the string 
delimiter. 

.pc c off The page number character is set to C:, or removed. The 
page-number register remains 'AI. 

.It ±N 6.5 in previous E,m Length of title set to ±N. The line-length and the title
length are independent. Indents do not apply to titles; 
page-otfsets do. 

15. Output Line Numbering. 

Automatic sequence numbering of output lines may be requested with nm. When in effect, a 
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are 

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length 
may' be desired to keep the right margin aligned with an earlier margin. Blank lines, other verti
cal spaces, and lines generated by d are not numbered. Numbering can be temporarily 

6 suspended with nn, or with an .am followed by a later .nm +0. In addition, a line number 
indent 1, and the number-text separation S may be specified in digit-spaces. Further, it can be 
specified that only those line numberS that are multiples of some number M are to be printed 

9 (the others will appear as blank number fields). 

Request Initial 1/ No 
Form Value Argument Notes Explanation 

.DRI ±N M S 1 off E 

. nnN E 

Line number mode. If ±N is given, line numbering is 
turned on, and the next output line numLered is num
bered ±N. Default values are M= 1, S= 1, and 1= O. 
Parameters· correspOnding to missing arguments are 
unaffected; a non-numeric argument is considered miss
ing. In the' absence of all arguments, numbering is 
turned off; the next line number is preserved for possi
ble further use in number register In. 

The next N text output liiles are not numbered . 

As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3 was 
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +0 was placed 

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by 
\w'OOOO"u) to keep the right side aligned. Another example is .nm +5 S x 3 which turns on 
numbering with the line number of the next line to be 5 greater than the last numbered line, 

15 with M- 5, with spacing S untouched, and with the indent 1 set to 3. 

16. Conditio.at Acceptance of Input 

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres
sion, string J and strilig2 are strings delimited by any non-blank, non-numeric character not in the 
strings, and anything represents what is conditionally accepted. 

Request Initial 1/ No 
Form Value Argument Notes Explanation 

.if c anything 

Jf !c anything 

• if N anything" 

.if !N anything 

.if 'string J 'string2' anything 

.if rstringi'string2' anything 

u 

u 

If condition c true, accept anything as input; in multi
line case use \ (anything \). 

If condition c false, accept anything . 

If expression N > 0, accept anything. 

If expression N S 0, accept anything . 

If string J identical to string2, accept anything . 

If string I not identical to string2, accept anything. 



NROFFITROFF User's Manual 

.ie c anything 

. el anything 

u 

The built-in condition names are: 

Condition 
Name 

0 

e 
t 
n 

If portion of if-else; all above forms (like if). 

Else portion of if-else . 

True If 
Cutrent page number is odd 
Current page number is even 
Formatter is TROFF 
Formatter is NROFF 

USD:24-25 

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically 
(including motions and character size and font), anything is accepted as input. If a ! precedes the 
condition, number, or string comparison, the sense of the acceptance is reversed. 

Any spaces between the condition and the beginning of anything are skipped over. The anything can 
be either a sintpe input line (text, macro, or whatever) or a number of input lines. In the multi-line 
case, the first line must begin with a left delimiter \ { and the last line must end with a right delimiter 
\}. 

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent 
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested. 

Some examples are: 

.if e .t1 'Even Page %-

which outputS a title if the page number is even; and 

.ie \n%>1 \{\ 
'sp O.Si 
.tl 'Page %
'sp 11.2i \} 
.el oSp I 2.Si 

which treats page I differently from other pages. 

17. Environment Switching. 

A number of the parameters that control the text processing are gathered together into an environ
ment, which can be switched by the user. The environment parameters are those associated with 
requests noting E in their Notes column; in addition, partially collected lines and words are in the 
environment. Everything else is global; examples are page-oriented parameters, diversion-oriented 
parameters, number registers, and macro and string definitions. All environments are initialized with 
default parameter values. 

Request Initial If No 
Form Value Argument Notes Explanation 

.ev N N=O previous 

18. Insertions from the Standard Input 

Environment switched to environment O~N~2. Switch
ing is done in push-down fashion so that restoring a pre
vious environment must be done with .ev rather than 
specific reference. 

The input can be temporarily switched to the system standard input with rd, which will switch back 
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended 
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key
board, a pipe, or a file. 



USD:24-26 

Request Initial 
Form Value 
.rd prompt .. 

.ex 

NROFFITROFF Users Manual 

IINo 
Argument Notes Explanation 

prompt-BEL Read insertion trom the standard input until two new
lines in a row are found. If the standard . input is the 
user's keyboard, prompt (or a BEL) is written onto the 
user's terminal. rd behaves like a macro,and arguments 
may be placed after prompt. 

Exit from NROFF/TROFF. Text processing is ter
minated.exactlyas if all input had ended. 

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, 
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL. 
The regular input and insertion input cannot simultaneously come from the standard input. 

As an example, multiple copies of a form letter may be prepared by entering tbe insertions for all the 
copies in one file to be used as the standard input, and causing the file containing the letter to rein
voke itself using ox (§ 19); the process would ultimately be ended by an ex in the insertion file. 

19. Input/Output File Switching 

The (read-only) number register .c contains the input line number in the current input file. The 
number register Co is a general register serving the same purpose. 

Request Initial II No 
Form Value Argument Notes Explanation 

.so filename Switch source file. The top input (file reading) level is 

.ox filename 

.pi program 

20. MiscellueQIIS 

Request 
Form 

.mc c N 

.tm string 

.igyy 

Initial 
Value 

end-of-file -

I/No 

switched to filename. The effect of an so encountered in 
a macro occurs immediately. When the new file ends, 

. input is again taken from the original file. so's may be 
nested. . 

Next file is filename. The current file is considered 
ended, and the input. is immediately switched to 
filename. 

Pipe output to program (NROFF only). This request 
must occur be/ore any printing o~urs. No arguments 
are transmitted to program. 

Argument Notes Explanation 

off E,m Specifies that a margin character c appear a distance N 
to the right of the right margin after each non-empty 
text line (except those produced bytl). If the output 
line is too-long (as can happen in nofi11 mode) the. char
acter will be appended to the line. If N is not given, the 
previous N is used; the initial N is 0.2 inches in NROFF 
and 1 em in TROFF. The margin character used with 
this paragraph was a 12-point box-rule. 

newline 

.yy= .. 

After skipping initial blanks, string (rest of the line) is 
read in copy mode and written on the user's terminal. 
(see §2l)'-

Ignore input lines. ig behaves exactly like de (§7) except 
that the input is discarded. The input is read in copy 
mode, and any auto-incremented registers will be 
affected. 



NROFFITROFF User's Manual 

.pm t all 

.ab string 

.11 

21. Output and Error Messages. 

B 

USD:24-27 

Print macros. The names and sizes of all of the defined 
macros and strings are printed on the user's terminal; if 
t is given, only the total of the sizes is printed. The 
sizes is given in blocks of 1"28 characters. 

Print string on standard error and terminate immedi
ately. The default string is ·User Abort". Does not 
cause a break. Only output preceding the last break is 
written. . 

Flush output buffer. Used in interactive debugging to 
force output. 

The output from tm, pm, ab and the prompt from rd, as well as various error messages are written 
onto UNIX's standard error output. The latter is different from the standard output, where NROFF 
formatted output goes. By default, both are written onto the user's terminal, but they can be indepen
dently redirected. 

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious 
errors having only local impact do not cause processing to terminate. Two examples are word 
overflow, caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, 
caused by an output line that grew too large to fit in the line buffer; in both cases, a message is 
printed, the offending excess is discarded, and the affected word or line is marked at the point of 
truncation with a • in NROFF and a .. in TROFF. The philosophy is to continue processing, if possi
ble, on the grounds that output useful for debugging may be produced. If a serious error occurs, pro
cessing terminates, and an appropriate message is printed. Examples are the inability to create, read, 
or write files, and the exceeding of certain intemallimits that make future output unlikely to be use
ful. 



USD:24-28 NROFFITROFF User's Manual 

TUTORIAL EXAMPLES 

TI. latrodudioa 

Although NROFF and TROFF have by design a 
syntax reminiscent of earlier text processors· 
with the intent of easing their use, it is almost 
always necessary to prepare at least a small set 
of macro definitions to describe most docu
ments. Such common formatting needs as page 
margins and footnotes are deliberately not built 
into NROFF and TROFF. Instead, the macro 
and string definition, number register, diversion, 
environment switching, page-position trap, and 
conditional input mechanisms provide the basis 
for user-defined implementations. 

The examples to be discussed are intended to be 
useful and somewhat realistic, but won't neces
sarily cover all. relevant contingencies. Explicit 
numerical parameters are used in the examples 
to make them easier to read and to illustrate 
typical values. {nmany cases, number registers 
would really be used to reduce· the number of 
places· where numerical information is kept, and 
to concentrate conditional parameter initializa
tion like that which depends on whetherTROFF 
or NROFF is being used. 

T2. Page Margins 

As discussed in §3, header and footer macros are 
usually defined to describe the top and bottom 
page margin areas respectively. A trap is 
planted at page position 0 for the header, and at 
-N (N from the page bottom) for the footer. 
The simplest such definitions might be 

.de hd \ "define header 
'sp Ii 

\ "end definition 
.de fo \ "define footer 
'bp 

.wh 0 bd 

.wb -Ii fo 

\ "end definition 

which provide blank 1 inch top and bottom 
margins. The header will occur on the first 
page, only if the definition and trap exist prior 
to the initial pseudo-page transition (§3). In fill 

-For example: P. A. Crisman, Ed., The Compatible Time
Sharing System. MIT Press, 1965, Section AH9.01 (Descrip
tion of RUNOFF program on MIT's CTSS system). 

mode, the output line that springs the . footer 
trap was typically forced out because some part 
or whole word didn't fit on it. If anything in the 
footer and header that follows causes a break, 
that word or part word will be forced out. In 
this and other examples, requests like bp and sp 
that normally cause breaks are invoked using 
the no-break control character ' to avoid this. 
When the header/footer design contains 
material requiring independent text processing, 
the environment may be switched, avoiding 
most interaction with the running text. 

A more realistic example would be 

.de hd \ "header 

.if t .tl '\(m'\(m' \ "troff cut mark 

.if \\n%>1 \{\ 
'sp /0.51-1 \ "tl base at 0.5i 
.tl'"'-% -'"' \"centered page number 
.ps \ "restore size 
.ft \ "restore font 
.vs \}. \-restore.vs 
'sp 11.0i \ "space to 1.0i 
.ns \ "turn on no-space mode 

.de fo \ "footer 

.ps 10 \ "set footer/header size 

.ft R \ "set font 

.vs 12p \ "set base-line spacing 

.if \ \n%-1 \{\ 
'sp 1\ \n(.pu-0.5i-l \ "tl base 0.5i up 
.tl ... - % - '"' \} \" first page number 
'bp 

.wh ° hd 

.wh -Ii fo 

which sets the size, font, and base-line spacing 
for the header/footer material, and ultimately 
restores them. The material in this case is a 
page number at the bottom of the first page and 
at the top of the remaining pages. If TROFF is 
used, a cui mark is· drawn in the form of root
en's at each margin. The sp's refer to absolute 
positions to avoid dependence on the base-line 
spacing. Another reason for this in the footer is 
that the footer is invoked by printing a line 
whose vertical spacing swept past the trap posi
tion by possibly as much as the base-line spac
ing. The no-space mode is turned on at the end 



NROFF/TROFF User's Manual 

of bd to render ineffective accidental 
occurrences of sp at the top of the running text. 

The above method of restoring size, font, etc. 
presupposes that such requests (that set previous 
value) are not used in the running text. A better 
scheme is save and restore both the current and 
previous values as shown for size in the follow
ing: 

• de fo 
.Dr sl \ \n(.s \ "current size 
.ps 
.Dr s2 \ \n(.s \ "previous size 
• - \ "rest of footer 

.de bd 

. -

.ps \ \n(s2 

.ps \ \n(sl 

\"beaderstuft' 
\ "restore previous size 
\ "restore current size 

Page numbers may be printed in the bottom 
margin by a separate macro triggered during the 
footer's page ejection: 

.de bo \"bottomnumber 

.tl ':"- % ~.. \ "centered page number 

. wb -O.Si-lv bn \"tl base O.Si up 

T3. Paragraphs and Headings 

The housekeeping associated with starting a new 
paragraph should be collected in a paragraph 
macro that, for example, does the desired 
preparagraph spacing, forces the correct font, 
size, base-line spacing, and indent, checks that 
enough space remains for more than one line, 
and requests a temporary indent. 

. de pg \ "paragraph 

.br \ "break 

.ft R \ "force font, 

.ps to \ "size, 

.vs 12p \ "spacing, 

. in 0 \ "and indent 

.sp 0.4 \ "prespaee 

.ne t+\\n(.Vu \"want more than tUne 

.n 0.2i \ "temp indent 

The first break in pg will force out any previous 
partial lines, and must occur before the vs. The 
forcing of font, etc. is partly a defense against 
prior error and partly to permit things like sec
tion heading macros to set parameters only 
once. The prespacing parameter is suitable for 
TROFF; a larger space, at least as big as the 

USD:24-29 

output device vertical resolution, would be more 
suitable in NROFF. The choice of remaining 
space to test for in the ne is the smallest amount 
greater than one line (the .V is the available 
vertical resolution). 

A macro to automatically number section head
ings might look like: 

.de sc \ "section 

. - \ "force font, etc • 

.sp 0.4 \"prespace 

.ne 2.4+ \\n(.Vu \ "want 2.4+ lines 

.fi 
\\n+S. 

.nrSOl \ "init S 

The usage is .se, followed by the section heading 
text, followed by .pg. The ne test value includes 
one line of heading, 0.4 line in the following pg, 
and one line of the paragraph text. A word con
sisting of the next section number and a period 
is produced to begin the heading line. The for
mat of the number may be set by af (§8). 

Another common form is the labeled, indented 
paragraph, where the label protrudes left into 
the indent space . 

.de Ip . \ "labeled paragraph 

.pg 

.in O.Si 

.ta 0.2i O.Si 

.ti 0 
\t\\$I\t\c 

\ "paragraph indent 
\ "label, paragraph 

\ "flow into paragraph 

The intended usage is • .Ip label"; label will 
begin at 0.2 inch, and cannot exceed a length of 
0.3 inch without intruding into the paragraph . 
The label could be right adjusted against 
0.4 inch by setting the tabs instead with 
.ta 0.4iR O.Si. The last line of Ip ends with \c so 
that it will become a part of the first line of the 
text that follows . 

T4. Multiple Column Output 

The production of multiple column pages 
requires the footer macro to decide whether it 
was invoked by other than the last column, so 
that it will begin a new column rather than pro
duce the bottom margin. The header can ini
tialize a column register that the footer will 
increment and test. The following is arranged 
for two columns, but is easily modified for 
more. 



USD:24-30 

.de lui 

. -

.. elOI 

.BIt 
\ "bdt column COWIt 
\ • mark top of text 

.de fo \ "footer 

.Ie \\8+(el<l \{\ 

.po +3.4i \ " .. xt column; 3.1+9.3 

.rt \ "back to mark 

.as \} \ ......... mode 

.eI \{\ 

.po \ \nMu \ "restore left IlUU'gin 

. -
'bit \} 

.1l3.U \ ·coIumn width 

.Dr M \\n(.o \ "save left IIl8I'Iin 
Typically a portion of the top of the first page 
contains fun width text; the request for the nar
rower line length. as well as another .mk would 
be made where the two column output was to 
begin. 

T5. Footnote Proc:hsinl 

The' footnote mechanism to be described is used 
. by imbedding the footnotes in the· input text at· 

the point of reference, demarcated· by an initial 
.In and a terminal .el: 

.fn 
Footnote text and control lines ... 
.ef 

In the following, footnotes are processed in a 
separate environment and diverted for later 
printing in the space immediately prior to the 
bottom margin. There is provision for the case 
where the . last collected footnote doesn't com
pletely fit in the available space. 

.de bd \ "header 
.. -
.nrxOI 
.nr y O-\\nb 
.ch fo -\ \nba 
.if \ \n(dn .fz 

.de fo 

.or dn 0 

.if \\nx '{ \ 

\ "init footnote count 
\ "current footer place 
\ "reset footer trap 
\ "leftover footnote 

\ "footer 
'·uro last diversion size 

.ev 1 , "expand footnotes in ed 

.nf \ "retaia vertical size 

.FN \ "footnotes 

.rna FN , "delete it 

.if "\ \n(.z"fy" .di '''end overOowdiversion 

.nr x 0 , • disable rx 

.ev '} , "pop environment 

NROf'FITROf'F User's Manual 

. -
'bp 

.de fx ,-process footnote o\'erflow 

.if \\ax .di fy \ • divert overflow 

.de fa \ ·start ·footnote 

.1Ia FN , • divert (append) footnote 

.ev 1 , "in environment 1 

.if \ \n+x.l.1s ,·if first, include separator 

.fi ' \ "fill mode 

.de ef \ "end footDote 

.br '''finish output 

.Dr z \\n(.v \ "save spacinl 

.ev \-pop ev 

.di \ "end diversion 

.. y -\\n(dn \ "new footer position, 

.if \ \nx.l .nr y -(\ \n(.v"'\\nz) \ 
\ "uncertainty correction 

.ch fo \ \nyu \ "y is negative 

.if (\\n(nl+lv»(\\n(.p+\\ny) \ 

.ch fo \ \n(nlu+ Iv \ "it didn't fit 

.de fs 
\rU' 
.br ... 
.de fz 
.In 
.af 
.fy 
.ef 

.Dr b 1.0i 

.wb 0 bd 

.wb 12i fo 

.wb -\\nbu fx 

.ch Co - \\nbu 

'''separator 
\ "I inch rule 

\ "let leftover footnote 

\ "retain vertical size 
\"wbere fx put it 

\ "bottom margin size 
\ "header trap 
\ "footer trap, temp position 
\ "fx at footer position 
\ "conceal fx with fo 

The header bd initializes a footnote count regis
ter x. and sets both the current' footer trap posi
tion register y and the footer trap itself to a 
nominal position specified in register b. In 
addition, if the register do indicates a leftover 
footnote, fz is invoked to reprocess it. The foot
note start macro fn begins a diversion (append) 
in environment 1, and increments the count x; 
if the count is one, the footnote separator fs is 
interpolated. The separator is kept in a separate 
macro to permit user rede1inition. The footnote 
end macro ef restores the previous environment 
and ends tbe diversion after saving the spacing 
size in register z. y is then decremented by the 
size of the footnote. available in dn; then on the 
first footnote, y is furtber decremented by the 



NROFF/TROFF User's Manual 

difference in vertical base-line spacings of the 
two environments, to prevent the late triggering 
the footer trap from causing the last line of the 
combined footnotes to overflow. The footer 
trap is then set to the lower (on the page) of y or 
the current page position (nl) plus one line, to 
allow for printing the reference line. If indi
cated by x, the footer Co rereads the footnotes 
from FN in nofi11 mode in environment 1, and 
deletes FN. If the footnotes were too large to 
fit, the macro ex will be trap-invoked to redivert 
the overflow into fy, and the register dn will 
later indicate to the header whether fy is empty. 
Both Co and ex are planted in the nominal footer 
trap position in an order that causes Cx to be 
concealed unless the Co trap is moved. The 
footer then terminates the overflow diversion, if 
necessary, and zeros x to disable ex, because the 
uncertainty correction together with a not-too
late triggering of the footer can result in the 
footnote rereading finishing before reaching the 
Cx trap. 

A good exercise for the student is to combine 
the multiple-column and footnote mechanisms. 

T6. The Last Page 

After the last input file has ended, NROFF and 
TROFF invoke the end macro (§7), if any, and 
when it finishes, eject the remainder of ihe page. 
During the eject, any traps encountered are pro
cessed normally. At the end of this last page, 
processing terminates unless a partial line, word, 
or partial word remains. If it is desired that 
another page be started, the end-macro 

.de en 
\c 
'bp 

.em en 

\ • end-macro 

will deposit a null partial word, and effect 
another last page. 

USD:24-31 



U50;24-32 NRoFFlTaoFF User's Manual 

Table I 

FontStyle Examples 

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non
alphanumeric characters separated by 1/4 em space (all measurements on 8.S x 11 inch paper prior to 
photoreduction). This font sample is printed on an APS-S phototypesetter at University of Califor
nia, Berkeley. 

Times Roman 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 
!S%&()"*+-.,/:;=?[] 1 
• 0 - - _ 1/4 III 3f4 fi tl ff ffi. ftl 0 t I ¢~ @ 

Times Italic 

al1cdeJgh:ijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 . 
! $ % &: () "* + -: , /:; ~ ?[ J I 
.0--_1/4 1/2 3/4fiflffffifflO t'ft~@ 

Times Bold 

abcdefghijklmnopqrst1mVXyZ 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 
!S%&()"* + -.,1:; =?() 1 
• D--_1f41h 3/4 fiOffffiID· t/e e " 

Special Mathematical Font 

"'\ ... -' - / < > { } #@ + - = • 
a {3"Y 0 E r 11 8 , K A IJ. 11 ~ 0 1( P (1 S T V 4> X '" w 
rAeA:::nl:T~vn 
y -~ S; == - == ¢ .... +- t • x + ± un c:> c:> co a 
§V..,!oc:0e; ...... @IOfllJtlILJfll 



NROFF/TROFF User's Manual 

Table II 

Input Naming Conventions for " ',and -
and for Non-ASCII Special Characters 

Non-ASCII characters and minus on the standard fonts. 

Input Character Input Character 
Char Name Name Char Name Name 

close quote fi \(fi fi 
open quote fl \(fl fl 

\(em 3/4 Em dash ff \(if if 
hyphen or ffi \(Fi ffi 

\(hy hyphen m \(Fl m 
\- current font minus 0 \(de degree 

• \(bu bullet t \(dg dagger 
0 \(sq square \(fm foot mark 

\(ru rule ¢ \(ct cent sign 
1/4 \(14 1/4 ~ \(rg registered 
III \(12 1/2 C) \(co copyright 
3/4 \(34 3/4 

Non-ASCII characters and " " _, +, -, =, and. on the special font. 

USD:24-33 

The ASCII characters @, #, ., ',', <, >, \, {, }, ~, ., and _ exist only on the special font and "are printed 
as a l-em space if that font is not mounted. The following ch'aracters exist only on the special font 
except for the upper case Greek letter names followed by t which are mapped into upper case English 
letters in whatever font is mounted on font position one (default Times Roman). The special math 
plus, minus, and equals are provided to insulate the appearance of equations from the choice of stan
dard fonts. 

Input Character Input Character 
Char Name Name Char Name Name 

+ \(pl math plus J( \(*k kappa 
\(mi math minus A \(*1 lambda 

== \(eq math equals 1.1. \(*m mu 
* \(** math star " \(*n nu 
§ \(sc section ~ \(*c xi 

\(aa acute accent 0 \(*0 omicron 
\(ga grave accent 1r \(*p pi 
\(ul underrule p \(*r rho 

/ \(sl slash (matching backslash) (f \(*s sigma 
a \(*a alpha s \(ts terminal sigma 
fJ \(*b beta l' \(*t tau 
"Y \(*g gamma v \(*u upsilon 
0 \(*d delta 4J \(*f phi 
E \(*e epsilon x \(*x chi 
r \(*z zeta y; \(*q psi 
17 \(*y eta w \(*w omega 
() \(*h theta A \(*A Alphat 

\(*i iota B \(*B Betat 



USD:24-34 NROFFlTaoFF User's Manual 

InIJllt Character InIJllt Character 
Char Name Name Char Name Name 

r \(*0 Oamma * \(dd double dagger 
~ \(*D Delta ... \(rh right hand 
E \(*E Epsilont ... \(lh left hand 
Z \(*Z Zetat @ \(bs Bell System 1080 (typesetter-dependent) 
H \(*Y Etat I \(or or 
e \(*H Theta 0 \(ci circle 
I \(*1 lotat r \(1t 'left top of big curly bracket 
K \(*K Kappat l \(Ib left bottom 
A \(*t Lambda 1 \(rt right top 
M \(*M Mut J \(rb right bot 
N \(*N Nut ~ \(lk left center of big curly bracket - \(*C Xi l \(lk right center of big curly bracket . -0 \(*0 Omicront I \(bv bold vertical 
n \(*P Pi L \(If left' floor (left bottom of big. 
p \(*R Rhot square bracket) 
}; \(*S Sigma J \(rf right floor (right bottom) 
T \(*T Taut r \(Ie left ceiling (left top) 
T \(*U Upsilon 1 \(rc right ceiling (right top) 
4> \(*F Phi 
X \(*X Chit 
~ \(*Q Psi 
Q \(*W Omega 
~ \(St square root 

\(m root en extender 
~ \(>a >-' . 
:s; \«- <-
;& \(-- identically equal 
=- \('- approx ... 

\(ap approximates 
:yJt. \(!= not equal - \(-> right arrow - \«- left arrow 
t \(ua up arrow 

+ \(da down arrow 
x \(mu multiply 
+ \(di divide 
± \(+- plus-minus 
u \(cu cup (union) 
n \(ca cap (intersection) 
C \(sb subset of 
:J \(sp superset of 
~ \(ib improper subset 
~ \(ip improper superset 
00 \(if infinity 
a \(pd partial derivative 
'V \(gr gradient 
-. \(no not 
f \(is integral sign 
cc \(pt proportional. to 
0 \(es empty set 
e \(mo member of 
I \(br box vertical rule 



A TROFF Tutorial USD:2S-1 

A TROFF Tutorial 

Brian W. Kernighan 
(updated for 4.3BSD by Mark Seiden) 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

trofl' is a text-formatting program for typesetting on the UNIXt operating sys
tem. This device is capable of producing high quality text; this paper is an example 
of trofl' output. 

The phototypesetter itself normally runs with four fonts, containing roman, 
italic and bold letters (as on this page). a full greek alphabet, and a substantial 
number of special characters and mathematical symbols. Characters can be printed 
ina t:aDge of sizes, and placed anywhere on the page. 

trofl' allows 'the User full control over fonts, sizeS. and' character positions, as 
, ,well as the usual featur~ of a formatter - ri~t-margin justification, automatic 

hyphenation, page titling and numbering, and so on. It also provides macros, arith
metic variables and operations, and conditional testing, for' complicated formatting 
tasks. 

This document is an introduction to the most basic use of trofl'. It presents just 
enough information to enable the user to do simple formatting tasks like making 
viewgraphs, and to make incremental changes to existing packages of troft' com
mands. In most respects. the UNIX formatter nroff and a more recent version 
(device-independent troft) are identical to the version described here, so this docu
ment also serves as a tutorial for them as welL 

1. Introduction 
trofl' [1] is a text-fonnatting program, written 

originally by J. F. OSsanna, for producing high
quality printed output from the phototypesetter on 
the UNIX operating system. This document is an 
example of trofl' output. 

The single most important rule of using trofl' is 
not to use it directly, but through some intennedi
ary. In many ways. trofl' resembles an assembly 
language - a remarkably powerful and flexible one 
- but nonetheless such that many operations must 
be specified at a level of detail and in a fonn that is 
too hard for most people to use effectively. 

t UNIX is a trademark of AT&T Ben Laboratories. 

For two special applications, there are pro
grams that provide an interface to trofl' for the 
majority of users. eqn [2] provides an easy to learn 
language for typesetting mathematics: the eqn user 
need know no trofl' whatsoever to typeset mathemat
ics. tbl [3] provides the same convenience for pro
ducing tables of arbitrary eomplexity. 

For producing straight text (which may well 
contain mathematics or tables), there are a number 
of 'macro packages' that define fonnatting rules and 
operations for specific styles of documents. and 
reduce the amount of direct contact with troff. In 
particular. the '-ms' [4], PWB/MM [5], and '-me' 
[6] packages for internal memoranda ano external 



·USD:2S·2 

papers provide most of the facilities needed for a 
wide ranae ofdo<:ument preparation. t (This memo 
was prepared with '-ms'.) There are also packages 
for viewaraphs, for simulating the older rot' for
matters., and for other special applications. Typi. 
ea1ly you will find these packages easier to use than 
treI' once you get beyond the most trivial opera
tions; you should always consider them first. 

. In the few cases where existing pa~kages don't 
do the whole job, the solution is not to write an 
entirely new set of treI' . instructions from scratch, 
but to make small changes to adapt packages that 
already exist. 

In accordance with this philosophy of lening 
someone else do the work, the part of t1'Oft" described 
here is only a small part of the whole, although it 
tries to concentrate on the more useful parts. In any 
ease, there is no attempt to be complete. Rather, 
the emphasis is on showing how to do simple things, 
and bow to make incremental changes to what 
already exists. The contents of the remaining sec
tions are: 

2. Point sizes and line spacing 
3. Fonts and special characters 

. 4. Indents and line length 
S. Tabs 
6. Local motions: Drawing lines and characters . 
7. Strings' 
8. Introduction to macros 
9. Titles, paces and numbering 

10. Number registers and arithmetic 
11. Macros with arguments 
12. Conditionals 
13. Environments 
14. Diversions 

Appendix: Typesetter character set 

The treff described here is the C-Ianguage version 
supplied with UNIX Version 7 and 32V as docu
mented in [1). 

To use treff you have to prepare not only the 
actual text you want printed, but some information 
that tells kDw you want it printed. (Readers who use 
rot' will tind the approach familiar.) For troft' the 
text and the formatting information are often 
intertwined quite intimately. Most commands to 
troft' are placed on a line separate from the text 
itself, beginning with a period (one command per 
line). For example, 

t Most Berkeley Unix sites only have -ms and -me. 

Some text. 
.ps 14 
Some more text. 

A TROFF Tutorial 

will chansethe 'point size', that is, the size of the 
letters being printed., to '14 point' (one point is 1172 
inch) like this: 

Some text·. Some more text. 
Occasionally, though, something special occurs 

in the middle of a line - to produce 

Area "" ,",2 

you have to type 

Area. \(.p\fir\~\I\s8\u2\d\sO 

(which we will explain shortly). The backslash char
acter \ is used to introduce treft' commands and' spe
cial characters within a line of text. 

2. Point Sizes; Line Spacing 

As mentioned above, the command .ps sets 
the point size. One point is 1172 inch. so 6~point 
characters are at most 1112 inch high, and 36·point 
characters arelf2 inch. There are 15 point sizes, 
listed below. 

6 poiat: Pack my box witb five dozen liquor jup. 
7 poillt: PacIt my box with five dozen liquor jup. 
8 point: Pack my' box with five dozen liquor jugs. 
9.point: PKk my box with five dozen liquor jugs. 
10 poillt: Pack my box with five dozen liquor 
11 point: Pack my box with five dozen 
12 point: Pack my box with five dozen 
14 point: Pack my box with five 

16 point 18 point 20 point 

22 24 28 36 
If the number after .ps is not one of these legal 

sizes, it is rounded up to the next valid value, with a 
maximum of 36. If no number follows .ps, troft' 
reverts to the previous size, whatever it was. treff 
begins with point size 10, which is usually fine. The 
original of this document (on 8.S by 11 inch paper) 
is in 9 poinL 

The point size can also be changed in the mid
dle of a line or even a word with the in-line com
mand \5. To produce 

UNIX runs on a PDP-l 1145 

type 

\s8UNIX\slO runs on a \s8PDP-\sI011l4S 

As above, \5 should be followed by a legal point 



A TROFF Tutorial 

size, except that \sO causes the size to revert to its 
previous value. Notice that \s1011 can be under
. stood correctly as 'size 10, followed by an 11', if the 
size is legal, but not otherwise. Be cautious with 
similar constructions. 

Relative size changes are also legal and useful: 

\s-2UNIX\s+ 2 

temporarily decreases the size, whatever it is, by two 
points, then restores it. Relative size changes have 
the advantage that the size difference is independent 
of the starting size of the document. The amount of 
the relative change is restricted to a single digit. 

The other parameter that determines what the 
type looks like is the spacing between lines. which is 
set independently of the point size. Vertical spacing 
is measured from the bottom of one line to the bot
tom of the next. The command to control vertical 
spacing is .vs. For running text, it is usually best to 
set the vertical spacing about 20% bigger than the 
character size. For example, so far in this docu
ment, we have used "9 on 11", that is, 

.ps 9 

.vs lip 

If we changed to 

. ps 9 

.vs 9p 

the running text would look like this. After a few 
line$, you will agree it looks a little cramped. The 
right vertical spacing is partly a matter of taste, 
depending on how much text you want to squeeze 
into a given space, and partly a matter of traditional 
printing style. By default, troft' uses lOon 12. 

Point size and vertical spacing 
make a substantial difference in the 
amount of text per square inch. This is 
12 on 14. 

Poillt size and venical spacilll mae a substantial difference ill the 
amoullt of teXt per square ittdt. For eumple. 10 011 12 uses about twice as 
much space as 701\ 8. This is 6 on 7. which is even smaller. It packs a lot 
more words per liDe. but you catt 10 blind trYillltO read it. 

When used without arguments, .ps and . vs 
revert. to the previous size and vertical spacing 
respectively. 

. The command .sp is used to get extra vertical 
space. Unadorned, it gives you one extra blank line 
(one .vs, whatever that has been set to). Typically, 
that's more or less than you want, so .sp can be fol
lowed by information about how much space you 
want-

.sp 2i 

means 'two inches of vertical space'. 

USD:25-3 

.sp 2p 

means 'two points of vertical space'; and 

.sp 2 

means 'two vertical spaces' - two of whatever. vs is 
set to (this can also be made explicit with .sp 2v); 
tro. also understands decimal fractions in most 
places, so 

.sp l.Si 

is a space of 1.5 inches. These same scale factors 
can be used after . vs to define line spacing, and in 
fact after most commands that deal with physical 
dimensions. 

It should be noted that all size numbers are 
converted internally to 'machine units', which are 
11432 inch (1/6 point). For most purposes, this is 
enough resolution that you don't have to worry 
about the accuracy of the representation. The situa
tion is not quite so good vertically, where resolution 
is 11144 inch (1/2 point). 

3. Fonts and Special Charac:ters 

11'0. and the typesetter allow four different 
fonts at anyone time. Normally three fonts (Times 
. roman, . italic and bold) and one collection of special 
characters are permanently mounted . 

ilbcdefghijIdmnopqrstuvwxyz 0123456789 
ABCDEFGHUKLMNOPQRSTUVWXYZ 
abcdefghijkJmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmaopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

The greek, mathematical symbols and miscellany of 
the special font are listed in Appendix A. 

troft' prints in roman unless told otherwise. To 
switch into bold, use the .ft command 

.ft B 

and for italics, 

.ft I 

To return to roman, use .ft R; to return to the previ
ous font, whatever it was, use either .ft P or just .ft. 
The 'underline' command 

.ul 

causes the next input line to print in italics. .uI can 
be followed by a count to indicate that more than 
one line is to be italicized. 

Fonts can also be changed within a line or 
word with the in-line command \f: 

boI~race text 

is produced by 



USD:254 

\fBbold\t1face \fR text 

If you want to do this so the previous font, whatever 
it was, is left undisturbed, insert extra \tP com
mands, like this: 

\fBbold\tP\t1face\tP\fR text\tP 

Because only the immediately previous font is 
remembered, you have to restore the previous font 
after each change or you can lose it. The same is 
true of .ps and • vs when used without an argument. 

There are other fonts available besides the 
standard set, although you can still use only four at 
any given time. The command .fp tells troft' what 
fonts are physically mounted on the typesetter: 

. fp 3 H 

says that the Helvetica font is mounted on position 
3. (The complete list of font sizes and styles 
depends on your typesetter or laser printer.) 
Appropriate .fp commands should appear at the 
beginning of your document if you do not use the 
standard fonts. 

It is possible to make a document relatively 
independent of the actual fonts used io print it by 
using font numbers instead .of names; for example, 
\0 and .ft 3 mean 'whatever font is mounted at 
position 3', and thus work for any setting. Normal 
settings are roman ront on. I, italic on 2, bold on 3, 
and special on 4. 

There is also a way to get 'synthetic' bold 
fonts by overstriking letters with a slight offset. 
Look at the .bd command in [1]. 

Special characters have four-character names 
beginning with \(, and they may be inserted any
where. For example, 

is produced by 

\(14 + \(12 = \(34 

In particular, greek letters are all of the form \( a-, 
where - is an upper or lower case roman letter rem
iniscent of the greek. Thus to get 

!(axi3) - 00 

in bare troft' we have to type 

\(as(\(aa\(mu\(ab) \(-> \(if 

That line is unscrambled as follows: 

A TROFF Tutorial 

\(as ! 
( ( 
\(aa a 
\(mu • x 
\(ab i3 
) ) 
\(-> -\(if 00 

A complete list of these special names occurs in 
Appendix A. 

In ecrD [2] the same effect can be achieved with 
the input 

SIGMA ( alpha times beta) -> inf 

which is less concise, but clearer to the uninitiated . 

Notice that each four-character name is a sin
gle character as far as troft' is concerned - the 
'translate' command 

.tr \(mi\(em 

is perfectly clear, meaning 

.tr --

that is, to translate - into -. 

Some characters are automatically translated 
into others: grave . and acute . accents (apos
trophes) become open and close single quotes"; the 
combination of ..... " is generally preferable to the 
double quotes " ... ". Similarly a typed minus sign 
becomes a hyphen e. To print an explicit - sign, use 
\ -. To get a backslash printed, use \e. 

4. Indents and Line Lengths 

troft' starts with a line length of 6.5 inches. 
which some people think is too wide for 81/2 x I I 
paper. To reset the line length, use the .11 command. 
as in 

.11 6i 

As with .sp, the actual length can be specified in 
several ways; inches are probably the most intuitive. 

The maximum line length provided by the 
typesetter is 7.5 inches, by the way. To use the full 
width, you will have to reset the default physical left 
margin ("page offset"), which is normally slightly 
less than one inch from the left edge of the paper. 
This is done by the .po command. 

.po 0 

sets the offset as far to the left as it will go. 

The indent command .in causes the left mar
gin to be indented by some specified amount from 
the page offset. If we use .in to move the left margin 
in, and .n to move the right margin to the left, we 
can make offset blocks of text: 



A TROFF Tutorial 

.in 0.3i 

.n -0.3i 
text to be set into a block 
.n +0.3i 
.in -0.3i 

will create a block that looks like this: 

Pater noster qui est in eaelis sanctificetur 
nomen tuum; adveniat regnum tuum; fiat 
voluntas tua, sicut in caelo, et in terra. ... 
Amen. 

Notice the use of '+' and '-' to specify the amount 
of change. These change the previous setting by the 
specified amount, rather than just overriding it. The 
distinction is quite important: .n + Ii makes lines 
one inch longer, .ll Ii makes them one inch long. 

With .in, .n and .po, the previous value is 
used if no argument is specified. 

To indent a single line, use the 'temporary 
indent' command .ti. For example, all paragraphs in 
this memo effectively begin with the command 

.ti 3 

Three of what? The ·default unit for .li, as for most 
horizontally oriented commands (.n, .in, .po), is 
ems; an em is roughly the width of the letter 'm' in 
the current point size. (precisely, a em in size p is p 
points.) Although inches· are usually clearer than ems 

. to people who don't set type for a living, ems have a 
place: they are a measure of size that is proportional 
to the current point size. If you want to make text 
that keeps its proportions regardless of point size, 
you should use· ems for all dimensions. Ems can be 
specified as scale factors directly, as in .ti 2.5m. 

Lines can also be indented negatively if the 
indent is already positive: 

.ti -0.3i 

causes the next line to be moved back three tenths 
of an inch. Thus to make a decorative initial capi
tal, we indent the whole paragraph, then move the 
letter 'P' back with a .ti command: 

Pater noster qui est in caelis 
sanctificetur nomen tuum; adveniat 
regnum tuum; fiat voluntas tua, sicut 

in eaelo, et in terra. ... Amen. 

Of course, there is also some trickery to make the 'P' 
bigger (just a '\s36P\sO'), and to move it down from 
its normal position (see the section on local 
motions). 

5. Tabs 

Tabs (the ASCII 'horizontal tab' character) can 
be used to produce output in columns, or to set the 
horizontal position of output. Typically tabs are 
used only in unfilled text. Tab stops are set by 

USD:25-5 

default every half inch from the current indent, but 
can be changed by the .ta command. To set stops 
every inch, for example, 

.ta Ii 2i 3i 4i 5i 6i 

Unfortunately the stops are left-justified only 
(as on a typewriter), so lining up columns of right
justified numbers can be painful. If you have many 
numbers, or if you need more complicated table lay
out, don't use trofl' directly; use the tbl program 
described in [3]. 

For a handful of numeric columns. you can do 
it this way: Precede every number by enough blanks 
to make it line up when typed. 

.nf 

.ta Ii 2i 3i 
1 tab 2 tab 3 

40 tab 50 tab 60 
700 tab 800 tab 900 
.ft 

Then change each leading blank into the string \0. 
This is a character that does not print, but that has 
the same width as a digit. When printed, this will 
produce 

1 
40 

700 

2 
50 

800 

3 
60 

900 

It is also possible to fill up tabbed-over space 
with some charader other than blanks by setting the 
'tab replacement character' with the . tc command: 

.ta l.5i 2.5i 

.tc \(ru (\(ru is • _") 
Name tab Age tab 

produces 
Name _______ Age ___ _ 

To reset the tab replacement character to a blank, 
use .tc with no argument. (Lines can also be drawn 
With the \1 command, described in Section 6.) 

trofl' also provides a very general mechanism 
called 'fields' for setting up complicated columns. 
(This is used by tbl). We will not go into it in this 
paper. 

6. Local Motions: Drawing lines and characters 

Remember 'Area = 1I'r2, and the big 'P' in the 
Paternoster. How are they done? trofl' provides a 
host of commands for placing characters of any size 
at any place. You can use them to draw special 
characters or to tune your output for a particular 
appearance. Most of these commands are straight
forward, but messy to read and tough to type 
correctly. 



USD:25-6 

If you won't use .. n, subscripts and super~ 
scripts are most easily done with the half4ine local 
motions \u and \d. To go back up the Pate half a 
point-size, insert a \u at the desired place; to go 
down, insert a \d. (\u and \d should always be used 
in pairs. as explained below.) Thus 

Area • \(*pr\u2\d 

produces 

Area -,...2 
To make the '2' smallet, bracket it with \s-2. .. \sO. 
Since \u and \d refer to the current point size. be 
sure to put them either both inside or both outside 
the size chanaes, or you will get an unbalanced verti
cal motion. 

Sometimes the space given by \u and \d isn't 
the right amount. The \ v command can be used to 
request an arbitrary amount of vertical motion. The 
in-line command 

\ v'(amountr 

causes motion up or down the page by the amount 
specified in '(amount)'. For example, to move the 
'P' down, we used 

.in +0.6i (move paragraph in) 

.n -O.3i (shorten lines) 

.ti -O.3i (move P back) 
\ v"2\s36P\sO\ v'-2'ater. noster qui est 
in caelis .,. 

A minus sign causes upward motion, while no sign 
or a plus sign means down the page. Thus \ v'-7: 
causes an upward vertical motion of two line spaces. 

There are many other ways to specify the 
amount of motion -

\v'O.li' 
\v'3p' 
\v'-O.Sm' 

and so on are all legal. Notice that the scale 
specifier i or p or m goes inside the quotes." Any 
character can be used in place of the quotes; this is 
also true of all other troff commands described in 
this section. 

Since troft' does not take within-th~line" verti
cal motions into account when figuring out where it 
is on the page, output lines can have unexpected 
positions if the left and right ends aren't at the same 
vertical position. Thus \v, like \u and \d, should 
always balance upward vertical motion in a line with 
the same amount in the downward direction. 

Arbitrary hOrUontal motions are also available 
- \b is quite analosous to \v; except that the 
default scale factor is ems instead of line spaces. As 
an example, 

A TROFF Tutorial 

\h'-O.li' 

causes a backwards motion of a tenth of an inch. As 
a practical matter, consider printina the mathemati
cal symbol '»;. The default spacing is too wide, so 
eqn replaces this by 

>\h'-O.3m'> 

to produce ». 
Frequently \h is used with the 'width function' 

\w to generate motions equal to the width of some 
character string. The construction 

\w'thing' 

is a number equal to the width of 'thing' in machine 
units (1/432 inch). All troW computations are ulti~ 
mately _ done in these units. To move horizontally 
the width of an 'x', we can say 

\h\w'x'u' 

As we mentioned above, the default scale factor for 
all horizontal dimensions is m, ems, so here we must 
have the u for machine units, or the motion pro~ 
duced will be far too large. troft' is quite happy with 
the nested quotes, by the way, so long as you don't 
leave any ~ut. 

As a live example of this kind -of construction, 
all- of the command names in the text, like .sp, were 
done byoverstriking with a slight offset. The com
mands" for .sp are . 

" .sp\h'-\w·.sp'u\h'l u'.sp 

That is, put out '.sp', move left by the width of '.sp', 
move right I unit, and print '.sp' again. (Of course 
there is a way to avoid typing that much input for 
each command name, which we will discuss in Sec
tion 11.) 

There are also several special-purpose troff 
commands for local motion. We have already seen 
\0, which is an unpaddable white space of the same 
width as a digit. 'Unpaddable' means that it will 
never be widened or split across a line by line 

. justification and tilling. There is also \(blank). 
which is an unpaddable character the width of a 
space, \1. which is half that width, \A, which is one 
quarter of the width of a space, and \&t, which has 
zero width. (This last one is useful, for example, in 
entering a text line which would otherwise begin 
with a','.) 

The command \0, used like 

\o'set of characters' 

causes (up to 9) characters to be overstruck. centered 
on the widest. This is nice for accents, as in 

syst\o"e\(p"me.t\o"e\(aa"l\o"e\(aa"phonique 



A TROFF Tutorial 

which makes 

systeme telephonique 

The accents are \(sa and \(aa, or \. and \'; 
remember that each is just one character to troff. 

You can make your own overstrikes with 
another special convention, \z, the zero-motion 
command. \zx suppresses the normal horizontal 
motion after printing the single character x, so 
another character can be laid on top of it. Although 
sizes can be changed within \0, it centers the charac
ters on the widest, and there can be no horizontal or 
vertical motions, so\z maybe the only way to get 
what you want: 

is produced by 

.sp 2 
\sS\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq 

The .sp is needed to leave room for the result. 

As another example, an extra-beavy semicolon 
that looks like 

; instead of ; or , 

can be constructed with a. big comma and a big 
. period above it: 

\s+6\z, \ v' -O.25m'. \ v1).25m\sO 

'O.25m' is an experimentally-derived constant. 

A more 'ornate overstrike is given by the 
bracketing function \b, which piles up characters 
vertically, centered on the current baseline. Thus we 
can get big brackets, constructing them with piled-up 
smaller pieces: 

by typing in only this: 

.sp 
\b'\(lt\(1k\(lb' \b'\(lc\(lf x \b'\(rc\(rf \b'\(rt\(rk\(rb' 

troff also provides a convenient facility for 
drawing horizontal and vertical lines of arbitrary 
length with arbitrary characters. \l'li' draws a line 
one inch long, like this: . The 
length can be followed by the character to use if the 
_ isn't appropriate; \1'O.5i: draws a half-inch line of 
dots: ............... The construction \L is entirely 
analogous, except that it draws a vertical line instead 
of horizontal. 

USD:25-7 

7. Strings 

Obviously if a paper contains a large number 
of occurrences of an acute accent over a letter 'e', 
typing \o"e\" for each e would be a great nuisance. 

Fortunately, troff provides a way in which you 
can store an arbitrary collection of text in a 'string', 
and thereafter use the string name as a shorthand for 
its contents. Strings are one of several troff mechan
isms whose judicious use lets you type a document 
with less effort and organize it so that extensive for
mat changes can be made with few editing changes. 

A reference to a string is replaced by whatever 
text the string was defined as. Strings are defined 
with the command .ds. The line 

.ds e \o"e\-

defines the string e to have the value \o"e\" 

String' names may be either one or two charac
ters long, and are referred to by \*x for one charac
ter names or \.(xy for two character names. Thus 
to get telephone, given the definition of the string e 
as above, we can say t\*el\*ephone. 

If a string must begin with blanks, define it as 

,ds xx " text 

The double quote signals the beginning of the 
definition .. There. is no ttailing quote; the end of the 
line terminates the string. . 

A string may actually be several lines long; if 
troff encounters a \at the .end of any line, it is 
thrown away and the next line added to the current 
one. So you can make a long string simply by end
ing each line but the last with a backslash: 

.ds xx this \ 
is a very \ 
long string 

Strings may be defined in terms of other 
strings, or even in terms of themselves; we will dis
cuss some of these possibilities later. 

8. Introduction to Macros 

Before we can go much further in troff, we 
need to learn a bit about the macro facility. In its 
simplest form, a macro is just a shorthand notation 
quite similar to a string. Suppose we want every 
paragraph to start in exactly the same way - with a 
space and a temporary indent of two ems: 

.sp 

.ti +2m 

Then to save typing, we would like to collapse these 
into one shorthand line, a troff 'command' like 

.PP 

that would be treated by troff exactly as 



USD:2S-8 

.sp 

.ti +2m 

.PP is called a macro. The way we tell trofl' what 

.PP means is to define it with the .de command: 

.dePP 

.sp 

.ti +2m 

The first line names the macro (we used '.PP· for 
'paragraph', and upper ease so it woulqn't conflict 
with any name that troJI' might already know about). 
The last line .• marks the end of the definition. In 
between is the text, which is simply inserted when
ever troJI'sees the 'command' or macro call 

.PP 

A macro can contain any mixture of text and for
matting commands. 

The definition of .PP has to precede its first 
use; undefined macros are simply ignored. Names 
are restricted to one or two characters. 

Using macros for. commonly occurring 
sequences of commands is critically important. Not 
only does it, save typing. but it makes later changes 
much easier. Suppose we decide that the paragraph 
indent is too small, the venical space is much too 
big. and roman font should be forced. Instead of 
changing the whole document, we need only change 
the definition of .PP to something like 

.de PP \" paragraph macro 

.sp 2p 

.ti +3m 

.ft R 

and the change takes effect everywhere we used .PP. 
\. is a trofI' command that causes the rest of 

the line to be ipored. We use it here to add com
ments to the macro definition (a wise idea once 
definitions get complicated). 

As another example of macros, consider these 
two which start and end a block of offset, unfilled 
text, like most of the examples in this paper: 

.de BS \. stan indented block 

.sp 

.nf 

.in +O.3i 

. deBE 

.sp 

.n 

.in -O.3i 

\. end indented block 

Now we can sW'fOund text like 

Copy to 
John Doe 
Richard Robens 
Stanley Smith 

A TROFF Tutorial 

by the commands .DS and .BE, and it will come out 
as it did above. Notice that we indented by 
.in +O.li instead of .in O.3i. This way we can nest 
our uses of .DSand BE to get blocks within blocks. 

If laW on we decide that the indent should be 
O.Si, then it is only necessary to change the 
definitions of.DS and .BE, not the whole paper. 

9. Titles, Pages and Numbering 
This is an area where things get tougher. 

because nothing is done for you automatically. Of 
necessity, some of this section is a cookbook, to be 
copied literally until you get some experience. 

Suppose you want a title at the top of each 
page, saying just 

left· top center top right top 

In lOft one can say 

.he 1eft top'~ter top'right top' 

.fo left bottom'center bottom'right bottom' 

to get headers and footers automaticaiIy on every 
page. Alas, this doesn't work so easily in trofl', a 
seriQus hardship for the novice. Instead you have to 
·do ,a lot of specification (or use a macro package, 
which makes it effortless). 

You have to say what the actual title is (easy); 
when to print it (easy enough); and what to do at 
and aro~nd the title line (harder). Taking these in 
reverse order, first we define a macro .NP (for 'new 
page') to process titles and the like at the end of one 
page and the beginning of the next: 

.deNP 
'bp 
'sp O.Si 
.tlleft top'center top'right top' 
'sp 0.3i 

To make sure we're at the top of a page, we issue a 
'begin page' command 'bp, which causes a skip to 
top-of.paae (we'll explain the ' shortly). Then we 
space down half an inch, print the title (the use of .tl 
should be self explanatory; later we will discuss 
parameterizing the titles), space another 0.3 inches, 
and we're done . 

To ask for .NP at the bottom of each page. we 
have to say something like 'when the text is within 
an inch of the bottom of the page, start the process
ing for a new page: This is done with a 'when' com
mand .wh: 



A TROFF Tutorial 

.wh -Ii NP 

(No ' .. is used before NP; this is simply the name of 
a macro, not a macro call.) The minus sign means 
'measure up from the bottom of the page', so '-Ii' 
means 'one inch from the bottom'. 

The .wb command appears in the input out
side the definition of .NP; typically the input would 
be 

.deNP 

.wh -Ii NP 

Now what happens? As text is actually being 
output, trofr keeps track of its vertical position on 
the page, and after a line is printed within one inch 
from the bottom. the .NP macro is activated. (In 
the jargon, the .wh command sets a trap at the 
specified place, which is 'sprung' when that point is 
passed.) .NP causes a skip to the top of the next 
page (that's what tbe 'bp was for), then prints the 
title with tbe appropriate margins. 

Why 'bp and 'sp instead of .bp and .sp? The 
answer is that .sp and .bp, like several other com
mands, cause a break to take place. That is,- all the 
input text collected but not yet printed is flushed out 
as soon as po$sible, and the next input line is 

. guaranteed to start a neW line of output. If we had 
used .sp or .bp in the .NP macro, this would cause a 
break in the middle of the current output line when 
a new page is started. The effect would be to print 
the left-over part of that line at the top of the page, 
followed by the next input line on a new output line: 
This is not what we want; Using' instead of. for a 
command tells trofr that no break is to take place -
the output line currently being 1iIled should not be 
forced out before the space or new page. 

The list of commands that cause a break is 
short and natural: 

.bp .br .ce .fi .nf .sp .in .ti 

All others cause no break, regardless of whether you 
use a . or a '. If you really need a break, add a .br 
command at the appropriate place. 

One other thing to beware of - if you're 
cbanging fonts or point sizes a lot, you may find that 
if you cross a page boundary in an unexpected font 
or size, your titles come out in that size and font 
instead of what you intended. Furthermore, the 
length of a title is independent of the current line 
length, so titles will come out at the default length of 
6.5 inches unless you change it, which is done with 
the .It command. 

There are several ways to fix the problems of 
point sizes and fonts in titles. For the simplest 
applications, we can change .NP to set the proper 

USD:25-9 

size and font for the title, then restore the previous 
values, like this: 

.deNP 
'bp 
'sp 0.5i 
.ft R \. set title font to roman 
.ps 10 \" and size to 10 point 
.It 6i \" and length to 6 inches 
.tl 1eft'center'right' 
.ps \" revert to previous size 
.ft P \. and to previous font 
'sp 0.3i 

This version of .NP does not work if the fields 
in the .tl command contain size or font changes. To 
cope with that requires troft"s 'environment' 
mechanism, which we will discuss in Section 13. 

To get a footer at the bottom of a page, you 
can modify .NP so it does some processing before 
the 'bp command, or split the job into a footer 
macro invoked at the bottom margin and a header 
macro invoked at the t9P of the page. These varia
tions are left as exercises .. 

Output page numbers are computed automati
cally as each page is produced (starting at i), but n9 
numbers are printed unless you ask for them expli
citly. To get page numbers printed, include the 

. character % in the .tl line at the position where you 
want the number to appear. For example 

.tl -- % --

centers the page number inside hyphens, as on this 
page. You can set the page number at any time with 
either .bp n, which immediately starts a new page 
numbered n, or with .pn n, which sets the page 
number for the next page but doesn't cause a skip to 
the new page. Again, .bp +n sets the page number 
to n more than its current value; .bp means .bp + 1. 

10. Number Registers and Arithmetic 

troff has a facility for doing arithmetic, and for 
defining and using variables with numeric values. 
called number registers. Number registers, like 
strings and macros, can be useful in setting up a 
document so it is easy to change later. And of 
course they serve for any son of arithmetic compu
tation. 

Like strings, number registers have one or two 
character names. They are set by the .Dr command. 
and are referenced anywhere by \nx (one character 
name) or \n(xy (two character name). 

There are quite a few pre-defined number 
registers maintained by troff. among them % for the 
current page .number; nl for the current venical posi
tion on the page: dy. mo and yr for the current day; 



USD:2S-10 

month and year, and .s and .f for the current size 
and font. (The font is a number from 1 to 4.) Any 
of these can be used in computations like any other 
register, but some, like .s and .t, cannot be changed 
with .m. 

As an example of the use of number registers, 
in the -ms macro package [4]. most significant 
parameters are defined in terms of the values of a 
handful of number registers. These include the 
point size for text, the vertical spacing, and the line 
and title lengths. To set the point size and vertical 
spacing for the following paragraphs, for example, a 
user may say 

.nr PS 9 

.nr VS 11 

The paragraph macro .PP is defined (roughly) as fol
lows: 

.dePP 

. ps \\n(PS 

.vs \\n(VSp 

.ft R 

.sp O.Sv 
,tt +3m 

\.. reset size 
\" spacing 
\" font 
\" half a line 

This sets the font to Roman and the point size and· 
line spacing to whatever values are stored in 'the 
number registers PS and VS. 

Why . are there two backslashes? This is the 
eternal problem of how to quote a quote .. When 
troff originally reads the macro definition, it peels off 
one backslash to see what's coming next. To ensure 
that another is left in the definition when the macro 
is used, we have to put in two backslashes in the 
definition. If only one backslash is used, point size 
and vertical spacing will be frozen at the time the 
macro is defined, not when it is used. 

Protecting by an extra layer of backslashes is 
only needed for \n, \*, \$ (which we haven't come 
to yet), and \ itself. Things like \s, \f, \h, \v, and 
so on do not need an extra backslash, since they are 
converted by troff to an internal code immediately 
upon being seen. 

Arithmetic expressions can appear anywhere 
that a number is expected. As a trivial example, 

.nr PS \ \n(PS-2 

decrements PS by 2. Expressions can use the arith
metic operators +. -, *. I, % (mod), the relational 
operators >, >=, <, <=, =, and != (not equal), and 
parentheses. ' 

Although the arithmetic we have done so far 
has been straightforward, more complicated things 
are somewhat tricky. First, number registers hold 
only integers. troff arithmetic uses truncating integer 

A TROFF, Tutorial 

division, just like Fortran, Second, in the absence of 
parentheses, evaluation is done left-to-rigbt without 
any operator precedence (including relational opera
tors). Thus 

7-4+3/13 

becomes '-I'. Number registers can occur anywhere 
in an expression, and so can scale indicators like p, 
i, m, and so on (but no spaces). Although integer 
division causes truncation, each number and its 
scale indicator is converted to machine units (11432 
inch) before any arithmetic is done, so 1 il2u evalu
ates to O.Si correctly. 

The scale indicator u often has to appear when 
you wouldn't expect it - in particular, when arith
metic is being done in a context that implies hor
izontal or vertical dimensions. For example, 

.ll 7/2i 

would seem obvious enough - 31f2 inches. Sorry . 
Remember that the default units for horizontal 
parameters like .ll are ems. That's really '7 ems 1 2 
inches', and when translated into machine units, it 
becomes ~ero. How about 

.11 7i12 

Sorry, still no, good - the '2' is '2 ems', so '7i12' is 
small, although not zero. Yon must use 

.11 7i12u 
. . . 

So again, a safe rule is to attach a scale indicator to 
every number, even constants. 

For arithmetic done within a .Dr command. 
there is no implication of horizontal or vertical 
dimension, so the default units are 'units', and 7i12 
and 7i12u mean the same thing. Thus 

.nr II 7i12 

.II \ \n(llu 

does just what you want, so long as you don't forget 
the u on the .ll command. 

11. Macros with arguments 

The next step is to define macros that can 
change from one use to the next according to param
eters supplied as arguments. To make this work, we 
need two things: first, when we define the macro, we 
have to indicate that some pans of it will be pro
vided as arguments when the macro is called. Then 
when the macro is called we have to provide actual 
arguments to be plugged into the definition. 

Let us illustrate by defining a macro .SM that 
will print its argument two points smaller than the 
surrounding text. That is. the macro call 

.SMTROFF 

. will produce TROFF, 



A TROFF Tutorial 

The definition of .SM is 

.deSM 
\s-2\ \$1 \s+ 2 

Within a macro definition, the symbol \ \$n refers to 
the nth argument that the macro was called with. 
Thus \\$ 1 is the string to be placed in a smaller 
point size when .8M is called. 

As a slightly more complicated version, the 
foUowing definition of .~M permits optional second 
and third arguments that will be printed in the nor
mal size: 

.deSM 
\\$3\s-2\\SI\s+2\\S2 

Arguments not provided when the macro is called 
are treated as empty, so 

.SM TROFF ), 

produces TROFF), while 
• 

. SM TROFF ). < 

produces (TROFF). It is convenient to reverse the 
order of arguments because tnuling. punctuation is 
much more common than leading. 

By the way, the number of arguments that a 
macro was called with is available in number regis
ter .S. . 

The following macro .BD is the one used· to 
make the 'bold roman' we have been using for troff 
command names in text. It combines horizontal 
motions, width computations, and argument rear
rangement. 

.deBD 
\&\ \S3\fl\ \$1 \h'-\w\ \Sl'u+ lu\ \$l\fP\ \$2 

The \h and \ w commands need no extra backslash, 
as we discussed above. The \& is there in case the 
argument begins with a period. 

Two backslashes are needed with the \ \$n 
commands, though, to protect one of them when the 
macro is being defined. Perhaps a second example 
will make this clearer. Consider a macro called .SH 
which produces section headings rather like those in 
this paper, with the sections numbered automati
cally, and the title in bold in a smaller size. The use 
is 

.SH 'Section title ...• 

<If the argument to a macro is to contain blanks, 
then it must be surrounded by double Quotes, unlike 
a string, where only one leading Quote is permitted.) 

USD:25-11 

Here is the definition of the .SH macro: 

.nr SH 0 \. initialize section number 

.deSH 

.sp O.3i 

.ft B 

.nr SH \ \n(SH + 1 \. increment number 

.ps \ \n(PS-l \. decrease PS 
\ \n(SH. \\$1 \. number. title 
.ps \ \n(PS \. restore PS 
.sp O.3i 
.ft R 

The section number is kept in number register SH, 
which is incremented each time just before it is 
used. (A number register may have the same name 
as a macro without conflict but a string may not.) 

We used \ \n(SH instead of \n(SH and \ \n(PS 
instead of \n(PS. If we had used \n(SH, we would 
get the value of the register at the time the macro 
was defined, not at the time it was used. If that's 
what you want, fine, but not here. Similarlv, bv 
using \ \n(PS, we get the point size at the tim'e th~ 
macro is called. . 

As an example that does not involve numbers, 
recall our .NP macro which had a 

. tl.1eft'center'right' 

We could make these into parameters by using 
instead 

.tl \ \*(L T'\ \*(CT\ \.(RT 

so the title comes from three strings called L T, CT 
and RT. If these are empty, then the title will be a 
blank line. Normally CT would be set with some
thing like 

.ds CT - %-

to give just the page number between hyphens <as on 
the top of this page), but a user could supply private 
definitions for any of the strings. 

12. Conditionals 

Suppose we want the .SH macro to leave two 
extra inches of space just before section I, but 
nowhere else. The cleanest way to do that is to test 
inside the .SH macro whether the section number is 
I, and add some space if it is. The.if command 
provides the conditional test that we can add just 
before the heading line is output: 

;if \ \n(SH= I .sp 2i \. first section only 

The condition after the .if can be any arith
metic or logical expression. If the condition is logi
cally true, or arithmetically greater than zero.· the 
rest of the line is treated as if it were text - here a 
command. If the condition is false, or zero or nega-



USD:2S·12 

tive, the rest of the line is skipped. 

It is possible to do more than one command if 
a condition is true. Suppose several operations are 
to be done before section 1. One possibility is to 
define a macro .S 1 and invoke it if we are about to 
do section 1 (as determined by an .if). 

.deS! 
- processing for section 1 -

.deSH 

.if \ \n(SH= 1 .51 

An alternate way is to use the extended form 
of the· .if, like this: 

.if \\n(SH = 1 \ {- processing 
for section 1 -\} 

The braces \{ and \} must occur in the positions 
shown or you will· get unexpected extra lines in your 
output. troft' also provides an 'if-else' construction, 
which we will not go into here. 

A condition. can be negated by preceding it 
with !; we get the same effect as above (but less 
clearly) by using 

.if!\ \n(SH> 1 .51 

There are a handful of other. conditions that 
can be tested with .if. For example, is the current 
page even or odd? 

.if 0 .tl 'odd page title-· % .' 

.if e .tl '. % ·-even page title' 

gives facing pages different titles and page numbers 
on the outside edge when used inside an appropriate 
new page macro. 

Two other conditions are t and n, which tell 
you whether the formatter is troft' or oroft'. 

.if t troff stuff ... 

.if n nroff stuff ... 

Finally, string comparisons may be made in 
an .if: 

.if 'stringl'string2' stuff 

does 'stuff' if string1 is the same as string2. The 
character separating the strings can be anything rea· 
sonable that is not contained in either string. The 
strings themselves can reference strings with \., 
arguments with \$, and so on. 

13. Environments 

As we mentioned. there is a potential problem 
when going across a page boundary: parameters like 
size and font for a page title may well be different 

A TROFF Tutorial 

from those in effect. in the text when the page boun
dary occurs. troft' provides a very general way to 
deal with this and similar situations. There are 
three 'environments', each of which has indepen
dently settable versions of many of the parameters 
associated with processing, including size, font, line 
and title lengths, fiUlnofill mode, tab stops, and even 
partially collected lines. Thus the titling problem 
may be readily solved by processing the main text in 
one environment and titles in a separate one with its 
own suitable parameters. 

The command .ev n shifts to environment n; 
n must be 0, 1 or 2. The command .ev with no 
argument returns to the previous environment. 
Environment names are maintained in a stack, so 
calls for different environments may be nested and 
unwound consistently. 

Suppose we say that the main text is processed 
in environment 0, which is where troft' begins by 
default. Then we can modify the new page macro 
.NP to process titles in environment 1 like this: 

.deNP 

.ev 1 

.It 6i 

.ft R 

.ps 10 

\" shift to new environment 
\" set parameters here 

.00 any other processing ... 

.ev \. return to previous environment 

It is alsO possible to initialize the parameters for an 
environment outside the .NP macro, but the version 
shown keeps all the processing in one place and is 
thus easier to understand and change . 

14. Diversions 

There are numerous occasions in page layout 
when it is necessary to store some text for a period 
of time without actually printing it. Footnotes are 
the most obvious example: the text of the footnote 
usually appears in the input well before the place on 
the page where it is to be printed is reached. In fact, 
the place where it is output normally depends on 
how big it is, which implies that there must be a way 
to process the footnote at least enough to decide its 
size without printing it. 

troft' provides a mechanism called a diversion 
for doing this processing. Any part of the output 
may be diverted into a macro instead of being 
printed, and then at some convenient time the 
macro may be put back into the input. 

The command .di xy begins a diversion - all 
subsequent output is collected into the macro xy 
until the command .di with no arguments is encoun~ 
teredo This terminates the diversion. The processed 
text is available at any time thereafter, simply by 
giving the command 



A TROFF Tutorial 

.xy 

The vertical size of the last finished diversion is con
tained in the built-in ,number register dn. 

As a simple example, suppose we want to 
implement a 'keep-release' operation, so that text 
between the commands .KS and .KE will not be 
split across a page boundary (as for a figure or 
table). Clearly, when a .KS is encountered, we have 
to begin diverting the output so we can find out how 
big it is. Then when a .KE is seen, we decide 
whether the diverted text will fit on the current page, 
and print it either there if it fits, or at the top of the 
next page if it doesn't. So: 

.deKS 

.br 

. ev 1 

.fi 

.di XX 

\" start keep 
\" start fresh line 
\" collect in new environment 
\" make it filled text 

, \" collect in XX 

. de KE \" end keep 

.br \" get last partial line 

.di \" end diversion 

.if\\n(dn>=\\n(.t .bp \" bp if doesn't fit 

.nf \" bring it back'in no-fill 

.xX \" text 

.ev \" return to normal environment 

Recall that number register nl is the current position 
on the output page. Since output was being 
diverted, this remains at its value when the diver
sion started. dn is the amount of text in the diver
sion; .t (another built-in register) is tbe distance to 
tbe next trap, which we assume is at the bottom 
margin of the page. If the diversion is large enough 
to go past the trap, the .if is satisfied, and a .bp is 
issued. In either case, the diverted output is then 
brought back with .XX. It is essential to bring it 
back in no-fill mode so troft' will do no further pro
cessing on it. 

This is not the most general keep-release, nor 
is it robust in the face of all conceivable inputs, but 
it would require more space than we have here to 
write it in full generality. This section is not 
intended to teach everything about diversions, but to 
sketch out enough that you can read existing macro 
packages with some comprehension. 

Acknowledgements 

I am deeply indebted to J. F. Ossanna, the 
author of troft', fOT his repeated patient explanations 
of fine points, and for his continuing willingness to 
adapt troft' to make other uses easier. I am also 
grateful to Jim Blinn, Ted Dolotta, Doug McIlroy, 
Mike Lesk and Joel Sturman for helpful comments 
on this paper. 

USD:25-13 

References 

[1] J. F. Ossanna, NROFFfTROFF User's Manual. 
Bell Laboratories Computing Science Techni
cal Report 54, 1976. 

[2] B. W. Kernighan, A System for Typesetting 
Mathematics - User's Guide (Second Edition), 
Bell Laboratories Computing Science Techni
cal Report 17, 1977. 

[3] M. E. Lesk, TBL - A Program to Format 
Tables, Bell Laboratories Computing Science 
Technical Report 49, 1976. 

[4] M. E. Lesk, Typing Documents on UNIX, Bell 
Laboratories, 1978. 

[5] J. R. Mashey and D. W. Smith, PWBIMM -
Programmer's Workbench Memorandum Mac
ros. Bell Laboratories internal memorandum . 

[6] Eric P. Allman. Writing Papers with NROFF 
using -me. University of California, Berkeley . 





A System for Typesetting Mathematics USD:26-1 

A System for Typesetting Mathematics 

Brian W. Kernighan and Lorinda L. Cherry 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper describes the design and implementation of a system for typesetting 
mathematics. The language has been designed to be easy to learn and to use by people (for 
example, secretaries and mathematical typists) who know neither mathematics nor typesetting. 
Experience indicates that the lansuage can be learned in an hour or so, for it has few rules and 
fewer exceptions. For typical expressions, the size and font changes, positioning, line drawing, 
and the like necessary to print according to mathematical conventions are all done automati
cally. For example, the input 

sum from i-O to infinity x sub i = pi over 2 
produces 

aD 

~Xi=.!. 
i-O 2 

The syntax of the language is specified by a small context-free grammar. a compiler
compiler is used to make a compiler that translates this language into typesetting commands. 
Output may be produced on either a phototypesetter or on a terminal with forward and 
reverse half-line motions. The system interfaces directly with text formatting programs, so 
mixtures of text and mathematics may be handled simply. 

This paper is a revision of a paper originally published in CACM, March, 1975. 

1. Introduction 

"Mathematics is known in the trade as 
difficult. or penalty. copy because it is slower, more 
difficult, and more expensive to set in type than any 
other kind of copy normally occurring in books and 
journals." [1] 

One difficulty with mathematical text is the 
multiplicity of characters, sizes, and fonts. An 
expression such as 

lim (tan x)sin 2x = I 
X_ft/2 

requires an intimate mixture of roman, italic and 
greek letters, in three sizes, and a special character 
or two. ("Requires" is perhaps the wrong word, but 
mathematics has its own typographical conventions 
which are quite different from those of ordinary' 
text.) Typesetting such an expression by traditional 
methods is still an essentially manual operation. 

A second difficulty is the two dimensional 
character of mathematics, which the superscript and 

limits in the preceding example showed in its sim
plest form. This is carried further by 

b l 
aQ+------~-----

b2 

and still further by 

a I + ----":~-
b 3 

a,+ -----'-
- a3+'" 

vrci e",-f - \' b 
-~,~log~. ~--~ 
2mvab vae"'-< +\ b 

1 vrci --:=- tanh-I(-:=eWLt ) 

mvab vb 

-!- coth- I( v! e",-f) 
mvab vb 

These examples also show line-drawing, built-up 
characters like braces and radicals. and a spectrum 
of positioning problems. (Section 6 shows what a 
user has to type to produce these on our system.) 



USD:26-2 

2. Photocomposition 

Photocomposition techniques can be used to 
solve some of the problems of typesetting mathemat
ics. A phototypesetter is a device which exposes a 
piece of photographic paper or film, placing charac
ters wherever they are wanted. The Graphic Sys
tems phototypesetter[2] on the UNIX operating sys
tem[3] works by shining light through a character 
stencil. The character is made the right size by 
lenses, and the light beam directed by fiber optics to 
the desired place on a piece of photographic paper. 
The exposed paper is developed and typically used 
in some form of photo-offset reproduction. 

On UNIX, the phototypesetter is driven by a 
formatting program called TROFF (4). TROFF was 
designed for setting running text. It also provides all 
of the facilities that one needs for doing mathemat
ics, such as arbitrary horizontal and venical 
motions, line-drawing, size changing. but the syntax 
for describing these special operations is difficult to 
learn, and difficult even for experienced users to 
type correctly. 

For this reason we decided to use TROFF as 
an "assembly language," by design''lg a language for 
describing mathematical expressions, and compiling 
it into TROFF. 

3. Lanpap Design 

The fundamental principle upon which we 
based our language design is that the language 
should be easy to use by People (for example, secre
taries) who know neither mathematics nor typeset
ting. 

This principle implies several things. First, 
"normal" mathematical conventions about operator 
precedence, parentheses, and the like cannot be 
used, for to give special meaning to such characters 
means that the user has to understand what he or 
she is typing. Thus the language should not assume, 
for instance, that parentheses are always balanced, 
for they are not in the half,"?pen interval (a ,b]. Nor 
should it assume that that Va + b can be replaced by 

(a+b)'h, or that 1/(1-x) is better written as I~X 
(or vice versa). 

Second, there should be relatively few rules, 
keywords, special symbols and operators, and the 
like. This keeps the language easy to learn and 
remember. Funhermore, there should be fewexcep
tions to the rules that do exist: if something works in 
one situation, it should work everywhere. If a vari
able can have a subscript, then a subscript can have 
a subscript, and so on without limit. 

Third, "standard" things should happen 
automatically. Someone who types "x=y+z+ I" 
should get "x=y+z+!". Subscripts and super
scripts should automatically be printed in an 

A System for Typesetting Mathematics 

appropriately smaller size, with no special interven
tion. Fraction bars have to be made the right length 
and positioned at the right height. And so on. 
Indeed a mechanism for overriding default actions 
has to exist, but its application is the exception, not 
the rule. 

We assume that the typist has a reasonable 
picture (a two-dimensional representation) of the 
desired final form, as might be handwritten by the 
author of a paper. We also assume that the input is 
typed on a computer terminal much like an ordinary 
typewriter. This implies an input alphabet of 
perhaps I 00 characters, none of them special. 

A secondary, but still impenant, goal in our 
design was that the system should be easy to imple
ment, since neither of the authors had any desire to 
make a long-term project of it. Since our design was 
not firm, it was also necessary that the program be 
easy to change at any time. 

To make the program easy to build and to 
change, and to guarantee regularity ("it should work 
everywhere"), the language is defined by a context
free grammar, described in Section 5. The compiler 
for the language was built using a compiler-compiler. 

A pnon, the grammar/compiler-compiler 
approach seemed the right thing to do. Our subse
quent experience leads us to believe that any other 
course would have been foUy. The original language 
was designed in a few days. Construction of a work
ing system sufficient to try significant examples 
required perhaps a person-month. Since then, we 
have spent a modest amount of additional time over 
several years tuning, adding facilities. and occasion
ally changing the language as users make criticisms 
and suggestions. 

We also decided quite early that we would,let 
TROFF do our work for us whenever possible. 
TROFF is quite a powerful program, with a macro 
facility, text and arithmetic variables, numerical 
computation and testing, and conditional branching. 
Thus we have been able to avoid writing a lot of 
mundane but tricky software. For example, we store 
no text strings, but simply pass them on to TROFF. 
Thus we avoid having to write a storage manage
ment package. Funhermore, we have been able to 
isolate ourselves from most details of the panicular 
device and character set currently in use. For exam
ple, we let TROFF compute the widths of all strings 
of characters; we need know nothing about them. 

A third design goal is special to our environ
ment. Since our program is only useful for typeset
ting mathematics, it is necessary that it interface 
cleanly with the underlying typesetting language for 
the benefit of users who want to set intermingled 
mathematics and text (the usual case). The standard 
mode of operation is that when a document is typed, 
mathematical expressions are input as part of the 



A System for Typesetting Mathematics 

text, but marked by user settable delimiters. The 
program reads this input and treats as comments 
those things which are not mathematics, simply 
passing them through untouched. At the same time 
it converts the mathematical input into the neces
sary TROFF commands. The resulting ioutput is 
passed directly to TROFF where the comments and 
the mathematical parts both become text and/or 
TROFF commands. 

4. The Language 
We will not try to describe the language pre

cisely here; interested readers may refer to the 
appendix for more details. Throughout this section, 
we will write expressions exactly as they are handed 
to the typesetting program (hereinafter called 
uEQN"), except that we won't show the delimiters 
that the user types to mark the beginning and end of 
the expression. The interface between EQN and 
TROFF is described at the end of this section. 

As we said, typing x=y+z+ 1 should produce 
x=y+z+l, and indeed it does. Variables are made 
italic, operators and digits become roman, and nor
mal spacings between letters and operators are' 
altered slightly to give a more pleasing appearance. 

Input is free-form. Spaces and new lines in 
the input are used by EQN to separate pieces of the 
input; they are not used to create space in the out
put. Thus 

x y 
+ z + 1 

also gives x = y + z + 1. Free-form input is easier to 
type initially; subsequent editing is also easier, for 
an expression may be typed as many short lines. 

Extra white space can be forced into the out
put by several characters of various sizes. A tilde 
"." gives a space equal to the normal word spacing 
in text; a circumflex gives half this much, and a tab 
charcter spaces to the next tab stop. 

Spaces (or tildes, etc.) also serve to delimit 
pieces of the input. For example, to get 

[(t)=211" J sin(wt )dt 

we write 

f(t) = 2 pi int sin (omega t )dt 

Here spaces are necessary in the input to indicate 
that sin. pi. into and omega are special. and poten
tially worth special treatment. EQN looks up each 
such string of characters in a table, and if appropri
ate gives it a translation. In this case, pi and omega 
become their greek equivalents, in! becomes the 
integral sign (which must be moved down and 
enlarged so it looks "right"), and sin is made roman, 
following conventional mathematical practice. 
Parentheses, digits and operators are automatically 

USD:26-3 

made roman wherever found. 

Fractions are specified with the keyword over: 

a+b over c+d+e = 

produces 

a+b -I 
c+d+e 

Similarly, subscripts and superscripts are 
introduced by the keywords sub and sup: 

X2+y2=Z2 

is produced by 

x sup 2 + y sup 2 = z sup 2 

The spaces after the 2's are necessary to mark the 
end of the superscripts; similarly the keyword sup 
has to be marked off by spaces or some equivalent 
delimiter. The return to the proper baseline is 
automatic. Multiple levels of subscripts or super
scripts are of course allowed: "x sup y sup z" is x"'=. 
The construct "something sub something sup some
thing" is recognized as a special case, so "x sub i sup 
2" is xl instead of Xi 2. 

More complicated expressions can now be 
formed with these primitives: 

fl= x 2 + y2 
ax2 a2 b2 

is produced by 

(partial sup 2 f) over {partial x sup 2} = 
x sup 2 over a sup 2 + y sup 2 over b sup 2 

Braces () are used to group objects together; in this 
case they indicate unambiguously what goes over 
what on the left-hand side of the expression. The 
language defines the precedence of sup to be higher 
than that of over. so no braces are needed to get the 
correct association on the right side. Braces can 
always be used when in doubt about precedence. 

The braces convention is an example of the 
power of using a recursive grammar to define the 
language. It is part of the language that if a con
struct can appear in some context, then any expres
.sian in braces can also occur in that context. 

There is a sqrt operator for making square 
roots of the appropriate size: "sqrt a+b" produces 
Va+b, and 

x = {-b +- sqrt(b sup 2 -4ac}} over 2a 

is 

-b±v'b2-4ac 
X= 2a 

Since large radicals look poor on our typesetter, sqrt 
is not useful for tall expressions. 



USD:26-4 

Limits on summations, integrals and similar 
constructions are specified with the keywords from 
and to. To get 

we need only type 

sum from i.O to inf x sub i -> 0 

Centering and making the I big enough and the lim
its smaller are all automatic. The from and to parts 
are both optional, and the central part (e.g., the I) 
can in fact be anything: 

lim from {x -> pi 12} ( tan~x) = inf 

is 

lim (tan x )=00 
x ..... .,,/2 

Again, the braces indicate just what goes into the 
from part. 

There is a facility for making braces, brackets, 
parentheses, and vertical bars of the right height. 
using the keywords left and right: 

left [x+y over 2a right r=~1 

makes 

[ra] = I 

A left need not have a corresponding right. as we 
shall see in the next example. Any characters may 
follow left and right. but generally only various 
parentheses and bars are meaningful. 

Big brackets, etc., are often used with another 
facility, called piles. which make venical piles of 
objects. For example, to get 

II if x>O 
sign(x) == 0 if x=O 

-I if x<o 

we can type 

sign (x) -==-left { 
rpiie {I above 0 above - I } 
lpile {if above if above if} 
lpile {x>O above x=O above x<O} 

The construction "left {" makes a left brace big 
enough to enclose the "rpile { ... }", which is a right
justified pile of "above ... above ... ". "lpile" makes 
a left-justified pile. There are also centered piles. 
Because of the recursive language definition. a pile 
can contain any number of elements; any element of 
a pile can of course contain piles. 

Although EQN makes a valiant attempt to use 
the right sizes and fonts. there are times when the 
default assumptions are simply not what is wanted. 

A System for Typesetting Mathematics 

For instance the italic sign in the previous example 
would conventionally be in roman. Slides and tran
sparencies often require larger characters than nor
mal text. Thus we also provide size and font chang
ing commands: ,"size 12 bold {Kx-=-y}" will pro
duce A X = y. Size is followed by a number 
representing a character size in points. (One point is 
1172 inch; this paper is set in 9 point type.) 

If necessary, an input string can be quoted in 
..... ", which turns off grammatical significance, and 
any font or spacing changes that might otherwise be 
done on it. Thus we can say 

lim- roman "sup' -x sub n = 0 

to ensure that the supremum doesn't become a 
superscript: 

lim sup x" =0 

Diacritical marks, long a problem in tradi
tional typesetting, are straightforward: 

,!+x+y+X+Y=z+Z 

is made by typing 

x dot under + x hat + y tilde 
+ X hat + Y dotdot = Z+Z bar 

There are also facilities for globally changing 
default sizes and fonts, for example for making 
viewgraphs or for setting chemical equations. The 
language allows for matrices, and for lining up equa
tions at the same horizontal position. 

Finally, there is a definition facility, so a user 
can say 

define name .... : 

at any time in the document; henceforth, any 
occurrence of the token "name" in an expression 
will be expanded into whatever was inside the dou
ble quotes in its definition. This lets users tailor the 
language to their own specifications, for it is quite 
possible to redefine keywords like sup or over. Sec
tion 6 shows an example of definitions. 

The EQN preprocessor reads intermixed text 
and equations, and passes its output to TROFF. 
Since TROFF uses lines beginning with a period as 
control words (e.g., ".ce" means "center the next 
output line"), EQN uses the sequence ".EQ" to mark 
the beginning of an equation and ".EN" to mark the 
end. The ".EQ" and ".EN" are passed through to 
TROFF untouched, so they can also be used by a 
knowledgeable user to center equations. number 
them automatically, etc. By default, however, ".EQ" 
and ·'.EN" are simply ignored by TROFF. so by 
default equations are printed in-line. 

".EQ" and ".EN" can be supplemented by 
TROFF commands as desired; for example, a cen
tered display equation can be produced with the 



A System for Typesetting Mathematics 

input: 

.ce 

.EO 
x sub i = y sub i ... 
.EN 

Since it is tedious to type ... EO" and ... EN" 
around very short expressions (single letters, for 
instance), the user can also define two characters to 
serve as the left and right delimiters of expressions. 
These characters are recognized anywhere in subse
quent text. For example if the left and right delim
iters have both been set to "'I", the input: 

Let #x sub i#, *r* and #alpha# be positive 

produces: 

Let Xi, Y and a be positive 

Running a preprocessor is strikingly easy on 
UNIX. To typeset text stored in file "f", one issues 
the command: 

eqn f I troft" 

The vertical bar connects the output of one process 
(EQN) to the input of another (TROFF). 

5 •. Lauguage Theory 

The basic structure of the language is not a 
particularly original one. Equations are pictured as 
a set of "boxes," pieced together in various ways. 
For example, something with a subscript is just a 
box followed by another box moved downward and 
shrunk by an appropriate amount. A fraction is just 
a box centered above another box, at the right alti
tude, with a line of correct length drawn between 
them. 

The grammar for the language is shown below. 
For purposes of exposition, we have collapsed some 
productions. In the original grammar, there are 
about 70 productions, but many of these are simple 
ones used only to guarantee that some keyword is 
recognized early enough in the parsing process. 
Symbols in capital letters are terminal symbols; 
lower case symbols are non-terminals. i.e., syntactic 
categories. The venical bar I indicates analterna
tive; the. brackets [ ] indicate optional material. A 
TEXT is a string of non-blank characters or any 
string inside double quotes; the other terminal sym
bols represent literal occurrences of the correspond
ing keyword. 

eqn : box I eqn box 

box . text 
( eqn } 
box OVER box 
SQRTbox 
box SUB box I box SUP box 
[ Lie I R ]PILE ( list } 
LEFT text eqn [ RIGHT text] 
box [ FROM box ] [ TO box ] 
SIZE text box 

USO:26-5 

[ROMAN I BOLD I ITALIC] box 
box [HAT I BAR I DOT I DOTDOT I TILDE] 
DEFINE text text 

list eqn I list ABOVE eqn 

text: TEXT 

The grammar makes it obvious why there are 
few exceptions. For example, the observation that 
something can be replaced by a more complicated 
something in braces is implicit in the productions: 

eqn : box I eqn box 
box : text I ( eqn } 

Anywhere a single character could be used, any legal 
construction can be used. 

Clearly, our grammar is highly ambiguous. 
What, for instance, do we do with· the input 

a over b over c ? 

Is it 

(a over b} over c 

or is it 

a over (b over c} ? 

To answer questions like this. the grammar is 
supplemented with a small set of rules that describe 
the precedence and associativity of operators. In 
particular, we specify (more or less arbitrarily) that 
over associates to the left, so the first alternative 
above is the one chosen. On the other hand. sub 
and sup bind to the right, because this is closer to 
standard mathematical practice. That is. we assume 
xab is x(abl, not (xa t . . 

The precedence rules resolve the ambiguity in 
a construction like 

a sup 2 over b 

We define sup to have a higher precedence than orer. 
, 2 

so this construction is parsed as :- instead of a b. 

Naturally, a user can always force a particular 
parsing by placing braces around expressions. 

The ambiguous grammar approach seems to 
be quite useful. The grammar we use is small 
enough to be easily understood. for it contains none 



USD:26-6 

of the productions that would be normally used for 
resolving ambiguity. Instead the supplemental infor
mation about precedence and associativity (also 
small enough to be understood) provides the 
compiler-compiler with the information it needs to 
make a fast, deterministic parser for the specific 
language we want. When the language is supple
mented by the disambiguating rules, it is in fact 
LR(l) and thus easy to parseCS]. 

The output code is generated as the input is 
scanned. Any time a production of the grammar is 
recognized, (potentially) some nOFF commands are 
output. For example, when the lexical analyzer 
reports that it has found a TEXT (i.e., a string of 
contiguous characters), we have recognized the pro
duction: 

text : TEXT 

The translation of this is simple. We generate a 
local name for the string, then hand the name and 
the string to TROFF, and let nOFF perform the 
storage management. All we save is the name of the 
string, its height, and its baseline. 

As another example, the translation associated 
with the production 

is: 

box : box OVER box 

Width of output box = 
slightly more than largest input width 

Height of output box = 
slightly more than sum of input heights 

Base of output box = 
slightly more than height of bottom input box 

String describing output box = 
move down; 
move right enough to center bottom box; 
draw bottom box (i.e., copy string for bottom box); 
move up; move left enough to center top box; 
draw top box (i.e., copy string for top box); 
move down and left; draw line full width; 
return to proper base line. 

Most of the other productions have equally simple 
semantic actions. Picturing the output as a set of 
properly placed boxes makes the right sequence of 
positioning commands quite obvious. The main 
difficulty is in finding the right numbers to use for 
esthetically pleasing positioning. 

With a grammar, it is usually clear how to 
extend the language. For instance, one of our users 
suggested a TENSOR operator, to make constructions 
like 

Grammatically, this is easy: it is sufficient to add a 
production like 

A System for Typesetting Mathematics 

box : TENSOR { list } 

Semantically, we need only juggle the boxes to the 
right places. 

6. Experience 

There are really three aspects of interest-how 
well .EQN sets mathematics, how well it satisfies its 
goal of being "easy to use," and how easy it was to 
build. 

The first question is easily addressed. This 
entire paper has been set by the program. Readers 
can judge for themselves whether it is good enough 
for their purposes. One of our users commented 
that although the output is not as good as the best 
hand-set material, it is still better than average, and 
much better than the worst. In any case, who cares? 
Printed books cannot compete with the birds and 
flowers of illuminated manuscripts on esthetic 
grounds, either, but they have some clear economic 
advantages. 

Some of the deficiencies in the output could 
be cleaned up with more work on our part. For 
example, we sometimes leave too much space 
between a roman letter and an italic one. If we were 
willing to keep track of the fonts involved, we could 
do this better more of the time. 

Some other weaknesses are inherent in our 
output device. It is hard, for instance, to draw a 
line of an arbitrary length without getting a percepti
ble overstrike at one end. 

As to ease of use, at the time of writing. the 
system has been used by two distinct groups. One 
user population consists of mathematicians, chem
ists, physicists, and computer scientists. Their typi
cal reaction has been something like: 

(1) It's easy to write, although I make the follow-
ing mistakes .. . 

(2) How do I do ... ? 

(3) It botches the following things .... Why don't 
you fix them? 

(4) You really need the following features ... 

The learning time is short. A few minutes 
gives the general flavor, and typing a page or two of 
a paper generally uncovers most of the misconcep
tions about how it works. 

The second user group is much larger. the 
secretaries and mathematical typists who were the 
original target of the system. They tend to be 
enthusiastic converts. They find the language easy 
to learn (most are largely self-taught), and have little 
trouble producing the output they want. They are of 
course less critical of the esthetics of their output 
than users trained in mathematics. After a transi
tion period, most find using a computer more 



A System for Typesetting Mathematics 

interesting than a regular typewriter. 

The main difficulty that users have seems to 
be remembering that a blank is a delimiter; even 
experienced users use blanks where they shouldn't 
and omit them when they are needed. A common 
instance is typing 

f{x sub i) 

which produces 

instead of 

f(xi) 

Since the EQN language knows no mathematics, it 
cannot deduce that the right parenthesis is not part 
of the subscript. 

The language is somewhat prolix, but this 
doesn't seem excessive considering how much is 
being done, and it is certainly more compact than 
the corresponding TROFF commands. For example, 
here is the source for the continued fraction expres
sion in Section 1 of this paper: . 

a sub 0 + b sub lover 
{a sub 1 + b sub 2 over 

{a sub 2 + b sub 3 over 
{a sub 3 + ... }}} 

This is the input for the large integral of Section 1; 
notice the use of definitions: 

define emx "{ e sup mx}" 
define mab "{ m sqrt ab}" 
define sa • {sqrt a}-
define sb -{sqrt b r 
int dx over {a emx - be sup -mx} ••• 
left ( lpile { 

lover {2 mab} 10& 
{sa emx - sb} over {sa emx + sb} 

above 
lover mab • tanh sup -1 ( sa over sb emx ) 

above 
-lover mab • coth sup -1 ( sa over sb emx ) 

As to ease of construction, we have already 
mentioned that there are really only a few person
months invested. Much of this time has gone into 
two things-fine-tuning (what is the most esthetically 
pleasing space to use between the numerator and 
denominator of a fraction?), and changing things 
found deficient by our users (shouldn't a tilde be a 
delimiter?). 

The program consists of a number of small, 
essentially unconnected modules for code genera
tion, a simple lexical analyzer, a canned parser 
which we did not have to write, and some miscel
lany associated with input files and the macro facil
ity. The program is now about 1600 lines ofC [6], a 

USD:26-7 

high-level language reminiscent of BCPL. About 20 
percent of these lines are "print" statements, gen
erating the output code. 

The semantic routines that generate .the actual 
TROFF commands can be changed to accommodate 
other formatting languages and devices. For exam
ple, in less than 24 hours, one of us changed the 
entire semantic package to drive NROFF, a variant 
of TROFF, for typesetting mathematics on teletype
writer devices capable of reverse line motions. Since 
many potential users do not have access to a 
typesetter, but still have to type mathematics, this 
provides a way to get a typed version of the final 
output which is close enough for debugging pur
poses, and sometimes even for ultimate use. 

7. Conclusions 

We think we have shown that it is possible to 
do acceptably good typesetting of mathematics on a 
phototypesetter, with an input language that is easy 
to learn and use and that satisfies many users' 
demands. Such a package can be implemented in 
short order, given a compiler-compiler and a decent 
typesetting program underneath. 

Defining a language, and building a compiler 
for it with a compiler-compiler seems like the only 
sensible way to do business. Our experience with 
the. use of a grammar and a compiler-compiler has 
been uniformly favorable. If we had written every
thing into code directly, we would have been locked 
into our original design. Furthermore, we would 
have never been sure where the exceptions and spe
cial cases were. But because we have a grammar, we 
can change our minds readily and still be reasonably 
sure that if a construction works in one place it will 
work everywhere. 

Acknowledgements 
We are deeply indebted to J. F. Ossanna, the 

author of TROFF, for his willingness to mOdify 
TROFF to make our task easier and for his continu
ous assistance during the development of our pro
gram. We are also grateful to A. V. Aho for help 
with language theory, to S. C. Johnson for aid with 
the compiler-compiler, and to our early users A. V. 
Aho, S. I. Feldman, S. C. Johnson, R. W. Hamming, 
and M. D. McIlroy for their constructive criticisms. 

References 
[1] A Manual of Style. 12th Edition. University 

of Chicago Press, 1969. p 295. 

[2] Model CIAIT Phototypesetter. Graphic Sys
tems, Inc., Hudson, N. H. 

[3] Ritchie, D. M., and Thompson, K. L.. "The 
UNIX time-sharing system." Comm. ACM 17. 
7 (July 1974), 365-375. 



USD:26-8 

(4] Ossanna. J. F., TROFF User's Manual. Bell 
Laboratories Computing Science Technical 
Report 54, 1977. 

(5) Abo, A. V., and Johnson, S. c., "LR Parsing.'· 
Compo Sun. 6, 2 (June 1974), 99·124. 

(6) B. W. K.emighanand D. M. Ritchie, The C 
Programming Langwige. Prentice-Hall, Inc., 
1978. 

A System for TyJ)esetting Mathematics 



Typesetting Mathematics - User's Guide USD:27-1 

Typesetting Mathematics - User's Guide (Second Edition) 

Brian W. Kernighan and Lorinda L. Cherry 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This is the user's guide for a system for typesetting mathematics, using the phototypesetters on 
the UNIXt operating system. 

Mathematical expressions are described in a language designed to be easy to use by people who 
know neither mathematics nor typesetting. Enough of the language to set in-line expressions like 
lim (tan x )sin 2x = 1 or display equations like 

X_ft/2 

G(z) = e1n G(z) = exp [2; Sk zk I = lleSkZk/k 
k~l k k~l 

[ Srz2 I [ S2z2 Sjz4 I = 1+S 1z+--+··· 1+--+--+ . .. . .. 
2! 2 22·2! 

can be learned in an hour or so. 
The language interfaces directly with the phototypesetting language TROFF, so mathematical 

expressions can be embedded in the running text of a manuscript, and the entire document produced 
in one process. This user's guide is an example of its output. 

The same language may be used with the UNIX formatter NROFF to set mathematical expressions 
on DASI and GSI terminals and Model 37 teletypes. 

1. Introduction 
EQN is a program· for typesetting 

mathematics on the Graphics Systems photo
typesetters on the UNIX operating system. The 
EQN language was designed to be easy to use by 
people who know neither mathematics nor 
typesetting. Thus EQN knows relatively little 
about mathematics. In particular, mathemati
cal symbols like +, -, x, parentheses, and so 
on have no special meanings. EQN is quite 
happy to set garbage (but it will look good). 

t UNIX is a trademark of AT&T Bell Laboratories. 

EQN works as a preprocessor for the 
typesetter formatter, TROFF[ 1], so the normal 
mode of operation is to prepare a document 
with both mathematics and ordinary text inter
spersed, and let EQN set the mathematics while 
TROFF does the body of the text. 

On UNIX, EQN will also produce 
mathematics on DASI and GSI terminals and on 
Model 37 teletypes. The input is identical, but 
you have to use the programs NEQN and NROFF 
instead of EQN and TROFF. Of course, some 
things won't look as good because terminals 



USD:27-2 

don't provide the variety of characters, sizes 
and fonts that a typesetter does, but the output 
is usually adequate for proofreading. 

To use EQN on UNIX, 

eqn files I troW 

2. Displayed Equations 

To tell EQN where a mathematical expres
sion begins and ends, we mark it with lines 
beginning .EQ and .EN. Thus if you type the 
lines 

.EQ 
x==y+z 
.EN 

your output will lock like 

x=y+z 

The .EQ and .EN are copied through untouched; 
they are not otherwise processed by EQN. This 
means that you have to take care of things like 
centering, numbering, and so on yourself. The 
most common way is to use the TROFF and 
NROFF macro package package '-ms' 
developed by M. E. Lesk[3], which allows you 
to center, indent, left-justify and number equa
tions. 

With the '-ms' package, equations are 
centered by default. To left-justify an equa
tion, use .EQ L instead of .EQ. To indent it, use 
.EQ I. Any of these can be followed by an arbi
trary 'equation number' which will be placed at 
the right margin. For example, the input 

.EQ I (3.1a) 
x == f(y/2) + y/2 
.EN 

produces the output 

x = 1(Y /2)+y /2 (3.1a) 

There is also a shorthand notation so in
line expressions like 1t'T can be entered without 
. EQ and .EN. We will talk about it in section 
19. 

3. Input spaces 

Spaces and newlines within an expression 
are thrown away by EQN. (Normal text is left 
absolutely alone.) Thus between .EQ and .EN, 

x=y+z 

and 

and 

Typesetting Mathematics - User's Guide 

x=y+z 

x == y 
+z 

and so on all produce the same output 

x=y+z 

You should use spaces and newlines freely to 
make your input equations readable and easy 
to edit. In particular, very long lines are a bad 
idea, since they are often hard to fix if you 
make a mistake. 

4. Output spaces 

To force extra spaces into the output, use 
a tilde ,. -" for each space you want: 

x-.-y-+-z 

gives 

x = y + z 

You can also use a circumflex HA", which gives 
a space half the width of a tilde. It is mainly 
useful for fine-tuning. Tabs may also be used 
to position pieces of an expression, but the tab 
stops must be set by TROFF commands. 

S. Symbols, Special Names, Greek 

EQN knows some mathematical symbols, 
some mathematical names, and the Greek 
alphabet. For example, 

x=2 pi int sin ( omega t)dt 

produces 

X =21t' f sin(wl )dt 

Here the spaces in the input are necessary to 
tell EQN that int, pi. sin and omega are separate 
entities that should get special treatment. The 
sin. digit 2, and parentheses are set in roman 
type instead of italic; pi and omega are made 
Greek; and int becomes the integral sign . 

When in doubt, leave spaces around 
separate parts of the input. A very common 
error is to type f(pi) without leaving spaces on 
both sides of the pi. As a result, EQN does not 
recognize pi as a special word, and it appears 
as 1(Pi) instead of 1(1t'). 

A complete list of EQN names appears in 
section 23. Knowledgeable users can also use 
TROFF four-character names for anything EQN 



Typesetting Mathematics - User's Guide 

doesn't know about, like \{bs for the Bell Sys
tem sign @. 

6. Spaces, Again 
The only way EQN can deduce that some 

sequence of letters might be special is if that 
sequence is separated from the letters on either 
side of it. This can be done by surrounding a 
special word by ordinary spaces (or tabs or 
newlines), as we did in the previous section. 

You can also make special words stand 
out by surrounding them with tildes or 
circumflexes: 

x-= -2-prinCsinTomega-tTdt 

is much the same as the last ex~mple, except 
that the tildes not only separate the magic 
words like sin, omega, and so on, but also add 
extra spaces, one space per tilde: 

x = 2 11' J sin ( w t ) dt 

Special words can also be separated by 
braces { } and double quotes " ... ", which. have 
special meanings that we will see soon. 

7. Subscripts and Superscripts 
Subscripts and superscripts are obtained 

with the words sub and sup. 

x sup 2 + Y sub k 

gives 

X 2+Yk 

EQN takes care of all the size changes and verti
cal motions needed to make the output look 
right. The words sub and sup must be sur
rounded by spaces; x sub2 will give you xsub 2 
instead of X2' Furthermore, don't forget to 
leave a space (or a tilde, etc.) to mark the end 
of a subscript or superscript. A common error 
is to say something like 

y = (x sup 2)+ 1 

which causes 

Y =(X2)+1 

instead of the intended 

Y =(x2)+ 1 

Subscripted subscripts and superscripted 
superscripts also work: 

USD:27-3 

x sub i sub 1 

is 

A subscript and superscript on the same thing 
are printed one above the other if the subscript 
comes first: 

x sub i sup 2 

is 

x? 
Other than this special case, sub and sup 

group to the right, so x sup y sub z means xYz, 
not xY z. 

8. Braces for Grouping 

Normally, the end of a subscript or super
script is marked simply by a blank (or tab or 
tilde, etc.) What if the subscript or superscript 
is something that has to be typed "lith blanks 
in it? In that case, you can use the braces { 
and } to mark the beginning and end of the 
subscript or superscript: 

e sup {i omega t} 

is 

Rule: Braces can always be used to force EQN 

to treat something as a unit, or just to make 
your intent perfectly clear. Thus: 

x sub {i sub I} sup 2 

is 

with braces, but 

x sub i sub 1 sup 2 

is 

which is rather different. 
Braces can occur within braces if neces

sary: 

e sup {i pi sup {rho + 1 } } 

is 



USD:27-4 

The general rule is that anywhere you could use 
some single thing like x, you can use an arbi
trarily complicated thing if you enclose it in 
braces. EQN will look after all the details of 
positioning it and making it the right size. 

In all cases, make sure you have the right 
number of braces. Leaving one out or adding 
an extra will cause EQN to complain bitterly. 

Occasionally you will have to print 
braces. To do this, enclose them. in double 
quotes, like "{". Quoting is discusseq in 0 more 
detail in section 14. 

9. Fractious 
To make a fraction, use the word over: 

a+b over 2c -1 

gives 

. .!!:!:E.. 1 
2c 

The line is made the right length and posi-
o tioned automatically. Braces can be used to 
make clear what goes over what: 

{alpha + beta} over (sin (x}) 

is 

a+fJ 
sin(x) 

What happens when there is both an over and a 
sup in the same expression? In such an 
apparently ambiguous case, EQN does the sup 
before the over, so 

-b sup 2 over pi 

is _b2 instead of -b ~ The rules which decide 
1f' 

which operation is done first in cases like this 
are summarized in section 23. When in doubt, 
however, use braces to make clear what goes 
with what. 

10. Square Roots 
To draw a square root, use sqrt: 

sqrt a+b + lover sqrt {ax sup 2 +bx+c} 

is 

.Ja+b + 1 vax2+bx+c 

Warning - square roots of tall quantities look 
lousy, because a root-sign big enough to cover 
the quantity is too dark and heavy: 

Typesetting Mathematics - Users Guide 

sqrt {a sup 2 over b sub 2} 

is 

If, 
Big square roots are generally better written as 
something to the power 112: 

(a2/b 2)'/z 

which is 

o (a sup 2 Ib sub 2 ) sup half 

11. SulDmation, lategral, Etc. 

Summations, integrals, and similar con
structionS are easy: 

sum from i=O to {i= inf} x sup i 

. produces 

Notice that we used braces to indicate where 
the upper part i -00 begins and ends. No 
braces were necessary for the lower part i =0, 
because it contained no blanks. The braces 
will never hurt, and if the from and to parts 
contain any blanks, you must use braces 
around them. 

The from and to parts are both optional, 
but if both are used, they have to occur in that 
order. 

Other useful characters can replace the 
sum in our example: 

int prod union inter 

become, respectively, 

J IT u n 
Since the thing before the from can be any
thing, even something in braces, from-to can 
often be used in unexpected ways: 

lim from {n -> inf} x sub n =0 

is 

limxn=O 
n-oo 



Typesetting Mathematics - User's Guide 

12. Size and Font Changes 

By default, equations are set in 10-point 
type (the same size as this guide), with stan
dard mathematical conventions to determine 
what characters are in roman and what in 
italic. Although EQN makes a valiant attempt 
to use esthetically pleasing sizes and fonts, it is . 
not perfect. To change sizes and fonts, use size 
n and roman, italic, bold and fat. Like sub and 
sup. size and font changes affect only the thing 
that follows them, and revert to the normal 
situation at the end of it. Thus 

is 

and 

gives 

bold x y 

xy 

size 14 bold x = y + 
size 14 {alpha + beta} 

x=y+cx+jj 
As always, you can use braces if you want to 
affect something more complicated than a sin
gle letter. For example, you can change the . 
size of an entire equation by 

size 12{ ... } 

Legal sizes which may follow size are 6, 7, 
8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36. 
You can also change the size by a given 
amount; for example, you can say size + 2 to 
make the size two points bigger, or size -3 to 
make it three points smaller. This has the 
advantage that you don't have to know what 
the current size is. 

If you are using fonts other than roman, 
italic and bold, you can say font X where X is a 
one character TROFF name or number for the 
font. Since EQN is tuned for roman, italic and 
bold, other fonts may not give quite as good an 
appearance. 

The fat operation takes the current font 
and widens it by overstriking: fat grad is V and 
fat {x sub i} is Xi' 

If an entire document is to be in a non
standard size or font, it is a severe nuisance to 
have to write out a size and font change for 
each equation. Accordingly, you can set a 
"global" size or font which thereafter affects all 
equations. At the beginning of any equation, 

you might say, for instance, 

.EQ 
gsize 16 
gfont R 

.EN 

USD:27-5 

to set the size to 16 and the font to' roman 
thereafter. In place of R, you can use any of 
the TROFF font names. The size after gsize can 
be a relative change with + or -. 

Generally, gsize and gfont will appear at 
the beginning of a document but they can also 
appear thoughout a document: the global font 
and size can be changed as often as needed. 
For example, in a footnote; you will typically 
want the size of equations to match the size of 
the footnote text, which is two points smaller 
than the main text. Don't forget to reset the 
global size at the end of the footnote. 

13. Diacritical Marks 

To get funny marks on top of letters, 
there are several words: 

x dot x 
x dotdot x 
x hat x 
x tilde x -x vec x 
x dyad -x 
x bar x 
x under x 

The diacritical mark is placed at the right 
height. The bar and under are made the right 
length for the entire construct, as in x + y + z; 
other marks are centered. 

14. Quoted Text 

Any input entirely within quotes (" ..... ) is 
not subject to any of the font changes and 
spacing adjustments normally done by the 
equation setter. This provides a way to do 
your own spacing and adjusting if needed: 

italic "sin(x)" + sin (x) 

is 

sin(x) +sin(x) 

:j:Like this one, in which we have a few random ex
pressions like Xi and 1rl. The sizes for these were set 
by the command gsi=e - 2. 



USD:27-6 

Quotes are also used to get braces and 
other EQN keywords printed: 

"{ size alpha }" 

is 

{ size alpha } 

and 
, 

roman "{ size alpha }" 

is 

{ size alpha } 

The construction "" is often used as a 
place-holder when grammatically EQN needs 
something, but you don't actually want any
thing in your output. For example, to make 
2He, you can't just type sup 2 roman He 
because a sup has to be a superscript on some
thing. Thus you must say 

"" sup 2 roman He 

To get a literal quote use "\"". nOFF 
characters like \{bs can appear unquoted, but 
more complicated things like horizontal and 
vertical motions with \h and \ v shouid always 
be quoted. (If you've never heard of\h and \v, 
ignore this section.) 

IS. Lining Up Equations 

Sometimes it's necessary to line up a 
series of equations at some horizontal position, 
often at an equals sign. This is done with two 
operations called mark and lineup. 

The word mark may appear once at any 
place in an equation. It remembers the hor
izontal position where it appeared. Successive 
equations can contain one occurrence of the 
word lineup. The place where lineup appears is 
made to line up with the place marked by the 
previous mark if at all possible. Thus, for 
example, you can say . 

.EQ I 
x+y mark = z 
. EN 
.EQ I 
x lineup = 1 
.EN 

to produce 

x+y=z 

x-I 

Typesetting Mathematics - User's Guide 

For reasons too complicated to talk about, 
when you use EQN and '-ms', use either .EQ I 
or .EQ L. mark and lineup don't work with cen
tered equations. Also bear in mind that mark 
doesn't look ahead; . 

x mark =1 

x+y lineup -z 

isn't going to work, because there isn't room 
for the x+y part after the mark remembers 
where the x is. 

16. Big Brackets, Etc. 

To get big brackets [], braces {}, 
parentheses ( ), and bars I I around things, use 
the left and right commands: 

is 

left { a over b + 1 right } 
-. -left ( cover d right) 
+ left [ e right ] 

The resulting brackets are made big enough to. 
cover whatever they enclose. Other characters 
can be used besides these, but the are not likely 
to look very good. One exception is the floor 
and ceiling characters: 

left floor x over y right floor 
<- left ceiling a over b right ceiling 

produces 

Several warnings about brackets are in 
order. First, braces are typically bigger than 
brackets and parentheses, because they are 
made up of three, five, seven, etc., pieces, while 
brackets can be made up of two, three, etc. 
Second, big left and right parentheses often 
look poor, because the character set is poorly 
designed . 

The right part may be omitted: a "left 
something" need not have a corresponding 
"right something". If the right part is omitted, 
put braces around the thing you want the left 
bracket to encompass. Otherwise, the resulting 
brackets may be too large. 

If you want to omit the left part, things 
are more complicated, beCause technically you 



Typesetting Mathematics - User's Guide 

can't have a right without a corresponding left. 
Instead you have to say 

left ••..... right ) 

for example. The left •• means a "left noth
ing". This satisfies the rules without hurting 
your output. 

17. Piles 
There is a general facility for making vert

ical piles of things; it' comes in several flavors. 
For example: 

A -.-left [ 
pile { a above b above c } 
- pile { x above y above z } 

right] 

will make 

The elements of the pile (there can be as many 
as you want) are centered one above another, 
at the right height for most purposes. The key
word above is used to separate the pieces; 
braces are used around the entire list. The ele
ments of a pile can be as complicated as 
needed, even containing more piles. 

Three other forms of pile exist: Ipile 
makes a pile with the elements left-justified; 
rpile makes a right-justified pile; and cpile 
makes a centered pile, just like pile. The verti
cal spacing between the pieces is somewhat 
larger for 1-. r- and cpiles than it is for ordinary 
piles. 

roman sign (xf=
left { 

lpile {I above 0 above - 1 } 
-lpile 
{ifx>O above ifx=O above ifx<O} 

makes 

sign(x) = l~ 
-1 

if x>o 
if x=o 
if x<o 

Notice the left brace without a matching right 
one. 

USD:27-7 

18. Matrices 
It is also possible to make matrices. For 

example, to make a neat array like 

you have to type 

matrix { 

Xi x 2 

-2 
. Yi Y 

ccol { x sub i above y sub i } 
ccol { x sup 2 above y sup 2 } 

} 

This produces a matrix with two centered 
columns. The elements of the columns are 
then listed just as for a pile, each element 
separated by the word above. You can also use 
Icol or rcol to left or right adjust columns. 
Each column can be separately adjusted, and 
there can be as many columns as you like. 

The reason for using a matrix instead of 
two adjacent piles, by the way, is that if the 
elements of the piles don't all have the sallie 
height, they won't line up properly. A matrix 
forces them to line up, because it looks at the 
entire structure before deciding what spacing to 
use. 

A word of warning about matrices - each 
column must have the same number of elements 
in it. The world will end if you get this wrong. 

19. Shorthand for In-line Equations 

In a mathematical document, it is neces
sary to follow mathematical conventions not 
just in display equations, but also in the body 
of the text, for example by making variable 
names like X italic. Although this could be 
done by surrounding the appropriate parts with 
.EQ and .EN, the continual repetition of .EQ and 
.EN is a nuisance. Furthermore, with '-ms', 
.EQ and .EN imply a displayed equation. 

EQN provides a shorthand for short in
line expressions. You can define two charac
ters to mark the left and right ends of an in
line equation, and then type expressions right 
in the middle of text lines. To set both the left 
and right characters to dollar signs, for exam
ple, add to the beginning of your document the 
three lines 

.EQ 
delim $$ 
.EN 

Having done this, you can then say things like 



USD:27·8 

Let $alpha sub i$ be the primary vari
able, and let $beta$ be zero. Then we 
can show that $x sub 1$ is $>=0$. 

This works as you might expect - spaces, new
lines, and so on are significant in the text, but 
not in the equation part itself. Multiple equa
tions can occur in a single input line. 

Enough room is left before and after a 
line that contains in-line expressions that some-

R 

thing like ~Xi does not interfere with the lines 
i-I 

surrounding it. 

To tum off the delimiters, 

. EQ 
delim off 
.EN 

Warning: don't use braces, tildes, circumflexes, 
. or double quotes as delimiters - chaos will 

result. • 

20. Definitions 

EQN provides a facility so you can give a 
frequently-used string of characters a name, 
and thereafter just type the name instead of the 
whole string. For example, if the sequence 

x sub i sub 1 + Y subi sub 1 

appears repeatedly throughout a paper, you can 
save re-typing it each time by defining it like 
this: 

define xy IX sub i sub 1 + Y sub i sub 1 I 

This makes xy a shortband for whatever char
acters occur between the single quotes in the 
definition. You can use any character instead 
of quote to mark the ends of the definition, so 
long as it doesn't appear inside the definition. 

Now you can use xy like this: 

.EQ 
f(x) = xy ... 
. EN 

and so on. Each occurrence of xy will expand 
into what it was defined as. Be careful to leave 
spaces or their equivalent around the name 
when you actually use it, so EQN will be able to 
identify it as special. 

There are several things to watch out for. 
First, although definitions can use previous 
definitions, as in 

Typesetting Mathematics - User's Guide 

.EQ 
define xi 'x sub i ' 
define xii ' xi sub 1 ' 
.EN 

don't define something in terms of itself A 
favorite error is to say 

define X I roman X ' 

This is a guaranteed disaster, since X is now 
defined in terms of itself. If you say 

define X 'roman ·X· , 

however, the quotes protect the second X, and 
everything works fine . 

EQN keywords can be redefined. You can 
make / mean over by saying 

define / 'over' 

or redefine over as / with 

define over '/' 

If you. need different things to print on a 
terminal and on the typesetter, it is sometimes 
worth defining a symbol differently in NEQN 
and EQN: This can be done with ndefine and 
tdefine. A definition made with ndefine only 
takes effect if you are running NEQN; if you use 
tdefine, the definition only applies for EQN. 
Names defined with plain define apply to both 
EQN and NEQN. 

21. Local Motions 

Although EQN tries to get most things at 
the right place on the paper, it isn't perfect, 
and occasionally you will need to tune the out
put to make it just right. Small extra horizon
tal spaces can be obtained with tilde and 
circumflex. You can also say back n and fwd n 
to move small amounts horizontally. n is how 
far to move in 1/100's of an em (an em is 
about the width of the letter 'm'.) Thus back 50 
moves back about half the width of an m . 
Similarly you can move things up or down with 
up n and down n. As with sub or sup, the local 
motions affect the next thing in the input, and 
this can be something arbitrarily complicated if 
it is enclosed in braces. 

22. A Large Example 

Here is the complete source for the three 
display equations in the abstract of this guide. 



Typesetting Mathematics - User's Guide 

.EQ I . 
G(zfmark ." e sup ( In " G(z) } 
--" exp left ( 
sum from b-I {S sub k z sup k} over k right) 
--- prod from b-I e sup {S sub k z sup k /lc} 
.EN 
.EQI 
lineup -left( 1 + S sub 1 z + 
{ S sub 1 sup 2 z sup 2 } over 2! + ... right) 
left ( 1+ { S sub 2 z sup 2 } over 2 
+ {Ssub2sup2zsup4} over (2sup2cdot2!) 
+ ... riaht ) ... 
.EN 
.EQ I 
lineup. sum from m>-O left ( 
sum from 
pile { k sub I ,k: sub 2 ..... k sub m >-0 
above 
k sub 1 +2k sub 2 + ... +mk sub m am} 
{ S sub 1 sup {k sub I} ) over {I sup k sub 1 k sub 1 ! } • 
{ S sub 2 sup {k sub 2} ) over {2 sup k sub 2 k sub 2 ! } " 
... 
{ S sub m sup (k sub rn) } over {m sup k sub m k sub m ! } 
right) z sup m 
.EN 

23. Keywords, Precedences, Etc. 

If you don't use braces, EQN will do 
operations in the order shown in this list. 

dyad vee under bar tilde hat dot dotdot 
fwd back down up 
fat roman italic bold size 
sub sup sqrt over 
from to 

These operations group to the left: 

over sqrt left right 

All others group to the right. 

Digits, parentheses, brackets, punctuation 
marks, and these mathematical words are con
verted to Roman font when encountered: 

sin cos tan sinh cosh tanh arc 
max min lim log In exp 
Re 1m and if for det 

These character sequences are recognized and 
translated as shown. 

>- ~ 

<= S 
== = 
!= :F 
+- ± 
-> -<- -« « 

» 
inf 
partial 
half 
prime 
approx 
nothing 
cdot 
times 
del 
grad 

, ... , 
sum 

int 
prod 
union 
inter 

» 
00 

a 
1/2 

:::: 

x 
yo 
yo 

, ... , 
~ 

h 
n 
n 

USD:27-9 

To obtain Greek letters, simply spell them 
out in whatever case you want: 

DELTA 41 iota 
GAMMA r kappa /C 

LAMBDA A lambda A 
OMEGA Q mu p. 

PHI ~ nu u 
PI n omega w 
PSI it omicron 0 

SIGMA ~ phi rP 
THETA e pi 11' 

UPSILONT psi 1/1 
XI - rho. - p -alpha a sigma q 

beta {j tau T 

chi x theta (J 

delta 6 upsilon v 
epsilon E xi ~ 
eta 7f zeta r 
gamma 'Y 

These are all the words known to EQN 
(except for characters with names), together 
with the section where they are discussed. 

above 17, 18 Ipile 17 
back 21 mark 15 
bar 13 matrix 18 
bold 12 ndefine 20 
ccol 18 over 9 
col 18 pile 17 
cpile 17 rcol 18 
define 20 right 16 



USD:27-10 

delim 19 roman 12 
dot 13 rpile 17 
dotdot 13 size 12 
down 21 sqrt 10 
dyad 13 sub 7 
fat 12 sup 7 
font 12 tdefine 20 
from 11 tilde 13 
fwd 21 to 11 
afont 12 under 13 
gsize 12 up 21 
hat 13 vee 13 
italic 12 , 4,6 
lcol 18 { } 8 
left 16 8, 14 
lineup 15 

24. TroubleshootiDg 

If you make a mistake in an equation, 
like leaving out a brace. (very common) or hav
ing one too many (very common) or having. a 
sup with nothing before it (common), EQN WIn 
ten you with the message 

syntax e"or between lines x and y, file z 

where x and y are approximately the lines 
between which the trouble occurred, and z is 
the name of the file in question. The line 
numbers are· approximate - look nearby as 
well. There are also self-explanatory messages 
that arise if you leave out a quote or try to run 
EQN on a non-existent file. 

If you want to cheek a document before 
actually printing it (on UNIX only), 

eqn files >/dev/null 

will throwaway the output but print the mes
sages. 

If you use something like dollar signs as 
delimiters, it is easy to leave one out. This 
causes very strange troubles. The program 
checkeq checks for misplaced or missing dollar 
signs and similar troubles. 

In-line equations can only be so big 
because of an internal buffer in nOFF. If you 
get a message "word overflow", you have 
exceeded this limit. If you print the equation 
as a displayed equation this message will usu
ally go away. The message "line overflow" 
indicates you have exceeded an even bigger 
buffer. The only cure for this is to break the 
equation into two separate ones. 

Typesetting Mathematics - User's Guide 

On a related topic, EQN does not break 
equations by itself - you must split long equa
tions up across multiple lines by yourself, 
marking each by a separate .EQ •••. EN sequence. 
EQN does warn about equations that are too 
long to fit on one line. 

25. Use OD UNIX . 
To print a document that contains 

mathematics on the UNIX typesetter, 

eqn files I troff 

If there are any nOFF options, they go after 
the nOFF part of the command. For example, 

eqn files I troff - IDS 

A compatible version of EQN can be used 
on devices like teletypes and DASI and GSI ter
minals which have half-line forward and 
reverse capabilities. To print equations on a 
Model 37 teletype, for example, use 

neqn files I nroff 

The language for equations recognized by NEQN 
is identical to that of EQN, although of course 
the output is m.ore restricted. 

To use a GSI or DASI terminal as the out
put device, 

neqn files I nroff - T x 

where x is the terminal type you are using, 
such as 300 or 300S. 

EQN and NEQN can be used with the TBl 
program(2] for setting tables that contain 
mathematics. Use TBL before {N]EQN, like this: 

tbl files I eqn I troff 
tbl files I neqn I nroff 

26. Acknowledgments 

We are deeply indebted to J. F. Ossanna, 
the author of nOFF, . for his willingness to 
extend TROFF to make our task easier, and for 
his continuous assistance during the develop
ment and evolution of EQN. We are also grate
ful to A. V. Aho for advice on language design, 
to S. C. Johnson for assistance with the YACC 

compiler-compiler, and to all the EQN users 
who have made helpful suggestions and criti
cisms. 



Typesetting Mathematics - User's Guide 

References 

[1] J. F. Ossanna, "NROFFITROFF User's 
Manual", Bell Laboratories Computing 
Science Technical Report #54, 1976. 

[2] M. E. Lesk, "Typing Documents on 
UNIX", Bell Laboratories, 1976. 

[3] M. E. Lesk, "TBL - A Program for Set
ting Tables", Bell Laboratories Comput
ing Science Technical Report #49, 1976. 

USD:27-11 





Tbl - A Program to Format Tables 

Tbl - A Program to Format Tables 

M. E. Lesk 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

USD:28-1 

Tbl is a document formatting preprocessor for troff or nroff which makes even 
fairly complex tables easy to specify and enter. It is available on the UNIXt system 
and on Honeywell 6000 GeOS. Tables are made up of columns which may be 
independently centered, right-adjusted, left-adjusted, or aligned by decimal points. 
Headings may be placed over single columns or groups of columns. A table entry 
may contain equations, or may consist of several rows of text. Horizontal or vertical 
lines may be drawn as desired in the table, and any table or element may be 
enclosed in a box. For example: 

1970 Federal Budget T~nsfers 
(in billions of dollars) 

State 
Taxes Money 

Net 
collected spent 

New York 22.91 21.35 -1.56 
New Jersey 8.33 6.96 -1.37 
Connecticut 4.12 3.10 -1.02 
Maine 0.74 0.67 -0.07 
California 22.29 22.42 +0.13 
New Mexico 0.70 1.49 +0.79 
Georgia 3.30 4.28 +0.98 
Mississippi 1.15 2.32 + 1.17 
TexaS 9.33 11.13 +1.80 

Introduction. 

Tbl turns a simple description of a table into a troff or nroff[I] program (list of commands) that 
prints the table. Tbl may be used on the UNIX [2] system and on the Honeywell 6000 GCOS system. 
It attempts to isolate a portion of a job that it can successfully handle and leave the remainder for 
other programs. Thus tbl may be used with the equation formatting program eqn [3] or various lay
out macro packages [4,5,6], but does not duplicate their functions. 

This memorandum is divided into two parts. First we give the rules for preparing tbl input; 
then some examples are shown. The description of rules is precise but technical, and the beginning 
user may prefer to read the examples first, as they show some common table arrangements. A section 
explaining how to invoke tbl precedes the examples. To avoid repetition, henceforth read troff as 
"troff or nroff." . 

The input to tbl is text for a document, with tables preceded by a ... TS" (table start) command 
and followed by a ". TE" (table end) command. Tbl processes the tables, generating troff formatting 

t UNIX is a trademark of AT&T Bell Laboratories. 



USD:28-2 Tbl - A Program to Format Tables 

commands, and leaves the remainder of the text unchanged. The". TS" and " • TE" lines are copied, 
too, so that troffpage layout macros (such as the memo formatting macros [4]) can use these lines to 
delimit and place tables as they see fit. In particular, any arguments on the " • TS" or " . TE" lines are 
copied but otherwise ignored, and may be used by document layout macro commands. 

The format of the input is as follows: 

text 
.TS 
table 
.TE 
text 
.TS 
table 
.TE 
text 

where the format of each table is as follows: 

.TS 
options; 
format. 
data 
.TE 

Each table is independent, and must contain formatting information followed by the data to be 
entered in the table. The formatting information, which describes the individual columns and rows 
of the table, may be preceded by a few options that affect the entire table. A detailed description of 
tables is given in the next section. 

Input commands. 
As indicated above, a table contains, first, global options, then a format section describing the 

layout of the table entries, and then the data to be printed. The format and data are always required, 
but not the options. The various parts of the table are entered as follows: 

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this line 
must follow the • TS line immediately and must contain a list of option names separated by 
spaces, tabs, or commas, and must be terminated by a semicolon. The allowable options are: 

center - center the table (default is left-adjust); 
expand - make the table as wide as the current line length; 
box - enclose the table in a box; 
allbox - enclose each item in the table in a box; 
doublebox - enclose the table in two boxes; 
tab (x) - use x instead of tab to separate data items. 
linesize (n) - set lines or rules (e.g. from box) in n point type; 
delim (xy) - recognize x and y as the eqn delimiters. 

The tbi program tries to keep boxed tables on one page by issuing appropriate "need" (. ne ) 
commands. These requests are calculated from the number of lines in the tables, and if there 
are spacing commands embedded in the input, these requests may be inaccurate; use normal 
troff procedures, such as keep-release macros, in that case. The user who must have a multi
page boxed table should use macros designed for this purpose, as explained below under 'Usage.' 



Tbl ~ A Program to Format Tables USD:28-3 

2) FORMAT. The format section of the table specifies the layout of the columns. Each line in this 
section corresponds to one line of the table (except that the last line corresponds to all following 
lines up to the next • T &, if any - see below), and each line contains a key-letter for each 
column of the table. It is good practice to separate the key letters for each column by spaces or 
tabs. Each key-letter is one of the following: 

L or 1 to indicate a left-adjusted column entry; 

R or r to indicate a right-adjusted column entry; 

Cor c to indicate a centered column entry; 

Nor D to indicate a numerical column entry, to be aligned with other numerical entries so 
that the units digits of numbers line up; 

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on the left, 
and positioned so that the widest is centered within the column (see example on page 
12); 

S ori 5 to indicate a spanned heading, i.e. to indicate that the entry from the previous 
column continues across this column (not allowed for the first column, obviously); or 

A to indicate a vertically spanned heading, i.e. to indicate that the entry from the previ
ous row continues down through this row. (Not allowed for the first row of the table, 
obviously). 

When numerical alignment is specified, a location for the decimal point is sought. The right
most dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit, 
the rightmost digit is used as a units digit; if no alignment is indicated, the item is centered in 
the column. However, the special non-printing character string \& may. be used to override 
unconditionally dots and digits, or to align alphabetic data; this string lines up where a dot nor
mally would~ 'and then disappears from the final output. In the example below, the items shown 
at the left will be aligned (in a numerical column) as shown on the right: 

13 13 
4.2 4.2 
26.4.12 26.4.12 
abc abc 
abc\& abc 
43\&3.22 433.22 
749.12 749.12 

Note: If numerical data are used in the same column with wider L or r type table entries, the 
widest number is centered relative to the wider L or r items (L is used instead of I for readabil
ity; they have the same meaning as key-letters). Alignment within the numerical items is 
preserved. This is similar to the behavior of a type data, as explained above. However, alpha
betic subcolumns (requested by the a key-letter) are always slightly indented relative to L items; 
if necessary, the column width is increased to force this. This is not true for n type entries. 

Warning: the n and a items should not be used in the same column. 

For readability, the key-letters describing each column should be separated by spaces. The end 
of the format section is indicated by a period. The layout of the key-letters in the format sec
tion resembles the layout of the actual data in the table. Thus a simple format might appear as: 

c s s 
Inn. 

which specifies a table of three columns. The first line of the table contains a heading centered 
across all three columns; each remaining line contains a left-adjusted item in the first column 
followed by two columns of numerical data. A sample table in this format might be: 



USD:28-4 

Overall title 
Item-a 
Item-b 
Items: c,d,e 
Total 

34.22 
12.65 
23 
69.87 

9.1 
.02 

5.8 
14.92 

Tbl- A Program to Format Tables 

There are some additional features of the key-letter system: 

Horizontallines . 
- A key-letter may be replaced by '_' (underscore) to indicate a horizontal line in place of 
the corresponding column entry, or by ':a' to indicate a double horizontal line. If an adja
cent column contaiDS Ii horizontal line, or if there are vertical lines adjoining this column, 
this horizontal liae is extended to meet the nearby lines. If any data entry is provided for 
this column, it is ignored and a warning message is printed. 

Vertical lines 
- A vertical bar may be placed between column key-letters. This will cause a vertical line 
between the corresponding columns of the table. A vertical bar to the left of the first key
letter or to the right of the last one produces a line at the edge of the table. If two vertical 
bars appear between key-letters, a double vertical line is drawn. 

Space between columns 
- A number may follow the key-letter. This indicates the amount of separation between 
this column and the next column. The number normally specifies the separation in ens 
(one en is about the width of the letter 'n').* If the "expand" option is used, then these 
numbers are multiplied by a constant such that the table is as wide as the current line 
length. The default column separation number is 3. If the separation is changed the worst 
case (largest space requested) governs . 

. . Vertical spanning 
- Normally, vertically spanned items extending over several rows of the table are centered 
in their vertical range. If a key-letter is followed by t or T, any corresponding vertically 
spanned item will begin at the top line of its range. 

Font changes 
- A key-letter may be followed by a string containing a font name or number preceded by 
the letter for F. This indicates that the corresponding column should be in a different 
fQnt from the default font (usually Roman). All font names a:re one or two letters; a one
letter font name should be separated from whatever follows by a space or tab. The single 
letters B, b, I, and i are shorter synonyms for fB and n. Font change commands given 
with the table entries override these specifications. 

Point size changes 
- A key-letter may be followed by the letter p or P and a number to indicate the point size 
of the corresponding table entries. The number may be a signed digit, in which case it is 
taken as an increment or decrement from the current point size. If both a point size and a 
column separation value are given, one or more blanks must separate them. 

Vertical spacing changes 
- A key-letter may be followed by the letter v or V and a number to indicate the vertical 
line spacing to be used within a multi-line corresponding table entry. The number may be 
a signed digit, in which case it is taken as an increment or decrement from the current 
vertical spacing. A column separation value must be separated by blanks or some other 
specification from a vertical' spacing request. This request has no effect unless the 
corresponding table entry is a text block (see below), 

Column width indication 
- A key-letter may be followed by the letter w or W and a width value in parentheses. 

• More precisely. an en is a number of points (I point = 1172 i~ch) equal to half the current type size. 



Tbl - A Program to Format Tables USD:28-S 

. 
This width is used as a minimum column width. If the largest element in the column is 
not as wide as the width value given after the w, the largest element is assumed to be that 
wide. If the largest element in the column is wider than the specified value, its width is 
used. The width is also used as a default line length for included text blocks. Nor:mal .troff 
units can be used to scale the width value; if none are used, the default is ens. If the width 
specification is a unitless integer the parentheses may be omitted. If the width value is 
changed in a column, the last one given controls. 

Equal width columns 
- A key-letter may be followed by the letter e or E to indicate equal width columns. All 
columns whose key-letters are followed by e or E are made the same width. This permits 
the user to get a group of regularly spaced columns. 

Note: 
The order of the above features is immaterial; they need not be separated by spaces, except 
as indicated above to avoid ambiguities involving point size and font changes. Thus a 
numerical column entry in italic font and 12 point type with a minimum width of 2.S 
inches and separated by 6 ens from the next column could be specified as 

npI2w(2.Si)fI 6 

Alternative notation 
- Instead of listing the format of successive lines of a table on consecutive lines of the for
mat section, successive line formats may be given on the same line, separated by cO,mmas, 
so that the format for the example above might have been written: 

css,lnn. 
Default 

- Column descriptors missing from the end of a format line are assumed to be L. The 
longest line in the format section, however, defines the number of columns in the table; 
extra columns in the data are ignored silently: . 

3) DATA. The data for the table are typed after the format. Normally, each table line is typed as 
one line of data. Very long input lines can be broken: any line whose last character is \ is com
bined with the following line (and the \ vanishes). The data for different columns (the table 
entries) are separated by tabs, or by whatever character has been specified in the option tabs 
option. There are a few special cases: 

Troff commands within tables 
- An input line beginning with a ' .' followed by anything but a number is assumed to be a 
command to troff and is passed through unchanged, retaining its position in the table. So, 
for example, space within a table may be produced by " .sp" commands in the data. 

Full width horizontal lines 
- An input line containing only the character (underscore) or - (equal sign) is taken to 
be a single or double line, respectively, extending the full width of the table. 

Single column horizontal lines 
- An input table entry containing only the character _ or = is taken to be a single or dou
ble line extending the full width of the column. Such lines are extended to meet horizontal 
or vertical lines adjoining this column. To obtain these characters explicitly in a column, 
either precede them by \& or follow them by a space before the usual tab or newline. 

Short horizontal lines 
- An input table entry containing only the string \ is taken to be a single line as wide as 
the contents of the column. It is not extended to meet adjoining lines. 

Vertically spanned items 
- An input table entry containing only the character string \ A indicates that the table 
entry immediately above spans downward over this row. It is equivalent to a table format 
key-letter of '''' •. 



USD:28-6 Tbl - A Program to Format Tables 

Text blocks 
- In order to include a block of text as a table entry, precede it by T{ and follow it by T}. 
Thus the sequence 

••• T{ 
block of 
text 
T} ••• 

is the way to enter, as a single entry in the table, something that cannot conveniently be 
typed as a simple string between tabs. Note that the T} end delimiter must begin a line; 
additional columns of data may follow after a tab on the same line. See the example on 
page 11 for an illustration of included text blocks in a table. If more than twenty or thirty 
text blocks are used in a table, various limits in the troff program are likely to be exceeded, 
producing diagnostics such as 'too many string/macro names' or 'too many number regis
ters.' 

Text blocks are pulled out from the table, processed separately by troff, and replaced in the 
table as a solid block. If no line length is specified in the block of text itself, or in the table 
format, the default is to use L xC /(N + 1) where L is the current line length, C is the 
number of table columns spanned by the text, and N is the total number of columns in the 
table. The other parameters (point size, font, etc.) used in setting the block of text are 
those in effect at the beginning of the table (including the eft'ect of the ". TS" macro) and 
any table format specifications of size, spacing and font, using the p, t and f modifiers to 
the column key-letters. Commands within the text block itself are also recognized, of 
course. However, troff commands within the table data but not within the text block do 
not aft'ect that block. 

Warnings: 
- Although any number of lines may be present in a table, only the first 200 lines are used 
in calculating the widths of the various columns. A mWti-page table, of course, may be 
arranged as several single-page tables if this proves to be a problem. Other difficulties with 
formatting may arise because, in the calculation of column widths all table entries are 
assumed to be in the font and size being used when the ••• TS" command was encountered, 
except for font and size changes indicated (a) in the table format section and (b) within the 
table data (as in the entry \s+ 3\t1data \tP\sO). Therefore, although arbitrary troff requests 
may be sprinkled in a table, care must be taken to avoid confusing the width calculations; 
use requests such as '.ps· with care. 

4) ADDmONAL COMMAND LINES. If the format of a table must be changed after many similar 
lines, as with sub-headings or summarizations, the" .T&" (table continue) command can be 
used to change column parameters. The outline of such a table input is: 

.TS 
options ; 
format. 
data 

.T& 
format. 
data 
.T& 
format. 
data 
.TE 

as in the examples on pages 10 and 13. Using this procedure, each table line can be close to its 
corresponding format line. 
Warning: it is not possible to change the number of columns, the space between columns, 



Tbl - A Program to Format Tables USD:28-7 

the global options such as box, or the selection of columns to be made equal width. 

Usage. 

On UNIX, tbl can be run on a simple table with the command 

tbl input-file I troff 

but for more complicated use, where there are several input files, and they contain equations and ms 
memorandum layout commands as well as tables, the normal command would be 

tbl file-I file-2 • • • I eqn I troW -ms 

and, of course, the usual options may be used on the troff and eqn commands. The usage for nroff is 
similar to that for troff, but only TELETYPE- Model 37 and Diablo-mechanism (DASI or OSI) terminals 
can print boxed tables directly. 

For the convenience of users employing line printers without adequate driving tables or post
filters, there is a special -TX command line option to tbl which produces output that does not have 
fractional line motions in it. The only other command line options recognized by tbl are -ms and 
-mm which are turned into commands to fetch the corresponding macro files; usually it is more con
venient to place these arguments on the troff part of the command line, but they are accepted by rbl 
as well. 

Note that when eqn and tbl are used together on the same file tbl should be used first. If there 
are no equations within tables, either order works, but it is usually faster to run tbl first, since eqn 
normally produces a larger expansion of the input than tbl. However, if there are equations within 
tables (using the delim mechanism in eqn), tbl must be first or the output will be scrambled. Users· 
must also beware of using equations in D-style columns; this is nearly always wrong, since tbl attempts 
to split numerical format items into two parts and this is not possible with equations. The user can 
defend agai~st this by giving the de/im(xx) table option; this prevents splitting of numerical columns 
within the delimiters. For example, if the eqn delimiters are $$, giving delim($$) a· numerical 
column such as "1245 $+- 16$" will be divided after 1245, not after 16. . 

Tbllimits tables to twenty columns; however, use of more than 16 numerical columns may fail 
because of limits in troff, producing the 'too many number registers' message. Troff number registers 
used by tbl must be avoided by the user within tables; these include two-digit names from 31 to 99, 
and names of the forms #x, X+, x I, AX, and X-, where X is any lower case letter. The names ##, #-, 
and #A are also used in certain circumstances. To conserve number register names, the D and a for
mats share a register, hence the restriction above that they may not be used in the same column. 

For aid in writing layout macros, tbl defines a number register TW which is the table width; it is 
defined by the time that the ". TE" macro is invoked and may be used in the expansion of that 
macro. More importantly, to assist in laying out mUlti-page boxed tables the macro T# is defined to 
produce the bottom lines and side lines of a boxed table, and then invoked at its end. By use of this 
macro in the page footer a mUlti-page table can be boxed. In particular, the ms macros can be used 
to print a multi-page boxed table with a repeated heading by giving the argument H to the ". TS" 
macro. If the table start macro is written 

.TS H 
a line of the form 

.TH 
must be given in the table after any table heading (or at ·the start if none). Material up to the" . TH" 
is placed at the top of each page of table; the remaining lines in the table are placed on several pages 
as required. Note that this is not a feature of rbl. but of the ms layout macros. 

Examples. 

Here are some examples illustrating features of rhl. The symbol (:I) in the input represents a tah 
character. 



USD:28-8 

Input: 

.TS 
box; 
ccc 
Ill. 
Language <D t\uthors <D Runs on 

Fortran <D Many <D Almost anything 
PU 1 <D IBM ~ 360/370 
C ~ BTL ~ 11145,H6000,370 
BLISS <D Carnegie-Mellon <D PDP-l 0, 11 
IDS <ll Honeywell <D H6000 
Pascal <ll Stanford <D 370 
.TE 

Input: 

.TS 
allbox; 
css 
ccc 
n n n. 
AT&T Common Stock 
Year~ Price(j) Dividend 
1971 ~41·54<ll$2.60 
2~41-54<ll2.70 
3 <D 46-55 <D 2 .87 
4 cr> 40-53 <ll3 .24 
5 cr> 45-52 <ll3 .40 
6<D51-59cr> .95* 
.TE 
* (first quarter only) 

Tbl- A Program to Format Tables 

Output: 

Language Authors 

Fortran 
PUt 
C 
BLISS 
IDS 
Pascal 

Output: 

Many 
IBM 
BTL 
Carnegie-Mellon 
Honeywell 
Stanford 

AT&T Common Stock 
Year Price Dividend 
1971 41-54 $2.60 

2 41-54 2.70 
3 46-55 2.87 
4 40-53 3.24 
5 45-52 3.40 
6 51-59 .95* 

* (first quarter only) 

Runs on 

Almost anything 
360/370 
11145,H6000,370 
PDP-IO,II 
H6000 
370 



Tbl- A Program to Format Tables 

Input: Output: 

.TS 
box; 
css 
clclc 
I I I I n. 

Major New York Bridges 

Major New York Bridges 
= 
Bridge ~ Designer ~ Length 

Brooklyn~J. A. Roebling~ 1595 
Manhattan ~ G. Lindenthal ~ 1470 
Williamsburg ~ L. L. Buck ~ 1600 

Queensborough ~ Palmer & ~ 1182 
~ Hornbostel 

~ ~ 1380 
Triborough ~ O. H. Ammann ~ 
~ ~383 -

Bronx Whitestone~O. H. Ammann~2300 
Throgs Neck ~ O. H. Ammann ~ 1800 

Bridge 
Brooklyn 
Manhattan 
Williamsburg 
Queensborough 

Triborough . 

Bronx Whitestone 
Throgs Neck 
George Washington 

George Washington~O. H. Ammann~3500 
.TE 

Input: Output: 

.TS Stack 
cc 1 46 
np-2 I n I 2 23 
(l)Stack 

3 15 (l) 
1~46 4 6.5 
(l) 5 2.1 
2~23 
(l) 
3~ 15 
(l) 
4\i6.5 
(l) 
5\i2.1 
(l) 
.TE 

Designer 
J. A. Roebling 
G. Lindenthal 
L. L. Buck 
Palmer & 

Hornbostel 

O. H. Ammann 

O.H.Ammann 
O. H. Ammann 
O. H. Ammann 

USD:28-9 

Length 
1595 
1470 
1600 
1182 

1380 

383 
2300 
1800 
3500 



USD:28-10 

Input: 

.TS 
box; 
LLL 
LL 
LL TLB 
LL 
LLL 
january ~ february ~ march 
april~may 
june ~ july ~ Months 
august ~ september 
october~ november~ december 
.TE 

Input: 

.TS 
box; 
cfBsss. 
Composition of Foods 

:'r& 
c I c s s 
c I c s s 
c I c I c I c. 
Food ~ Percent by Weight 
\A~ 

\ .. ~ Protein ~ Fat ~ Carbo
\"~ \A~ \A CD hydrate 

:'r& 
1 I n I n I n. 
Apples~ .4~ .5 CD 13.0 
Halibut CD 18 .4CD 5.2 ~ ••• 
Lima beans~7 .5~ .8CD22.0 
Milk~3.3~4.0~5.0 
Mushrooms~3.5~ .4~6.0 
Rye breadCD9.0CD .6CD52.7 
.TE 

Output: 

january 
april 
june 
august 
october 

Output: 

Tbl - A Program to Format Tables 

february march 

may I 
july Months 
september 1.....-----1 

november december 

Composition of Foods 
Percent by Weight 

Food 
Protein Fat Carbo-

hydrate 
Apples .4 .5 13.0 
Halibut 18.4 5.2 ... 
Lima beans 7.5 .8 22.0 
Milk 3.3 4.0 5.0 
Mushrooms 3.5 .4 6.0 
Rye bread 9.0 .6 52.7 



Tbl- A Program to Format Tables USD:28-11 

Input: Output: 

.TS 
allbox; 
ctl s s 

New York Area Rocks 

c cw(l i) cw( 1 i) 
Ip91p91p9. 
New York Area Rocks 
Era ~ Formation ~ Age (years) 
Precambrian ~ Reading Prong ~ > 1 billion 
Paleozoic ~ Manhattan Prong ~ 400 million 
Mesozoic ~ T { 
.na 
Newark Basin, incl. 
Stockton, Lockatong, and Brunswick 
formations; also Watchungs 
and Palisades. 
T} ~ 200 million 
Cenozoic ~ Coastal Plain ~ T { 
On Long Island 30,000 years; 
Cretaceous sediments redeposited 
by recent glaciation • 
• ad 
T} 
.TE 

Input: 

.EQ 
delim $$ 
.EN 

Era Formation 
Precambrian Reading Prong 
Paleozoic 
Mesozoic 

Cenozoic 

Output: 

Name 

Gamma 

Sine 

Error 

Manhattan Prong 
Newark Basin, 
inci. Stockton. 
Lockatong, and 
Brunswick for-
mations; also 
Watchungs and 
Palisades. 
Coastal Plain 

Definition 
. oc 

r(z)=fo tZ-1e-rdt 
I· . 

sin(x)=-. (e lX _e- IX ) }l z 

erf(z)=;= i e- r2dt 
V if",.. 0 

Age (years) 
>1 billion 
400 million 
200 million 

On Long Island 
30,000 years: 
Cretaceous sedi-
ments redepo-
sited by recent 
glaciation. 

.TS 
doublebox; 
cc 
II. 

Bessel 10(z)=.1.. { cos(zsin8)d8 
if" )0 

Name (l) Definition 
.sp 
.vs +2p 

Zeta 
oc 

.l(s)=~k-S (Res>1) 
k=l 

Gamma('i)$GAMMA (z) = int sub 0 sup inf t sup {z-l} e sup -t dt$ 
Sine~ $sin (x) = lover 2i ( e sup ix - e sup -ix )$ 
Error('i) $ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$ 
Bessel (l) $ J sub 0 (z) = lover pi int sub 0 sup pi cos ( z sin theta) d theta $ 
Zeta('i)$ zeta (s) = sum from k=1 to infk sup -s -( Re-s > 1)$ 
.vs -2p 
.TE 



USD:28-12 Tbl- A Program to Format Tables 

Input: Output: 

.TS Readability of Text 
box, tab(:); 
cbssss 

Line Width and Leadinl for to-PoUlt Type 

cp-2 s s s s 
cllclclclc 
cllclclclc 
r2 11 n2 I n2 I n2 I n. 
Readability of Text . 
Line Width and Leading for 100Point Type -
Line: Set: I-Point: 2-Point : 4-Point 
Width: Solid: Leading: Leading: Leading 

9 Pica:\-9.3:\-6.0:\-S.3:\-7.1 
14 Pica: \-4.S: \-0.6: \-0.3: \-1. 7 
19 Pica: \-5.0:\-5.1 : 0.0:\-2.0 
31 Pica: \-3.7: \-3.8: \-2.4: \-3.6 
43 Pica: \-9.1: \.9.0: \-5.9: \-8.8 
.TE 

Line 
Width 
9 Pica 

14 Pica 
19 Pica 
31 Pica 
43 Pica 

:Set 
Solid 
-9.3 
-4.5 
-S.O 
-3.7 
-9.1 

I-POint 2-Polnt 4-Point 
Leading Leading Leading 

-6.0 -5.3 -7.1 
-0.6 -0.3 -1.7 
-5.1 0.0 -2.0 
-3.8 -2.4 -3.6 
-9 .. 0 -S.9 -8.8 



Tbl - A Program to Format Tables 

Input: 

.TS 
cs 
cip-2s 
In 
an. 
Some London Transport Statistics 
(Year 1964) 
Railway route miles Cl) 244 
Tube Cl) 66 
Sub-surface Cl) 22 

• 

Surface Cl) 156 
.sp .5 
.T& 
1 r 
a r. 
Passenger traffic \- railway 
Journeys(l) 674 million 
Average length <D 4 .55 miles 
Passenger Oliles Cl) 3,066 million 
.T& 
I r 
a r. 
Passenger traffic \- road 
JourneysCl)2,252 million 
Average length <D 2 .26 miles 
Passenger miles <D 5,094 million 
.T& 
In 
an. 
.sp .5 
Vehicles<D 12,521 
Railway motor carsCl) 2,905 
Railway trailer cars Cl) 1,269 
Total railway <D 4, 174 
Omnibuses<D 8,347 
.T& 
In 
an • 
• sp .5 
StaffCl) 73,739 
Administrative, etc. Cl) 5,582 
Ci vil engineering Cl) 5, 134 
Electrical eng. Cl) 1,714 
Mech. eng. \- railway Cl) 4,3 10 
Mech. eng. \- roadCl) 9,152 
Railway operations Cl) 8,930 
Road operations Cl) 35,946 
OtherCl) 2,971 
.TE 

Output: 

Some London Transport Statistics 
(Year 1964) 

Railway route miles 244 
Tube 66 
Sub-surface 22 
Surface 156 

Passenger traffic - railway 
Journeys 
Average length 
Passenger miles 

Passenger traffic - road 
Journeys 
Average length 
Passenger miles 

Vehicles 
Railway motor cars 
Railway trailer cars 
Total railway 
Omnibuses 

Staff 
Administrative, etc. 
Civil engineering 
Electrical eng. 
Mech. eng. - railway . 
Mech. eng. - road 
Railway operations 
Road operations 
Other 

674 million 
4.55 miles 

3,066 million 

2,252 million 
2.26 miles 

5,094 million 

12,521 
2,905 
1,269 
4,174 
8,347 

73,739 
5,582 
5,134 
1,714 
4,310 
9,152 
8,930 

35,946 
2,971 

USD:28-13 



USD:28-14 Tbl - A Program to Format Tables 

Input: 

-

~ps 8 
.vs lOp 
.TS 
center box; 
css 
ci s s 
ccc 
IB 1 n. 
New Jersey Representatives 
(Democrats) 
.sp .5 
Name (I) Office address (I) Phone 
.sp .5 
James J. Aorio(l)23 S. White Horse Pike, Somerdale 08083(1)609-627-8222 
William J. Hughes a> 2920 Atlantic Ave., Atlantic City 08401 (1)609-345-4844 
James J. Howard(J)801 Bangs Ave., Asbury Park 07712(1)201-774-1600 . 
Frank Thompson, Jr. (I) 10 Rutgers Pl., Trenton 08618(1)609-599-1619 
Andrew Maguire (I) 115 W. Passaic St., Rochelle Park 07662 (I) 201-843-0240 
Robert A. Roe(l)U.S.P.O., 194 Ward St., Paterson 07510(1)201-523-5152 
Henry Helstoski(l) 666 Paterson Ave., East Rutherford 07073(1)201-939-9090 
Peter W. Rodino, Jr. (I) Suite 1435A, 970 Broil4'\ St., Newark 07102(1)201-645-3213 
Joseph G. Minish (I) 308 Main St., Orange 07050(1)201·645-6363 
Helen S. Meyner(J)32 Bridge St., Lambertville 08530(1)609-397-1830 
Dominick V. Daniels(l)895 Bergen Ave., Jersey City 07306(1)201-659-7700 
Edward J. Patten(J)-Natl. Bank Bldg., Perth Amboy 08861 (1)201-826·4610 
.sp .5 . 
• T& 
ci s s 
IB I n. 
(Republicans) 
.sp .5v 
Millicent FenwickO"J41 N. Bridge St., Somerville 08876(1)201-722-8200 
Edwin B. Forsytbe(l)301 Mill St., Moorestown 08057(1)609-235-6622 
Matthew J. Rinaldo (I) 1961 Morris Ave., Union 07083(1)201-687-4235 
.TE 
.ps 10 
.vs 12p 



Tbl - A Program to Format Tables 

Output: 

Name 

James J. Florio 
William J. Hapes 
James J. Howard 
Fraak nom,...., Jr. 
Andrew Mqaire 
Robert A. Roe 
Heary He1stosld 
Peter W. Rodiao, Jr. 
Joseph G. Minish 
HeIeD S. Meyaer 
DoIIIiDick V. DaDiels 
Edward J. Patten 

Millicent Fenwick 
Edwin B. Forsythe 
Matthew J. RiDaldo 

• 

New Jersey Representatives 
(Democrats) . 

Office address 

23 S. White Horse Pike, Somerdale 08083 
2920 Atlantic Ave., Atlantic City 08401 
801 Banas Ave., Asbury. Park 07712 
10 Rutgers Pl., Trenton 08618 
115 W. Passaic St., Rochelle Park 07662 
U.S.P.O., 194 Ward St., Paterson 07510 
666 Paterson Ave., East Rutherford 07073 
Suite 1435A, 970 Broad St., Newark 07102 
308 Main St., Orange 07050 
32 Bridge St., Lambertville 08530 
895 Bergen Ave., Jersey City 07306 
Natl. Bank Bldg., Perth Amboy 08861 

(Republicans) 

41 N. Bridge St., Somerville 08876 
301 Mill St., Moorestown 08057 
1961 Morris Ave., Union 07083 

Phone 

609-627-8222 
609-345-4844 
201-774-1600 
609-599-1619 
201-843-0240 
201-523-5152 
201-939-9090 
201-645-3213 
201-645-6363 
609-397-1830 
201-659-7700 
201-826-4610 

201-722-8200 
609-235-6622 
201-687-4235 

USD:28-15 

This is a paragraph of normal text placed here only to indicate where the left and right margins are. 
In this way the reader can judge the appearance of centered tables or expanded tables, and observe 
how such tables are formatted. . 

Input: 

.TS 
expand; 
csss 
cccc 
11 n n. 
Bell Labs Locations 
Name a> Address a> Area Code a> Phone 
Holmdel (1) Holmdel. N. J. 07733 ~ 20 1 a> 949·3000 
Murray Hill CD Murray Hill, N. J. 01914(1)201 (1)582·6377 
Whippany (1) Whippany, N. J. 01981 (l) 201 (1) 386·3000 
Indian Hill (l) Naperville, Illinois 60540 (1) 312 (1) 690·2000 
.TE 

Output: 

Name 
Holmdel 
Murray Hill 
Whippany 
Indian Hill 

Bell Labs Locations 
Address 

Holmdel, N. J. 07733 
Murray Hill, N. J. 07974 
Whippany, N. J. 07981 
Naperville, Illinois 60540 

Area Code 
201 
201 . 
201 
312 

Phone 
949·3000 
582·6377 
386·3000 
690·2000 



USD:28-16 

Input: 

.TS 
box; 
cb s 5 s 
clclc s 
ltiw(li) Iltw(2i) lipS Ilw(I.5i)pS. 
Some Interesting Places 

Name(i) Description (i) Practical Information 

T{ 
American Museum of Natural History 
T}(i)T{ 
The collections fill 11.5 acres (Michelin) or 25 acres (MT A) 
of exhibition halls on four floors. There is a full-sized replica 
ofa blue whale and the world's largest star sapphire (stolen in 1964). 
T} (i) Hours(i) 10-5, ex. Sun 11-5, Wed. to 9 
'A (i) , - (i) Location (i) T ( 
Central Park: West & 79th St. 
T) 
'-(i) , -(i) Admission (i) Donation: S 1 .00 asked 
'-(i)'-(i)Subway(i)AA to Slst St. 
'-(i), -(i) Telephone~ 212-S73-4225 

Bronx Zoo(i)T{ 
About a mile long and .6 mile wide, this is the largest zoo in America. 
A lion eats IS,pounds 
of meat a day while a sea lion eats 15 pounds of fish. 
T) (i) Hours (i) T { 
10-4:30 winter, to 5:00 summer. 
T} 
,-(i), -(i) Location(i) T{ 

. 185th St. & Southern Blvd, the Bronx. 
T} 
'-(i), -(i)Admission(i) S 1.00, but Tu, We,Th free 
'-(i),-(i)Subway(i)2, 5 to East Tremont Ave. 
,-(i) ,-(i)Telephone~ 212-933-1759 

Brooklyn Museum (i) T { 
Five floors of galleries contain American and ancient an. 
There are American period rooms and architectural ornaments saved 
from wreckers, such as a classical figure from Pennsylvania Station. 
T}(i)Hours(i)Wed-Sat, 10-5, Sun 12-5 
, - (i) , - (i) Location (i) T { 
Eastern Parkway & Washington Ave., Brooklyn. 
T} 
'" (i) , "(i) Admission (i) Free 
, "(i) , - (i) Subway(i) 2,3 to Eastern Parkway. 
,-(i) '-(i)Telephone(i) 718-638-5000 

T{ 
New-York Historical Society 
T}(i)T{ 
All the original paintings for Audubon's 
.1 
Birds of America 
.R 
are here, as are exhibits of American decorative ans, New York history, 
Hudson River school paintings, carriages, and glass paperweights. 
T} (i) Hours(i) T{ 
Tues-Fri & Sun, 1-5; Sat 10-5 
T} 
,"(i),"(i) Location(i) T{ 
Central Park West & 77th St. 
T} 
,-cr> ,-(i) Admission(i) Free 
,"(i) ,"cr> Subway(i) AA to 81st St. 
,-cr> ,"(i) Telephone(i) 212-873-3400 
.TE 

Tbl - A Program to Format Tables 



Tbl - A Program to Format Tables USD:28-17 

Output: 

Some Interesting Places 
. Name Description Practical Information 

American Muse
um of Natural 
History 

Bronx Zoo 

Brooklyn Museum 

New-York Histori
cal Society 

Acknowledgments. 

The collections fill 11.5 acres Hours 
(Michelin) or 25 acres (MT A) Location 
of exhibition halls on four .Admission 
floors. There is a full-sized re- Subway 
plica of a blue whale and the Telephone 
world's largest star sapphire 
(stolen in 1964). 
About a mile long and .6 mile Hours 
wide, this is the largest zoo in 
America. A lion eats 18 Location 
pounds of meat a day while a 
sea lion eats 15 pounds of fish. Admission 

Five floors of galleries contain 
American and ancient art. 
There are American period 
rooms and architectural orna
ments saved from wreckers, 
such as a classical figure from 
Pennsylvania Station. 
All the original paintings for 
Audubon's Birds of America 
are here, as are exhibits of 
American decorative arts, New 
York history, Hudson River 
school paintings, carriages, and 
glass paperweights. 

Subway 
Telephone 

Hours 
Location 

Admission 
Subway 
Telephone 

Hours 

Location 
Admission 
Subway 
Telephone 

10-5, ex. Sun 11-5, Wed. to 9 
Central Park West & 79th St. 
Donation: $1.00 asked 
AA to 81st St. 
212-873-4225 

10-4:30 winter, to 5:00 sum-
mer 
185th St. & Southern Blvd, 
the Bronx. 
$1.00, but TU,We,Th free 
2,5 to East Tremont Ave. 
212-933-1759 

Wed-Sat, 10-5, Sun 12-5 
Eastern Parkway & Washing
ton Ave., Brooklyn. 
Free 
2,3 to Eastern Parkway. 
718-638-5000 

Tues-Fri & Sun, 1-5; Sat 10-
.5 
Central Park West & 77th St. 
Free 
AA to 8 1st St. 
212-873-3400 

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted with 
the design of the program. He has also written many of the more intelligible sentences in this docu
ment and helped edit all of it. All phototypesetting programs on UNIX are dependent on the work of 
J. F. Ossanna, whose assistance with this program in particular has been most helpful. This program 
is patterned on a table formatter originally written by J. F. Gimpel. The assistance of T. A. Dolotta, 
B. W. Kernighan, and J. N. Sturman is gratefully acknowledged. 

References. 

[1] J. F. Ossanna, NROFFITROFF User's Manual, Computing Science Technical Report No. 54, Bell 
Laboratories, 1976. 

[2] K.. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. AC"d. 17, pp. 
365-75 (1974). 

[3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. ACM. 18, 
pp. 151-57 (1975). 

[4] M. E. Lesk, Typing Documents on UNIX, Bell Laboratories internal memorandum. 

[5] M. E. Lesk and B. W. Kernighan, Computer Typesetting of Technical Journals on UNIX, Com
puting Science Technical Report No. 44, Bell Laboratories, July 1976. 



USD:28-18 Tbl- A Program to format Tables 

[6] J. R. Mashey and D. W. Smith, PWBIMM- Programmer's Workbench Memorandum Macros. 
Bell Laboratories memorandum. 

Ust of Tbl Command Charaden and Words 

Command Meaning Section 
aA Alphabetic subcolumn 2 
aIlbox Draw box around all items 1 
bB Boldface item 2 
box Draw box around table 1 
c:C Centered column 2 
center Center table in page 1 
doublebox Doubled box around table 1 
eE Equal width columns 2 
expand Make table full line width 1 
fF font change 2 
iI Italic item 2 
It Left adjusted column 2 
nN Numerical column 2 
nnn Column separation 2 
pP Point size change 2 
rR Right adjusted colum~ 2 
5S Spanned item 2 
tT Vertical spamung at top 2 
tab (x) Change data separator character 1 
T{ T} Text block 3 
vV Vertical spacing change 2 
wW Minimum width value 2 
.xx Included troff command 3 
I Vertical line 2 
II Double vertical line 2 
A Vertical span 2 
\'''' Vertical span 3 - Double horizontal line 2,3 

- Horizontal line 2,3 ,- Short horizontal line 3 



Refer - A Bibliography System 

Refer - A Bibliography System 

Bill Tuthill 

Computing Services 
University of California 

Berkeley, CA 94720 

ABSTRACT 

USO:29-1 

Refer is a bibliography system that supports data entry, indexing, retrieval, 
sorting, runoff, convenient citations, and footnote or endnote numbering. This 
document assumes you know how to use some Unix editor, and that you are familiar 
with the nroff/troff text formatters. 

The refer program is a preprocessor for nroff/troff, like eqn and tbl, except that 
it is used for literature citations, rather than for equations and tables. Given incom
plete but sufficiently precise citations, refer finds references in a bibliographic data
base. The complete references are formatted as footnotes, numbered, and placed 
either at the bottom of the pi:lge, or at the end of a chapter. 

A number of ancillary programs make refer easier to use. The addbib program 
is for creating and extending the bibliographic database; sortbib sorts the bibliogra
phy by author and date, or. other selected· criteria; and roftbib runs off the entire 
database, formatting it not as footnotes, but as a bibliography or annotated bibliog
raphy. 

Once a full bibliography has been created, access time can be improved by 
making an index to the references with indxbib. Then, the lookbib program can be 
used to quickly retrieve individual citations or groups of citations. Creating this 
inverted index will speed up refer, and lookbib will allow you to verify that a citation 
is sufficiently precise to deliver just one reference. 

Introduction 

Taken together, the refer programs constitute a database system for use with variable-length 
information. To distinguish various types of bibliographic material, the system uses labels composed 
of upper case letters, preceded by a percent sign and followed by a space. For example, one docu
ment might be given this entry: 

%A Joel Kies 
%T Document Formatting on Unix Using the -ms Macros 
%1 Computing Services 
%C Berkeley 
%0 1980 

Each line is called a field, and lines grouped together are called a record; records are separated from 
each other by a blank line. Bibliographic information follows·· the labels, containing data to be used 
by the refer system. The order of fields is not important, except that authors should be entered in the 
same order as they are listed on the document. Fields can be as long as necessary, and may even be 
continued on the following line(s). 



USO:29-2 Refer - A Bibliography System 

The labels are meaningful to aroft'/troft'macros, and, with a few exceptions, the refer program 
itself does not pay attention to them. This implies that you can change the label codes, if you also 
change the macros used by aroft'/trofI'. The macro package takes care of details like proper ordering, 
underlining the book title or journal name, and quotill8 the article's title. Here are the labe.s used by 
refer, with an indication of what they represent: 

flbH Header commentary, printed before reference 
fIbA Author's name 
fIbQ Corporate or foreign author (unreversed) 
flbT Title of article or book 
fIbS Series title 
fIbJ Journal Containing article 
flbB Book containill8 article 
%R Report, paper, or thesis (for unpublished material) 
%V Volume 
%N Number within volume 
flbE Editor of book containing article 
flbP Page number(s) 
%1 Issuer (publisher) 
%C City where published 
flbO Date of publication 
%0 Other commentary, printed at end of reference 
%K Keywords used to locate ·reference 
%L Label used by -k option of refer 
%X Abstract (used by rofIbib, not by refer) 

Only relevant fields should be supplied. Except for %A, each field should be given only once; in the 
case of multiple authors, the senior author should come first. The %Q is for organizational authors, 
or authors with Japanese or Arabic names, in which cases the order of names should be preserved. 
Books should be labeled with the %T, not with the %B, which is reserved for books containing arti
cles. The fIbJ and %B fields should never appear together, although if they do, the %J will override the 
%B. If there is no author, just an editor, it is best to type the editor in the %A field, as in this exam
ple: 

%A Bertrand Bronson, ed. 

The %E field is used for the editor of a book (%B) containing an anicle, which has its own author. 
For unpublished material such as theses, use the %R field; the title in the %T field will be quoted, but 
the contents of the %R field will not be underlined. Unlike other fields, %H, %0, and %X should 
contain their own punctuation. Here is a modest example: 

%A Mike E. Lesk 
%T Some Applications of Inverted Indexes on the Unix System 
%B Unix Programmer's Manual 
%1 Bell Laboratories 
%C Murray Hill, NJ 
%0 1978 
%V 2a 
%K refer mkey inv hunt 
%X Difficult to read paper that dwells on indexing strategies, 
giving little practical advice .about using \tBrefer\fP. 

Note that the author's name is given in normal order. without inverting the surname; inversion is 
done automatically, except when %Q is used instead of%A. We use %X rather than %0 for the com
mentary because we do not want the comment printed all the time. The %0 and %H fields are 
printed by both refer and roftbib; the %X field is printed only by reffhib, as a detached annotation 
paragraph. 



Refer - A Bibliography System USD:29-3 

Data Entry with Addbib 

The add bib program is for creating and extending bibliographic databases. You must give it the 
filename of your bibliography: 

% addbib database 

Every time you enter addbib, it asks if you want instructions. To get them, type y; to skip them, type 
RETURN. Addbib prompts for various fields, reads from the keyboard, and writes records containing 
the refer codes to the database. After finishing a field entry, you should end it by typing RETURN. If 
a field is too long to fit on a line, type a backslash (\) at the end of the line, and you will be able to 
continue on the following line. Note: the backslash works in this capacity only inside addbib. 

A field will not be written to the database if nothing is entered into it. Typing a minus sign as 
the first character of any field will cause addbib to back up one field at a time. Backing up is the best 
way to add multiple authors, and it really helps if you forget to add something important. Fields not 
contained in the prompting skeleton may be entered by typing a backslash as the last character before 
RETURN. The following line will be sent verbatim to the database and addbib will resume with the 
next field. This is identical to the procedure for dealing with long fields, but with new fields, don't 
forget the % key-letter. 

Finally, you will be asked for an abstract (or annotation), which will be preserved as the O/OX 
field. Type in as many lines as you need, and end with a control-D (hold down the CTRL button, then 
press the "d" key). This prompting for an abstract can be suppressed with the -a command line 
option. 

After one bibliographic record has been completed, addbib will ask. if you want to continue. If 
you do, type RETURN; to quit, type q or· n (quit or no). It is also possible to use one of the system 
editors to correct mistakes made while entering data. After the "Continue?" prompt, type any of the 
following: edit, e~ vi, or ed - you will be placed inside the corresponding editor, and returned to add
bib afterwards, from where you can either quit or add more data. 

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too 
numerous, you can redefine the skeleton by constructing a promptfile. Create some file, to be named 
after the -p command line option. Place the prompts you want on the left side, followed by a single 
TAB (control-I), then the refer code that is to appear in the bibliographic database. Addbib will send 
the left side to the screen, and the right side, along with data entered, to the database. 

Printing the Bibliography 

Sortbib is for sorting the bibliography by author (%A) and date (%D), or by data in other fields. 
It is quite useful for producing bibliographies and annotated bibliographies, which are seldom entered 
in strict alphabetical order. It takes as arguments the names of up to 16 bibliography files, and sends 
the sorted records to standard output (the terminal screen), which may be redirected through a pipe 
or into a file. 

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the KEYS string, rather 
than merely by author and date. Key-letters in KEYS may be followed by a '+' to indicate that all 
such fields are to be used. The default is to sort by senior author and date (printing the senior author 
last name first), but -sA+D will sort by all authors and then date, and -sATD will sort on senior 
author, then title, and then date. . 

Roftbib is for running off the (probably sorted) bibliography. It can handle annotated bibliogra
phies - annotations are entered in the %X (abstract) field. Roftbib is a shell script that calls refer -8 
and nroft' -mbib. It uses the macro definitions that reside in lusr/lib/tmac/tmac.bib, which you can 
redefine if you know nroff and troft'. Note that refer will print the O/OH and %0 commentaries, but will 
ignore abstracts in the %X field; roftbib will print both fields, unless annotations are suppressed with 
the -x option. 



USD:29-4 Refer - A Bibliography System 

The fonowing·command sequence williineprint the entire bibliography, organized alphabetically 
by author and date: 

% sortbib database I roftbib I ipr 

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the end 
of a paper. Incidentally, roftbib accepts all flags used with nroft'. For example: 

% sortbib database I roftbib - Tdte -sl 

will make accent marks work on a DTC daisy-wheel printer, and stop at the bottom of every page for 
changing paper. The -n and -0 flags may also be quite useful, to start page numbering at a selected 
point, or to produceoDly specific pages. 

Roftbib understands four command-line number registers, which are something like the two
letter number registers in -ms. The -rNt argument will number references beginning at one (1); use 
another number. to start somewhere besides one. The -rV2 flag will double-space the entire bibliogra
phy, while -rVI will double-space the references, but single-space the annotation paragraphs. Finally, 
specifying -rL6i changes the line length from 6.5 inches to 6 inches, and saying -rO 1 i sets the page 
offset to one inch, instead of zero. (That's a capital 0 after -r, not a zero.) 

Citing Papen with Refer 

The refer program normally copies input to output, except when it encounters an item of the 
form: 

.[ 
partial citation 
.) 

The partial citation may be just an author's name and a date, or perhaps a title and a keyword, or 
maybe just a document number. Refer looks up the citation in the bibliographic database, and 
transforms it into a full, properly formatted reference. If the partial citation does not correctly iden
tify a single work (either finding nothing, or more than one reference), a diagnostic message is given. 
If nothing is found, it will say ··No such paper." If more than one reference is found, it will say "Too 
many hits." Other diagnostic messages can be quite cryptic; if you are in doubt, use cheeknr to verify 
that all your .['s have matching .]'s. 

When everything goes well, the reference will be brought in from the database, numbered, and 
placed at the bottom of the page. This citation, I for example, was produced by: 

This citation, 
.[ 
lesk inverted indexes 
.J 
for example, was produced by 

The .[ and .1 markers, in essence, replace the .FS and .FE of the -ms macros, and also provide a 
numbering mechanism. Footnote numbers will be bracketed on the the linepri~ter, but superscripted 
on daisy-wheel terminals and in troft'. In the reference itself, articles will be quoted, and books and 
journals will be underlined in nroft', and italicized in troft'. . 

Sometimes you need to cite a specific page number along with more general bibliographic 
material. You. may have, for instance, a single document that you refer to several times, each time 
giving a different page citation. This is how you could get "p. I 0" in the reference: 

I Mike E. Lesk. "Some Applications of Inverted Indexes on the Unix System." Unix Programmer's Manual, vol. 
2a, Bell Laboratories, Murray Hill, NJ, 1978. 



Refer - A Bibliography System 

.[ 
kies document formatting 
%P 10 
.J 

USD:29-5 

The first line, a partial citation, will find the reference in your bibliography. The second line will 
insert the page number into the final citation. Ranges of pages may be specified as "%P 56-78". 

When the time comes to run off a paper, you will need to have two files: the bibliographic data-
base, and the paper to format. Use a command line something like one of these: 

% refer -p database paper I nroft' -ms 
% refer -p database paper I tbl I Droft' -ms 
% refer -p database paper I tbl I DeqD I Droft' -ms 

If other preprocessors are used, refer should precede tbl, which must in tum precede eqn or neqn. 
The -p option specifies a "private" database, which most bibliographies are. 

Refer's Command-line" Options 

Many people like to place references at the end of a chapter, rather than at the bottom of the 
page. The -e option will accumulate references until a macro sequence of the form 

.[ 
$LIST$ 
.J 

is encountered (or until the end of file). Refer will then write out all references collected up to that 
point, collapsing identical references. Warning: there is a limit (currently 200) on the number of . 
references that can be accumulated at one time. 

It is also possible to sort references that appear at the end of text. The -sKEYS Bag will sort 
references by fields whose key-letters are in the KEYS string, and permute reference numbers in the 
text accordingly. It is unnecessary to use -e with it, since -s implies -e. Key-letters in KEYS may be 
followed by a • +' to indicate that all such fields are to be used. The default is to sort by senior author 
and date, but -sA + D will sort on all authors and then date, and -sA + T will sort by authors and then 
title. 

Refer can also make citations in what is known as the Social or Natural Sciences format. 
Instead of numbering references, the -1 (letter ell) Bag makes labels from the senior author's last name 
and the year of publication. For example, a reference to the paper on Inverted Indexes cited above 
might appear as [LeskI978a). It is possible to control the number of characters in the last name, and 
the number of digits in the date. For instance, the command line argument -16,2 might produce a 
reference such as [Kernig78c]. 

Some bibliography standards shun both footnote numbers and labels composed of author and 
date, requiring some keyword to identify the reference. The -k Bag indicates that, instead of number
ing references, key labels specified on the %L line should be used to mark references. 

The -n Bag means to not search the default reference file, located in lusr/dict/papers/Rv7man. 
Using this Bag may make refer marginally faster. The -an Bag will reverse the first n author names, 
printing Jones, J. A. instead of J. A. Jones. Often -al is enough; this will reverse the names of only 
the senior author. In some versions of refer there is also the -f Bag to set the footnote number to 
some predetermined value; for example, -f23 would start numbering with footnote 23. 

Making an Index 

Once your database is large and relatively stable, it is a good idea to make an index to it, so that 
references can be found quickly and efficiently. The indxbib program makes an inverted index to the 
bibliographic database (this program is called pubindex in the Bell Labs manual). An inverted index 



USD:29-6 Refer - A Bibliography System 

could be compared to the thumb cuts of a dictionary - instead of going all the way through your 
bibliography, programs can move to the exact location where a citation is found. 

Indxbib itself takes a while to run, and you will need sufficient disk space to store the indexes. 
But once it has been run, access time will improve dramati<::ally. Furthermore, large databases of 
several million characters can be indexed with no problem. The program is exceedingly simple to 
use: 

% indxbib database 

Be aware that changing your database will require that you run indxbib over again. If you don't, you 
may fail to find a referen<::e that really is in the database. 

Once you have built an inverted index, you can use lookbib to find references in the database. 
Lookbib cannot be used until you have run indxbib. When editing a paper, lookbib is very useful to 
make sure that a citation can be found as specified. It takes one argument, the name of the bibliogra
phy, and then reads partial citations from the terminal, returning references that match, or nothing if 
none match. Its prompt is the greater-than sign. 

% lookbib database 
> lesk inverted indexes 
%A Mike E. Lesk 
%T Some Appli<::ations of Inverted Indexes on the Unix System 
%J Unix ProgramD;1er's Manual 
%1 Bell Laboratories 
%e Murray Hill, NJ 
%D 1978 
%V 2a 
%X Difficult to read paper that dwells on indexing strategies, 
giving little practical advice about using \fBrefer\fP. 
> 

If more than one reference comes back, you will have to give a more precise citation for refer. Exper
iment until you find something that works; remember that it is harmless to overspecify. To get out of 
the lookbib program, type a control-D alone on a line; lookbib then exits with an "EOT" message. 

Lookbib can also be used to extract groups of related citations. For example, to find all the 
papers by Brian Kernighan found in the system database, and send the output to a file, type: 

% lookbib lusr/dict/papers/Ind > kern.refs 
> kernigban 
>EOT 
% cat kern.refs 

Your file, "kern.refs", will be full of references. A similar procedure can be used to pull out all 
papers of some date, all papers from a given journal, all papers containing a certain group of key
words, etc. 

Refer Bugs and Some Solutions 

The refer program will mess up if there are blanks at the end of lines, especially the %A author 
line. Addbib carefully removes trailing blanks, but they may creep in again during editing. U sean 
editor command - gJ .$/sl/I - to remove trailing blanks from your bibliography. 

Having bibliographic fields passed through as string definitions implies that interpolated strings 
(such as accent marks) must have two backslashes, so they can pass through copy mode intact. For 
instance, the word "telephone" would have to be represented: 

te\ \.1e\ \.'phone 

in order to come out correctly. In the %X field, by contrast, you will have to use single backslashes 



Refer - A Bibliography System USD:29-7 

instead. This is because the %X field is not passed through as a string, but as the body of a paragraph 
macro. 

Another problem arises from authors with foreign names. When a name like "Valery Giscard 
d'Estaing" is turned around by the -a option of refer, it will appear as "d'Estaing, Valery Giscard," 
rather than as "Giscard d'Estaing, Valery." To prevent this, enter names as follows: 

%A Vale\ \*ry Giscard\Od'Estaing 
%A Alexander Csoma\Ode\OKo\ \.:ro\ \.:s 

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an nrofl'/trofl' request 
meaning to insert a digit-width space. It will protect against faulty name reversal, and also against 
mis-sorting. 

Footnote numbers are placed at the end of the line before the .[ macro. This line should be a 
line of text, not a macro. As an example, if the line before the .[ is a .R macro, then the .R will eat 
the footnote number. (The.R is an -ms request meaning change to Roman font.) In cases where the 
font needs changing, it is necessary to do the following: 

\fiet al.\tR 
.[ 
awk abo kernighan weinberger 
.] 

Now the reference will be to Aho et aJ. 2 The \fl changes to italics, and the \fR changes back to 
Roman font. Both these requests are nrofl'ltrofl' requests, not part of -ms. If and when a footnote 
number is added after this sequence, it will indeed appear in the output. 

Internal Details of Refer 

You have already read everything you need to know in order to use the refer bibliography sys
tem. The remaining sections are provided only for extra 'information, and in case you need to change 
the way refer works. 

The output of refer is a stream of string definitions, one for each field in a reference. To create 
string names, percent signs are simply changed to an open bracket, and an [F string is added, contain
ing the footnote number. The %X, %Y and %Z fields are ignored; however, the annobib program 
changes the %X to an .AP (annotation paragraph) macro. The citation used above yields this inter
mediate output: 

.ds [F 

.]-

.ds [A Mike E. Lesk 

.ds [T Some Applications of Inverted Indexes on th.e Unix System 

.ds [J Unix Programmer's Mapual 

.ds [I Bell Laboratories 

.ds [C Murray Hill, NJ 

.ds [D 1978 

.ds [V 2a 

.nr [T 0 

.nr [A 0 

.nr [0 0 

.][ 1 journal-article 

These string definitions are sent to nrofl', which can use the -ms macros defined in 
lusr/lib/mxltmac.xref to take care of formatting things properly. The initializing macro .J- precedes 

2 Alfred V. Abo, Brian W. Kernighan. and Peter J. Weinberger, "Awk - A Pattern Scanning and Processing 
Language," Unix P~ogrammer's Manual, vol. 2a, Bell Laboratories, Murray Hill, NJ, 1978. 



USD:29-8 Refer - A Bibliography System 

the string definitions, and the labeled macro .U follows. These are changed from the input .( and .J so 
that running· a file twice through refer is harmless. 

The .11 macro,· used to print the reference, is given a type-number argument, which is a numeric 
label indicating the type of reference involved. Here is a list of the various kinds of references: 

Field Value Kind of Reference 

%J 1 
%B 3 
%R%G 4 
%1 2 
%M 5 
none 0 

Journal Article 
Article in Book 
Report, Government Report 
Book 
Bell Labs Memorandum (undefined) 
Other 

The order listed above is indicative of the precedence of the various fields. In other words, a refer
ence that has both the %J and %B fields will be classified as a journal article. If none of the fields 
listed is present, then the reference will be classified as "other." 

The footnote number is flagged in the text with the following sequence, where number is the 
footnote number: 

\ *([.number\ *(.] 

The \ *([. and \ *(.] stand for bracketing or superscripting. In nroff with low-resolution devices such as 
the Ipr and a crt, footnote numbers will be bracketed. In troff, or on daisy-wheel printers, f(\i)tnote 
numbers will be superscripted. Punctuation normally comes before the reference number; this can be 
changed by using the -P (postpunctuation) option of refer. 

In some cases, it is necessary to override certain fields in a reference. For instance, each time a 
work is cited, you may want to specify different page numbers, and you may want to change certain 
fields. This citation will find the Lesk referepce, but will add specific page numbers to the output, 
even though no page numbers appeared in the original reference . 

. [ 
lesk inverted indexes 
%P 7-13 
%1 Computing Services 
%0 UNX 12.2.2 . 
. ] 

The %1 line will also override any previous publisher information, and the %0 line will append some 
commentary. The refer program simply adds the new %P, %1, and %0 strings to the output, and later 
strings definitions cancel earlier ones. 

It is also possible to insert an entire citation that does not appear in the bibliographic database. 
This reference, for example, could be added as follows: 

.[ 
%A Brian Kernighan 
%T A TroffTutorial 
%1 Bell Laboratories 
%D 1978 
.J 

This will cause refer to interpret the fields exactly as given, without searching the bibliographic data
base. This practice is not recommended, however, because it's better to add new references to the 
database, so they can be used again later. 

If you want to change the way footnote numbers are printed, signals can be given on the .1 and .} 
lines. For example, to say "See reference (2)," the citation should appear as: 



Refer - A Bibliography System 

See reference 
.[( 
partial citation 
.J), 

USO:29-9 

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is 
desired, it's best to redefine the (. and .J strings. 

Changing the Refer Macros 

This section is provided for those who wish to rewrite or modify the refer macros. This is 
necessary in order to make output correspond to specific journal requirements, or departmental stan
dards. First there is an explanation of how new macros can be substituted for the old ones. Then 
several alterations are given as examples. Finally, there is an annotated copy of the refer macros used 
by roftbib. 

The refer macros for nrotl'/trotl' supplied by the -ms macro package reside in 
lusrllib/mxltmac.xref; they are reference macros, for producing footnotes or endnotes. The refer mac
ros used by roftbib, on the other hand, reside in lusrllib/tmac/tmac.bib; they are for producing a 
stand-alone bibliography. 

To change the macros used by roftbib, you will need to get your own version of this shell script 
into the directory where you are working. These two commands will get you a copy of roftbib and the 
macros it uses: t 

% cp lusr/lib/tmacltmac.bib bibmac 

You can proceed to change bibmac as much as you like. Then when you use roftbib, you should 
specify your own version of the macros, which will be substituted for the normal ones 

% roftbib -m bibmac filename 

where filename is the name of your bibliography file. Make sure there's a space between -m and bib
mac. 

If you want to modify the refer macros for use with nrotl' and the -ms macros, you will need to 
get a copy of "tmac.xref': 

% cp lusr/lib/ms/s.ref ref mac 

These macros are much like "bibmac", except they have .FS and .FE requests, to be used in conjunc
tion with the -ms macros, rather than independently defined .XP and .AP requests. Now you can put 
this line at the top of the paper to be formatted: 

.so refmac 

Your new refer macros will override the definitions previously read in by the -ms package. This 
method works only if "refmac" is in the working directory. 

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with 
no comma before. There are five identical lines you will have to change. The first line below is the 
old way, while the second is the new way: 

.if !"\\*([O"" , \\*([O\c 

.if !"\\*([O"· \& (\\*([O)\c 

In the first line, there is a comma and a space, but no parentheses. The "\c" at the end of each line 
indicates to nrotl' that it should continue, leaving no extra space in the output. The "\&" in the 
second line is the do-nothing character; when followed by a space, a space is sent to the output. 

If you need to format a reference in the style favored by the Modem Language Association or 
Chicago University Press, in the form (city: publisher, date), then you will have to change the middle 



USD:29-10 

of the book macro [2 as follows: 

\& (\c 
.if r\ \ *([e" \ \ *(rC: 
\ \*([I\c 
.if !"\ \ *([D"" , \ \ *([D\c 
)\c 

Refer - A Bibliography System 

This would print (Berkeley: Computing Services, 1982) if all three strings were present. The first line 
prints a space and a parenthesis; the second prints the city (and a colon) if present; the third always 
prints the publisher (books must have a publisher, or else they're classified as other); the fourth line 
prints a comma and the date if present; and the fifth line closes the parentheses. You would need to 
make similar changes to the other macros as well. 

Acknowledgements 

Mike Lesk of Bell Laboratories wrote the original refer software, including the indexing pro
grams. AI Stangenberger of the I:'orestry Department wrote the first version of addbib, then called 
bibin. Greg Shenaut of the Linguistics Department wrote the original versions of sortbib and roffbib. 
All these contributions are greatly appreciated. 



Updating Publication Lists 

M. E. Lesk 

I. Introduction. 
This note describes several commands to update the publication lists. The data base con

sisting of these lists is kept in a set of files in the directory lusrldictlpapers on the Version 7 
UNIxt system. The reason for having special commands to update these files is that they are 
indexed, and the only reasonable way to,find the items to be updated is to use the index. How
ever, altering the files destroys the usefulness of the index, and makes further editing difficult. 
So the recommended procedure is to 

(1) Prepare additions, deletions, and changes in separate files. 

(2) Update the data base and reindex. 

Whenever you make changes, etc. it is necessary to run the "add & index" step before logging 
off; otherwise the changes do not take effect. The next section shows the format of the files in 
the data base. After that, the procedures for preparing additions, preparing changes, preparing 
deletions, and updating the public data base are given. 

2. Publication Format. 
The format of a data base entry is given completely in "Some Applications of Inverted 

Indexes on UNIX" by M. E. Lesk, the first part of this report, and is summarized here via a 
few examples. In each example, first the output format for an item is shown, and then the 
corresponding data base entry. 

Journal article: 
A. V. Aho, O. J. Hirschberg, and J. O. Ullman, "Sounds on the Com
plexity of the Maximal Common Subsequence Problem," J. Assoc. 
Compo Mach .• vol. 23, no. I, pp. 1-12 (Jan. 1976). 

%T Bounds on the Complexity of the Maximal Common 
Subsequence Problem 
%A A. V. Aho 
%A O. S. Hirschberg 
%A J. O. Ullman 
%J J. Assoc. Compo Mach. 
%V 23 
%N 1 
%P 1-12 
%0 Jan. 1976 
%M Memo abed ... 

tUN IX is a Trademark of Bell Laboralories. 



·2· 

Conference proceedings: 

Book: 

B. Prabhala and R. Sethi, "Efficient Computation of Expressions with 
Common Subexpressions," Proc. 5th ACM Symp. on Principles of Pro
gramming Languages. pp. 222·230, Tucson, Ariz. (January 1978). 

%A B. Prabhala 
%A R. Sethi 
%T Efficient Computation of Expressions with 
Common Subexpressions 
%J Proc. 5th ACM Symp. on Principles 
of Programming Languages 
%C Tucson, Ariz. 
%0 January 1978 
%P 222·230 

B. W. Kernighan and P. J. Plauger, Software Tools. Addison·Wesley, 
Reading, Mass. (976), 

%T Software Tools 
%A B. W. Kernighan 
%A P. J. Plauger 
%1 Addison-Wesley 
%C Reading, Mass. 
%0 1976 

Article within book: 
J. W. de Bakker, "Semantics of Programming Languages," pp. 173-227 
in Advances in [,~rormatioll Systems Sciellce, Vol. 2, ed. J. T. Tou, Ple
num Press, New York, N. Y. (969), 

%A J. W. de Bakker 
%T Semantics of programming languages 
%E J. T. Tou 
%B Advances in Information Systems Science. Vol. 2 
%1 Plenum Press 
%C New York, N. Y. 
%0 1969 
%P 173-227 

Technical Report: 
F. E. Allen, "Bibliography on Program Optimization," Report RC-
5767, IBM T. J. Watson Research Center, Yorktown Heights. N. Y. 
(975). 

%A F. E. Allen 
%0 1975 
%T Bibliography on Program Optimization 
%R Report RC-5767 
%1 IBM T. J. Watson Research Center 
%C Yorktown Heights, N. Y. 



- 3 -

Other forms of publication can be entered similarly. Note that conference proceedings are 
entered as if journals, with the conference name on a 'KJ line. This is also sometimes appropri
ate for obscure publications such as series of lecture notes. When something is both a report 
and an article, or both a memorandum and an article, enter all necessary information for both: 
see the first article above, for example. Extra information (such as "In preparation" or 
"Japanese translation") should be placed on a line beginning %0. The most common use of 
%0 lines now is for "Also in ... " to give an additional reference to a secondary appearance of 
the same paper. 

Some of the possible fields of a citation are: 

Leller Meaning Letter Meaning 
A Author K Extra keys 
B Book including item N Issue number 
C ::ity of publication 0 Other 
D Date P Page numbers 
E Editor of book R Report number 
I Publisher (issuer) T Title of item 
J Journal name V Volume number 

Note that %8 is used to indicate the title of a book containing the article being entered: when 
an item is an entire book, the title should be entered with a 'if/ T as usual. 

Normally, the order of items does not matter. The only exception is that if there are 
multiple authors (%A lines) the order of authors should be that on the paper. If a line is too 
long, it may be continued on to the next line; any line not beginning with % or . (dot) is 
assumed to be a continuation of the previous line. Again, see the first article above for an 
example of a long title. Except for authors. do not repeat any items; if two %J lines are given. 
for example. the first is ignored. Multiple items on the same file should be separated by blank 
lines. 

Note that in formalled printouts of the file. the exact appearance of the items is deter
mined by a set of macros and the formatting programs. Do not try to adjust fonts. punctuation. 
etc. by editing the data base; it is wasted effort. In case someone has a real need for a 
differently-formatted output. a new set of macros can easily be generated to provide alternative 
appearances of the citations. 

3. Updating and Re-indexing. 

This section describes the commands that are used to manipulate and change the data 
base. It explains the procedures for (a) finding references in the data base. (b) adding new 
references, (c) changing existing references. and (d) deleting references. Remember that all 
changes, additions, and deletions are done by prepar-ing separate files and then running an 
'update and reindex' step. 

Checking what's there now. Often you will want to know what is currently in the data base. 
There is a special command lookbib to look for things and print them out. It searches for arti
cles based on words in the title. or the author's name. or the date. For example. you could find 
the first paper above with 

lookbib aho ullman maximal subsequence 1976 

or 

look bib aho ullman hirschberg 

If you don't give enough words. several items will be found: if you spell so'me wrong, nothing 
will be found. There are around 4300 papers in the public file: you should always use this com
mand to check when you are not sure whether a certain paper is there or not. 

Additions. To add new papers. just type in. on one or more files. the citations for the new 



- 4 -

papers. Remember to check first if the papers are already in the data base. For example, if a 
paper has a previous memo version. this should be treated as a change to an existing entry, 
rather than a new entry. If several new papers are being typed on the same file, be sure that 
there is a blank line between each two papers. 

Chafrges. To change an item. it should be extracted onto a file. This is done with the 
command 

pub.chg keyl key2 key3 ... 

where the items keyl, key2. key3, etc. are a set of keys that will find the paper. as in the look
bib command. That is. if 

lookbib johnson yace cstr 

will find a item (to, in this case. Computing Science Technical Report No. 32, "Y ACC: Yet 
Another Compiler-Compiler." by S. C. Johnson) then 

pub.chg johnson yacc cstr 

will permit you to edit the item. The pub.chg command extracts the item onto a file named 
"bibxxx" where "xxx" is a 3-digit number, e.g. "bib234". The command will print the file 
name it has chosen. If the set of keys finds more than one paper (or no papers) an error mes
sage is printed and no file is written. Each reference to be changed must be extracted with a 
separate pub.chg command, and each will be placed on a separate file. You should then edit the 
"bibxxx" file as desired to change the item. using the UNIX editor. Do not delete or change 
the first line of the file. however, which begins %# and is a special code line to tell the update 
program which item is being altered. You may delete or change other lines. or add lines. as 
you wish. The changes are not actually made in the public data base until you run the update 
command pub.rull (see below). Thus. if after extracting an item and modifying it, you decide 
that you'd rather leave things as they were. delete the "bibxxx" file. and your change request 
will disappear. 

Deletiolls. To delete an entry from the data base. type the command 

pub.del keyl key2 key3 ... 

where the items key I. key2~ etc. are a set of keys that will find the paper. as with the lookbib 
command. That is. if 

look bib Aho hirschberg ullman 

will find a paper, 

pub.del aho hirschberg ullman 

deletes it. Note that upper and lower case are equivalent in keys. The pub. del command will 
print the entry being deleted. It also gives the name of a "bibxxx" file on which the deletion 
command is stored. The actual deletion is not done until the changes. additions. etc. are pro
cessed. as with the pub.rhx command. If. after seeing the item to be deleted. you change your 
mind about throwing it away. delete the "bibxxx" file and the delete request disappears. 
Again. if the list of keys does not uniquely identify one paper. an error message is given. 

Remember that the default versions of the commands described here edit a public data 
base. Do not delete items unless you are sure deletion is proper; usually this means that there 
are duplicate entries for the same paper. Otherwise. view requests for deletion with skepticism; 
even if one person has no need for a particular item in the data base. someone else may want it 
there. 

If an item is correct. but should not appear in the "List of Publications" as normally pro
duced. add the line 

%K DNL 



- 5 -

to the item. This preserves the item intact, but implies "Do Not List" to the to the commands 
that print publication lis;', The DNL line is normally used for some technical reports. minor 
memoranda, or other len- . grade publications. 

Update and re",de.\ When you have completed a session of changes, you should type the 
command 

pub.run file 1 file2 .. . 

where the names "file 1", ... are the new files of additions you have prepared. You need not 
list the "bibxxx" files representing changes and deletions; they are processed automatically 
All of the new items are edited into the standard public data base. and then a new index is 
made. This process takes about 15 minutes: during this time. searches of the data base will be 
slower. 

Normally, you should execute pub.ru" just before you logoff after performing some edit 
requests. However. if you don't, the various change request files remain in your directory until 
you finally do execute pub.rllf!. When the changes are processed, the "bibxxx" files are 
deleted. It is not desirable to wait too long before processing changes. however. to avoid 
wnllicls with someone else who wishes to change the same file. If executing pub. filiI produces 
the message "File bibxxx too oid" it means that someone else has been editing the same file 
between the time you prepared your changes, and the time you typed pllb.rtlll. You must delete 
such old change files and re-enter them. 

Note that although plIh.ml/ discards the "bibxxx" files after processing them, your files of 
additions are left around even after pllb.fIIll is finished. If they were typed in only for purposes 
of updating the data base, you may delete them after they have been processed by pl/b.fIIl/. 

Em",,,/c. Suppose. for example, that you wish to 

(I) Add to the data base the memos "The Dilogarithm Function of a Real Argument" by R. 
Morris. and "UNIX Software Distribution by Communication Link," by M. E. Lesk and 
A. S. Cohen: 

(2) Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH 
Newskt~r, 1973; and 

(J) Change "J. Assoc. Compo Mach." to "Jour. ACM" in the citation for Aho, Hirschberg. 
and Ullman shown above. 

The procedure would be as follows. First, you would make a file containing the additions. here 
called "new.I", in the normal way using the UNIX editor. In the script shown below. the 
computer prompts are in italics. 

Sed new.1 
') 

a 
%T The Dilogarithm Function of a Real Argument 
%A Robert Morris 
%M abcd 
%D 1978 

%T UNIX Software Distribution by Communication Link 
%A M. E. Lesk 
%A A. S. Cohen 
%M abcd 
%0 1978 
w new.l 
/99 
q 

Next you would specify the deletion, which would be done with the pI/b. de! command: 



·6· 

$ pub.dellesk cheap typesetters siglash 
to which the computer responds: 

Will delete: (file bibl76J 

%T Cheap Typesetters 
%A M. E. Lesk 
IJ(J ACM SIGLASH Newsletter 
%V6 
%N4 
%P /4./6 
%D October /973 

And then you would extract the Aho. Hirschberg and Ullman paper. The dialogue involved is 
shown below. First run plIb.chg to extract the paper~ it responds by printing the citation and 
informing you that it was placed on file bib/23. That file is then edited. 



$ pub.chg aho hirschberg ullman 
Extracting as.file bibl2J 

- 7 -

'H,T Bounds on the Complexity of the Maximal 
Common Subsequence Problem 
%A A. V. Aho 
%A D. S. Hirschberg 
%A J. D. Ullman 
%J J. Assoc. Compo Mach. 
%V 2J 
%N I 
'HIP 1-12 
%M abed 
%D Jan. 1976 

$ ed bibl23 
JI2 
I Assoclsl JI Jour/p 
%J JOllr. Assoc. Compo Mach. 
sl Assoc. *1 ACM/p 
%J Jour. ACM 
l,$p 
%# lusrldictlpaperslp76 2JJ 245 change 
%T BOllnds on the Complexity of the Maximal 
Common Subsequence Problem 
%A A. V. Aho 
'!4,A D. S. Hirschberg 
%A J. D. Ullman 
%J JOllr. ACM 
%V 2J 
'H,N I 
'HIP 1-12 
%M abed 
%D Jan. 1976 

w 
292 
Q 

$ 

Finally, execute pllb.run, making sure to remember that you have prepared a new file "new. 1 ": 

$pub.run new.l 

and about fifteen minutes later the new index would be complete and all the changes would be 
included. 

4. Printing a Publication List 

There are two commands for printing a publication list, depending on whether you want 
to print one person's list, or the list of many people. To print a list for one person, use the 
pub.indiv command: 

pub.indiv M Lesk 

This runs off the list for M. Lesk and puts it in file "output". Note that no '.' is given after 
the initial. In case of ambiguity two initials can be used. Similarly, to get the list for group of 
people, say 



- 8 -

pub.org xxx 

which prints all the publications of the members of organization xxx, taking the names for the 
list in the file lusrldicrlpapers/cenrlisrlxxx. This command should normally be run in the back
ground; it takes perhaps 15 minutes. Two options are available with these commands: 

pub.indiv -p M Lesk 

prints only the papers. leaving out unpublished notes. patents, etc. Also 

pub.indiv - t M Lesk I gcat 

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to an 
alternate typesetter with the 'gcat' command. These options may be used together. and may be 
used with the pub. arK command as well. For example, to print only the papers for all of organi
zation zzz and typeset them, you could type 

pub.center - t - P zzz I gcat & 

These publication lists are printed double column with a citation style taken from a set of publi
cation list macros; the macros, of course, can be changed easily to adjust the format of the lists. 



Some Applications of Inverted Indexes on the UNIX System 

Some Applications of Inverted Indexes on the UNIX System 

M. E. Lesk 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

1. Introduction. 

USD:30-1 

The UNIxt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ... ) to search through files 
of text, but most of them are based on a linear scan through the entire file, using some deterministic 
automaton. This memorandum discusses a program which uses inverted indexes I and can thus be 
used on much larger data bases. 

As with any indexing system, of course, there are some disadvantages; once an index is made, 
the files that have been indexed can not be changed without remaking the index. Thus applications 
are restricted to those making many searches of relatively stable data. Furthermore, these programs 
depend on hashing, and can only search for exact matches of whole keywords. It is not possible to 
look for arithmetic or logical expressions (e.g. "date greater than 1970") or for regular expression 
searching such as that in lex.2 

Currently there are two uses of this software, the refer preprocessor to format references, and 
the looka/J command to search through all text files on the UNIX system.* 

The remaining sections of this memorandum discuSs the searching programs and their uses. 
Section 2 explains the operation of the searching algorithm and describes the data· collected for use 
with the lookall command. The more important application, refer has a user's description in section 
3. Section 4 goes into more detail on reference files for the benefit of those who· wish to add refer
ences to data bases or write new troff macros for use with refer. The options to make refer collect 
identical citations, or otherwise relocate and adjust references, are described in section 5. 

2. Searching. 
The indexing and searching process is divided into two phases, each made of two parts. These 

are shown below. 
A. Construct the index. 

( 1 ) Find keys - turn the input files into a sequence of tags and keys, where each tag identifies 
a distinct item in the input and the keys for each such item are the strings under which it 
is to be indexed. 

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys, the 
appropriate item tags can be found quickly. 

B. Retrieve an item in response to a query. 

t UNIX is a trademark of AT&T Bell Laboratories. 
1 D. Knuth, The Art of Computer Programming: Vol. 3. Sorting and Searching, Addison-Wesley, Read

ing, Mass., 1977. See section 6.5. 
2 M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell Laboratories. 

Murray Hill, New Jersey, October 1975. Reprinted as PS1:16 in UNIX Programmer's Manual, Usenix As-
sociation. (1986). . * loolcall is not pan of the Berkeley UNIX distribution. 



USD:30-2 Some Applications of Inverted Indexes on the UNIX System 

(3) Search - Given some keys, look through the files prepared by the hashing and sorting 
facility and derive the appropriate tags. 

(4) Deliver - Given the tags, find the original items. This completes the searching process. 

The first phase, making the index, is presumably done relatively infrequently. It should, of course, be 
done whenever the data being indexed change. In contrast, the second phase, retrieving items, is 
presumably done often, and must be rapid. 

An effort is made to separate code which depends on the data being handled from code which 
depends on the searching procedure. The search algorithm is involved only in programs (2) and (3), 
while knnwledge of the actual data files is needed only by programs (1) and (4). Thus it is easy to 
adapt to different data files or different search algorithms. 

To start with, it is necessary to have some way of selecting or generating keys from input files. 
For dealing with files that are basically English, we have a key-making program which automatically 
selects words and passes them to the hashing and sorting program (step 2). The format used has one 
line for each input item, arranged as follows: 

name:start,length (tab) key 1 key2 key3 .. , 

where name is the file name, start is the starting byte number, and length is the number of bytes in 
the entry. 

These lines are the only input used to make the index. The first field (the file name, byte posi
tion, and byte count) is the tag of the item and can be used to retrieve it quickly. Normally, an item 
is either a whole file or a section of a file delimited by blank lines. After the tab, the second field con
tains the keys. The keys, if selected by the automatic program, are any alphanumeric strings which 
are not among the 100 most frequent words in English and which are not entirely numeric (except for 
four-digit numbers beginning 19, which are accepted as dates). Keys are truncated to six characters 
and converted to lower case. Some selection is needed if the original items are very large. We nor
mally just take the first n keys, with n less than 100 or so; this replaces any attempt at intelligent 
selection. One file in our system is a complete English dictionary; it woUld presumably be retrieved 
for all queries. 

To generate an inverted index to the list of record tags and keys, the keys are hashed and sorted 
to produce an index. What is wanted, ideally, is a series of lists showing the tags associated with each 
key. To condense this, what is actually produced is a list showing the tags associated with each hash 
code, and thus with some set of keys. To speed up access and further save space, a set of three or 
possibly four files is produced. These files are: 

File Contents 
entry Pointers to posting file 

for each hash code 
posting Lists of tag pointers for 

each hash code 
tag Tags for each item 
key . Keys for each item 

(optional) 

The posting file comprises the real data: it contains a sequence of lists of items posted under each 
hash code. To speed up searching, the entry file is an array of pointers into the posting file, one per 
potential hash code. Furthermore, the items in the lists in the posting file are not referred to by their 
complete tag, but just by an address in the tag file, which gives the complete tags. The key file is 
optional and contains a copy of the keys used in the indexing. 

The searching process starts with a query, containing several keys. The goal is to obtain all 
items which were indexed under these keys. The query keys are hashed, and the pointers in the entry 
file used to access the lists in the posting file. These lists are addresses in the tag file of documents 
posted under the hash codes derived from the query. The common items from all lists are deter
mined; this must include the items indexed by every key, but may also contain some items which are 



Some Applications of Inverted Indexes on the UNIX System USD:30-3 

false drops, since items referenced by the correct hash codes need not actually have contained the 
correct keys. Normally, if there are several keys in the query, there are not likely to be many false 
drops in the final combined list even though each hash code is somewhat ambiguous. The actual tags 
are then obtained from the tag file, and to guard against the possibility that an item has false-dropped 
on some hash code in the query, the original items are normally obtained from the delivery program 
(4) and the query keys checked against them by string comparison. 

Usually, therefore, the check for bad drops is made against the original file. However, if the key 
derivation procedure is complex, it may be preferable to check against the keys fed to program (2). 
In this case the optional key file which contains the keys associated with each item is generated, and 
the item tag is supplemented by a string 

;start,length 

which indicates the starting byte number in the key file and the length of the string of keys for each 
item. This file is not usually necessary with the present key-selection program, since the keys always 
appear in the original document. 

There is also an option (-Cn) for coordination level searching. This retrieves items which match 
all but n of the query keys. The items are retrieved in the order of the number of keys that they 
match. Of course, n must be less than the number of query keys (nothing is retrieved unless it 
matches at least one key). 

As an example, consider" one set of 4377 references, comprising 660,000 bytes. This included 
51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the 
expense of time); 995 of 997 possible hash codes were used. The total set 0: index files (no key file) 
included 171,000 bytes, about 26% of the original file size. It took 8 minutes of processor time to 
hash, sort, and write the index. To search for a single query with the resulting index took 1.9 seconds 
of processor time, while to find the same paper with a sequential linear search using grep (reading all 
of the tags and keys) took 12.3 seconds of processor time. 

We have also used this software to index all of the English stored on our UNIX system. This is 
the index searched by the lookall command. On a typical day there were 29,000 files in our user file 
system, containing about 152,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes (about 
21 %) were English text. The total number of 'words' (determined mechanically) was 5,100,000. Of 
these 227,000 were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) 
different hash codes. The resulting inverted file indexes used 845,000 bytes, or about 2.6% of the size 
of the original files. The particularly small indexes are caused by the fact that keys are taken from 
only the first 50 non-common words of some very long input files. 

Even this large lookall index can be searched quickly. For example, to find this document by 
looking for the keys "lesk inverted indexes" required 1.7 seconds of processor time and system time. 
By comparison, just to search the 800,000 byte dictionary (smaller than even the inverted indexes, let 
alone the 27,000,000 bytes of text files) with grep takes 29 seconds of processor time. The lookafl 
program is thus useful when looking for a document which you believe is stored on-line, but do not 
know where. For example, many memos from our center are in the file system, but it is often difficult 
to guess where a particular memo might be (it might have several authors, each with many direc
tories, and have been ~orked on by a secretary with yet more directories). Instructions for the use of 
the lookall command are given in the manual section, shown in the appendix to this memorandum. 

The only indexes maintained routinely are those of publication lists and all English files. To 
make other indexes, the programs for making keys, sorting them, searching the indexes, and deliver
ing answers must be used. Since they are usually invoked as parts of higher-level commands, they are 
not in the default command directory, but are available to any user in the directory lusrlliblrefer. 
Three programs are of interest: mkey, which isolates keys from input files; inv, which makes an index 
from a set of keys; and hunt, which searches the index and delivers the items. Note that the two 
parts of the retrieval phase are combined into one program, to avoid the excessive system work and 
delay which would result from running these as separate processes. 



USD:30-4 Some Applications of Inverted Indexes on the UNIX System 

These three commands have a large number of options to adapt to different kinds of input. The 
user not interested in the detailed description that now follows may skip to section 3, which describes 
the refer program, a packaged-up version of these tools specifically oriented towards formatting refer
ences. 

Make Keys. The program mkey is the key-making program corresponding to step (1) in phase 
A. Normally, it reads its input from the file names given as arguments, and if there are no arguments 
it reads from the standard input. It assumes that blank lines in the input delimit separate items, for 
each of which a different line of keys should be generated. The lines of keys are written on the stan
dard output. Keys are any alphanumeric string in the input not among the most frequent words in 
English and not entirely numeric (except that all-numeric strings are acceptable if they are between 
1900 and 1999). In the output, keys are translated to lower case, and truncated to six characters in 
length; any associated punctuation is removed. The following flag arguments. are recognized by mkey: 

-c name Name of file of common words; default is lusrl/ibleign. 
-f name Read a list of files from name and take each as an input argu-

ment. 
-i chars Ignore all lines which begin with '%' followed by any character 

in chars. 
-kn Use at most n keys per input item. 
-In Ignore items shorter than n letters long. 
-om Ignore as a key any word in the first m words of the list of 

common English words. The default is 100. 
-s Remove the iabels (file:start,/ength) from the output; just give 

the keys. Used when searching rather than indexing. 
-w Each whole file is a separate item; blank lines in files are 

irrelevant. 

The normal arguments for indexing references are the defaults, which are -c lusrlUbleign, 
-nlOO, and -13. For searching, the -s option is also needed. When the big lookall index of all 
English files is run, the options are -w, -k50, and -f (fi/e/ist). When running on textual input, the 
mkey program processes about 1000 English words per processor second. Unless the -k option is 
used (and the input files are long enough for it to take effect) the output of mkey is comparable in 
size to its input. 

Hash and invert. The inv program computes the hash codes and writes the inverted files. It 
reads the output of mkey and writes the set of files described earlier in this section. It expects one 
argument, which is used as the base name for the three (or four) files to be written. Assuming an 
argument of Index (the default) the entry file is named Index.ia, the posting file Index.ib, the tag file 
Index.ic, and the key file (if present) Index.id. The inv program recognizes the following options: 

-a Append the new keys to a previous set of inverted files, mak
ing new files if there is no old set using the same base name. 

-d Write the optional key file. This is needed when you can not 
check for false drops by looking for the keys in the original 
inputs, i.e. when the key derivation procedure is complicated 
and the output keys are not words from the input files. 

-hn The hash table size is n (default 997); n should be prime. 
Making n bigger saves search time and spends disk space. 

-ilu) name Take input from file name, instead of the standard input; if u 
is present name is unlinked when the sort is started. Using 
this option permits the sort scratch space to overlap the disk 
space used for input keys. 

-0 Make a completely new set of inverted files, ignoring previous 
files. 



Some Applications of Inverted Indexes on the UNIX System 

-p 

-v 

Pipe into the sort program, rather than writing a temporary 
input file. This saves disk space and spends processor time. 
Verbose mode; print a summary of the number of keys which 
finished indexing. 

USD:30-5 

About half the time used in inv is in the contained sort. Assuming the sort is roughly linear, 
however, a guess at the total timing for inv is 250 keys per second. The space used is usually of more 
importance: the entry file uses four bytes per possible hash (note the -h option), and the tag file 
around 15-20 bytes per item indexed. Roughly, the posting file contains one item for each key 
instance and one item for each possible hash code; the items are two bytes long if the tag file is less 
than 65336 bytes long, and the items are four bytes wide if the tag file is greater than 65536 bytes 
long. Note that to minimize storage, the hash tables should be over-full; for most of the files indexed 
in this way, there is no other real choice, since the entry file must fit in memory. 

Searching and Retriel'ing. The hunt program retrieves items from an index. It combines, as 
mentioned above, the two parts of phase (B): search and delivery. The reason why it is efficient to 
combine delivery and search is partly to avoid starting unnecessary processes, and partly because the 
delivery operation must be a part of the search operation in any case. Because of the hashing, the 
search part takes place in two stages: first items are retrieved which have the right hash codes associ
ated with them, and then the actual items are inspected to determine false drops, i.e. to determine if 
anything with the right hash' codes doesn't really have the right keys. Since the original item is 
retrieved to check on false drops, it is efficient to present it immediately, rather than only giving the 
tag as output and later retrieving the item again. If there were a separate key file, this argument 
would not apply, but separate key files are not common. 

Input to hunt is taken from the standard. input, one query per line. Each query should be in 
mkey -s output format; all lower case, no punctuation. The hunt program takes one argument which 
specifies the base name of the index files to be searched. Only one set of index files can be searched 
at a time, although many text files may be indexed as a group, of course. If one of the text files has 
been changed since the index, that file is searched with fgrep; this may occasionally slow down the 
searching, and care should be taken to avoid having many out of date files. The following option 
arguments are recognized by hunt: 

-a Give all output; ignore checking for false drops. 
-Cn Coordination level n; retrieve items with not more than n 

terms of the input missing; default CO, implying that each 
search term must be in the output items. 

-F[ynd] "-Fy" gives the text of all the items found; "-Fn" suppresses 
them. "-Fd" where d is an integer gives the text of the first d 
items. The default is -Fy. 

-g Do not use fgrep to search files changed since the index was 
made; print an error comment instead. 

-i string Take string as input, instead of reading the standard input. 
-1 n The maximum length of internal lists of candidate items is n; 

default 1000. 
-0 string Put text output ("-Fy") in string; of use only when invoked 

from another program. 
-p Print hash code frequencies; mostly for use in optimizing hash 

table sizes. 
-T[ynd] "-Ty" gives the tags of the items found; "-Tn" suppresses 

them. "-Td" where d is an integer gives the first d tags. The 
default is - Tn. 

-t string Put tag output (" - Ty") in string; of use only when invoked 
from another program. 

The timing of hunt is complex.· Normally the hash table is overfull, so that there will be many 
false drops on any single term; but a multi-term query will have few false drops on all terms. Thus if 



USD:30-6 Some Applications of Inverted Indexes on the UNIX System 

a query is underspecified (one search term) many potential items will be examined and discarded as 
false drops, wasting time. If the query is overspecified (a dozen search terms) many keys will be 
examined only to verify that the single item under consideration has that key posted. The variation 
of search time with niunber of keys is shown in the table below. Queries of varying length were COD

structed to retrieve a particular document from the file of references. In the sequence to the left, 
search terms were chosen so as to select the desired paper as quickly as possible. In the sequence on 
the right, terms were chosen inefficiently, so that the query did not uniquely select the desired docu
ment until four keys had been used. The same document was the target in each case, and the final set 
of eight keys are also identical; the differences at five, six and seven keys are produced by measure
ment error, not by the slightly different key lists. 

Efficient Keys Inefficient Keys 
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time 

(incl. false) Documents (seconds) (inci. false) Documents (seconds) 

1 15 3 1.27 1 68 55 5.96 
2 1 1 0.11 2 29 29 2.72 
3 1 1 0.14 3 8 8 0.95 
4 1 1 0.17 4 1 1 0.18 
5 1 1 0.19 5 1 1 0.21 
6 1 1 0.23 6 1 1 0.22 
7 f 1 0.27 7 1 1 0.26 
8 1 1 0.29 8 1 1 0.29 

As would be expected, the optimal search is achieved when the query just specifies the answer, how
ever, overspecification is quite cheap. Roughly, the time required by hunt can be approximated as 30 
milliseconds per search key plus 75 milliseconds per dropped document (whether it is a false drop or 
a real answer). In general, overspecification can be recommended; it protects the user against addi
tions to the data base which tum previously uniquely-answered queries into ambiguous queries. 

The careful reader will have noted an enormous discrepancy between these times and the earlier 
quoted time of around 1.9 seconds for a search. The times here are purely for the search and 
retrieval: they are measured by running many searches through a single invocation of the hunt pro
gram alone. The normal retrieval operation involves using the shell to set up a pipeline through 
mkey to hunt and starting both processes; this adds a fixed overhead of about 1.7 seconds of proces
sor time to any single search. Furthermore, remember that all these times are processor times: on a 
typical morning on our PDP 11170 system, with about one dozen people logged on, to obtain 1 second 
of processor time for the search program took between 2 and 12 seconds of real time, with a median 
of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a single search may 
be only 200 milliseconds, after you add the 1.7 seconds of startup processor time and then assume a 
4: 1 elapsed/processor time ratio, it will be 8 seconds before any response is printed. 

3. Selecting and Formatting References for TROFF 

The major application of the retrieval software is refer, which is a troff preprocessor like eqn. 3 

It scans its input looking for items of the form 

.[ 
imprecise citation 
.] 

where an imprecise citation is merely a string of words found in the relevant bibliographic citation. 
This is translated into a properly formatted reference. If the imprecise citation does not correctly 
identify a single paper (either selecting no papers or too many) a message is given. The data base of 

3 B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc. Compo 
Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill. New Jersey, March 1975. Reprinted as 
USD:26 in UNIX User's Manual, Usenix Association, (1986). 



Some Applications of Inverted Indexes on the UNIX System USD:30-7 

citations searched may be tailored to each system, and individual users may specify their own citation 
files. On our system, the default data base is accumulated from the publication lists of the members 
of our organization, plus about half a dozen personal bibliographies that were collected. The present 
total is about 4300 citations, but this increases steadily. Even now, the data base covers a large frac
tion of local citations. 

For example, the reference for the eqn paper above was specified as 

preprocessor like 
.I eqn . 
. [ 
kernighan cherry acm 1975 
.] 
It scans its input looking for items 

This paper was itself printed using refer. The above input text was processed by refer as well as tbl 
and troff by the command 

refer memo-file I tbl I troff -ms 

and the reference was automatically translated into a correct citation to the ACM paper on 
mathematical typesetting. 

The procedure to use to place a reference in a paper using refer is as follows. First, use the 
lookbib command to check that the paper is in the data base and to find out what keys are necessary 
to retrieve it. This is done by typing lookbib and then typing some potential queries until a suitable 
query is found. For example, had one started to find the eqn paper shown above by presenting the 
query 

$lookbib 
kernighan cherry 

. (EOT) 

lookbib would have found several items; experimentation would quickly have shown that the query 
given above is adequate. Overspecifying the query is of course harmless. A particularly careful 
reader may have noticed that Haem" does not appear in the printed citation; we have supplemented 
some of the data base items with common extra keywords, such as common abbreviations for jour
nals or other sources, to aid in searching. 

If the reference is in the data base, the query that retrieved it can be inserted in the text. 
between .[ and .] brackets. If it is not in the data base, it can be typed into a private file of refer
ences, using the format discussed in the next section, and then the -p option used to search this 
private file. Such a command might read (if the private references are called myfile) 

refer -p myfile document I tbl I eqn I troff -ms ... 

where tbl and/or eqn could be omitted if not needed. The use of the -ms macros4 or some other 
macro package, however, is essential. Refer only generates the data for the references; exact format
ting is done by some macro package, and if none is supplied the references will not be printed. 

By default, the references are numbered sequentially, and the -ms macros format references as 
footnotes at the bottom of the page. This memorandum is an example of that style. Other possibili
ties are discussed in section 5 below. 

4 M. E. Lesk, Typing Documents on UNIX and GCOS: The ·ms Macros for TrojJ, 1977. Revised version 
reprinted as USD:20 in UNIX User's Manual. Usenix Association, (1986). 



USD:30-8 Some Applications of Inverted Indexes on the UNIX System 

4. Reference Files. 
A reference file is a set of bibliographic references usable with refer. It can be indexed using the 

software described in section 2 for fast searching. What refer does is to read the input document 
stream, looking for imprecise citation references. It then searches through reference files to find the 
full citations, and inserts them into the document. The format of the full citation is arranged to make 
it convenient for a macro package, such as the -ms macros, to format the reference for printing. 
Since the format of the final reference is determined by the desired style of output, which is deter
mined by the macros used, refer avoids forcing any kind of reference appearance. All it does is 
define a set of string registers which contain the basic information about the reference; and provide a 
macro call which is expanded by the macro package to format the reference. It is the responsibility of 
the final macro package to see that the reference is actually printed; if no macros are used, and the 
output of refer fed untranslated to troff, nothing at all will be printed. 

The strings defined by refer are taken directly from the files of references, which are in the fol
lowing format. The references should be separated by blank lines. Each reference is a sequence of 
lines beginning with % and followed by a key-letter. The remainder of that line, and successive lines 
until the next line beginning with %, contain the information specified by the key-letter. In general, 
refer does not interpret the information, but merely presents it to the macro package for final format
ting. A user with a separate macro package, for example, can add new key-letters or use the existing 
ones for other purpos~s without bothering refer. 

The meaning of the key-letters given below, in particular, is that assigned by the -ms macros. 
Not all information, obviously, is used with each citation. For example, if a document is both an 
internal memorandum and a journal article, the macros ignore the memorandum version and cite 
only the journal .article. Some kinds of information are not used at all in printing the reference; if a 
user does .not like finding references by specifying title or author keywords, and prefers to add specific 
keywords to the citation, a field is available which is searched but not printed (K). 

The key letters currently recognized by refer and -ms. with the kind of information implied, 
are: 

Key Information specified Key Information specified 
A Author's name N Issue number 
B Title of book containing item o Other information 
C City of publication P Page(s) of article 
D Date R Technical report reference 
E Editor of book containing item T Title 
G Government (NTIS) ordering number V Volume number 
I Issuer (publisher) 
J Journal name 
K Keys (for searching) X or 
L Label Y or 
M Memorandum label Z Information not used by refer 

For example, a sample reference could be typed as: 



Some Applications of Inverted Indexes on the UNIX System 

% T Bounds on the Complexity of the Maximal 
Common Subsequence Problem 
%Z ctrl27 
%AA. V.Aho 
%A O. S. Hirschberg 
%A J. O. Ullman 
%J J. ACM 
%V23 
%N 1 
%P 1-12 
%M abed-78 
%0 Jan. 1976 

USO:30-9 

Order is irrelevant, except that authors are shown in the order given. The output of refer is a stream 
of string definitions, one for each of the fields of each reference, as shown below . 

. ]-

.ds [A authors' names ... 

. ds [T title ... 
ods [J journal ... 

• ] [ type-number 

The special macro .)- ~recedes the string definitions and the special macro .J( follows. These are 
changed from the input .( and .) so that running the same file through refer again is harmless. The 
.)- macro can be used by the macro package to initialize. The.J ( macro, which should be used to 
print the reference, is given an argument type-number to indicate the kind of reference, as follows: 

Value Kind of reference 
1 Journal article 
2 Book 
3 . Article within book 
4 Technical report 
5 Bell Labs technical memorandum 
o Other 

The reference is flagged in the text with the sequence 

\. ([.number\· (.] 

where number is the footnote number. The strings I. and.) should be used by the macro package to 
format the reference flag in the text. These strings can be replaced for a particular footnote, as 
described in section 5. The footnote number (or other signal) is available to the reference macro .) [ 
as the string register [F. 

In some cases users wish to suspend the searching, and merely use the reference macro format
ting. That is, the user doesn't want to provide a search key between .( and .) brackets, but merely the 
reference lines for the appropriate document. Alternatively, the user can wish to add a few fields to 
those in the reference as in the standard file, or override some fields. Altering or replacing fields, or 
supplying whole references, is easily done by inserting lines beginning with %; any such line is taken 
as direct input· to the reference processor rather than keys to be searched. Thus 

.[ 
keyl key2 key3 .. 0 

%Q New format item 
%R Override report name 
0] 

makes the indicated changes to the result of searching for the keys. All of the search keys must be 



USD:30-10 Some Applications of Inverted Indexes-on the UNIX System 

given before the first % line. 

If no search keys are provided, an entire citation can be provided in-line in the text. For exam
ple, if the eqn paper citation were to be inserted in this way, rather than by searching for it in the 
data base, the input would read 

preprocessor like 
.I eqn . 
. [ 
%A B. W. Kernighan 
%A L. L. Cherry 
%T A System for Typesetting Mathematics 
~ Comm. ACM 
%V 18 
%N3 
%P 151-157 
%D March 1975 
.1 
It scans its input looking for items 

This would produce a citation of the same appearance as that resulting from the file search. 

As shown, fields are normally turned into troff strings. Sometimes users would rather have 
them defined as macros, so that other troff commands can be placed into the data. When t.his is 
necessary, simply double the contro! character % in the data. Thus the input 

.[ 
%V 23 
%%M 
Bell Laboratories, 
Murray Hill, N.J. 07974 
.J 

is processed by refer into 

.ds [V 23 

.de [M 
Bell Laboratories, 
Murray Hill, N.J. 07974 

The information after %%M is defined as a macro to be invoked by .IM while the information after 
%V is turned into a string to be invoked by \*«V. At present -ms expects all information as strings. 

S. Collecting References aDd other Refer Options 

Normally, the combination of refer and -ms formats output as troff footnotes which are con
secutively numbered and placed at the bottom of the page. However, options exist to place the refer
ences at the end; to arrange references alphabetically by senior author; and to indicate references by 
strings in the text of the form [Name1975aJ rather than by number. Whenever references are not 
placed at the bottom ofa page identical references are coalesced. 

For example, the -e option to refer specifies that references are to be collected; in this case they 
are output whenever the sequence 

.[ 
$LISTS 
.J 



Some Applications of Inverted Indexes on the UNIX System USD:30-11 

is encountered. Thus, to place references at the end of a paper, the user would run refer with the -e 
option and place the above $LIST$ commands after the last line of the text. Refer will then move all 
the references to that point. To aid in formatting the collected references, refer writes the references 
preceded by the line 

.)< 

and followed by the line 

.J> 
to invoke special macros before and after the references. 

Another possible option to refer is the -5 option to specify sorting of references. The default, of 
course, is to list references in the order presented. The -5 option implies the -e option, and thus 
requires a 

.[ 
SLISTS 
.J 

entry to callout the reference list. The -5 option may be followed by a string of letters, numbers, and 
'+' signs indicating how the references are to be sorted. The sort is done using the fields whose key
letters are in the string as sorting keys; the numbers indicate how many of the fields are to be con
sidered, with '+' taken as a large number. Thus the default is -sAD meaning "Sort on senior author, 
then date." To sort on all authors and then title, specify -sA+T. And to sort on two authors and 
then the journal, write -5A2J. 

Other options to refer change the signai or label inserted in the text for each reference. Nor
mally these are just sequential numbers, and their exact placement (within brackets, as superscripts, 
etc.) is determined by the macro package. The -I option replaces reference numbers by strings com
posed of the senior author's last name, the date, and a disambiguating letter. If a number follows the 
1 as in -13 only that many letters of the last name are used in the label string. To abbreviate the date 
as well the form -Im,n shortens the last name to the first m letters and the date to the last n digits. 
For example, the option -13,2 would refer to the eqn paper (reference 3) by the signal Ker75a, since it 
is the first cited reference by Kernighan in 1975. 

A user wishing to specify particular labels for a private bibliography may use the -k option. 
Specifying -kx causes the field x to be used as a label. The default is L. If this field ends in -, that 
character is replaced by a sequence letter; otherwise the field is used exactly as given. 

If none of the refer-produced signals are desired, the -b option entirely suppresses automatic 
text signals. 

If the user wishes to override the -ms treatment of the reference signal (which is normally to 
enclose the number in brackets in nroff and make it a superscript in troff) this can be done easily. If 
the lines .( or .J contain anything following these characters, the remainders of these lines are used to 
surround the reference signal, instead of the default. Thus, for example, to say "See reference (2)." 
and avoid "See reference.2" the input might appear 

See reference 
.[ ( 
imprecise citation ... 
. ]). 

Note that blanks are significant in this construction. If a permanent change is desired in the style of 
reference signals, however, it is probably easier to redefine the strings (. and.J (which are used to 
bracket each signal) than to change each citation. 

Although normally refer limits itself to retrieving the data for the reference, and leaves to a 
macro package the job of arranging that data as required by the local format, there are two special 
options for rearrangements that can not be done by macro packages. The -c option puts fields into 
all upper case (CAPS-SMALL CAPS in troff output). The key-letters indicated what information is to be 



USD:30-12 Some Applications of Inverted Indexes on the UNIX System 

translated to upper case follow the c, so that -cAJ means that authors' names and journals are to be 
in caps. The -a option writes the names of authors last name first, that is A. D. Hall. Jr. is written as 
Hall, A. D. Jr. The citation form of the Journal of the ACM, for example, would require both -cA 
and -a options. This produces authors' names in the style KERNIGHAN, B. W. AND CHERRY, L. L. for 
the previous example. The -a option may be followed by a number to indicate how many author . 
names should be reversed; -al (without any -c option) would produce Kernighan, B. W. and L. L. 
Cherry, for example. 

Finally, there is also the previously-mentioned -p option to let the user specify a private file of 
references to be searched before the public files. Note that refer does not insist on a previously made 
index for these files. If a file is named which contains reference data but is not indexed, it will be 
searched (more slowly) by refer usingfgrep. In this way it is easy for users to keep small files of new 
references, which can later be added to the public data bases. 



BIB - A Program for Formatting Bibliographies 

BIB - A Program for Formatting Bibliographies 

Timothy A. Budd 

The University of Arizona 
Department of Computer Science 

Tucson, Arizona 85721 
• 

USD:31-1 

Bib is a program for collecting and formatting reference lists in documents. It is a preprocessor 
to the nroff/troff typesetting systems, (much like the tbl [4] and eqn [2] programs) and an alternative 
to the refer [3] bibliography program. Bib takes two inputs: a document to be formatted and a library 
of references. Imprecise citations in the source document are replaced by more conventional citation 
strings, the appropriate references are selected from the reference file, and commands are generated to 
format both citation and the referenced item in the bibliography. 

An imprecise citation is a list of words surrounded by the characters [ .. ]. Words (which are 
truncated to six letters) in the imprecise citation are matched against entries in the reference file, and 
if an entry is found that matches aU words, that reference is used. For example: 

In Brooks's interesting book [. brooks mythical.] various reasons ... 

Multiple citations are indicated by simply placing a comma in the imprecise citation: 

In [.kemig tools, kernig elements.], Kernighan and Plauger have ... 

Embedded newlines, tabs and extra blanks within the imprecise citation are ignored. 
Judicious use of the K (keyword) field in references in the database can simplify citations con

siderably. Also additional information can be placed into citations by surrounding text with curly 
braces. The additional information is inserted verbatim into the citation, e.g. [1, Chapter 6]. Note 
that it may be desirable to use non-breakable spaces, in order that the citation not be split across a 
line boundary by croff, for example: 

For a description ofLR parsing, see [.dragon {,\ Chapter 6}.] by Aho and Ullman. 

An alternative citation style can be used by surrounding the imprecise citation with {. and .}. 
Most document styles just give the raw citation, without the braces, in this case. This is useful. for 
example, to refer to citations in running text. 

For a discussion of this point, see reference {.dragon.}. 

The algorithm used by bib scans the source input in two passes. In the first pass, references are 
collected and the location of citations marked. In the second pass, these marks are replaced by the 
appropriate citation, and the entire list of references is dumped following a call on the macro .[]. 
This macro is left untouched. However, this can be altered to achieve other typographic effects. 

An exception to this process is made in those instances where references are indicated in foot
notes. In this case the macro that generates the reference is placed immediately after each line in 
which the reference is cited. 



USD:31-2 BIB - A Program for Formatting Bibliographies 

Reference files are prepared for bib using invert. By default invert places an inverted index for 
the reference list in the file INDEX. Unless the user specifies an alternative (see the -I' switch 
described below), this is the first file searched by bib in attempting to locate a reference. If the entry 
is not found in the user's file,a standard system-wide index is searched. If the entry is still not found 
in the system file, a warning message is produced and a blank citation is generated. . 

The format for entries in the reference file is described more fully in the section 'Reference File 
Formats'. This format is similar to that used by refer with the following exceptions: . 

1. An F field, if present, overrides whatever citation strine would otherwise be constructed. 

2. Certain. defined names can be used, and will be expanded differently by different document 
styles. For example, the strine CACM is expanded into 'Communications of the ACM' by some 
document styles, ·Comm. ACM' by others, and ·Comm. of the Assoc. of Compo Mach.' by yet 
others. Appendix 1 lists the currently recognized names. 

3. The program automatically abbreviates names, reverses names, and hyphenatesstrincs of con
tiguous references, if requested. 

4. A reference can have more than one editor field, and editor's names can be abbreviated, 
reversed, and/or printed in cap/small caps style, independent of any processing done to authors 
names. 
Since the user's index is searched before the system index, if the user wants to alter a specific 

entry in the system index (say to change the name W. E. Howden to William E. Howden, for exam
ple) it is a simple matter to copy the system information into a private database and make the 
chanees lC'r.ally. 

Citation formats are either determined by explicit switch settings' or, more generally, by using a 
predefined formattine style. In the latter form, usage looks something like: 

bib -tstyle [files] 

where style is a citation style. Currently the followine citation styles are available: 

stdn (standard numeric) numeric citation. Reference entries are listed in citation order. 

stdsn same as stdn, but references are sorted by senior author followed by date. 

stda (standard alphabetic) citations are three letters followed by the last two digits of the 
date. For papers with a single author, the letters are the first three letters of the authors 
last name (e.g. Knu). In papers with two authors the first two letters are from the first 
author followed by one letter from the second (e.g. HoU). If three or more authors are 
given the first letters from the first three authors are used (e.g. AHU). 

openn same as stdsn, only using an open reference format (each major entry is on a new line i ). 

opena 

foot 

supn 

spe 

same as stda, but using an open format. 

footnoted references. 

same as stdn, but using superscripts. 

format used by the journal Software-Practice and Experience. Eventually there will be 
macro packages available for several journal styles. 

It is possible to alter slightly the format of standard styles. For example, to generate references 
in standard numeric style, but abbreviate first names, the following can be used: 

bib -tstdn -aa ... 
If two reference items create the same citation string (this can happen if two papers authored by 

the same person in a single year are referred to in one paper) a disambiguating final letter is added to 

1. The open reference fonnat is adapted from A Handbook for Scholars. by Mary-Claire van Leunen. pub
lished by Knopf. 1978. 



BIB - A Program for Formatting Bibliographies USD:31-3 

the citation (i.e., Knu79 becomes Knu79a and Knu79b). As noted previously, this can be altered by 
using the F field. 

For the purposes of sorting by author, the last name is t!lken to be the last word of the name 
field. This means some care must be taken when names contain embedded blanks, such as.in 'Hart
ley Rogers, Jr.' or 'Mary-Claire van Leunen'. In these cases a concealed space (\ ) should be used, as 
in 'Hartley Rogers,\ Jr.'. 

bib knows very little about troffusage or syntax. This can sometimes be useful. For example, to 
cause an entry to appear in a reference list without having it explicitly cited in the text the citation 
can be placed in a troff comment . 

. \. [.imprecise citation.] 

It is also possible to embed troff commands within a reference definition. See 'abbreviations' in 
the section 'Reference Format Designer's Guide' for an example. 

In some styles (superscripts) periods and commas should precede the citation while spaces fol
low. In other styles (brackets) these rules are reversed. If a period, comma or space immediately pre
cedes a citation, it will be moved to the appropriate location for the particular reference style being 
used. This movement is not done for citations given in the alternative style. 

The following is a complete list of options for bib: 

-aa 
-arnum 
-ax 

-cstr 

-ea 
-ex 
-ernum 

-f 

-h 

-i file 
-ifile 

-nstr 

-0 

-pfile 

-pfile 

-sstr 
-t type 

-ttype 

reduce author's first names to abbreviations. 
reverse the first num author's names. If num is omitted all names are reversed. 
print authors last names in Caps-Small Caps style. For example Budd becomes 
BUDD. 

build citations according to the template str. See the reference format designer's 
guide for more information on templates. 
abbreviate editors' names 
places editors' names in Caps-Small Caps style. (see -x) 
reverse the first num editors' names. If num is omitted all editors' names are 
reversed. 
instead of dumping references following the call on .[], dump each reference 
immediately following the line on which the citation is placed (used for footnoted 
references). 
hyphenate runs of three or more contiguous references in the citation string. (eg 
2,3,4,5 becomes 2-5). This is most useful for numeric citation styles, but works gen
erally. The -h option implies the -0 option. 

include and process the indicated file. This is useful for including a private file of 
string definitions. 
turn off the indicated options. str must be composed of the characters afhorx. 

sort contiguous citations according to the order given by the reference list. (This 
option defaults on). 

instead of searching the file INDEX, search the indicated reference file(s) before 
searching the system file. Multiple files are separated by commas. ' 
sort references according to the template str. 

use the standard macros and switch settings to generate citations and references in 
the indicated style. 



USD:31-4 BIB - A Program for Formatting Bibliographies 

Reference File Formats 

A reference file is a file containing any number of reference items. Reference items are 
separated by one or more blank lines. There are no restrictions placed on the order of items· in a file, 
although imposing some order (such as sorting items alphabetically) simplifies updates. 

A reference item is a collection of field tags and values. A field tag is a percent sign followed by 
a single letter. Currently, the following field tags are recognized: 

A 
B 
C 
D 
E 
F 
G 
I 
J 
K 
N 
o 

.. P 

R 
S 
T 
V 
W 

.x 

Author's name 
Title of book containing item 
City of publication 
Date 
Editor(s) of book containing item 
Caption 
Government (NTIS) ordering number 
Issuer (publisher) 
Journal name 
Keys for searching 
Issue number 
Other information 
Page(s) of article 
Technical report number 
Series title 
Title 
Volume number 
Where the item can be found locally 
Annotations (not in all macro styles) 

Author and editor fields can be repeated, as necessary, but all other fields can occur at most 
once in any reference. The field information is as long as necessary, and can extend onto new lines. 
Lines that do not begin with a percent sign or a period are treated as continuations of the previous 
line. The order of fields is irrelevant, except that authors and editors are listed in the order of 
occurrence. 

Generally a reference falls into one of several basic categories. An example of each and a brief 
comment is given below. With less standard references (Archival Sources, Correspondence, Govern
ment Documents, Newspapers) generally some experimentation is necessary. 

Books 
A book is something with a publisher that isn't a journal article or a technical report. Generally, 

books also have authors and titles and dates of publication (although some don't). For books not 
published by a major publishing house it is also helpful to give ,a city for the publisher. Some govern
ment documents also qualify as books, so a book may have a government ordering number. 

It is conventional that the authors names appear in the reference in the same form as on the 
title page of the book. Note also that string definitions are provided for most of the major publishing 
houses (PRHALL for Prentice-Hall, for example). The string definition may include the city as part 
of the definition, depending on the database in use. 

%A R. E. Griswold 
%A J. F. Poage 
%A I. P. Polonsky 
%T The SNOBOL4 Programming Language 
%1 PRHALL 
%0 second edition 1971 



BIB - A Program for Formatting Bibliographies USD:31-5 

Sometimes a book (particularly old books) will have no listed publisher. The reference entry 
must still have an I field. 

%A R. Colt Hoare 
%T A Tour through the Island of Elba 
%1 (no listed publisher) 
%C London 
%0 1814 

If a reference database contains entries from many people (such as a departmental-wide data
base), the W field can be used to indicate where the referenced item can be found; using the initials of 
the owner, for example. Any entry style can take a W field, since this field is not used in formatting 
the reference. 

The K field is used to define general subject categories for an entry. This is useful in locating all 
entries pertaining to a specific subject area. Note the use of the backslash, to indicate the last name is 
Van Tassel, and not simply Tassel. 

%A Dennie Van\ Tassel 
% T Program Style, Design, Efficiency, 
Debugging and Testing 
%1 PRHALL 
%0 1978 
%W tab 
%K testing debugging 

Jolll'll8l article 
The only requirement for a journal article is that. it have a journal name and a volume number. 

Usually journal articles also have authors, titles, page numbers, -and a date of publication. They may 
also have numbers, and, less frequently, a publisher. (Generally, publishers are only listed for obscure 
journals). 

Note that string names (such as CACM for Communications of the ACM) are defined for most 
major journals. There are also string names for the months of the year, so that months can be abbre
viated to the first three letters. Note also in this example the use of the K field to define a short name 
(hru) that can be used in searching for the reference. 

%A M. A. Harrison 
%A W. L. Ruzzo 
%A J.D. Ullman 
% T Protection in Operating Systems 
%J CACM 
%V 19 
%N 8 
%P 461-471 
%0 AUG 1976 
%K hru 

Article in conference proceedings 

An article from a conference is printed as though it were a journal article and the journal name 
was the name of the conference. Note that string names (SOSP) are also defined for the major confer
ences (Symposium on Operating System Principles). 

%A M. Bishop 
%A L. Snyder 
%T The Transfer of Information and Authority 



USD:31-6 BIB - A Program for Formatting Bibliographies 

in a Protection System 
%J Proceedings of the 7th SOSP 
%P 45-54 
%D 1979 

Article in book 
An article in a book has two titles, the title of the article and the title of the book. The first goes 

into the T field and the second into the B field. Similarly the author of the article goes into the A 
field and the editor of the book goes into the E field. 

%A John B. Goodenough 
%T A Survey of Program Testing Issues 
%B Research Directions in Software Technology 
%E Peter Wegner 
%1 MIT Press 
%P 316·340 
%D 1979 

If a work as more than one editor, they each get their own %E field . 

. %A R. J. Lipton 
%A L. Snyder 
% T On Synchroni1'!tion and Security 
%E Richard A. DeMillo 
%E David P. Dobkin 
%E Anita K. Jones 
%E Richard J. Lipton 
%B Foundations of Secure Computation 
%P 367-388 
%1 ACPRESS 
%0 1978 

Sometimes the book is part of a multi-volume series, and hence may contain a volume field 
andlor a series name. 

%A C.A.R. Hoare 
%T Procedures and parameters: An axiomatic approach 
%B Symposium on semantics of algorithmic languages 
%E E. EngeJer 
%P 102-116 
%S Lecture Notes in Mathematics 
%V 188 
%1 Springer-Verlag 
%C Berlin-Heidelberg-New York 
%0 1971 

In any reference format, the 0 field can be used to give additional information. This is fre
quently used, for example, for secondary references. 

%A A. Girard 
%A J-C Rault 
%T A Programming Technique for Software Reliability 
%B Symposium on Software Reliability 
%1 IEEE 
%C Montvale, New Jersey 
%0 1977 



BIB - A Program for Formatting Bibliographies USD:31-7 

%0 (Discussed in Glib [32]) 

Compilations 

A compilation is the work of several authors gathered together by an editor into a book. The 
reference format is the same as for a book, with the editor(s) taking the place of the author. 

%E R. A. DeMillo 
%E D. P. Dobkin 
%E A. K.. Jones 
%E R. J. Upton 
%T Foundations of Secure Computation 
%1 ACPRESS 
%0 1978 

Technical Reports 

A technical,report must have a report number. They usually have authors, titles, dates and an 
issuing institution (the 1 field is used for this). They may also have a city and a government issue 
number. Again string values (UATR for 'University of Arizona Technical Report') will frequently 
simplify typing references. 

%A T. A. Budd 
%T An APL Complier 
%R UATR 81-17 
%C Tucson, Arizona 
%0 1981 

If the institution name is not part of the· technical report number, then the institution should be 
gi ven separately. 

%A Douglas Baldwin 
%A Frederick Sayward 
% T Heuristics for Determining Equivalence of Program Mutations 
%R Technical Report Number 161 
%1 Yale University 
%0 1979 

PhD Thesis 

A PhD thesis is listed as if it were a book, and the institution granting the degree the publisher. 

%A Martin Brooks 
%T Automatic Generation of Test Data for 
Recursive Programs Having Simple Errors 
%1 PhD Thesis, Stanford University 
%0 1980 

Some authors prefer to treat Master's and Bachelor theses similarly, although most references on 
style instruct say to treat a Master's degree as an article or as a report. 

%A A. Snyder 
% T A Portable Compiler for the Language C 
%R Master's Thesis 
%1 M.I.T. 
%0 1974 



USD:31-8 BIB - A Program for Formatting Bibliographies 

Miscellaneous 
A miscellaneous object is something that does not fit into any other form. It can have any of 

the the following fields; an author, a title, a date, page numbers, and, most generally, other informa
tion (the 0 field). 

Any reference item can contain an F field, and. the corresponding text will override whatever 
citation would otherwise be constructed. 

%F BHS-
%A Timothy· A. Budd 
%A Robert Hess 
%A frederick O. sayward 
%T User's Guide for the EXPER Mutation Analysis system 
%0 (Yale university, memo) 

Reference Format Desiper's Guide 

This section need only be read by those users who wish to write their own formatting macro 
packages. 

The information necessary for generating citations and references of a particular style is con
tained in a format file. A format file consists of two ·parts; a sequence of format commands, which are 
read and mterpreted by bib, and a sequence of text lines (usually troff macro definitions) which are 
merely copied to output. The format file name is always prefixed with the string bib. Thus the for
mat file for a standard document type, such as stdn, is found iDa file called bib.stdn in the standard 
library area. 

When bib encounters a -t switch, the user's directory is first searched for a format file matching 
the given name, before the system area is examined. Thus the user can create individual style data
base files. 

Each formatting command is distinguished by a single letter, which must be the first character 
on a line. The formatting commands in a database tile are similar to the command line options for 
bib. The legal commands, and their arguments, are as follows: 

;; text 

A line beginning with a sharp sign is a comment, and all remaining text on the line is ignored. 

A 

The A command controls how authors' names are to be formatted. It can be followed by the 
following character sequences: 

A Authors' names are to be abbreviated. (see abbreviations, below). 

Rnum 

x 

The first num authors' names are to be reversed. If num is omitted, all authors' 
names are reversed. 

Authors' names are to be printed in Caps-S~all Caps style. 

E 
The E command is equivalent to the A command, except that it controls the formatting of edi

tors' names. 



BIB - A Program for Formatting Bibliographies USD:31-9 

F 
The F command indicates that references are to be dumped immediately after a line containing 

a citation, such as when the references are to be placed in footnotes. 

S template 
The S command indicates references are to be sorted before being dumped. The comparison 

used in sorting is based on the template. See the discussion on sorting (below) for an explanation of 
templates. 

C template 
The template is used as a model in constructing citations. See the discussion below. 

D word definition 
The word-definition pair is placed into a table. Befor~ each reference is dumped it is examined 

for the occurrence of these words. Any occurrence of a word from this table is replaced by the 
definition, which is then resc::anned for other words. Words are limited to alphanumeric characters, 
ampersand and underscore. 

Definitions can extend over multiple lines by ending lines with a backslash (\). The backslash 
will be removed, and the definition, including the newline and the next line, will be entered into the 
table. This is useful for including several fields as part of a single definition (city names can be 
included as part of a definition for a publishing' house, for example). 

I filename 
The indicated file is included at the current point. The included file may contain other format

ting commands. 

H 
Three or more contiguous citations that refer to adjacent items in the reference list are replaced 

by a hyphenated string. For example, the citation 2,3,4,5 would be replaced by 2-5. This is most use
ful with numeric citations. The H option implies the 0 option. 

o 
Contiguous citations are sorted according to the order given by the reference list. 

R number 
The first number author's names are reversed on output (i.e. T. A. Budd becomes Budd, T. A.). 

If number is omitted all names are reversed. 

T str 
The str is a list of field names. Each time a definition string for a named field is produced, a 

second string containing just the last character will also be generated. See 'Trailing characters', below. 

x 
Authors' last names are to be printed in Caps/Small Caps format (i.e., Budd becomes BUDD). 

The first line in the format file that does not match a format command causes that line. and all 
subsequent lines, to be immediately copied to the output. 



USD:31-10 BIB - A Program for Formatting Bibliographies 

File Naming Conventions 

Standard database format files are kept in a standard library area. The string BMACLIB in 
bib.h points to this directory (/usr/newlliblbmac in the distribution). In addition, this name is always 
defined when reading format files. There are three types of files: 
bib.xxx These files contain bib commands to format documents in the xxx style. 

bibinc.xxx These files contain information (such as definitions) used by more than one 
style database. 

bmac.xxx These files are the troff macros to actually implement a style. They are gen
eraHy not examined by bib at all, but are processed by troW in response to a .so 
command. 

The first commaBd output by bib defines the strilll I] to be the standard macro database direc
tory. This allows macro files to be independent of where they are actually stored~ 

NaDIiq Coaveatioas 

There is a simple naming convention for strings, registers and macros used by bib. All strings, 
registers and maeras are denoted by two character names containing either a left or right brace. The 
following are general rules: 

[x If x is alphanumeric, the string contains the value of a reference field. If x is nonalphanumeric, 
this is a formatting string preceding a citation. 

]x If x is alphanumeric, this is the final character from a reference field. If x is nonalphanumeric, 
the string is formatting intormation within a citation. 

x[ Strings in this format, where x is can be any character. are defined by the specific macro package 
in use and are not specified by bib~ , 

x] If x is nonalphanumeric these strings represent formatting commands following citations (the 
inverse of [x commands). Other strings represent miscellaneous formatting commands, such as 
the space between leading letters in abbreviated names. 

Sorting 

The sort template is used in comparing two references to generate the sorted reference list. The 
sort template is a sequence of sort objects. Each sort object consists of an optional negative sign, fol
lowed by a field character, followed by an optional signed size. The leading negative sign, if present, 
specifies the sort is to be in decreasing order, rather than increasing. The field' character indicates 
which field in the reference is to be compared. The entire field is used, except in the case of the • A' 
field, in which case only the senior author's last name is used. A positive number following the field 
character indicates that only the first ncharacters are to be examin~ in the comparison. The nega
tive value indicates only the last n characters. Thus, for example, the template AD-2 indicates that 
sorting is to be done by the senior author followed by the last two characters of the date. 

The sort algorithm is stable, so that two documents which compare equally will be listed in cita
tion order. 

Note that in sorting, citation construction, and elsewhere, if an author field is not present the 
senior editor will be used. If neither author nor editor fields are present the institution name will be 
used. 

Citations 

A citation template is similar to a sort template, with the following exceptions: The field name 
'1' refers to the number which represents the position of the reference in the reference list (after sort
ing). The field name '2' generates a three character sequence; If the paper being referenced has only 
one author, this is the first three characters of the author's last name. For two author papers, this is 
the first two characters of the senior author, followed by the first character of the second author. For 
papers with three or more authors the first letter of the first three authors is used. The field name 43' 



BIB - A Program for Formatting Bibliographies USD:31-11 

is used to specify a format consisting of the authors' last names, or the senior author followed by the 
text 'et al' if more than four authors are listed. The fields '4' through '9' are reserved to be used to 
specify formats that cannot be produced using templates. These. will be implemented either as local 
modifications to bib or in future releases. 

In order to postpone the inevitable clash of local changes versus new releases, it is suggested that 
local formatting styles use numbers starting at 9 and working downward. 

Each object can be followed by either of the letters 'u' or 'I' and the field will be printed in all 
upper or all lower case, respectively. 

If necessary for disambiguating, the character '@' can be used as a separator between objects in 
the citation template. Any text which should be inserted into the citation uninterpreted should be 
surrounded by either {} or <> pairs. 

Citation Formatting 

In the output, each citation is surrounded by the strings \ *([[ and \ *(]] (\ *([ ( and \ *()] in the 
alternative style). Multiple citations are separated by the string \ *(],. The text portion of a format 
file should contain troff definitions for these strings to achieve the appropriate typographic effect. 

Citations that are preceded by a period, comma, space or other puncuation are surrounded by 
string values for formatting the puncuation in the approprate location. Again, troff commands should 
be given to insure the appropriate values are produced. 

The following table summarizes the string values that must be defined to handle citations. 

Name Formatting 

[[ ]] 
{[ }] 
[. .] 
[, . ,] 
[? ?] 
[! !] 
[: :] 
[; ;] 
[" "] 
[' '] 
[< >] 
], 
]-

Standard citation beginning and ending 
Alternate citation beginning and ending 
Period before and after citation 
Comma before and after citation 
Question mark before and after citation 
Exclaimation Point before and after citation 
Colon before and after citation 
Semi-Colon before and after citation 
Double Quote before and after citation 
Single Quote before and after citation 
Space before and after citation 
Multiple citation separator 
Separator for a range of citations 

Authors' (and editors') names can be abbreviated, reversed, and/or printed in Caps-small Caps 
format. In producing the string values for an author, formatting strings are inserted to give the macro 
writer greater flexibility in producing the final output. Currently the following strings are used: 

a] gap between sucessive initials 
b] comma between last name and initial in reversed text 
c] comma between authors 
n] and between two authors 
m] and between last two authors 
p] period following initial 

For example, suppose the name 'William E. Howden' is abbreviated and reversed. It will come 
out looking like 

Howden \ *(b ]W\ *(p]\ *(a]E\ *(p] 



USO:31-12 BIB - A Program for Formatting Bibliographies 

Reference Formatting 

The particular style used in printing references is decided by macros passed to troff. Basically, 
for each reference, bib generates a sequence of string definitions, one for each field in the reference, 
followed by a call on the formatting macro. For example an entry which in the reference .file 10Qks 
like: 

%A M. A. Harrison 
%A W. L. Ruzzo 
%A J. O. Ullman 
% T Protection in Operating Systems 
%J CACM 
%V 19 
%N 8 
%P 461-471 
%0 1976 
%K hru 

is converted into the following sequence of commands 

.[-

.ds [F 1 

.ds [A M. A. Harrison 

.as [A \*(c}W. L. Ruzzo 

.as [A \*(m]J. O. Ullman 

.ds [T Protection in Operating Systems 

.ds [J Communications of the ACM 

.ds [V 19 

.ds [N 8 

.nr [P 1 

.ds [P 461-471 

.ds [0 1976 

.J[ 

Note that the commands are preceded by a call on the macro '.[-'. This can be used by the 
macro routines for initialization, for example to delete old string values. The string [F is the citation 
value used in the document. Note that the string CACM has been expanded. 

The strings c], n] and m) are used to separate authors. c] separates the initial authors in multi
author documents (it is usually a comma with some space before and after), n] separates authors in 
two author documents (usually' and '), and m] separates the last two authors in multi-author docu
ments (either' and' or', and '). 

If abbreviation is specified, the string a] is used to separate initials in the author's first name. 

The bib system provides minimal assistance in deciding format types. For example note that 
the number register [P has been set of 1, to indicate that the article is on more than one page. Simi
larly, in documents with editors, the register [E is set to the number of editors. 

Trailing Characters 

There is a problem with fields that end with punctuation characters causing multiple occurrences 
of those characters to be printed. For example, suppose author fields are terminated with a period, as 
in T. A. Budd. If names are reversed, this could be printed as Budd, T. A .. Even if names are not 
reversed, abbreviations, such as in Jr. can cause problems. 

To avoid this problem bib, if instructed, generates the last character from a particular field as a 
separate string. The string name is a right brace followed by the field character. Macro packages 



BIB - A Program for Formatting Bibliographies USD:31-13 

should test this value before generating punctuation. 

Abbreviations 
The algorithm used to generate abbreviations from first names is fairly simple: Each word in the 

first name field that begins with a capital is reduced to that capital letter followed by a period. In 
some cases, this may not be sufficient. For example, suppose Ole-Johan Dahl should be abbreviated 
'O-J. Dahl'. The only way to achieve this (short of editing the output) is to include t,off commands 
in the reference file that alter the strings produced by bib, as in the following 

%A Ole-Johan Dahl 
.ds [A O-J. Dahl 

In fact, any t,off commands can be entered in the middle of a reference entry, and the com
mands are copied uninterpreted to the output. For example, the user may wish to have a switch indi
cating whether the name is to be abbreviated or not: 

%A Ole-Johan Dahl 
.if \n(i[ .ds [A O-J. Dahl 

An Example 
Figure 1 shows the format file for the standard alphabetic format. The sort command indicates 

that sorting is to be done by senior author, followed by the last two digits of the date. The citation 
template indicates that citations will be the three character sequence described in the section of cita
tions followed by the last two characters of the date (i.e. AHU79, for example). 

# standard alphabetic format 
SAD-2 
C2D-2 
I BMACLIBlbibinc.fullnames 
I BMACLIBlbibinc.std 

Figure 1 

The two I commands include two files. The first is a file of dennitions for common strings. such 
as dates and journal names. A portion of this file is shown in figure 2. Note that a no-op has been 
inserted into the definition string for BIT in order to avoid further expansion when the definition is 
rescanned. 

The second file is a sequence of t,off macros for formatting the references. The beginning of this 
file is shown in figure 3. 

On the basis of some' simple rules (the presence or absence of certain fields) the document is 
identified as one of five different types, and a call made on a different macro for each type. This is 
shown in figure 4. 

Finally figure 5 shows the macro for one of those different types, in this case the book fonnat
ting macro. 



USD:31-14 

'* full journal names, and other names 

'* 'journals 
D ACTA Acta Informatica 
D BITB\&.IT 
D CACM Communications of the ACM 

# months 
D JAN January 

D DEC December 

'* standard end macros 

'* .ds[ [ 
.ds] ] 
.ds, , 
.ds> .. 
. ds>. , 
.ds c] , \& 
.ds n] ··and 
.ds m}. and 

.de p( \ .. produce reference beginning 

.IP [\\$1) 

.. 

. de [] \ .. start displaying collected references 

.SH 
References 
.LP 

.de)[ \ .. choose format 

.ie r\ \ *([r" \ {\ 

. ie r\\ *([V"· .nr t[ I \ .. journal 

. el .nr t[ 5 \ " conference paper 

.\} 

.et .ie t"\ \*(IB ..... nr t[ 3 \ .. article in book 

.et .ie ! .. \\ *([R"· .nf t{ 4 \" technical report 

.el .re !*\ \ *([1.... .nr t[ 2 \" book 

.cl .nr t[O \.. other 

.\ \n(t{{ 

BIB - A Program for Formatting Bibliographies 

Figure 1 

Figure 3 

Figure 4 



BIB - A Program for Formatting Bibliographies 

.de 2( \" book 

.if !"\ \ *([F"" .p[ \ \ *([F 

.if !"\ \ *([A"" \ \ *([A, 

.if !"\ \ *([r" \ \f2\ \ *([T, \ \f1 
\ \*([I\c . 
. if !"\ \ *([C"" , \ \ *([C\c 
.if r\ \ *([D"" \& (\ \ *([D)\c 
\& . 
.if r\ \*([0"" Oov't. Qrdering no. \\*([0 . 
.if r\\*([o" " \\*([0 
.]-

Acknowledgements 

Figure 5 

bib was inspired by refer, written by M. Lesk. 

1. A. V. Aho and J. D.· Ullman, Principles of Compiler Design, Addison-Wesley, 1977. 

USD:31-15 

2. B. W. Kernighan and L. L. Cherry, A System for Typesetting Mathematics, Comm. of the AC\tf 
18,3 (Mar. 1978), 151-156. 

3. M. E. Lesk, Some Applications of Inverted Indexes on the UNIX System, Bell Laboratories 
Computing Science Technical Report 69, June 1978. 

4. M. E. Lesk, Tbl- A Program to Format Tables, Unix Programmer's Manual, VoI2A, . 



USD:31-16 BIB - A Program for Formatting Bibliographies 

APPENDIX 1 

Standard Names 
The following list gives the standard names recognized in most citation styles. Various different forms for 

the output are used by the different styles. In the longer reference style, the conference proceedings will also 
refer to the date (%D), city(%C), and when the proceedings are published as a journal, the journal name (%J), 
volumn (% V) and number (%N). 

Journal Name$ 
ACTA 
BIT 
BSTJ 
CACM 
COMP 
COMPJOUR 
COMPLANG 
COMPSUR 
I&C 
IBMJRD 
IBMSJ 
IEEETC 
IEEETSE 
IJCIS 
IPL 
JACM 
JCSS 
MATHST 
NMATH 
SIAMJC 
SIAMJNA 
SIGACT 
SIGPLAN 
SIGSOFT 
SP&E 
SPE 
TOCS 
TODS 
TOMS 
TOPLAS 

Conferences 

Acta Informatica 
BIT 
Bell System Technical Journal 
Communications of the ACM 
IEEE Computer 
The Computer Journal 
Journal of Computer Languages 
ACM Computing Surveys 
Information and Control 
IBM Journal of Research and Development 
IBM Systems Journal 
IEEE Transactions on Computers 
IEEE Transactions on Software Engineering 
International Journal of Computer and Information Sciences 
Information Processing Letters 
Journal of the ACM 
Journal of Computer and System Sciences 
Mathematics Systems Theory 
Numerical Mathematics 
Siam Journal on Computing 
Siam Journal on Numerical Analysis 
SIGACT News 
SIGPLAN Notices 
Software Engineering Notes 
Software-Practice & Experience 
Software-Practice & Experience 
ACM Transactions on Computer Systems 
ACM Transactions on Database Systems 
ACM Transactions on Mathematical Software 
ACM Transactions on Programming Languages and Systems 

ADA80 PROC of the ACM-SIGPLAN Symposium on the Ada Programming Language, SIGPLAN 
ASPLOS82PROC of the SYMP on Architectural Support for Programming Languages and Operating Systems. SIGPLAN 
CCC79 PROC of the SIGPLAN 1979 SYMP on Compiler Construction, SIGPLAN 
CCC82 PROC of the SIGPLAN 1982 SYMP on Compiler Construction, SIGPLAN 
CCC84 PROC of the SIGPLAN 1984 SYMP on Compiler Construction, SIGPLAN 
CONF Conference 
FJCC Fall Joint Computer Conference 
FOCS Annual SYMP on Foundations of Computer Science 
HICSS Hawaii International CONF on System Science 
ICSE International CONF on Software Engineering 
JER3 PROC Third Jerusalem CONF on Information Technology 
JICAI Joint International CONF on Artificial Intelligence 
PLISS83 PROC SIGPLAN 1983 SYMP on Programming Language Issues in Software Systems. SIGPLAN 
POPL ACM SYMP on Principles of Programming Languages 
POPLS Conference Record of the Fifth POPL 
POPL6 Conference Record of the Sixth POPL 



BIB - A Program for Formatting Bibliographies 

POPL7 
POPL8 
POPL9 
POPLlO 
POPLlI 
PROC 
SOSP 
STOC 
SYMP 
WJCC 

Conference Record of the Seventh POPL 
Conference Record of the Eighth POPL 
Conference Record of the Ninth POPL 
Conference Record of the Tenth POPL 
Conference Record of the Eleventh POPL 
Proceedings 
SYMP on Operating System Principles 
Annual ACM SYMP on Theory of Computing 
Symposium 
PROC Western Joint Computer CONF 

Lolller place names 
BTLHO Bell Laboratories 
BTLMH Bell Laboratories 
CMU Carnegie-Mellon University 
CMUCS Computer Science Department, Carnegie-Mellon University 
DG Data General 
MIT AI MIT Artificial Intelligence Laboratory 
MITLCS MIT Laboratory for Computer Science 
SUCS Computer Science Department, Stanford University 

USD:31-17 

SUCSL Computer Systems Lab., Stanford Electronics Lab., Dept. of Electrical Engineering and Computer Science 
SUEE Department of Electrical Engineering, Stanford University 
TUM Technische Universitit Munchen 
UCB University ofCalifomia, Berkeley 
UCBCS Computer Science Division, EECS, UCB 
UCBERLERL, EECS, UCB 

Short place names 
CORP 
CSD 
DCS 
DEPT 
DISS 
TR 
UATR 
UNIV 
ERL 

Corporation 
Computer Science Department 
Department of Computer Science 
Department 
Dissertation 
Technical Report 
University of Arizona Technical Report 
University 
Electronics Research Laboratory 

Months of the year 
JAN January 
FEB February 
MAR March 
APR April 
MAY May 
JUN June 
JUL July 
AUG August 
SEP September 
OCT October' 
NOV November 
DEC December 

Publishers 
ACADEMIC 
ACPRESS 
ADDISON 
ANSI 

Academic Press 
Academic Press 
Addison Wesley 
American National Standards Institute 

CSPRESS 
DIGITAL 
J:LSEVIER 
FREEMAN 
GPO 
HOLT 
IEEEP 
MCGRAW 
MGHILL 
MITP 
NHOLL 
NYC 
PRENTICE 
PRHALL 
SPRINGER 
SR{\. 
WILEY 
WINTH 

Computer Science Press 
Digital Press 
American Elsevier 
W. H. Freeman and Company 
U. S. Government Printing Office 
Holt, Rinehart, and Winston 
IEEE Press 
McGraw-Hill 
McGraw-Hill 
MIT Press 
North-Holland 
New York, NY 
Prentice Hall 
Prentice Hall 
Springer Verlag 
Science Research Associates 
John Wiley & Sons 
Winthrop Publishers 





Writing Tools - the STYLE and DICTION Programs 

Writing Tools - The STYLE and DICTION Programs 

L. L. Cherry 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

W. Vesterman 

Livingston College 
Rutgers University 

ABSTRACT 

USD:32-1 

Text processing systems are now in heavy use in many companies to format 
documents. With many documents stored on line, it has become possible to use 
computers to study writing style itself and to help writers produce better written and 
more readable prose. The system of programs described here is an initial step 
toward such help. It includes programs and a data base designed to produce a stylis
tic profile of writing at the word and sentence level. The system measures read
ability, sentence and word length, sentence type, word usage, and sentence openers. 
It also locates common examples of wordy phrasing and bad diction. The system is 
useful for evaluating a document's style, locating sentences that may be difficult to 
read or excessively wordy, and determining a particular writer's style over several 
documents. 

1. Introduction 
Computers have become important in the document preparation process, with programs to 

check for spelling errors and to format documents. As the amount of text stored on line increases, it 
becomes feasible and attractive to study writing style and to attempt to help the writer in producing 
readable documents. The system of writing tools described here is a first step toward such help. The 
system includes programs and a data base to analyze writing style at the word and sentence level. We 
use the term "style" in this paper to describe the results of a writer's particular choices among indivi
dual words and sentence forms, Although many judgements of style are SUbjective, particularly those 
of word choice, there are some objective measures that experts agree lead to good style. Three pro
grams have been written to measure some of the objectively definable characteristics of writing style 
and to identify some commonly misused or unnecessary phrases. Although a document that con
forms to the stylistic rules is not guaranteed to be coherent and readable, one that violates all of the 
rules is likely to be difficult or tedious to read. The program STYLE calculates readability, sentence 
length variability, sentence type, word usage and sentence openers at a rate of about 400 words per 
second on a PDPll170 running the UNIXt Operating System. It assumes that the sentences a~e well
formed, i. e. that each sentence has a verb and that the subject and verb agree in number. DICTION 
identifies phrases that are either bad usage or unnecessarily wordy. EXPLAIN acts as a thesaurus for 
the phrases found by DICTION. Sections 2, 3, and 4 describe the programs; Section 5 gives the 
results on a cross-section of technical documents; Section 6 discusses accuracy and problems; Section 
7 gives implementation details. 

t UNIX is a trademark of AT&T Bell Laboratories. 



USD:32-2 Writing Tools - the STYLE and DICTION Programs 

1. STYLE 
The program STYLE reads a document and prints a summary of readability indices, sentence 

length and type, word usage, and sentence openers. It may also be used to locate all sentences in a 
document longer than a given length, of readability index higher than a given number, those contain
ing a passive verb, or those beginning with an expletive. STYLE is based on the system for finding 
English word classes or parts of speech, PARTS [1]. PARTS is a set of programs that uses a small 
dictionary (about 350 words) and suffix rules to partially assign word classes to English text. It then 
uses experimentally derived rules of word order to assign word classes to all words in the text with an 
accuracy of about 95%. Because PARTS uses only a small dictionary and general rules, it works on 
text about any subject, from physics to psychology. Style measures have been built into the output 
phase of the programs that make up PARTS. Some of the measures are simple counters of the word 
classes found by PARTS; many are more complicated. For example, the verb count is the total 
number of verb phrases. This includes phrases like: 

has been going 
was only going 
to go 

each of which each counts as one verb. Figure 1 shows the output of STYLE run on a paper by Ker
nighan and Mashey about the UNIX programming environment [2]. 

programming environment 
readability grades: 

sentence info: 

sentence types: 

word usage: 

sentence beginnings: 

(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3) 

no. sent 335 no. wds 7419 
av sent leng 22.1 av word leng 4.91 
no. questions 0 no. imperatives 0 
no. nonfunc wds 4362 58.8% av leng 6.38 
short sent «17) 35% (l18) long sent (>32) 16% (55) 
longest sent 82 wds at sent 174; shortest sent 1 wds at sent 117 

simple 34% (114) complex 32% (l08) 
compound 12% (41) compound-complex 21 % (72) 

verb types as % of total verbs 
tobe 45% (373) aux 16% (133) inf 14% (114) 
passives as % of non-inf verbs 20% (144) 
types as % of total 
prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) 
noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393) 
nominalizations 2 % (155) 

subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67% 
prep 12% (39) adv 9% (31) 
verb 0% (1) sub30nj 6% (20) conj 1 % (5) 
expletives 4% (13) 

Figure 1 

As the example shows, STYLE output is in five parts. After a brief discussion of sentences, we will 
describe the parts in order. 



Writing Tools - the STYLE and DICTION Programs USD:32-3 

2.1. What is a sentence? 

Readers of documents have little trouble deciding where the sentences end. People don't even 
have to stop and think about uses of the character "." in constructions like 1.25, A. J. Jones, Ph.D., i. 
e., or etc .. When a computer reads a document, finding the end of sentences is not as easy. First we 
must throwaway the printer's marks and formatting commands that litter the text in computer form. 
Then STYLE defines a sentence as a string of words ending in one of: 

. ! ? I. 

The end marker, "I." maybe used to indicate an imperative sentence. Imperative sentences that are 
not so marked are not identified as imperative. STYLE properly handles numbers with embedded 
decimal points and commas, strings of letters and numbers with embedded decimal points used for 
naming computer file names, and the common abbreviations listed in Appendix 1. Numbers that end 
sentences, like the preceding sentence, cause a sentence break if the next word begins with a capital 
letter. Initials only cause a sentence break if the next word begins with a capital and is found in the 
dictionary of function words used by PARTS. So the string 

J. D. JONES 

does not cause a break, but the string 

... system H. The ... 

does. With these tuIes most sentences are broken at the proper place, although occasionally either ' 
two sentences are called one or a fragment is 'called a sentence. More on this later. 

2.2. Readability Grades 

The first section of STYLE output consists of four readability indices. As Klare points out in 
[3] readability indices may be used to estimate the reading skills needed by the reader to understand a 
document. The readability indices reported by STYLE are based on measures of sentence and word 
lengths. Although the indices may not measure whether the document is coherent and well organized, 
experience has shown that high indices seem to be indicators of stylistic difficulty. Documents with 
short sentences and short words have low scores; those with long sentences and many polysyllabic 
words have high scores. The 4 formulae reported are Kincaid Formula [4], Automated Readability 
Index [5], Coleman-Liau Formula [6] and a normalized version of Flesch Reading Ease Score [7]. 
The formulae differ because they were experimentally derived using different texts and subject 
groups. We will discuss each of the formulae briefly; for a more detailed discussion the reader should 
see [3]. 

The Kincaid Formula, given by: 

Reading_Grade = 11.8*syi-per _wd +.39*wds-per_sent -15.59 

was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in reading grade level. 
The score reported by this formula tends to be in the mid-range of the 4 scores. Because it is based 
on adult training manuals rather than school book text, this formula is probably the best one to apply 
to technical documents. 

The Automated 'Readability Index (ARI), based on text from grades 0 to 7, was derived to be 
easy to automate. The formula is: 

Reading_Grade =4.71*let-per_wd +.5*wds-per_sent -21.43 

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually slightly 
lower than Flesch. 

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is: 

Reading_Grade = 5. 89*let-per_wd -.3*senLper_ 100_wds -15.8 

Of the four formulae this one usually gives the lowest grade when applied to technical documents. 



USD:32-4 Writing Tools - the STYLE and DICTION Programs 

The last formula, the Flesch Reading Ease Score, is based on grade school text covering grades 3 
to 12. The formula, given by: 

Reading_Score =206.835-84.6*syl-per _wd -1.OlS*wcis-per _sent 

is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by STYLE is 
scaled to be comparable to the other formulas, except that the maximum grade level reported is set to 
17. The Flesch score is usually the highest of the 4 scores on technical documents. 

Coke [81 found that the Kincaid Formula is probably the best predictor for technical documents; 
both ARI and Flesch tend to overestimate the difficulty; Coleman-Liau tend to underestimate. On 
text in the range of grades 7 to 9 the four formulas tend to be about the same. On easy text the 
Coleman-Liau formula is probably preferred since it is reasonably accurate at the lower grades and it 
is safer to present text that is a little too easy than a little too hard. 

If a document has particularly difficult technical content, especially if it includes a lot of 
mathematics, it is probably best to make the text very easy to read, i.e. a lower readability index by 
shortening the sentences and words. This will allow the reader to concentrate on the technical con
tent and not the long sentences. The user should remember that these indices are estimators; they 
should not be taken as absolute numbers. STYLE called with "-r number" will print all sentences 
with an Automated Readability Index equal to or greater than "number". 

2.3. Sentence length and structure 

The next two sections of ~TYLE output deal with sentence length and structure. Almost all 
books on writing style or effective writing emphasize the importance of variety in sentence length and 
structure for good writing. Ewing's first rule in discussing style in the book Writing for Results [9] is: 

"Vary the sentence structure and length of your sentences .. " 

Leggett, Mead and Charvat break this rule. into 3 in Prentice-Hall Handbook for Writers [10] as fol
lows: 

"34a. Avoid the overuse of short simple sentences." 
"34b. Avoid the overuse of long compound sentences." 
"34c. Use various sentence structures to avoid monotony and increase effectiveness." 

Although experts agree that these rules are important, not all writers follow them. Sample technical 
documents have been found with almost no sentence length or type variability. One document had 
90% of its sentences about the same length as the average; another was made up almost entirely of 
simple sentences (80%). 

The output sections labeled "sentence info" and "sentence types" give both length and structure 
measures. STYLE reports on the number and average length of both sentences and words, and 
number of questions and imperative sentences (those ending in "/."). The measures of non-function 
words are an attempt to look at the content words in the document. In English non-function words 
are nouns, adjectives, adverbs, and non-auxiliary verbs; function words are prepositions, conjunc
tions, articles, and auxiliary verbs. Since most function words are short, they tend to lower the aver
age word length. The average length of non-function words may be a more useful measure for com
paring word choice of different writers than the total average word length. The percentages of short 
and long sentences measure sentence length variability. Short sentences are those at least 5 words less 
than the average; long sentences are those at least 1 0 words longer than the average. Last in the sen
tence information section is the length and location of the longest and shortest sentences. If the flag 
"-I number" is used, STYLE will print all sentences longer than "number". 

Because of the difficulties in dealing with the many uses of commas and conjunctions in English, 
sentence type definitions vary slightly from those of standard textbooks, but still measure the same 
constructional activity. 

1. A simple sentence has one verb and no dependent clause. 



Writing Tools - the STYLE and DICTION Programs USD:32-5 

2. A complex sentence has one independent clause and one dependent clause, each with one verb. 
Complex sentences are found by identifying sentences that contain either a subordinate conjunc
tion or a clause beginning with words like "that" or "who". The preceding sentence has such a 
clause. 

3. A compound sentence has more than one verb and no dependent clause. Sentences joined by 
";" are also counted as compound. 

4. A compound-complex sentence has either several dependent clauses or one dependent clause 
and a compound verb in either the dependent or independent clause. 
Even using these broader definitions, simple sentences dominate many of the technical docu

ments that have been tested, but the example in Figure 1 shows variety in both sentence structure and 
sentence length. 

2.4. Word Usage 

The word usage measures are an attempt to identify some other constructional features of writ
ing style. There are many different ways in English to say the same thing. The constructions differ 
from one another in the form of the words used. The following sentences all convey approximately 
the same meaning but differ in word usage: 

The cxio .program is used to perform all communication between the systems. 
The cxio program performs all communications between the systems. 
The cxio program is used to communicate between the systems. 
The cxio program communicates between the systems. 
All communication between the systems is performed by the cxio program. 

The distribution of the parts of speech and verb constructions helps identify overuse of particular 
constructions. Although the measures used by STYLE are crude, they do point out problem areas. 
For each category, STYLE reports a percentage and a raw count. In addition to looking at the per
centage, the user may find it useful to compare the raw count with the number of sentences. If, for 
example, the number of infinitives is almost equal to the number of sentences, then many of the sen
tences in the document are constructed like the first and third in the preceding example. The user 
may want to transform some of these sentences into another form. Some of the implications of the 
word usage measures are discussed below. 
Verbs are measured in several different ways to try to determine what types of verb constructions are 

most frequent in the document. Technical writing tends to contain many passive verb construc
tions and other usage of the verb "to be". The category of verbs labeled "tobe" measures both 
passives and sentences of the form: 

subject tobe predicate 

In counting verbs, whole verb phrases are counted as one verb. Verb phrases containing auxili
ary verbs are counted in the category "aux". The verb phrases counted here are those whose 
tense is not simple present or simple past. It might eventually be useful to do more detailed 
measures of verb tense or mood. Infinitives are listed as "inf'. The percentages reported for 
these three categories are based on the total number of verb phrases found. These categories are 
not mutually exclusive; they cannot be added, since, for example, "to be going" counts as both 
"tobe" and "inf'. Use of these three types of verb constructions varies significantly among 
authors. 

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most style 
books warn against the overuse of passive verbs. Coleman [11] has shown that sentences with 
active verbs are easier to learn than those with passive verbs. Although the inverted object
subject order of the passive voice seems to emphasize the object, Coleman's experiments showed 
that there is little difference in retention by word position. He also showed that the direct object 
of an active verb is retained better than the subject of a passive verb. These experiments 



USD:32-6 Writing Tools - the STYLE and DICTION Programs 

support the advice of the style books suggesting that writers should try to use active verbs wher
ever possible. The flag "-p" causes STYLE to print all sentences containing passive verbs. 

Pronouns 
add cohesiveness and connectivity to a document by providing back-reference. They are often a 
short-hand notation for something previously mentioned, and therefore connect the sentence 
containing the pronoun with the word to which the pronoun refers. Although there are other 
mechanisms for such connections, documents with no pronouns tend to be wordy and to have 
little connectivity. . 

Adverbs· 
can provide transition between sentences and order in time and space. In performing these 
functions, adverbs, like pronouns, provide connectivity and cohesiveness. 

Conjunctions 
provide parallelism in a document by connecting two or more equal units. These units may be 
whole sentences, verb phrases, nouns, adjectives, or prepositional phrases. The compound and 
compound-complex sentences reported under sentence type are parallel structures. Other uses 
of parallel structures are indicated by the degree that the number of conjunctions reported under 
word usage exceeds the compound sentence measures. 

Nouns and Adjectives . 
. A ratio of. nouns to adjectives near unity may indicate the over-use of modifiers. Some techni
cal writers qualify every noun with one br more adjectives. Qualifiers in phrases like "simple 
linear single-link network model" often leno. more obscurity than precision to a text. 

Nominalizations 
are verbs that are changed to nouns by adding one of the suffixes "ment", "ance", "ence", or 
"ion". Examples are accomplishment, admittance, adherence, and abbreviation. When a writer 
transforms a nominalized sentence to a non-nominalized sentence, she/he increases the 
effectiveness of the sentence in several ways. The noun becomes an active verb and frequently 
one complicated clause becomes two shorter clauses. For example, 

Their inclusion of this provision is admission of the importance of the system. 
When they included this provision, they admitted the importance of the system. 

Coleman found that the transformed sentences were easier to learn, even when the transforma
tion produced sentences that were slightly longer, provided the transformation broke one clause 
into two. Writers who find their document contains many nominalizations may want to 
transform some of the sentences to use active verbs. 

2.5. Sentence openers 
Another agreed upon principle of style is variety in sentence openers. Because STYLE deter

mines the type of sentence opener by looking at the part of speech of the first word in the sentence, 
the sentences counted under the heading "subject opener" may not all really begin with the subject. 
However, a large percentage of sentences in this category still indicates lack of variety in sentence 
openers. Other sentence opener measures help the user determine if there are transitions between 
sentences and where the subordination occurs. Adverbs and conjunctions at the beginning of sen
tences are mechanisms for transition between sentences. A pronoun at the beginning shows a link to 
sOinething previously mentioned and indicates connectivity. 

The location of subordination can be determined by comparing the number of sentences that 
begin with a subordinator with the number of sentences with complex clauses. If few sentences start 
with subordinate conjunctions then the subordination is embedded or at the end of the complex sen
tences. For variety the writer may want to transform some sentences to have leading subordination. 

The last category of openers, expletives, is commonly overworked in technical writing. 
Expletives are the words "it" and "there", usually with the verb "to be", in constructions where the 
subject follows the verb. For example, 



Writing Tools - the STYLE and DICTION Programs USD:32-7 

There are three streets used by the traffic. 
There are too many users on this system. 

This construction tends to emphasize the object rather than the subject of the sentence. The flag "_e" 
will cause STYLE to print all sentences that begin with an expletive. 

3. DICIlON 
The program DICTION prints all sentences in a document containing phrases that· are either 

frequently misused or indicate wordiness. The program, an extension of Aho's FGREP [12] string 
matching program, takes as input a file of phrases or patterns to be matched and a file of text to be 
searched. A data base of about 450 phrases has been compiled as a default pattern file for DICTION. 
Before attempting to locate phrases, the program maps upper case letters to lower case and substitutes 
blanks for punctuation. Sentence boundaries were deemed less critical in DICTION than in STYLE, 
so abbreviations and other uses of the character "." are not treated specially. DICTION brackets all 
pattern matches in a sentence with the characters 'T' "]". Although many of the phrases in the 
default data base are correct in some contexts, in others they indicate wordiness. Some examples of 
the phrases and suggested alternatives are: 

Phrase 
a large number of 
arrive at a decision 
collect together 
fuL' this reason 
pertaining to 
through the use of 
utilize 
with the exception of 

Alternative 
many 
decide 
collect 
so 
about 
by or with 
use 
except 

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of prob
lem phrases. For example, the phrase "the fact" is found in all of the following and is sufficient to 
point out the wordiness to the user: 

Phrase 
accounted for by the fact that 
an example of this is the fact that 
based on the fact that 
despite the fact that 
due to the fact that 
in light of the fact that 
in view of the fact that 
notwithstanding the fact that 

Alternative 
caused by 
thus 
because 
although 
because 
because 
since 
although 

Entries in Appendix 2 preceded by" .... • are not matched. See Section 7 for details on the use of ".". 
The user may supply her/his own pattern file with the flag "-f patfile". In this case the default 

file will be loaded first, followed by the user file. This mechanism allows users to suppress patterns 
contained in the default file or to include their own pet peeves that are not in the default file. The 
flag "-n" will exclude the default file altogether. In constructing a pattern file, blanks should be used 
before and after each phrase to avoid matching substrings in words. For example, to find all 
occurrences of the word "the", the pattern" the" should be used. The blanks cause only the word 
"the" to be matched and not the string "the" in words like there, other. and therefore. One side 
effect of surrounding the words with blanks is that when two phrases occur without intervening 
words, only the first will be matched. 



USD:32-8 Writing Tools - the STYLE and DICTION Programs 

4 •. EXPLAIN 
The last program, EXPLAIN, is an interactive thesaurus for phrases found by DICTION. The 

user types one of the phrases bracketed by DICTION and EXPLAIN responds with suggested substi-
tutions for the phrase that will improve the diction of the document. 

Table 1 
Text Statistics on 20 Technical Documents 

variable minimum maximum mean standard deviation 
Readability Kincaid 9.5 16.9 13.3 2.2 

automated 9.0 11.4 13.3 2.5 
Cole-Uau 10.0 16.0 12.7 1.8 
Resch 8.9 17.0 14.4 2.2 

sentence info. av sent length 15.5 30.3 21.6 4.0 
av word length 4.61 5.63 5.08 .29 
av nonfunction length 5.72 7.30 6.52 .45 
short sent 23% 46% 33% 5.9 
long sent 7% 20% 14% 2.9 

sentence types simple 31% 71% 49% 11.4 
complex 19% 50% 33% 8.3 
compound 2% 14% 7% 3.3 
compound-complex 2% 19% 10% 4.8 

verb types tobe 26% 64% 44.7% 10.3 
auxiliary 10% 40% 21% 8.7 
infinitives 8% 24% 15.1% 4.8 
passives 12% 50% 29% 9.3 

word usage prepositions 10.1% 15.0% 12.3% 1.6 
conjunction 1.8% 4.8% 3.4% .9 
adverbs 1.2% 5.0% 3.4% 1.0 
nouns 23.6% 31.6% 27.8% 1.7 
adjectives 15.4% 27.1% 21.1% 3.4 
pronouns 1.2% 8.4% 2.5% 1.1 
nominalizations 2% 5% 3.3% .8 

sentence openers prepositions 6% 19% 12% 3.4 
adverbs 0% 20% 9% 4.6 
subject 56% 85% 70% 8.0 
verbs 0% 4% 10/0 1.0 
subordinating conj 1% 12% 5% 2.7 
conjunctions 0% 4% 0% l.5 
expletives 0% 6% 2% 1.7 

5. Results 

5.1. STYLE 

To get baseline statistics and check the program's accuracy, we ran STYLE on 20 technical 
documents. There were a total of 3287 sentences in the sample. The shortest document was 67 sen
tences long; the longest 339 sentences. The documents covered a wide range of subject matter. 
including theoretical computing, physics, psychology, engineering, and affirmative action. Table 1 
gives the range, median, and standard deviation of the various style measures. As you will note most 
of the measurements have a fairly wide range of values across the sample documents. 

As a comparison, Table 2 gives the median results for two different technical authors, a sample 
of instructional material, and a sample of the Federalist Papers. The two authors show similar styles, 
although author 2 uses somewhat shorter sentences and longer words than author I. Author 1 uses all 



Writing Tools - the STYLE and DICTION Programs USD:32-9 

types of sentences, while author 2 prefers simple and complex sentences, using few compound or 
compound-complex sentences. The other major difference in the styles of these authors is the loca-
tion of subordination. Author 1 seems to prefer' embedded or trailing subordination, while author 2 
begins many sentences with the subordinate clause. The documents tested for both authors 1 and 2 
were technical documents, written for a technical audience. The instructional documents, which are 
written for craftspeople, vary surprisingly little from the two technical samples. The sentences and 
words are a little longer, and they contain many passive and auxiliary verbs, few adverbs, and almost 
no pronouns. The instructional documents contain many imperative sentences, so there are many 
sentence with verb openers. The sample of Federalist Papers contrasts with the other samples in 
almost every way. 

Table 2 
Text Statistics on Single Authors 

variable author 1 author 2 inst. FED 
readability Kincaid 11.0 10.3 10.8 16.3 

. automated 11.0 10.3 11.9 17.8 
Coleman-Liau 9.3 10.1 10.2 12.3 
Flesch 10.3 10.7 10.1 15.0 

sentence info av sent length 22.64 19.61 22.78 31.85 
av word length 4.47 4.66 4.65 4.95 
av nonfunction length 5.64 5.92 6.04 6.87 
short sent 35% 43% 35% 40% 
long sent 18% 15% 16% 21% 

sentence types simple 36% 43% 40% 31% 
complex 34% 41% 37% 34% 
compound 13% 7% 4% 10% 
compound-complex 16% 8% 14% 25% 

verb type tobe 42% 43% 45% 37% 
auxiliary 17% 19% 32% 32% 
infinitives 17% 15% 12% 21% 
passives 20% 19% 36% 20% 

word usage prepositions 10.0% 10.8% 12.3% 15.9% 
conjunctions 3.2% 2.4% 3.9% 3.4% 
adverbs 5.05% 4.6% 3.5% 3.7% 
nouns 27.7% 26.5% 29.1% 24.9% 
adjectives 17.0% 19.0% 15.4% 12.4% 
pronouns 5.3% 4.3% 2.1% 6.5% 
nominalizations 1% 2% 2% 3% 

sentence openers prepositions 11% 14% 6% 5% 
adverbs 9% 9% 6% 4% 
subject 65% 59% 54% 66% 
verb 3% 2% 14% 2% 
subordinating conj 8% 14% 11% 3% 
conjunction 1% 0% 0% 3% 
expletives 3% 3% 0% 3% 

5.2. DICTION 
In the few weeks that DICTION has been available to users about 35,000 sentences have been 

run with about 5,000 string matches. The authors using the program seem to make the suggested 
changes about 50-75% of the time. To date, almost 200 of the 450 strings in the default file have 
been matched. Although most of these phrases are valid and correct in some contexts, the 50-7 5% 
change rate seems to show that the phrases are used much more often than concise diction warrants. 



USD:32-IO Writing Tools· the STYLE and DICTION Programs 

6. Accuracy 

6.1. Sentence Identification 

The correctness of the STYLE output on the 20 document sample was checked in detail. 
STYLE misidentified 129 sentence fragments as sentences and incorrectly joined two or more sen
tences 75 times in the 3287 sentence sample. The problems were usually because of nonstandard for
matting commands, unknown abbreviations, or lists of non-sentences. An impossibly long sentence 
found as the longest sentence in the document usually is the result of a long list of non-sentences. 

6.2. Sentence Types 

Style correctly identified sentence type on 86.5% of the sentences in the sample. The type distri
bution of the sentences was 52.5% simple, 29.9% complex, 8.5% compound and 9% compound
complex. The program reported 49.5% simple, 31.9% complex, 8% compound and 10.4% 
compound-complex. Looking at the errors on the individual documents, the number of simple sen
tences was under-reported by about 4% and the complex and compound-complex were over-reponed 
by 3% and 2%, respectively. The following matrix shows the programs output vs. the actual sentence 
type. 

Actual 
Sentence 

Type 

simple 
complex 
compound 
comp-complex 

Program Results 
simple complex 

1566 132 
47 892 
40 6 
o 52 

compound 
49 

6 
207 

5 

comp-complex 
17 
65 
23 

249 

The system's inability to find imperative sentences seems to have little effect on most of the 
style statistics. A document with half of its sentences imperative was run, with and without the 
imperative end marker. The results were identical except for the expected errors of not finding verbs 
as sentence openers, not counting the imperative sentences, and a slight difference (1%) in the number 
of nouns and adjectives reponed. 

6.3. Word Usage 

The accuracy of identifying word types reflects that of PARTS, which is about 95% correct. The 
largest source of confusion is between nouns and adjectives. The verb counts were checked on about 
20 sentences from each document and found to be about 98% correct. 

7. Technical Details 

7.1. Finding Sentences 

The formatting commands embedded in the text increase the difficulty of finding sentences. Not 
all text in a document is in sentence form; there are headings, tables, equations and lists, for example. 
Headings like "Finding Sentences" above should be discarded, not attached to the next sentence. 
However, since many of the documents are formatted to be phototypeset, and contain font changes, 
which usually operate on the most imponant words in the document, discarding all formatting com
mands is not correct. To improve the programs' ability to find sentence boundaries, the deformatting 
program, DEROFF [13], has been given some knowledge of the formatting packages used on the 
UNIX operating system. DEROFF will now do the following: 

1. Suppress all formatting macros that are used for titles, headings, author's name, etc. 

2. Suppress the arguments to the macros for titles, headings, author's name, etc. 

3. Suppress displays, tables, footnotes and text that is centered or in no-fill mode. 

4. Substitute a place holder for equations and check for hidden end markers. The place holder is 
necessary because many typists and authors use the equation setter to change fonts on imponant 



Writing Tools - the STYLE and DICTION Programs USD:32-11 

words. For this reason, header files containing the definition of the EQN delimiters must also 
be included as input to STYLE. End markers are often hidden when an equation ends a sen
tence and the period is typed inside the EQN delimiters. 

5. Add a "." after lists. If the flag -ml is also used, all lists are suppressed. This is a separate flag 
because of the variety of ways the list macros are used. Often, lists are sentences that should be 
included in the analysis. The user must determine how lists are used in the document to be 
analyzed. 
Both STYLE and DICTION call DEROFF before they look at the text. The user should supply 

the -ml flag if the document contains many lists of non-sentences that should be skipped. 

7.2. Details of DICI10N 
The program DICTION is based on the string matching program FGREP. FGREP takes as 

input a file of patterns to be matched and a file to be searched and outputs each line that contains any 
of the patterns with no indication of which pattern was matched. The following changes have been 
added to FGREP: 
1. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence that 

contains one of the patterns is output. 
2. Upper case letters are mapped to lower case. 

3. Punctuation is replaced by blanks. 
4 All pattern matches in the sentence are found and surrounded with urn "r . 
5. A method for suppressing a string match has been added. Any pattern that begins with " .... , will 

not be matched. Because the matching algorithm finds the longest substring, the suppression of . 
a match allows words in some correct contexts not to be matched while allowing the word in 
another context to be found. For example, the word "which" is often incorrectly used instead 
of "that" in restrictive clauses. However, "which" is usually correct when preceded by a prepo
sition or ",". The default· pattern file suppresses the match of the common prepositions or a 
double blank followed by "which" and therefore matches only the suspect uses. The double 
blank accounts for the replaced comma. 

8. Conclusions 
A system of writing tools that measure some of the objective characteristics of writing style has 

been developed. The tools are sufficiently general that they may be applied to documents on any sub
ject with equal accuracy. Although the measurements are only of the surface structure of the text. 
they do point out problem areas. In addition to helping writers produce better documents, these pro
grams may be useful for studying the writing process and finding other formulae for measuring reada
bility. 



USD:32-12 Writing Tools - the STYLE and DICTION Programs 

References 

1. L. L. Cherry, "PARTS· A System for Assigning Word Classes to English Text," submitted Com-
munications of the ACM. . 

2. B. W. Kernighan and J. R. Mashey. "The UNIX Programming Environment," Software - Prac
tice & Experience, 9, 1-15 (1979). 

3. G. R. Klare, "Assessing Readability," Reading Research Quarterly, 1974-1975, 10, 62-102. 

4. E. A. Smith and P. Kincaid, "Derivation and validation of the automated readability index for 
use with technical materials," Human Factors, 1970, 12,457-464. 

5. J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, "Derivation of new readability 
formulas (Automated Readability Index, Fog count, and Flesch Reading Ease Formula) for 
Navy enlisted personnel," Navy Training Command Research Branch Report 8-75, Feb., 1975. 

6. M. Coleman and T. L. Liau, ,. A Computer Readability Formula Designed for Machine Scor-
ing," Journal of Applied Psychology, 1975.60,283·284. 

7. R. Flesch, "A New Readability Yardstick," Journal of Applied Psychology, 1948,32,221-233. 

8. E. U. Coke, private communication. 

9. D. W. Ewing, Writing for Results. John Wiley & Sons, Inc., New York, N. Y. (1974). 

10. G. Leggen, C. D. Mead and W. Charvat, Prentice-Hall Handbook for Writers. Seventh Edition, 
Prentice-Hall Inc., Englewood Cliffs, N. J. (I 978). 

II. E. B. Coleman, "Learning of Prose Written in Four Grammatical Transformations," Journal oj 
Applied Psychology, 1965, vol. 49, no. 5, pp. 332-341. 

1.2 A. V. Abq, and M. 1. Corasick, "Efficient String Matching: an aid to Bibliographic Search," 
Communications of the ACM. 18, (6), 333-340, June 1975. 

13. Bell Laboratories, "UNIX TIME-SHARING SYSTEM: UNIX PROGRAMMER'S MANUAL," 
Seventh Edition, Vol. 1 (January 1979). 



Writing Tools - the STYLE and DICTION Programs 

a. d. 
A.M. 
a.m. 
b. c. 
Ch. 
ch. 
ckts. 
dB. 
Dept. 
dept. 
Depts. 
depts. 
Dr. 
Drs. 
e. g. 
Eq. 
eq. 
et aI. 
etc. 
Fig. 
fig. 
Figs. 
figs. 
ft. 
i. e. 
in. 
Inc. 
Jr. 
jr. 
mi. 
Mr. 
Mrs. 
Ms. 
No. 
no. 
Nos. 
nos. 
P. M. 
p.m. 
Ph.D. 
Ph. d. 
Ref. 
ref. 
Refs. 
refs. 
St. 
vs. 
yr. 

Appendix 1 

STYLE Abbreviations 

USD:32-13 



·USD:32-14 Writing Tools - the STYLE and DICTION Programs 

Appendix 2 

Default DICTION Patterns 

a areal deal of center ponion fearful tllat in the fonn of 
a Jarce number of check into few in number in the instance of 
a lot of check on file away in the interim 
a majority of check up on final completion in the last analysis 
a need for circle around final ending in the mailer of . 
a number of close proximity final outcome in the near future 
a particular preference for collaborate together final result in the neighborhood of 
a preference for collect together finalize in the DOt too distant future 
a small number of combine toacther lind it interestinl to know in the proximity of 
a tendency to 1:OIIIe 10 an end fim and foremost in the raDJe of 
abovementioned 1:OIIImence fim beginninJS in the same way as described 
absolutely complete common accord first initiated in the shape of 
absolutely essential compensation firstly in the vicinity of 
accomplished completely eliminated foUowafter in tbis case 
accordiqly comprise folJowiDJ after in view ofthe 
activate conceminc for the purpose of in violation of 
actual conduct an investiplion of for the reason tbat inasmucb as 
added increments conjecture for the simple reason that indicate 
adequate enough connect up for tbis reason indicative of 
advent consensus of opinion for your information initialize 
alford an opponunity consequent result from the point of view of initiate 
agrepte consolidate toaether full and complete injurious to 
all of construct generally qreed inquire 
all throughout contemplate good and inside of 
along the line continue on got to institute. 
an indication of continue to remain gratuitous intents and purposes 
aaalyzation could of greatly minimize intenningie 
and etc counl up head up in'eprdless 
and or couple toaether bell' but is defined as 
another additional debate about helps in the production of is used to control 
any and all decide on hopeful is when 
arrive at a deleterious effect if.nd when is where 
as a mallet: of fact demean if at all possible it is incumbent 
as a method of demonslrate impact it stands to reason 
as ,ood or beller than depreciate in value implement it was nOled that if 
as of now deservina of imponaat essentials joint cooperalion 
as per desirable benents imponantly joint pannership 
as reaards desirous of in a large measure just exactly 
as related to different than in a position 10 kind of 
as 10 discontinue in accordance know about 
assistance disutililY in advance of last bUI not least 
assistance 10 divide up in aareemenl wilh later on 
assIStance 10 doubl bUI in all cases leaving out of consideralion 
assuming Ihat due to in back of liable 
at a laler dale duly DOled in behalf of link up· 
al aboul during the lime Ibal in behind literally 
al above each and every in between lillie doubllhal 
al all times early beaiDnings in case lose OUI on 
al an early date effectuale in close proximily lOIS of 
al below emolional feelin,s in conflict wilh main essentials 
at the presenl empty OUI in conjunction wilh makea 
al the lime when enclosed herein in conneclion wilh make adjuslmenls 10 
at this point in time enclosed berewilh in facl make an 
at Ihis time end result in larae measure make appiication 10 
al which time end up 10 many cases make conlact wilh 
al your earliest convenience endeavor in mOSI cases make mention of 
aUlhorizalion enter in in my opinion I think make out a lisl of 
awful cnler inlo in order 10 make Ihe acquaintance of 
basic fundamentals enlhused in rare cases make the adjustmenl 
basically enlirely complele in reference to manner 
be cognizanl of equally good as in reprd 10 maximum possible 
being as essenlially in reprds 10 meaningful 
beinllhat eventuate in relalion with meel up wl\h 
brief in duration every now and then in shon supply mell down 
brinlto a conclusion exactly identical in size melt up 
butlhal experiencing difficulty in lenns of methodololY 
but whal fabricale in Ihe amount of mighlof 
by means of face up to in Ihe case of minimize as far as possible 
by the use of facilitate in Ihe course of minor importance 
carry oul experimenls faCls and figures in lhe evenl miSS out on 
cenler about fasl in action in Ihe field of modificallon 
cenler around fearful of 



Writing Tools - the STYLE and DICTION Programs 

mo~ p~ferable 

most unique 
mUSl of 
mutual cooperation 
necessary ~uisite 
necessitate 
need for 
nice 
DOt be un 
DOt in • position 10 

DOl of a hip order of accuracy 
DOl un 
nOlwi!hSlaDdinl 
of considerable mapitude 
oflhat 
of tbe opinion tbat 
011' of 
on a few occasions 
on account of 
on behalfof 
on !he arnunds !hat 
on the occasion 
on !he pan of 
one of !be 
open up 
OperaleSto correc\ 
oulSide of 
over with 
overall 
pas! history 
perceplive of 
perform a measurement 
perform !he measurement 
permilS the ~Clion of 
personalize 
perlaininato 
pbysic:al size 
plan ahead 
plan for \be futu~ 
plan in advance 
plan on 
present a conclusion 
presenta~n 

presently 
prior to 
prioritize 
proceed 10 
procu~ 

prodUCIive of 
proIona tbe duration 
pt'OII'UCIe out from 
provided !hat 
putSWIIItto 
put to use in 
ranae all the way from 
~n is because 
~nwhy 

~apin 

reduce down 
mer back 
merence to this 
~ftCClive of 
repniinl 
rearetful 
reinitiate 
~lative to 
~ta .. in 
~~tativeof 

~u1tant etreCI 
~mea .. in 
retreat back 
return apin 
~tumback 

reven back 
scalotr 

seems appa~nt 
send a communication 
shon space of time 
should of 
sinlie unit 
situation 
so as to 
son of 
spell out 
still cootinue 
still remain 
subsequent 
substantially in apeement 
succeed in 
suuestive of 
superior \han 
surroundina cin:umSlaDces 
take appropriate 
take coanizance of 
take into consideration 
termed as 
terminate 
termination 
the au!hor 
!he aulhors 
!he case tbat 
\be fact 
!hefo~ina 
\be f~ble futu~ 
\be fullest possible extent 
\be majority of 
thenatu~ 

!he necessity of 
the only ditrerence beina that 
!he :rder of 
\be point tbat 
\be tru!h is 
!h_ a~ not many 
tItrouah !be medium of 
throup the use of 
throuahout the enti~ 
time interval 
to summarize !he above 
total etreCI of all this 
totality 
transpi~ 

true faclS 
try and 
ultimate end 
uDder a separate cover 
uDder date of 
under separate cover 
under !he necessity to 
underlyinl purpose 
undenake a study 
uniformly consistent 
unique 
until such time as 
up to this time 
upshot 
utilize 
very 
very complete 
very unique 
vital 
which 
with a view to 
with ~fe=ce to 
wi!h~rdto 
with the exception of 
with the objeCI of 
with the ~u1t that 
with this in mind. it is clear that 
within the realm of possibility 
without funher delay 

wonh while 
would of 

ina behavior 
wise 
• which 
• about which 
• after which 
• at which 
• between which 
• by which 
• for which 
"from which 
"in which 
"into which 
• of which 
"on which 
"on which 
• over which 
" throup which 
• to which 
" under which 
• upon which 
"with wbich 
• wi!hout which 
'clockwise 
'ikewise 
"otherwise 

USD:32-15 





A Guide to the Dungeons of Doom 

Michael C. Toy 
Kenneth C. R. C. Arnold 

Computer Systems Research Group 
Department of Electrical Engineering and Computer Science 

University of California 
Berkeley, California 94720 

ABSTRACT 

Rope is a visual CRT based fantasy game which runs under the UNIXt 
timesharing system. This paper describes how to play rogue, and gives a few 
hints for those who might otherwise get lost in the Dungeons of Doom. 

1. Introduction 

You have just finished yo~r years as a student at the local fighter's guild. After much 
practice and sweat you have finally completed your training and are ready to embark upon a 
perilous adventure. As a test of your skills, the local guildmasters have sent you into the 
Dungeons of Doom. Your task is to return with the Amulet of Yendor. Your reward for the 
completion of this task will be a full membership in the local guild. In addition, you are 
allowed to keep all the loot you bring back from the dungeons. 

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver 
of arrows taken from a dragon's hoard in the far off Dark Mountains. You are also outfitted 
with elf-crafted armor and given enough food to reach the dungeons. You say goodbye to 
family and friends for what may be the last time and head up the road. 

You set out on your way to the dungeons and after several days of uneventful travel, 
you see the ancient ruins that mark the entrance to the Dungeons of Doom. It is late at 
night, so you make camp at the entrance and spend the night sleeping under the open skies. 
In the morning you gather your weapons, put on your armor, eat what is almost your last 
food, and enter the dungeons. 

2. What is going on here? 

You have just begun a game of rogue. Your goal is to grab as much treasure as you can, 
find the Amulet of Yendor, and get out of the Dungeons of Doom alive. On the screen, a 
map of where you have been and what you have seen on the current dungeon level is kept. 
As you explore more of the level, it appears on the screen in front of you. 

Rogue differs from most computer fantasy games in that it is screen oriented. Com-

tUNIX is a trademark of Bell Laboratories 



USD:J3-1 A Guide to the Dungeons of Doom 

mands are all one or two keystrokes! and the results of y()ur commands are displayed graphi
cally on the screen rather than being explained in words.2 

Another major difference between rogue and other computer fantasy games is that once 
you have solved all the puzzles in a standard fantasy game, it has lost most of its excitement 
and it ceases to be fun. Rogue, on the other hand, generates a new dungeon every time you 
play it and even the author IiDds it an entertainillg and exeitinl game. 

3. What de all those thiap GIl the lINt_ aaeaa1 
ID order to understaad wbat is goinl OD in rogue you have to first get some grasp of 

what rogue is doing withtbe screen. The rogue screen is intended to replace the "You can see 
... " descriPtions of st-andard faatasy sames. Figure 1 is a sample of what a rogue screen might 
look like. 

3.1. The hoU_ liae 

At the bottom line of the screen are a few pieces of cryptic information describing your 
current status. Here is an explanation of what these thinlS mean: 

Level This number indicates how deep you have gone in the dungeon. It starts at one and 
goes up as you go deeper into the dungeon. 

Gold The number of gold pieces you have managed to find and keep with you so far. 

Hp Your current and maximum health points. Health points indicate how much damage 
you can take before you die. The more you get hit in a tight, the lower they get. You 
can regain health points by resting. The number in parentheses is the maximum 
number your health points can reach. 

8tr Your current strength and maximum ever strenath. This can be any integer less than 
or equal to 31, or greater than or equal to three. The higher the number, the stronger 
youare. The number in the parentheses is the maximum strength you have attained so 
far this game. 

.@. .. ] 

... B. 

.+ 
I 

. I 

. I 
- - - + - - - - - -

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Arm: 4 Exp: 1/0 

Figure 1 

I As opposed to pseudo English sentences. 

Z A minimum screen size of 24 lines by 80 columns is required. If the screen is larger. only the 24x80 section 
will be used for the map. 



A Guide to the Dungeons of Doom USD:33-3 

Arm Your current armor protection. This number indicates how effective your armor is in 
stopping blows from unfriendly creatures. The higher this number is, the more . 
effective the armor. 

Exp These two numbers give your current experience level and experience points. As you 
do things, you gain experience points. At certain experience point totals, you gain an 
experience level. The more experienced you are, the better you are able to fight and to 
withstand magical attacks. 

3.2. The top line 

The top line of the screen is reserved for printing messages that describe things that are 
impossible to represent visually. If you see a "-More-" on the top line, this means that 
rogue wants to print another message on the screen, but it wants to make certain that you 
have read the one that is there,first. To read the next message, just type a space. 

3.3. The rest of the screen 

The rest of the screen is the map of the level as you have explored it so far. Each sym
bol on the screen represents something. Here is a list of what the various symbols mean: 

@ 

-I 
+ 

"# 

• 
) 

] 

? 

= 

/ 

This symbol represents you, the adventurer. 

These symbols represent the walls of rooms. 

A door to/from a room. 

The floor of a room. 

The floor of a passage between rooms. 

A pile or pot of gold . 

A weapon of some sort. 

A piece of armor. 

A flask containing a magic potion. 

A piece of paper, usually a magic scroll. 

A ring with magic properties 

A magical staff or wand 

A trap, watch out for these. 

% A staircase to other levels 

A piece of food. 

A-Z The uppercase letters represent the various inhabitants of the Dungeons of Doom. 
Watch out, they can be nasty and vicious. 

4. Commands 

Commands are given to rogue by typing one or two characters. Most commands can be 
preceded by a count to repeat them (e.g. typing "lOs" will do ten searches). Commands for 
which counts make no sense have the count ignored. To cancel a count or a prefix, type 
<ESCAPE>. The list of commands is rather long, but it can be read at any time during the 
game with the "?" command. Here it is for reference, with a short explanation of each com
mand. 

? The help command. Asks for a character to give help on. If you type a ".", it will list 
all the commands, otherwise it will explain what the character you typed does. 



USD:33-4 A Guide to the Dungeons of Doom 

/ This is the "What is that on the screen?" command. A "/" followed by any character 
that you see on the level, will tell you what that character is. For instance, typing "/@" 
will tell you that the "@" symbol represents you, the player. 

h, H, "'H 
Move left. You move one space to the left. If you use upper case "h", you will con
tinue to move left until you run into something. This works for all movement com
mands (e.g. "L" means run in direction "I") If you use the "control" "h", you will con
tinue moving in the specified direction until you pass something interesting or run into a 
wall. You should experiment with this, since it is a very useful command, but very 
difficult to describe. This also works for all movement commands. 

j Move down. 

k Move up. 

Move right. 

y Move diagonally up and left. 

u Move diagonally up and right. 

b Move diagonally down and left. 

n Move diagonally down and right. 

t Throw an object. This isa prefix command. When followed with a direction it throws 
an object in the specified direction. (e.g. type "th" to throw something to the left.) 

f Fight until someone dies. When followed with a direction this will force you to fight the 
creature in that direction until either you or it bites the big one. 

m Move onto something without picking it up. This will move you one space in the direc
tion you specify and, if there is an object there you can pick up, it won't do it. 

z Zap prefix. Point a staff or wand in a given direction and fire it. Even non-directional 
staves must be pointed in some direction to be used. 

Identify trap command. If a trap is on your map and you can't remember what type it 
is, you can get rogue to remind you by· getting next to it and typing " ..... followed by the 
direction that would move you on top of it. 

s Search for ttaps and secret doors. Examine each space immediately adjacent to you for 
the existence of a trap or secret door. There is a large chance that even if there is some
thing there, you won't find it, so you might have to search a while before you find some
thing. 

> Climb down a staircase to the next level. Not surprisingly, this can only be done if you 
are standing on staircase. 

< Climb up a staircase to the level above. This can't be done without the Amulet of Yen
dor in your possession. 

Rest. This is the "do nothing" command. This is good for waiting and healing. 

Pick up something. This picks up whatever you are currently standing on; if you are 
standing on anything at all. . 

Inventory. List what you are carrying in your pack. 

I Selective inventory. Tells you what a single item in your pack is. 
q Quaff one of the potions you are carrying. 

r Read one of the scrolls in your pack. 

e Eat food from your pack. 



A Guide to the Dungeons of Doom USD:33-5 

w Wield a weapon. Take a weapon out of your pack and carry it for use in combat, 
replacing the one you are currently using (if any). 

W Wear armor. You can only wear one suit of armor at a time. This takes extra time. 

T Take armor off. You can't remove armor that is cursed. This takes extra time. 

P Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't 
wearing any rings, this command will ask you which hand you want to wear it on, other
wise, it will place it on the unused hand. The program assumes that you wield your 
sword in your right hand. 

R Remove a ring. If you are only wearing one ring, this command takes it off. If you are 
wearing two, it will ask you which one you wish to remove, 

d Drop an object. Take something out of your pack and leave it lying on the floor. Only 
one object can occupy each space. You cannot drop a cursed object at all if you are 
wielding or wearing it. 

c Call an object something. If you have a type of object in your pack which you wish to 
remember something about, you can use the call command to give a name to that type 
of object. This is usually used when you figure out what a potion, scroll, ring, or staff is 
after you pick it up, or when you want to remember which of those swords in your pack 
you were wielding. 

o Print out which things you've discovered something about. This command will ask you 
what type of thing you are interested in. If you type the character for a given type of 
object (e.g. "!" for potion) it will tell you which kinds of that type of object you've 
discovered (i.e., figured out what they are). This command works for potions, scrolls, 
rings, and staves and wands. 

o Examine and set options. This command is further explained in the section on options. 

AR Redraws the screen. Useful if spurious messages or transmission errors have messed up 
the display. 

Ap Print last message. Useful when a message disappears before you can read it. This only 
repeats the last message that was not a mistyped command so that you don't loose any
thing by accidentally typing the wrong character instead of AP. 

<ESCAPE> 
Cancel a command, prefix, or count. 

Escape to a shell for some commands. 

Q. Quit. Leave the game. 

S Save the current game in a file. It will ask you whether you wish to use the default save 
file. Caveat: Rogue won't let you start up a copy of a saved game, and .it removes the 
save file as soon as you start up a restored game. This is to prevent people from saving 
a game just before a dangerous position and then restarting it if they die. To restore a 
saved game, give the file name as an argument to rogue. As in 

% rogue save .Jzle 
To restart from the default save file (see below), run 

% rogue-r 

v Prints the program version number. 

Print the weapon you are currently wielding 

Print the armor you are currently wearing 

Print the rings you are currently wearing 



USD:33-6 A Guide to the Duqgeons or Doom 

@ Reprint the status line on the message line 

5. Rooms 

Rooms in the dungeons are either lit or dark. If you walk into a lit room,the entire 
room will be drawn on the screen as soon as you enter. If you walk into a dark room, it will 
only be displayed as you explore it. Upon leaving a room, all monsters inside the room are 
erased from the screen. In the darkness· you can only see one space in all directions around 
you. A corridor is always dark. 

6. Fighting 

If you see a monster and you wish to fight it, just attempt to run into it. Many times a 
monster you find win miaG its own business unless you attack it. It is often the case that dis
cretion is the better part of valor. 

7. ObjectS· you can find 

When you find something in the dungeon, it is common to want to pick the object up, 
This is accomplished in rogue bywalking over the object (unless you use the "m" prefix, see 
above). If you are carrying too many things, the program will tell you and it won't pick up 
the object, otherwise it will·add it to your pack and tell you what you just picked up. 

Many of the commands that operate on objects must prompt you to find out which. 
object you want to use . .If you change your mind and don't want to do that command after 
all, just type an <ESCAPE> and the command will be aborted. 

Some objects, like armor and weapons, are easily differentiated. Others, like scrolls and 
potions, are given labels which vary according to type. During a game, any two of the same 
kind of object with the same label are the same type. However, the labels will vary from 
game to game. 

When you use one of these labeled objects, if its effect is obvious, rogue will remember 
what it is for you. If it's effect isn't extremely obvious you will be asked what you want to 
scribble on it so you will recognize it later, or you can use the "call" command (see above). 

7.1. Weapons 

Some weapons, like arrows, come in bunches, but most come one at a time. In order to 
use a weapon, you must wield it. To fire an arrow out ofa bow, you must first wield the bow, 
then throw the arrow. You can only wield one weapon at a time, but you can't change 
weapons if the one you are currently wielding is cursed. The commands louse weapons are 
'~w" (wield) and "t" (throw). 

7.2. Armor 

There are various sorts of armor lying around in the dungeon. Some of it is enchanted, 
some is cursed, and some is just normal Different armor types have different armor protec
tion. The higher the armor protection, the more protection the armor affords against the 
blows of monsters. Here is a list of the various armor types and their normal armor protec
tion: 



A Guide to the Dungeons of Doom 

Type 
None 
Leather armor 
Studded leather I Ring mail 
Scale mail . 
Chain mail 
Banded mail I Splint mail 
Plate mail 

Protection 
o 
2 
3 
4 
S 
6 
7 

USD:33-7 

If a piece of armor is enchanted, its armor protection will be higher than normal. If a suit of 
armor is cursed, its armor protection will be lower, and you will not be able to remove it. 
However, not all armor with a protection that is lower than normal is cursed. 

The commands to use weapons are "W" (wear) and "T" (take oft). 

7.3. Scrolls 

Scrolls come with titles in an unknown tongue3• After you read a scroll, it disappears 
from your pack. The command to use a scroll is "r" (read). 

7.4. Potions 

Potions are labeled by the color of the liquid inside the flask. They disappear after 
being quaffed. The command to use a scroll is "q" (quaft). 

7.5. Staves and Wands 

Staves and wands do the same kinds of things. Staves.are identified by a type of wood; 
wands by a type of metal or bone. They are generally thirigs you want to do to something 
over a long distance, so you must point them at what you wish to affect to use them. Some 
staves are not affected by the direction they are pointed. though. Staves come with multiple 
magic charges, the number being random, and when they are used up, the staff is just a piece 
of wood or metal. 

The command to use a wand or staff is "z" (zap) 

7.6. Rings 

Rings are very useful items, since they are relatively permanent magic, unlike the usually 
fleeting effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful. 
Most rings also cause you to use up food more rapidly, the rate varying with the type of ring. 
Rings are differentiated by their stone settings. The commands to use rings are "P" (put on) 
and "R" (remove). 

7.7. Food 

Food is necessary to keep you going. If you go too long without eating you will faint, 
and eventually die of s~arvation. The command to use food is "e" (eat); 

8. Options 

Due to variations in personal tastes and conceptions of the way rogue should do things. 
there are a set of options you can set that cause rogue to behave in various different ways. 

3 Actually, it's a dialect spoken only by the twenty-seven members of a tribe in Outer Mongolia. but you're not 
supposed to know that. 



USD:3J..8 A Guide to the Dungeons of Doom 

8.1. Setting the options 

There are two ways to set the options. The first is with the "0" command of rogue; the 
second is with the "ROGUEOPTS" environment variable4• 

8.1.1. Using the '0' command 

When you type "0" in rogue, it clears the screen and displays the current settings for all 
the options. It then places the cursor by the value of the first option and waits for you to 
type. You can type a <RETURN> which means to go to the next option, a "-" which means to 
go to the previous option, an <ESCAPE> which means to return to the game, or you can give 
the option a value. For boolean options this merely involves typing "t" for true or "f' for 
false. For string options, type the new value followed by a <RETURN>. 

8.1.2. Using the ROGUEOPTS variable 

The ROGUEOPTS variable is a string containing a comma separated list of initial 
values for the various options. Boolean variables can be turned on by listing their name or 
turned off by putting a "no" in front of the name. Thus to set up an environment variable so 
that jump is on, terse is off, and the name is set to "Blue Meanie", use the command 

% setenv ROGUEOPTS "jump,noterse,name=Blue Meanie"s 

8.2. Option list 

Here is a list of the options and an explanation of what each one is for. The default 
value for each is enclosed in square brackets. For character string options, input over fifty 
characters will be ignored. 

terse [noterse1 
Useful for those who are tired of the sometimes lengthy messages of rogue. This is a 
useful option for playing on slow terminals, so this option defaults to terse if you are on 
a slow (1200 baud or under) terminal. 

jump [nojump] 
If this option is set, running moves will not be displayed until you reach the end of the 
move. This saves considerable cpu and display time. This option defaults to jump if 
you are using a slow terminal. 

flush [noflush] 
All typeahead is thrown away after each round of battle. This is useful for those who 
type far ahead and then watch in dismay as a Bat kills them. 

seefloor [seefloor] 
Display the floor around you on the screen as you move through dark rooms. Due to 
the amount of characters generated, this option defaults to noseefloor if you are using a 
slow terminal. 

pa"go (nopassgo] 
Follow turnings in passageways. If you run in a passage and you run into stone or a 
Wall, rogue will see if it can tum to the right or left. If it can only tum one way, it will 
turn that way. If it can tum either or neither, it will stop. This algorithm can some
times lead to slightly confusing occurrences which is why it defaults to nopassgo. 

• On Version 6 systems, there is no equivalent of the ROGUEOPTS feature. 

S For those of you who use the Bourne shell sh (I). the commands would be 
$ ROGUEOPTS= "jump,noterse,name .. Blue Meanie" 
$ expon ROGUEOPTS 



A Guide to the Dungeons of Doom USD:33-9 

tombstone [tombstone) 
Print out the tombstone at the end if you get killed. This is nice but slow, so you can 
tum it off if you like. 

inven [overwrite) 
Inventory type. This can have one of three values: overwrite, slow, or clear. With 
overwrite the top lines of the map are overwritten with the list when inventory is 
requested or when "Which item do you wish to .•• 1 " questions are answered with a 
".". However, if the list is longer than a screenful,. the screen is cleared. With slow, 
lists are displayed one item at a time on the top of the screen, and with clear, the screen 
is cleared, the list is displayed, and then the dungeon level is re-displayed. Due to speed 
considerations, clear is the default for terminals without clear-to-end-of-line capabilities. 

name [account name) 
This is the name of your character. It is used if you get on the top ten scorer's list. 

fruit [slime-mold) 
This should hold the name of a fruit that you enjoy eating. It is basically a whimsey 
that rogue uses in a couple of places. 

file r /rogue.save) 
The default file name for saving the game. If your phone is hung up by accident, rogue 
will automatically save the game in this file. The file name may start with the special 
character .. .." which. expands to be your home directory 

9. Scoring . 

Rogue usually maintains a list of the top scoring people or scores on your machine. 
Depending on how it is set up, it can post either the top scores or the top players. In the 
latter case, each account on the machine can post only one non-winning score on this list. If 
you score higher than someone else on this list, or better your previous score on the list, you 
will be inserted in the proper place under your current name. How many scores are kept can 
also be set up by whoever installs it on your machine. 

If you quit the game, you get out with all of your gold intact. If, however, you get killed 
in the Dungeons of Doom, your body is forwarded to your next-of-kin, along with 90% of 
your gold; ten percent of your gold is kept by the Dungeons' wizard as a fee6• This should 
make you consider whether you want to take one last hit at that monster and possibly live, or 
quit and thus stop with whatever you have. If you quit, you do get all your gold, but if you 
swing and live, you might find more. 

If you just want to see what the current top players/games list is, you can type 
% rogue-s 

10. Acknowledgements 

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken Arnold 
and Michael Toy then smoothed out the user interface, and added jillions of new features. 
We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, Mark 
Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and 
Scott Nelson for their ideas and assistance; and also the teeming multitudes who graciously 
ignored work, SChool, and social life to play rogue and send us bugs, complaints, suggestions. 
and just plain flames. And also Mom. 

6 The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a sizable 
donation. 





Star Trek 

STAR 

TREK 
by 

Eric Allman 
University of California 

Berkeley 

INTRODUCTION 

USD:34.1 

Well, the federation is once again at war with the Klingon empire. It is up to you, 
as captain of the U.S.S. Enierprise, to wipe out the invasion fleet and save the Federation. 

For the purposes of the game the galaxy is divided into 64 quadrants on an eight 
by eight grid, with quadrant 0,0 in the upper left hand comer. Each quadrant is divided into 
100 sectors on a ten by ten grid. Each sector contains one object (e.g., the Enterprise, a 
Klingon, or a star). 

Navigation is handled in degrees, with zero being straight up and ninety being to 
the right. Distances are measured in quadrants. One tenth quadrant is one sector. 

The galaxy contains starbases, at which you can dOCk to refuel, repair damages, etc. 
The galaxy also contains stars. Stars usually have a knack for getting in your way, but they 
can be triggered into going nova by shooting a photon torpedo at one, thereby (hopefully) des
troying any adjacent Klingons. This is not a good practice however, because you are penal
ized for destroying stars. Also, a star will sometimes go supernova, which obliterates an 
entire quadrant. You must never stop in a supernova quadrant, although you may "jump 
over" one. 

Some starsystems have inhabited planets. Klingons can attack inhabited planets 
and enslave the populace, which they then put to work building more Klingon battle cruisers. 

STARTING UP THE GAME 

To request the game, issue the command 

lusr/games/trek 

from the shell. If a filename is supplied, a log of the game is written onto that file. (Other
wise, no file is written.) If the "-a" flag is stated before the filename, the log of the game is 



USD:34-2 Star Trek 

appended to the file. 

The gante will ask you what lengthpme you would like. Valid responses are 
"short", "medium", and "long". You may also type "restart", which restarts a previously saved 
game. Ideally, the length of the game does not affect the difficulty, but currently the shorter 
games tend to be harder than the longer ones. 

You will then be prompted for the skill, to which you must respond "novice", 
"fair", "good", "expert", "commodore", or "impossible". You should start out with a novice 
and work up, but if you really want to see how fast you can be slaughtered, start out with an 
impossible game. 

In general, throuahout the game, if you forget what is appropriate the game will tell 
you what it expects if you just type in a question mark. 

ISSUING COMMANDS 

If the game expects you to enter a command, it will say "Command: " and wait for 
your response. Most commands can be abbreviated. 

At almost any time you can type more than one thing on a line. For example, to 
move straight :UP one quadrant, you can type 

move 0 I . 
or you could just type 

move 
. and the game would prompt you with 

Course: 
to which you could type 

o 1 
The "I" is the distance, which could be put on still another line. Also, the "move" command 
could have been abbreviated "mov", Hmo", or just Om". 

If you are partway through a command and you change your mind, you can usually 
type ·-1" to cancel the command. 

Klingons generally cannot hit you if you don't consume anything (e.g., time or 
energy), so some commands are considered "free". As soon as you consume anything though 
-POW! 



Star Trek 

THE COMMANDS 

Short Range Scan 

Mnemonic: srscan 
Shortest Abbreviation: s 
Full Commands: srscan 

srscan yes/no 
Consumes: nothing 

USD:34·3 

The short range scan gives you a picture of the quadrant you are in, and (if you say 
"yes") a status report which tells you a whole bunch of interesting stutT. You can get a status 
report alone by using the status command. An example follows: 

Short range sensor scan 

0 1 2 3 4 5 6 7 8 9 
0 * * 0 stardate 3702.16 
1 E 1 con4ition RED 
2 * 2 position 0,3/1,2 
3 * # 3 warp factor 5.0 
4 4 total energy 4376 
5 * * 5 torpedoes 9 
6 @ 6 shields down, 78% 
7 7 Klingons left 3 
8 K 8 time left 
9 * 9 life support 

0 2 3 4 5 6 7 8 9 

Distressed Starsystem Marcus XII 

The cast of characters is as follows: 
E the hero 
K the villain 
# the starbase 
* stars 
@ inhabited starsystem 

empty space 
a black hole 

6.43 
damaged, reserves = 2.4 

The name of the starsystem is listed underneath the short range scan. The word 
"distressed", if present, means that the starsystem is under attack. 

Short range scans are absolutely free. They use no time, no energy, and they don't 
give the Klingons another chance to hit you. 

Status Report 

Mnemonic: status 
Shortest Abbreviation: st 



USD:34-4 Star Trek 

Consumes: nothing 

This command gives you information about the current status of the game and 
your ship, as follows: 

Stardate - The current stardate. 

Condition - as follows: 
RED - in battle 
YELLOW - low on energy 
GREEN - normal state 
DOCKED - docked at starbase 
CLOAKED - the cloaking device is activated 

Position - Your current quadrant and sector. 

Warp Factor - The speed you will move at when you move under warp power (with 
the move command). 

Total Energy - Your energy reserves. If they drop to zero, you die. Energy regen
erates, but the higher the skill of the game, the slower it regenerates. 

Torpedoes - How many photon torpedoes you have left. 

Shields - Whether your shields are up or down, and how effective they are if up 
(what percentage of a hit they will absorb). 

Klingons Left - Guess. 

Time Left - How long the Federation can hold out if you sit on your fat ass and do 
nothing. If you kill Klingons quickly, this number goes up, otherwise, it 
goes down. If it hits zero, the Federation is conquered. 

Life Suppon - If "active", everything is fine. If "damaged", your reserves tell you 
how long you have to repair your life suppon or get to a starbase before you 
starve, suffocate, or something equally unpleasant. 

Current Crew - The number of crew members left. This figures does not include 
officers. 

Brig Space - The space left in your brig for Klingon captives. 

Klingon Power - The number of units needed to kill a Klingon. Remember, as 
Klingons fire at you they use up their own energy ,so you probably need 
somewhat less than this. 

Skill, Length - The skill and length of the game you are playing. 

Status information is absolutely free. 

Long Range Scan 



Star Trek 

Mnemonic: Irscan 
Shortest Abbreviation: I 
Consumes: nothing 

USD:34-5 

Long range scan gives you information about the eight quadrants that surround the 
quadrant you're in. A sample long range scan follows: 

Long range scan for quadrant 0,3 

2 3 4 
• ! • ! • ! 

O! 108 6 ! 19 ! 
1 ! 9 /II! 8 ! 

The three digit numbers tell the number of objects in the quadrants. The units 
digit tells the number of stars, the tens digit the number of starbases, and the hundreds digit 
is the number of Klingons. -.- indicates the negative energy barrier at the edge of the galaxy, 
which you cannot enter. -/I/" means that that is a supernova quadrant and must not be 
entered. 

Damage Report 

Mnemonic: damages 
Shortest Abbreviation: da 
Consumes: nothing 

A damage report tells you what devices are damaged and how long it will take to 
repair them. Repairs proceed faster when you are docked at a starbase. 

Set Warp Factor 

Mnemonic: warp 
Shortest Abbreviation: w 
Full Command: warp factor 
Consumes: nothing 

The warp factor tells the speed of your starship when you moye under warp power 
(with the move command). The higher the warp factor, the faster you go, and the more 
energy you use. 

The minimum warp factor is 1.0 and the maximum is 10.0. At speeds above warp 
6 there is danger of the warp engines being damaged. The probability of this increases at 
higher warp speeds. Above warp 9.0 there is a chance of entering a time warp. 

Move Under Warp Power 



USD:34-6 

Mnemonic: move 
Shortest. Abbreviation: m 
Full Command: move course distance 
Consumes: time and energy 

Star Trek 

This is the usual way of moving. The course is in degrees and the dis~ance is in 
quadrants. To move one sector specify a distance of 0.1. 

Time is consumed proportionately to the inverse of the warp factor squared, and 
directly to the distance. EnefIY is consumed as the warp factor cubed, and directly to the dis
tance. If you move with your shields up it doubles the amount of cmeqy consumed. 

When you move in a quadrant containing Klingons, they get a chance to attack 
you. 

The computer detects navigation errors. If the computer is out, you run the risk of 
running into things. . 

The course is determined by the Space Inertial Navigation System {SINS]. As 
described in Star Fleet Technical Order TO:02:06:12,the SINS is calibrated, after which it 
becomes the base for navigation. If damaged, navigation becomes inaccurate. When it is 
fixed, Spack recalibrates it, however, it cannot be calibrated extremely accurately until you 
dock at starbase. 

Move Under Impulse Power 

Mneqlonic: impulse 
Shortest Abbreviation: i 
Full Command: impulse course distance 
Consumes: time and enefIY 

The impulse engines give you a chance to maneuver when your warp engines are 
damaged; however, they are incredibly slow (0.095 quadrantslstardate). They require 20 units 
of energy to engage, and ten units per sector to move. 

The same comments about the computer and the SINS apply as above. 

There is no penalty to move under impulse power with shields up. 

Deflector Shields 

Mnemonic: shields 
Shortest Abbreviation: sh 
Full Command: shields up/down 
Consumes: energy 



Star Trek USD:34-7 

Shields protect you from Klingon attack and nearby novas. As they protect you, 
they weaken. A shield which is 78% effective will absotb 78% of a hit and let 22% in to hurt 
you. 

The Klingons have a chance to attack you every time you raise or lower shields. 
Shields do not rise and lower instantaneously, so the hit you receive will be computed with 
the shields at an intermediate effectiveness. 

It takes energy to raise shields, but not to drop them. 

Cloaking Device 

Mnemonic: cloak 
Shortest Abbreviation: cl 
Full Command: cloak up/down 
Consumes: energy 

When you are cloaked, Klingons cannot see you, and hence they do not fire at you. 
They are useful for entering a quadrant and selectIng a good position, however, weapons can
not be fired through the cloak due to the huge energy drain that it requires. 

The cloak up command only starts the cloaking process; Klingons will continue to 
fire at you until you do something which consumes time. 

Fire Phasers 

Mnemonic: phasers 
Shortest Abbreviation: p 
Full Commands: phasers automatic amount 

phasers manual amt 1 course 1 spread 1 ... 
Consumes: energy 

Phasers are energy weapons; the energy comes from your ship's reserves ("total 
energy" on a srscan). It takes about 250 units of hits to kill a Klingon. Hits are cumulative 
as long as you stay in the quadrant. 

Phasers become less effective the further from a Klingon you are. Adjacent 
Klingons receive about 90% of what you fire, at five sectors about 60%, and at ten sectors 
about 35%. They have no effect outside of the quadrant. 

Phasers cannot be fired while shields are up; to do so would fry you. They have no 
effect on starbases or stars. 

In automatic mode the computer decides how to divide up the energy among the 
Klingons present; in manual mode you do that yourself. 



USD:J4..8 St&rTrek 

In manual mode firing you specify a direction. amount (number of units to fire) 
and spread (0 -> 1.0) for each of the six phaser banks. A zero amount terminates the manual 
input. 

Fire Photon Torpedoes 

~n~onic: torpedo 
Shortest Abbreviation: t 
Full Command: torpedo course [yes/no] [burst angle] 
Consumes: torpedoes 

Torpedoes are projectile weapons - there are no partial hits. Yau either hit your 
target or you don't. A hit on a KIingon destroys him. A hit on a starbase destroys that star
base (woops!). Hitting a star usually causes it to go nova, and occasionally supernova. 

Photon torpedoes cannot be aimed precisely. They can be fired with shields up, 
but they get even more random as they pass through the shields. 

Torpedoes may be fired in bursts of three. If this is desired, the burst angle is the 
angle between the three shots, which.may vary from one to fifteen. The word "no· says that a 
burst is not wanted; the word ·yes· (which may be omitted if stated on the same line as the 
course) says that a burst is wanted. 

Photon torpedoes have no effect outside the quadrant. 

Onboard Computer Request 

~nemonic: computer 
Shortest Abbreviation: c 
Fun Command: computer request; request; ... 
Consumes: nothing 

The computer command gives you access to the facilities of the onboard computer, 
which anows you to do all sorts of fascinating stuff. Computer requests are: 

score - Shows your current score. 

course quad/sect - Computes the course and distance from wherever you are to the 
given location. If you type ·course Ix,y· you will be given the course to sec
tor x,y in the current quadrant. 

move quad/sect - Identical to the course request, except that the move is executed. 

chart - prints a chart of the known galaxy, i.e., everything that you have seen with a 
long range scan. The format is the same as on a long range scan. except that 
" ... " means that you don't yet know what is there, and ".1'" means that you 
know that a starbase exists, but you don't know anything else. "$$S" mans 
the quadrant that you are currently in. 



Star Trek USD:34-9 

colons. 

trajectory - prints the course and distance to all the Klingons in the quadrant. 

warpcost dist warp_factor - computes the cost in time and energy to move 'dist' qua
drants at warp 'warp_factor'. 

impcost dist - same as warpcost for impulse engines. 

pheff range - tells how effective your phasers are at a given range. 

distresslist - gives a list of currently distressed starbases and starsystems. 

More than one request may be stated on a line by separating them with semi-

Dock at Starbase 

Mnemonic: dock 
Shortest Abbreviation: do 
Consumes: nothing 

You may dock at a starbase when you are in one of the eight adjacent sectors. 

When you dock you are resupplied with energy, photon torpedoes, and life support 
reserves. Repairs are also done faster at starbase. Any prisoners you have taken are 
unloaded. You do not receive points for taking prisoners until this time. 

Starbases have their own deflector shields, so you are safe from attack while 
docked. 

Undock from Starbase 

Rest 

Mnemonic: undock 
Shortest Abbreviation: u 
Consumes: nothing 

This just allows you to leave starbase so that you may proceed on your way. 

Mnemonic: rest 
Shortest Abbreviation: r 
Full Command: rest time 
Consumes: time 

This command allows you to rest to repair damages. It is not advisable to rest 
while under attack. 



USD:34-10 

Call Starbase For Help 

Mnemonic: help 
Shortest Abbreviation: help 
Consumes: nothing 

Star Trek 

You may ca1l starbase for help via your subspace radio. Starbase has long range 
transporter beams to get you. Problem is, they can't always rematerialize you. 

You should avoid using this command unless absolutely necessary, for the above 
reason and beci:ause it coats heavily against you in the scoring. 

Capture KUagon 

Mnemonic: capture 
Shortest Abbreviation: ca 
Consumes: time 

You may request that a Klingon surrender to you. If he accepts, you get to take 
captives (but only as many as your brig can hold). It is good if you do this, because you get 
points for captives. Also, if you ever get captured, you want to be sure that the Federation 
has prisoners to exchange for you. 

You must go to a starbase to tum over your prisoners to Federation authorities. 

Visual Scan 

Mnemonic: visual 
Shortest Abbt:eviation: v 
Full Command: visual course 
Consumes: time 

When your short range scanners are out. you can still see what is out "there" by 
doing a visual scan. Unfortunately, you can only see three sectors at one time, and it takes 
0.005 stardates to perform. 

The three sectors in the general direction of the course specified are examined and 
displayed. 

Abandon Ship 

Mnemonic: abandon 
Shortest Abbreviation: abandon 
Consumes: nothing 

The officers escape the Enterprise in the shuttlecraft. If the transporter is working· 



Star Trek USD:34-11 

and there is an inhabitable starsystem in the area, the crew beams down, otherwise you leave 
them to die. You are given an old but still usable ship, the Faire Queene. 

Ram 

Mnemonic: ram 
Shortest Abbreviation: ram 
Full Command: ram course distance 
Consumes: time and energy 

This command is identical to "move", except that the computer doesn't stop you 
from making navigation errors. 

You get very nearly slaughtered if you ram anything. 

Self Destruct 

Mnemonic: destruct 
Shortest Abbreviation: destruct 
Consumes: everything 

Your starship is self-destructed. Chances are you will destroy any Klingons (and 
stars, and starbases) left in your quadrant. 

Terminate the Game 

Mnemonic: terminate 
Shortest Abbreviation: terminate 
Full Command: terminate yes/no 

Cancels the current game. No score is computed. If you answer yes, a new game 
will be started, otherwise trek exits. 

Call the Shell 

game. 

Mnemonic: shell 
Shortest Abbreviation: shell 

Temporarily escapes to the shell. When you exit the shell y.ou will return to the 

SCORING 

The scoring algorithm is rather complicated. Basically, you get points for 
each Klingon you kill, for your Klingon per stardate kill rate. and a bonus if you win 
the game. You lose points for the number of Klingons left in the galaxy at the end of 
the game, for getting killed, for each star, starbase, or inhabited starsystem you 



USD:34-12 Star Trek 

destroy, for calling for help, and for each casualty you incur. 

You will be promoted if you play very well. You will never get a promo
tion if you call for help, abandon the Enterprise, get killed, destroy a starbase or 
inhabited starsystem, or destroy too many stars. 



Star Trek 

Command 

abandon 

capture 
cloak up/down 
computer request; ... 
damages 
destruct 
dock 
hetp 
impulse course distance 

lrscan 
move course distance 

phasers automatic amount 
amt 1 course 1 spread 1 ... 

torpedo course [yes] angle/no 
ram course distance 

rest time 
shell 
shields up/down 
srscan [yes/no] 
status 
terminate yes/no 
undock 
visual course 
warp warp3actor 

USD:34-13 

COMMAND SUMMARY 

Requires 

shuttlecraft, 
transporter 

subspace radio 
cloaking device 
computer 

computer 

subspace radio 
impulse engines, 
computer, SINS 

L.R. sensors 
warp engines, 

computer, SINS 
phasers, computer 
phasers 
torpedo tubes 
warp engines, 

computer, SINS 

shields 
S.R. sensors 

Consumes 

time 
energy 

time, energy 

time, energy 

energy phasers manual 
energy 
torpedoes 
timt', energy 

time 

energy 

time 








