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The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIX{t is a general-purpose, multi-user, interactive operating system for the
larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 computers. It
offers a number of features seldom found even in larger operating systems, including

i A hierarchical file system incorporating demountable volumes,
ii  Compatible file, device, and inter-process 1/O,

iii  The ability to initiate asynchronous processes,

iv  System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi  High degree of portability.

This paper discusses the nature and implementation of the file system and of the
user command interface.

1. INTRODUCI’ION

There have been four versions of the UNIX txme-shanng system. The earliest (mrca 1969-70)
ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second version ran on the
unprotected PDP-11/20 computer. The third incorporated multiprogramming and ran on the PDP-
11/34, /40, /45, /60, and /70 computers; it is the one described in the previously published version of
this paper, and is also the most widely used today. This paper describes only the fourth, current sys-
tem that runs on the PDP-11/70 and the Interdata 8/32 computers. In fact, the differences among the
various systems is rather small; most of the revisions made to the originally published version of this
paper, aside from those concerned with style had to do with details of the implementation of the file
system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been put
into service. Most of them are engaged in applications such as computer science education, the
preparation and formatting of documents and other textual material, the collection and processing of
trouble data from various switching machines within the Bell System, and recording and checking
telephone service orders. Our own installation is used mainly for research in operating systems,
languages, computer networks, and other topics in computer science, and also for document prepara-
tion.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operating
system for interactive use need not be expensive either in equipment or in human effort: it can run on
hardware costing as little as $40,000, and less than two man-years were spent on the main system
software. We hope, however, that users find that the most important characteristics of the system are

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised
version of an article that appeared in Communications of the acM, 17, No. 7 (July 1974), pp. 365-375.
That article was a revised version of a paper presented at the Fourth ACM Symposium on Operating Sys-
tems Principles, 1BM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17,
1973.

t UNIX is a trademark of AT&T Bell Laboratories.
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its simplicity, elegance, and ease of use.
Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs? 3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pas-
cal

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The
UNIX user community, which numbers in the thousands, has contributed many more programs and
languages. It is worth noting that the system is totally self-supporting. All UNIX software is main-
tained on the system; likewise, this paper and all other documents in this issue were generated and
formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit byte)
computer with 768K bytes of core memory; the system kernel occupies 90K bytes about equally
divided between code and data tables. This system, however, includes a very large number of device
drivers and enjoys a generous allotment of space for I/O buffers and system tables; a minimal system
capable of running the software mentioned above can require as little as 96K bytes of core altogether.
There are even larger installations; see the description of the PWB/UNIX systems,>3 for example.
There are also much smaller, though somewhat restricted, versions of the system.3

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets, and
an additional 12 communication lines hard-wired to 9600-baud terminals and satellite computers.
There are also several 2400- and 4800-baud synchronous communication interfaces used for
machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices including nine-
track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digital switching network,
and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.? Early ver-
sions of the operating system were written in assembly language, but during the summer of 1973, it
was rewritten in C. The size of the new system was about one-third greater than that of the old.
Since the new system not only became much easier to understand and to modify but also included
many functional improvements, including multiprogramming and the ability to share reentrant code
among several user programs, we consider this increase in size quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view of the
user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files A

A file contains whatever information the user places on it, for example, symbolic or binary
(object) programs. No particular structuring is expected by the system. A file of text consists simply
of a string of characters, with lines demarcated by the newline character. Binary programs are
sequences of words as they will appear in core memory when the program starts executing. . A few
user programs manipulate files with more structure; for example, the assembler generates, and the
" loader expects, an object file in a particular format. However, the structure of files is controlled by
the programs that use them, not by the system.
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3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus
induce a structure on the file system as a whole. Each user has a directory of his own files; he may
also create subdirectories to contain groups of files conveniently treated together. A directory behaves
exactly like an ordinary file except that it cannot be written on by unprivileged programs, so that the
system controls the contents of directories. However, anyone with appropriate permission may read a
directory just like any other file.

The system maintains several directories for its own use. One of these is the root directory. All
files in the system can be found by tracing a path through a chain of directories until the desired file
is reached. The starting point for such searches is often the root. Other system directories contain all
the programs provided for general use; that is, all the commands. As will be seen, however, it is by
no means necessary that a program reside in one of these directories for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to
the system, it may be in the form of a path name, which is a sequence of directory names separated
by slashes, “/”, and ending in a file name. If the sequence begins with a slash, the search begins in
the root directory. The name /alpha/beta/gamma causes the system to search the root for directory
alpha, then to search alpha for beta, finally to find gamma in beta. gamma may be an ordinary file, a
directory, or a special file. As a limiting case, the name *“/* refers to the root itseif.

A path name not starting with “/” causes the system to begin the search in the user’s current
directory. Thus, the name alpha/beta specifies the file named beta in subdirectory alpha of the
current directory. The simplest kind of name, for example, alpha, refers to a file that itself is found
in the current directory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different names.
This feature is called linking; a directory entry for a file is sometimes called a link. The UNIX system
differs from other systems in which linking is permitted in that all links to a file have equal status.
‘That is, a file does not exist within a particular directory; the directory entry for a file consists merely
of its name and a pointer to the information actually describing the file. Thus a file exists indepen-
dently of any directory entry, although in practice a file is made to disappear along with the last link
to it.

Each directory always uas at least two entries. The name “.” in each directory refers to the
directory itself. Thus a program may read the current directory under the name “.”” without knowing
its complete path name. The name “..” by convention refers to the parent of the directory in which

it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special
entries “ .” and “..”, each directory must appear as an entry in exactly one other directory, which is
its parent. The reason for this is to simplify the writing of programs that visit subtrees of the direc-
tory structure, and more important, to avoid the separation of portions of the hierarchy. If arbitrary
links to directories were permitted, it would be quite difficult to detect when the last connection from
the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported I/O
device is associated with at least one such file. Special files are read and written just like ordinary
disk files, but requests to read or write result in activation of the associated device. An entry for each
special file resides in directory /dev, although a link may be made to one of these files just as it may to
an ordinary file. Thus, for example, to write on a magnetic tape one may write on the file /dev/mt.
Special files exist for each communication line, each disk, each tape drive, and for physical main
memory. Of course, the active disks and the memory special file are protected from indiscriminate
access.

There is a threefold advantage in treating I/O devices this way: file and device I/O are as similar

as possible; file and device names have the same syntax and meaning, so that a program expecting a
file name as a parameter can be passed a device name; finally, special files are_subject to the same
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protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not necessary that
the entire file system hierarchy reside on this device. There is a mount system request with two argu-
ments: the name of an existing ordinary file, and the name of a special file whose associated storage
volume (e.g., a disk pack) should have the structure of an independent file system containing its own
directory hierarchy. The effect of mount is to cause references to the heretofore ordinary file to refer
instead to the root directory of the file system on the removable volume. In effect, mount replaces a
leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the hierarchy stored on the
removable volume). After the mount, there is virtually no distinction between files on the removable
volume and those in the permanent file system. In our installation, for example, the root directory
resides on a small partition of one of our disk drives, while the other drive, which contains the user’s
files, is mounted by the system initialization sequence. A mountable file system is generated by writ-
. ing on its corresponding special file. A utility program is available to create an empty file system, or
one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no
link may exist between one file system hierarchy and another. This restriction is enforced so as to
avoid the elaborate bookkeeping that would otherwise be required to assure removal of the links
whenever the removable volume is dismounted.

3.5 Protection '

Although the access control scheme is quite simple, it has some unusual features. Each user of
the system is assigned a unique user identification number. When a file is created, it is marked with
the user ID of its owner. Also given for new files is a set of ten protection bits. Nine of-these specify
independently read, write, and execute permission for the owner of the file, for other members of his
group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user 1dentxﬁcanon (hereafter, user
ID) of the current user to that of the creator of the file whenever the file is executed as a program.
This change in user ID is effective only during the execution of the program that calls for it. The set-
user-ID feature provides for privileged programs that may use files inaccessible 1o other users. For
example, a program may keep an accounting file that should neither be read nor changed except by
the program itself. If the set-user-ID bit is on for the program, it may access the file although this
access might be forbidden to other programs invoked by the given program’s user. Since the actual
user ID of the invoker of any program is always available, set-user-ID programs may take any meas-
ures desired to satisfy themselves as to their invoker’s credentials. This mechanism is used to allow
users to execute the carefully written commands that call privileged system entries. For example,
there is a system entry invokable only by the “super-user” (below) that creates an empty directory.
As indicated above, directories are expected to have entries for “.” and “..”. The command which
creates a directory is owned by the super-user and has the set-user-ID bit set. After it checks its
invoker’s authorization to create the specified directory, it creates it and makes the entries for “.”
and “..”.

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is generally
available without administrative intervention. For example, this protection scheme easily solves the
MOO accounting problem posed by “Aleph-null.”?2

The system recognizes one particular user ID (that of the “super-user”) as exempt from the usual
constraints on file access; thus (for example), programs may be written to dump and reload the file
system without unwanted interference from the protection system.

3.6 I/O calls

The system calls to do I/O are designed to eliminate the differences between the various devices
and styles of access. There is no distinction between “random” and ‘“sequential” I/O, nor is any
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logical record size imposed by the system. The size of an ordinary file is determined by the number
of bytes written on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underlying
complexities. Each call to the system may potentially result in an error return, which for simplicity is
not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open(name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag argument
indicates whether the file is to be read, written, or “updated,” that is, read and written simuitane-
ously.

The returned value filep is called a file descriptor. It is a small integer used to identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that creates
-the given file if it does not exist, or truncates it to zero length if it does exist; create also opens the
new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the number
of users who may have a file open for reading or writing. Although it is possible for the contents of a
file to become scrambled when two users write on it simultaneously, in practice difficulties do not
arise. We take the view that locks are neither necessary nor sufficient, in our environment, to prevent
interference between users of the same file. They are unnecessary because we are not faced with
large, single-file data bases maintained by independent processes. They are insufficient because locks
in the ordinary sense, whereby one user is prevented from writing on a file that another user is read-
ing, cannot prevent confusion when, for example, both users are editing a file with an editor that .
makes a copy of the file being edited. :

There are, however, sufficient internal interlocks to maintain the logical consistency of the file
system when two users engage simultaneously in activities such as writing on the same file, creating
files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particular
byte in the file was the last byte written (or read), the next I/O call implicitly refers to the immedi-
ately following byte. For each open file there is a pointer, maintained inside the system, that indi-
cates the next byte to be read or written. If n bytes are read or written, the pointer advances by n
bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write( filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified by
buffer. The returned value n is the number of bytes actually transmitted. In the write case, n is the
same as count except under exceptional conditions, such as I/O errors or end of physical medium on
'special files; in a read, however, n may without error be less than count. If the read pointer is so near
the end of the file that reading count characters would cause reading beyond the end, only sufficient
bytes are transmitted to reach the end of the file; also, typewriter-like terminals never return more
than one line of input. When a read call returns with n equal to zero, the end of the file has been
reached. For disk files this occurs when the read pointer becomes equal to the current size of the file.
It is possible to generate an end-of-file from a terminal by use of an escape sequence that depends on
the device used.

Bytes written affect only those parts of a file implied by the position of the write pointer and the
count; no other part of the file is changed. If the last byte lies beyond the end of the file, the file is
made to grow as needed.
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To do random (direct-access) I/O it is only necessary to move the read or write pointer to the
appropriate location in the file.

location = Iseek (filep, offset, base )

The pointer associated with filep is moved to a position offset bytes from the beginning of the file,
from the current position of the pointer, or from the end of the file, depending on base. offset may be
negative. For some devices (e.g., paper tape and terminals) seek calls are ignored. The actual offset
from the beginning of the file to which the pointer was moved is returned in location.

There are several additional system entries having to do with I/O and with the file system that
will not be discussed. For example: close a file, get the status of a file, change the protection mode or
the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associated file
and a pointer to the file itself. This pointer is an integer called the i-number (for index number) of
the file. When the file is accessed, its i-number is used as an index into a system table (the i-/ist)
stored in a known part of the device on which the directory resides. The entry found thereby (the
file’s i-node) contains the description of the file:

i the user and group-ID of its owner

ii  its protection bits

iti  the physical disk or tape addresses for the file contents

iv it size '

v time of creation, last use, and last modification » _

vi  the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an i-
number by searching the explicitly or implicitly named directories. Once a file is open, its device, i-
number, and read/write pointer are stored in a system table indexed by the file descriptor returned by
the open or create. Thus, during a subsequent call to read or write the file, the descriptor may be
easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that con-
tains the name of the file and the i-node number. Making a link to an existing file involves creating a
directory entry with the new name, copying the i-number from the original file entry, and increment-
ing the link-count field of the i-node. Removing (deleting) a file is done by decrementing the link-
count of the i-node specified by its directory entry and erasing the directory entry. If the link-count
drops to 0, any disk blocks in the file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks log-
ically addressed from O up to a limit that depends on the device. There is space in the i-node of each
file for 13 device addresses. For nonspecial files, the first 10 device addresses point at the first 10
blocks of the file. If the file is larger than 10 blocks, the 11 device address points to an indirect block
containing up to 128 addresses of additional blocks in the file. Still larger files use the twelfth device
address of the i-node to point to a double-indirect block naming 128 indirect blocks, each pointing to
128 blocks of the file. If required, the thirteenth device address is a triple-indirect block. Thus files
may conceptually grow to [(10+128+1282+128%-512] bytes. Once opened, bytes numbered below
5120 can be read with a single disk access; bytes in the range 5120 to 70,656 require two accesses;
~ bytes in the range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below) proves
effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file whose
i-node indicates that it is special, the last 12 device address words are immaterial, and the first
specifies an internal device name, which is interpreted as a pair of numbers representing, respectively,
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a device type and subdevice number. The device type indicates which system routine will deal with
I/0 on that device; the subdevice number selects, for example, a disk drive attached to a particular
controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite straight-
forward. mount maintains a system table whose argument is the i-number and device name of the
ordinary file specified during the mount, and whose corresponding value is the device name of the
indicated special file. This table is searched for each i-number/device pair that turns up while a path
name is being scanned during an open or create; if a match is found, the i-number is replaced by the
i-number of the root directory and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered. That is,
immediately after return from a read call the data are available; conversely, after a write the user’s
workspace may be reused. In fact, the system maintains a rather complicated buffering mechanism
that reduces greatly the number of I/O operations required to access a file. Suppose a write call is
made specifying transmission of a single byte. The system will search its buffers to see whether the
affected disk block currently resides in main memory; if not, it will be read in from the device. Then
the affected byte is replaced in the buffer and an entry is made in a list of blocks to be written. The
return from the write call may then take place, although the actual [/O may not be completed until a
later time. Conversely, if a single byte is read, the system determines whether the secondary storage
block in which the byte is located is already in one of the system’s buffers; if so, the byte can be
returned immediately. If not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made Accesses to sequential blocks of a file, and
asynchronously pre-reads the next block. This sxgmﬁcantly reduces the running time of most pro-
grams while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program that
reads or writes a single byte at a time, but the gain is not immense; it comes mainly from the
avoidance of system overhead. If a program is used rarely or does no great volume of I/O, it may
quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing
the file system has proved quite reliable and easy to deal with. To the system itself, one of its
strengths is the fact that each file has a short, unambiguous name related in a simple way to the pro-
tection, addressing, and other information needed to access the file. It also permits a quite simple
and rapid algorithm for checking the consistency of a file system, for example, verification that the
portions of each device containing useful information and those free to be allocated are disjoint and
together exhaust the space on the device. This algorithm is independent of the directory hierarchy,
because it need only scan the linearly organized i-list. At the same time the notion of the i-list
induces certain peculiarities not found in other file system organizations. For example, there is the
question of who is to be charged for the space a file occupies, because all directory entries for a file
have equal status. Charging the owner of a file is unfair in general, for one user may create a file,
another may link to it, and the first user may delete the file. The first user is still the owner of the
file, but it should be charged to the second user. The simplest reasonably fair algorithm seems to be
to spread the charges equally among users who have links to a file. Many installations avoid the issue
by not charging any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general register
values, status of open files, current directory and the like. An image is the current state of a pseudo-
computer.

A process is the execution of an image. While the processor is executing on behalf of a process,
the image must reside in main memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process forces it to be swapped out to the
disk.
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The user-memory part of an image is divided into three logical segments. The program text seg-
ment begins at location 0 in the virtual address space. During execution, this segment is write-
protected and a single copy of it is shared among all processes executing the same program. At the
first hardware protection byte boundary above the program text segment in the virtual address space
begins a non-shared, writable data segment, the size of which may be extended by a system call.
Starting at the highest address in the virtual address space is a stack segment, which automatically
grows downward as the stack pointer fluctuates.

5.1 Processes

_ Except while the system is bootstrapping itself into operation, a new process can come into
existence only by use of the fork system call:

processid = fork( )

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in the parent, the returned processid
actually identifies the child process and is never 0, while in the child, the returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable, each
process may determine whether it is the parent or child.

5.2 Pipes R

Processes may communicate with related processes using the same system read and write calls
that are used for file-system I/O. The call:

filep = pipe()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like
other open files, is-passed from parent to child process in the image by the fork call. A read using a
pipe file descriptor waits until another process writes using the file descriptor for the same pipe. At
this point, data are passed between the images of the two processes. Neither process need know that
a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is
not a completely general mechanism, because the pipe must be set up by a common ancestor of the
processes involved.

5.3 Execution of pn;grams
Another major system primitive is invoked by

execute ( file, arg,, arg,, ..., arg;)

which requests the system to read in and execute the program named by file, passing it string argu-
ments arg, , arg,, ..., arg,. All the code and data in the process invoking execute is replaced from
the file, but open files, current directory, and inter-process relationships are unaltered. Only if the
call fails, for example because file could not be found or because its execute-permission bit was not
set, does a return take place from the execute primitive; it resembles a “jump” machine instruction
rather than a subroutine call. ‘

5.4 Process synchronization
Another process control system call:
processid = wait ( status)

causes its caller to suspend execution until one of its children has completed execution. Then wait
returns the processid of the terminated process. An error return is taken if the calling process has no
descendants. Certain status from the child process is also available.
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5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The parent
is notified through the wait primitive, and status is made available to it. Processes may also ter-
minate as a result of various illegal actions or user-generated signals (Section VII below).

VL. THE SHELL

For most users, communication with the system is carried on with the aid of a program called
the shell. The shell is a command-line interpreter: it reads lines typed by the user and interprets them
as requests to execute other programs. (The shell is described fully elsewhere,? so this section will
discuss only the theory of its operation.) In simplest form, a command line consists of the command
name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into separate strings. Then a file with
name command is sought; command may be a path name including the “/” character to specify any file
in the system. If command is found, it is brought into memory and executed. The arguments col-
lected by the shell are accessible to the command. When the command is finished, the shell resumes
its own execution, and indicates its readiness to accept another command by typing a prompt charac-
ter.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to command
and attempts again to find the file. Directory /bin contains commands intended to be generally used.
(The sequence of directories to be searched may be changed by user request.)

6.1 Standard I/0

The discussion of I/O in Section III above seems to imply that every file used by a program
must be opened or created by the program in order to get a file descriptor for the file. Programs exe-
cuted by the shell, however, start off with three open files with file descriptors 0, 1, and 2. Assuch a
program begins execution, file 1 is open for writing, and is best understood as the standard output
file. Except under circumstances indicated below, this file is the user’s terminal. Thus programs that
wish to write informative information ordinarily use file descriptor 1. Conversely, file O starts off
open for reading, and programs that wish to read messages typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the user’s ter-
minal printer and keyboard. If one of the arguments to a command is prefixed by “>", file descriptor
1 will, for the duration of the command, refer to the file named after the “>". For example:

Is
ordinarily lists, on the typewriter, the names of the files in the current directory. The command:
Is >there

creates a file called there and places the listing there. Thus the argument >there means “place output
on there.” On the other hand:

ed
ordinarily enters the editor, which takes requests from the user via his keyboard. The command
ed <script

interprets script as a file of editor commands; thus <script means ‘““take input from script.”

Although the file name following “<” or “>” appears to be an argument to the command, in
fact it is interpreted completely by the shell and is. not passed to the command at all. Thus no special
coding to handle 17O redirection is needed within each command; the command need merely use the
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standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When an
output-diversion request with “>" is specified, file 2 remains attached to the terminal, so that com-
mands may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the
input of another. A sequence of commands separated by vertical bars causes the shell to execute all
the commands simultaneously and to arrange that the standard output of each command be delivered
to the standard input of the next command in the sequence. Thus in the command line:

Is| pr-2| opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates its
input with dated headings. (The argument “-2” requests double-column output.) Likewise, the out-
put from pr is input to opr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

Is >templ
pr -2 <templ >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and input,
a still clumsier method would have been to require the Is command to accept user requests to
paginate its output, to print in multi-column format, and to arrange that its output be delivered off-
line. Actually it would be surprising, and in fact unwise for efficiency reasons, to expect authors of
commands such as Is to provide such a wide variety of output options.

, A program such as pr which copies its standard input to its standard output (with processing) is
called a filter. Some filters that we have found useful perform character transliteration, selection of
lines according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Another feature provided by‘ the shell is relatively straightforward. Commands need not be on
different lines; instead they may be separated by semicolons:

Is; ed A
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by “&,” the shell will not wait
for the command to finish before prompting again; instead, it is ready immediately to accept a new
command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the assem-
bly takes, the shell returns immediately. When the shell does not wait for the completion of a com-
mand, the identification number of the process running that command is printed. This identification
may be used to wait for the completion of the command or to terminate it. The “&” may be used
several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file other
than the terminal was provided; if this had not been done, the outputs of the various commands
would have been intermingled.

The shell also allows parentheses in the above operations. For example:
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(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The shell
also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains the
lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of the
assembler, ready to be executed. Thus if the three lines above were typed on the keyboard, source
would be assembled, the resulting program renamed testprog, and testprog executed. When the lines
are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to construct
argament lists from a specified subset of the file names in a directory. It also provides general condi-
tional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the shell is
- waiting for the user to type a command. When the newline character ending the line is typed, the
shell’s read call returns. The shell analyzes the command line, putting the arguments in a form
appropriate for execute. Then fork is called. The child process, whose code of course is still that of
the shell, attempts to perform an execute with the appropriate arguments. If successful, this will bring
in and start execution of the program whose name was given. Meanwhile, the other process resulting
from the fork, which is the parent process, waits for the child proc.ss to die. When this happens, the
shell knows the command is finished, so it types its prompt and reads the keyboard to obtain another
command.

Given this framework, the implementation of background processes is trivial; whenever a com-
mand line contains “&,” the shell merely refrains from waiting for the process that it created to exe-
cute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output
files. When a process is created by the fork primitive, it inherits not only the memory image of its
parent but also all the files currently open in its parent, including those with file descriptors 0, 1, and
2. The shell, of course, uses these files to read command lines and to write its prompts and diagnos-
tics, and in the ordinary case its children—the command programs—inherit them automatically.
When an argument with “<” or “>" is given, however, the offspring process, just before it performs
execute, makes the standard I/O file descriptor (0 or 1, respectively) refer to the named file. This is
easy because, by agreement, the smallest unused file descriptor is assigned when a new file is opened
(or created); it is only necessary to close file O (or 1) and open the named file. Because the process in
which the command program runs simply terminates when it is through, the association between a file
specified after “<” or “>" and file descriptor 0 or 1 is ended automatically when the process dies.
Therefore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop includes
the branch of the return from fork belonging to the parent process; that.is, the branch that does a
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wait, then reads another command line.) The one thing that causes the shell to terminate is discover-
ing an end-of-file condition on its input file. Thus, when the shell is executed as a command with a
given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance of the
shell invoked by sh will terminate. Because this shell process is the child of another instance of the
shell, the wait executed in the latter will return, and another command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of another pro-
cess. The last step in the initialization of the system is the creation of a single process and the invo-
cation (via execute) of a program called init. The role of init is to create one process for each termi-
nal channel. The various subinstances of init open the appropriate terminals for input and output on
files 0, 1, and 2, waiting, if necessary, for carrier to be established on dial-up lines. Then a message is
typed out requesting that the user log in. When the user types a name or other identification, the
appropriate instance of init wakes up, receives the log-in line, and reads a password file. If the user’s
name is found, and if he is able to supply the correct password, init changes to the user’s default
current directory, sets the process’s user ID to that of the person logging in, and performs an execute
of the shell. At this point, the shell is ready to receive commands and the logging-in protocol is com-
plete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that will later
become shells) does a wait. If one of the child processes terminates, either because a shell found an
end of file or because a user typed an incorrect name or password, this path of init simply recreates
the defunct process, which in turn reopens the appropriate input and output files and types another
log-in message. Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the system,
because it will invoke the execution of any program with appropriate protection mode. Sometimes,
however, a different interface to the system is desirable, and this feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init ordi-
narily invokes the shell to interpret command lines. The user’s entry in the password file may contain
the name of a program to be invoked after log-in instead of the shell. This program is free to inter-
pret the user’s messages in any way it wishes. ‘

For example, the password file entries for users of a secretarial editing system might specify that
the editor ed is to be used instead of the shell. Thus when users of the editing system log in, they are
inside the editor and can begin work immediately; also, they can be prevented from invoking pro-
grams not intended for their use. In practice, it has proved desirable to allow a temporary escape
from the editor to execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illustrate a
much more severely restricted environment. For each of these, an entry exists in the password file
specifying that the appropriate game-playing program is to be invoked instead of the shell. People
who log in as a player of one of these games find themselves limited to the game and unable to inves-
tigate the (presumably more interesting) offerings of the UNIX system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required.
Such faults cause the processor to trap to a system routine. Unless other arrangements have been
made, an illegal action causes the system to terminate the process and to write its image on file core
in the current directory. A debugger can be used to determine the state of the program at the time of



The UNIX Time-Sharing System PS2:1-13

the fault.

Programs that are looping, that produce unwanted output, or about which the user has second
thoughts may be halted by the use of the interrupt signal, which is generated by typing the “delete”
character. Unless special action has been taken, this signal simply causes the program to cease execu-
tion without producing a core file. There is also a quit signal used to force an image file to be pro-
duced. Thus programs that loop unexpectedly may be halted and the remains inspected without
prearrangement. -

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from logging
the user out. The editor catches interrupts and returns to its command level. This is useful for stop-
ping long printouts without losing work in progress (the editor manipulates a copy of the file it is edit-
ing). In systems without floating-point hardware, unimplemented instructions are caught and
floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was not
designed to meet any predefined objectives. The first version was written when one of us (Thomp-
son), dissatisfied with the available computer facilities, discovered a little-used PDP-7 and set out to
create a more hospitable environment. This (essentially personal) effort was sufficiently successful to
gain the interest of the other author and several colleagues, and later to justify the acquisition of the
PDP-11/20, specifically to support a text editing and formatting system. When in turn the 11/20 was
outgrown, the system had proved useful enough to persuade management to invest in the PDP-11/45,
and later in the PDP-11/70 and Interdata 8/32 machines, upon which it developed to its present form.
Our goals throughout the effort, when articulated at all, have always been to build a comfortable rela-
tionship with the machine and to explore ideas and inventions in operating systems and other
software. We have not been faced with the need to satisfy someone else’s requirements, and for this
freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to write,
test, and run programs. The most important expression of our desire for programming convenience
was that the system was arranged for interactive use, even though the original version only supported
one user. We believe that a properly designed interactive system is much more productive and satis-
fying to use than a “batch” system. Moreover, such a system is rather easily adaptable to noninterac-
tive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software.
Given the partially antagonistic desires for reasonable efficiency and expressive power, the size con-
straint has encouraged not only economy, but also a certain elegance of design. This may be a thinly
disguised version of the “salvation through suffering™ philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more
important than it might seem. If designers of a system are forced to use that system, they quickly
become aware of its functional and superficial deficiencies and are strongly motivated to correct them
before it is too late. Because all source programs were always available and easily modified on-line,
we were willing to revise and rewrite the system and its software when new ideas were invented,
discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these design
considerations. The interface to the file system, for example, is extremely convenient from a pro-
gramming standpoint.. The lowest possible interface level is designed to eliminate distinctions
between the various devices and files and between direct and sequential access. No large “access
method” routines are required to insulate the programmer from the system calls; in fact, all user pro-
grams either call the system directly or use a small library program, less than a page long, that buffers
a number of characters and reads or writes them all at once.
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Another important aspect of programming convenience is that there are no “control blocks”
with a complicated structure partially maintained by and depended on by the file system or other sys-
tem calls. Generally speaking, the contents of a program’s address space are the property of the pro-
gram, and we have tried to avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or
output, it is also desirable to push device-dependent considerations into the operating system itself.
The only alternatives seem to be to load, with all programs, routines for dealing with each device,
which is expensive in space, or to depend on some means of dynamically linking to the routine
appropriate to each device when it is actually needed, which is expensive either in overhead or in
hardware.

Likewise, the process-control scheme and the command interface have proved both convenient
and efficient. Because the shell operates as an ordinary, swappable user program, it consumes no
“wired-down” space in the system proper, and it may be made as powerful as desired at little cost. In
particular, given the framework in which the shell executes as a process that spawns other processes
to perform commands, the notions of I/O redirection, background processes, command files, and
user-selectable system interfaces all become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation of a
carefully selected set of fertile ideas, and especially in showing that they can be keys to the implemen-
tation of a small yet powerful operating system. -

The fork operation, essentially as we implemented it, was present in the GENIE time-sharing sys-
tem.2 On a number of points we were influenced by Multics, which suggested the particular form of
the 1/0 system calls? and both the name of the shell and its general functions. The notion that the
shell should create a process for each command was also suggested to us by the early design of Mul-
tics, altgxough in that system it was later dropped for efficiency reasons. A similar scheme is used by
TENEX.

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program develop-
ment, especially language work. There are few important “applications” programs.

Overall, we have today:
125 user population
33 maximum simultaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a “background” process that runs at the lowest possible priority; it is used to soak up any
idle CPU time. It has been used to produce a million-digit approximation to the constant e, and other
semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours
62 different users
240 log-ins
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UNIX/32V — Summary

March 9, 1979

A. Whﬁt’s new: highlights of the UNIX}/32V System

32-bit world. UNIX/32V handles 32-bit addresses and 32-bit data. Devices are addressable to 231
bytes, files to 20 bytes.

Portability. Code of the operating system and most utilities has been extensively revised to minimize
its dependence on particular hardware. UNIX/32V is highly compatible with UNIX version 7.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object level. A
Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured dialect usable
with F77.

Shell. Completely new SH program supports string variables, trap handling, structured programming,
user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is now
highly compatible with TROFF. MS macro package provides canned commands for many common
formatting and layout situations. TBL provides an easy to learn language for preparing complicated
tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream of
indefinite length. AWK report generator does free-field pattern selection and arithmetic operations.

Program development. MAKE controls re-creation of complicated software, arranging for minimal
recompilation. '

Debugging. ADB does postmortem and breakpoint debugging.

C language. The language now supports definable data types, generalized initialization, block struc-
ture, long integers, unions, explicit type conversions. The LINT verifier does strong type checking
and detection of probable errors and portability problems even across separately compiled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic actions
into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters adapted
to various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with formatted input
and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many other
ways too numerous to relate.

+ UNIX is a Trademark of Bell Laboratories.
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B. Hardware

The UNIX/32V operating system runs on a DEC VAX-11/780* with at least the following equip-
ment:

memory: 256K bytes or more.

disk: RP06, RMO3, or equivalent.

tape: any 9-track MASSBUS-compatible tape drive.
The following equipment is strongly recommended:

communications controller such as DZ11 or DL11.

full duplex 96-character ASCII terminals.

extra disk for sysiem backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space specified
is enough to run and maintain UNIX/32V, and to keep all source on line. More memory will be
needed to handle a large number of users, big data bases, diversified complements of devices, or large
programs. The resident code occupies 40-55K bytes depending on configuration; system data also
occupies 30-55K bytes.

C. Software

Most of the programs available as UNIX/32V commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is written
in C. Commands are self-contained and do not require extra setup information, unless specifically
noted as “interactive.” Interactive programs can be made to run from a prepared script simply by
redirecting input. Most programs intended. for interactive use (e.g., the editor) allow for an escape to
command level (the Shell). Most file processing commands can also go from standard input to stan-
dard output (“filters™). The piping facility of the Shell may be used to connect such filters directly to
the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, and a compiler for the program-
ming language C—enough software to write and run new applications and to maintain or modify
UNIX/32V itself.

1.1. Operating System

0O UNIX The basic resident code on which everything else depends. Supports the system calls,
and maintains the file system. A general description of UNIX design philosophy and
system facilities appeared in the Communications of the ACM, July, 1974. A more
extensive survey is in the Bell System Technical Journal for July-August 1978. Capa-
bilities include:

O Reentrant code for user processes.

O “Group” access permissions for cooperative projects, with overlapping member-
ships. .

O Alarm-clock timeouts.

O Timer-interrupt sampling and interprocess monitoring for debugging and measure-
ment.

O Multiplexed I/O for machine-to-machine communication.

O DEVICES All I/O is logically synchronous. I/O devices are simply files in the file system. Nor-
mally, invisible buffering makes all physical record structure and device characteristics
transparent and exploits the hardware’s ability to do overlapped I/0. Unbuffered
physical record I/O is available for unusual applications. Drivers for these devices are

*VAX is a Trademark of Digital Equipment Corporation.
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available:
O Asynchronous interfaces: DZ11, DL11. Support for most common ASCII termi-
nals.
O Automatic calling unit interface: DN11. .
O Printer/plotter: Versatek.
O Magnetic tape: TE16.
O Pack type disk: RP06, RM03; minimum-latency seek scheduling.
O Physical memory of VAX-11, or mapped memory in resident system.
O Null device.
O Recipies are supplied to aid the construction of drivers for:
Asynchronous interface: DH11.
Synchronous interface: DU11.
DECtape: TC11.
Fixed head disk: RS11, RS03 and RS04.
Cartridge-type disk: RK0S.
Phototypesetter: Graphic Systems System/1 through DR11C.

Procedures to get UNIX/32V started.

1.2. User Access Control

a LOGIN.

a PASSWD

Sign on as a new user. .
O Verify password and establish user’s individual and group (project) identity.
O Adapt to characteristics of terminal.

O Establish working directory. ,

O Announce presence of mail (from MAIL).

O Publish message of the day.

O Execute user-specified profile.

O Start command interpreter or other initial program.

Change a password.
O User can change his own password.
O Passwords are kept encrypted for security.

O NEWGRP Change working group (project). Protects against unauthorized changes to projects.

1.3. Terminal Handling

a TABS
O STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible from
the input, these options are set automatically by LOGIN.

QO Half vs. full duplex.

O Carriage return+line feed vs. newline.

O Interpretation of tabs.

O Parity.

O Mapping of upper case to lower.

O Raw vs. edited input.

O Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

O CAT

Concatenate one or more files onto standard output. Particularly used for unadorned
printing, for inserting data into a pipeline, and for buffering output that comes in
dribs and drabs. Works on any file regardless of contents.
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acp
aPR
OLPR

O CMP
O TAIL

O SPLIT
oDD

O SUM

UNIX 32/V — Summary

Copy one file to another, or a set of files to a directory. Works on any file regardless
of contents.

Print files with title, date, and page number on every page.
O Multicolumn output. :
O Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report if different.

Print last n lines of input
O May print last n characters, or from » lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for editing
(ED).

Physical file format translator, for exchanging data with foreign systems, especially
IBM 370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

ORM

OLN
oMy

0O CHMOD

0 CHOWN
O CHGRP

0O MKDIR

O RMDIR

acbh

O FIND

Remove a file. Only the name goes away if any other names are linked to the file.
O Step through a directory deleting files interactively.
QO Delete entire directory hierarchies.

“Link” another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on 6ne or more files. Executable by files’ owner. -
Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.
QO Criteria include:

name matches a given pattern,

creation date in given range,

date of last use in given range,

given permissions,

given owner,

given special file characteristics,

boolean combinations of above.
O Any directory may be considered to be the root.
O Perform specified command on each file found.

1.6. Running of Programs

OSH

The Shell, or command language interpreter.
O Supply arguments to and run any executable program.
O Redirect standard input, standard output, and standard error files.
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O Pipes: simultaneous execution with output of one process connected to the input of
another.
O Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
O Initiate background processes.
O Perform Shell programs, i.e., command scripts with substitutable arguments.
O Construct argument lists from all file names satisfying specified patterns.
O Take special action on traps and interrupts.
O User-settable search path for finding commands.
O Executes user-settable profile upon login.
O Optionally announces presence of mail as it arrives.
O Provides variables and parameters with default setting.

O TEST Tests for use in Shell conditionals.
O String comparison.
O File nature and accessibility.
O Boolean combinations of the above.

O EXPR String computations for calculating command arguments.
O Integer arithmetic
O Pattern matching

O WAIT Wait for termination of asynchronously running processes.

O READ Read a line from terminal, for interactive Shell procedure.

O ECHO Print remainder of command line. Useful for diagnostics or prompts in Shell pro-
grams, or for inserting data into a pipeline.

0O SLEEP Suspend execution for a specified time. ¢

O NOHUP Run a command immune to hanging up the terminal.

O NICE Run a command in low (or high) priority.

O KILL Terminate named processes.

O CRON Schedule regular actions at specified times.

O Actions are arbitrary programs.
O Times are conjunctions of month, day of month, day of week, hour and minute.
Ranges are specifiable for each.

OAT Schedule a one-shot action for an arbitrary time.
O TEE Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

OLsS List the names of one, several, or all files in one or more directories.
O Alphabetic or temporal sorting, up or down.
O Optional information: size, owner, group, date last modified, date last accessed, per-
missions, i-node number.

O FILE Try to determine what kind of information is in a file by consulting the file system
index and by reading the file itself.
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O DATE

O DF
aoDuU

O QuoOT
0 WHO

apPs

O IOSTAT

OTTY
OPWD

UNIX 32/V — Summary

Print today’s date and time. Has considerable knowledge of calendric and horological
peculiarities.
O May set UNIX/32V’s idea of date and time.

Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who’s on the system.
O List of presently logged in users, ports and times on.
O Optional history of all logins and logouts.

Report on active processes.

O List your own or everybody’s processes.

O Tell what commands are being executed.

O Optional status information: state and scheduling info, priority, attached terminal,
what it’s waiting for, size.

Print statistics about system [/O activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

0O MOUNT

O UMOUNT

O MKFS
0 MKNOD

aTP
O TAR

O DUMP

0O RESTOR
asu

0O DCHECK
O ICHECK
O NCHECK

Attach a device containing a file system to the tree of directories. Protects against
nonsense arrangements. :

Remove the file system contained on a device from the tree of directories. Protects
against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical devices,
virtual devices, physical memory, etc.

Manage file archives on magnetic tape or DECtape. TAR is newer.
O Collect files into an archive.

O Update DECtape archive by date.

O Replace or delete DECtape files.

O Print table of contents.

O Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or indiscrim-
inately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.
O Print gross statistics: number of files, number of directories, number of special files,
space used, space free.
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0 CLRI

O SYNC

O Report duplicate use of space.

O Retrieve lost space.

O Report inaccessible files.

O Check consistency of directories.
O List names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair damaged
file systems.

Force all outstanding I/O on the system to completion. Used to shut down gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off com-

pletely.
OAC

a SA

Publish cumulative connect time report.
O Connect time by user or by day.
O For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command exe-
cuted.

O Number of times used.

O Total system time, tiser time and elapsed time.

O Optional averages and percentages.

O Sorting on various fields.

1.10. Communication

. OMAIL

Mail a message to one or more users. Also used to read and dispose of incoming
mail. The presence of mail is announced by LOGIN and optionally by SH.

O Each message can be disposed of individually.

O Messages can be saved in files or forwarded.

0O CALENDAR Automatic reminder service for events of today and tomorrow.

0O WRITE
O WALL
a0 MESG
acu

a uucCe

Establish direct terminal communication with another user.
Write to all users.
Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.

O Transparent interface to remote machine.

O File transmission.

O Take remote input from local file or put remote output into local file.
O Remote system need not be UNIX/32V.

UNIX to UNIX copy. .
O Automatic queuing until line becomes available and remote machine is up.
O Copy between two remote machines.

O Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section 2.

O AR

Maintain archives and libraries. Combines several files into one for housekeeping
efficiency.
O Create new archive.
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O AS

O Library

O ADB

aobD

oLD

O LORDER
ONM

O SIZE

UNIX 32/V — Summary

O Update archive by date.
O Replace or delete files.
O Print table of contents.
O Retrieve from archive.

Assembler.
O Creates object program consisting of
code, normally read-only and sharable,
initialized 'data or read-write code,
uninitialized data.
O Relocatable object code is directly executable without further transformation.
O Object code normally includes a symbol table.
O “Conditional jump” instructions become branches or branches plus jumps depend-
ing on distance.

The basic run-time library. These routines are used freely by all software.

O Buffered character-by-character I/0.

O Formatted input and output conversion (SCANF and PRINTF) for standard input
and output, files, in-memory conversion.

O Storage allocator.

O Time conversions.

O Number conversions.

O Password encryption.

O Quicksort.

O Random number generator.

O Mathematical function library, including trigonometric functions and inverses,
exponential, logarithm, square root, bessel functions. :

Interactive debugger.
O Postmortem dumping.
O Examination of arbitrary files, with no limit on size.
O Interactive breakpoint debugging with the debugger as a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
O Output formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
O Patching.
O Searching for integer, character, or floating patterns.

Dump any file. Output options include any combination of octal or decimal or hex
by words, octal by bytes, ASCII, opcodes, hexadecimal.
O Range of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from épeciﬁed
libraries.
O Resulting code is sharable by defaulit.

Places object file names in proper order for loading, so that files depending on others
come after them.

Print the namelist (symbol table) of an object program. Provides control over the
style and order of names that are printed.

Report the memory requirements of one or more object files.
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a STRIP
O TIME
O PROF

O MAKE

Remove the relocation and symbol table information from an object file to save space.
Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-sampling
the execution of a program.
O Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file depen-
dencies to make new version; uses time last changed to deduce minimum amount of
work necessary.

O Knows about CC, YACC, LEX, etc.

1.12. UNIX/32V Programmer’s Manual

O Manual

" O0MAN

Machine-readable version of the UNIX/32V Programmer’s Manual.

O System overview.

O All commands.

O All system calls.

O All subroutines in C and assembler libraries.

O All devices and other special files.

O Formats of file system and kinds of files known to system software.
O Boot and maintenance procedures. ’

Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

O LEARN

2. Languages

A program for interpreting CAI scripts, plus scripts for learning about UNIX/32V' by

using it.

O Scripts for basic files and commands, editor, advanced files and commands, EQN,
MS macros, C programming language.

2.1. The C Language

acc

OLINT

Compile and/or link edit programs in the C language. The UNIX/32V operating sys-

tem, most of the subsystems and C itself are written in C. For a full description of C,

read The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie,

Prentice-Hall, 1978.

O General purpose language designed for structured programming.

O Data types include character, integer, float, double, pointers to all types, functions
returning above types, arrays of all types, structures and unions of all types.

O Operations intended to give machine-independent control of full machine facility,
including to-memory operations and pointer arithmetic.

QO Macro preprocessor for parameterized code and inclusion of standard files.

O All procedures recursive, with parameters by value.

O Machine-independent pointer manipulation.

O Object code uses full addressing capability of the VAX-11.

O Runtime library gives access to all system facilities.

O Definable data types.

O Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
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OCB
2.2. Fortran

aF77

O RATFOR

O STRUCT

UNIX 32/V — Summary

Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

O Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

O Compatible with C and supporting tools at object level.

O Optional source compatibility with Fortran 66.

O Free format source.

O Optional subscript-range checking, detection of uninitialized variables.

O All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-byte
complex. .

Ratfor adds rational control structure a la C to Fortran.

O Compound statements.

O If-else, do, for, while, repeat-until, break, next statements.
O Symbolic constants.

O File insertion.

O Free format source

O Translation of relationals like >, >=.

O Produces genuine Fortran to carry away.

O May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement
grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

aDC

aBC

Interactive programmable desk calculator. Has named storage locations as well as
conventional stack for holding integers or programs.
O Unlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and hexade-.
cimal.
O Reverse Polish operators:
+=-*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.

O All the capabilities of DC with a high-level syntax.

O Arrays and recursive functions.

O Immediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functions: exp, sin, cos, atan.

O Go-to-less programming.

2.4. Macroprocessing

o M4

A general purpose macroprocessor.
O Stream-oriented, recognizes macros anywhere in text.
O Syntax fits with functional syntax of most higher-level languages.
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O Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

g YACC

OLEX

An LR(1)-based compiler writing system. During execution of resulting parsers, arbi-
trary C functions may be called to do code generation or semantic actions.

O BNF syntax specifications.

O Precedence relations.

O Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isolation of
each lexical token.

O Full regular expression, plus left and right context dependence.

O Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

OED

OPTX
O SPELL

0O LOOK
O CRYPT

Interactive context editor. Random access to all lines of a file.

O Find lines by number or pattern. Patterns may include: specified characters, don’t
care characters, choices among characters, repetitions of these constructs, beginning
of line, end of line.

O Add, delete, change, copy, move or join lines.

O Permute or split.contents of a line.

O Replace one or all instances of a pattern within a line.

O Combine or split files. . )

O Escape to Shell (command language) during editing.

O Do any of above operations on every pattern-selected line in a given range.

O Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word list.
0O 25,000-word list includes proper names.

O Handles common prefixes and suffixes.

O Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.
Encrypt and decrypt files for security.

3.2. Document Formatting

O TROFF
0 NROFF

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter; NROFF

drives ascii terminals of all types. This summary was typeset using TROFF. TROFF

and NROFF are capable of elaborate feats of formatting, when appropriately pro-

grammed. TROFF and NROFF accept the same input language.

O Completely definable page format keyed to dynamically planted “interrupts” at
specified lines.

O Maintains several separately definable typesetting environments (e.g., one for body
text, one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

O Macros with substitutable arguments, and macros invocable in mid-line.
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O Computation and printing of numerical quantities.

O Conditional execution of macros.

O Tabular layout facility.

O Positions expressible in inches, centimeters, ems, points, machine units or arith-
metic combinations thereof.

O Access to character-width computation for unusually difficult layout problems.

O Overstrikes, built-up brackets, horizontal and vertical line drawing.

O Dynamic relative or absolute positioning and size selection, globally or at the char-
acter level. .

O Can exploit the characteristics of the terminal being used, for approximating special
characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously) in
15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the
postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF,
although unskilled personnel can easily be trained to enter documents according to canned formats
such as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and
NEQN so it is usually possible to define interchangeable formats to produce approximate proof copy
on terminals before actual typesetting. The preprocessors MS, TBL, and REFER are fully compatible
with TROFF and NROFF.

O MS

O EQN

O NEQN

A standardized manuscript layout package for use with NROFF/TROFF. This docu-
ment was formatted with MS.

O Page numbers and draft dates.

O Automatically numbered subheads.

O Footnotes. ,

O Single or double column.

O Paragraphing, display and indentation.

~ O Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable for-
mulas, either in-line or displayed, into detailed typesetting instructions. Formulas are
written in a style like this:

sigma sup 2 =" 1 over N sum from i=1 to N ( x sub i - x bar ) sup 2
which produces:

1 < 2
o’ = —A-,-E(x,- -X)
O Automatic calculation of size changes for subscripts, sub-subscripts, etc.
O Full vocabulary of Greek letters and special symbols, such as ‘gamma’, ‘GAMMA’,
‘integral’. )
O Automatic calculation of large bracket sizes.
O Vertical “piling” of formulae for matrices, conditional alternatives, etc.
O Integrals, sums, etc., with arbitrarily complex limits.
O Diacriticals: dots, double dots, hats, bars, etc.
O Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares formulas
for display on any terminal that NROFF knows about, for example, those based on
Diablo printing mechanism. *

O Same facilities as EQN within graphical capability of terminal.
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O TBL

O REFER

aTC

OCoL
0O DEROFF
0O CHECKEQ

Summary ) PS2:2-13

A preprocessor for NROFF/TROFF that translates simple descriptions of table lay-

outs and contents into detailed typesetting instructions.

O Computes column widths.

O Handles left- and right-justified columns, centered columns and decimal-point align-
ment.

O Places column titles.

O Table entries can be text, which is adjusted to fit.

O Can box all or parts of table. ’

Fills in bibliographic citations in a document from a data base (not supplied).
O References may be printed in any style, as they occur or collected at the end.
O May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for checking
TROFF page layout before typesetting.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.
Check document for possible errors in EQN usage.

4. Information Handling

O SORT

O TSORT
O UNIQ

OTR

O DIFF

O COMM

O JOIN
0O GREP

00 LOOK
aowcC
O SED

Sort or merge ASCII files line-by-line. No limit on input size.

O Sort up or down.

O Sort lexicographically or on numeric key.

O Multiple keys located by delimiters or by character position.
O May sort upper case together with lower into dictionary order.
O Optionally suppress duplicate data. ‘

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
O Publish lines that were originally unique, duplicated, or both.
O May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
O May coalesce selected repeated characters.
O May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into agree-
ment.

O May produce an editor script to convert one file into another.

O A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows lines
present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
O May print all lines that fail to match.

O May print count of hits.

O May print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, “words”™ (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations on
each line of an input stream of unbounded length.
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O Lines may be selected by address or range of addresses.
O Control flow and conditional testing.

O Multiple output streams.

O Multi-line capability.

0O AWK Pattern scanning and processing language. Searches input for patterns, and performs
actions on each line of input that satisfies the pattern.
O Patterns include regular expressions, arithmetic and lexicographic conditions,
boolean combinations and ranges of these.
O Data treated as string or numeric as appropriate.
O Can break input into fields; fields are variables.
O Variables and arrays (with non-numeric subscripts).
O Full set of arithmetic operators and control flow.
O Multiple output streams to files and pipes.
O Output can be formatted as desired.
O Multi-line capabilities.

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage scopes.

O GRAPH Prepares a graph of a set of input numbers.
O Input scaled to fit standard plotting area.
O Abscissae may be supplied automatically.
O Graph may be labeled.
O Control over grid style, line style, graph orientation, etc.

O SPLINE Provides a smooth curve through a set of points intended for GRAPH.

O PLOT A set of filters for printing graphs produced by GRAPH and other programs on vari-
- ous terminals. Filters provided for 4014, DASI terminals, Versatec printer/plotter.

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

0 BACKGAMMON
A player of modest accomplishment.
O BCD Converts ascii to card-image form.
OCAL - Print a calendar of specified month and year.

O CHING The I Ching. Place your own interpretation on the output.
O FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies

included.

O UNITS Convert amounts between different scales of measurement. Knows hundreds of units.
For example, how many km/sec is a parsec/megayear?

O ARITHMETIC

Speed and accuracy test for number facts.
O QuUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.
O WUMP Hunt the wumpus, thrilling search in a dangerous cave.
O HANGMAN Word-guessing game. Uses a dictionary supplied with SPELL.
O FISH Children’s card-guessing game.
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ABSTRACT

This paper is an introduction to programming on the UNIXYt system. The
emphasis is on how to write programs that interface to the operating system, either
directly or through the standard I/O library. The topics discussed include

handling command arguments

rudimentary [/O; the standard input and output

the standard I/O library; file system access

low-level I/O: open, read, write, close, seek

processes: exec, fork, pipes

signals — interrupts, etc. _

There is also an appendix which describes the standard I/O library in detail.

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating system in a
non-trivial way. This includes programs that use files by name, that use pipes, that invoke other com-
mands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of The UNIX
Programmer’s Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally
useful material is dealt with. It is assumed that you will be programming in C, so you must be able
to read the language roughly up to the level of The C Programming Language [2]. Some of the
material in sections 2 through 4 is based on topics covered more carefully there. You should also be
familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made avail-
able to the function main as an argument count argc and an array argv of pointers to character
strings that contain the arguments. By convention, argv[0] is the command name itself, so argc is
always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the ter-
minal. (This is essentially the echo command.)

t UNIX is a trademark of AT&T Bell Laboratories.
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main(argc, argv) /* echo arguments */
int argc;

char *argv[];

{

int i;

for (i = 1; i < argc; i++)
; printf("%s%c", argv[i]l, (i<argc=1) 2 ' ' : '\n');

argv is a pointer to an array whose individual elements are pointers to arrays of characters; each is
terminated by \0, so they can be treated as strings. The program starts by printing argv[1] and
loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The “Standard Input” and “Standard Output”

The simplest input mechanism is to read the “standard input,” which is generally the user’s ter-
minal. The function getchar returns the next input character each time it is called. A file may be
substituted for the terminal by using the < convention: if prog uses getchar, then the command
line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the

otherprog | prog
provides the standard input for prog. from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on whatever you
are reading. The value of EOF is normally defined to be =1, but it is unwise to take any advantage of
that knowledge. As will become clear shortly, this value is automatically defined for you when you
compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character ¢ on the “standard output ” which is also by default
the terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it doesn’t
exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

prog | otherprog

‘puts the standard output of prog into the standard input of otherprog .

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order; the output will
appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as
getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always enough
to get started. This is particularly true if the UNIX pipe facility is used to connect the output of one
program to the input of the next. For example, the following program strips out all ascii control char-
acters from its input (except for newline and tab).
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#include <stdio.h>

main() /* ccstrip: strip non-graphic characters */

{
int ¢;
while ((c = getchar()) != EOF)
if (Cc>= 1 ' 8 ¢c < 0177) Il ¢ == "\t' || ¢ == "\n")
putchar(c);
exit(0);
}
The line

#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:
cat filel file2 ... | ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit at the end
is not necessary to make the program work properly, but it assures that any caller of the program will
see a normal termination status (conventionally 0) from the program when it completes. Section 6
discusses status returns in more detail.

3. THE STANDARD I/O LIBRARY

The “Standard [/O Library” is a collection of routines intended to provide efficient and portable
I/O services for most C programs. The standard I/O library is available on each system that supports
C, so programs that confine their system interactions to its facilities can be transported from one sys-
tem to another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a
more complete description of its capabilities.

3.1. File Access

‘The programs written so far have all read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next step is to write a program that accesses a
file that is not already connected to the program. One simple example is wc, which counts the lines,
words and characters in a set of files. For instance, the command

WC X.C Y.C

prints the number of lines, words and characters in x.¢ and y.c¢ and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file
system names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fopen. fopen takes an external name (like x.c or y.c), does some housekeeping
and negotiation with the operating system, and returns an internal name which must be used in sub-
sequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains infor-
mation about the file, such as the location of a buffer, the current character position in the buffer,
whether the file is being read or written, and the like. Users don’t need to know the details, because
part of the standard I/O definitions obtained by including stdio.h is a structure definition called
FILE. The only declaration needed for a file pointer is exemplified by

FILE *fp, *fopen();
This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a type
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name, like int, not a structure tag.
The actual call to fopen in a program is
fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argument is the
mode, also as a character string, which indicates how you intend to use the file. The only allowable
~modes are read ("r"), write ("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if possible). Open-
ing an existing file for writing causes the old contents to be discarded. Trying to read a file that does
not exist is an error, and there may be other causes of error as well (like trying to read a file when you
don’t have permission). If there is any error, fopen will return the null pointer value NULL (which is
defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several possi-
bilities, of which getc and putc are the simplest. getc returns the next character from a file; it
needs the file pointer to tell it what file. Thus

¢ = getc(fp)

places in ¢ the next character from the file referred to by fp; it returns EOF when it reaches end of
file. putc is the inverse of getc:

putc(c, fp) : ’ .
puts the character ¢ on the file fp and returns c. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided
for them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointers are called stdin, stdout, and stderr. Normally these are all con-
-nected to the terminal, but may be redirected to files or pipes as described in Section 2.2. stdin,
stdout and stderr are pre-defined in the I/O library as the standard input, output and error files;
they may be used anywhere an object of type FILE * can be. They are constants, however, not vari-
ables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they are
processed in order. If there are no arguments, the standard input is processed. This way the program
can be used stand-alone or as part of a larger process.
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#include <stdio.h>

main(argc, argv) /* wc: count lines, words, chars */
int argc;
char *argv(];

int ¢, i, inword;.

FILE *fp, *fopen();

long linect, wordct, charct;

long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
fp = stdin;
do ¢
if (argc > 1 && (fp=fopen(argv[il, "r")) == NULL) {
fprintf(stderr, "wc: can't open %s\n", argv[il);
continue;
>
linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) {
charct++;
if (c == '\n'")
linect++;

if(c=="1" ]|l ¢c=="\t'" Il ¢c == "\n'")
inword = 0;

else if (inword == 0) {
inword = 1;
wordct++;

}

}
printf("%7ld %7ld %7.d", linect, wordct, charct);
printf(argc > 1 2 " %s\n" : "\n", argv[il);
fclose(fp);
tlinert += linect;
twordct += wordct;
tcharct += charct;
} while (++i < argc);
if (argc > 2)
printf("%7ld %7ld %7ld total\n", tlinect, twordct, tcharct);
exit(0);
}

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between the file pointer
and the external name that was established by fopen, freeing the file pointer for another file. Since
there is a limit on the number of files that a program may have open simultaneously, it’s a good idea
to free things when they are no longer needed. There is also another reason to call fclose on an
output file — it flushes the buffer in which putc is collecting output. (fclose is called automatically
for each open file when a program terminates normally.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output written
on stderr appears on the user’s terminal even if the standard output is redirected. wc writes its
diagnostics on stderr instead of stdout so that if one of the files can’t be accessed for some rea-
son, the message finds its way to the user’s terminal instead of disappearing down a pipeline or into
an output file.
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The program actually signals errors in another way, using the function exit to terminate pro-
gram execution. The argument of exit is available to whatever process called it (see Section 6), so
the success or failure of the program can be tested by another program that uses this one as a sub-
process. By convention, a return value of O signals that all is well; non-zero values signal abnormal
situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then calls a
routine named .exit. The function _exit causes immediate termination without any buffer flush-
ing; it may be called directly if desired.

3.3. Miscellaneous I/O Functions

The standard 170 library provides several other I/0 functions besides those we have illustrated
above.

Normally output with putc, etc., is buffered (except to stderr); to force it out immediately,
use fflush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with fprintf)
that specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf except that the
first argument names a character string instead of a file pointer. The conversion 1s done from the
string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a newline, into
buf; at most size-1 characters are copied; it retums NULL at end of file. fputs(buf, fp) writes
the string in buf onto file fp.

The function ungetc(c, fp) “pushes back” the character ¢ onto the input stream fp; a sub-
sequent call to getc, fscanf, etc., will encounter c. Only one character of pushback per file is per-
mitted.

4. LOW-LEVEL IO

This section describes the bottom level of I/O on the UNIX system. The lowest level of I/O in
UNIX provides no buffering or any other services; it is in fact a direct entry into the operating system.
You are entirely on your own, but on the other hand, you have the most control over what happens.
And since the calls and usage are quite simple, this isn’t as bad as it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files, because
all peripheral devices, even the user’s terminal, are files in the file system. This means that a single,
homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called “opening” the file. If you are going to write on a file, it may
also be necessary to create it. The system checks your right to do so (Does the file exist? Do you
have permission to access it?), and if all is well, returns a small positive integer called a file descriptor.
Whenever I/0 is to be done on the file, the file descriptor is used instead of the name to identify the
file. (This is roughly analogous to the use of READ(S,...) and WRITE(S,...) in Fortran.) All information
about an open file is maintained by the system; the user program refers to the file only by the file
descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors
are more fundamental. A file pointer-is a pointer to a structure that contains, among other things, the
file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the “shell””) runs a program, it opens three
files, with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard
error output. All of these are normally connected to the terminal, so if a program reads file descriptor
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0 and writes file descriptors 1 and 2, it can do terminal I/O without worrying about opening the files.
If I/O is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and | from the terminal to the named
files. Similar observations hold if the input or output is associated with a pipe. Normally file
descriptor 2 remains attached to the terminal, so error messages can go there. In all cases, the file
assignments are changed by the shell, not by the program. The program does not need to know where
its input comes from nor where its output goes, so long as it uses file 0 for input and | and 2 for out-
put.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first argu-
ment is a file descriptor. The second argument is a buffer in your program where the data is to come
from or go to. The third argument is the number of bytes to be transferred. The calls are

n.read = read(fd, buf, n);

n-written = write(fd, buf, n);

_Each call returns a byte count which is the number of bytes actually transferred. On reading, the
number of bytes returned may be less than the number asked for, because fewer than n bytes
remained to be read. (When the file is a terminal, read normally reads only up to the next newline,
which is generally less than what was requested.) A return value of zero bytes implies end of file, and
-1 indicates an error of some sort. For writing, the returned value is the number of bytes actually
written; it is generally an error if this isn’t equal to the number supposed to be written. '

" The number of bytes to be read or written is quite arbitrary. The two most common values are
1, which means one character at a time (“unbuffered”), and 512, which corresponds to a physical
blocksize on many peripheral devices. This latter size will be most efficient, but even character at a
time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This
program will copy anything to anything, since the input and output can be redirected to any file or
device. '

#define BUFSIZE 512 /* best size for PDP-11 UNIX */

main() /* copy input to output */

{
char buf [BUFSIZE];
int n;
while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit(0);
3

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to be
written by wr ite; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered input.
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#define CMASK 0377 /* for making char's > 0 */

getchar() /* unbuffered single character input */
{
char c;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);
}

¢ must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it nega-
tive. (The constant 0377 is appropriate for the PDP-11 but not necessarily for other machines.)

The second version of getchar does input in big chunks, and hands out the characters one at a
time.

#define CMASK 0377 /* for making char's > 0 */
#define BUFSIZE 512

getchar() /* buffered version */
{
static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n==0) { /* buffer is empty */
'n = read(0, buf, BUFSIZE);
bufp = buf;
} .
return((--n >= 0) ? *bufp++ & CMASK : EOF);
)

4.3. Open, Creat, Close, Unlink *

Other than the default standard input, output and error files, you mst explicitly open files in
order to read or write them. There are two system entry points for this, open and creat [sic].

open is rather like the fopen discussed in the previous section, except that instead of returning
a file pointer, it returns a file descriptor, which is just an int.

int fd;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file name. The
access mode argument is different, however: rwmode is O for read, | for write, and 2 for read and
write access. open returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided to
create new files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file already
exists, creat will truncate it to zero length; it is not an error to creat a file that already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode argu-
ment. In the UNIX file system, there are nine bits of protection information associated with a file,
controlling read, write and execute permission for the owner of the file, for the owner’s group, and for
all others. Thus a three-digit octal number is most convenient for specifying the permissions. For
example, 0755 specifies read, write and execute permission for the owner, and read and execute per-
mission for the group and everyone else.
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To illustrate, here is a simplified version of the UNIX utility ¢p, a program which copies one file
to another. (The main simplification is that our version copies only one file, and does not permit the
second argument to be a directory.) .

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */

main{argc, argv) /* cp: copy f1 to f2 */
int argc;

char *argv(];

{

int f1, f2, n;
char buf [BUFSIZE];

if (argc != 3)
error("Usage: cp from to", NULL);

if ((f1 = open(argv(1l, 0)) == -1)
error("cp: can't open %s", argv[1]);

if ((f2 = creat(argv([2], PMODE)) == =-1)
error("cp: can't create %s", argv[2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error("cp: write error", NULL);
exit(0);
}

error(s1, s2) /* print error message and die */
char *s1, *s2;

{
printf(s1, s2);
printf("\n");
exit(1); c
)

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must be
prepared to re-use file descriptors. The routine close breaks the connection between a file descriptor
and an open file, and frees the file descriptor for use with some other file. Termination of a program
via exit or return from the main program closes all open files.

The function unl ink (filename) removes the file filename from the file system.

4.4. Random Access — Seek and Lseek

File I/0 is normally sequential: each read or write takes place at a position in the file right
after the previous one. When necessary, however, a file can be read or written in any arbitrary order.
The system call | seek provides a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);
forces the current position in the file whose descriptor is fd to move to position of fset, which is
taken relative to the location specified by origin. Subsequent reading or writing will begin at that
position. offset is a long; fd and origin are int’s.. origin can be 0, 1, or 2 to specify that

offset is to be measured from the beginning, from the current position, or from the end of the file
respectively. For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);
To get back to the beginning (“rewind”),
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lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (Long) 0.

With Lseek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbitrary
place in a file.

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;

long pos;

char *buf;

lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));
}

In pre-version 7 UNIX, the basic entry point to the I/O system is called seek. seek is identical
to Lseek, except that its of fset argument is an int rather than a long. Accordingly, since PDP-
11 integers have only 16 bits, the offset specified for seek is limited to 65,535; for this reason,
origin values of 3, 4, 5 cause seek to multiply the given offset by 512 (the number of bytes in one
physical block) and then interpret origin as if it were 0, 1, or 2 respectively. Thus to get to an arbi-
trary place in a large file requires two seeks, first one which selects the block, then one which has
origin equal to 1 and moves to the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries into
the system can incur errors. Usually they indicate an error by returning a value of -1. Sometimes it
is nice to know what sort of error occurred; for this purpose all these routines, when appropriate,
leave an error number in the external cell errno. The meanings of the various error numbers are
listed in the introduction to Section II of the UNIX Programmer’s Manual, so your program can, for
example, determine if an attempt to open a file failed because it did not exist or because the user
lacked permission to read it. Perhaps more commonly, you may want to print out the reason for
failure. The routine perror will print a message associated with the value of errno; more gen-
erally, sys_errno is an array of character strings which can be indexed by errno and printed by
your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one’s own. This sec-
tion describes how to execute a program from within another.

5.1. The “System” Function

The easiest way to execute a program from another is to use the standard library routine
system. system takes one argument, a command string exactly as typed at the terminal (except for
the newline at the end) and executes it. For instance, to time-stamp the output of a program,

main()
{

system("date");

/* rest of processing */
}

If the command string has to be built from pieces, the in-memory formatting capabilities of sprintf
may be useful.

Remember than getc and putc normally buffer their input; terminal I/0 will not be properly
synchronized unless this buffering is defeated. For output, use fflush; for input, see setbuf in the
appendix.
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5.2. Low-Level Process Creation — Execl and Execv

If you’re not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard library’s
system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
execl. To print the date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the file name of the command; you have to know where it is found in
the file system. The second argument is conventionally the program name (that is, the last com-
ponent of the file name), but this is seldom used except as a place-holder. If the command takes argu-
ments, they are strung out after this; the end of the list is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits. There is
no return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an execl call from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can’t be found or is not executable. If you don’t know where
date is located, say .

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don’t know in advance how many argu
ments there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL so
execv can tell where the list ends. As with execl, filename is the file in which the program is
found, and argp[0] is the name of the program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is located.
Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument list. If you
want these, use execl to invoke the shell sh, which then does all the work. Construct a string
commandl ine that contains the complete command as it would have been typed at the terminal,
then say

execl("/bin/sh", "sh", “"-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat the next argu-
ment as a whole command line, so it does just what you want. The only problem is in constructmg
the right information in commandl ine.

5.3. Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply overlay
the new program on the old one, to save the old one requires that it first be split into two copies; one
of these can be overlaid, while the other waits for the new, overlaying program to finish. The splitting
is done by a routine called fork:

proc.id = fork();

splits the program into two copies, both of which continue to run. The only difference between the
two is the value of proc.id, the “process id.” In one of these processes (the “child”), proc_id is
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zero. In the other (the “parent”), proc.id is non-zero; it is the process number of the child. Thus
the basic way to call, and return from, another program is

if (fork() == 0) .
execl("/bin/sh", “sh", "-c", cmd, NULL); /% in child #*/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the program.
In the child, the value returned by fork is zero, so it calls execl which does the command and then
dies. In the parent, fork returns non-zero so it skips the execl . (If there is any error, fork returns
-1.

More often, the parent wants to wait for the child to terminate before continuing itself. This
can be done with the function wait:

int status;

if (fork() == 0)
execl(...);
wait(&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or the pos-
sibility that there might be more than one child running simultaneously. (The wait returns the pro-
cess id of the terminated child, if you want to check it against the value returned by fork.) Finally,
this fragment doesn’t deal with any funny behavior on the part of the child (which is reported in
status). Still, these three lines are the heart of the standard library’s system routine, which we’ll
show in a moment.

The status returned by wait encodes in its low-order eight bits the system’s idea of the
child’s termination status; it is 0 for normal termination and non-zero to indicate various kinds of
problems. The next higher eight bits are taken from the argument of the call to ex it which caused a
normal termination of the child process. It is good coding practice for all programs to return mean-
ingful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at
the right files, and all other possible file descriptors are available for use. When this program calls
another one, correct etiquette suggests making sure the same conditions hold. Neither fork nor the
exec calls affects open files in any way. If the parent is buffering output that must come out before
output from the child, the parent must flush its buffers before the execl. Conversely, if a caller
buffers an input stream, the called program will lose any information that has been read by the caller.

5.4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one process writes
into the pipe, while the other reads. The system looks after buffering the data and synchronizing the
two processes. Most pipes are created by the shell, as in

ls | pr

which connects the standard output of ls to the standard input of pr. Sometimes, however, it is
most convenient for a process to set up its own plumbing; in this section, we will illustrate how the
pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd{2]1;
stat = pipe(fd);

if (stat == -1)
/* there was an error ... */

fd is an array of two file descriptors, where fd[0] is the read side of the pipe and fd[1] is for writ-
ing. These may be used in read, write and close calls just like any other file descriptors.
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If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a
pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is
closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode), which creates a process cmd (just as system does), and returns a file descrip-
tor that will either read or write that process, according to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent write calls using the file descriptor
fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe,
then calls the shell (via execl) to run the desired process. The parent likewise closes the end of the
pipe it does not use. These closes are necessary to make end-of-file tests work properly. For example,
if a child that intends to read fails to close the write end of the pipe, it will never see the end of the
pipe file, just because there is one writer potentially active.

#include <stdio.h>

#define READ 0

#define WRITE 1

#define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;

popen(cmd, mode)
char *cmd;
int mode;
{

int pf2];

if (pipe(p) < 0)
return(NULL);

if ((popen_pid = fork()) == 0) {
close(tst(p[WRITE], p[READ]));
close(tst(0, 1));
dup(tst(p[READ], p[WRITE1));
close(tst(p[READ], pIWRITE]));
execl("/bin/sh®, "sh", w-c" cmd, 0);
-exit(1); /* disaster has occurred if we get here */

}

if (popen_pid == =1)
return(NULL);

close(tst(p[READ], pI[WRITE]));

return(tst(p[WRITE], p[READ]));

}

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child process
that will read data from the parent. Then the first close closes the write side of the pipe, leaving the
read side open. The lines

close(tst(0, 1));
dup(tst(p[READ], pIWRITE1));

are the conventional way to associate the pipe descriptor with the standard input of the child. The
close closes file descriptor 0, that is, the standard input. dup is a system call that returns a dupli-
cate of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor for the pipe (read side)
to file descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, this is a bit
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tricky, but it’s a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from
. the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable to
wait for the termination of the child process. First, the return value from pclose indicates whether
the process succeeded. Equally important when a process creates several children is that omly a
bounded number of unwaited-for children can exist, even if some of them have terminated; perform-
ing the wait lays the child to rest. Thus:

#include <signal.h>

pclose(fd) /* close pipe fd */

int fd;

{
register r, (*hstat)(), (*istat)(), (*qstat)();
int status;
extern int popen_.pid;

close(fd);

istat = signal (SIGINT, SIG_IGN);

gstat = signal (SIGQUIT, SIG.IGN);

hstat = signal (SIGHUP, SIG.IGN);

while ((r = wait(&status)) != popen_pid && r != -1);

if (r == =1) :
status = -1;

signal (SIGINT, istat);

signal (SIGQUIT, gstat);

signal (SIGHUP, hstat);

return(status);

}

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the
single shared variable popen.pid; it really should be an array indexed by file descriptor. A popen
function, with slightly different arguments and return value is available as part of the standard I/O
library discussed below. As currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there’s nothing very useful that can be done from within
C about program faults, which arise mainly from illegal memory references or from execution of
peculiar instructions, we’ll discuss only the outside-world signals: interrupt, which is sent when the
DEL character is typed; quit, generated by the FS character; hangup, caused by hanging up the phone;
and terminate, generated by the kill command. When one of these events occurs, the signal is sent to
all processes which were started from the corresponding terminal; unless other arrangements have
been made, the signal terminates the process. In the quit case, a core image file is written for debug-
ging purposes. v

The routine which alters the default action is called signal. It has two arguments: the first
specifies the signal, and the second specifies how to treat it. The first argument is just a number code,
but the second is the address is either a function, or a somewhat strange code that requests that the
signal either be ignored, or that it be given the default action. The include file signal.h gives
names for the various arguments, and should always be included when signals are used. Thus
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#include <signal.h>

signal (SIGINT, SIG-IGN);

causes interrupts to be ignored, while
signal (SIGINT, SIG.DFL);

restores the default action of process termination. In all cases, signal returns the previous value of
the signal. The second argument to signal may instead be the name of a function (which has to be
declared explicitly if the compiler hasn’t seen it already). In this case, the named routine will be
called when the signal occurs. Most commonly this facility is used to allow the program to clean up
unfinished business before terminating, for example to delete a temporary file:

#include <signal.h>
main()
{

int onintr();

if (signal (SIGINT, SIG.IGN) != SIG.IGN)
signal (SIGINT, onintr);

/* Process ... */

exit(0);

}

onintr()

{
unlink(tempfile);
exit(1);

}

Why the test and the double call to signal? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it so it won’t be stopped by interrupts
intended for foreground processes. If this program began by announcing that all interrupts were to be
sent to the onintr routine regardless, that would undo the shell’s effort to protect it when run in the
background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that signal
returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they shouid be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to
- stop what it is doing and return to its own command-processing loop. Think of a text editor: inter-
rupting a long printout should not cause it to terminate and lose the work already done. The outline
of the code for this case is probably best written like this:
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#include <signal.h>
#include <setjmp.h>
jmp-buf sjbuf;

main()

{
int (*istat)(), onintr();

istat = signal(SIGINT, SIG-IGN); /* save original status */
setjmp(sjbuf); /* save current stack position */
if (istat != SIG.IGN)

signal (SIGINT, onintr);

/* main processing loop */
}

onintr()

{
printf("\nInterrupt\n");
longjmp(sjbuf); /* return to saved state */

The include file set jmp.h declares the type jmp_buf an object in which the state can be saved.
s jbuf is such an object; it is an array of some sort. The setjmp routine then saves the state of
things. When an interrupt occurs, a call is forced to the onintr routine, which can print a message,
set flags, or whatever. longjmp takes as argument an object stored into by set jmp, and restores
control to the location after the call to setjmp, so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop entered. Notice, by the way,
that the signal gets set again after an interrupt occurs. This is necessary; most signals are automati-
cally reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal sets a
flag and then returns instead of calling exit or Longjmp, execution will continue at the exact point
it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the termi-
nal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it
were really true, as we said above, that “execution resumes at the exact point it was interrupted,” the
program would continue reading the terminal until the user typed another line. This behavior might
well be confusing, since the user might not know that the program is reading; he presumably would
prefer to have the signal take effect instantly. The method chosen to resolve this difficulty is to ter-
minate the terminal read when execution resumes after the signal, returning an error code which indi-
cates what happened.

Thus programs which catch and resume execution after signals should be prepared for “errors”
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,
wait, and pause.) A program whose onintr program just sets intflag, resets the interrupt signal,
and returns, should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)
/* EOF caused by interrupt */
else
/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with exe-
cution of other programs. Suppose a program catches interrupts, and also includes a method (like ““!”
in the editor) whereby other programs can be executed. Then the code should look something like
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this:
if (fork() == 0)
execl(...);
signal (SIGINT, SIG-IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call catches its
own interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop,
and probably read your terminal. But the calling program will also pop out of its wait for the subpro-
gram and read your terminal. Having two processes reading your terminal is very unfortunate, since
the system figuratively flips a coin to decide who should get each line of input. A simple way out is
to have the parent program ignore interrupts until the child is done. This reasoning is reflected in the
standard 1/0 library function system:

#include <signal.h>

system(s) /* run command string s */
char *s;
{

int status, pid, w;

register int (*istat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh",6 "-c® s, 0);
-exit(127);

} .
‘istat = signal(SIGINT, SIG_IGN);

gstat = signal (SIGQUIT, SIG-IGN); ,

while ((w = wait(&status)) != pid && w != -1)

’
if (w==-=1)
status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat);
return(status);
}

As an aside on declarations, the function signal obviously has a rather strange second argu-
ment. It is in fact a pointer to a function delivering an integer, and this is also the type of the signal
routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so they
coincide with no possible actual functions. For the enthusiast, here is how they are defined for the
PDP-11; the definitions should be sufficiently ugly and nonportable to encourage use of the include
file.

#define SIG.DFL (int (*)())0
#define SIG.IGN (int (*)())1
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Appendix — The Standard I/O Library

D. M. Ritchie
AT&T Bell Laboratories
Murray Hill, New Jersey 07974
The standard I/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesitation
in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use
mars the understandability and portability of many programs using older packages.

3.  The interface provided should be applicable on all machines, whether or not the programs which
implement it are directly portable to other systems, or to machines other than the PDP-11 run-
ning a version of UNIX.

1. General Usage
Each program using the library must have the line
#include <stdio.h>
which defines certain macros and variables. The routines are in the normal C library, so no special
library argument is needed for loading. All names in the include file intended only for internal use

begin with an underscore - to reduce the possibility of collision with a user name. The names
intended to be visible outside the package are

“stdin The name of the standard input file
stdout  The name of the standard output file
stderr  The name of the standard error file A .
EOF is actually -1, and is the value returned by the read routines on end-of-file or error.
NULL  is a notation for the null pointer, returned by pointer-valued functions to indicate an error

FILE expands to struct ~iob and is a useful shorthand when declaring pointers to streams.
BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. See
setbuf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here to
point out that it is not possible to redeclare them and that they are not actually functions;
thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderr are in effect constants and
may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. filename is a character string specifying
the name. type is a character string (not a single character). It may be "r", "w", or "a" to
indicate intent to read, write, or append. The value returned is a file pointer. If it is NULL the °
attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If the
attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the new file. -
Often the reopened stream is stdin or stdout.
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int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by ioptr, which is a pointer to a file such as
returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or when an
error occurs. The null character \0 is a legal character. .

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an argu-
ment, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character ¢ on the output stream named by ioptr, which is a value returned
from fopen or perhaps stdout or stderr. The character is returned as value, but EOF is
returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *1optr,
The file correspondmg to ioptr is closed after any buffers are emptxed A buffer allocated by
the I/O system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr; ;
Any buffered information on the (output) stream named by ioptr is written out. Output files.
are normally buffered if and only if they are not directed to the terminal; however, stderr
always starts off unbuffered and remains so unless setbuf is used, or unless it is reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special version
of the routine which calls fflush for each output file. To terminate without flushing, use
-exit, '

feof(ioptr) FILE *ioptr; :
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named stream. The
error indication lasts until the file has been closed.

getchar();
is identical to getc(stdin).

putchar(c);
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n=1 characters from the stream ioptr into the character pointer s. The read ter-
minates with a newline character. The newline character is placed in the buffer followed by a
null character. fgets returns the first argument, or NULL if error or end-of-file occurred.

fputs(s, ioptr) char *s; FILE *ioptr; )
writes the null-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument character ¢ is pushed back on the input stream named by ioptr. Only one char-
acter may be pushed back.

printf(format, a1, ...) char *format;

fprintf(ioptr, format, a1, ...) FILE *ioptr; char *format;

sprintf(s, format, a1, ...)char *s, *format;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are as
described in section pr intf(3) of the UNIX Programmer’s Manual.
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scanf(format, a1, ...) char *format;

fscanf(ioptr, format, a1, ...) FILE *ioptr; char *format;

sscanf(s, format, al, ...) char *s, *format;
scanf reads from the standard input. fscanf:.reads from the named input stream. sscanf
reads from the character string supplied as s. scanf reads characters, interprets them accord-
ing to a format, and stores the results in its arguments. Each routine expects as arguments a
control string format, and a set of arguments, each of which must be a pointer, indicating where
the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input character does not match what was
called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads nitems of data beginning at ptr from file ioptr. No advance notification that binary
I/0 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is dot very useful except on input, since a rewound
output file is still open only for output.

system(string) char *string;
The string is executed by the shell as if typed at the terminal. .

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A “word” is
16 bits on the PDP-11.

putw(w, ioptr) FILE *ioptr; _
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before I/O has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf[BUFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 1,
the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When this
routine is used on non-UNIX systems, the offset must be a value returned from ftell and the
ptrname must be 0). ‘

long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this call
is useful only for handing to fseek, so as to position the ﬁle to the same place it was when
ftel l was called.)
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getpw(uid, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur-
pose. NULL is returned if no space is available.

char *calloc(num, size);
allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available .

cfree(ptr) char *ptr; {
Space is returned to the pool used by cal loc. Disorder can be expected if the pointer was not
obtained from cal loc.

The following are macros whose definitions may be obtained by including <ctype. h>
isalpha(c) returns non-zero if the argument is alphabetic.

isupper (c) returns non-zero if the argument is upper-case alphabetic.

istower(c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character: tab, newline, carriage return,
vertical tab, form feed, space.

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a space, letter,
digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint(c) returns non-zero if the argument is printable — a letter, digit, or punctuation character.
iscntrl(c) returns non-zero if the argument is a control character.

isascii(c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
toupper (c¢) returns the upper-case character corresponding to the lower-case letter c.

tolower (¢) returns the lower-case character corresponding to the upper-case letter c.
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’ UNIX Implementation

K. Thompson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the resident
UNIXt kernel. This discussion is broken into three parts. The first part describes
how the UNIX system views processes, users, and programs. The second part
describes the I/0 system. The last part describes the UNIX file system.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assembly
code. The assembly code can be further broken down into 200 lines included for the sake of
efficiency (they could have been written in C) and 800 lines to perform hardware functions not possi-
ble in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression “the
UNIX operating system.” The kernel is the only UNIX code that cannot be substituted by a user to his
own liking. For this reason, the kernel should make as few real decisions as possible. This does not
mean to allow the user a million options to do the same thing. Rather, it means to allow only one
way to do one thing, but have that way be the least-common divisor of all the options that might
have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a grzat
power. It is a soap-box platform on “the way things should be done.” Even so, if “the way” is too
radical, no one will follow it. Every important decision was weighed carefully. Throughout, simpli-
city has been substituted for efficiency.. Complex algorithms are used only if their complexity can be
localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process. When a
system function is required, the user process calls the system as a subroutine. At some point in this
call, there is a distinct switch of environments. After this, the process is said to be a system process.
In the normal definition of processes, the user and system processes are different phases of the same
process (they never execute simultaneously). For protection, each system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all processes
executing the same code. There is no functional benefit from shared-text segments. An efficiency
benefit comes from the fact that there is no need to swap read-only segments out because the original
copy on secondary memory is still current. This is a great benefit to interactive programs that tend to
be swapped while waiting for terminal input. Furthermore, if two processes are executing simultane-
ously from the same copy of a read-only segment, only one copy needs to reside in primary memory.
This is a secondary effect, because simultaneous execution of a program is not common. It is ironic
that this effect, which reduces the use of primary memory, only comes into play when there is an
overabundance of primary memory, that is, when there is enough memory to keep waiting processes

+ UNIX is a trademark of AT&T Bell Laboratories.
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loaded.

All current read-only text segments in the system are maintained from the text table. A text
table entry holds the location of the text segment on secondary memory. If the segment is loaded,
that table also holds the primary memory location and the count of the number of processes sharing
this entry. When this count is reduced to zero, the entry is freed along with any primary and secon-
dary memory holding the segment. When a process first executes a shared-text segment, a text table
entry is allocated and the segment is loaded onto secondary memory. If a second process executes a
text segment that is already allocated, the entry reference count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As far as
possible, the system does not use the user’s data segment to hold system data. In particular, there are
no I/O buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the system
as a result of memory faults, is used for a stack. The second boundary is only grown (or shrunk) by
explicit requests. The contents of newly allocated primary memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size system data segment. This seg-
ment contains all the data about the process that the system needs only when the process is active.
Examples of the kind of data contained in the system data segment are: saved central processor regis-
ters, open file descriptors, accounting information, scratch data area, and the stack for the system
phase of the process. The system data segment is not addressable from the user process and is there-
fore protected. ’

Last, there is a process table with one entry per process. This entry contains all the data needed
by the system when the process is not active. Examples are the process’s name, the location of the
other segments, and scheduling information. The process table entry is allocated when the process is
created, and freed when the process terminates. This process entry is always directly addressable by
the kernel.

Figure 1 shows the relationships between the various pfocess control data. In a sense, the pro-
cess table is the definition of all processes, because all the data associated with a process may be
accessed starting from the process table entry.

Process Table : Text Table
[ Process o Text
Table : \ Table
Ent Ent
Resident et =

!
¢

[ System
Swapped Data
Segment User
User ——  Text
—
Data Segment
> Segment

User |
Address
Space _

Fig. 1—Process control data structure.
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2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a copy
of the original process (parent). There is no detectable sharing of primary memory between the two
processes. (Of course, if the parent process was executing from a read-only text segment, the child
will share the text segment.) Copies of all writable data segments are made for the child process. Files
that were open before the fork are truly shared after the fork. The processes are informed as to their
part in the relationship to allow them to select their own (usually non-identical) destiny. The parent
may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments of the
process for new text and data segments specified in the file. The old segments are lost. Doing an exec
does not change processes; the process that did the exec persists, but after the exec it is executing a
different program. Files that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another program, say
the second pass, then it simply execs the second program. This is analogous to a “goto.” If a program
wishes to regain control after execing a second program, it should fork a child process, have the child
exec the second program, and have the parent wait for the child. This is analogous to a “call.” Break-
ing up the call into a binding foliowed by a transfer is similar to the subroutine linkage in SL-5.!

2.2. Swapping

The major data associated with a process (the user data segment, the system data segment, and
the text segment) are swapped to and from secondary memory, as needed. The user data segment
and the system data segment are kept in contiguous primary memory to reduce swapping latency.
(When low-latency devices, such as bubbles, CCDs, or scatter/gather devices, are used, this decision
will have to be reconsidered.) Allocation of both primary and secondary memory is performed by the
same simple first-fit algorithm. When a process grows, a new piece of primary memory is allocated.
The contents of the old memory is copied to the new memory. The old memory is freed and the
tables are updated. If there is not enough primary memory, secondary memory is allocated instead.
The process is swapped out onto the secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other processes in
and out of primary memory. It examines the process table looking for a process that is swapped out
and is ready to run. It allocates primary memory for that process and reads its segments into primary
memory, where that process competes for the central processor with other loaded processes. If no
primary memory is available, the swapping process makes memory available by examining the pro-
cess table for processes that can be swapped out. It selects a process to swap out, writes it to secon-
dary memory, frees the primary memory, and then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly many
processes that are swapped out is to be swapped in? This is decided by secondary storage residence
time. The one with the longest time out is swapped in first. There is a slight penalty for larger
processes. Which of the possibly many processes that are loaded is to be swapped out? Processes
that are waiting for slow events (i.e., not currently running or waiting for disk I/O) are picked first, by
age in primary memory, again with size penalties. The other processes are examined by the same age
algorithm, but are not taken out unless they are at least of some age. This adds hysteresis to the
swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary memory,
these algorithms cause total swapping. This is not bad in itself, because the swapping does not
impact the execution of the resident processes. However, if the swapping device must also be used
for file storage, the swapping traffic severely impacts the file system traffic. It is exactly these small
systems that tend to double usage of limited disk resources.
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2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addressés of tables associ-
ated with those events. For example, a process that is waiting for any of its children to terminate will
wait for an event that is the address of its own process table entry. When a process terminates, it sig-
nals the event represented by its parent’s process table entry. Signaling an event on which no process
is waiting has no effect. Similarly, signaling an event on which many processes are waiting will wake
all of them up. This differs considerably from Dijkstra’s P and V synchronization operations,? in that
no memory is associated with events. Thus there need be no allocation of events prior to their use.
Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of “how
much” can be signaled via the event mechanism. For example, processes that want memory might
wait on an event associated with memory allocation. When any amount of memory becomes avail-
able, the event would be signaled. All the competing processes would then wake up to fight over the
new memory. (In reality, the swapping process is the only process that waits for primary memory to
become available.)

If an event occurs between the time a process decides to wait for that event and the time that -
process enters the wait state, then the process will wait on an event that has already happened (and
may never happen again). This race condition happens because there is no memory associated with
the event to indicate that the event has occurred; the only action of an event is to change a set of
processes from wait state to run state. This problem is relieved largely by the fact that process
switching can only occur in the kernel by explicit calls to the event-wait mechanism. If the event in
question is signaled by another process, then there is no problem. But if the event is signaled by a
hardware interrupt, then. special care must be taken. These synchronization races pose the biggest
problem when UNIX is adapted to multiple-processor configurations.?

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of the
processes has called event-wait. The remaining process is the one currently executing. When it calls
event-wait, a process whose event has been signaled is selected and that process returns from its call
to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority. The
priority of a system process is assigned by the code issuing the wait on an event. This is roughly
equivalent to the response that one would expect on such an event. Disk events have high priority,
teletype events are low, and time-of-day events are very low. (From observation, the difference in
system process priorities has little or no performance impact.) All user-process priorities are lower
than the lowest system priority. User-process priorities are assigned by an algorithm based on the
recent ratio of the amount of compute time to real time consumed by the process. A process that has
used a lot of compute time in the last real-time unit is assigned a low user priority. Because interac-
tive processes are characterized by low ratios of compute to real time, interactive response is main-
tained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking all sys-
tem processes first and user processes second. The compute-to-real-time ratio is updated every
second. Thus, all other things being equal, looping user processes will be scheduled round-robin with
a l-second quantum. A high-priority process waking up will preempt a running, low-priority process.
The scheduling algorithm has a very desirable negative feedback character. If a process uses its high
priority to hog the computer, its priority will drop. At the same time, if a low-priority process is
ignored for a long time, its priority will rise.

3. I/0 SYSTEM

The I/O system is broken into two completely separate systems: the block I/O system and the
character I/0 system. In retrospect, the names should have been “structured I/0” and ‘“‘unstructured
1/0,” respectively; while the term “block I/0”” has some meaning, “character [/O” is a complete
misnomer.
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Devices are characterized by a major device number, a minor device number, and a class (block
or character). For each class, there is an array of entry points into the device drivers. The major
device number is used to index the array when calling the code for a particular device driver. The
minor device number is passed to the device driver as an argument. The minor number has no
significance other than that attributed to it by the driver. Usually, the driver uses the minor number
to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between the sys-
tem code and the device drivers is very important. Early versions of the system had a much less for-
mal connection with the drivers, so that it was extremely hard to handcraft differently configured sys-
tems. Now it is possible to create new device drivers in an average of a few hours. The configuration
table in most cases is created automatically by a program that reads the system’s parts list.

3.1. Block I/O system

The model block /O device consists of randomly addressed, secondary memory blocks of 512
bytes each. The blocks are uniformly addressed O, 1, ... up to the size of the device. The block
device driver has the job of emulating this model on a physical device.

The block I/0 devices are accessed through a layer of buffering software. The system maintains
a list of buffers (typically between 10 and 70) each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices. On a read request, the cache is searched
for the desired block. If the block is found, the data are made available to the requester without any
physical I/O. If the block is not in the cache, the least recently used block in the cache is renamed,
the correct device driver is called to fill up the renamed buffer, and then the data are made available.
Write requests are handled in an analogous manner. The correct buffer is found and relabeled if
necessary. The write is performed simply by marking the buffer as “dirty.” The physical I/O is then
deferred until the buffer is renamed.

The benefits in reduction of physical I/O of this scheme are substantial, especially con51denng
the file system implementation. There are, however, some drawbacks. The asynchronous nature of
the algorithm makes error reporting and meaningful user error handling almost impossible. The
cavalier approach to I/O error handling in the UNIX system is partly due to the asynchronous nature
of the block I/O system. A second problem is in the delayed writes. If the system stops unexpectedly,
it is almost certain that there i> a lot of logically complete, but physically incomplete, I/O in the
buffers. There is a system primitive to flush all outstanding I/O activity from the buffers. Periodic
use of this primitive helps, but does not solve, the problem. Finally, the associativity in the buffers
can alter the physical I/0 sequence from that of the logical I/O sequence. This means that there are
times when data structures on disk are inconsistent, even though the software is careful to perform
I/0O in the correct order. On non-random devices, notably magnetic tape, the inversions of writes can
be disastrous. The problem with magnetic tapes is “cured” by allowing only one outstanding write
request per drive.

3.2. Character I/0 system

The character I/O system consists of all devices that do not fall into the block I/O model. This
includes the “classical” character devices such as communications lines, paper tape, and line printers.
It also includes magnetic tape and disks when they are not used in a stereotyped way, for example,
80-byte physical records on tape and track-at-a-time disk copies. In short, the character I/O interface
means “everything other than block.” I/O requests from the user are sent to the device driver essen-
tially unaltered. The implementation of these requests is, of course, up to the device driver. There
are guidelines and conventions to help the implementation of certain types of device drivers.

3.2.1. Disk drivers

Disk drivers are implemented with a queue of tramsaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte count.
Swapping is accomplished by passing such a record to the swapping device driver. The block /O
interface is implemented by passing such records with requests to fill and empty system buffers. The
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character I/0 interface to the disk drivers create a transaction record that points directly into the user
area. The routine that creates this record also insures that the user is not swapped during this [/O
transaction. Thus by implementing the general disk driver, it is possible to use the disk as a block
device, a character device, and a swap device. The only really disk-specific code in normal disk
drivers is the pre-sort of transactions t0 minimize latency for a particular device, and the actual issu-
ing of the I/O request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle charac-
ter lists. A character list is a queue of characters. One routine puts a character on a queue. Another
gets a character from a queue. It is also possible to ask how many characters are currently on a
queue. Storage for all queues in the system comes from a single common pool. Putting a character
on a queue will allocate space from the common pool and link the character onto the data structure
defining the queue. Getting a character from a queue returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by passing
characters from the user onto a character queue until some maximum number of characters is on the
queue. The 70O is prodded to start as soon as there is anything on the queue and, once started, it is
sustained by hardware completion interrupts. Each time there is a completion interrupt, the driver
gets the next character from the queue and sends it to the hardware. The number of characters on
the queue is checked and, as the count falls through some intermediate level, an event (the queue
address) is signaled. The process that is passing characters from the user to the queue can be waiting
on the event, and refill the queue to its maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very similar
manner.

Another class of character devices is the terminals. A terminal is represented by three character
queues. There are two input queues (raw and canonical) and an output queue. Characters going to
the output of a terminal are handled by common code exactly as described above. The main
difference is that there is also code to interpret the output stream as ASCII characters and to perform
some translations, e.g., escapes for deficient terminals. Another common aspect of terminals is code
to insert real-time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and placed on
a raw input queue. Some device-dependent code conversion and escape interpretation is handled
here. When a line is complete in the raw queue, an event is signaled. The code catching this signal
then copies a line from the raw queue to a canonical queue performing the character erase and line
kill editing. User read requests on terminals can be directed at either the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as character I/0
drivers. An example is a driver that reads and writes unmapped primary memory as an /O device.
Some devices are too fast to be treated a character at time, but do not fit the disk I/O mold. Exam-
ples are fast communications lines and fast line pnnters These devices either have their own buﬁ‘ers
or “borrow” block I/O buffers for a while and then give them back.

4. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of files is
implied by the system. Files are attached anywhere (and possibly multiply) onto a hierarchy of direc-
tories. Directories are simply files that users cannot write. For a further discussion of the external
view of files and directories, see Ref. 3.

The UNIX file system is a disk data structure accessed completely through the block I/0 system.
As stated before, the canonical view of a “disk™ is a randomly addressable array of 512-byte blocks.
A file system breaks the disk into four self-identifying regions. The first block (address 0) is unused
by the file system. It is left aside for booting procedures. The second block (address 1) contains the
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so-called “super-block.” This block, among other things, contains the size of the disk and the boun-
daries of the other regions. Next comes the i-list, a list of file definitions. Each file definition is a 64-
byte structure, called an i-node. The offset of a particular i-node within the i-list is called its i-
number. The combination of device name (major and minor numbers) and i-number serves to
uniquely name a particular file. After the i-list, and to the end of the disk, come free storage blocks
that are available for the contents of files.

The free space on a disk is maintained by a linked list of available disk blocks. Every block in
this chain contains a disk address of the next block in the chain. The remaining space contains the
address of up to 50 disk blocks that are also free. Thus with one I/O operation, the system obtains 50
free blocks and a pointer where to find more. The disk allocation algorithms are very straightforward.
Since all allocation is in fixed-size blocks and there is strict accounting of space, there is no need to
compact or garbage collect. However, as disk space becomes dispersed, latency gradually increases.
Some installations choose to occasionally compact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the first
10 blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh address points at a
block that contains the addresses of the next 128 blocks of the file. If the file is still larger than this
(70,656 bytes), then the twelfth block points at up to 128 blocks, each pointing to 128 blocks of the
file. Files yet larger (8,459,264 bytes) use the thirteenth address for a “triple indirect” address. The
algorithm ends here with the maximum file size of 1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new type
of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-byte entries
consisting of a 14-byte name and an i-number. The root of the hierarchy is at a known i-number
(viz., 2). The file system structure allows an arbitrary, directed graph of directories with regular files
linked in at arbitrary places in this graph. In fact, very early UNIX systems used such a structure.
Administration of such a structure became so chaotic that later systems were restricted to a directory
tree. Even now, with regular files linked multiply into arbitrary places in the tree, accounting for
space has become a problem. It may become necessary to restrict the entire structure to a tree, and
allow a new form of linking that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy space
allocation. With most physical addresses confined to a small contiguous section of disk, it is also easy
to dump, restore, and check the consistency of the file system. Large files suffer from indirect
addressing, but the cache prevents most of the implied physical I/O without adding much execution.
The space overhead properties of this scheme are quite good. For example, on one particular file sys-
tem, there are 25,000 files containing 130M bytes of data-file content. The overhead (i-node, indirect
blocks, and last block breakage) is about 11.5M bytes. The directory structure to support these files
has about 1,500 directories containing 0.6M bytes of directory content and about 0.5M bytes of over-
head in accessing the directories. Added up any way, this comes out to less than a 10 percent over-
head for actual stored data. Most systems have this much overhead in padded trailing blanks alone.

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around access to
the i-node. The system maintains a table of all active i-nodes. As a new file is accessed, the system
locates the corresponding i-node, allocates an i-node table entry, and reads the i-node into primary
memory. As in the buffer cache, the table entry is considered to be the current version of the i-node.
Modifications to the i-node are made to the table entry. When the last access to the i-node goes
away, the table entry is copied back to the secondary store i-list and the table entry is freed.

All I/O operations on files are carried out with the aid of the corresponding i-node table entry.
The accessing of a file is a straightforward implementation of the algorithms mentioned previously.
The user is not aware of i-nodes and i-numbers. References to the file system are made in terms of
path names of the directory tree. Converting a path name into an i-node table entry is also straight-
forward. Starting at some known i-node (the root or the current directory of some process), the next
component of the path name is searched by reading the directory. This gives an i-number and an
implied device (that of the directory). Thus the next i-node table entry can be accessed. If that was
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Fig. 2—File system data structure.

the last component of the path name, then this i-node is the resuit. If not, this i-node is the directory
needed to look up the next component of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of these
are open, create, read, write, seek, and close. The data structures maintained are shown in Fig. 2. In
the system data segment associated with a user, there is room for some (usually between 10 and 50)
open files. This open file table consists of pointers that can be.used to access corresponding i-node
table entries. Associated with each of these open files is a current I/O pointer. This is a byte offset of
the next read/write operation on the file. The system treais each read/write request as random with
an implied seek to the I/O pointer. The user usually thinks of the file as sequential with the I/O
pointer automatically counting the number of bytes that have been read/written from the file. The
user may, of course, perform random I/O by setting the I/O pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common I/O pointer and
yet have separate I/0 pointers for independent processes that access the same file. With these two
conditions, the I/O pointer cannot reside in the i-node table nor can it reside in the list of open files
for the process. A new table (the open file table) was invented for the sole purpose of holding the I/O



UNIX Implementation PS2:4-9

pointer. Processes that share the same open file (the result of forks) share a common open file table
entry. A separate open of the same file will only share the i-node table entry, but will have distinct
open file table entries.

The main file system primitives are implemented as follows. open converts a file system path
name into an i-node table entry. A pointer to the i-node table entry is placed in a newly created open
file table entry. A pointer to the file table entry is placed in the system data segment for the process.
create first creates a new i-node entry, writes the i-number into a. directory, and then builds the same
structure as for an open. read and write just access the i-node entry as described above. seek simply
manipulates the I/O pointer. No physical seeking is done. close just frees the structures built by open
and create. Reference counts are kept on the open file table entries and the i-node table entries to
free these structures after the last reference goes away. umlink simply decrements the count of the
number of directories pointing at the given i-node. When the last reference to an i-node table entry
goes away, if the i-node has no directories pointing to it, then the file is removed and the i-node is
freed. This delayed removal of files prevents problems arising from removing active files. A file may
be removed while still open. The resulting unnamed file vanishes when the file is closed. This is a
method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of implied
seeks before each read or write in order to implement first-in-first-out. There are also checks and syn-
chronization to prevent the writer from grossly outproducing the reader and to prevent the reader
from overtaking the writer.

4.2. Mounted file systems

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file system.
A second formatted block device may be mounted at any leaf of the current hierarchy. This logically
extends the current hierarchy. The implementation of mounting is trivial. A mount table is main-
tained containing pairs of designated leaf i-nodes and block devices. When converting a path name
into an i-node, a check is made to see if the new i-node is a designated leaf. If it is, the i-node of the
root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file lives.
Thus a file system consisting of many mounted devices does not have a common pool of free secon-
dary storage space. This separation of space on different devices is necessary to allow easy unmount-
ing of a device.

4.3. Other system functions

There are some other things that the system does for the user-a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well developed
because our use of the system in computing science research does not need them. There are some
features that are missed in some applications, for example, better inter-process communication.

The UNIX kernel is an I/O multiplexer more than a complete operating system. This is as it
should be. Because of this outlook, many features are found in most other operating systems that are
missing from the UNIX kernel. For example, the UNIX kernel does not support file access methods,
file disposition, file formats, file maximum size, spooling, command language, logical records, physical
records, assignment of logical file names, logical file names, more than one character set, an operator’s
console, an operator, log-in, or log-out. Many of these things are symptoms rather than features.
Many of these things are implemented in user software using the kernel as a tool. A good example of
this is the command language.> Each user may have his own command language. Maintenance of
such code is as easy as maintaining user code. The idea of implementing *“system” code with general
user primitives comes directly from MULTICS.2
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This paper gives an overview of the workings of the UNIXt I/O system. It was written with an
eye toward providing guidance to writers of device driver routines, and is oriented more toward
describing the environment and nature of device drivers than the implementation of that part of the
file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as
discussed in the paper “The UNIX Time-sharing System.” A more detailed discussion appears in
“UNIX Implementation;” the current document restates parts of that one, but is still more detailed.
It is most useful in conjunction with a copy of the system code, since it is basically an exegesis of that
code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for devices
like disks, tapes, and DECtape which work, or can work, with addressible 512-byte blocks. Ordinary
magnetic tape just barely fits in this category, since by use of forward and backward spacing any block
can be read, even though blocks can be written only at the end of the tape. Block devices can at least
potentially contain a mounted file system. The interface to block devices is very highly structured;
the drivers for these devices share a great many routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work must
be done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers are
generally stored as an integer with the minor device number in the low-order 8 bits and the major
device number in the next-higher 8 bits; macros major and minor are available to access these
numbers. The major device number selects which driver will deal with the device; the minor device
number is not used by the rest of the system but is passed to the driver at appropriate times. Typi-
cally the minor number selects a subdevice attached to a given controller, or one of several similar
hardware interfaces.

The major device numbers for block and character devices are used as indices in separate tables;
they both start at 0 and therefore overlap.

Overview of 1/0

The purpose of the open and creat system calls is to set up entries in three separate system
tables. The first of these is the u_ofile table, which is stored in the system’s per-process data area wu.
This table is indexed by the file descriptor returned by the open or creat, and is accessed during a
read, write, or other operation on the open file. An entry contains only a pointer to the correspond-
ing entry of the file table, which is a per-system data base. There is one entry in the file table for
each instance of open or creat. This table is per-system because the same instance of an open file
must be shared among the several processes which can result from forks after the file is opened. A
file table entry contains flags which indicate whether the file was open for reading or writing or is a

tUNIX is a Trademark of Bell Laboratories.
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pipe, and a count which is used to decide when all processes using the entry have terminated or
closed the file (so the entry can be abandoned). There is also a 32-bit file offset which is used to indi-
cate where in the file the next read or write will take place. Finally, there is a pointer to the entry for
the file in the inode table, which contains a copy of the file’s i-node.

Certain open files can be designated “multiplexed” files, and several other flags apply to such
channels. In such a case, instead of an offset, there is a pointer to an associated multiplex channel
table. Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the same file is
opened several times, it will have several entries in this table. However, there is at most one entry in
the inode table for a given file. Also, a file may enter the inode table not only because it is open, but
also because it is the current directory of some process or because it is a special file containing a
currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on the
disk; the modified and accessed times are not stored, and the entry is augmented by a flag word con-
taining information about the entry, a count used to determine when it may be allowed to disappear,
and the device and i-number whence the entry came. Also, the several block numbers that give
addressing information for the file are expanded from the 3-byte, compressed format used on the disk
to full long quantities.

During the processing of an open or creat call for a special file, the system always calls the
device’s open routine to allow for any special processing required (rewinding a tape, turning on the
data-terminal-ready lead of a modem, etc.). However, the close routine is called only when the last
process closes a file, that is, when the i-node table entry is being deallocated. Thus it is not feasible -
for a device to maintain, or depend on, a count of its users, although it is quite possible to implement
an exclusive-use device which cannot be reopened until it has been closed.

When a read or write takes place, the user’s arguments and the file table entry are used to set
up the variables u.u_base, u.u_count, and u.u_offset which respectively contain the (user) address of
the [/O target area, the byte-count for the transfer, and the current location in the file. If the file
referred to is a character-type special file, the appropriate read or write routine is called; it is responsi-
ble for transferring data and updating the count and current location appropriately as discussed
below. Otherwise, the current location is used to calculate a logical hlock number in the file. If the
file is an ordinary file the logical block number must be mapped (possibly using indirect blocks) to a
physical block number; a block-type special file need not be mapped. This mapping is performed by
the bmap routine. In any event, the resulting physical block number is used, as discussed below, to
read or write the appropriate device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each device pro-
vides five routines: open, close, read, write, and special-function (to implement the ioct/ system call).
Any of these may be missing. If a call on the routine should be ignored, (e.g. open on non-exclusive
devices that require no setup) the cdevsw entry can be given as nulldev; if it should be considered an
error, (e.g. write on read-only devices) nodev is used. For terminals, the cdevsw structure also con-
tains a pointer to the ¢ty structure associated with the terminal. ’

The open routine is called each time the file is opened with the full device number as argument.
The second argument is a flag which is non-zero only if the device is to be written upon.

The close routine is called only when the file is closed for the last time, that is when the very
last process in which the file is open closes it. This means it is not possible for the driver to maintain
its own count of its users. The first argument is the device number; the second is a flag which is non-
zero if the file was open for writing in the process which performs the final close.

When write is called, it is supplied the device as argument. The per-user variable u.u_count has
been set to the number of characters indicated by the user; for character devices, this number may be
0 initially. w.u_base is the address supplied by the user from which to start taking characters. The
system may call the routine internally, so the flag w.u_segflg is supplied that indicates, if on, that
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u.u_base refers to the system address space instead of the user’s.

The write routine should copy up to w.u_count characters from the user’s buffer to the device,
decrementing w.u_count for each character passed. For most drivers, which work one character at a
time, the routine cpass( ) is used to pick up characters from the user’s buffer. Successive calls on it
return the characters to be written until u.u_count goes to 0 or an error occurs, when it returns -1.
Cpass takes care of interrogating u.u_segflg and updating u.u_count.

Write routines which want to transfer a probably large number of characters into an internal
buffer may also use the routine iomove(buffer, offset, count, flag) which is faster when many characters
must be moved. Jomove transfers up to count characters into the buffer starting offset bytes from the
start of the buffer; flag should be B_WRITE (which is 0) in the write case. Caution: the caller is
responsible for making sure the count is not too large and is non-zero. As an efficiency note, iomove
is much slower if any of buffer+offset, count or u.u_base is odd.

The device’s read routine is called under conditions similar to write, except that w.u_count is
guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available; it takes
care of housekeeping like cpass and returns -1 as the last character specified by u.u_count is returned
to the user; before that time, O is returned. Jomove is also usable as with write; the flag should be
B_READ but the same cautions apply.

The “special-functions” routine is invoked by the sty and gty system calls as follows: (*p) (dev,
v) where p is a pointer to the device’s routine, dev is the device number, and v is a vector. In the
gtty case, the device is supposed to place up to 3 words of status information into the vector; this will
be returned to the caller. In the sty case, v is 0; the device should take up to 3 words of control
information from the array w.u_arg/0...2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt occurs,
it is turned into a C-compatible call on the devices’s interrupt routine. The interrupt-catching
mechanism makes the low-order four bits of the “new PS” word in the trap vector for the interrupt
available to the interrupt handler. This is conventionally used by drivers which deal with multiple
similar devices to encode the minor device number. After the interrupt has been processed, a return
from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most of
these handlers, for example, need a place to buffer characters in ti.e internal interface between their
“top half” (read/write) and “bottom half” (interrupt) routines. For relatively low data-rate devices,
the best mechanism is the character queue maintained by the routines getc and putc. A queue header
has the structure

struct (
int c_cc; /* character count */
char *c_cf; /* first character */
char *c_cl; /* last character */
} queue;

A character is placed on the end of a queue by putc(c, &queue) where ¢ is the character and queue is
the queue header. The routine returns -1 if there is no space to put the character, 0 otherwise. The
first character on the queue may be retrieved by getc(&queue) which returns either the (non-negative)
character or -1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in
the standard system there are only some 600 character slots available. Thus device handlers, espe-
cially write routines, must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call
sleep(event, priority) causes the process to wait (allowing other processes to run) until the event
occurs; at that time, the process is marked ready-to-run and the call will return when there is no pro-
cess with higher priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes sleeping
on the event to be awakened. The event is an arbitrary quantity agreed upon by the sleeper and the
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waker-up. By convention, it is the address of some data area used by the driver, which guarantees
that events are unique.

Processes sleeping on an event should not assume that the event has really happened; they
should check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored scheduling
situation. A distinction is made between processes sleeping at priority less than the parameter
- PZERO and those at numerically larger priorities. The former cannot be interrupted by signals,
although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep with priority less
than PZERO on an event which might never occur. On the other hand, calls to sleep with larger
priority may never return if the process is terminated by some signal in the meantime. Incidentally,
it is a gross error to call sleep in a routine called at interrupt time, since the process which is running
is almost certainly not the process which should go to sleep. Likewise, none of the variables in the
user area “u.” should be touched, let alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to
supply a wakeup, (for example, a device going on-line, which does not generally cause an interrupt),
the call sleep(&lbolt, priority) may be given. Lbolt is an external cell whose address is awakened once
every 4 seconds by the clock interrupt routine.

The routines spi4( ), spl5( ), spl6( ), spl7() are available to set the processor priority level as indi-
cated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(func, arg, interval) will be use-
ful. This routine arranges that after interval sixtieths of a second, the func will be called with arg as
argument, in the style (*func)(arg). Timeouts are used, for example, to provide real-time delays after
function characters like new-line and tab in typewriter output, and to terminate an attempt to read
the 201 Dataphone dp if there is no response within a specified number of seconds. Notice that the
number of sixtieths of a second is limited to 32767, since it must appear to be positive, and that only
a bounded number of timeouts can be going on at once. Also, the specified func is called at clock-
interrupt time, so it should conform to the requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of buffers
containing the images of blocks of data on the various devices. The most important purpose of these
routines is to assure that several processes that access the same block of the same device in multipro-
grammed fashion maintain a consistent view of the data in the block. A secondary but still important
purpose is to increase the efficiency of the system by keeping in-core copies of blocks that are being
accessed frequently. The main data base for this mechanism is the table of buffers buf. Each buffer
header contains a pair of pointers (b_forw, b_back) which maintain a doubly-linked list of the buffers
associated with a particular block device, and a pair of pointers (av_forw, av_back) which generally
maintain a doubly-linked list of blocks which are “free,” that is, eligible to be reallocated for another
transaction. Buffers that have I/O in progress or are busy for other purposes do not appear in this
- list. The buffer header also contains the device and block number to which the buffer refers, and a
pointer to the actual storage associated with the buffer. There is a word count which is the negative
of the number of words to be transferred to or from the buffer; there is also an error byte and a resi-
dual word count used to communicate information from an I/O routine to its caller. Finally, there is
a flag word with bits indicating the status of the buffer. These flags will be discussed below.

Seven routines constitute the most important part of the interface with the rest of the system.
Given a device and block number, both bread and getblk return a pointer to a buffer header for the
block; the difference is that bread is guaranteed to return a buffer actually containing the current data
for the block, while getblk returns a buffer which contains the data in the block only if it is already in
core (whether it is or not is indicated by the B_DONE bit; see below). In either case the buffer, and
the corresponding device block, is made “‘busy,” so that other processes referring to it are obliged to
wait until it becomes free. Gerblk is used, for example, when a block is about to be totally rewritten,
so that its previous contents are not useful; still, no other process can be allowed to refer to the block
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until the new data is placed into it.

The breada routine is used to implement read-ahead. it is logically similar to bread, but takes
as an additional argument the number of a block (on the same device) to be read asynchronously after
the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
processes. It is called, for example, after data has been extracted following a bread. There are three
subtly-different write routines, all of which take a buffer pointer as argument, and all of which logi-
cally release the buffer for use by others and place it on the free list. Bwrite puts the buffer on the
appropriate device queue, waits for the write to be done, and sets the user’s error flag if required.
Bawrite places the buffer on the device’s queue, but does not wait for completion, so that errors can-
not be reflected directly to the user. Bdwrite does not start any I/O operation at all, but merely marks
the buffer so that if it happens to be grabbed from the free list to contain data from some other block,
the data in it will first be written out.

Bwrite is used when one wants to be sure that I/O takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful when
more overlap is desired (because no wait is required for I/O to finish) but when it is reasonably cer-
tain that the write is really required. Bdwrite is used when there is doubt that the write is needed at
the moment. For example, bdwrite is called when the last byte of a write system call falls short of the
end of a block, on the assumption that another write will be given soon which will re-use the same
block. On the other hand, as the end of a block is passed, bawrite is called, since probably the block
will not be accessed again soon and one might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to
the use of the caller, and make others wait, while one of breise, bwrite, bawrite, or bdwrite must even-
tually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer.

Since they provide one important channel for information between the drivers and the block I/O sys-

tem, it is important to understand these flags. The following names are manifest constants which
select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below) to indi-
cate a read operation. The symbol B_WRITE is defined as 0 and does not define a flag; it
is provided as a mnemonic convenience to callers of routines like swap which have a
separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is turned
on when the operation completes, whether normally as the result of an error. It is also
used as part of the return argument of getblk to indicate if 1 that the returned buffer actu-
ally contains the data in the requested block.

B_ERRORThis bit may be set to | when B_DONE is set to indicate that an I/O or. other error
occurred. If it is set the b_error byte of the buffer header may contain an error code if it is
non-zero. If b_error is 0 the nature of the error is not specified. Actually no driver at
present sets b_error; the latter is provided for a future improvement whereby a more
detailed error-reporting scheme may be implemented.

B_BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to
someone’s exclusive use. The buffer still remains attached to the list of blocks associated
with its device, however. When getblk (or bread, which calls it) searches the buffer list for
a given device and finds the requested block with this bit on, it sleeps until the bit clears.

B_PHYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an 11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone routine
knows to deallocate the map.

B_WANTED
This flag is used in conjunctmn with the B_BUSY bit. Before sleeping as described just
above, getblk sets this flag. Conversely, when the block is freed and the busy bit goes
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down (in brelse) a wakeup is given for the block header whenever B_WANTED is on.
This strategem avoids the overhead of having to call wakeup every time a buffer is freed
on the chance that someone might want it.

B_AGE This bit may be set on buffers just before releasing them,; if it is on, the buffer is placed at
the head of the free list, rather than at the tail. It is a performance heuristic used when the
caller judges that the same block will not soon be used again.

B_ASYNCThis bit is set by bawrite to indicate to the appropriate device driver that the buffer should
be released when the write has been finished, usually at interrupt time. The difference
between bwrite and bawrite is that the former starts I/O, waits until it is done, and frees
the buffer. The latter merely sets this bit and starts I/O. The bit indicates that reise
should be called for the buffer on completion.

B_DELWRI
This bit is set by bdwrite before releasing the buffer. When gerblk, while searching for a
free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes the block to
be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each block
device.

Just as for character devices, block device drivers may supply an open and a close routine called
respectively on each open and on the final close of the device. Instead of separate read and write rou-
tines, each block device driver has a strategy routine which is called with a pointer to a buffer header
as argument. As discussed, the buffer header contains a read/write flag, the core address, the block
number, a (negative) word count, and the major and minor device number. The role of the strategy -
routine is to carry out the operation as requested by the information in the buffer header. When the
transaction is complete the B_DONE (and possibly the B_ERROR) bits should be set. Then if the -
B_ASYNC bit is set, brelse should be called; otherwise, wakeup. In cases where the device is capable,
under error-free operation, of transferring fewer words than requested, the device’s word-count regis-
ter should be placed in the residual count slot of the buffer header; otherwise, the residual count
should be set to 0. This particular mechanism is really for the benefit of the magtape driver; when
reading this device records shorter than requested are quite normal, and the user should be told the
actual length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header allocated
as discussed above, all that is actually required is that the argument be a pointer to a place containing -
the appropriate information. For example the swap routine, which manages movement of core
images to and from the swapping device, uses the strategy routine for this device. Care has to be
taken that no extraneous bits get turned on in the flag word.

The device’s table specified by bdevsw has a byte to contain an active flag and an error count, a
pair of links which constitute the head of the chain of buffers for the device (b_forw, b_back), and a
first and last pointer for a device queue. Of these things, all are used solely by the device driver itself
except for the buffer-chain pointers. Typically the flag encodes the state of the device, and is used at
a minimum to indicate that the device is currently engaged in transferring information and no new
command should be issued. The error count is useful for counting retries when errors occur. The
device queue is used to remember stacked requests; in the simplest case it may be maintained as a
first-in first-out list. Since buffers which have been handed over to the strategy routines are never on
the list of free buffers, the pointers in the buffer which maintain the free list (av_forw, av_back) are
also used to contain the pointers which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp) arranges
that the buffer to which bp points be released or awakened, as appropriate, when the strategy module
has finished with the buffer, either normally or after an error. (In the latter case the B_ERROR bit
has presumably been set.)
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The routine geterror(bp) can be used to examine the error bit in a buffer header and arrange that
any error indication found therein is reflected to the user. It may be called only in the non-interrupt
part of a driver when I/O has completed (B_DONE has been set).

Raw Block-device I/0

A scheme has been set up whereby block device drivers may provide the ability to transfer
information directly between the user’s core image and the device without the use of buffers and in
blocks as large as the caller requests. The method involves setting up a character-type special file
corresponding to the raw device and providing read and write routines which set up what is usually a
private, non-shared buffer header with the appropriate information and call the device’s strategy rou-
tine. If desired, separate open and close routines may be provided but this is usually unnecessary. A
special-function routine might come in handy, especially for magtape.

A great deal of work has to be done to generate the “appropriate information” to put in the
argument buffer for the strategy module; the worst part is to map relocated user addresses to physical
addresses. Most of this work is done by physio(strat, bp, dev, rw) whose arguments are the name of
the strategy routine strat, the buffer pointer bp, the device number dev, and a read-write flag rw
whose value is either B_READ or B_WRITE. Physio makes sure that the user’s base address and
count are even (because most devices work in words) and that the core area affected is contiguous in
physical space; it delays until the buffer is not busy, and makes it busy while the operation is in pro-
gress; and it sets up user error return information.
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ABSTRACT

EFL is a clean, general purpose computer language intended to encourage port-
able programming. It has a uniform and readable syntax and good data and control
flow structuring. EFL programs can be translated into efficient Fortran code, so the
EFL programmer can take advantage of the ubiquity of Fortran, the valuable
libraries of software written in that language, and the portability that comes with the
use of a standardized language, without suffering from Fortran’s many failings as a
‘language. It is especially useful for numeric programs. The EFL language permits
the programmer to express complicated ideas in a comprehensible way, while per-
mitting access to the power of the Fortran environment. EFL can be viewed as a
descendant of B. W. Kernighan’s Ratfor [1]; the name originally stood for ‘Extended
Fortran Language’. The current version of the EFL compiler is written in portable
C.

1. INTRODUCTION
1.1. Purpose

EFL is a clean, general purpose computer language intended to encourage portable program-
ming. It has a uniform and readable syntax and good data and control flow structuring. EFL pro-
grams can be translated into efficient Fortran code, so the EFL programmer can take advantage of the
ubiquity of Fortran, the valuable libraries of software written in that language, and the portability
that comes with the use of a standardized language, without suffering from Fortran’s many failings as
a language. It is especially useful for numeric programs. Thus, the EFL language permits the pro-
grammer to express complicated ideas in a comprehensible way, while permitting access to the power
of the Fortran environment.

1.2. History

EFL can be viewed as a descendant of B. W. Kernighan’s Ratfor [1]; the name originally stood
for ‘Extended Fortran Language’. A. D. Hall designed the initial version of the language and wrote a
preliminary version of a compiler. I extended and modified the language and wrote a full compiler
(in C) for it. The current compiler is much more than a simple preprocessor: it attempts to diagnose
all syntax errors, to provide readable Fortran output, and to avoid a number of niggling restrictions.
To achieve this goal, a sizable two-pass translator is needed.
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1.3. Notation

In examples and syntax specifications, boldface type is used to indicate literal words and punc-
tuation, such as while. Words in italic type indicate an item in a category, such as an expression. A
construct surrounded by double brackets represents a list of one or more of those items, separated by
commas. Thus, the notation

item
could refer to any of the following:

item
item, item
item, item, item

The reader should have a fmr degree of familiarity with some procedural language. There will
be occasional references to Ratfor and to Fortran which may be ignored if the reader is unfamiliar
with those languages. :
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2. LEXICAL FORM

2.1. Character Set
The following characters are legal in an EFL program:

letters abcdefghijklm
nopqrstuvwxyz

digits 0123456789

white space blank tab

quotes "

sharp #

continuation  _

braces { )

parentheses ()

other . 3 + - s /

= < > &~ | $
Letter case (upper or lower) is ignored except within strings, so ‘a’ and ‘A’ are treated as the same

character. All of the examples below are printed in lower case. An exclamation mark (‘") may be
used in place of a tilde (“’). Square brackets ([’ and ‘) may be used in place of braces (‘{’ and ‘}").

2.2. Lines

EFL is a line-oriented language. Except in special cases (discussed below), the end of a line
marks the end of a token and the end of a statement. The trailing portion of a line may be used for a
comment. There is a mechanism for diverting input from one source file to another, so a single line
in the program may be replaced by a number of lines from the other file. Diagnostic messages are
labeled with the line number of the file on which they are detected.

2.2.1. White Space

Outside of a character string or comment, any sequence of one or more spaces or tab characters
acts as a single space. Such a space terminates a token.

2.2.2. Comments

A comment may appear at the end of any line. It is introduced by a sharp (#) character, and
continues to the end of the line. (A sharp inside of a quoted string does not mark a comment.) The
sharp and succeeding characters on the line are discarded. A blank line is also a comment. Com-
ments have no effect on execution.

2.2.3. Include Files

It is possible to insert the contents of a file at a point in the source text, by referencing it in a
line like

include joe

No statement or comment may follow an include on a line. In effect, the include line is replaced by
the lines in the named file, but diagnostics refer to the line number in the included file. Includes may
be nested at least ten deep. '

2.2.4. Continuation

Lines may be continued explicitly by using the underscore (_) character. If the last character of
a line (after comments and trailing white space have been stripped) is an underscore, the end of line
and the initial blanks on the next line are ignored. Underscores are ignored in other contexts (except
inside of quoted strings). Thus
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1_000_000_
000

equals 10°.

There are also rules for continuing lines automatically: the end of line is ignored whenever it is
obvious that the statement is not complete. To be specific, a statement is continued if the last token
on a line is an operator, comma, left brace, or left parenthesis. (A statement is not continued just
because of unbalanced braces or parentheses.) Some compound statements are also continued
automatically; these points are noted in the sections on executable statements.

2.2.5. Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is possible to write more than one state-
ment on a line. A line consisting only of a semicolon, or a semicolon following a semicolon, forms a
null statement.

2.3. Tokens

A program is made up of a sequence of tokens. Each token is a sequence of characters. A blank
terminates any token other than a quoted string. End of line also terminates a token unless explicit
continuation (see above) is signaled by an underscore.

2.3.1. Identifiers

An identifier is a letter or a letter followed by letters or digits. The following is a list of the
reserved words that have special meaning in EFL. They will be discussed later.

array exit precision
automatic external procedure
break false read

call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit  sizeof
default include static
define initial struct
dimension integer subroutine
do internal  true
double lengthof unti
doubleprecision  logical value

else long while

end next write
equivalence option writebin

The use of these words is discussed below. These words may not be used for any other purpose.

2.3.2. Strings

A character string is a sequence of characters surrounded by quotation marks. If the string is
bounded by single-quote marks ( * ), it may contain double quote marks ( " ), and vice versa. A
quoted string may not be broken across a line boundary.

‘hello there’
"ain’t misbehavin™
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2.3.3. Integer Constants ‘
An integer constant is a sequence of one or more digits.

0
57
123456

2.3.4. Floating Point Constants

A floating point constant contains a dot and/or an exponent field. An exponent field is a letter d
or e followed by an optionally signed integer constant. If / and J are integer constants and E is an
exponent field, then a floating constant has one of the following forms:

J
L
IJ
IE
LE
JE
IJE

2.3.5. Punctuation
Certain characters are used to group or separate objects in the _language. These are
parentheses ()
braces {)
comma ,
semicolon = ;

colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither blank nor continued.

2.3.6. Operators
The EFL operators are written as sequences of one or more non-alphanumeric characters.

+ = 2 [/ =

< <= > >= == "=
& || & |

+= == /= sa=
&&= ||= &= |=
> . 3

A dot (*.) is an operator when it qualifies a structure element name, but not when it acts as a decimal
point in a numeric constant. There is a special mode (see the Atavisms section) in which some of the
operators may be represented by a string consisting of a dot, an identifier, and a dot (e.g., .It. ).

2.4. Macros

EFL has a simple macro substitution facility. An identifier may be defined to be equal to a
string of tokens; whenever that name appears as a token in the program, the string replaces it. A
macro name is given a value in a define statement like

definecount n +=1
Any time the name count appears in the program, it is replaced by the statement

n+=1
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A define statement must appear alone on a line; the form is
define name rest-of-line

Trailing comments are part of the string.
3. PROGRAM FORM

3.1. Files

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or more
procedures. Declarations and options that appear outside of a procedure affect the succeeding pro-
cedures on that file.

3.2. Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has a name by which
it is invoked. (The first procedure invoked during execution, known as the main procedure, has the
null name.) Procedure calls and argument passing are discussed in Section 8.

3.3. Blocks

Statements may be formed into groups inside of a procedure. To describe the scope of names, it
is convenient to introduce the ideas of block and of nesting level. The beginning of a program file is
at nesting level zero. Any options, macro definitions, or variable declarations there are also at level
zero. The text immediately following a procedure statement is at level 1. After the declarations, a left
brace marks the beginning of a new block and increases the nesting level by 1; a right brace drops the
level by 1. (Braces inside declarations do not mark blocks.) (See Section 7.2). An end statement
marks the end of the procedure, level 1, and the return to level 0. A name (variable or macro) that is
defined at level k is defined throughout that block and in all deeper nested levels in which that name
is not redefined or redeclared. Thus, a procedure might look like the following:

# block 0
procedure george
real x

x=2

iftx > 2) a
{ # new block

integer x # a different variable
dox = 1,7
write(,x)
} # end of block
end # end of procedure, return to block 0

3.4. Statements

A statement is terminated by end of line or by a semicolon. Statements are of the following
types:
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Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in Section 10. The include, define, and end statements have been
described above; they may not be followed by another statement on a line. Each procedure begins
with a procedure statements and finishes with an end statement; these are discussed in Section 8.
Declarations describe types and values of variables and procedures. Executable statements cause
specific actions to be taken. A block is an example of an executable statement; it is made up of
declarative and executable statements.

3.5. Labels

An executable statement may have a /abel which may be used in a branch statement. A label is
an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: .fa;t;ll('bad input'f)

4. DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may define objects made
up of variables of basic type; other aggregates may then be defined in terms of previously defined
aggregates. :

4.1. Basic Types

The basic types are
logical
integer
field(m:n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may take on any whole
number value in some machine-dependent range. A field quantity is an integer restricted to a particu-
lar closed interval ([m:n]). A ‘real’ quantity is a floating point approximation to a real or rational
number. A long real is a more precise approximation to a rational. (Real quantities are represented
as single precision floating point numbers; long reals are double precision floating point numbers.) A
complex quantity is an approximation to a complex number, and is represented as a pair of reals. A
character quantity is a fixed-length string of n characters. )

4.2. Constants
There is a notation for a constant of each basic type.
A logical may take on the two values
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true
faise

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus sign, as
in

17

-94

+6

0

A long real (‘double precision’) constant is a floating point constant containing an exponent field that
begins with the letter d. A real (‘single precision’) constant is any other floating point constant. A
real or long real constant may be preceded by a plus or minus sign. The following are valid real con-
stants:

17.3

-4

7.9e-6 (= 7.9x107%)
14¢9 (= 1.4x10'0)

The following are vahd long real constants

7.9d-6 (=7.9x1079)
5d3

A character constant is a quoted string.

- 4.3. Variables

A variable is a quantity with a name and a location. At any particular time the variable may
also have a value. (A variable is said to be undefined before it is initialized or assigned its first value,
and after certain indefinite operations are performed.) Each variable has certain attributes:

4.3.1. Storage Class

The association of a name and a location is either transitory or permanent. Transitory associa-
tion is achieved when arguments are passed to procedures. Other associations are permanent (static).
(A future extension of EFL may include dynamically allocated variables.)

4,3.2. Scope of Names

The names of common areas are global, as are procedure names: these names may be used any-
where in the program. All other names are local to the block in which they are declared.

4.3.3. Precision

Floating point variables are either of normal or long precision. This attribute may be stated
independently of the basic type.

4.4. Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the same type. The
index set is always a cross-product of intervals of integers. The lower and upper bounds of the inter-
vals must be constants for arrays that are local or common. A formal argument array may have inter-
vals that are of length equal to one of the other formal arguments. An element of an array is denoted
by the array name followed by a parenthesized comma-separated list of integer values, each of which
must lie within the corresponding interval. (The intervals may include negative numbers.) Entire
arrays may be passed as procedure arguments or in input/output lists, or they may be initialized; all
other array references must be to individual elements.
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4.5. Structures

It is possible to define new types which are made up of elements of other types. The compound
object is known as a structure; its constituents are called members of the structure. The structure
may be given a name, which acts as a type name in the remaining statements within the scope of its
declaration. The elements of a structure may be of any type (including previously defined structures),
or they may be arrays of such objects. Entire structures may be passed to procedures or be used in
input/output lists; individual elements of structures may be referenced. The uses of structures will be
detailed below. The following structure might represent a symbol table:

struct tableentry
{
character(8) name
integer hashvalue
integer numberofelements
field(0:1) initialized, used, set
field(0:10) type
}

5. EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression may have any of the followmg
forms, recursively applied:

primary

( expression )

unary-operator expression

expression binary-operator expressron

- In the following table of operators, all operators on a line have equal precedence and have higher pre-
cedence than operators on later lines. The meanings of these operators are described in sections 5.3
and 5.4.

-=> .

8

s/ unary + - ++ —
+ -

< <<= > >D= == =
& &&

| 1

$

= T -m = /: 8= &: ‘s &&= I's
Examples of expressions are

a<b && b<c
—{a + sin(x)) / (5+cos(x))ss2

5.1. Primaries
Primaries are the basic elements of expressions, as follows:

5.1.1. Constants
Constants are described in Section 4.2.
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5.1.2. Variables

Scalar variable names are primaries. They may appear on the left or the right side of an assign-
ment. Unqualified names of aggregates (structures or arrays) may only appear as procedure argu-
ments and in input/output lists.

5.1.3. Array Elements

An element of an array is denoted by the array name followed by a parenthesized list of sub-
scripts, one integer value for each declared dimension: '

a(5)
b(6,-3,4)

§5.1.4. Structure Members

A structure name followed by a dot followed by the name of a member of that structure consti-
tutes a reference to that element. If that element is itself a structure, the reference may be further
qualified.

ab
x(3)-y(4).z(5)

5.1.5. Procedure Invocations ’ ‘ N
A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename ( expression ) .
procedurename ( expression-1, ..., expression-n )

The procedurename is either the name of a variable declared external or it is the name of a function
known to the EFL compiler (see Section 8.5), or it is the actual name of a procedure, as it appears in
a procedure statement. If a procedurename is declared external and is an argument of the current
procedure, it is associated with the procedure name passed as actual argument; otherwise it is the
actual name of a procedure. Each expression in the above is called an actual argument. Examples of
procedure invocations are

f(x)
work()
g(x, y+3, 'xx’)

When one of these procedure invocations is to be performed, each of the actual argument expressions
is first evaluated. The types, precisions, and bounds of actual and formal arguments should agree. If
an actual argument is a variable name, array element, or structure member, the called procedure is
permitted to use the corresponding formal argument as the left side of an assignment or in an input
list; otherwise it may only use the value. After the formal and actual arguments are associated, con-
trol is passed to the first executable statement of the procedure. When a return statement is executed
in that procedure, or when control reaches the end statement of that procedure, the function value is
made available as the value of the procedure invocation. The type of the value is determined by the
attributes of the procedurename that are declared or implied in the calling procedure, which must
agree with the attributes declared for the function in its procedure. In the special case of a generic
function, the type of the result is also affected by the type of the argument. See Chapter 8 for details.

5.1.6. Input/Output Expressions

The EFL input/output syntactic forms may be used as integer primaries that have a non-zero
value if an error occurs during the input or output. See Section 7.7.
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5.1.7. Coercions

An expression of one precision or type may be converted to another by an expression of the
form

attributes ( expression )

At present, the only attributes permitted are precision and basic types. Attributes are separated by
white space. An arithmetic value of one type may be coerced to any other arithmetic type; a charac-
ter expression of one length may be coerced to a character expression of another length; logical
expressions may not be coerced to a nonlogical type. As a special case, a quantity of complex or long
complex type may be constructed from two integer or real quantities by passing two expressions
(separated by a comma) in the coercion. Examples and equivalent values are

integer(5.3) = §
long real(5) = 5.0d0
complex(5,3) = 5+3i

Most conversions are done implicitly, since most binary operators permit operands of different arith-
metic types. Explicit coercions are of most use when it is necessary to convert the type of an actual
argument to match that of the corresponding formal parameter in a procedure call.

5.1.8. Sizes
There is a notation which yields the amount of memory required to store a datum or an item of
specified type: .
sizeof ( lefiside )
sizeof ( attributes)

In the first case, lefiside can denote a variable, array, array element, or structure member. The value
of sizeof is an integer, which gives the size in arbitrary units. If the size is needed in terms of the size
of some specific unit, this can be computed by division:

, sizeof(x) / sizeof(integer)
yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof because certain
data types require final padding on some machines. The lengthof operator gives this larger value,
again in arbitrary units. The syntax is .

lengthof ( leftside )
lengthof ( attributes )

5.2. Parentheses

An expression surrounded by parentheses is itself an expression. A parenthesized expression
must be evaluated before an expression of which it is a part is evaluated.

5.3. Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary operator has the
same type as its operand.

5.3.1. Arithmetic
Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator — subtracts one from its
operand. The value of either expression is the result of the addition or subtraction. For these two
operators, the operand must be a scalar, array element, or structure member of arithmetic type. (As a
side effect, the operand value is changed.)
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5.3.2. Logical
The only logical unary operator is complement (*). This operator is defined by the equations
~ true = false
~ false = true

5.4. Binary Operators

Most EFL operators have two operands, separated by the operator. Because the character set
must be limited, some of the operators are denoted by strings of two or three special characters. All
binary operators except exponentiation are left associative.

5.4.1. Arithmetic
The binary arithmetic operators are

+  addition

-  subtraction

» multiplication
/ division

** exponentiation

Exponentiation is right associative: assbssc = ass(bssc) = a®) The operations have the conventional
meanings: 8+2 = 10, 8=2 = 6, 822 = 16, 8/2 = 4, 8222 = 8% = 64.

The type of the result of a binary operation 4 op B is determined by the types of its operands:

Type of B
Type of A integer real long real complex long complex
integer integer real long real complex: long complex
real | real real long real complex long complex
long real long real long real long real long complex long complex
complex . complex complex long complex complex long complex
long complex | long complex long complex long complex long complex long complex

If the type of an operand differs from the type of the result, the calculation is done as if the operand
were first coerced to the type of the result. If both operands are integers, the result is of type integer,
and is computed exactly. (Quotients are truncated toward zero, so 8/3=2.)

5.4.2. Logical
The two binary logical operations in EFL, and and or, are defined by the truth tables:

A B AandB AorB
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of evaluation is specified. The
expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is false and b is not evaluated; oth-
erwise the expression has the value of b. The expression

al|b

is evaluated by first evaluating a; if it is true then the expression is true and b is not evaluated; other-
wise the expression has the value of b. The other forms of the operators (& for and and | for or) do
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not imply an order of evaluation. With the latter operators, the compiler may speed up the code by
evaluating the operands in any order.

5.4.3. Relational Operators
There are six relations between arithmetic quantities. These operators are not associative.

EFL Operator Meaning

< < less than

<= < less than or equal to
== = equal to

~= # not equal to

> >  greater than

>= =  greater than or equal

Since the complex numbers are not ordered, the only relational operators that may take complex
operands are == and ~= . The character collating sequence is not defined.

5.4.4. Assignment Operators
All of the assignment operators are right associative. The simple form of assignment is
basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure member of basic type. This
statement computes the expression on the right side, and stores that value (possibly after coercing the
value to the type of the left side) in the location named by the left side. The value of the assignment
expression is the value assigned to the left side after coercion.

" There is also an assignment operator corresponding to each binary arithmetic and logical opera- -
tor. In each case, a op= b is equivalent to @ = @ op b. (The operator and equal sign must not be
separated by blanks.) Thus, n+=2 adds 2 to n. The location of the left side is evaluated only once.

5.5. Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there is a notation for
dynamic structures,

leftside -> structurename

This expression is a structure with the shape implied by structurename but starting at the location of
lefiside. In effect, this overlays the structure template at the specified location. The lefiside must be a
variable, array, array element, or structure member. The type of the leftside must be one of the types
in the structure declaration. An element of such a structure is denoted in the usual way using the dot
operator. Thus,

place(i) -> st.elt
refers to the elt member of the st structure starting at the i element of the array place.

5.6. Repetition Operator
Inside of a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times equal to the first expression.
Thus,

(3, 3%4, 5)
is equivalent to



PS2:6-14 . The Programming Language EFL

3,4,4,4,9

5.7. Constant Expressions

If an expression is built up out of operators (other than functions) and constants, the value of
the expression is a constant, and may be used anywhere a constant is required.

6. DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects in the EFL
language.

6.1. Syntax

A declaration statement is made up of attributes and variables. Declaration statements are of
two form:

attributes variable-list
attributes { declarations )

In the first case, each name in the variable-list has the specified attributes. In the second, each name
in the declarations also has the specified attributes. A variable name may appear in more than one
variable list, so long as the attributes are not contradictory.: Each name of a nonargument variable
may be accompanied by an initial value specification. The declarations inside the braces are one or
more declaration statements. Examples of declarations are

integer k=2
long real b(7,3)

common(cname)

{

integer i

long real array(5,0:3) x, y
character(7) ch

)

6.2. Attributes

6.2.1. Basic Types
The following are basic types in declarations
logical
integer
field(m:n)
character(k)

real
complex

In the above, the quantities k, m, and n denote integer constant expressions with the properties k>0
and n>m.

6.2.2. Arrays
The dimensionality may be declared by an array attribute
array(b,,...,b,)

Each of the b; may either be a single integer expression or a pair of integer expressions separated by a
colon. The pair of expressions form a lower and an upper bound; the single expression is an upper
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bound with an implied lower bound of 1. The number of dimensions is equal to n, the number of
bounds. All of the integer expressions must be constants. An exception is permitted only if all of the
variables associated with an array declarator are formal arguments of the procedure; in this case, each
bound must have the property that upper -lower +1 is equal to a formal argument of the procedure.
(The compiler has limited ability to simplify expressions, but it will recognize important cases such as
(0:n-1). The upper bound for the last dimension (b,) may be marked by an asterisk ( s ) if the size of
the array is not known. The following are legal array attributes:

array(5)

array(5, 1:5, -3:0)
array(5, »)
array(0:m-1, m)

6.2.3. Structures
A structure declaration is of the form

struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were the name of a type in the rest of its
scope. Each name that appears inside the declarations is a member of the structure, and has a special
meaning when used to qualify any variable declared with the structure type. A name may appear as a
member of any number of structures, and may also be the name of an ordinary variable, since a
structure member name is used only in contexts where the parent type is known. The following are
valid structure attributes

struct xx

{

integer a, b
real x(5)

}

struct { xx z(3); character(S) y }
The last line defines a structure containing an array of three xx’s and a character string.

6.2.4. Precision

Variables of floating point (real or complex) type may be declared to be long to ensure they have
higher precision than ordinary floating point variables. The default precision is short.

6.2.5. Common

Certain objects called common areas have external scope, and may be referenced by any pro-
cedure that has a declaration for the name using a

common ( commonareaname )

attribute. All of the variables declared with a particular common attribute are in the same block; the
order in which they are declared is significant. Declarations for the same block in differing pro-
cedures must have the variables in the same order and with the same types, precision, and shapes,
though not necessarily with the same names.

6.2.6. External

If a name is used as the procedure name in a procedure invocation, it is implicitly declared to
have the external attribute. If a procedure name is to be passed as an argument, it is necessary to
declare it in a statement of the form

external name
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If a name has the external attribute and it is a formal argument of the procedure, then it is associated
with a procedure identifier passed as an actual argument at each call. If the name is not a formal
argument, then that name is the actual name of a procedure, as it appears in the corresponding pro-
cedure statement. ‘

6.3. Variable List

The elements of a variable list in a declaration consist of a name, an optional dimension
specification, and an optional initial value specification. The name follows the usual rules. The
dimension specification is the same form and meaning as the parenthesized list in an array attribute.
The initial value specification is an equal sign (=) followed by a constant expression. If the name is
an array, the right side of the equal sign may be a parenthesized list of constant expressions, or
repeated elements or lists; the total number of elements in the list must not exceed the number of ele-
ments of the array, which are filled in column-major order.

6.4. The Initial Statement
An initial value may also be specified for a simple variable, array, array element, or member of
a structure using a statement of the form
initial var = val

The var may be a variable name, array element specification, or member of structure. The right side
follows the same rules as for an initial value specification in other declaration statements.

7. EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements — otherwise it would not do anything
and would not need to be run. Statements are frequently made up of other statements. Blocks are
' the most obvious case, but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be broken without
an explicit continuation. A square (O) in the syntax represents a point where the end of a line will be
ignored.

7.1. Expression Statements

7.1.1. Subroutine Call
A procedure invocation that returns no value is known as a subroutine call. Such an invocation
is a statement. Examples are

work(in, out)
run()

Input/output statements (see Section 7.7) resemble procedure invocations but do not yield a
value. If an error occurs the program stops.

7.1.2. Assignment Statements

An expression that is a simple assignment (=) or a compound assignment (+= etc.) is a state-
ment:

a=Db
a = sin(x)/6
Xe=y



The Programming Language EFL PS2:6-17

7.2. Blocks

A block is a compound statement that acts as a statement. A block begins with a left brace,
optionally followed by declarations, optionally followed by executable statements, followed by a right
brace. A block may be used anywhere a statement is permitted. A block is not an expression and
does not have a value. An example of a block is

{

integer i  # this variable is unknown outside the braces
big = 0
doi=1,n
if(big < a(i))
big = a(i)

7.3. Test Statements
Test statements permit execution of certain statements conditional on the truth of a predicate.

7.3.1. If Statement
The simplest of the test statements is the if statement, of form

if ( logical-expression ) O statement
The logical expression is evaluated; if it is true, then the statement is executed.

7.3.2. If-Else
A more general statement is of the form

if ( logical-expression ) O statement-1 O else O statement-2

If the expression is true then statement-1 is executed, otherwise statement-2 is executed. Either of the
consequent statements may itself be an if-else so a completely nested test sequence is possible:

if(x<y)
if(a<b)
k=1
else
k=2
else
if(a<b)
m=1
else
m=2
An else applies to the nearest preceding un-elsed if. A more common use is as a sequential test:
if(x==1)
k=1
else if(x==3 | x==5)
k=2
else
k=3

7.3.3. Select Statement
A multiway test on the value of a quantity is succinctly stated as a select statement, which has
the general form :
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select( expression ) O block
Inside the block two special types of labels are recognized. A prefix of the form
case constant :

marks the statement to which control is passed if the expression in the select has a value equal to one
of the case constants. If the expression equals none of these constants, but there is a label default
inside the select, a branch is taken to that point; otherwise the statement following the right brace is
executed. Once execution begins at a case or default label, it continues until the next case or default
is encountered. The else-if example above is better written as

select(x)
(

case 1:
k=1
case 3,5:
k=2
default:
k=3
}

Note that control does not ‘fall through’ to the next case.

7.4. Loops

The loop forms provide the best way of repeating a statement or sequence of operations. The
simplest (while) form is theoretically sufficient, but it is very convenient to have the more general
loops ayailable, since each expresses a mode of control that arises frequently in practice.

7.4.1. While Statement
This construct has the form

while ( logical-expression ) O statement

The expression is evaluated; if it is true, the statement is executed, and then the test is performed
again. If the expression is false, execution proceeds to the next statement.

7.5. For Statement
The for statement is a more elaborate looping construct. It has the form

for ( initial-statement , O logical-expression , O iteration-statement ) O body-statement
Except for the behavior of the next statement (see Section 7.6.3), this construct is equivalent to

initial-statement

while ( logical-expression )
{ .
body-statement
iteration-statement

}

This form is useful for general arithmetic iterations, and for various pointer-type operations. The
sum of the integers from 1 to 100 can be computed by the fragment

n=10
fori=1i<=100,i +=1)
R+=1i

Alternatively, the computation could be done by the single statement



The Programming Language EFL PS2:6-19

for( (n=0; i=1}, i<=100, {n+=i; ++i})

Note that the body of the for loop is a null statement in this case. An example of following a linked
list will be given later.

7.5.1. Repeat Statement
The statement

repeat O statement

executes the statement, then does it again, without any termination test. Obviously, a test inside the
statement is needed to stop the loop.

7.5.2. Repeat...Until Statement
The while loop performs a test before each iteration. The statement

repeat O statement O until ( logical-expression )

executes the statement, then evaluates the logical; if the logical is true the loop is complete; otherwise
control returns to the statement. Thus, the body is always executed at least once. The until refers to
the nearest preceding repeat that has not been paired with an until. In practice, this appears to be the
least frequently used looping construct.

7.5.3. Do Loops

The simple arithmetic progression is a very common one in numerical applications. EFL has a
special loop form for ranging over an ascending arithmetic sequence

do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is executed, then expression-3 is
added to the variable. The loop is repeated until the variable exceeds expression-2. If expression-3
and the preceding comma are omitted, the increment is taken to be 1. The loop above is equivalent
to

t2 = expression-2

t3 = expression-3

for(variable = expression-1 , variable <= t2 , variable += t3)
statement

(The compiler translates EFL do statements into Fortran DO statements, which are in turn usually
compiled into excellent code.) The do variable may not be changed inside of the loop, and
expression-1 must not exceed expression-2. The sum of the first hundred positive integers could be
computed by
n=0
doi=1,100
n+=i

7.6. Branch Statements

Most of the need for branch statements in programs can be averted by using the loop and test
constructs, but there are programs where they are very useful.
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7.6.1. Goto Statement }
The most general, and most dangerous, branching statement is the simple unconditional

goto label

After executing this statement, the next statement performed is the one following the given label.
Inside of a select the case labels of that block may be used as labels, as in the following example:

select(k)

(
case 1:

error(7)
case 2:

k=2

goto case 4
case 3:

k=5

goto case 4
case 4:

fixup(k)

~ goto default

default:

prmsg(“ouch®)
}

(If two select statements are nested, the case labels of -the outer select are not accessible from the
inner one.)

7.6.2. Break Statement

A safer statement is one which transfers control to the statement following the current select or
loop form. A statement of this sort is almost always needed in a repeat loop:

repeat
{

do a computation

if( finished )
break

}

More general forms permit controlling a branch out of more than one construct.
break 3

transfers control to the statement following the third loop and/or select surrounding the statement. It
is possible to specify which type of construct (for, while, repeat, do, or select) is to be counted. The
statement

break while
breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.
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7.6.3. Next Statement

The next statement causes the first surrounding loop statement to go on to the next iteration: the
next operation performed is the test of a while, the iteration-statement of a for, the body of a repeat,
the test of a repeat...until, or the increment of a do. Elaborations similar to those for break are avail-
able:

next

next 3
next 3 for
next for 3

A next statement ignores select statements.

7.6.4. Return

The last statement of a procedure is followed by a return of control to the caller. If it is desired
to effect such a return from any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the function value is specified as an argu-
ment of the statement:

return ( expression )

7.7. Input/Output Statements

EFL has two input statements (read and readbin), two output statements (write and writebin),
and three control statements (endfile, rewind, and backspace). These forms may be used either as a
primary with a integer value or as a statement. If an exception occurs when one of these forms is
used as a statement, the result is undefined but will probably be treated as a fatal error. If they are
used in a context where they return a value, they return zero if no exception occurs. For the input
forms, a negative value indicates end-of-file and a positive value an error. The input/output part of
EFL very strongly reflects the facilities of Fortran.

7.7.1. Input/Output Units

Each I/O statement refers to a ‘unit’, identified by a small positive integer. Two special units
are defined by EFL, the standard input unit and the standard output unit. These particular units are
assumed if no unit is specified in an I/O transmission statement.

The data on the unit are organized into records. These records may be read or written in a fixed
sequence, and each transmission moves an integral number of records. Transmission proceeds from
the first record until the end of file.

7.7.2. Binary Input/Output

The readbin and writebin statements transmit data in a machme-dependent but swift manner.
The statements are of the form

writebin( unit , binary-output-list )
readbin( unit , binary-input-list )

Each statement moves one unformatted record between storage and the device. The unit is an
integer expression. A binary-output-list is an iolist (see below) without any format specifiers. A
binary-input-list is an iolist without format specifiers in which each of the expressions is a variable
name, array element, or structure member.
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7.7.3. Formatted Input/Output

The read and write statements transmit data in the form of lines of characters. Each statement
moves one or more records (lines). Numbers are translated into decimal notation. The exact form of
the lines is determined by format specifications, whether provided explicitly in the statement or
implicitly. The syntax of the statements is

write( unit , formatted-output-list )
read( unit , formatted-input-list )

The lists are of the same form as for binary I/O, except that the lists may include format
specifications. If the uniz¢ is omitted, the standard input or output unit is used.

7.74. Iolists

An iolist specifies a set of values to be written or a set of variables into which values are to be
read. An iolist is a list of one or more ioexpressions of the form

expression

{ iolist }

do-specification { iolist }
For formatted I/O, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in the braces are
transmitted repeatedly until the do execution is complete.

7.7.5. Formats .

The following are permissible format-specifiers. The quantities w, d, and k must be integer con-
stant expressions.

i(w) integer with w digits
f(w,d) floating point number of w characters,
d of them to the right of the decimal point.
e(w,d) floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked with the letter e
I(w) logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively
c character string of width equal to the length of the datum
c(w) character string of width w
s(k) skip k lines
x(k) skip k spaces
" .. " use the characters inside the string as a Fortran format

If no format is specified for an item in a formatted input/output statement, a default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a sequence of ele-
ments, each with its own format. The elements are transmitted in column-major order, the same
order used for array initializations. '

7.7.6. Manipulation statements
The three input/output statements
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backspace(unit)
rewind(unit)
endfile(unit)

look like ordinary procedure calls, but may be used either as statements or as integer expressions
which yield non-zero if an error is detected. backspace causes the specified unit to back up, so that
the next read will re-read the previous record, and the next write will over-write it. rewind moves the
device to its beginning, so that the next input statement will read the first record. endfile causes the
file to be marked so that the record most recently written will be the last record on the file, and any
attempt to read past is an error. :

8. PROCEDURES

Procedures are the basic unit of an EFL program, and provide the means of segmenting a pro-
gram into separately compilable and named parts.

8.1. Procedure Statement
Each procedure begins with a statement of one of the forms

procedure

attributes procedure procedurename

attributes procedure procedurename ()
attributes procedure procedurename ( name )

The first case specifies the main procedure, where execution begins. In the two other cases, the attri-
butes may specify precision and type, or they may be omitted entirely. The precision and type of the
procedure may be declared in an ordinary declaration statement. If no type is declared, then the pro-
cedure is called a subroutine and no value may be returned for it. Otherwise, the procedure is a func-
tion and a value of the declared type is returned for each call. Each name inside the parentheses in
the last form above is called a formal argument of the procedure.

8.2. End Statement
Each procedure terminates with a statement

end

8.3. Argument Association

When a procedure is invoked, the actual arguments are evaluated. If an actual argument is the
name of a variable, an array element, or a structure member, that entity becomes associated with the
formal argument, and the procedure may reference the values in the object, and assign to it. Other-
wise, the value of the actual is associated with the formal argument, but the procedure may not
attempt to change the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is not permitted that the
corresponding actual argument be associated with another formal argument or with a common ele-
ment that is referenced in the procedure.

8.4. Execution and Return Values

After actual and formal arguments have been associated, control passes to the first executable
statement of the procedure. Control returns to the invoker either when the end statement of the pro-
cedure is reached or when a return statement is executed. If the procedure is a function (has a
declared type), and a return(value) is executed, the value is coerced to the correct type and precision
and returned.
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8.5. Known Functions

A number of functions are known to EFL, and need not be declared. The compiler knows the
types of these functions. Some of them are generic; i.e., they name a family of functions that differ in
the types of their arguments and return values. The compiler chooses which element of the set to
invoke based upon the attributes of the actual arguments.

8.5.1. Minimum and Maximum Functions

The generic functions are min and max. The min calls return the value of their smallest argu-
ment; the max calls return the value of their largest argument. These are the only functions that may
take different numbers of arguments in different calls. If any of the arguments are long real then the
result is long real. Otherwise, if any of the arguments are real then the resuit is real; otherwise all the
arguments and the result must be integer. Examples are

min(5, x, ~3.20)
max(i, z)

8.5.2. Absolute Value

The abs function is a generic function that returns the magnitude of its argument. For integer
and real arguments the type of the result is identical to the type of the argument; for complex argu-
ments the type of the result is the real of the same precision.

8.5.3. Elementary Functions

The following generic functions take arguments of real, long real, or complex type and return a
result of the same type:

sin sine function

cos cosine function

exp exponential function (e*).
log natural (base ¢) logarithm
logl0 common (base 10) logarithm
sqrt  square root function (Vx ).

In addition, the following functions accept only real or long real arguments:

atan  atan(x)=tan"!x
atan2 atan 2(x,y)=tan"-if—

8.5.4. Other Generic Functions

The sign functions takes two arguments of identical type; sign(x,y) = sgn(¥)|x |. The meod
function yields the remainder of its first argument when divided by its second. These functions
accept integer and real arguments.

9. ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old Fortran or Rat-
for programs to EFL.

9.1. Escape Lines

In order to make use of nonstandard features of the local Fortran compiler, it is occasionally
necessary to pass a particular line through to the EFL compiler output. A line that begins with a per-
cent sign (‘%’) is copied through to the output, with the percent sign removed but no other change.
Inside of a procedure, each escape line is treated as an executable statement. If a sequence of lines
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constitute a continued Fortran statement, they should be enclosed in braces.

9.2. Call Statement
A subroutine call may be preceded by the keyword call. .

call joe
call work(17)

9.3. Obsolete Keywords
The following keywords are recognized as synonyms of EFL keywords:

Fortran EFL
double precision long real
function procedure
subroutine procedure (untyped)

9.4. Numeric Labels

Standard statement labels are identifiers. A numeric (positive integer constant) label is also per-
mitted; the colon is optional following a numeric label.

&

9.5. Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives a warning and
assumes a declaration for it. If it is used in the context of a procedure invocation, it is assumed to be
a procedure name; otherwise it is assumed to be a local variable defined at nesting level 1 in the
current procedure. The assumed type is determined by the first letter of the name. The association
of letters and types may be given in an implicit statement, with syntax

implicit ( letter-list ) type

where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus sign). If
no implicit statement appears, the following rules are assumed:

implicit (a-h, 0-z) real
implicit (i-n) integer

9.6. Computed goto

Fortran contains an indexed multi-way branch; this facility may be used in EFL by the com-
puted GOTO:

goto ( label ), expression

The expression must be of type integer and be positive but be no larger than the number of labels in
the list. Control is passed to the statement marked by the label whose position in the list is equal to
the expression. -

9.7. Go To Statement

In unconditional and computed goto statements, it is permissible to separate the go and to
words, as in

20 to xyz
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9.8. Dot Names

Fortran uses a restricted character set, and represents certain operators by multi-character
sequences. There is an option (dots=on; see Section 10.2) which forces the compiler to recognize the
forms in the second column below: .

< Jdt.
<= Je.
>
>

= .ge.

2
]
B
®
H

g“"ﬁp
i .
B

.oror.
.not.
true.
false .false.

g‘:

In this mode, no structure element may be named It, le, etc. The readable forms in the left column
are always recognized. ’

&

9.9. Complex Constants
A complex constant may be written as a parenthesized list of real’ quantities, such as
(1.5, 3.0) '
The preferred _notatiqn’ is by a type coercion,
| complex(1.5, 3.0)

9.10. Function Values

The preferred way to return a value from a function in EFL is the return(value) construct.
However, the name of the function acts as a variable to which values may be assigned; an ordinary
return statement returns the last value assigned to that name as the function value.

9.11. Equivalence
A statement of the form

equivalence vy, vy, ..., v,

declares that each of the v; starts at the same memory location. Each of the v; may be a variable
name, array element name, or structure member.

9.12. Minimum and Maximum Functions

There are a number of non-generic functions in this category, which differ in the required types
of the arguments and the type of the return value. They may also have variable numbers of argu-
ments, but all the arguments must have the same type.
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Function Argument Type Result Type
aminQ integer real
aminl real real
min0 integer integer
minl real integer
dminl long real long real
amax(0 integer real
amaxl real real
max0 integer integer
max1 real integer
dmax1 long real long real

10. COMPILER OPTIONS

PS2:6-27

A number of options can be used to control the output and to tailor it for various compilers and

systems. The defaults chosen are conservative, but it is sometimes necessary to change the output to
match peculiarities of the target environment.

Options are set with statements of the form
option opt
where each opt is of one of the forms

optionname
optionname = optionvalue

The optionvalue is either a constant (numeric or string) or a name assocxatcd w1th that optlon The
two names yes and no apply to a number of options.

10.1. Default Options

Each option has a default setting. It is possiole to change the whole set of defaults to those
appropriate for a particular environment by using the system option. At present, the only valid
values are system=unix and system=gcos.

10.2. Input Language Options

The dots option determines whether the compiler recognizes .It. and similar forms. The default
setting is no.

10.3. Input/Output Error Handling

The ioerror option can be given three values: none means that none of the I/O statements may
be used in expressions, since there is no way to detect errors. The implementation of the ibm form
uses ERR= and END= clauses. The implementation of the fortran77 form uses IOSTAT= clauses.

10.4. Continuation Conventions

By default, continued Fortran statements are indicated by a character in column 6 (Standard
Fortran). The option continue=columnl puts an ampersand (&) in the first column of the continued
lines instead.

10.5. Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a default is pro-
vided. The default formats can be changed by setting certain options
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Option Type
iformat integer
rformat real
dformat  long real
zformat complex
zdformat long complex
lformat logical

The associated value must be a Fortran format, such as
option rformat=122.6

10.6. Alignments and Sizes

In order to implement character variables, structures, and the sizeof and lengthof operators, it is
necessary to know how much space various Fortran data types require, and what boundary alignment
properties they demand. The relevant options are

Fortran Type Size Option Alignment Option

integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical Isize lalign

The sizes are given in terms of an arbitrary unit; the alignment is given in the same units. The
option charperint gives the number of characters per integer variable.

10.7. Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output units. The
default values are ftnin=5 and ftnout=6.

10.8. Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the value of the proc-
header option.

No Hollerith strings will be passed as subroutine arguments if hollincall=no is specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is possible to change
the increment value by using the deltastno option.

11. EXAMPLES

In order to show the flavor or programming in EFL, we present a few examples. They are short,
but show some of the convenience of the language.

11.1. File Copying

The following short program copies the standard input to the standard output, provided that the
input is a formatted file containing lines no longer than a hundred characters.
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procedure # main program
character(100) line

while( read( , iine) == ()
write( , line)
end

Since read returns zero until the end of file (or a read error), this program keeps reading and writing
until the input is exhausted.

11.2. Matrix Multiplication

The following procedure multiplies the 7 xn matrix a by the n xp matrix b to give the m xp
matrix c. The calculation obeys the formula ¢;; = Dai by;.

procedure matmuli(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)
doi=1m
doj=1p
{
o(iyj) = 0
dok = 1,n
} c(i,j) += a(i,k) » b(k,j)

end

11.3. Searching a Linked List

Assume we have a list of pairs of numbers (x,y). The list is stored as a linked list sorted in
ascending order of x values. The following procedure searches this list for a particular value of x
and returns the corresponding y value.

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

# list is an array of structures.
# Each structure contains a thread index value, an x, and a y value.
struct

{

integer nextindex
integer x, y
} list(s)

integer first, p, arg

for(p = first , p~=LAST && list(p).x<=x, p = list(p).nextindex)
if(list(p).x == x)
return( list(p).y )

return{(NOTFOUND)
end

The search is a single for loop that begins with the head of the list and examines items until either the
list is exhausted (p==LAST) or until it is known that the specified value is not on the list (list(p).x >
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x). The two tests in the conjunction must be performed in the specified order to avoid using an
invalid subscript in the list(p) reference. Therefore, the && operator is used. The next element in the
chain is found by the iteration statement p=list(p).nextindex.

11.4. Waiking a Tree

As an example of a more complicated problem, let us imagine we have an expression tree stored
in a common area, and that we want to print out an infix form of the tree. Each node is either a leaf
(containing a numeric value) or it is a binary operator, pointing to a left and a right descendant. In a
recursive language, such a tree walk would be implement by the following simple pseudocode:

if this node is a leaf
print its value
otherwise _
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep track of the
current state of the computation. The following procedure calls a procedure outch to print a single
character and a procedure outval to print a value.

procedure walk(first) # print out an expression tree

integer first # index of root node
integer currentnode :
integer stackdepth
common(nodes) struct
' {

character(1) op

integer leftp, rightp

real val

} tree(100) # array of structures
struct

(

integer nextstate

integer nodep

} stackframe(100)
define NODE tree(currentnode)
define STACK stackframe(stackdepth)
# nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

# initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep = first
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while( stackdepth > 0)
{
currentnode = STACK.nodep
select(STACK.nextstate)

(
case DOWN:
if(NODE.op == " ") # a leaf

{
outval( NODE.val )
stackdepth -= 1
)

else { # a binary operator node
outch( "(" )
STACK.nextstate = LEFT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODKE.leftp

}

case LEFT:
outch( NODE.op )
STACK.nextstate = RIGHT
stackdepth +=1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT: -
outch( )" )
stackdepth -= 1

)

end

12. PORTABILITY

One of the major goals of the EFL language is to make it easy to write portable programs. The
output of the EFL compiler is intended to be acceptable to any Standard Fortran compiler (unless the
fortran77 option is specified).

12.1. Primitives
Certain EFL operations cannot be implemented in portable Fortran, so a few machine-
dependent procedures must be provided in each environment.

12.1.1. Character String Copying

The subroutine eflasc is called to copy one character string to another. If the target string is
shorter than the source, the final characters are not copied. If the target string is longer, its end is
padded with blanks. The calling sequence is

subroutine eflasc(a, la, b, 1b)
integer a(s), la, b(s), Ib

and it must copy the first Ib characters from b to the first la characters of a.
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12.1.2. Character String Comparisons
The function eflcme is invoked to determine the order of two character strings. The declaration
is
integer function eflcmc(a, la, b, 1b)
integer a(+), la, b(s), Ib

The function returns a negative value if the string a of length la precedes the string b of length 1b. It
returns zero if the strings are equal, and a positive value otherwise. If the strings are of differing
length, the comparison is carried out as if the end of the shorter string were padded with blanks.
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APPENDIX A. Relation Between EFL and Ratfor

There are a number of differences between Ratfor and EFL, since EFL is a defined language
while Ratfor is the union of the special control structures and the language accepted by the underlying
Fortran compiler. Ratfor running over Standard Fortran is almost a subset of EFL. Most of the
features described in the Atavisms section are present to ease the conversion of Ratfor programs to
EFL.

There are a few incompatibilities: The syntax of the for statement is slightly different in the two
languages: the three clauses are separated by semicolons in Ratfor, but by commas in EFL. (The ini-
tial and iteration statements may be compound statements in EFL because of this change). The
input/output syntax is quite different in the two languages, and there is no FORMAT statement in
EFL. There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored declaration syntax, block structure,
assignment and sequential test operators, generic functions, and data structures. EFL permits more
general forms for expressions, and provides a more uniform syntax. (One need not worry about the
Fortran/Ratfor restrictions on subscript or DO expression forms, for example.)

APPENDIX B. COMPILER

B.1. Current Version

The current version of the EFL compiler is a two-pass translator written in portable C. It
implements all of the features of the language described above except for long complex numbers. Ver-
sions of this compiler run under the and UNIXt operating systems.

B.2. Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and file name (if known) on
which the error was detected. Warnings are given for variables that are used but not explicitly
declared.

B.3. Quality of Fortran Produced

The Fortran produced by EFL i< quite clean and readable. To the extent possible, the variable
names that appear in the EFL program are used in the Fortran code. The bodies of loops and test
constructs are indented. Statement numbers are consecutive. Few unneeded GOTO and CON-
TINUE statements are used. It is considered a compiler bug if incorrect Fortran is produced (except
for escaped lines). The following is the Fortran procedure produced by the EFL compiler for the
matrix multiplication example (Section 11.2):

subroutine matmul(a, b, ¢, m, n, p)
integer m, n, p

double precision a(m, n), b(n, p), c(m, p)
integer i, j, k

do 3i=1m

do 2 j = 19 P
ci, j)=10
do 1k=1n
c(i, j) = c(i, j+a(i, k)*bk, j)
1 continue
2 continue
3 continue
: end

The following is the procedure for the tree walk (Section 11.4):

t UNIX is a trademark of AT&T Bell Laboratories.
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subroutine walk(first)
integer first
common /nodes/ tree
integer tree(4, 100)
real treei(4, 100)
integer staame(2, 100), stapth, curode
integer comsti(l)
equivalence (tree(1,1), treel(1,1))
data constl(1)/4h /
print out an expression tree
index of root node
array of structures
nextstate values
initialize stack with root node
stapth = 1
staame(1, stapth) = 1
staame(2, stapth) = first
1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)

060060606

goto 7
2 if (tree(1, curode) .ne. constl(1)) goto 3
call outval(treel(4, curode))
c a leaf
stapth = stapth-1
gote 4
3 call outch(1h(

[c]

a binary operator node
staame(l, stapth) = 2
stapth = stapth+1
staame(l, stapth) = 1
staame(2, stapth) = tree(2, curode)
4 goto 8
5 call outch(tree(1, curode))
staame(1, stapth) = 3
stapth = stapth+1
staame(1, stapth) = 1
staame(2, stapth) = tree(3, curode)

goto 8
6 call outch(1h))
stapth = stapth-1
goto 8
7 if (staame(1, stapth) .eq. 3) goto 6

if (staame(l, stapth) .eq. 2) goto 5
if (staame(l, stapth) .eq. 1) goto 2
8 continue
goto 1
9 continue
end

A}

APPENDIX C. CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE

Although Fortran can be used to simulate any finite computation, there are realistic limits on
the generality of a language that can be translated into Fortran. The design of EFL was constrained
-by the implementation strategy. Certain of the restrictions are petty (six character external names),
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but others are sweeping (lack of pointer varlables) The following paragraphs describe the major limi-
tations imposed by Fortran.

C.1. External Names

External names (procedure and COMMON block names) must be no longer than six characters
in Fortran. Further, an external name is global to the entire program. Therefore, EFL can support
block structure within a procedure, but it can have only one level of external name if the EFL pro-
cedures are to be compilable separately, as are Fortran procedures.

C.2. Procedure Interface

The Fortran standards, in effect, permit arguments to be passed between Fortran procedures
either by reference or by copy-in/copy-out. This indeterminacy of specification shows through into
EFL. A program that depends on the method of argument transmission is illegal in either language.

There are no procedure-valued variables in Fortran: a procedure name may only be passed as an
argument or be invoked; it cannot be stored. Fortran (and EFL) would be noticeably simpler if a pro-
cedure variable mechanism were available.

C.3. Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type. The implementa-
tion of the compiler would have been far easier if certain hard cases could have been handled by
pointers. Further, the language could have been simplified considerably if pointers were accessible in
Fortran. (There are several ways of simulating pointers by using subscripts, but they founder on the
problems of external variables and initialization.)

C.4. Recursion

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to be
recursive. (Recursive procedures with arguments can be simulated only with great pain.)

C.5. Storage Allocation

The definition of Fortran does not specify the lifetime of variables. It would be possible but
cumbersome to implement stack or heap storage disciplines by using COMMON blocks.
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1. Background

FP stands for a Functional Programming language. Functional programs deal with func-
tions instead of values. There is no explicit representation of state, there are no assignment
statments, and hence, no variables. Owing to the lack of state, FP functions are free from
side-effects; so we say the FP is applicative.

All functions take one argument and they are evaluated using the single FP operation,
application (the colon *:’ is the apply operator). For example, we read +:<3 4> as “apply
the function ’+’ to its argument <3 4>,

Functional programs express a functional-level combination of their components instead
of describing state changes using value-oriented expressions. For example, we write the func-
tion returning the sin of the cos of its input, i.e., sin(cos(x)), as: sin@ cos. This is a func-
tional expression, consisting of the single combining form called compose @’ is the compose
operator) and its functional arguments sin and cos.

All combining forms take functions as arguments and return functions as results; func-
tions may either be applied, e.g., sin@cos:3, or used as a functional argument in another
functional expression, e.g., tan @ sin @ cos.

As we have seen, FP’s combining forms allow us to express control abstractions without
the use of variables. The apply to all functional form (&) is another case in point. The func-
tion '& exp’ exponentiates all the elements of its argument:

&exp : <1.0 2.0> = <2.718 7.389> . (1.1)

In (1.1) there are no induction variables, nor a loop bounds specification. Moreover, the code
is useful for any size argument, so long as the sub-elements of its argument conform to the
domain of the exp function.

We must change our view of the programming process to adapt to the functional style.
Instead of writing down a set of steps that manipulate and assign values, we compose func-
tional expressions using the higher-level functional forms. For example, the function that
adds a scalar to all eloments of a vector will be written in two steps. First, the function that
distributes the scalar amongst each element of the vector:

distl : <3 <4 6>> = <<3 4> <3 6>> (1.2)
Next, the function that adds the pairs of elements that make up a sequence:

&+ <<I3 > <36>>=<7 9> (1.3)

In a value-oriented programming language the computation would be expressed as:
&+ : distl : <3 <4 6>>, (1.4)

which means to apply 'distl’ to the input and then to apply ’+’ to every element of the result.
In FP we write (1.4) as:

&+ @ distl : <3 <4 6>>. (1.5)

The functional expression of (1.5) replaces the two step value expression of (1.4).

Often, functional expressions are built from the inside out, as in LISP. In the next
example we derive a function that scales then shifts a vector, i.e., for scalars @, b and a vec-
tor v, compute @ + bv. This FP function will have three arguments, namely @, & and V. Of
course, FP does not use formal parameter names, so they will be designated by the function
symbols 1, 2, 3. The first code segment scales v by b (defintions are delimited with curly
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braces *{}’):

(scaleVec &» @ distl @ [2,3]} (1.6)
The code segment in (1.5) shifts the vector. The completed function is:

{changeVec &+ @ distl @ [1, scaleVec]} (1.7)

In the derivation of the program we wrote from right to left, first doing the dist/’s and
then composing with the apply-to-all functional form. Using an imperative language, such as
Pascal, we would write the program from the outside in, writing the loop before inserting the
arithmetic operators.

Although FP encourages a recursive programming style, it provides combining forms to
avoid explicit recursion. For example, the right insert combining form (!) can be used to
write a function that adds up a list of numbers:

I+:<123>=6 : (1.8)
The equivalent, recursive function is much longer:
{addNumbers (null -> %0 ; + @ [1, addNumbers @ tl])} : - (1.9)

The generality of the combining forms encourages hierarchical program development.
Unlike APL, which restricts the use of combining forms to certain builtin functions, FP
allows combining forms to take any functional expression as an argument.
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2. System Description

2.1. Objects

The set of objects Q consists of the atoms and sequences <x,, X, ..., x> (where the
x;€9). (Lisp users should note the similarity to the list structure syntax, just replace the
parenthesis by angle brackets and commas by blanks. There are no ’quoted’ objects, i.e., "abc).
The atoms uniquely determine the set of valid objects and consist of the numbers (of the type
found in FRANZ LISP [Fod80]), quoted ascii strings ("abcd”), and unquoted alphanumeric
strings (abc3). There are three predefined atoms, T and F, that correspond to the logical
values ’true’ and ’false’, and the undefined atom ?, bottom. Bottom denotes the value
returned as the result of an undefined operation, e.g., division by zero. The empty sequence,
<> is also an atom. The following are examples of valid FP objects:

? 1.47 3888888888888
ab "CD" <l1,<2,3>>
<> T <a,<>>

There is one restriction on object construction: no object may contain the undefined atom,
such an object is itself undefined, e.g., <1,”’> = ?. This property is the so-called “bottom
preserving property” [Ba78]. ' ' ‘

2.2. Application

This is the single FP operation and is designated by the colon (":"). For a function ¢
and an object x, o:x is an application and its meaning is the object thut results from apply-
ing o to x (i.e., evaluating o(x)). We say that ¢ is the operator and that x is the operand.
The following are examples of applications:

+:<7,8> 15 th<l1,2,3>

= <2,3>
l1:<abcd> = a 2:<a,b,c,d>

o
S

2.3. Functions

All functions (F) map objects into objects, moreover, they are strict:
:?2=2, \/ o€F 2.1

To formally characterize the primitive functions, we use a modification of McCarthy’s condi-
tional expressions [Mc60]:

PrL=>€1;" " ;Dn => € ;€hy (2.2)
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This statement is interpreted as follows: return function

y oo

assumed that x, x;, y, y;, z; €Q.

2.3.1. Structural

Selector Functions
For a nonzero integer u,

pIX =
X=<X, X2 ..o, k> A0 < Sk = x,
X=<X, X2 .-y Xk> A —KSp<0 = Xy ?

pick : <n x> =
X=<X|, X2 ..., Xk>A0<n <k = Xx,;
X=<®, X2 - o, Xk> A -kSN<0 = X onit; ?

The user should note that the function symbols 1,2,3,..
atoms 1,2,3,....

last: x =
X=<> = <>
X=<X{, X3 ..., Xg> A k21 = xi;?

first : x =
X=<> = <>
X=<X[, X3 ..., Xg> A k21 = x;?

Tail Functions

tl: x =

X=<X|> —» <> ;

X=<X [, X2 oo, XS AKZ 2> <x3, ..., >
tlr: x =

X=<X1> = <>,
X=<X13 X2 oo, Xk A2 2 > <xy, ..., X_1>5?

PS2:7-7

e, if the predicate ’p,” is true

, e, if 'p,’ is true. If none of the predicates are satisfied then default to e,,;. It is

. are to be distinguished from the

Note: There is also a function front that is equivalent to tir.
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Distribute from left and right

distl : x =
X=<Y,<>> - <>
X=<Y,<Z1y 22 -« 5 ZgDD> = K<Y, 213,00, <V, 2 >>; 7

distr: x =
X=<<>,)> —-» <>}
X=<KY 1, V2 v v oy VDHZD> = <<Y 1,230, <Vi,Z2>>; ?

Identity

id:x=x

out: x =X

Out is similar to id. Like id it returns its argument as the result, unlike id it prints its
result on stdout - It is the only function with a side effect. Out is intended to be used for
debugging only.

*
Append left and right
apndl : x =

X=<P,<>> - <Y>;

X=<Y,<Z1,22 ..., Zkx>> = <Y,21,23 ..., Zx> 7
apndr : x =

X=<<>,2> = <Z>;

X=K<Y 1, V2 oo es VEHZD> = <V 13 V2 oo o5 Vies 237
Transpose
trans ! X =

X =<<>,...,<>> -» <>]

X=X, X2 e v vs Xg> = <Ypy .- Ym>3 ?

where x; = <Xy, ..., Xim> R Yj = <Xyj, .. ., Xkj>,

I<i<k, 1<jsm.

reverse ; X =
X=<> -
X=Xy X2 o ooy Xg> = <X, ..., X1>} 2
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Rotate Left and Right

rotl : x =
X=<> =» <>} X=<X|> = <X|>;
X=<X1, X2 ooy Xg> AK22 = <X, ..., X X1>5 ?
rotr :x =
X=<> =» <> X =<X > = <X >}
X=<X|y, X2, -« ., Xg> AK22 = <Xp, Xy, - o, Xi=2s Xkc—1>3 7
concat : x =
X=<<X], -+ XX - - X2 eyl - S XmpS> Ak, MmN, p >0
2 SRS 776 7T 7 S A N o

Concatenate removes all occurrences of the null sequence:

concat : <<1,3>,<>,<2,4>,<>,<5>> = <1,3,2,4,5> 2.3)

pair : x =

X=<X1, X2 ..., Xk> Ak>0 A k is even = <<x,X3>, ..., <Xp_1,.Xk>>

X=<X1,X2 ..., Xk> AKk>0 Ak is odd - <<x,x3>, . ..,<x,>>;?
split : x =

X=<X|> = <<X|>,<>>;

X=<X|, X2, ... Xg> AR>S = <<Xy, 0L X[k21><X (k21400 - - -0 X5
iota :x =

x=0 = <>;

xeN* - <1,2,....x>; ?

2.3.2. Predicate (Test) Functions
atom : x = x eatoms - T, x#?- F;?

eq: X =X =<y,z2>pAy=z » T x=<y,z>py#z-F;?

Also less than (<), greater than (>), greater than or equal (>=), less than or equal (<=),
not equal ("=); =’ is a synonym for eq.

nll . x =x=<>->T,;x#? > F;?
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length: x =x = <x|, X3, ..., %4> = k; Xx=<>=0;?

2.3.3. Arithmetic/Logical

+.X =X=<y,2> A Y,z are numbers - y+z;?

-:1X = X=<y,Z2> A Y,z are numbers - y-z;?

*:X =X=<y,2> A Y,z are numbers = yxz;? |:x =Xx=<y,z> A Y,z are numbers ) z#
0— y+z, ?

And, or, not, xor

and :<x,y>=x=T->y;x=F->F;?

or :<x,y>=x=F-=>y;x=T->T,?

X0r : <Xx,y> =
X=TAy=T—=>F;x=Fpy=F->F,
x=TAy=F->T;x=Fpry=T->T,;?

not . x =x=T—>F;x=F->T,?
2.3.4. Library Routines

sin : X = x is a number — sin(x); ?

asin: x = x isanumber A | x| <1 = sin~!(x); ?
cos : x = x is a number — cos(x); ?

acos: x = x isanumber A |x| <1 = cos™!(x); ?
exp : x = x is a number —» % ?

log : x = x is a positive number — /n(x); ?

mod : <x,y> = x and y are numbers —» x -yXI-;%];?

2.4. Functional Forms

Functional forms define new functions by operating on function and object parameters
of the form. The resultant expressions can be compared and contrasted to the value-oriented
expressions of traditional programming languages. The distinction lies in the domain of the
operators; functional forms manipulate functions, while traditional operators manipulate
values.

One functional form is composition. For two functions ¢ and y the form ¢ @ y denotes
their composition ¢ » y:

@@¥):x=¢:(¥x), 7 xeQ (2.4)

The constant function takes an object parameter:
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%xy=y=?-=>2,x, Y x,y €@ 2.5

The function %? always returns ?. A
In the following description of the functional forms, we assume that £, §;, o, 0;, 7, and 1;

are functions and that x, x;, y are objects.
Composition

(e @ 7):x = oi(mix)

Construction
[on, .. .,00):Xx = <01:X,.c.,0p:X>
Note that construction is also bottom-preserving, e.g.,

[+,/]:<3,0> = <3,?> = ? (2.6)

Condition

E>a1)x="
(£:x)=T -» o:x;
(¢:x)=F = r:x; ?

The reader should be aware of the distinction between functional expressions, in the
variant of McCarthy’s conditional expression, and the functional form introduced here. In the
former case the result is a value, while in the latter case the result is a function. Unlike
Backus’ FP, the conditional form must be enclosed in parenthesis, e.g.,

(isNegative -> - @ [%0,id] ; id) 2.7

Constant

%x:y =y=? = 2;x, 7 xeQ
This function returns its object parameter as its result.

Right Insert

lo:x =
X=<> = e,-:x;
X=<X|> == X,

X=<X |, X2 - ooy Xg> AK>2 = a1<Xy, loi<Xy, ..., Xe>>3 2

e.g., !+:<4,5,6>=15.
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If o has a right identity element e, then lo:<> = ¢/, e.g.,

1+:<>=0and {*:<>=1 (2.8)

Currently, identity functions are defined for + (0), - (0), * (1), / (1), also for and (T), or (F),
xor (F). All other unit functions default to bottom (?).

Tree Insert
Jo:x =
X=2<> = Ef:x;
X=<X1> =-» X,

X=<X, X2, ..., Xk> A k> =
o:<|or<xy .. X[k21> 5 | O <Xkp2leb - XD
€.8.,
|+:<4,5,6,7>‘ = +:<+:<4,5>,+:<6,7>> = 15 2.9)

Tree insert uses the same identity functions as right insert.
Apply to All
& x =

X=<> —-»<>; ‘
X=<X]y X2 ooy Xg> > <Xy, ..., OX>; 7

While

(while £ g):x =
£x =T —» (while £ ¢):(o:x);

Ex=F —»x;?

2.5. User Defined Functions
An FP definition is entered as follows:

{fn-name fn-form), ' (2.10)

where fn-name is an ascii string consisting of letters, numbers and the underline symbol, and
Jfn-form is any valid functional form, including a single primitive or defined function. For
example the function

{factorial I* @ iota) ' (2.11)
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is the non-recursive definition of the factorial function. Since FP systems are applica-
tive it is permissible to substitute the actual definition of a function for any reference to it in
a functional form:if f = l@2then f :x = 1@2:x, VW xeQ.

References to undefined functions bottom out:

fix=?\/ xeQ, f&F (2.12)
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3. Getting on and off the System

Startup FP from the shell by entering the command:

/usr/local/fp.

The system will prompt you for input by indenting over six character positions. Exit
from FP (back to the shell) with a control/D (°D).

3.1. Comments

A user may end any line (including a command) with a comment; the comment charac-
ter is *#’. The interpreter will ignore any character after the °# until it encounters a newline
character or end-of-file, whichever comes first.

3.2. Breaks

Breaks interrupt any work in progress causing the system to do a FRANZ reset before
returning control back to the user.

3.3. Non-Termination

LISP’s namestack may, on occasion, overflow. FP responds by printing ‘“non-
terminating” and returning bottom as the result of the application. It does a FRANZ reset
before returning control to the user.

4. System Commands : .

System commands start with a right parenthesis and they are followed by the
command-name and possibly one or more arguments. All this information must be typed on
a single line, and any number of spaces or tabs may be used to separate the components.

4.1. Load

Redirect the standard input to the file named by the command’s argument. If the file
doesn’t exist then FP appends ’.fp’ to the file-name and retries the open (error if the file
doesn’t exist). This command allows the user to read in FP function definitions from a file.
The user can also read in applications, but such operation is of little utility since none of the
input is echoed at the terminal. Normally, FP returns control to the user on an end-of-file. It
will also do so whenever it does a FRANZ reset, e.g., whenever the user issues a break, or
whenever the system encounters a non-terminating application.

4.2. Save
Output the source text for all user-defined functions to the file named by the argument.

4.3. Csave and Fsave

These commands output the lisp code for all the user-defined functions, including the
original source-code, to the file named by the argument. Csave pretty prints the code, Fsave
does not. Unless the user wishes to examine the code, he should use ’fsave’; it is about ten
times faster than 'csave’, and the resulting file will be about three times smaller.

These commands are intended to be used with the liszt compiler and the ’cload’ com-
mand, as explained below.
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4.4. Cload

This command loads or fasls in the file shown by the argument. First, FP appends a
*.0’ to the file-name, and attempts a load. Failing that, it tries to load the file named by the
argument. If the user outputs his function definitions using fsave or csave, and then compiles
them using liszt, then he may fasl in the compiled code and speed up the execution of his
defined functions by a factor of 5 to 10.

4.5. Pfn

Print the source text(s) (at the terminal) for the user-defined function(s) named by the
argument(s) (error if the function doesn’t exist).

4.6. Delete

Delete the user-defined function(s) named by the argument (error if the function doesn’t
exist).

4.7. Fns

List the names of all user-defined functions in alphabetical order. Traced functions are
labeled by a trailing '@’ (see § 4.7 for sample output).

4.8. Stats

The “stats” command has several options that help the user manage the collection of

dynamic statistics for functions' and functional forms. Option names follow the keyword
- “stats”, e.g., “)stats reset”.

The statistic package records the frequency of usage for each function and functional

form; also the size? of all the arguments for all functions and functional expressions. These
two measures allow the user to derive the average argument size per call. For functional
forms the package tallies the frequency of each functional argument. Construction has an
additional statistic that tells the number of functional arguments involved in the construction.

Statistics are gathered whenever the mode is on, except for applications that “bottom
out” (i.e., return bottom - ?). Statistic collection slows the system down by x2 to x4. The
following printout illustrates the use of the statistic package (user input is emboldened):

! Measurement of user-defined functions is done with the aid of the trace package, discussed in § 4.9.

2 “Size” is the top-level length of the argument, for most functions. Exceptions are: apndl, dist! (top-level
length of the second element), apndr, distr (top-level length of the first element), and transpose (top level length of
each top level element).
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)stats on

Stats collection turned on.

+:<3 4>
7
* @ iota :3
6
)stats print
plus: times 1
times: times 2
iota: times 1
insert: times 1 size 3 .
Functional Args
Name Times
times 1
compos: " times i : size 1
Functional Args
Name Times
insert 1
iota 1
48.1. On

Enable statistics collection.

4.8.2. Off

Disable statistics collection. The user may selectively collect statistics using the on and
off commands.

4.8.3. Print

Print the dynamic statistics at the terminal, or, output them to a file. The latter option
requires an additional argument, e.g., ‘“)stats print fooBar” prints the stats to the file
“fooBar”.

4.8.4. Reset

Reset the dynamic statistics counters. To prevent accidental loss of collected statistics,
the system will query the user if he tries to reset the counters without first outputting the data
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(the system will also query the user if he tries to log out without outputting the data).

4.9. Trace

Enable or disable the tracing and the dynamic measurement of the user defined func-
tions named by the argument(s). The first argument tells whether to turn tracing off or on
and the others give the name of the functions affected. The tracing and untracing commands
are independent of the dynamic statistics commands. This command is cumulative e.g.,
")trace on f1°, followed by ’)trace on f2’ is equivalent to ’)trace on f1 f2°.

FP tracer output is similar to the FRANZ tracer output: function entries and exits, call
level, the functional argument (remember that FP functions have only one argument!), and
the result, are printed at the terminal:

)pfn fact

{fact (eq0 -> %1 ; * @ [id, fact @ sl])}
)fns

eq0 fact sl

" )trace on fact
)fns

eq0 fact@ sl
fact: 2

1 >Enter> fact [2]
|2 >Enter> fact [1]
| 3 >Enter> fact [0]
| 3 <EXIT< fact 1
|2 <EXIT< fact 1
1 <EXIT< fact 2

2

4.10. Timer

FP provides a simple timing facility to time top-level applications. The command
‘“)timer on” puts the system in timing mode, “)timer off’ turns the mode off (the mode is ini-
tially off). While in timing mode, the system reports CPU time, garbage collection time, and
elapsed time, in seconds. The timing output follows the printout of the result of the applica-
tion.

4.11. Script

Open or close a script file. The first argument gives the option, the second the optional
script file-name. The “open” option causes a new script-file to be opened and any currently
open script file to be closed. If the file cannot be opened, FP sends and error message and, if
a script file was already opened, it remains open. The command ”)script close” closes an



PS2:7-18 Berkeley FP User's Manual, Rev. 4.1
open script file. The user may elect to append script output to the script-file with the append
mode.

4.12. Help
Print a short summary of all the system commands:

)help
Commands are:

load <file> Redirect input from <file>
save <file> Save defined fns in <file>
pfn <fnl> ... Print source text of <fnl> ...
delete <fnl> ... Delete <fnl> ...

fns List all functions

stats on/off/reset/print [file]
trace on/off <fnl> ...

Collect and print dynamic stats
Start/Stop exec trace of <fnl> ...

timer on/of . Turn timer on/off

script open/close/append Open or close a script-file

lisp Exit to the lisp system (return with *D’)
debug on/off Turn debugger output on/off

csave <file> Output Lisp code for all user-defined fns
cload <file> Load Lisp code from a file (may be compiled)
fsave <file> Same as csave except without pretty-printing

4.13. Special System Functions
There are two system functions that are not generally meant to be used by average users.

4.13.1. Lisp
This exits to the lisp system. Use ""D" to return to FP.

4.13.2. Debug

Turns the ’debug’ flag on or off. The command “)debug on” turns the flag on, “)debug
off” turns the flag off. The main purpose of the command is to print out the parse tree.



Berkeley FP User's Manual, Rev. 4.1 PS2:7-19

5. Programming Examples

We will start off by developing a larger FP program, mergeSort. We measure mergeSort
using the trace package, and then we comment on the measurements. Following mergeSort
we show an actual session at the terminal. .

5.1. MergeSort
The source code for mergeSort is:

# Use a divide and conquer strategy

{mergeSort | merge}

{merge atEnd @ mergeHelp @ [[], fixLists]}

# Must convert atomic arguments into sequences

# Atomic arguments occur at the leaves of the execution tree

{fixLists &(atom -> [id] ; id)}

# Merge until one or both input lists are empty

{mergeHelp (while and @ &(not@null) @2

(firstIsSmaller -> takeFirst ;
takeSecond)))

# Find the list with the smaller first element

{firstIsSmaller < @ [l@1@2, 1@2@2])

# Take the first element of the first list

(takeFirst [apndr@(1,!@1@2], (l@1@2, 2@2]]}

# Take the first element of the second list

{takeSecond [apndr@(1,l@2@2], [1@2, ti@2@2]]}

# If one list isn’t null, then append it to the

# end of the merged list

{atEnd (firstIsNull -> concat@(1,2@2] ;
concat@[1,l@2])}

{firstIsNull null@1@2)

The merge sort algorithm uses a divide and conquer strategy; it splits the input in half,
recursively sorts each half, and then merges the sorted lists. Of course, all these sub-sorts can
execute in parallel, and the tree-insert (|) functional form expresses this concurrency. Merge-
removes successively larger elements from the heads of the two lists (either takeFirst or tak-
eSecond) and appends these elements to the end of the merged sequence. Merge terminates
when one sequence is empty, and then atEnd appends any remaining non-empty sequence to
the end of the merged one.

On the next page we give the trace of the function merge, which information we can use
to determine the structure of merge’s execution tree. Since the tree is well-balanced, many of
the merge’s could be executed in parallel. Using this trace we can also calculate the average
length of the arguments passed to merge, or a distribution of argument lengths. This informa-
tion is useful for determining communication costs.
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)trace on merge
mergeSort : <0 3-2111 8-22-33>
3 >Enter> merge [<0 3>]
3 <EXIT< merge <0 3>
3 >Enter> merge [<-2 [>]
3 <EXIT< merge <-2 1>
2 >Enter> merge [<<0 3> <-2 1>>]
2 <EXIT< merge <-201 3>
| 3 >Enter> merge [<11 8>]
| 3 <EXIT< merge <8 11>
| 3 >Enter> merge [<-22 -33>]
| 3 <EXIT< merge <-33-22>
|2 >Enter> merge [<<8 11> <-33 -22>>]
|2 <EXIT< merge <-33-228 11>
1 >Enter> merge [<<-20 1 3> <-33-22 8 11>>]
1 <EXIT< merge <-33-22-20138 11>

I
I
I
I
I
I

<-33-22-2013811>
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5.2. FP Session
User input is emboldened, terminal output in Roman script.

fp

FP,v. 4.1 11/31/82
)load ex_man

(all_le}

{sort}

{abs_val}

(find)

{ip)

(mm}

{eq0}

{fact}

{subl}

(alt_fnd)

(alt_fact}
)ins

abs_val all_le alt_fact alt_fnd eq0 fact ﬁnd
ip mm sort . subl

abs_val : 3
abs_val : -3
abs_val : 0
abs_val : <-5 0 66>

&abs_val : <-5 0 66>
<50 66>
)pfn abs_val
{abs_val (> @ [id,%0]) -> id ; (- @ [%0,id]))}
[id,%0] : -3

<-3 0>
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[%0,id] : -3
<0 -3>
- @ [%0,id] : -3

all_le:<1357>

all_ le:<1057>

)pfn all_le
{all_le ! and @ &<= @ distl @ [1,tl]}
distl @ [1,t] : <123 4>
<<l 2> <1 3> <1 4>>
&<= @ distl @ [1.t]] : <1 234>
<TTT>

tand : <F T T>

F

'and : <T T T>
T

sort: <3124>
<1234>

sort : <1>
<1>

sort : <>
?

sort: 4

)pfn sort

Berkeley FP User's Manual, Rev. 4.1
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{sort (null @ tl -> [1] ; (all_le -> apndl @ [1,sort@tl]; sort@rotl))}

fact: 3

)pfn fact subl eq0
(fact (eq0 -> %1 ; *@[id , fact@subl])}
(subl @[id,%1]}
{eq0 = @ [id,%0])

&fact: <12345>

<12624120>

eqg0:3
F
eqld : <>
'F
eq0: 0
T
subl : 3
2
%1:3
1
alt_fact : 3
6
)pfn alt_fact

(alt_fact !* @ iota}
jota: 3
<123>

*@iota:3
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+:<123>

6
find : <3 <34 5>>
T
find : <<> <34 <>>>
T
find : <3 <4 5>>
F

)pfa find

{find (null@2 -> %F ; (=@[1,1@2] -> %T ; find@[1,t1@2]))}
[1,t1@2] : <3 <34 5>>

<3 <4 5>>
[1,1@2] : <3 <34 5>>

<3 3>

alt_fod : <3 <34 5>>

)pfn alt_fnd
{alt_fnd ! or @ &eq @ distl }
distl : <3 <34 5>>
<<3 3> <34> <3 5>>

&eq @ distl : <3 <345>>

<TFF>
lor:<TFT>
T
tor: <FF F>
F

)delete alt_fnd
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)ns

abs_val all_le alt_fact eq0 fact find
mm sort subl

alt_fod : <3 <345>>
alt_fnd not defined

?
' (g 8}

(g}
g:3

non-terminating
?
[Return to top level]

FP, v. 4.0 10/8/82
[+,*]: <3 4>

<7 12>
[+,*: <3 4>
syntax error:
[+,* : <3 4>
ip:<<345><567>>
74
)pfn ip
{(ip '+ @ &* @ trans)
trans : <<} 45> <56 7>>
<<3 5> <4 6> <5 T>>
&* @ trans : <<345> <56 7>>

<15 24 35>

ip

mm : <<<1 0> <0 1>> <<3 4> <5 6>>>

<<3 4> <5 6>>

PS2:7-25
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)pfn mm
{mm &&ip @ &distl @ distr @[1,trans@2]})
[1,trans@2] : <<<1 0> <0 1>> <<3 4> <5 6>>>
<<<] 0> <0 1>> <<3 4> <5 6>>>
distr : <<<1 0> <0 1>> <<3 4> <5 6>>>
<<<] 0> <<3 4> <5 6>>> <<0 1> <<3 4> <5 6>>>>
&distl : <<<1 0> <<3 4> <5 6>>> <<0 1> <<3 4> <5 6>>>>

<<<<] 0> <3 4>> << 0> <5 6>>> <<<0 1> <3 4>> <<0 1> <5 6>>>>

&ip @ &dist & distr @ [1,trans @ 2] : <<<1 0> <0 1>> <<3 4> <5 6>>>
syntax error:
[+.* : <3 4>
&ip @ &distl §z distr @ [1,trans @ 2] : <<<1 0> <0 1>> <<3 4> <5 6>>>

 &ip @ &distl @ distr @ [1,trans@2] : <<<1 0> <0 I>> <<3 4> <5 6>>>
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6. Implementation Notes

FP was written in 3000 lines of FRANZ LISP [Fod 80]. Table 1 breaks down the distribu-
tion of the code by functionality.

Functionality
compiler

user interface
dynamic stats
primitives
miscellaneous

Table 1

6.1. The Top Level

The top-level function runFp starts up the subsystem by calling the routine fpMain, that
takes three arguments:

(1) A boolean argument that says whether debugging output will
be enabled.

(2) A Font identifier. Currently the only one is supported ’asc
(ASCII).

(3) A boolean argument that identifies whether the interpreter
was invoked from the shell. If so then all exits from FP
return the user back to the shell.

The compiler converts the FP functions into LISP equivalents in two stages: first it
forms the parse tree, and then it does the code generation.

6.2. The Scanner

The scanner consists of a main routine, get_tkn, and a set of action functions. There
exists one set of action functions for each character font (currently only ASCII is supported).
All the action functions are named scan $<font>, where <font> is the specified font, and each
is keyed on a particular character (or sometimes a particular character-type - e.g., a letteror a
number). ger_tkn returns the token type, and any ancillary information, e.g., for the token
"name” the name itself will also be provided. (See Appendix C for the font-token name
correspondences). When a character has been read the scanner finds the action function by
doing a

(get 'scan $ <font> <char>)

A syntax error message will be generated if no action exists for the particular character read.

A6.3. The Parser

The main parsing function, parse, accepts a single argument, that identifies the parsing con-
text, or type of construct being handled. Table 2 shows the valid parsing contexts.
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id construct .
top_lev initial call |
constr$$ construction
compos$$ | composition
alpha$$ apply-to-all
insert3$ insert
tis$ tree insert
arrow$$ affirmative clause

of conditional
semi$$ negative clause

of conditional
Iparen$$ | parenthetic expr.
while$$ while

Table 2, Valid Parsing Contexts

For each type of token there exists a set of parse action functions, of the name pS<tkn-
name>. Each parse-action function is keyed on a valid context, and it is looked up in the
same manner as scan action functions are looked up. If an action function cannot be found,
then there is a syntax error in the source code. Parsing proceeds as follows: initially parse is
called from the top-level, with the context argument set to “top_lev”’. Certain tokens cause
parse to be recursively invoked using that token as a context. The result is the parse tree.

6.4. The Code Generator

The system compiles FP source into LISP source. Normally, this code is interpreted by
the FRANZ LISP system. To speed up the implementation, there is an option to compile into
machine code using the /iszz compiler [Joy 79]. This feature improves performance tenfold,
for some programs.

The compiler expands all functional forms into their LISP equivalents instead of insert-
ing calls to functions that generate the code at run-time. Otherwise, /iszt would be ineffective
in speeding up execution since all the functional forms would be executed interpretively.
Although the amount of code generated by an expanding compiler is 3 or 4 times greater than
would be generated by a non-expanding compiler, even in interpreted mode the code runs
twice as quickly as unexpanded code. With /iszr compilation this performance advantage
increases to more than tenfold. :

A parse tree is either an atom or a hunk of parse trees. An atomic parse-tree identifies
either an fp built-in function or a user defined function. The hunk-type parse tree represents
functional forms, e.g., compose or construct. The first element identifies the functional form -
and the other elements are its functional parameters (they may in turn be functional forms).
Table 3 shows the parse-tree formats.



Berkeley FP User’'s Manual, Rev. 4.1

Form Format
user-defined | <atom>
fp builtin <atom>
apply-to-all | {alpha$$ ®)
insert {insert38 &)
tree insert (ti38 &)
select {select 38 u}
constant {constant 38 u)
conditional | {condit$§ &, ¥, ¥;)
while (whzle$$ @] 'I’z}
compose {compos 38 @, ¥,)}
construct (constr88 &, &, ,..., ¥, nil}
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Note: & and the &, are parse-trees and u is an optionally signed integer constant.

Table 3, Parse-Tree Formats

6.5. Function Definition and Application

Once the code has been generated, then the system defines the function via putd. The
source code is placed onto a property list, ‘sources, to permit later access by the system com-
mands. '

For an application, the indicated function is compiled and then defined, only tem-
porarily, as tmp $3. The single argument is read and tmp 393 is applied to it.

6.6. Function Naming Conventions

When the parser detects a named primitive function, it returns the name <name>3/p,
where <name> is the name that was parsed (all primitive function-names end in 3/p). See
Appendix D for the symbolic (e.g., compose, +) function names.

Any name that isn’t found in the list of builtin functions is assumed to represent a
user-defined function; hence, it isn’t possible to redefine FP primitive functions. FP protects
itself from accidental or malicious internal destruction by appending the suffix “_fp™ to all
user-defined function names, before they are defined.

6.7. Measurement Impelementation

This work was done by Dorab Patel at UCLA. Most of the measurement code is in the
file ’fpMeasures.I’. Many of the remaining changes were effected in *primFp.l’, to add calls on_
the measurement package at run-time; to ’codeGen.l’, to-add tracing of user defined func-
tions; to ’utils.’, to add the new system commands; and to 'fpMain.l’, to protect the user
from forgetting to output statistics when he leaves FP.

6.7.1. Data Structures

All the statistics are in the property list of the global symbol Measures.: Associated with
each each function (primitive or user-defined, or functional form) is an indicator; the statis-
tics gathered for each function are the corresponding values. The names corresponding to
primitive functions and functional forms end in $fp’ and the names corresponding to user-
defined functions end in ’_fp’. Each of the property values is an association list:
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(get "Measures ’rotl$fp) ==> ((times . 0) (size . 0))

The car of the pair is the name of the statistic (i.e., times, size) and the cdr is the value.
There is one exception. Functional forms have a statistic called funargtyp. Instead of being a
dotted pair, it is a list of two elements:

(get 'Measures 'compose3fp) ==>
((times . 2) (size . 4) (funargtyp ((selectSfp . 2) (subdfp . 2))))

The car is the atom ’funargtyp’ and the cdr is an alist. Each element of the alist consists
of a functional argument-frequency dotted pair.

The statistic packages uses two other global symbols. The symbol DynTraceFlg is non-
nil if dynamic statistics are being collected and is nil otherwise. The symbol TracedFns is a
list (initially nil) of the names of the user functions being traced.

6.7.2. Interpretation of Data Structures

6.7.2.1. Times

The number of times this function has been called. All functions and functional forms
have this statistic.

6.7.2.2. Size

The sum of the sizes of the arguments passed to this function. This could be divided by
the times statistic to give the average size of argument this function was passed. With few
exceptions, the size of an object is its top-level length (note: version 4.0 defined the size as the
total number of atoms in the object); the empty sequence, “<>", has a size of 0 and all other
atoms have size of one. The exceptions are: apndl, distl (top-level length of the second ele-
ment), apndr, distr (top-level length of the first element), and transpose (top level length of
each top level element).

This statistic is not collected for some primitive functions (mainly binary operators like
+,°7*)-
6.7.2.3. Funargno

The number of functional arguments supplied to a functional form.

Currently this statistic is gatherered only for the construction functional form.

6.7.2.4. Funargtyp

How many times the named function was used as a functional parameter to the particu-
lar functional form. :

6.8. Trace Information

The level number of a call shows the number of steps required to execute the function
on an ideal machine (i.e., one with unbounded resources). The level number is calculated
under an assumption of infinite resources, and the system evaluates the condition of a condi-
tional before evaluating either of its clauses. The number of functions executed at each level
can give an idea of the distribution of parallelism in the given FP program.
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Appendix A: Local Modifications

1. Character Set Changes

Backus [Ba78] used some characters that do not appear on our ASCII terminals, so we
have made the following substitutions:

constant
insert
apply-to-all
composition
arrow
empty set
bottom
divide
multiply

vee-§

<>

)(.]."—S.‘OQ\>“

2. Syntactic Modifications

2.1. While and Conditional
While and conditional functional expressions must be enclosed in parenthesis, e.g.,

(while f g)

w->r59

2.2. Function Definitions
Function definitions are enclosed by curly braces; they consist of a name-definition pair,
separated by blanks. For example:

(fact !» @ iota)

defines the function fact (the reader should recognize thls as the non-recursive factorial func-
tion).

2.3. Sequence Coastruction
It is not necessary to separate elements of a sequences with a comma; a blank will
suffice:

<1,23>=<123>

For nested sequences, the'terminating right angle bracket acts as the delimiter:

<<1,2,3>,<4,5,6>> = <<1 2 3><4 5 6>>
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3. User Interface

We have provided a rich set of commands that allow the user to catalog, print, and
delete functions, to load them from a file and to save them away. The user may generate
script files, dynamically trace and measure functional expression execution, generate debug-
ging output, and, temporarily exit to the FRANZ LISP system. A command must begin with a
right parenthesis. Consult Appendix C for a complete description of the command syntax.

Debugging in FP is difficult; all undefined results map to a single atom - bottom (“?”).
To pinpoint the cause of an error the user can use the special debugging output function, out,
or the tracer.

4. Additions and Ommissions

Many relational functions have been added: <, >, =, #, <, 2; their syntax is: <, >,
=, "=, <=, >=, Also added are the iota function (This is the APL iota function an n-element
sequence of natural numbers) and the exclusive OR (®) function.

Several new structural functions have been added: pair pairs up successive elements of
a sequence, split splits a sequence into two (roughly) equal halves, last returns the last element
of the sequence (<> if the sequence is empty), first returns the first element of the sequence
(<> if it is empty), and concat concatenates all subsequences of a sequence, squeezing out null
sequences (<>). Front is equivalent to tlr. Pick is a parameterized form of the selector func-
tion; the first component of the argument selects a single element from the second component.
Out is the only side-effect function; it is equivalent to the id function but it also prints its

- argument out at the terminal. This function is intended to be used only for debugging.

One new functional form has been added, tree insert. This functional form breaks up
the the argument into two roughly equal pieces applying itself recursively to the two halves.
The functional parameter is applied to the resulit.

The binary-to-unary functions ("bu’) has been omitted.

Seven mathematical library functions have been added: sin, cos, asin (sin~!), acos
(cos™Y), log, exp, and mod (the remainder function)
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I. BNF Syntax

fplnput -
fnDef —
application —
name —
nameList —
object -
fpSequence —
atom —»
funForm —»

simpFn —»
fpDefined —
fpBuiltin —

selectFn —
relFn —»
binaryFn —
libFn —
composition —
construction —
formList —
conditional —
constantFn —
insertion —
alpha —

while -

II. Precedences
%, !, &

@

Pl

while

> et

Berkeley FP User's Manual, Rev. 4.1

Appendix B: FP Grammar

(foDef | application | fpCmds)s | D’

’(’ name funForm °)’

funForm ’’ object

letter (letter | digit | *_")s

(name)s

atom | fpSequence | °?

<’ (e | object ((,’ | ) object)s) >’

T’ | 'F | ’<>’ | ’™ (ascii-char)s *"* | (letter | digit)» | number

simpFn | composition | construction | conditional |
constantFn | insertion | alpha | while | °( funForm °)

fpDefined | fpBuiltin

name

selectFn | ’tl’ | ’id’ | ’atom’ | ’not’ | ’eq’ | relFn | 'null’ | ’reverse’ |
"distl’ | “distr’ | ’length’ | binaryFn | ’trans’ | ’apndl’ | "apndr’ |
tir’ | ’rotl’ | ‘rotr’ | ’iota’ | ’pair’ | ’split’ | ’concat’ | ’last’ | ’libFn’
(¢ | ’+” | ") unsignedInteger

SR R R e

#7 || &’ |7 | ’or’ | ’and’ | "xor’

’sin’ | ’cos’ | "asin’ | "acos’ | ’log’ | ’exp’ | ‘'mod’

funForm '@’ funForm

[’ formList T’

¢ | funForm (°,’ funForm)»

’(’ funForm ’->’ funForm ’;’ funForm °)

"%’ object ,

I’ funForm | ’|” funForm

'&’ funForm

’(’ "while’ funForm funForm °)’

(highest)

(least)

» Command Syntax is listed in Appendix C.
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Appendix C: Command Syntax

All commands begin with a right parenthesis (“)”).

)fns

)pfn <nameList>

)load <UNIX file name>
)cload <UNIX file name>
)save <UNIX file name>
)csave <UNIX file name>
Ysave <UNIX file name>
)delete <nameList>

)stats on

)stats off

)stats reset

)stats print [UNIX file name]
)trace on <nameList>

)trace off <nameList>

)timer on

Jtimer off

)debug on

)debug off :

)script open <UNIX file name>
)script close

)script append <UNIX file name>
)help

MNisp

PS2:7-35
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Appendix D: Token-Name Correspondences

Token Name
[ Tbrack$$
] rbrack$$
{ Ibrace$$
} rbrace$$
( Iparen$$
) rparen$$
@ compos$$
! insert$$
| ti$$
& alpha$$
; semi$$
: colon$$
. comma$$
+ builtin$$
+ “a select$$
* builtin$$
/ builtin$$
= builtin$$
- builtin$$
> arrow$$
_— select$$
> builtin$$
>= builtin$$
< | builtin$$
<= builtin$$
"= builtin$$
%o® | constant$$

s u is an optionally signed integer constant.

b 0 is any FP object.
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Appendix E: Symbolic Primitive Function Names

The scanner assigns names to the alphabetic primitive functions by appending the string
“$fp” to the end of the function name. The following table designates the naming assign-
ments to the non-alphabetic primitive function names.

Function Name
plus$fp
minus$fp
times$fp
div$fp
eq$fp
gtSfp
ge$fp
1t$fp
le$fp
ne$fp

||'/“\/\\"/VII\¢-+
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RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
structured programming, control flow, programming

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality
and (usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of
Fortran while retaining its desirable qualities, by providing decent control flow statements:

e statement grouping
o if-else and switch for decision-making
o while, for, do, and repeat-until for looping
e break and next for controlling loop exits
and some ‘“‘syntactic sugar’:
e free form input (multiple statements/line, automatic continuation)
unobtrusive comment convention
translation of >, >=, etc., into .GT., .GE,, etc.
return{expression) statement for functions
define statement for symbolic parameters
o include statement for including source files
Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus
easier to debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other environments. Ratfor
is written in itself in this way, so it is also portable; versions of Ratfor are now running on at least
two dozen different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its
implementation, and user experience.

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet

to a universal programming language currently
available: with care it is possible to write large,
truly portable Fortran programs{l]. Finally,

there are many occasions when they are forced
to use it. For example, Fortran is often the
only language thoroughly supported on the
local computer. Indeed, it is the closest thing

Fortran is often the most “efficient” language
available, particularly for programs requiring
much computation.

This paper is a revised and expanded version of oe published in Software—Practice and Experience, October
1975. The Ratfor described here is the one in use on UNIX and Gcos at Bell Laboratories, Murray Hill, N.

J.
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But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow state-
ments — conditional branches and loops —
which express the logic of the program. The
conditional statements in Fortran are primi-

tive. The Arithmetic IF forces the user into at

least two statement numbers and two (implied)
GOTO’s; it leads to unintelligible code, and is
eschewed by good programmers. The Logical
IF is better, in that the test part can be stated
clearly, but hopelessly restrictive because the
statement that follows the IF can only be one
Fortran statement (with some further restric-
tions!). And of course there can be no ELSE
part to a Fortran IF: there is no way to specify
an alternative action if the IF is not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for “1 to N in steps of 1 (or 2 or ...)”, but there
is no direct way to go backwards, or even (in
ANSI Fortran[2]) to go from | to N-1. And of
course the DO is useless if one’s problem
doesn’t map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particu-
larly difficult to read and understand, and thus
hard to debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and
to translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are espe-
cially popular today. A recent listing [3] of
preprocessors shows more than 50, of which at
least half a dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality, portability, -efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First, since control flow is central to any pro-
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent
control flow structures. These structures are
sufficient and comfortable for structured pro-
gramming in the narrow sense of programming

RATFOR — A Preprocessor for a Rational Fortran

without GOTO’s. Second, since the preprocessor
must examine an entire program to translate
the control structure, it is possible at the same
time to clean up many of the “cosmetic”
deficiencies of Fortran, and thus provide a
language which is easier and more pleasant to
read and write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro-
vide character strings, for example, they are
not needed by everyone, and of course the
preprocessor would be harder to implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Ratfor doesn’t know any
Fortran. Any language feature which would
require that Ratfor really understand Fortran
has been omitted. We will return to this point
in the section on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selec-
tive in what features to provide. The intent
has been to provide a small set of the most use-
ful constructs, rather than to throw in every-
thing that has ‘ever been thought useful by
someone.

The rest of this section contains an infor-

mal description of the Ratfor language. The

control flow aspects wili be quite familiar to
readers used to languages like Algol, PL/I, Pas-
cal, etc., and the cosmetic changes are equally
straightforward. We shall concentrate on show-
ing what the language looks like.

Statement Grouping

Fortran provides no way to group state-
ments together, short of making them into a
subroutine. The standard construction “if a
condition is true, do this group of things,” for
example,

if (x > 100)
{ call error("x>100"); err = 1;
return }

cannot be written directly in Fortran. Instead
a programmer is forced to translate this rela-
tively clear thought into murky Fortran, by
stating the negative condition and branching
around the group of statements:
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if (x .le. 100) goto 10
call error(Shx>100)
err = |
return
10

When the program doesn’t work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated
as a unit by enclosing them in the braces { and
}. This is true throughout the language: wher-
ever a single Ratfor statement can be used,
there. can be several enclosed in braces.
(Braces seem clearer and less obtrusive than
begin and end or do and end, and of course do
and end already have Fortran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character “>" is clearer than “GT.”, so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For-
tran compilers permit character strings in

quotes (like "x>100"), quotes are not allowed

in ANSI Fortran, so Ratfor converts it into the
right number of H’s: computers count better
than people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several
may appear on one line if they are separated by
semicolons. The example above could also be
written as

if (x > 100) {
call error("x>100")
err = |
return

}

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is
one statement per line unless told otherwise.

Of course, if the statement that follows
the if is a single statement (Ratfor or other-
wise), no braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first
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line. In general Ratfor continues lines when it
seems obvious that they are not yet done. (The
continuation convention is discussed in detail
later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In
particular, proper indentation is vital, to make
the logical structure of the program obvious to
the reader.

The “else” Clause

Ratfor provides an else statement to han-
dle the construction “if a condition is true, do
this thing, otherwise do that thing.”

if (a <= b)

{ sw = 0; write(6, 1) a, b }
else

{ sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir-
cuitous indeed: '

if (a .gt. b) goto 10
sw=0
write(6, 1) a, b
goto 20
10 sw=1
write(6, 1) b, a
20 ..

This is a mechanical translation; shorter forms
exist, as they do for many similar situations.
But all translations suffer from the same prob-
lem: since they are translations, they are less
clear and understandable than code that is not
a translation. To understand the Fortran ver-
sion, one must scan the entire program to
make sure that no other statement branches to
statements 10 or 20 before one knows that
indeed this is an if-else construction. With the
Ratfor version, there is no question about how
one gets to the parts of the statement. The if-
else is a single unit, which can be read, under-
stood, and ignored if not relevant. The pro-
gram says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:
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if(a<=b)
sw=20
else
sw=1

The syntax of the if statement is

if (legal Fortran condition)
Ratfor statement
else
Ratfor statement

where the else part is optional. The legal For-
tran condition is anything that can legally go
into a Fortran Logical IF. Ratfor does not
check this clause, since it does not know
enough Fortran to know what is permitted.
The Ratfor statement is any Ratfor or Fortran
statement, or any collection of them in braces.

Nested if’s

Since the statement that follows an if or
an else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this prob-
lem: the variable f is to be set to -1 if x is less
than zero, to +1 if x is greater than 100, and to
0 otherwise. Then in Ratfor, we write

if(x <0)
f=-1"
else if (x > 100)
f=+1
else
f=0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver-
sion written in straight Fortran will necessarily
be indirect because Fortran does not let you
say what you mean. And as always, clever
shortcuts may turn out to be too clever to
understand a year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure
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if (...)
else if (..

else if (..

B

[ B |
i

else
provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also pro-
vides a switch statement which does the same
job in certain special cases; in more general
situations, we have to make do with spare
parts.) The tests are laid out in sequence, and
each one is followed by the code associated
with it. Read down the list of decisions until
one is found that is satisfied. The code associ-
ated with this condition is executed, and then
the entire structure is finished. The trailing
else part handles the “default” case, where
none of the other conditions apply. If there is
no default action, this final else part is omitted:

if(x<0)
x=0

else if (x > 100)
x = 100

if-else ambiguity
There is one thing to notice about compli-

cated structures involving nested if’s and else’s.
Consider

if (x > 0)
if (y>0)
write(6, 1) x, y
else
write(6, 2) y

There are two if's and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as
it is in many other programming languages.
The ambiguity is resolved in Ratfor (as else-
where) by saying that in such cases the else
goes with the closest previous un-else’ed if.
Thus in this case, the else goes with the inner
if, as we have indicated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent
clear. In the case above, we would write
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if (x> 0)
if (y > 0)
-write(6, 1) x, y
else
write(6, 2) y
)

which does not change the meaning, but leaves
no doubt in the reader’s mind. If we want the
other association, we must write

if(x>0){
if (y>0)
write(6, 1) x, y
}
else
write(6, 2) y

The “switch” Statement

The switch statement provides a clean
way to express multi-way branches which
branch on the value of some integer-valued
expression. The syntax is

switch (expression) {

case exprl :
statements

case expr2, expr3 :
statements

defaul*:
statements

)

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn
until one matches, at which time the state-
ments following that case are executed. If no
cases match expression, and there is a default
section, the statements with it are done; if
there is no default, nothing is done. In all
situations, as soon as some block of statements
is executed, the entire switch is exited immedi-
ately. (Readers familiar with C[4] should
beware that this behavior is not the same as
the C switch.)

The “do” Statehent

The do statement in Ratfor is quite simi-
lar to the DO statement in Fortran, except that
it uses no statement number. The statement
number, after all, serves only to mark the end
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of the DO, and this can be done just as easily
with braces. Thus

doi=1,n{
x(i) = 0.0
y(@) = 0.0
z(i) = 0.0

}

is the same as

dol0i=1,n
x(i) = 0.0
y@i) = 0.0
z(i) = 0.0

10  continue
The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran), they can
be used in a Ratfor do.

The Ratfor statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it.
This code sets an array to zero:

doi=1,n
x(i) = 0.0

Slightly more complicated,

doi=1,n
doj=1,n
m(i, j) = 0

sets the entire array m to zero, and

doi=1,n
doj=1,n

if (i <j)
m(ivj) = -1

else if (i == j)
m(i’]) =0

else
m(, j) = +1

sets the upper triangle of m to -1, the diagonal
to zero, and the lower triangle to +1. (The
operator == is “equals”, that is, “.EQ.”.) In
each case, the statement that follows the do is
logically a single statement, even though com-
plicated, and thus needs no braces.
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“break” and “next”

Ratfor provides a statement for leaving a
loop early, and one for beginning the next
iteration. break causes an immediate exit from
the do; in effect it is a branch to the statement
after the do. next is a branch to the bottom of
the loop, so it causes the next iteration to be
done. For example, this code skips over nega-
tive values in an array:

doi=1,n{
if (x(i) < 0.0)
next
process positive element
}

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that
level of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically,
multi-level break’s and next’s are not likely to
be much used because they lead to code that is
hard to understand and somewhat risky to
change.) '

The “while” Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOI=21

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn’t be. Of course a Ratfor do
can easily be preceded by a test
if  <=Kk)
doi=j,k {

, T

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO
statement is that it encourages that a program
be written in terms of an arithmetic progres-

RATFOR — A Preprocessor for a Rational Fortran

sion with small positive steps, even though that
may not be the best way to write it. If code
has to be contorted to fit the requirements
imposed by the Fortran DO, it is that much
harder to write and understand.

To overcome these difficulties, Ratfor
provides a while statement, which is simply a
loop: “while some condition is true, repeat this
group of statements”. It has no preconceptions
about why one is looping. For example, this
routine to compute sin(x) by the Maclaurin
series combines two termination criteria.

real function sin(x, )
# returns sin(x) to accuracy e, by
# sin(x) = X — x*#3/3! + x++5/5! - ...

sin = x
term = X

i=3

while (abs(term)>e & i<100) {
term = —term » xs=2 / float(is(i- 1))
sin = sin + term
i=i+2

)

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be
made to compute x++3 and thus a potential
underflow is avoided. Since the test is made at
the top of a while loop instead of the bottom, a
special case disappears — the code works at
one of its boundaries. (The test i<100 is the
other boundary — making sure the routine
stops after some maximum number of itera-
tions.)

As an aside, a sharp character “#” in a
line marks the beginning of a comment; the
rest of the line is comment. Comments and
code can co-exist on the same line — one can
make marginal remarks, which is not possible
with Fortran’s “C in column 1” convention.
Blank lines are also permitted anywhere (they
are not in Fortran); they should be used to
emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement
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As with the if, legal Fortran condition is some-
thing that can go into a Fortran Logical IF, and
Ratfor statement is a single statement, which
may be multiple statements in braces.

The while encourages a style of coding
not normally practiced by Fortran program-
mers. For example, suppose nextch is a func-
tion which returns the next input character
both as a function value and in its argument.
Then a loop to find the first non-blank charac-
ter is just

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few
compilers) believe this line is illegal. The

language at one’s disposal strongly influences

how one thinks about a problem.

The “for” Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further
than the while. A for statement allows explicit
initialization and increment steps as part of the
statement. For example, a DO loop is just

for(i=li<=mnmi=1i+1)..
This is equivalent to
i=1
while (i <= n) (
i=1+1
}

The initialization and increment of i have been
moved into the for statement, making it easier
to see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ-
ous section can be re-written with a for as
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for (i=3; abs(term) > e & i < 100;
i=i+2) {
term = —term » x++2 / float(is(i-1))
sin = sin + term

The syntax of the for statement is

for ( init ; condition ; increment )
Ratfor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done
at the end of each pass through the loop, before
the test. condition is again anything that is
legal in a logical IF. Any of init, condition, and
increment may be omitted, although the semi-
colons must always be present. A non-existent
condition is treated as always true, so for(;;) is
an indefinite repeat. (But see the repeat-until
in the next sectioq.)

The for statement is particularly useful
for backward loops, chaining along lists, loops
that might be done zero times, and similar
things which are hard to express. with a DO

statement, and obscure to write out with IF’s

and GOTO’s. For example, here is a backwards
DO loop to find the last non-blank character on
a card:

for(i=80;i>0;i=1i-1)
if (card(i) != blank)
break

(“!=" is the same as “.NE.”). The code scans the
columns from 80 through to 1. If a non-blank
is found, the loop is immediately broken.
(break and next work in for’s and while’s just
as in do’s). If i reaches zero, the card is all
blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for-
ward, and we must explicitly set up proper con-
ditions when we fall out of the loop. (Forget-
ting this is a common error.) Thus:

DO10J=1,80
I=81-1J
IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE
I=0
11

The version that uses the for handles the termi-
nation condition properly for free; i is zero
when we fall out of the for loop.



The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array
ptr) until a zero pointer is found, adding up
elements from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i))
sum = sum + value(i)

Notice that the code works correctly if the list
is empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a poten-
tial boundary error.

The “repeat-until” statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This ser-
vice is provided by the repeat-until:

repeat
Ratfor statement
until (legal Fortran condition)

The Ratfor statement part is done once, then
the condition is evaluated. If it is true, the
loop is exited; if it is false, another pass is
made. - : :

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop.
Of course such a loop must ultimately be bro-
ken by some transfer of control such as stop,
return, or break, or an implicit stop such as
running out of input with a READ statement.

As a matter of observed fact[8], the
repeat-until statement is much less used than
the other looping constructions; in particular, it
is typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don’t handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre-
ment step of a for.

“return” Statement

The standard Fortran mechanism for
returning a value from a function uses the
name of the function as a variable which can
be assigned to; the last value stored in it is the
function value upon return. For example, here
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is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value -1.

# equal _: compare strl to str2;

# return 1 if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1;strl(i) == str2(i);i =i + 1)
if (stri(i) == -1) {

equal = 1
return
}
equal = 0
return
end

In many languages (e.g., PL/I) one instead
says

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement — in a function F, return(expression)
is equivalent to

{ F = expression; return }
For example, here is equal again:

# equal _ compare strl to str2;

# return . if equal, O if not
integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for(i = 1;strl(i) == str2(i);i=i+ 1)
if (stri(i) == -1)
return(1)
return(0)
end

If there is no parenthesized expression after
return, 2 normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance
of a language has a substantial effect on how
easy it is to read and understand programs.
Accordingly, Ratfor provides a number of
cosmetic facilities which may be used to make
programs more readable.
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Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati-
cally, as are long conditions in if, while, for,
and until. Blank lines are ignored. Multiple
statements may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make
some reasonable guess about whether the state-
ment ends there. Lines ending with any of the
characters

& ( -

are assumed to be continued on the next line.
Underscores are discarded wherever they
occur; all others remain as part of the state-
ment.

Any statement that begins with an all-
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format(“hello”)
is converted into )

write(6, 100)
100 format(Shhello)

= + - = I

Translation Services

Text enclosed in matching single or dou-
ble quotes is converted to nH... but is other-
wise unaltered (except for formatting — it may
get split across card boundaries during the
reformatting process). Within quoted strings,
the backslash ‘\’ serves as an escape character:
the next character is taken literally. This pro-
vides a way to get quotes (and of course the
backslash itself) into quoted strings:

AN\

is a string containing a backslash and an apos-
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character
‘%’ is left absolutely unaltered except for strip-
ping off the ‘%’ and moving the line one posi-
tion to the left. This is useful for inserting con-
trol cards, and other things that should not be
transmogrified (like an existing Fortran pro-
gram). Use ‘%’ only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected
place.
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The following character translations are
made, except within single or double quotes or
on a line beginning with a ‘%’.

== .eq. l= .ne.
> .gt. >= .ge.
< dt. <= Je.
& .and. | .or.
! .not. - ~ .not.

In addition, the following translations are pro-
vided for input devices with restricted charac-
ter sets.

[ { ] )
$( { $) )

“define” Statement

_ Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can
be arbitrarily long, and must begin with a
letter.

define is typically used to create symbolic
parameters: _ - '

defineROWS 100
defineCOLS 50

dimension a(ROWS), b(ROWS, COLS)
if i > ROWS | j > COLS) ...
Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right
parenthesis; this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most constants, to help
make clear the function of what would other-
wise be mysterious numbers. As an example,
here is the routine equal again, this time with
symbolic constants.
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define YES 1

define NO 0

define EOS -1
define ARB 100

# equal _ compare strl to str2;

# return YES if equal, NO if not
integer function equal(strl, str2)
integer str1(ARB), str2(ARB)
integer i

for (i = 1; strl(i) == str2(i);
i=i+1)
if (str1(i) == EOS)
return(YES)
return(NO)
end

“include” Statement
The statement

include file

inserts the file found on input stream file into
the Ratfor input in place of the include state-
ment. The standard usage is to place COMMON
blocks on a file, and include that file whenever
a copy is needed:

subroutine x
include commonblocks

end
suroutine y
include commonblocks

end
This ensures that all copies of the COMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if,
and most errors involving missing parentheses
in statements. Beyond that, since Ratfor
knows no Fortran, any errors you make will be
reported by the Fortran compiler, so you will
from time to time have to relate a Fortran
diagnostic back to the Ratfor source.

Keywords are reserved — using if, else,
etc., as variable names will typically wreak
havoc. Don’t leave spaces in keywords. Don’t
use the Arithmetic IF.
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The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on
the UNIX operating system[5]. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler-
compiler{6].

The Ratfor grammar is simple and
straightforward, being essentially

prog : stat .
| prog stat

stat :if (...) stat
| if (...) stat else stat

| while (...) stat

| for (...; ...; ...) stat

| do ... stat

| repeat stat

| repeat stat until (...)

| switch (...) { case ...: prog ...
default: prog }

| return

| break

| next

| digits stat

| { prog )

| anything unrecognizable

The observation that Ratfor knows no Fortran
follows directly from the rule that says a state-
ment is ‘“anything unrecognizable”. In fact
most of Fortran falls into this category, since
any statement that does not begin with one of
the keywords is by definition “unrecognizable.”

Code generation is also simple. If the
first thing on a source line is not a keyword
(like if, else, etc.) the entire statement is simply

- copied to the output with appropriate character

translation and formatting. (Leading digits are
treated as a label.) Keywords cause only slightly
more complicated actions. For example, when
if is recognized, two consecutive labels L and
L+1 are generated and the value of L is
stacked. The condition is then isolated, and
the code

if (.not. (condition)) goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance
away and include nested if’s, of course), the
code
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L continue

is generated, unless there is an else clause, in
which case the code is

goto L+1
L continue

In this latter case, the code
L+1 continue

is produced after the statement part of the else.
Code generation for the various loops is
equally simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

ifi>0)x=a
should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
X=a:
100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed
where this kind of “inefficiency” will make
even a measurable difference. In the few cases
where it is important, the offending lines can
be protected by ‘%’.

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined,
with few syntactic irregularities. Implementa-
tion is quite simple; the original construction
took under a week. The language is sufficiently
simple, however, that an ad hoc recognizer can
be readily constructed to do the same job if no
compiler-compiler is available.

The C version of Ratfor is used on UNIX
and on the Honeywell GCOS systems. C com-
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C
version. The Ratfor version was written so as
to translate into the portable subset of Fortran
described in [1], so it is portable, having been
run essentially without change on at least
twelve distinct machines. (The main restric-
tions of the portable subset are: only one char-
acter per machine word; subscripts in the form
csvxc; avoiding expressions in places like DO
loops; consistency in subroutine argument
usage, and in COMMON declarations. Ratfor
itself will not gratuitously generate non-
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standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C);
this compiles into 2500 lines of Fortran. This
expansion ratio is somewhat higher than aver-
age, since the compiled code contains unneces-
sary occurrences of COMMON declarations. The
execution time of the Ratfor version is dom-
inated by two routines that read and write
cards. Clearly these routines could be replaced
by machine coded local versions; unless this is
done, the efficiency of other parts of the trans-
lation process is largely irrelevant.

4. EXPERIENCE

Good Things

“It’s so much better than Fortran” is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it
does seem to be true that decent control flow
and cosmetics converts Fortran from a bad
language into quite a reasonable one, assuming
that Fortran data structures are adequate for
the task at hand. ' :

Although there are no quantitative
results, users feel that coding in Ratfor is at
least twice as fast as in Fortran. More impor-
tant, debugging and subsequent revision are
much faster than in Fortran. Partly this is sim-
ply because the code can be read. The looping
statements which test at the top instead of the
bottom seem to eliminate or at least reduce the
occurrence of a wide class of boundary errors.
And of course it is easy to do structured pro-
gramming in Ratfor; this self-discipline also
contributes markedly to reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran’s clerical detail and
rigid input.format, it is easy to write code that
is readable, even esthetically pleasing. For
example, here is a Ratfor implementation of
the linear table search discussed by Knuth [7]:
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A(m+1) =x
fori=LA@G!=x;i=1i+1)

if (1 > m) {
m=i
BG) = 1
}
else
B@) = B@) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can
be found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Rat-
for but by the local Fortran compiler. The
compiler then prints a message in terms of the
generated Fortran, and in a few cases this may
be difficult to relate back to the offending Rat-
for line, especially if the implementation con-
ceals the generated Fortran. This problem
could be dealt with by tagging each generated
line with some indication of the source line
that created 'it, but this is inherently
implementation-dependent, so no action has
yet been taken. Error message interpretation is
actually not so arduous as might be thought.
Since Ratfor generates no variables, only a sim-
ple pattern of IF's and GOTO’s, data-related
errors like missing DIMENSION statements are
easy to find in the Fortran. Furthermore, there
has been a steady improvement in Ratfor’s
ability to catch trivial syntactic errors like
unbalanced parentheses and quotes.

There are a number of 1mp1ementatxon
weaknesses that are a nuisance, especially to
new users. For example, keywords are
reserved. This rarely makes any difference,
except for those hardy souls who want to use
an Arithmetic IF. A few standard Fortran con-
structions are not accepted by Ratfor, and this
is perceived as a problem by users with a large
corpus of existing Fortran programs. Protect-
ing every line with a ‘%’ is not really a com-
plete solution, aithough it serves as a stop-gap.
The best long-term solution is provided by the
program Struct [9], which converts arbitrary
Fortran programs into Ratfor.

Users who export programs often com-
plain that the generated Fortran is “unread-
able” because it is not tastefully formatted and
contains extraneous CONTINUE statements. To
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some extent this can be ameliorated (Ratfor
now has an option to copy Ratfor comments
into the generated Fortran), but it has always
seemed that effort is better spent on the input
language than on the output esthetics.

One final problem is partly attributable to
success — since Ratfor is relatively easy to
modify, there are now several dialects of Rat-
for. Fortunately, so far most of the differences
are in character set, or in invisible aspects like
code generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a
bad language into quite a good one. A prepro-
cessor is clearly a useful way to extend or
ameliorate the facilities of a base language.

When designing a language, it is impor-
tant to concentrate on the essential require-
ment of providing the user with the best
language possible for a given effort. One must
avoid throwing in “features” — things which
the user may trivially conmstruct within the
existing framework.

One must also avoid getting sidetracked
on irrelevancies. For instance it seems point-
less for Ratfor to prepare a neatly formatted
listing of either its input or its output. The
user is presumably capable of the self-discipline
required to prepare neat input that reflects his
thoughts. It is much more important that the
language provide free-form input so he can for-
mat it neatly. No one should read the output
anyway except in the most dire circumstances.
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Appendix: Usage on UNIX and GCOS.
Beware — local customs vary. Check with a native before going into the jungle.

UNIX

The program ratfor is the basic translator; it takes either a list of file names or the standard
input and writes Fortran on the standard output. Options include -6x, which uses x as a continua-
tion character in column 6 (UNIX uses & in column 1), and -C, which causes Ratfor comments to be
copied into the generated Fortran. ’

The program rc provides an interface to the ratfor command which is much the same as cc.
Thus

rc [options] files
compiles the files specified by files. Files with names ending in .r are Ratfor source; other files are
assumed to be for the loader. The flags -C and -6x described above are recognized, as are

-¢ compile only; don't load

-f  save intermediate Fortran .f files

-r  Ratfor only; implies —c and -f

-2 use big Fortran compiler (for large programs)

-U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOSs
The program ./ratfor is the bare translator, and is identical to the UNIX version, except that the
continuation convention is & in column 6. Thus )
Jratfor files >output
translates the Ratfor source on files and collects the generated Fortran on file ‘output’ for subsequent
processing.

Jrc provides much the same services as rc (within the limitations of GCOS), regrettably with a
somewhat different syntax. Options recognized by ./rc include

name Ratfor source or library, depending on type
h=/name ~ make TSS Hs file (runnable version); run as /name
r=/name update and use random library

a= compile as ascii (default is bed)

C= copy comments into Fortran

f=name Fortran source file

g=name gmap source file

Other options are as specified for the ./cc command described in [4].

TSO, TSS, and other systems
Ratfor exists on various other systems; check with the author for specifics.
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Overture

A chorus of students under the direction of Richard Fateman have contributed
to building FRANZ LISP from a mere melody into a full symphony . The major
contributors to the initial system were Mike Curry, John Breedlove and Jeff
Levinsky. Bill Rowan added the garbage collector and array package. Tom
London worked on an early compiler and helped in overall system design.
Keith Sklower has contributed much to FRANZ LISP, adding the bignum pack-
age and rewriting most of the code to increase its efficiency and clarity. Kipp
Hickman and Charles Koester added hunks. Mitch Marcus added *rset,
evalhook and evalframe. Don Cohen and others at Carnegie-Mellon made
some improvements to evalframe and provided various features modelled after
UCI/CMU PDP-10 Lisp and Interlisp environments (editor, debugger, top-level).
John Foderaro wrote the compiler, added a few functions, and wrote much of
this manual. Of course, other authors have contributed specific chapters as indi-
cated. Kevin Layer modified the compiler to produce code for the Motorola
68000, and helped make FRANZ LISP pass “Lint”.

This manual may be supplemented or supplanted by local chapters representing
alterations, additions and deletions. We at U.C. Berkeley are pleased to learn
of generally useful system features, bug fixes, or useful program packages, and
we will attempt to redistribute such contributions.

© 1980, 1981, 1983 by the Regents of the University of California. (exceptions: Chapters 13,
14 (first half), 15 and 16 have separate copyrights, as indicated. These are reproduced by per-
mission of the copyright holders.) :
Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, and the copyright notice of the
Regents, University of California, is given. All rights reserved.

Work reported herein was supported in part by the U. S. Department of Energy, Contract
DE-ATO03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National Science
Foundation under Grant No. MCS 7807291

UNIX is a trademark of Bell Laboratories. VAX and PDP are trademarks of Digital Equipt-
ment Coporation. MC68000 is a trademark of Motorola Semiconductor Products, Inc.
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Score

First Movement (allegro non troppo)

1. FRANZ LISP ‘
Introduction to FRANZ LISP, details of data types, and description of notation

2. Data Structure Access .
Functions for the creation, destruction and manipulation of lisp data objects.

3. Arithmetic Functions
Functions to perform arithmetic operations.

4. Special Functions ‘
Functions for altering flow of control. Functions for mapping other functions
over lists. :

5. 1/0 Functions
Functions for reading and writing from ports. Functions for the modification of
the reader’s syntax.

6. System Functions
Functions for storage management, debugging, and for the reading and setting
of global Lisp status variables. Functions for doing UNIX-specific tasks such as
process control.

Second Movement (Largo)

. 7. The Reader

A description of the syntax codes used by the reader. An explanation of charac-
ter macros.

8. Functions, Fclosures, and Macros
A description of various types of functional objects. An example of the use of
Joreign functions.

9. Arrays and Vectors
A detailed description of the parts of an array and of Maclisp compatible
arrays.

10. Exception Handling
A description of the error handling sequence and of autoloading.
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Third Movement (Scherzo)

11. The Joseph Lister Trace Package
A description of a very useful debugging aid.
12. Liszt, the lisp compiler
A description of the operation of the compiler and hints for making functions
compilable.
13. CMU Top Level and File Package
A description of a top level with a history mechanism and a package which
helps you keep track of files of lisp functions.
14 Stepper
A description of a program which permits you to put breakpoints in lisp code
and to single step it. A description of the evalhook and funcallhook mechanism.
15 Fixit
A program which permits you to examine and modify evaluation stack in order
to fix bugs on the fly.
16 Lisp Editor
A structure editor for interactive modification of lisp code.

Final Movement (allegro) -

Appendix A - Function Index
Appendix B - List of Special Symbols
Appendix C - Short Subjects
Garbage collector, Debugging, Default Top Level



CHAPTER 1

FRANZ LISP

1.1. FRANZ LisP' was created as a tool to further research in symbolic and algebraic mani-
pulation, artificial intelligence, and programming languages at the University of Califor-
nia at Berkeley. Its roots are in a PDP-11 Lisp system which originally came from
Harvard. As it grew it adopted features of Maclisp and Lisp Machine Lisp. Substan-
tial compatibility with other Lisp dialects (Interlisp, UCILisp, CMULIisp) is achieved
by means of support packages and compiler switches. The heart of FRANZ LISP is writ-
ten almost entirely in the programming language C. Of course, it has been greatly
extended by additions written in Lisp. A small part is written in the assembly language
for the current host machines, VAXen and a couple of flavors of 68000. Because
FRANZ LISP is written in C, it is relatively portable and easy to comprehend.

FRANZ LISP is capable of running large lisp programs in a timesharing environ-
ment, has facilities for arrays and user defined structures, has a user controlled reader
with character and word macro capabilities, and can interact directly with compiled
Lisp, C, Fortran, and Pascal code.

This document is a reference manual for the FRANZ LISP system. It is not a Lisp
primer or introduction to the language. Some parts will be of interest primarily to
those maintaining FRANZ LISP at their computer site. There is an additional document
entitled The Franz Lisp System, by John Foderaro, which partially describes the system
implementation. FRANZ LISP, as delivered by Berkeley, includes all source code and
machine readable version of this manual and system document. The system document
is in a single file named "franz.n" in the "doc” subdirectory.

This document is divided into four Movements. In the first one we will attempt
to describe the language of FRANZ LISP precisely and completely as it now stands (Opus
38.69, June 1983). In the second Movement we will look at the reader, function types,
arrays and exception handling. In the third Movement we will look at several large
support packages written to help the FRANZ LISP user, namely the trace package, com-
piler, fixit and stepping package. Finally the fourth movement contains an index into
the other movements. In the rest of this chapter we shall examine the data types of
FRANZ LISP. The conventions used in the description of the FRANZ LISP functions will
be given in §1.3 — it is very important that these conventions are understood.

't is rumored that this name has something to do with Franz Liszt [Frants List] (1811-1886) a Hungarian com-
poser and keyboard virtuoso. These allegations have never been proven.

The Franz Lisp Manual PS2:9-5
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1.2. Data Types FRANZ LISP has fourteen data types. In this section we shall look in
detail at each type and if a type is divisible we shall look inside it. There is a Lisp
function type which will return the type name of a lisp object. This is the official
FRANZ LISP name for that type and we will use this name and this name only in the
manual to avoid confusing the reader. The types are listed in terms of importance
rather than alphabetically.

1.2.0. lispval This is the name we use to describe any Lisp object. The function type
will never return ‘lispval’.

1.2.1. symbol This object corresponds to a variable in most other programming
languages. It may have a value or may be ‘unbound’. A symbol may be lambda
bound meaning that its current value is stored away somewhere and the symbol is
given a new value for the duration of a certain context. When the Lisp processor
leaves that context, the symbol’s current value is thrown away and its old value is
restored.

A symbol may also have a function binding. This function binding is static; it can-
not be lambda bound. Whenever the symbol is used in the functional position of a
Lisp expression the function binding of the symbol is examined (see Chapter 4 for
more details on evaluation).

A symbol may also have a property list, anpther static data structure. The property
list consists of a list of an even number of elements, considered to be grouped as
pairs. The first element of the pair is the indicator the second the value of that indi-’
cator.

Each symbol has a print name (pname) which is how this symbol is accessed from
input and referred to on (printed) output.

A symbol also has a hashlink used to link symbols together in the oblist - this field
is inaccessible to the lisp user.

Symbols are created by the reader and by the functions concat, maknam and their
derivatives. Most symbols live on FRANZ LISP’s sole oblist, and therefore two sym-
bols with the same print name are usually the exact same object (they are eg).
Symbols which are not on the oblist are said to be uninterned. The function mak-
nam creates uninterned symbols while concat creates interned ones.
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Subpart name | Get value | Set value Type
value eval set lispval
setq
property plist setplist list or nil
list get putprop
defprop
function getd putd array, binary, list
binding def or nil ’
print name get_pname string
hash link

1.2.2. list A list cell has two parts, called the car and cdr. List cells are created by the
function cons.

Subpart name . Get value | Set v,alue Type

| — T ——
car car rplaca lispval
cdr cdr rplacd lispval

1.2.3. binary This type acts as a function header for machine coded functions. It has
two parts, a pointer to the start of the function and a symbol whose print name
describes the argument discipline. The discipline (if lambda, macro or nlambda)
determines whether the arguments to this function will be evaluated by the caller
before this function is called. If the discipline is a string (specifically "subroutine”,
"function”, "integer-function”, "real-function”, "c-function", "double-c-function”, or
“vector-c-function” ) then this function is a foreign subroutine or function (see §8.5
for more details on this). Although the type of the entry field of a binary type object
is usually string or other, the object pointed to is actually a sequence of machine
instructions.

Objects of type binary are created by mfunction, cfasl, and getaddress.

Subpart name | Get value | Set value Type
e —
entry getentry string or fixoum
discipline getdisc putdisc | symbol or fixnum

1.2.4. fixnum A fixnum is an integer constant in the range -23! to 23!'-1. Small
fixnums (-1024 to 1023) are stored in a special table so they needn’t be allocated
each time one is needed. In principle, the range for fixnums is machine dependent,
although all current implementations for franz have this range.
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1.2.5. flonum A flonum is a double precision real number. On the VAX, the range is

+2.9x10%7 to £1.7x10%. There are approximately sixteen decimal digits of preci-
sion. Other machines may have other ranges.

1.2.6. bignum A bignum is an integer of potentially unbounded size. When integer
arithmetic exceeds the limits of fixnums mentioned above, the calculation is
automatically done with bignums. Should calculation with bignums give a result

which can be represented as a fixnum, then the fixnum representation will be used'.
This contraction is known as integer normalization. Many Lisp functions assume
that integers are normalized. Bignums are composed of a sequence of list cells and
a cell known as an sdot. The user should consider a bignum structure indivisible
and use functions such as haipart, and bignumd-lefishift to extract parts of it.

1.2.7. string A string is a null terminated sequence of characters. Most functions of
symbols which operate on the symbol’s print name will also work on strings. The
-default reader syntax is set so that a sequence of characters surrounded by double
quotes is a string.

1.2.8. port A port is a structure which the system I/O routines can reference to
transfer data between the Lisp system and external media. Unlike other Lisp
objects there are a very limited number of ports (20). Ports are allocated by infile
and outfile and deallocated by close and resetio. The print function prints a port as
a percent sign followed by the name of the file it is connected to (if the port was
opened by fileopen, infile, or outfile). During initialization, FRANZ LISP binds the
symbol piport to a port attached to the standard input stream. This port prints as
%$stdin. There are ports connected to the standard output and error streams,
which print as %S$stdout and %$stderr. This is discussed in more detail at the
beginning of Chapter 5.

1.2.9. vector Vectors are indexed sequences of data. They can be used to implement
a notion of user-defined types via their associated property list. They make hunks
(see below) logically unnecessary, although hunks are very efficiently garbage col-
lected. There is a second kind of vector, called an immediate-vector, which stores
binary data. The name that the function fype returns for immediate-vectors is vec-
tori. Immediate-vectors could be used to implement strings and block-flonum
arrays, for example. Vectors are discussed in chapter 9. The functions new-vector,
and vector, can be used to create vectors.

*The current algorithm# for integer arithmetic operations will return (in certain cases) a result between +2*° and
2% as a bignum although this could be represented as a fixnum.
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Subpart name | Get value | Set value Type

datum(i] vref vset lispval

property vprop vsetprop | lispval
vputprop
size vsize - fixnum

1.2.10. array Arrays are rather complicated types and are fully described in Chapter
9. An array consists of a block of contiguous data, a function to access- that data,
and auxiliary fields for use by the accessing function. Since an array’s accessing
function is created by the user, an array can have any form the user chooses (e.g. n-
dimensional, triangular, or hash table).

Arrays are created by the function marray.

Subpart name | Get value | Set value Type
access function | getaccess | putaccess | = binary, list
or symbol
auxiliary getaux putaux lispval
data arrayref replace block of contiguous
. - set lispval
length getlength | putlength fixnum
delta getdelta putdelta fixnum

1.2.11. value A value cell contains a pointer to a lispval. This type is used mainly by
arrays of general lisp objects. Value cells are created with the ptr function. A value
cell containing a pointer to the symbol ‘foo’ is printed as ‘(ptr to)foo’

l .2.12. hunk A hunk is a vector of from | to 128 lispvals. Once a hunk is created (by
hunk or makhunk) it cannot grow or shrink. The access time for an element of a
hunk is slower than a list cell element but faster than an array. Hunks are really
only allocated in sizes which are powers of two, but can appear to the user to be any
size in the 1 to 128 range. Users of hunks must realize that (not (atom ’lispval)) will
return true if /ispval is a hunk. Most lisp systems do not have a direct test for a list
cell and instead use the above test and assume that a true result means lispval is a
list cell. In FRANZ LISP you can use dtpr to check for a list cell. Although hunks
are not list cells, you can still access the first two hunk elements with cdr and car

and you can access any hunk element with cxr!. You can set the value of the first

two elements of a hunk with rplacd and rplaca and you can set the value of any ele-
ment of the hunk with rplacx. A hunk is printed by printing its contents

'In a hunk, the function cdr references the first element and car the second.
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surrounded by { and }. However a hunk cannot be read in in this way in the stan-
dard lisp system. It is easy to write a reader macro to do this if desired.

1.2.13. other Occasionally, you can obtain a pointer to storage not allocated by the
lisp system. One example of this is the entry field of those FRANZ LISP functions
written in C. Such objects are classified as of type other. Foreign functions which
call malloc to allocate their own space, may also inadvertantly create such objects.
The garbage collector is supposed to ignore such objects.

1.3. Documentation The conventions used in the following chapters were designed to
give a great deal of information in a brief space. The first line of a function description
contains the function name in bold face and then lists the arguments, if any. The argu-
ments all have names which begin with a letter or letters and an underscore. The
letter(s) gives the allowable type(s) for that argument according to this table.

Letter Allowable type(s) .

any type

symbol (although nil may not be allowed)
string .

list (although nil may be allowed)
number (fixnum, flonum, bignum)
integer (fixnum, bignum)

fixnum

bignum

flonum

function type (either binary or lambda body)
binary

vector

vectori

array

value

port (or nil)

hunk

plojoimlgle|<wie|™T|x|™|B]|—||»|rR

In the first line of a function description, those arguments preceded by a quote mark
are evaluated (usually before the function is called). The quoting convention is used so
that we can give a name to the result of evaluating the argument and we can describe
the allowable types. If an argument is not quoted it does not mean that that argument
will not be evaluated, but rather that if it is evaluated, the time at which it is evaluated
will be specifically mentioned in the function description. Optional arguments are sur-
rounded by square brackets. An ellipsis (...) means zero or more occurrences of an
argument of the directly preceding type.



CHAPTER 2

Data Structure Access

The following functions allow one to create and manipulate the various types of
lisp data structures. Refer to §1.2 for details of the data structures known to FRANZ
LisP.

2.1. Lists

The following functions exist for the creation and manipulating of lists. Lists are
composed of a linked list of objects called either ’list cells’, 'cons cells’ or dtpr cells’.
Lists are normally terminated with the special symbol nil. nil is both a symbol and a
representation for the empty list ().

2.1.1. list creation

(cons ’g_argl ’g_arg2) ,
RETURNS:a new list cell whose car is g_argl and whose cdr is g_arg2.

(xcons ’g_argl ’g_arg2)
EQUIVALENT TO:(cons ‘z_arg2 ‘g_argl)

(ncons ’g_arg)
EQUIVALENT TO:(cons ‘'g_arg nil)

(list [’g_argl ... ])
RETURNS:a list whose elements are the g_argi.

(append ’'1_argl ’1_arg2)
RETURNS:a list containing the elements of 1_argl followed by 1_arg2.
NOTE: To generate the result, the top level list cells of 1_argl are duplicated and the cdr
of the last list cell is set to point to I_arg2. Thus this is an expensive operation if
1_argl is large. See the descriptions of nconc and tconc for cheaper ways of doing

the append if the list 1_argl can be altered.

The Franz Lisp Manual PS2:9-11
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(append1 ’l_argl ’g_arg2)
RETURNS:a list like 1_argl with g_arg2 as the last element.
NOTE: this is equivalent to (append ’l_argl (list 'g_arg2)).

; A common mistake is using append to add one element to the end of a list
-> (append (a b cd) ‘e)

(abcd.e)

; The user intended to say:

~> (append (a b c d) Te)

(abcde

; better is appendl

-> (appendl ‘(abcd) ‘e

(abcdel

(quote! [g_gformi] ...[! ’g_eformi] ... [!! ’I_formi] ...)
RETURNS: The list resulting from the splicing and insertion process described below.

NOTE: quote! is the complement of the /is¢ function. /ist forms a list by evaluating each
for in the argument list; evaluation is suppressed if the form is quoteed. In quote/,
each form is implicitly quoteed. To be evaluated, a form must be preceded by
one of the evaluate operations ! and !!. ! g_eform evaluates g_form and the value
is inserted in the place of the call; !! | form evaluates 1_form and the value is
spliced into the place of the call.

‘Splicing in’ means that the parentheses surrounding the list are removed as the
example below shows. Use of the evaluate operators can occur at any level in a
form argument.

Another way to get the effect of the quote! function is to use the backquote char-
acter macro (see § 8.3.3).

(quote! cons ! (cons'1 2) 3) = (cons (1. 2) 3)

(quote! 1! (list234)5)=(12345)

(setq quoted ‘evaled)(quote! ! ((I am ! quoted))) = ((I am evaled))
(quote! try ! ‘(this ! one)) = (try (this ! one))
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(bignum-to-list 'b_arg)
RETURNS:A list of the fixnums which are used to represent the bignum.
NOTE: the inverse of this function is list-to-bignum.

(list-to-bignum ’l_ints)
WHERE: |_ints is a list of fixnums.
RETURNS:a bignum constructed of the given fixnums.
NOTE: the inverse of this function is bignum-to-list.

2.1.2. list predicates

(dtpr °g_arg)
RETURNS:t iff g_arg is a list cell.
NOTE: that (dtpr ’()) is nil. The name dtpr is a contraction for “dotted pair”.

(listp 'g_arg)
RETURNS:t iff g_arg is a list object or nil.

(tailp "1_x "L_y)

RETURNS:1_x, if a list cell eg to 1_x is found by cdring down 1_y zero or more times, nil
otherwise.

-> (setq x (a b c d) y (cddr x))

(cd)

~> (and (dtpr x) (listp x)) ; X and y are dtprs and lists

t

-> (dtpr () ; () is the same as nil and is not a dtpr
nil

-> (listp 7)) ; however it is a list
t

-> (tailp y x)

(cd
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(length ’1_arg)
RETURNS:the number of elements in the top level of list 1_arg.

2.1.3. list accessing

(car ’1_arg)
(cdr ’1_arg)

RETURNS:cons cell. (car (cons x y)) is always x, (cdr (cons x y)) is always y. In FRANZ
LISP, the cdr portion is located first in memory. This is hardly noticeable, and
we mention it primarily as a curiosity.

(c..r 'lh_arg)
WHERE: the .. represents any positive number of a’s and d’s.

RETURNS:the result of accessing the list structure in the way determined by the function
name. The a’s and d’s are read from right to left, a d directing the access
down the cdr part of the list cell and an a down the car part.

NO‘rE lh_arg may also be nil, and it is guaranteed that the car and cdr of nil is nil. If
lh_arg is a hunk, then (car ’lh_arg) is the same as (cxr 1 'lh_arg) and (cdr 'lh_arg)
is the same as (cxr 0 lh_arg).

It is generally hard to read and understand the context of functions with large
strings of a’s and d’s, but these functions are supported by rapid accessmg and
open-compiling (see Chapter 12).

(nth ’x_index ’1_list)

RETURNS:the nth element of 1_list, assuming zero-based index. Thus (nth 0 1_list) is the
same as (car 1_list). nth is both a function, and a compiler macro, so that
more efficient code might be generated than for nthelem (described below).

NOTE: If x_arg! is non-positive or greater than the length of the list, nil is returned.

(nthedr x_index ’1_list)
RETURNS:the result of cdring down the list 1_list x_index times.
NOTE: If x_index is less than 0, then (cons nil ’I_list) is returned.

(nthelem ’x_argl ’l_arg2)
RETURNS: The x_argl’st element of the list 1_arg2.
NOTE: This function comes from the PDP-11 Lisp system.
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(last "1_arg)
RETURNS:the last list cell in the list I_arg.

EXAMPLE:/ast does NOT return the last element of a list!
(last ‘(a b)) = (b)

(1diff ’1_x "L_y)
RETURNS:a list of all elements in 1_x but not in l_y , i.e., the list difference of 1_x and
Ly.
NOTE: l_y must be a tail of 1_x, i.e., eg to the result of applying some number of cdr’s to
1_x. Note that the value of I/diff is always new list structure unless l_y is nil,
in which case (ldiff I_x nil) is 1_x itself. If I_y is not a tail of 1_x, /diff gen-
erates an error.

EXAMPLE: (ldiff "I_x (member ’g_foo ’I_x)) gives all elements in 1_x up to the first g_foo.

2.1.4. list manipulation

(rplaca 'lh_argl ’g_arg2)
RETURNS:the modified lh_arg!.

SIDE EFFECT: the car of lh_argl is set to g_arg2. If lh argl is a hunk then the second
element of the hunk is set to g_argZ

(rplacd 'lh_argl ’g_arg2)
RETURNS:the modified lh_argl.

SIDE EFFECT: the cdr of lh_arg2 is set to g_argz If Ih_argl is a hunk then the first ele-
ment of the hunk is set to g_arg2.

(attach ’'g_x "L_1)

RETURNS:1_l whose car is now g_x, whose cadr is the original (car I_I), and whose cddr is
the original (cdr I_]).

NOTE: what happens is that g_x is added to the beginning of list I_] yet maintaining the
same list cell at the beginning of the list.

(delete "g_val ’1_list [’x_count])

RETURNS:the result of spllcmg g_val from the top level of I_list no more than x_count
times.

NOTE: x_count defaults to a very large number, thus if x_count is not given, all -
occurrences of g_val are removed from the top level of I_list. g_val is compared
with successive car’s of 1_list using the function equal.

SIDE EFFECT: 1_list is modified using rplacd, no new list cells are used.
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(delq ’g_val ’1_list [’x_count])
(dremove ’g_val ’1_list [’x_count])
RETURNS:the result of splicing g_val from the top level of 1_list no more than x_count
times.

NOTE: delq (and dremove) are the same as delete except that eq is used for comparison
instead of equal.

; note that you should use the value returned by delete or delg
; and not assume that g_val will always show the deletions.
; For example

-> (setq test labcade))

(abcade)

~> (delete ‘a test)

(bcde) ; the value returned is what we would expect
-> test .

(abcde) ; but test still has the first a in the list!

(remq ’g_x ’1_1 [’x_count])
(remove 'g_x’1_1)

RETURNS:a copy of 1_1 with all top level elements equal to g_x removed. remq uses eq
instead of equal for comparisons.

NOTE: remove does not modify its arguments like delete, and delq do.

(insert "g_object ’1_list 'u_comparefn ’g_nodups)

RETURNS:a list consisting of 1_list with g_object destructively mserted in a place deter-
mined by the ordering function u_comparefn.

NOTE: (comparefn ‘g_x 'g_y) should return something non-nil if g_x can precede g_y in
sorted order, nil if g_y must precede g_x. If u_comparefn is nil, alphabetical
order will be used. If g_nodups is non-nil, an element will not be inserted if an
equal element is already in the list. insert does binary search to determine where
to insert the new element.

(merge ’l_datal ’l_data2 "u_comparefn)

RETURNS:the merged list of the two input sorted lists 1_datal and 1_datal using binary
comparison function u_comparefn.

NOTE: (comparefn 'g_x 'g_y) should return somethmg non-nil if g_x can precede g_y m
sorted order, nil if gy must precede g_x. If u_comparefn is nil, alphabetical
order will be used. u_comparefn should be thought of as "less than or equal”.
merge changes both of its data arguments.
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(subst ’g_x 'g_y ’l_s)
“(dsubst "g_x ’g_y ’1_s)

RETURNS:the result of substituting g_x for all equal occurrences of g_y at all levels in
I_s.

NOTE: If g_y is a symbol, eq will be used for comparisons. The function subst does not
modify 1_s but the function dsubst (destructive substitution) does.

(Isubst '1_x ’g_y ’L_s)

RETURNS:a copy of I_s with 1_x spliced in for every occurrence of of g_y at all levels.
Splicing in means that the parentheses surrounding the list 1_x are removed as
the example below shows.

-> (subst (labc)'x (xyz(xyz)(xyz)
((abc)yz((abc)yz)((abc)yz)

-> (lsubst fabc)’x (xyz(xyz)(xyz))
(abcyz(abcyz)(abcyz)

(subpair ’1_old ’I_new ’l_expr) _
WHERE: there are the same number of elements in I_old as I_new.

RETURNS:the list lI_expr with all occurrences of a object in 1_old replaced by the
corresponding one in I_new. When a substitution is made, a copy of the value
to substitute in is not made.

EXAMPLE:(subpair (ac)’ (xy) fabcd) = (xbyd)

(nconc ’1_argl ’1_arg2 [1_arg3 ...])
RETURNS:A list consisting of the elements of 1_argl followed by the elements of 1_arg2
followed by 1_arg3 and so on.

NOTE: The cdr of the last list cell of 1_argi is changed to point to 1_argi+ /.
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~; nconc is faster than append because it doesn’t allocate new list cells.
-> (setq lisl (a b))
(abc)
-> (setq lis2 "(d e f))
def
~> (append lisl lis2)
(abcdef)
-> lisl
(abc) ; note that lisl has not been changed by append
-> (nconc lisl lis2)
(abcdef); nconc returns the same value as append
=> lis]
(abcdef); but in doing so alters lisl

(reverse ’l_arg)
(nreverse ’l_arg)

RETURNS:the list |_arg with the elements at the top level in reverse order.

NOTE: The function nreverse does the reversal in place, that is the list structure is
modified. 4

(m‘econé ’l_arg ’g_arg)
EQUIVALENT TO:(nconc (nreverse ‘I_arg) 'g_arg)

2.2. Predicates

The following functions test for properties of data objects. When the result of the
test is either ’false’ or ’true’, then nil will be returned for ’false’ and something other
than nil (often t) will be returned for true’.

(arrayp 'g_arg)
RETURNS:t iff g_arg is of type array.

(atom ’'g_arg)
RETURNS:t iff g_arg is not a list or hunk object.
NOTE: (atom 7)) returns t.
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(bedp 'g_arg)
RETURNS:t iff g_arg is a data object of type binary.

NOTE: This function is a throwback to the PDP-11 Lisp system. The name stands for
binary code predicate.

(bigp 'g_arg)
RETURNS:t iff g_arg is a bignum.

(dtpr ’g_arg)
RETURNS:t iff g_arg is a list cell.
NOTE: that (dtpr ’()) is nil.

(hunkp ’g_arg)
RETURNS:t iff g_arg is a hunk.

(listp ’g_arg)
RETURNS:t iff g_arg is a list object or nil.

(stringp 'g_arg)
RETURNS:t iff g_arg is a string.

(symbolp ’g_arg)
‘ RETURNS:t iff g_arg is'a symbol.

(valuep 'g_arg)
RETURNS:t iff g_arg is a value cell

(vectorp ’v_vector)
RETURNS:t iff the argument is a vector.

(vectorip ’'v_vector)
RETURNS:t iff the argument is an immediate-vector.

(type ’g_arg)
(typep 'g_arg)

RETURNS:a symbol whose pname describes the type of g_arg.
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(signp s_test "g_val) ,
RETURNS:t iff g_val is a number and the given test s_test on g_val returns true.

NOTE: The fact that signp simply returns nil if g_val is not a number is probably the
most important reason that signp is used. The permitted values for s_test and
what they mean are given in this table.

s_test tested

, g val<0
le gval<0
e g_val =0
n g val #0
ge gval=0
g g_val>0

(eq 'g_argl 'g_arg2)
RETURNS:t if g_argl and g_arg2 are the exact same lisp object.

NOTE: Eq simply tests if g_argl and g_arg2 are located in the exact same place in
memory. Lisp objects which print the same are not necessarily eg.‘ The only
objects guaranteed to be eg are interned symbols with the same print name.
[Unless a symbol is created in a special way (such as with uconcat or maknam) it
will be interned.] .

!

(neq’g x’gy) .
RETURNS:t if g_x is not eq to g_y, otherwise nil.

(equal 'g_argl ’g_arg2)
(eqstr g_argl 'g_arg2)
RETURNS:t iff g_argl and g_arg2 have the same structure as described below.
NOTE: g_arg and g_arg2 are equal if
(1) they are eq. '
(2) they are both fixnums with the same value
(3) they are both flonums with the same value
(4) they are both bignums with the same value
(5) they are both strings and are identical.
(6) they are both lists and their cars and cdrs are equal.
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; eq is much faster than equal, especially in compiled code,
; however you cannot use eq to test for equality of numbers outside
; of the range -1024 to 1023. equal will always work.
-> (eq 1023 1023)
t
~> (eq 1024 1024)
il

n
-> (equal 1024 1024)
t

(not ’g_arg)
(null ’g_arg)

RETURNS:t iff g_arg is nil.

(member ’g_argl ’l_arg2)
(memgq ’g_argl ’l_arg2)
RETURNS:that part of the 1_arg2 beginning with the first occurrence of g_argl. If g_argl
is not in the top level of 1_arg2, nil is returned. :

NOTE: member tests for equality with equal, memq tests for equality with eg.

2.3. Symbols and Strings

In many of the following functions the distinction between symbols and strings is
somewhat blurred. To remind ourselves of the difference, a string is a null terminated
sequence of characters, stored as compactly as possible. Strings are used as constants
in FRANZ LisP. They eval to themselves. A symbol has additional structure: a value,
property list, function binding, as well as its external representation (or print-name). If
a symbol is given to one of the string manipulation functions below, its print name will
be used as the string.

Another popular way to represent strings in Lisp is as a list of fixnums which
represent characters. The suffix ’'n’ to a string manipulation function indicates that it
returns a string in this form.
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2.3.1. symbol and string creation

(concat [’stn_arg! ... )
(uconcat [’stn_argl ... ])

RETURNS:a symbol whose print name is the result of concatenating the print names,
string characters or numerical representations of the sn_argi.

NOTE: If no arguments are given, a symbol with a null pname is returned. concat places
the symbol created on the oblist, the function uconcat does the same thing but
does not place the new symbol on the oblist.

EXAMPLE:(concat ‘abc (add 3 4) "def’) = abc7def

(concatl ’1_arg)
EQUIVALENT TO:(apply ‘concat 'I_arg)

(implode ’1_arg)
(maknam ’l_arg)
WHERE: |_arg is a list of symbols, strings and small fixnums.

RETURNS: The symbol whose print name is the result of concatenating the first characters
of the print names of the symbols and strings in the list. Any fixnums are con-
verted to the equivalent ascii character. In order to concatenate entire strings
or print names, use the function concat.

NOTE: implode interns the symbol it creates, maknam does not.

(gensym [’s_leéder])

RETURNS:a new uninterned atom beginning with the first character of s_leader’s pname,
or beginning with g if s_leader is not given.

NOTE: The symbol looks like xOnnnnn where x is s_leader’s first character and nnnnn is
the number of times you have called gensym.

(copysymbol ’s_arg ’g_pred)
RETURNS:an uninterned symbol with the same print name as s_arg. If g_pred is non nil,
then the value, function binding and property list of the new symbol are made
eq to those of s_arg.

(ascii 'x_charnum)
WHERE: x_charnum is between 0 and 255.

RETURNS:a symbol whose print name is the single character whose fixnum representa-
tion is x_charnum.
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(intern ’s_arg)
RETURNS:s_arg
SIDE EFFECT: s_arg is put on the oblist if it is not already there.

(remob ’s_symbol)
RETURNS:s_symbol
SIDE EFFECT: s_symbol is removed from the oblist.

(rematom ’s_arg)
RETURNS:t if s_arg is indeed an atom.
SIDE EFFECT: s_arg is put on the free atoms list, effectively reclaiming an atom cell.

NOTE: This function does not check to see if s_arg is on the oblist or is referenced any-
where. Thus calling rematom on an atom in the oblist may result in disaster
when that atom cell is reused!

2.3.2. string and symbol predicates

(boundp ’s_name)

RETURNS:nil if s_name is unbound: that is, it has never been given a value. If x_name
 has the value g_val, then (nil . g_val) is returned. See also makunbound.

(alphalessp ’s;_argl ’st_arg2) ‘ _ .
RETURNS:t iff the ‘name’ of st_argl is alphabetically less than the name of st_arg2. If
st_arg is a symbol then its ‘name’ is its print name. If st_arg is a string, then
its ‘name’ is the string itself.

2.3.3. symbol and string accessing

(symeval ’s_arg)
RETURNS:the value of symbol s_arg.

NOTE: It is illegal to ask for the value of an unbound symbol. This function has the
same effect as eval, but compiles into much more efficient code.

(get_pname ’s_arg)
RETURNS:the string which is the print name of s_arg.
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(plist ’s_arg)
RETURNS:the property list of s_arg.

(getd ’s_arg)
RETURNS:the function definition of s_arg or nil if there is no function definition.
NOTE: the function definition may turn out to be an array header.

$

(getchar ’s_arg °x_index)
(nthchar ’s_arg ’x_index)
(getcharn ’s_arg 'x_index)

RETURNS:the x_indexth character of the print name of s_arg or nil if x_index is less than
1 or greater than the length of s_arg’s print name.

NOTE: getchar and nthchar return a symbol with a single character print name, getcharn
returns the fixnum representation of the character.

(substring ’st_string "x_index ['x_length])
(substringn ’st_string ’x_index [’x_length])

RETURNS:a string of length at most x_length starting at x_indexth character in the string.

NOTE: If x_length is not given, all of the characters for x_index to the end of the string
are returned. If x_index is negative the string begins at the x_indexts character
from the end. If x_index is out of bounds, nil is returned.

NOTE: substring returns a list of symbols, substringn returns a list of fixnums. If sub-.
‘stringn is given a 0 x_length argument then a single fixnum which is the x_indexth
character is returned.

2.3.4. symbol and string manipulation

(set >s_argl ’g_arg2)
RETURNS:g_arg2.
SIDE EFFECT: the value of s_argl is set to g_arg2.

(setq s_atml ’g_vall [ s_atm2 ’g_val2 ... ... D
WHERE: the arguments are pairs of atom names and expressions.
RETURNS:the last g_vali.

SIDE EFFECT: each s_atmi is set to have the value g_vali.
NOTE: set evaluates all of its arguments, setg does not evaluate the s_atmi.



The Franz Lisp Manual PS2:9-25

(desetq sl_patternl ’g_expl [... ...])
RETURNS:g_expn
SIDE EFFECT: This acts just like setq if all the sl_patterni are symbols. If sl_patterni is a
list then it is a template which should have the same structure as g_expi
The symbols in sl_pattern are assigned to the corresponding parts of
g_exp. (See also setf)

EXAMPLE:(desetq (a b(c. d)) (1 2(345))
setsato 1,bto2,cto 3, and d to (4 5).

(setplist ’s_atm ’1_plist)
RETURNS:1_plist.
SIDE EFFECT: the property list of s_atm is set to 1_plist.

(makunbound ’s_arg)
RETURNS:s_arg

SIDE EFFECT: the value of s_arg is made ‘unbound’. If the interpreter attempts to evalu-
ate s_arg before it is again given a value, an unbound variable error will
occur.

(aexplode ’s_arg)
(explode 'g_arg)
(aexplodec ’s_arg)
(explodec ’g_arg)
(aexploden ’s_arg)
(exploden ’g_arg)
RETURNS:a list of the characters used to print out s_arg or g_arg.

NOTE: The functions beginning with ’a’ are internal functions which are limited to sym-
bol arguments. The functions aexplode and explode return a list of characters
which print would use to print the argument. These characters include all neces-
sary escape characters. Functions aexplodec and explodec return a list of charac-
ters which patom would use to print the argument (i.e. no escape characters).
Functions aexploden and exploden are similar to aexplodec and explodec except
that a list of fixnum equivalents of characters are returned.
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~> (setq x ‘|quote this \| ok?|)

|quote this \| ok?|

-> (explode x)

(Quote \\| [ [this \\] [ | N\ N[ I\\[ [ |ok?)
; note that |\\| just means the single character: backslash.
; and |\|| just means the single character: vertical bar

; and | | means the single character: space

-> (explodec x)

(Quote||this||[\|||]ok?)

~> (exploden x)

(113117 111 116 101 32 116 104 105 115 32 124 32 111 107 63)

2.4. Vectors

See Chapter 9 for a discussion of vectors. They are less efficient that hunks but
more efficient than arrays.

2.4.1. vector creation

(new-vector ’x_size [’g_fill {’g_prop]])

RETURNS:A vector of length x_size. Each data entry is initialized to g_fill, or to nil, if
the argument g_fill is not present. The vector’s property is set to g_prop, or to
nil, by default.

(new-vectori-byte ’x_size [’g_fill [’g_prop]])
(new-vectori-word °x_size [’g_fill [’g_prop]])
(new-vectori-long x_size [’g_fill [’g_prop]])

RETURNS:A vectori with x_size elements in it. The actual memory requirement is two
long words + x_size*(n bytes), where n is | for new-vector-byte, 2 for new-
vector-word, or 4 for new-vectori-long. Each data entry is initialized to g_fill,
or to zero, if the argument g_fill is not present. The vector’s property is set to
g_prop, or nil, by default.

Vectors may be created by specifying multiple initial values:
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(vector [’g_val( "g_vall ...])

RETURNS:a vector, with as many data elements as there are arguments. It is quite possi-
ble to have a vector with no data elements. The vector’s property will be a
null list.

(vectori-byte [’x_val0 *x_val2 ...])
(vectori-word ['x_val0 *x_val2 ...])
(vectori-long [’x_valQ 'x_val2 ...])

RETURNS:a vectori, with as many data elements as there are arguments. The arguments
are required to be fixnums. Only the low order byte or word is used in the
case of vectori-byte and vectori-word. The vector’s property will be null.

2.4.2. vector reference

(vref "v_vect 'x_index)
(vrefi-byte 'V _vect ’x_bindex)
(vrefi-word 'V_vect ’x_windex)
(vrefi-long "V _vect ’x_lindex)
RETURNS:the desired data element from a vector. The indices must be fixnums. Index-
ing is zero-based. The vrefi functions sign extend the data.

(vprop 'Vv_vect)
RETURNS: The Lisp property associated _with a vector.

(vget "Vv_vect ’g_ind)

RETURNS: The value stored under g_ind if the Lisp property associated with 'Vv_vect is
a disembodied property list.

(vsize 'Vv_vect)
(vsize-byte 'V_vect)
(vsize-word "V _vect)
RETURNS:the number of data elements in the vector. For immediate-vectors, the func-

tions vsize-byte and vsize-word return the number of data elements, if one
thinks of the binary data as being comprised of bytes or words.
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2.4.3. vector modfication

(vset ’v_vect x_index ’g_val)
(vseti-byte *V_vect *x_bindex x_val)
(vseti-word 'V _vect "x_windex ’x_val)
(vseti-long 'V _vect ’x_lindex ’x_val)
RETURNS:the datum.

SIDE EFFECT: The indexed element of the vector is set to the value. As noted above, for
vseti-word and vseti-byte, the index is construed as the number of the
data element within the vector. It is not a byte address. Also, for those
two functions, the low order byte or word of x_val is what is stored.

(vsetprop *Vv_vect ’g_value)

RETURNS:g_value. This should be either a symbol or a disesmbodied property list whose
car is a symbol identifying the type of the vector.

SIDE EFFECT: the property list of Vv_vect is set to g_value.

(vputprop 'Vv_vect ’g_value ’g_ind)
RETURNS:g_value.

SIDE EFFECT: If the vector property of Vv_vect is a disembodied property list, then
vputprop adds the value g_value under the indicator g_ind. Otherwise,
the old vector property is made the first element of the list.

2.5. Arrays

See Chapter 9 for a complete description of arrays. Some of these functions are
part of a Maclisp array compatibility package representing only one simple way of
using the array structure of FRANZ LISP.

2.5.1. array creation

(marray ’g_data ’s_access 'g_aux ’x_length ’x_delta)

RETURNS:an array type with the fields set up from the above arguments in the obvious
way (see § 1.2.10).

(*array ’s_name ’s_type 'x_dim1 ... ’x_dimn)
(array s_name s_type x_diml ... x_dimn)

WHERE: s_type may be one of t, nil, fixnum, flonum, fixnum-block and flonum-block.
RETURNS:an array of type s_type with n dimensions of extents given by the x_dimi.

SIDE EFFECT: If s_name is non nil, the function definition of s_name is set to the array
structure returned.

NOTE: These functions create a Maclisp compatible array. In FRANZ LISP arrays of type
t, nil, fixnum and flonum are equivalent and the elements of these arrays can be
any type of lisp object. Fixnum-block and flonum-block arrays are restricted to
fixnums and flonums respectively and are used mainly to communicate with
foreign functions (see §8.5).
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NOTE: *array evaluates its arguments, array does not.

2.5.2. array predicate

(arrayp 'g_arg)
RETURNS:t iff g_arg is of type array.

2.5.3. array accessors

(getaccess ’a_array)
(getaux ’a_array)
(getdelta ’a_array)
(getdata ’a_array)
(getlength ’a_array)

RETURNS:the field of the array object a_array given by the funcuon name.

(arrayref "a_name ’x_ind)

RETURNS:the x_indts element of the array object a_name. x_ind of zero accesses the
first element.

NOTE: arrayref uses the data, length and delta fields of a_name to determine which
object to return.

(arraycall s_type ’as_array ’x_indl1 ... )
RETURNS:the element selected by the indices {yom the array a_array of type s_type.
NOTE: If as_array is a symbol then the function binding of this symbol should contain an
array object.
s_type is ignored by arraycall but is included for compatibility with Maclisp.
(arraydims ’s_name)
RETURNS:a list of the type and bounds of the array s_name.

(listarray ’sa_array [’x_elements])

RETURNS:a list of all of the elements in array sa_array. If x_elements is given, then only
the first x_elements are returned.
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; We will create a 3 by 4 array of general lisp objects
-> (array ernie ¢ 3 4)
array[12]

; the array header is stored in the function definition siot of the
; symbol ernie

~> (arrayp (getd ‘ernie))

t

-> (arraydims (getd ‘ernie))

t34) -

; store in ernie[2][2] the list (test list)
-> (store (ernie 2 2) ‘(test list))
(test list)

; check to see if it is there
-> (ernie 2 2)
(test list)

; now use the low level function arrayrefto find the same element

; arrays are 0 based and row-major (the last subscript varies the fastest)
; thus element [2][2] is the 10th element , (starting at 0).

~-> (arrayref (getd ‘ernie) 10)

(ptr to)(test list) ; the result is a value cell (thus the (ptr to))

2.5.4. array manipulation

(putaccess ’a_array 'su_func)
(putaux ’a_array ’g_aux)
(putdata ’a_array 'g_arg)
(putdelta ’a_array 'x_delta)
(putlength ’a_array ’x_length)

RETURNS:the second argument to the function.

SIDE EFFECT: The field of the array object given by the function name is replaced by the
second argument to the function.

(store ’1_arexp 'g_val)
WHERE: 1_arexp is an expression which references an array element.
RETURNS:g_val

SIDE EFFECT: the array location which contains the element which I_arexp references is
changed to contain g_val.
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(fillarray ’s_array ’l_itms)
RETURNS:S_array

SIDE EFFECT: the array s_array is filled with elements from 1_itms. If there are not
enough elements in 1_itms to fill the entire array, then the last element of
I_itms is used to fill the remaining parts of the array.

2.6. Hunks

Hunks are vector-like objects whose size can range from 1 to 128 elements. Inter-
nally, hunks are allocated in sizes which are powers of 2. In order to create hunks of a
given size, a hunk with at least that many elements is allocated and a distinguished
symbol EMPTY is placed in those elements not requested. Most hunk functions respect
those distinguished symbols, but there are two (*makhunk and *rplacx) which will
overwrite the distinguished symbol.

2.6.1. hunk creation

(hunk ’g_vall [’g_val2 ... ’g_valn])
RETURNS:a hunk of length n whose elements are initialized to the g_vali.
. NOTE: the maximum size of a hunk is 128.
_ EXAMPLE:(hunk 4 'sharp 'keys) = {4 sharp keys)

(makhunk ’x1_arg)

RETURNS:a hunk of length xl_arg initialized to all nils if xl_arg is a fixnum. If xl_arg is
a list, then we return a hunk of size (length 'x/_arg) initialized to the elements
in xl_arg.

NOTE: (makhunk ‘(a b ¢)) is equivalent to (hunk ‘a ’b ¢).
EXAMPLE:(makhunk 4) = {nil nil nil nil)

(*makhunk ’x_arg)

RETURNS:a hunk of size 2*-2"8 jnitialized to EMPTY.

NOTE: This is only to be used by such functions as hunk and makhunk which create and
initialize hunks for users.
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2.6.2. hunk accessor

(cxr °x_ind "h_hunk)
RETURNS:element x_ind (starting at 0) of hunk h_hunk.

(hunk-to-list "h_hunk)
RETURNS:a list consi_sting of the elements of h_hunk.

2.6.3. hunk manipulators

(rplacx °*x_ind *h_hunk ’g_val)
(*rplacx ’x_ind "h_hunk ’g_val)

RETURNS:h_hunk
SIDE EFFECT: Element x_ind (starting at 0) of h_hunk is set to g_val.

NOTE: rplacx will not modify one of the distinguished (EMPTY) elements whereas
*rplacx will.

(hunksize *h_arg)
RETURNS:the size of the hunk h_arg.
EXAMPLE: (hunksize (hunk 1 2 3)) = 3

2.7. Beds

A bed object contains a pointer to compiled code and to the type of function
object the compiled code represents.

(getdisc 'y_bcd)
(getentry ’y_bcd)
RETURNS:the field of the bed object given by the function name.

(putdisc ’y_func ’s_discipline)
RETURNS:s_discipline
SIDE EFFECT: Sets the discipline field of y_func to s_discipline.

2.8. Structures

There are three common structures constructed out of list cells: the assoc list, the
property list and the tconc list. The functions below manipulate these structures.

2.8.1. assoc list

An ‘assoc list’ (or alist) is a common lisp data structure. It has the form
((keyl . valuel) (key2 . value2) (key3 . value3) ... (keyn . valuen))
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(assoc 'g_argl ’l_arg2)
(assq ’g_argl ’1_arg2) _
RETURNS:the first top level element of 1_arg2 whose car is equal (with assoc) or eq (with
assq) to g_argl.
NOTE: Usually 1_arg2 has an a-list structure and g_argl acts as key.

(sassoc ’g_argl ’l_arg2 ’sl_func)
RETURNS:the result of (cond ((assoc 'g_arg 'l_arg2) (apply 'si_func nil)))
NOTE: sassoc is written as a macro.

(sassq 'g_argl ’l_arg2 ’sl_func)
RETURNS:the result of (cond ((assq 'g_arg ’I_arg2) (apply ’si_func nil)))
NOTE: sassq is written as a macro.

; assoc or assq is given a key and an assoc list and returns
; the key and value item if it exists, they differ only in how they test
; for equality of the keys.

-> (setq alist ‘((alpha . a) ( (complex key) . b) (junk . x)))
((alpha . a) ((complex key) . b) (junk . x))

; we should use assq when the key is an atom
-> (assq 'alpha alist)
(alpha . a)

; but it may not work when the key is a list
-> (assq '(complex key) alist)
nil

; however assoc will always work
-> (assoc ‘(complex key) alist)
((complex key) . b)

(sublis ’1_alst "1_exp)
WHERE: |_alst is an a-list.
RETURNS:the list 1_exp with every occurrence of keyi replaced by vali.

NOTE: new list structure is returned to prevent modification of 1_exp. When a substitu-
tion is made, a copy of the value to substitute in is not made.

2.8.2. property list

A property list consists of an alternating sequence of keys and values. Nor-
mally a property list is stored on a symbol. A list is a "disembodied’ property list if
it contains an odd number of elements, the first of which is ignored.
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(plist ’s_name)
- RETURNS:the property list of s_name.

(setplist *s_atm ’1_plist)
RETURNS:I_plist.
SIDE EFFECT: the property list of s_atm is set to 1_plist.

(get ’Is_name ’g_ind)

RETURNS:the value under indicator g_ind in Is_name’s property list if Is_name is a sym-
bol.

NOTE: If there is no indicator g_ind in Is_name’s property list nil is returned. If Is_name
is a list of an odd number of elements then it is a disembodied property list. get
searches a disembodied property list by starting at its cdr, and comparing every
other element with g_ind, using eq.

(getl ’Is_name ’l_indicators)

RETURNS:the property list Is_name beginning at the first indicator which is a member of
the list 1_indicators, or nil if none of the indicators in I_indicators are on
Is_name’s property list.

NOTE: If Is_name is a list, then it is assumed to be a disembodied property list.

(putprop ‘Is_name ’g_val ’g_ind)
(defprop Is_name g_val g_ind)

RETURNS:g_val.

SIDE EFFECT: Adds to the property list of Is_name the value g_val under the indicator
g-ind.

NOTE: putprop evaluates it arguments, defprop does not. Is_name may be a disembodied
property list, see get.

(remprop ’Is_name ’'g_ind)

RETURNS:the portion of Is_name’s property list beginning with the property under the
indicator g_ind. If there is no g_ind indicator in Is_name’s plist, nil is
returned.

SIDE EFFECT: the value under indicator g_ind and g_ind itself is removed from the pro-

perty list of Is_name.

NOTE: Is_name may be a disembodied property list, see get.
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-> (putprop ‘xlate ‘a ‘alpha)
a

-> (putprop ‘xlate b ‘beta)
b

-> (plist "xlate)

(alpha a beta b)

-> (get ‘xlate ‘alpha)

a

; use of a disembodied property list:

~> (get '(nil fateman rif sklower kis foderaro jkf) ‘sklower)
kis

2.8.3. tconc structure

A tconc structure is a special type of list designed to make it easy to add
objects to the end. It consists of a list cell whose car points to a list of the elements
added with tconc or lconc and whose cdr points to the last list cell of the list pointed
to by the car.

(tconc ’1_ptr 'g_x) )
"WHERE: 1_ptr is a tconc structure.
RETURNS:1_ptr with g_x added to the end.

(Iconc ’I_ptr ’1_x)
WHERE: l_ptr is a tconc structure.
RETURNS:_ptr with the list I_x spliced in at the end.
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; A fconc structure can be initialized in two ways.
; nil can be given to tconc in which case tconc will generate
; a fconc structure.

~>(setq foa (tconc nil 1))
mmn

; Since tconc destructively adds to
; the list, you can now add to foo without using setq again.

=>(tconc foo 2)
(122
->foo

22

; Another way to create a null tconc structure
; is to use (ncons nil).

->(setq foo (ncons nil))
(nil)

=>(tconc foo 1)

mn

; now see what /conc can do

-> (lconc foo nil)

mmy ; no change
-> (lconc foo (2 3 4))

(12344

2.8.4. fclosures

An fclosure is a functional object which admits some data manipulations.
They are discussed in §8.4. Internally, they are constructed from vectors.

(fclosure ’I_vars g_funobj)

WHERE: l_vars is a list of variables, g_funobj is any object that can be funcalled
(including, fclosures).

RETURNS: A vector which. is the fclosure.
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(fclosure-alist *v_fclosure)

RETURNS:An association list representing the variables in the fclosure. This is a
snapshot of the current state of the fclosure. If the bindings in the fclosure are
changed, any previously calculated results of fc/osure-alist will not change.

(fclosure-function ’v_fclosure)
RETURNS:the functional object part of the fclosure.

(fclosurep ’v_fclosure)
RETURNS:t iff the argument is an fclosure.

(symeval-in-fclosure *v_fclosure ’s_symbol)
RETURNS:the current binding of a particular symbol in an fclosure.

(set-in-fclosure ’v_fclosure *s_symbol ’g_newvalue)
RETURNS:g_newvalue.
SIDE EFFECT: The variable s_symbol is bound in the fclosure to g_newvalue.

2.9. Random functions
The following functions don’t fall into any of the classifications above.

(bcdad ’s_funcname)

RETURNS:a fixnum which is the address in memory where the function s_funcname
begins. If s_funcname is not a machine coded function (binary) then bcdad

returns nil.
C

(copy ’g_arg)
RETURNS:A structure equal to g_arg but with new list cells.

(copyint* ’x_arg)
RETURNS:a fixnum with the same value as x_arg but in a freshly allocated cell.

(cpyl ’xvt_arg)
RETURNS:a new cell of the same type as xvt_arg with the same value as xvt_arg.

(getaddress ’s_entryl ’s_binderl ’st_disciplinel [... ... ... D
RETURNS:the binary object which s_binderl’s function field is set to.

NOTE: This looks in the running lisp’s symbol table for a symbol with the same name as
s_entryi. It then creates a binary object whose entry field points to s_entryi and
whose discipline is st_disciplinei. This binary object is stored in the function
field of s_binderi. If st_disciplinei is nil, then "subroutine” is used by default.
This is especially useful for cfas/ users.
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(macroexpand ’g_form)
RETURNS:g_form after all macros in it are expanded.

NOTE: This function will only macroexpand expressions which could be evaluated and it
does not know about the special nlambdas such as cond and do, thus it misses
many macro expansions.

(ptr ’g_arg)

RETURNS:a value cell initialized to point to g_arg.

(quote g_arg)

RETURNS:g_arg.
NOTE: the reader allows you to abbreviate (quote foo) as *foo.

(kwote 'g_arg)

RETURNS: (list (quote quote) g_arg).

(replace ’g_argl ’g_arg2) ,
WHERE: g_argl and g_arg2 must be the same type of lispval and not symbols or hunks.
RETURNS:g_arg2.
SIDE EFFECT: The effect of replace is dependent on the type of the g_argi although one

will notice a similarity in the effects. To understand what replace does to
fixoum and flonum arguments, you must first understand that such

‘numbers are ‘boxed’ in FRANZ LisP. What this means is that if the sym-

bol x has a value 32412, then in memory the value element of x’s symbol
structure contains the address of another word of memory (called a box)
with 32412 in it.

_Thus, there are two ways of changing the value of x: the first is to change

the value element of x’s symbol structure to point to a word of memory
with a different value. The second way is to change the value in the box
which x points to. The former method is used almost all of the time, the
latter is used very rarely and has the potential to cause great confusion.
The function replace allows you to do the latter, i.e., to actually change the
value in the box.

You should watch out for these situations. If you do (setq y x), then both
x and y will point to the same box. If you now (replace x 12345), then y
will aiso have the value 12345. And, in fact, there may be many other
pointers to that box.

Another problem with replacing fixnums is that some boxes are read-only.
The fixnums between -1024 and 1023 are stored in a read-only area and
attempts to replace them will result in an "Illegal memory reference” error
(see the description of copyint* for a way around this problem).

For the other valid types, the effect of replace is easy to understand. The
fields of g_vall’s structure are made eq to the corresponding fields of
g_val2’s structure. For example, if x and y have lists as values then the
effect of (replace x y) is the same as (rplaca x (car y)) and (rplacd x (cdr y)).
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(scons ’x_arg 'bs_rest)
WHERE: bs_rest is a bignum or nil.
RETURNS:a bignum whose first bigit is x_arg and whose higher order bigits are bs_rest.

(setf g_refexpr ’g_value)

NOTE: setf is a generalization of setq. Information may be stored by binding variables,
replacing entries of arrays, and vectors, or being put on property lists, among oth-
ers. Setf will allow the user to store data into some location, by mentioning the
operation used to refer to the location. Thus, the first argument may be partially
evaluated, but only to the extent needed to calculate a reference. setf returns
g_value. (Compare to desetq )

(setf x 3) = (setqx 3)

(setf (car x) 3) = (rplacax 3)

(setf (get foo "bar) 3) = (putprop foo 3 ’bar)

(setf (vref vector index) value) = (vset vector index value)

(sort ’l_data u_comparefn)

RETURNS:a list of the elements of 1 data ordered by the comparison function
u_comparefn.

'SIDE EFFECT: the list 1_data is modified rather than allocated in new storage.

NOTE: (comparefn 'g_x 'g_y) should return something non-nil if g_x can precede g_y in
sorted order; nil if g_y must precede g_x. If u_comparefn is nil, alphabetical order
will be used.

(sortcar ’I_list u_comparefn)

RETURNS:a list of the elements of 1_list with the car's ordered by the sort function
u_comparefn.

SIDE EFFECT: the list 1_list is modified rather than copied.
NOTE: Like sort, if u_comparefn is nil, alphabetical order will be used.



CHAPTER 3

Arithmeﬁc Functions

This chapter describes FRANZ LISP’s functions for doing arithmetic. Often the
same function is known by many names. For example, add is also plus, and sum. This
is caused by our desire to be compatible with other Lisps. The FRANZ LISP user should
avoid using functions with names such as + and » unless their arguments are fixnums.
The Lisp compiler takes advantage of these implicit declarations.

An attempt to divide or to generate a floating point result outside of the range of
floating point numbers will cause a floating exception signal from the UNIX operating
system. The user can catch and process this interrupt if desired (see the description of
the signal function).

3.1. Simple Arithmetic Functions

(add [’n_argl ...])
(plus [’n_argl ...])
(sum ['n_argl ...])
(+ ['x_argl .. .

RETURNS:the sum of the arguments. If no arguments are given, 0 is returned.

NOTE: if the size of the partial sum exceeds the limit of a fixnum, the partial sum will be
converted to a bignum. If any of the arguments are flonums, the partial sum will
be converted to a flonum when that argument is processed and the result will thus
be a flonum. Currently, if in the process of doing the addition a bignum must be
converted into a flonum an error message will result.

(add1 ’'n_arg)
(1+ ’x_arg)
RETURNS:its argument plus 1.

(diff ['n_argl ... ])
(difference ['n_argl ... ])

(- [x_argl ... D
RETURNS:the result of subtracting from n_argl all subsequent arguments. If no argu-
ments are given, 0 is returned.

NOTE: See the description of add for details on data type conversions and restrictions.
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(subl ’n_arg)
(1-'x_arg)
RETURNS:its argument minus 1.

(minus ’'n_arg)
RETURNS:zero minus n_arg.

(product ['n_argl ... ])
(times ['n_argl ... ])
(s 'x_argl ... ])
RETURNS:the product of all of its arguments. It returns | if there are no arguments.

NOTE: See the description of the function add for details and restrictions to the
automatic data type coercion.

(quotient ['n_argl ...])
(/ I’'x_argl ...])
RETURNS:the result of dividing the first argument by succeeding ones.

NOTE: If there are no arguments, 1 is returned. See the description of the function add
for details and restrictions of data type coercion. A divide by zero will cause a
floating exception interrupt — see the description of the signal function.

(*quo 'i_x 'i_y)
RETURNS:the integer part of i_x / i_y.

(Divide ’i_dividend ’i_divisor) o _
RETURNS:a list whose car is the quotient and whose cadr is the remainder of the division
of i_dividend by i_divisor.
NOTE: this is restricted to integer division.

~

(Emuldiv "x_factl ’x_fact2 *x_addn *x_divisor)

RETURNS:a list of the quotient and remainder of this operation:
((x_factl * x_fact2) + (sign extended) x_addn) / x_divisor.

NOTE: this is useful for creating a bignum arithmetic package in Lisp.
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3.2. predicates
(numberp ’g_arg)

(numbp ’g_arg)
RETURNS:t iff g_arg is a number (fixnum, flonum or bignum).

(fixp ’g_arg)
: RETURNS:t iff g_arg is a fixnum or bignum.

(floatp ’g_arg)
RETURNS:t iff g_arg is a flonum.

(evenp ’x_arg)

RETURNS:t iff x_arg is even.

(oddp ’x_arg)
RETURNS:t iff x_arg is odd.

(zerop ’g_arg) .
RETURNS:t iff g_arg is a number equal to 0.

(onep ’g_arg)
RETURNS:t iff g_arg is a number equal to 1.

(plusp 'n_arg)
RETURNS:t iff n_arg is greater than zero.

(minusp ’g_arg)
RETURNS:t iff g_arg is a negative number.

(greaterp ['n_argl ...])
(> ’fx_argl fx_arg2)
(>& ’x_argl ’x_arg2)
RETURNS:t iff the arguments are in a strictly decreasing order.

NOTE: In functions greaterp and > the function difference is used to compare adjacent
values. If any of the arguments are non-numbers, the error message will come
from the difference function. The arguments to > must be fixnums or both
flonums. The arguments to >& must both be fixnums. :
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(lessp [’'n_argl ...])
(< 'fx_argl *fx_arg2)

(<& ’x_argl ’x_arg2)
RETURNS:t iff the arguments are in a strictly increasing order.

NOTE: In functions /essp and < the function difference is used to compare adjacent
values. If any of the arguments are non numbers, the error message will come
from the difference function. The arguments to < may be either fixnums or
flonums but must be the same type. The arguments to <& must be fixnums.

(= "fx_argl ’fx_arg2)

(=& ’x_argl ’x_arg2)
RETURNS:t iff the arguments have the same value. The arguments to = must be the
either both fixnums or both flonums. The arguments to =& must be fixnums.

3.3. Trignometric Functions

Some of these funtcions are taken from the host math library, and we take no
further responsibility for their accuracy.

(cos *fx_angle) : : .
RETURNS:the (flonum) cosine of fx_angle (which is assumed to be in radians).

(sin ’fx_angle)
RETURNS:the sine of fx_angle (which is assumed to be in radians).

(acos 'fx_arg)
RETURNS:the (flonum) arc cosine of fx_arg in the range 0 to =.

(asin *fx_arg)
RETURNS:the (flonum) arc sine of fx_arg in the range -=/2 to =/2.

(atan fx_argl ’fx_arg2)
RETURNS:the (flonum) arc tangent of fx_argl/fx_arg2 in the range -r to .
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3.4. Bignum/Fixnum Manipulation

(haipart bx_number x_bits)

RETURNS:a fixnum (or bignum) which contains the x_bits high bits of (abs bx_number) if
x_bits is positive, otherwise it returns the (abs x_bits) low bits of
(abs bx_number).

(haulong bx_number)
RETURNS:the number of significant bits in bx_number.

NOTE: the result is equal to the least integer greater to or equal to the base two logarithm
of one plus the absolute value of bx_number.

(bignum-leftshift bx_arg x_amount)

RETURNS:bx_arg shifted left by x_amount. If x_amount is negative, bx_arg will be
shifted right by the magnitude of x_amount.

NOTE: If bx_arg is shifted right, it will be rounded to the nearest even number.

(sticky-bignum-leftshift "bx_arg 'x_amount)
RETURNS:bx_arg shifted left by x_amount. If x_amount is negative, bx_arg will be
shifted right by the magnitude of x_amount and rounded.

NOTE: sticky rounding is done this way: after shifting, the low order bxt is changed to 1 if
any 1’s were shifted off to the nght : .

3.5. Bit Manipulation

(boole 'x_key 'x_v1 ’x_v2 ...)
RETURNS:the result of the bitwise boolean operation as described in the following table.

NOTE: If there are more than 3 arguments, then evaluation proceeds left to right with
each partial result becoming the new value of x_v1. That is,
(boole ’key ‘vl 'v2 'v3) = (boole 'key (boole key 'v1 'v2) 'v3).
In the following table, = represents bitwise and, + represents bitwise or, ®
represents bitwise xor and - represents bitwise negation and is the highest pre-
cedence operator.

(boole ’key ’x ’y)
key 0 T 2 3 3 3 3 T
result 0 Xsy “Xsy y Xsy X XDy X+y
common
names and bitclear xor or
key 8 9 10 it 12 13 14 15
result “(x+y) (x®Yy) X “X+Yy ~y X+2y =X+°y -1
common
names nor equiv implies nand
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(Ish ’x_val ’x_amt)

RETURNS:x_val shifted left by x_amt if x_amt is positive. If x_amt is negative, then Ish
returns x_val shifted right by the magnitude if x_amt.

NOTE: This always returns a fixnum even for those numbers whose magnitude is so large
that they would normally be represented as a bignum, i.e. shifter bits are lost.
For more general bit shifters, see bignum-lefishift and sticky-bignum-lefishift.

(rot "x_val ’x_amt)

RETURNS:x_val rotated left by x_amt if x_amt is positive. If x_amt is negative, then
x_val is rotated right by the magnitude of x_amt.

3.6. Other Functions

As noted above, some of the following functions are inherited from the host math
library, with all their virtues and vices.

(abs ’'n_arg)
(absval ’'n_arg)

RETURNS:the absolute value of n_arg.

(exp 'fx_arg)
RETURNS:e raised to the fx_arg power (flonum) .

(expt 'n_base 'n_power) -
RETURNS:n_base raised to the n_power power.

NOTE: if either of the arguments are flonums, the calculation will be done using /og and
exp.

(fact ’x_arg)
RETURNS:x_arg factorial. (fixnum or bignum)

(fix 'n_arg)
RETURNS:a fixnum as close as we can get to n_arg.

NOTE: fix will round down. Currently, if n_arg is a flonum larger than the size of a
fixnum, this will fail.

(float 'n_arg)
RETURNS:a flonum as close as we can get to n_arg.

NOTE: if n_arg is a bignum larger than the maximum size of a flonum, then a floating
exception will occur.
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(log ’fx_arg)
RETURNS:the natural logarithm of fx_arg.

(max ’n_argl ...)
RETURNS:the maximum value in the list of arguments.

(min ’n_argl ...)
RETURNS:the minimum value in the list of arguments.

(mod ’i_dividend ’i_divisor)

(remainder ’i_dividend ’i_divisor)
RETURNS:the remainder when i_dividend is divided by i_divisor.
NOTE: The sign of the result will have the same sign as i_di;/idend.

(*mod ’x_dividend ’x_divisor)
RETURNS:the balanced representation of x_dividend modulo x_divisor.

NOTE: the range of the balanced representation is abs(x_divisor)/2 to (abs(x_divisor)/2)
- x_divisor + 1.

(random [’x_limit])

RETURNS:a fixnum between 0 and x_limit - 1 if x_limit is given. If x_limit is not given,
any fixnum, positive or negative, might be returned.

(sqrt *fx_arg)
RETURNS:the square root of fx_arg.



CHAPTER 4

Special Functions

(and [g_argl ...])

RETURNS:the value of the last argument if all arguments evaluate to a non-nil value, oth-
erwise and returns nil. It returns t if there are no arguments.

NOTE: the arguments are evaluated left to right and evaluation will cease with the first
nil encountered.

(apply 'u_func ’1_args) .
RETURNS:the result of applying function u_func to the arguments in the list 1_args.

NOTE: If u_func is a lambda, then the (length [_args) should equal the number of formal
parameters for the u_func. If u_func is a nlambda or macro, then 1_args is bound
to the single formal parameter.

; addl is a lambda 6f 1 argument
;> (apply ‘addl '(3))

; we will define plus! as a macro which will be equivalent to add!
-> (def plusl (macro (arg) (list ‘addl (cadr arg))))

plusl

-> (plusl 3)

4

; now if we apply a macro we obtain the form it changes to.
-> (apply ‘plusl "(plusl 3))
(addl 3)

; if we funcall a macro however, the result of the macro is evaled
; before it is returned.

-> (funcall 'plusl "(plusl 3))

4

; for this particular macro, the car of the arg is not checked
; so that this too will work

-> (apply ‘plusl “(foo 3))

(add1 3)
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(arg [’x_numb])

RETURNS:if x_numb is specified then the x_numb’ts argument to the enclosing lexpr If
x_numb is not specified then this returns the number of arguments to the
enclosing lexpr.

NOTE: it is an error to the interpreter if x_numb is given and out of range.

(break [g_message ['g_pred]])

WHERE: if g_message is not given it is assumed to be the null string, and if g_pred is
" not given it is assumed to be t.

RETURNS:the value of (*break 'g_pred 'g_message)

(*break ’g_pred ’g_message)
RETURNS:nil immediately if g_pred is nil, else the value of the next (return ’value)
expression typed in at top level.

SIDE EFFECT: If the predicate, g_pred, evaluates to non-null, the lisp system stops and
prints out ‘Break ’ followed by g_message. It then enters a break loop
which allows one to interactively debug a program. To continue execu-
tion from a break you can use the rerurn function. to return to top level or
another break level, you can use retbrk or reset.

(caseq 'g_key-form 1_clausel ...)

. WHERE: l_clausei is a list of the form (g_comparator ['g_formi ...]). The comparators
may be symbols, small fixnums, a list of small fixnums or symbols.

NOTE: The way caseq works is that it evaluates g_key-form, yielding a value we will call
the selector. Each clause is examined until the selector is found consistent with
the comparator. For a symbol, or a fixnum, this means the two must be eq. For
a list, this means that the selector must be eg to some element of the list.

(@]

The comparator consisting of the symbol t has special semantics: it matches any-
thing, and consequently, should be the last comparator.

In any case; having chosen a clause, caseg evaluates each form within that clause
and

RETURNS:the value of the last form. If no comparators are matched, caseq returns nil.
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Here are two ways of defining the same function:
->(defun fate (personna)
(caseq personna
(cow "(jumped over the maon))
(cat ‘(played nero))
((dish spoon) ‘(ran away with each other))
(t (lived happily ever after))))

fate
->(defun fate (personna)
(cond
((eq personna ‘cow) ‘(jumped over the moon))
((eq personna 'cat) ‘(played nerg))
((memq personna '(dish spoon)) ‘(ran away with each other))
(t "(lived happily ever after))))
fate ‘

(catch g_exp [Is_tag])
WHERE: if Is_tag is not given, it is assumed to be nil.
RETURNS:the result of (*catch ’Is_tag g_exp)
NOTE: catch is defined as a macro.

(*catch ’Is_tag g_exp) _ .

WHERE: ‘Is_tag is either a symbol or a list of symbols.

RETURNS:the result of evaluating g_exp or the value thrown during the evaluation of

g_exp. )

SIDE EFFECT: this first sets up a ‘catch frame’ on the lisp runtime stack. Then it begins
to evaluate g_exp. If g_exp evaluates normally, its value is returned. If,
however, a value is thrown during the evaluation of g_exp then this *catch
will return with that value if one of these cases is true:

(1) the tag thrown to is Is_tag
(2) Is_tagis a list and the tag thrown to is a member of this list
(3) Is_tagis nil.

NOTE: Errors are implemented as a special kind of throw. A catch with no tag will not
catch an error but a catch whose tag is the error type will catch that type of error.
See Chapter 10 for more information.
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(comment [g_arg ...])
RETURNS:the symbol comment.
NOTE: This does absolutely nothing.

(cond [1_clausel ...])

RETURNS:the last value evaluated in the first clause satisfied. If no clauses are satisfied
then nil is returned.

NOTE: This is the basic conditional ‘statement’ in lisp. The clauses are processed from
left to right. The first element of a clause is evaluated. If it evaluated to a non-
null value then that clause is satisfied and all following elements of that clause are
evaluated. The last value computed is returned as the value of the cond. If there
is just one element in the clause then its value is returned. If the first element of

.a clause evaluates to nil, then the other elements of that clause are not evaluated
and the system moves to the next clause.

(cvttointlisp)

SIDE EFFECT:

(cvttofranzlisp)

SIDE EFFECT:
_ after having run any of the other cvtto- functions. Backslash is made the

(cvttomaclisp)

SIDE EFFECT:

(cvttoucilisp)

SIDE EFFECT:

The reader is modified to conform with the Interlisp syntax. The charac-
ter % is made the escape character and special meanings for comma,
backquote and backslash are removed. Also the reader is told to convert
upper case to lower case.

FRANZ LisP’s default syntax is reinstated. One would run this function

escape character, super-brackets work again, and the reader distinguishes
between upper and lower case.

The reader is modified to conform with Maclisp syntax. The character / is
made the escape character and the special meanings for backslash, left and
right bracket are removed. The reader is made case-insensitive.

The reader is modified to conform with UCI Lisp syntax. The character /
is made the escape character, tilde is made the comment character, excla-
mation point takes on the unquote function normally held by comma, and
backslash, comma, semicolon become normal characters. Here too, the
reader is made case-insensitive.
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(debug s_msg)

SIDE EFFECT: Enter the Fixit package described in Chapter 15. This package allows you
to examine the evaluatlon stack in detail. To leave the Fixit package type
’ok’.

(debugging ’g_arg)
SIDE EFFECT: If g_arg is non-null, Franz unlinks the transfer tables, does a (*rset ¢) to
turn on evaluation monitoring and sets the all-error catcher (ER%all) to be
debug-err-handler. If g_arg is nil, all of the above changes are undone.

(declare [g_arg ...])
RETURNS: nil

NOTE: this is a no-op to the evaluator. It has special meaning to the compiler (see
Chapter 12).

(def s_name (s_type 1_argl g_expl ...))
WHERE: s_type is one of lambda, nlambda, macro or lexpr.
RETURNS:S_name

SIDE EFFECT: This defines the function s_name to the lisp system. If s_type is nlambda
or macro then the argument list I_argl must contain exactly one non-nil
symbol

(defmacro s_néme 1_arg g_expl ...)
(defcmacro s_name 1_arg g_expl ...)

RETURNS:s_name

SIDE EFFECT: This defines the macro s_name. defmacro makes it easy to write macros
since it makes the syntax just like defun. Further information on def-
macro is in §8.3.2. defcmacro defines compiler-only macros, or cmacros.
A cmacro is stored on the property list of a symbol under the indicator
cmacro. Thus a function can have a normal definition and a cmacro
definition. For an example of the use of cmacros, see the definitions of
nthcdr and nth in /usr/lib/lisp/common2.1

(defun s_name [s_mtype] Is_argl g_expl ...)
WHERE: s_mtype is one of fexpr, expr, args or macro.
RETURNS:s_name
SIDE EFFECT: This defines the function s_name.

NOTE: this exists for Maclisp compatibility, it is just a macro which changes the defun.
form to the def form. An s_mtype of fexpr is converted to nlambda and of expr
to lambda. Macro remains the same. If Is_argl is a non-nil symbol, then the type
is assumed to be lexpr and Is_argl is the symbol which is bound to the number of
args when the function is entered.

For compatibility with the Lisp Machine Lisp, there are three types of optional
parameters that can occur in Is_argl: &optional declares that the following sym-
bols are optional, and may or may not appear in the argument list to the function,
&rest symbol declares that all forms in the function call that are not accounted for
by previous lambda bindings are to be assigned to symbol, and &aux forml ...
formn declares that the formi are either symbols, in which case they are lambda
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bound to nil, or lists, in which case the first element of the list is lambda bound to
the second, evaluated element.

; def and defun here are used to define identical functions

; you can decide for yourself which is easier to use.

~> (def appendl (lambda (lis extra) (append lis (list extra))))
appendl

-> (defun append| (lis extra) (append lis (list extra)))
appendl

; Using the & forms...
-> (defun test (a b &optional ¢ &aux (retval 0) &rest 2)
(if c them (msg “Optional arg present” N
"cis" c¢N))
(msg “restis" z N
“retval is " retval N))
test
->(test 1234)
Optional arg present
cis3
rest is (4)
retval is 0

(defvar s_variable [’g_init])
RETURNS:s_variable.
NOTE: This form is put at the top level in files, like defun.

SINE EFFECT: This declares s_variable to be special. If g_init is present and s_variable is
unbound when the file is read in, s_variable will be set to the value of
g_init. An advantage of ‘(defvar foo)’ over ‘(declare (special foo))’ is that
if a file containing defvars is loaded (or fasl’ed) in during compilation, the
variables mentioned in the defvar’s will be declared special. The only way
to have that effect with ‘(declare (special foo))’ is to include the file.

(do 1_vrbs 1_test g_expl ...)

RETURNS:the last form in the cdr of l1_test evaluated, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the basic iteration form for FRANZ LISP. 1_vrbs is a list of zero or more

var-init-repeat forms. A var-init-repeat form looks like:
(s_name [g_init [g_repeat]])

There are three cases depending on what is present in the form. If just s_name is
present, this means that when the do is entered, s_name is lambda-bound to nil
and is never modified by the system (though the program is certainly free to
modify its value). If the form is (s_name ’g_init) then the only difference is that
s_name is lambda-bound to the value of g_init instead of nil. If g_repeat is also
present then s_name is lambda-bound to g_init when the loop is entered and after
each pass through the do body s_name is bound to the value of g_repeat.
I_test is either nil or has the form of a cond clause. If it is nil then the do body
will be evaluated only once and the do will return nil. Otherwise, before the do
body is evaluated the car of I_test is evaluated and if the result is non-null, this
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(1)
(2

3

4
&)
(6)
(M

®
NOTE:

signals an end to the looping. Then the rest of the forms in 1_test are evaluated
and the value of the last one is returned as the value of the do. If the cdr of 1_test
is nil, then nil is returned - thus this is not exactly like a cond clause.

g_expl and those forms which follow constitute the do body. A do body is like a
prog body and thus may have labels and one may use the functions go and return.
The sequence of evaluations is this:

the init forms are evaluated left to right and stored in temporary locations.

Simultaneously all do variables are lambda bound to the value of their init forms
or nil.

If 1_test is non-null, then the car is evaluated and if it is non-null, the rest of the
forms in 1_test are evaluated and the last value is returned as the value of the do.

The forms in the do body are evaluated left to right.
If 1_test is nil the do function returns with the value nil.
The repeat forms are evaluated and saved in temporary locations.

The variables with repeat forms are simultaneously bound to the values of those
forms.

Go to step 3.

there is an alternate form of do which can be used when there.is only one do vari-
able. It is described next.

; this is a simple function which numbers the elements of a list.
; It uses a do function with two local variables.
-> (defun printem (lis)

(do ((xx lis (cdr xx))
(i1(1+1)
((null xx) (patom "all done”) (terpr))
(print i)
(patom ": ")
(print (car xx))
. (terpr))
printem
-> (printem ‘(a b ¢ d))
:a
2:b
3c
4:.d
all done
nil

->
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(do s_name g_init g_repeat g_test g_expl ...)
NOTE: this is another, less general, form of do. It is evaluated by:

(1) evaluating g_init
(2) lambda binding s_name to value of g_init
(3) g_test is evaluated and if it is not nil the do function returns with nil.
(4) the do body is evaluated beginning at g_expl.
(5) the repeat form is evaluated and stored in s_name.
(6) go tostep 3.
RETURNS:nil

(environment [I_when! 1_whatl 1_when2 |_what2 ...])
(environment-maclisp [1_when1 1_whatl 1_when2 1_what2 ...])
(environment-imlisp [I_when! |_whatl |_when2 |_what2 ...])

WHERE: the when’s are a subset of (eval compile load), and the symbols have the same

meaning as they do in ’eval-when’.

The what’s may be ,
’ (files filel file2 ... fileN), »
which insure that the named files are loaded. To see if file/ is loaded, it looks
for a 'version’ property under filei’s property list. Thus to prevent multiple
loading, you should put
.(putprop ’myfile t *version),
at the end of myfile.l.

Anothex; acceptable form for a what is

(syntax type)
Where type is either maclisp, intlisp, ucilisp, franzlisp.

SIDE EFFECT: environment-maclisp sets the environment to that which ‘liszt -m’ would

generate.

environment-Imlisp- sets up the lisp machine environment. This is like
maclisp but it has additional macros.

For these specialized environments, only the files clauses are useful.
(environment-maclisp (compile eval) (files foo bar))

RETURNS:the last list of files requested.

(err [’s_value [nil]])
RETURNS:nothing (it never returns).
SIDE EFFECT: This causes an error and if this error is caught by an errset then that errset

will return s_value instead of nil. If the second arg is given, then it must
be nil (MAClisp compatibility).
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(error [’s_messagel [’s_message2]])
RETURNS:nothing (it never returns).

SIDE EFFECT: s_messagel and s_message2 are patomed if they are given and then err is
called (with no arguments), which causes an error.

(errset g_expr [s_flag])
RETURNS:a list of one element, which is the value resulting from evaluating g_expr. If
an error occurs during the evaluation of g_expr, then the locus of control will
return to the errset which will then return nil (unless the error was caused by a
call to err, with a non-null argument).

SIDE EFFECT: S_flag is evaluated before g_expr is evaluated. If s_flag is not given, then it
is assumed to be t. If an error occurs during the evaluation of g_expr, and
s_flag evaluated to a non-null value, then the error message associated
with the error is printed before control returns to the errset.

(eval ’g_val [’x_bind-pointer])
RETURNS:the result of evaluating g_val.

NOTE: The evaluator evaluates g_val in this way: A
If g_val is a symbol, then the evaluator returns its value. If g_val had never been
assigned a value, then this causes an ‘Unbound Variable’ error. If x_bind-pointer
is given, then the variable is evaluated with respect to that pointer (see evalframe
for details on bind-pointers).

If g_val is of type value, then its value is returned. If g_val is of any‘otbher type
than list, g_val is returned. : '

If g_val is a list object then g_val is either a function call or array reference. Let
g_car be the first element of g_val. We continually evaluate g_car until we end up
with a symbol with a non-null function binding or a non-symbol. Call what we
end up with: g_func.

G_func must be one of three types: list, binary or array. If it is a list then the
first element of the list, which we shall call g_functype, must be either lambda,
nlambda, macro or lexpr. If g_func is a binary, then its discipline, which we shall
call g_functype, is either lambda, nlambda, macro or a string. If g_func is an
array then this form is evaluated specially, see Chapter 9 on arrays. If g_func is a
list or binary, then g_functype will determine how the arguments to this function,
the cdr of g_val, are processed. If g_functype is a string, then this is a foreign
function call (see §8.5 for more details).

If g_functype is lambda or lexpr, the arguments are evaluated (by calling eval
recursively) and stacked. If g_functype is nlambda then the argument list is
stacked. If g_functype is macro then the entire form, g_val is stacked.

Next, the formal variables are lambda bound. The formal variables are the cadr
of g_func. If g_functype is nlambda, lexpr or macro, there should only be one
formal variable. The values on the stack are lambda bound to the formal vari-
ables except in the case of a lexpr, where the number of actual arguments is
bound to the formal variable.

After the binding is done, the function is invoked, either by jumping to the entry
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point in the case of a binary or by evaluating the list of forms beginning at cddr
g func. The result of this function invocation is returned as the value of the call
to eval. ﬁ

(evalframe 'x_pdlpointer)

RETURNS:an evalframe descriptor for the evaluation frame just before x_pdlpointer, If
x_pdlpointer is nil, it returns the evaluation frame of the frame just before the
current call to evalframe.

NOTE: An evalframe descriptor describes a call to eval, apply or funcall. The form of the

descriptor is
" (type pdl-pointer expression bind-pointer np-index Ibot-index)

where type is ‘eval’ if this describes a call to eval or ‘apply’ if this is a call to apply
or funcall. pdl-pointer is a number which describes this context. It can be passed
to evalframe to obtain the next descriptor and can be passed to freturn to cause a
return from this context. bind-pointer is the size of variable binding stack when
this evaluation began. The bind-pointer can be given as a second argument to eval
to order to evaluate variables in the same context as this evaluation. If type is
‘eval’ then expression will have the form (function-name argl ...). If type is
‘apply’ then expression will have the form (function-name (argl ...)). np-index and
Ibot-index are pointers into the argument stack (also known as the namestack
array) at the time of call. Ibot-index points to the first argument, np-index points
one beyond the last argument.
In order for there to be enough information for evalframe to return, you must call
(*rset t). :

EXAMPLE:(progn (evalframe nﬂ)) ‘ ‘
- returns (eval 2147478600 (progn (evalframe nil)) 1 8 7)

(evalhook ’g_form ’su_evalfunc [’su_funcallfunc])

RETURNS:the result of evaluating g_form after lambda binding ‘evalhook’ to su_evalfunc
and, if it is given, lambda binding ‘funcallhook’ to su_funcallhook.

NOTE: As explained in §14.4, the function eva/ may pass the job of evaluating a form to
a user ‘hook’ function when various switches are set. The hook function nor-
mally prints the form to be evaluated on the terminal and then evaluates it by cal-
ling evalhook. Evalhook does the lambda binding mentioned above and then calls
eval to evaluate the form after setting an internal switch to tell eval not to call the
user’s hook function just this one time. This allows the evaluation process to
advance one step and yet insure that further calls to eval will cause traps to the
hook function (if su_evalfunc is non-null).

In order for evalhook to work, (*rset t) and (sstatus evalhook t) must have been
done previously.
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(exec s_argl ...)

RETURNS:the result of forking and executing the command named by concatenating the
s_argi together with spaces in between.

(exece ’s_fname [’l_args [']_envir]])

RETURNS:the error code from the system if it was unable to execute the command
s_fname with arguments 1_args and with the environment set up as specified in
I_envir. If this function is successful, it will not return, instead the lisp system
will be overlaid by the new command.

(freturn ’x_pdl-pointer ’g_retval)
RETURNS:g_retval from the context given by x_pdl-pointer.

NOTE: A pdl-pointer denotes a certain expression currently being evaluated. The pdl-
pointer for a given expression can be obtained from evalframe.

(frexp ’f_arg)
RETURNS:a list cell (exponent . mantissa) which represents the given flonum

NOTE: The exponent will be a fixnum, the mantissa a 56 bit bignum. If you think of the
the binary point occurring right after the high order bit of mantissa, then

f_arg = 2°%Ponent * mantissa.

. (funcall "u_func ['g_argl ...])

RETURNS:the value of applying function u_func to the arguments g argi and then
- evaluating that result if u_func is a macro.

NOTE: If u_func is a macro or nlambda then there should be only one g_arg. funcall is
the function which the evaluator uses to evaluate lists. If foo is a lambda or lexpr
or array, then (funcall foo ‘a’b ’c) is equivalent to (foo 'a’b’c). If foo is a
nlambda then (funcall 'foo ‘(a b c)) is equivalent to (foo a b ¢). Finally, if foo is a
macro then (funcall ‘foo ‘(foo a b ¢)) is equivalent to (foo a b ¢).

(funcallhook °1_form ’su_funcallfunc [’su_evalfunc])

RETURNS:the result of funcalling the (car |_form) on the already evaluated arguments in
the (cdr [_form) after lambda binding ‘funcallhook’ to su_funcallfunc and, if it
is given, lambda binding ‘evalhook’ to su_evalhook.

NOTE: This function is designed to continue the evaluation process with as little work as
possible after a funcallhook trap has occurred. It is for this reason that the form
of 1_form is unorthodox: its car is the name of the function to call and its cdr are
a list of arguments to stack (without evaluating again) before calling the given
function. After stacking the arguments but before calling funcall an internal
switch is set to prevent funcall from passing the job of funcalling to
su_funcallfunc. If funcall is called recursively in funcalling I_form and if
su_funcallfunc is non-null, then the arguments to fincall will actually be given to
su_funcallfunc (a lexpr) to be funcalled.

In order for evalhook to work, (*rset t) and (sstatus evalhook t) must have been
done previously. A more detailed description of evalhook and funcallhook is
given in Chapter 14.
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(function u_func)

RETURNS:the function binding of u_func if it is an symbol with a function binding oth-
erwise u_func is returned.

(getdisc ’y_func)

RETURNS:the discipline of the machine coded function (either lambda, nlambda or
macro).

(go g_labexp) .
WHERE: g_labexp is either a symbol or an expression.

SIDE EFFECT: If g_labexp is an expression, that expression is evaluated and should result
in a symbol. The locus of control moves to just following the symbol
g_labexp in the current prog or do body.

NOTE: this is only valid in the context of a prog or do body. The interpreter and com-
piler will allow non-local go’s although the compiler won’t allow a go to leave a
function body. The compiler will not allow g_labexp to be an expression.

(if 'g_a’gb)

(if'g_.a’g.b’gc..)

(if 'g_a then ’g_b [...] [elseif 'g_c then 'g_d ...] [else 'g_e [...])
(if 'g_a then ’g_b [...] [elseif 'g_c thenret] [else 'g_d [...])

NOTE: The various forms of if are intended to be a more readable conditional statement,
to be used. in place of cond. There are two varieties of if, with keywords, and
without. The keyword-less variety is inherited from common Maclisp usage. A

~ keyword-less, two argument if is equivalent to a one-clause cond, i.e. (cond (a b)).
Any other keyword-less if must have at least three arguments. The first two argu-
ments are the first clause of the equivalent cond, and all remaining arguments are
shoved into a second clause beginning with t. Thus, the second form of if is
equivalent to

(cond (a b) (t c...)).

The keyword variety has the following grouping of arguments: a predicate, a
then-clause, and optional else-clause. The predicate is evaluated, and if the resuit
is non-nil, the then-clause will be performed, in the sense described below. Other-
wise, (i.e. the result of the predicate evaluation was precisely nil), the else-clause
will be performed.

Then-clauses will either consist entirely of the single keyword thenret, or will start
with the keyword then, and be followed by at least one general expression. (These
general expressions must not be one of the keywords.) To actuate a thenret means
to cease further evaluation of the if, and to return the value of the predicate just
calculated. The performance of the longer clause means to evaluate each general
expression in turn, and then return the last value calculated.

The else-clause may begin with the keyword else and be followed by at least one
general expression. The rendition of this clause is just like that of a then-clause.
An else-clause may begin alternatively with the keyword elseif, and be followed
(recursively) by a predicate, then-clause, and optional else-clause. Evaluation of
this clause, is just evaluation of an if-form, with the same predicate, then- and
else-clauses.



The Franz Lisp Manual PS2:9-59

(I-throw-err ’1_token)

WHERE: |_token is the cdr of the value returned from a *catch with the tag
ER%unwind-protect. ’

RETURNS:nothing (never returns in the current context)
SIDE EFFECT: The error or throw denoted by 1_token is continued.

NOTE: This function is used to implement unwind-protect which allows the processing of
a transfer of control though a certain context to be interrupted, a user function to
be executed and than the transfer of control to continue. The form of 1_token is
either
(t tag value) for a throw or
(nil type message valret contuab uniqueid [arg ...J) for an error.

This function is not to be used for implementing throws or errors and is only
documented here for completeness.

(let 1_args g_expl ... g_exprn)
RETURNS:the result of evaluating g_exprn within the bindings given by 1_args.

NOTE: l_args is either nil (in which case let is just like progn) or it is a list of binding
objects. A binding object is a list (symbol expression). When a let is entered, all
of the expressions are evaluated and then simultaneously lambda-bound to the
corresponding symbols. In effect, a ler expression is just like a lambda expression
except the symbols and their initial values are next to each other, making the
expression easier to understand. There are some added features to the ler expres-
sion: A binding object can just be a symbol, in which case the expression
_corresponding to that symbol is ‘nil’. If a binding object is a list and the first ele-
ment of that list is another list, then that list is assumed to be a binding template
and let will do a desetq on it.

(let* 1_args g_expl ... g_expn)
RETURNS:the result of evaluating g_exprn within the bindings given by 1_args.

NOTE: This is identical to let except the expressions in the binding list 1_args are
evaluated and bound sequentially instead of in parallel.

(lexpr-funcall ’g_function [’g_argl ...] 'l_argn)

NOTE: This is a cross between funcall and apply. The last argument, must be a list (pos-
sibly empty). The element of list arg are stack and then the function is funcalled.

EXAMPLE:(lexpr-funcall ’list ’a ’(b ¢ d)) is the same as
(funcall 'list ’a ’b ’c ’d)
(listify ’x_count)

RETURNS:a list of x_count of the arguments to the current function (which must be a
lexpr). '

NOTE: normally arguments 1 through x_count are returned. If x_count is negative then
a list of last abs(x_count) arguments are returned.
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(map ’u_func ’l_argl ...)
RETURNS:]_argl

NOTE: The function u_func is applied to successive sublists of the 1_argi. All sublists
should have the same length.

(mapc "u_func ’1_argl ...)
RETURNS:1_argl.

NOTE: The function u_func is applied to successive elements of the argument lists. All
of the lists should have the same length.

(mapcan ’u_func ’l_argl ...)
RETURNS:nconc applied to the results of the functional evaluations.

NOTE: The function u_func is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapcar 'u_func ’l_argl ...)
RETURNS:a list of the values returned from the functional application.

NOTE: the function u_func is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapcon ’u_func ’l_argl ...)
RETURNS:nconc applied to the results of the functional evaluation.

NOTE: the function u_func is applied to successive sublists of the argument lists. All
sublists should have the same length.

(maplist "u_func ’l_argl ...)
RETURNS:a list of the results of the func.ional evaluations.

NOTE: the function u_func is applied to successive sublists of the arguments lists.  All
sublists should have the same length.

Readers may find the following summary table useful in remembering the differences
between the six mapping functions:

Value returned is

Argument to func- | 1_argl list of results nconc of results
tional is

elements of list mapc mapcar mapcan

sublists map maplist mapcon
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(mfunction t_entry ’s_disc)
RETURNS:a lisp object of type binary composed of t_entry and s_disc.

NOTE: t_entry is a pointer to the machine code for a function, and s_disc is the discip-
line (e.g. lambda).

(oblist)
RETURNS:a list of all symbols on the oblist.

(or [g_argl ... ])
RETURNS:the value of the first non-null argument or nil if all arguments evaluate to nil.

NOTE: Evaluation proceeds left to right and stops as soon as one of the arguments evalu-
ates to a non-null value.

(prog 1_vrbls g_expl ...)

RETURNS:the value explicitly given in a return form or else nil if no return is done by
the time the last g_expi is evaluated.

NOTE: the local variables are lambda-bound to nil, then the g_expi are evaluated from
left to right. This is a prog body (obviously) and this means than any symbols
seen are not evaluated, but are treated as labels. This also means that return’s
and go’s are allowed.

(progl ’g_expl ['g_exp2 ...D
RETURNS:g_expl

(prog2 ’g_expl ’g_exp2 ['g_exp3 ...])
RETURNS:g_exp2
NOTE: the forms are evaluated from left to right and the value of g_exp2 is returned.

(progn ’g_expl ['g_exp2 ...])
RETURNS:the last g_expi.

(progv ’_locv _initv g_expl ...)
WHERE: 1_locv is a list of symbols and I_initv is a list of expressions.
RETURNS:the value of the last g_expi evaluated.

NOTE: The expressions in |_initv are evaluated from left to right and then lambda-bound
to the symbols in I_locv. If there are too few expressions in 1_initv then the miss-
ing values are assumed to be nil. If there are too many expressions in 1_initv then
the extra ones are ignored (although they are evaluated). Then the g_expi are
evaluated left to right. The body of a progy is like the body of a progn, it is not a
prog body. (C.f. let)
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(purcopy ’g_exp)
RETURNS:a copy of g_exp with new pure cells allocated wherever possible.

NOTE: pure space is never swept up by the garbage collector, so this should only be done
on expressions which are not likely to become garbage in the future. In certain
cases, data objects in pure space become read-only after a dumplisp and then an
attempt to modify the object will result in an illegal memory reference.

(purep ’g_exp)
RETURNS:t iff the object g_exp is in pure space.

(putd ’s_name 'u_func)
RETURNS:u_func
SIDE EFFECT: this sets the function binding of symbol s_name to u_func.

(return [’g_val])
RETURNS:g_val (or nil if g_val is not present) from the enclosing prog or do body.
NOTE: this form is only valid in the context of a prog or do body.

(selectq 'g_key-form [l_clausel ...])

NOTE: This function is just like caseq (see above), except that the symbol otherwise has
the same semantics as the symbol t, when used as a comparator.

(setarg ’x_argnum ’'g_val)
WHERE: x_argnum is greater than zero and less than or equal to the number of argu-
ments to the lexpr.

RETURNS:g_val
SIDE EFFECT: the lexpr’s x_argnum’th argument is set to g-val.
NOTE: this can only be used within the body of a lexpr.

(throw 'g_val [s_tag])
WHERE: if s_tag is not given, it is assumed to be nil.
RETURNS:the value of (*throw ’s_tag 'g_val).

(*throw ’s_tag 'g_val)
RETURNS:g_val from the first enclosing catch with the tag s_tag or with no tag at all.

NOTE: this is used in conjunction with *catch to cause a clean jump to an enclosing con-
text.
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(unwind-protect g_protected [g_cleanupl ...])
RETURNS:the result of evaluating g_protected.

NOTE: Normally g_protected is evaluated and its value remembered, then the g_cleanupi
are evaluated and finally the saved value of g_protected is returned. If something
should happen when evaluating g_protected which causes control to pass through
g_protected and thus through the call to the unwind-protect, then the g_cleanupi
will still be evaluated. This is useful if g_protected does something sensitive
which must be cleaned up whether or not g_protected completes.



CHAPTER 5

Input/QOutput

The following functions are used to read from and write to external devices (e.g.
files) and programs (through pipes). All I/O goes through the lisp data type called the
port. A port may be open for either reading or writing, but usually not both simultane-
ously (see fileopen ). There are only a limited number of ports (20) and they will not be
reclaimed unless they are closed. All ports are reclaimed by a resetio call, but this dras-
tic step won’t be necessary if the program closes what it uses.

If a port argument is not supplied to a function which requires one, or if a bad
port argument (such as nil) is given, then FRANZ LISP will use the default port according
to this scheme: If input is being done then the default port is the value of the symbol
piport and if output is being done then the default port is the value of the symbol poport.
Furthermore, if the value of piport or poport is not a valid port, then the standard input
or standard output will be used, respectively. ‘

The standard input and standard output are usually the keyboard and terminal
display unless your job is running in the background and its input or output is con-
nected to a pipe. All output which goes to the standard output will also go to the port
ptport if it is a valid port. Output destined for the standard output will not reach the
standard output if the symbol “w is non mnil (although it will still go to ptport if ptport is
a valid port). : -

Some of the functions listed below reference files directly. FRANZ LISP has bor-
rowed a convenient shorthand notation from /bin/csh, concerning naming files. If a file
name begins with ~ (tilde), and the symbol tilde-expansion

is bound to something other than nil, then FRANZ LISP expands the file name. It takes
the string of characters between the leading tilde, and the first slash as a user-name.
Then, that initial segment of the filename is replaced by the home directory of the user.
The null username is taken to be the current user.

FRANZ LISP keeps a cache of user home directory information, to minimize search-
ing the password file. Tilde-expansion is performed in the following functions: cfasl,
chdir, fasl, flasl, fileopen, infile, load, outfile, probef, sys:access, sys:unlink.

(cfasl ’st_file ’st_entry ’st_funcname [’st_disc [’st_library]])
RETURNS:t

SIDE EFFECT: This is used to load in a foreign function (see §8.4). The object file st_file
is loaded into the lisp system. St_entry should be an entry point in the
file just loaded. The function binding of the symbol s_funcname will be
set to point to st_entry, so that when the lisp function s_funcname is
called, st_entry will be run. st_disc is the discipline to be given to
s_funcname. st_disc defaults to "subroutine” if it is not given or if it is
given as nil. If st_library is non-null, then after st_file is loaded, the
libraries given in st_library will be searched to resolve external references.
The form of st_library should be something like "-lm". The C library ("
-lc * ) is always searched so when loading in a C file you probably won’t
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need to specify a library. For Fortran files, you should specify "-1IF77" and
if you are doing any I/O, the library entry should be "-1177 -IF77". For
Pascal files “-lpc” is required.

NOTE: This function may be used to load the output of the assembler, C compiler, For-
tran compiler, and Pascal compiler but NOT the lisp compiler (use fas/ for that).
If a file has more than one entry point, then use getaddress to locate and setup
other foreign functions.
It-is an error to load in a file which has a global entry point of the same name as
a global entry point in the running lisp. As soon as you load in a file with cfasl,
its global entry points become part of the lisp’s entry points. Thus you cannot
c¢fasl in the same file twice unless you use removeaddress to change certain global
entry points to local entry points.

(close 'p_port)
RETURNS:t
SIDE EFFECT:

the specified port is drained and closed, releasing the port.

NOTE: The standard defaults are not used in this case since you probably never want to
close the standard output or standard input.

(cprintf ’st_format *xfst_val [’p_port])"
RETURNS:xfst_val

SIDE EFFECT:

The UNIX formatted output function printf is called with arguments
st_format and xfst_val. If xfst_val is a symbol then its print name is
passed to printf. The format string may contain characters which are just
printed literally and it may contain special formatting commands pre-
ceded by a percent sign. The complete set of formatting characters is
described in the UNIX manual. Some useful ones are %d for printing a
fixnum in decimal, %f or %e for printing a flonum, and %s for printing a
character stri.g (or print name of a symbol).

EXAMPLE:(cprintf " Pi equals %f" 3.14159) prints ‘Pi equals 3.14159’

(drain [’p_port])
RETURNS:nil
SIDE EFFECT:

(ex [s_filename])
(vi [s_filename])
(exl [s_filename])
(vil [s_filename])
RETURNS:nil

SIDE EFFECT:

If this is an output port then the characters in the output buffer are all
sent to the device. If this is an input port then all pending characters are
flushed. The default port for this function is the default output port.

The lisp system starts up an editor on the file named as the argument. It
will try appending .l to the file if it can’t find it. The functions ex/ and vi/
will load the file after you finish editing it. These functions will also
remember the name of the file so that on subsequent invocations, you
don’t need to provide the argument.

NOTE: These functions do not evaluate their argument.
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(fasl ’st_name [’st_mapf ['g_warn]])
WHERE: st_mapf and g_warn default to nil.
RETURNS:t if the function succeeded, nil otherwise.

SIDE EFFECT: this function is designed to load in an object file generated by the lisp
compiler Liszt. File names for object files usually end in “.0’, so fas/ will
append “.0’ to st_name (if it is not already present). If st_mapf is non nil,
then it is the name of the map file to create. Fas/ writes in the map file
the names and addresses of the functions it loads and defines. Normally
the map file is created (i.e. truncated if it exists), but if
(sstatus appendmap t) is done then the map file will be appended. If
g._wamn is non nil and if a function is loaded from the file which is
already defined, then a warning message will be printed.

NOTE: fasl only looks in the current directory for the file to load. The function /oad looks
through a user-supplied search path and will call fas/ if it finds a file with the
same root name and a ‘.0’ extension. In most cases the user would be better off
using the function /oad rather than calling fas/ directly.

(ffasl ’st_file ’st_entry ’st_funcname [’st_discipline [’st_library]])
RETURNS:the binary object created. .

SIDE EFFECT: the Fortran object file st_file is loaded into the lisp system. St_entry
should be an entry point in the file just loaded. A binary object will be
created and its entry field will be set to point to st_entry. The discipline
field of the binary will be set to st_discipline or "subroutine” by default.
If st_library is present and non-null, then after st_file is loaded, the
libraries given in st_library will be searched to resolve external references.
The form of st_library should be something like "-IS -ltermcap”. In any
case, the standard Fortran libraries will be searchied also to resolve exter-
nal references.

NOTE: in F77 on Unix, the entry point for the fortran function foo is named ‘_foo_’.

(filepos ’p_port [’x_pos])

RETURNS:the current position in the file if x_pos is not given or else x_pos if x_pos is
given. :

SIDE EFFECT: If x_pos is given, the next byte to be read or written to the port will be at
position x_pos.

(filestat ’st_filename)

RETURNS:a vector containing various numbers which the UNIX operating system assigns
-to files. if the file doesn’t exist, an error is invoked. Use probef to determine
if the file exists.

NOTE: The individual entries can be accesed by mnemonic functions of the form
filestat:field, where field may be any of atime, ctime, dev, gid, ino, mode,mtime,
nlink, rdev, size, type, uid. See the UNIX programmers manual for a more
detailed description of these quantities.
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(flatc ’g_form [’x_max])

RETURNS:the number of characters required to print g_form using patom. If x_max is
given and if flatc determines that it will return a value greater than x_max,
then it gives up and returns the current value it has computed. This is useful
if you just want to see if an expression is larger than a certain size.

(flatsize ’g_form [’x_max])

RETURNS:the number of characters required to print g_form using print. The meaning
of x_max is the same as for flatc.

NOTE: Currently this just explode’s g_form and checks its length.

(fileopen ’st_filename ’st_mode)
RETURNS:a port for reading or writing (depending on st_mode) the file st_name.

SIDE EFFECT: the given file is opened (or created if opened for writing and it doesn’t yet
exist).

NOTE: this function call provides a direct interface to the operating system’s fopen func-
tion. The mode may be more than just "r" for read, "w" for write or "a" for
append. The modes "r+", "w+" and "a+" permit both reading and writing on a
port provided that fseek is done between changes in direction. See the UNIX
manual description of fopen for more details. This routine does not look through
a search path for a given file. :

(fseek 'p_port x_offset ’x_flag) ,
RETURNS:the position in the file after the function is performed.

SIDE EFFECT: this function positions the read/write pointer before a certain byte in the
file. If x_flag is O then the. pointer is set to x_offset bytes from the begin-
ning of the file. If x_flag is 1 then the pointer is set to x_offset bytes from
the current location in the file. If x_flag is 2 then the pointer is set to
x_offset bytes from the end of the file.

(infile ’s_filename)
RETURNS:a port ready to read s_filename.

SIDE EFFECT: this tries to open s_filename and if it cannot or if there are no ports avail-
able it gives an error message.

NOTE: to allow your program to continue on a file-not-found error, you can use some-
thing like:
(cond ((null (setq myport (car (errset (infile name) nil))))
(patom "couldn’t open the file")))
which will set myport to the port to read from if the file exists or will print a mes-
sage if it couldn’t open it and also set myport to nil. To simply determine if a file
exists, use probef.
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(load ’s_filename [’st_map ['g_warn]])
RETURNS:t

NOTE: The function of load has changed since previous releases of FRANZ LISP and the
following description should be read carefully.

SIDE EFFECT: load now serves the function of both fas/ and the old load. Load will
search a user defined search path for a lisp source or object file with the
filename s_filename (with the extension .1 or .0 added as appropriate).
The search path which /oad uses is the value of (status load-search-path).
The default is (|].| /usr/lib/lisp) which means look in the current directory
first and then /usr/lib/lisp. The file which /oad looks for depends on the
last two characters of s_filename. If s_filename ends with ".I" then load
will only look for a file name s_filename and will assume that this is a
FRANZ LISP source file. If s_filename ends with ".0" then /oad will only
look for a file named s_filename and will assume that this is a FRANZ LispP
object file to be fasled in. Otherwise, load will first look for s_filename.o,
then s_filename.l and finally s_filename itself. If it finds s_filename.o it
will assume that this is an object file, otherwise it will assume that it is a
source file. An object file is loaded using fas/ and a source file is loaded
by reading and evaluating each form in the file. The optional arguments
st_map and g_warn are passed to fas/ should fas/ be called.

NOTE: load requires a port to open the file s_filename. It then lambda binds the symbol
piport to this port and reads and evaluates the forms.

(makereadtable [’s_flag])
WHERE: if s_flag is not present it is assumed to be nil.

RETURNS:a readtable equal to the original readtable if s_flag is non-null, or else equal to
the current readtable. See chapter 7 for a description of readtables and their
uses.

(msg [l_option ...] (g_msg ...])

NOTE: This function is intended for printing short messages. Any of the arguments or
options presented can be used any number of times, in any order. The messages
themselves (g_msg) are evaluated, and then they are transmitted to patom. Typi-
cally, they are strings, which evaluate to themselves. The options are interpreted
specially:
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msg Option Summary '

(P p_portname) . causes subsequent output to go to the port p_portname
(port should be opened previously)

B print a single blank.

(B 'n_b) evaluate n_b and print that many blanks.

N print a single by calling terpr.

(N 'n_n) evaluate n_n and transmit
that many newlines to the stream.

D drain the current port.

(nwritn ['p_port])
RETURNS:the number of characters in the buffer of the given port but not yet written out

to the file or device. The buffer is flushed automatically when filled, or when

terpr is called.

(outfile ’s_filename [’st_type])

RETURNS:a port or nil , _ .

SIDE EFFECT: this opens a port to write s_filename. If st_type is given and if it is a
symbol or string whose name begins with ‘a’, then the file will be opened
in append mode, that is the current contents will not be lost and the next
data will be written at the end of the file. Otherwise, the file opened is

truncated by outfile if it existed beforehand. If there are no free ports,
outfile returns nil. If one cannot write on s_filename, an error is signalled.

(patom ’g_exp [’p_port])
RETURNS:g_exp
SIDE EFFECT: g_exp is printed to the given port or the default port. If g_exp is a symbol
or string, the print name is printed without any escape characters around
special characters in the print name. If g_exp is a list then patom has the
same effect as print.
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(pntlen ’xfs_arg)
RETURNS:the number of characters needed to print xfs_arg.

*

(portp ’g_arg)
RETURNS:t iff g_arg is a port.

(pp [l_option] s_namel ...)
RETURNS:t

SIDE EFFECT: If s_namei has a function binding, it is pretty-printed, otherwise if
s_namei has a value then that is pretty-printed. Normally the output of
the pretty-printer goes to the standard output port poport. The options
allow you to redirect it.

PP Option Summary

(F s_filename) direct future printing to s_filename

(P p_portname) causes oPtput to go to the port p_portname
(port should be opened previously)

(E g_expression) evaluate g_expression and don’t print

(princ g_arg ['p_port])
EQUIVALENT TO:patom.

(print ’g_arg ['p_port])
RETURNS:nil
SIDE EFFECT: prints g_arg on the port p_port or the default port.

(probef ’st_file)
RETURNS:t iff the file st_file exists.
NOTE: Just because it exists doesn’t mean you can read it.

(pp-form ’g_form [’p_port])
RETURNS:t

SIDE EFFECT: g_form is pretty-printed to the port p_port (or poport if p_port is not
given). This is the function which pp uses. pp-form does not look for
function definitions or values of variables, it just prints out the form it is
given.

NOTE: This is useful as a top-level-printer, c.f. top-level in Chapter 6.
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(ratom ["p_port [’g_eof]])
RETURNS:the next atom read from the given or default port. On end of file, g_eof
(default nil) is returned.

(read ['p_port [’g_eof]])
RETURNS:the next lisp expression read from the given or default port. On end of file,
g_eof (default nil) is returned.

NOTE: An error will occur if the reader is given an ill formed expression. The most com-
mon error is too many right parentheses (note that this is not considered an error
in Maclisp).

(readc [’p_port [’g_eof]])
RETURNS:the next character read from the given or default port. On end of file, g_eof
(default nil) is returned.

(readlist ’1_arg)
RETURNS:the lisp expression read from the list of characters in 1_arg.

(removeaddress 's_namel [’s_name?2 ...])
RETIJRNS:pil
SIDE EFFECT: the entries for the s_namei in the Lisp symbol table are removed. This is

- useful if you wish to cfas/ or ffas! in a file twice, since it is illegal for a
-symbol in the file you are loading to already exist in the lisp symbol table.

(resetio)
RETURNS:nil
SIDE EFFECT: all ports except the standard input, output and error are closed.

(setsyntax ’s_symbol ’s_synclass [’ls_func])
RETURNS:t
SIDE EFFECT: this sets the code for s_symbol to sx_code in the current readtable. If

s_synclass is macro or splicing then Is_func is the associated function. See
Chapter 7 on the reader for more details.

(sload ’s_file)

SIDE EFFECT: the file s_file (in the current directory) is opened for reading and each
form is read, printed and evaluated. If the form is recognizable as a func-
tion definition, only its name will be printed, otherwise the whole form is
printed. :

NOTE: This function is useful when a file refuses to load because of a syntax error and
you would like to narrow down where the error is.
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(tab ’x_col ['p_port])

SIDE EFFECT: enough spaces are printed to put the cursor on column x_col. If the cur-
sor is beyond x_col to start with, a terpr is done first.

(terpr ['p_port])
RETURNS:nil

SIDE EFFECT: a terminate line character sequence is sent to the given port or the defauit
port. This will also drain the port.

(terpri [’p_port])
EQUIVALENT TO:terpr.

(tilde-expand ’st_filename)

RETURNS:a symbol whose pname is the tilde-expansion of the argument, (as discussed at
the beginning of this chapter). If the argument does not begin with a tilde, the
argument itself is returned.

(tyi (p_port])
RETURNS:the fixnum representation of the next character read. On end of file, -1 is
returned.

(tyipeek [’p_port]) o
- RETURNS:the fixnum representation of the next character to be read.
NOTE: This does not actually read the character, it just peeks at it.

(tyo ’x_char [’p_port]) -
RETURNS:x_char.

SIDE EFFECT: the character whose fixnum representation is x_code, s printed as a on
the given output port or the default output port.

(untyi *x_char ['p_port])
SIDE EFFECT: x_char is put back in the input buffer so a subsequent zyi or read will read
it first.

NOTE: a maximum of one character may be put back.

(username-to-dir ’st_name)

RETURNS:the home directory of the given user. The result is stored, to avoid unneces-
sarily searching the password file.
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(zapline)
RETURNS:nil
SIDE EFFECT: all characters up to and including the line termination character are read
and discarded from the last port used for input.

NOTE: this is used as the macro function for the semicolon character when it acts as a
comment character.



CHAPTER 6

System Functions

This chapter describes the functions used to interact with internal components of
the Lisp system and operating system.

(allocate ’s_type ’x_pages)
WHERE: s_type is one of the FRANZ LISP data types described in §1.3.
RETURNS:X_pages.

SIDE EFFECT: FRANZ LISP attempts to allocate x_pages of type s_type. If there aren’t
x_pages of memory left, no space will be allocated and an error will occur.
The storage that is allocated is not given to the caller, instead it is added
to the free storage list of s_type. The functions segment and smail-
segment allocate blocks of storage and return it to the caller.

(argv ’x_argnumb)
RETURNS:a symbol whose pname is.the x_argnumbth argument (starting at 0) on the
" command line which invoked the current lisp.

NOTE: if x_argnumb is less than zero, a fixnum whose value is the number of arguments
on the command line is returned. (argv () returns the name of the lisp you are’
running.

(baktrace)

RETURNS: nil

SIDE EFFECT: the lisp runtime stack is examined and the name of (most) of the func-
tions currently in execution are printed, most active first.

NOTE: this will occasionally miss the names of compiled lisp functions due to incomplete
information on the stack. If you are tracing compiled code, then baktrace won’t
be able to interpret the stack unless (sstatus translink nil) was done. See the func-
tion showstack for another way of printing the lisp runtime stack. This misspel-

* ling is from Maclisp.

(chdir ’s_path)
RETURNS:t iff the system call succeeds.

SIDE EFFECT: the current directory set to s_path. Among other things, this will affect the
default location where the input/output functions look for and create files.

NOTE: chdir follows the standard UNIX conventions, if s_path does not begin with a
slash, the default path is changed to the current path with s_path appended.
Chdir employs tilde-expansion (discussed in Chapter 5).
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(command-line-args)

RETURNS:a list of the arguments typed on the command line, either to the lisp inter-
preter, or saved lisp dump, or application compiled with the autorun option
(liszt -1).

(deref "x_addr)
RETURNS: The contents of x_addr, when thought of as a longword memory location.

NOTE: This may be useful in constructing arguments to C functions out of ‘dangerous’
areas of memory.

(dumplisp s_name)
RETURNS:nil
SIDE EFFECT: the current lisp is dumped to the named file. When s_name is executed,
you will be in a lisp in the same state as when the dumplisp was done.

NOTE: dumplisp will fail if one tries to write over the current running file. UNIX does
not allow you to modify the file you are running.

(eval-when 1_time g_expl ...)

SIDE EFFECT: 1_time may contain any combination of the symbols load, eval, and com-
pile. The effects of load and compile is discussed in §12.3.2.1 compiler.
If eval is present however, this simply means that the expressions g_expl
-and so on are evaluated from left to right. If eval is not present, the
forms are not evaluated. ‘ :

(exit [’x_code])
RETURNS:nothing (it never returns).
SIDE EFFECT: the lisp system dies with exit code x_code or 0 if x_code is not specified.

(fake ’x_addr)
RETURNS:the lisp object at address x_addr.
NOTE: This is intended to be used by people debugging the lisp system.

(fork)
RETURNS:nil to the child process and the process number of the child to the parent.

SIDE EFFECT: A copy of the current lisp system is made in memory and both lisp sys-
tems now begin to run. This function can be used interactively to tem-
porarily save the state of Lisp (as shown below), but you must be careful
that only one of the lisp’s interacts with the terminal after the fork. The
wait function is useful for this.
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-> (setq foo 'bar) ;; set a variable
bar
=> (cond ((fork)(wait))) ;; duplicate the lisp system and
nil ;; make the parent wait
-> foo ;; check the value of the variable
bar
-> (setq foo 'baz) 3 give it a new value
baz
~> foo ;; make sure it worked
baz
-> (exit) ;; exit the child
(5274 .0) ;; the wait function returns this
-> foo ;; we check to make sure parent was
bar ;; not modified.
(go)

RETURNS:nil

SIDE EFFECT: this causes a garbage collection.

NOTE: The function gcafter is not called automatically after this function finishes. Nor-

mally the-user doesn’t have to call gc since garbage collection occurs. automatxcally
- whenever internal free lists are exhausted.
(gcafter s_type)

WHERE: s_type is one of the FRANZ LISP data types listed in §1.3.

NOTE: this function is called by the garbage collector after a garbage collection which was
caused by running out of data type s_type. This function should determine if
more space need be allocated and if so should allocate it. There is a default
gcafter function but users who want control over space allocation can define their
own - but note that it must be an nlambda.

(getenv ’s_name)

RETURNS:a symbol whose pname is the value of s_name in the current UNIX environ-
ment. If s_name doesn’t exist in the current environment, a symbol with a
null pname is returned.

(hashtabstat)

RETURNS:a list of fixnums representing the number of symbols in each bucket of the -
oblist.

NOTE: the oblist is stored a hash table of buckets. Ideally there would be the same
number of symbols in each bucket.
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(help [sx_arg])

SIDE EFFECT: If sx_arg is a symbol then the portion of this manual beginning with the
description of sx_arg is printed on the terminal. If sx_arg is a fixnum or
the name of one of the appendicies, that chapter or appendix is printed on
the terminal. If no argument is provided, help prints the options that it
recognizes. The program ‘more’ is used to print the manual on the termi-
nal; it will stop after each page and will continue after the space key is
pressed.

(include s_filename)
RETURNS:nil
SIDE EFFECT: The given filename is /oaded into the lisp.

NOTE: this is similar to load except the argument is not evaluated. Include means some-
thing special to the compiler.

(include-if ’g_predicate s_filename)
RETURNS: nil

SIDE EFFECT: This has the same effect as include, but is only actuated if the predicate is
non-nil.

(includef ’s_filename)
- . RETURNS:nil v
SIDE EFFECT: this is the same as include except the argument is evaluated.

(includef-if ’g_predicate s_filename)
RETURNS:nil

SIDE EFFECT: This has the same effect as includef, but is only actuated if the predicate is
non-nil.

(maknum ’g_arg)
RETURNS:the address of its argument converted into a fixaum.

(monitor [’xs_maxaddr])
RETURNS:t

SIDE EFFECT: If xs_maxaddr is t then profiling of the entire lisp system is begun. If
xs_maxaddr is a fixnum then profiling is done only up to address
xs_maxaddr. If xs_maxaddr is not given, then profiling is stopped and the
data obtained is written to the file ‘'mon.out’ where it can be analyzed with
the UNIX ’prof® program.

NOTE: this function only works if the lisp system has been compiled in a special way,
otherwise, an error is invoked.



PS2:9-78 The Franz Lisp Manual

(opval ’s_arg [’g_newval])
RETURNS:the value associated with s_arg before the call.

SIDE EFFECT: If g_newval is speciﬁed,y the value associated with s_arg is changed to
g_newval.

NOTE: opval keeps track of storage allocation. If s_arg is one of the data types then opval

will return a list of three fixnums representing the number of items of that type in
use, the number of pages allocated and the number of items of that type per page.
You should never try to change the value opval associates with a data type using
opval.
If s_arg is pagelimit then opval will return (and set if g_newval is given) the max-
imum amount of lisp data pages it will allocate. This limit should remain small
unless you know your program requires lots of space as this limit will catch pro-
grams in infinite loops which gobble up memory.

(*process st_command ['g_readp ["g_writep]])

RETURNS:either a fixnum if one argument is given, or a list of two ports and a fixnum if
two or three arguments are given.

NOTE: *process starts another process by passing st_command to the shell (it first tries
/bin/csh, then it tries /bin/sh if /bin/csh doesn’t exist). If only one argument is
given to *process, *process waits for the new process to die and then returns the
exit code of the new process. If more two or three arguments are given, *process
starts the process and then returns a list which, depending on the value of

- g_readp and g_writep, may contain i/o ports for communcating with the new pro-
cess. If g_writep is non-null, then a port will be created which the lisp program
can use to send characters to the new process. If g_readp is non-null, then a port
will be created which the lisp program can use to read characters from the new
process. The value returned by *process is (readport writeport pid) where read-
port and writeport are either nil or a port based on the value of g_readp and
g_writep. Pid is the process id of the new process. Since it is hard to remember
the order of g_readp and g_writep, the functions *process-send and *process-
receive were written to perform the common functions.

(*process-receive *st_command)
RETURNS:a port which can be read.

SIDE EFFECT: The command st_command is given to the shell and it is started running
in the background. The output of that command is available for reading
via the port returned. The input of the command process is set to
/dev/null.

(*process-send ’st_command)
RETURNS:a port which can be written to.
SIDE EFFECT: The command st_command is given to the shell and it is started runing in
the background. The lisp program can provide input for that command

by sending characters to the port returned by this function. The output of
the command process is set to /dev/null.
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(process s_pgrm [s_frompipe s_topipe])
RETURNS:if the optional arguments are not present a fixnum which is the exit code when
s_prgm dies. If the optional arguments are present, it returns a fixnum which
is the process id of the child.

NOTE: This command is obsolete. New programs should use one of the *process com-
mands given above.

SIDE EFFECT: If s_frompipe and s_topipe are given, they are bound to ports which are
pipes which direct characters from FRANZ LISP to the new process and to
FRANZ LISP from the new process respectively. Process forks a process
named s_prgm and waits for it to die iff there are no pipe arguments
given.

(ptime)
RETURNS:a list of two elements. The first is the amount of processor time used by the

lisp system so far, and the second is the amount of time used by the garbage
collector so far.

NOTE: the time is measured in those units used by the times(2) system call, usually 60ths
of a second. The first number includes the second number. The amount of time
used by garbage collection is not recorded until the first call to ptime. -This is
done to prevent overhead when the user is not interested in garbage collection
times.

(reset)

SIDE EFFECT: the lisp runtime stack i is cleared and the system restarts at the top level by
executing a. (funcall top-level nil).

(restorelisp 's_name)

SIDE EFFECT: this reads in file s_name (which was created by savelisp) and then does a
(reset).

NOTE: This is only used on VMS systems where dumplisp cannot be used.

(retbrk ['x_level])
WHERE: x_level is a small integer of either sign.

SIDE EFFECT: The default error handler keeps a notion of the current level of the error
caught. If x_level is negative, control is thrown to this default error
handler whose level is that many less than the present, or to rop-level if
there aren’t enough. If x_level is non-negative, control is passed to the
handler at that level. If x_level is not present, the value -1 is taken by
default.
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(*rset 'g_flag)
RETURNS:g_flag
SIDE EFFECT: If g_flag is non nil then the lisp system will maintain extra information
about calls to eval and funcall. This record keeping slows down the
evaluation but this is required for the functions evalhook, funcallhook,

and evalframe to work. To debug compiled lisp code the transfer tables
should be unlinked: (sstatus translink nil)

(savelisp ’s_name)
RETURNS:t
SIDE EFFECT: the state of the Lisp system is saved in the file s_name. It can be read in
by restorelisp.

NOTE: This is only used on VMS systems where dumplisp cannot be used.

(segment ’s_type "x_size)
WHERE: s_type is one of the data types given in §1.3
RETURNS:a segment of contiguous lispvals of type s_type.

NOTE: In reality, segment returns a new data cell of type s_type and allocates space for
X_size - 1 more s_type’s beyond the one returned. Segment always allocates new
space and does so in 512 byte chunks. If you ask for 2 fixnums, segment will
actually allocate 128 of them thus wasting 126 fixnums. The function small-
segment is a smarter space allocator and should be used whenever possible.

(shell)
' RETURNS:the exit code of the shell when it dies.
SIDE EFFECT: this forks a new shell and returns when the shell dies.

(showstack)
RETURNS:nil
SIDE EFFECT: all forms currently in evaluation are printed, beginning with the most

recent. For compiled code the most that showstack will show is the func-
tion name and it may miss some functions.

(signal ’x_signum ’s_name)

RETURNS:nil if no previous call to signal has been made, or the previously installed
s_name. :

SIDE EFFECT: this declares that the function named s_name will handle the signal
number x_signum. If s_name is nil, the signal is ignored. Presently only
four UNIX signals are caught. They and their numbers are: Interrupt(2),
Floating exception(8), Alarm(14), and Hang-up(1).
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(sizeof 'g_arg)

RETURNS:the number of bytes required to store one object of type g_arg, encoded as a
fixaum.

(small-segment ’s_type 'x_cells)
WHERE: s_type is one of fixnum, flonum and value.
RETURNS:a segment of x_cells data objects of type s_type.

SIDE EFFECT: This may call segment to allocate new space or it may be able to fill the
request on a page already allocated. The value returned by small-segment
is usually stored in the data subpart of an array object.

(sstatus g_type g_val)
RETURNS:g_val

SIDE EFFECT: If g_type is not one of the special sstatus codes described in the next few
pages this simply sets g_val as the value of status type g_type in the sys-
tem status property list.

(sstatus appendmap g_val)
RETURNS:g_val

SIDE EFFECT: If g_val is non-null when fas/ is told to create a load map, it will append
to the file name given in the fas/ command, rather than creating a new
map file. The mmal value is nil. :

(sstatus automatic-reset g_val)
RETURNS:g_val

SIDE EFFECT: If g_val is non-null when an error occurs which no one wants to handle, a
reset will be done instead of entering a primitive internal break loop. The
initial value is t.

(sstatus chainatom g_val)
RETURNS:g_val

SIDE EFFECT: If g_val is non nil and a car or cdr of a symbol is done, then nil will be
returned instead of an error being signaled. This only affects the inter-
preter, not the compiler. The initial value is nil.

(sstatus dumpcore g_val)
RETURNS:g_val

SIDE EFFECT: If g_val is nil, FRANZ LISP tells UNIX that a segmentation violation or
bus error should cause a core dump. If g_val is non nil then FRANZ Lisp
will catch those errors and print a message advising the user to reset.

NOTE: The initial value for this flag is nil, and only those knowledgeable of the innards
of the lisp system should ever set this flag non nil.
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(sstatus dumpmode x_val)

RETURNS:x_val
SIDE EFFECT: All subsequent dumplisp’s will be done in mode x_val. x_val may be
either 413 or 410 (decimal).

NOTE: the advantage of mode 413 is that the dumped Lisp can be demand paged in
when first started, which will make it start faster and disrupt other users less. The
initial value is 413.

(sstatus evalhook g_val)
RETURNS:g_val

_ SIDE EFFECT: When g_val is non nil, this enables the evalhook and funcallhook traps in
the evaluator. See §14.4 for more details.

(sstatus feature g_val)
RETURNS:g_val .
SIDE EFFECT: g_val is added to the (status features) list,

(sstatus gestrings g_val)
RETURNS:g_val

SIDE EFFECT: if g_val is non-null, and if string garbage collection was enabled when the
lisp system was compiled, string space will be garbage collected.

NOTE: the default value for this is nil since in most 'applications garbage collecting
strings is'a waste of time. -

(sstatus ignoreeof g_val)
RETURNS:g_val

SIDE EFFECT: If g_val is non-null when an end of file (CNTL-D on UNIX) is typed to
the standard top-level interpreter, it will be ignored rather then cause the
lisp system to exit. If the the standard input is a file or pipe then this has
no effect, an EOF will always cause lisp to exit. The initial value is nil.

(sstatus nofeature g_val)
RETURNS:g_val
SIDE EFFECT: g_val is removed from the status features list if it was present.

(sstatus translink g_val)

RETURNS:g_val _

SIDE EFFECT: If g_val is nil then all transfer tables are cleared and further calls through
the transfer table will not cause the fast links to be set up. If g_val is the
symbol on then all possible transfer table entries will be linked and the
flag will be set to cause fast links to be set up dynamically. Otherwise all
that is done is to set the flag to cause fast links to be set up dynamically.
The initial value is nil.

NOTE: For a discussion of transfer tables, see §12.8.
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(sstatus uctolc g_val)
RETURNS:g_val

SIDE EFFECT: If g_val is not nil then all unescaped capital letters in symbols read by the
reader will be converted to lower case.

NOTE: This allows FRANZ LISP to be compatible with single case lisp systems (e.g.
Maclisp, Interlisp and UCILisp).

(status g_code)

RETURNS:the value associated with the status code g_code if g_code is not one of the
special cases given below :

(status ctime)
RETURNS:a symbol whose print name is the current time and date.
EXAMPLE:(status ctime) = |Sun Jun 29 16:51:26 1980|
NOTE: This has been made obsolete by time-string, described below.

(status feature g_val)
RETURNS:t iff g_val is in the status features list.

(status features)

RETURNS:the value of the features code, which is a list of features which are present in
this system. You add to this list with (sstatus feature 'g_val) and test if feature
g_feat is present wnth (status feature 'g_feat).

(status isatty)
RETURNS:t iff the standard input is a termmal

(status localtime)
RETURNS:a list of fixnums representing the current time.

EXAMPLE:(status localtime) = (3 51 13 31 6 81 5211 1)
means 3rd second, 5lst minute, 13tA hour (1 p.m), 31sz day, month 6
(0 = January), year 81 (0 = 1900), day of the week 5 (0 = Sunday), 211¢h day
of the year and daylight savings time is in effect.

(status syntax s_char)

NOTE: This function should not be used. See the description of getsyntax (in Chapter 7)
for a replacement.
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(status undeffunc)

RETURNS:a list of all functions which transfer table entries point to but which are not
defined at this point.

NOTE: Some of the undefined functions listed could be arrays which have yet to be
created.

(status version)
RETURNS:a string which is the current lisp version name.
EXAMPLE:(status version) = "Franz Lisp, Opus 38.61"

(syscall 'x_index ['xst_argl ...])

RETURNS:the result of issuing the UNIX system call number x_index with arguments

xst_argi.

NOTE: The UNIX system calls are described in section 2 of the UNIX Programmer’s
manual. If xst_argi is a fixnum, then its value is passed as an argument, if it is a
symbol then its pname is passed and finally if it is a string then the string itself is
passed as an argument. Some useful syscalls are:

(syscall 20) returns process id.
(syscall 13) returns the number of seconds since Jan 1, 1970.
(syscall 10 foo) will unlink (delete) the file foo.

~ (sys:access ’st_filename ’x_mode)

(sys:chmod ’st_filename ’x_mode)
(sys:gethostname)

(sys:getpid) .

(sys:getpwnam ’st_username) - :
(sys:link ’st_oldfilename ’st_newfilename)
(sys:time)

(sys:unlink ’st_filename) c

NOTE: We have been warned that the actual system call numbers may vary among
different UNIX systems. Users concerned about portability may wish to use this
group of functions. Another advantage is that tilde-expansion is performed on all
filename arguments. These functions do what is described in the system call sec-
tion of your UNIX manual.

sys:getpwnam returns a vector of four entries from the password file, being the
-user name, user id, group id, and home directory.

(time-string ['x_seconds])

RETURNS:an ascii string giving the time and date which was x_seconds after UNIX’s
idea of creation (Midnight, Jan 1, 1970 GMT). If no argument is given, time-
string returns the current date. This supplants (status ctime), and may be used
to make the results of fileszat more intelligible.
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