
UNIX'" SUPPORT FROM BERKELEY

4.3 BSD with NFS

Programmer's
Supplementary

Documents

Volume 2

PS2

.

UNIX is a trademark of Bell Laboratories

UNIX Programmer's Supplefllltary D~, Volume 2;·t~.

4.3 Berkeley Software Distri~.V~~J~!''''''r;!i

April,:.1986

These two volumes contain docu~enfS~- suppl"-t the.~;_uif~:it'~. in . The Unix
Programmer's Reference Manual for the Virtual VAA.ll version of tbt""'~8$'~pu~ed by U.C.
Berkeley. ,,'

DocumeDts of Historical Interest
The Unix Time-Sharing System PS2: 1

Dennis Ritchie and Ken Thompson's ori~;.~:t)out, UNIX, ... tit~Q~~'~,~~_
munications of the ACM.

UNIX 32N - Summary PS2:2
A concise summary of the facilities in UNIX V~}W{:tlie basis ror~4BSD.

- J

Unix Programming - Second Edition
Describes the programming interface to the UNIX version' l' opera~,:
standard UO library. Should be supplemented by Kernighan and p. '0 •

gramming Environment", Prentice-Hall, 1984 and especially by the ;'.~',"
Manual section 2 (system calls) and 3 (library routines). . .

Unix Implementation PS2:4
Ken Thompson's description of the implementation of the VersiOri·o7~.~1 ~- file sys-
tem. .,.

The Unix UO System ",-=S
De~s ~tchie's overview of the UO System of Version 7; stil1;-' f()r',~, "",-1:'
devlCC dnvers. . ' .

Other Laapaps

The Programming Language EFL , ,:, '~'\
An introduction to a powerful FORTRAN preprocessor providing ~ to.~ \~t~~: -
with structures much-like C. t ,1"-

Berkeley FP User's Manual . ,.9;'
A description of the Berkeley implementation of Backus' Functional ~~Q~;: :'.i ~
Language, FP. ' , d

PS2 Contents

RatfQf~- A Preprocessor fOf"a Rationa:l FORTRAN PS2:8
Converts a.FORTRANJwithC~ike control structures and cosmetics into real, ugly, com­
pilable.FORTRAN.

PS2:9
Ac:lialect.of LIsP. largely,compatible with MACLISP.

Database" Management
Ingres (Version 8) Referenc:eManuai PS2:10

A terse reference .maDlJll (in the style of "man" pages) for the Inares database system.
,~ '''~:~ .. '

·""'Je·!
.c;':m.ll:!,

UNIX Programmer's Supplementary"Documents
Volume 2,

(PS2)

4.3 Berkeley Software Distribution
Virtual VAX-II Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer 'Science
University of California

Berkeley, California 94720

UNIX Programmer's Supplementary Documents
Volume 2

(PS2)

4.3 Berkeley Software Distribution
Virtual VAX-II Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94720

Copyriaht 1979, 1980, 1983~ 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to ·liceusees of this software. provided this copyright notice and
statement of permission are included.

Documents PS2:1, 2, 3, 4, 5, 6, and 8 are copyright 1919.
AT itT Bell Laboratories. Incorporated. Holders of
UNIX™/32V, SYstem III, or System V software licenses are
permitted to copy these documents, or any portion of them, as
necessatY for 1ieensed use of the software, provided this
copyriaht notice and statement of penniss~on are included.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics· Systems Command under contract No.
NOOO39-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied. of the Defense Research Projects Agency or of the US
Government.

The UNIX Time-Sharing System

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for the
larger Digital Equipment Corporation POP-II and the Interdata 8/32 computers. It
offers a number of features seldom found even in larger operating systems, including

A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process 110,
iii The ability to initiate asynchronous processes,
iv System command language selectable on a per-user basis,
v Over 100 subsystems including a dozen languages,
vi High degree of portability.
This paper discusses the nature and implementation of the file system and of the
user command interface.

1. INTRODUCfION

PS2:1-1

There have been four versions of the UNIX time-sharing system. The earliest (circa 1969-70)
ran on the Digital Equipment Corporation PDP-7 and -9 computers .. The second version ran on the
unprotected PDP-11120 computer. The third incorporated multiprogramming and ran on the PDP-
11/34,/40, 145./60, and 170 computers; it is the one described in the previously published version of
this paper, and is also the most widely used today. This paper describes only the fourth, current sys­
tem that runs on the PDp· I 1170 and the Interdata 8/32 computers. In fact, the differences among the
various systems is rather small; most of the revisions made to the originally published version of this
paper, aside from those concerned with style, had to do with details of the implementation of the file
system.

Since PDp·il UNIX became operational in February, 1971, over 600 installations have been put
into service. Most of them are engaged in applications such as computer science education, the
preparation and formatting of documents and other textual material, the collection and processing of
trouble data from various switching machines within the Bell System, and recording and checking
telephone service orders. Our own installation is used mainly for research in operating systems,
languages, computer networks. and other topics in computer science, and also for document prepara­
tion.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operating
system for interactive use need not be expensive either in equipment or in human effort: it can run on
hardware costing as little as $40,000, and less than two man-years were spent on the main system
software. We hope, however, that users find that the most important characteristics of the system are

• Copyright 1974, Association for Computing Maebinery, Inc .• reprinted by pennission. This is a revised
version of an article that appeared in Communications of the ACM, 17, No.7 (July 1974), pp. 365-375.
That article was a revised version of a paper presented at the Fourth ACM Symposium on Operating Sys­
tems Principles, IBM Thomas J. Watson Research"Center, Yorktown Heights, New York, October 15-17,
1973.
t UNIX is a trademark of AT&T Bell Laboratories.

PS2:1-2 The UNIX Time-Sharing System

its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

C compiler
Text editor based on QEDI
Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs2,3
Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pas-

cal

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The
UNIX user community, which numbers in the thousands, has contributed many more programs and
languages. It is worth noting that the system is totally self-supporting. All UNIX software is main­
tained on the system; likewise, this paper and all other documents in this issue were generated and
formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFIWARE ENVIRONMENT
The poP-U170 on which the Research UNIX system is installed is a 16-bit word (8-bit byte)

computer with 768K bytes of core memory; the system kernel occupies 90K bytes about equally
divided between code and data tables. This system, however, includes a very large number of device
drivers and enjoys a generous allotment of space for 110 buffers and system tables; a minimal system
capable of running the software mentioned above can require as little as 96K bytes of core altogether.
There are even larger installations; see the description of the PWBIUNIX systems,2, 3 for example.
There are also much smaller, though somewhat restricted, versions of the system.3

Our own POP-Ii has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets, and
an additional 12 communication lines hard-wired to 9600-baud terminats and satellite computers.
There are also several 2400- and 4800-baud synchronous communication interfaces used for
machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices including nine­
track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digital switching network,
and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.2 Early ver­
sions of the operating system were written in assembly language, but during the summer of 1973, it
was rewritten in C. The size of the new system was about one-third greater than that of the old.
Since the new system not only became much easier to understand and to modify but also included
many functional improvements, including multiprogramming and the ability to share reentrant code
among several user programs, we consider this increase in size quite acceptable.

III. THE FILE SYSTEM
The most important role of the system is to provide a file system. From the point of view of the

user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or binary
(object) programs. No particular structuring is expected by the system. A file of text consists simply
of a string of characters, with lines demarcated by the newline character. Binary programs are
sequences of words as they will appear in core memory when the program starts executing. . A few
user programs manipulate files with more structure; for example, the assembler generates, and the
loader expects, an object file in a particular format. However, the structure of files is controlled by
the programs that use them. not by the system.

The UNIX T.ime-Sharing System PS2:1-3

3.2 Directories

Directories provide the mapping between the names of files and the tiles themselves, and thus
induce a structure on the file system as a whole. Each user has a directory of his own files; he may
also create subdirectories to contain groups of files conveniently treated together. A directory behaves
exactly like an ordinary file except that it cannot be written on by unprivilege'd programs, so that the
system controls the contents of directories. However, anyone with appropriate permission may read a
directory just like any other file.

The system maintains several directories for its own use. One of these is the root directory. All
files in the system can be found by tracing a path through a chain of directories until the desired file
is .reached. The starting point for such searches is often the root. Other system directories contain all
the programs provided for general use; that is, all the commands. As will be seen, however, it is by
no means necessary that a program reside in one of these directories for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to
the system, it may be in the form of a path name, which is a sequence of directory names separated
by slashes, "''', and ending in a file name. If the sequence begins with a slash, the search begins in
the root directory. The name 'alpbalbeta/pmma causes the system to search the root for directory
alpha, then to search alpha for beta, finally to find pmma in beta. pmma may be an ordinary file, a
directory, or a special file. As a limiting case, the name "," refers to the root itself.

A path name not starting with "'" causes the system to begin the search in the user's current
directory. Thus, the name alpbalbeta specifies the file named beta in subdirectory alpha of the
current directory. The simplest kind of name, for example, alpha, refers to a file that itself is found
in the current directory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different name$.
This feature is called linking; a directory entry for a file is sometimes called a link. The UNIX system
differs from other systems in which linking is permitted in that all links to a file have equal status.
That is, a file does not exist within a particular directory; the directory entry for a file consists merely
of its name and a pointer to the information actually describing the file. Thus a file exists indepen­
dently of any directory entry, although in practice a file is made to disappear along with the last link
to it.

Each directory always itas at least two entries. The name "." in each directory refers to the
directory itself. Thus a program may read the current directory under the name ••. " without knowing
its complete path name. The name by convention refers to the parent of the directory in which
it appears, that is, to the directorY in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special
entries ... " and ", each directory must appear as an entry in exactly one other directory, which is
its parent. The reason for this is to simplify the writing of programs that visit subtrees of the direc­
tory structure, and more important, to avoid the separation of portions of the hierarchy. If arbitrary
links to directories were permitted, it would be quite difficult to detect when the last connection from
the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported 110
device is associated with at least one such file. Special files are read and written just like ordinary
disk files, but requests to read or write result in activation of the associated device. An entry for each
special file resides in directory IdeY, although a link may be made to one of these files just as it may to
an ordinary file. Thus, for example, to write on a magnetic tape one may write on the file'dev/mt.
Special files exist for each communication line, each disk, each tape drive, and for physical main
memory. Of course, the active disks and the memory special file are protected from indiscriminate
access.

There is a threefold advantage in treating 110 devices this way: file and device 110 are as similar
as possible; file. and device names have the same syntax and meaning, so that a program expecting a
tile name as a parameter can be passed a device name; finally. special files are.subject to the same

PS2: 1-4 The UNIX Time-Sharing System

protection mechanism as regular files.

3.4 Removable file systems
Although the root of the file system is always stored on the same device, it is not necessary that

the entire file system hierarchy reside on this device. There is a mount system request with two argu­
ments: the name of an existing ordinary file, and the name of a special file whose associated storage
volume (e.g., a disk pack) should have the structure of an independent file system containing its own
directory hierarchy. The effect of mOllOt is to cause references to the heretofore ordinary file to refer
instead to the root directory of the file system on the removable volume. In effect, mouut replaces a
leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the hierarchy stored on the
removable volume). After the IDOtIDt, there is virtually no distinction between files on the removable
volume and those in the permanent file system. In our installation, for example, the root directory
resides on a small partition of one of our disk: drives, while the other drive, which contains the user's
files, is mounted by the system initialization sequence. A mountable file system is generated by writ-

. ing on its corresponding special file. A utility program is available to create an empty file system, or
one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no
link may exist between one file system hierarchy and another. This restriction is enforced so as to
avoid the elaborate bookkeeping that would otherwise be required to assure removal of the links
whenever the removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each user of
the system is assigned a unique user identification number. When a file is created. it is marked with
the user ID of its owner. Also given for new files is a set of ten protection bits. Nine of-these specify
independently read, write, and execute permission for the owner of the file, for other members of his
group, and for all remaining users.

If the tenth bit is on, the system win temporarily change the user identification (hereafter, user
ID) of the current user to that of the creator of the file whenever the file is executed as a program.
This change in user ID is effective only during the execution of the program that calls for it. The set­
user-ID feature provides for privileged programs that may use files inaccessible to other users. For
example, a program may keep an accounting file that should neither be read nor changed except by
the program itself. If the set-user-ID bit is on for the program. it may access the file although this
access might be forbidden to other programs invoked by the given program's user. Since the actual
user ID of the invoker of any program is always available, set-user-{D programs may take any meas­
ures desired to satisfy themselves as to their invoker's credentials. This mechanism is used to allow
users to execute the carefuny written commands that call privileged system entries. For example,
there is a system entry invokable only by the "super-user" (below) that creates an empty directory.
As indicated above, directories are expected to have entries for " ." and •••• ,.. The command which
creates a directory is owned by the super-user and has the set-user-ID bit set. After it checks its
invoker's authorization to create the specified directory, it creates it and makes the entries for"."
and '" Oi$".

Because anyone may set .the set-user-ID bit on one of his own files, this mechanism is· generally
available without administrative intervention. For example, this protection scheme easily solves the
MOO accounting problem posed by ·'Aleph-nuU."2

The system recognizes one particular user ID (that of the "super-user") as exempt from the usual
constraints on file access; thus (for example), programs may be written to dump and reload the file
system without unwanted interference from the protection system.

3.6 1/0 calls

The system calls to do I/O are designed to eliminate the differences between the various devices
and styles of access. There is no distinction between "random" and "sequential" I/O, nor is any

The UNIX Time-Sharing System PS2:1-S

logical record size imposed by the system. The size of an ordinary file is determined by the number
of bytes written on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of 110, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underlying
complexities. Each call to the system may potentially result in an error return, which for simplicity is
not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep ,. open (name, flag)

where name indicates the·name of the file. An arbitrary path name may be given. The flag argument
indicates whether the file is to be read, written, or "updated;" that is, read and written simultane­
ously.

The returned value fllep is called a file descriptor. It is a small integer used to identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that creates
. the given file if it does not exist, or truncates it to zero length if it does exi,t; create also opens the
new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the number
of users who may have a file open for reading or writing. Although it is possible for the contents of a
file to become scrambled when two users write on it simultaneously, in practice difficulties do not
arise. We take the view that locks are neither necessary nor sufticient, in our environment, to prevent
interference between users of the same file. They are unnecessary because we are not faced with
large, single-tile data bases maintained by independent processes. They are insufficient because locks
in the ordinary sense, whereby one user is prevented from writing on a· file that ·another user is read­
ing, cannot prevent confusion when, for example, both users are editing a file with an editor that
makes a copy of the file being edited. .

There are. however, sufficient internal interlocks to maintain the logical consistency of the file
system when two users engage simultaneously in activities such as writing on the same file, creating
files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that if a particular
byte in the file was the last byte written (or read), the next 110 call implicitly refers to the immedi­
ately following byte. For each open file there is a pointer, maintained inside the system, that indi­
cates the next byte to be read or written. If n bytes are read or written, the pointer advances by n
bytes.

Once a file is open, the following calls may be used:

n - read (filep, buffer, count)
n ... write (filep, buffer, coUnt)

Up to count bytes are transmitted between the file specified by filep and the byte array specified by
buffer. The returned value n is the number of bytes actually transmitted. In the write case, D is the
same as count except under exceptionaiconditions, such as 110 errors or end of physical medium on
·special files; in a read. however, n may without error be less than count. If the read pointer is so near
the end of the file that reading count characters would cause reading beyond the end, only sufticient
bytes are transmitted to reach the end of the file; also, typewriter-like terminals never return more
than one line of input. When a read call returns with D equal to zero, the end of the file has been
reached. For disk files this occurs when the read pointer becomes equal to the current size of the file.
It is possible to generate an end-of-file from a terminal by use of an escape sequence that depends OD
the device used.

Bytes written al'ect only those partS of a file implied by the position of the write pointer and the
count; no other part of the file is changed. If the last byte lies beyond the end of the file, the file· is
made to grow as needed.

PS2:1-6 The UNIX Time-Sharing System

To do random (direct-access) 110 it is only necessary to move the read or write pointer to the
appropriate location in the file.

location = lseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the file,
from the current position of the pointer, or from the end of the file, depending on base. offset may be
negative. For some devices (e.g., paper tape and terminals) seek calls are ignored. The actual offset
from the beginning of the file to which the pointer was moved is returned in location.

There are several additional system entries having to do with 110 and with the file system that
will not be discussed. For example: close a file, get the status of a file, change the protection mode or
the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associated file
and a pointer to the file itself. This pointer is an integer called the i-number (for index number) of
the file. When the file is accessed, its i-number is used as an index into a system table (the i-list)
stored in a known part of the device on which the directory resides. The entry found thereby (the
file's i-node) contains the description of the file: .

the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last. use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to tum the path name given by the user into an i­
number by searching the explicitly or implicitly named directories. Once a file is open, its device, i­
number, and read/write pointer are stored in a system table indexed by the file descriptor returned by
the open or create. Thus, during a subsequent call to read or write the file, the descriptor may be
easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that con­
tains the name of the file and the i-node number. Making a link to an existing file involves creating a
directory entry with the new name, copying the i-number from the original file entry, and increment­
ing the link-count field of the i-node. Removing (deleting) a file is done by decrementing the link­
count of the i-node specified by its directory entry and erasing the directory entry. If the link-count
drops to 0, any disk blocks in the file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks log­
ically addressed from 0 up to a limit that depends on the device. There is space in the i-node of each
file for 13 device addresses. For nonspecial files, the first 10 device addresses point at the first 10
blocks of the file. If the file is larger than 10 blocks, the 11 device address points to an indirect block
containing up to 128 addresses of additional blocks in the file. Still larger files use the twelfth device
address of the i-node to point to a double-indirect block naming 128 indirect blocks, each pointing to
128 blocks of the file. If required, the thirteenth device address is a triple-indirect block. Thus files
may conceptually grow to [(10+128+12~2+1283)·512] bytes. Once opened, bytes numbered below
5120 can be read with a single disk access; bytes in the range 5120 to 70,656 require two accesses;
bytes in the range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below) proves
effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file whose
i-node indicates that it is special, the last 12 device address words are immaterial, and the first
specifies an internal device name, which is interpreted as a pair of numbers representing, respectively,

The UNIX Time-Sharing System PS2:1-7

a device type and subdevice number. The device type indicates which system routine will deal with
I/O on that device; the subdevice number selects, for example, a disk drive attached to a particular
controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite straight­
forward. mount maintains a system table whose argument is the i-number and device name of the
ordinary file specified during the mount, and whose corresponding value is the device name of the
indicated special file. This table is searched for each i-number/device pair that turns up while a path
name is being scanned during an open or create; if a match is found, the i-number is replaced by the
i-number of the root directory and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered. That is,
immediately after return from a read call the data are available; conversely, after a write the user's
workspace may be reused. In fact, the system maintains a rather complicated buffering mechanism
that reduces greatly the number of 110 operations required to access a file. Suppose a write call is
made specifying transmission of a single byte. The system will search its buffers to see whether the
affected disk block currently resides in main memory; if not, it will be read in from the device. Then
the affected byte is replaced in the buffer and an entry is made in a list of blocks to be written. The
return from the write call may then take place, although the actual 110 may not be completed until a
later time. Conversely, if a single byte is read, the system determines whether the secondary storage
block in which the byte is located is already in one of the system's buffers; if so, the byte can be
returned immediately. If q,ot, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made Accesses to.· sequential blocks of a file, and
asynchronously pre-reads the next block. This significantly reduces the running time of most pro­
grams while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program that
reads or writes a single byte at ~ time, but the gain is not immense; it comes mainly from the
avoidance of system overhead. If a program is used rarely or does no great volume of I/O, it may
quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing
the file system has proved quite reliable and easy to deal with. To the system itself, one of its
strengths is the fact that each file has a short, unambiguous name related in a simple way to the pro­
tection, addressing, and other information needed to access the file. It also permits a quite simple
and rapid algorithm for checking the consistency of a file system, for example, verification that the
portions of each device containing useful information and thOse free to be allocated are disjoint and
together exhaust the space on the device. This algorithm is independent of the directory hierarchy,
because it need only scan the linearly organized i-list. At the same time the notion of the i-list
induces certain peculiarities not found in other file system organizations. For example, there is the
question of who is to be charged for the space a file occupies, because all directory entries for a file
have equal status. Charging the owner of a file is unfair in general, for one user may create a file,
another may link to it, and the first user may delete the file. The ftrst user is still the owner of the
file, but it should be charged to the second user. The simplest reasonably fair algorithm seems to be
to spread the charges equally among users who have links to a file. Many installations avoid the issue
by not charging any fees at all.

v. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general register
values, status of open files,current directory and the like. An image is the current state of a pseudo­
computer.

A process is the execution of an image. While the processor is executing on behalf of a process,
the image must reside in main memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process forces it to be swapped out to the
disk.

PS2:1-8 The UNIX Time-Sharing System

The user-memory part of an image is divided into three logical segments. The program text seg­
ment begins at location 0 in the virtual address space. During execution, this segment is write­
protected and a single copy of it is shared among all processes executing the same program. At the
first hardware protection byte boundary above the program text segment in the virtual address space
begins a non-shared, writable data segment, the size of which may be extended by a system call.
Starting at the highest address in the virtual address space is a stack segment, which automatically
grows downward as the stack pointer fluctuates.

5.1 Processes
Except while the system is bootstrapping itself into operation, a new process can come into

existence only by use of the fork system call:

processid - fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in the parent, the returned processid
actually identifies the child process and is never 0, while in the child, the returned value is always O.

Because the values returned by fork in the parent and child process are distinguishable, each
process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write calls
that are used for file-system I/O. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like
other open files, is· passed from parent to· child process in the image by the fork call. A read using a
pipe file descriptor waits until another process writes using the file descriptor for the same pipe. At
this point, data are passed between the images of the two processes. Neither process need know that
a pipe, ra~er than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is
not a completely general mechanism, because the pipe must be set up by a common ancestor of the
processes involved •

.
5.3 Execution of programs

Another major system primitive is invoked by

execute (file, argt' argz' ... , arSn)

which requests the system to read in and execute the program named by rde, passing it string argu­
ments aI'Il' a1'12' ••• , alia· All the code and data in the process invoking execute is replaced from
the file, but open files, current directory, and inter-process relationships are unaltered. Only if the
call fails, for example because file could not be found or because its execute-permission bit was not
set, does a return take place from the execute primitive; it resembles a "jump" machine instruction
rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then wait
returns the proeessid of the tenninated process. An error return is taken if the calling process has no
descendants. Certain status from the child process is also available.

The UNIX Time-Sharing System

5.5 Termination

Lastly:

exit (status)

PS2:1-9

terminates a process, destroys its image, closes its open files, and generally obliterates it. The parent
is notified through the wait primitive, and status is made available to it. Processes may also ter­
minate as a result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL
For most users, communication with the system is carried on with the aid of a program called

the shell: The shell is a command-line interpreter: it reads lines typed by the user and interprets them
as requests to execute other programs. (The shell is described fully elsewhere,3 so this section will
discuss only the theory of its operation.) In simplest form, a command line consists of the command
name followed by arguments to the command, all separated by spaces:

command argl ~ ... llI'8n
The shell splits up the" command name and the arguments into separate strings. Then a file with
name command is sought; CODIDIud may be a path name including the "I" character to specify any file
in the system. If collUll8Dd is found, it is brought into memory and executed. The arguments col­
lected by the shell are accessible to the command. When the command is finished, the shell resumes
its own execution, and indicates its readiness to accept another command by typing a prompt charac­
ter.

If file command cannot be found, the shell generally prefixes a string such as I bin I to COOlOlud
and attempts again to find·the file. Directory I bin contains commands intended to be generally used.
(The sequence of directories to be searched may bechange4 by user request.)

6.1 Standard 110
The discussion of 110 in Section III above seems to imply that every file used by a program

must be opened or created by the program in order to get a file descriptor for the file. Programs exe­
cuted by the shell, however, start off with three open files with file descriptors 0, 1, and 2. As such a
program begins execution, file 1 is open for writing, and is best understood as the standard output
file. Except under circumstances indicated below, this file is the user's terminal. Thus programs that
wish to write informative information ordinarily use file descriptor 1. Conversely, file 0 starts off
open for reading, and programs that wish to read messages typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the user's ter­
minal printer and keyboard. If one of the arguments to a command is prefixed by">", file descriptor
1 will, for the duration of the command, refer to the file named after the ">". For example:

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The command:

Is >there

creates a file called tbere and places the listing there. Thus the argument >there means "place output
on tbere." On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The command

ed <script

interprets script as a file of editor commands; thus <script means "take input from script."
Although the file name following "<" or ">" appears to be an argument to the command, in

fact it is interpreted completely by the shell and is. not passed to the command at all. Thus no special
coding to handle I/O redirection is needed within each command; the command need merely use the

PS2:1-10 The UNIX Time-Sharing System

standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When an
output-diversion request with ">" is specified, tile 2 remains attached to the terminal, so that com­
mands may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the
input of another. A sequence of commands separated by vertical bars causes the shell to execute all
the commands simultaneously and to arrange that the standard output of each command be delivered
to the standard input of the next command in the sequence. Thus in the command line:

Is I pr -2 I opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates its
input with dated headings. (The argument "-2" requests double-column output.) Likewise, the out­
put frorn pr is input to opr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

ls >templ
pr -2 <tempI >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and input,
a still clumsier method would have been to require the Is command to accept user requests to
paginate its output, to print in multi-column format, and to arrange that its output be delivered off­
line. Actually it would be surprising, and in fact unwise for efficiency reasons, to expect authors of
commands such asls to provide such a wide variety of output options. .

A program such as pr which copies its standard input to its standard output (with processing) is
called a filler. Some filters that we have found useful perform character transliteration, selection of
lines according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitas~ing

Another feature provided by the shell is relatively straightforward. Commands need not be on
different lines; instead they may be separated by semicolons:

Is; ed .
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by""," the shell will not wait
for the command to finish before prompting again; instead, it is ready immediately to accept a new
command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the assem­
bly takes, the shell returns immediately. When the shell does not wait for the completion of a com­
mand, the identification number of the process running that command is printed. This identification
may be used to wait for the completion of the command or to terminate it. The""" may be used
several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file other
than the terminal was provided; if this had not been done, the outputs· of the various commands
would have been intermingled.

The shell also allows parentheses in the above operations. For example:

The UNIX Time-Sharing System PS2:1-11

(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The shell
also returns immediately for another request.

6.4 The shell as a command; command files
The shell is itself a command, and may be called recursively. Suppose file tryout contains the

lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of the
assembler, ready to be executed. Thus if the three lines above were typed on the keyboard, source
would be assembled, the resulting program renamed testprog, and testprog executed. When the lines
are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.
The shell has further capabilities, including the ability to substitute parameters and to construct

argttment lists from a specified subset of the file names in a directory. It also provides general condi­
tional and looping constructions.

6.5 Implementation of the shell
The outline of the operation of the shell can now be understood. Most of the time, the shell is

waiting for the user to type a command. When the newline character ending the" line is typed, the
shell's read call returns. The shell analyzes the command· line, putting the arguments in a form
appropriate for execute. Then fork is called. The child process, whose code of course is still that of
the shell, attempts to perform an execute with the appropriate arguments. If successful, this will bring
in and start execution of the program whose name was given. Meanwhile, the other process resulting
from the fork, which is the parent process, waits for the child proc ... ss to die. When this happens, the
shell knows the command is finished, so it types its prompt and reads the keyboard to obtain another
command.

Given this framework, the implementation of background processes is trivial; whenever a com­
mand line contains "&," the shell merely refrains from waiting for the process that it created to exe­
cute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output
files. When a process is created by the fork primitive, it inherits not only the memory image of its
parent but also all the files currently open in its parent, including those with file descriptors 0, 1, and
2. The shell, of course, uses these files to read command lines and to write its prompts and diagnos­
tics, and in the ordinary case its children-the command programs-inherit them automatically.
When an argument with "<" or ">" is given, however, the offspring process, just before it performs
execute, makes the standard 110 file descriptor (0 or 1, respectively) refer to the named file. This is
easy because, by agreement, the smallest unused file descriptor is assigned when a new file is opened
(or created); it is only necessary to close file 0 (or 1) and open the named file. Because the process in
which the command program runs simply terminates when it is through, the association between a file
specified after "<" or ">" and file descriptor 0 or 1 is ended automatically when the process dies.
Therefore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard 110 redirection with pipes used instead of files.
In ordinary circumstances, the main loop of the shell never terminates. (The main loop includes

the branch of the return from fork belonging to the parent process; that. is, the branch that does a

PS2:1-12 The UNIX Time-Sharing System

wait, then reads another command line.) The one thing that causes the shell to terminate is discover­
ing an end-of-file condition on its input file. Thus, when the shell is executed. as a command with a
given input file, as in:

sh <comfile

the commands in coadile will be executed until the end of comfile is reached; then the instance of the
shell invoked by sll will terminate. Because this shell process is the child of another instance of the
shell, the walt: executed in the latter will return, and another command may then be processed.

The instances of the shell to which users type commands are themselves children of another pro­
cess. The last step in the initialization of the system is the creation ofa single process and the invo­
cation (via execute) of a program called iait. The role of iak is to create one process for each termi­
nal channel. The various subinstances of init open the appropriate terminals for input and output on
files 0, I, and 2, waiting, if necessary, for carrier to be established on dial-up lines. Then a message is
typed out requesting that the user log in. When the user types a name or other identification, the
appropriate instance of iait wakes up, receives the log-in line, and reads a password file~ If the user's
name is found, and if he is able to supply the correct password, .iait changes to the user's default
current directory, sets the process's userID to that of the person logging in, and performs an exeeute
of the shell. At this point, the shell is ready to receive commands and the logging .. in protocol is com­
plete.

Meanwhile, the mainstream path of Itait (the parent of all the subinstances of itself that will later
become shells) does a wait. If one of the child processes terminates, either because a shell found an
end of file or because a user typed an incorrect name or password, this path of iait simply recreates
the defunct process, which in tum reopens the appropriate input andoulput files and types another
log-in message. Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other propams as sheD
The shell as described above is designed to allow users full access to the facilities of the system,

because it will invoke the execution of any program with appropriate protection mode. Sometimes,
however, a difFerent interface to the system is desirable, ana this feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init ordi­
narily invokes the shell to interpret command lines. The user's entry in the password file may contain
the name of a program to be invoked after log-in instead of the shell. This program is free to inter-
pret the user's messages in any way it wishes. •

For example, the password file entries for users of a secretarial editing system might specifY that
the editor ed is to be used instead of the shell. Thus when users of the editing system log in, they are
inside the editor and can begin work immediately; also, they can be prevented from invoking pro­
grams not intended for their use. In practice, it has proved desirable to allow a temporary escape
from the editor to execute the formatting program and other utilities.

Several of the games (e.g., chess, blacijack, 3D tic4ae-toe) available on the system illustrate a
much more severely restricted environment. For each of these, an entry exists in the password file
specifYing that the appropriate game-playing program is to be invoked instead of the shell. People
who log in as a player of one of these games find themselves limited to the game and unable to inves­
tigate the (presumably more interesting) offerings of the UNIX system as a whole.

VII. TRAPS
The pOP-II hardware detects a number. of program faults, such as references to non-existent

memory. unimplemented· instructions, and odd addresses used where an even address is required.
Such faults cause the processor to trap to a system routine. Unless other arrangements have been
made, an illegal action causes the system to terminate the process and to write· its image on file tore
in the current directory. A debugger can be used to determine the state of the program at the time of

The UNIX Time-Sharing System PS2:l-l3

the fault.
Programs that are looping, that produce unwanted output, or about which the user has second

thoughts may be halted by the use of the interrupt signal, which is generated by typing the "delete"
character. Unless special action has been taken, this signal simply causes the program to cease execu­
tion without producing a core file. There is also a quit signal used to force an image file to be pro­
duced. Thus programs that loop unexpectedly may be halted and the remains inspected without
prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from logging
the user out. The editor catches interrupts and returns to its command level. This is useful for stop­
ping long printouts without losing work in progress (the editor manipulates a copy of the file it is edit­
ing). In systems without floating-point hardware, unimplemented instructions are caught and
floating-point instructions are interpreted.

VIII. PERSPECIlVE
Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was not

designed to meet any predefined objectives. The first version was written when one of us (Thomp­
son), dissatisfied with the available computer facilities, discovered a little-used PDP-7 and set out to
create a more hospitable environment. This (essentially personal) effort was sufficiently successful to
gain the interest of the other author and several colleagues, and later to justify the acquisition of the
PDP-1l120, specifically to support a text editing and formatting system. When in turn the 11/20 was
outgrown, the system had proved useful enough to persuade management to invest in the PDP-l1l45,
and later in the PDP-llnO and Interdata 8/32 machines, upon which it developed to its present form.
Our goals throughout the effort, when articulated at all, have always been to build a comfortable rela­
tionship with the machine and to explore ideas and inventions in operating systems and other
software. We have not been faced with the need to satisfy someone else's requirements, and for this
freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.
First: because we are programmers, we naturally designed the system to make it easy to write,

test, and run programs. The most important expression of our desire for programming convenience
was that the system was arranged for interactive use, even though the original version only supported
one user. We believe that a properly designed interactive system is much more productive and satis­
fying to use than a "batch" system. Moreover, such a system is rather easily adaptable to noninterac­
tive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software.
Given the partially antagonistic desires for reasonable efficiency and expressive power, the size con­
straint has encouraged not only economy, but also a certain elegance of design. This may be a thinly
disguised version of the "salvation through suffering" philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more
important than it might seem. If designers of a system are forced to use that system, they quickly
become aware of its functional and superficial deficiencies and are strongly motivated to correct them
before it is too late. Because all source programs were always available and easily modified on-line,
we were willing to revise and rewrite the system and its software when new ideas were invented,
discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these design
considerations. The interface to the file system, for example, is extremely convenient from a pro­
gramming standpoint. The lowest possible interface level is designed to eliminate distinctions
between the various devices and files and between direct and sequential access. No large "access
method" routines are required to insulate the programmer from the system calls; in fact, all user pro­
grams either call the system directly or use a small library program, less than a page long, that buffers
a number of characters and reads or writes them all at once.

PS2:1-14 The UNIX Time-Sharing System

Another important aspect of programming convenience is that there are no "control blocks"
with a complicated structure partially maintained by and depended on by the tile system or other sys­
tem calls. Generally speaking, the contents of a program's address space are the property of the pro­
gram, and we have tried to avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or
output, it is also desirable to push device-dependent considerations into the operating system itself.
The only alternatives seem to be to load, with all programs, routines for dealing with each device,
which is expensive in space, or to depend on some means of dynamically linking to the routine
appropriate to each device when it is actually needed, which is expensive either in overhead or in
hardware.

Likewise. the process-control scheme and the command interface have proved. both convenient
and efficient. Because the shell operates as an ordinary, swappable user prOgram, it consumes no
"wired-down" space in the system proper, and it may be made as powerful as desired at little coSt. In
particular, given the framework in which the shell executes as a process that spawns other processes
to perform commands, the notions of I/O redirection, background processes, command tiles, and
user-selectable system interfaces all become essentially trivial to implement.

Influences
The success of UNIX lies not so much in new inventions but rather in the full exploitation of a

carefully selected set of fertile ideas, and especially in showing that they can be keys to the implemen­
tation of a small yet powerful operating system. .

Theferk operation, essentially as· we implemented it, was present in the GENIE time-sharing sys­
tem.2 On a number of points we were influenced by Multics, which suggested the particular form of
the 110 system calls2 and both the name of the shell and its general functions. The notion that the
shell should create a process for each command was also suggested to us by the early design of Mul­
tics, although in that system it was later dropped for efficiency reasons. A similar scheme is used by
TENEX.2

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research:: UNIX operation.
Those of our users not involved in document preparation tend to use the system for program develop­
ment, especially language work. There are few important '4applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
5 12-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority; it is used to soak up any
idle cpu time. It has been used to produce a million:.<figit approximation to the constant e, and other
semi-infinite problems. Not counting this background work. we average daily:

13,500
9.6
230

62
240

commands
cpu hours
connect hours
different users
log-ins

The UNIX Time-Sharing System PS2: 1-15

x. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing Sci­
ence Research Center. R. H. Canaday contributed much to the basic design of the file system. We
are particularly appreciative of the inventiveness, thoughtful criticism, and constant support of R.
Morris, M. D. McIlroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, "An online editor," Comm. Assoc. Compo Mach., vol. 10, no.
12, pp. 793-799, 803, December 1967.

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc.
Compo Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, March 1975.
Reprinted as USD:26 in UNIX User's Manual, Usenix Association, (1986).

3. This issue, B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNIX Time-Sharing System:
Document Preparation," Bell Sys. Tech. J., vol. 57, no. 6, pp. 2115-2135, 1978.

UNIX 32/V - Summary PS2:2-1

UNIXl32V - Summary

March 9, 1979

A. What's new: highlights of the UNIXt/31V System

32-bit world. UNIXl32V handles 32-bit addresses and 32-bit data. Devices are addressable to 231

bytes, files to 230 bytes.

Portability. Code of the operating system and most utilities has been extensively revised to minimize
its dependence on particular hardware. UNIXl32V is highly compatible with UNIX version 7.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object level. A
Fortran structurer, STRUCT, converts old, ugly Fortran into RA TFOR, a structured dialect usable
with F77.

Shell. Completely new SH program supports string variables, trap handling, structured programming,
user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is now
highly compatible with TROFF. MS macro package provides canned commands for many common
formatting and layout situations. TBL provides an easy to learn language for preparing complicated
tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream of
indefinite length. A WK report generator does free-field pattern selection and arithmetlc operations.

Program developmel!t. MAKE controls re-creation of complicated software, arranging for minimal
recompilation.

Debugging. ADB does postmortem and breakpoint debugging.

C language. The language now supports definable data types, generalized initialization, block struc­
ture, long integers, unions, explicit type conversions. The LINT verifier does strong type checking
and detection of probable errors and portability problems even across separately compiled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic actions
into a recognizing subroutine. Analogous to Y ACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters adapted
to various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with formatted input
and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many other
ways too numerous to relate.

t UNIX is a Trademark ofBeU Laboratories.

PS2:2-2 UNIX 32N -- Summary

B. Hardware

The UNIXl32V operatina system l'UDSon a DEC V AX-I 1/780· with at least the following equip-
ment:

memory: 2S6K bytes or more.

disk: RP06, RM03, or equivalent.

tape: any 9-track MASSBUs..compatible tape drive.

The following equipment is stronaIy recommended:

communications controUer such as DZl1 or DL1t.

full duplex 96-cb.atacter . ASCII terminals.

extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space specified
is enough to NO and maintain UNIXl32V, and to keep aD source on l.ille. More memory will be
needed to handle a large number of usc~ bia data bases, diversified complements of devices.· or larae
proarams. The resident code occupies 4().SSK. bytesdepcndina on con4guration; system data also
occupies JO-SSK bytes.

C. Software
Most of the proarams available as UNIX/32V commands are listed. Source code and printed

manuals are distributed for all of the listed software except &ames. Almost. all of the. code is written
in C. Commands are. self-contained aad do not require extra setup information, unless specifically
noted as '6interactive." Interactive· programs can be made tomn from a prepared script simply by
redirectina input. Most programs intended.for interactive usc (e.g., the editor) allow for an escape to
command level (the Shell). Most file prOcessina commands can also &0 from standard input to stan­
dard output ("filters',). The pipina facility of the Shell may be used to connect such filters directly to
the input or output of other proarams.

1. Basic Software

This includes the time-sbarina operatina system with utilities, and a compiler for the proaram­
mina lanauaae C-enouah software to write and run new applications and to maintain or modify
UNIXI32V itself.

1.1. Operadq System
C] UNIX The basic resident code on which everytbinaeise depends. Supports the system calls,

and maintains the file system. A aeneraI description of UNIX desian philosophy and
system facilities appeared in the Communications of the ACM, July, 1974. A more
extensive survey is in the Bell System Tecbnicallournal for July-Auaust 1978. Capa­
bilities include:
o Reentrant code for user processes.
o "Group" access permissions for cooperative projects, with overlappina member­

ships.
o Alarm-clock timeouts.
o Timer-interrupt sampliq and· interprocess monitorina for debugina and measure­

ment.
o Multiplexed 1/0 for machine-to-machine communication.

C] DEVICES All I/O is logically synchronous. I/O devices are simply files in the file system. Nor­
mally, invisible buft'erina makes all physical record structure and device characteristics
transparent and exploits the hardware's ability to do overlapped I/O. Unbuffered
physical record I/O is available for unusual applications. Drivers for these devices are

·v AX is a Trademark of Disital Equipment CotpOration.

UNIX 32/V - Summary PS2:2-3

o BOOT

available:
o Asynchronous interfaces: DZ II, DLll. Support for most common ASCII termi-

nals.
o Automatic calling unit interface: DNIl.
o Printer/plotter: Versatek.
o Magnetic tape: TEI6.
o Pack type disk: RP06, RM03; minimum-latency seek scheduling.
o Physical memory of VAX-II, or mapped memory in resident system.
o Null device.
o Recipies are supplied to aid the construction of drivers for:

Asynchronous interface: DH 11.
Synchronous interface: DUll.
OECtape: TC 11.
Fixed head disk: RSll, RS03 and RS04.
Cartridge-type disk: RK05.
Phototypesetter: Graphic Systems Systemll through ORIIC.

Procedures to get UNIXl32V started.

1.2. User Access Control

o LOGIN. Sign on as a new user.
o Verify password and establish user's individual and group (project) identity.
o Adapt to characteristics of terminal.
o Establish working directory.
o Announce presence or mail (from MAIL).
o Publish message of the day.
o Execute user-specified profile.
o Start command interpreter or other initial program.

o PASSWD Change a password.
o User can change his own password.
o Passwords are kept encrypfed for security.

o NEWGRP Change working group (project). Protects against unauthorized changes to projects.

1.3. Terminal Handling

o TABS

OSTTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible from
the input, these options are set automatically by LOGIN.
o Half vs. full duplex.
o Carriage return+line feed vs. newline.
o Interpretation of tabs.
o Parity.
o Mapping of upper case to lower.
o Raw vs. edited input.
o Delays for tabs, new lines and carriage returns.

1.4. File Manipulation

o CAT Concatenate one or more files onto standard output. Particularly used for unadorned
printing, for inserting data into a pipeline, and for buffering output that comes in
dribs and drabs. Works on any file regardless of contents.

PS2:2·4

Clep

DPR

Cl LPR

OCMP

o TAIL

CI SPLIT

ODD

ClSUM

UNIX 32N - Summary

Copy one tile to another, or a set of files to a directory. Works on any file regardless
of contents.

Print files with title, date, and page number on every page.
o Multicolumn output.
o Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report if different.

Print last n lines of input
o May print last n characters, or from n lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for editing
(ED).

Physical file format translator, for exchanging data with foreign systems, especially
IBM 370's.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

ClRM

OLN

OMV

OCHMOD

OCHOWN

OCHGRP

Cl MKDIR

CI RMDIR

ClCD

CI FIND

Remove a file. Only the name goes away if any other names are linked to the file.
o Step through a directory deleting files interactively.
o Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.
o Criteria include:

name matches a given pattern,
creation date in given range,
date of last use in given range.
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

o Any directory may be considered to be the root.
o Perform specified command on each file found.

1.6. Running of Programs

o SH The Shell, or command language interpreter.
o Supply arguments to and run any executable program.
o Redirect standard input, standard output, and standard error files.

UNIX 32N -:- Summary PS2:2·S

CJ TEST

CJ EXPR

CJ WAIT

CJ READ

CJ ECHO

CJ SLEEP

CJ NOHUP

CJ NICE

CJ KILL

CJ CRON

CJ AT

CJTEE

o Pipes: simultaneous execution with output of one process connected to the input of
another.

o Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break. continue and exit,
parentheses for grouping.

o Initia~e background processes.
o Perform Shell programs, i.e., command scripts with substitutable arguments.
o Construct argument lists from all file names satisfying specified patterns.
o Take special action on traps and interrupts.
o User-settable search path for finding commands.
o Executes user-settable profile upon login.
o Optionally announces presence of mail as it arrives.
o Provides variables and parameters with default setting.

Tests for use in Shell conditionals.
o String comparison.
o File nature and accessibility.
o Boolean combinations of the above.

String computations for calculating command arguments.
o Integer arithmetic
o Pattern matching

Wait for termination of asynchronously running processes.

Read a line from terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts' in Shell pro-
grams, or for inserting data into a pipeline. .

Suspend execution for a specified time. c

Run a command immune to hanging up the terminal.

Run a command in low (or high) priority.

Terminate named processes.

Schedule regular actions at specified times.
o Actions are arbitrary programs.
o Times are conjunctions of month, day of month, day of week, hour and minute.

Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

CJ LS

CJ FILE

List the names of one, several, or all files in one or more directories.
o Alphabetic or temporal sorting, up or down.
o Optional information: size, owner, group, date last modified, date last accessed, per­

missions, i-node number.

Try to determine what kind of information is in a file by consulting the file system
index and by reading the file itself.

PS2:2-6

OOATE

CJ OF

Cl OU

o QUOT

o WHO

aps

ClIOSTAT

a TTY

OPWD

UNIX 32N - Summary

Print today's date and time. Has considerable knowledge ofcalendric and horological
peculiarities.
o May set UNIXl32V's idea of date and time.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by. user id.

Tell who's on the system.
o List of presently logged in users, ports and times on.
o Optional history of alliogins and logouts.

Report on active processes.
o List your own or everybody's processes.
o Tell what commands are being executed.
o Optional status information: state and scheduling info, priority, attached terminal,

what it's waiting for, size.

Print statistics about system 110 activity.

Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

Cl MOUNT Attach a device containing a file system to the tree of directories. Protects against
nonsense arrangements.

a UMOUNT Remove the file system contained on a device from the tree of directories. Protects
against removing a busy device.

a MKFS Make a new file system on a device.

a MKNOD Make an i-node (file system entry) for a special file. Special files are physical devices,
virtual devices, physical memory, etc.

aTP

a TAR Manage file archives on magnetic tape or DECtape. TAR is newer.
o Collect files into an archive.
o Update DECtape archive by date.
o Replace or delete DECtape files.
o Print table of contents.
o Retrieve from archive.

a DUMP Dump the file system stored on a specified device, selectively by date, or indiscrim­
inately.

a RESTOR Restore a dumped file system, or selectively retrieve parts thereof.

a SU Temporarily become the super user with all the rights and privileges thereof.

o DCHECK

a ICHECK

Requires a password.

o NCHECK Check consistency of file system.
o Print gross statistics: number of files, number of directories. number of special files,

space used, space free.

UNIX 321V - Summary PS2:2-7

o Report duplicate use of space.
o Retrieve lost space.
o Report inaccessible files.
o Check consistency. of Elirectories.
o List names of all files.

OCLRI Peremptorily expunge a file and its space from a file system. Used to repair damaged
file systems.

o SYNC Force all outstanding 1/0 on the system to completion. Used to shut down gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off com­
pletely.

o AC Publish cumulative connect time report.
o Connect time by user or by day.
o For all users or for selected users.

o SA Publish Shell accounting report. Gives usage information on each command exe­
cuted.
o Number of times used.
o Total system time, bser time and elapsed .time.
o Optional averages and percentages.
o Sorting on various fields.

1.10. Communication

o MAIL. Mail .a message to one or more users. Also used to read and dispose of incoming
mail. The presence of mail is announced by LOGIN and optionally by SH.
o Each message can be disposed of individually.
o Messages can be saved in files or forwarded.

o CALENDAR Automatic reminder service for events of today and tomorrow.

o WRITE

o WALL

OMESG

OCU

OUUCP

Establish direct terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.
o Transparent interface to remote machine.
o File transmission.
o Take remote input from local file or put remote output into local file.
o Remote system need not be UNIX/32V.

UNIX to UNIX copy.
o Automatic queuing until line becomes available and remote machine is up.
o Copy between two remote machines.
o Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section 2.

OAR Maintain archives and libraries. Combines several··files into one for housekeeping
efficiency.
o Create new archive.

o Update archive by date.
o Replace or delete files.
o Print table of contents.
o Retrieve from archive.

D AS Assembler.
o Creates object program consisting of

code, normally read-{)nly and sharable,
initialized -data or read-write code,
uninitialized data.

UNIX 32N - Summary

o Relocatable object code is directly executable without further transformation.
o Object code normally includes a symbol table.
o "Conditional jump" instructions become branches or branches plus jumps depend­

ing on distance.

a Library The basic run-time library. These routines are used freely by all software.
o Buffered character-by-character 110.
o Formatted input and output conversion (SCANF and PRINTF) for standard input

and output, files, in-memory conversion.
o Storage allocator.
o Time conversions.
o Number conversions.
o Password encryption.
o Quicksort.
o Random number generator.
o Mathematical function library, including trigonometric functions and inverses,

exponential, 10g8rithm, square root, bessel functions.

a ADS Interactive debugger.
o Postmortem dumping.
o Examination of arbitrary files, with no limit on size.
o Interactive breakpoint debugging with the debugger as a separate process.
o Symbolic reference to local and global variables.
o Stack trace for C programs.
o Output formats:

1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions

o Patching.
o Searching for integer, character, or floating patterns.

a 00 Dump any file. Output options include any combination of octal or decimal or hex
by words, octal by bytes, ASOI, opcodes, hexadecimal.
o Range of dumping is controllable.

a LD Link edit. Combine relocatable object files. Insert required routines from specified
libraries.
o Resulting code is sharable by default.

a LORDER Places object file names in proper order for loading, so that files depending on others
come after them.

a NM Print the namelist (symbol table) of an object program. Provides control over the
style and order of names that are printed.

o SIZE Report the memory requirements of one or more object files.

. UNIX 32N - Summary ~S2:2-9

o STRIP

o TIME

o PROF

o MAKE

Remove the relocation and symbol table information from an object file to save space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-sampling
the execution of a program.
o Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file depen­
dencies to make new version; uses time last changed to deduce minimum amount of
work necessary.
o Knows about CC, Y ACC, LEX, etc.

1.12. UNIXI32V Programmer's Manual

o Manual Machine-readable version of the UNIXl32V Programmer's Manual.
o System overview.
o All commands.
o All system calls.
o All subroutines in C and assembler libraries.
o All devices and other special files.
o Formats of file system and kinds of files known to system software.
o Boot and maintenance procedures. -

. OMAN Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

o LEARN

2. Languages

A program for interpreting CAl scripts, plus scripts for learning about UNIXl32V by
u~ing it.
o Scripts for basic files and commands, editor, advanced files and commands, EQN,

MS macros, C programming language.

2.1. The C Language

OCC

o LINT

Compile andlor link edit programs in the C language. The UNIXl32V operating sys­
tem, most of the subsystems and C itself are written in C. For a full description of C,
read The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie,
Prentice-Hall, 1978.
o General purpose language designed for structured programming.
o Data types include character, integer, float, double, pointers to all types, functions

returning above types, arrays of all types, structures and unions of all types.
o Operations intended to give machine-independent control of full machine facility,

including to-memory operations and pointer arithmetic.
o Macro preprocessor for parameterized code and inclusion of standard files.
o All procedures recursive, with parameters by value.
o Machine-independent pointer manipulation.
o Object code uses full addressing capability of the VAX-II.
o Runtime library gives access to all system facilities.
o Definable data types.
o Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.

PS2:2-10

Unused variables, unreachable code, no-efFect operations.
Mistyped pointers.
Obsolete syntax.

UNIX 32N - Summary

a Full cross-module checking of separately compiled programs.

a CB A beautifier for C programs. Does proper indentation and placement of braces.

2.2. Fortrall

a F77 A full compiler for ANSI Standard Fortran 77.
a Compatible with C and supporting tools at object level.
a Optional source compatibility with Fortran 66.
a Free fonnat source.
a Optional subscript-range checking, detection of uninitialized variables.
a AU widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16 .. byte

complex.

a RA TFOR Ratfor adds rational control structure a la C to Fortran.
a Compound statements.
a If-else, do, for, while, repeat-until, break, next statements.
a Symbolic constants.
a File insertion.
a Free format source
o Translation of relationals like >, >-.
o Produces genuine Fortran to carry away.
o May be used with F77 ..

a STRUCT Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement
grouping, if-else, while, for, repeat-until.

2.l. Odler AlgoritIaJDk Laapaps

a DC Interactive programmable desk calculator. Has named storage locations as well as
conventional stack for holding integers or programs.
o Unlimited precision decimal arithmetic.
a Appropriate treatment of decimal fractions.
a Arbitrary input and output radices, in particular binary, octal, decimal and hexade-.

cimal.
o Reverse Polish operators:

+ - *' remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

a BC A C-like interactive interface to the desk calculator DC.
o AU the capabilities of DC with a high-level syntax.
a Arrays and recursive functions.
o Immediate evaluation of expressions and evaluation of functions upon call.
a Arbitrary precision elementary functions: exp, sin, cos, atan.
a Go-to-Iess programming.

2.4. Macroprocessiq

a M4 A general purpose macroprocessor.
a Stream-oriented, recognizes macros anywhere in text.
a Syntax fits with functional syntax of most higher-level languages.

UNIX 32/V - Summary PS2:2-11

o Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

OYACC

o LEX

An LR(1)-based compiler writing system. During execution of resulting parsers, arbi­
trary C functions may be called to do code generation or semantic actions.
o BNF syntax specifications.
o Precedence relations.
o Accepts formally ambiguous grammars with non-BNF resolution ruleS.

Generator of lexical analyzers. Arbitrary C functions may be called upon isolation of
each lexical token.
o Full regular expression, plus left and right context dependence.
o Resulting lexical analysers interface cleanly with Y ACC parsers.

3. Text Processing

3.1. Doc:ument Preparation

OED

OPTX

o SPELL

o LOOK

o CRYPT

Interactive context editor. Random access to all lines of a file.
o Find lines by number or pattern. Patterns may include: specified characters, don't

care characters, choices among characters, repetitions of these constructs, beginning
of line, end of line.

o Add, delete, change, copy, move or join lines.
o Permute or split .contents of a line.
o Replace one or all instances of a pattern within a line.
o Combine or split files.
o Escape to Shell (command language) during editing.
o Do any of above operations on every pattern-selected line in a given range.
o Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word list.
o 25,OOO-word list includes proper names.
o Handles common prefixes and suffixes.
o Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.

Encrypt and decrypt files for security.

3.2. Doc:ument Formatting

OTROFF

ONROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter, NROFF
drives ascii terminals of all types. This summary was typeset using TROFF. TROFF
and NROFF are capable of elaborate feats of formatting, when appropriately pro­
grammed. TROFF and NROFF accept the same input language.
o Completely definable page format keyed to dynamically planted "interrupts" at

specified lines.
o Maintains several separately definable typesetting environments (e.g., one for body

text, one for footnotes, and one for unusually elaborate headings).
o Arbitrary number of output pools can be combined at will.
o Macros with substitutable arguments, and macros invocable in mid-line.

PS2:2c12

a Computation and printing of numerical quantities.
a Conditional execution of macros.
a Tabular layout facility;

UNIX 32N - Summary

o Positions expressible in inches, centimeters, ems, points, machine units or arith-
metic combinations thereof.

a Access to character-width computation for unusually difficult layout problems.
a Overstrikes, built-up brackets, horizontal and vertical line drawing.
a Dynamic relative or absolute positioning and size selection, globally or at the char­

acter level.
o Can exploit the characteristics of the terminal being used, for approximating special

characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several l02-character fonts (4 simultaneously) in
1 S sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the
postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF,
although unskilled personnel can easily be trained to enter documents according to canned formats
such as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and
NEQN so it is usually possible to define interchangeable formats to produce approximate proof copy
on terminals before actual typesetting. The preprocessors MS, TBL, and REFER are fully compatible
with TROFF and NROFF.

o MS A standardized manuscript layout package for use with NROFFITROFF. This docu­
ment was formatted with MS.

OEQN

ONEQN

o Page numbers arid draft dates.
a Automatically numbered subheads.
a Footnotes.
o Single or double column.
a Paragraphing, display and indentation .

. a Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable fore
mulas, either in-line or displayed, into detailed typesetting instructions. Formulas are
written in a style like this:

sigma sup 2 -.- lover N sum from i.1 to N (x sub i-x bar) sup 2

which produces:

1 N
tr2 • - ~(Xi -x)2

N i .. 1

a Automatic calculation of size changes for subscripts, sub-subscripts, etc.
a Full vocabulary of Greek letters and special symbols, such as 'gamma', 'GAMMA',

'integral'.
a Automatic calculation of large bracket sizes.
o Vertical "piling" of formulae for matrices, conditional alternatives, etc.
o Integrals, sums, etc., with arbitrarily complex limits.
a Diacriticals: dots, double dots, hats, bars, etc.
a Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares formulas
for display on any terminal that NROFF knows about, for example, those based on
Diablo printing mechanism. .,
o Same facilities as EQN within graphical capability of terminal.

UNIX 32N - Summary PS2:2-13

OTBL

o REFER

OTC

o COL

A preprocessor for NROFFITROFF that translates simple descriptions of table lay­
outs and contents into detailed typesetting instructions.
o Computes column widths.
o Handles left- and right-justified columns, centered columns and decimal-point align-

ment.
o Places column titles.
o Table entries can be text, which is adjusted to fit.
o Can box all or parts of table. .

Fills in bibliographic citations in a document from a data base (not supplied).
o References may be printed in any style, as they occur or collected at the end.
o May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for checking
TROFF page layout before typesetting.

Canonicalize files with reverse line feeds for one-pass printing.

o DEROFF Remove all TROFF commands from input.

o CHECKEQ Check document for possible errors in EQN usage.

4. Information Handling

o SORT

o TSORT

OUNIQ

OTR

o DIFF

OCOMM

o JOIN

OGREP

o LOOK

OWC

o SED

Sort or merge ASCII files line-by-line. No limit on input size.
o Sort up or down.
o Sort lexicographically or on numeric key.
o Multiple keys located by delimiters or by character position.
o May sort upper case together with lower into dictionary order.
o Optionally suppress duplicate data. .

Topological sort - converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
o Publish lint"') that were originally unique, duplicated, or both.
o May give redundancy count for each line.

Do one-to-one character translation accordipg to an arbitrary code.
o May coalesce selected repeated characters.
o May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into agree­
ment.
o May produce an editor script to convert one file into another.
o A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows lines
present in first file only, present in both, andlor present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
o May print all lines that fail to match.
o May print count of hits.
o May print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations on
each line of an input stream of unbounded length.

PS2:2-14

OAWK

5. Graphics

UNIX 32N - Summary

o Lines may be selected by address or range of addresses.
o Control flow and conditional testing.
o Multiple output streams.
o Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and performs
actions on each line of input that satisfies the pattern.
o Patterns include regular expressions. arithmetic and lexicographic conditions,

boolean combinations and ranges of these.
o Data treated as string or numeric as appropriate.
o Can break input into fields; fields are variables.
o Variables and arrays (with non-numeric subscripts).
o Full set of arithmetic operators and control flow.
o Multiple output streams to files and pipes.
o Output can be formatted as desired.
o Multi-line capabilities.

The programs in this section are predominantly intended for use with Tektronix 4014 storage scopes.

D GRAPH Prepares a graph of a set of input numbers.
o Input scaled to fit standard plotting area.
o Abscissae may be supplied automatically.
o Graph may be labeled.
o Control over grid style, line style, graph orientation, etc.

o SPLINE Provides a smooth curve through a set of ppints intended for GRAPH.

o PLOT A set of filters for printing graphs produced by GRAPH and other programs on vari~
. ous terminals. Filters provided for 40 14, DASI terminals, Versatec printer/plotter. .

6. Novelties, Games, and Things That Didn't Fit Anywhere Else

o BACKGAMMON

DBCD

o CAL

o CHING

o FORTUNE

D UNITS

A player of modest accomplishment.

Converts ascii to card-image form.

Print a calendar of specified month and year.

The I Ching. Place your own interpretation on the output.

Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

Convert amounts between different scales of measurement. Knows hundreds of units.
For example, how many kmlsec is a parseclmegayear?

o ARITHMETIC
Speed and accuracy test for number facts.

o QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

o WUMP Hunt the wumpus, thrilling search in a dangerous cave.

D HANGMAN Word-guessing game. Uses a dictionary supplied with SPELL.

o FISH Children's card-guessing game.

UNIX Programming - Second Edition

UNIX Programming - Second Edition

Brian W. Kernighan

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIXt system. The
emphasis is on how to write programs that interface to the operating system, either
directly or through the standard I/O library. The topics discussed include

• handling command arguments

• rudimentary 1/0; the standard input and outp\!-t

• the standard I/O library; file system access

• low-level I/O: open, read, write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.
There is also an appendix which describes the standard 1/0 library in detail.

1. INTRODUCTION

PS2:3-1

This paper describes how to write programs that interface with the UNIX operating system in a
non-trivial way. This includes programs that use files by name, that use pipes, that invoke other com­
mands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of The UNIX
Programmer's Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally
useful material is dealt with. It is assumed that you will be programming in C, so you must be able
to read the language roughly up to the level of The C Programming Language [2]. Some of the
material in sections 2 through 4 is based on topics covered more carefully there. You should also be
familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made avail­
able to the function ma; n as an argument count argc and an array argv of pointers to character
strings that contain the arguments. By convention, argv [0] is the command name itself, so argc is
always greater than O.

The following program illustrates the mechanism: it simply echoes its arguments back to the ter­
minal. (This is essentially the echo command.)

t UNIX is a trademark of AT&T Bell Laboratories.

PS2:3-2

main(argc, argyl
int argci
char *argy[] i
<

int ii

1* echo arguments *1

for (i • 1; i < argci i++)

UNIX Programming - Second Edition

printf("%s%c", argy[il,(i<argc-1) ? ' t: '\;'1);
)

argy is a pointer to an array whose individual elements are pointers to arrays of characters;. each is
terminated by \0, so they can be treated as strings. The program starts by printing argy[1] and
loops until it has printed them all.

The argument count aad the arguments are parameters to u in. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The "Standatd Input" and "Stanciard Output"
The simplest input mechanism is to read the "standard input," which is generally the user's ter­

minal. The function getchar retums the next input character each time it is called. A file may be
substituted for the terminal by using the < convention: if prog uses getchar, then the command
line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the

otherprog I prog

provides the standatd input for prog. from the standard output of otherprQg.
get char returns the value EOF when it encounters the end of file (or an error) on whatever you

are reading. The value of eot: is normally defined to be -1, but it is unwise to take any advantage of
that knowledge. As will become clear shortly, this value is automatically deftDed for you when you
compile a program, and need not be of any concern.

Similarly. putchar(c) puts the character c on the "standard output," which is also by default
the terminal. The output can be captured on a file by using >: ifprog uses putchar,

prog >outfile

writes the standard output on outfite instead of the terminal. outfile is created if it doesn't
exist; if it already exists, its previous contents are overwritten. And a· pipe can be used:

prog I otherprog

puts the standard output ofprog into the standard input of otherprog. .
The function pr i nt f, which formats output in various ways, uses the same mechanism as

putchar does, so calls to pr intf and putchar may be intermixed in any order; the output will
appear in the order of the calls.

Similarly, the function scanf provides for formatted. input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. s·canf uses the same mechanism as
getchar, so calls to them may also be intermixed.

Many programs read only one input and . write one output; for such programs 110 with
getchar, putchar, scanf, andprintf may be entirely adequate. and it is almost always enough
to get started. This is particularly true if the UNIX pipe facility is used to connect the output of one
~rogram to the input of the next. For example, the followini program strips out all ascii control char­
acters from its input (except for newline and tab).

UNIX Programming - Second Edition

#include <stdio.h>

maine) 1* ccstrip: strip non-graphic characters *1
{

}

The line

int Ci
while ((c = getchar(» 1= EOF)

if ((c >= I I && c < 0177) II c == I\tl I I c -- I\nl)
putchar(C)i

exiUO) i

#include <stdio.h>

PS2:3-3

should appear at the beginning of each source file. It causes the C compiler to read a file
(Iusrlin.cludelstdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat file1 file2 ••• I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to ex i t at the end
is not necessary to make the program work properly, but it assures that any caller oJ the program will
see a normal termination status (conventionally 0) from the program when it comPletes. Section 6
discusses status returns in more detail.

3. THE STANDARD 110 LIBRARY

The "Standard 110 Library" is a collection of routines' intended to provide efficient and portable .
110 services for most C programs. The standard 110 library is available on each system that supports
C, so programs that confine their system interactions to its facilities can be transported from one sys­
tem to another essentially without change.

In this section, we will discuss the basics of the standard 110 library. The appendix contains a
more complete description of its capabilities.

3.1. File Access

·The programs written so far have all read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next step is to write a program that accesses a
file that is not already connected to the program.. One simple example is we, which counts the lines,
words and characters in a set of files. For instance, the command

we x.c y.c

prints the number of lines, words and characters in x. c and y. c and the totals.

The question is how to arrange for the named files to be read - that is, how to connect the file
system names to the 110 statements which actually read the· data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fopen. fopen takes an external name (like x.c or y.c), does some housekeeping
and negotiation with the operating system, and returns an internal name which must be used in sub­
sequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains infor­
mation about the file, such as the location of a buffer, the current character position in the buffer,
whether the file is being read or written, and the like. Users don't need to know the details, because
part of the standard 110 definitions obtained by including s td; 0 • h is a structure definition called
FILE. The only declaration needed for'a file pointer is exemplified by

FILE *fp, *fopen()i

This says that fp is a pointer to a F I LE,and fopen returns a pointer to a FILE. (F I LE is a type

PS2:3-4

name; like int, not a structure tag.

The actual call to fopen in a program is

fp = fopen(name, mode);

UNIX Programming - Second Edition

The first argument of f open is the name of the file, as a character string. The second argument is the
mode. also as· a character string, which indicates how you intend to use the file. The only allowable

. modes are read ("r"), write ("wit), or append ("a").
If a tile that you open for writing or appending does not exist, it is created (if possible). Open­

ing an existing file for writing causes the old contents to be discarded. Trying to read a file that does
not exist is an·error, and there may be other causes of error as weU (like trying to read a file when you
don't have permission). If there is any error, fopen will return the null pointer value NULL (which is
defined as zero in s td i 0 • h).

The next thing needed is a way to read or write the tile once it is open. There are severalpossi­
bilities, of which getc and putc are the simplest. gete returns the next character from a file; it
needs the file pointer to teU it what file. Thus

e = gete(fp)

places in e the next character from the file referred to by fp; it returns eOF when it reaches end of
file. putc is the inverse of getc: .

putc(e, fp)

puts the character e on the file fp and returns c. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided
for them. These files are the standard input, the standard ovtput, and the standard error output; the
corresponding file pointers are called stdin, stdout, and stderr. Normally these are all con­
. netted to the terminal, but may be redirected to files or pipes as described in Section 2.2. s td i n,
stdout and $tderr are pre-deftned in the YO library as the standard input, output and error files;
they may be used anywhere an object of type FILE * can be. They are constants, however, not vari­
ables, so don't try to assign to them.

With some of the preliminaries out of the way. we can now write wc. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they are
processed in order. If there are no arguments. the standard input is processed. This way the. progtalD
can be used stand-alone or as part of a larger process.

UNIX Programming - Second Edition

main(argc, argv)
int argc;

1* wc: count lines, words, chars *1

char *argv[];
(

int c, i, inword;·
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i = 1;
fp = stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], "r"» == NULL) (
fprintf(stderr, "wc: can't open %s\n", argv[i]);
continue;

}
linect = wordct = charct = inword = 0;
while «c = getc(fp» 1= EOF) {

)

charct++;
if (c == '\n')

linect++;
if (c == , , I I c == '\t' II c == '\n')

inword = 0;
else if. (inword == 0) {

inword = 1;
wordct++;

}

printf("%71d %7ld %71d", Unect, wordct, charct);
printf(argc > 1 ? " %s\n" : "\n", argv[i]);
fclose(fp);
tline~t +~ linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

PS2:3-5

printf("%71d %7ld %7ld total\n", tlinect, twordct, tcharct);
exit(O);

}

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written. .

The function fclose is the inverse of fopen; it breaks the connection between the file pointer
and the external name that was established by fopen, freeing the file pointer for another fil~. Since
there is a limit on the number of tiles that a program may have open simultaneously, it's a good idea
to free things when they arena longer needed. There is also another reason to call f c los e on an
output file - ittlushes the buffer in which putc is collecting output. (fc lose is called automatically
for each open file when a program terminates normally.)

3.2. Error Handling - Stderr.and Exit
stderr is assigned to a program in the same way that stdin and stdout are. Output written

on stderr appears on the user's terminal even if the standard output is redirected. we writes its
diagnostics on stderr ins~ead of stdout so that if one of the files can't be accessed for some rea­
son, the message finds its way to the user's terminal instead of disappearing down a pipeline or into
an output file.

PS2:3-6 UNIX Programming - Second Edition

The program actually signals errors in another way, using the function ex it to terminate pro­
gram execution. The argument of ex i t is available to whatever process called it (see Section 6), so
the success or failure of the program can be tested by another program that uses this one as a sutr
process. By convention, a return value of 0 signals that all is well; non-zero values signal abnormal
situations.

ex i t itself calls f cLose for each open output file, to flush out any buffered output, then calls a
routine named _ex; t. The function _ex i t causes immediate termination without any buffer flush­
ing; it may be called directly if desired.

3.3. Miscellaneous I/O Functions
The standard I/O library provides several other I/O functions besides those we have illustrated

above.
Normally output with putc, etc., is buffered (except to stderr); to force it out immediately,

use fflush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with fpr intf)
that specifies the file from which the input comes; it returns EO F at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that the
first argument names a character string instead of a file pointer. The conversion is done from the
string for sscanf and into it for spr intf. .

fgets(buf, size, fp) copies the next line from fp, up to and including a newline, into
buf; at most s ize-1 characters are copied; it returns NULL at end of file. fputs(buf, fp) writes
the string in bu f onto file f p.

The function ungetc (c, fp) "pushes back" the character c onto the input stream fp; a sub­
sequent call to getc, fscanf, etc., will encounter c. Only one character of pushback per file is per-
mitted. .

4. LOW-LEVEL I/O
This section describes the bottom level-of I/O on the UNIX system. The lowest level of I/O in

UNIX provides no buffering or any other services; it is in fact a direct entry into the operating system.
You are entirely on your own, but on the other hand, you have the most control over what happens.
And since the calls and usage are quite simple, this isn't as bad as it sounds.

4.1. File Descriptors
In the UNIX operating system, all input and output is done by reading or writing files, because

all peripheral devices, even the user's terminal, are files in the file system. This means that a single,
homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading,or writing a file, it is necessary to inform the system of
your intent to do so, a process called "opening" the file. If you are going to write on a file, it may
also be necessary to create it. The system checks your right to do so (Does the file exist? Do you
have permission to access it?), and if all is well, returns a small positive integer called a file descriptor.
Whenever I/O is to be done on the file, the file descriptor is used instead of the name to identify the
file. (This is roughly analogous to the use of READ(S, ...) and WRITE(6, .•.) in Fortran.) All information
about an open file is maintained by the system; the user program refers to the file only by the file
descnptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors
are more fundamental. A file pointer"is a pointer to a structure that contains, among other things, the
file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the "shell") runs a program. it opens three
files, with file descriptors O. I, and 2, called the standard input, the standard output, and the standard
error output. All of these are normally connected to the terminal, so· if a program reads file descriptor

UNIX Programming - Second Edition PS2:3-i

o and writes file descriptors 1 and 2, it can do terminal 1/0 without worrying about opening the files.
If 110 is redirected to and from files with < and>, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named
files. Similar observations hold if the input or output is associated with a pipe. Normally file
descriptor 2 remains attached to the terminal, so error messages can go there. In all cases, the file
assignments are changed by the shell, not by the program. The program does not need to know where
its input comes from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for out­
put.

4.2. Read and Write
All input and output is done by two functions called read and wr i teo For both, the first argu­

ment is a file descriptor. The second argument is a buffer in your program where the data is to come
from or go to. The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n)i

n_written = write(fd, buf, n)i

Each call returns a byte count which is the number of bytes actually transferred. On reading, the
. number of bytes returned may be less than the number asked for, because fewer than n bytes
remained to be read. (When the file is a terminal, read normally reads only up to the next newline,
which is generally less than what was requested.) A return value of zero bytes implies end of file, and
-1 indicates an error of some sort. For writing, the returned value is the number of bytes actually
written; it is generany an error if this isn't equal. to the number supposed to be written.

. The number of bytes to be read or written is quite arbitrary. The two most common values are
1, 'which means one character at a time ("unbuffered"), and 512, which corresponds to a physical
blocksize on many peripheral devices. This latter size will be most efficient, but even character at a
time 110 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This
program will copy anything to anything, since the input and output can be redirected to any file or
device.

#define BUFSIZE 512 /* best she for PDP-11 UNIX */

maine) /* copy input to output */
{

}

char buf[BUFSIZE]i
int ni

while «n = read(O, buf, BUFSIZE» > 0)
write(1, buf, n)i

exit(O) i

If the file size is not a multiple of 8UFSIZE, some read will return a smaller number of bytes to be
written by wr i te; the next call to read after that will return zero.

It is instructive to see how read and wr i te can be used to construct higher level routines like
get char , putchar, etc. For example, here is a version of getchar which does unbuffered input.

PS2:3-8 UNIX Programming - Second Edition

#define CMASK 0377 1* for making char's> 0 *1

getchar()
{

1* unbuffered single character input *1

char c;

return«read(O, &c, 1) > 0) ? c & CMASK : EOF)i
)

c must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it nega­
tive. (The constant 0377 is appropriate for the PDP-II but not necessarily for other machines.)

The second version of getchar does input in big chunks, and hands out the characters one at a
time.

#define CMASK 0377 1* for making char's> 0 *1
#define BUFSIZE 512

getchar()
{

1* buffered version *1

)

static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n == 0) { 1* buffer is empty *1
n = read(O, buf, BUFSIZE)i
bufp = buf;

)
~eturn«--n >= 0) ? *bufp++ & CMASK

4.3. Open, Creat, Close, Unlink

EOF)i

•

Other than the default standard input, output and error files, you m'!st explicitly open files in
order to read or write them. There are two system entry points for this, open and creat [sic).

open is rather like the fopen discussed in the previous section, except that instead of returning
a file pointer, it returns a file descriptor, which is just an i nt.

int fd;

fd = open(name, rwmode)i

As with fopen, the name argument is a character string corresponding to the external file name. The
access mode argument is different, however: rwmode is 0 for read, I for write, and 2 for read and
write access. open returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is proyided to
create new files, or to re-write old ones.

fd = creat(name, pmode)i

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file already
exists, creat will truncate it to zero length; it is not an error to creat a file that already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode argu­
ment. In the UNIX file system, th~ are nine bits of protection information associated with a file,
controlling read, write and execute permission for the owner of the file, for the owner's group, and for
all others. Thus a three-digit octal number is most convenient for specifying the permissions. For
example, 0755 specifies read, write and execute permission for the owner, and read and execute per­
mission for the group and everyone else.

UNIX Programming - Second Edition PS2:3-9

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one file
to another. (The main simplification is that our version copies only one file, and does not permit the
second argument to be a directory.)

IIdefine NULL 0
IIdefine BUFSIZE 512
IIdefine PMODE 0644 1* RW for owner, R for group, others *1

main(argc, argyl
int argci

1* cp: copy f1 to f2 *1

char *argy[];
{

}

int f1, f2, n;
char buf[BUFSIZE];

U (argc 1= 3)
error("Usage: cp from to", NULL);

if «f1 = open(argy[1], 0» -- -1)
error("cp: can't open %s", argy[1]);

if «f2 = creat(argy[2], PMODE» == -1)
error("cp: can't create %s", argy[2]);

.while «n = read(f1, buf, BUFSIZE» > 0)
if (write(f2, buf, n) 1= n)

error("cp: write error", NULL);
exh(O) ;

error(s1, s2) 1* print error message and die *1
char *s1, *s2;
{

}

pdntf(s1 I s2);
pdntf("\n") ;
ex; t(1); c

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must be
prepared to re-use file descriptors. The routine close breaks the connection between a file descriptor
and an open file, and frees the file descriptor for use with some other file. Termination of a program
via ex i t or return from the main program closes all open files.

The function un link (f i l ename) removes the file f i l ename from the file system.

4.4. Random Access - Seek and Lseek
File 110 is normally sequential: each read or wr he takes place at a position in the file right

after the previous one. When necessary, however, a file can be read or written in any arbitrary order.
The system call l seek provides a way to move around in a file without actually reading or writing:

lseek(fd , offset, origin);

forces the current position in the file whose descriptor is fd to move to position offset, which is
taken relative to the location specified by or i gin. Subsequent reading or writing will begin at that
position. offset is a long; fd and origin are int's .. origin can be 0, 1, or 2 to specify that
offset is to be measured from the beginning, from the current position, or from the end of the file
respectively. For example. to append to a file, seek to the end before writing:

lseek(fd , Ol, 2);
To get back to the beginning ("rewind"),

PS2:3-10 UNIX Programming - Second Edition

Lseek(fd,OL, O)i

Notice the OL argument; it could also be written as (long) O.

With Lseek, it is possible to treat files more or less like large amYSt at the price of slower
access. For example, the following simple function reads any number of bytes from any arbitrary
place in a file.

get(fd, pos, buf, n) '* read n bytes from position pos *'
int fd, n;
longpos;
char *buf;
<

}

Lseek(fd, pos, O)i '* get to pos *'
return(read(fd, buf, n»i

In pre-version 7 UNIX, the basic entry point to the 110 system is called seek. seek is identical
to lseek, except that its offset argument is an int rather than a long. Accordingly, since PDP-
11 integers have only 16 bits, the offset specified for seek is limited to 65,535; for this reason,
or i gin values of 3, 4, 5 cause seek to multiply the given offset by 512 (the number of bytes in one
physical block) and then interpret or f 9 ; n as if it were 0, 1, or 2 respectively. Thus to get to an arbi­
trary place in a large file requires twO seeks, first one which selects the block, then one which has
Or i gin equal to 1 and moves to the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact aU the routines which are direct entries into
the system can incur errors~ Usually they indicate an error by returning a value of -1. Sometimes it
is nice to know· what sort of error occurred; for this purpose aU these routines, when appropriate,
leave an error number in the external cell errno. The meanings of the various error numbers are
listed in the introduction to Section II of the UNIX Programmer's Manual. so yOUt program can, for
example, determine if an attempt to open a file failed because it did not exist or because the user
lacked permission to read it. Perhaps more commonly, you may want to print out the reason for
failure. The routine perroI' will print a message associated with the value of errno; more gen­
erally, sys_errno is an array of character strings which can be indexed by errno and printed by
your program.

5. PROCESSES
It is often easier to use a program written by someone else than to invent one's own. This sec­

tion describes how to execute a program from within another.

5.1. The "System" Function
The easiest way to execute a program from another is to use the standard library routine

system. system takes one argument, a command string exactly as typed at the terminal (except for
the newline at the end) and executes it. For instance, to time-stamp the output of a program, .

MainO
<

system(ltdatetl)i '* rest of processing *'
}

If the command String has to be built from pieces, the in-memory formatting capabilities of spr in t f
may be useful.

Remember than gete and putc normally buffer their input; terminal 110 will not be properly
synchronized unless this buffering is defeated. For output, use fflush; for input, see setbuf in the
appendix.

UNIX Programming - Second Edition PS2:3-11

5.2. Low-Level Process Creation - Exeel and Execv

If you're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard library's
system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
execl. To print the date as the last action of a running program, use

execlC"/bin/date", "date", NULL); .

The fIrst argument to exec l is the file name of the command; you have to know where it is found in
the file system. The second argument is conventionally the program name (that is, the last com­
ponent of the fIle name), but this is seldom used except as a place-holder. If the command takes argu­
ments, they are strung out after this; the end of the list is marked by a NULL argument.

The exec l call overlays the existing program with the new one, runs that, then exits. There is
no return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the seco~d pass simply an execl call from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the fIle can't be found or is not executable. If you don't know where
date is located, say.

execlC"/bin/date", "date", NULL);
execlC"/usr/bin/date", "date", NULL)~
fprintfCstderr, "Someone stole 'date'\n");

A variant of exec l called execv is useful when you don't know in advance how many argu­
ments there are going to be. The call is

execvCfilename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL so
execv can tell where the list ends. As with exec l, f i l ename is the fIle in which the program is
found, and argp[O] is the name of the program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is located.
Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument list. If you
want these, use exec l to invoke the shell sh, which then does all the work. Construct a string
command line that contains the complete command as it would have been typed at the terminal,
then say

execlC"/bin/sh", "sh", "-c", commandline, NULL);
The shell is assumed to be at a fixed place, Ibin/sh. Its argument -c says to treat the next argu­
ment as a whole command line, so it does just what you want. The only problem is in constructing
the right information in command line. .

5.3. Control of Processes - Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply overlay
the new program on the old one, to save the old one requires that it first be split into two copies; one
of these can be overlaid, while the other waits for the new, overlaying program to finish. The splitting
is done by a routine called fork:

proc_id = fork()i

splits the program into two copies, both of which continue to run. The only difference between the
two is the value of proc_ i d, the "process id." In one of these processes (the "child"), proc_; d is

PS2:3·12 UNIX Programming- Second Edition

zero. In the other (the "parent"), proc_ i d is non-zero; it is the process number of the child. Thus
the basic way to call, and return from, another program is

H (forkO == 0)
execL("/bin/sh", "sh", "-c", cmd, NULL); 1* in child *1

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the program.
In the child, the value returned by fork is zero, so it calls exec l which does the command and then
dies. In the parent, fork returns non-zero so it skips the execl. (If there is any error, fork returns
-1).

More often, the parent wants to wait for the child to terminate before continuing itself. This
can be done with the function wa i t:

int status;

H (forkO == 0)
execL(•••)i

wait(&status)i

This still doesn't handle any abnormal conditions, such as a failure of the exec L or fork, or the pos­
sibility that there might be more than one child running simultaneously. (The wai t returns the pro­
cess id of the terminated child, if you want to check it against the value returned by fork.) Finally,
this fragment doesn't deal with any funny behavior on the part of the child (which is reported in
status). Still, these three lines are the heart of the standard library's system routine, which we'll
show in a moment.

The status returned by wa i t encodes in its low-order eight bits the system's idea of the
child's termination status; it is 0 for. normal termination and non-zero to indicate various kinds of
problems. The next higher eight bits are taken from the argument of the call to ex i t which caused a
normal termination of the child process. It is good coding practice for all programs to return mean­
ingful status.

When a program is called by the shell, the three file descriptors 0, I, and 2 are set up pointing at
the right files, and all other possible file descriptors are available for use. When this program calls
another one, correct etiquette suggests making sure the same conditions hold. Neither fork nor the
exec calls affects open files in any way. If the parent is buffering output that must come out before
output from the child, the parent must Hush its buffers before the exec l. Conversely, if a caller
buffers an input stream, the called program will lose any information that has been read by the caller.

S.4. Pipes

A pipe is an 110 channel intended for use between two cooperating processes: one process writes
into the pipe, while the other reads. The system looks after buffering the data and synchronizing the
two processes. Most pipes are. created by the shell, as in

Ls I pr

which connects the standard output of l s to the standard input of pr. Sometimes, however, it is
most convenient for a process to set up its own plumbing; in this section, we will illustrate "how the
pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[2]i

stat = pipe(fd);
if (stat == -1)

1* there was an error ••• *1

fd is an array of two file descriptors, where fd[O] is the read side of the pipe and fd[1] is for writ­
ing. These may be used in read, wr; te and close calls just like any other file descriptors.

UNIX Programming - Second Edition PS2:3-13

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a
pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is
closed, a. subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popenCcmd, mode), which creates a process cmd (just as system does), and returns a file descrip­
tor that will either read or write that process, according to mode. That is, the call

fout = popenC"pr", WRITE);

creates a process that executes the pr command; subsequent wr i te calls using the file descriptor
f ou t will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe,
then calls the shell (via execl) to run the desired process. The parent likewise closes the end of the
pipe it does not use. These closes are necessary to make end-of-file tests work properly. For example,
if a child that intends to read fails to close the write end of the pipe, it will never see the end of the
pipe file, just because there is one writer potentially active.

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tstCa, b) Cmode -- READ? Cb) Ca»
static int popen_pid;

popenCcmd, mode)
char *cmd;
int mode;
{

}

int p[2];

if CpipeCp) < 0)
returnCNULL);

if (Cpopen_pid = forkC» == 0) {
closeCtstCp[WRITE], p[READ]»i
closeCtstCO, 1»;

}

dupCtstCp[READ], p[WRITE]»i
closeCtstCp[READ], p[WRITE]»i
execlC"/bin/sh", "shU, "-c", cmd, O)i
_exit(1)i 1* disaster has occurred if we get here *1

if Cpopen_pid == -1)
returnCNULL)i

closeCtstCp[READ], p[WRITE]»i
returnCtstCpCWRITE], p[READ]»i

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child process
that will read data from the parent. Then the first close closes the write side of the pipe, leaving the
read side open. The lines

closeCtstCO, 1»;
dupCtstCp[READ], pCWRITE]»i

are the conventional way to associate the pipe descriptor with the standard input of the child. The
close closes file descriptor 0, that is, the standard input. dup is a system call that returns a dupli­
cate of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor for the pipe (read side)
to file descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, this is a bit

PS2:3-14 UNIX Programming - Second Edition

tricky, but it's a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child· process is supposed to write from
. the parent instead of reading. You may tind it a useful exercise to step through that case.

The job is not quite done, for we still need a function pc Lose to close the pipe created by
popen. The main reason for using a separate function rather than cLose is that it is desirable to
wait for the termination of the child process. First, the return value from pc lose indicates whether
the process succeeded. Equally important when a process creates several children is that only a
bounded number of unwaited-for children can exist, even if some of them have terminated; perform­
ing the wa i t lays the child to rest. Thus:

'include <signal.h>

pcLose(fd)
int fd;

1* close pipe fd *1

-(

}

reg;ster r, (*hstat) (), (*;stat)(), (*qstat)();
int status;
extern int popen_pid;

ctoseUd) ;
istat = sign.al (SIGINT, SIG_IGN);
qstat = signaL(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while «r = wait(&status» != popen_pid &1 r 1= -1);
if (r == -1)

status = -1;
signaL(SIGINT; istat);
sigrial(SIGQUIT, qstat)i
signal(SIGHUP, hstat)i
return(status)i

The calls to signa l make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the
single shared variable popen_p; d; it really should be an array indexed by tile descriptor. A popen
function, with slightly different arguments and return value is available as part of the standard 1/0
library discussed below. As currently written, it"shares the same limitation.

6. SIGNALS - INTERRUPTS AND ALL THAT
This section is concerned with how to deal gracefully with signals from the outside world (like

interrupts), and with program faults. Since there's nothing very useful that can be done from within
C about program faults, which arise mainly from illegal memory references or from execution of
peculiar instructions, we'll discuss only the outside-world signals: interrupt, which is sent when the
DEL character is typed; quit, generated by the FS character; himgup, caused by hanging up the. phone;
and terminate, generated by the Idll commaad. When one of these events occurs, the signal is sent to
all processes which were started from the COrrespOnding terminal; unless other arrangements have
been made, the sigaal terminates the process. In the quit case, a core image tile is written for debug­
ging purposes.

The routine which alters the default action is called signa l. It has two arguments: the drst
specities the signal, and the second specifies how to treat it. The tirst argument is just a number code,
but the second is the address is either a function, ora somewhat strange code that requests that the
signal either be ignored, or that it be given the default action. The include tile signal. h gives
names for the various arguments, and should always be included when signals are used. Thus

UNIX Programming - Second Edition

#include <signal.h>

signal(SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

PS2:3-15

restores the default action of process termination. In all cases, signa l returns the previous value of
the signal. The second argument to signa l may instead be the name of a function (which has to be
declared explicitly if the compiler hasn't seen it already). In this case, the named routine will be
called when the signal occurs. Most commonly this facility is used to allow the program to clean up
unfinished business before terminating, for example to delete a temporary file:

#include <signal.h>

ma;nO
{

}

int onintr 0;

if (signalCSIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, onintr);

1* Process ••• *1

exitCO);

onintr 0
{

}

unlinkCtempfile);
exit(1);

Why the test and the double call to signa l? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non­
interactively (started by I), the shell turns off interrupts for it so it won't be stopped by interrupts
intended for foreground processes. If this program began by announcing that all interrupts were to be
sent to the onintr routine regardless, that would undo the shell's effort to protect it when run in the
background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that signa l
returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to
stop what it is doing and return to its own command-processing loop. Think of a text editor: inter­
rupting a long printout should not cause it to terminate and lose the work already done. The outline
of the code for this case is probably best written like this:

PS2:3·16 UNIX Programming - Second Edition

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbufj

mainO
{

int (*istat)(), onintr()i

istat = signal(SIGINT, SIG_IGN); 1* save original status *1
setjmp(sjbuf)i 1* save current stack position *1
if (istat 1= SIG_IGN)

signal(SIGINT, onintr)i

1* main processing loop *1
)

printf("\nInterrupt\n")i
longjmp(sjbuf); 1* return to saved state *1

) .
The include file se t j mp • h declares the type j mp_bu f an object in which the state can be saved.
s j buf is such an object; it is an array of some sort. The set j mp routine then saves the state of
things. When an interrupt occurs, a call is forced to the on i n t r routine, which can print a message,
set flags, or whatever. Longjmp takes as argument an object stored into by setjmp, and restores
control to the location after the call to set j mp, so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop entered. Notice, by the way,
that the signal gets set again after an interrupt occurs. This is necessary; most signals are automati­
cally reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal sets a
flag and then returns instead of calling ex i t or long j mp, execution will continue at the exact point
it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the termi·
nal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it
were really true, as we said above, that "execution resumes at the exact point it was interrupted," the
program would continue reading the terminal until the user typed another line. This behavior might
well be confusing, since the user might not know that the program is reading; he presumably would
prefer to have the signal take effect instantly. The method chosen to resolve this difficulty is to ter·
minate the terminal read when execution resumes after the signal, returning an error code which indi·
cates what happened.

Thus programs which catch and resume execution after signals should be prepared for "errors"
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,
wait, and pause.) A program whose onintr program just sets intflag, resets the interrupt signal,
and returns, should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (i n tf lag)

1* EOF caused by interrupt *1
else

1* true end-of-file *1

A final subtlety to keep in mind becomes. important when signal-catching is combined with exe­
cution of other programs. Suppose a program catches interrupts, and also includes a method (like .'!"
in the editor) whereby other programs can be executed. Then the code should look something like

UNIX Programming - Second Edition

this:

if (fork() == 0)
execl(•••)i

signal(SIGINT, SIG_IGN)i 1* ignore interrupts *1
wait(&status)i 1* until the child is done *1
signal(SIGINT, onintr)i 1* restore interrupts *1

PS2:3-17

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call catches its
own interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop,
and probably read your terminal. But the calling program will also pop out of its wait for the subpro­
gram and read your terminal. Having two processes reading your terminal is very unfortunate, since
the system figuratively 8ips a coin to decide who should get each line of input. A simple way out is
to have the parent program ignore interrupts until the child is done. This reasoning is re8ected in the
standard 1/0 library function system:

#include <signal.h>

system(s)
char *si
{

1* run command string s *1

}

int status, pid, Wi
register int (*istat)(), (*qstat}()i

if «pid = fork(» == 0) {
execl("/bin/sh", "sh", "-c", s, 0);
_exH(127> i

}
"istat = signal(SIGINT, SIG_IGN)i
qstat = signalCSIGQUIT, SIG_IGN)i
while «w = wait(&status» != pid && w != -1) . ,
if (w == -1)

status = -1i
signal(SIGINT, istat)i
signal(SIGQUIT, qstat)i
return(status)i

As an aside on declarations, the function signa l obviously has a rather strange second argu­
ment. It is in fact a pointer to a function delivering an integer, and this is also the type of the signal
routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so they
coincide with no possible actual functions. For the enthusiast, here is how they are defined for the
PDP-ll; the definitions should be sufficiently ugly and nonportable to encourage use of the include
file.

#define SIG_DFL (int (*)(»O
#define SIG_IGN (int (*)(»1

References

[1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual. Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Inc., 1978.

[3] B. W. Kernighan, "UNIX for Beginners - Second Edition." Bell Laboratories, 1978.

PS2:3·18 UNIX Programming - Second Edition

Appendix - The Standard 1/0 Library

D. M. Ritchie

AT&T BeU Laboratories
Murray Hill, New Jersey 07974

The standard YO library was desisned with the following goals in mind.
1. It must be as eflicient as possible, both in time and in space, so that there win be no hesitation

in using it no matter how critical the application.
2. It must be simple. to use, and· also free of the magic numbers and mysterious calls whose use

mars the understandability and portability of many propams using older packages.
3. The interface provided should be applicable on all machines, whether or not the programs which

implement it are directly portable to other systems, or to machines other than the PDP-II run·
ning a version of UNIX. .

1. General Usage
Each program using the library must have the line

#;ncLude <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no special
library argument is needed for loading. All names in the in<:lude file intended only for internal use
begin with an underscore ... to reduce the possibility of collision with a user name. The names
intended to be visible outside the package are
stdin The name of the standard input file

stdout The name of the standard output file
stderr The name of the standard error file
EOF is actually -1, and is the value returned by the read routines on end-of-tile or error.

NULL is a notation for the null pointer, returned by pointer-valued fUnctions to indicate an error
FILE expands to struct _ iob and is a useful shonhand when declaring pointers to streams.

BUFSIZ is a number (viz. 512) of the size suitable for an YO buifer supplied by the user. See
setbuf, below.

gete, getehal'. pate, putchar, Ceor. ferror, tUeno
are defined as macros. Their actions are described below; they are mentioned here to
point out that it is not possible to redeclare them and that they are not actually fUnctions;
thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output
Oushing where appropriate. The names stdin, stdout, and stderr are in effect constants and
may not be assigned to.

2. Calls

FILE *fopen(fHename, type) char *fHename, *type;
opens the tile and. if needed, allocates a buifer for it. f i L ename is a character string specifying
the name. type is a character string (not a singiecbaracter). It may be "r", "w", or "a" to
indicate intent to read, write, or append. The value returned is a file pointer. If it is NUll the .
attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *typei FILE *;Optri
The stream named. by ; optr is closed, if necessary, and then reopened as if by fopen. If the
attempt to open fails, NUll is returned, otherwise ioptr, which will now refer 19 the new file.
Often the reopened stream is stdin or stdout.

UNIX Programming - Second Edition PS2:3-19

int getc(ioptr) FILE *ioptri
returns the next character from the stream named by i op t r, which is a pointer to a file such as
returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or when an
error occurs. The null character \ 0 is a legal character.

int fgetc(ioptr) FILE *ioptri
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an argu­
ment, etc.

putc(c, ioptr) FILE *ioptri
putc writes the character c on the output stream named by ioptr, which is a value returned
from fopen or perhaps stdout or stderr. The character is returned' as value, but EOF is
returned on error.

fputc(c, ioptr) FILE *ioptri
acts like pu t c but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptri
The file corresponding to i optr is closed after any buffers are emptied. A buffer allocated by
the 110 system is freed. f close is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptri
Any buffered information on the (output) stream named by i optr is written out. Output files,
are normally buffered if and only if they are not direct,ed to the terminal; however, stderr
always starts off unbuffered and remains so unless setbuf is used, or unless it is reopened.

exitCerrcode);
terminates the process and returns its argument as status to the parent. This is a special version
of the routine which calls ff lush for each output file. To terminate without flushing, use
_exit. .

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferrorCioptr) ~ILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named stream. The
error indication lasts until the file has been closed.

getchar();
is identical to getcCstdin).

putcharCc);
is identical to putc (c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptri
reads up to n-1 characters from the stream i op t r into the character pointer s. The read ter­
minates with a newline character. The newline character is placed in the buffer followed by a
null character. fgets returns the first argument, or NULL if error or end-of-file occurred.

fputs(s, ioptr) char *Si FILE *ioptr;
writes the null-terminated string (character array) 5 on the stream i optr. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptri
The argument character c is pushed back on the input stream named by i optr. Only one char­
acter may be pushed back.

printf(format, a1, •••) char *format;
fprintf(ioptr, format, a1, •••) FILE *ioptri char *formati
sprintf(s, format, a1, •••)char *5, *format;

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are as
described in section pr intf(3) of the UNIX Programmer's Manual.

PS2:3-20 UNIX Programming - Second Edition

scanf(format, a1, •••) char *format;
fscanf(ioptr, format, a1, •••) FILE *ioptr; ehar *format;
sscanf(s, format, a1, •••) char *s, *format;

scanf reads from the standard input. fscanf·reads from the named input stream. sscanf
reads from the character string supplied as s. scanf reads characters, interprets them accord­
ing to a format, and stores the results in its arguments. Each routine expects as arguments a
control string format, and a set of arguments, each of which must be a pointer, indicating where
the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input character does not match what was
called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads n; tems of data beginning at ptr from file ioptr. No advance notification that binary
110 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ;optr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is dot very useful except on input, since a rewound
output file is still open only for output.

system(string) char *string;
The s t ring is executed by the shell as if typed at the terminal ..

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A "word" is
16 bits on the PDP-ll.

putw(w, ioptr) FILE *;optr; ~
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *,optr; char *buf;
setbuf may be used after a stream has been opened but before 110 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf[BUFSIZ]i

fileno(ioptr) FILE *ioptri
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptri long offset;
The location of the next byte in the stream named by ;optr is adjusted. offset ~s a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 1,
the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When this
routine is used on non-UNIX systems, the offset must be a value returned from f tell and the
ptrname must be 0).

long ftell(;optr) FILE *ioptr; .
The byte offset. measured from the beginning of the file. associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this call
is useful only for handing to fseek, so.as to position the file to the same place it was when
ft e II was called.)

UNIX Programming - Second Edition PS2:3-21

getpw(u;d, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur­
pose. NULL is returned if no space is available.

char *calloc(num, size);
allocates space for num items each of size s he. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available.

cfree(ptr) char *ptr;
Space is returned to the pool used by ca II oc. Disorder can be expected if the pointer was not
obtained from calloc.

The following are macros whose definitions may be obtained by including <ctype. h>.

isalpha(c) returns non-zero if the argument is alphabetic.

; supper (c) returns non-zero if the argument is upper-case alphabetic.

; slower (c) returns non-zero if the argument is lower-case alphabetic.

i sd i g i t (c) returns non-zero if the argument is a digit.

i sspace (c) returns non-zero if the argument is a spacing character: tab, newline, carriage return,
vertical tab, form feed, space.

ispunc t(e) returns non-zero if the argument is any punctuation character, i.e., not a space, letter,
digit or control character.

i sal num (c) returns non-zero if the argument is a letter or a digit.

; spr i nt (c) returns non-zero if the argument is printable - a letter, digit, or punctuation character.

i sentr l (c) returns non-zero if the argument is a control character.

i sase i i (e) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.

toupper (e) returns the upper-case character corresponding to the lower-case letter c.

tolower(e) returns the lower-case character corresponding to the upper-case letter e.

UNIX Implementation

UNIX Implementation

K. Thompson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the resident
UNlXt kernel. This discussion is broken into three parts. The first part describes
how the UNIX system views processes, users, and programs. The second part
describes the 110 system. The last part describes the UNIX file system.

1. INTllODUcnON

PS2:4-1

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assembly
code. The assembly code can be further broken down into 200 lines included for the sake of
efficiency (they could have been written in C) and 800 lines to perform hardware functions not possi­
ble in C .. . '.

This code represents 5 to 10 percent of wtlat has been lumped into the broad expression "the
UNIX. operating system." The kernel is the only UNIX code that cannot. be substituted by a user to his
own liking. For this reason, the kernel should make as few real decisions as possible. This does not
mean to allow the user a million options to do the same thing. Rather, it means to allow only one
way to do one thing, but have that way be the least-common divisor of all the options that might
have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a g!'~at
power. It is a soap-box platform on '~he way things should be done." Even so, if "the way" is too
radical, no one will follow it. Every important decision was weighed carefully. Throughout, simpli­
city has been substituted for efficiency. Complex algorithms are used only if their complexity can be
localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process. When a
system function is required, the user process calls the system as a subroutine. At some point in this
call, there is a distinct switch of environments. After this, the process is said to be a system process.
In the normal definition of processes, the user and system processes are different phases of the same
process (they never execute simultaneously). For protection, each system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all processes
executing the same code. There is no functional benefit from shared-text segments. An effiCiency
benefit comes from the fact that there is no need to swap read-only segments out because the original
copy on secondary memory is still current. This is a great benefit to interactive programs that tend to
be swapped while waiting for terminal input. Furthermore, if two processes are executing simultane­
ously from the same copy of a read-only segment, only one copy needs to reside in primary memory.
This is a secondary effect, because simultaneous execution of a program is not common. It is ironic
that this effect, which reduces the use of primary memory, only comes into play when there is an
overabundance of primary memory, that is, when there is enough memory to keep waiting processes

t UNIX is a trademark of AT&T Ben Laboratories.

PS2:4-2 UNIX Implementation

loaded.
All current read-only text segments in the system are maintained from the text lable. A text

table entry holds the location of the text segment on secondary memory. If the segment is loaded,
that table also holds the primary memory location and the count of the number of processes sharing
this entry. When this count is reduced to zero, the entry is freed along with any primary and secon­
dary memory holding the segment. When a process first executes a shared-text segment, a text table
entry is allocated and the segment is loaded onto secondary memory. If a second process executes a
text segment that is already allocated, the entry reference count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As far as
possible, the system does not use the user's data segment to hold system data. In particular, there are
no 110 buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the system
as a result of memory faults, is used for a stack. The second boundary is only grown (or shrunk) by
explicit requests. The contents of newly allocated primary memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size system data segment. This seg­
ment contains all the data about the process that the system needs only when the process is active.
Examples of the kind of data contained in the system data segment are: saved central processor regis­
ters, open file descriptors, accounting information, scratch data area, and the stack for the system
phase of the process. The system data segment is not addressable from the user process and is there-
fore protected. "

Last, there is a process table with one entry per process. This entry contains all the data needed
by the system when the process is not active. Examples are the process's name, the location of the
other segments, and scheduling information. The process table entry is allocated when the process is
created, and freed when the process. terminates. This process entry is always directly addressable by
the kernel. '

Figure 1 shows the relationships between the various process control data. In a sense, the pro­
cess table is the definition of all processes, because all the data associated with a process may be
accessed starting from the process table entry.

Process Table Text Table

Process Text
Table Table
Entry I-- Entry

Resident

Swapped
System
Data

Segment User
Text

~ User
Segment

Data

[user-J Segment

Address
Space -

Fig. I-Process control data structure.

UNIX Implementation PS2:4-3

2.1. Process creation and program execution
Processes are created by the system primitive fork. The newly created process (child) is a copy

of the original process (parent). There is no detectable sharing of primary memory between the two
processes. (Of course, if the parent process was executing from a read-only text segment, the child
will share the text segment.) Copies of all writable data segments are made for the child process. Files
that were open before the fork are truly shared after the fork. The processes are informed as to their
part in the relationship to allow them to select their own (usually non-identical) destiny. The parent
may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments of the
process for new text and data segments specified in the file. The old segments are lost. Doing an exec
does not change processes; the process that did the exec persists, but after the exec it is executing a
different program. Files that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another program, say
the second pass, then it simply execs the second program: This is analogous to a "goto." If a program
wishes to regain control after execing a second program, it should fork a child process, have the child
exec the second program, and have the parent wait for the child. This is analogous to a "call." Break­
ing up the call into a binding followed by a transfer is similar to the subroutine linkage in SL-5. 1

2.2. Swapping
The major data associated with a process (the user data segment, the system data segment, and

the text segment) ar~ swapped to and from secondary memory, as needed. The user data segment
and the system data segment are kept in contiguous primary memory to reduce swapping latency.
(When low-latency devices, such as bubbles, CCOs, or scatter/gather devices, are used, this decision
will have to be reconsidered.) Allocation of both primary and secondary memory is performed by the
same simple first-fit algorithm. When a process grows, a new piece of primary memory is allocated.
The contents of the 'old memory is copied to the new memory. The old memory is freed and the
tables are updated. If there is not enough primary memory, secondary memory is allocated instead.
The process is swapped out onto the secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other processes in
and out of primary memory. It examines the process table looking for a process that is swapped out
and is ready to run. It allocates primary memory for that process and reads its segments into primary
memory, where that process competes for the central processor with other loaded processes. If no
primary memory is available, the swapping process makes memory available by examining the pro­
cess table for processes that can be swapped out. It selects a process to swap out, writes it to secon­
dary memory, frees the primary memory, and then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly many
processes that are swapped out is to be swapped in? This is decided by secondary storage residence
time. The one with the longest time out is swapped in first. There is a slight penalty for larger
processes. Which of the possibly many processes that are loaded is to be swapped out? Processes
that are waiting for slow events (i.e., not currently running or waiting for disk I/O) are picked first, by
age in primary memory, again with size penalties. The other processes are examined by the same age
algorithm, but are not taken out unless they are at least of some age. This adds hysteresis to the
swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary memory,
these algorithms cause total swapping. This is not bad in itself, because the swapping does not
impact the execution of the resident processes. However, if the swapping device must also be used
for tile storage, the swapping traffic severely impacts the file system traffic. It is exactly these small
systems that tend to dO,uble usage of limited disk resources.

PS2:4-4 UNIX Implementation

%.3. SfllCbroaizatioa aad sc:beduliag
Process synchronization is accomplished· by having processes wait for events. Events are

represented. by arbitrary integers. By convention, events are chosen to be addresses of tables associ­
ated with those events. For example, a process that is waiting for any of its children to terminate will
wait for an event that is the address of its own process table entry. When a process terminates, it sig­
nals the event represented by its parent's process table entry. Signaling an event on which no process
is waiting has no ef'ect. Similarly, signaliq an event on which many processes are waiting will wake
alI of them up. This dift'ers considerably from Dijkstra's P and V synchronization operations,2 in that
no memory is associated with events. Thus there need be no allocation of events prior to their use.
Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of "how
much" can be signaled via the event mechanism.. For example, processes that want memory might
wait on an event associated with memory allocation. When any amount of memory becomes avail­
able, the event would be signaled. All the competing processes would then wake up to fight over the
new memory. (In reality, the swapping process is the only process that waits for primary memory to
become available.)

If an event 0CCU'tS between the time a process decides to wait for that event and the time that
process enters the wait state, then the process will wait on an event that has already happened (and
may never happen again). This race condition happens because there is no memory associated with
the event to indicate that the event has occurred; the only action of an event is to change a set of
. processes from wait state to run state. This problem is relieved largely by the fact that process
switching caD only occur in the kernel by explicit calls to the event-wait mechanism. If the event in
question is signaled by another process, then there is no problem. But if the event is signaled by a
hardware intetnJpt, then. special care must be taken. These synchronization races pose the biggest
problem when UNIX is adapted to multiple-processor configurations.2

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of the
processes has called event-wait. The remaining process is the one currently executing. When it calls
event-wait, a process whose event bas been signaled is selected and that process returns from its call
to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority. The
priority ·of a system process is assigned by the code issuing the wait on an event. This is roughly
equivalent to the response that one woUld expect on such an event. Disk events have high priority,
teletype events are low, and time-of-day events are very low. (From observation, the dift'erence in
system process priorities bas little or no performance impact.) All user-Pl'ocesspriorities are lower
than the lowest system priority. User-process priorities are assigned by an algorithm based on the
recent ratio of the amount of compute time to real time consumed by the process. A process that has
used a lot of compute time in the last real-time unit is assigned a low user priority. Because interac­
tive processes are characterized by low ratios of compute to real time, interactive response is main­
tained without any special arrangements.

The scheduling al80rithm simply picks the process with the highest priority, thus picking all sys­
tem processes fint and user processes second. The compute-to-real-time ratio is updated every
second. Thus, all other things being equal, looping user processes will be scheduled round-robin with
a I-second quantum. A high-priority process waking up will preempt a running, low-priority process.
The scheduling algorithm has a very desirable negative feedback character. If a process uses its high
priority to hog the computer, its priority will drop. At the same time, if a low-priority process is
ignored for a long time. its priority will rise.

3. 110 SYSTEM

The 110 system is broken into two completely separate systems: the block 110 system and the
character. 110 system. In retrospect, the names should·have been .. structured 110" and "unstructured
1/0," respectively; while the term "block 110" has some meaning, '~cter 110" is a complete
misnomer.

UNIX Implementation PS2:4-5

Devices are characterized by a major device number, a minor device number, and a class (block
or character). For each class, there is an array of entry points into the device drivers. The major
device number is used to index the array when calling the code for a particular device driver. The
minor device number is passed to the device driver as an argument. The minor number has no
significance other than that attributed to it by the driver. Usually, the driver uses the minor number
to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between the sys­
tem code and the device drivers is very important. Early versions of the system had a much less for­
mal connection with the drivers, so that it was extremely hard to handcraft differently configured sys­
tems. Now it is possible to create new device drivers in an average of a few hours. The configuration
table in most cases is created automatically by a program that reads the system's parts list.

3.1. Block 110 system
The model block 110 device consists of randomly addressed, secondary memory blocks of 512

bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The block
device driver has the job of emulating this model on a physical device.

The block 110 devices are accessed through a layer of buffering software. The system maintains
a list of buffers (typically between 10 and 70) each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices. On a read request, the cache is searched
for the desired block. If the block is found, the data are made available to the requester without any
physical 110. If the block is not in the cache, the least recently used block in the cache is renamed,
the correct device driver is called to ftll up the renamed buffer, and then the data are made available.
Write requests are handled in an analogous manner. The correct buffer is found and relabeled if
necessary. The write is performed simply by marking the buffer as "dirty." The physical 110 is then
deferred until the butrer is renamed.

The benefiis in reduction of physical I/O of this scheme are substantial, especially considering
the file system implementation. There are, however, some drawbacks. The asynchronous nature of
the algorithm makes error reporting and meaningful user error handling almost impossible. The
cavalier approach to 110 error handling in the UNIX system is partly due to the asynchronous nature
of the block 110 system. A second problem is in the delayed writes. If the system stops unexpectedly,
it is almost certain that there L. a lot of logically complete, but physically incomplete, 110 in the
buffers. There is a system primitive to flush all outstanding 1/0 activity from the buffers. Periodic
use of this primitive helps, but does not solve, the problem. Finally, the associativity in the buffers
can alter the physical 1/0 sequence from that of the logical 1/0 sequence. This means that there are
times when data structures on disk are inconsistent, even though the software is careful to perform
110 in the correct order. On non-random devices, notably magnetic tape, the inversions of writes can
be disastrous. The problem with magnetic tapes is "cured" by allowing only one outstanding write
request per drive.

3.2. Character 110 system
The character 110 system consists of all devices that do not fall into the block I/O model. This

includes the "classical" character devices such as communications lines, paper tape, and line printers.
It also includes magnetic tape and disks when they are not used in a stereotyped way, for example,
SO-byte physical records on. tape and track-at-a-time disk copies. In short, the character 110 interface
means "everything other than block." 110 requests from the user are sent to the device driver es~­
tially unaltered. The implementation of these requests is, of course, up to the device driver. There
are guidelines and conventions to help the implementation of certain types of device drivers.

3.2.1. Dlik drivers .

Disk drivers are implemented with a queue of transaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte count.
S~apping is accomplished by passing such a record to the swapping device driver. The block 110
interface is implemented by passing such records with requests to ftll and empty system buffers. The

PS2:4-6 UNIX Implementation

character 110 interface to the disk drivers create a transaction record that points directly into the user
area. The routine that creates this record also insures that the user is not swapped during this 110
transaction. Thus by implementing the general disk driver, it is possible to use the disk as a block
device, a character de~ce, and a swap device. The only really disk-specific code in normal disk
drivers is the pre-sort of transactions to minimize latency for a particular device, and the actual issu­
ing of the 110 request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle charac­
ter lists. A character list is a queue of characters. One routine puts a character on a queue. Another
gets a character from a queue. It is also possible to ask how many characters are currently on a
queue. Storage for all queues in the system comes from a single common pool. Putting a character
on a queue will allocate space from the common pool aDd link the character· onto the data structure
defining the queue. Getting a character from a queue returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by passing
characters from the user onto a character queue until some maximum number of characters is on the
queue. The 110 is prodded to start as soon as there is anything on the queue and, once started, it is
sustained by hardware completion interrupts. Each time there is a completion interrupt, the driver
gets the next character from the. queue and sends it to the hardware. The number of characters on
the queue is checked and, as the count falls through some intermediate level, an event (the queue
address) is signaled. The process that is passing characters from the user to the queue can be waiting
on the event, and refill the queue to its maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very similar
manner.

AnOther class of character devices is the terminals. A terminal is represented by three character
queues. There are two input queues (raw and canonical) and an o~tPUt queue. Characters going to
the output of a terminal are handled by common code e~y as d~bed above. The main
difference is that there is also code to. interpret the output stream as ASCU characters and to perform
some translatio~ e.g., escapes for deficient terminals. Another common aspect of terminals is code
to insert real·time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and placed on
a raw input queue. Some device-dependent code conversion and escape interpretation is handled
here. When a line is complete in the raw queue, an event is signaled. The code catching this signal
then copies a line from the raw queue to a canonical queue performing the character erase and line
kill editing. User read requests on terminals can be directed at either the raw or canonical queues.

3.2.l. Other character derices
Finally, there are devices that fit no general category. These devices are set up as character 110

drivers. An example is a driver that reads and writes unmapped primary memory as an 110 device.
Some devices are too fast to be treated a character at time, but do not fit the disk 110 mold. Exam­
ples are fastcommunicatioDS lines and fast line printers. These devices either have their own buffers
or "borrow" block 110 buffers for a while and then give them back.

4. THE FILE SYSTEM
In the UNIX system, a file is a (one-<iimensional) array of bytes. No other structure of files is

implied by the system. Files are attached anywhere (and possibly multiply) onto a hierarchy of direc­
tories. Directories are simply files that users cannot write. For a fUrther discussion of the external
view of files and directories,see Ref. 3.

The UNIX file system is a disk data structure accessed completely through the block 110 system.
As stated before, the canonical view of a "disk" is a randomly addressable array of S 12-byte blocks.
A file system breaks the disk into four self-identifying regions. The first block. (address 0) is .uuused
by the file system. It is left aside for booting procedures. The second b~k(address 1) contains the

UNIX Implementation PS2:4-7

so-called "super-block." This block, among other things, contains the size of the disk and the boun­
daries of the other regions. Next comes the i-list, a list of file definitions. Each file definition is a 64-
byte structure, called an i-node. The offset of a particular i-node within the i-list is called its i­
number. The combination of device name (major and minor numbers) and i-number serves to
uniquely name a particular file. After the i-list, and to the end of the disk, come free storage blocks
that are available for the contents of files.

The free space on a disk is tnajntained by a linked list of available disk blocks. Every block in
this chain contains a disk address of the next block in the chain. The remaining space contains the
address of up to 50 disk blocks that are also free. Thus with one I/O operation, the system obtains 50
free blocks and a pointer where to find more. The disk allocation algorithms are very straightforward.
Since all allocation is in fixed-size blocks and there is strict accounting of space, there is no need. to
compact or garbage collect. However, as disk space becomes dispersed, latency gradually increases.
Some installations choose to occasionally compact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the first
10 blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh address points at a
block that contains the addresses of the next 128 blocks of the file. If the file is still larger than this
(70,656 bytes), then the twelfth block points at up to 128 blocks, each pointing to 128 blocks of the
file. Files yet larger (8,459,264 bytes) use the thirteenth address for a ''triple indirect" address. The
algorithm ends here with the maximum file size of 1,082,201,087 bytes.

. A logical directory hierarchy is added to this flat physical structure simply by adding a new type
of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-byte entries
consisting of a 14-byte name and an i-number. The root of the hierarchy is at a known i-number,
(viz .• 2). The file system structure allows an arbitrary, directed graph of directorieS with regular files
linked in at arbitrary places in this graph. In fact,' very early UNIX systems used such a structure.
Administration of such a structure became so chaotic that later systems were restricted to a directory
tree: Even now, with regular files linked multiply into arbitrary places in the tree, accounting for
space has become a problem. It may become necessary to restrict the entire structure to a tree, and
allow a new form of linking that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy space
allocation. With most physical addresses confined to a small contiguous section of disk. it is also easy
to dump, restore, and check the consistency of the file system. Large files suffer from indirect
addressing, but the cache prevents most of the implied physical I/O without adding much execution.
The space overhead properties of this scheme are quite good. For example, on one particular file sys­
tem, there are 25,000 files containing 130M bytes of data-file content. The overhead (i-node, indirect
blocks, and last block breakage) is about 11.5M bytes. The directory structure to support these files
has about 1,500 directories containing 0.6M bytes of directory content and about 0.5M bytes of over­
head in accessing the directories. Added up any way, this comes out to less than a 10 percent over­
head for actual stored data. Most systems have this much overhead in padded trailing blanks alone.

4.1. File system implemeDtatioD

Because the i-node defines a file, the implementation of the file system centers around access to
the i-node. The system maintains a table of all active i-nodes. As a new file is accessed, the . system
locates the corresponding i-node, allocates an i-node table entry, and reads the i-node into primary
memory. As in the buffer cache, the table entry is considered to, be th,e current version of the i-node.
Modifications to the i-node are made to the table entry. When the last access to the i-node goes
away, the table entry is copied back to the secondary store i-list and the table entry is freed.

An I/O operations on files are carried out with the aid of the corresponding i-node table entry.
The accessing of a file is a straightforward implementation of the algorithms mentioned previously.
The user is not aware of i-nodes and i-numbers. References to the file system are made in terms of
path names of the directory tree. Converting a path name into an i-node table entry is also straight­
forward. Starting at some known i-node (the root or the current directory of some process), the next
component of the path name is searched by reading the directory. This gives aD. i-number and an
implied device (that of the directory). Thus the next i-node table entry can be accessed. If that was

PS2:4-8

Open File
Table

Per-User Open
Flle Table

Active I-node
Table

UNIX Implementation

Swapped
Per User

Resident
_ Per System

I-node

File
- File -

Mapping
Algorithms - -

Fig. 2-File system data structure.

Secondary
Storage

Per
File System

the last component of the path name, then this i-node is the result. If not, this i-node is the directory
needed to look up the next component of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of these
are opea, create, reacl, write, seek., and dose. The data structures maintained are shown in Fig. 2. In
the system data segment associated with a user, there is room· for some (usually between 10 aild SO)
open tiles. This open tile table consists of pointers that can be· used to access corresponding i-node
table entries. Associated with each of these open tiles.is a current YO pointer. This is a byte offset of
the next read/write operation on the file. The system treats each readlwrite request as random with
an implied seek to the YO pointer. The user usually thinks of the tile as sequential with the YO
pointer automatically counting the number of bytes that have been readlwritten from the tile. The
user may, of course, perform random YO by setting the YO pointer before reads/writes.

With tile sharing, it is necessary to allow related processes to share a common YO pointer and
yet· have separate YO pointers for independent processes that access the same tile. With these two
conditions, the YO pointer cannot reside in the i-node table nor can it reside in the list of open files
for the process. A new table (the open file table) was invented for the sole purpose of holding the YO

UNIX Implementation PS2:4-9

pointer. Processes that share the same open file (the result of Corks) share a common open file table
entry. A separate open of the same file will only share the i-node table entry, but will have distinct
open file table entries.

The main file system primitives are implemented as follows. open converts a file system path
name into an i-node table entry. A pointer to the i-node table entry is placed in a newly created open
file table entry. A pointer to the file table entry is placed in the system data segment for the process.
create first creates a new i-node entry, writes the i-number into a. directory, and then builds the same
structure as for an open. read and write just access the i-node entry as described above. seek simply
manipulates the I/O pointer. No physical seeking is done. close just frees the structures built by open
and create. Reference counts are kept on the open file table entries and the i-node table entries to
free these structures after the last reference goes away. unlink simply decrements the count of the
number of directories pointing at the given i-node. When the last reference to an i-node table entry
goes away, if the i-node has no directories pointing to it, then the file is removed and the i-node is
freed. This delayed removal of files prevents problems arising from removing active files. A file may
be removed while still open. The resulting unnamed file vanishes when the file is closed. This is a
method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of implied
seeks before each read or write in order to implement first-in-first-out. There are also checks and syn­
chronization to prevent the writer from grossly outproducing the reader and to prevent the reader
from overtaking the writer.

4.2. Mounted file systems

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of. this structure is the root of the UNIX file system.
A second formatted block device may be mount~d at any leaf of the current hierarchy. This logically
extends the current hierarchy. The implementation of mounting is trivial. A mount table is main­
tained containing pairs of designated leaf i-nodes and block devices. When converting a path name
into an i-node, a check is made to see if the new i-node is a designated leaf. If it is, the i-node of the
root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file lives.
Thus a file system consisting of many mounted devices does not have a common pool of free secon­
dary storage space. This separation of space on different devices is necessary to allow easy unmount­
ing of a device.

4.3. Otber system functions
There are some other things that the system does for the user-a little accounting, a little

tracing/debugging, and a little access protection. Most of these things are not very well developed
because our use of the system in computing science research does not need them. There are some
features that are missed in some applications, for example, better inter-process communication.

The UNIX kernel is an I/O multiplexer more than a complete operating system. This is as it
should be. Because of this outlook, many features are found in most other operating systems that are
missing from the UNIX kernel. For example, the UNIX kernel does not support file access methods,
file disposition, file formats, file maximum size, spooling, command language, logical records, physical
records, assignment of logical file names, logical file names, more than one character set, an operator's
console, an operator, log-in, or log-out. Many of these things are symptoms rather than features.
Many of these things are implemented in user software using the kernel as a tool. A good example of
this is the command language.3 Each user may have his own command language. Maintenance of
such code is as easy as maintaining user code. The idea of implementing "system" code with general
user primitives comes directly from MULTICS.2

PS2:4-10 UNIX Implementation

Refereaees

1. R. E~ Griswold and D. R. Hanson, "An Overview ofSLS," SIGPLAN Notices, vol. 12, no. 4, pp.
40-50, April 1977.

2. E. W. Dijkstra, "Cooperating Sequential Processes," in Programming Languages,ed. F. Genuys,
pp. 43-112,Acac1emic Press, New Yorle, 1968.

3. This issue, D. M. Ritchie and It. Thompson, "The UNIX Time.Sbaring System~" Bell Sys. Tech.
I., vol. 57, no. 6, pp. 19O5 .. 1929, 1978.

The UNIX 110 System

The UNIX 1/0 System

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

PS2:5-1

This paper gives an overview of the workings of the UNIXt 110 system. It was written with an
eye toward providing guidance to writers of device driver routines, and is oriented more toward
describing the environment and nature of device drivers than the implementation of that part of the
file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as
discussed in the paper "The UNIX Time-sharing System." A more detailed discussion appears in
"UNIX Implementation;" the current document restates parts of that one, but is still more detailed.
It is most useful in conjunction with a copy of the system code, since it is basically an exegesis of that
code.

Device Classes
There are two classes of device: block and character. The block interface is suitable for devices

like disks, tapes, and DECtape which work, or can work, with addressible 512-byte blocks. Ordinary
magnetic tape just barely fits in this category, since by. use of forward and backward spacing any block
can be read, even though blocks can be written only at the end of the tape. Block devices can at least
potentially contain a mounted file system. The interface to block devices is very highly structured;
the drivers for these devices share a great many routines as well as a pool of buffers. .

Character-type devices have a much more straightforward interface, although more work must
be done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers are
generally stored as an integer with the minor device number in the low-order 8 bits and the major
device number in the next-higher 8 bits; macros major and minor are available to access these
numbers. The major device number selects which driver will deal with the device; the minor device
number is not used by the rest of the system but is passed to the driver at appropriate times. Typi­
cally the minor number selects a subdevice attached to a given controller, or one of several similar
hardware interfaces.

The major device numbers for block and character devices are used as indices in separate tables;
they both start at 0 and therefore overlap.

Oveniew of 110

The purpose of the open and creat system calls is to set up entries· in three separate system
tables. The first of these is the u_ofile table, which is stored in the system's per-process data area "­
This table is indexed by the file descriptor returned by the open or creat, and is accessed during a
read, write, or other operation on the open file. An entry contains only a pointer to the correspond­
ing entry of the file table, which is a per-system data base. There is one entry in the file table for
each instance of open or creal. This table is per-system because the same instance of an open file
must be shared among the several processes which can result from forks after the file is opened. A
file table entry contains Bags which indicate whether the file was open for reading or writing or is a

tUNIX is a Trademark of BeD Laboratories.

PS2:5-2 The UNIX I/O System

pipe, and a count which is used to decide when all processes using the entry have terminated or
closed the file (so the entry can be abandoned). There is also a 32·bit file offset which is used to indi·
cate where in the file the next read or write will take place. Finally, there is a pointer to the entry for
the file in the inode table, which contains a copy of the file's i-node.

Certain open files can be designated "multiplexed" files, and several other flags apply to such
channels. In such a case, instead of an offset, there is a pointer to an associated multiplex channel
table. Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the same file is
opened several times, it will have several entries in this table. However, there is at most one entry in
the inode table for a given file. Also, a file may enter the inode table not6nly because it is open, but
also because it is the current directory of some process or because it is a special file containing a
currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on the
disk; the modified and accessed times are not stored, and the entry is augmented by a flag word con­
taining information about the entry, a count used to determine when it may be allowed to disappear,
and the device and i-number whence the entry came. Also, the several block numbers that give
addressing information for the file are expanded from the 3-byte, compressed format used on the disk
to full long quantities.

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on the
data-terminal-ready lead of a modem, etc.). However, the close routine is called only when the last
process closes a file, that is, when the i-node table entry is being deallocated. Thus it is not feasible
for a device to maintain, or depend on, a count of its users. although it is quite possible to implement
an exclusive-use device which cannot be reopened until it has been closed.

When a read or write takes place, the user's arguments and the file table entry are used to set
up the variables u.u_base, U.u_count. and u.u_offtet which respectively contain the (user) address of
the I/O target area, the byte-count for the transfer, and the current location in the file. If the file
referred to is a character-type special file, the appropriate read or write routine is called; it is responsi­
ble for transferring data and updating the count and current location appropriately as discussed
below. Otherwise, the current location is used to calculate a logical hlock number in the file. If the
file is an ordinary file the logical block number must be mapped (possibly using indirect blocks) to a
physical block number; a block-type special file need not be mapped. This mapping is performed by
the bmap routine. In any event, the resulting physical block number is used, as discussed below, to
read or write the appropriate device.

Character Device Drivers
The cdevsw table specifies the interface routines present for character devices. Each device pro­

vides five routines: open, close, read, write, and special-function (to implement the locti system call).
Any of these may be missing. If a call on the routine should be ignored, (e.g. open on non-exclusive
devices that require no setup) the cdevsw entry can be given as nulJdev; if it should be considered an
error, (e.g. write on read-only devices) nodev is used. For terminals, the cdevsw structure also con-
tains a pointer to the tty structure associated with the terminal. .

The open routine is called each time the file is opened with the full device number as argument.
The second argument is a Bag which is non-zero only if the device is to be written upon.

The close routine is called only when the file is closed for the last time, that is when the very
last process in which the file is open closes it. This means it is not possible for the driver to maintain
its own count of its users. The tirstargument is the device number; the second is a flag which is non­
zero if the file was open for writing in the process which performs the final close.

When write is called, it is supplied the device as argument. The per-user variable u. u_count has
been set to the number of characters indicated by the user; for character devices, this number may be
o initially. u.u_base is the address supplied by the user from which to start taking characters. The
system may call the routine internally, so the flag u.u_segflg is supplied that indicates, if on, that

The UNIX 1'0 System PS2:S-3

u.u_base refers to the system address space instead of the user's.
The write routine should copy up to u.u_count characters from the user's buffer to the device,

decrementing u.u_count for each character passed. For most drivers, which work one ch~racter at a
time, the routine cpass() is used to pick up characters from the user's buffer. Successive calls on it
return the characters to be written until u.u_count goes to 0 or an error occurs, when it returns -1.
Cpass takes care of interrogating u.uJegflg and updating u.u_count.

Write routines which want to transfer a probably large number of characters into an internal
buffer may also use the routine iomove(buffer, ojJset, count, flag) which is faster when many characters
must be moved. [omove transfers up to count characters into the buffer starting ojJset bytes from the
start of the buffer; flag should be B_ WRITE (which is 0) in the write case. Caution: the caller is
responsible for making sure the count is not too large and is non-zero. As an efficiency note, iomove
is much slower if any of buffer+ojJset. count or u.u_base is odd.

The device's read routine is called under conditions similar to write. except that u.u_count is
guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available; it takes
care of housekeeping like cpass and returns -1 as the last character specified by u. u_count is returned
to the user; before that time, 0 is returned. [omove is also usable'as with write; the flag should be
B_READ but the same cautions apply.

The "special-functions" routine is invoked by the stty and guy system calls as follows: (*p) (dev.
v) where p is a pointer to the device's routine, dev is the device number, and v is a vector. In the
guy case, the device is supposed to place up to 3 words of status information into the vector; this will
be returned to the caller. In the stty case, v is 0; the device should take up to 3 words of control
information from the array u.u_arg[O ... 2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt occurs,
it is turned into a C-compatible call on the devices's' interrupt routine. The interrupt-catching
mechanism makes the low-order four bits of the "new PS" word. in the trap vector for the interrupt
available to the interrupt handler. This is conventionally used by drivers which deal with multiple
similar devices to encode the minor device number. After the interrupt has been processed, a return
from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most of
these handlers, for example, need a place to buffer characters in ti..e internal interface between their
"top half' (read/write) and "bottom half' (interrupt) routines. For relatively low data-rate devices,
the best mechanism is the character queue maintained by the routines getc and putc. A queue header
has the structure

struct (
int C3C; '* character count *'
char *c3f; '* first character *'
char *c31; '* last character *'

} queue;

A character is placed on the end of a queue by putc(c. &queue) where c is the character and queue is
the queue header. The routine returns -1 if there is no space to put the character, 0 otherwise. The
first character on the queue may be retrieved by getc(&queue) which returns either the (non':negative)
character or -1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in
the standard system there are only some 600 character slots available. Thus device handlers, espe­
cially write routines, must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call
s!eep(event, priority) causes the process to wait (allowing other processes to run) until the event
occurs; at that time, the process is marked ready-ta-run and the call will return when there is no pra-
cess with higher priority. .

The call wakeup(event) indicates that the event has happened, that is, causes processes sleeping
on the event to be awakened. The event is an arbitrary quantity agreed upon by the sleeper and the

PS2:5-4 The UNIX 1/0 System

waker-up. By convention, it is the address of some data area used by the driver, which guarantees
that events are unique.

Processes sleeping on an event should not assume that the event has ,really happened; they
should check that the conditions which caused them to sleep no longer hold

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored scheduling
situation. A distinction is made between processes sleeping at priority less than the parameter

. PZERO and those at numerically larger priorities. The former cannot be interrupted by signals,
although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep with priority less
than PZERO on an event which might never occur. On the other hand, calls to sleep with larger
priority may never return if the process is terminated by some signal in the meantime. Incidentally,
it is a gross error to call sleep in a routine called at interrupt time, since the process which is running
is almost certainly not the process which should go to sleep. Likewise, none of the variables in the
user area "u." should be touched, let alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to
supply a wakeup, (for example, a device going on-line, which does not generally cause an interrupt),
the call sleep(&:1bolt, priority) may be given. Lbolt is an external cell whose address is awakened once
every 4 seconds by the clock interrupt routine.

The routines spI4(). sp/5(), spI6(). spI7() are available to set the processor priority level as indi­
cated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(fune, argo interval) will be use­
ful. This routine arranges that after interval sixtieths of a second, the June will be called with arg as
argument, in the style (*Junc)(arg). Timeouts are used, for example, to provide real-time delays after
function characters like new-line and tab in typewriter output, and to terminate an attempt to read
the 201 Dataphone dp if there is no response within· a specified number of seconds. Notice that the
number of sixtieths of a second is limited to 32767, sint=e it must appear to be positive, and that only
a bounded number of timeouts can be going on at once. Also, the specified June is called at clock­
interrupt time, so it should conform to the requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of buffers
containing the images of blocks of data on the various devices. The most important purpose of these
routines is to assure that several processes that access the same block of the same device in multipro­
grammed fashion maintain a consistent view of the data in the block. A secondary but still important
purpose is to increase the efficiency of the system by keeping in-core copies of blocks that are being
accessed frequently. The main data base for this mechanism is the table of buffers buf, Each buffer
header contains a pair of pointers (bJorw. b_back) which maintain a doubly-linked list of the buffers
associated with a particular block device, and a pair of pointers (av Jorw, av _back) which generally
maintain a doubly-linked list of blocks which are "free," that is, eligible to be reallocated for another
transaction. Buffers that have VO in progress or are busy for other purposes do not appear in this
list. The buffer header also contains the device and block number to which the buffer refers, and a
pointer to the actual· storage associated with the buffer. There is a word count which is the negative
of the number of words to be transferred to or from the buffer; there is also an error byte and a resic
dual word count used to communicate information from an VO routine to its caller. Finally, there is
a flag word with bits indicating the status of the buffer. These flags will be discussed below.

Seven routines constitute the most important part of the interface with the rest of the system.
Given a device and block number, both bread and getblk return a pointer to a buffer header for the
block; the difference is that bread is guaranteed to return a buffer actually containing the current data
for the block, while gelbJk retums a buffer which contains the data in the block only if it is already in
core (whether it is or not is indicated by the B_DONE bit; see below). In either case the buffer, and
the corresponding device block, is made"busy," so that other processes referring to it are obliged to
wait until it becomes free. Getblk is used, for example, when a block is about to be totally rewritten,
so that its previous contents are not useful; still, no other process can be allowed to refer to the block

The UNIX 1/0 System PS2:S-S

until the new data is placed into it.
The bread a routine is used to implement read-ahead. it is logically similar to bread, but takes

as an additional argument the number of a block (on the same device) to be read asynchronously after
the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
processes. It is called, for example, after data has been extracted following a bread. There are three
subtly-different write routines, all of which take a buffer pointer as argument, and all of which logi­
cally release the buffer for use by others and place it on the free list. Bwrite puts the buffer on the
appropriate device queue, waits for the write to be done, and sets the user's error flag if required.
Bawrite places the buffer on the device's queue, but does not wait for completion, so that errors can­
not be reflected directly to the user. Bdwrite does not start any 110 operation at all, but merely marks
the buffer so that if it happens to be grabbed from the free list to contain data from some other block,
the data in it will first be written out.

Bwrite is used when one wants to be sure that 110 takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful when
more overlap is desired (because no wait is required for 110 to finish) but when it is reasonably cer­
tain that the write is really required. Bdwrite is used when there is doubt that the write is needed at
the moment. For example, bdwrite is called when the last byte of a write system call falls short of the
end of a block, on the assumption that another write will be given soon which will re-use the same
block. On the other hand, as the end of a block is passed, bawrite is called, since probably the block
will not be accessed again soon and one might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to
the us.e of the caller, and make others wait, while one of brelse. bwrile. bawrite. or bdwrite must even­
tually be ·called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer.
Since they provide one important channel for information between the drivers and the block 1/0 sys­
tem, it is important to understand these flags. The following names are manifest constants which
select the associated flag bits. .

B_READ This bit is set when the buffer is handed to the device strategy routine (see below) to indi­
cate a read operation. The symbol B_ WRITE is defined as 0 and does not define a flag; it
is provided as a mnemonic convenience to callers of routines like swap which have a
separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is turned
on when the operation completes, whether normally as the result of an error. It is also
used as part of the return argument of getblk to indicate if 1 that the returned buffer actu­
ally contains the data in the requested block.

B_ERRORThis bit may be set to I when B_DONE is set to indicate that an 110 or other error
occurred. If it is set the b_error byte of the buffer header may contain an error code if it is
non-zero. If b_error is 0 the nature of the error is not specified. Actually no driver at
present sets b_error; the latter is provided for a future improvement whereby a more
detailed error-reporting scheme may be implemented.

B_BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to
someone's exclusive use. The buffer still remains attached to the list of blocks associated
with its device, however. When getblk (or bread. which calls it) searches the buffer list for
a given device and finds the requested block with this bit on, it sleeps until the bit clears.

B_PHYS This bit is set for raw 1/0 transactions that need to allocate the Unibus map on an 11170.
B_MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone routine

knows to deallocate the map.
B_WANTED

This flag is used in conjunction with the B_BUSY bit. Before sleeping as described just
above, getblk sets this flag. Conversely, when the block is freed and the busy bit goes

PS2:S-6 The UNIX 110 System

down (in brelse) a wakeup is given for the block header whenever B_ WANTED is on.
This strategem avoids the overhead of having to call wakeup every time a buffer is freed
on the chance that someone might want it.

B_AGE This bit may be set on buffers just before releasing them; if it is on, the buft'er is placed at
the head of the free list, rather than at the tail. It is a performance heuristic used when the
caller judges that the same block- wiD not soon be used again.

B_ASYNCThis bit is set by bawrite to indicate to the appropriate device driver that the buffer should
be released when the write has been finished, usually at interrupt time. The difference
between bwrite and bawrite is that the former starts 110, waits until it is done, and frees
the buffer. The latter merely sets this bit and starts 110. The bit indicates that relse
should be called for the buffer on completion.

B_DELWRI
This bit is set by btiwrite before releasing the buffer. When getblle, while searching for a
free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes the block to
be written out before reusing it.

Block Device Driven
The bdevsw table contains the names of the interface routines and that of a table for each block

device.

Just as for character devices, block device drivers may supply an open and a close routine called
respectively on each open and on the final close of the device. Instead of separate read and write rou­
tines, each block-device driver has a strategy routine which is called with a pointer to a buft'er header
as argument. As discussed, the buffer· header contains a read/write flag, the core address, the block
number, a (negative) word count, and the major and minor device number. The role of the strategy .
routine is to carry out the operation as requested by the information in the buft'er header. When the
transaction is complete the B_DONE (and possibly the B-ERROR) bits should be set. Then- if the'
B....ASYNC bit is set, brelse should be called; otherwise, wakeup. In.cases where the device is capable,
under error-free operation, -of transferring fewer words than requested, the device's word-count regis­
ter should be placed in the residual count slot of the buffer header; otherwise, the residual count
should be set toO. This partiC11lar mechanism is really for the benefit of the magtape driver; when
reading this device records shorter than requested are quite normal, and the user should be told the
actual length of the record.

Although the most usual argument to the strategy. routines is a genuine buft'er header allocated
as discussed above, all that is actually required is that the argument be a pointer to a place containing -
the appropriate information. For example the swap routine, which manages movement of core
images to and from the swapping device, uses the strategy routine for this device. Care has to be
taken that no extraneous bits get turned on ill the flq word.

The device's table specified by bdevsw has a byte to contain an active flag and an error count, a
pair of links which constitute the head of the chain of buft'ers for the device (bJorw, b_back), and a
first and last pointer for a device queue. Of these things; aU are used solely by the device driver itself
except for the buifer-chain pointers. Typically the flag enCodes the state of the device, and is used at
a minimum to indicate that the device is currently engaged in transferring information and no new
command should be issued. The error count is useful for counting retries when errors occur. The
device queue is used to remember stacked requests; in the simplest case it may be maintained as a
first-in first-out list. Since buft'ers which have been handed over to the strategy routines are never on
the list of free buft'ers, the pointers in the buft'er which maintain the free list (av Jorw, av _back) are
also used to contain the pointers which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp) arranges
that the buffer to which bp points be released or awakened, as appropriate. when the strategy module
has finished with the buffer, either normally or after an error. (In the latter case the B_ERROR bit
has ptes~ably been set.)

The UNIX 110 System PS2:S-7

The routine gete"or(bp) can be used to examine the error bit in a buffer header and arrange that
any error indication found therein is reflected to the user. It may be called only in the non-interrupt
part of a driver when 110 has comp,leted (B_DONE has been set).

Raw Block-device 110
A scheme has been set up whereby block device drivers may provide the ability to transfer

information directly between the user's core image and the device without the use of buffers and in
blocks as large as the caller requests. The method involves setting up a character-type special file
corresponding to the raw device and providing read and write routines which set up what is usually a
private, non-shared buffer header with the appropriate information and call the device's strategy rou­
tine. If desired, separate open and close routines may be provided but this is usually unnecessary. A
special-function routine might come in handy, especially for magtape.

A great deal of work has to be done to generate the "appropriate information" to put in the
argument buffer for the strategy module; the worst part is to map relocated user addresses to physical
addresses. Most of this work is done by physio(strat, bp, dev, rw) whose arguments are the name of
the strategy routine strat, the buffer pointer bp, the device number dev, and a read-write flag rw
whose value is either B_READ or B_WRITE. Physio makes sure that the user's base address and
count are even (because most devices work in words) and that the core area affected is contiguous in
physical space; it delays until the buffer is not busy, and makes it busy while the operation is in pro­
gress; and it sets up user error retum information.

The Programming Language EFL

The Programming Language EFL

Stuart l. Feldman

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Fortran
Preprocessors

Ratfor

ABSTRACT

EFL is a clean, general purpose computer language intended to encourage port­
able programming. It has a uniform and readable syntax and good data and control
flow structuring. EFL programs can be translated into efficient Fortran code, so the
EFL programmer can take advantage of the ubiquity of Fortran, the valuable
libraries of software written in that language, and the portability that comes with the
use of a standardized language, without suffering from Fortran's many failings as a
. language. It is especially useful for numeric programs. The EFL language permits
the programmer to express complicated ideas in a comprehensible way, while per­
mitting access to the power of the Fortran environment. EFL can be viewed as a
descendant of B. W. Kernighan's Ratfor [1]; the name originally stood for 'Extended
Fortran Language'. The current version of the· EFL ~ompiler is written in portable
C. .

1. INTRODUCfION

1.1. Purpose

PS2:6-1

EFL is a clean, general purpose computer language intended to encourage portable program­
ming. It has a uniform and readable syntax and good data and control flow structuring. EFL pro­
grams can be translated into efficient Fortran code, so the EFL programmer can take advantage of the
ubiquity of Fortran, the valuable libraries of software written in that language, and the portability
that comes with the use of a standardized language, without suffering from Fortran's many failings as
a language. It is especially useful for numeric programs. Thus, the EFL language permits the pro­
grammer to express complicated ideas in a comprehensible way, while permitting access to the power
of the Fortran environment.

1.2. History
EFL can be viewed as a descendant of B. W. Kernighan's Ratfor [1]; the name originally stood

for 'Extended Fortran Language'. A. D. Hall designed the initial version of the language and wrote a
preliminary version of a compiler. I extended and modified the language and wrote a full compiler
(in C) for it. The current compiler is much more than a simple preprocessor: it attempts to diagnose
all syntax errors, to provide readable Fortran output, and to avoid a number of niggling restrictions.
To achieve this goal, a sizable two-pass translator is needed.

PS2;6-2 The Programming ·LanguageEFL

1.3. Notatiea
In examples and syntax specincations, boldface type is used to indicate literal words and punc­

tuation, such as wbile. Words in italic type indicate an item in a category, such as an expression. A
construct surrounded by double brackets represents a list of one or more of those items, separated by
commas. Thus, the notation

item

could refer to any of the following:

item
ite~ item
ite~ ite~ item

The reader should have a fair degree of familiarity with some procedural language. There will
be occasional references to Ratfor and to Fortran which may be ignored if the reader is unfamiliar
with those languages.

The Programming Language EFL

2. LEXICAL FORM

2.1. Character Set
The following characters are legal in an EFL program:

fetters abc d e f II h i j kim

digits
white space
quotes
sharp
continuation
braces
parentheses
other

nopqrstuvwxyz
0123456789
blank tab

{ }
() . . , , .
- <

• + - • I
> & .. I $

PS2:6-3

Letter case (upper or lower) is ignored except within strings, so 'a' and 'A' are treated as the same
character. All of the examples below are printed in lower case. An exclamation mark ('!') may be
used in place of a tilde (""). Square brackets ('[' and ']') may be used in place of braces ('C and '}').

2.2. Lines
EFL is a line-oriented language. Except in special cases (discussed below), the end of a line

marks the end of a token and the end of a statement. The trailing portion of a line may be used for a
comment. There is a mechanism for diverting input from one source file to another, so a single line
in the program may be replaced by a number of lines from the other file. Diagnostic messages are
labeled with the line number of the file on which they are detected.

2.2.1. White Space
Outside of a character string or comment, any sequence of one or more spaces or tab characters

acts. as a single space. Such a space terminates a token.

2.2.2. Comments
A comment may appear at the end of any line. It is introduced by a sharp (#) character, and

continues to the end of the line. (A sharp inside of a quoted string does not mark a comment.) The
sharp and succeeding characters on the line are discarded. A blank line is also a comment. Com­
ments have no effect on execution.

2.2.3. Include Files
It is possible to insert the contents of a file at a point in the source text, by referencing it in a

line like

include joe

No statement or comment may follow an include on a line. In effect, the include line is replaced by
the lines in the named file, but diagnostics refer to the line number in the included file. Includes may
be nested at least ten deep.

2.2.4. Continuation
Lines may be continued explicitly by using the underscore L> character. If the last character of

a line (after comments and trailing white space have been stripped) is an underscore, the end of line
and the initial blanks on the next line are ignored. Underscores are ignored in other contexts (except
inside of quoted strings). Thus

PS2:6-4 The Programming Language Eft

equals 109•

There are also rules for continuing lines automatically: the end arline is ignored whenever it is
obvious that the statement is not complete. To be specific, a statement is continued if the last token
on a line is an operator, comma, left brace. or left parenthesis. (A statement is not continued just
because of unbalanced braces or parentheses.) Some compound statements are also continued
automatically; these points are noted in the sections on executable statements.

2.2.5. Multiple Statements on a Line
A semicolon terminates the current statement. Thus, it is possible to write more than one state­

ment on a line. A line consisting only of a semicolon, or a semicolon foUowi11g a semicolon, forms a
null statement.

2.3. Tokens
A program is made up of a sequence of tokens. Each token is a sequence of characters. A blank

terminates any token other than a quoted string. End of line also terminates a token unless explicit
continuation (see above) is signaled by an underscore.

2.3.1. Identifiers
An identifier is a letter or a letter followed by letters or digits. The following is a list of the

reserved words that have special meaning in EFL. They will be discussed later.

"array
automatic
break
call
case
character
common
complex
continue
debug
default
define
dimension
do
doable
doubleprecision
else
end
equivalence

exit precision
external procedure
false read
field readbin
for real
function repeat
go return
goto select
if short
implicit sizeol
include static
initial stract
integer subroutine
internal true
lengthol until
logical value
long while
next ~te
option writebin

The use of these words is discussed below. These words may not be used for any other purpose.

2.3.2. Strings

A character string is a sequence of characters surrounded by quotation marks. If the string is
bounded by singie-quote marks (,), it may contain double quote marks (..), and vice versa. A
quoted string may not be broken across a line boundary.

'hello there'
"ain't misbehavin'"

The Programming Language EFL PS2:6-S

2.3.3. Integer Constants

An integer constant is a sequence of one or more digits.

o
57
123456

2.3.4. Floating Point Constants

A floati~g point constant contains a dot and/or an exponent field. An exponent field is a letter d
or e followed by an optionally signed integer constant. If I and J are integer constants and E is an
exponent field, then a floating constant has one of the following forms:

2.3.5. Punctuation

J
I.
IJ
IE
I.E
JE
IJE

Certain characters are used to group or separate objects in the language. These are

parentheses ()
braces { }
comma
semicolon .
colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither blank nor continued.

2.3.6. Opentors
The EFL operators are written as sequences of one or more non-:aiphanumeric characters.

+ - • 1 ••
< <= > >= -= -.
&& II & I
+- -- 1= •• =
&&= 11= &= I-
-> . $

A dot ('.') is an operator when it qualifies a structure element name, but not when it acts as a decimal
point in a numeric constant. There is a special mode (see the Atavisms section) in which some- of the
operators may be represented by a string consisting of a dot, an identifier, and a dot (e.g., .It.).

2.4. Macros

EFL bas a simple macro substitution facility. An identifier may be defined to be equal to a
string of tokens; whenever that name appears as a token in the program, the string replaces it. A
macro name is given a value in a define statement like

define count n + - 1

Any time the name count appears in the program, it is replaced by the statement

n +- 1

PS2:6-6 The Programming Language EFL

A clefine statement must appear alone on a.line; the form is

define name rest-ofline

Trailing comments are part of the string.

3. PROGRAM FORM

3.1. Files

A file is a sequence of lines. A tile is compiled as a single unit. It may contain one or more
procedures. Declarations and options that appear outside of a procedure aWect the succeeding pro­
cedures on that tile.

3.2. Procedures
Procedures are the largest grouping of Statements in EFL. Each procedure has a name by which

it is invoked. (The first procedure invoked during execution, known as the main procedure, has the
null name.) Procedure calls and argument passing are discussed in Section 8.

3.3. Blocks

Statements may be formed into groups inside of a procedure. To describe the scope of names, it
is convenient. to introduce the ideas of block and of nesting level. The beginning of a program tile is
at nesting level zero. Any options, macro definitions, or variable declarations there are also at level
zero. The text immediately following a pnM:edure statement is at level 1. After the declarations, a left
brace marks the beginning of a new block and increases the nesting level by 1; a ri&ht brace drops the
level by 1. (Braces inside declarations do not mark blocks.) (See Section 7.2). An end statement
marks the end of the procedure, levell, and the return to levelO. A name (variable or macro) that is
defined at level k is defined throughout that block and in an deeper nested levels in which that name
is not redefined or redeclared. Thus, a procedure might look like the foUowing:

3.4. Statements

*' block 0
procedure PO.
real x
x-l

if(x> 2)
(*' new block
integer x *' a ditfereat variable
do x - 1,7

write(,x)

} *' end of block
end *' eM of procedure, retarD to block 0

A statement is terminated by end of line or by a semicolon. Statements are of the following
types:

The Programming Language EFL

Option
Include
Define

Procedure
End

Declarative
Executable

PS2:6-7

The option statement is described in Section 10. The include, define, and end statements have been
described above; they may not be followed by another statement on a line. Each procedure begins
with a procedure statements and finishes with an end statement; these are discussed in Section 8.
Declarations describe types and values of variables and procedures. Executable statements caUse
specific actions to be taken. A block is an example of an executable statement; it is made up of
declarative and executable statements.

3.5. Labels

An executable statement may have a label which may be used in a branch statement. A label is
an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal("bad input-)

4. ' DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may define objects made
up of variables of basic type; other aggregates, may then be defined in terms of previously defined'
aggregates.

4.1. Basic Types

The basic types are

logical
integer
fteld(m:n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may take on any whole
number value in some machine-dependent range. A field quantity is an integer restricted to a particu­
lar closed interval ([m:n». A 'real' quantity is a floating point approximation to a real or rational
number. A long real is a· more precise approximation to a rational. (Real quantities are represented
as single precision floating point numbers; long reals are double precision floating point numbers.) A
complex quantity is an approximation to a complex number, and is represented as a pair of reals. A
character quantity is a fixed-length string of n characters. .

4.2. Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

PS2:6-8

true
false

The Programming Language EFL

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus sign, as
in

17
-94
+6
o

A long real ('double precision') constant is a ftoating point constant containing an exponent field that
begins with the letter d. A real ('single precision') constant is any other ftoating point constant. A
real or long real constant may be preceded by a plus or minus sign. The following are valid real con­
stants:

17.3
-.4
7.ge-6 ("" 7.9x 10-6)

14e9 ("" l.4x 1010)

The following are valid loug real constants

A character constant is a quoted string.

4.3. Variables

7.9d-6 (= 7.9x 10-6)

5d3

A variable is a quantity with a name and a location. At any particular time the variable may
also have a value. (A variable is said to be undefined before it is initialized or assigned its first value,
and after certain indefinite operations are performed.) Each variable has certain attributes:

4.3.1. Storage Class

The association of a name and a location is either transitory or permanent. Transitory associa­
tion is achieved when arguments are passed to procedures. Other associations are permanent (static).
(A future extension of EFL may include dynamically allocated variables.)

4.3.2. Scope of Names

The names of common areas are global, as are procedure names: these names may be used any­
where in the program. All other names are local to the block in which they are declared.

4.3.3. PrecisiOD

Floating point variables are either of normal or IODg precision. This attribute may be stated
independently of the basic type.

4.4. Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the same type. The
index set is always a cross-product of intervals of integers. The lower and upper bounds of the inter­
vals must be constants for arrays that are local or commOD. A formal argument array may have inter­
vals that are of length equal to one of the other formal arguments. An element of an array is denoted
by the array name followed by a parenthesized comma-separated list of integer values, each of which
must lie within the corresponding interval. (The intervals may include negative numbers.) Entire
arrays may be passed as procedure arguments or in input/output lists, or they may be initialized; all
other·array references must be to individual elements.

The Programming Language EFL PS2:6-9

4.5. Structures

It is possible to define new types which are made up of elements of other types. The compound
object is known as a structure; its constituents are called members of the structure. The structure
may be given a name, which acts as a type name in the remaining statements within the scope of its
declaration. The elements of a structure may be of any type (including previously defined structures),
or they may be arrays of such objects. Entire structures may be passed to procedures or be used in
input/output lists; individual elements of structures may be referenced. The uses of structures will be
detailed below. The following structure might represent a symbol table:

S. EXPRESSIONS

struct tableentry
(
cbaracter(8) name
integer bashvalue
integer numberofelements
field(O:I) initial~ used, set
field(O:IO) type
}

Expressions are syntactic forms that yield a val~e. An expression may have any of the following
forms, recursively applied: •

primary
(expression)
unary-operator expression .
expression binary-operator' expression

In the following table of operators, all operators on a line have equal precedence and have higher pre­
cedence than operators on later lines. The meanings of these operators are described in sections 5.3
and 5.4.

-> .
••
• 1 unary + - ++
+ -
< <- > >". -- --
&&It
I II
$
- +- -- .- 1- ••• &- 1- &&- 11-

Examples of expressions are

a<b&&b<c
-(a + sin(x» 1 (S+cos(x» •• 2

5.1. Primaries

Primaries are the basic elements of expressions, as follows:

5.1.1. Constants
Constants are described in Section 4.2.

PS2:6-10 The Programming Language EFL

S.I.%. Variables

Scalar variable names are primaries. They· may appear on the left or the right side of an assign­
ment. Unqualiied names of agregates (structures or arrays) may only appear as procedure argu­
ments and in input/output lists. .

5.1.3. Array E1em.eats
An element of an array is denoted by the array name followed by a parenthesized list of sub-­

scripts, one integer value for each declared dimension:

a(S)
b(6,-~4)

5.1.4. Structure MeDiben

A structure name followed by a dot followed by the name of a member of that structure consti­
tutes a reference to that element. If that element is itself a structure, the reference may be further
qualiied.

a.b
x(3).y(4).z(5)

5.1.5. Procedure IDvocadons

~ procedure is invoked by an expression· of one of the forms

procedurename ()
procedurename (expression) .
proceclurename (expression-I, ... , expression-n)

The procedurename is· either the name of a variable declared external or it is the name of a ·function
known to the EFL compiler (see Section 8.S), or it is the actual name of a procedure, as it appears in
a procedure statement. If a procetiurename is declared external and is an argument of the current
procedure, it is associated with the procedure name passed as actual argument; otherwise it is the
actual name of a proCedure. Each expression in the above is called an actual argument. Examples of
procedure invocations are

f(x)
work()
g(x, 1+3, 'xx')

When one of these procedure invocations is to be performed, each of the actual argument expressions
is first evaluated. The types, precisions, and bounds of actual and formal arguments should agree. If.
an actual argument is a variable name, array element, or structure member, the called procedure is
permitted to use the corresponding formal argument as the left side of an assignment or in an input
list; otherwise it may only use the value. After the formal and actual arguments are associated, con­
trol is passed to the irst executable statement of the procedure. When a return statement is e",ecuted
in that procedure, or when control reaches the end statement of that procedure, the function value is
made available as the value of the procedure invocation. The type of the value is determined by the
attributes of the procedurename that are declared or implied in the calling procedure, which must
agree with the attributes declared for the function in its procedure. In the special case of a generic
function; the type of the result is ~ aifected by the type of the argument. See Chapter 8 for details.

5.1.6. Input/Output Expressions

The EFL input/output syntactic forms may be used as integer primaries that have a non-zero
value if an error occurs during the input or output. See Section 7.7.

The Programming Language EFL PS2:6-11

5.1.7. Coercions

An expression of one precision or type may be converted to another by an expression of the
form

attributes (expression)

At present, the only attributes permitted are precision and basic types. Attributes are separated by
white space. An arithmetic value of one type may be coerced to any other arithmetic type; a charac­
ter expression of one length may be coerced to a character expression of another length; logical
expressions may not be coerced to a nonlogical type. As a special case, a quantity of complex or long
complex type may be constructed from two integer or real quantities by passing two expressions
(separated by a comma) in the coercion. Examples and equivalent values are

integer(S.3) - S
long real(S) - S.OdO
complex(S,3) - 5+3i

Most conversions are done implicitly, since most binary operators permit operands of different arith­
metic types. Explicit coercions are of most use when it is necessary to convert the type of an actual
argument to match that of the corresponding formal parameter in a procedure call.

5.1.8. Sizes

There is a notation which yields the amount of memory required to store a datum or an item of
specified type:

sizeof (le/tside)
sizeof (attributes.)

In the first case, le/tside can denote a variable, ~rray, array element, or structure member. The value
ofsizeof is an integer, which gives the size in arbitrary units. If the size is needed in terms of the size
of some specific unit, this can be computed by division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof because certain
data types require final padding on some machines. The lengtbof operator gives this larger value,
again in arbitrary units. The syntax is .

5.2. Parentheses

lengtbof (le/tside)
lengtbof (attributes)

An expression surrounded by parentheses is itself an expression. A parenthesized expression
must be evaluated before an expression of which it is a part is evaluated.

5.3. Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary operator has the
same type as its operand.

5.3.1. Aritbmetic

Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator + + adds one to its operand. The prefix operator - subtracts one from its
operand. The value of either expression is the result of the addition or subtraction. For these two
operators, the operand must be a scalar, array element, or structure member of arithmetic type. (As a
side effect, the operand value is changed.)

PS2:6~12 The Programming LanguageEFL

5.3.2. Loaical
The only logical unary operator is complement ("). This operator is defined by the equations

- true .. false
- false .. true

5.4. Binary Operators

Most Eft operators have two operands, separated by the operator. Because the character set
must be limited, some of the operators are denoted by strings of two or three special characters. All
binary operators ex~t exponentiation are left associative. .

5.4.1. ArithDletie
The binary arithmetic operators are

+ addition
subtraction

• multiplication
I division
•• exponentiation

Exponentiation is right associative: a •• b •• c .. a •• (b .. c) "" aW) The operations have the conventional
meanings: 8+2 .. 10, 8-2 .. 6, 8.2 .. 16, 8/2 .. 4, 8 .. 2 .. 82 - 64.

The type of the result of _ binaiy operation A op B is determined by the·typeS of its operands:

_ Type ofB

Type of A integer real long real complex long complex.
integer integer teal long real complex- long complex
real real real long real complex long complex
long real long real long real long real long complex long complex
complex - complex complex long complex complex long complex
long complex long complex long complex long complex long. complex long complex

If the type of an operand differs from the· type of the result, the calculation is done as if the operand
were first coerced to the type of the result. If both operands are integers, the result is of type integer,
and is computed exactly. (Quotients are truncated toward zero, so 8/3-2.)

5.4.2. Loaical
The two binary logical operations in EFL, and and or, are defined by the truth tables:

A B AandB AorB
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of evaluation is specified. The
expression

a"" b
is evaluated by first evaluating a; if it is false then the expression is false and b is not evaluated; oth­
erwise the expression has the value of _. The expression

a I t b

is evaluated by first evaluating a; if it is true then the expression is true and b is not evaluated; other­
wise the expression has the value of b. The other forms of the operators(&: for and and I for or) do

The Programming Language EFL PS2:6-13

not imply an order of evaluation. With the latter operators, the compiler may speed up the code by
evaluating the operands in any order.

5.4.3. Relational Opentors

There are six relations between arithmetic quantities. These operators are not associative.

EFL Operator Meaning
< < less than
<.. ~ less than or equal to
_. - equal to
-= ¢ not equal to
> > greater than
>.. ~ greater than or equal

Since the complex numbers are not ordered, the only relational operators that may take complex
operands are and -... The character collating sequence is not defined.

5.4.4. Assignment Opentors

All of the assignment operators are right associative. The simple form of assignment is

basic-left-side .. expression

A basic-left-side is a scalar variable name, array element, or structure member of basic type. This
statement computes the expression on the right side, and stores that value (possibly after coercing the
value to the type of the left side) in the location named by the left side. The value of the assignment
expression is the value assigned to the left side after coercion.

. There is also an assignment operator corresponding to each binary arithmetic and logical opera- .
tor. In each case, a op .. b is equivalent to a= a op b. (The operator and equal sign must not be
separated by blanks.) Thus, n+-1 adds 2 to n. The location of the left side is evaluated only once.

5.5. Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there is a notation for
dynamic structures,

leftside -> structurename

This expression is a structure with the shape implied by structurename but starting at the location of
leftside. In effect, this overlays the structure template at the specified location. The leftside must be a
variable, array, array element, or structure member. The type of the leftside must be one of the types
in the structure declaration. An element of such a structure is denoted in the usual way using the dot
operator. Thus,

place(i) -> st.elt

refers to the elt member of the st structure starting at the itll element of the array place.

5.6. Repetition Opentor

Inside of a list, an element of the form

integer-constant-expression S constant-expression

is equivalent to the appearance of the expression a number of times equal to the first expression.
Thus,

(3,3$4,5)

is equivalent to

PS2:6-14 The ProgrammingLanauage EFL

(3, 4, 4, 4, 5)

5.7. Constant Expressions

If an expression is built up out of operators (other than functions) and constants, the value of
the expression is a constant, and may be used anywhere a cOnstant is required.

6. DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects in the EFL
language.

6.1. Syntax
A declaration statement is made up of attributes and variables. Declaration statements are of

two fonn:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes. In the second, each name
in the declarations also has the specified attributes. A variable name may appear in more than one
variable list. so long as the attributes are not contradictory: Each name of a nonargument variable
may be accompanied by an initial value specification. The declarations inside the braces are one or
more declaration statements. Examples of declarations are

6.1. Attributes

6.1.1. Basic Types

integer t-l
lonl real b(7,3)

commoa(CDaIDe)
(
integer i
Ioal real array(5,0:3) x, y
character(7) ch
}

The following are basic types in declarations

logical
integer
fteld(m:n)
character(k)
real
complex

In the above. the quantities k. m, and n denote integer constant expressions with the properties k >0
and n>m.

6.1.1. Arrays

The dimensionality may be declared by an may attribute

may(bl.···,bn)

Each of the bi may either be a single integer expression or a pair of integer expressions separated by a
colon. The pair of expressions form a lower and an upper bound; the single· expression is an upper

The Programming LanlUqe EFL PS2:6-15

bound with an implied lower bound of 1. The number of dimensions is equal to n, the number of
bounds. All of the integer expressions must be constants. An exception is permitted only if all of the
variables associated with an array declarator are formal arguments of the procedure; in this case, each­
bound must have the property that upper -lower + 1 is equal to a formal aflUment of the procedure.
(The compiler has limited ability to simplify expressions, but it will recosnize important cases such as
(0:0-1). The upper bound for the last dimension (bit) may be marked by an asterisk (•) if the size of
the array is not known. The following are lesal array attributes:

6.2.3. Structures

array(5)
array(S, 1:5, -3:0)
array(S, .)
array(0:m-1, m)

A structure declaration is of the form

stract structname { declaration statements }

The structname is, optional; if it is present, it acts as if it were the name of a type in the rest of its
scope. Each name that appears inside the declarations is a member of the structure, and has a special
meaning when used to qualify any variable declared with the structure type. A name may appear as a
member of any number of structures, and may also be the name of an ordinary variable, since a
structure member name is used only in contexts where the parent type is known. The following are
valid structure attributes .

snct xx
(
ioteger a, b
real x(5)
}

snct (xx 1(3); character(S) y }

The last line defines a structure containing an array of three xX s and a character string.

6.2.4. Precision
Variables of floating point (real or complex) type may be declared to be loog to ensure they have

higher precision than ordinary floating point variables. The default precision is short. .

6.2.5. Commoo

Certain objects called common areas have external scope, and may be referenced by any pro­
cedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute are in the same block; the
order in which they are declared is sisnificant. Declarations for the same block in differing pro­
cedures must have the variables in the same order and with the same types, precision, and shapes,
though not necessarily with the same names.

6.2.6. External

If a name is used as the procedure name in a procedure invocation, it is implicitly declared to
have the external attribute. If a procedure name is to be passed as an aflUment, it is necessary to
declare it in a statement of the form

external name

PS2:6-16 The Programming Language EFL

If a name has the external attribute and it is a formal argument of the procedure, then it is associated
with a procedure identifier passed as an actual argument at· each call. If the name is not a formal
argument, then that name is the actual name of a procedure, as it appears in the corresponding pr0-

cedure statement.

6.3. Variable List

The elements of a variable list in a declaration consist of a name, an optional . dimension
specitication, and an optional initial value specification. The name follows the usual rules. The
dimension specification is the same form and meaning as the parenthesized list in an array attribute.
The initial value specification is an equal sign (-) foUowed by a constant expression. If the name is
an array, the right side of the equal sign may be a parenthesized list of constant expressions, or
repeated elements or lists; the total number of elements in the list must not exceed the number of ele­
ments of the array, which are filled in column-major order.

6.4. The Initial Statement

An initial value may also be specified for a simple variable, array, array element, or member of
a structure using a statement of the form

initial var - val

The varmay be a variable name, array element specification, or member of structure. The right side
follows the same rules as for an initial value specification in other declaration statements.

7. EXECUTABLE STATEMENTS
Every useful EFL prog:ram. contains executable statements - otherwise it would not do anything

and would not need to be run. Statements are frequently made up of other statements. Blocks are
. the most obvious case,. but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be broken without
an explicit continuation. A square (0) in the syntax represents a point where the end of a line will be
ignored.

7.1. ExpressiOll Statements

7.1.1. Subroutiae Call
A procedure invocation that returns no value is known as a subroutine call. Such an invocation

is a statement. Examples are
work(in, out)
run

Input/output statements (see Section 7.7) resemble procedure invocations but do not yield a
value. If an error occurs the program stops.

7.1.2. Assipmeat Statements
An expression that is a simple assignment (-) or a compound assignment (+- etc.ns a state­

ment:

a-b
a- sin(x)/6 x.- y

· The Programming Language EFL PS2:6-17

7.2. Blocks

A block is a compound statement that acts as a statement. A block begins with a left brace,
optionally followed by declarations, optionally followed by executable statements, followed by a right
brace. A block may be used anywhere a statement is permitted. A block is not an expression and
does not have a value. An example of a block is

7.3. Test Statements

(
integer i # this variable is unknown outside the braces

big- 0
doi-l,n

}

if(big < a(i»
big - a(i)

Test statements permit execution of certain statements conditional on the truth of a predicate.

7.3.1. H Statement

The simplest of the test statements is the if statement, of form

if (logical-expression) CJ statement

The logical expression is evaluated; if it is true, then the statement is executed.

7.3;2. H-Else

A more general statement is of the form

if (logical-expression) CJ statement-} CJ else 0 statement-2

If the expression is true then statement-} is executed, otherwise statement-2 is executed. Either of the
consequent statements may itself be an if-else so a completely nested test sequence is possible:

if(x<y)
if(a<b)

k-l
else

k-2
else

if(a<b)
m-l

else
m- 2

An else applies to the nearest preceding un-elsed if. A more common use is as a sequential test:

if(x--l)

7.3.3. Select Statement

k-l
else if(x--3 I X_aS)

k-2
else

k-3

A multiway test on the value of a quantity is succinctly stated as a select statement, which bas
the general form

• PS2:6-18 The Programming Language EFL

select(expression) 0 block

Inside the block two special types of labels are recognized. A prefix of the form

case constant :

marks the statement to which control is passed if the expression in the select has a value equal to one
of the case constants. If the expression equals none of these constants, but there is a label default
inside the select, a branch is taken to that point; otherwise the statement following the right brace is
executed. Once execution begins at a case or default label, it continues until the next case or default
is encountered. The else-if example above is better written as

select(x)
{
case 1:

k-l
case 3,5:

k-2
default: Ok _ 3

}

Note that control does not 'fall through' to the next case.

7.4. Loops

The loop forms provide the best way of repeating a statement or sequence of operations. The
simplest (wbile) form is theoretically sufficient, but it is very convenient to have the more general
loops available, since each expresSes it mode of Control that arises frequently in practice.

7.4.1. While Statement

This construct has the form

while (logical-expression) 0 statement

The expression is evaluated; if it is true, the statement is executed, and then the test is performed
again. If the expression is false, execution proceeds to the next statement.

7.5. For Statement

The for statement is a more elaborate looping construct. It bas the form

for (initial-statement, 0 logicai-expression ,0 iteration-statement) 0 body-statement

Except for the behavior of the next statement (see Section 7.6.3), this construct is equivalent to

initial-statement
while (logicai-expression)

{
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations. and for various pointer-type operations. The
sum of the integers from 1 to 100 can be computed by the fraament

D-O
forO - 1, i <- 100, i +- I)

D +-i
Alternatively, the computation could be done by the single statemeat

The Programming Language EFL PS2:6-l9

for((n = 0; i == 1 }, k-100, {n + .. i; + +i })

Note that the body of the for loop is a null statement in this case. An example of following a linked
list will be given later.

7.5.1. Repeat Statement

The statement

repeat CJ statement

executes the statement, then does it again, without any termination test. Obviously, a test inside the
statement is needed to stop the loop.

7.5.2. Repeat ... Until Statement

The while loop performs a test before each iteration. The statement

repeat CJ statement CJ until (logical-expression)

executes the statement. then evaluates the logical; if the logical is true the loop is complete; otherwise
control returns to the statement. Thus, the body is always executed at least once. The until refers to
the nearest preceding repeat that has not been paired with an until. In practice, this appears to be the
least frequently used looping construct.

7.5.3. Do Loops

The simple arithmetic progression is a very common one in numerical applications. EFL has a
special loop form for ranging over an ascending arithmetic sequence

do variable == expression-I. expression-2. expression-3
statement

The variable is first given the value expression-I. The statement is executed, then expression-3 is
added to the variable. The loop is repeated until the variable exceeds expression-2. If expression-3
and the preceding comma are omitted, the increment is taken to be 1. The loop above is equivalent
to

t2 == expression-2
t3 = expression-3
for(variable - expression-l , variable <= t2 , variable += t3)

statement

(The compiler translates EFL do statements into Fortran DO statements, which are in tum usually
compiled into excellent code.) The do variable may not be changed inside of the loop, and
expression-I must not exceed expression-2. The sum of the first hundred positive integers could be
computed by

7.6. Branch Statements

n=-O
do i ... 1,100

n +- i

Most of the need for branch statements in programs can be averted by using the loop and test
constructs, but there are programs where they are very useful.

PS2:6-20 The Programming Language EFL

7.6.1. Cote Statemellt

The most general, and most dangerous, branching statement is the simple unconditional

goto label

After executing this statement, the next statement performed is the one following the given label.
Inside of a select the case labels of that· block may be used as labels, as in the following example:

seleet(k)
(
case 1:

error(7)

case 2:
k-l
IOto case 4

case 3:
k-S
goto case 4

case 4:
8xuP(k)
goto default

default:
pnnsa(-ouch-)

}

(If two select statements are nested, the case labels of· the outer select are not accessible from the
inner one.)

7.6.1. Break Statement

A safer statement is one which transfers control to the statement following the current select or
loop form. A statement of this sort is almost always needed in a repeat loop:

repeat
(
do a computation
iff finished)

break
}

More general forms permit controlling a branch out of more than one construct.

break 3

transfers control to the statement following the third loop and/or select surrounding the statement. It
is possible to specify which type of construct (for, wbile, repeat,do, or select) is to be counted. The
statement

break wbile

breaks out of the first surrounding wbile statement. EitheF of the statements

break 3 for
break!or 3

will transfer to the statement after the third enclosing for loop.

The Programming Language EFL PS2:6-21

7.6.3. Next Statement
The next statement causes the first surrounding loop statement to go on to the next iteration: the

next operation performed is the test of a while, the iteration-statement of a for, the body of a repeat,
the test of a repeat. •• until, or the increment of a do. Elaborations similar to those for break are avail­
able:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

7.6.4. Return
The last statement of a procedure is followed by a return of control to the caller. If it is desired

to effect such a return from any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the function value is specified as an argu­
ment of the statement:

return (expression .>

7.7. Input/Output Statements
. EFL has two input statements (read and readbin); two output statements (write and writebin),

and three control statements (endfile, rewind, and backspace). These forms may be used either as a
primary with a integer value or as a statement. If an exception occurs when one of these forms is
used as a statement, the result is undefined but will probably be treated as a fatal error. If they are
used in a context where they return a value, they return zero if no exception occurs. For the input
forms, a negative value indicates end-of-fileand a positive value an error. The input/output part of
EFL very strongly reflects the facilities of Fortran.

7.7.1. Input/Output Units
Each VO statement refers to a 'unit', identified by a small positive integer. Two special units

are defined by EFL, the standard input' unit and the standard output unit. These particular units are
assumed if no unit is specified in an VO transmission statement.

The data on the unit are organized into records. These records may be read or written in a fixed
sequence, and each transmission moves an integral number of records. Transmission proceeds from
the first record until the end of file.

7.7.1. Binary Input/Output

The readbin and writebin statements transmit data in a machine-dependent but swift manner.
The statements are of the form -

writebin(unil , binary-output-lisl)
readbin(unit, binary-inpul-list)

Each statement moves one unformatted record between storage and the device. The unit is an
integer expression. A binary-output-Iist is an iolist (see below) without any format specifiers. A
binary-input-list is an iolislwithout format specifiers in which each of the expressions is a variable
name, array element, or structure member.

PS2:6·22 The Programming Language EFL

7.7.3. Formatted laput/Output ,

The read and write statements transmit data in the form of lines of characters. Each statement
moves one or more records (lines). Numbers are translated into decimal notation. The exact form of
the lines is determined by format speeiications, whether provided explicitly in the statement or
implicitly. The syntax of the statements is

write(unit, formatted-output-llst)
read(unit ,formatted.input-list)

The lists are of the same form as for binary 110, except that the lists may include format
specifications. If the unit is omitted, the standard input or output unit is used.

7.7.4. Iolists

An iolist specifies a set of values to be written or a set of variables into which values are to be
read. An iollst is a list of one or more ioexpressions of the form

expression
{ iollst}
tio-specification { iollst }

For formatted 110, an ioexpress;on may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in the braces are
tran.smitted repeatedly until the do execution is complete.

7.7oS. Formats.

The following are permissible format-specifiers. The quantities w, d, and k must be integer con·
stant expressions.

i(w)
f(w,d)

e(w,d)

I(w)

c
c:(w)
s(k)
x(k)

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.
floating point number of w characters,
d of them to the right ·of the decimal point,
with the exponent field marked with the letter e
logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively
character string of width equal to the length of the datum
character string of width w
skip k lines
skip k spaces
use the characters inside the string as a Fortran format

If no format is specified for an item in a formatted input/output statement, a default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a sequence of ele­
ments, each with its own format. The elements are transmitted in column-major order, the same
order used for array initializations.

7.7.6. Manipulation statements
The three input/output statements

The Programming Language EFL

backspace(unit)
rewind(unit)
endfile(unit)

PS2:6-23

look like ordinary procedure calls, but may be used either as statements or as integer expressions
which yield non-zero if an error is detected. backspace causes the specified unit to back up, so that
the next read will re-read the previous record, and the next write will over-write it. rewind moves the
device to its beginning, so that the next input statement will read the first record. endfile causes the
file to be marked so that the record most recently written will be the last record on the file, and any
attempt to read past is an error. .

8. PROCEDURES
Procedures are the basic unit of an EFL program, and provide the means of segmenting a pro­

gram into separately compilable and named parts.

8.1. Procedure Statement
Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename (name)

The first case specifies the main procedure, where execution begins. In the two other cases, the attri­
butes may specify precision and type,or they may be omitted entirely. The precision and type of the
procedure may be declared in an ordinary declaration statement. If no type is declared, then the pro­
cedure is called a subroutine and no value may be returned for it. Otherwise, the procedure is a func­
tion and a value of the declared type is returned for each call. Each name inside the parentheses in
the last form above is called a formal argument of the procedure.

8.2. End Statement
Each procedure terminates with a statement

end

8.3. Argument Association
When a procedure is invoked, the actual arguments are evaluated. If an actual argument is the

name of a variable, an array element, or a structure member, that entity becomes associated with the
formal argument, and the procedure may reference the values in the object, and assign to it. Other­
wise, the value of the actual is associated with the formal argument, but the procedure may not
attempt to change the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is not permitted that the
corresponding actual argument be associated with another formal argument or with a common ele­
ment that is referenced in the procedure.

8.4. Execution and Return Values

After actual and formal arguments have been associated, control passes to the first executable
statement of the procedure. Control returns to the invoker either when the end statement of the pro­
cedure is reached or when a return statement is executed. If the procedure is a function (has a
declared type), and a return(value) is executed, the value is coerced to the correct type and precision
and returned.

PS2:6-24 The Prognunmiq Language EFL

8.5. Knowa Fuaetioas
A number of functions are known to Eft, and· need not be declared. The compiler knows the

types of these functions. Some of them are generic; i.e., they name a family of functions that differ in
the types of their arguments and retum values. The compiler chooses which element of the set. to
invoke based upon the attributes of the actual arguments.

8.5.1. MiaiDuuD· aDd Maximum F1I8ctioDS -
The lenmc functions are miD and DIU. The miD calls return the value of their smallest argu~

ment; the DIU calls return the value of their Iaraest argument. These are the only functions that may
take different numbers of arguments in different 'Calls. If any of the arguments are 10111 real then the
result.is 10lIl real. Otherwise, if any of the arguments are real then the result is real; otherwise all the
arguments and the result must be iateger. Examples are

8.5.1. Absolute Value

mia(5, x, -3.20)
max(i, z)

The abs function is a lenerle function that retums the magnitude of its argument. For inteler
and real arguments the type of the result is identical to the type of the argument; for complex argu­
ments the type of the result is the real of the same precision.

8.5.3. Elemeatary FUDctioDs
The following lenerlc functions take arguments of real, 10DI real, or complex type and retum a

result of the same type: .

SiD sine f'1I8ctioD

cos cosine functioD
exp e.xponendal.functiOD (eX).
log natural (base e) loprithm
10110 common (base 10) logarithm
sqrt square root functiOD. (¥X).

In addition, the following functions accept only real or 10DI real arguments:

ataa atan(x)-tan-1x

ataal alan 2(x ,Y) = tan -I.:!.
Y

8.5.4. Other Generic FUDctiOU

The sign functions takes two arguments of identical type; sign(x ,y) - sgn (y) I x I. The mod
function yields the remainder of its ·first argument when divided by its second. These functions
accept inteaer and real arguments.

9. ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old Fortran or Rat­
for prognunsto EFL.

9.1. Escape LiDes
In order to make use of nonstandard features of the local Fortran compiler, it is occasionally

necessary to pass a particular line through to the EFL compiler output. A line that begins with a per­
cent sign ('%') is copied through to the output, with the percent sign removed but no other change.
Inside of a procedure~ each escape line is treated as an executable statement. Ifa sequence of lines

The Programming Language EFL

.
constitute a continued Fortran statement, they should be enclosed in braces.

9.2. Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work(17)

9.3. Obsolete Keywords

The following keywords are recognized as synonyms of EFL keywords:

9.4. Numeric Labels

Fortran EFL

double precision
function
subroutine

lonl real
procedure
procedure (untyped)

PS2:6-25

Standard statement labels are identifiers. A numeric (positive integer constant) label is also per­
mitted; the colon is optional following a numeric label.

9.5. Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives a warning and
assumes a decIanition for it. If it is used in the context of a procedure invocation, it is assumed to be
a "procedure name; otherwise it is assumed to be a local variable defined at neSting level 1 in the
current procedure. The assumed type is determined by "the first letter of the name. The association
of letters and types may be given In an implicit statement, with syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus sign). If
no implicit statement appears, the following rules are assumed:

implicit (a-II. o-z) real
implicit (i-a) integer

9.6. Computed loto
Fortran contains an indexed multi-way branch; this facility may be used in EFL by the com­

puted OOTO:

goto (label), expression

The expression must be of type integer and be positive but be no larger than the number of labels in
the list. Control is passed to the statement marked by the label whose position in the list is equal to
the expression.

9.7. Go To Statement

In unconditional and computed 10to statements, it is permissible to separate the go and to
words, as in

go to xyz

PS2:6-26 The Programming Language EFL

9.8. Dot Names
Fortran uses a restricted character set, and represents certain operators by multi-character

sequences. There is an option (dots-on; see Section 10.2) which forces the compiler to recognize the
forms in the second column below:

< .It.
<- .le.
> .gt.
>- ·Ie. -- .eq.

"'- .De •

& .and.

I .or • ,. .andaDd.
II .0f0f •

• DOt.
true .true.
false Jalse.

In this mode, no structure element may be named It, I~ etc. The readable forms in the left column
are always recognized. .

9.9. Complex Constants

A complex constant may be written as a parenthesized list of real quantities. such as . ,

(1.5,3.0)

The preferred notation· is by a type coercion, .

complex(l.5, 3.0)

9.10. Function Values

The preferred way to return a value from a function in EFL is the retura(value) construct.
However, the name of the function acts as a variable to which values may be assigned; an ordinary
return statement returns the last value assigned to that name as the function value.

9.11. Equivalence

A statement of the form

equivaleDce v It V2,· ••• Vn

declares that each of the Vj starts at the same memory location. Each of the Vi may be a variable
name, array element name, or structure member.

9.12. Minimam and Maximum Fuctions

There are a number of non-generic functions in this category, which. differ in the required types
of the arguments and the type of the return value. They may also have variable numbers of argu­
ments, but an the arguments must have the same type.

The Programming Language EFL PS2:6-27

10. COMPILER OPTIONS

Function
aminO
aminl
minO
minI
ciminI

amaxO
amaxl
maxO
maxI
dmaxl

Argument Type
integer
real
integer
real
long real

integer
real
integer
real
long real

Result Type
real
real
integer
integer
long real

real
real
integer
integer
long real

A number of options can be used to control the output and to tailor it for various compilers and
systems. The defaults chosen are conservative, but it is sometimes necessary to change the output to
match pecUliarities of the target environment.

Options are set with statements of the form

option opt

where each opt is of one of the forms

optionname
optionname - option value

The optionvalue is either a constant (numeric or string) or a name associated with that option. The
two names yes and no apply to a number of options.

10.1. Default Options
Each option has a default setting. It is possiole to change the whole set of defaults to those

appropriate for a particular environment by using the system option. At present, the only valid
values are system-unix and system-gcos.

10.2. Input Language Options
The dots option determines whether the compiler recognizes .It. and similar forms. The default

setting is no.

10.3. Input/Output Eft'Or Handling

The ioerror option can be given three values: nODe means that none of the 110 statements may
be used in expressions, since there is no way to detect errors. The implementation of the ibm form
uses ERR- and END- clauses. The implementation of the fortran77 form uses lOST A T .. clauses.

10.4. Continuation Conventions
By default, continued Fortran statements are indicated by a character in column 6 (Standard

Fortran). The option continae-eoiDBlDI puts an ampersand (&) in the first column of the continued
lines instead.

10.5. Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a default is pro­
vided. The default formats can be changed by setting certain options

PS2:6-28

Option
iformat
normat
dformat
Dormat
zdformat
Ilormat

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option normat-tU.6

10.6. Alipments and Sizes

The Programming Language EFL

In order to implement character variables, structures, and the sizeof and lengthof operators. it is
necessary to know how much space various Fortran data types require, and what boundary alignment
properties they demand. The relevant options are

Fortran Type
integer
real
long real
complex
logical

Size Option
isile
rsile
dsile
zsile
Isize

Alignment Option
ialign
ralign
dalign
wiln
laIign

The sizes are given in terms of an arbitrary unit; the alignment is given in the same units. The
option charperint gives the number of characters per integer variable. .

10~7. Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output units. The
default values are ftnin-S and ftnout-6.

10.8. Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the value of the proc­
header option.

No Hollerith strings will be passed as subroutine arguments if hollinall-no is specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is possible to change
the increment value by using the deltastno option.

11. EXAMPLES

In order to show the flavor or programming in EFL, we present a few examples. They are. short,
but show some of the convenience of the language.

11.1. File Copying

The following short program copies the standard input to the standard output, provided that the
input is a formatted file containing lines no longer than a hundred characters.

The Programming Language EFL

procedure # main program
character(I00) line

•
while(read(, line) == .. 0)

write(, line)
end

PS2:6·29

Since read returns zero until the end of file (or a read error), this program keeps reading and writing
until the input is exhausted.

11.2. Matrix Multiplication

The following procedure multiplies the m xn matrix a by the n xp matrix b to give the m xp
matrix c. The calculation obeys the formula Cij = ~aik bkj •

procedure matmul(a,b,c, m,n,p)
integer i, j, ~ m, n, p
long real a(m,n), b(n,p), c(m,p)

do i-I,m
do j - l,p

(
t(iJ) .. 0
do k == l,n

c(iJ) + .. a(i,k) • b(kJ)
}

end

11~3. Searching a Linked List

Assume we have a list of pairs of numbers (x ,y). The list is stored as a linked list sorted in
ascending order of x values. The following procedure searches this list for a particular value of x
and returns the corresponding y value.

define LAST 0
define NOTFOUND -1

integer procedure val(lis~ first, x)

list is an array of structures.
Each structure contains a thread index value, an X, and a y value.

struct
{
integer nextindex
integer x, y
} list(.)

integer first, p, arg

for(p ,. first, p-.LAST && Iist(p).x<=x, p == list(p).nextindex)
if(list(p).x-= x)

return(NOTFOUND)
end

retum(list(p).y)

The search is a single for loop that begins with the head of the list and examines items until either the
list is exhausted (p==LAST) or until it is known that the specifie'd value is not on the list (list(p).x >

PS2:6-30 The Programming Language EFL

x). The two tests in the conjunction must be performed in the specified order to avoid using an
invalid subscript in the Ust(p) reference. Therefore, the && operator is used. The next element in the
chain is found by the iteration statement p-Iist(p).nextindex.

11.4. walking a Tree

As an example of a more complicated problem, let us imagine we have an expression tree stored
in a common area, and that we want to print out an infix form of the tree. Each node is either a leaf
(containing a numeric value) or it is a binary operator, pointing to a left and a right descendant. In a
recursive language, such a tree walk would be implement by the following simpiepseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL. it is necessary to maintain an explicit stack to keep track of the
current state of the computation. The following procedure calls a procedure outch to print a single
character and a pi'ocedureoutval to print a value . •

proced walk(fint) j print oat an expression tree

integer first j index of root node
integer currentnode
integer stackdeptb
COIIUIlOD(nodes) stnact

{
ehanu:ter(l)op
integer leftp, rigbtp
real val
} tree(lOO) j array of structures

stnact
{
integer nextstate
integer nodep
} staekframe(lOO)

define NODE
define STACK

j nextstate values
define DOWN
define LEn
define RIGHT

tree(currentnode)
staekframe(staekdeptb)

1
2
3

j initialize stack with root node
staekdeptb - 1
STACLnextstate - DOWN
STACK.nodep - first

The Programming Language EFL

while(stackdepth > 0)
(

end

currentnode - STACK.nodep
select(STACK.nextstate)

}

(
case DOWN:

if(NODE.op - "" - -) # a leaf
(.

outval(NODE.val)
stackdepth -- 1
}

else (# a binary operator node
outch(-r)
STACK.nextstate - LEFf
stackdepth + - 1
STACK.nextstate - DOWN
STACK.nodep - NODE.leftp
}

case LEFf:
outch(NODE.op)
STACK.nextstate"" RIGHT
stackdepth + = 1
STACK.nextstate =- DOWN
STACK.nodep - NODE.rightp

case RIGHT:

}

outch(T)
stackdepth -= 1

12. PORTABILITY

PS2:6-31

One of the major goals of the EFL language is to make it easy to write portable programs. The
output of the EFL compiler is intended to be acceptable to any Standard Fortran compiler (unless the
fortran77 option is specified).

12.1. Primitives

Certain EFL operations cannot be implemented in portable Fortran, so a few machine­
dependent procedures must be provided in each environment.

12.1.1. Character String Copying

The subroutine efiasc is called to copy one character string to another. If the target string is
shorter than the source, the final characters are not copied. If the target string is longer, its end is
padded with blanks. The calling sequence is

subroutine eft asc(a, la, b, Ib)
integer a(*), la, b(*), lb

and it must copy the first Ib characters from b to the first la characters of a.

PS2:6-32 The Programming Language EFL

12.1.2. Charaeter Stri .. Comparisoos

The function ettemc is invoked to determine the order of two character strings. The declaration
is

integer function eflcmc(a, Ia, b, lb)
integer a(.), Ia, b(.), lb

The function returns a negative value if the string a of length Ia precedes the string b of length lb. It
returns zero if the strings are equal, and a positive value otherwise. If the strings are· of differing
length, the comparison is carried out as if the end of the shorter string were padded with blanks.

13. ACKNOWLEDGMENTS

A. D. Hall originated the EFL language and wrote the first compiler for it; he also gave inestim­
able aid when I took up the project. B. W. Kernighan and W. S. Brown made a number of useful
suggestions about the language and about this report. N. L. Schryer has acted as willing, cheerful. and
severe first user and helpful critic of each new version and facility. J. L. Blue, L. C. Kaufman, and D.
O. Warner made very useful contributions by makiDl serious use of the compiler, and notiDl and
tolerating its misbehaviors.

14. REFERENCE

1. B. W. Kernighan, "btfor - A Preprocessor for a Rational Fortran", Bell Laboratories Comput­
ing Science Technical Report #SS

The Programming Language Eft PS2:6-33

APPENDIX A. Relation Between EFL and Ratfor

There are a number of differences between Ratfor and Eft, since Eft is a defined language
while Ratfor is the union of the special control structures and the language accepted by the underlying
Fortran compiler. Ratfor running over Standard Fortran is almost a subset of Eft. Most of the
features described in the Atavisms section are present to ease the conversion of Ratfor programs to
Eft.

There are a few incompatibilities: The syntax of the for statement is slightly different in the two
languages: the three clauses are separated by semicolons in Ratfor, bQt by commas in Eft. (The ini­
tial and iteration statements may be compound statements in Eft because of this change). The
input/output syntax is quite different in the two languages, and there is no FORMAT statement in
Eft. There are no ASSIGN or assigned GOTO statements in Eft.

The major linguistic additions are character data, factored declaration syntax, block structure,
assignment and sequential test operators, generic functions, and data structures. Eft permits more
general forms for expressions, and provides a more uniform syntax. (One need not worry about the
Fortran/Ratfor restrictions on subscript or DO expression forms, for example.)

APPENDIX B. COMPILER

B.l. Current Version

The current version of the Eft compiler is a two-pass translator written in portable C. It
implements all of the features of the language described above except for long complex numbers. Ver­
sions of this compiler run under the and UNIXt operating systems.

B.2. Diagnostics

The Eft compiler .diagnoses all syntax errors. It gives the line and file name (if known) on
which the error was detected. Warnings are given for variables that are used but riot explicitly
declared. .

B.3. Quality of Fortran Produced

The Fortran produced by Eft i~ quite clean and readable. To the extent possible, the variable
names that appear in the Eft program are used in the Fortran code. The bodies of loops and test
constructs are indented. Statement numbers are consecutive. Few unneeded GOTO and CON­
TINUE .statements are used. It is considered a compiler bug if incorrect Fortran is produced (except
for escaped lines). The following is the Fortran procedure produced by the Eft compiler for the
matrix multiplication example (Section 11.2):

subroutine matmul(a, b, C, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3i=l,m

do 2 j ,.. 1, p
C(i, j) - 0
do 1 k - 1, n

c(i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

The following is the procedure for the tree walk (Section 11.4):

t UNIX is a trademark of AT&T Bell Laboratories.

PS2:6-34

subroutine walk(fint)
integer fint
COIlUllOll Inodesl tree
Integer tree(4, 100)
real treel(4, 100)

The Programming Language EFL

integer StaaDle(l. 100), stapth, carode
integer c:oastl(l)
equivalence (tree(l,l), treeJ(I,l»
data coast1(1)/4h I

c print oat an expressloa tree
c index of root node
c array of structures
c nextstate Y8Iaes
c initialize stack with root node

stapth - 1
staame(l, stapth) - 1
staame(2, stapth) - fint

1 if (stapth .Ie. 0) goto 9
c:arode ,. staame(2, slapth)
golo 1

2 if (tree(I, carode) .ne. coastl(1» goto 3

c a leaf
call ouml(treel(4, carode»

stapth - stapth-I
goto 4

3 call oatch(lhO
c a binary opeiatoraode

staame(l, stapth) - 1
stapth - stapth+ I
staaDle(l, stapth) - I
staame(2, stapth) ,. tree(2, curocle)

4 goto 8
5 call oatch(tree(I, carode»

staame(l, staptb) ,. 3 .
stapth ,. stapth+ I
staame(l, stapth) ,. I
staame(2, staptb) - tree(3, carode)
golo 8

6 call oatch(lh»
stapth ,. stapth-I
goto 8

7 if (staame(l, stapth) .eq. 3) goto 6
if (staame(l, stapth) .eq. 2) goto 5
if (staame(I, stapth) .eq. I) goto 2

8 continue
golo 1

9 continue
end

APPENDIX C. CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE
Although Fortran can be used to simulate any finite computation, there are realistic limits on

the generality of a language that can be translated into Fortran. The design of EFL was constrained
-by the implementation strategy. Certain of the restrictions are petty (six character external names),

The Programming Language EFL PS2:6-35

but others are sweeping (lack of pointer variables). The following paragraphs describe the major limi­
tations imposed by Fortran.

C.I. External Names

External names (procedure and COMMON block names) must be no longer than six characters
in Fortran. Further, an external name is global to the entire program. Therefore, EFL can support
block structure within a procedure, but it can .have only one level of external name if the EFL pro­
cedures are to be compilable separately, as are Fortran procedures.

C.l. Procedure Interface

The Fortran standards, in effect, permit arguments to be passed between Fortran procedures
either by reference or by copy-inlcopy-out. This indeterminacy of specification shows through into
EFL. A program that depends on the method of argument transmission is illegal in either language.

There are no procedure-valued variables in Fortran: a procedure name may only be passed as an
argument or be invoked; it cannot be stored; Fortran (and EFL) would be noticeably simpler if a pro­
cedure variable mechanism were available.

C.3. Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type. The implementa­
tion of the compiler would have been far easier if certain hard cases could have been handled by
pointers. Further, the language could have been simplified considerably if pointers were accessible in
Fortran. (There are several ways of simulating pointers by using subscripts, but they founder on the
problems of external variables and initialization.)

C.4. Recursion

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to be
recursive. (Recursive procedures with arguments can be simulated only with great pain.)

C.S. Storage Allocation

The definition of F6rtran does not specify the lifetime of variables. It would be possible but
cumbersome to implement stack or heap storage disciplines by using COMMON blocks.

Berkeley FP User's Manual, Rev. 4.1

by

Scott Baden

ABSTRACT

This manual describes the Berkeley implementation of Backus'
Functional Programming Language, FP. Since this implemen­
tation differs from Backus' original description of the language,
those familiar with the literature will need to read about the
system commands and the local modifications.

May 10, 1986

PS2:7-2 Berkeley FP User's Manual, Rev. 4.1

Table of Contents

1. Background .. .
2. System Description .. .
2.1. Objects .. .
2.2. Application ... 0 .. .

2.-3. Functions .. .
2.3.1. Structural
2.3.2. Predicate (Test) Functions .. .
2.3.3. Arithmetic/Logical
2.3.4. Library Routines .. .
2.4. Functional Forms
2.5. User Defined Functions
3. Getting on and off the System
3.1.
3.2.
3.3.

Comments
Breaks .. .
Non-Termination

4. System Commands .. .
4.1. Load
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

Save
Csave and Fsave .. ~ .. .
Cload .. :
Pm ... 01 •••••••••••••••• " •••• .00 •••••••••• 0' .. .

Delete .. .
Fns ... 0 ••••••••••••••••••••••••••

4.8. Stats
4.8.1. On
4.8.2. Off
4.8.3. Print
4.8.4. Reset
4.9. Trace
4.10. Timer .. .
4.11. Script
4.12. Help ... :
4.13. Special System Functions
4.13.1. Lisp .. .
4.13.2. Debug
5. Programming Examples
5.1. MergeSort .. :
5.2. FP Session
6. Implementation Notes ... ;
6.1. The 'fop Level ... ~
6.2. The Scanner .. .
6.3. The Parser
6.4. The Code Generator

4
6

6
6

6
7
9

10
10
10
12
14
14
14
14
14
14
14
14
15
15
15
15
15
16
16
16
16
17
17
17
18
18
18"
18
19
19
21
27
27
27
27
28

Berkeley FP User's Man~ Rev. 4.1 PS2:7·3

6.5. Function Definition and Application .. 29
6.6. Function Naming Conventions ... 29
6.7. Measurement Impelementation .. 29
6.7.1. Data Structures 29
6.7.2. Interpretation of Data Structures ... 30
6.7.2.1. Times ... 30
6.7.2.2. Size .. ~.. 30
6.7.2.3. Funargno .. 30
6.7.2.4. Funargtyp ... 30
6.8. Trace Information ... 30
7. Acknowledgements ... 31
8. References 31
Appendix A: Local Modifications ... 32
1. Character Set Changes 32
2. Syntactic Modifications .. 32
2.1. While and Conditional .•.. 32
2.2. Function Definitions .. 32
2.3. Sequence Construction .. t................................. 32
3 . User Interface .. '" '" 33
4. Additions and Ommissions .. ~................................... 33
Appendix B: FP Grammar;.. 34
Appendix C: Command Syntax .. 35
Appendix D: Token-Name Correspondences ... 36
Appendix E: Symbolic Primitive Function Names .. 37

PS2:7-4 Berkeley FP User's Manual. Rev. 4.1

1. Background

FP stands for a Functional Programming language. Functional programs deal with func­
tions instead of values. There is no explicit representation of state, there are no assignment
statments, and hence, no variables. Owing to the lack of state, FP functions are free from
side-eft"ects; so we say the FP is applicative.

AlI functions take one argument and they are evaluated using the single FP operation,
application (the colon ':' is the apply operator). For example, we read +: <3 4> as "apply
the function • +' to its argument <3 4>".

Functional programs express a functional-level combination of their components instead
of describing state changes using value-oriented expressions. For example, we write the func­
tion returning the sin of the cos of its input, i.e., sin(cos(x», as: sin@ cos. This is a func­
tional expression, consisting of the single combining form called compose C@' is the compose
operator) and its functional arguments sin and cos.

AlI combining forms take functions as arguments and retum functions as results; func­
tions may either be applied, e.g., sin@cos: 3, or used as a functional argument in another
functional expression, e.g., tan @ sin @ cos.

As we have seen, FP's combining forms allow us to express control abstractions without
the use of variables. The apply to all functional form (&) is another case in point. The func­
tion '& exp' exponentiates all the elements of its argum.'ent:

&exp:. <1.0 2.0> = <2.718 7.389> (1.1)

In (1.1) there are no induction variables, nor a loop bounds specification. Moreover, the code
is useful for any size argument, so long as the sub-elements of its argument conform to the
domain of the exp function.

We must change our view of the programming process to adapt to the functional style.
Instead of writing down a set of steps that manipulate and assign values, we compose func­
tional expressions using the higher-level functional forms. For example, the function that
adds a scalar to all e!~ments of a vector will be written in two steps. First, the function that
distributes the scalar amongst each element of the vector:

distl: <3 <4 6» = «3 4> <3 6»

Next, the function that adds the pairs of elements that make up a sequence:

&+ : «34> <36» = <79>

In a value-oriented programming language the computation would be expressed as:

&+ : distl: <3 <4 6»,

(1.2)

(1.3)

(1.4)

which means to apply 'distl' to the input and then to apply' +' to every element of the result:
In FP we write (1.4) as:

&+ @ distl: <3 <4 6». (1.5)

The functional expression of (1.5) replaces the two step value expression of (1.4).

Often, functional expressions are built from the inside out, as in LISP. In the next
example we derive a function that scales then shifts a vector, i.e., for scalars a, b and a vec­
tor V, compute a + bv. This FP function will have three arguments, namely a, band v. Of
course, FP does not use formal parameter names, so they will be designated by the function
symbols 1, 2, 3. The first code segment scales v by b (defintions are delimited with curly

Berkeley FP User's Manua~ Rev. 4.1

braces '() '):

(sea/eVee &. @ distl @ [2.3l)

The code segment in (1.5) shifts the vector. The completed function is:

{ehangeVee &+ @ distl @ [1 . sea/eVec]}

PS2:7-5

(1.6)

(1.7)

In the derivation of the program we wrote from right to left, first doing the distfs and
then composing with the apply-to-all functional form. Using an imperative language, such as
Pascal, we would write the program from the outside in, writing the loop before inserting the
arithmetic operators.

Although FP encourages a recursive programming style, it provides combining forms to
avoid explicit recursion. For example, the right insert combining form (!) can be used to
write a function that adds up a list of numbers:

1+ : <1 23> == 6 (1.8)

The equivalent, recursive function is much longer:

{addNumbers (null-> %0 .. + @ [1. addNumbers @ til)} (1.9)

The generality of the combining forms encourages hierarchical program development.
Unlike APL, which restricts the use of combining forms to certain builtin functions, FP
allows combining forms to take any functional expression as an argument.

PS2:7..(i Berkeley FP User's Manual, Rev. 4.1

2. System Description

2.1. Objects

The set of objects n consists of the atoms and sequences <XI> X2, ..• , Xk> (where the
Xi en). (Lisp users should note the similarity to the list structure syntax, just replace the
parenthesis by angle brackets and commas by blanks. There are no 'quoted' objects, i.e., 'abc).
The atoms uniquely determine the set of valid objects and consist of the numbers (of the type
found in FRANZ LISP [Fod80)), quoted ascii strings ("abed"), and unquoted alphanumeric
strings (abe3). There are three predefined atoms, T and F, that correspond to the logical
values 'true' and 'false', and the undefined atom 1, bottom. Bottom denotes the value
returned as the result of an undefined operation, e.g., division by zero. The empty sequence,
<> is also an atom. The fonowing are examples of valid FP objects:

? 1.47 3888888888888
ab "CD" <1,<2,3»
<> T <a,<»

There is one restriction on object construction: no object may contain the undefined atom,
such an object is itself undefined, e.g., <I,?> ==? This property is the so-called "bottom
preserving property" [Ba781.

2.2. ApplicatiOll

This is the single FP operation and is designated by the colon r:"). For a function ~
and an object x, ~:x is an application and its meaning is the object th .. t results from apply­
ing ~ to X (Le., evaluating ~(x». We say that (f is the operator and that X is the operand.
The following are examples of applications:

+:<7,8> == 15 tl:<1,2,3> == <2,3>
1 :<a,b,c ,d> == a 2 :<a,b,c,d> == b

2.3. Functions

All functions (F) map objects into objects, moreover, they are strict:

(f:? ==?, \1 (feF (2.1)

To formally characterize the primitive functions, we use a modification of McCarthy's condi­
tional expressions [Mc60):

PI - tl;'" ;Pn - en; en+1 (2.2)

Berkeley FP User's Manual. Rev. 4.1 PSl:7-7

This statement is interpreted as follows: return function e I if the predicate 'p I t is true
•...• en if 'Pn' is true. If none of the predicates are satisfied then default to en+I' It is
assumed that x, Xi. Y. Yi. Zi eO.

1.3.1. Structural

Selector FunctioDl

For a nonzero integer ~

1': X ==

X =<X1t Xl •...• Xk> " 0 < I' ~ k - X,,;

X -<XIt Xl- ...• Xk> " -k~,.,.<O - Xk+,,+l; ?

pick: <n,x> ==

X=<X1t Xl- ...• Xk>" 0 < n ~ k - xn;

X-<»It Xl •...• Xk>" -k~n<O - Xk+n+I;?

The user should note that the function symbols 1.1,3 are to be distinguished from the
atoms 1,2,3,

last:x==

X=<> - <>;
X=<X1t Xl •...• Xk> "k~l - Xk; ?

first: X ==

X=<>-<>;

X=<X1t Xl- ...• Xk> "k~l - XI; ?

Tail Functions

tl: X ==

X=<XI> - <>;
X = <X It Xl- ... , Xk> "k~ 2 - <Xl, ...• Xk> ;?

tlr:X==

X=<XI> - <>;
X-<X1t Xl- ..•• Xk>" k~ 2 - <XI, ... , Xk-I>;?

Note: There is also a function front that is equivalent to tIr.

PS2:7-8 Berkeley FP User's Manual, Rev. 4.1

Distribute from left and right

distl : x ==

x ==<Y ,<» - <>;
x=<y,<Zh Z2, ... , Zk» - «Y,Zt>,.·.,<Y,Zk»;?

distr: x ==

x==«>,y> - <>;

X==«Yh Y2 • ...• Yk>'Z> - «YhZ>,···,<YbZ»; ?

Identity

id:x=x

out:X=X

Out is similar to id. Like id it returns its argument as the result, unlike id it prints its
result on stdout - It is the only function with a side effect. Out is intended to be used for
debugging only.

* Append left and right

apndl: x ==
x=<y,<»- <Y>;

x=<y,<Zh %2, ••• , Zk» ;...,. <Y,Zt> %2 •... , Zk>; ?

apndr: x ==

X=«>,Z> - <Z>;

X=«Yh Y2 • ...• Yk>,Z> - <Yh Y2 • ...• Yb Z>;?

Transpose

trans: x ==
x =«>, ... ,<» - <>;

X=<Xh X2 • ... , Xk> - <YI •... ,Ym>; ?

wherexj == <Xii,'" .Xjm> AYj = <xlj,··· ,Xkj>,

l~i~k , lSj~m.

reverse: x ==

X=<> -;

X=<Xh xl> ... , xk> - <xk • ... ,XI>;?

Berkeley FP User's Manual, Rev. 4.1

Rotate Left and Right

rod: x ==

X=<> - <>; X-<XI> - <XI>;

X=<Xh X2, ... , Xk> A k~2 - <X:z, ... ,Xk,xl>; ?

rotr:x ==

X=<> - <>; X-<XI> - <XI>;

X=<Xh X2, ... , Xk> A k~2 - <Xb XI, ... ,Xk-Z, xk_I>; ?

concat: X ==

X=«Xlt. ... ,X·lk>,<X21, ... ,x2n>"",<Xml' ... ,xmp» A k, m, n, p > 0-
<Xli •...• Xlk,x21o ...• X2n • ...• xm I •...• x mp >;?

Concatenate removes all occurrences of the null sequence:

concat: «1,3>,<>,<2,4>,<>,<5» == <1,3,2,4,5>

pair:x==

X=<Xh XZ • ...• Xk> A k>O A k is even - «XI,x2>, ...• <Xk-l,xk»;

X=<Xh X2 • ...• Xk> A k>O A k is odd - «x\,x2> • ...• <Xk»; ?

split: X ==

X=<XI> - <<XI>,<»;

X=<Xh X2, Xk> A k>1 - <<XI •... ,Xrk/2p,<Xrk/21+1 •... • Xk»;?

iota:x ==

x-O - <>;
X eN+ - <1,2, ..• ,x>; ?

2.3.2. Predicate (Test) Functions

atom: X == x eatoms - T; X:;:?- F; ?

eq : x == x = <y ,Z > A Y ,. Z - T; x = <Y ,Z > A Y :;: z - F; ?

PS2:7-9

(2.3)

Also less than «), greater than (», greater than or equal (>-), less than or equal «-),
not equal r -); ',.' is a synonym for eq.

null :x == x =<> - T; x:;:? _ F; ?

PSl:7-10

length: x == x '" <x h X2, ' , •• xk> - k; x = <> - 0; ?

2.3.3. ArithmeticlLogiali

+ : x == x==<y,Z> "y,z are numbers - y+z; ?
- : x 5 x=<y,z> " y,z are numbers - y-z;?

Berkeley FP User's Manual, Rev_ 4.1

'" : x 5 X =<y ,z> " y,z are numbers - y xz;? I : x 5 x =<y ,z> " Y,z are numbers " z~
O-y+z;?

An~ 01', not, xor

and : <X,y> 5 x=T - y; x=F _ F;?

01' : <X,y> 5 x-F - y; x=T - T;?

xor: <x,y> 5

x=T" y=T - F; x=F "y=F - F;

x=T "y=F - T; x=F "y=T - T;?

not: x 5 x =T - F; x =F - T; ?

2.3.4. Library Routines

sin: x 5 X is a number - sin(x); ?

asin : x 5' x is a number" I x lSI _ sin- 1(x); ?

cos : x 5 x is a number - cos(x); ?

acos : x 5 x is a number" I x lSI _ cos- 1(x); ?

exp : x 5 x is a number _ eX; ?

log: x 5 x is a positive number _In(x); ?

mod: <X.Y> '" x ODd y are numbers - x - yx l; 1 ;?

2.4. FUIlctional Forms

Functional forms define new junctions by operating on function and object parameters
of the form. The resultant expressions can be compared and contrasted to the value-oriented
expressions of traditional programming languages. The distinction lies in the domain of the'
operators; functional forms manipulate functions, while traditional operators manipulate
values.

One functional form is composition. For two functions q, and T/I the form q, @ T/I denotes
their composition q, 0 T/I:

(q, @ T/I) : x 5 q,:(T/I:x), \1 x e Q (2.4)

The constant function takes an object parameter:

Berkeley FP User's Manual, Rev. 4.1 PS2:7-11

%X:y == y=? - ?; x, \7 x,y eO (2.5)

The function %? always returns?

In the following description of the functional forms, we assume that ~, ~i' (T, (Ti, T, and Tj

are functions and that X, Xi, Y are objects.

Composition

ConstnH:tion

Note that construction is also bottom-preserving, e.g.,

[+,/] : <3,0> ... <3,?> .. ?

Condition

(~ -> (T; T):X ==
(~:x)-T ... (T:X;

(~:x)=F - T:X; ?

(2.6)

The reader should be aware of the distinction between jUnctional expressions, in the
varia"t of McCarthy's conditional expression, and the functional form introduced here. In the
former case the result is a value, while in the latter case the result is a function. Unlike
Backus' FP, the conditional form must be enclosed in parenthesis, e.g.,

(isNegative -> - @ [%O,id] ; id)

Constant

%x:y == y=? - ?; x, \1 xeO

This function returns its object parameter as its result.

Right Insert

!(T :x ==
X-<> - ef:X;

X"<Xl> - Xl;

X=<Xh X2, ...• Xk>" k>2 - (T:<Xh !(T:<X:z, •.. , Xk»;?

e.g., ! +:<4,5,6> .. 15.

(2.7)

PS2:7-12 Berkeley FP User's Manual, Rev. 4.1

If u has a right identity element ef' then !u:<> .. ef' e.g.,

!+ : <>=0 and !* : <>= 1 (2.8)

Currently, identity functions are defined for + (0), - (0), ... (1), I (I), also for and (T), or (F),
xor (F). All other unit functions default to bottom (?).

Tree Insert

IU:XiS

X=<> - ef:X;

X=<Xt> - XI;

X=<Xh Xl> ... , Xk>" k>l -

u: <I u: <Xl •.•• ,Xfk/21>, I u: <Xfk/21+l> .•• ,Xk»;?

e.g.,

I +:<4,5,6,7> is +:<+:<4,5>,+:<6,7» is 15

Tree insert uses the same identity functions as right insert.

Apply to All

&tu:x is

X=<> -<>;

X=<Xh X2 • ...• Xk> - <U:XI • ...• U:Xk>;?

While

(while ~ u):x is

~:x==T - (while ~ u):(u:x);

~:x=F - X; ?

2.5. User Defined Fuac:tions

An FP definition is entered as follows:

ifn-name fn-form},

(2.9)

(2.10)"

where fn-name is an ascii string consisting of letters, numbers and the underline symbol, and
fn-form is any valid functional form, including a single primitive or defined function. For
example the function

ifactorial !* @ iota} (2.10

Berkeley FP User's Manual. Rev. 4.1 PS2:7-13

is the non-recursive definition of the factorial function. Since FP systems are applica­
tive it is permissible to substitute the actual definition of a function for any reference to it in
a functional form: if f == 1@ 2 then f : x == 1@ 2 : x, \1 x e U.

References to undefined functions bottom out:

f:x == ?\1 x e U, f /fF (2.12)

PS2:7·14 Berkeley FP User's Manual, Rev. 4.1

3. Gettilll on ud off the System

Startup FP from the shell by entering the command:

lusr/locaI/Cp.

The system will prompt you for input by indenting over six character positions. Exit
from FP (back to the shell) with a controJlD rD).

3.1. Comments

A user may end any line (including a command) with a comment; the comment charac­
ter is '#'. The interpreter will ignore any character after the '#' until it encounters a newline
character or end-of-file, whichever comes first.

3.2. Breaks

Breaks interrupt any work in progress causing the system to do a FRANZ reset before
returning control back to the user. .

3.3. Non-Termination

LISP's namestack may, on occasion, overflow. FP responds by printing U non-
terminating" and returning bottom as the result of the application. It does a FRANZ reset
before returning control to the user.

4. System Commuds

System commands start with a right parenthesis and they are followed by the
command-name and possibly one or more arguments. All this information must be typed on
a single line, and any number of spaces or tabs may be used to separate the components.

4.1. Load

Redirect the standard input to the file named by the command's argument. If the file
doesn't exist then FP appends '.fp' to the file-name and retries the open (error if the file
doesn't exist). This command allows the user to read in FP function definitions from a file.
The user can also read in applications, but such operation is of little utility since none of the
input is echoed at the terminal. Normally. FP returns control to the user on an end-of-file. It
will also do so whenever it does a FRANZ reset, e.g., whenever the user issues a break, or
whenever the system encounters a non-terminating application.

4.2. Save

Output the source text for all user-defined functions to the file named by the argument.

4.3. Csave ud Fsave

These commands output the lisp code for all the user-deftned functions, including the
original source-code, to the file named by the argument. Csave pretty prints the code, Fsave
does not. Unless the user wishes to examine the code, he should use 'fsave'; it is about ten
times faster than 'csave', and the resulting file will be about three times sIUaller.

These commands are intended to be used with the liszt compiler and the 'cload' com­
mand, as explained below.

Berkeley FP User's Manual, Rev. 4.1 PS2:7-15

4.4. Cload
This command loads or fasls in the file shown by the argument. First, FP appends a

, .0' to the file-name, and attempts a load. Failing that, it tries to load the file named by the
argument. If the user outputs his function definitions using fsave or csave, and then compiles
them using liszt, then he may fasl in the compiled code and speed up the execution of his
defined functions by a factor of 5 to 10.

4.5. Pfn

Print the source text(s) (at the terminal) for the user-defined function(s) named by the
argument(s) (error if the function doesn't exist).

4.6. Delete

Delete the user-defined function(s) named by the argument (error if the function doesn't
exist).

4.7. Fns

List the names of all user-defined functions in alphabetical order. Traced functions are
labeled by a trailing '@' (see § 4.7 for sample output).

4.8. Stats

The "stats" command has several options that help the user manage the collection of
dynamic statistics for functions 1 and functional forms. Option names follow the keyword
"stats", e.g., ")stats reset".

The statistic package records the frequency of usage for each function and functional
form; also the size2 of all the arguments for all functions and functional expressions. These
two measures allow the user to derive the average argument size per call. For functional
forms the package tallies the frequency of each functional argument. Construction has an
additional statistic that tells the number of functional arguments involved in the construction.

Statistics are gathered whenever· the mode is on, except for applications that "bottom
out" (i.e., return bottom - 1). Statistic collection slows the system down by x2 to x4. The
following printout illustrates the use of the statistic package (user input is emboldened):

I Measurement ofuser-defined functions is dOne with the aid of the trace package, discussed in § 4.9.

2 "Size" is the top-level length of the argument, for most functions. Exceptions arc: apndJ. distl (top-level
length of the second element), apndr. distr (top-level length of the first element), and transpose (top level length of
each top level element).

PS2:7-16

)stats OR

Stats collection turned on.

7

6

plus:

times:

iota:

insert:

compos:

4.8.1. On

+:<34>

!* @iota:3

)stats print

times

times 2

times 1

times

Functional Args
Name
times

. times 1

Functional Args
Name
insert
iota

Enable statistics collection.

4.8.2. Oft'

Berkeley FP User's Manual, Rev. 4.1

size 3

Times

size

Times

Disable statistics collection. The user may selectively collect statistics using the on and.
off commands.

4.8.3. Print

Print the dynamic statistics at the terminal, or, output them to a file. The latter option
requires an additional argument, e.g., ")stats print fooBar" prints the stats to the file
"fooBar".

4.8.4. Reset

Reset the dynamic statistics counters. To prevent accidental loss of collected statistics,
the system will query the user if he tries to reset the counters without first outputting the data

Berkeley FP User's Manual, Rev. 4.1 PSl:7-17

(the system will also query the user if he tries to log out without outputting the data).

4.9. Trace

Enable or disable the tracing and the dynamic measurement of the user defined func­
tions named by the argument(s). The first argument tells whether to turn tracing off or on
and the others give the name of the functions affected. The tracing and untracing commands
are independent of the dynamic statistics commands. This command is cumulative e.g.,
')trace on fl', followed by ')trace on fl' is equivalent to ')trace on fl fl'.

FP tracer output is similar to the FRANZ tracer output: function entries and exits, call
level, the functional argument (remember that FP functions have only one argument!), and
the result, are printed at the terminal:

)pfn fact

{fact (eqO -> %1 ; • @ [id, fact @ sl])}
)fns

eqO fact sl

.)trace on fact
)fns

eqO fact@

fact: 2

1 >Enter> fact [2]
12 >Enter> fact [1]
1 3 >Enter> fact [0]
1 3 <EXIT < fact 1
12 <EXIT < fact 1
1 <EXIT < fact 2

2

4.10. Timer

sl

FP provides a simple timing facility to time top-level applications. The command
")timer on" puts the system in timing mode~ ")timer off' turns the mode off (the mode is ini­
tially oft). While in timing mode,the system reports CPU time, garbage collection time, and
elapsed time, in seconds. The timing output follows the printout of the result of the applica­
tion.

4.11. Script

Open or close a script file. The first argument gives the option, the second the optional
script file-name. The "open" option causes a new script-file to be opened and any currently
open script file to be closed. If the file cannot be opened,. FP sends and error message and, if
a script file was already opened, it remains open. The command ")script close" closes an

PS2:7-18 Btrkeley FP User's Manual, Rev. 4.1

open script file. The user may elect to append script output to the script-tile with the append
mode.

4.12. Help

Print a short summary of aU the system commands:

)help
Commands are:

load <file>
save <file>
pfn <fnl> ...
delete <fn 1 > ...
fns
stats on/ofF/resetlprint [file]
trace on/off <fnl> ...
timer on/of
script open/close/append
lisp
debl1~ on/off
csave <file>
cload <file>
fsave <file>

4.13. Special System Functions

Redirect input from <file>
Save defined fns in <file>
Print source text of <fn 1 > ...
Delete <fn 1 > ...
List aU functions
Collect and print dynamic slats
Start/Stop exec trace of <fn 1 > ...
Tum timer on/off
Open or close a script-file
Exit to the lisp system (return with 'AD')
Tum debugger output on/off
Output Lisp code for aU user-defined fns
Load Lisp code from a file (may be compiled)
Same as csave except without pretty-printing

There are two system functions that are not generally meant to be used by average users.

4.13.1. Lisp

This exits to the lisp system. Use "AD" to return to FP.

4.13.2. Debug

Turns the 'debug' flag on or off. The command ")debug on" turns the flag on, ")debug
off" turns the flag off. The main purpose of the command is to print out the parse tree.

Berkeley FP User's Manual, Rev. 4.1 PS2:7-19

S. Programming Examples

We will start off by developing a larger FP program, mergeSort. We measure mergeSort
using the trace package, and then we comment on the measurements. Following mergeSort
we show an actual session at the terminal.

5.1. MergeSort

The source code for mergeSort is:

'# Use a divide and conquer strategy
{mergeSort I merge}

{merge atEnd@ mergeHelp @ [[], tixLists]}

'# Must convert atomic arguments into sequences
'# Atomic arguments occur at the leaves of the execution tree
{tixLists &(atom -> [id1 ; id)}

'# Merge until one or both input lists are empty
{mergeHelp (while and @ &(no~null) @ 2

(firstisSmaller -> takeFirst ;
takeSecond))}

'# Find the list with the smaller first element
{firstIsSmailer < @ [1@1@2, 1@2@2]}

'# Take the first element of the first list
(takeFirst [apndr@[1,1@1@2], [tl@1@2, 2@2])}

'# Take the first element of the second list
{takeSecond [apndr@{l,1@2@2], [l@2, tl@2@2]]}

'# If one list isn't null, then append it to the
'# end of the merged list

{atEnd (firstIsNull-> concat@[1,2@2] ;
concat@[1,1@2])}

{firstIsNull null@1@2}

The merge sort algorithm uses a divide and conquer strategy; it splits the input in half,
recursively sorts each half, and then merges the sorted lists. Of course, all these sub-sorts can
execute in parallel, and the tree-insert <I> functional form expresses this concurrency. Merge­
removes successively larger elements from the heads of the two lists (either takeFirst or tak­
eSecond) and appends these elements to the end of the merged sequence. Merge terminates
when one sequence is empty, and then atEnd appends any remaining non-empty sequence to
the end of the merged one.

On the next page we give the trace of the function merge, which information we can use
to determine the structure of merge's execution tree. Since the tree is well-balanced, many of
the merge's could be executed in parallel. Using this trace we can also calculate the average
length of the arguments passed to merge, or a distribution of argument lengths. This informa­
tion is useful for determining communication costs.

PS2:7 .. 18. BerkeleyFP User's Manual, Rev. 4.1

)trace on merae
•

mergeSort ; <0 3 -2 1 11 8 -22 -33>
I 3 >Enter> merge [<0 3»
I 3 <EXIT < merge <0 3>
I 3 >Enter> merge [<-2 1>]
1 3 <EXIT < merge <-2 1>
12 >Enter> merge [«0 3> <-2 1»]
12 <EXIT < merge <-2 0 1 3>
1 3 >Enter> merge [<11 8>]
1 3 <EXlT< merge <8 11>
1 3 >Enter> merge [<-22 -33»
1 3 <EXIT < merge <-33 ·22>
12 >Enter> merge [«8 11> < .. 33 -22»]
12 <EXIT< merge <·33 -22 8 11>
1 >Enter> merge [«-2 0 1 3> <-33 -22 8 11»1
1 <EXlT< merge <-33 -22 .. 20 1 38 11>

<-33 -22 -20 1 3 8 11>

Berkeley FP User's Manual, Rev. 4.1

5.2. FP Session
User input is emboldened, terminal output in Roman script.

fp

FP, v. 4.1 11131182
)Ioad ex_man

{aICle}
{sort}
{abs_val}
{find}
{ip}
{mm}
{eqO}
{fact}
{subl}
{alcfnd}
{alCfact}

)fns

abs_ val alCle alt_fact alt3nd eqO· fact find
ip mm sort sub 1

abs_val: 3

3

3

o

?

&abs_val: <-5066>

<5066>

)pfn abs_val

{abs_ val «> @ lid, %0]) -> id ; (- @ [%O,id»)}

(id,%OJ: -3

<-30>

PS2:7-11

PS2:1 .. 22

[%O,idJ: -3

<0·3>

.. @ (%O,id) : -3

3

alLle : <1 3 5 7>

T

alLIe : <1 0 5 7>

F

)pfa alLIe

faiLle ! and @ &<- @ distl @ [1,tl]}

distl @ (l,tll : <1 2 3 4>

«1 2> <1 3> <1 4»

&<- @ distl @ [I,dl : <1134>

<TTT>

laad:<FTT>

F

!and:<TTT>

T

sort : <3 1 1 4>

<1 234>

sort: <1>

<1>

sort: <>

?

sort: 4

?

)pfa sort

Berkeley FP User's Maaaal, Rev. 4~1

Berkeley FP User's Manual, Rev. 4.1

{sort (null @ tl-> [1] ; (all_Ie -> apndl @ [l,sort@tl]; sort@rotl))}

fact: 3

6

)pfD fact sub! eqO

{fact (eqO -> % 1 ; *@[id , fact@subl])}

{ sub 1 -@[id,% I]}

{eqO = @ [id,%O]}

&fact : <1 2 3 4 S>

<1 2624 120>

eqO: 3

F

eqO: <>

F

eqO: 0

T

subl : 3

2

%1:3

alcfact: 3

6

)pfD alt3act

{alcfact !* @ iota}

iota: 3

<123>

!*@iota:3

6

PS2:7-23

PS2:7-24 Berkeley FP User's Manual, Rel'. 4.1

!+ : <1 23>

6

find: <3 <3 4 5»

T

find: «> <3 4 <»>

T

find: <3 <4 5»

F

)pfII find

{find (null@2 .> %F; (=@[1,1@2J·> %T ; find@[1,tl@2]))}

[l,t1@21 : <:3 <345»

<3 <4 5»

Il,1@2J : <3 <345» .

<33>

alt3nd : <3 <3 4 5»

T

)pfn alLfnd

{alLfnd ! or @ &eq @ distl }

distl : <3 <3 4 5»

«33> <34> <3 5»

&eq @ disd : <3 <34 5»

<TFF>

!or: <TFT>

T

!or:<FFF>

F

)delete alLfnd

Berkeley FP User's Manual, Rev. 4.1

)fns

abL val alLle alcfact eqO fact find ip
mm sort sub 1

alLfnd : <3 <3 4 5»

alcfnd not defined

?

{g}
1:3

non-terminating

?

[Return to top level]

FP, v. 4.0 10/8/82
1+,*) : <34>

<7 12>

[+,*: <34>

syntax error:

[+,* : <34>

ip : «3 4 5><5 6 7»

74

)pfn ip

{ip!+ @ &* @ trans}

trans : «3 4 5> <5 6 7»

«3 S> <4 6> <S 7»

&* @ trans : «3 4 5> <5 6 7»

<152435>

mm : «<1 0> <0 1» «3 4> <5 6»>

«34> <56»

PSl:7-2S

PS2:7-26 Berkeley FP User's Maaual, Rev. 4.1

)pfa mm

{mm Hip @ &distl @ distr @[1.trans@2]}

(1,trus@2J : «<1 0> <0 1» <<3 4> <56»>

«<10><01» «3 4> <S 6»>

distr: «<1 0> <0 1» «3 4> <5 6»>

«<10> «3 4> <S 6»> «0 I> «34> <S 6»»

&dIstI : «<1 0> «34> <5 6»> «0 1> <<34> <5 6»»

««1 0> <3 4» «I 0> <5 6»> «<0 1> <3 4» <<0 I> <S 6»»

&ip @ &dist &: distr @ 11pus @ 21 : «<1 0> <0 1» «3 4> <S 6»>

syntax error:

[+,*: <34> ...

&tip @ &distl & distr @ [I,trans @ 2] : «<1 0> <0 1» «3 4> <5 6»> ...

&ip @ &cIistI @ distr @ (l,tI'aas@2) : «<1 0> <0 1» «3 4> <5 6»>

?

Berkeley FP User's Manual, Rev. 4.1 PS2:7-27

6. Implementation Notes

FP was written in 3000 lines of FRANZ LISP [Fod 80]. Table 1 breaks down the distribu­
tion of the code by functionality.

Functionality % (bytes)
compller 34
user interface 32
dynamic stats 16
primitives 14
miscellaneous 3

Table 1

6.1. The Top Level

The top-level function runFp starts up the subsystem by calling the routine jpMain, that
takes three arguments:

(1) A boolean argument that says whether debugging output will
be enabled.

(2) A Font identifier. Currently the only one is supported 'as<:
(ASCII).

(3) A boolean argument that identifies whether the interpreter
was invoked from the shell. If so then all exits from FP
return the user back to the shell.

The compiler converts theFP functions into LISP equivalents in two stages: first it
forms the parse tree, and then it does the code generation.

6.2. The Scanner

The scanner consists of a main routine, gectkn, and a set of action functions. There
exists one set of action functions for each character font (currently only ASCII is supported).
All the action functions are named scan$, where is the specified font, and each
is keyed on a particular character (or sometimes a particular character-type - e.g., a letter or a
number). geCtkn returns the token type, and any ancillary information, e.g., for the token
"name" the name itself will also be provided. (See Appendix C for the font-token name
correspondences). When a character has been read the scanner finds the action function by
doing a

(get 'scan $ <char»

A syntax error message will be generated if no action exists for the particular character read.

6.3. The Parser

The main parsing function, parse, accepts a single argument, that identifies the parsing con­
text, or type of construct being handled. Table 2 shows the valid parsing contexts.

PS2:7-28 Berkeley FP User's Manual, Rev. 4.1

id construct
top_lev mitial call
constr$$ construction
compos$$ composition
alpha$$ apply-tomall
insert$$ insert
ti$$ tree insert
arrow$$ affirmative clause

of conditional
semi$$ negative clause

of conditional
lparen$$ parenthetic expr.
while$$ while

Table 2, Valid Parsing Contexts

For each type of token there exists a set of parse action functions, of the name p$<tkn­
name>. Each parse-action function is keyed on a valid context. and it is looked up in the
same manner as scan action functions are looked up. If an action function cannot be found,
then there is a syntax error in the source code. Parsing proceeds as follows: initially parse is
called from the top-level, with the context argument set to "top_lev". Certain tokens cause
parse to be recursively invoked using that token as a context. The result is the parse tree.

6~4. The Code Generator

The system compiles FP source into LISP source. Normally, this code is interpreted by
the FRANZ USP system. To speed up the implementation, there is an option to compile into
machine code using the liszt compiler [Joy 79). This feature improves performance tenfold,
for some programs.

The compiler expands all functional forms into their LISP equivalents instead of insert­
ing calls to functions that generate the code at run-time. Otherwise, liszt would be ineffective
in speeding up execution since all the functional forms would be executed interpretively.
Although the amount of code generated by an expanding compiler is 3 or 4 times greater than
would be generated by a non-expanding compiler, even in interpreted mode the code runs
twice as quickly as unexpanded code. With liszt compilation this performance advantage
increases to more than tenfold.

A parse tree is either an atom or a hunk of parse trees. An atomic parse-tree identi.fies
either an fp built-in function or a user defined function. The hunk-type parse tree represents
functional forms, e.g., compose or construct. The first element identifies the functional form
and the other elements are its functional parameters (they may in turn be functional forms).
Table 3 shows the parse-tree formats.

Berkeley FP User's Manual, Rev. 4.1 PS2:7-29

Form Format
user-defined <atom>
fp builtin <atom>
apply-to-all {aJpha$$ ~}
insert {insert $$ ~}
tree insert {ti$$ ~}
select {select $$ I'}
constant { constant $$ I'}
conditional {condit $$ ~1 ~2 ~3}
while {whiJe$$ ~1 ~2}
compose {compos$$ ~1 ~2}
construct {constr$$ ~1 ~2 , .•. , ~" nil}

Note: ~ and the ~k are parse-trees and I' is an optionally signed integer constant.

Table 3, Parse-Tree Formats

6.5. Function Definition and Application

Once the code has been generated, then the system defines the function via putd. The
source code is placed onto a property list, 'sources, to permit later access by the system com­
mands.

For an application, the indicated function is compiled and then defined, only tem­
porarily, as tmp$$. The single argument is read and tmp$$ is applied to it.

6.6. Function Naming Conventions

When the parser detects a named primitive function, it returns the name <name>$jp,
where <name> is the name that was parsed (all primitive function-names end in $fp). See
Appendix 0 for the symbolic (e.g., compose, +) function names.

Any name that isn't found in the list of builtin functions is assumed to represent a
user-defined function; hence, it isn't possible to redefine FP primitive functions. FP protects
itself from accidental or malicious internal destruction by appending the suffix "Jp" to all
user-defined function names, before they are defined.

6.7. Measurement Impelementation

This work was done by Dorab Patel at UCLA. Most of the measurement code is in the
file 'fpMeasures.l'. Many of the remaining changes were effected in 'primFp.l', to add calls on"
the measurement package at run-time; to 'codeGen.l',. to" add tracing of user defined func­
tions; to 'utils.l', to add the new system commands; and to 'fpMain.l', to protect the user
from forgetting to output statistics when he leaves FP.

6.7.1. Data Structures

All the statistics are in the property list of the global symbol Measures.' Associated with
each each function (primitive or user-defined, or functional form) is an indicator; the statis­
tics gathered for each function are the corresponding values. The names corresponding to
primitive functions and functional forms end in '$fp' and the pames corresponding to user­
defined functions end in '3p'. Each of the property values is an association list:

PS2:7-30 BerkeleyFP User's Manual, Rev. 4.1

(get 'Measures 'rotl$fp) --> «times. 0) (size. 0»

The car of the pair is the name of the statistic (i.e., times, size) and the cdr is the value.
There is one exception. Functional forms have a statistic called f\llW'ltYP. Instead of being a
dotted pair, it is a list of two elements:

(get 'Measures 'compose$fp) -=>
«times. 2) (size. 4) (funargtyp «selectSfp . 2) (sub$fp . 2»)))

The car is the atom 'funargtyp' and the cdr is an alist. Each element of the alist consists
of a functional argument-frequency dotted pair.

The statistic packages uses two other global symbols. The symbol DynTraceFlg is non­
nil if dynamic statistics are being collected and is nil otherwise. The symbol TracedFns is a
list (initially nil) of the names of the user functions being traced.

6.7.2. IDterpretatioD of Data Structures

6.7.2.1. TImes
The number of times this function has been called. All functions and functional forms

have this statistic.

6.7.2.2. Size
The sum" of the sizes of the arguments passed to this function. This could be divided by

the times statistic to give the average size of argument this function was passed. With few
exceptions, the size of an object is its top-level length (note: version 4.0 defined the size as the
total "number of atoms in the object); the empty sequence, "<>'" has a size of 0 and all other
atoms have size of one. The exceptions are: apndl, distl (top-level length of the second ele­
ment), apndr, distr (top-level length of the first element), and transpose (top level length of
each top level element).

This statistic is not collected for some primitive functions (mainly binary operators like
+,-,.).

6. 7 ~2.3. FulUlflDo

The number of functional arguments supplied to a functional form.

Currently this statistic is gatherered only for the construction functional form.

6.7.2.4. Fu.aargtyp

How many times the named function was used as a functional parameter to the particu­
lar functional form.

6.8. Trace IDformatioD

The level number of a call shows the number of steps required to execute the function
on an ideal machine (i.~., one with unbounded resources). The level number is calculated
under an assumption of infinite resources, and the system evaluates the condition of a condi­
tional before evaluating either of its clauses. The number of functions executed at each level
can give an idea of the distribution of parallelism in the given FP program.

Berkeley FP User's Manual, Rev. 4.1 PSl:7-31

7. Acknowledgements

Steve Muchnick proposed the initial construction of this system. Bob Ballance added
some of is own insights, and John Foderaro provided helpful hints regarding effective use of
the FRANZ USP system [FodSO]. Dorab Patel [PatS I] wrote the dynamic trace and statistics
package and made general improvements to the user interface. Portions of this manual were
excerpted from the COMPCON-83 Digest of Papersl.

8. References

[Bac7S]
John Backus, "Can Programming Be Liberated from the von Neumann Style? A Func­
tional Style and Its Algebra of Programs," CACM, Turing Award Lecture, 21, S (August
1975),613-641.

[FodSO]
John K. Foderaro, "The FRANZ USP Manual," University of California, Berkeley, Cali­
fornia, 19S0.

[Joy79]
W.N. Joy, O. Babaoglu, "UNIX Programmer's Manual," November 7, 1979, Computer
Science Division, University of California, Berkeley, California.

[Mc60]
J. McCarthy, "Recursive Functions of Symbolic expressions and their Computation by
Machine," Part I, CACM 3,4 (April 1960), IS4-195.

[PatSO]
Dorab Ratan Patel, "A System Organization for Applicative Programming," M.S Thesis,
University of California, Los Angeles, California, 19S0.

[PatS 1]
Dorab Patel, "Functional Language Interpreter User Manual," University of California,
Los Angeles, California, 19S1.

3 Scott B. Baden and Dorab R. Patel, "Berkeley FP - Experiences With a Functional Programming Language",
© 1982, IEEE.

PS2:1-32 Berkeley FP User's Manual, Rev. 4.1

Appendix A: Local Modifications

1. Charaeter Set Changes

Backus [Ba78] used some c~aracters that do not appear on our ASCII terminals, so we
have made the foUowing substitutions:

2. Syntactic Modificatioas

2.1. While and Conditiooal

COIIStant
iDseI1
apply-to-all
coapositioa
arrow
_pty set
bottom
divide
audtiply

x
/
a
• -4J
-+-
+
x

%x
!

&:
@
->
<>
?
/
•

While and conditional functional expressions must be enclosed in parenthesis, e.g.,

2.2. FUDCtion Definitions

(While/g)

(p -> /; g)

Function definitions are enclosed by curly braces; they consist of a name-definition pair,
separated by blanks. For example:

{fact !. @' iota}

defines the fUnction fact (the reader should recognize this as the non-recursive factorial func-
tion). .

2.3. Sequence Construction

It is not necessary to separate elements of a sequences with a comma; a blank will
suffice:

<1,2,3> _ <1 23>

For nested sequences, the terminating right angle bracket acts as the delimiter:

«1,2,3>,<4,5,6» _ «1 2 3><4 5 6»

Berkeley FP User's Manual, Rev. 4.1 PS2:7-33

3. User Interface

We have provided a rich set of commands that allow the user to catalog, print, and
delete functions, to load them from a file and to save them away. The user may generate
script files, dynamically trace and measure functional expression execution, generate debug­
ging output, and, temporarily exit to the FRANZ LISP system. A command must begin with a
right parenthesis. Consult Appendix C for a complete description of the command syntax.

Debugging in FP is difficult; all undefined results map to a single atom - bottom ("?").
To pinpoint the cause of an error the user can use the special debugging output function, out,
or the tracer.

4. Additions and Ommissions

Many relational functions have been added: <, >, =, +, S, ~; their syntax is: <, >,
=, -=, <-, >=. Also added are the iota function (This is the APL iota function an n-element
sequence of natural numbers) and the exclusive OR (~) function.

Several new structural functions have been added: pair pairs up successive elements of
a sequence, split splits a sequence into two (roughly) equal halves, last returns the last element
of the sequence «> if the sequence is empty), first returns the first element of the sequence
«> if it is empty), and concat concatenates all subsequences of a sequence, squeezing out null
sequences «». Front is equivalent to tIr. Pick is a parameterized form of the selector func­
tion; the first component of the argument selects a single element from the second component.
Out is the only side-effect function; it is equivalent to the id function but it also prints its
argument out at the terminal. This function is intended to be used only for debugging.

One new functional form has been added, tree insert. This functional form breaks up
the the argument into two roughly equal pieces applying itself recursively to the two halves.
The functional parameter is applied to the result.

The binary-ta-unary functions (,bu') has been omitted.

Seven mathematical library functions have been added: sin, cos, asin (sin-I), acos
(COS-I), log, exp, and mod (the remainder function)

PS2:7-34

I. BNF Syntax

fpInput -
fnDef­

application -

name-

nameList -'
object -
fpSequence -

atom­

funForm-

simpFn -

fpDefined -

fpBuiltin -

selectFn -

relFn -
binaryFn·-

libFn -
composition -

construction -

formList -

conditional -

constantFn -

insertion -

alpha -

while -

II. Precedences

1.
2.
3.
4.
5.

%,!, &
@
[...]
.> .. .
while

Berkeley FP .User's Manual, Rev. ~1

Appendix B: FP Grammar

(fnDef 1 application I fpCmda). 'I 'AD'

'{' name funForm '}'

funForm ':' object

letter (letter 1 digit 1 ' _')­

(name)-

atom I fpSequence 1 '?'

'<' (E I object «',' I ' ') object)-) '>'
T 1 'F I '<>' I ,., (ascii-char). , .. , 1 (letter 1 digit)- 1 number

simpFn 1 composition 1 construction I conditional I
constantFn I insertion 1 alpha I while 1 T funForm ')'

fpDefined 1 fpBuiltin

name

selectFn.1 'tl' 1 'id' I 'atom' 1 'not' I 'eq' I relFn I 'null' I 'reverse' I
'distl' I 'distr' I 'length' I binaryFn I 'trans' I 'apndl' I 'apndr' I .
'tIr' 1 'rotl' I 'rok' I 'iota' 1 'pair' 1 'split' 1 'eoncat' 1 'last' I 'libFn'

(E 1 '+' I '. ') unsignedInteger

'<-' I '<' 1 '.' 1 " ... ' I '>' 1 '>-'
'+' 1 '.' 1 '-' I 'r I 'or' I 'and' 1 'xor'

'sin' 1 'cos' 1 'asin' 1 'acos' 1 'log' 1 'exp' I 'mod'

funForm '@' funForm

'[' formList ')'

E I funForm (',' funForm)-

'(' funForm '.>' funForm ';' funForm ')'

'%' object

'!' funForm 1 ' I' funForm

'&' funForm

'(' 'while' funForm funForm ')'

(highest)

(least)

a Command Syntax is listed in Appendix C.

Berkeley FP User's Manual, Rev. 4.1

Appendix C: Command Syntax

All commands begin with a right parenthesis (")").

)fns
)pfn <nameList>
)load <UNIX file name>
)cload <UNIX file name>
)save <UNIX file name>
)csave <UNIX file name>
)fsave <UNIX file name>
)delete <nameList>
)stats on
)stats off'
)stats reset
)stats print [UNIX file name]
)trace on <nameList>
)trace off' <nameList>
)timer on
)timer off'
)debug on
)debug off'
)script open <UNIX file name>
)script close
)script append <UNIX filename>
)help
)lisp

PSl:7-35

PS2:1-36 Berkeley FP User's Manual, Rev. 4.1

Appendix D: Token-Name Correspondences

Token Name
[Ibrack$$
] rbrack$$
{ Ibrace$$
} rbrace$$
(lparen$$
) rparen$$

@ compos$$
! insert$$
I ti$$
& alpba$$. semi$$, .. colon$$
, comma$$
+ builtin$$

+ ~a select$$

• builtin$$
I builtin$$
= builtin$$
- builtin$$

-> arrow$$
o~ selectS$

.> builtin$$
>= builtin$$
< builtin$$

<= builtin$$ - builtin$$ =
%ob constant$$

• j.£ is an optionally signed integer constant.

bois any FP object.

Berkeley FP User's Manual, Rev. 4.1 PS2:7-37

Appendix E: Symbolic Primitive Function Names

The scanner assigns names to the alphabetic primitive functions by appending the string
"$fp" to the end of the function name. The following table designates the naming assign­
ments to the non-alphabetic primitive function names.

Function Name
+ plus$fp
- minus$fp
• times$fp
I div$fp
= eq$fp
> gt$fp

>= ge$fp
< It$fp

<= le$fp - ne$fp =

RA TFOR - A Preprocessor for a Rational Fortran

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

structured programming, control flow, programming

ABSTRACT

PS2:8-1

Although Fortran is not a pleasant language to use, it does have the advantages of universality
and (usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of
Fortran while retaining its desirable qualities, by providing decent control flow statements:

• statement grouping
• if-else and switch for decision-making
• while, for, do, and repeat-until for looping
• break and next for controlling loop exits

and some "syntactic sugar":

• free form input (multiple statementslline, automatic continuation)

• unobtrusive comment convention
• translation of >, >=, etc., into .GT., .GE., etc.
• returD(expression) statement for functions
• define statement for symbolic parameters
• include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.
Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is

remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus
easier to debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other environments. Ratfor
is written in itself in this way, so it is also portable; versions of Ratfor are now running on at least
two dozen different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its
implementation, and user experience.

1. INTRODUcnON
Most programmers will agree that Fortran

is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is often the
only language thoroughly supported on the
local computer. Indeed, it is the closest thing

to a universal programming language currently
available: with care it is possible to write large,
truly portable Fortran programs[l]. Finally,
Fortran is often the most "efficient" language
available, particularly for· programs requiring
much computation.

This paper is a revised and expanded version of oe published in Software-Practice and Experience. October
1975. The btfor desc:ribed here is the one in use on UNIX and ocos at BeD Laboratories. Murray Hill. N.
J.

PS2:8-2

But Fortran is unpleasant. Perhaps the.
worst deficiency is. in the control flow state­
ments - conditional branches and loops -
which express the logic of the program. The
conditional statements in Fortran are primi­
tive. The Arithmetic IF forces the user into at
least two statement numbers and two (implied)
GOTO'S; it leads to unintelligible code, and is
eschewed by aood prosrammers. The. Logical
IF is better, in that the test part can be stated
clearly, but hopelessly restrictive because the
statement that foUows the IF can only be one
Fortran statement (with some further restric­
tions!). And of course there can be no ELSE
part to a Fortran IF: there is no way to specify
an alternative actiOD if the IF is not satisDed.

The Fortran DO restricts the user to SOing
forward in an arithmetic progression. It is. fine
for "I to N in steps of 1 (or 2 or ..•)", but there
is no direct way to go backwards, or even (in
ANSI Fortran(2]) to go from 1 to N -1. And of
course the DO is useless if one's problem
doesn't map into an arithmetic progression.

The result of these failings is. that Fortran
programs must be written with numerous labels
and branches. The resulting code is particu­
larly difficult to read and understand, and thus
hard to debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the· deficiencies, and
to translate it into tbe unpleasant one with· a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of co~ not
new, and preprocessors for Fortran are espe­
cially popular today. A recent listing [3] of
preprocessors shows more than SO, of which at
least half a dozen are widely available.)

1. LANGUAGED~ON

Desip
Ratfor attempts to retain the merits of

Fortran (universality, portability, .efficiency)
while biding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First, since control Bow is central to any pro­
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent
control flow structures. These structures are
sufficient and comfortable for structured pro­
gramming in the narrow sense of programming

RA TFOR - A Preprocessor for a Rational Fortran

without GOTO's. Second, since the preprocessor
must examine an· entire program to translate
the control structUre,· it is possible at the same
time to clean up many of the "cosmetic"
deficiencies of Fortran, and thus provide a
language which is easier and more pleasant to
read and write.

Beyond these two aspects -control flow
and cosmeties - Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be·straightforward to extend it ·to pro- .
vide character strings, for example, they are
not needed by everyone, and of course the
preprocessor would be barderto implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Rat/or doesn't know any
Fortran. Any language feature which would
require that Ratfor really understand Fortran
has been omitted. We will return to this point
in the section on implementation.

Even within the conftnes of control flow
and cosmetics, we have attempted to be selec­
tive in what features to provide. The intent
has been to provide a sD;laU set of the most use­
ful constructs, rather than· to throw in every ...
thing that has "ever been thought useful by
so.meone.

The rest of this section contains an infor ..
mal description of the Ratfor language. The
control flow aspectS will be quite familiar to
readers used to languages like Algol, put, Pas­
cal, etc., and the cosmetic changes are· equally
straightforward. We shall concentrate on show­
ing what the language looks like.

Statement Groupilll
Fortran provides no way to group state­

ments tOgether, short of making them into a
subroutine. The standard construction "if a
condition is true, do this group of things," for
example,

if (x> 100)
(call error("x> 1 00"); err ,. 1;

return}

cannot be written directly in Fortran. Instead
a programmer is forced to translate this rela­
tively clear thought into murky Fortran, by
stating the negative condition and branching
around the group of statements:

RA TFOR - A Preprocessor for a Rational Fortran

10

if (x .Ie. 100) goto 10
call error(5hx> tOO)
err ... 1
return

When the program doesn't work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated
as a unit by enclosing them in the braces { and
}. This is true throughout the language: wher­
ever a single Ratfor statement can be used,
there. can be several enclosed in braces.
(Braces seem clearer and less obtrusive than
begin and end or do and end, and of course do
and end already have Fortran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character ">" is clearer than ... GT.", so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For­
tran compilers permit . character strings in
quotes (like "x> 100"), quotes are not allowed·
in ANSI Fortran, so Ratfor converts it into the
right number of H's: computers count better
than people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several
may appear on one line if they are separated by
semicolons. The example above could also be
written as

if (x> tOO) (

}

call error("x> 100")
err .. 1
return

In this· case, no semicolon is needed at the end
of each line because Ratfor assumes there is
one statement per line unless told otherwise.

Of course, if the statement that follows
the if is a single statement (Ratfor or other­
wise), no braces are needed:

if (y <=- 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first

PS2:8-3

line. In general Ratfor continues lines when it
seems obvious that they are not yet done. (The
continuation convention is discussed in detail
later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In
particular, proper indentation is vital, to make
the logical structure of the program obvious to
the reader.

The "else" Clause
Ratfor provides an else statement to han­

dle the construction "if a condition is true, do
this thing, otherwise do that thing."

if (a <= b)
(sw = 0; write(6, 1) a, b }

else
(sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir­
cuitous indeed:

if (a .gt. b) goto 10
sw = 0
write(6, 1) a, b
goto 20

to sw = I
write(6, 1) b, a

20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations.
But all translations suffer from the same prob­
lem: since they are translations, they are less
clear and understandable than code that is not
a translation. To understand the Fortran ver­
sion, one must scan the entire program to
make sure that no other statement branches to
statements 10 or 20 before one knows that
indeed this is an if-else construction. With the
Ratfor version, there is no question about how
one gets to the parts of the statement. The if­
else is a single unit, which can be read, under­
stood, and ignored if not relevant. The pro­
gram says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

PS2:8-4

if (a <- b)
sw = 0

else
sw - 1

The syntax of the if statement is

if (legal Fortran condition)
Rat/or statement

else
Rat/or statement

where the else part is optional. The legal For­
tran condition is anything that can legally go
into a Fortran Logical IF. Ratfor does not
check this clause, since it does not know
enough Fortran to know what is permitted.
The Rat/or statement is any Ratfor or Fortran
statement, or any collection of them in braces.

Nested Ws
Since the statement that follows an if or

an else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a usefUl example, consider this prob­
lem: the variable f is to be set to -1 if x is less
than zero, to + 1 if x is greater than 100, and to
o otherwise. Then in Rattor, we write

if(x < 0)
f. -1

else if (x > 100)
f. +1

else
f.O

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated. .

This code says what it means. Any ver­
sion written. in straight Fortran win necessarily
be indirect because Fortran does not let you
say what you mean. And as always, clever
shortcuts may tum out to be too clever to
understand a year from now. .

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

RA TFOR - A Preprocessor for a Rational Fortran

if (, .•)

else if (•..)

else if (.•.)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also pro­
vides a switch statement which does the same
job in certain special cases; in more general
situations, we have to make do with spare
parts.) The tests are laid out in sequence, and
each one is fonowed by the code associated
with it. Read down the list of decisions until
one is found that is satisfied. The code associ­
ated with this condition is executed, and then
the entire structure is finished. The trailing
else part handles the "default" case, where
none of the other conditions apply. If there is
no default action, this final else part is omitted:

if(x < 0)
x-O

else if (x > 100),
'x - 100

if-else ambipity

There is one thing to notice about compli­
cated structures involving nested irs and else's.
Consider

if (x > 0)
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

There are two its and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as
it is in many other programming languages.
The ambiguity is resolved in Ratfor (as else­
where) by saying that in such cases the else
goes with the closest previous un-else'ed if.
Thus in this case, the else goes with the inner
if, as we have indicated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent
clear. In:the case above, we would write

RA TFOR - A Preprocessor for a Rational Fortran

if (x > 0) (
if(y> 0)

write(6, 1) x, y
else

write(6, 2) y
}

which does not change the meaning, but leaves
no doubt in the reader's mind. If we want the
other association, we must write

if (x > 0) (
if(y;' 0)

}
else

write(6, 1) x, y

write(6, 2) y

The "switch" StatemeDt

The switch statement provides a clean
way to express multi-way branches which
branch on the value of some integer-valued
expression. The syntax is

switch (expression) {

}

case exprl:
statements·

ease expr2. exprJ:
statements

defaal:
statements

Each case is followed by a list of comma­
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn
until one matches. at which time the state­
ments following that case are executed. If no
cases match expression, and there is a default
section, the statements with it are done; if
there is no default, nothing is done. In· all
situations, as soon as some block of statements
is executed, the entire switch is exited immedi­
ately. (Readers familiar with C(4] should
beware that this behavior is not the same as
the C switch.)

The "do" Statemeat

The do statement in Ratfor is quite simi­
lar to the DO statement in Fortran, except that
it uses no statement number. The statement
number, after aU, serves only to mark the end

PS2:8-S

of the DO, and this can be done just as easily
with braces. Thus

do i-I, n (
xCi) = 0.0
y(i) - 0.0
z(i) - 0.0

}

is the same as

do 10 i-I, n
x(i) - 0.0
y(i) = 0.0
z(i) - 0.0

10 continue

The syntax is:

do legal-Fonran-DO-text
Rat/or statement

The part that follows the keyword do has to be
something that can legally go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran), they can
be used in a Ratfor do.

The Rat/or statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it.
This code sets an array to zero:

do i = 1, n
xCi) = 0.0

Slightly more complicated,

do i-I, n
do j - 1, n

m(i, j) = 0

sets the entire array m to zero, and

do i .. I, n
do j = I, n

if(i < j)
m(i, j) - -1

else if (i -- j)
m(i, j) ,. 0

else
m(i, j) - +1

sets the upper triangle of m to -1, the diagonal
to zero, and the lower triangle to + 1. (The
operator .- is "equals", that is, .. .EQ) In
each case, the statement that follows the do is
logically a single statement, even though com­
plicated, and thus needs no braces.

PS2:8·6

"break" and "next"

Ratfor provides a statement for leaving a
loop early, and one for beginning the next
iteration. break causes an immediate exit from
the do; in effect it is a branch to the statement
after the do. next is a branch to the bottom of
the loop, so it causes the next iteration to be
done. For example, this code skips over nega­
tive values in an array:

do i = 1, n (

}

if (x(i) < 0.0)
next

process positive element

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that
level of enclosing loop; thus .

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 1 iterates
the second enclosing loop. (Realistically,
multi-level break's and next's are not likely to
be much used because they lead to code that is
hard to understand and somewhat risky to
change.) .

The "while" Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

001-2,1

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

if (j <- k)
do i "" j, k {

}

but .this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO
statement is that it encourages that a program
be written in terms of an arithmeticprogres-

RA TFOR - A Preprocessor for a Rational Fortran

sion with small positive steps. even though that
may not be the best way to write it. If code
has to be contorted to fit the requirements
imposed by the Fortran DO, it is that much
harder to write and understand.

To overcome these difficulties, Ratfor
provides a while statement, which is simply a
loop: "while some condition is true, repeat this
group of statements". It has no preconceptions
about why one is looping. For example, this
routine to compute sin(x) by the Maclaurin
series combines two termination criteria.

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) == x - xu3/3! + x**SIS! - ...

sin == x
term = x

i == 3
while (abs(term»e & i< 100) (

}

term = -teI"n:t * x .. 2 I 11oat(i*(i-1)
sin == sin + term
i - i + 2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be
made to compute x**3 and thus a potential
underflow is avoided. Since the test is made at
the top of a while loop instead of the bottom, a
special case disappears - the code works at
one of its boundaries. (The test klOO is the
other boundary - making sure the routine
stops after some maximum number of itera­
tions.)

As an aside, a sharp character "#" in a
line marks the beginning of a comment; the
rest of the line is comment. Comments and
code can co-exist on the same line - one can
make marginal remarks, which is not possible
with Fortran's "C in column I" convention.
Blank lines are also permitted anywhere (they
are not in Fortran); they should be used to
emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
Rat/or statement

RA TFOR - A Preprocessor for a Rational Fortran

As with the if, legal Fortran condition is some­
thing that can go into a Fortran Logical IF, and
Rat/or statement is a single statement, which
may be multiple statements in braces.

The while encourages a style of coding
not normally practiced by Fortran program­
mers. For example, suppose nextch is a func­
tion which returns the next input character
both as a function value and in its argument.
Then a loop to find the first non-blank charac­
ter is just

while (nextch(ich) .. - iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few
compilers) believe this line is illegal. The
language at one's disposal strongly influences
how· one thinks about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop.
body from reason-for-looping a step further
than the while. A for statement allows explicit
initialization and increment steps as part of the
statement. For example, a 00 loop is just

for (i .. I; i <.. n; i .. i + 1) •••

This is equivalent to

i .. I
while (i <- n) {

i .. i + I
}

The initialization and increment of i have been
moved into the for statement, making it easier
to see at a glance· what controls the loop.

The for. and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ­
ous section can be re-written with a for as

for (i==3; abs(term) > e & i < 100;
i=i+2) (

PS2:8-7

term "" -term. u.21 float(i.(i-I»
sin = sin "" term

}

The syntax of the for statement is

for (init ; condition ; increment)
Ratlor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done
at the end of each pass through the loop, before
the test. condition is again anything that is
legal in a logical IF. Any of init, condition. and
increment may be omitted, although the semi­
colons must always be present. A non-existent
condition is treated as always true, so for(;;) is
an indefinite repeat. (But see the repeat-until
in the next section.)

•
The for statement is particularly useful

for backward loops, chaining along lists, loops
that might be done zero times, and similar
things which are hard to' express· with a 00
'statement, and obscure to write out with IF's
and OOTO'S. For example, here is a backwards
00 loop to find the last non-blank character on
a card:

for (i = 80; i > 0; i = i-I)
if (card(i) ! .. blank)

break

("!-" is the same as ".NE."). The code scans the
columns from 80 through to 1. If a non-blank
is found, the loop is immediately broken.
(break. and next work in for's and while's just
as in do's). If i reaches zero, the card is all
blank.

This code is rather nasty to write with a
regular Fortran 00, since the loop must go for­
ward, and we must explicitly set up proper con­
ditions when we fall out of the loop. (Forget­
ting this is a common error.) Thus:

00 10 J .. 1,80
I "" 81 - J
IF (CARD(I) .NE. BLANK) GO TO .11

10 CONTINUE
1-0

11

The version that uses the for bandles the termi­
nation condition properly for free; i is zero
when we fall out of the for loop.

PS2:8-8

The' increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array
ptr) until a zero pointer is found, adding up
elements from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i»

sum = sum + value(i)

Notice that the code works correctly if the list
is empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a poten­
tial boundary error.

The "repeat-nntil" statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This ser­
vice is provided by the repeat-nntil:

repeat
Rat/or statement

until (legal Fortran condition)

The Ratlor statement part is done once, then
the condition is evaluated. If it is true. the
loop is exited; if it is false. another pass is
made. '

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop.
Of course such a loop must ultimately be bro­
ken by some transfer of control such as stop,
return, or break, or an implicit stop such as
running out of input with a READ statement.

As a matter of observed fact{8], the
repeat-until statement is much less used than
the other looping constructions; in particular, it
is typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next
break exits immediately from do, while,

for, and repeat-nntil. next goes to the test part
of do, while and repeat-until, and to the increa

ment step of a for.

"return" Statement
The standard Fortran mechanism for

returning a value from a function uses the
name of the function as a variable which can
be assigned to; the last value stored in it is the
function value upon return. For example, here

RA TFOR - A Preprocessor for a Rational Fortran

is a. routine equal which returns 1 if two arrays
are identical. and zero if they differ. The array
ends are marked by the special value - L

equal"! compare strt to str2;
return 1 if equal, 0 if not

integer function equal(strl. str2)
integer strl(lOO), str2(100)
integer i

says

for (i = 1; strl(i) == str2(i); i == i + 1)
if(strl(i) == -1) {

equal = 1
return

}
equal == 0
return
end

In many languages (e.g., PUI) one instead

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement - in a function F, return(expression)
is equivalent to

{ F ., expression; return }

For example, here is equal again:

equal _ compare str 1 to str2;
'# return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(100), str2(lOO)
integer i

for (i == 1; strl(i) == str2(i); i = i + 1)
if (str1(i) = = -1)

return(l)
return(O)
end

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics
As we said above, the visual appearance

of a language has a substantial effect on how
easy it is to read and understand programs.
Accordingly, Ratfor provides a number of
cosmetic facilities which may be used to make
programs more readable.

RA TFOR - A Preprocessor for a Rational Fortran

Free-form Input
Statements can be placed anywhere on a

line; long statements are continued automati­
cally, as are long conditions in if, wbile, for,
and until. Blank lines are ignored. Multiple
statements may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make
some reasonable guess about whether the state­
ment ends there. Lines ending with any of the
characters

- + • & (-

are assumed to be continued on the next line.
Underscores are discarded wherever they
occur; all others remain as part of the state­
ment.

Any statement that begins with an all­
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted iltto

write(6, 100)
100 format(5hhello)

Translation Services
Text enclosed in matching single or dou­

ble quotes is converted to DR... but is other­
wise unaltered (except for formatting - it may
get split across card boundaries during the
reformatting process). Within quoted strings,
the backslash '" serves as an escape character:
the next character is taken literally. This pro­
vides a way to get quotes (and of course the
backslash itself) into quoted strings:

I

"" ,'"
is a string containing a backslash and an ap0s-

trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

. Any line that begins with the character
'«lb' is left absolutely unaltered except for strip­
ping off the '«lb' and moving the line one posi­
tion to the left. This is useful for inserting con­
trol cards, and other things that should not be
transmogrified (like an existing Fortran pro­
gram). Use '4Jb' only for ordinary statements,
not for the condition parts of if, while, etc., or
the· output may come out in an unexpected
place.

PS2:8-9

The following character translations are
made, except within single or double quotes or
on a lioe beginning with a '«lb'.

=- == .eq. ! = .ne.
> .gt. > - .ge.
< .It. < - .Ie.
& . and. .or.

. not. ~ .not.

In addition, the following translations are pro­
vided for input devices with restricted charac­
ter sets.

[
$(

{
{

"define" Statement

]
$)

}
}

. Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non­
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped oft). A defined name can
be arbitrarily long, and must begin with a
letter.

define is typically used to create symbolic
parameters: .

define ROWS 100
defineCOLS 50

dimension a(ROWS), b(ROWS, COLS)

if(i> ROWS I j > COLS) ...

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right
parenthesis; this allows multi-line definitions.

It is generally a wise practice to use sym­
bolic parameters for most constants, to help
make clear the function of what would other­
wise be mysterious numbers. As an example,
here is the routine equal again,. this time with
symbolic constants.

PS2:8-10

define
define
define
define

YES
NO
EOS
ARB

1
o
-1

100

j equal _ compare str 1 to str2;
return YES if equal, NO if not

integer function equal(strl, str2)
integer strl(ARB), str2(ARB)
integer i

for (i - 1; strI(i) -- str2(i);
i-i+1)

if (strl(i) -- EOS)
retum(YES)

return(NO)
end

"include" Statelllellt
The statement

include fi.le

inserts the fi.le found on input stream file into
the Ratfor input in place of the include state­
ment. The standard usage is to place COMMON
blocks on a fi.le, and inClude that file whenever
a copy is needed:

subroutine x
include commonblocks

end

suroutine y
include commonblocks

end

This ensures that all copies of the COMMON
blocks are identical

Pitfalls. Botches, Blemishes aad otIler FailiDp

Ratfor catches certain syntax. errors, such
as missing braces, else clauses without an if,
and most errors involving missing parentheses
in statements. Beyond that, since Ratfor
knows no Fortran, any erron you make will be
reported by the Fortran compiler, so you will
from time to time have to relate a Fortran
diagnostic back to the Ratfor source.

Keywords are reserved - using if, else,
etc~, as variable . names will typically wreak
havoc. Oon't leave spaces in keywords. Don't
use the Arithmetic IF.

RA TFOR - A Preprocessor for a Rational Fortran

The Fortran aH convention is not recog­
nized anywhere by btfar; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4) on
the UNIX operating system[S]. The language is
specified by a context free grammar and the
compiier constructed usi~g the YACC compiler­
compiler[6].

The Ratfor grammar is simple and
straightforward, being essentially

prog stat
prog stat

stat if (...) stat
if (...) stat else stat
wbile (...) stat
for (.•• ; ... ; ...) stat
do ..• stat
repeat stat
repeat stat until (...)
switch (...) { case ... : prog ...

I retura
I break
I next

default: prog }

I digi~s stat
I{ prog}
I anything unrecognizable

The observation that Ratfor knows no Fortran
follows directly from the rule that says a state­
ment is "anything unrecognizable". In fact
most of Fortran falls into this category, since
any statement that does not begin with one of
the keywords is by definition "unrecognizable."

Code generation is also simple. If the
first thing on a source line is not a keyword
(like if. else, etc.) the entire statement is simply
copied to the output with ap.propriate character
translation and formatting. (Leading digits are
treated as a label.) Keywords cause only slightly
more complicated actions. For example, when
if is recognized, two consecutive labels" L and
L+ 1 are generated and the value of L is
stacked. The condition is then isolated, and
the code

if (.not. (condition» goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance
away and include nested its, of course). the
code

RA TFOR - A Preprocessor for a Rational Fortran

L continue

is generated, unless there is an else clause, in
which case the code is •

goto L+l
L continue

In this latter case, the code

L+ 1 continue

is produced after the statement part of the else.
Code generation for the various loops is
equally simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if (i > 0) x == a

should be left alone, not converted into

if (.not. (i .gt. 0» goto 100

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed
where this kind of "inefficiency" will make
even a measurable difference. In the few cases
where it is important, the offending lines can
be protected by '%'.

The use of a compiler-compiler is
defiJ"lltely the preferred method of software
development. The language is well-defined,
with few syntactic irregularities. Implementa­
tion is quite simple; the original construction
took under a week. The language is sufficiently
simple, however, that an ad hoc recognizer can
be readily constructed to do the same job if no
compiler-compiler is available.

The C version of Ratfor is used on UNIX
and on the Honeywell GCOS systems. C com­
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C
version. The Ratfor version was written so as
to translate into the portable subset of Fortran
described in [1], so it is portable, having been
run essentially without change on at least
twelve distinct machines. (The main restric­
tions of the portable subset are: only one char­
acter per machine word; subscripts in the form
c*v±c; avoiding expressions in places like DO
loops; consistency in subroutine argument
usage, and in COMMON declarations. Ratfor
itself will not gratuitously generate non-

PS2:8-11

standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C);
this compiles into 2500 lines of Fortran. This
expansion ratio is somewhat higher than aver­
age, since the compiled code contains unneces­
sary occurrences of COMMON declarations. The
execution time of the Ratfor version is dom­
inated by two routines that read and write
cards. Clearly these routines could be replaced
by machine coded local versions; unless this is
done, the efficiency of other parts of the trans­
lation process is largely irrelevant.

4. EXPERIENCE

Good Things

"It's so much better than Fortran" is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it
does seem to be true that decent control flow
and cosmetics converts Fortran from a bad
language into quite a reasonable one, assuming
that Fortran data structures are adequate for
the task at hand.

Although there are no quantitative
results, users feel that coding in Ratfor is at
least twice as fast as in Fortran. More impor­
tant, debugging and subsequent revision are
much faster than in Fortran. Partly this is sim­
ply because the code can be read. The looping
statements which test at the top instead of the
bottom. seem to eliminate or at least reduce the
occurrence of a wide class of boundary errors.
And of course it is easy to do structured pro­
gramming in Ratfor; this self-discipline also
contributes markedly to reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modem
languages like Pascal. Once one is freed from
the shackles of Fortran's clerical detail and
rigid input. format, it is easy to write code that
is readable, even esthetically pleasing. For
example, here is a Ratfor implementation of
the linear table search discussed by Knuth [7]:

PS2:8-12

A(m+l) = x
for (i = 1; A(i) != x; i = i + l)

,
if(i > m) {

J •

}
else

m = 1

B(i) = 1

B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can
be found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Rat­
for but by the local Fortran compiler. The
compiler then prints a message in terms of the
generated Fortran, and in a few cases this may
be difficult to relate back to the offending Rat­
for line, especially if the implementation con­
ceals the generated Fortran. This problem
could be dealt with by tagging each generated
line with some indication of the source line
that created ' it, but· this' is inherently
implementation-dependent, so no action has
yet been taken. Error message interpretation is
actually not so arduous as might be thought.
Since Ratfor generates no variables, only a sim­
ple pattern of IF's and GOTO'S, data-related
errors like missing DIMENSION statements are
easy to find in the Fortran. Furthermore, there
has been a steady improvement in Ratfor's
ability to catch trivial syntactic errors like
unbalanced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance, especially to
new users. For example, keywords are
reserved. This rarely makes any difference,
except for those hardy souls who want to use
an Arithmetic IF. A few standard Fortran con­
structions are not accepted by Ratfor, and this
is perceived as a problem by users with a large
corpus of. eXIsting Fortran programs. Protect­
ing every line with a "%' is not really a com­
plete solution, although it serves as a stop-gap.
The best long,.term solution is provided by the
program Struct [9], which converts arbitrary
Fortran programs into Ratfor.

Users who export programs often com­
plain that the generated Fortran is "unread­
able" because it is not tastefully formatted and
contains extraneous CONTINUE statements. To

RA TFOR - A Preprocessor for a Rational Fortran

some extent this can be ameliorated (Ratfor
now has ail option to copy Ratfor comments
into the generated Fortran), but it has always
seemed that effort is better spent on the input
language than on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is relatively easy to
modify, there are now several dialects of Rat­
for. Fortunately, so far most of the differences
are in character set, or in invisible aspects like
code generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a
bad language into quite a good one. A prepro­
cessor is clearly a useful way to extend or
ameliorate the facilities of a base language.

When designing a language, it is impor­
tant to concentrate on the essential. require­
ment of providing the user with the best
language possible for a given effort. One must
avoid throwing in "features" - things which
the user may trivially construct within the
existing framework~

One must also' avoid getting sidetracked
on irrelevancies. For instance it seems point­
less for· Ratfor to prepare· a neatly formatted
listing of either its input or its output. The
user is presumably capable of the self-discipline
required to prepare neat input that reflects his
thoughts. It is much more important that the
language provide free-form input so he can for­
mat it neatly. No one should read the output
anyway except in the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that "One thing
[the language designer] should not do is to
include untried ideas of his own." Ratfor fol­
lows this precept very closely - everything in it
has been stolen from someone else. Most of
the control flow structures are taken directly
Jrom the language C[4] developed by Dennis
Ritchie; the comment and continuation con­
ventions are adapted from Altran{lO).

I am grateful to Stuart Feldman, whose
patient simlllation of an innocent user during
the early days of Ratfor led to several design
improvements and the eradication of bugs. He
also translated the C parse-tables and YACC
parser into Fortran for the first Ratfor version
_of Ratfor.

RA TFOR - A Preprocessor for a Rational Fortran

References

[I] B. G. Ryder, "The PFORT Verifier,"
Software-Practice & Experience. October
1974.

[2] American National Standard Fortran.
American National Standards Institute,
New York, 1966.

[3] For-word: Fortran Development
Newsletter. August 1975.

[4] B. W. Kernighan and D. M. Ritchie, The
C Programming Language, Prentice-Hall,
Inc., 1978.

[5] D. M. Ritchie and K.. L. Thompson, "The
UNIX Time-sharing . System." CACM,
July 1974.

[6] S. C. Johnson, "YACC - Yet Another
Compiler-Compiler." Bell Laboratories
Computing Science Technical Report #32,
1978.

[7] D. E. Knuth, "Structured Programming
with gato Statements." Computing Sur­
veys, December 1974.

[8] B. W. Kernighan· and P~ J. Plauger,
Software Tools. Addison-Wesley, 1976.

[9] B. S. Baker, "Struct '..;,. A Program which
Structures Fortran", Bell Laboratories
internal memorandum, December 1975.

[10] A. D. Hall, "The Altran System for
Rational Function Manipulation - A Sur­
vey." CACM, August 1971.

PS2:8-13

PS2:8-14 RA TFOR - A Preprocessor for a Rational Fortran

Appendix: Usage on UNIX aad GCOS.

Beware -local customs vary. Check with a native before going into the jungle.

UNIX
The program rador is the basic translator; it takes either a list of file names or the standard

input and writes Fortran on the standard output. Options include -6x, which uses x as a continua­
tion character in column 6 (UNIX uses 4 in column 1), and -C, which causes Ratfor comments to be
copied· into the generated Fortran. .

The program re provides an interface to the ratfcw command which is much the same as ceo
ThUS

rc [options] files

compiles the files specified by files. Files with names ending in .r are Ratfor source; other files are
assumed to be for the loader. The flags -C and -6x described above are recognized, as are

-c compile only; don't load
- f save intermediate Fortran .f files
-r Ratfor only; implies -c and -f
- 2 use big Fortran compiler (for large programs)
- U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOS

The program Jratfor is the bare translator, and is identical to the UNIX version, except that the
continl18tion convention is " in column 6. Thus

.lratfor fileS >output

translates the Ratfor source on files and collects the generated Fortran on file 'output' for subsequent
processing.

Jre provides much the same services as rc (within the limitations of Geos), regrettably with a
somewhat different syntax. Options recognized by ./re include

name Ratfor source or library, depending on type
h-/name make TSS H. file (runnable version); run as Iname
r-/name update and use random library
a= compile as ascii (default is bed)
C- copy comments into Fortran
f-name Fortran source file
g-name gmap source file

Other options are as specified for the Jce command described in (4].

TSO, TSS, and otllersystems

Ratfor exists on various other systems; check with the author for specifics.

The FRANZ LISP Manual

by

John K. Foderaro

Keith L. Sklower

Kevin Layer

June 1983

A document in
four movements

PS2:9-2 The Franz Lisp Manual

Overture

A chorus of students under the direction of Richard Fateman have contributed
to building FRANZ LISP from a mere melody into a full symphony. The major
contributors to the initial system were Mike Curry. John Breedlove and Jeff
Levinsky. Bill Rowan added the garbage collector and array package. Tom
London worked on an early compiler and. helped in overall system design.
Keith Sklower has contributed much to FRANZ LISP, adding the bignum pack­
age and rewriting most of the code to increase its efficiency and clarity. Kipp
Hickman and Charles Koester added hunks. Mitch Marcus added *rset,
eva/hook and eva/frame. Don Cohen and others at Carnegie-Mellon made
some improvements to eva/frame and provided various features modelled after
UCIICMU PDP· 10 Lisp and Interlisp environments (editor. debugger. top-level).
John Foderaro wrote the compiler. added a few functions. and wrote much of
this manual. Of course. other authors have contributed specific chapters as indi­
cated. Kevin Layer modified the compiler to produce code for the Motorola
68000, and helped make FRANZ Lisp pass "Lint".
This manual may be supplemented or supplanted by local chapters representing
alterations. additions and deletions. We at U.c. Berkeley are pleased to learn
of generally useful system features. bug fixes, or useful program packages. and
we will attempt to redistribute such contributions.

~ 1980, 1981, 1983 by the Regents of the University of California. (exceptions: Chapters 13,
14 (first halt), 15 and 16 have separate copyrights, as indicated. These are reproduced by per­
mission of the copyright holders.)
Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, and the copyright notice of the
Regents, University of California, is given. All rights reserved.

Work reported herein was supported in part by the U. S. Department of Energy, Contract
DE-AT03-16SFOOO34, Project Agreement DE-AS03-19ERI0358, and the National Science
Foundation under Grant No. MCS 1801291

UNIX is a trademark of Bell Laboratories. VAX and PDP are trademarks of Digital Equipt­
ment Coporation. MC68000 is a trademark of Motorola Semiconductor Products, Inc.

The Franz Lisp ManUal PS2:9-3

Score

First Movement (allegro non troppo)

1. FRANZ LIsp
Introduction to FRANZ LIsp, details of data types, and description of notation

2. Data Structure Access .
Functions for the creation, destruction and manipulation of lisp data objects.

3. Arithmetic Functions
Functions to perform arithmetic operations.

4. Special Functions
Functions for altering flow of control. Functions for mapping other functions
over lists.

S. YO Functions
Functions for reading and writing from ports. Functions for the modification of
the reader's syntax.

6. System Functions
Functions for storage management, debugging, and for the reading and setting
of global Lisp status variables. Functions for doing UNIX-specific tasks such as
process control.

Second Movement (Largo)

. 7. The Reader
A description of the syntax codes used by the reader. An explanation of charac­
ter macros.

8. Functions, Fclosures, and ~ros
A description of various types of functional objects. An example of the use of
foreign functions.

9. Arrays and Vectors
A detailed description oJ the parts of an array and of Maclisp compatible
a"ays.

10. Exception Handling
A description of the e"or handling sequence and of autoloading.

PSl:9-4

Third Movement (Scherzo)

11. The Joseph Lister Trace Package
A description of a very use/ul debugging aid.

12. Lis~ the lisp ~mpiler

The Franz Lisp Manul

A description of tlte operation of the compiler and hints for making /unctions
compilable. .

13. CMU Top Level and Ftle Package
A description of a top level with a history mechanism and a package which
helps you keep track 0/ files of lisp functions.

14 Stepper
A description of a program which permits you to put breakpoints in lisp code
and to single step it. A description of the evallwokand /uncallhook mechanism.

15 Fixit
A program which permits you to exomine and modify evaluation stack in order
to fix bugs on tlte fly.

16 Lisp Editor
A structure editor for interactive modification of lisp code.

Final Movement (allegro)

Appendix A - Function Index
Appendix B -List of Special Symbols
Appendix C - Shon Subjects

Garbage collector, Debugging, Default Top Level

CHAPTER 1

FRANZ LISP

1.1. FRANZ LISpt was created as a tool to further research in symbolic and algebraic mani­
pulation, artificial intelligence, and ·programming languages at the University of Califor­
nia at Berkeley. Its roots are in a PDP-ll Lisp system which originally came from
Harvard. As it grew it adopted features of Maclisp and Lisp Machine Lisp. Substan­
tial compatibility with other Lisp dialects (lnterlisp, UCILisp, CMULisp) is achieved
by means of support packages and compiler switches. The heart of FRANZ LISP is writ­
ten almost entirely in the programming language C. Of course, it has been greatly
extended by additions written in Lisp. A small part is written in the assembly language
for the current hos~ machines, V AXen and a couple of flavors of 68000. Because
FRANz LIsp is written in C, it is relatively portable and easy to comprehend.

FRANZ LISP is capable of running large lisp programs in a timesharing environ­
ment, has facilities for arrays and user defined structures, has a user controlled reader
with character and word macro capabilities, and can interact directly with compiled
Lisp, C, Fortran, and Pascal code.

This document is .a reference manual for the FRANz LISP system. It is not a Lisp
primer or introduction to the language. Some parts will be of interest primarily to
those maintaining FRANz LISP at their computer site. There is an additional document
entitled The Franz Lisp System, by John Foderaro, which partially describes the system
implementation. FRANZ LISP, as delivered by Berkeley, includes all source code and
machine readable version of this manual and system document. The system document
is in a single file named "franz.n" in the "doc" subdirectory.

This document is divided into four Movements. In the first one we will attempt
to describe the language of FRANz LISP precisely and completely as it now stands (Opus
38.69, June 1983). In the second Movement we will look at the reader, function types,
arrays and exception handling. In the third Movement we will look at several large
support packages written to help the FRANz LIsp user, namely the trace package, com­
piler, fixit and stepping package. Finally the fourth movement contains an index into
the other movements. In the rest of this chapter we shall examine the data types of·
FRANZ LISP. The conventions used in the description of the FRANz LISP functions will
be given in § 1.3 - it is very important that these conventions are understood.

ttt is rumored that this Dame bas something to do with Franz Liszt [Frants List] (1811-1886) a Hungarian com­
poser and keyboard virtuoso. These allegations have never been proven.

The Franz Lisp Manual PS2:9-S

PS2:9-6 The Fraoz Lisp Manual

1.2. Data Types FRANZ LISP has fourteen data types. In this section we shall look in
detail at each type and if a type is divisible we shall look inside it. There is a Lisp
function type which will return the type name of a lisp object. This is the official
FRANZ LISP name for that type and we will use this name and this name only in the
manual to avoid confusing the reader. The types are listed in terms of importance
rather than alphabetically.

1.2.0. Iispval This is the name we use to describe any Lisp object. The function type
will never return 'lispval'.

1.2.1. symbol This object corresponds to a variable in most other programming
languages. It may have a value or may be 'unbound'. A symbol may be lambda
bound meaning that its current value is stored away somewhere and the symbol is
given a new value for the duration of a certain context. When the Lisp processor
leaves that context, the symbol's current value is thrown away and its old value is
restored.

A symbol may also have a junction binding. This function binding is static; it can­
not be lambda bound. Whenever the symbol is used in the functional position of a
Lisp expression the function binding of the symbol is examined (see Chapter 4 for
more details on evaluation).

A symbol may also have a property list, another static data structure. The property
list consists of a list of an even number of elements,considered to be grouped as
pairs·. The first element .of the pair is the indicator the second the· value of that indi-'
cator.

Each symbol has a print name (pname) which is how this symbol is accessed from
input and referred to on (printed) output.

A symbol also has a hashlink used to link symbols together in the oblist - this field
is inaccessible to the lisp user.

Symbols are created by the reader and by the functions concat, maknam and their
derivatives. Most symbols live on FRANZ LIsp's sole oblist, and therefore two sym­
bols with the same print name are usually the exact same object (they are eq).
Symbols which are not on the oblist are said to be uninterned. The function mak­
nam creates uninterned symbols while concat creates interned ones.

The Franz Lisp Manual PS2:9-7

Subpart name Get value Set value Type

value eval set hspval
setq

property plist setplist list or nil
list get putprop

defprop
function getd putd array, binary, list
binding def or nil

print name gecpname string
hash link

1.2.2. list A list cell has two parts, called the car and cdr. List cells are created by the
function cons.

Subpart name Get value Set value Type .-

car car rplaca hspval
cdr cdr rplacd lispval

-

1.2.3. bill8l)' This type acts as a function header for machine coded functions. It has
two parts, a pointer to the start of the function and a symbol whose print name
describes the argument discipline. The discipline (if lambda, macro 9l nlambda)
determines whether the arguments to this function will be evaluated by the caller
before this function is called. If the discipline is a string (specifically "subroutine",
"function", ·integer-Junction·, "real-Junction·, ·c-Junction·, "double-c-Junction", or
·vector-c-:function") then this function is a foreign subroutine or function (see §8.5
for more details on this). Although the type of the entry field of a binary type object
is usually string or other, the object pointed to is actually a sequence of machine
instructions.
Objects of type binary are created by mfunction. cfasl. and getaddress.

Subpart name Get value Set value Type

entry getentry stnng or unum
discipline getdisc putdisc symbol or fixnum

1.2.4. fiXDum A fixnum is an integer constant in the range _231 to 231 _1. Small
fixnums (-1024 to 1023) are stored in a special table so they needn't be allocated'
each time one is needed. In principle, the range for fixnums is machine dependent,
although all current implementations for franz have this range.

PS2:9-8 The· Fraaz Lisp Muual

1.1.5. Boaum A tlonum is a double precision real number. On the VAX, the range is
±2.9x to-37 to ±1.7x 1038• There are approximately sixteen decimal digits of preci­
sion. Other machines may have other ranges.

1.1.6. bip_ A bignum is an integer of potentially unbounded size. When integer
arithmetic exceeds the limits of fixnums mentioned above, the calculation is
automatically dolle with bignums. Should calculation with bignums give a result
which can berepreseated as a fixnum, thea the unum representation will be usedt .
This ContractiOD is known as integer nomuziizlltion. Maay Lisp tlmctions assume
that integers are normalized. Bignums are composed of a sequence of Ust cells and
a cell mown as an sdot. The user should coasider a bipum structure indivisible
and use t\mctions such as IuJiptUt, and bignum-lejishi/t to extract parts of it.

1.1.7. striq A striag is a null terminated sequence of characters. Most functions of
symbols which operate on the symbol's print name will also work on strings. The

. default reader syntax is set so that a seQJ1eDce of characters surrounded by double
quotes is a strina.

1.1.8. pOrt A pOrt is a structure which the system 110 routines can reference to
transfer data. between the Lisp system and external media. Unlike other Lisp
objects there are a very limited number of ports (20). Ports are allocated by infi/e
and out/de and deallocated by close and resetio. The print function prints a port as
a percent sign foHowed by the name of the file it is connected to (if the port was
Qpened by fi/eopen, infi/e, or outfi/e). Duriag initialization, FRANz LISP binds t~e
symbol piport to a port attached to the standard input stream. This port prints as
%$stdin. There are ports connected to the standard output and error streams,
which print as %$stdout and %$stderr. This is discussed in more detail at the
beginning of Chapter S.

1.1.9. vector Vectors are indexed sequences of data. They can be used to implement
a notion of user-defined types via their associated property list. They make huuks
(see below) logically unnecessary, although hunks are very efficiently garbage col­
lected. There' is a second kind of vector, called an immediate-vector, which stores
binary data. The name that the function type returns for immediate-vectors is vee-.
tori. Immediate-vectors could be used to implement strings and block-tlonum
arrays. for example. Vectors are discussed in chapter 9. The tlmctions new-vector,
and vector, can be used to create vectors.

tnc ClIlTCIlt a1aoritbms for iDlepi' arithmetic opetations will return (iD cettaiD cases) a result between :230 and
231 as a bisttum a1thouch this could be repmented as a unum.

Tbe Franz Lisp Manual PS2:9-9

Subpart name Get value Set value Type

datum[i] vref vset lispval
property vprop vsetprop lispval

vputprop
size vsize - ftxnum

1.2.10. array Arrays are rather complicated types and are fully described in Chapter
9. An array consists of a block of contiguous data, a function to access,that data,
and auxiliary fields for use by the accessing function. Since an array's accessing
function is created by the user, an array can have any form the user chooses (e.g. n­
dimensional, triangular, or bash table).
Arrays are created by the function ma"ay.

Subpart name Get value Set value Type

access function getaccess putaccess blDary, list
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lispval
length getlength putlength fixnum
delta getdelta putdelta fixnum

1.2.11. value A value cell contains a pointer to a lispval. This type is used mainly by
arrays of general lisp objects. Value cells are created with the ptr function. A value
cell containing a pointer to the symbol 'foo' is printed as '(ptr to)foo'

1.2.12. bunk A hunk is a vector of from 1 to 128 lispvals. Once a hunk is created (by
hunk or makhunk) it canno~ grow or shrink. The access time for an element of a
hunk is, slower than a list cell element but faster than an array. Hunks are really
only allocated in sizes which are powers of two, but can appear to the user to be any
size in the 1 to 128 range. Users of hunks must realize that (not (atom '/ispval)) will
return true if /ispval is a hunk. Most lisp systems do not have a direct test for a list
cell and instead use the above test and assume that a true result means /ispva/ is a
list cell. In FRANz LISP you can use dtpr to check for a list cell. Although hunks
are not list cells, you can still access the first two hunk elements with cdr and car
and you can access any hunk element with cxrt. You can set the value of the first
two elements of a hunk with rp/acd and rpiaca and you can set the value of any ele­
ment of the hunk with rplacx. A hunk is printed by printing its contents

tIn a hunk, the function cd, references the first element and car the second.

PS2:9-10 The Frau Lisp Manual

surrounded by { and}. However a hunk cannot be read in in this way in the stan­
dard lisp system. It is easy to write a reader macro to do this if desired.

1.1.13. other Occasionally, you can obtain a pointer to storage not allocated by the
lisp system. One example of this is the entry field of those FRANZ LISP functions
written in C. Such objects are classified as of type other. Foreign functions which
call malloc to allocate their own space, may also inadvertantly create such objects.
The garbage collector is supposed to ignore such objects.

1.3. DocumentatioD The conventions used in the following chapters were designed to
give a great deal of information in a brief space. The first line of a function description
contains the function name in bold face and then lists tbe arguments, if any. The argu­
ments all have names which begin with a letter or letters and an underscore. The
letter(s) gives the allowable type(s) for that argument according to this table.

Letter Allowable type(s) .

g any type
s symbol (although nil may not be allowed)
t string
1 list (although nil may be allowed)
n number (fixnum, tlonuin. bignum)
i integer (fixnum, bignum)
x fixnum
b bignum
f Bonum
u function type (either binary or lambda body)
y binary
v vector
V vectori
a array
e value
p port (or nil)

h hunk

In the first line of a function description, those arguments preceded by a quote mark
are evaluated (usually before the function is called). The quoting convention is used so
that we can give a name to the result of evaluating the argument and we can describe
the allowable types. If an argument is not quoted it does not mean that that argument
will not be evaluated, but rather that if it is evaluated, the time at which it is evaluated
will be specifically mentioned in the function description. Optional arguments are sur­
rounded by square brackets. An ellipsis (...) means zero or more occurrences of an
argument of the directly preceding type.

CHAPTER 2

Data Structure Access

The following functions allow one to create and manipulate the various types of
lisp data structures. Refer to § 1.2 for details of the data structures known to FRANZ
LIsp.

2.1. Lists

The following functions exist for the creation and manipulating of lists. Li.sts are
composed of a linked list of objects called either 'list cells', 'cons cells' or 'dtpr cells'.
Lists are normally terminated with the special symbol nil. nil is both a symbol and a
representation for the empty list O .

•

2.1.1. list creatiOD

(cons ~g..arg!'g..arg2)

RETURNs:a new list cell whose car is g..argl and whose cdr is g..arg2.

(xcoas 'g..arg! 'g..arg2)

EQUIVALENT TO:(COns '6_arg2 'g_arg 1)

(neons 'Lars)

EQUIVALENT TO:(COns 'g_arg nil)

(list [' Larg 1 ...])

RETURNS:a list whose elements are the Largi.

(append 'Larg! 'Larg2)

RETURNS:a list containing the elements of Larg! followed by Larg2.

NOTE: To generate the result, the top level list cells of Larg1 are duplicated and the cdr
of the last list cell is set to point to Larg2. Thus this is an expensive operation if
Larg! is large. See the descriptions of nconc and tconc for cheaper ways of doing
the append if the list Largl can be altered.

The Frau Lisp Maaual PS2:9-11

PS2:9-12

(appeal 'I_aral 'Lara2)

RETURNs:a list like I_aral with Lara2 as the last element.

NOTE: this is equivalent to (append 'Carat (list 'Lara2».

; A commoa mistake is usiaa appea4 to add one element to the end of a list
-> (append '(a bed) 'e)
(a bed. e)
; The user iatended to say:
-> (append '(a bed) '(e))
(a bed e)
; better is appendl
-> (apJW1ll/l '(a bed) 'e)
(a bed e)

(quote! [Lqforml1 .•• [! 'Leforml1 ... [I! '_formI1 ...)

The Fraaz Lisp Manual

RETURNS:The list resulting from the splicing and insertion process described below.

NOTE: quote! is the complement of the List function. List forms a list by evaluating each
for in the argument list; evaluation is suppressed if the form is quoteed. In quote!.
each form is implicitly quoteed. To be evaluated, a form must be preceded by
one of the evaluate operations ! and I!. ! Leform evaiuat~ Lform aIid the value
is inserted in the place of the call; !! Lform evaluates Lform and the value is
spliced into the place of the call.

'Splicing in' means that the parentheses surrounding the list are removed as the
example below shows. Use of the evaluate operators can occur at any level in a
form argument.

Another way to get the effect of the quote! function is to use the backquote char­
acter macro (see § 8.3.3).

(quote! cons I (COlIS' I 2) j) - (cons (l . 2) j)
(quote! I !I (list 2 j 4) $) - (l 2 j 4 $)
(setq quoted 'evaIed)(quote!! ((1 am ! quoted))) .. ((1 am evaled))
(quote! try! '(this! one)) - (try (this! one))

The Franz Lisp Manual

(bignum-to-list 'b_arg)

RETURNS:A list of the fixnums which aJ;e used to represent the bignum.

NOTE: the inverse of this function is list-to-bignum.

(list-to-bignum 'l_ints)

WHERE: Lints is a list of fixnums.

RETURNs:a bignum constructed of the given fixnums.

NOTE: the inverse of this function is bignum-to-list.

2.1.2. list predicates

(dtpr 's-arg)

RETURNS:t iff s-arg is a list cell.

NOTE: that (dtpr '0) is nil. The name dtpr is a contraction for "dotted pair".

(listp'S-arg)

RETURNS: t iff s-arg is a list object or nil.

(tailp 'Lx 'Ly)

PS2:9-13

RETURNS:l_x, if a list cell eq to Lx is found by cdring down Ly zero or more times, nil
otherwise.

-> (setq x '(a bed) y (edd, x))
(c d)
-> (and (dtp, x) ([istp x)) ; x and yare dtprs and lists
t
-> (dtp, '0) ; () is the same as nil and is not a dtpr
nil
-> (listp '0) ; however it is a list
t
-> (tailp y x)
(c d)

PS2:9-14

(length 'Larg)

RETURNs:the number of elements in the top level of list Lars.

2.1.3. list accessing

(car'Larg)
(cdr'Larg)

.

The Frau Lisp Manual

RETURNS:eons cell. (ear (eons x y» is always x, (cdr (cons x y» is always y. In FRANZ
LISP, the cdr portion is located first in memory. This is hardly noticeable, and
we mention it primarily as a curiosity.

(c .• r'lh_arg)

WHERE: the .. represents any positive number of a's and d's.

RETURNs:the result of accessing the list structure in the way determined by the function
name. The a's and d's are read from right to left, a d directing the access
down the cdr part of the list cell and an a down the car part.

NOTE: Ih_arg may also be nil, and it is guaranteed that the car and cdr of nil is nil. If
Ih_arg is a hunk. then (ear 'Ih_arg) is the same as (exr 1 'lh_arg) and (cdr 'lh_arg)
is the same as (exr 0 'lh_arg).
It is generally hard to read and understand the context of functions with large
strings of a's and d's, but these functions are supported by rapid accessing and
open-cotnpiling (see Chapter 12). .

(nth 'x_index 'Llist)

RETURNs:the nth element of Llist, assuming zero-based index. Thus (nth 0 I_list) is the
same as (car I_list). nth is both a function, and a compiler macro, so that
more efficient code might be generated than for nthelem (descnbed below).

NOTE: If x_argi is non-positive or greater than the length of the list, oil is returned.

(nthcdr 'x_index 'Llist)

RETURNs:the result of edring down the list Llist x_index times.

NOTE: If x_index is less than 0, then (cons nil 'Llist) is returned.

(nthelem 'x_argi 'Larg2)

RETURNs:The x_argI'st element of the list Larg2.

NOTE: This function comes from the PDP-ii Lisp system.

The Franz Lisp Manual

(last 'Larg)

RETURNs:the last list cell in the list l_arg.

EXAMPLE:/ast does NOT return the last element of a list!
(last '(a b)) - (b)

(ldifi' 'Lx 'Ly)

PS2:9-15

RETURNS:a list of all elements in Lx but not in Ly , i.e., the list difference of I_x and
Ly.

NOTE: Ly must be a tail of Lx, i.e., eq to the result of applying some number of cdr's to
Lx. Note that the value of Idiff is always new list structure unless Ly is nil,
in which case (Idijf l...x nil) is I_x itself. If l_y is not a tail of Lx, Idijf gen­
erates an error.

EXAMPLE:(ldijf'l...x (member 'gJoo 'I...x)) gives all elements in Lx up to the first I-foo.

2.1.4. list manipulatioa

(rplac:a 'lh_argl 'Larg2)

RETURNs:the modified lh_argl.

SIDE EFFECI': the car of lh_argl is set to 1-arg2. If lh_argl is a hunk then the second
element of the hunk is set to g.:..arg2.

(rplacd 'lh_argl '1-arg2)

RETURNS:the modified lh_argl ..

SIDE EFFECI': the cdr of lh.-arg2 is set to 1-arg2. If lh_arg 1 is a hunk then the first ele­
ment of the hunk is set to 1-arg2.

(attach 'I-x 'LI)

RETURNS:LI whose car is now I-X, whose cadr is the original (car LI), and whose cddr is
the original (cdr LI).

NOTE: what happens is that I-X is added to the beginning of list U yet maintaining the
same list cell at the beginning of the list.

(delete 'I-val 'Llist ['x_count])

RETURNs:the result of splicing I-val from the top level of I_list no more than x_count
times.

NOTE: x_count defaults to a very large number, thus if x_count is not given, all
occurrences of I-val are removed from the top level of Llist. I-val is compared
with successive car's of Llist using the function equal.

SIDE EFFECI': Llist is modified using rpl~d, no new list cells are used.

PSl:9-16

(delq 'L val 'Llist ['x_count])
(dreaaove 'Lval 'LUst ['x_count])

The Fraaz Lisp Manual

RETURNS:the result of splicing L val from the top level of Llist no more than x_count
times.

NOTE: delq (and dremolle) are the same as delete except that eq is used . for comparison
instead of equal.

; note that you should use the value retUJ'Ded by delete or delq
; aud not assume that L val will always show the deletions.
; Foraample

-> (setq test '(a b cad e))
(a b c a de)
-> (delete 'a test)
(b c d e) ; the value returned is what we would expect
-> test
(a bed e) ; but test still bas the first a in the list!

(remq 'LX '1_1 ['x_count])
(reaaove 'Lx 'IJ)

RETURNs:a copy of 1_1 with all ~op level elements equal to 8.,.X removed. remq uses eq
instead of equal for comparisons.

NOTE: remove does not modify its arguments like delete, and delq do.

r

RETURNs:a list consisting of LUst with 8-object destructively inserted in a place deter­
mined by the ordering function u_comparefn.

NOTE: (comparej'n 'g..x 'g-y) should return something non-nil if LX can precede LY in
sorted order, nil if 8-Y must precede LX. If u_comparefn is nil, alphabetical
order will be used. If Lnodups is non-nil, an element will not be inserted if an
equal element is already in the list. insert does binary search to determine where
to insert the new element.

(merge 'Ldatal 'I_datal 'u_comparefn)

RETURNs:the merged list of the two input sorted lists Ldataland Ldatal using binary
comparison function u_comparefn.

. .
NOTE: (comparej'n 'g..x 'g-y) should return something non-nil if LX can precede LY in

sorted order, nil if 8-Y must precede LX. If u_comparefn is nil. alphabetical
order will be used. u_comparefn should be thought of as "less than or equal".
merge changes both of its data arguments.

The Fraaz Lisp Manual PS2:9-17

(subst 'g..x '8-Y 'l_s)
. (dsubst '8-X '8-Y '_s)

RETURNs:the result of substituting 8-X for all equal occurrences of 8-Y at all levels in
l_s.

NOTE: If 8-Y is a symbol, eq will be used for comparisons. The function subst does not
modify Ls but the function dsubst (destructive substitution) does.

(lsubst'Lx '8-Y '_s)
RETURNS:a copy of Ls with Lx spliced in for every occurrence of of 8-Y at all levels.

Splicing in means that the parentheses surrounding the list Lx are removed as
the eXainple below shows.

-> (subst '(a b c) 'x '(x y z (x y z) (x y z)))
«a b c) y z «a b c) y z) «a b c) y z»
-> (/subst '(a b c) 'x '(x y z (x y z) (x y z)))
(a bey z (a bey z) (a bey z»

(subpair 'Lold 'Lnew 'Lexpr)

WHERE: there are the same number of ele~~nts in Lold as Lnew.

RETURNs:the list Lexpr with all. occurrences of a object in Loid replaced. by the
corresponding one in Lnew. When a substitution is made, a copy of the value
to substitute in is not made.

EXAMPLE:(subpair '(a c)' (x y) '(a bed)) == (x b y d)

(ncone'l ... argl 'Larg2 ['1_arg3 ...])

RETURNS:A list consisting of the·elements of Largl followed by the elements of Larg2
followed by Larg3 and so on.

NOTE: The cdr of the last list cell of Largi is changed to point to Largi + J.

PSl:9-18

; nconc is faster than append because it doesn't allocate new list cells.
-> (setq lisl '(a be))
(a be)
-> (setq lisl '(d e j))
(d e t)
-> (append lisl lisl)
(a b e de t)
-> lisl
(a b e) ; note that list has not been chanaed by append
-> (nconc lisl lis2)
(a bed e t) ; nconc returns the same value as append
-> lill
(a bed e t) ; but in doiDa so alters list

(reverse 'l_arg)
(nnverse 'l_arg)

.TIae Fraaz Us, Muul

RETURNs:the list Carg with the elements at the top level in reverse order.

NOTE: The function nreverse does the reversal in place, that is the list structure is
modified.

(nrecone 'Carg 'Lars)

EQUIVALENT To:(nconc (nreverse 'Carg) 'g_arg)

c

2.2. Predicates

The following functions test for properties of data objects. When the result of the
test is either 'false' or 'true', then nil will be returned for 'false' and something other
than nil (often t) will be returned for 'true'.

(arrayp'l-ars)

RETURNS:t Hrl-arg is of type array.

(atom 'Lara>

RETURNS:t iff'l-arg is not a list or hunk object.

NOTE: (atom '()J retums t.

The Franz Lisp Manual PS2:9-19

(bcdp 'g_arg)

RETURNS:t iff g..arg is a data object of type binary.

NOTE: This function is a throwback to the PDP-ii Lisp system. The name stands for
binary code predicate.

(bigp 'g..arg)

RETURNS:t iff g..arg is a bignum.

(dtpr 'g..arg)

RETURNS:t iff g..arg is a list cell.

NOTE: that (dtpr '0) is nil.

(hunkp 'g..arg)

RETURNS:t iff g..arg is a hunk.

(listp 'g..arg)

RETURNS:t iff g..arg is a list object or nil.

(stringp 'g..arg)

RETURNS:t iff g..arg is a string.

(symbolp 'g..arg)

RETURNS:t iff g..arg is· a symbol.

(valuep 'g..arg)

RETURNS:t iff g..arg is a value cell

(vectorp 'v_vector)

RETURNS:t iff the argument is a vector.

(vectorip 'v_vector)

RETURNS:t iff the argument is an immediate-vector.

(type 'g..arg)
(typep 'g..arg)

RETURNs:a symbol whose pname describes the type of g..arg.

PS2:9-20 The Franz Lisp MaDaaI

(sip, s_test 's-val)

RETURNS:t iff S-val is a number and the given test s_test on S-val returns true.

NOTE: The fact that signp simply returns nil if S-val is not a number is probably the
most important reason that signp is used. The permitted values for s_test· and
what they mean are given in this table.

s_test tested

I s-val < 0
Ie s-val :s; 0
e s-val- 0
n s-val" 0
ge s-val ~ 0
g s-val> 0

(eq 's-argi 's-arsl)

RETURNS:t if s-argi and s-arsl are the exact same lisp object.

NOTE: Eq simply tests if S-argi and s-arsl are located in the exact same place in
memory. Lisp objects which print the same are not necessarily eq.' The only
objects guaranteed to be eq are interned symbols with the same print name.
[Unless a symbol is created in a special way (such as with uconcat or maknam) it
will be interned.]

(neq 's-x 'S-y)

RETURNS:t if s-x is not eq to-S-Y, otherwise nit

(equaI'S-argi 's-arg2)
(eqstr 'S-argi 's-arg2)

RETURNS:t iff'S-argi and S-arg2 have the same structure as described below.

NOTE: S-arg and s-arg2 are equal if

(1) they are eq.

(2) they are both fixnums with the same value

(3) they are both tlonums with the same value

(4) they are both bignums with the same value

(S) they are both strings and are identical.

(6) they are both lists and their cars and cdrs are equal.

The Franz Lisp Manual

; eq is much faster than equal, especially in compiled code,
; however you cannot use eq to test for equality of numbers outside
; of the ranae ·1024 to 1023. equal will always work.
-> (eq 1013 1023)
t
-> (eq 1024 1024)
nil
-> (equal 1024 1024)
t

(not 'Larg)
(nuD 'Larg)

RETURNS:t iff Larg is nil.

(member'Largl 'Larg2)
(memq 'Largl 'l_arg2)

PSl:9-21

RETURNs:that part of the Larg2 beginning with the first occurrence of Lugl. If Lars!
is not in the top level of Larg2, nil is returned.

NOTE: member tests for equality with equal, mem9 tests for equality with eq.

2.3. Symbols and Strings

In many of the following functions the distinction between symbols and strings is
somewhat blurred. To remind ourselves of the difference, a string is a null terminated
sequence of characters, stored as compactly as possible. Strings are used as constants
in FRANZ UsP. They eval to themselves. A symbol has additional structure: a value,
property list, function binding, as well as its external representation (or print-name). If
a symbol is given to one of tbe string manipulation functions below, its print name will
be used as the string.

Another popular way to represent strings in Lisp is as a list of fixnums which
represent characters. The suflix 'n' to a string manipulation function indicates that it
returns a string in this form.

PS2:9-22

2.3.1. symbol and striaa creatioa

(coacat ['stD_arg 1 ... D
(ucoacat ['stn_argl .•• D

The Franz LisP, Muuai

RETURNS:a symbol whose print name is the result of concatenating the print names,
string characters or numerical representations of the sn_arg;.

NOTE: If no arguments are given, a symbol with a null pname is returned. concat places
the symbol created on the oblist, the function uconcat does the . same thing but
does not place the new symbol on the oblist.

EXAMPLE:(concat 'abc (add J 4) "del) - abc7def

(conc:ad 'Carg)

EQUIVALENT To:(apply 'concal 'Larg)

(implode 'Carg)
(maknllDl '1_arg)

WHERE: Carg is, a list of symbols, strings and smallfixnums.

RETURNs:The symbol whose print name·is the result of concatenating the first characters
of the print names of the symbols and strings in the list. Any lixnums are con-:
verted to the equiValent ascii character. In order to concatenate entire strings
or print names, use .the function concal. .

NOTE: implode interns the symbol it creates, maknam does not.

(aeaSyJD ['s_leader))

RETURNS:a new uninterned atom beginning with the first character of s_leader's pname,
or beginning with g if s_leader is not given.

NOTE: The symbol looks like xOnnnnn where x is s_leader's first character and nnnnn is
the number of times you have called gensym.

(copysymbol 's_arg '8-pred)

RETURNS:an uninterned symbol with the same print name as Larg. If 8-pred is non nil,
then the value, function binding and property list of the new symbol are made
eq to those of s_arg.

(ascii 'x_charnum)

WHERE: x_charnum is between 0 and 255.

RETURN~a symbol whose print name is the single character whose lixnum representa-­
tion is x_charnum.

The Franz Lisp Manual

(intern 's_arg)

RETURNS:LalI

SIDE EFFECT: S_alI is put on the oblist if it is not already there.

(remob 's_symbol)

RETURNS: Lsymbol

SIDE EFFECT: s_symbol is removed from the oblist.

(rematom's_alI)

RETURNS:t if S_alI is indeed an atom.

PSl:9-23

SIDE EFFECT: S_alI is put on the free atoms list, effectively reclaiming an atom cell.

NOTE: This function does not check to see if S_alI is on the oblist or is referenced any-
where. Thus calling rematom on an atom in the oblist may result in disaster
when that atom cell is reused!

2.3.2. mOl and symbol predicates

(boundp's_name)

RETURNs:nil if s_name is unbound: that is, it has never been given a value. If x_name
. has the value 8-val, then (nil. 8-val) is returned. See also makunbound.

(alplWessp 'sCalIl 'scarg2)

RETURNS:t iff the 'name' of SCalIl is alphabetically less than the name of sCarg2. If
SCarg is a symbol then its 'name' is its print name. If SCali is a string, then
its 'name' is the string itself.

2.3.3. symbol and string accessing

(symeval 'S_alI)

RETURNs:the value of symbol s_alI.

NOTE: It is illegal to ask for the value of an unbound symbol. This function has the
same effect as eval, but compiles into much more efficient code.

(gecpnaDle 's_arg)

RETURNS:the string which is the print name of S_alI-

PS2:9-24 The Fraaz Usp Maaual

(pUst's_ara)

RETURNs:the property list of s_atg.

(Ietd 's_arg)

RETURNS:the ftutetion definition of s_arg or nil if there is no ftutction definition.

NOTE: the function definition may tum out to be an array header.

~cbar's_arg'x_index)
(nthcbar's_arg'x_index)
(ptcbarn 's_arg 'x_index)

RETURNs:the x_indexth character of the print name ofs_arg or nil if x_index is less than
I or greater than the length of s_arg's print name.

NOTE: getchar and nthchar return a symbol with a smile character print name, getcham
returns the mum representation of the character.

(substrilll 'sestring 'x_index ['x_length»
(substrinp 'st_string 'x_index £'xJength])

RETURNs:a string of length at 1110st x_length starting atx_indexth character in the string.

NOTE: If x-length is not' given, all of the characters for x_index to the end of the string
are returned. If x_index is negative the string begins at the x-indexth character
from the end. If x-index is out of bounds, nil is returned.

l'l'OTE: substring returns a list of symbols, substringn returns a list of fixnulns. If sub- ..
stringn is given a 0 x_length argument then a sinlle fixnum which is the x_indexth
character is returned. .

2.3.4. symbol and string manipulation

(set 's_argl '1-arg2)

RETURNS:I-arg2.

sIDe EFFECT: the value of s_argl is set to 1-arg2.

(setq s_atml 'I-vall [s_atm.2 'I-va12•.])

WHERE: the arguments are pairs of atom names and expressions.

RETURNs:the last I-vali.

SIDE EFFECf: each s_atmi is set to have the value I-vali.

NOTE: set evaluates all of its arguments, setq does not evaluate the s_atmi.

The Franz Lisp Manual PS2:9-25

(desetq sLpatternl 's.-expl [......])

RETURNs:s.-expn

SIDE EFFECT: This acts just like setq if all the sLpatterni are symbols. If sLpatterni is a
list then it is a template which should have the same structure as s.-expi
The symbols in sLpattern are assigned to the corresponding parts of
8-exp. (See also setf)

EXAMPLE:(desetq (a b (c . d)) '(1 2 (3 4 5)))
sets a to 1, b to 2, c to 3, and d to (4 5).

(setplist 's_atm 'l_plist)

RETURNS: Lplist.

SIDE EFFECT: the property list of Latm is set to Lplist.

(muonboond's_arg)

RETURNS:S_arg

SIDE EFFECT: the value of s_arg is made ·unbound'. If the interpreter attempts to evalu­
ate s_arg before it is again given a value, an unbound variable error will
occur.

(aexplode 's_arg)
(explode's.-arg)
(aexplodec 's_arg)
(explodec's.-arg)
(aexplodeD's_arg)
(explodeD's.-arg)

RETURNS:a list of the characters used to print out s_arg or s.-arg.

NOTE: The functions beginning with 'a' are internal functions which are limited to sym­
bol arguments. The functions aexplode and explode return a list of characters
which print would use to print the argument. These characters include all neces­
sary escape characters. Functions aexplodec and explodec return a list of charac­
ters which patom would use to print the argument (i.e. no escape characters).
Functions aexploden and exploden are similar to aexplodec and explodec except
that a list of fixnum equivalents of characters are returned.

PS2:9-26

-> (setq x 'Iquote this \1 ok?I)
I quote this \1 olt?1
-> (explode x)
(q u 0 te 1\\1 lit his 1\\1 1 I 1\\1 1\11 1\\1 I 1 0 It 1)
; note that 1\\ I just means the single character: backslash.
; and 1\11 just means the sinale character: vertical bar
; and I I means the single character: space

-> (explodec x)
(q U 0 tel I t his I I 1\11 I I 0 It·?)
-> (exploden x)
(113 117 III 116 101 32 116 104 lOS llS 32 12432 111 10763)

2.4. Vectors

The Franz Usp Manual

See Chapter 9 for a discussion of vectors. They are less efficient that hunks but
more efficient than arrays.

2.4.1. vector creation

(new-vector 'x_size ['g,.Jill ('!-prop]})

RETURNS:A vector of length x_size. Each data entry is initialized to g..till, or to nil, if
the argument &-fill is not present. The vector's property is set to &-prop, or to
nil. by default.

(new-vectori-byte 'x_size [,&-fill ['&-prop]])
(new-vectori-woni 'x_size ('&-till ['&-prop]])
(new-vedori-Iong 'x_size ['&-fill ['&-prop]])

RETURNS:A vedOri with x_size elements in it. The actual memory requirement is two
long words + x_size*(n bytes), where n is 1 for new-vector-byte, 2 for new­
vector-word, or 4 for new-vectori-long. Each data entry is initialized to &-fill,
or to zero, if the argument &-fill is not present. The vector's property is set to
g..prop, or nil, by default.

Vectors may be created by specifying multiple initial values:

The Franz Lisp Manual PS2:9-27

(vector ['8-valO '8-vall ... J)

RETURNS:a vector, with as many data elements as there are arguments. It is quite possi­
ble to have a vector with no data elements. The vector's property will be a
null list.

(vectori-byte ['x_ valO 'x_ val2 ... J)
(vectori-word ['x_ valO 'x_ val2 ... J)
(vectori-Iong ['x_ valO 'x_ val2 ... J)

RETURNs:a vectori, with as many data elements as there are arguments. The arguments
are required to be fixnums. Only the low order byte or word is used in the
case of vectori-byte and vectori-word. The vector's property will be null.

2.4.2. vector reference

(vref 'v _ vect 'x_index)
(vreft-byte 'V _ vect 'x_bindex)
(vreft-word 'V _ vect 'x_ windex)
(vreft-long 'V _ vect 'x_lindex)

RETURNs:the desired data element from a vector. The indices must be fixnums. Index­
ing is zero-based. The vrefi functions sign extend the data.

(vprop'Vv_vect)

RETURNS:The Lisp property associated with a vector.

(vget 'Vv _ vect 'g..ind)

RETURNs:The value stored under g..ind if the Lisp property associated with 'Vv _ vect is
a disembodied property list.

(vsize'Vv_vect)
(vsize-byte 'V _ vect)
(vsize-word 'V _ vect)

RETURNs:the number of data elements in the vector. For immediate-vectors, the func­
tions vsize-byte and vsize-word return the number of data elements, if one
thinks of the binary data as being comprised of bytes or words.

PS2:9-28

2.4.3. vector modficatioD

(vset 'v _ vect 'x_index 'Lval)
(vseti-byte 'V_vee! 'x_bindex 'x_val)
(vseti-word 'V _ vect 'x_ windex 'x_val)
(vsed-loDI 'V _ vect 'x_lindex 'x_val)

RETURNs:the datum.

The Franz Lisp Manual

SIDE EFFECT: The indexed element of the vector is set to the value. As noted above, for
vseti-word and vseti-byte, the index is construed as the number of the
data element within the vector. It is not a byte address. Also, for those
two functions, the low order byte or word of x_val is what is stored.

(vsetprop 'Vv _ vect 'I-value)

RETURNS: I-value. This should be either a symbol or a disembodied property list whose
car is a symbol identifying the type of the vector.

SIDE EFFECT: the property list of V v _ vect is set to L value.

(vputprOp 'Vv..;.vect 's-value 'Lind)

RETURNS: I-value.

SIDE EFFECT: If the vector property of V v _ vect is a disembodied property list, then
vputprop adds the value L value under the indicator Lind. Otherwise,
the old vector property is made the first element of the list.

2.5. Arrays

See Chapter 9 for a complete description of arrays. Some of these functions are
part of a Maciisp array compatibility package representing only one simple way of
using the array structure of FRANZ LISP.

2.5.1. array creation

(marray 'Ldata 's_access 'Laox 'x_length 'x_delta)

RETURNS:an array type with the fields set up from the above arguments in the obvious
way (see § 1.2.10).

(* ' , 'd' 1 ' dO) array Lname s_type x_ 1m ... x_ Imn
(array s_name s_type x_diml ... x_dimn)

WHERE: s_type- may be one of t, nil, fixnum, flonum, fixnum-block and flonum-block.

RETURNs:an array of type s .. Jype with n dimensions of extents given by the x_dim;'

SIDE EFFECT: If s_name is non nil, the function definition of s_name is set to the array
structure returned.

NOTE: These functions create a Maclisp compatible array. In FRANz LISP arrays of type
t, nil, fixnum and flonum are equivalent and the elements of these arrays can be
any type of lisp object. Fixnum-block and flonum-block arrays are restricted to
fixnums and flonums respectively and are used mainly to communicate with
foreign functions (see §8.5).

The Franz Lisp Manual

NOTE: *array evaluates its arguments, array does not.

2.5.2. array predicate

(arrayp ',-arg)

RETURNS:t iff ,-arg is of type array.

2.5.3. array accessors

(getaccess 'a_array)
(getaox 'a_array)
(getdelta 'a_array)
(getdata 'a_array)
(gedength 'a_array)

RETURNS:the field of the array object a_array given by the function name.

(arrayref 'a_name 'x_ind)

PS2:9-29

RETURNs:the x_indlh element of the array object a_name. x_ind of zero accesses the
first element.

NOTE: arrayref uses the data, length and delta fields of a_name to determine which
object to return.

(arraycalls_type 'as_array 'x_indl ...)

RETURNs:the element selected by the indices f.'om the array a_array of type s_type.

NOTE: If as_array is a symbol then the function binding of this symbol should contain an
array object.
s_type is ignored by arraycall but is included for compatibility with Maclisp.

(arraydims 's_name)

RETURNs:a list of the type and bounds of the array s_name.

(listarray 'sa_array (,x_elements])

RETURNS:a list of all of the elements in array sa_array. If x_elements is given, then only
the first x_elements are returned .

•

PS2:9-JO The Fraaz Lisp MaauaI

; We will create a 3 by 4 array of general lisp objects
-> (array ernie t j 4)
array{121

; the array header is stored in the function ~ition slot of the
; symbol ernie
-> (arrayll (getd 'ernie))
t
-> (arraydims (getd 'ernie))
(t 34)

; store inernie(2](2] the list (test list)
... > (store (ernie 2 2) '(test /ist))
(test list)

; check to see if it is there
-> (ernie 2 2)
(test list)

; now use the low level ftmction arrayre! to lind the same element
; arrays are 0 based and row-major (the last subsc:ript varies the fastest)
; thus element {2][21 is the 10th element, (startina at 0).
-> (arrayre!(getd 'ernie) 10)
(ptt to)(test list) ; the result is a value cell (thus the (ptr to»

2.5.4. array Dl8Dipulatioa

(putaecess 'a_array 'su3unc)
(putaux 'a_array 'Laux)
(putdata 'a_array 'Larg)
(putdelta 'a_array 'x_delta)
(putletagth 'a_array 'x_length)

RETURNS:the second argument to the function.

SIDE EFFECT: The field of the array object given by the function name is replaced by the
second argument to the function.

(store 'l_arexp 'L val)

WHERE: Carexp is an expression which references an array element.

RETURNS:Lval

SIDE EFFECT: the array location which contains the element which l_arexp references is
changed to contain 8-val.

•

The Franz Lisp Manual

(fillarray 's_array 'l_itms)

RETURNs:s_array

PS2:9-31 .

SIDE EFFECT: the array s_array is filled with elements from l_itms. If there are not
enough elements in Citms to fill the entire array, then the last element of
Citms is used to fill the remaining parts of the array.

2.6. Hunks

Hunks are vector-like objects whose size can range from 1 to 128 elements. Inter­
nally, hunks are allocated in sizes which are powers of 2. In order to create hunks of a
given size, a hunk with at least that many elements is allocated and a distinguished
symbol EMPTY is placed in those elements not requested. Most hunk functions respect
those distinguished symbols, but there are two (*makhunk and "rplacx) which will
overwrite the distinguished symbol.

2.6.1. hunk creation

(hunk '8-vall ['8-val2 ... '8-valn D
RETURNs:a hunk of length n whose elements are initialized to the 8-vall.

NOTE: the maximum size of a hunk is 128.

EXAMPLE:(hunk 4 'sharp 'keys) = {4 sharp keys}

(makhunk 'xCarg)

RETURNS:a hunk of length xCarg initialized to all nils if xCarg is a ftxnum. If xl_arg is
a list, then we return a hunk of size (length 'xLarg) initialized to the elements
in xCarg.

NOTE: (makhunk '(a b c)) is equivalent to (hunk 'a 'b 'c).

EXAMPLE:(makhunk 4) = {nil nil nil nil}

(*makhunk 'x_arg)

RETURNs:a hunk of size 2x_arg initialized to EMPTY.

NOTE: This is only to be used by such functions as hunk and makhunk which create and
initialize hunks for users.

PS2:9-32

2.6.2. hunk accessor

(CXl 'x_ind 'h_hunk)

RETURNs:element x_ind (starting at 0) of hunk h_hunk.

(hunk-to-list 'h_hunk)

RETURNS:a list consisting of the elements of h_hunk.

2.6.3. hunk manipulators

(rplacx 'x_ind 'h_hunk 'L val)
(*rplacx 'x_ind 'h_hunk 'Lval)

RETURNS:h_hunk

The Franz Lisp Manual

SIDE EFFECT: Element x_ind (starting at 0) of h_hunk is set to L val.

NOTE: rp/acx will not modify one of the distinguished (EMPTY) elements whereas
*rplacx will.

(hunksize 'h_arg)

RETURNs:the size of the hunk h_arg.

EXAMPLE:(hunksize (hunk 1 23)) = 3

2.1. Beds

A bed object contains a pointer to compiled code and to the type of function
object the compiled code represents.

(getdisc 'y _bed)
(getentry 'y _bcd)

RETURNs:the field of the bcd object given by the function name.

(putdisc 'yjunc 's_discipline)

RETURNS:s_discipline

SIDE EFFECT: Sets the discipline field of y _func to Ldiscipline.

2.S. Structures

There are three common structures constructed out of list cells: the assoc list, the
property list and the tconc list. The functions below manipulate these structures.

2.S.1. assoc list

An 'assoc list' (or alist) is a common lisp data structure. It has the form
«keyl . valuel) (key2 . value2) (key3 . value3) ... (keyn . valuen»

The Franz Lisp Manual

(assoc: 'g..argl 'Larg2)
(assq 'g..argl 'Larg2)

PS2:9-33

RETURNs:the first top level element of Larg2 whose car is equal (with assoe) or eq (with
assq) to g..argl.

NOTE: Usually 1_arg2 has an a-list structure and g..argl acts as key.

(sassoc'S-argl '1_arg2 'sl_func)

RETURNs:the result of (eond ((assoc 'g_arg 'Carg2) (apply 'slJune nil)))

NOTE: sassoc is written as a macro.

(sassq 'S-argl 'Larg2 'sLfunc)

RETURNs:the result of (eond ((assq 'g_arg 'Carg2) (apply 'slJune nil)))

NOTE: sassq is written as a macro.

; assoc or assq is given a key and an assoc list and returns
; the key and value item if it exists, they differ only in how they test
; for equality of the keys.

-> (setq alist '((alpha. a) ((complex key) . b) (junk. x)))
«alpha. a) «complex key) . b) (junk . x»

; we should use assq when the key is an atom
-> (assq 'alpha alist)
(alpha. a)

; but it may not work when the key is a list
-> (assq '(complex key) alist)
nil

; however assoc will always work
-> (assoc '(complex key) alist)
«complex key) . b)

(subUs 'l_alst 'Lexp)

WHERE: Lalst is an a-list.
RETURNs:the list l_exp with every occurrence of keyi replaced by vali.

NOTE: new list structure is returned to prevent modification of l_exp. When a substitu~
tion is made, a copy of the value to substitute in is not made.

2.8.2. property list

A property list consists of an alternating sequence of keys and values. Nor­
mally a property list is stored on a symbol. A list is a 'disembodied' property list if
it contains an odd number of elements, the first of which is ignored.

PS2:9-34

(pHst's_name)

. RETURNs:the property list of s_name.

(setpHst 's_atm 'Lplist)

RETURNS:l-plist.

SIDE EFFECf: the property list of s_atm is set to Lplist.

(get 'Is_name 'Lind)

The Fraaz Usp Manual

RETURNs:the value under indicator Lind in Is_name's property list if Is_name is a sym­
bol.

NOTE: If there is no indicator Lind in Is~e's property list nil is returned. If Is_name
is a list of an odd number of elements then it is a disembodied property list. get
searches a disembodied property list by starting at its cdr, and comparing every
other element with Lind, using eq.

(ged 'Is_name 'Lindicators)

RETURNs:the property list Is_name beginning at the first indicator which is a member of
the list I_indicators, or nil if none of the indicators in Lindicators are on
Is_name's property list.

NOTE: If Is_name is a list, then it is assumed to be a disembodied property list.

(putprop 'Is_name 'L val 'Lind)
(defprop Is_name Lval Lind)

RETlJRNS:L val.

SIDE EFFECf: Adds to the property list of ls~ame the value I-val under the. indicator
Lind.

NOTE: putprop evaluates it arguments, de/prop does not. Is_name may be a disembodied
property list, see get.

(remprop 'Is_name 'I-ind)

RETURNs:the portion of ls_name's property list beginning with the property under the
indicator &-ind. If there is no Lind indicator in ls_name's plist, nil is
returned.

SIDE EFFECf: the value under indicator Lind and Lind itself is removed from the pro-,
perty list of Is_name.

NOTE: Is_name may be a disembodied property list, see get.

The Franz Lisp Manual

-> (putprop 'xlate 'a 'alpha)
a
-> (putprop 'xlate 'b 'beta)
b
-> (plist 'xiate)
(alpha a beta b)
-> (get 'xklte 'alpha)
a
; use of a disembodied property list:
-> (get '(nil [ateman rjf slcJower leis [oderaro jlif) 'slcJower)
k1s

2.8.3. tconc structure

PS2:9-35

A teone structure is a special type of list designed to make it easy to add
objects to the end. It consists of a list cell whose car points to a list of the elements
added with teone or leone and whose cdr points to the last list cell of the list pointed
to by the car.

(teone 'l_ptr 'i-x)

. WHERE: Lptr is a teonc structure.

R.ETtJRNs:Lptr with i-X added to the end.

(leonc '_ptr 'Lx)

WHERE: Lptr is a tconc structure.

RETURNs:Lptr with the list Lx spliced in at the end.

PS1:9-36

; A teone structure can be initialized in two ways.
; nil can be given to tcone in which case leone will generate
; a leone structure.

->(setq /00 (lcone nil 1)) .
«1) 1)

; Since leone destructively adds to
; the list. you can now add to foo without using setq again.

->(teone too 2)
«1 2) 2)
->/00
«1 2) 2)

; Another way to create a null leone structure
; is to use (ncons nil).

->(setq /00 (neons nil))
(nil)
->(teone /00 1)
«(1) 1)

; now see what leone can do
-> (leone too nil)
«1) 1) .; no change
-> (leone /00 '(2 3 4))
«1 2 3. 4) 4)

1.8.4. fclosures

The Franz Lisp Muual

An fclosure is a functional object which admits some data manipulations.
They are discussed in §8.4. Internally, they are constructed from vectors.

(fclosure 'L vars 'Lfunobj)

WHERE: L vars is a list of variables, Lfunobj is any object that can be funcalled
(including, fclosures).

RETURNS:A vector which. is the fclosure.

The Franz Lisp Manual PS2:9-37

(fclosure-alist 'v jclosure)

RETURNS:An association list representing the variables in the fclosure. This is a
snapshot of the current state of the fclosure. If the bindings in the fclosure are
changed, any previously calculated results of fclosure-alisl will not change.

(fclosure-function 'v _fclosure)

RETURNs:the functional object part of the fclosure.

(fclosurep 'v jclosure)

RETURNS:t iff the argument is an fclosure.

(symeval-in-fdosure 'v _fclosure 's_symbol)

RETURNs:the current· binding of a particular symbol in an fclosure.

(set-in-fclosure 'v jclosure 's_symbol 'g..newvalue)

RETURNs:g..newvalue.

SIDE EFFECT: The variable s_symbol is bound in the fclosure to g..newvalue.

2.9. Random functions

The following functions don't fall into any of the classifications above.

(bcdad 's_funcnaIne)

RETURNs:a fixilum which is the address in memory where the function s_funcname
begins. If s_funcname is not a machine coded function (binary) then bcdad
returns nil.

c

(coPY'8-arg)

RETURNs:A structure equal to 8-arg but with new list cells.

(copyiat* 'x_arg)

RETURNS:a fixnum with the same value as x_arg but in a freshly allocated cell.

(cpy! 'xvcarg)

RETURNs:a new cell of the SaIne type as xvCarg with the SaIne value as xvCarg.

(getaddress 's_entryl 's_binder! 'sCdiscipline! [.........])

RETURNs:the binary object which s_binder! 's function field is set to.

NOTE: This looks in the running lisp's symbol table for a symbol with the same name as
s_entryi. It then creates a binary object whose entry field points to s_entryi and
whose discipline is sCdisciplinei. This binary object is stored in the function
field of s_binderi. If sCdisciplinei is nil, then "subroutine" is used by default.
This is especially useful for c/asl ~.

PS2:9-38 The Frau Lisp Manual

(macron:paatl'8-form)

RETUaNS:8-form after all macros in it are expanded.

NOTE: This function will only macrocxpand expressions which could be evaluated and it
does not know about the specialnlambdas such as cond and do, thus it misses
many macro expansions.

(ptr ' a..ars)

RETURNS: a . value cell initialized to point to a..~

(quote g,..:ars)

REI'UIlNS:8-arg.

NOTE: the reader allows you to abbreviate (quote foo) as 'foo.

(kwote 'a..ars)

RETURNS: (list (quote quote) g_arg).

(replace '8-argl '8-arg2)

WHERE: 8-argi and 8-arg2 must be the same type of lispval and not symbols or hunks.

RETURNS:8-arg2.

SIDE EPPECf: The effect of replace is dependent On the type of the 8-argi although one
will notice a similarity in theeifects. To understand what replace does to
fixnum· and tlonum arguments, you must first understand that such

"numbers are 'boxed' in FRANZ LIsP. What this means is that if the sym-
bol x has a value 32412, then in memory the value element of x's symbol
structure contains the address of another word of memory (call~ a box)
with 32412 in it.

, Thus, there are two ways of changing the value of x: the first is to change
the value element of x's symbol stIUcture to point to a word of memory
with a different value. The second way is to change the value in the box
which x points to .. The former method is used almost all of the time, the
latter is used very rarely and has the potential to cause great confusion.
The function replace allows you to do the latter, Le., to actually change the
value in the box.

You should watch out for these situations. If you do (setq y x), then both
x and y will point to the same box. If you now (replace x 12345), then y
will also have the value 12345. And, in fact, there may be many other
pointers to that box.

Another problem with replacing mums is that some boxes are read-only.
The fixnums between -1024 and 1023 are stored in a read-only area and
attempts to replace them will result in an "Illegal memory reference" error
(see the description of copyint* for a way around this problem).

For the other valid types, the effect of replace is easy to understand. The
fields of 8-vall's structure are made eq to the corresponding fields of
8-val2's structure. For example, if x and y have lists as values then the
effect of (replace x y) is the same as (rplaca x (car y)) and (rplacd x (cdr y)).

The Franz Lisp Manual PS2:9-39

(seons 'x_arg'bs_r~)

WHERE: bs_r~ is a bignum or nil.

RETURNS:a bignum whose first bigit is x_arg and whose higher order bigits are bs_rest.

(sed' &-refexpr '&-value)

NOTE: set! is a generalization of setq. Information may be stored by binding variables,
replacing entries of arrays, and vectors, or being put on property lists, among oth­
ers. Setf will allow the user to store data into some location, by mentioning the
operation used to refer to the location. ThuS, the first argument may be partially
evaluated, but only to the extent needed to calculate a reference. set! returns
&-value. (Compare to desetq)

(set! x 3) • (setq x 3)
(set! (car x) 3) - (rplaca x 3)
(set! (act foo 'bar) 3) • (putprop foo 3 'bar)
(set! (vref vector index) value) - (vset vector index value)

(sort 'Cdata 'u_comparefn)

RETURNs:a list of the· elements of Cdata ordered· by the comparison function
u_comparefn.

SIDE EFFEcr: the list Ldata is modified rather than allocated in new storage.

NOTE: (compare!n 'g~ 'g-y) should return something non-nil if &-x can precede I-Y in
sorted order; nil if I-Y must precede &-x. If u_comparefn is nil, alphabetical order
will be used. C

(sortcar 'I_list 'u_comparefn)

RETURNs:a list of the elements of I_list with the cars ordered by the sort function
u_comparefn.

SIDE EFFEcr: the list Clist is modified rather than copied.

NOTE: Like sort, if u_comparefn is nil, alphabetical order will be used.

CHAPI'ER 3

Arithmetic Functions

This chapter describes FRANz LIsP's functions for doiq arithmetic. Often the
same function is known by many names. For example, add is also pius, and sum. This
is caused by our desire to be compatible with other Lisps. The FRANz LIsp user sbould
avoid usiq functions with names sucb as + and • unless tbeir arguments are fixnums.
Tbe Usp compiler takes advantage of these implicit declarations.

An attempt to divide or to generate a floating point result outside of the range of
floating point numbers will cause a floating exception signal from the UNIX operating
system. The user can catcb and process this interrupt if desired (see the description of
the signal function).

3.1. Simple Arithmetk Funetioas

(add ['n_arsl ...])
(plus ['n_arsl ...])
(sum ['n_arsl ...])
(+ ['x_arsl .,.])

RETURNs:the sum of the arguments. If no arguments are given, 0 is returned.

NOTE: if the size of the partial sum exceeds the limit of a fixnum, the partial sum will be
converted to a bignum. If any of tbe arguments are tlonums, tbe partial sum will
be converted to a tlonum wben tbat argument is processed and tbe result will thus
be a tlonum. Currently, if in the process of doing the addition a bignum must be
converted into a flonum an error message will result.

(addl 'n_ars)
(1+ 'x_ars)

RETURNS: its argument plus I.

(clift ['n_arsl ...])
(dift'erenee ['n_arsl ...])
(- ['x_arsl ..•])

RETURNs:the result of subtracting from n_arsl all subsequent arguments. If no argu­
ments are given, 0 is returned.

NOTE: See the description of add for details on data type conversions and restrictions.

PSl:9-40 ne Fraaz Lisp Maaual

The Franz Lisp Manual

(subl 'n_arg)
(1- 'x_arg)

RETURNS:its argument minus 1.

(minus 'n_arg)

RETURNS: zero minus n_arg.

(product ['n_argl ...])
(times ['n_argl ...])
(. ['x_argl ...])

PS2:9-41

RETURNs:the product of all of its arguments. It returns 1 if there are no arguments.

NOTE: See the description of the function add· for details and restrictions to the
automatic data type coercion.

(quotient ['n_argl ...])
(/ ['x_argl ...])

RETURNS:the result of dividing the first argument by succeeding ones.

NOTE: If there are no arguments, I is returned. See the description of the function add
for details and restrictions of data type coercion. A divide by zero will cause a
floating exception interrupt - see the description of the signal function.

(*quo 'Lx 'Ly)

RETURNs:the integer part of i_x / i_yo

(Divide 'Ldividend 'Ldivisor)

RETURNS:a list whose car is the quotient and whose cadr is the remainder of the division
of Ldividend by i_divisor.

NOTE: this is restricted to integer division.

(Emuldiv 'x_facti 'xjact2 'x_addn 'x_divisor)

RETURNS: a list of the quotient and remainder of this operation:
«xjactl • xjact2) + (sign extended) x_addn) / x_divisor.

NOTE: this is useful for creating a bignum arithmetic package in Lisp.

PS2:9-42

3.2. predicates

(numberp 's-arg)

(numbp 'S-arg)

RETURNS:t iff S-arg isa number (mnum, flonum or bignum).

(fixp 's-arg)

RETURNS: t iff s-arg is a mnum or bignum.

(fioatp 'S-arg)

RETURNS:t iff S-arg is a flonum.

(evenp 'x_arg)

RETURNS: t iff x_arg is even.

(oddp 'x_arg)

RETURNS:t iff x_arg is odd.

(zerop 'S-arg)

RETURNS:t iff S-arg is a number equal to O.

(onep 's-arg)

RETURNS:! iff s-arg is a number equal to 1.

(plusp 'n_arg)

RETURNS:t iff n_arg is greater than zero.

(minusp's-arg)

RETURNS:t iff s-arg is a negative number.

(greaterp ['n_argt ...])
(> 'fx_argt 'fx_arg2)
(>& 'x_argt 'x_arg2)

RETURNS:t iff the arguments are in a strictly decreasing order.

The Franz Lisp Manual

NOTE: In functions greaterp and > the function difference is used to compare adjacent
values. If any of the arguments are non-numbers, the error message will come
from the difference function. The arguments to > must be fixnums or both
flonums. The arguments to >& must both be mnums.

The Franz Lisp Manual

(Iessp ['n_argi ...])
« 'fx_argi 'fx_arg2)
«& 'x_argi 'x_arg2)

RETURNS:t iff the arguments are in a strictly increasing order.

PS2:9-43

NOTE: In functions /essp and < the function difference is used to compare adjacent
values. If any of the arguments are non numbers, the error message will come
from the difference function. The arguments to < may be either fixnums or
flonums but must be the same type. The arguments to <& must be fixnums.

(.,. 'fx_argi 'fx_arg2)

(=& 'x_argi 'x_arg2)

RETURNS:t iff the arguments have the same value. The arguments to == must be the
either both fixnums or both flonums. The arguments to =& must be fixnums .

. 3.3. Trignometric Functions

Some of these funtcions are taken from the host math library, and we take no
further responsibility for their accuracy.

(cos 'fx_angle)

RETURNs:the (flonum) cosine of fx_angle (which is assumed to be in radians).

(sin 'fx_angle)

RETURNs:the sine of fx_angle (which is assumed to be in radians).

(acos 'fx_arg)

RETURNs:the (flonum) arc cosine of fx_arg in the range 0 to 1f'.

(as in 'fx_arg)

RETURNS:the (flonum) arc sine of fx_arg in the range -1f'/2 to 1f'12.

(atan 'fx_argi 'fx_arg2)

RETURNs:the (flonum) arc tangent of fx_argllfx_arg2 in the range -1f' to 1f'.

PSl:9-44 The Frau Lisp MaauaI

3.4. BignumlFixD1IBl Manipulation

(haipart bx_number x_bits)

RETURNs:a fixnum(or bignum) which contains the x_bits high bits of (abs bx_number) if
x_bits is positive, otherwise it returns the (abs x_bits) low bits of
(abs bx_number).

(haulona bx_number)

RETURNS:the number of significant bits in bx_number.

NOTE: the result is equal to the least integer greater to or equal to the base two logarithm
of one plus the absolute value of bx_number.

(bignlllll-leftshlft bx-ar& x_amount)

RETURNs:bx_atlshifted left by x_amount. If x_amount is negative, bx_arg will be
shifted right by the magnitude of x_amount.

NOTE: If bX_ar& is shifted right, it win be rounded to the nearest even number.

(sticky-biplllll-leftshift 'bx_arg 'x_amount)

RETURNS: bx_ar& shifted left by x_amount. If Lamount is negative, bx_arg will be
shifted riaht by the magnitude of x_amount and rounded.

NOTE: sticky rounding is done this way: after shifting, the low order bit is changed to. 1 if
any l's were shifted off to the right. .

3.5. Bit Manipulation

(boole 'x_key 'x_vi 'x_ v2 ...)

RETURNs:the result of the bitwise boolean operation as described in the following table.

NOTE: If there are more than 3 arguments, then evaluation proceeds left to right with
each partial result becoming the new value of x_vi. That is,

(booJe 'key 'vI 'v2 'v3) • (booJe 'key (OOole 'key 'vI 'v2) 'v3).
In the following table, • represents bitwise and, + represents bitwise or, (:9

represents bitwise xor and ... represents bitwise negation and is the highest pre­
cedence operator.

(boole 'key 'x 'y)

key U 1 :z 3 4 , 6 7
result 0 x.y ~x.y y x y X x~y x+y:

common
names and bitclear xor or

key 8 9 10 11 12 13 14 IS
result ~ (x + y) '1x ~ y) ~x ~x+y "'y x+~y ~x+~y -I

common
names nor equiv implies nand

The Franz Lisp Manual . PS2:9-45

(Ish 'x_ val 'x_amt)

RETURNS: x_ val shifted left by x_amt if x_amt is positive. If x_amt is negative, then Ish
returns x_val shifted right by the magnitude if x_amt.

NOTE: This always returns a fixnum even for those numbers whose magnitude is so large
that they would normally be represented as a bignum, i.e. shifter bits are lost.
For more general bit shifters, see bignum-Ieftshift and sticky-bignum-Ieftshift.

(rot 'x_val ',camt)

RETURNS: x_ val rotated left by x_amt if x_amt is positive. If x_amt is negative, then
x_val is rotated right by the magnitude of x_amt.

3.6. Other Functions

As noted above, some of the following functions are inherited from the host math
library, with all their virtues and vices.

(abs 'n_arg)
(absval 'n_arg)

RETURNS: the absolute value of n_arg.

(exp 'fx_arg)

RETURNs:e raised to the fx.-arg power (flonum) .

(expt 'n_base 'n_power)

RETURNs:n_baseraised to the n_power power.

NOTE: if either of the arguments are flonums, the calculation will be done using log and
expo

(fact 'x_arg)

RETURNs:x_arg factorial. (fixnum or bignum)

(fix 'n_arg)

RETURNS: a fixnum as close as we can get to n_arg.

NOTE: fix will round down. Currently, if n_arg is a flonum larger than the size of a
fixnum, this will fail.

(float 'n_arg)

RETURNS:a flonum as close as we can get to n_arg.

NOTE: if n_arg is a bignum larger than the maximum size of a flonum, then a floating
exception will occur.

PS2.-9-46

(101 'fx..arg)

RETURNs:the natural logarithm of fx_atg.

(max 'n_argl •..)

RETURNS:the maximum value in the list of arguments.

(mba 'n-argl .:.)

RETURNs:the minimum value in the list of arguments.

(mod 'i_dividend 'Ldivisor)
(remaiader 'LdivideDd 'Ldivisor)

TIle Fraaz Lisp Manual

REn1RNS:the remainder wben Ldividend is divided by Ldivisor.

NOTE: The sign. of the result will have the same sign. as Ldividend.

(*mod 'x_dividend 'x_divisor)

RETURNs:the balanced representation of x_dividend modulo x_divisor.

NOTE: the ranee of the balanced representation is abs(x_divisor)/2 to (abs(x_divisor)/2)
- x-divisor + 1.

(nndom (,x_limit])

llETtJRNS:aftxnum between 0 and xJimit - 1 if x_limit is given. If x_limit is not given,
any ftxnum, positive or negative, micht be returned

(sqrt 'fx_1rg)

RETURNS:the square root of fx_arg.

CHAPTER 4

Special Functions

(and ls-argl ...])
RETURNS:the value of the last argument if all arguments evaluate to a non-nil value, oth­

erwise and returns nil. It returns t if there are no arguments.

NOTE: the arguments are evaluated left to right and evaluation will cease with the first
nil encountered.

(apply 'u_func 'Largs)

RETURNs:the result of applying function u_func to the arguments in the list Largs.

NOTE: If u_func is a lambda, then the (length Cargs) should equal the number of formal
parameters for the u_func. If u_func is a nlambda or macro, then Largs is bound
to the single formal parameter.

; addl is a lambda of I argument
-> (apply 'addl '(3)).
4

; we will define plusl as a macro which will be equivalent to addl
-> (de! plusl (macro (arg) (list 'addl (ew arg))))
plus I
-> (plusl 3)
4

; now if we apply a macro we obtain the form it changes to.
-> (apply 'plusl '(plusl 3))
(adell 3)

; if we juncall a macro however, the result of the macro is evaled
; before it is returned.
-> (.funcall 'plusl '(plusl 3))
4

; for this panicular macro, the ear of the tUg is not checked
; so that this too will work
-> (apply 'plusl '(/00 3))
(adell 3)

The Fraaz Lisp Manual PS2:9-47

PS2:9-48 The Frau Lisp Manual

(arg [,x_numb»

RETURNS:if x_numb is specified then the x_numb'th argument to the enclosing lexpr If
x_numb is not specified then this returns the number of arguments to the
enclosing lexpr.

NOTE: it is an error to the interpreter if x_numb is given and out of range.

(break [8-message ['8-pred]])

WHERE: if 8-message is not given it is assumed to be the null string, and if 8-pred is
, not given it is assumed to be t.

RETURNS:the value of (*break 'g-pred 'I_message)

(*break '8-pred '8-message)

RETURNs:nil immediately if 8-pred is nil, else the value of the next (return 'value)
expression typed in at top level.

SIDE EFFECT: If the predicate, 8-pred, evaluates to non-null, the lisp system stops and
prints out 'Break' followed by 8-message. It then enters a break loop
which allows one to interactively debug a program. To continue execu­
tion from a break you can use the return function. to return to top level or
another break level, you can use retbrk or reset.

(caseq '8-key-form I_clausel ...)

WHERE: Lclause; is a list of the form (8-comparator ['8-formi ... J). The comparators'
may be symbols, small fixnums, a list of small fixnums or symbols.

NOTE: The way caseq works is that it evaluates 8-key-form. yielding a value we will call
the selector. Each clause is examined until the selector' is found consistent with
the comparator. For a symbol, or a fixnum, this means the two must be eq. For
a list, this means that the selector must be eq to some element of the list.

c

The comparator consisting of the symbol t has special semantics: it matches any­
thing, and consequently, should be the last comparator.

In any case, having chosen a clause, caseq evaluates each form within that clause
and

RETURNs:the value of the last form. If no comparators are matched, caseq returns nil.

The Fnmz Lisp Manual

Here are two ways of defining the same function:
->(de/un fate (personna)

fate

(caseq personna
(cow '(jumped oller the moon))
(cat '(played nero))
((dish spoon) '(ran away with each other))
(t '(Iilled happily ever after))))

->(de/un fate (personna)
(cond

fate

(catcb &-exp [Is_tag])

((eq personna 'cow) '(jumped oller the moon))
((eq personna 'cat) '(played nero))
((memq personna '(dish spoon)) '(ran away with each other))
(t :(lived happily em after))))

WHERE: if Is_tag is not given, it is assumed to be nil.

RETURNs:the result of (·catch 'Is_tag g_exp)

NOTE: catch is defined as a macro.

(*catcb 'lLtag &-exp)

WHERE: 'Is_tag is either a symbol or a list of symbols.

PSl:9-49

RETURNs:the result of evaluating &-exp or the value thrown during the evaluation of
&-exp. .

SIDE EFFECT: this first sets up a 'catch frame' on the lisp runtime stack. Then it begins
to evaluate &-exp. If &-exp evaluates normally, its value is returned. If,
however, a value is thrown during the evaluation of &-exp then this ·catch
will return with that value if"one of these cases is true:

(1) the tag thrown to is Is_tag

(2) ILtag is a list and the tag thrown to is a member of this list

(3) Is_tag is nil.
NOTE: Errors are implemented as a special kind of throw. A catch with no tag will not

catch an error but a catch whose tag is the error type will catch that type of error.
See Chapter 10 for more information.

PSl .. 9-SO The Fruz Us, Muual

(commeat ~arg ..•])
RETURNs:the symbol comment.
NOTE: This does absolutely nothing.

(coad [Lclausel .•.])
RETURNs:the last value evaluated ira the first clause satisfied. If no clauses are satisfied

then nil is returned.
NOTE: This. is the basic conditional 'statement' in lisp. The clauses are processed from

left to right. The first elemeat of a clause is evaluated. If it evaluated to a non­
nuB value then that clause is satisfied and all following elements of that clause are
evaluated. The last value computed is returned as the value of the cond. If there
is just one element in the clause then its value is returned. If the first element of

. a clause evaluates to nil, then the other elements of that clause are not evaluated
and the system moves te the next clause.

(cvttoiattisp)

SIDE EFFECT: The reader is modified to conform with the Interlisp syntax. The charac­
ter % is made the escape character and special meanings for comma,
backquote and backslash are removed. Also the reader is told to convert
upper case to lower case.

(cvttofraazlis,)

SIDE EFFECT:

(cvttomadisp)

SIDE EFFECT:

(cvttoudUsp)

FRANZ LIsp's default syntax is reinstated. One would ron this function
after having run any of the other· cvtto- functions. Backslash is made the
escape character, sUper-brackets work again. and the reader distinguishes
between upper and lower case.

c
The reade.r is modified to conform with Maclisp syntax. The character I is
made the escape character and the special meanings for backslash, left and
right bracket are removed. The reader is made case-insensitive.

SIDE EFFECT: The reader is modified to conform with VCI Lisp syntax. The character I
is made the escape character, tilde is made the comment character, excla­
mation point takes on the unquote function normally held by comma, and
backslash, comma,. semicolon become normal characters. Here too, the
reader is made case-insensitive.

The Franz Lisp Manual PSl:9-51

(debug s_msg)

SIDE EFFEcr: Enter the Fixit package described in Chapter 15. This package allows you
to examine the evaluation stack in detail. To leave the Fixit package type
'ok'.

(debugging 'i-arg)

SIDE EFFEcr: If i-arg is non-null, Franz unlinks the transfer tables, does a (*rset t) to
tum on evaluation monitoring and sets the all-error catcher (ER%all) to be
debug-err-handler. If i-arg is nil, all of the above changes are undone.

(declare [i-arg ... J)

RETURNS: nil
NOTE: this is a no-op to the evaluator. It has special meaning to the compiler (see

Chapter 12).

(def Lname (s~type l_argl i-expl ... »
WHERE: s_type is one of lambda, nlambda, macro or lexpr.

RETURNS:s_name

SIDE EFFEcr: This defines the function s_name to the lisp system. If s_type is nlambda
or macro then the argument list Largl must contain exactly one non-nil
symbol.

(defmacro s_name Larg i-expl ...)
(defcmacro s_name l_arg i-expl ...)

RETURNS:s_name

SIDE EFFEcr: This defines the macro s_name. de/macro makes it easy to write macros
since it makes the syntax just like . de/un. Further information on de}
macro is in §8.3.2. deftmacro defines compiler-only macros, or emacros.
A cmacro is stored on the property list of a symbol under the indicator
cmac:ro. Thus a function can have a normal definition and a cmacro
definition. For an example of the use of cmaeros, see the definitions of
nthcdr and nth· in lusr/lib/lisp/common2.l

(defun s_name [s_mtype] ls_argl i-expl ...)

WHERE: s_mtype is one of fexpr, expr, args or macro.

RETURNS:s_name

SIDE EFFEcr: This defines the function s_name.

NOTE: this exists for Maclisp compatibility, it is just a macro which changes the defun.
form to the def form. An s_mtype of fexpr is converted to nlambda and of expr
to lambda. Macro remains the same. If ls_argl is a non-nil symbol, then the type
is assumed to be lexpr and ls_argl is the symbol which is bound to the number of
args when the function is entered. .
For compatibility with the Lisp Machine Lisp, there are three types of optional
parameters that can occur in ls_argl: &optional declares that the following sym­
bols are optional, and mayor may not appear in the argument list to the function,
&rest symbol declares that all forms in the function call that are' not accounted for
by previous lambda bindings are to be assigned to symbol, and &aux /orml ...
/ormn declares that the form; are either symbols, in which case they are lambda

PSl:9-51 The Fruz Lisp MaauaI

bound to ail, or lists, in which case the first element of the list is lambda bound to
the second, evaluated element.

; de! ud dI.fim here are used to define identical functions
; you can decide for yourself which is easier to use.
-> (def appendl (lambda (lis extra) (append lis (Iistextra))))
appendl

-> (defun appendl (lis extra) (append lis (Iisl extra)))
appendl

; UsiDa the " forms. ••
-> (defun test fa b tI:optioNIi c daIa (retval 0) &rest z)

(ifc them (msg 'Optional arg present' N
'c is' cN))

(msg "rat is • z N
'retvai is' reIVai N))

test
-> (test 1 2 J 4)
OptionailU'J present
cis 3
rest is (4)
retval is 0

(d~fYar s_variable ['s..init]) .

RETURNS:s_ variable.

NOTE: This form is put at the top level in files, like defun.

SInE EFFECT: This declares $_ variable to be s'pec:ial. If Linit is present and s_ variable is
unbound when the file is read in, s_ variable will be set to the value of
Linit. An advantage of '(defvar foo)' over '(declare (special fool)' is that
if a file containing defvars is loaded (or fasl'ed) in during compilation, the
variables mentioned in the defvar's will be declared special. The only way
to have that effect with '(declare (special foo»' is to include the file.

(do l_vrbs Ltest Lexpl ..•)

RETURNs:the last form in the cdr of Ltest evaluated, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the basic iteration form for FRANz LISP. L vrbs is a list of zero or more
var-init-repeat forms. A var-init-repeat form looks like:

(s_name [Linit [a..repeat]])
There are three cases depending on what is present in the form. If just s_name is
present, this means that when the do is entered, s_name is lambda-bound to nil
and is never modified by the system (though the program is certainly free to
modify its value). If the form is (s_name 'Linh) then the only difference is that
s_name is lambda-bound to the value of Linit instead of nil. If s..repeat is also
present then s_name is lambda-bound to Linit when the loop is entered and after
each pass through the do body s_name is bound to the value of s..repeat.
Ltest is either nil or has the form of a cond clause. If it is nil then the do body
win be evaluated only once and the do will return nil. Otherwise, before the do
body is evaluated the car of Ltest is evaluated and if the result is non-null, this

The Franz Lisp Manual PSl:9-53

signals an end to the looping. Then the rest of the forms in Ltest are evaluated
and the value of the last one is returned as the value of the do. If the cdr of I_test
is nil, then nil is returned - thus this is not exactly like a cond clause.
&-expl and those forms which follow constitute the do body. A do body is like a
prog body and thus may have labels and one may use the functions go and return.
The sequence of evaluations is this:

(1) the init forms are evaluated left to right and stored in temporary locations.

(2) Simultaneously all do variables are lambda bound to the value of their init forms
or nil.

(3) If I_test is non-null, then the car is evaluated and if it is non-null, the rest of the
forms in Ltest are evaluated and the last value is returned as the value of the do.

(4) The forms in the do body are evaluated left to right.

(5) Ifl_test is nil the do function returns with the value nil.

(6) The repeat forms are evaluated and saved in temporary locations.

(7) The variables with repeat forms are simultaneously bound to the values of those
forms.

(8) Go to step 3.

NOTE: there is an alternate form of do which can be used when there~is only one do vari­
able. It is described next.

; this is a simple function which numbers the elements of a list.
; It uses a do function with two local. variables.
-> (defon printem (lis)

printem

(do ((xx lis (cdr xx))
(; 1 (1+ i)))

((null xx) (patom "all done") (terpr))
(print i)
(patom ":")
(print (car xx))
(terpr)))

-> (printem '(a bed))
1: a
2: b
3: c
4:d
all done
nil
->

PSl:9-54 The Fruz Lisp M

(do ,-name &-init &-repeat &-test &-expl ..•)

NOTE: this is another, less general, form of do. It is evaluated by:

(1) evaluatinl .. jait

(2) lambda biDding s_name to value of &-init

(3) &-test is evaluated and if it is not nil the do function returns with nil.

(4) the do body is evaluated bePnning at &-expL

(5) the repeat form is evaluated and stored in s_name.

(6) go to step 3.

REnJRNs:nil

(environlllellt [I_when 1 L whatl 1_ when2 L whaU ...])
(environmeat-maclisp [Cwhenl Lwhatl Lwhen2 LwhaU ...])
(eamoameat-lmUsp [Lwhenl Lwhatl Lwhen2 LwhaU ...])

WHERE: the when's are a subset of (eval compile load), and the symbols have the same
meaning as they do in 'eval-when'.

The what's may be
. (tiles tile 1 tile2 ... fUeN), •

which insure that the named tiles are loaded. To see if tilei is loaded, it looks
for !l 'version' property under tilei'sproperty list. Thus to prevent multiple
loading, you should pu~

. (putprop 'my tile t 'versIon),
at the end of mytile.l.

Another acceptable form for a what is
(syntax type)
Where type is either maclisp, intlisp, ucllisp, franzlisp.

SIDE EFFECT: environment-mac/isp sets the environment to that which 'liszt -m' would
generate.

environment-Imlisp· sets up the lisp machine environment. This is like
maclisp but it has additional macros.

For these specialized environments, only the files clauses are useful.
(environment-maclisp (compile eval) (tiles foo bar»

REnJRNs:the last list of tiles requested.

(err ['5_ value [nil)])

REnJRNs:nothing (it never returns).

SIDE EFFECT:' This causes an error and if this error is caught by an errset then that errset
will retum s_ value instead of nil. If the second arg is given, then it must
be nil (MAclisp compatibility).

The Franz Lisp Manual

(error ['s_message 1 ['s_message2]])

RETURNs:nothing (it never returns).

PS2:9-55

SIDE EFFEcr: s_messagel and s_message2 are patomed if they are given and then err is
called (with no arguments), which causes an error.

(errset 8-expr [s_Oag])

RETURNS:a list of one element, which is the value resulting from evaluating 8-expr. If
an error occurs during the evaluation of 8-expr, then the locus of control will
return to the err set which will then return nil (unless the error was caused by a
call to err. with a non-null argument).

SIDE EFFEcr: S_Oag is evaluated before 8-expr is evaluated. If s_Oag is not given, then it
is assumed to be t. If an error occurs during the evaluation of 8-expr, and
s_Oag evaluated to a non-null value, then the error message associated
with the error is printed before control returns to the errset.

(eva! '8-val ['x_bind-pointer])

RETURNs:the result of evaluating 8-val.

NOTE: The evaluator evaluates 8-val in this way:
If 8-val is a symbol, then the evaluator returns its value. If 8-val had never been
assigned a value, then this causes an 'Unbound Variable' error. If x_bind-pointer
is given, then the variable is evaluated with respect to that pointer (see eva/frame
for details on bind-po~nters).

If 8-val is of type value, then its value is returned. If 8-val is of any other type
than list, 8-val is returned.

If 8-val is a list object then 8-val is either a function call or array reference. Let
8-car be the first element of 8-val. We continually evaluate 8-car until we end up
with a symbol with a non-null function binding or a non-symbol. Call what we
end up with: g..func.

G_func must be one of three types: list, binary or array. If it is a list then the
first element of the list, which we shall call 8-functype, must be either lambda,
nlambda, macro or lexpr. If 8-func is a binary, then its discipline, which we shall
call 8-functype, is either lambda, nlambda, macro or a string. If 8-func is an
array then this form is evaluated specially, see Chapter 9 on arrays. If g..func is a
list or binary, then g..functype will determine how the arguments to this function,
the cdr of 8-val, are processed. If g..functype is a string, then this is a foreign
function call (see §8.S for more details).

If g..functype is lambda or lexpr, the arguments are evaluated (by calling eval
recursively) and stacked. If g..functype is nlambda then the argument list is
stacked. If 8-functype is macro then the entire form, g.. val is stacked.

Next, the formal variables are lambda bound. The formal variables are the cadr
of 8-func. If 8-functype is nlambda, lexpr or macro, there should only be one
formal variable. The values on the stack are lambda bound to the formal vari­
ables except in the case of a lexpr, where the number of actual arguments is
bound to the formal variable.

After the binding is done, the function is invoked, either by jumping to the entry

PSl:9-56 The Frau Lisp Manual

point in the case of a binary or by evaluating the list of forms beginning at cddr
g.Junc. The result of this function invocation is returned as the value of the call
to eval.

(evalframe 'x_pdlpointer)

RETURNS:an evalframe descriptor for the evaluation frame just before x-Pdlpointer. If
x-pdlpointer is nil~ it returns the evaluation frame of the frame just before the
current call to evalframe.

NOTE: An evaiframe descriptor describes a call to eval, apply or /uncal I. The form of the
descriptor is

. (type pdl-pointer expression bind-pointer np-index lbot-index)
where type is 'eval' if this describes a call to eval or 'apply' if this is a call to apply·
or juncall. pdl-pointer is a number which describes this context. It can be passed
to evalframe to obtain the next descriptor and can be passed to freturn to cause. a
return from this context. bind-pointer is the size of variable binding stack when
this evaluation began. The bind-pointer can be given as a second argument to eval
to order to evaluate variables in the same context as this evaluation. If type is
'eval' then expression will have the form (function-name argJ ...). If type is
'apply' then expression will have the form (function-name (argJ ...)). np-index and
lbot-index are pointers into the argument stack (also mown as the namestack
array) at the time of call. lbot-index points to the first argument, np-index points
one beyond the last argument.
In order for there to be enough information for eva/frame to return, you must call
(*rset t) •.

EXAMPL£:(progn (eva/frame nil)) . .
. returns (eval 2147478600 (progn (evalframe nil)) 187)

(evalheok '&-form 'su_evalfunc ['su_funcallfuncD

RETUltNs:the result of evaluating &-form after lambda binding 'evalhook' to su_evalfunc
and, if it is given, lambda binding 'funcallhook' to su_funcallhook.

NOTE: As explained in § 14.4, the function eval may pass the job of evaluating a form to
a user 'hook' function when various switches are set. The hook function nor­
mally prints the form to be evaluated on the terminal and then evaluates it by cal­
ling evalhook. Evalhook does the lambda binding mentioned above and then calls
eval to evaluate the form after setting an internal switch to tell eval not to call the
user's hook function just this one time. This allows the evaluation process to
advance one step and yet insure that further calls to eval will cause traps to the
hook function (if su_evalfunc is non-null).
In order for evalhook to work, ("'set t) and (sstatus evalhook I) must have been
done previously.

The Franz Lisp Manual PS2:9-S7

(exec Largi ...)

RETURNs:the result of forking and executing the command named by concatenating the
s_argi together with spaces in between.

(exece 's_fname ['I_arg5 l'Lenvir]])

RETURNs:the error code from the system if it was unable to execute the command
sjname with arguments Largs and with the environment set up as specified in
Lenvir. If this function is successful, it will not return, instead the lisp system
will be overlaid by the new command.

(freturn 'x_pdl-pointer '8-retval)

RETURNs:8-retval from the context given by x_pdl-pointer.

NOTE: A pdl-pointer denotes a certain expression currently being evaluated. The pdl­
pointer for a given expression can be obtained from evalframe.

(frexp 'Carg)

RETURNs:a list cell (exponent. mantissa) which represents the given flonum

NOTE: The exponent will be a fixnum, the mantissa a 56 bit bignum. If you think of the
the binary point occurring right after the high order bit of mantissa, then
Carg = 2exponent * mantissa .

. (funeall 'u_func ['8-argl ... »

RETURNs:the value of applying function u_func to the arguments 8-argi and then
. evaluating that result if u_func is a macro.

NOTE: If u_func is a macro or nlambda then there should be only one 8-arg. Juncall is
the function which the evaluator uses to evaluate lists. If Joo is a lambda or lexpr
or array, then (juneall '/00 'a 'b 'c) is equivalent to (joo'a 'b 'c). If Joo is a
niambda then (juncall '/00 '(a b e)) is equivalent to (joo a b c). Finally, if Joo is a
macro then (junea/l '/00 '(joo a b c)) is equivalent to (joo a b c).

(funcallhook 'I_form 'su_funcallfunc ['su_evalfunc»

RETURNs:the result of Junealling the (car IJorm) on the already evaluated arguments in
the (cdr IJorm) after lambda binding 'funcallhook' to su_funcallfunc and, if it
is given, lambda binding 'evalhook' to su_evalhook.

NOTE: This function is designed to continue the evaluation process with as little work as
possible after a funcallhook trap has occurred. It is for this reason that the form
of Lform is unorthodox: its car is the name of the function to call and its cdr are
a list of arguments to stack (without. evaluating again) before calling the given
function. After stacking the arguments but before calling Juncall an internal
switch is set to prevent Juneall from passing the job of funcalling to
su_funcallfunc. If Junea/l is called recursively in funcalling Lform and if
su_funcallfunc is non-null, then the arguments to Juncall will actually be given to
su_funcallfunc (a lexpr) to be funcalled.
In order for evalhook to work, (*rset t) and (sstatus evalhook t) must have been
done previously. A more detailed description of evalhook and Juncallhook is
given in Chapter 14.

PS1.-9-S8 The FraDZ Lisp Manual

(functioa u_func)

RETURNS:the function binding of u_func if it is an symbol with a function binding oth­
erwise u_func is returned

(getdisc 'y _func)

RETURNs:the discipline of the machine coded function (either lambda, nlambda or
macro).

(go 8-labexp) .

WHERE: 8-1abexp is either a symbol or an expression~

SIDE EFFECT: If 8-labexp is an expression, that expression is evaluated and should result
in a symbol. The locus of control moves to just following the symbol
8-labexp in the current prog or do body.

NOTE: this is only valid in the context of a prog or do body. The interpreter and com.­
piler will allow non-local go's although the compiler won't allow a go to leave a
function body. The compiler will not allow 8-labexp to be an expression.

(if '8-a '8-b)
(if '8-a '8-b '8-C •• ,)
(if '8-a thea '8-b [...] [elseif '8-c thea '8-d ...] [else '8-e [...])
(if 'La thea '8-b (...] (elseif '8-C thearet] [else '8-d [...])

NOTE: The various forms of if ~ intended to be a more readable conditional statement,
to be used. in place of condo There are two varieties of if, with Jceywords. aDd
without. The keyword .. les$ variety is inherited from common Maclisp usage. A
keyword-less, two argument ifis equivalent to a one-clause cond, i.e. (cond (ab».
Any other keyword-less if must have at least three arguments. The first two argu­
ments are the first clause of the equivalent cMUi, and all remaining arguments are
shoved into a second clause beginning with t. Thus, the second form of if is
equivalent to

(cond (a b) (t c ... ».
The . keyword variety has the following grouping of arguments: a predicate, a
then-clause, and optional else-clause. The predicate is evaluated, and if the result
is non-nil, the then-clause will be performed. in the sense described below. Other­
wise, (i.e. the result of the predicate evaluation was precisely nil), the else-clause
will be performed.

Then-clauses will either consist entirely of the single keyword theDret, or will start
with the keyword thea, and be followed by at least one general expression. (These
general expressions must not be one of the keywords.) To actuate a theoret means
to cease further evaluation of the if, and to return the value of the predicate just·
~culated. The performance of the longer clause means to evaluate each general
expression in turn, and then retum the last value calculated.

The else-clause may begin with the keyword else and be followed by at least one
general expression. The rendition of this clause is just like that of a then-clause.
An else-clause may begin alternatively with the keyword elseif, and be followed
(recursively) by a predicate, then-clause. and optional else-clause. Evaluation of
this clause, is just evaluation of an if-form, with the same predicate, then- and
else-clauses.

The Franz Lisp Manual PS2:9-59

(I-throw-err 'I_token)

WHERE: Ctoken is the cdr of the value returned from a ·catch with the tag
ER%unwind-protect.

RETURNs:nothing (never returns in the current context)

SIDE EFFECT: The error or throw denoted by Ctoken is continued.

NOTE: This function is used to implement unwind-protect which allows the processing of
a transfer of control though a certain context to be interrupted, a user function to
be executed and than the transfer of control to continue. The form of Ctoken is
either
(t tag value) for a throw or
(nil type message valret contuab uniqueid [arg ... J) for an error.
This function is not to be used for implementing throws or errors and is only
documented here for completeness.

(let Cargs 8-exp 1 ... 8-exprn)

RETURNs:the result of evaluating 8-exprn within the bindings given by l_args.

NOTE: Cargs is either nil (in which case let is just like progn) or it is a list of binding
objects. A binding object is a list (symbol expression). When a let is entered, all
of the expressions are evaluated and then simultaneously lambda-bound to the
corresponding symbols. In effect, a let expression is just like a lambda expression
except the symbols and their initial values are next to each other, making the
expression easier to understand. There are some added features to the let expres­
sion: A binding object can just be a symbol, in which case the expression

. corresponding to that symbol is 'nil'. If a binding object is a list and the first ele­
ment of that list is another list, then that list is assumed to be a binding template
and let will do a desetq on it.

(let* l_args 8-exp 1 ... 8-expn)

RETURNs:the result of evaluating 8-exprn within the bindings given by Cargs.

NOTE: This is identical to let except the expressions in the binding list l_args are
evaluated and bound sequentially instead of in parallel

(lexpr-funcall '8-function ['8-argi ...] 'l_argn)

NOTE: This is a cross between funcall and apply. The last argument, must be a list (pos­
sibly empty). The element of list arg are stack and then the function is funcalled.

EXAMPLE:(lexpr-funcall 'list 'a '(b c d» is the same as
(funcall 'list 'a 'b 'c 'd)

(listify 'x_count)

RETURNS:a list of x_count of the arguments to the current function (which must be a
lexpr).

NOTE: normally arguments I through x_count are returned. If x_count is negative then
a list of last abs(x_count) arguments are returned.

(map 'u_func 'Largl ...)

RETURNs:Largl

The Frau Lisp Muual

NOTE: The function u_func is applied to successive sublists of the Largi. All sublists
should have the same length.

(mapc 'u_func1_argl ...)

RETURNS:Largl.

NOTE: The function u_func is applied to successive elements of the argument lists. All
of the lists should have the same length.

(mapcaa 'u_func 'l_argl ...)

RETURNS:nconc applied to the results of the functional evaluations.

NOTE: The function u_func is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapcar 'u3unc 'l_argl .•.)

RETURNS:a list of the values returned from the functional application.

NOTE: the function u_func is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapc:oll 'u_func 'Largl ...)

RETURNS: n90nc applied to the results of the functional evaluation.

NOTE: the function u_func is applied to successive sublists of the argument lists. All
sublists should have the same length.

(maplist 'u_func 'Larg! ..•)

RETURNS:a list of the results of the func;~ional evaluations.

NOTE: the function u_func is applied to successive sublists of the arguments lists. All
sublists should have the same length.

Readers· may find the following summary table useful in remembering the differences
between the six mapping functions:

Value returned is

Argument to func- l_argl list of results nconc of results
tional is

elements of list mapc mapcar lllapcaD

sublists map maplist mapcon

The Franz Lisp Manual PS2:9-61·

(mfunction centry 's_disc)

RETURNS:a lisp object of type binary composed of centry and s_disc.

NOTE: centry is a pointer to the machine code for a function, and s_disc is the discip­
line (e.g. lambda).

(oblist)

RETURNs:a list of all symbols on the oblist.

(or [s-argl ...])

RETURNs:the value of the first non-null argument or nil if all arguments evaluate to nil.

NOTE: Evaluation proceeds left to right and stops as soon as one of the arguments evalu­
atesto a non-null value.

(prog L vrbls s-exp 1 ...)

RETURNs:the value explicitly given in a return form or else nil if no return is done by
the time the last s-expi is evaluated.

NOTE: the local variables are lambda-bound to nil, then the s-expi are evaluated from
left to right. This is a prog body (obviously) and this means than any symbols
seen are not evaluated, but are treated as labels. This also means that return's
and go's are allowed.

(progl 's-expl ['s-exp2 ...])

RETURNs:s-expl

(prog2 's-exp I 's-exp2 ['s-exp3 ... J)

RETURNs:s-exp2

NOTE: the forms are evaluated from left to right and the value of s-exp2 is returned.

(progo 's-expl ['s-exp2 ...])

RETURNS:the last s-expi.

(progv 'Llocv 'Linitv Lexp 1 ...)

WHERE: Llocv is a list of symbols and l_initv is a list of expressions.

RETURNs:the value of the last s-expi evaluated.

NOTE: The expressions in l_initv are evaluated from left to right and then lambda-bound
to the symbols in Llocv. If there are too few expressions in Linitv then the miss­
ing values are assumed to be nil. If there are too many expressions in Linitv then
the extra ones are ignored (although they are evaluated). Then the g,."expi are
evaluated left to right. The body of a progv is like the body of a progn, it is not a
prog body. (C.f. let)

PS2:9-62 The FnW Lisp Manual

(purcopY'Lexp)

RETURNs:a copy of J-exp with new pure cells allocated wherever possible.

NOTE: pure space is never swept up by the garbage collector, so this should only be done
on expressions which are not likely to become garbage in the future. In certain
cases, data objects in pure space become read-only after a dumplisp and then an
attempt to modify the object will result in an illegal memory reference.

(purep 'J-exp)

RETURNS:t iff the object J-exp is in pure space.

(putd 's_name 'u_func)

RETURNs:u_func

SIDE EFFECT: this sets the function binding of symbol s_name to u_func.

(return rLval])

RETURNS:J-val (or nil if L val is not present) from the enclosing prog or do body.

NOTE: this form is only valid in the context of a prog or do body.

(selectq 'J-key-form [Lclausel ...])

NOTE: This function is just like caseq (see above), except that the symbol otherwise has
the same semantics as the symbol t, when used as a comparator.

(setarg 'x_atgnum 'J-val)

WHERE: x_argnum is greater than zero and less than or equal to the number of argU-
ments to the lexpr.

RETURNS:Lval

SIDE EFFECT: the lexpr's x_argnum'th argument is set to g-val.

NOTE: this can only be used within the body of a lexpr.

(throw 'J-val [Ltag])

WHERE: if s_tag is not given, it is assumed to be nil.

RETURNS:the value of (·throw 's_tag 'g_va/).

(*throw 's_tag 'J-val)

RETURNS:Lval from the first enclosing catch with the tag s_tag or with no tag at all.

NOTE: this is used in conjunction with ·catch to cause a clean jump to an enclosing con­
text.

The Franz ~sp Manual

(unwind-protect i-protected [i-cleanupl ...])

RETURNs:the result of evaluating i-protected ..

PS2:9-63

NOTE: Normally i-protected is evaluated and its value remembered, then the i-cleanupi
are evaluated and finally the saved value of i-protected is returned. If something
should happen when evaluating i-protected which causes control to pass through
i-protected and thus through the call to the unwind-protect, then the i-cleanupi
will still be evaluated. This is useful if i-protected does something sensitive
which must be cleaned up whether or not i-protected completes.

CHAPTER S

Input/Output

The foUowiq functions are used to read from and write to external devices (e.g.
files) and programs (through pipes). All 110 goes through the lisp data type called the
port. A port may be open for either readiD& or writins. but usually not both simultane­
ously (see jileopen). There are only a limited number of ports (20) and they will not be
reclaimed unless they are closed. All ports are reclaimed by a reset;o·can. but this dras­
tic step won't be necessary if the program closes what it uses.

If a port argument is not supplied to a function which requires one, or if a bad
port argument (such as nil) is given, then FRANz LISP will use the default port according
to this. scheme:· If input is being done then the default port is the value of the symbol
piport and if output is being done then the default port is the value of the symbol poport.
Furthermore, if the value of piport or poport is not a valid port, then the standard input
or standard output will be used, respectively.

The standard input and standard output are usually the keyboard and terminal
display unless your job is running in the background and its input or output is con­
nected to a pipe. All output which goes to the standard output will also go to the port
ptport if it is a valid port. Output destined for· the standard output will not reach the
standard output if the symbol "w is non nil (although it will still go to ptport if ptport is
a valid port).

Some of the functions listed below reference files directly. FRANZ LIsp has bor­
rowed a convenient shorthand notation from /bin/csh, concerning naming files. If a file
name begins with - (tilde), and the symbol tilde-expansioa

is bound to something other than nil, then FRANZ LISP expands the file name. It takes
the striq of characters between the leading tilde, and the first slash as a user-name.
Then, that initial segment of the filename is replaced by the home directory of the user.
The null usemam.e is taken to be the current user.

FRANz LISp keeps a cache of user home directory information, to minimize search­
ing the password file. Tilde-expansion is performed in the following functions: clasl,
chdir, lasl, jfasl, fi/eopen, injiJe, load, outfi/e. probef, sys:access, sys:unlink.

(dasl 'st_file 'scentry 'sCfuncname ['sCdisc ['st_library]])

RETURNS:t

SIDE EfFEcr: This is used to load in a foreign function (see §8.4). The object file st_file
is loaded into the lisp system. Scentry should be an entry point in the
file just loaded. The function binding of the symbol s_funcname will be
set to point to st_entry, so that when the lisp function s3uncname is
called, st_entry will be run. sCdisc is the discipline to be given to
s_funename. sCdisc defaults to "subroutine" if it is not given or if it is
given as nil. If st_library is non-null. then after st_file is loaded. the
libraries given in st_library will be searched to resolve external references.
The form of st_library should be something like "-1m". The C library ("
-Ic ..) is always searched so when loading in a <; file you probably won't

PSl:9-64 The Fraaz Usp Mauaal

The Franz Lisp Manual PS2:9-65

need to specify a library. For Fortran files, you should specify" -IF77 " and
if you are doing any 110, the library entry should be "-1177 -IF77 " . For
Pascal files "-lpc" is required.

NOTE: This function may be used to load the output of the assembler, C compiler, For­
tran compiler, and Pascal compiler but NOT the lisp compiler (use lasl for that).
If a file has more than one entry point, then use getaddress to locate and setup
other foreign functions.
It· is an error to load in a file which has a global entry point of the same name as
a global entry point in the running lisp. As soon as you load in a file with clasl,
its global entry points become part of the lisp's entry points. Thus you cannot
clasl in the same file twice unless you use removeaddress to change certain global
entry points to local entry points.

(close 'p_port)

RETURNS:t

SIDE EFFECT: the specified port is drained and closed, releasing the port.

NOTE: The standard defaults are not used in this case since you probably never want to
close the standard output or standard input.

(cprintf'sCformat 'xfsC val ['p_port])

RETURNS:xfsC val

SIDE EFFECT: The UNIX formatted output function printf is called with arguments
sCformat and xfsC val. If xfsC val is a symbol then its· print name is
passed to printf. The format string may contain characters. which are just
printed literally and it may contain special forrilatting commands pre­
ceded by a percent sign. The complete· set of formatting characters is
described in the UNIX manual. Some useful ones are %d for printing a
fixnum in decimal, %f or %e for printing a flonum, and %s for printing a
character striug (or print name of a symbol).

EXAMPLE: (cprinrl " Pi equals %1 3.14159) prints 'Pi equals 3.14159'

(drain ['p_port])

RETURNS: nil

SIDE EFFECT: If this is an output port then the characters in the output buffer are all
sent to the device. If this is an input port then all pending characters are
flushed. The default port for this function is the default output port.

(ex [s_filename])
(vi [s_filename])
(exl [s_filename])
(vii [s_filename])

RETURNS: nil

SIDE EFFECT: The lisp system starts up an editor on the file named as the argument. It
will try appending .1 to the file if it can't find it. The functions ext and vii
will load the file after you finish editing it. These functions will also
remember the name of the file so that on subsequent invocations, you
don't need to provide the argument.

NOTE: These functions do not evaluate their argument.

PS2:9-66

(lasl 'scname ['sCmapf l'&-warnlD

WHERE: scmapf and &-warn default to nil.

RETURNS:t if the function succeeded,nil otherwise.

The Frau Lisp Manual

SIDE EFFEer: this function is designed to load i~ an object file generated by the lisp
compiler Lim. File names for object files usually end in '.0', so /asl will
append '.0' to st_name (if it is not already present). If st_mapf is non nil,
then it is the name of the map lile to create. Fasl writes in the map file
the names and addresses of the functions it loads and deftnes. Normally
the map ftle is created (i.e. truncated if it exists), but if
(sstatus appendmap t) is done then the map file will be appended. If
&-warn is non nil and if a function is loaded from the file which is
already deftned, then a watning messaae will be printed.

NOTE: /asl only looks in the current directory for the file to load. The function load looks
through a user-supplied search path and will call /asl if it finds a tile with the
same root name and a '.0' extension. In most cases the user would be better off'
using the function load rather than calling/asl directly.

(ffasl 'sCfile 'sCentry 'sCfuncname ('sCdiscipline ('st_librarylD

RETURNs:the binary object created.

SIDE EFf'Ecr: the Fortran object file scfile is loaded into the lisp system. Scentry
should be an entry point in the tile just loaded. A binary object will be
created and its entry field will be set to POint tosCentry. The discipline
field of the binary will be set to sCdiscipline or ~subroutine" by default.
If stJibrary is present and non-~ull, then after sCfile· is loaded,' the
libraries given in st_library will be searched to resolve external references.
The form of st_Iibrary should be something iike • -IS -ltermcap". In any
case, the standard Fortran libraries will be searched also to resolve exter­
nal references.

NOTE: in F77 on Unix, the entry point for the fortran function foo is named' joo_'.

(flJepos 'p_port ('x_pos])

RETURNS:the current position in the file if x_pas is not given or else x_pos if x_pos is
given.

SIDE EFf'Ecr: If x_pas is given, the next byte to be read or written to the port will be at
position X_poSe

(fllestst 'sCfilename)

RETURNs:a vector containing various numbers which the UNIX operating system assigns
. to files. if the file doesn't exist, an error is invoked. Use probe/to determine
if the tile exists.

NOTE: The individual entries can be accesed by mnemonic functions of the form
filestat;field, where field may be any of atime,ctime, dev, gid, ino, mode,mtime,
nlink, rdev, size, type, uid. See the UNIX programmers manual for a more
detailed description of these quantities.

The Franz Lisp Manual PS2:9-67

(flatc: 's-form ['x_max])

RETURNs:the number of characters required to print s-form using patom. If x_max is
given and if flatc determines that it will return a value greater than x_max,
then it gives up and returns the current value it has computed. This is useful
if you just want to see if an expression is larger than a certain size.

(flatsize 'Lform [,x_max])

RETURNs:the number of characters required to print Lform using print. The meaning
of x_max is the same as .for flate.

NOTE: Currently this just explode's Lform and ehecks its length.

(fileopeD 'scfilename 'scmode)

RETURNs:a port for reading or writing (depending on scmode) the file sCname.

SIDE EFFEcr: the given file is opened (or created if opened for writing and it doesn't yet
exist).

NOTE: this function call provides a direct interface to the operating system's fopen func­
tion. The mode may be more than just "r" for read, "w" for write or "a" for
append. The modes "r+", "w+" and "a+" permit both reading and writing on a
port provided that /seek is done between cbanges in direction. See the UNIX
manual description of fopen for more details. This routine does not look through
a search path for a given file.

(fseek 'p_port 'x_offset 'x_flag)

RETURNS:the position in the file after the function is performed.

SIDE EFFEcr: this function positions the read/write pointer before a certain byte in the
file. If x_flag is 0 then the. pointer is set to x_offset bytes from the ·begin­
ning of the file. If x_flag is I then the pointer is set to x_offset bytes from
the current location in the file. If x_flag is 2 then the pointer is set to
x_offset bytes from the end of the file.

(iDfile 's_filename)

RETURNS: a port ready to read s_filename.

SIDE EFFEcr: this tries to open Lfilename and if it cannot or if there are no ports avail­
able it gives an error message.

NOTE: to allow your program to continue on a file-not-found error, you can use some­
thing like:
(cond ((null (setq myport (car (errset (infile name) nil))))

(patom "'couldn't open the file")))
which will set myport to the port to read from if the file exists or will print a mes­
sage if it couldn't open it and also set myport to nil. To simply determine if a file
exists, use probe/.

PS2:9-68

(load 's_filename ['scmap ['g..warn)])

RETURNS:t

The Franz Lisp Maoual

NOTE: The function of load has changed since previous releases of FRANZ LISP and the
following description should be read carefully.

SIDE EFFECT: load now serves the function of both lasl and the old load. Load will
search a user defined search path for a lisp source or object file with the
filename s_filename (with the extension .1 or .0 added as appropriate).
The search path which load uses is the value of (status load-search-palh).
The aefault is (I.' lusr/libllisp) which means look in the current directory
first and then lusrllib/lisp. The file which load looks for depends on the
last two characters of s_filename. If s_filename ends with ".1" then load
will only look for a file name s_filename and will assume that this is a
FRANZ LISP source file. If s_filename ends with ".0· then load will only
look for a file named s_filename and will assume that this is a FRANz LISP
object file to be lasled in. Otherwise, load will first look for s_filename.o,
then Lfilename.l and finally s_filename itself. If it tinds s_filename.o it
will assume that this is an object file, otherwise it will assume that it is a
source file. An object file is loaded using lasl and a source file is loaded
by reading and evaluating each form in the file. The optional arguments
scmap and g.. warn are passed to lasl should lasl be called.

NOTE: load requires a port to open the file s_filename. It then lambda binds the symbol
piport to this port and reads and evaluates the forms.

(makereadtable ['s_flag))

WHERE: if s_flag is. not present it is assumed to be nil.

RETURNS:a readtable equal to the original readtable if s_flag is non-null, or else equal to
the current readtable. See chapter 7 for a description of readtables and their
uses.

(msg [I_option ...] rg..msg ... J)

NOTE: This function is intended for printing short messages. Any of the arguments or
options presented can be used any number of times, in any order. The messages
themselves (g..msg) are evaluated, and then they are transmitted to palomo Typi­
cally, they are strings, which evaluate to themselves. The options are interpreted
specially:

The Franz Lisp Manual PS2:9-69

msg Optio" Summary

(P p../lOrtname) causes subsequent output to go to the port p_portname
(port should be opened previously)

B print a siqle blank.

(B -,,_b) evaluate n_b and print that many blanks.

N print a siqle by callin& terpr.

(N -,,_,,) evaluate n_n and transmit
that many newlines to the stream.

D d~"the~tpo~

• RETURNs:the number of characters in the buffer of the given port but not yet written out
to the file or device. The buffer is flushed automatically when filled, or when
terpr is called.

(outfile 's_filename ('sCtype])

RETURNs:"a port or nil

SIDE EFFECT: this opens a port to write s_filename. If SCtYPe is given and if it is a
symbol or string whose name begins with 'a', then the file will be opened
in append mode, that is the current contents will not be lost and the next
data will be written at the end of the file. Otherwise, the file opened is
truncated by out/zle if it existed beforehand. If there are no free ports,
oudile returns nil. If one cannot write on s_filename, an error is signalled.

(patom 'Lexp ['p_port])

RETURNS: Lexp

SIDE EFFECT: Lexp is printed to the given port or the default port. If Lexp is a symbol
or string, the print name is printed without any escape characters around
special characters in the print name. If Lexp is a list then patom has the
same effect as print.

PS2:9-70

(pntlen 'xfs_arg)

RETUltNs:the number of characters needed to print xfs_arg.

(portp ',-arg)

RETUltNS: t iff ,-arg is a port.

(pp [Coption) s_namel ...)

RETURNS:t

The Franz Lisp Manual

SIDE EFFECT: If s_namei has a function binding, it is pretty·printed, otherwise if
s_namei has a value then that is pretty·printed. Normally the output of
the pretty·printer goes to the standard output port poport. The options
allow you to redirect it.

PP Option Summary

(F s..filename)

(P p..jJortname)

(E K_expression)

(prine '&-arg ['p_port])

EQUIVALENT To:patom.

(print ',-arg ['p_port])

RETUltNS:nil

direct future printing to s_filename

causes output to go to the port p_portname
• (port should be opened previously)

evaluate &-expression and don't print

SIDE eFFECT: prints ,-arg on the port p_port or the default port.

(probef'sefile)

RETUltNS: t iff the file seIDe exists.

NOTE: Just because it exists doesn't mean you can read it.

(pp-form 'gjorm ['p_port])

RETURNS:t

SIDE EFFECT: &-form is pretty·printed to the port p_port (or poport if p_port is not
given). This is the function which pp uses. pp-form does not look for
function definitions or values of variables, it just prints out the form it is
given.

NOTE: This is useful as a top.level·printer, c.f. top-level in Chapter 6.

The Franz Lisp Manual PS2:9-71

(ratom ['p_port ['g..eofl])

RETURNs:the next atom read from the given or default port. On end of file, g..eof
(default nil) is returned.

(read ['p_port ['g..eofl])

RETURNs:the next lisp expression read from the given or default port. On end of file,
g..eof (default nil) is returned.

NOTE: An error will occur if the reader is given an ill formed expression. The most com­
mon error is too many right parentheses (note that this is not considered an error
in Maclisp).

(reade [,p_port ['g..eofl])

RETURNs:the next character read from the given or default port. On end of file, g..eof
(default nil) is returned.

(readUst 'I_arg)

RETURNs:the lisp expression read from the list of characters in l_arg.

(removeaddress 's_namel ['s_name2 ...])

RETURNS: nil

SIDE EFFECT: the entries for the s_namei in the Lisp symbol table are removed. This is
useful if you wish to efasl or ffasl in a file twice, since it is. illegal for a

. symbol iIi the file you are loading to already exist in the lisp symbol table.

(resetio)

RETURNS: nil

SIDE EFFECT: all ports except the standard input, output and error are closed.

(setsyntax 's_symbol 's_synclass ['is_fune])

RETURNS:t

SIDE EFFECT: this sets the code for s_symbol to sx_code in the current readtable. If
s_synclass is macro or splicing then ls_func is the associated function. See
Chapter 7 on the reader for more details.

(sload 's_file)

SIDE EFFECT: the file s_file (in the current directory) is opened for reading and each
form is read, printed and evaluated. If the form is recognizable as a func­
tion definition, only its name will be printed, otherwise the whole form is
printed.

NOTE: This function is useful when a file refuses to load because of a syntax error and
you would like to narrow down where the error is.

PS2:9-72 The Franz Usp Manual

(tab 'x_col l'p_port])

SIDE EPPEcr: enough spaces are printed to put the cursor on column x_coL If the cur­
sor is beyond x_coIto start with, a terpr is done first.

(terpr ['p~rt])

RETURNS: nil
SIDE EPPEcr: a terminate line character sequence is sent to the given port or the default

port. This will also drain the port.

(terpri ['p_port])

EQUIVALENT To:terpr.

(tilde-expantl 'sLfilename)

RETURNs:a symbol whose pname is the tilde-expansioDof the argument, (as discussed at'
the beginning of this chapter). If the argument does not begin with a tilde, the
argument itself is returned.

(tyi l'p_port])

RETURNS:the unum representation of the next character read. On end of file, ·1 is
returned.

(tyipeek l'p_port])

. RETURNs:the unum representation of the. next character to be read.

NOTE: This does not actually read the character, it just peeks at it.

(tyo 'x_char ['p_port]) .

RETURNS: x_char.

SIDE EFFEcr: the character whose unum representation is x_code, Cis printed as a on
the given output port or the default output port.

(untyi 'x_char ('p_port])

SIDE EFFEcr: x_char is put back in the input buffer so a subsequent tyi or read will read
it tirst.

NOTE: a maximum of one character may be put back.

(useraame-to-cIir 'sLname)

RETURNs:the home directory of the given user. The result is stored. to avoid unneces­
sarily searching the password file.

The Franz Lisp Manual

(zapline)

RETURNS: nil

PS2:9-73

SIDE EFFECT: all .characters up to and including the line termination character are read
and discarded from the last port used for input.

NOTE: this is used as the macro function for the semicolon character when it acts as a
comment character.

CHAPTER 6

System Functions

This chapter describes the functions used to interact with internal components of
the Usp system and operating system.

(allocate 's_type 'x..pages)

WHERE: s_type is one of the FRANZ LIsp data typeS described in § 1.3.

RETURNS:X_pages.

SIDE EFFECT: FRANz LIsp attempts to allocate x_pqes of type s_type. If -there aren't
x_pages of memory left, no space win be allocated and an error will occur.
The storage that is allocated is not given to the caller, instead it is added
to the free storage list of s_type. Th~ functions segment and smalI­
segment allocate blocks of storage and return it to the caller.

(arav 'x_argnumb)

RETURNs:a symbol whose pname is . the x.;..argnumbth aigument (starting .at 0) on the
. . commaD.d line which invoked the current lisp.

NOTE: if x_aranumb is less than zero, a tixnum whose value is the number of arguments
on the command line is returned. (argv 0) returns the. name of the lisp you are·
running.

(baktrKe)

RETURNS: nil

SIDE EFFECT: the lisp runtime stack is examined and the name of (most) of the func­
tions currently in execution are printed, most active first.

NOTE: this will occasionally miss the names of compiled lisp functions due to incomplete
information on the stack. If you are tracing compiled code, then baktrace won't
be able to interpret the stack unless (sstatus transIink nil) was done. See the func­
tion showstack for another way of printing the lisp runtime stack. This misspel •

. ling is from Maclisp.

(cladir 's_path)

RETURNS:t iff the system call succeeds.

SIDE EFFECT: the current directory set to s_path. Among other things, this will affect the
default location where the input/output functions look for and create files.

NOTE: chdir fonows the standard UNIX conventions, if s_path does not begin with a
slash, the default path is changed to the current path with s_path appended.
ehdir employs tilde-expansion (discussed in Chapter 5).

PS2:9-74 The FI'8III UsP MaauaI

TbeFranz Lisp Manual PS2:9-75

(command-Iine-args)

RETURNS:a list of the arguments typed on the command line, either to the lisp inter­
preter, or saved lisp dump, or application compiled with the auto run option
(liszt -r).

(deref 'x_addr)

RETURNs:The contents of x_addr, when thought of as a longword memory location.

NOTE: This may be useful in constructing arguments to C functions out of 'dangerous'
areas of memory.

(dumplisp s_name)

RETURNS: nil

SIDE EFFECT: the current lisp is dumped to the named file. When Lname is executed,
you will be in a lisp in the same state as when the dumplisp was done.

NOTE: dumplisp will fail if one tries to write over the current running file. UNIX does
not allow you to modify the file you are running.

(eval-wben I_time g..expl ...)

SIDE EFFECT: Ltime may contain any combination of the symbols load, eval, and com­
pile. The effects of load and compile is discussed in §12.3.2.1 compiler.
If eval is present however, this simply means that the expressions g..exp 1

. and so on are evaluated from left to right. If eval. is not present, the
forms are not evaluated.

(exit ['x_code])

RETURNs:nothing (it never returns).

SIDE EFFECT: the lisp system dies with exit code x30de or 0 if x_code is not specified.

(fake 'x_addr)

RETURNs:the lisp object at address x_addr.

NOTE: This is intended to be used by people debugging the lisp system.

(fork)

RETURNs:nil to the child process and the process number of the child to the parent.

SIDE EFFECT: A copy of the current lisp system is made in memory and both lisp sys­
tems now begin to run. This function can be used interactively to tem­
porarily save the state of Lisp (as shown below), but you must be careful
that only one of the lisp's interacts with the terminal after the fork. The
wait function is useful for this.

PS2:9-76 The Frau Lisp Manual

. (ge)

-> (setq /00 'bar)
bar
-> (cond {(fork)(wait)))
nil
->/00
bar
-> (setq /00 'baz)
baz
->/00
baz
-> (exit)
(5274.0)
->/00
bar

RETURNS: nil

;; set a variable

;; duplicate the lisp system and
;; make the parent wait
;; check the value of the variable

;; give it a new value

;; make sure it worked

;; exit the child
;; the wail function returns this
;; we check to make sure parent was
;; not modiied.

SIDE EFFEcr: this causes a garbage collection.

NOTE: The functiongcajier is not called automatically after this function finishes. Nor­
mally the· user doesn't have to call ge since garbage collection occurs automatically

. whenever internal free lists are exhausted. . .

(gcafter s:..type)

WHERE: s_type is one of the FRANZ LISP data types listed in § 1.3.

NOTE: this function is called by the garbage collector after a garbage collection which was
caused by running out of data type s_type. This function should determine if
more space need be allocated and if so should allocate it. There is a default
gcafter function but users who want control over space allocation can define their
own - but note that it must be an nlambda.

(getenv's_name)

RETURNS:a symbol whose pname is the value of s_name in the current UNIX environ­
ment. If s_name doesn't exist in the current environment, a symbol with a
null pname is returned.

(hashtabstat)

RETURNs:a list of fixnums representing the number of symbols in each bucket of the
oblist.

NOTE: the oblist is stored a hash table of buckets. Ideally there would be the same
number of symbols in each bucket.

The Franz Lisp Manual PS2:9-77

(help [sx_arg])

SIDE EFFECT: If sx_arg is a symbol then the portion of this manual beginning with the
description of sx_arg is printed on the terminal. If sx_arg is a tixnum or
the name of one of the appendicies, that chapter or appendix is printed on
the terminal. If no argument is provided, help prints the options that it
recognizes. The program 'more' is used to print the manual on the termi­
nal; it will stop after each page and will continue after the space key is
pressed.

(include s_filename)

RETURNS: nil

SIDE EFFECT: The given filename is loaded into the lisp.

NOTE: this is similar to load except the argument is not evaluated. Include means some­
thing special to the compiler.

(include-if'i-predicate s_filename)

RETURNS: nil

SIDE EFFECT: This has the same effect as include, but is only actuated if the predicate is
non-nil.

(includef 'Lftlename) .

. . REtURNS: nil

SIDE EFFECT: this is the same as include except the argument is evaluated.

(includef-if 'i-predicate s_filename)

RETURNS: nil

SIDE EFFECT: This has the same effect as includef, but is only actuated if the predicate is
non-nil.

(maknlllD 'i-arg)

RETURNS:the address of its argument converted into a tixnum.

(monitor ['xs_maxaddr»

RETURNS:t

SIDE EFFECT: If xs_maxaddr is t then profiling of the entire lisp system is begun. If
xs_maxaddr is a fixnum then profiling is done only up to address
xs_maxaddr. If xs_maxaddr is not given, then profiling is stopped and the
data obtained is written to the file 'mon.out' where it can be analyzed with
the UNIX 'pror program..

NOTE: this function only works if the lisp system has been compiled in a special way,
otherwise, an error is invoked.

PS2:9-78 The Fraaz LispMaual

(opval 's_arg ['8-newval])

RETURNS:the value associated with s_arg before the calL

SIDE EFFEcr: If 8-newval is· specified, the value associated with s_arg is changed to
8-newval.

NOTE: opvaJ keeps track of storage allocation.· If s_arg is. one of the . data types then opvaL
will return a list of three fixnums representingtbe number of items of that type in
use, the number of pages allocated and the number of items of that type per page.
You should never try to change the val.ue opvaJ associates with a data type using
opva/. .
If s_arg is pagelimit then opvaL will retum (and set if LDewval is given) the max­
imum amount of lisp data pages it will allocate. This limit should remain small
unless you know your program requires lots of space as this limit will catch pro­
grams in inDnite loops which gobble up memory.

(*proeess 'sCcommand ['8-readp ['l-writepJD

RETURNs:either a fixnw;n if one argument is given, or a list of two ports and a tixnum if
two or three arguments are given.

NOTE: ·process starts another process by passina stsommand to the shell (it first tries
Ibin/csb, then it tries Ibin/sh if lbin/-csb doesn't exist). If only one argument is
given to ·process. ·process Waits for the new process to die and then returns the
exit code of the new process. If more two or three arguments are given,·process
starts the process and then returns a list which, depending on the value of
I-readp andl-writep, ~y contain ilo.ports for Com~uncating with the new pro­
. cess. If I-writep is non-null, then it port will be created. which the lisp program
can use to seJld characters to the new process~ If I-readp is non~null, then a port
will be aeated which the lisp program can use to read. characters from the new
process. The value returned by ·process is (readport writeport pid) where read.­
port and. writeport are either nil ora port based on the value of &-readp and
L writep. Pid is the process id of the new process. Since it· is hard to remember
the order of Lreadp and L writep, the functions *process-send and ·process­
receive were written to perform the common functions.

(*process-reeeive 'It_command)

RETURNS:a port which can be read.

SIDE EFFEcr: The command sccommand is given to the shell and it is started running
in the background.. The output of that command is available for rea<ling
via the port returned.. The input of the command process is set to
/dev/null.

(*process-send'lt_command)

RETURNS:a port which can be written to.

SIDE EFFEcr: The command sCcommand is given to the shell and it is started runing in
the background The lisp program can provide input for that command
by sending characters to the port returned by this function. The output of
the command process is set to /dev/null. .

The Franz Lisp Manual PSl:9-79

(process s_pgnn (s_frompipe s_topipe])

RETURNS:if the optional arguments are not present a fixnum which is the exit code when
s_prgm dies. If the optional arguments are present, it returns a fixnum which
is the process id of the child.

NOTE: This command is obsolete. New programs should use one of the ·process com­
mands given above.

SIDE EFFECT: If s_frompipe and s_topipe are given, they are bound to ports which are
pipes which direct characters from FRANZ LIsp to the new process and to
FRANZ LISP from the new process respectively. Process forks a process
named s_prgm and waits for it to die iff there are no pipe arguments
given.

(ptime)

RETURNS:a list of two elements. The first is the amount of processor time used by the
lisp system so far, and the second is the amount of time used by the garbage
collector so far.

NOTE: the time is measured in those units used by the times(2) system call, usually 60ths
of a second. The first number includes the second number. The amount of time
used by garbage conection is not recorded until the first call to ptime. -This is
done to prevent overhead when the user is not interested in garbage collection
times.

(reset)

SIDE EFFECT: the lisp runtime stack is cleared and the system restarts at the top level by
executing a· ([uncall top-level nil).

(restorelisp's_name)

SIDE EFFECT: this reads in file s_name (which was created by savelisp) and then does a
(reset).

NOTE: This is only used on VMS systems where dumplisp cannot be used.

(retbrk [,x_level])

WHERE: x_level is a small integer of either sign.

SIDE EFFECT: The default error handler keeps a notion of the current level of the error
caught. If x_level is negative, control is thrown to this default error
handler whose level is that many less than the present, or to top-level if
there aren't enough. If x_level is non-negative. control is passed to the
handler at that level If x_level is not present, the value -1 is taken by
default.

PS2:9-80

(*rset 'a..Oag)

RETURNS:a..flag

The Fraaz Lisp Mulllll

SIDE EFFEct: If a..fiag is· non nil then the lisp system will maintain extra information
about calls to eva' and juneaU. This record keeping slows down the
evaluation but this is required for the functions eva/hook, juncal/hook,
and eva/frame to work. To debua compiled lisp code the transfer tables
should be unlinked: (sstatus translink nil)

(save~isp 's_name)

RETURNS:t
SIDE EFFEct: the state of the Lisp system is saved in the file s_name. It can be read in

by restore/up.

NOTE: This is only used on VMS systems where dump/up cannot be used.

(segmeDt 's_type 'x_size)

WHERE: s_type is one of the data types given in § 1.3

RETURNS:a segment of contisuous lispvals of type s_type.

NOTE: In reality, segment returns a new data cen of type s_type and allocates space for
x_size - 1 more s_type's. beyond the one returned. Segment always allocates new
space and. does so in S 12 byte chunks. If you ask for 2 fixnums, segment win
actually allocate 128 of them thus wasting 126 fixnums. The function smal/­
segme1l(is a SJDart~ space allocator and should be used whenever possible.

(shell)·

RETURNS:the exit code of the shell when it dies.
SIDE EFFEct: this forks a new shell and returns when the shell dies.

(ihowstack)

RETURNS:nil

SIDE EFFEct: all forms currently in evaluation are printed, beginning with the most
recent. For compiled code the most that showstack will show is the func­
tion name and it may miss some functions.

(SigDa) 'x_signum 's_name)

RETURNS:nil if no previous call to signal bas been made,· or the previously installed
Lname.

SIDE EFFEct: this declares that the function named s_name will handle the signal
number xJignum. If s_name is nil, the signal is ignored. Presently only
four UNIX signals are caught. They and their numbers are: Interrupt(2),
Floating exception(8), Alarm(14), and Hang-up(l).

The Franz Lisp Manual PS2:9-81

(sizeo! 'Larg)

RETURNs:the number of bytes required to store one object of type Larg, encoded as a
fixnum.

(small-segment 's_type 'x3ells)

WHERE: s_type is one of fixnum, flonum and value.

RETURNS:a segment of x_cells data objects of type s_type.

SIDE EFFECT: This may call segment to allocate new space or it may be able to fill the
request on a page already allocated. The value returned by small-segment
is usually stored in the data subpart of an array object.

(sstatus Ltype L val)

RETURNS:L val

SIDE EFFECT: If Ltype is not one of the special sstatus codes described in the next few
pages this simply sets L val as the value of status type Ltype in the sys­
tem status property list.

(sstam appendmap L val)

RETURNS:L val

SIDE EFFECT: If L val is non-null when lasl is told to create a load map, it will append
to the file name given in the lasl command, rather than creating a new
map file'. The initial value is nil.

(sstatus automatic-reset L val)

RETURNS:L val

SIDE EFFECT: If L val is non-null when an error occurs which no one wants to handle, a
reset will be done instead of entering a primitive internal break loop. The
initial value is t.

(sstam chainatom L val)

RETURNS:L val

SIDE EFFECT: If L val is non nil and a car or cdr of a symbol is done, then nil will be
returned instead of an error being signaled. This only affects the inter­
preter, not the compiler. The initial value is nil.

(sstam dumpcore L val)

RETURNS:L val

SIDE EFFECT: If L val is nil, FRANz LISP tells UNIX that a segmentation violation or
bus error should cause a core dump. If L val is non nil then FRANZ LISP
will catch those errors and print a message advising the user to reset.

NOTE: The initial value for this flag is nil, and only those knowledgeable of the innards
of the lisp system should ever set this flag non nil.

PS2:9-82

($Status dumpmode x_val)

RETtTRNS:x_ val

The Fraaz Usp Manual

SIDE EFFECf: AU subsequent dumplisp's win be done in mode x_val. x_val may be
either 413 or 410 (decimal).

NOTE: the advantage of mode 413 is that the· dumped Lisp can be demand paged in
when first started, which will make it start faster and disrupt other users less. The
initial value is 413.

(sstablS evaJhook 8-val)

RETUllNS:8-val

. SIDE EFFECf: When &-val is non nil, this enables the evalhook and funcallhook traps in
the evaluator. See § 14.4 for more details.

(sstatus feature 8-val)

RETUllNS:8-val

SIDE EFFECf: 8-val is added to the (status features) list,

(sstatas gcstriDp 8-val)

REn1R.NS:8-val

SIDE EPFECT: if 8-val is non-null, and if string garbage collection was enabled when the
lisp system was compiled, string space wiI1 be garbage collected.

NOTE: the default value for this is nil sinCe in most' applications garbage collecting
strings is' a waste of time. . .

(sstatus iporeeof 8-val)

RETURNS: 8-val

SIDE EFFECf: If s:val is non-null when an end of file (CNTL-D on UNIX) is typed to
the standard top-level interpreter, it wiI1 be ignored rather then cause the
lisp system to exit. If the the standard input is a file or pipe then this has
no effect, an EOF will always cause lisp to exit. The initial value is nil.

(sstatus nofeature 8-val)

RETUllNS:Lval

SlOE EFFECf: 8-val is removed from the status features list if it was present.

(sstatus traaslink 8-val)

RETURNS: 8-val

SIDE EFFECf: If 8-val is nil then all transfer tables are cleared and further calls through
the transfer table will not cause the fast links to be setup. If 8-val is the
symbol on then all possible transfer table entries will be linked and the
flag will. be set to cause fast links to be set up dynamically. Otherwise aU
that is done is to set the Oag to cause fast links to be set up dynamically.
The initial value is nil.

NOTE: For a discussion of transfer tables, see § 12.8.

The Franz Lisp Manual

(sstatus uc:tolc &-val)

RETURNS:&-val

PS2:9-83

SIDE EFFEcr: If &-val is not nil then all unescaped capital letters in symbols read by the
reader will be converted to lower case.

NOTE: This allows FRANz LISP to be compatible with single case lisp systems (e.g.
Maclisp, Interlisp and UCILisp).

(status &-code)

RETURNs:the value associated with the status code g..code if &-code is not one of the
special cases given below

(status ctime)

RETURNs:a symbol whose print name is the current time and date.

EXAMPLE:(status ctime) - 1 Sun Jun 29 16:51:26 19801

NOTE: This has been made obsolete by time-string, described below.

(status feature g.. val)

RETURNS:t iff g.. val is in the status features list.

(status features)

RETURNs:the value of the features code, which is a list of features which are present in
this system. You add to -this list with (sstatus feature -'g_ val) and test if feature
g..feat is present with (status feature 'gJeat).

(status isatty)

RETURNS:t iff the standard input is a terminal.

(status localtime)

RETURNS:a list of fixnums representing the current time.

EXAMPLE:(status ioea/time) = (3 51 13 31 6 81 5 211 1)
means 3rd second, 51st minute, 13th hour (1 p.m), 31st day, month 6
(0 = January), year 81 (0 = 1900), day of the week 5 (0 = Sunday), 211th day
of the year and daylight savings time is in effect.

(status syntax s3har)

NOTE: This function should not be used. See the description of getsyntax (in Chapter 7)
for a replacement.

PS2:9-84 The Franz Lisp Manual

(status undeft'unc)

RETURNS:a list of all functions which transfer table entries point to but which are not
defined at this point.

NOTE: Some of the undefined functions listed could be arrays which have yet to be
created.

(status version)

RETURNs:a string which is the current lisp version name.

EXAMPLE:(status version) - "Franz Lisp, Opus 38.61"

(syscall 'x_index ['xscargl ... J)

RETURNs:the result of issuing the UNIX system call number x_index with arguments
xscargi.

NOTE: The UNIX system calls are described in section 2 of the UNIX Programmer's
manual. If xsCargi is a fixnum, then its value is passed as an argument, if it is a
symbol then its pname is passed and finally if it is a string then the string itself is
passed as an argument. Some useful syscalls are:
(syscall 20) returns process id.
(syscall 13) returns the number of seconds since Jan 1, 1970.
(syscall 10 'fool will unlink (delete) the file foo.

(sys:ac:c:ess 'sCfilename 'x_mode)
(sys:chmod 'scfilename 'x..:.mode)
(sys:gethostDame)
(sys:getpid)
(sys:getpwnaDI'scusername)
(sys:link 'sColdfilename 'scnewfilename)
(sys:time)
(sys:unlink'sCfilename)

NOTE: We have been warned that the actual system call numbers may vary among
different UNIX systems. Users concerned about portability may wish to use this
group of functions. Another advantage is that tilde-expansion is performed on all
filename arguments. These functions do what is described in the system call sec­
tion of your UNIX manual.

sys:getpwnam returns a vector of four entries from the password file, being the
. user name, user id, group id, and home directory.

(time-string [,x_seconds])

RETURNs:an ascii string giving the time and date which was x_seconds after UNIX's
idea of creation (Midnight, Jan 1, 1970 GMT). If no argument is given, time­
string returns the current date. This supplants (status clime), and may be used
to make the results of fiJestat more intelligible.

The Franz Lisp Manual PS2:9-8S

(top-level)

RETURNs:nothing (it never returns)

NOTE: This function is the top-level read-eval-print loop. It never returns any value. Its
main utility is that if you redefine it, and do a (reset) then the redefined (top­
level) is then invoked. The default top-level for Franz, allow one to specify his
own printer or reader, by binding the symbols top-level-printer and top-Ievel­
reader. One can let the default top-level do most of the drudgery in catching
reset's, and reading in .lisprc files, by binding the symbol user-top-Ievel, to a rou­
tine that concerns itself only with the read-eval-print loop.

(wait)

RETURNS:a dotted pair (processid. status) when the next child process dies.

CHAPTER 7

The Lisp Reader

7.1. Introdudion

The read function is responsible for converting a stream of characters into a Lisp
expression. Read is table driven and the table it uses is called a readtable. The print
function does the inverse of read; it converts a Lisp expression into a stream of charac­
ters. Typically the conversion is done in such a way that if that stream of characters
were read by read, the result would be an expression equal to the one print was given.
Print must also refer to the readtable in order to determine how to format its output.
The explode function, which returns a list of characters rather than printing them,
must also refer to the readtable.

A readtable is created with the mak.ereadtable function, modified with the setsyn­
tax function and interrogated with the getsyntax function. The structure of a readtable
is hidden from the user - a readtable should only be manipulated with the three func­

-tions mentioned above.

There is one distinguished readtable called the cu"ent readtable whose value
determines what read. print and explode do. The current readtable is the value of the
symbol readtable. Thus it is possible to rapidly change the current syntax by lambda
binding a different readtable to the symbol read table. When the binding is undone, the
syntax reverts to its old form. c

7.2. Syntax Classes

The readtable describes how each of the 128 ascii characters should be treated by
the reader and printer. Each character belongs to a syntax class which has three pro­
perties:

character class -
Tells what the reader should do when it sees this character. There are a large
number of character classes. They are described below.

separator -
Most types of tokens the reader constructs are one character long. Four token
types have an arbitrary length: number (1234), symbol print name (franz),
escaped symbol print name Ofranz!). and string ("franz"). The reader can easily
determine when it has come to the end of one of the last two types: it just looks
for the matching delimiter (lor "). When the reader is reading a number or sym­
bol print name, it stops reading when it comes to a character with the separator
property. The separator character is pushed back into the input siream and will
be the tirst character read when the reader is called again.

escape -
Tells the printer when to put escapes in front of, or around. a symbol whose print

PS2:9-86 The Franz Lisp Manual

The Franz Lisp Manual PS2:9-87

name contains this character. There are three possibilities: always escape a sym­
bol with this character in it, only escape a symbol if this is the only character in
the symbol, and only escape a symbol if this is the tirst character in the symbol.
[note: The printer will always escape a symbol which, if printed out, would look
like a valid number.]

When the Lisp system is built, Lisp code is added to a C-coded kernel and the
result becomes the standard lisp system. The readtable present in the C-coded kernel,
called the raw read table, contains the bare necessities for reading in Lisp code. During
the construction of the complete Lisp system, a copy is made of the raw readtable and
then the copy is moditied by adding macro characters. The result is what is called the
standard r.eadtable. When a neW readtable is created with makereadtable, a copy is
made of either the, raw readtable or the current readtable (which is likely to be the stan­
dard readtable).

7.3. Reader OperatioDs
The reader has a very simple algorithm. It is either scanning for a token, collect­

ing a token, or processing a token. Scanning involves reading characters and throwing
away those which don't start tokens (such as blanks and tabs). Collecting means gath­
ering the characters which make up a token into a buffer. Processing may involve
creating symbols, strings, lists. ftxnuins, bignums or tlonums or calling a user written
function called a character macro.

The components of the syntax Class determine when the reader switches between
, the scanning, collecting and processing states.' The, reader will continue sCanning as

long as the character class of the characters it reads is cseparator. When it reads a char­
acter whose character class is not cseparator it stores that character in its buffer and
begins the collecting phase.

If the character class of that tirst character is ccharacter, cnumber, cperiod. or
csign. then it will continue collecting until it runs into a character whose syntax class
has the separator property. (That last character will be pushed back into the input
buffer and will be the tirst character read next time.) Now the reader goes into the pro­
cessing phase, checking to see if the token it read is a number or symbol. It is impor­
tant to note that after the first character is collected the component of the syntax class
which tells the reader to stop collecting is the separator property, not the character
class.

If the character class of the character which stopped the scanning is not ccharac­
ter, cnumber, cperiod, or csign. then the reader processes that character immediately.
The character classes csingle-macro, csingle-splicing-macro, and csingle-infix-macro will
act like ccharacter if the following token is not a separator. The processing which is
done for a given character class is described in detail in the next section.

7.4. Character Classes

ccharacter

A normal character.

raw readtable:A-Z a-z AH !#$%&*,1:;<->?@"_'O·
standard readtable:A-Z a-z AH !$CM!&*/:;<->?@"_{r

PS2:9-88 The Franz Lisp Manual

cnumber raw readtable:00 9
standard readtable:0-9

This type is a digit. The syntax for an integer (fixnum or bignum) is a string of cnumber
characters optionally followed by a cperiod. If the digits are not followed by a cperiod.
then they are interpreted in base ibase which must be eight or ten. The syntax for a
floating point number is either zero or more cnumber's followed by a cperiod and then
followed by one or more cnumber's. A floatina point number may also be an integer
or floating point number followed by 'e' or 'd', an optional '+' or '-' and then zero or
more cnumber's.

csign raw readtable:+-
. standard readtable: +­

A leadina sign for a number. No other characters should be given this class.

cleft-paren

A left parenthesis. Tells the reader to begin forming a list.

raw readtable:(
standard readtable:(

cright-paren raw readtable:)
standardreadtable:)

A right parenthesis. Tells the reader that it has reached the end of a list.

cleft-bracket raw readtable:[
standard readtable:[

A left bracket. Tells the reader that it should begin forming a list. See the description
of cright-bracket for the difference between cleft-bracket and cleft-paren.

cright-bracket raw readtable:]
standard readtable:]

A right bracket. A cright-bracket finishes the formation of the current list and all
enclosing lists until it finds one which begins with a cleft-bracket or until it reaches the
top level list.

cperiod raw readtable:.
standard readtable:.

The period is used to separate element of a cons cell [e.g. (a. (b . nil» is the same as
(a b»). cperiod is also used in numbers as described above.

cseparator raw readtable:AI-AM esc space
standard readtable:AI-AM esc space

Separates tokens. When the reader is scanning, these character are passed over. Note:
there is a difference between the cseparator character class and the separator property
of a syntax class:

The Franz Lisp Manual PS2:9-89

csingle-quote raw readtable:'
standard readtable:'

This causes read to be called recursively and the list (quote <value read» to be
returned.

csymbol-delimiter raw readtable: I
standard readtable: I

This causes the reader to begin collecting characters and to stop only when another
identical csymbol-delimiter is seen. The only way to escape a csymbol-delimiter within a
symbol name is with a cescape character. The collected characters are converted into a
string which becomes the print name of a symbol. If a symbol with an identical print
name already exists, then the allocation is not done, rather the existing symbol is used.

cescape raw readtable:\
standard readtable:\

This causes the next character to read in to be treated as a vcharacter. A character
whose syntax class is vcharacter has a character class ccharacter and does not have the
separator property so it will not separate symbols.

cstring-delimiter raw readtable:·
standard readtable:·

This is the same as csymbol-delimiter except the result is returned as a string instead of
a symbol.

csingle-character-symbol raw readtable:none
standard readtable:none

This retulos a symbol whose print name is the the single character which has been col­
lected.

cmacro raw readtable:none
standard readtable:',

The reader calls the macro function associated with this character and the current
readtable, passing it no arguments. The result of the macro is added to the structure
the reader is building, just as if that form were directly read by the reader. More
details on macros are provided below.

csplicing-macro raw readtable:none
standard readtable:#;

A csplicing-macro differs from a cmacro in the way the result is incorporated in the
structure the reader is building. A csplicing-macro must return a list of forms (possibly
empty). The reader acts as if it read each element of the list itself without the sur­
rounding parenthesis.

csingle-macro raw readtable:none
standard readtable:none

This causes to reader to check the next character. If it is a cseparator then this acts like
a cmacro. Otherwise, it acts like a ccharacter.

PS2:9-90 The Frau Lisp Manual

csingle-splicing-macro raw readtable:none
standard readtable:none

This is triggered like a csingle-macro however the result is spliced in like a csplicing­
macro.

cinfix-macro raw readtable:none
standard readtable:none

This is differs from a cmacro in that the macro function is passed a form representing
what the reader has read so far. The result of the macro replaces what the reader had
read so far.

csingle-infix-macro raw readtable:none
standard readtable:none

This differs from the cinfix-macro in that the macro will only be triggered if the charac­
ter following the csing/e-infix-macro character is a cseparator.

cil/egal raw readtable:4 @_AGAN_AZ"_A_rubout
standard readtable:A@_AGAN_AZA_A_rubout

The characters cause the reader to signal an error if read.

7.5. Syntax Classes

The readtable maps each character into a syntax class. The syntax class contains
three pieces of information: the character class, whether this is a separator, and the
escape properties. The first two properties are used by the reader, the last by the
printer (and explode). The initial lisp system has the following syntax classes defined.
The USer may add syntax classes with add-syntax-class. For each syntax class, we list
the properties of the class and which characters have this syntax class by default. More
information about each syntax class can be found under the description of the syntax
class's character class.

vcharacter
ccharacter

raw readtable:A-Z a-z AH !#$%&*,/:;<=>?@A_'(f
standard readtable:A-Z a-z AH !$%&* I:; < == > ?@A_{ r

vnumber
cnumber

vsign
csign

raw readtable:0-9
standard readtable:0-9 .

raw readtable:+­
standard readtable: +-

The Franz Lisp Manual

vleft-pareD
cleft-paren
escape-always

vright-pareD
cright-paren
escape-always

vleft-bracket
cleft-bracket
escape-always

vright-brac:ket
cright-bracket
escape-always

vperiod
cperiod
escape-when-unique

vseparator.
cseparator
escape-always

vsingle-quote
csingle-quote
escape-always

vsymbol-delimiter
csingle-delimiter
escape-always

vesc:ape
cescape
escape-always

vstriDg-delimiter
cstring-delimiter
escape-always

vsingle-c:harac:ter-symbol
csingle-character-symbol
separator

PS2:9-91

raw readtable:(
standard readtable:(

raw readtable:)
standard readtable:)

raw readtable:[
standard readtable:[

raw readtable:]
standard readtable:]

raw readtable:.
standard readtable:.

raw readtable:AI-AM esc space
standard readtable:AI-AM esc space

raw readtable:'
standard readtable:'

raw readtable: I
standard readtable: I

raw readtable:\
standard readtable:\

raw readtable:"
standard readtable:"

raw readtable:none
standard readtable:none

PS2:9-92

vmacro
cmacro
escape-always

vsplicing-macro
csplicing-macro
escape-always

vsingle-macro
csingle-macro
escape-when-unique

vsingle-splicing-macro
csingle-splicing-macro
escape-when-unique

vinfix-macro
cinfix-macro
escape-always

vsingle-infix-macro
csingle-in./ix-macro
escape-when-unique

villegal
cillegal
escape-always

7.6. Character Macros

The Franz Lisp Manual

raw readtable:none
standard readtable:',

raw readtable:none
standard readtable:#;

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:A@_AGAN_Ar_A_rubout
standard readtable:A@_AGAN_Ar_A_rubout

Character macros are user written functions which are executed during the read­
ing process. The value returned by a character macro mayor may not be used by the
reader, depending on the type of macro and the value returned. Character macros are
always attached to a single character with the setsyntax function.

7.6.1. Types There are three types of character macros: normal, splicing .and infix.
These types differ in the arguments they are given or in what is done with the result
they return.

7.6.1.1. Normal
A normal macro is passed no arguments. The value returned by a normal

macro is simply used by the reader as if it had read the value itself. Here is an
example of a macro which returns the abbreviation for a given state.

The Franz Lisp Manual

->(dejim stateabbrev nil
(cdr (assq (read) '((california. ca) (pennsylvania. pa)))))

stateabbrev
-> (setsyntax V'vmacro 'stateabbrev)
t
-> '(! california! wyoming! pennsylvania)
(ca nil pa)

Notice what happened to

PS2:9-93

! wyoming. Since it wasn't in the table, the associated function returned nil. The creator of
the macro may have wanted to leave the list alone, in such a case, but couldn't with this type
of reader macro. The splicing macro, described next, allows a character macro function to
return a value that is ignored.

7.6.1.2. SpHclng

The value returned from a splicing macro must be a list or nil. If the value
is nil, then the value is ignored, otherwise the reader acts as if it read each object
in the list. Usually the list only contains one element. If the reader is reading at
the top level (i.e. not collecting elements of list), then it is illegal for a splicing
macro to return more then one element in the list. The major advantage of a
splicing macro over a normal macro is the ability of the splicing macro to return
nothing. The comment character (usually;) is a splicing macro bound to a func­
tion which reads to the end of the line and always returns nil. Here is the previ­
ous example written as a splicing macro

-> (defim stateabbrn nil
((lambda (value)

(cond (value (list value))
(I nil)))

(cdr (assq (read) '((california. ca) (pennsylvania. pa))))))
-> (setsyntax '! 'vsplicing-macro 'stateabbrev)
-> '(!pennsylvania ! foo !california)
(pa ca)
-> 'I/oo!bar !pennsylvania
pa
->

7.6.1.3. Infix

Infix macros are passed a eone structure representing what has been read so
far. Briefly, a tconc structure is a single list cell whose car points to a list and
whose cdr points to the l~ list cell in that list. The interpretation by the reader

The Fnmz Lisp Manual

of the value returned by an infix macro depends on whether the maero is called
while the reader is eonstructing a list Of whether it is called at the top level of
the reader. If the macro is ealled while a list is being constructed, then the value
returned should be a tcone structure. The car of that structure replaces the list
of elements that the reader has been collecting. If the macro is called at top
level, then it will be passed the value nil, and the value it retUrns should either
be nil or a teone structure. If the macro returns nil, then the value is ignored
and the reader continues to read. If the macro returns a toone structure of one
element (i.e. whose ear is a list of op.e element), then that single element is
returned as the value of· read. If the macro returns a teone structure of more
than one element, then that list of elements is returned as the value of read.

-> (defun pIJIIOfI (x)
(cond ((mdI x) (leone nil \+))

(t (leone nil (Jist 'plus (CQIU x) (read))))))

plusop
-> (setsyntIJX \ + 'vinfix-macro 'plusop)
t
-> '(a + b)
(plus a b)
-> '+
1+1
->

7.6.2. Invocations

There are three different circumstances in which you would like a macro func­
tion to be triggered.

Always -
Whenever the macro character is seen, the macro should be invoked. This is
accomplished by using the character classes cmacro, csplicing-macro, or cinfix­
macro, and by using the separator property. The syntax classes VJDaa'O,

vsplidng-mac:ro, and vsingle-mac:ro are defined this way.

When first -
The macro should only be triggered when the macro character is the first char­
acter found after the scanning process. A syntax class for a when first macro .
would be defined using cmacro, esplicing-macro, or cinfix-macro and not

. including the separator property.

When unique -
The macro should only be triggered when the macro character is the only char­
acter collected in the token collection phase of the reader, i.e the macro char­
acter is preceeded by zero or more cseparatOfS and followed by a separator. A
syntax class for a when unique macro would be defined using csingle-macro,
csingle-splicing-macro, or cSingle-infix-macro and not including the separator
property. The syntax classes so defined are vsi .. gIe-~ vsiagle-splidng­
macro, and vsiaaJe-idx-macro.

The Fraaz Lisp Manual

7.7. Functions

(setsyntax 's_symbol 's_synclass ['ls_func])

WHERE: Is_func is the name of a function or a lambda body.

RETURNS:t

PS2:9-95

SIDE EFFECT: S_symbol should be a symbol whose print Dame is only one character.
The syntax class for that character is set to s_synclass in the current readt­
able. If s_synclass is a class that requires a character macro, then Is_func
must be supplied.

NOTE: The symbolic syntax codes are new to Opus 38. For compatibility, s_synclass can
be one of the mum syntax codes which appeared in older versions of the FRANz
LIsp Manual. This compatibility is only temporary: existing code which uses the
fixnum syntax codes should be converted.

(getsyntax 's_symbol)

RETURNs:the syntax class of the first character of s_symbol's print name. s_symbol's
print name must be exactly one character long.

NOTE: This function is new to Opus 38. It supercedes (status syntax) which no longer
exists.

(add .. syntax-class 's_synclass 'Lproperties)

RETURNS: s_synclass

SIDE EFFECT: Defines. the syntax. class s_synclass to have properties Lproperties. The
list Lproperties should contain a character classes mentioned. above.
Lproperties may contain one of the esc8.pe properties: escape-a/ways,
escape-when-unique, or escape-when-first. Lproperties may contain the
separator property. After a syntax class has been defined with add­
syntax-c/ass, the setsyntax function can be used to give characters that
syntax class.

; Define a non-separating macro character.
; This type of macro character is used in UCI-Lisp. and
; it corresponds to a FIRST MACRO in Interlisp
-> (add-syntax-class 'vuci-macro '(cmacro escape-when-jirst))
vuci-macro
->

CHAPTER 8

Functions, Fclosures, and Macros

8.1. valid functioa objects
There are many different objects which can occupy the function field of a symbol

object. Table 8.1, on the foDowing pase. shows all of the possibilities, how to recognize
them, and where to look for documentation.

8.1. functions
The basic Lisp function is the lambda function. When a lambda function is

called, the actual arguments are evaluated from left to right and are lambda-bound to
the formal parameters of the . lambda function.

An nlambda function is usually used for functions which are invoked by the user
at top level. Some built-in functions which evaluate their arguments in special ways
are also nlambdas (e.g cond, do, or). When an nlamOda function is called,· the list of
unevaluated arguments is lambda bound· to the single formal parameter of the nlambda
function.

Some programmers will use an nlambda function when they are not sure how
many arguments will be passed. Then, the first thing the nlamb<ia function does is map
evaJ over the list of unevaluated arguments it has been passed. This is usually the
wrong thing to do, as it will notwotk compiled if any of the arguments are local vari­
ables. The solution is to use a lexpr. When a lexpr function is called, the arguments are
evaluated and a fixnum whose value is the number of arguments is lambda-bound to
the single formal parameter of the lexpr function. The lexpr can then access the argu­
ments using the arg function.

When a function is compiled, special declarations may be needed to preserve its
behavior. An argument is not lambda-bound to the name of the corresponding formal
parameter unless that formal parameter has been declared special (see §12.3.2.2).

Lambda and lexpr functions both compile into a binary object with a discipline of
lambda. However,·a compiled lexpr still acts like an interpreted lexpr.

8.3. macros
An important feature of Lisp is its ability to manipulate programs as data. As a

result of this, most Lisp implementations have very powerful macro facilities. The
Lisp language's macro facility can be used to incorporate popular features of the other
languages into Lisp. Fo.r example, there are macro packages which allow one to create
records (ala Pascal) and refer to elements of those records by the field names. The

PSl:9-96 The Franz Us, Maw

The Franz Lisp Manual PS2:9-97

informal name object type documentation
mterpreted hst WIth car 8.2

lambda function eq to lambda
interpreted list with car 8.2

nlambda function eq to nlambda
interpreted list with car 8.2

lexpr function eq to lexpr
interpreted list with car 8.3

macro eqto macro
fclosure vector with vprop 8.4

eq to fclosure
compiled binary with discipline 8.2

lambda or lexpr eqto lambda
function
compiled binary with discipline 8.2

nlambda function eq to nlambda
compiled binary with discipline 8.3

macro . eqto macro
foreign binary with discipline 8.5

subroutine of "subroutine"t
foreign binary with discipline 8.5.

function· of "function"t
foreign binary with diScipline . 8.5

integer function of "integer-function"t
foreign binary with discipline 8.5

real function of "real-function"t
foreign binary with discipline 8.5

C function of "c-function"t
foreign binary with discipline 8.5

double function of "double-c-function"t
foreign binary with discipline 8.5

structure function of "vector-c-function"t
array array object 9

Table 8.1

struct package imported from Maclisp does this. Another popular use for macros is to
create more readable control structures which expand into cond, or and and. One such
example is the If macro. It allows you to write

(If (equal numb 0) then (print 'zero) (terpr)
elsei/ (equal numb 1) then (print 'one) (terpr)
else (print '11 give up I))

tOnly the first character of the string is significant (i.e "s" is ok for "subroutine")

PS2:9-98 The Franz Lisp Manual

which expands to

(cond
((equal numb 0) (print 'zero) (terpr))
((equal numb 1) (print 'one) (terpr))
(t (print '11 give upl)))

8.3.1. macro forms
A macro is a function which accepts a Lisp expression as input and returns

another Lisp expression. The action the macro takes is called macro expansion.
Here is a simple example:

-> (de/first (macro (x) (cons 'car (cdr x))))
first
-> (first '(a b c))
a
-> (apply 'first '(first 'fa b cj))
(car '(a b c»

The first input line defines a macro called first. Notice that the macro has one for­
mal parameter, x. On the second input line, we ask the interpreter to evaluate
(first '(a b c)). Eval· sees that first has a function definition of type macro, so· it
evaluates first's definition, passing to first, as an argument, the form eval itself was
trying to evaluate: (first '(a b c)). The first macro chops off the car of the argument
with cdr, cons' a car at the beginning of the list and returns (car '(a b e)), which eval
evaluates. The value a is returned as the value of (first '(a b e)). Thus whenever
eval tries to evaluate a list whose car has a macro definition it ends up doing (at
least) two operations, the first of which is a call to the macro to let it macro expand
the form, and the other is the evaluation of the result of the macro. The result of
the macro may be yet another call to a macro, so eval may have to do even more
evaluations until it can finally determine the value of an expression. One way to
see how a macro will expand is to use apply as shown on the third input line above.

8.3.2. defmacro

The macro de/macro makes it easier to define macros because it allows you to
name the arguments to the macro call. For example, suppose we find ourselves
often writing code like (setq stack (cons newelt stack). We could define a macro
named push to do this for us. One way to define it is:

-> (de/push
(macro (x) (list 'setq (caddr x) (list 'cons (cadr x) (eaddr x)))))

push

then (push newelt stack) will expand to the form mentioned above. The same macro
written using defmacro would be:

-> (de/macro push (value stack)

The Franz Lisp Manual

(list 'setq .stack (list 'cons • value .stack)))
push

PS2:9-99

Defmacro allows you to name the arguments of the macro call, and makes the
macro definition look more like a function definition.

8.3.3. the backquote character macro

The default syntax for FRANZ LISP bas lour characters with associated charac­
ter macros. One is semicolon for comments. Two others are the backquote and
comma which are used by the backquote cbaracter macro. The fourth is the sharp
sign macro described in the next section.

The backquote macro is used to create lists where many of the elements are
fixed (quoted). This makes it very useful for creating macro definitions. In the sim­
plest case, a backquote acts just like a single quote:

->'(a b c de)
(a b c d e)

If a comma precedes an element of a backquoted list then that element is evaluated
and its value is put in the list.

->(setq d '(x y z))
(x y z)
->'(a b c ,d e)
(a b c (x y z) e)

If a comma followed by an at sign precedes an element in a backquoted list, then
that element is evaluated and spliced into !!1e list with append.

->'(a b c .@d e)
(a b c x y z e)

Once a list begins with a backquote, the commas may appear anywhere in the list as
this example shows:

-> '(a b (c d .(cdr d)) (e f (g h .@(cddr d) .@d)))
(a b (c d (y z» (e f (g b z x y z)))

It is also possible and sometimes even useful to use the backquote macro within
itself. As a final demonstration of the backquote macro, we shall define the first and
push macros using all the power at our disposal: defmacro and the backquote
macro.

->(defmacro first (list) '(car .list))
first
->(defmacro push (value stack) '(setq .stack (cons . value .stack)))
'stack

PS2:9-100 The Fraaz Lisp Maaual

8.3.4. sharp sip duIracter macro

The sharp sign macro can perform a number of different functions at read
time. The character directly following the sharp sign determines which function will
be done, and following Lisp s-expressions may serve as arguments.

8.3.4.1. c:oaditioDal iaclusioa

If you plan to run one source tile in more than one environment then you may
want to some pieces of code to be included or not included depending on the
environment. The C language uses "#ifder' and "l¥ifndef" for this purpose, and
Lisp uses "#+" and ''#-'.. The environment that the sharp sign macro checks is
the (status features) list which is initialized when the Usp system is built and
which may be altered by (sstatus feature fool and (sstatus nofeature bar) The
form of conditional inclusion is

#+when what
where when is either a symbol or an expression involving symbols and the func­
tions and, or, and not. The meaning is that what will only be read in if when is
true. A symbol in when is true only if it appears in the (status features) list.

; suppose we waDt to write a prosram which references a liIe
; and which' can run at ucb, ucsd and emu where the liIe naming conventions
; are diff'erenL
, .
... > (dej'un howold (Mme)

(te,r)

The form

(10tld '+(or ucb ucsd) "Iusrllibllisplages.r .
'+cmu "lusrllispldoclages.r)

(patom name)
(patom· is")
(print (cdr (assoc Mme agefile)))
(patom ·years oltf')
(terpr))

#-when what
is equivalent to

#+(not when) what

8.3.4.2. fixnum character equivaleats

When working with tixnum equivalents of characters, it is often hard to
remember the number corresponding to a character. The form

#Ic
is equivalent to thetixnum representation of character c.

TheFnmz Lisp Manual

; a function which returns t if the user typeS y else it returns nil .
-> (defun yesomo n;1

(progn (QIU)
(setq QIU (Iy;))
(cond ((equal QIU 'Iy) t)

(t nil))))

8.3.4.3. read time evaluation

. PSl:9-101

Occasionally you want to express a constant as a Lisp expression, yet you don't
want to pay the penalty of evaluating this expression each time it is referenced.
The form

#.expression
evaluates the expression at read time and returns its value.

; a function. to test if any of bits 1 3 or 12 are set in a mum . .
-> (de/un tnt;1 (num) .

(cond ((zerop (boole 1 nllnt ,.(+ (Ish 1 1) (Ish 1 J) (Ish 1 12))))
nil)·

(t I)))

8.4. (closures
Fclosures are a type of functional object. The purpose is to remember the values

of some variables between invocations of the functional object and to protect this data
from being inadvertently overwritten by other Lisp functions. Fortran programs usu­
ally exhibit this behavior for their variables. (In fact, some versions of Fortran would
require the variables to be in COMMON). Thus it is easy to write a linear congruent
random number generator in Fortran, merely by keeping the seed as a variable in the
function. It is much more risky to do so in Lisp, since any special variable you picked,
might be used by some other function. Fclosures are an attempt to provide most of the
same functionality as closures in Lisp Machine Lisp, to users of fRANz LISP. Fclosures
are related to closures in this way:
(fclosure '(a b) 'foo) < >

(let «a a) (b b» (closure '(a b) 'foo»

PS2:9-102

8.4.1. an example

'!fIUsp
Franz Lisp, Opus 3S.6O
->(defoa code (me COUIlt)

(priat (Ust 'in x»
(setq x (+ 1 x»
(cond «(greaterp COUIlt 1) (fwIcaIl me me (sui COUIlt))))
(print (list 'oat x»)

code
->(clefan tester (object coaat)

(fanaIll object object COtUIt) (terpri»
tester
->(setq x 0)
o
->(setq z (fclosure '(x) 'code»
fclosure[S)
-> (tester z 3)
(in O)(in I)(in 2)(out 3)(out 3)(out 3)
nil
->x
o

" The Franz Lisp Manual

The function /closure creates a new object that we will call an fclosure.
(although" it is actually a vector). The fclosure contains a functional object, and a
set of symbols and values for the symbols. In the above example, the fclosure func­
tional object is the function code. The set of symbols and values just contains the
symbol 'x' and zero, the value of 'x' when the fclosure was created.

When an fclosure is funcall' ed:

1) The Lisp system lambda binds the symbols in the fclosure to their values in
the fclosure.

2) It continues the funcall on the functional object of the fclosure.

3) Finally, it un-lambda binds the symbols in the fclosure and at the same time
stores the current values of the symbols in the fclosure.

Notice that the fclosure is saving the value of the symbol 'x'. Each time a fclo­
sure is created, new space is allocated for saving the values of the symbols. Thus if
we execute fclosure again, over the same function, we can have two independent
counters:

-> (setq II (fclosare '(x) 'code»
fclosure[1)
-> (tester II %)
(in O)(in l)(out 2)(out 2)
-> (tester II %)
(in 2)(in 3)(out 4)(out 4)
-> (tester z 3)
(in 3)(in 4)(in S)(out 6)(out 6)(out 6)

The Franz Lisp Manual PS2:9-103

8.4.2. useful functions

Here are some quick some summaries of functions dealing with closures.
They are more formally defined in §2.8.4. To recap, fclosures are made by (jc/osure
'evars 'gJuncobj). l_vars is a list of symbols (not containing nil), i-funcobj is any
object that can be funcalled. (Objects which can be funcalled, include compiled
Lisp functions, lambda expressions, symbols, foreign functions, etc.) In general, if
you want a compiled function to be closed over a variable, you must declare the
variable to be special within the function. Another example would be: .

(fclosure '(a b) iII'(lambda (x) (plus x a»)

Here, the ill' construction will make the compiler compile the lambda expression.

There are times when you want to share variables between fclosures. This can
be done if the fclosures are created at the same time using fclosure-list. The func­
tion !closure-alist returns an assoc list giving the symbols and values in the fclosure.
The predicate !closurep returns t iff its argument is a fclosure. Other functions
imported from Lisp Machine Lisp are symeval-in-!closure, [et-fclosed, and set-in­
!closure. Lastly, the function !closure-function returns the function argument.

8.4.3. internal structure

Currently, closures are implemented as vectors, with property being the sym­
bol fclosure. The functional object is the first entry. The remaining entries are
structures which point to the symbols and values for the closure, (with a reference
count to determine if a recursive closure is active).

8.5. foreign subroutines and functions

FRANz LISP has the ability to dynamically load object files produced by other
compilers and to call functions defined in those files. These functions are called foreign
functions.· There are seven types of foreign functions. They are characterized by the
type of result they return, and by differences in the interpretation of their arguments.
They come from two families: a group suited for languages which pass arguments by
reference (e.g. Fortran), and a group suited for languages which pass arguments by
value (e.g. C).

There are four types in the first group:

subroutine
This does not return anything. The Lisp system always returns t after calling a
subroutine.

function
This returns whatever the function returns. This must be a valid Lisp object or it
may cause the Lisp system to fail.

*This topic is also discussed in Report PAM-124 of the Center for Pure and Applied Mathematics, UCB, enti­
tled "Parla-VoU! Franz? An Informal Introduction to Interfacing Foreign Functions to Franz LISP", by James R.
Larus

PS2:9-104 The Fraaz . Lisp Maaual

integer-function
This returns an integer which the Lisp system makes into a fixnum and returns.

real-fuaedoa
This returns a double precision real number which the Lisp system makes into a
flonum and returns.

There are three types in the second group:

c-Cunctioa
This is like an integer function, except for its dift'erent interpretation of argu­
ments.

doable-c-function
This is like a real-function.

vector-c-functioa
This is for C functions which return a structure. The first argument to such func­
tions must be a vector (of type vectori), into which the result is stored. The
second Lisp argument becomes the first argument to the C function, and so on

A foreign function is accessed through a binary object just like a compiled· Lisp func­
tion. The dift'erence is that the discipline field of a binary object for a foreign function
is a string whose first character is given in the fonowing table:

letter type
s subroutine
f function
i integer-function
r . real-function.
c c-function
v vector-c-function
d double-c-function

Two functions are provided for setting-up foreign functions. elas/loads an object file
into the Lisp system and sets up one foreign function binary object. If there are more
than one function in an object file, getaddress can be used to set up additional foreign
function objects.

Foreign functions are called just like other functions, e.g (funname arg] arg2).
When a function in the Fortran group is called, the arguments are evaluated and then
examined. List, hunk and symbol arguments are passed unchanged to the foreign func­
tion. Fixnum and flonum arguments are copied into a temporary location and a
pointer to the value is passed (this is because Fortran uses call by reference and it is
dangerous to modify the contents of a fixnum or flonum which something else might­
point to). If the argument is an array object, the data field of the array object is passed
to the foreign function (This is the easiest way to send large amounts of data to and
receive large amounts of data from a foreign function). If a binary object is an argu­
ment, the entry field of that object is passed to the foreign function (the entry field is
the address of a function, so this amounts to passing a function as an argument).

When a function in the C group is. called, fixnum and flownum arguments are
passed by value. For almost aU other arguments, the address is merely provided to the
C routine. The only exception arises when you want to invoke a C routine which
expects a "structure" argument. RecaUthat a (rarely used) feature of the C language is

The Franz Lisp Manual PS2:9-105

the ability to pass structures by value. This copies the structure onto the stack. Since
the Franz's nearest equivalent to a C structure is a vector, we provide an escape clause
to copy the contents of an immediate-type vector by value. If the property field of a
vectori argument, is the symbol "value-structure-argument", then the binary data of
this immediate-type vector is copied into the argument list of the C routine.

The method a foreign function uses to access the arguments provided by Lisp is
dependent on the language of the foreign function. The following scripts demonstrate
how how Lisp can interact with three languages: C, Pascal and Fortran. C and Pascal
have pointer types and the first script shows how to use pointers to extract information
from Lisp objects. There are two functions defined for each language. The first (cfoo
in C, pfoo in Pascal) is given four arguments, a fixnum, a tlonum-block array, a hunk of
at least two fixnums and a list of at least two fixnums. To demonstrate that the values
were passed, each ?foo function prints its arguments (or parts of them). The ?foo func­
tion then modifies the second element of the tlonum-block array and returns a 3 to
Lisp. The second -function (cmemq in C, pmemq in Pascal) acts just like the Lisp
memq function (except it won't work for unums whereas the lisp memq will work for
small fixnums). In the script, typed input is in bold, computer output is in roman and
comments are in italic.

These are the C coded [unctions
% cat ch8auc:.c
fa demonstration of c coded foreign integer-function *f

f* the foUowing will be used to extract fixnums out of a list of fixnums */ .
struct listoffixnumsceU
{ struct HstoffixnumsceU *cdr;

int *tixnum;
};

struct listceU
{ struct listceU ·cdr;

int car;
};

cfoo(a,b,c,d)
int *a;
double b(];
int *c[];
struct listoffixnumsceU *d;
(

printfl"a: %d, b[O]: %f, b[l]: %ro, *11, b[O], b[l));
printfl" c (tint): %d c (second): %dO,

*c[O], *c[1));
printfl" (%d %d ..•) ", *(d->fixnum), *(d->cdr->fixnum»;
b[l] ,. 3.1415926;
retum(3);

struct listceU *
cmemq(element,list)
int element;
struet listceU *list;
(

}

for(; list && element !,. list->car; list,. Hst->cdr);
retum(Hst);

PS2:9-106

These are the pQ$CQ} codi!d jUnctions
% cat dl8aup.p
type pinteger • Aintepr;

realarray • may[O •• lO) of real;
pintarray ,. array[0 •• 10) of pinteger;
listoftiulUDSCeH - reeord

plistceH - 1istce11;
listceH • record

cdr : p1istce11;
car : integer;

end;

ftm~n~oo(v.ua:integer;
v.u b : reaIarray;
v.u c : pintarray;

cdr : ~thnumscell;
mum : pinteger;

v.u d : listoftiuumscell)·: intepr;
beaiD

writeill(' a:', .. ' b(O]:', b[O], , bEll:', b(l»;
writeln(' c (tirst):', c[Or: c (second):', c[lr>;
writeill(' (., d.fuulumA

, d.cdr"".lixnumA
, , •••) ');

bEl] :- 3.141S926;
~oo:. 3

end;

{ the function pmemq looks for the Lisp pointer given as the lim arpuneDt
in the list pointed to by the second araument.
Note that we declare " a : inteaer " instead of· Vat a : integer " since
we are interested in the pointer value instead of what it points to (wbich
could be any Lisp object)

} .
. ftmction pmemq(a : intepr, list :pllstcell) : plistcell;
beain
while (list <> nil) and (list"'.car <> a) do list:- list"'.cdr;
pmemq:-list;

end;

The files are compiled
% cc -c da8auc.(
1.08 1.21 0:1S 14% 3O+39k 33+20io 147pf+Ow
% pc -c cb8axp.p
3.08 1.750:37 12% 27+32k S3+32io 143pf+Ow

% lisp
Franz Lisp. Opus 38.60

The Fraaz Lisp Manual

Fint the files are loaded and we set up one foreign jUnction bi1Ul1'y. We have two jUnctions in etl&h file so we must
choose one to teU cjtlSi about. The choice is arbitrary.
-> (dasl 'cta8uxc.o '_d"eo 'doe .~')
lusr/libllisplnld -N -A lusrlloc:al/lisp -T 63000 ch8auxc.o -e _cfoo -0 ItmplLi70SS.0 -Ie:
#63000-"integer-function·
-> (dasl'ch8aGp.o ',.ploo 'pfoo "Iateaer-faactio" "-Ipc")
lusrllibllisplnld -N -A Itmp/Li70SS.0-T 63200 cbSauxp.o -e -pfoo -0 ItmplLi70SS.1 -Ipe -Ie
*63200-"intepr-ftmction"
Here we set up the other foreign jUnction bi1Ul1'y objects
-> (aetaddnu '_cmeD14 'cmtIIIIl"ftuacti .. " ' ' "I'aulc:dea")
*6306c-"ftm~n"
We want to create and initi4lize an array to pass to the cjoo fimctiOIl. In this ClIle we create an unnamed array and
store it in the value cell o/lestarr. When we create an array to pass to the Pascal program we will use a named array
just to demonstrate the different way that named and unnamed ilffllJI$ are created and accessed.
-> (setq testarr (array ail fIoaum..I»loek 2»
array{21
-> (store (facaU testarr 0) 1.234)

The Franz Lisp Manual

1.234
-> (store (fanca1l testan 1) 5.678)
5.678
-> (cloo 385 testarr (huak 10 11 13 14) '(IS 16 17»
a: 385, b[O]: 1.234000, b[l]: 5.678000
c (first): 10 c (second): 11
(1516 ...)
3

PS2:9-107

Note that cfao has returned 3 as it should. It also had the side effect of changing the second value of the a"ay to
3.1415926 which check next.
-> (fanca1l testan 1)
3.1415926

In preparation for calling pfoo we create an ~ay.
-> (array test Boaum-block 1)
array[2]
-> (store (test 0) 1.234)
1.234
-> (store (test 1) 5.678)
5.678
-> (p(oo 385 (.. til 'test) (hut 10 11 13 14) '(15 16 17)
a: 385 b[O]: 1.23400000000000E+00 b[l]: 5.67800oo0000000E+00
c (first): 10 c (second): 11
(15 16 ...)

3
-> (test 1)
3.1415926

Now to test out the memq's
-> (cmemq 'a '(b c a Ii e I)
(adej) .
-> (pmemq 'e '(a Ii (g a x»
nil

The Fortran example will be much shorter since in Fortran you can't follow
pointers as you can in other languages. The Fortran function ffoo is given three argu­
ments: a fixnum, a fixnum-block array and a flonum. These arguments are printed out
to verify that they made it and then the first value of the array is modified. The func­
tion returns a double precision value which is converted to a flonum by lisp and
printed. Note that the entry point corresponding to the Fortran function ffoo is _ffoo_
as opposed to the C and Pascal convention of preceding the name with an underscore.

% cat chBaaxf.f
double precision function lfoo(a,b,c)
integer a,b(1 0)
double precision c
print 2,a,b(I),b(2),c

2 format(' a-',i4:, b(1)-',i5:, b(2).',i5: c .. ',f6.4)
b(1) • 22
lfoo • 1.23456
return
end

% m < chBaaxf.f
ch8auxf.f:

lfoo:

PS2:9-108

0.9u Us 0:12 22% 20+22k 54+48io 158pf+Ow "'Us,
Franz Lisp, Opus 38.60
-> (cfasI'cYauf.o ·_troo_ '8'eo .raI-facdoa •• -1F7'7 -117'7.)
/ilsrllibllisplald ·N -A lusrllocalllisp -T 63000 ch8auxf.o -e _tfoo_
-0 ItmplLill066.0 -lF77 .JI77 -lc
#6307c-"real-tUactiOD"

-> (1U'I'aY tesC fIxInIID.Ideek 2)
array(2)
-> (store <tesC 0) 10)
10
->(.... <tesC 1) 11)
11
-> (tree 385 (ptd 'tesC) 5.678)
a- 38S, b(l)- 10, b(2)- 11 c-5.6780
1.234559893608093 .
->(tesCO)
22

c

TIle FI'BIIZ Lisp Maaual

CHAPTER 9

Arrays and Vectors

Arrays and vectors are two means of expressing aggregate data objects in FRANZ
LISP. Vectors may be thought of as sequences of data. They are intended as a vehicle
for user-defined data types. This use of vectors is still experimental and subject to revi­
sion. As a simple data structure, they are similar to hunks and strings. Vectors are
used to implement closures, and are useful to communicate with foreign functions.
Both of these topics were discussed in Chapter 8. Later in this chapter, we describe the
current implementation of vectors, and will advise the user what is most likely to
change.

Arrays in FRANZ LISP provide a programmable data structure access mechanism.
One possible use for FRANZ LIsp arrays is to implement Maclisp style arrays which are
simple vectors of ftxnums, tlonums _ or general lisp values. This is described in more
detail in §9.3 but first we"will describe how array references are handled by the lisp sys­
tem.

The structure of an array object is given in § 1.3.10 and reproduced here for your
convenience.

Subpart name Get value Set value Type

access functlon getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lispval
length getlength putlength ftxnum
delta getdelta putdelta fixnum

9.1. general arrays Suppose the evaluator is told to evaluate (foo a b) and the function
cell of the symbol foo contains an array object (which we will call foo_arr_obj). First
the evaluator will evaluate and stack the values of a and b. Next it will stack the array
object foo_arr_obj. Finally it will call the access function of foo_arr_obj. The access-
function should be a lexprt or a symbol whose function cell contains a lexpr. The
access function is responsible for locating and returning a value from the array. The
array access function is free to interpret the arguments as it wishes. The Maclisp com­
patible array access function which is provided in the standard FRANz LISP system
interprets the arguments as subscripts in the same way as languages like Fortran and
Pascal.

t A lexpr is a f';'Dction which accepts any number of arguments which are evaluated before the function is called.

The Franz Lisp Manual PS2:9-109

PS2:9-110 The Franz Lisp Manual

The array access function will also be called upon to store elements in the array.
For example, (store (foo a b) c) will automatically expand to (foo c a b) and when the
evaluator is called to evaluate this, it will evaluate the arguments e, b and a. Then it
will stack the array object (which is stored in the function cell of foo) and call the array
access function with (now) four arguments. The array access function must be able to
tell this is a store operation, which it can do by checking the number of arguments it
has been given (a lexpr can do this very easily).

9.2. subparts of an array object An array is created by allocating an array object with
ma"ay and filling in the fields. Certain lisp functions interpret the values of the sub­
parts of the array object in special ways as described in the following text. Placing ille­
gal values in these subparts may cause the lisp system to fail.

9.2.1. access function The purpose of the access function has been described above.
The contents of the access function should be a lexpr, either a binary (compiled
fun~on) or a list (interpreted function). It may also be a symbol whose function
cell contains a function definition. This subpart" is used by eval, Juneall, and apply
when evaluating array references.

9.2.2. auxiliary This can be used for any purpose. If it is a list and the first element of
that list is the symbol unmarked_array then the data subpart will not be marked by
the garbage collector (this is used in the Maclisp compatible array package and has
the potential for causing strange errors if used incorrectly).

9.2.3. data This is either nil or points to a block of data space allocated by segment or
small-segment.

9.2.4. length This is a fixnum whose value is the number of elements in the data
block. This is used by the garbage collector and by a"ayrej to determine if your
index is in bounds.

9.2.5. delta This is a fixnum whose value is the number of bytes in each element of
the data block. This will be four for an array of fixnums or value cells. and eight for
an array of flonums. This is used by the garbage collector and a"ayrej as well.

9.3. The Maclisp compatible array package

A Maclisp style array is similar to what is known as arrays in other languages: a
block of homogeneous data elements which is indexed by one or more integers called
subscripts. The data elements can be all fixnums, flonums or general lisp objects. An

The Franz Lisp Manual PS2:9-111

array is created by a call to the function array or *array. The only difference is that
*array evaluates its arguments. This call: (array foo t 3 5) sets up an array called foo of
dimensions 3 by S. The subscripts are zero based. The first element is (foo 0 0), the
next is (foo 0 1) and so on up to (foo 2 4). The t indicates a general lisp object array
which means each element of foo can be any type. Each element can be any type since
all that is stored in the array is a pointer to a lisp object, not the object itself. Array
does this by allocating an array object with marray and then allocating a segment of 15
consecutive value cells with small-segment and storing a pointer to that segment in the
data subpart of the array object. The length and delta subpart of the array object are
filled in (with 15 and 4 respectively) and the access function subpart is set to point to
the appropriate array access function. In this case there is a special access function for
two dimensional value cell arrays called arrac-twoD, and this access function is used.
The auxiliary subpart is set to (t 3 5) which describes the type of array and the bounds
of the subscripts. Finally this array object is placed in the function cell of the symbol
foo. Now when (foo 1 3) is evaluated, the array access function is invoked with three
arguments: 1, 3 and the array object. From the auxiliary field of the array object it gets
a description of the particular array. It then determines which element (foo 1 3) refers
to and uses arrayref to extract that element. Since this is an array of value cells, what
arrayref returns is a value cell whose value is what we want, so we evaluate the value
cell and return it as the value of (foo 1 3).

In Maclisp the call (array foo fixnum 25) returns an array whose data object is a
block of 25 memory words. When fixnums are stored in this array, the actual numbers
are stored instead of pointers to the numbers as is done in general lisp object arrays.
This is efficient under Maclisp but inefficient in FRANZ LISP since every time a value
was referenced from an array it had to be copied and a pointer to the copy returned. to
prevent aliasingt. Thus t, fixnum and fl~num arrays are all implemented in the same
manner. This should not affect the compatibility of Maclisp and FRANZ LISP. If there
is an application where a block of fixnums or flonums is required, then the exact same
effect of fixnum and flonum arrays in Maclisp can be achieved by using fixnum-block
and flonum-block arrays. Such arrays are required if you want to pass a large number
of arguments to a Fortran or C coded function and then get answers back.

The Maelisp compatible array package is just one example of how a general array
scheme can be implemented. Another type of array you could implement would be
hashed arrays. The subscript could be anything, not just a number. The access func­
tion would hash the subscript and use the result to select an array element. With the
generality of arrays also comes extra cost; if you just want a simple aggregate of (less
than 128) general lisp objects you would be wise to look into using hunks.

9.4. vectors Vectors were invented to fix two shortcommings with hunks. They can be
longer than 128 elements. They also have a tag associated with them, which is
intended to say, for example, "Think of me as an Blobit." Thus a vector is an arbitrary
sized hunk with a property list.

Continuing the example, the lisp kernel may not know how to print out or evalu­
ate blobits, but this is information which will be common to all blobits. On the other

t Aliasing is when two variables are share the same storage location. For example if the copying mentioned
weren't done then after (setq x (foo 2)) was done, the value of x and (foo 2) would share the same location. Then
should the value of (foo 2) change, x's value would change as well. This is considered dangerous and as a result
pointers are never returned into the data space of arrays.

PSl:9-Ul The Fnmz Lisp Maaual

hand.. for each individual blobits there are particulars which are likely to change,
(height, weight, eye-color). This is the part that would previously have been stored in
the individual entries in the hunk, and are stored in the data slots of the vector. Once
again we summarize the structure of a vector in tabular form:

Subpart name Get value Set value Type

datum[ll vret- vset tispval
property vprop vsetprop lispvai

vputprop
size vsize - fixnum

Vectors are created specifying size and optional ftll value using the function (new-vector
'x-size ['8-ftll ['8-Prop]]), or by initial values: (vector ['8-val .•. J).

9.5. automy of vectors There are some technical details about vectors, that the user
should know:

9.S.J. size The user is not free to alter this. It is n~ when the vector is created,
and is used by the garbage collector. The garbage collector will coallesce two free
vectors, which are neighbors in the heap. Internally, this is kept as the number of
.bytes of data. Thus, a vector created by (vector 'fool, has a size of 4.

9.5.1. property Currently. we expect the property to be either a symbol, or a list
whose first entry is a symbol. The symbols (dOlan and structure-value-argument are
magic, and their effect is described in Chapter 8. If the property is a (non-null)
symbol, the vector will be printed out as <symbol>(<size». Another case is if the
property is actually a (disembodied) property-list, which contains a value for the
indicator print The value is taken to be a Lisp function, which the printer will
invoke with two arguments: the vector and the current output port Otherwise, the
vector will be printed as vector[<size>]. We have vague (as yet unimplemented)
ideas about similar mechanisms for evaluation properties. Users are cautioned
against putting anything other than nil in the property entry of a vector.

9.5.3. internal order In memory, vectors start with a lonpord containing the size­
(which is immediate data within the vector). The next cell contains a pointer to the
property. Any remaining cells (if any) are for data. Vectors are handled differently
from any other object in FRANZ LISP, in that a pointer to a vector is pointer to the
first data cell, i.e. a pointer to the third lonpord of the structure. This was done
for efficiency in compiled code and for uniformity in referencing immediate-vectors
(described below). The user should never return a pointer to any other part of a
vector, as this may cause the garbage collector to follow an invalid pointer.

The Franz Lisp Manual PS2:9-113

9.6. immediate-vectors Immediate-vectors are similar to vectors. They differ, in that
binary data are stored in space directly within the vector. Thus the garbage collector
will preserve the vector itself (if used), and will only traverse the property cell. The
data may be referenced as longwords, shortwords, or even bytes. Shorts and bytes are
returned sign-extended. The compiler open-codes such references, and will avoid box­
ing the resulting integer data, where possible. Thus, immediate vectors may be used
for efficiently processing character data. They are also useful in storing results from
functions written in other languages.

Subpart name Get value Set value Type

datum[ll vrefi-byte vsetl-byte fixnum
vrefi-word vseti-word fixnum
vrefi-Iong vseti-Iong fixnum

property vprop vsetprop lispval
vputprop

size vsize - fixnum
vsize-byte fixnum
vsize-word fixnum

To create immediate vectors specifying size and fill data, you can use the functions
new-vectori-byte, new-vectori-word, or new-vectori-long. You can also use the functions
vectori-byte,· vectori-word, or vectori-long. All of these functions are described in chapter
4.

CHAPTER 10

Excepdoa HaDdlllll

10.1. Ernet"" Error HaadIer FUDedou

FRANZ LIsP allows the user to handle ina nwnber of ways the errors which arise
during computation. One way is through the use of the errset function. If an error
occurs during the evaluation of the emefs first argument, then the locus of control will
return to the errset which will return nil (except in special cases, such as err). The
other method of error handling is through an error handler function. When an error
occurs, the error handler is called and is given as an argument a description of the
error which just occurred. The error handler may take one of the following actions:

~ (1) it could take some drastic action like a reset or a throw.

(2) it could, assuming that the error is continuabJ.e.return to the function which
noticed the error. The error handler indicates that it wants to return a value
from the error by retUrning a list whose car is the value it wants to return.

(3) it could decide not to handle the error and retUrn a non-list 'to indicate this
fact.

10.1. The AnatoOlY of an error

Each error is described by a list of these items:

(1) error type • This is a symbol which indicates the general classification of the
error. This classiftcation may determine which function handles this error.

(2) unique id - This is a fixnum unique to this error.

(3) continuable - If this is non-nil then this error is continuable. There are some
who feel that every error should be continuable and the reason that some (in
fact most) errors in fRANz LIsp are not continuable is due to the laziness of the
programmers.

(4) message string - This is a symbol whose print name is a message describing the
error.

(5) data - There may be from zero to three lisp values which help describe this par­
ticular error. For example, the unbound variable error contains one datum
value, the symbol whose value is unbound. The list describing that error might
look like:

(ERlMtmisc 0 t I Unbound Variable: I foobar)

PSl:9-U4 The Franz Lisp Manual

The Franz Lisp Manual PS2:9-115

10.3. Error handling algorithm

This is the sequence of operations which is done when an error occurs:

(I) If the symbol ER%all has a non nil value then this value is the name of an
error handler function. That function is called with a description of the error.
If that function returns (and of course it may choose not to) and the value is a
list and this error is continuable, then we return the car of the list to the func­
tion which called the error. Presumably the function will use this value to
retry the operation. On the other hand, if the error handler returns a non list,
then it has chosen not to handle this error, so we go on to step (2). Something
special happens before we call the ER%ail error handler which does not happen
in any of the other cases we will describe below. To help insure that we don't
get infinitely recursive errors if ER%all is set to a bad value, the value of
ER%all is set to nil before the handler is called. Thus it is the responsibility of
the ER%all handler to 'reenable' itself by storing its name in ER%ail.

(2) Next the specific error handler for the type of error which just occurred is called
(if one exists) to see if it wants to handle the error. The names of the handlers
for the specific types of errors are stored as the values of the symbols whose
names are the types. For example the handler for miscellaneous errors is stored
as the value of ER%misc. Of course, if ER%misc has a value of nil, then there
is no error handler for this type of error. Appendix B contains list of all error
types. The process of classifying the errors is not complete and thus most
errors are lumped into the ER%misc category. Just as in step (1), the error
handler function may choose not to handle the error by returning a non-list,
and then we go to step (3). . -

(3) Next a check is made to see if there is an errset surrounding this error. If so
the second argument to the err set call is examined. If the second argument was
not given or is non nil then the error message associated with this error is
printed. Finally the stack is popped to the context of the err set and then the
err set returns nil. If there was no errset we go to step (4).

(4) If the symbol ER%tpl has a value then it is the name of an error handler which
is called in a manner similar to that discussed above. If it chooses not to han­
dle the error, we go to step (5).

(5) At this point it has been determined that the user doesn't want to handle this
error. Thus the error message is printed out and a reset is done to send the
flow of control to the top-level.

To summarize the error handling system: When an error occurs, you have two
chances to handle it before the search for an errset is done. Then, if there is no err set,
you have one more chance to handle the error before control jumps to the top level.
Every error handler works in the same way: It is given a description of the error (as
described in the previous section) .. It mayor may not return. If it returns, then it
returns either a list or a non-list. If it returns a list and the error is continuable, then
the car of the list is returned to the function which noticed the error. Otherwise the
error handler has decided not to handle the error and we go on to something else.

10.4. Default aids

There are two standard error handlers which will probably handle the needs of
most users. One of these is the lisp coded function break-err-handler which is the
default value of ER%tpl. Thus when all other handlers have ignored an error, break-

PS2:9-116 The Franz ~isp Manual

err-handler will take over. It will print out the error message and go into a read-eval­
print loop. The other standard error handler is debug-err-handler. This handler is
designed to be connected to ER%alland is useful if your program uses errset and you
want to look at the error before it is thrown up to the err set.

10.5. AutoloadiDI

When eval, apply or funeall are told to call an undefined function, an ERo/oundef
error is signaled. The default handler for this error is undeffunc-handler. This func­
tion checks the property list of the undefined function for the indicator autoload. If
present, the value of that indicator should be the name of the file which contains the
definition of the undefined function. Undef-func-handler will load the file and check if
it has defined the function which caused the error. If it has, the error handler will
return and the computation will continue as if the error did not occur. This provides a
way for the user to tell the lisp system about the location of commonly used functions.
The trace package sets up an autoload property to point to lusrllib/lisp/trace.

10.6. IDterrupt processing

The UNIX operating system provides one user interrupt character which defaults
to "'c. t The user may select a lisp function to run when an interrupt occurs. Since this
interrupt could occUr at any time, and in particular could occur at a time when the
internal stack pointers were in an inconsistent state, the processing of the interrupt may
be delayed until a safe time. When the first ... c is typed, the lisp system sets a flag that
an interrupt has been requested. This flag is checked at safe places within the inter­
preter and in the qlinker function. If the lisp system doesn't respond to the first "'c,
another ... c should be typed. This will cause all of the transfer tables to be cleared forc­
ing all calls from compiled code to go through the qlinker function where the interrupt
flag will be checked. If the lisp system still doesn't respond, a third "'c will cause an
immediate interrupt. This interrupt will not necessarily be in a safe place so the user
should reset the lisp system as soon as possible.

tActually there are two but the lisp system does not allow you to catch the QUIT interrupt.

CHAPTER 11

The Joseph Lister Trace Package

The Joseph Listert Trace package is an 'important tool for the interactive debug­
ging of a Lisp program. It allows you to examine selected calls to a function or func­
tions, and optionally to stop execution of the Lisp program to examine the values of
variables.

The trace package is a set of Lisp programs located in the Lisp program library
(usually in the file lusr/libllisp/trace.l). Although not normally loaded in the Lisp sys­
tem, the package will be loaded in when the first call to trace is made.

(trace [ls_argl ... J)

WHERE: the form of the ls_argi is described below.

RETURNS~a list of the function sucessfully modified for tracing. If no arguments are
given to trace, a list of all functions currently being traced is returned.

SIDE EFFEcr: The function definitions of the functions to trace are modified.

The ILargi can have one of the following forms:

foo - when foo is entered and exited, the trace information will be printed.

c

(foo break) - when foo is entered and exited the trace information will be printed. Also,
just after the trace information for foo is printed upon entry, you will be put in a
special break loop. The prompt is 'T>' and you may type any Lisp expression,
and see its value printed. The ith argument to the function just called can be
accessed as (arg 0. To leave the trace loop, just type AD or (tracereturn) and exe­
cution will continue. Note that AD will work only on UNIX systems.

(foo if expressioD) - when foo is entered and the expression evaluates to non-nil, then the
trace information will be printed for both exit and entry. If expression evaluates
to nil, then no trace information will be printed.

(foo if DOt expressioD) - when foo is entered and the expression evaluates to nil, then the
trace information will be printed for both entry and exit. If both if and if Dot are
specified, then the if expression must evaluate to non nil AND the if Dot expression
must evaluate to nil for the trace information to be printed out.

t Lister. Joseph 1st Baron Lister of Lyme Regis. 1827-1912; English surgeon: introduced antiseptic surgery.

The Franz Lisp MaDuai PS2:9-117

PS2:9-118 The Franz Lisp Manual

(foo evalin expression) - when foo is entered and after the entry trace information is
printed. expression will be evaluated. Exit trace information will be printed when
foo exits.

(foo evalout expression) - when foo is entered, entry trace information will be printed.
When foo exits, and before the exit trace information is printed, expression will
be evaluated.

(foo evalinout expression) - this has the same effect as (trace (foo evalin expression evalout
expression».

(foo Iprint) - this tells trace to use the level printer when printing the arguments to and the
result of a call to foo. The level printer prints only the top levels of list structure.
Any structur~ below three levels is printed as a &. This allows you to trace func­
tions with massive arguments or results.

The following trace. options permit one to have greater control over each action
which takes place when a function is traced. These options are only meant to be used
by people who need special hooks into the trace package. Most people should skip read­
ing this section.

(foo traceeater tefunc:) - this tells trace that the function to be called when foo is entered is
tefunc. tefunc should be a lambda of two arguments, the first argument will be
bound to the name of the function being traced, foo in this case. The second
argument will be bound to the list of arguments to which fOo should be applied.
The function tt:func should print some sort of "entering foo" message. It should
not apply foo to the arguments, however. That is done later on.

(foo trac:eexit txfunc:) - this tells trace that the function to be called when foo is exited is
txfunc. txfunc should be a lambda of two arguments, the first argument will be
bound to the name of the function being traced, foo in this case. The second
argument will be bound to the result of the call to foo. The function txfunc
should print some sort of "exiting foo" message.

(foo evfcn emnc:) - this tells trace that the form evfunc should be evaluated to get the.
value of foo applied to its arguments. This option is a bit different from the other
special options since evfunc will usually be an expression, not just the name of a
function, and that expression will be specific to the evaluation of function foo.
The argument list to be applied will be available as T -arglist.

The Franz Lisp Manual PS2:9-119

(foo printargs prfune) - this tells trace to used prfunc to print the arguments to be applied
to the function foo. prfunc should be a lambda of one argument. You might
want to use this option if you wanted a print function which could handle circular
lists. This option will work only if you do not specify your own traceenter func­
tion. Specifying the option Iprint is just a simple way of changing the printargs
function to the level printer.

(foo printres prfune) - this tells trace to use prfunc to print the result of evaluating foo.
prfunc should be a lambda of one argument. This option will work only if you do
not specify your own trac:eexit function. Specifying the option Iprint changes prin­
tres to the level printer.

You may specify more than one option for each function traced. For example:

(trace (foo if(eq 3 (arg 1)) break [print) (bar evalin (prim xyzzy)))

This tells trace to trace two more functions, foo and bar. Should foo be called with the
first argument eq to 3, then the entering foo message will be printed with the level
pridter. Next it will enter a trace break loop, allowing you to evaluate any lisp expres­
sions. When you exit the trace break loop, foo will be applied to its arguments and the
resulting value will be printed, again using the level printer. Bar is also traced, and each
time bar is entered, an entering bar message will be printed and then the value of xyzzy
will be printed. Next bar will be applied to its arguments and the result will. be printed.
If you tell trace to trace a function which is already traced, it will first untrace it. Thus
if you want to specify more than one trace option for a function, you must do it all at
once. The following is not equivalent to the preceding call to trace for foo:

(trace (foo if (eq 3 (arg 1))) (foo break) (foo [prim))

In this example, only the last option, lprint, will be in effect.

If the symbol Stracemute is given a non nil value, printing of the function name
and arguments on entry and exit will be surpressed. This is particularly useful if the
function you are tracing fails after many calls to it. In this case you would tell trace to
trace the function, set Stracemute to t, and begin the computation. When an error
occurs you can use tracedump to print out the current trace frames.

Generally the trace package has its own internal names for the the lisp functions it
uses, so that you can feel free to trace system functions like cond and not worry about
adverse interaction with the actions of the trace package. You can trace any type of
function: lambda, nlambda, lexpr or macro whether compiled or interpreted and you
can even trace array references (however you should not attempt to store in an array .
which has been traced).

When tracing compiled code keep in mind that many function calls are translated
directly to machine language or other equivalent function calls. A full list of open
coded functions is listed at the beginning of the liszt compiler source. Trace will do a
(sstatus translink nil) to insure that the new traced definitions it defines are called
instead of the old untraced ones. You may notice that compiled code will run slower
after this is done.

PS2:9-120 The Frau Lisp Manual

(tracearp s3unc (,,-level])
WHERE: if ,,-level is missina it is assumed to be 1.

RETURNs:the arguments to the x_Ievelth call to traced function s_func are returned.

(tracedump)

SIDE EFFECI': the currently active trace frames are printed on the terminal. returns a list
of functions_ untraced.

(untraee (s_algi •..])
RETURNs:a list of the functions which were untraced.
NOTE: if no arguments are given. all functions are untraced.
SIDE EFFECf: the old function definitions of all traced functions are restored except in

the case where it appears that the current definition of a function was not
created by trace.

CHAPTER 12

Liszt - the lisp compiler

11.1. General strategy of the compiler

The purpose of the lisp compiler, Liszt, is to create an object module which when
brought into the lisp system using JasJ will have the same effect as bringing in the
corresponding lisp coded source module with load with one important exception, func­
tions will be defined as sequences of machine language instructions, instead of lisp S­
expressions. Liszt is not a function compiler, it is a file compiler. Such a file can con­
tain more than function definitions; it can contain other lisp S-expressions which are
evaluated at load time. These other S-expressions will also be stored in the object
module produced by Liszt and will be evaluated at fasl time.

As is almost universally true of Lisp compilers, the main pass of Lisn is written
in Lisp. A subsequent pass is the assembler, for which we use the standard UNIX
assembler.

12.2. Runninl the compiler

The compiler is normally run in this manner:
%lisztfoo
will compile the file foo.1 or foo (the preferred way to indicate a lisp source file is to
end the file ~e with '.1'). The result of the compilation will be placed in the file
foo.o if no fatal errors were detected All messages which Lisn generates go to the
standard output. Normally each function name is printed before it is compiled (the-q
option suppresses this).

11.3. Special forms

Lisn makes one pass over the source file. It processes each form in this way:

11.3.1. macro expansion

If the form is a macro invocation (i.e it is a list whose car is a symbol whose
function binding is a macro), then that macro invocation is expanded. This is
repeated until the top level form is not a macro invocation. When Liszt begins,
there are already some macros defined. in fact some functions (such as defun) are
actually macros. The user may define his own macros as well. For a macro to be
used it must be defined in the Lisp system in which Liszt runs.

The Franz Lisp Manual PS2:9-121

PS2:9-122 The F Lisp Manual

12.3.2. classification
After all macro expansion is done, the form is classified according to its car (if

the form is nota list, then it is classified as an other).

12.3.2.1. eval-whea

The form of eval-whcD is (eval-when (time1 time2 ...) form1 form2 ...) where
the timei are one of evai, compile, or load. The compiler examines the formi in
sequence and the action taken depends on what is in the time list. If compile is
in the list then the compiler will invoke eva! on each formi as it examines it. If
load is in the list then the compile will recursively call itself to compile each
formi as it examines it. Note that if compile and load are in the time list, then
the compiler will both evaluate and compile each form. This is useful if you
need a function to be defined in the compiler at both compile time (perhaps to
aid macro expansion) and at run time (after the tile is fasled in).

12.3.2.2. declare

Declare is used to provide information about functions and variables to the
compiler. It is (almost) equivalent to (eval-when (compile) ... J. You may declare
functions to be one of three types: lambda (*expr), nlambda (*fexpr),.lexpr
(*texpr). The names in parenthesis are the Maclisp names and are accepted by
the compiler as well (and not just when the compiler is in Maclisp mode) .. Func­
tions are assumed to be lambdas until they are declared otherwise or are defined '.
differently. The compiler treats calls to lambdas and lexprs equivalently, so you
needn't worry about declaring lexprs either. It is important to declareniambdas
or define them before calling them. Another attribute you can declare for a fllnc­
tion is localf which makes the function 'local', A local function's name is known
only to the functions defined within the tile itself. The advantage of a local func­
tion is that is can be entered and exited very quickly and it can have the same
name as a function in another tile and there will be no name contlict.

Variables may be declared special or unspecial. When a special variable is
lambda bound (either in a lambda, prog or do expression), its old value is stored
away on a stack for the duration of the lambda, prog or do expression. This
takes time and is often not necessary. Therefore the default classification for
variables is unspecial. Space for unspecial variables is dynamically allocated on
a stack:. An unspecial variable can only be accessed from within the function
where it is created by its presence in a lambda, prog or do expression variable

. list. It is possible to declare that all variables are special as will be shown below.-

You may declare any number of things in each declare statement. A sam­
ple declaration is
(declare

(lambda JuncI Junc2)
(*fexpr June))
(*Iexpr .runc4)
(Iocalf JuneS)
(special var 1 var2 varJ)
(unspecial var4))

The Franz Usp Manual PS2:9-123

You may also declare all variables to be special with (declare (specials t)}.
You may declare that macro definitions should be compiled as well as evaluated
at compile time by (declare .(macros t)}. In fact, as was mentioned above, declare
is much like (eva/-when (compile) ...). Thus if the compiler sees (declare (foo bar)}
and foo is defined, then it will evaluate (foo bar). If foo is not defined then an
undefined declare attribute warning will be issued.

12.3.2.3. (prop 'compile forml form2 ... formn)

When the compiler sees this it simply compiles form I through formn as if
they too were seen at top level. One use for this is to allow a macro at top-level
to expand into more than one function definition for the compiler to compile.

12.3.2.4. include/inclndef

Include and include! cause another file to be read and compiled by the com­
piler. The result is the same as if the included file were textually inserted into
the original file. The only difference between include and include! is that include
doesn't evaluate its argument and includef does. Nested includes are allowed.

12.3.2~. def
A def form is used to define a function. The uros defun and de!macro .

expand to a def fol'lJl. If the function being defined is a lambda, nlambda or
lexpr then the compiler converts the lisp definition to a sequence of machine
language instructions. If the function being defined is a macro, then the com­
piler will evaluate the definition, thus defining the macro withing the running
Lisp compiler. Furthermore, if the variable macros is set to a non nil value,
then the macro definition will also be translated to machine language and thus
will be defined when the object file is fasled in. The variable macros is set to t
by (declare (macros t)}.

When a function or macro definition is compiled, macro expansion is done
whenever possible. If the compiler can determine that a form would be
evaluated if this function were interpreted then it will macro expand it. It will
not macro expand arguments to a nlambda unless the characteristics of the
nlambda is known (as is the case with cond). The map functions (map, mapc,
mapcar, and so on) are expanded to a do statement. This allows the first argu-'
ment to the map function to be a lambda expression which references local vari-.
abIes of the function being defined. .

12.3.2.6. other forms
All other forms are simply stored in the object file and are evaluated when

the file is !asled in.

PSl:9-124 The FnuizLlsp Manual

11.4. Using tile compiler

The previous section describes exactly what the compiler does with its input.
Generally you won't have to worry about all that detail as tiles which work interpreted
will work compiled. Following is a list of steps you should follow to insure that a tile
will compile correctly.

[1] .Make sure all macro definitions precede their· use in functions or other macro
definitions. If you want the macros to be around when you lasl in the object file
you should include this statemeDtat the beginning of the tile: (deClare (macros t))

[2] Make sure all nlambdas are defined or declared before they are used. If the com­
piler comes across a call to a function which has not been defined in the current
tile, which does not currently have a function binding, and whose type has not
been declared then it will assume that the function needs its arguments evaluated
(i.e. it is a lambda or lexpr) and will generate code accordingly. This means that
you do not have to declare nlambda functions like status since they have an
nlambda function binding.

[3] LoCate all variables which are used for commUDicating values between functions.
These variables must be declared special at the beginning of a tile. In most cases
there won't be many special declarations but if you fail to declare a variable spe­
cial that should be, the compiled code could fail in mysterious ways. Let's look at
a common problem; assume that a tile contains just these three lines:

(del aaa (lambda (glob loe) (bbb loe)))
(del bbb (lambda (myl~) (add glob myloe)))
(del ccc (lambda (glob loe) (bbb loe)))

We can see that if we load in these two definitions then (aaa 3 4) is the same as
(add 3 4) and will give us 7. Suppose we compile the tile containing these
definitions. When Liszt compiles aaa, it will assume that both glob and loc are
local variables and will allocate space on the temporary stack for their values
when aaa is called. Thus the values of the local variables glob and loc will not
atfect the values of the sYmbols glob and loc in the Lisp system. Now Liszt
moves on to function bbb. Myloc is assumed to be local. When it sees the add
statement, it find a reference to a variable called glob. This variable is not a local
variable to this function and therefore glob must refer to the value of the symbol
glob. Liszt will automatically declare glob to be special and it will print a warning
to that effect. Thus subsequent uses of glob will always refer to the symbol glob.
Next Liszt compiles ccc and treats glob as a special and loc as a local. When the
object file is lasfed in, and (ccc 3 4) is evaluated, the symbol glob will be lambda
bound to 3 bbb will be called and will return 7. However (aaa 3 4) will fail since.
when bbb is called, glob will be unbound. What should be done here is to put
(declare (special glob) at the beginning of the tile.

[4] Make sure that all calls to arg are within the lexpr whose arguments they refer­
ence. If 100 is a compiled lexpr and it calls bar then bar cannot use arg to get at
loo's arguments. If both 100 and bar are interpreted this will work however. The
macro listify can be used to put all of some of a lexprs arguments in a list which
then can be passed to other functions.

The Franz Lisp Manual PS2:9.125

12.5. Compiler options

The compiler recognizes a number of options which are described below. The
options are typed anywhere on the command .line preceded by a minus sign. The
entire command line is scanned and all options recorded before any action is taken.
Thus
% liszt -mx foo
% liszt -m -x foo
% liszt foo -mx
are all equivalent. Before scanning the command line for options, liszt looks for in the
environment for the variable LISZT, and if found scans its value as if it was a string of
options. The meaning of the options are:

C The assembler language output of the compiler is commented. This is useful
when debugging the compiler and is not normally done since it slows down com­
pilation.

I The next command line argument is taken as a filename, and loaded prior to
compilation.

e Evaluate the next argument on the command line before starting compilation.
For example
% liszt -e '(setq foobar "foo string")' foo ,
will evaluate the above s-expression. Note that the shell requires that the argu­
ments be surrounded by single quotes.

Compile this program in interlisp compatibility mode. This is not implemented
yet.

m Compile this program in Maciisp mode. The reader syntax will be changed to the
Maciisp syntax and a file of macro definitions will be loaded in (usually named
/usr/lib/lisp/machacks). This switch brings us sufficiently close to Maciisp to
allow us to compile Macsyma, a large Maclisp program. However Maciisp is a
moving target and we can't guarantee that this switch will allow you to compile
any given program.

o Select a different object or assembler language file name. For example
% liszt foo -0 xxx.o
will compile foo and into xxx.o instead of the default foo.o, and
% liszt bar -S -0 xxx.s
will compile to assembler language into xxx.s instead of bar.s.

p place profiling code at the beginning of each non-local function. If the lisp system
is also created with profiling in it, this allows function calling frequency to be
determined (see prof(lJ)

q Run in quiet mode. The names of functions being compiled and various "Note"'s
are not printed.

Q print compilation statistics and warn of strange constructs. This is the inverse of
the q switch and is the default.

r place bootstrap code at the beginning of the object file, which when the object file
is executed will cause a lisp system to be invoked and the object file fas/ed in.
This is known as 'autorun' and is described below.

S Create an assembler language file only.
% liszt -S foo
will create the file assembler language file foo.s and will not attempt to assemble
it. If this option is not specified, the assembler language file will be put in the
temporary disk area under a automatically generated name based on the lisp

The Franz Lisp Manual

compiler's process id. Then if there are no compilation errors, the assembler will
be invoked to assemble the file.

T Print the assembler language output on the standard output file. This is useful
when debugging the compiler.

u Run in Uel-Lisp mode. The character syntax is changed to that of UCI·Lisp and
a UCI-Lisp compatibility package of macros is read in.

w Suppress warning messages.

x Create an cross reference file.
% liszt -x foo
not only compiles foo into foo.o but also generates the file foo.x. The file foo.x
is lisp readable and lists for each function all functions which that function could
call. The program lxref reads one or more of these ".x· files and produces a
human readable cross reference listing.

12.6. autorun

The object file which liszt writes does not contain all the functions necessary to
run the lisp program which was compiled. In order to use the object file, a lisp system
must be started and the object file las/ed in. When the ·r switch is given to liszt, the
object file created will contain a small piece of bootstrap code at the beginning, and the
object file will be made executable. Now, when the name of the object tile is given to
the UNIX command interpreter (shell) to run, the bootstrap code at the beginning of
the object file will cause a lisp system to be started and the first action the lisp system
will take is to las/ in the object file which started it. In effect the object file has created
an environment in which it can run. .

Autorun is an alternative to dump/isp. The advantage of autorun is that the
object file which starts the whole process is typically small, whereas the minimum dum­
plisped file is very :arge (one half megabyte). The disadvantage of autoruil is that the
file must be las/ed into a lisp each time it is used whereas the file which dumplisp
creates can be run as is. liszt itself is a dumplisped file since it is used so often and is
large enough that too much time would be wasted las/ing it in each time it was used.
The lisp cross reference program, lxref, uses autorun since it is a small and rarely used
program.

In order to have the program las/ed in begin execution (rather than starting a lisp
top level), the value of the symbol user-top-Ievel should be set to the name of the func­
tion to get control. An example of this is shown next.

The Franz Usp Manual

we want to replace the unix date program with one written in lisp.

% cat UspdateJ
(defun mydate nil

(patom 'The date is .)
(patom (status ctime»
(terpr)
(exit 0»

(setq user-top-level 'mydate)

% Uszt -r Uspdate
Compilation begins with Lisp Compiler 5.2
source: lispdate.l, result: lispdate.o
mydate
%Note: lispdate.l: Compilation complete
%Note: lispdate.l: Time: Real: 0:3, CPU: 0:0.28, GC: 0:0.00 for 0 gcs
%Note: lispdate.l: Assembly begins
%Note: lispdate.l: Assembly completed successfully
3.Ou 2.05 0: 1 7 29%

We change the name to remove the '.0', (this isn't necessary)
% DIY Uspdate.o Hspdate

Now we test it out
%Uspdate
The date is Sat Aug 1 16:58:33 1981
%

12.7. pure literals

PS2:9-127

Normally the quoted lisp objects (literals) which appear in functions are treated as
constants. Consider this function:

(dejjoo
(lambda nil (cond ((not (eq 'a (car (setq x '(a b)))))

(print 'impossible!!))
(t (rplaca x'd)))))

At first glance it seems that the first cond clause will never be true, since the car of (a b)
should always be a. However if you run this function twice, it will print 'impossible!!'
the second time. This is because the following clause modifies the 'constant' list (a b)
with the rplaca function. Such modification of literal lisp objects can cause programs
to behave strangely as the above example shows, but more importantly it can cause gar­
bage collection problems if done to compiled code. When a file is jasJed in, if the sym­
bol $purcopylits is non nil, the literal lisp data is put in 'pure' space, that is it put in
space which needn't be looked at by the garabage collector. This reduces the work the
garbage collector must do but it is dangerous since if the literals are modified to point
to non pure objects, the marker may not mark the non pure objects. If the symbol
$purcopylits is nil then the literal lisp data is put in impure space and the compiled
code will act like the interpreted code when literal data is modified. The default value
for $purcopylits is t.

PSl:9-128 The Frau Lisp Manual

12.8. traIIsfer tables
A transfer table is setup by lasl when the object file is loaded in. There is one

entry in the transfer table for each function which is called in that objec;t file. The
entry for a call to the function /00 has two parts whose contents are:

[I] function address - This wiD initially poiDt to the internal function qlinker. It
may some time in the future point to the ·function /00 if certain conditions are
satisfied (more on this below).

[2] function name - This is a pointer to the symbol/oo. This wiD be used by qlinker.

When a call is made to the function /00 the call wiD actually be made to the address in
the transfer table entry and wiD end up in the qlinker function. Qlinker wiD determine
that /00 was the function being called by locating the function name entry in the
transfer tablet. If the function being called is not compiled then qlinker just calls fun­
call to perform the function call. If /00 is compiled and if (stlllUS translink) is non nil,
then qlinker will modify the function address part of the transfer table to point directly
to the function /00. Finally qlinker will call /00 directly. The next time a call is made
to /00 the call will go directly to /00 and not through qlinker. This wiD result in a sub­
stantial speedup in compiled code to compiled code transfers. A disad~antage is that
no debugging information is left on the stack, so showstack and baktrace.are useless.
Another disadvantage is that if you redefine a compiled function either through loading
in a new version or interactively defining it, then the old version may still be called
from compiled code if tilt fast linking deScribed above has already been done.' The
solution to these p~oblems is to use (sstatuS translink value). If value is

nil All transfer tables will be cleared, i.e. all function addresses will beset to point to
qlinker. This meaDs that the next time· a function is called qlinker will be called
and will look at the current definition. Also, no fast links. wiD be set up since
(status translink) will be nil. The end result is that showstack and baktrace will
work and the function definition at the time of call will always 1x "sed.

on This causes the lisp system to go through all transfer tables and· set up fast links
wherever possible. This is normally used after you have /as/ed in all of your files.
Furthermore since (status translink) is not nil, qlinker will make new fast links if
the situation arises (which isn't likely unless you /asl in another. file).

t This or any other value not previously mentioned will just malee (status translink)
be non nil, and as a result fast links will be made by qlinker if the called function
is compiled.

12.'. FiXDum functions
The compiler will generate inline arithmetic code for unum only functions. Such

functions include +, -, *, I, \, 1 + and 1-. The code generated will be much faster
than using add, difference, etc. However it will only work if the arguments to and
results of the functions are fixnums. No type cbecking is done.

'Qlinklr does this by tracinl bact the can stack until it finds the cal/smachine instruction which ealled it. The
address field of the cal/s eoatains the address of the transfer table entry.

CHAPTER 13

The CMU User Toplevel and the File Package

This documentation was written by Don Cohen, and the functions described below
were imported from PDP-lO CMULisp.

Non eMU users note: this is not the default top level for your Lisp system. In order to
start up this top level, you should type (load 'cmuenv).

13.1. User Command laput Top Level

The top-level is the function that reads what you type, evaluates it and prints the
result. The newlisp top-level was inspired by the CMULisp top-level (which was
inspired by interlisp) but is much simpler. The top-level is a function (of zero argu­
ments) that can be called by your program. If you prefer another top-level, just

, redefine' the top-level function and type "(i'esetr to start running it. The current top­
level simply calls the functions t1read, tleval and tlprint' to read, evaluate and print.
These are supposed to be replaceable by the user. The only one that would make sense
to replace is tlprini, which currently uses a function that refuses to go below a certain
level and prints " ...]" when it finds itself printing a circular list. One might want to .
prettyprint the results instead. The current top-level numbers the lines that you type to
it, and remembers the last 0. "events" (where n can be set but is defaulted to 25). One
can refer to these events in the following "top-level commands":

TOPLEYEL COMMAND SUMMARY

?? priDts events· both the input and the mulL If you just type
".,r you will see all of the recorded events. "?? 3" will show
only event 3, and "?? 3 6" will show events 3 throuah 6.

redo pretends that you typed the same thing that was typed before. If
you type "redo 3" event Dumber 3 is redone. "redo ·3" redoes the
thing 3 events ago. "redo· is the same as "redo ·1".

ed calls the editor and then does whatever the editor returns. Thus
if you want to do event S again except for some small change, you
can type oed S", make the change and leave the editor. oed -3"
and "ed" are analogous to redo.

Finally, you can get the value of event 7 with the function (valueof 7). The other interesting
feature of the top-level is that it makes outermost parentheses superfluous for the most part.
This works the same way as in CMULisp, so you can use the help for an explanation. If
you're not sure and don't want to risk it you can always just include the parentheses.

The Fl'SDZ Lisp Manual PS2:9-1l9

PS2:9-130 ne Frau Lisp Manual

(top-leYel)

SIDE EFFEcr: top-level is the LISP top level function. As wen as being the top level
function with which the user interacts, it can be called recursively by
the user or any function. Thus, the top level can· be invoked from
inside the editor, break package, or a user function to make its com ..
mands available to the user.

NOTE: The eMU flANz LIsp top-level uses lineread rather than read. The difference
will not usually be noticeable. The principal thing to be carefUl about is that
input to the function or system being called cannot appear on the. same line as
the top-level call. For example, typing (edit! /oo)jP on one line win edit 100 and
evaluate P, not edit 100 and execute the p. command in the editor. top-level spe­
cially recognizes the loIlowing commands:

(valueof 'g_eventspec)
RETURNs:the value(s) of the event(s) specified by Leventspec. If a single event is

specified, its value win be returned. If more than one event is specified,. or an
event Jlas moretban one subevent (as for redo, etc), a list of vlaues win be
returned.

. 13.2. The FDe Package

Users typically define functions in lisp and then. want to save them for the next session.
If you do (changes), a list of the functions that are newly defined or changed will be
printed. When you type (dskouts), the functions associated with files will be saved in
the new versions of those files. In order to associate functions with files you can either
add them to the filelns list of an existing file or create a new file to hold them. This is
done with the file function. If you type (file new) the system will create a variable
called newfns. You may add the names of the functions to go into that file to newlns.
After you do (changes), the functions which are in no other file are stored in the value
of the atom changes. To put these all in the new file, (setq newlns (append newlns
changes)). Now if you do (changes), all of the changed functions should be associated
with files. In order to save the changes on the files, do (dskouts). All of the changed
files (such as NEW) will be written. To recover the new functions the next time you
run FRANz LIsp, do (dskin new).

The Franz Lisp Manual

• Script started on Sat Mar 14 11:50:32 1981
$ newlisp
Welcome to newlisp •..
l.(defun square (x) (* x x» ; define a new function
square
2.(changes)

<no-file> (square)nil
3.(file 'new)
new
4.newfns
nil
5.(setq newfns '(square»
(square)
6.(changes)

new (square)nil
7.(dskouts)
creating new
(new)
8.(dsldn new)
(new)
14.Bye
$

; See, this function is associated
; with no file.

; So let's declare file NEW.

; It doesn't have anything on it yet.

; Add the function associated
; with no file to file NEW.

; CHANGES magically notices this fact.

; We write the file.

; We read it in!

script done on Sat Mar 14 11:51:48 1981

(changes s_flag)

PS2:9-131

RETURNs:Changes computes a list containing an entry for each file which defines atoms
that have been marked changed. The entry contains the file name and the
changed atoms defined therein. There is also a special entry for changes to
atoms which are not defined in any known file. The global variable filelst con­
tains the list of "known· files. If no flag is passed this result is printed in
human readable form and the value returned is t if there were any changes and
nil if not. Otherwise nothing is printed and the computer list is returned. The
global variable changes contains the atoms which are marked changed but not
yet associated with any file. The changes function attempts to associate these
names with files, and any that are not found are considered to belong to no
file. The changes property is the means by which changed functions are asso­
ciated with files. When a file is read in or written out its changes property is
removed.

PS2:9-132 The Franz Lisp Manual

(de s_word s_id [g..descriptorl ...] <text> <esc»

RETURNS:dc defines comments. It is exceptional in that its behavior is very context
dependent. When de is executed from dskin it simply records the fact that the
comment exists. It is expected that in interactive mode comments will be
found via getdef - this allows large comments which do not take up space in
your core image. When de is executed from the terminal it expects you to type
a comment. dskout will write out the comments that you define and also copy
the comments on the old version of the file, so that the new version will keep
the old comments even though they were never actually brought into core.
The optional id is a mechanism for distinguishing among several comments
associated with the same word. It defaults to nil However if you define two
comments with the same id, the second is considered to be a replacement for
the first. The behavior of de is determined by the value of the global variable
del-comment. def-comment contains the name of a function that is run. Its
arguments are the word, id and attribute list. del-comment is initially dc-define.
Other functions rebind it to dc-help, dc-userhelp, and the value of dskin­
comment. The comment property of an atom is a list of entries, each
representing one comment. Atomic entries are assumed to be identifiers of
comments on a file but not in core. In-core comments are represented by a list
of the id, the attribute list and the comment text. The comment text is an
unintemed atom. Comments may be deleted or reordered by editing the com­
ment property.

(dskin Lfilenames)

SIDE EFFEcr: READ-EV AL-PRINTs the contents of the given files. This is the func­
. tion to use to read· files created by dskout. dskin also declares the files that
it reads (if a file-/ns list is defined and the file is otherwise declarable by
file), so that changes to it can be recorded.

(dskout s_file 1 ...)

SIDE EFFEcr: For each file specified, dskout assumes the list named filenameFNS (i.e.,
the file name, excluding extension, concatenated with fns) contains a
list of function names, etc., to be loaded Any previous version of the file
will be renamed to have extension ".back".

(dskouts s_file 1 ...)

SIDE EFFEcr: applies dskout to and prints the name of each s_filei (with no addi­
tional arguments, assuming filenameFNS to be a list to be loaded) for
which s_filei is either not in filelst (meaning it is a new file not previously
declared by file or given as an argument to dskin, dskouts, or dskouts) or
is in filelst and has some recorded changes to definitions of atoms in
filenameFNS, as recorded by mark!changed and noted by changes. If filei
is not specified. filelst will be used. This is the most common way of
using dskouts. Typing (dskouts) will save every file reported by
(changes) to have changed definitions.

The Franz Lisp Manual PS2:9-133

(dv s_atom 8-value)

EQUIVALENT To:(setq atom 'value). dv calls mark!changed.

(file 'Lfile)

SIDE EFFECT: declares its argument to be a file to be used for reporting and saving
changes to functions by adding the file name to a list of files, filelst. file is
called for each file argument of dskin, dskout, and dskouts.

(file-fns 's_file)

RETURNs:the name of the fileFNS list for its file argument Lfile.

(getdef's_file ['s_il ... J)

SIDE EFFECT: selectively executes definitions for atoms s_i 1 ... from the specified file.
Any of the words to be defined which end with "@" will be treated as pat­
terns in which the @ matchs any suffix (just like the editor). getde/ is
driven by getde/table (and thus may be programmed). It looks for lines in
the file that start with a word in the table. The first character must be a
T or T followed by the word, followed by a space, return or something
else that will not be considered as part of the identifier by read, e.g., T is
unacceptable. When one is found the next word is read. If it matches
one of the identifiers in the call to getde/ then the table entry is executed.
The table entry is a function of the expression starting in this line. Out-

, put from dskout is in acceptable format for getdef, getde/

RETUitNs:a list of the words which match the ones it looked for, for which it found (1;>ut,
depending on the table, perhaps did not execute) in the file.

NOTE: getdeftable is the table that drives getdef, It is in the form of an association list.
Each element is a dotted pair consisting of the name of a function for which get­
de/ searches and a function of one argument to be executed when it is found.

(mark!cbanged's_f)

SIDE EFFECT: records the fact that the definition of s_f has been changed. It is automat­
ically called by del. defun, de, df, de/prop, dm, dv, and the editor when a
definition is altered.

14.1. Simple Use Of Steppiaa

(step s_argl...)

CHAPTER 14

The LISP Stepper

NOTE: The LISP "stepping" package is intended to live the LISP programmer a facility
analogous to the Instruction Step mode of running a machine language program.
The user interface is through the function (fexpr) step, which sets switches to put
the LISP interpreter in and out of "stepping" mode. The most common step invo­
cations follow. These invocations are usually typed at the top-level, and will take
etfect immediately (i.e. the next $-expression typed in will be evaluated in step­
ping mode).

(step t) ; TUl'D, on st~ mode.
(step nil) ; Tum oft'steppina mode.

SIDE EFFECT: In stepping mode, the LISP evaluator will print out each $-exp to be
evaluated before evaluation. and the returned value after evaluation, cal­
ling itself recursively to display the stepped evaluation of each argument,
if the S-exp is a function call. In stepping mode, the evaluator will wait
after displaying each S-exp before evaluation for a command character
from the console.

PS2:9-134 The Fraaz Lisp Maauai

The Franz Lisp Manual PS2:9-135

STEP COMMAND SUMMARY

c

e

I

Continue steppiq recursively.

Show returned value from this level
only. and continue steppiq upward.

Only step interpreted code. -

Turn off steppina mode. (but continue
evaluation without steppina).

n <number> Step throuah <Dumber> evaluations without
stoppinl

p

b

q

d

14.2. Advanced Features

Redisplay current form. in full
(Le. rebind prinlevel and prinlenath to nil)

Get breakpoint

Quit

Call debul

14.2.1. Selectively TurniDg OD Steppina.

If
(step /001/002 ... J

is typed at top level, stepping will not commence immediately, but rather when the
evaluator lint encounters an S-expression whose car is one of /001. /002, etc. This
form will then display at the console, and the evaluator will be in stepping mode
waiting for a command character.

Normally the stepper intercepts calls to Juneall and eval. When Juneall ia
intercepted, the arguments to the function have already been evaluated but when
eval is intercepted, the arguments have not been evaluated. To differentiate the two
cases, when printing the form in evaluation, the stepper preceded intercepted calls
to Juneall with wf:". Calls to Juneall are normally caused by compiled lisp code cal­
ling other functions, whereas calls to eva! usually occur when lisp code is inter-
preted. To step only calls to eval use: (step eJ

PSl:9-136 T1ae Frau Usp Manal

14.2.1. SteppiDa With Breakpoiats.

For the moment, ~ is turned oft' imide of error breaks, but· not by the break
function. Upon exiting the error, step is reenabled. How~ver, executing (step nil)
inside a error loop wiD tum oft'stepping globally, i.e. within tbe error loop, and after
return bas be made from the loop.

14.3. OverJaead of Steppiaa.

If stepping mode bas been turned off by (step nil), the execution overbead of bav­
ing the stepping packinl in your LISP is identically nil. If one stops steppinl by typing
"g", every call to eval incurs a small overbead-several machine instructions,
corresponding to the compiled code for a simple cond and one function pushdown.
Running with (step fool f002 ...) can be more expensive, since a member of the car of
tbe ClIrrent form into the list (fool f002 ...) is required at eacb call to eval.

14.4. Evalhook and Fuacallhook

There are books in the FRANZ LIsP interpreter toperm.it a user written function
to gain control of the evaluation process. These books are used by the Step package
just described. There are two books and they bave been strategically placed in the two
~y functions in the interpreter: eval (wbicball interpreted code goesthrougb) and /un­
calt(wbicb all compiled code goes through if (sstatus translink nil) bas been done). Tbe .
book in eval is compatible with Maclisp, but there is no Maclisp equivalent of the book
in/uncall. ..

To ariD. the books two forms must be evaluated: (*rset t) and (sstatus evalhook t).
Once that is done,eval and/uncall do a special cbeck when they enter.

If eval is given a form to evaluate, say (foo bar), and tbe symbol 'evalbook' is non
nil, say its value is 'ebook', then eval wiD lambda bind the symbols 'evalbook' and 'fun­
callbook' to nil and will call ebook passing (foo bar) as tbe argument. It is ebook's
responsibility to evaluate (foo b(u) and return its value. Typically ehook will call tbe
function 'evalbook' to evaluate (foo bar). Note that 'evalbook' is a symbol whose func­
tion binding is a system function described in Chapter 4, and whose value binding, if
non nil, is tbe name of a user written function (or a lambda expression, Of a binary
object) which will gain control wbenever eval is called. 'evalbook' is also the name of
the status tag which must be set fOf all of this to work.

If funcall is given a function, say foo, and a set of already evaluated arguments,
say barv and bazv, and if the symbol 'funcallhook' has a non nil value, say 'tbook',
then /uncall will lambda bind 'evalbook' and 'funcallhook' to nil and will call tbook
with alIUments barv,bazv and foo. Thus tbook must be a lexpr since it may be giVeD
any number of arguments. The function to call, foo in this case, will be the last of the
arguments given to tbook. It is tbooks responsibility to do the function call and return
the value. Typically tbook will call the function /uncallhook to do the funcall. This is
an example of a funcallhook function wbicb just prints the arguments on each entry to
funcall and the return value.

The Franz Lisp Manual

-> (defunfhook n (let ((form (cons (arg n) (Iistify (1- n))))
(retYal))

(patom -calling ")(print lorm)(terpr)
(serq retval (Juncallhook lorm '}hook))
(patom "returns ")(print retval)(terpr)
retval))

thook
-> (*net t) (sstatllS eva/hook t) (sstatus translink nil)
-> (serq jUncal/hook '}hook)
callin& (print thook) ;; now all compiled code is traced
thookreturns nil
ca1lin1 (terpr)

returns nil
callin& (patom "-> ")
-> returns "-> "
callin& (rea4 nil QOOOOO)
(array 100 t 10) ;; to test it, we see what happens ·when
returns (array foo t 10) ;; we make an array
ca1lin1 (eval (array foo t 10»
callin& (append (10) nil)
returns (10)
callinl (lessp 1 1)
returns nil
calliill (apply times (10»
returns 10 .
calling (smlill-segmellt value (0)
callini (boole 4 137 127)
returns 128
... there is plenty more .. ;

PS2:9-137

CHAPI'ER 15

The FIXIT Debugger

15.1. Introduction FIXIT is a debugina enviroDmeDt for fRANz LISP users doing pro­
gram development. This documentatioD md FIXIT were writtell by David S.
Touretzky of Carnegie-Mellon University for MACLisp, md adapted to fRANz LISP by
Mitch Marcus of Ben Labs. One of FIXlT's goals is to get the program running again
as quickly as possible. The user is assisted in making changes to his functions "on the
fly", i.e. in the midst of execution, and thea computation is resumed.

To enter the debugger type (debug). The debugger goes into its own readweval­
print loop. Like the top-level, the debugger understmds certain special commands.
One of these is help, which prints a list of the available commands. The basic idea is
that you are somewhere in a stack of calls to eval. The commmd "bka" is probably the
most appropriate for looking at the stack. There are commands to move up and down.
If you want to mow the· value of "x· as of SQme place in the stack, move.to that place
and type 'x" (or (cdr x) or anythini else that you might waut to evaluate}. All evalua­
tion is done as of the current stack position. You can fix the problem by changing. the
values of variables, editing functions or expressions in the stack etc. Then you can
continue from the current stack position (or mywhere else) with the "redo' command.
Or you can simply return the riiht answer with the "return" command.

When it is not immediately obvious why an error has occurred or how the pro­
gram got itself into its current state, FIXIT comes to the rescue by providing a power­
ful debugginaloop in which the user can:

- examine the stack

- evaluate expressions in context

- enter stepping mode

- restart the computation at any point

The result is that program errors cm be located and fixed extremely rapidly, and with ~
minimum of frustration.

The debugger can only work effectively when extra information is kept about
forms in evaluation by the lisp system. EvaluatiDg (*rset t) tells the lisp system to .
maintain this iDformation. If you are debugging compiled code you should also be sure
that the compiled code to compiled code linkage tables are unlined, i.e do
(sstatus trans/ink nil).

PS2:9-138 The Franz Lisp Maual

The Franz Lisp Manual PS2:9-139

(debug [s_msg])

NOTE: Within a program, you may enter a debug loop directly by putting in a call to
debug where you would normally put a call to' break. Also, within a break loop
you may enter FIXIT by typing debug. If an argument is given to DEBUG, it is
treated as a message to be printed before the debug loop is entered. Thus you can
put (debug \just before loop!) into a program to indicate what part of the program
is being debugged.

FIXIT Command Summary

TOP go to top of stack (latest expression)
BOT go to bottom of stack (lint expression)
P show current expression (with ellipsis)
PP show current expression in full
WHERE give current stack position
HELP types the abbreviated command summary found

in /usrllisp/docifixit.heip. Hand? work too.
U go up one stack frame
U n go up n stack frames
U f go up to the next occurrence of function f
U n f go up n occurrences of function f
UP go up to the next user-written function
uP n go up n user-written functions
... the ON and ONFN commands are similar, but go down
... instead of up.

OK resume processing; continue after an error or debug loop
REDO restart the computation with the current stack frame.

The OK command is equivalent to TOP followed by REDO.
REDO f restart the computation with the last call to function f.

(The stack is searched downward from the current position.)
STEP restart the computation at the current stack frame,

but first tum on stepping mode. (Assumes Rich stepper is loaded.)
RETURN e return from the current position in the computation

with the value of expression e.
BK... print a backtrace. There are many backlrace commands,

formed by adding suffixes to the BK command. "BK" gives
a backtrace showing only user-written functions, and uses
ellipsis. The BK command may be suffixed by one or more
of the following modifiers:

.. F.. show function names instead of expressions

.. A.. show all functions/expressions, not just user-written ones

.. V.. show variable bindings as well as functions/expressions

.. E.. show everything in the expression, Le. don't use ellipsis

.. C.. go no further than the current position on the stack
Some of the more useful combinations are BKFV, BKFA,
and BKFAV.

BK... n show only n levels of the stack (starting at the top).
(BK n counts only user functions; BKA n counts all functions.)

BK... f show stack down to first call of function f
BK... n f show stack down to nth call of function f

PS2:9-140 The Fraaz Lisp MaauaI

15.2. Interaction witJa trace FIXlT knows about the standard Franz trace package, and
tries to make tracing invisible while in the debua loop. However, because of the way
trace works, it may sometimes be the case that the functions on the stack are really
uninterned atoms that have the same name as a traced function. (This only happens
when a function is traced WHEREIN another one.) FIXIT will call attention to trace's
hackery by printing an appropriate tag next to these stack entries.

15.3. Interac:tion witJa step The step function may be invoked from within FIXIT via the
STEP command. FIXIT initially turns off stepping when the debug loop is entered. If
you step through a function and get an error, FIXlT will still be invoked normally. At
any time during stepping, you may explicitly enter FIXIT via the "0" (debua) com­
mand.

15.4. Muldple error levels FIXIT will evaluate arbitrary LISP expressions in its debug
loop. The evaluation is not done within anemet, so, if an error occurs, another invo­
cation of the debugger can be made. When there are multiple errors on the stack,
FIXIT displays a barrier symbol between each level that . looks something like· <­
-UDF->. The UDF in this case stands for UnDefined Function. Thus, Ule upper·
level debUg loop was invoked by an undetined function error that occurred while in the
lower loop.

CHAPTER 16

The LISP Editor

16.1. The Editon

It is quite possible to use VI, Emacs or other standard editors to edit your lisp pro­
grams, and many people do just that. However there is a lisp structure e<li"tor which is
particularly good for the editing of lisp programs, and operates in a rather different
fashion, namely within a lisp environment. application. It is handy to know how to
use it for fixing problems without exiting from the lisp system (e.g. from the debugger.
so you can continue to execute rather than having to start over.) The editor is not
quite like the top-level and debugger, in that it expects you to type editor commands to
it. It will not evaluate whatever you happen to type. (There is' an editor command to
evaluate things, though.)

The editor is available (assuming your system is set up correctly with a lisp library) by
-typing (load 'cmufncs) and (load 'cmuedit). '

The most frequent use of the editor is to change function definitions by starting the
editor with one of the commands described in section 16.14. (see editj), values (editv),
properties (editp), and expressions (edite). The beginner is advised to start with the
following (very basic) commands: ok, undo. P. #, under which are explained two
different basic commands which start with numbers, and f.

This documentation, and the editor, were imported from PDP-I0 CMULisp by Don
Cohen. PDP-I0 CMULisp is based on UCILisp, and the editor itself was derived from
an early version of Interlisp. Lars Ericson, the author of this section, has provided this
very concise summary. Tutorial examples and implementation details may be found in
the Interlisp Reference Manual, where a similar editor is described.

16.1. Scope of Attention

Attention-changing commands allow you to look at a different part of a Lisp expression
you are editing. The sub-structure upon which. the editor's attention is centered is
called "the current expression". Changing the current expression means shifting atten­
tion and not actually modifying any structure.

The Fraaz Usp Manual PSl:9-141

PS2:9-142 The Franz Lisp Manual

SCOPE OF ATTENTION COMMAND SUMMARY

n (n>O) . Makes the nth element of the C\UTent expression be the new current expression.

·n (n>O). Makes the nth element from the end of the current expression be the new current expression.

O. Makes the· next higher expression be the new correct expression. If the intention is to go back to the next
higher left parenthesis. use the command to.

up. If a p command would cause the editor to type ... before typing the current expression, (the current expression
is a tail of the next higher expression) then has no effect; else, up makes the old current expression the first element in
the new current expression.

fO • Goes back to the next higher left parenthesis.

•. Makes the top level expression be the current expression.

nx. Makes the current expression be the next expression.

(nx n) equivalent to n nx commands.

fnx. Makes current expression be the next expression at a higher level. Goes through any number of right
parentheses to get to the next expression.

bk. Makes the current expression be the previous expression in the next higher expression.

(nth n) n>O. Makes the list starting with the nth element of the current expression be the current expression.

(nth $) • generalized nth command. nth locates $, and then backs up to the C\UTent level, where the new current
expression is the tail whose first element conwns. however deeply, the expression that was the terminus of the loca-
tion operation.' .

::. (pattern:: . $) e.g., (cond :: return). finds a cond that contains a return, at any depth.

(below com x). The below command is useful for locating a substructure by specifying something it contains.
(below cond) will cause the cond clause containing the current expression to become the new current expression.
Suppose you are editing a list of lists, and want to find a sublist that contains a foo <at any depth). Then simply exe­
cutes f foo (below).

(nex x). same as (below x) followed by nx. For example, if you are deep inside of a selectq clause, you can advance
to the next clause with (nex seiectqj. .

nex. The atomic form of nex is useful if you will be performing repeated executions of (nex x). By simply
marking the chain corresponding to X, you can use nex to step through the sublists.

16.3. Pattern Matching Commands

Many editor commands that search. take patterns. A pattern pat matches with x if:

The Franz Lisp Manual PS2:9-143

PATTERN SPECIFICATION SUMMARY

- pat is eq to x.

- pat is &.

- pat is a number and equal to x.

- if (car pat) is the atom *any*, (cdr pat) is a list of patterns, and pat matches x if and only if one of the patterns on
(cdr pat) matches x.

- if pat is a literal atom or string, and (nthchar pat -I) is @' then pat matches with any literal atom or string which
has the same initial characters as pat, e.g. ver@ matches with verylongatom, as well as "verylongstring".

- if (car pat) is the atom -, pat matches x if (a) (cdr pat)-nil. i.e. pat-H, e.g., (a -) matches (a) (a b c) and (a. b) in
other words. - can match any tail of a list. (b) (cdr pat) matches with some tail of x, e.g. (a - (&» will match with (a
b c (d», but not (a b c d), or (a b c (d) e). however, note that (a - (&) -) will match with (a b c (d) e). in other
words, - will match any interior segment of a list.

- if (car pat) is the atom - -, pat matches x if and only if (cdr pat) is eq to x. (this pattern is for use by programs that
call the editor as a subroutine, since any non-atomic expression in a command typed in by the user obviously cannot
be eq to existing structure.) - otherwise if x is a list, pat matches x if (car pat) matches (car x), and (cdr pat) matches
(cdr x). .

- when searching, the pattern matching routine is called only to match with elements in the structure, unless the pat­
tern begins with :::, in which case cdr of the pattern is matched against tails in the structure. (in this case, the tail
does not have,to be a proper tail, e.g. (::: a -) will match with the element (a b c) as well as with cdr of (x a be),

since (a bc) is a tiUl of (a be).)

16.3.1. Commands That Search

SEARCH COMMAND SUMMARY

f pattern. f informs the editor that the next command is to be interpreted as a pattern. If no pattern is given on the
same line as the f then the last pattern is used. f pattern means find the next instance of pattern.

if pattern n). Finds the next instance of pattern.

if pattern t). similar to f pattern. except. for example, if the current expression is (cond ..), f cond will look for the
next condo but (f cond t) will 'stay here'.

if pattern n) n>O. Finds the nth place that pattern matches. If the current expression is (foo 1 f002 f003), (f fOO@ 3)
will find f003.

if pattern) or if pattern nil). only matches with elements at the top level of the current expression. If the current
expression is (prog nil (setq x (conti & &)) (cond Ii) ...) f (cond -) will find the cond inside the setq, whereas (f (cond
-» will find the top level condo i.e., the second one.

(second. $). same as (Ie. $) followed by another (Ie. $) except that if the first succeeds and second fails, no change
is made to the edit chain.

(third. $). Similar to second.

(fs pattern1 ... patternn). equivalent to f patternl followed by f pattern2 ... followed by f pattern n, so that if f

PSl:9-144 The Franz Lisp Manual

pattern m fails, edit chain is left at place pattern m-l matched.

(fa expression x). Searches for a structure eq to expression.

(orjpatternl ... patternn). Searches for an expression that is matched by either pattern! or ... pattenm.

hi pattern. backwards find. If the current expression is (prog nil (setq x (setq y (list z))) (cond ((setq w -) -)) -) f list
foUowcd by bf setq will leave the current expression as (setq y (list z», as will f cond foUowed by bf setq

(hi pattern t). backwards find. Search always includes current expression, Le., starts at end of current expression and

works backward, then ascends and backs up, etc.

16.3.1.1. Location Specifications Many editor commands use a method of specify­
ing position called a location specification. The meta-symbol $ is used to denote
a location specification. $ is a list of commands interpreted as described above.
$ can also be atomic, in which case it is interpreted as (list $). a location
specification is .a list of edit commands that are executed in the normal fashion
with two exceptions. first, all commands not recognized by the editor are inter­
preted as though they had been preceded by f. The location specification (cond 2
3) specifies the 3rd element in the first clause of the next condo

the if command and the' ## function provide a way of using in location
specifications arbitrary predicates applied to elements in t~e current expression.

In insert, delete, replace and change, if $ is nil (empty), the corresponding opera­
tion is performed on the current edit chain, i.e. (replace with (car x» is
equivalent to (:(car x». for added readability, here is also permitted, e.g., (insert
(print x) before here) will insert (print x) before the current expression (but not
change the edit chain). It is perfectly legal to ascend to insert, replace, or delete.
for example (insert (return) after A prog -1) will go to the top, find the first prog,
and insert a (return) at its end, and not change the current edit chain.

The a, b, and: commands all make special checks in e 1 thru em for expressions
of the form (H . coms). In this case, the expression used for inserting or replac­
ing is a copy of the current expression after executing coms, a list of edit com­
mands. (insert (H f coDd -1 -1) afterJ) will make a copy of the last form in the
last clause of the next cond, and insert it after the third element of the current
expression.

$. In descriptions of the editor, the meta-symbol $ is used to denote a location
specification. $ isa list of commands interpreted as described above. $ can
also be atomic.

LOCATION COMMAND SUMMARY

(Ie . $). Provides a way of explicitly invoking the location operation. (Ic cond 2 3) will perform search.

(lei . $). Same as Ic except search is confined to current expression. To find a cond containing a return, one might
use the location specification (cond (lc:l retum» where the would reverse the effects of the lei command, and make

The Franz Lisp Manual PS2:9-14S

the final current expression be the condo

16.3.2. The Edit Chain The edit-chain is a list of which the first element is the the
one you are now editing ("current expression"), the next element is what would
become the current expression if you were to do a 0, etc., until the last element
which is the expression that was passed to the editor.

EDIT CHAIN COMMAND SUMMARY

mark. Adds the current edit chain to the front of the list marklst.

_. Makes the new edit chain be (car marklst).

C pattern). Ascends the edit chain looking for a link which matches pattern. for example:

_. Similar to _ but also erases the mark.

\ . Makes the edit chain be the value of unfind. unfind is set to the current edit chain by each command that makes
a "big jump·, i.e., a command that usually performs more than a single ascent or descent, namely', _, _, !nx, all
commands that involve a search, e~g., f, lc, .. , below, et al and and themselves.
if the user types f cond, and then f car, would take him back to the condo another would take him back to the car,
etc.

\p. Restores the edit chain to its state as of the last print operation. If the edit chain has not changed since the last
printing, \p restores it to its state as of the printing before that one. If the user types p followed by 3 2 1 p, \p will
return to the first p, i.e., would be equivalent to 0 0 O. Another \p would then take him back to the second p.

16.4. Printing Commands

PRINTING COMMAND SUMMARY

p Prints current expression in abbreviated form. (p m) prints mth element of current expression in abbreviated
form. (p m n) prints mth element of current expression as though printiev were given a depth of n. (p 0 n) prints
current expression as though printiev were given a depth of n. (p cond 3) will work.

? . prints the current expression as though printiev were given a depth of 100.

pp. pretty-prints the current expression.

pp*. is like pp, but forces comments to be shown.

PS2:9-146 The Frau Us, Manual

16.5. Structure Modificatioa COIIHD8Ilds

All structure modification commands are undoable. See undo.

STRUCTURE MODIFICATION COMMAND SUMMARY

f# [editor commtJJtdJJ] (0) D> 1 deletes the correspoodina element from the current expression.

(n el ... em) 11.101 replaces the oth e1emeDt in the current expression with el '" em.

(on el ... em) 11.101 inserts el ... em before the 0 element in the current expression.

(n el ... em) (the letter "0" for "next" or "ocooc", not a number) m>1 attaches el .. , em at the end of the current
expression.

(a el ... em). i~ el ... em after the current expression (or after its first element if it is a tail).

(b el ... em). inserts el ... em before the current expression. to insert foo before the last element in the current
expression. perform·l and then (b fool.

(: e 1 '" em). replaces the current expression by e 1 ... em. If the CUtTent expression is a tail then replace its lint
element.

delete or (:) . deletes the current expression, or if the current expression is a tail, deletes its first element.

(delete. $). does a (Ie. S) followed by delete. current edit chain is Dot cb.aqed.

(insert el ... em before;. $). similar to (Ie. S) fo~ by (b el ... em).

(insert el ... em after.· $). similar to insert before except uses a instead ofb.

(insert el... em for. $). similar to insert before except uses: for b.

(replace $ with el ... em). here $ is the sepnc;nt of the command between replace and with.

(change $ to el ... em). same as replace with.

16.6. Extraction and Embeddinl Commands

EXTIUCTION AND EMBEDDING COMMAND SUMMARY

(:r.tr • $). replaces the original current expression with the expression that is CUtTent after peifol1llina (lcl • S).

(mbd x). x is a list, substitu1es the current expression for all instances of the atom * in x, and replaces the CUtTent
expression with the result of that substitution. (m~ x): x atomic, same as (mbd (x *».
(ext~t $1 from $2). extract is aD editor command wbich replaces the current expression with one of its subexpres­
sions (from aDY depth). (SI. is the seament between extract and from.) example: if the current expression is (print
(cond «null x) y) (t z») then followiDl (extract y from coad), the current expression will be (print y). (extract 2 -1
from cond), (extract y from 2), (extract 2 -1 from 2) will all produce the same result.

(embed $ in. x). embed replaces the current expression with a new expression which contains it as a subexpression.

The Franz Lisp Manual PSl:9-147

($ is the segment between embed and in.) example: (embed print in setq x), (embed 3 2 in return), (embed cond 3 1

in (or • (null x))).

16.7. Move and Copy Commands

MOVE AND COPY COMMAND SUMMARY

(move SI to com . S2). ($1 is the segment between move and to.) where com is before, after, or the name of a list
command. e ... , :, n, etc. If $2 is nil, or (here), the current position specifies where the operation is to take place. If
$1 is nil, the move command allows the user to specify some place the current expression is to be moved to. if the
current expression is (a b d e), (move 2 to after 4) will make the new current expression be (a c db).

(mv com. S). is the same as (move here to com . $).

(copy SI to com. S2) is like move except that the source expression is not deleted.

(cp com. S). is like mv except that the source expression is not deleted.

16.8.· Parentheses Moving Commands The commands presented in thIS section permit
modification of the list structure itself, as opposed to modifying components thereof.
their effect can be described as inserting or removing a single left or right parenthesis,
or pair of left and right parentheses.

PARENTHESES MOVING COMMAND SUMMARY

(bi n m). both in. insens parentheses before the nth element and after the mth element in the current expression.
example: if the current expression is (a b (e d e) f g), then (bi 2 4) will modify it to be (a (b (e d e) o g). (bi n) :
same as (bi n n). example: if the current expression is (a b (e d e) f a), then (bi ·2) will modify it to be (a b (e d e) (0
g).

(00 n). both out. removes both parentheses from the nth element. example: if the current expression is (a b (e d e)
f g), then (bo d) will modify it to be (a bed e f g).

(Ii n). left in. inserts a left parenthesis before the nth element (and a matehiaa ri&ht parenthesis at the end of the
current expression). example: if the current expression is (a b (c d e) f g), then (Ii 2) will modify it to be (a (b (c d e)
fg».

(10 n). left out. removes a left parenthesis from ~ nth element. all elements followina the nth element are
deleted. example: if the current expression is (a b (e d e) f a), then (10 3) will modify it to be (a bed e).

(ri n m). ri&ht in. move the ri&ht parenthesis at the end of the nth element in to after the mth element. inserts a
ri&ht parenthesis after the mth element of the nth element. The ~ of the nth element is brou&ht up to the level of
the current expression. example: if the current expression is (a (b e d e) f g), (ri 2 2) will modify it to be (a (b e) d e
fa).

(ro n). riaht out. move the riaht parenthesis at the end of the nth element out to the end of the current expression.

PS2:9-148 The Franz Lisp Manual

removes the right parenthesis from the nth element, moving it to the end of the current expression. all elements fol­
lowing the nth element are moved inside of the nth element. example: if the current expression is (a b (c d e) f
g), (ro 3) will modify it to be (a b (c de f g».

(r x y) replaces all instances of x by y in the current expression, e.g., (r caac1r cadar). x can be the s-cxpression (or
atom) to be substituted for, or can be a pattern which specifies that s-cxpression (or atom).

(sw n m) switches the nth and mth elements of the current expression. for example, if the current expression is (list
(cons (car x) (car y» (cons (cdr y»). (sw 2 3) will modify it to be (list (cons (cdr x) (cdr y» (cons (car x) (car y»).
(sw car cdr) would produce the same result.

16.8.1. Using to and tbra

to, thru, extract, embed, delete, replace, and move can be made to operate on
several contiguous elements, i.e., a segment of a list, by using the to or thru com­
mand in their respective location specifications. thru and to are intended to be used
in conjunction with extract, embed, delete, replace, and move. to and thru can
also be used directly with xtr (which takes after a location specification), as in (xtr
(2 thru 4» (from the current expression).

TO AND THRU CO¥MAND SUMMARY

($1 to $2) . same as thru except last element not included.

($1 to). same as (SI thru -1)

($1 thru $2) . If the current expression is (a (b (c d) (e) (f g h) i) j k), following (c thru g), the current expre::;.;ion will
be «c d) (e) (f g h». If both $1 and $2 are numbers, and $2 is greater than SI, then $2 counts from the beginning of
the current expression, the same as $1. in other words. if the current expression is (a bed e f g), (3 thru 4) means (c
thru d), not (c thru 0. in this case, the corresponding bi command is (bi 1 $2-$1 + 1).

($1 thru). same as ($1 thru -J).

16.9. Undoing Commands each command that causes structure modification automati­
cally adds an entry to the front of undolst containing the information required to
restore all pointers that were changed by the command. The undo command undoes
the last, i.e., most recent such command.

UNDO COMMAND SUMMARY

undo. the undo command undoes most recent structure modification command that has not yet been undone, and
prints the name of that command, e.g., mbd undone. The edit chain is then exactly what it was before the 'undone'
command had been performed.

The Franz Lisp Manual PS2:9-149

lunda. undoes all modifications performed during this editing session, i.e., this call to the editor.

unblock. removes an undo-block. If executed at a non-blocked state, i.e., if undo or !undo could operate, types not
blocked.

test. adds an undo-block at the front of undolst. note that test together with !undo provide a 'tentative' mode
for editing, i.e., the user can perform a number of chanacs, and then undo all of them with a sinale !undo command.

undolst [valut!J. each editor command that causes structure modification automatically adds an entry to the front of
undolst containin& the information required to restore all pointers that were changcd by the command.

?? prints the entries on undolst. The entries arc listed most rcecnt entry first.

16.10. Commands that Evaluate

EVALUATION COMMAND SUMMARY

e. only when typed in, (i.e., (insert d before c) will treat e as a pattern) causes the editor to call the lisp inter­
preter giving it the next input as argument.

(e x) evaluates x, and prints the rcsuIL (e x t) same as (e x) but docs not print .

. (i c xl ... xn) same as (c yl ... yo) where yi-(cval xi). example: (i 3 (cdr foo»will replace the 3rd clement of the
cuiTcnt expression with the cdr of the value of foo. (i n foo (car fie» will attach the value of foo and car of the value
of fie to the end of the current expression. (i f. foo t) will search for an expression eq to the value of foo. If c iii not
an atom, it is evaluated as well.

(cams xl ... xn). each xi is evaluated and its value executed as a command. .J'he i command is not very convenient
for computing an entire edit command for execution, since it computes t'lie command name and ib arguments
separately. also, the i command cannot be used to compute an atomic command. The coms and comsq com­
mands provide more general ways of computing commands. (coms (cond (x (list I x»» will replace the first clement
of the current expression with the value of x if non-nil, otherwise do nothing. (nil as a command is a nop.)

(comsq coml ... comn). executes coml ... comn. comsq is mainly useful in conjunction with the coms command.
for example, suppose the user wishes to compute an entire list of commands for evaluation. as opposed to computing
each command one at a time as docs the coms command. he would then write (coms (cons (quote comsq) x» where
x computed the list of commands, e.g., (coms (cons (quote comsq) (get foo (quote commands»»

16.11. Commands that Test

TESTING COMMAND SUMMARY

(if x) generates an error unless the value of (cval x) is noil-nil, i.e., if (eval x) causes an error or (eval x)-nil, if will
cause an crrot. (if x comsl coms2) if (eval x) is non-nil, execute comsl; if (eval x) causes an error or is equal to nil,
execute coms2. (if x comsl) if (cval x) is non-nil, execute comsl; otherwise generate an error.

(Ip . cams). repeatedly executes COlDS, a list of commands, until an error occurs. (lp f print (n t» will attach

PSl:9-158 The Fraoz Lisp Manual

a t at the cad of every print exprcssioD. (lp f print (if (tII# 3) nil «11 t»» will attach a t at the ead of each print
expressiOllwbich does not already have a secolld arpmeat. (i.e. the form (tII# 3) will cause an error if the edit com­
mand 3 causes all error, thereby selectiQa «n t» as the list of commands to be exeCuted. The if coQld also be written
as (if (cddr (tII#» nil «n t))).).
(Ipq . coms) same as Ip but does IlOt print 11 oc:c:urrences.

(orr comsl ... comm). orr be&ins by executinl camsl, a list of commands. If no error occun, orr is ftnisheci. other­
wise. orr restores the edit chain to its oriaiul value; and continues by executiDc coms2, etc. If none of the com­
mand lists execute without errors, i.e., the orr 'drops off the cad", orr pnerates an error. otherwise, the edit chain is
left as of the completioll of the first commanci list which executes without error.

Ui.12. Editor Macros

Many of the more sophisticated branching commands in the editor, such as orr, if,
etc., are most often used in conjunction with edit macros. The macro feature per­
mits the user to define new commands and thereby expand the editor's repertoire.
(however, built in commands always take precedence over macros, i.e., the editor's
repertoire can be ~panded, but not modified.) macros are defined by using the m com­
mand.

(m c . coms) for.c· an atom, m defines c as an atomic command. (if a macro is
redefined, its new definition replaces its old.) executing c is then the same as executing
the list of commands coms. macros can also define list commands, i.e., com·
mands that take arguments. (m (c) (arg(I] ... arg[nD . coms) c an atOm. m defines c as
a list command. executing (c el .,. en) is then performed by slibstituting el for
arg[1], ... en for arg(n) throughout coms. and then executing coms. a list command
can be defined via a macro so as to take a fixed or indefinite number of 'argu­
ments'. The form given above specified a macro with a fixed number of arguments,as
indicated by its argument list. if the of arguments. (m (c) args • coms) c, args both
atoms, defines c as a list command. executing (c el ... en) is performed by substi­
tuting (el ... en). i.e., cdr of the command, for args throughout coms, and then execut­
ing coms.

(m bp bk up p) will define bp as an atomic command which does three things. a bk,
an up, and a p. note that macros can use commands defined by macros as well as built
in commands in their definitions. for example, suppose z is defined by (m z -1 (if
(null (#f» nil (p))), i.e. z does a -I, and then if the current expression is not nil, a p.
now we can define zz by (m zz -1 z), and zzz by (m zzz -1-1 z) or (m zzz -1 zz). we
could define a more general bp by (m (bp) (n) (bk n) up p). (bp 3) would perfomi
(bk 3), followed by an up, followed by a p. The command second CaD be defined as
a macro by (m (2nd) x (orr «Ic. x) (Ic. x»».

Note that for all editor commands, 'built in' commands as well as commands defined
by macros, atomic definitions and list definitions are completely independent. in
other words, the existence of an atomic definition for c in no way 'affects the treat­
ment of c when it appears as car of a list command, and the existence of a list
definition for c in no way affects the treatment of c when it appears as an atom. in
particular, c can be used as the name of either an atomic command, or a list command,
or both. in the latter case, two entirely different definitions can be used. note also

The Franz Lisp Manual PS2:9-151

that once c is defined as an atomic command via a macro definition, it will not be
searched for when used in a location specification, unless c is preceded by an f. (insert
- before bp) would not search for bp, but instead perform a bk, an up, and a p, and
then do the insertion. The corresponding also holds true for list commands.

(bind . coms) bind is an edit command which is useful mainly in macros. it binds
three dummy variables '# 1, #2, #3, (initialized to nil), and then executes the edit com­
mands coms. note that these bindings are only in effect while the commands are being
executed, and that bind can be used recursively; it will rebind # I, #2, and #3 each
time it is invoked.

usermacros [value}. this variable contains the users editing macros. if you want to
save your macros then you should save usermacros. you should probably also save
editcomsl.

editcomsl[value}. editcomsl is the list of "list commands" recognized by the editor.
(these are the ones of the form (command argl arg2 ...).)

16~13. Miscellaneous Editor Commands

MISCELLANEOUS EDITOR COMMAND SUMMAR'y

ok. Exits tipm the editor. .

nil. Unless preceded by for bf, is always a null operation.

tty: . Calls the editor recursively. The user can then type in commands, and have them executed. The tty: com­
mand is completed when the . user exits from the lower editor (with ok or stop). the tty: command is
extremely useful. it enables the user to set up a complex operation, and perform interactive attention-changing
commands part way throush it. for example the command (move 3 to after cond 3 p tty:) allows the user to interact,
in effect, within the move command. he can verify for himself that the correct location bas been found, or
complete the spec:iDcation "by hand". in effec:t, tty: says "rll tell you what you should do when you act there."

stop. exits from the editor with an error. mainly for use in conjunction with tty: commands that the user wants to
abon. since all of the commands in the editor are errset protected, the user must exit from the editor via a com­
mand. stop provides a way of distinguishing between a successful and unsuccessful (from the user's standpoint)
editing session.

tl. tl calls (top-level). to return to the editor just use the return top-level command.

repack. permits the 'editing' of an atom or string.

(repack $) does (Ie . $) foUawed by repack, e." (repack this@).

(maIcIfn form tugS II m). makes (car form) an expr with the nth through mth elements of the current expression
with each occurrence of an element of (cdr form) replaced by the corresponding element of args. The nth through
mth elements are replaced by form.

(make/II farm arp II). same as (makefn form args n n).

(s VfU • $). sets var (using setq)to the current expression after performing (Ie • $). (5 fool wiU set foo to the
current expression, (s foo -1 1) will set foo to the first element in the last element of the current expression.

PS2.-9-151 TIle Frau Lisp Manual

16.14. Editor Functioas

(editf s_xl ...)

SIDE EFFECT: edits a function. s_xl is the name of the function, any additional argu­
ments are an optional1ist of commands.

RETURNS:S_x 1.

NOTE: if s_x 1 is not an editable function, editf generates an fn not editable error.

(edite Lexpr Lcoms s_atm»
edits an expression. its value is the last element of (editl (list Lexpr) Lcoms s_atm nil nil).

(editraeefD s_com)
is' available to help the user debug complex edit macros, or subroutine calls to the editor.
editracefn is to be defined by the user. whenever the value of editracefn is non-nil, the edi­
tor calls the function editracefn before executing each command (at any level), giving it
that command as its argument. editracefn is initially equal to nil, and undefined.

(editv s_ var [,-com! ... D
.. SIDE EFFECT: similar to editf, for editing values. editv sets the· variable to the value

. returnec;t.
RETURNS:the name of the variable whose value was edited.

(editp s_x)

SIDE EFFECT: siulilar to editf for editing property lists. used if x is nil.

RETURNs:the atom whose property list was edited.

(editl coms atm marldst mess)

SIDE EFFECT: editl is the editor. its first argument is the edit chain, and its value is an
edit chain, namely the value of 1 at the time editl is exited. (1 is a special
variable, and so can be examined or set by edit commands. .. is
equivalent to (e (setq l(last 1)) t).) coms is an optional list of commands.
for interactive editing, coms is nil. in this case, editl types edit and then
waits for input from the teletype. (if mess is not nil editl types it instead
of edit. for example, the tty: command is essentially (setq I (editll nil nil
nil (quote tty:»).) exit occurs only via an ok, stop, or save command. If
coms is not nil, no message is typed, and each member of coms is treated
as a command and executed If an error occurs in the execution of one of
the commands, no error message is printed, the rest of the commands are.
ignored, and editl exits with an error, i.e., the effect is the same as though
a stop command had been executed. If all commands execute success­
fuDy, editl returns the current value of 1. marklst is the list of marks. on
ca1ls from editf, atm is the name of the function being edited; on ca1ls
from editv, the name of the variable. and ca1ls from editp, the atom of
which some property of its property list is being edited. The propeny list

The Franz Lisp Manual PS2:9-153

of atm is used by the save command for saving the state of the edit. save
will not save anything if atm=nil i.e., when editing arbitrary expressions
via edite or editl directly.

(editfns s_x [Lcomsl ...])
fsubr function, used to perform the same editing operations on several functions. editfns maps
down the list of functions, prints the name of each function, and calls the editor (via editf) on
that function.

EXAMPLE:editfns foofns (r fie fum» will change every fie to fum in each of the func­
tions on foofns.

NOTE: the call to the editor is ernet protected, so that if the editing of one function
causes an error, editfns will proceed to the next function. in the above exam­
ple, if one of the functions did not contain a fie, the r command would cause an
error, but editing would continue with the next function. The value of editfns is
nil.

(edit4e pat y)

SIDE EFFEcr: is the pattern match routine.

RETURNS:t if pat matches y. see edit-match for definition of'match'.

NOTE: before each search operation in the editor begins, the entire pattern is scanned
for atoms or strings that end in at-signs. These are replaced by patterns of the
form (cons (quote /@) (explodec atom». from the standpoint of edit4e,
pattern type 5, atoms or strings ending in at-signs, is really "if car[pat] is the atom
@ (at-sign), pat will match with any literal atom or string whose initial char­
acter codes (up to the @) are the same as those in cdr[pat]." if the user wishes
to call edit4e directly, he must therefore convert any patterns which contain
atoms vc strings ending in at-signs to the form recognized by edit4e. this
can be done via the function editfpat.

(editfpat pat fig)
makes a copy of pat with all patterns of type 5 (see edit-match) converted to the form
expected by edit4e. fig should be passed as nil (fIg=t is for internal use by the editor).

(editfindp x pat fIg)

NOTE: Allows a program to use the edit find command as a pure predicate from outside
the editor. x is an expression, pat a pattern. The value of editfindp is t if the
command f pat would succeed, nil otherwise. editfindp calls editfpat to convert
pat to the form expected by edit4e, unless fIg=t. if the program is applying
edidindp to several different expressions using the same pattern, it will be more
efficient to call editfpat once, and then call editfindp with the converted pattern
and fig=t.

PS2:9-154 The Franz Lisp Maaual

(## ,-com! ...)
RETURNS:what the current expression would be after executing the edit commands coml

..• starting from the present edit chain. generates an error if any of comi
cause errors. The current edit chain is never changed. example: (i r (quote x)
(#:1# (cons •. z))) replaces all x's in the current expression by the first cons con­
taining a z.

CHAPTER 17

Hash Tables

17.1. Overview

A hash table is an object that can efficiently map a given object to another. Each
hash table is a collection of entries, each of which associates a unique key with a value.
There are elemental functions to add, delete, and find entries based on a particular key.
Finding a value in a hash table is relatively fast compared to looking up values in, for
example, an assoc list or property list.

Adding a key to a hash table modifies the hash table, and so it is a descructive
operation.

There are two different kinds of hash tables: those that use the function equal for
the comparing of keys, and those that use eq, the default. If a key is "eq" to another
object, then a match is assumed. Likewise with "equal".

17.2. Functions

(makebt 'x_size ['s_test])

RETURNS:A hash table of x_size hash buckets. If present, s_tesL is used as the test to
compare keys in the hash table, the default being eq. Equal might be used to
create a hash table where the keys are to be lists (or any lisp object).

NOTE: At this time, hash tables are implemented on top of vectors.

(basb-table-p 'H_arg)

RETURNS:t if H_arg is a hash table.

NOTE: Since hash tables are really vectors, the lisp type of a hash table is a vector, so
that given a vector, this function will return t.

(getbasb '8-key 'H_htable ['8-default])

RETURNs:the value associated the key 8-key in hash table H_htable. If there is not an
entry given by the key and 8-default is specified, then 8-default is returned,
otherwise, a symbol that is unbound is returned. This is so that nil can be a
associated with a key.

NOTE: set/may be used to set the value assocaited with a key.

The Franz Lisp Manual PS2:9-1SS

PS2:9-156 The Franz Usp Maul

(remhash 'Lkey 'H_htable)

RETURNs:t if there was an entrY for Lkey in the hash table H_htable, nil otherwise. In
the case of a match, the entry and associated object are removed from the
hash table.

(maphash 'u3unc 'H_htable)

RETUR.NS:nil.
NOTE: The function u~func is applied to every element in the hash table H_htable. The

function is called with two arguments: the key and value of an element. The
mapped function should not add or delete object from the table because the
results would be uapredicable.

(drhash 'H-htable)

RETURNs:the hash table cleared of all entries.

(hash-table-couat 'H-htable)

RETURNS:the number of entries in H_htable. Given a new hasb table with no entries,
this function returns zero.

The Franz Lisp Manual

; make a vanilla bash table using "eq" to compare items ...
-> (setq black-box (makeht 20»
hash-table{26]
-> (hash-table-p black-box)
t
-> (hash-table-count black-box)
o
-> (setf (getbash 'key black-box) '(the value associated with the key»
key
-> (gethash 'key black-box)
(the value associated with the key)
-> (hash-table-count black-box)
I
-> (addhash 'composer black-box 'franz)
composer
-> (gethash 'composer black-box)
franz
-> (maphash '(lambda (key val) (msg "key" key " value" val N» black-box)
key composer value franz
key key value (the value associated with the key)
nil
-> (clrbash black-box)
hash-table[26]
-> (hash-table-count black-box)
o
-> (mapbash '(lambda (key val) (msg "key" key • value" val N» black-box)
nil

; here is an example using "equal" as the comparator
-> (setq ht (makeht 10 'equal»
bash-table[16]
-> (setf (gethash '(this is a key) hi) '(and this is the value»
(this is a key)
-> (gethash '(this is a key) ht)
(and this is the value)
; the reader makes a new list each time you type it ...
-> (setq x '(this is a key»
(this is a key)
-> (setq y '(this is a key»
(this is a key)
; so these two lists are really different lists that compare "equal"
; not "eq"
-> (eq x y)
nil
; but since we are using "equal" to compare keys, we are OK. ..
-> (gethash x ht)
(and this is the value)
-> (gethash y ht)
(and this is the value)

PS2:9-157

APPENDIX A

Index to FRANZ LISP Functions

<## 8-com1) .. 154
(*array 's_name 's_type 'x_dim 1 ... 'x_dimn) ... 28
(*break '8-pred '8-message) ... 48
(*catch 'Is_tag 8-exp) ... 49
(*makhunk 'x_arg) .. 31
(*mod 'x_dividend 'x_divisor) ... 46
(*process 'st_command ['8-readp ['8-writep]]) ... 78
(*process-receive 'st_command) ... 78
(*process-send 'st_command) ... 78
(* ,. ,.) 41 quo I_X l_y

(*rplacx 'x_ind 'h_hunk 'i-val) ... 32
(*rset '8-flag) .. ; ... 80
(""throw 's_tag '8-val) ... 62
(/ ['x_argl ...]) .. ~ ... 41
(1 + 'x_arg) .. ; 40
(1- ·x_arg) ~ .. ~ .. 41
« 'fx_argl 'fx_arg2) .. : ... 43
«& 'x_argi ·x_arg2) .. ~ : 43 ~
(> 'fx_arg1 'fx_arg2) .. 42
(>& 'x_argl 'x_arg2) ... : ~ ... 42
(Divide 'i_dividend 'i_divisor) ... 41
(Emuldiv 'x_fact I 'x_fact2 'x_addn 'x_di visor) ... }; 41
(I-throw-err 'I_token) .. 59
(.. ('x_argl ...]) ... 41
(== 'fx_argl 'fx_arg2) .. 43
(=& 'x_arg1 ·x_arg2) .. 43
(- ['x_argl ...]) .. 40
(+ ['x_argl ...]) ... 40
(abs 'n_arg) ... 45
(absval 'n_arg) .. 45
(acos 'fx_arg) .. 43
(add ['n_arg1 ...]) .. 40
(add-syntax-class 's_synclass 'I_properties) ... 95
(addt 'n_arg) ... 40
(aexplode ·s_arg) ... 25
(aexplodec 's_arg) ... 25
(aexploclen .s_arg) :: ... 25
(allocate ' s_ type 'x-pages) .. 7 4
(alphalessp 'st_arg1 'st_arg2) ... 23
(and l8-arg1 ...]) .. 47
(append 'I_argi 'l_arg2) .. 11
(appendl 'I_argl '8-arg2) ... 12
(apply 'u_func ·l_args) .. 47
(arg (,x_numb]) .. 48
(argv 'x_argnumb) ... 74

PS2:9-158 The Franz Lisp Manual

The Franz Lisp Manual PS2:9-1S9

(array s_name s_type x_diml ... x_dimn) ... 28
(arraycall s_type 'as_array 'x~indl ...) ... 29
(arraydims 's_name) ... 29
(arrayp 'g..arg) .. 18
(arrayp 'g..arg) .. 29
(arrayref 'a_name 'x_ind) ... 29
(ascii 'x_charnum) , .. 22
(asin 'fx_arg) ... 43
(assoc 'g..argl '1_arg2) ... 33
(assq 'g..argl '1_arg2) ... 33
(atan 'fx_argl 'fx_arg2) : ... 43
(atom 'g..arg) ... 18
(attach 'g..x '1_1) .. 15
(baktrace) .. 74
(bcdad 's_funcname) ... 37
(bcdp 'g..arg) ... 19
(bignum-Ieftshift bx_arg x_amount) .. 44
(bignum-to-list 'b_arg) .. 13
(bigp 'g..arg) .. 19
(boole 'x_key 'x_vi 'x_v2 ...) ... 44
(boundp 's_name) ... 23
(break [g..message ['g..pred]]) .. 48
(c.ol 'lh_arg) .. 14
(car 'l_arg) .. 14
(caseq 'g..key-form I_clause 1 ...) .. 48
(catch g..exp [ls_tagD ; .. 49
(cdr 'l_arg) .. 14
(cfasl'scfile 'scentry 'sCfuncname ['sCdisc ['sClibrary)]) , 64
(changes s_flag) .. 131
(chdir 's_path) .. 74
(close 'p_port) ... 65
(clrhash 'H_htabIe) .. 156
(eommand-line-args) ... 7 5
(comment [g..arg ...]) ... 50
(concat ['stn_argi ...]) .. 22
(eoneatl 'I_arg) .. 22
(cond [I_clause 1 ...]) ... 50
(cons 'g..argl 'g..arg2) ... 11
(copy 'g..arg) .. 3 7
(copyint* 'x_arg) ... 3 7
(eopysymbol 's_arg 'g..pred) ... 22
(cos 'fx_angle) ... 43
(cprintf 'st_format 'xfst_ val ['p_portD ... :.65
(cpyl 'xvt_arg) .. 37
(cvttofranzlisp) .. 50
(cvttointlisp) .. 50
(cvttomaclisp) .. 50
(cvttoucilisp) .. 50
(cn 'x_ind 'h_hunk) : .. 32
(de s_word Lid [g..descriptorl ...] <text> <esc» .. 132
(debug [s_msg D .. 139
(debug s_msg) ... 51
(debugging 'g..arg) ... ~ ~ .. 51

PS2:9-160 The Franz Lisp Manual

(declare (s.-arg ... J) .. 51
(def s_name (s_type l_argl s.-exp 1 ... » ... ! .. 51
(defcmaero s_name l_arg s.-expl ...) .. 51
(defmaero s_name l_arg s.-exp 1 ...) .. 51
(defprop Is_name s.-val s.-ind) ... 34
(defull s_name (s_mtype] ls_argls.-expl ...) .. 51
(defvar s_ variable ['s.-init]) .. 52
(delete's-val 'I_list ['x_count)) .. 15
(delq 's-val 'I_list ['x_count]) .. 16
(deref 'x_addr) ... : .. 75
(desetq sl_patternl 's-exp 1 [......]) .. 25
(diff rn_argl ...]) ... 40
(difference ['n_argl ...]) ... : 40
(do l_vrbs l_test s-expl ...) .. 52
(do s_name g..,init s-repeat s-test s-expl ...) ... 54
(drain ['p_portJ) .. 65
(dremove 's-val 'I_list ['x_count]) .. 16
(dskin I_filenames) ... 132
(dskout s_filel ...) ... 132
(dskouts s_filel ...) ... 132
(dsubst 's-x 'S-y 'l_s) ... 17
(dtpr 's-arg) .. 13
(dtpr 'S-arg) .. ~.19
(dumplisp s_name) ... 7 5
(dv s_atom S-value) " : ... ; ; 133
(edit4e pat y) .. 153
(edite l_expr I_coms s_atm» ~ ... 152
(editf s_xl' ...) .. 152
(editfindp x pat Hg) .. 15 3
(editfns s_x [s-comsl ...]) .. 153 '"
(editfpat pat Hg) .. 15 3
(editl coms atm marklst mess) ... 15 2
(editp s_x) ... 152
(editracefn s_com) ... 152
(editv s_var [s-coml ...]) ... 152
(environment [Cwhenl Cwhatl Cwhen2 Cwhat2 ...]) .. 54
(environment-Imlisp [Cwhenl l_whatl Cwhen2 Cwhat2 ...]) ... 54
(environment-maclisp [Cwhenl Cwhatl Cwhen2 Cwhat2 ... J) .. 54
(eq 's-argi 's.-arg2) .. ~ 20
(eqstr 'S-argl 's-arg2) .. 20
(equal 'S-argl 's.-arg2) ... 20
(err ['s_value [nil]]) .. 54
(error ['s_message 1 ['s_message2]]) ... 55
(errset s.-expr [s_Hag]) .. 55
(eval 's-val ['x_bind-pointer]) .. 55
(eval-when I_time 3-expl ...) ... 75
(evalframe 'x_pdlpointer) ... 56
(evalhook 's-form 'su_evalfunc ('su_funcallfunc]) .. 56
(evenp 'x_arg) ... 42
(ex [s_filename]) ... 65
(exec s_argl ...) ... 57
(exece 's_fname ['1_arg5 ['l_envir]]) ... 57
(exit [,x_code]) .. 75

The Franz Lisp Manual PS2:9-161

(exl [s_filename]) .. 65
(exp 'fx_arg) ... 45
(explode '8-arg) .. 25
(explodec ' Larg) ... 2 5
(exploden 'Larg) .. 25
(expt 'n_base 'n_power) ... 45
(fact 'x_arg) ... 45
(fake 'x_addr) ... 7 5
(fasl 'st_name ['st_mapf ['Lwarn]]) .. 66
(fclosure '1_ vars 'Lfunobj) ... 36
(fclosure-alist 'v _fclosure) .. 37
(fclosure-function 'v _fclosure) .. 37
(fclosurep 'v _fclosure) .. 37
(ffasl 'sLfile 'sLentry 'st3uncname ['sCdiscipline ['sClibrary)]) .. 66.
(file 's_file) .. 133
(file-fns 's_file) .. 133
(fileopen ' st_filename ' st_mode) .. 67
(filepos 'p _port ['x_pos]) .. 66
(filestat ' st_filename) .. 66
(fillarray 's_array 'I_itms) .. 31
(fix 'n_arg) .. 45
(fixp '8-arg) .. 42
(flatc '8-fOrm ['x_max]) ... 67
(flatsiz~ 'Lform ['x_max]) .. : : ~ .. 67
(float 'n_arg) .. 45
(floatp 'Larg) ... ~.~ .. .-......................... 42
(fork) ~ ... ' 75
(fretum "x_pdI-pointer' '~retval) ... 57
(frexp 'f_arg) ... 57
(fseek 'p_port 'x_offset 'x_tlag) .. 67
(funeall 'u_func ['Largl ...)) .. 57
(funcallhook 'Lform 'su3uncallfunc [,su_evalfunc)) .. 57
(function u_func) .. 5 8
(gc) .. 76
(gcafter s_type) ... 76
(gensym ['s_Ieader)) .. 22
(get 'Is_name '8-ind) .. 34
(get_pname 's_arg) .. 23
(getaccess 'a_array) .. , 29
(getaddress 'Lentry1 's_binder! 'sCdiscipline1 [.........]) ... 37
(getaux 'a_array) ... 29
(getchar 's_arg 'x_index) .. 24
(getcharn 's_arg 'x_index) ... :24
(getd 's_arg) .. 24
(getdata 'a_array) ... 29
(getdef's_file ['s_i 1 ...)) .. 133
(getdelta 'a_array) ... 29
(getdisc 'y _bcd) ... 32
(getdisc 'y _func) ... 58
(getentry 'y _bcd) ... 32
(getenv 's_name) ... 76
(gethash '8-key 'H_htable ['8-default)) ... 155
(ged 'Is_name 'I_indicators) ... 34

PS2:9-162 The Franz Lisp Manual

(getlength 'a_array) .. 29
(getsyntax 's_symbol) ... 95
(go g.Jabexp) .. 58
(greaterp ['n_argl ...]) .. 42
(haipart bx_number x_bits) ... 44
(basb-table--coullt 'H_htable) .. 15 6
(basb-table-p 'H_arg) ... 15 5
(basbtabstat) ... : ... 7 6
(baulong bx_number) ... 44
(belp [sx_arg]) ... 77
(bunk '8-vall ['8-val2 ... '8-valn]) .. 31
(bunk-to-Ust 'h_hunlc) .. , , .. 32
(bullkp '8-arg) .. 19
(bunksize 'h_arg) .. 32
(if '8-a 'i-b 'i-e ...) .. : 58
(if '8-a '8-b) ... 58
(if '8-a then 'i-b [... J [elseif'i-c tbea '8-d ... J [else '8-e [...]) ... 58
(if '8-a tben 'Lb [... J [elseif'i-c tbenret] [else 'i-d [...]) .. 58
(implode 'l_atg) ... 22
(include s_filename) .. 77
(include-if '8-predicate s_filename) .. ~ 77
(includef 's_filename) .. 77
(includef-if '8-predicate s_filename) , ... 77
(infile 's_filename) , , ... 67
(insert '8-object 'Llist 'u_comparefn .'8-nodups) , : , 16
'(illtem 's_atg) : .. 23
(kwote '8-arg) ; ~ .. : .. 38
(last 'l_arg) .. 15
(Ieonc 'l_ptr 'I_x) .. 35
(ldift' 'l_x 'I_y) ... 15
(Iengtb 'l_arg) ... 14
(Iessp ['n_argl ... J) .. 43
(let l_args 8-expl ... 8-expm) .. 59
(Iet* l_args 8-expl ... 8-expn) .. 59
(Iexpr-funcall '8-function ['8-argl ... J 'I_argn) .. 59
(list ['g_argi ...)) .. 11
(list-to-bignum 'I_ints) .. 13
(listarray 'sa_array ['x_elements D .. 29
(listify 'x_count) ... , 59
(listp '8-arg) .. 13
(listp '8-arg) .. 19
(load 's_filename ['st_map ['8-wam]]) ... 68
(log 'fx_arg) .. 46
(Ish 'x_val 'x_amt) ... 45
(Isubst 'I_x '8-Y 'l_s) .. 17
(macroexpand '8-form) ... 38
(makebt 'x_size ['s_test]) .. 155
(makereadtable [' s_flag]) ... 68
(makbunk 'xl_arg) .. 31
(maknam 'l_arg) .. 22
(mabum '8-arg) ... 77
(makunbound 's_arg) .. 25
(map 'u_func 'I_argl ...) ... 60

The Franz Lisp Manual PS2:9-163

(mapc 'u_func 'I_argl ...) ... 60
(mapcan 'u_func 'I_argl ...) .. 60
(mapcar 'u_func 'I_argl ...) .. 60
(mapcon 'u_func 'I_argl ...) .. 60
(maphash 'u_func 'H_htable) ... 156
(maplist 'u_func 'I_argl ...) .. 60
(mark!e:hanged 's_f) .. 133
(marray 'i-data 's_access 'i-aux 'x_length 'x_delta) .. 28
(max 'n_argl ...)_ .. 46
(member 'i-argl 'l_arg2) .. 21
(memq 'i-argl '1_arg2) ... 21
(merge'I_datal 'l_data2 'u_comparefn) .. 16
(mfunmon t_entry 's_disc) ... 61
(min 'n_argl ...) ... 46
(minus 'n_arg) ... 41
(minusp 'i-arg) ... 42
(mod 'i_dividend 'i_divisor) .. 46
(monitor ['xs_maxaddr)) ... 77
(msg [I_option ...] ['i-msg ... » ... 68
(ncone: 'l_argl 'l_arg2 ['1_arg3 ... J) ... 17
(neons 'i-arg) ... 11
(neq 'i-x 'i-Y) .. : ... 20
(new-vector 'x_size ['i-fill ('i-prop))) .. 26
(new-vectori-byte 'x_size ('i-fill ['i-prop]» ~ .. 26
(new-vectori-long 'x_size ['i-fill ('i-prop]» : ... ;26
(new-vectori-word 'x_size ('i-fill ['i-prop]]) ... ;26
(not 'i-arg) ... 21
(nrecone: 'l_arg 'i-arg) .. : ~ ; 18
(nreverse 'I_arg) .. 18
(nth 'x_index 'I_list) ... 14
(nthe:dr 'x_index 'I_list) .. 14
(nthe:har 's_arg 'x_index) .. 24
(nthelem 'x_argl 'l_arg2) ... 14
(null 'i-arg) .. 21
(numberp 'I-arg) ... 42
(numbp 'i-arg) .. 42
(nwritn ['p_port]) .. 69
(oblist) ... 61
(oddp 'x_arg) ... 42
(onep 'Lars) ... ~ 42
(opval 's_arg ['I-newval» ... 78
(or (J-argl ... » .. 61
(outfile 's_filename ['st_type» ... ~69
(patom 'i-exp ['p_port)) ... 69
(plist 's_arg) .. 24
(plist 's_name) .. , ... 34
(plus ['n_argl ...)) ... 40
(plusp 'n_arg) .. 42
(potleo 'xfs_arg) .. 70
(portp 'I-arg) .. 70
(pp [I_option] s_name 1 ...) .. 70
(pp-form 'i-form ['p_port]) .. 70
(prine: 'i-arg ['p_port]) , ... 70

PS2:9-164 The Franz Lisp Manual

(print 'g..ars ('p_portJ) ... 70
(probe! 'st_lile) .. 70
(process s_pgrm [s_frompipe s_topipe]) .. 79
(product ['n_ars 1 ...]) ... 41
(progl_ vrbls g..exp 1 ...) ... 61
(pmgl 'g..exp 1 ['Lexp2 ...]) ... 61
(progl 'g..expl 'Lexp2 ['g..cxp3 ...]) ... 61
(progn 'g..cxp 1 ['g..exp2 ...]) .. ' 61
(progv 'I_Iocv 'l_initv g..exp 1 ...) ... 61
(ptiine) .. 79
(ptr 'g..ars) .. 38
(purcopy 'g..cxp) ... 62
(purep 'g..exp) ... 62
(putac:c:ess 'a_array 'su_func) ... 30
(putaux 'a_array 'g..aux) ... 30
(putd 's_name 'u_func) ... 62
(putdata 'a_array 'g..ars) .. 30
(putdelta 'a_array 'x_delta) .. 30
(putdisc 'y _fune 's_discipline) .. 32
(pudength 'a_array 'x_length) .. 30
(putprop 'Is_name '8-val 'g..ind) .. 34
(quote g..arg) ... 38
(quote! [g..qformi] ... [! 'Leformll... [!! 'Cformi] ...) .. 12
(quotient ['n_argi ...)) .. ' ... 41
(random [,x_limit)) .; : .. ; ... 46
(ratom rp_port ['g..eof]]) ... : , 71
(read . [,p_port ['g..eof])) .. 71
(reade ['p_port ['g..eof]]) ... ~ ~ ... 71
(readlist 'I_arg) ... 71
(remainder 'i_dividend 'i_divisor) ... 46
(rematom . s_ars) ... 23
(remhash 'g..key 'H_htable) ... 156
(remob 's_symbol) .. 23
(remove 'g..x '1_1) .. 16
(removeaddress 's_namel ['s_oame2 ...]) ... 71
(remprop 'Is_name 'g..ind) ... 34
(remq 'g..x '1_1 ['x_count]) .. 16
(replace 'g..argl 'Larg2) .. 38
(reset) .. 79
(resetio) ... 71
(restorelisp 's_name) .. 79
(retbrk ['x_level]) .. 79
(return ['g.. val)) ... 62
(reverse 'I_arg) .. 18
(rot 'x_ val ·x_amt) .. 45
(rplaca 'Ib_arg1 'g..arg2) ... 15
(rpJacd 'Ib_argi 'g..arg2) .. 15
(rplacx 'x_ind 'h_hunk 'g.. val) ... 32
(sassoc 'g..arsl 'I_arg2 'sl_fune) .. 33
(sassq 'g..arg1 'l_arg2 's1_fune) .. 33
(savelisp 's_name) .. 80
(scons 'x_ars 'bs_rest) .. 39
(segment 's_type ·x_size) .. 80

The Franz Lisp Manual PS2:9·165

(selectq 's-key-form [I_clause 1 ...]) ... 62
(set 's_argl 's-arg2) ... 24
(set-in-fclosure 'v_fclosure 's_symbol ·s-newvalue) .. 37
(setarg 'x_argnum .s-val) ... 62
(setf s-refexpr .s-value) ... 39
(setplist 's_atm ·I_plist) .. 25
(setplist 's_atm '_pIist) .. 34
(setqs_atml 's-val1 [s_atm2 's-val2]) .. 24
(setsyntax 's_symbol 's_synclass('Is_func]) .. 95
(setsyntax 's_symbol 's_synclass (,Is_fune» .. 71
(shell) .. 80
(sbowstack) ... 80
(signal 'x_signum ·s_name) .. 80
(signp s_test .s-val) .. 20
(sin 'fx_angle) ... : .. ~ .. 43
(sizeof 'S-arg) .. 81
(sload 's_file) ... 71
(small-segment 's_type 'x_cells) ... 81
(sort 'I_data 'u_comparefn) .. 39
(sortcar 'I_list 'u_comparefn) ... 39
(sqrt 'fx_arg) ... 46
(sstatus appendmap S-val) ... 81
(sstanis automatic-reset S-val) ... 81
.(sstatus chainatom S-val) ... 81
(sstatus dumpcore S-val) ... ~ 81
(sstatus dumpmode x_ val) ... ~ 82
(sstatus evalhook S-val) ~ ~ ; ~ 82
(sstatus feature 8-val) ~ ... 82
(sstatus gestrings S-val) ... 82
(sstatus ignoreeof 8-val) ... , ... 82
(sstatus nofeature Lval} ... 82
(sstatus trans link 8-val) ... 82
(sstatus uctolc 8-val) .. 83
(sstatus s-type 8-val) .. 1 .. 81
(status ctime) .. 83
(status feature 8-val) .. 83
(status features) .. 83
(status isatty) .. 83
(status localtime) .. 83
(status syntax s_char) ... 83
(status undeft'unc) .. 84
(status version) .. 84
(status s-code) .. 83
(step s_arg1 ...) .. 134
(sticky-bignum-leftshift 'bx_arg ·x_amount) .. 44
(store 'l_arexp 's-val) ... 30
(stringp 'S-arg) ... 19
(subl 'n_arg) ... 41
(sublis 'I_alst 'I_exp) .. 33
(subpair 'I_old 'I_Dew 'l_expr) ... 17
(subst 's-x 'S-y 'l_s) ... 17
(substring 'st_string 'x_index (,x_length]) ... 24
(substringn 'st_string 'x_index (,x_length]) ... 24

PS2:9-166 Tbe Franz Lisp Manual

(sum ['n_argl ...]) ... 40
(symbolp • g..arg) .. 19
(symeval 's_arg) .. 23
(symeval-iD-fclosure 'v _fclosure 's_symbol) ... 37
(sys:access 'st_filename 'x_mode) .. 84
(sys:cbmod 'st_filename 'x_mode) ... ~ 84
(sys:getbostoame) ... 84
(sys:getpid) .. 84
(Sys:getpWIUUD 'st_usemame) ... 84
(sys:IiDk 'st_oldfilename 'st_newftlename) .. 84
(sys:dme) o~o •• •• 84
(sys:uolink ·st_filename) ... 84
(syscall 'x_index ['xst_argl ...]) ... 84
(tab 'x_col ['p_port]) .. 72
(tailp 'l_x 'I_y) : ... 13
(tcoDe 'l_ptr 'g..x) ... 35
(terpr ['p_port]) .. 72
(terpri ['p_port]) ... 72
(tbrow 'g..val (s_tag)) .. 62
(tilde-expand 'st_filename) ... 72
(time-striDI ['x_seconds» ... ~ 84
(times ['n_argl ...]) .. 41
(top-level) .. , 130
(top-level) .. 85
(trace [ls_argl ..•]) .. n .. · 117
(traceargs s_func [x_level]) .. ~ ... 120
(tracedump) : ~ .. 120
(tyi ['p_port» .. 72
(tyipeek ['p_port]) .. 72
(tyo 'x_char ['p_port)) .. 72
(type 'g..arg) .. 19
(typep 'g..arg) .. 19
(ucooc:at ['stn_argl ...]) .. 22
(uotrace [s_argl ...]) .. : ... 120
(UDtyi 'x_char ['p_port» ... 72
(unwiDd-protect g_protected [g..cleanupl ...)) .. 63
(username-to-dir 'st_name) ... 72
(valueof ·g..eventspec) ... 130
(valuep 'g..arg) .. 19
(vector ['g..valO 'g..vall ...]) .. 27
(vectori-byte ['x_ valO 'x_ va12 ...]) ... 27
(vectori-loDg ['x_ valO 'x_ val2 ...]) .. 27
(vectori-word ['x_valO 'x_vaI2 ...]) .. 27
(vectorip 'v_vector) ... 19
(vectorp 'v_vector) .. 19
(vget 'Vv_vect 'g..ind) .. 27
(vi [s_filename]) .. 65
(vii [s_filename]) .. 65
(vprop ·Vv_vect) ... 27
(vputprop 'Vv_vect 'g..value 'g..ind) .. 28
(vref 'v _ vect 'x_index) .. 27
(vreft-byte 'V _ vect 'x_bindex) .. 27
(vreft-loDg 'V _ veet ·x_lindex) ... 27

The Franz Lisp Manual PSl:9-167

(vreft-word 'V _vect 'x_windex) .. 27
(vset 'v _ vect 'x_index '8-val) ... 28
(vseti-byte 'V _ vect 'x_bindex 'x_ val) ... 28
(vseti-loDI 'V _ vect 'x_lindex 'x_ val) .. 28
(vseti-word 'V _vect 'x_windex 'x_val) ... 28
(vsetprop 'Vv_vect '8-value) .. 28
(vsize 'Vv _ vect) .. 27
(vsize.byte 'V _ vect) .. : ... 27
(vsize.word 'V _ vect) .. : .. 27
(wait) 8S
(xcons ' 8-arg 1 ' 8-arg2) ... 11
(zapline) .. 73
(zerop '8-arg) .. 42

APPENDIX B

Special Symbols

The values of these symbols have a predefined meaning. Some values are counters
while others are simply flags whose value the user can change to affect the operation of lisp
system. In all cases, only the value cell of the symbol is important, the function cell is not.
The value of some of the symbols (like ERO/Omisc) are functions - what this means is that the
value cell of those symbols either contains a lambda expression, a binary object, or symbol
with a function binding.

The values of the special symbols are:

$gccount$ - The number of garbage collections which have occurred.

$gcprint - If bound to a non nil value, then after each garbage collection and subsequent
storage allocation a summary of storage allocation will be printed.

$Idprint - If bound to a non nil value, then during each lasl or clasl a diagnostic message will
be printed.

ER%all- The function which is the error handler for all errors (see §10)

. ER%brk - The function which is the handler for the error· signal generated by the evaluation
of the break function (see §10).

EROfoerr - The function which is the handler for the error signal generated by the evaluation
of the err function (see § 10).

ER%misc - The function which is the handler of the error signal generated by one of the
unclassified errors (see § 1 0). Most errors are unclassified at this point.

ER%tpl - The function which is the handler to be called when an error has occurred which
has not been handled (see § 1 0).

ER%undef - The function which is the handler for the error signal generated when a call to an
undefined function is made.

"'w - When bound to a non nil value this will prevent output to the standard output port·
(poport) from reaching the standard output (usually a terminal). Note that "'w is a two
character symbol and should not be confused with "'W which is how we would denote
control-w. The value of "'w is checked when the standard output buffer is flushed
which occurs after a terpr, drain or when the buffer overflows. This is most useful in
conjunction with ptport described below. System error handlers rebind "'w to nil
when they are invoked to assure that error messages are not lost. (This was intro­
duced for Maclisp compatibility).

defmacro-for-compiling - The has an effect during compilation. If non-nil it causes macros
defined by defmacro to be compiled and included in the object file.

PS2:9-168 The Franz Lisp Manual

The Franz Lisp Manual PS2:9-169

environment - The UNIX environment in assoc list form.

errlist - When a reset is done, the value of errlist is saved away and control is thrown to the
top level. EvaJ is then mapped over the saved away value of this list.

errport - This port is initially bound to the standard error file.

evalbook - The value of this symbol, if bound, is the name of a function to handle evalhook
traps (see §14.4) -

float-format - The value of this symbol is a string which is the format to be used by print to
print tlonums. See the documentation on the UNIX function printf for a list of allow­
able formats.

funcallhook - The value of this symbol, if bound, is the name of a function to handle fun­
callhook traps (see §14.4).

gcdisable - If non nil, then garbage collections will not be done automatically when a collect­
able data type runs out.

ibase - This is the input radix used by the lisp reader. It may be either eight or ten. Numbers
followed by a decimal point are assumed to be decimal regardless of what ibase is.

Iinel -The line length used by the pretty printer, pp. This should Qe used by print but it is
not at this time.

nil- This symbol represents the null list and thus can be written O. Its value is always nil.
Any attempt to change the value will result in an error.

piport - Initially bound to the standard input (usually the keyboard). A read with no argu­
ments reads from piport.

poport - Initially bound to the standard output (usually the terminal console). A print with
nO second argument writes to poport. See also: "'wand ptport.

prinlenph - If this is a positive fixnum, then the print function will print no more than prin­
length elements of a list or hunk and further elements abbreviated as ' .. :. The initial
value of prinlength is nil.

prinlevel .. If this is a positive fixnum, then the print function will print only prinlevel levels
of nested lists or hunks. Lists below this level will be abbreviated by '&' and hunks
below this level will be abbreviated by a '%'. The initial value of prinlevel is nil.

ptport - Initially bound to nil. If bound to a port, then all output sent to the standard output
will also be sent to this port as long as this port is not also the standard output (as
this would cause a loop). Note that ptport will not get a copy of whatever is sent to
poport if poport is not. bound to the standard output.

readtable - The value of this is the current readtable. It is an array but you should NOT try
to change the value of the elements of the array using the array functions. This is
because the readtable is an array of bytes and the smallest unit the array functions
work with is a full word (4 bytes). You can use setsyntax t6 change the values and
(status syntax ...) to read the values.

PS2:9-170 The Fraaz Lisp Manual

t - This symbol always has the value t. It is possible to change the value of this symbol for
short periods of time but you are strongly advised against it.

top-level - In a lisp system without lusrllib/lisp/toplevel.l loaded, after a reset is done, the lisp
system will Juneall the value of top-level if it is non nil. This provides a way for the
user to introduce his own top level interpreter. When lusr/lib/lisp/toplevel.l is loaded,
it sets top-level to franz-top-Ievel and changes the reset function so that once franz­
top-level starts, it cannot be replaced by changing top-level. Franz-top-Ievel does
provide a way of changing the top level however, and that is through user-top-Ievel.

user-top-Ievel - If this is bound then after a reset, the top level function will Juneall the value
of this symbol rather than go through a read eval print loop.

APPENDIX C

Short Subjects.

The Garbage Collector
The garbage collector is invoked automatically whenever a collectable data type runs

out. All data typeS are collectable except strings and atoms are not. After a garbage collec­
tion finishes, the collector will tall the function geafier which should be a lambda of one argu­
ment. The argument passed to gcafter is the name of the data type which ran out and caused
the garbage collection. It is ,eafier's responsibility to allocate more pages of free space. The
default gcafier makes its decision based on the percentage of space still in use after the gar­
bage collection. If there is a large percentage of space still in use, geafier allocates a larger
amount of free space than if only a small percentage of space is still in use. The default
geafier will also print a summary of the space in use if the variable $geprint is non nil. The
summary always includes the state of the list and 6.xnum space and will include another type
if it caused the garbage collection. The type which caused the garbage collection is preceded
by an asterisk.

Debugging
There are two simple functions to help you debug your· programs: baktrace and shows­

tack. When an error occurs (or when you type the interrupt character), you will be left at a
break level with the state of the computation frozen in the stack. At this point, calling the
function showstack will cause the contents of the lisp evaluation stack to be printed in reverse
chronological order (most recent first). When the P1"OJ1"8ms you are running are interpreted or
traced, the output of showstaek can be very verbose. The function baktraee prints a summary
of what showstaek prints. That is, if showstack would print a list, baktrace would only print
the first element of the list. If you are running compiled code with the (status trans/ink) non
nil, then fast links are being made. In this case, there is not enough information on the stack
for showstack and baktrace. Thus, if you are debugging compiled code you should probably
do (sstatus translink nil).

If the contents of the stack don't tell you enough about your problem, the next thing you
may want to try is to run your program with certain functions traced. You can direct the
trace package to stop program execution when it enters a function, allowing you to examine.
the contents of variables or call other functions. The trace package is documented in Chapter
1l.

It is also possible to single step the evaluator and to look at stack frames within lisp.
The programs which perform these actions are described in Chapters 14 and 15.

The Franz Usp Manual PSl:9-111

PS2:9-172 The Franz Lisp Manual

The Interpreter's Top Level
The default top level interpreter for Franz. named franz-loIrlevel is defined in

lusrllibllisp/toplevel.l It is given control when the lisp system starts up because the variable
top-level is bound to the symbol franz-loIrlevel. The first action franz-loIrlevel takes is to
print out the name of the current version of the lisp system. Then it loads the file .lisprc from
the HOME directory of the person invoking the lisp system if that file exists. The .lisprc file
allows you to set up your own defaults, read in files, set up autoloading or anything else you
might want to do to personalize the lisp system. Next. the top level goes into a prompt-read­
eval-print loop. Each time around the loop, before printing the prompt it checks if the vari­
able user-top-Ievel is bound. If so, then the value of user-top-level will be ./Uncalled. This
provides a convenient way for a user to introduce his own top level (Liszt, the lisp compiler,
is an example of a program which· uses this). If the user types a AD (which is the end of file
character), and the standard input is not from a keyboard, the lisp system will exit. If the
standard input is a keyboard and if the value of (status ignoreeoj) is nil, the lisp system will
also exit. Othei'Wise the end of file will.be ignored. When a reset is done the current value of
mlist is saved away and control is thrown back up to the top level where eval is mapped over
the saved value of e"list.

INGRES
VERSION 8

REFERENCE MANUAL

5112/86

by

Joe Kalash
Lisa Rodgin
Zelaine Fang

Jeff Anton

PS2:10-2 INGRES Reference Manual PREFACE(INGRES)

ACKNO~DGEMENTS

We would like to acknowledge the people who have worked on INGRES in the past:

FOOTNOTE

Eric Allman
Rick Birman
Bob Epstein
James Ford
Paula Hawthorn
Gerald Held
Peter Kreps
Marc Meyer
Jeff Ranstrom
Dan Ries
Peter Rubinstein
Polly Siegal
Mike Ubell
John Woodfill
Nick Whyte
Karel Yousseft
William Zook

UNIX is a trademark of Bell Laboratories.

CONTENTS (INGRES) INGRES Reference Manual

APPEND(QUEL) - append tuples to a relation
append [to] relname (targeLlist) [where qual]

COPY(QUEL) - copy data into/from a relation from/into a UNIX file.
copy relname (domname - format (, domname - format})

direction "filename"

CREATE(QUEL) - create a new relation
create relname (domnamel - format (, domname2 = format })

DEFINE(QUEL) - define subschema
deAne view name (target list) [where qual]

PS2:10-3

define permit oplist { on I of I to } var [(attlist)] to name [at term] [from time to
time] [on day to day] [where qual]

define integrity on var Is qual

DELETE(QUEL) - delete tuples from a relation
delete tuple_variable [where qual]

DELIM(QUEL) - specify a name for a pattern of characters
destroy delim groupname (delimitor, pattern)
pattern - ["[character list)" I "(character list)"]*

DESTROY(QUEL) - destroy existing relation(s)
destroy relname { , relname } •
destroy [permit I integrity] relname [integer { , integer } I all]
destroy delim groupname

HELP(QUEL) ~ get information about how to use.INORES, ,about relations in the database,
help [relname] ["section~] {, relname}{; "section"} .
help view relname {, relname}
help permit relname (, rel~me} .
help integrity relname (, relname}
help delim [groupname] {, groupname}

INDEX(QUEL) - create a secondary index on an existing relation.
index on relname is indexname (domainl (,do"lain2})

INTEGRITY(QUEL) - define integrity constraints
define integrity on var is qual

MACROS(QUEL) - terminal monitor macro facility

MODIFY(QUEL) - convert the'storage structure of a relation
modify relname to storage-structure [on key 1 [: sortorder] [(, key2 [: sortorder] }]

] [where [fillfactor = n] [, minpages "" n] [, maxpages = n] [, Iidn =
lidname] [

MONITOR(QUEL) - interactive terminal monitor

ORDERED(QUEL) - storage structure type

PERMIT(QUEL) - add permissions to a relation
define permit oplist { on I of I to } var [(attlist)] ,

to name [at term] [from time to time]
[on day to day] [where qual]

PRINT(QUEL) - print relation(s)
print relname {, relname}

QUEL(QUEL) - QUEry Language for INORES

RANGE(QUEL) - declare a variable to range over a relation
range of variable is relname

REPLACE(QUEL) - replace values of domains in a relation
replace tuple_variable (target_list) [where qual]

PS2:10-4 INGRES Reference Manual

RETRIEVE(QUEL) - retrieve tuples from a relation
retrieve ({Iato) relname] (tarseClist) [where qual)
retrieve nique (targeClist) [where qual)

SA VE(QUEL) - save a relation until a date.
save relname adl month day year

USE(QUEL) - specify a group of delimitors to be. used
use groupname .use groupname

VIEW(QUEL) - define a virtual relation
deft. view name (target-list) [where qual]

CONTENTS (INGRES)

COPYDB(UNIX) - create batch files to copy out a data base and restore it.
copyclb [-uname] database fuU·path-name-of-directory [relation ...]

CREA TDB(UNIX) - create a data base
creat4b [-uname] [-e] [-m] [:c] [±q] dbname

DESTROYDB(UNIX) - destroy an existing database
destroydb [-s] [-m] dbname

EQUEL(UNIX) - Embedded QUEL interface to C
equel [-d] [-f] (-r] ftle.q ...

GEO-QUEL(UNlX) - GEo.Qua data display system
geoquel [-s] [oed 1 [-a] [-tT] [-taT] dbname

HELPR(UNIX) - get information about a database.
belpr [-uname] [:t:w] database relatio~ .~.

INGRES(UNIX) -INGRES relatiolial data base management system
ingres [flags] dbname [process_table]

PRINTR(UNIX) - print relations
printr [flags] database relation ...

PURGE(UNIX) - destroy all expired and temporary relations
purge [-f·] [-p] (-a] [-s] [:t:w] [database ...]

RESTORE(UNIX) - recover from an INGRES or UNIX crash.
restore [-a] [-s] [:t:w] [database ...]

SYSMOD(UNIX) - modify system relations to predetermined storage structures.
IYlmod{ -I 1 { -w l dbname [reladoD] { attribute] (indexes] [tree] [protect] [in­
tegrities]

USERSETUP(UNIX) - setup users file
••• IbiD/usenetap [tlags [pathnam~]]

DA YFILE(FILES) - INGRES login message

DBTMPLT(FILES) - database template

ERROR(FILES) - files with INGRES errors

LlBQ(FILES) - Equel run-time support library ,

PRocr AB(FILES) - INGRES runtime configuration information

STARTUP(FILES) -INGRES startup file

TTYTYPE(FILES) - GEo.QUEL terminal type database

USERS(FILES) - INGRES user codes and parameters

INTRODUCfION(ERROR) - Error messages introduction

PARSER(ERROR) - Parser error message summary
Error numbers 2000 - 2999.

CONTENTS (INGRES) INGRES Reference Manual

QR YMOD(ERROR) - Query Modification error message summary
Error numbers 3000 - 3999.

OVQP(ERROR) - One Variable Query Processor error message summary
Error numbers 4000 - 4499.

DECOMP(ERROR) - Decomposition error message summary
Error numbers 4500 - 4999.

DBU(ERROR) - Data Base Utility error message summary
Error numbers 5000 - 5999

PS2:10-5

PS2:10-6 INORES Reference Manual INTRODUCTION (INORES)

This manual is a reference manual for the INGRES data base system. It documents the. use of
INGRES in a very terse manner. To learn how to use INORES, refer to the document called "A
Tutorial on INORES".

The [NORES reference manual is subdivided into four parts:
Quel describes the commands and features which are used inside of [NGRES.
Unix describes the INORES programs which are executable as UNIX commands.
Files describes some of the important ftles used by INORES.
Error lists all the user generatable error messaps along with.some elaboration as to what

they mean or what we think they mean.
Each entry in this manual has one or more of the following sections:

NAME section
This section repeats the name of the entry and gives an indication of its purpose.

SYNOPSIS section
This section indicates the form. of the command (statement). The conventions
which are used are as follows:

Bold face names are used to indicate reserved keywords.
Lower case words indicate generic types of information which must be sup­

plied by the user; legal values for these names are described
in the DESCRIPTION section.

Square brakets ([]) indicate that the enclosed item is optional.
Braces ({}) indicate an optional item which may be repeated.. In some

cases they indicate simple (non-repeated) grouping; the usage
should be clear from context.

When these conventions are insufticient to fu1lyspecify the legal format ofa com­
man(i a more general form. is given and the allowable subsets are specified in the
DESCRIPTION section. . .

DESCRIPTION section
This section gives a detailed deScription of the entry with references to the generic
names used in the SYNOPSIS section.

EXAMPLE section
This section gives one or more examples of the use of the entry. Most of these ex­
amples are based on the following relations:

emp(name,sal,mgr,bdate) •
and

• newemp(name,sal,age)
and

parts(pnum, pname, color, weight, qoh)

SEE ALSO section
This section gives the names of entries in the manual which are closely related to
the current entry or which are referenced in the description of the current entry.

BUGS section
This section indicates known bugs or de6ciencies in the command.

To start using INORES you must be entered as an [NORES user; this is done by the INGRES ad­
ministrator who will enter you in the "users" ftle (see users(ftles». To start using ingres see
the section on ingres(unix), quel(quel), and monitor(quel).

APPEND(QUEL) INGRES Reference Manual PS2:10-7

NAME
append - append tuples to a relation

SYNOPSIS
append [to] relname (targeclist) [where qual]

DESClUPl'ION
Append adds tuples which satisfy the qualification to relname. Relname must be the name of
an existing relation. The targeclist specifies the values of the attributes to be appended to
relname. The domains may be listed in any order. Attributes of the result relation which do
not appear in the targeclist as resulcattnames (either explicitly or by default) are assigned
default values of 0, for numeric attributes, or blank, for character attributes.

Values or expressions of any numeric type may be used to set the value of a numeric type
domain. Conversion to the result domain type takes place. Numeric values cannot be directly
aSsigned to character domains. Conversion from numeric to character can be done using the
ascii operator (see quel(quel». Character values cannot be directly assigned to numeric
domains. Use the intI, intl, etc. functions to convert character values to numeric (see
quel(quel)).

The keyword all can be used when it is desired to append all domains of a relation.

An append may only be issued by the owner of the relation or a user with append permission
on the given relation.

EXAMPLE
I. Make new einployee Jones work for Smith .1

range of n is newemp
append to emp(n.name, n.sal, mgr .,. "Smith", bdate - 1975-n.age)

. where n.name= "Jones"
I. Append the newempl relation to newemp .1

range of n 1 is newemp 1
append to newemp(n1.all) .

SEE ALSO
copy(quel), permit(quel), quel(que!), retrieve(quel)

DIAGNOSTICS

BUGS

Use of a numeric type expression to set a character type domain or vice versa will produce di­
agnostics.

Duplicate tuples appended to a relation stored as a "paged heap" (unkeyed, unstructured) are
not removed.

PS2:10-8 INGRES Reference Manual COPY(QUEL)

NAME
copy - copy data into/from a relation from/into a UNIX file.

SYNOPSIS
copy relname (domname = format (, domname == format })

direction "filename"

D~ON ,
Copy moves data between INORES relations and standard UNIX files. Relname is the name of
an existing relation. In general domname identifies a domain in relname. Format indicates
the format the UNIX file should have for the corresponding domain. Direction is either into or
from. Filename is the full UNIX pathname of the file.

On a copy from a file to a relation, the relation cannot have a secondary index, it must be
owned by you, and it must be updatable (not a secondary index or system relation).

Copy cannot be used on a relation which is a view. For a copy into a UNIX file, you must ei­
ther be the owner of the relation or the relation must have retrieve permission for all users, or
all permissions for all users.

The formats allowed by copy are:

il,i2,i4 - The data is stored as an integer of length 1, 2, or 4 bytes in the UNIX file.

f4,f8 - The data is stored as a floating point number (either single or double precision) in the
• UNIX file.

cl,c2, •• .,c2SS - The data is stored as a fixed length string of characters.

cO - Variable length character string.

dO,dl, ••• ,d2SS - Dummy domain.

Corresponding domains in the relation and the UNIX file do not have to be the same type or
length. Copy will convert as necessary. When converting anything except character to characc

ter, copy checks for overflow. When converting from character to character, copy will blank
pad or truncate on the right as necessary.

The domains should be ordered according to the way they should appear in the UNIX file.
Domains are matched according to name, thus the order of the domains in the relation and in
the UNIX file does not have.to be the same.

Copy also provides for variable length strings and dummy domains. The action taken
depends on whether it is a copy Jnto or a copy from. Delimitors for variable length strings
and for dummy domains can be selected from the list of:

nl - new line character
tab - tab character
sp - space
nul or nuD - null character
comma - comma
colon - colon
dash - dash
lparen - left parenthesis
rparen - right parenthesis
x - any single character 'x'

The special meaning of any delimitor can be turned off by preceeding the delimitor with a "'.
The type specifier can optionally be in quotes r cOdelim "). This is usefully if you wish to use
a single character delimitor which has special meaning to the QUEL parser.

When the direction is from, copy appends data into the relation from the UNIX file. Domains
in the INORES relation which are not assigned values from the UNIX file are assigned the de­
fault value of zero for numeric domains, and blank for character domains. When copying in
this direction the following special meanings apply:

COPY(QUEL) INGRES Reference Manual PS2:10-9

cOdelim - The data in the UNIX file is a variable length character string terminated by the del­
imitor delim. If delim is missing then the first comma, tab, or newline encoun­
tered will terminate the string. The delimitor is not copied.

For example:
pnum==cO - string ending in comma, tab, or n1.
pnum==cOnl- string ending in nl.
pnum=cOsp - string ending in space.
pnum=cOz - string ending in the character 'z'.
pnum="cO%" - string ending in the character '%'.

A delimitor can be escaped by preceeding it with a '\'. For example, using name =
cO, the string "Blow\, Joe," will be accepted into the domain as "Blow, Joe".

dOdelim - The data in the UNIX file is a variable length character string delimited by delim.
The string is read and discarded. The delimitor rules are identical for cO and dO.
The domain name is ignored.

dl,d2, •• ~d255 - The data in the UNIX file is a fixed length character string. The string is read
and discarded. The domain name is ignored.

When the direction is into, copy transfers data into the UNIX file from the relation. If the file
already existed, it is truncated to zero length before copying begins. When copying in this
direction, the following special meanings apply:

cO - The domain value is converted to a fixed length character string and writted into the
UNIX file. For character domains, the length will be the same as the domain
length. For numeric domains, the standard INORES conversions will take place as
specified by the '-i', '-f, and '-c' flags (see ingres(unix». "

cOdelim - The domain will be converted according to the rules for cO above. The one charac­
ter delimitor will be inserted immediately after the domain.

dl,dl, •. ~d255 - The domain name is taken to be the name of the delimitor. It is written into
the UNIX file 1 time for dl, 2 times for dl, "etc.

dO - This format is ignored on a copy into.

dOdelim - The delim is written into the file. The domain name is ignored.

If no domains appear in the copy command (i.e. copy relname 0 intolfrom "filename") then
copy automatically does a "bulk" copy of all domains, using the order and format of the
domains in the relation. This is provided as a convenient shorthand notation for copying and
restoring entire relations.

To copy into a relation, you must be the owner or all users must have all permissions set.
Correspondingly, to copy from a relation you must own the relation or all users must have at
least retrieve permission on the relation. Also, you may not copy a view.

EXAMPLE
I. Copy data into the emp relation .• 1

copy emp (name=clO,sal=f4,bdate=i2,mgr=clO,xxx=dl)
from "/mntlme/myfile"

I. Copy employee names and their salaries into a file .1
copy emp (name=cO,comma=dl,sal=cO,nl=dl)

into "/mntlyou/yourfile"

I. Bulk copy employee relation into file .1
copy emp 0

into "/mntlours/ourfile"

PS2:10-10 INGRES Reference Manual COPY(QUEL)

I. Bulk copy employee relation from file ./
copy emp 0

from "/mntlthy/thyfile"

SEE ALSO

BUGS

append(quel), create(quel), quel(quel), permit(quel), view(quel), ingres(unix)

Copy stops operation at the first error.

When specifying filename, the entire UNIX directory pathname must be provided, since
INORES operates out of a different directory than the user's working directory at the time
INORES is invoked.

•

CREATE(QUEL) INGRES Reference Manual

NAME
create - create a new relation

SYNOPSIS
create relname (domnamel - format (, domname2 = format })

DESCRIPrION
Create will enter a new relation into the data base. The relation will be "owned" by the user
and will be set to expire after seven days. The name of the relation is re/name and the
domains are named domnamel, domname2. etc. The domains are created with the type
specified by format. Formats are described in the quel(quel) manual section.

The relation is created as a paged heap with no data initially in it.

A relation can have no more than 49 domains. A relation cannot have the same name as a
system relation.

EXAMPLE
/. Create relation emp with domains name, sal and bdate./

create emp (name" clO, salary ,. f4, bdate .. i2)

SEE ALSO
append(quel), copy(quel), destroy(quel), save(quel)

BUGS

PS2:10-12

NAME
deine - define subschema

SYNOPSIS

[NGRES Reference Manual

define view name (target list) [where qual]

DEFINE (QUEL)

deftae permit oplist { on I of I to } var [(aWist)] to name [at term] [from time to time] [on
day to day] [where qual]

define integrity on Var is qual

DESCRIPTION
The define statement creates entries for the subschema definitions. See the manual sections
listed below for complete descriptions of these commands.

SEE ALSO
integrity(quel), permit(quel), view(quel)

•

DELETE (QUEL) INGRES Reference Manual PS2:10-13

NAME
delete - delete tuples from a relation

SYNOPSIS
delete tuple_variable [wbere qual]

DESCRIPTION
Delete removes tuples which satisfy the qualification qual from the relation that they belong
to. The tuple_variable must have been declared to range over an existing relation in a previ­
ous range statement. Delete does not have a tar gee list. The delete command requires a tuple
variable from a range statement, and not the actual relation name. If the qualification is not
given, the effect is to delete all tuples in the relation. The result is a valid, but empty relation.

To delete tuples from a relation, you must be the owner of the relation, or have delete permis­
sion on the relation.

EXAMPLE
/. Remove all employees who make over $30,000./

range of e is emp
delete e where e.sal > 30000

SEE ALSO
destroy(quel), permit(quel), quel(quel), range(quel)

BUGS

PS2:1o..14 INGRES Reference Manual DELIM(QUEL)

NAME
delim - specify a name for a pattern of characters

SYNOPSIS
•

destroy delim groupname (delimitor, pattern)
pattern • [.. [character list]" I .. (character list r)*

DESClUPTION
The delim statement allows the user to specify a name for a certain pattern of characters,
which may be used with the substring facility. The delimitors are stored in·groups, which may
be used and unused together.
The pattern for a delimitor is specified using a modified version of BNF grammar. A charac­
ter list is either a list of the characters to match, or a range of characters separated by a "-", or
a combination or both of the above. A character list in brackets indicates that one of the char­
acters must match exactly once, and a character list inbrac:es indicates that one of the charac­
ters may match zero or more times. The pattern is composed of a list of character lists.
After a delimitor has been defined, to be used in an ingres query it must be activated using
the 'use' command.

EXAMPLE
I. win match a sequence of alphabetic characters beginning
with a capital letter .1
define delim paper(word, "[A-Z]{a-z}")

I. will match a decimal number.1
defi.ne delim math (dec, "[o..9]{O-9}[.][o..9]{o..9}")

SEE AlSO
destroy(quel), quel(quel), use(quel)

•

DESTROY (QUEL) INGRES Reference Manual PS2:10-15

NAME
destroy - destroy existing relation(s)

SYNOPSIS
destroy relname { , relname }
destroy [permit I integrity] relname [integer (, integer} I all]
destroy delim groupname

DESC1UP'l10N
Destroy removes relations from the data base, removes constraints or permissions from a rela­
tion, and removes user-defined delimitors. Only the relation owner may destroy a relation or
its permissions and integrity constraints. A relation may be emptied of tuples, but not des­
troyed, using the delete statement or the modify statement.

If the relation being destroyed has secondary indices on it, the secondary indices are also des­
troyed. Destruction of just a secondary index does not affect the primary relation it indexes.

To destroy individual permissions or constraints for a relation, the integer arguments should
be those printed by a help permit (for destroy permit) or a help iDtegrity (for destroy iDtegrity)
on the same relation. To destroy all constraints or permissions, the all keyword may be used
in place of individual integers. To destroy constraints or permissions, either the integer argu­
ments or the all keyword must be present.

To destroy a delimitor group, the groupname must be specified. This destroys the delimitors
permanently, as opposed to unusing the group.

EXAMPLE
/. Destroy the emp relation ./

destroyemp
. destroy emp, parts

/. Destroy some permissions on parts, and all integrity
• constraints on employee
.1

destroy permit parts 0, 4, 5
destroy integrity employee

/. Destroy the "paper" delimitor group ./
destroy delim paper

SEE ALSO
create(quel), delete(quel), delim(quel), help(quel), index(quel), modify(quel)

PS2:10-16 INGRES Reference Manual HELP(QUEL)

NAME
help - get information about how to use INORES, about relations in the database, or about
user-defined delimitors.

SYNOPSIS
help [relname] [• section·] {, relname} {; • section·}
belp new relname (, relname}
belp permit relname {, relname}
belp integrity relname {, relname}
belp delbn [groupname] (, groupname}

DESClUPTION
Help may be used to obtain sections of this manual, information on the content of the current
data base, information about specific relations in the data base, view definitions, or protection
and integrity constraints on a relation. The legal forms are as fonow:

belp • section • - Produces a copy of the specified section of the INORES Reference Manual,
and prints it on the standard output device.

belp - Gives information about all relations that exist in the current database.
belp relname {, relname} - Gives information about the specified relations.
belp • " - Gives the table of contents.
belp viewrelname {, relname} - Prints view definitions of specified views.
belp permit relname {, relname} - Prints permissions on specified relations.
belp integrity relname {, relname} - Prints integrity constraints on specified relations.
belp delim - Prints a list of all the delimitor groups defined.
belp delim groupname {, groupname} - Prints a list of the delimitors in each group given, and

the patterns which they represent.

The permit and iDtepity forms print out unique identifiers for each constraint. These
identifiers may ~used to remove the Constraints with' the destroy statement.

EXAMPLE
help
help "help" I. prints this page of the manual .1
help quel
help emp
help emp, parts, "help·, supply
help view overp_ view
help permit parts, employee
help integrity parts, employee
help delim
help delim paper, math

SEE ALSO
destroy(quel)

BUGS
Alphabetics appearing within the section name must be in lower-case to be recognized ..

INDEX (QUEL) INGRES Reference Manual PS2:10-17

NAME
index - create a secondary index on an existing relation.

SYNOPSIS
index on relname is indexname (domain1 { ,domain2})

DESCRIPTION
Index is used to create secondary indices on existing relations in order to make retrieval and
update with secondary keys more efficient. The secondary key is constructed from relname
domains 1, 2, ...• 6 in the order given. Only the owner of a relation is allowed to create secon­
dary indices on that relation.

In order to maintain the integrity of the index. users will NOT be allowed to directly update
secondary indices. However, whenever a primary relation is changed. its secondary indices
will be automatically updated by the system. Secondary indices may be modified to further
increase the access efficiency of the primary relation. When an index is first created. it is au­
tomatically modified to an isam storage structure on all its domains. If this structure is un­
desirable. the user may override the default isam structure by using the -n switch (see
ingres(unix», or by entering a modify command directly.

If a modify or destroy command is used on relname, all secondary indices on relname are des­
troyed.

Secondary indices on other indices, or on system relations are forbidden.

EXAMPLE
/. Create a secondary index called "x" on relation "emp" ./

index on e~p is x(mgr,sal)

SEE ALSO
copy(quell, destroy(quel). modify(quell

BUGS
At most 6 domains may appear in the key.

The copy command cannot be used to copy into a relation which has secondary indices.

The default structure isam is a poor choice for an index unless the range of retrieval is small.

PS2:10-18 INGRES Reference Manual

NAME
integrity - define integrity constraints

SYNOPSIS
define intepity on var is qual

DESClUP110N

INTEGRITY (QUEL)

The integrity statement adds an integrity constraint for the relation specified by VaT. After
the constraint is placed. all updates to the relation must satisfy quai. Qual must be true when
the integrity statement 1s issued or else a diagnostic is issued and the statement is rejected.

In the current implementation. integrity constraints are not flagged - bad updates are sim­
ply (and silently) not performed.

Qutzl must be a single variable qualification and may not contain any aggregates.

integrity statement may be issued only by the relation owner.

EXAMPLE
/. Ensure all employees have positive salaries ./

range of e is employee
define integrity on e is e.saiary > 0

SEE ALSO
destroy(quel)

MACROS(QUEL) INGRES Reference Manual PS2:10-19

NAME
macros - terminal monitor macro facility

DESCRIPTION
The terminal monitor macro facility provides the ability to tailor the QUEL language to the
user's tastes. The macro facility allows strings of text to be removed from the query stream
and replaced with other text. Also, some built in macros change the environment upon exe­
cution.

Basic Concepts

All macros are composed of two parts, the template part and the replacement part. The tem­
plate part defines when the macro should be invoked. For example, the template "ret" causes
the corresponding macro to be invoked upon encountering the word "ret" in the input
stream. When a macro is encountered, the template part is removed and replaced with the
replacement part. For example, if the replacement part of the "ret" macro was "retrieve".
then all instances of the word "ret" in the input text would be replaced with the word "re­
trieve", as in the statement

ret (p.all)

Macros may have parameters, indicated by a dollar sign. For example, the template "get $1"
causes the macro to be triggered by the word "get" followed by any other word. The word
following "get" is remembered for later use. for example, if the replacement part of the
"get" macro where

retrieve (p.all) where p.pnum = $1

th~n typing "get 35" would retrieve all information about part number 35.

Defining Macros

Macros can be defined using the special macro called "define". The templa~e for the define
macro is (roughly)

{define; $t; $r}

where $t and $r are the template and replacement parts of the macro, respectively.

Let's look at a few examples. To define the "ret" macro discussed above, we would type:
{define; ret; retrieve}

When this is read, the macro processor removes everything between the curly braces and up­
dates some tables so that "ret" will be recognized and replaced with the word "retrieve". The
define macro has the null string as replacement text, so that this macro seems to disappear.
A useful macro is one which shortens range statements. It can be defined with

{define; rg $v $r; range of$v is Sr}
This macro causes the word "rg" followed by the next two words to be removed and replaced
by the words "range of', followed by the first word which followed "rg", followed by the word
"is", followed by the second word which followed "rg". For example, the input

rg p parts

becomes the same as
range of p is parts

Evaluation Times
When you type in a define statement, it is not processed immediately, just as queries are­
saved rather than executed. No macro processing is done until the query buffer is evaluated.
The commands \go, \list, and \eval evaluate the query buffer. \go sends the results to
INGRES, \list prints them on your terminal, and \eval puts the result back into the query
buffer.

PS2:10-20 INGRES Reference Manual MACROS (QUEL)

It is important to evaluate any define statements, or it will be exactly like you did not type
them in at all. A common way to define macros is to type

{define 0 •• }

\eval
\reset

If the \eval was left out, there is no effect at all.

Quoting

Sometimes strings must be passed through the macro processor without being processed. In
such cases the grave and acute accent marks r and ') can be used to surround the literal text.
For example, to pass the word "ret" through without converting it to "retrieve" we could type

'ref
Another use for quoting is during parameter coUection. If we want to enter more than one
word where only one was expected, we can surround the parameter with accents.

The backslash character quotes only the next character (like surrounding the character with
accents). In particular, a grave accent can be used literally by preceeding it with a backslash.

Since macros can normally only be on one line, it is frequently useful to use a backslash at the
end of the line to hide the newline. For example, to enter the long "get" ~acro, you might
type:

{define; get Sn; retrieve (e.all) '\
where e.name = "Sn"}

The backslash always quotes the next character even when it is a backslash. So, to get a real
backslash, use two backslashes.

More Parameters

Parameters need not be limited to the word following. ·For example, in the template descrip-
tor for define: . .

{define; $t; $r}

the St parameter ends at the first semicolon and the Sr parameters ends at the first right curly
brace. The rule is that the character which follows the parameter specifier terminates the
parameter; if this character is a space, tab, newline, or the end of the template then one word
is collected.

As with all good rules, this one has an exception. Since system macros are always surrounded
by curly braces, the macro processor knows that they must be properly nested. Thus, in the
statement

{define; x; {sysfn}}

The first right curly brace will close the "sysfn" rather than the "define". Otherwise this
would have to be typed

{define; x; '{ sysfn n
Words are defined in the usual way, as strings of letters and digits plus the underscore charac­
ter.

Otber Builtin Macros

There are several other macros built in to the macro processor. In the following description,
some of the parameter specifiers are marked with two doUar signs rather than one; this will be
discussed in the section on prescanning below.

{define; SSt; SSr} defines a macro as discussed above. Special processing occurs on the tem­
plate part which wiU be discussed in a later section.

MACROS (QUEL) INGRES Reference Manual PS2:10-21

{rawdefine; SSt; $$r} is another form of define, where the special processing does not take
place.

{remove; $Sn} removes the macro with name $n. It can remove more than one macro, since
it actually removes all macros which might conflict with $n under some circumstance. For
example, typing

{define; get part $n; . . . }
{define; get emp $x; ... }
{remove; get}

would cause both the get macros to be removed. A call to

{remove; get part}

would have only removed the first macro.

{type $$s} types $s onto the terminal.

{read $$s} types $s and then reads a line from the terminal. The line which was typed re­
places the macro. A macro called "{ readcount}" 'is defined containing the number of charac­
ters read. A control-D (end of file) becomes -1, a single newline becomes zero, and so forth.

{readdefine; $$n; $$s} also types $s and reads a line, but puts the line into a macro named
$n. The replacement text is the count of the number of characters in the line. {readcount} is
still defined.
{ifsame; $$a; $Sb; St; Sf} compares the strings Sa and Sb. If they match exactly then the re­
placement text becomes St, otherwise it becomes Sf.

{if~; SSa; SSb; St; Sf} is similar, but the comparison is numeric.

{ifgt; $Sa; SSb; St; Sf} is like ifeq, but the test is for Sa strictly greater than Sb.

{substr; SSf;SSt; S$s} returns the part of Ss between character positions $f ·and St, numbered.
from one. If Sf or St are out of range, they are moved in range as much. as possible ..

{dump; SSn} returns the value of the macro (or macros) which match Sn (using the same al­
gorithm as remove). The output is a rawdefine statement so that it can be read back in.
{dump} without arguments dumps all macros.

Metacharacters
Certain characters are used internally. Normally you will not even see them, but they can ap­
pear in the output of a dump command, and can sometimes be used to create very fancy mac­
ros.

\ I matches any number of spaces, tabs, or newlines. It will even match zero, but only
between words, as can occur with punctuation. For example, \ I will match the spot between
the last character of a word and a comma following it.

\ A matches exactly one space, tab, or newline.

\& matches exactly zero spaces, tabs, or newlines, but only between words.

The Define Process

When you define a macro using define, a lot of special processing happens. This processing is
such that define is not functionally complete, but still adequate for most requirements. If
more power is needed, rawdefine can be used; however, rawdefine is particularly difficult to
use correctly, and should only be used by gurus.

In define, all sequences of spaces, tabs, and newlines in the template, as well as all "non­
spaces" between words, are turned into a single \ I character. If the template ends with a

. parameter, the \& character is added at the end.

If you want to match a real tab or newline, you can use \t or \n respectively. For example, a
macro which reads an entire line and uses it as the name of an employee would be defined
with

PS2:10-22 INGRES Reference Manual MACROS (QUEL)

{define; get Sn\n; \
ret (e.all) where e.name - "Sn"}

This macro might be used by typing

get ·Stan*

to aet all information about everyone with a name which included "Stan", By the way. notice
that it is ok to nest the '"ret" macro inside the "get" macro.

Parameter Prescan
Sometimes it is useful to macro process a parameter before using it in the replacement part.
This is particularly important when using certain builtin macros.

For prescan to OCCUl, two things must be true: first, the parameter must be specified in the
template with two dollar signs instead of one, and second, the actual parameter must begin
with an ""at" sign ("@") (which is stripped oft).

For an example of the use of prescan, see "Special Macros" below.

Special Macros

Some special macros are used by the terminal monitor to control the environment and return
results to the user.

{begintrap} is executed at the beginning of a query, .

{endtrap} is executed after the body of a query is passed to !NORES.

{continuetrap} is executed after the query completes. The difference between this and
endtrap is that endtrap occurs after the query is submitted, but· before the query executes,
whe~ continuetrap is executed after the query executes ..

. .
{editor} can be defined to be the path name of an editor to use in the \edit command.

{~heU} can be defi~ed to be the pathname of a shell to use in ~e \shell co.mmand.

{tuplecount} is set after every query (but before continuetrap is sprung) to be the count of the
number of tuples which satisfied the qualification of the query in a retrieve. or the number of
tuples changed in an update. It is not set for DBU functions. If multiple queries are run at
once, it is set to the number of tuples which satisfied the last query run.

For example. to print out the number of tuples touched automatically after each query, you
could enter:

SEE ALSO

{define; {begintrap}; {remove; {tuplecount}}}
{define; {continuetrap}; \

{ifsame; @{tuplecount}; {tuplecount};; \
{type @{tuplecount} tuples touched}}}

monitor(quell

......... ----.~~-

MODIFY(QUEL) INGRES Reference Manual PS2:10-23

NAME
modify - convert the storage structure of a relation

•
SYNOPSIS

modify relname to storage-structure [on key I [: sortorder] [{ , key2 [: sortorder] }]] [
where [fillfactor .. n] [, minpages = n] [, maxpages .. n] [, lidn ,. lidname] [

DESCRIPTION
Relname is modified'to the specified storage structure. Only the owner of a relation can
modify that relation. This command is used to increase performance when using large or fre­
quently referenced relations. The storage structures are specified as follows:

isam - indexed sequential storage structure
cisam - compressed isam
hash - random hah storage structure
chash - compressed hash
heap - unkeyed and unstructured
cheap - compressed heap
heapsort - heap with tuples sorted and duplicates removed
cheapsort - compressed heapsort
truncated - heap with all tuples deleted
orderedn - ordered relation where n is the ordering dimension

The paper "Creating and Maintaining a Datab~ in lNGRES" (ERL Memo M77 -71) discusses
how to select storage structures based on how the relation is used.

The current compression algorithm only suppresses trailing blanks in character fields. A more
effectiv~ compression scheme may be possible; but tradeoffs between that and a larger and
slower compression algorithm are not clear. . .

If the on phrase is omitted when modifying to isam, cisam, hash or chash, the relation will
. automatically be keyed on the first domain. When modifying to heap or cheap the on phrase

must be omitted. When modifying to heapsort or cheapsort the on phrase is optional.

When a relation is being sorted (isam, cisam, heapsort and cheapsort), the primary sort keys
will be those specified in the on phrase (if any). The first key after the on phrase will be the
most significant sort key and each successive key specified will be the next most significant
sort key. Any domains not specified in the on phrase will be used as least significant sort keys
in domain number sequence.

When a relation is modified to heapsort or cheapsort, the sortorder can be specified to be as­
cending or descending. The default is always ascending. Each key given in the on phrase can
be optionally modified to be:

key:descending

which will cause that key to be sorted in descending order. For completeness, ascending can
be specified after the colon (':'), although this is unnecessary since it is the default. Descend­
ing can be abbreviated by a single 'd' and, correspondingly, ascending can be abreviated by a
single 'a'.
When modifying to orderedn. up to n ordering keys can be. specified using the on clause. Ord­
ering keys are used to specify the ordering of tuples in the new relation. Changes on key field
values indicate the incrementing of a lid value for the lid corresponding to the key change. If
no ordering keys are specified, only the lid corresponding to the lowest lid level is increment­
ed by one for every new tuple. In this case,the order of the tuples is determined by their sort
order on file. However. note that ordering does not destroy any current storage structures on
a relation (except secondary indices).

Lidn can only be specified if modifying to orderedn. Default values are lidl , lid2 , and 1id3.

Fill/actor specifies the percentage (from I to 100) of each primary data page that should be
filled with tuples, under ideal conditions. Fill/actor may be used with isam, cisam, hash and
chash. Care should be taken when using-large fillfactors since a non-uniform distribution of

PS2:10-24 INGRES Reference Manual MODIFY (QUEL)

key values could cause overflow pages to be created, and thus degrade access performance for
the relation.

Minpages specifies the minimum number of primary pages a hash orchash relation must
have. Maxpages specifies the maximum number of primary pages a hash or chash relation
may have. Minpages and maxpages must be at least one. If both minpages and maxpages are
specified in a modify, minpages cannot exceed maxpages.

Default values for ftllfactor, minpages, and maxpages are as follows:

EXAMPLES

FILLFACTOR

hash 50
chash 75
isam 80
cisam 100

/* modify the emp relation to an indexed
sequential storage structure with
"name" as the keyed domain */

modify emp to isam on name

MINPAGES

10
1
NA
NA

/* if "name" is the first domain of the emp relation,
the same result can be achieved .by *'

modify emp to isam

/* do the same modify but request a' 60% occupancy
on all primary pages *' '.

modify emp ~o isam on name where fillfactor' = 60

/* modify the supply relation to compressed hash
storage structure with "num" and "quan"
as keyed domaiI!~ */

modify supply to chash on num, quan

/* now the same modify but also request 75% occupancy
on all primary, a minimum of 7 primary pages
pages and a maximum of 43 primary pages */

modify supply to chash on num, quan
where fillfactor - 75, minpages := 7,
maxpages := 43

/* again the same modify but only request a minimum
of 16 primary pages */

modify supply to chash on num, quan
where minpages - 16

/* modify parts to a heap storage structure */

modify parts to heap

/* modify parts to a heap again, but have tuples
sorted on "pnum" domain and have any duplicate
tuples removed */

modify parts to heapsort on pnum

MAXPAGES

no limit
no limit
NA
NA

MODIFY (QUEL) INGRES Reference Manual

/* modify employee in ascending order by manager,
descending order by salary and have any
duplicate tuples removed */

modify employee to heapsort on manager, salary:descending

/* ordered relation */

modify text to ordered 1 on lid where lid 1 = lidfield

SEE AlSO
sysmod(unix) ordered(quel)

PS2:10-25

PS2:10-26 INORES Reference MaDual MONITOR (QUEL)

NAME
monitor - interactive terminal monitor

DESCRJPItON'
The interactive terminal monitor is the primary front end to INORES. It provides the ability
to formulate a query and review it before issuing it to INORES. If changes must be made, one
of the UNIX text editors may be called to edit the .query buffer.

Messaaes ancI Prompts.
The terminal monitor gives a variety of messages to keep the user informed of the status ·of
the monitor and the query buffer.

As the user logs in, a login message is printed~ This typically tells the version number and the
login time. It is followed by the dayfile, which gives information pertinant to users.

When INORES is ready to accept input, the messap '610" is printed. This means that the
query buffer is empty. The message "continue" means that there is information in the query
buffer. After a \go command the query buffer is automatically cleared if another query is
typed in, unless a command which affects the query buffer is typed first. These commands are
\append, \edit, \print, \list, \eval, and \go. For example, typing

help parts
\go
print parts

results in the query buffer containing
print parts
whereas

help parts
\go
\print
print parts

resultS in the query buffer containing
help parts
print parts

An asterisk is printed at the beginning of each line when the monitor is waiting for the user to
type input.

Commands

There are a number of commands which may be entered by the user to affect the query buffer
or the user's environment. They are all preceeded by a backslash ('\'), and all are executed
immediately (rather than at execution time like queries).

Some commands may take a filename, which is defined as the first significant character after
the end of the command until the end of the line. These commands may have no other com­
mands on the line with them. Comm,ands which do not take a filename may be stacked on
the line; for example

\date\go\date
will give the time before and after execution of the current query buffer.

\r
\reset Erase the entire query (reset the query buffer). The former contents of the buffer

are irretrieveably lost.

\p
\print

\1
\list

Print the current query. The contents of the buffer are printed on the user's termi­
nal.

Print the current query as it win appear after macro processing. Any side effects of
macro processing, such as macro definition, will occur.

MONITOR (QUEL) INGRES Reference Manual PS2:10-27

\eval

\e
\ed
\edit
\editor

\g
\go

\a

Macro process the query buffer and replace the query buffer with the result. This
is just like \list except that the output is put into the query buffer instead of to the
terminal.

Enter the UNIX text editor (see ED in the UNIX Programmer's Manual); use the ED
command 'w' followed by 'q' to' return to the INORES monitor. If a filename is
given, the editor is called with that file instead of the query buffer. If the macro
"{editor}" is defined, that macro is used as the pathname of an editor, otherwise
"/bin/ed" is used. It is important that you do not use the "e" command inside the
editor; if you do the (obscure) name of the query buffer will be forgotten.

Process the current query. The contents of the buffer arc macro processed,
transmitted to INORES, and run.

\append Append to the query buffer. Typing \a after completion of a query will override
the auto-clear feature and guarantees that the query buffer will not be reset.

\time
\date

\s
\sh
\shell

\q
\quit

\cd
\chdir

\i
\include
\read

\w
\write

\branch

\mark

Print out the current time of day.

Escape to the UNIX shell. Typing a control--d· will cause you to exit the shell and
return to the INORES monitor. If there is a filename specified, that filename is tak­
en as a shell file which is run· with the query buffer as the parameter "$1".. If no
filename is given, an interactive shell is forked. If the macro "{shell}" is defined,
it is used as the pathname of a shell; otherwise, "/bin/sh" is used.

Exit from INORES.

Change the working directory of the monitor to the named directory.

Switch input to the named file. Backslash characters in the file will be processed as
read.

Write the contents of the query buffer to the named file.

Transfer control within a \include file. See the section on branching below.

Set a label for \branch.

\ <any other character>

Macros

Ignore any possible special meaning of character following '\'. This allows the '\'
to be input as a literal character. (See also quel(quel) - strings). It is important to
note that backslash escapes arc sometimes eaten up by the macro processor also; in
general, send two backslashes if you want a backslash sent (even this is tQo simplis­
tic [sigh] - try to avoid using backslashes at all).

For simplicity, the macros arc described in the section macros(quel).

Branching

The \branch and \mark commands permit arbitrary branching within a \include file (similar
to the "goto" and ":" commands in the shell). \mark should -be followed with a label.
\branch should be followed with either a label, indicating unconditional branch, or an expres-

PS2:10-28 INGRES' Reference Manual MONITOR (QUEL)

sion preceeded by a question mark, followed by a label, indicating a conditional branch. The
branch is taken if the expression is greater than zero. For example,

\branch ?{tuplecount}<-O notups
branches to label "notups" if the "{tuplecount}"' macro is less than or equal to zero.

The expressions usable in \branch statements are somewhat restricted. The operators +, -, -,
I, <-, >-, <, >, ... , and !- are all defined in the expected way. The left unary operator "!"
can be used as to indicate logical negation. There may be no spaces in the expression, since a
space terminates the expression. .

Initializadoa

At initialization (login) time a number of initializations take place. First, a macro called
"{pathname}" is defined which expands to the pathname of the INORES subtree (normally
"/mntlingres"); it is used by system routines such as demodb. Second, the initialization file
.. Jfileslstartup is read. This file is intended to define system-dependent parameters, such as
the default editor and shell. Third, a user dependent initialization file, specified by a field in
the users file, is read and executed. This is normally set to the file ".ingres" in the user's
home directory. The startup file might be used to define certain macros, execute common
range statements, and soforth. Finally, control is turned over to the user's terminal.

An interrupt while executing either of the initialization files restarts execution of that step.

F1ags

Certain flags may be included on'thecommandline to INORES which affect the operation of
the terminal monitor. The -a flag disables the autoclear function. This means that the query
buffer will never be automatically cleared; equivalently, it is as though a \append command
were inserted after every \go. Note that this' means that the user must explicitly clear ,the,
query buffer using \reset after- every query. The -d flag turns off the printing of the dayfile.
The -s flag turns off printing of all messages (except ,errors) from the monitor, including the
login and, logout messages, the dayftle, and prompts. It is used for executing "canned
queries", that is, queries redirected from files. '

SEE AlSO
ingres(unix), quel(quel), macros(queI)

DIAGNOSTICS
go

continue

Executing ...

»ed

»sh

You may begin a fresh query.

The previous query is finished and you are back in the monitor.

The query is being processed by INORES.

You have entered the UNIX text editor.

You have escaped to the UNIX shell.

Funny character nDD converted to blank

INCOMPAnBlUJ'IES

INORES maps non .. printing ASCII characters into blanks; this message
indicates that one such conversion has just been made.

Note that the construct
\rprint parts

(intended to reset the query buffer and then enter "print parts") no longer works, since
"rprint" appears to be one word. .

ORDERED (QUEL) INGRES Reference Manual PS2:10-29

NAME
ordered - storage structure type

DESCRIPl10N
Ordered relations are a special type of storage structure in INGRES. They are created by us­
ing the modify relation to orderedn command where n indicates the ordering dimension.
Ordering does not destroy existing storage structures on a relation. The resulting relation is
the old relation with n 4-byte integer LID fields ·attached· to the the end of the relation.
These fields are different from conventional attribute fields because they can be dynamically
adjusted by the system during updates to maintain a consistent ordering of tuples in a rela­
tion. Thus a LID attribute value may be updated even though a query does not explicitly
affect a lid attribute in that tuple.

Updates are fully supported in ordered relations with the following side effects.

Appends - If the user specifies a lid value, the tuple is inserted in. front of the tuple with that
lid value. Thus all lid values following that tuple are incremented by one. If a lid is not
specified and it corresponds to the lowest lid level (ie lid3 in a 3-dimensional ordered rela­
tion), the tuple will be inserted at the end of the lid subtree that it corresponds to. Otherwise
the lid value is assumed to be ·0· which indicates to the system th~t a new lid subtree will be
created at level n where the lid value was specified. .

Deletes - The user can delete tuples by specifying lid values. The side effect is that lid values
will be collapsed due to the removed tuples.

Replaces - Like appends, new tuples will be inserted in front of the tuple with the old lid
value that the user is trying to replace. If no new lid values are. specified, they're assumed to
~ the old ones. To create a new lid subtree using replace. a lid .value is ·0· is to be specified. :

SEE ALSO
modify(quel)

PS2:10-30 INGRES Reference Manual PERMIT (QUEL)

NAME
permit - add permissions to a relation

SYNOPSIS
define penait oplist { 011 I of I to } var [(attllst)]

to name [at term] [from time to time]
[011 day to day] [where qual]

DESC1UP110N
The permit statement extends the current permissions on the relation specifi.ed by var. Oplist
is a comma separated list of possible operations, which can be retrieve, replace, delete, append,
or aU; all is a sPeCial case meaning all permissions. Name is the login name of a user or the
word all. Term is a terminal name of the form 'ttyx' or the keyword aU; omitting this phrase
is equivalent to specifying all. Times are of the form 'bh:mm' on a twenty-four hour clock
which limit the times of the day during which this permission applies. Days are three­
character abbreviations for days of the week:. The qual is appended to the qualification of the
query when it is run.

Separate parts of a single permit statement are conjoined (ANDed). Different permit state­
ments are disjoined (ORed). For example, if you include

· . . to eric at tty4 . . .

the permit applies only to eric when logged in on tty4, but if you include two permit state­
ments

· . . to eric at all. . .
· .. to all at tty4 ...

then when eric logs in on tty4 he will get the union -of the permissions specified by the two
statements. If eric logs in on ttyd he will get only the permissions specified in the first permit
statement,_ and if bob logs in 011 tty4 he will get only the permissions specified in the second
permit statment. .

The permit statement may only be issued by the owner of the relation. Although a user other
than the DBA may issue a permit statement, it is useless because noone else can access her re­
lations byway.

Permit statements do not apply to the owner of a relation or to views.

The statements

define permit all on x to all
define permit retrieve of x to all

with no further qualification are handled as special cases and are thus particularly efficient.

EXAMPLES
ranp of e is employee
define permit retrieve of e (name, sal) to marc

at ttyd from 8:00 to 17:00
on Mon to Fri
where e.mgr ... "marc"

range of p is parts
define permit retrieve of e to all

SEE AlSO
destroy(quel)

c

PRINT (QUEL) INGRES Reference Manual PS2:10-31

NAME
print - print relation(s)

SYNOPSIS
print relname {, relname}

DESCRIPl10N
Print displays the contents of each relation specified on the terminal (standard output). The
formats for various types of domains can be defined by the use of switches when ingres is in­
voked. Domain names are truncated to fit into the specified width.

To print a relation one must either be the owner of the relation, or the relation must have
"retrieve to all" or "all to all" permissions.

See ingres(quel) for details.

EXAMPLE
/* Print the emp relation */

print emp
print emp, parts

SEE ALSO
permit(quel), retrieve(quel), ingres(unix), printr(unix) handle long lines of output correctly -
no wrap around.

Print should have more formating features to make printouts more readable.

Print should have an option to print on the line printer.

PS2:1o-32 INGRES Reference Manual QUEL(QUEL)

NAME
quel - QUEry Language for INORES

DESCRIPI'ION
The following is a description of the general syntax of QUEL. Individual QUEL statements and
commands are treated separately in the document; this section describes the syntactic classes
from which the constituent parts of QU~ statements are drawn.

1. Comments

A comment is an arbitrary sequence of characters bounded on the left by "/." and on the
right by ".r:
/. This is a comment ./

2. Names

Names in QUEL are sequences of no more than 12 alphanumeric characters, starting with an
alphabetic. Underscore (_) is considered an alphabetic. All upper-case alphabetics appearing
anywhere except in strings are automatically and silently mapped into their lower-case coun­
terparts.

3. Keywords

The foUowing identiJiers are reserved for use as keywords and may not be used otherwise:

abs all and
any append ascii
at ataD ava
avgu by conc:at
copy cos count
countu . create define
delete delim destroy
exp Ooat4 OoatS
from gamma belp
in index inti
intl int4 int~ty
into is log
max min mod
modify not of
on onto or
permit print range
replace retrieve save
sin sqrt sum
suma to unique
unm un~ ~
mw wure

4. Constants

There are three types of constants, corresponding to the three data types available in QUEL for
data storage.

4.1. String constants

Strings in QUEL are sequences of DO more than 255 arbitrary ASCII characters bounded by
double quotes (" •). Upper case alphabetics within strings are accepted literally. Also, in
order to imbed quotes within strings, it is necessary to prefix them with "'. The same con-
vention applies to ',' itself. .

Only printing characters are allowed within strings. Non-printing characters (i.e. control char­
acters) are converted to blanks.

QUEL(QUEL) INGRES Reference Manual PS2:10-33

4.2. Integer constants
Integer constants in QUEL range from -2,147,483,647 to +2,147,483,647. Integer constants
beyond that range will be converted to floating point. If the integer is greater than 32,767 or
less than -32,767 then it will be left as a two byte integer. Otherwise it is converted to a four
byte integer.

4.3. Floating point constants
Floating constants consist of an integer part, a decimal point, and a fraction part or scientific
notation of the following format:

{<dip} [.<dig>] [elE [+1-] {<dig>}]
Where <dig> is a digit, [] represents zero or one, {} represents zero or more, and I represents
alternation. An exponent with a missing mantissa has a mantissa of 1 inserted. There may
be no extra characters embedded in the string. Floating constants are taken to be double-
precision quantities with a range of approximately _1038 to 1038 and a precision of 17 de­
cimal digits.

5. Attributes

An attribute is a construction of the form:

vari~ble.domain

Variable identifies a particular relation and can be thOUght of as standing for the rows or tu­
ples of that relation. A variable is associated with a relation by means of a range statement.
Domain is the name of one of the columns of the relation over which the variable ranges. To­
gether they make up an attribute, which represents values of the named domain.

If the attribute is a string type, it can be qualified with the substring notation. The substring.
notation is explained later. .

6. Operators

6.1 Arithmetic operators
Arithmetic operators take numeric type expressions as operands. Unary operators group right
to left; binary operators group left to right. The operators \10 order of descending precedence)
are:

+,- (unary) plus, minus
** exponentiation
*,1 multiplication, division
+,- (binary) addition, subtraction

Parentheses may be used for arbitrary grouping. Arithmetic overflow and divide by zero are
not checked on integer operations. Floating point operations are checked for overflow,
underflow, and divide by zero only if the appropriate machine hardware exists and has been
enabled. .

6.2 Arithmetic string operators

The operator + is a string concatenator, like the ifU function concat; however, its sYntax is
cleaner and it is not limited to two arguments, but like its arithmetic counterpart, can be used
without restriction. Its counterpart, ., is the string equivalent of the difference operator on
sets, with the special property that only the first instance of the right hand side is deleted
from the string. The binding properties of these two operators are exactly equivalent to the
arithmetic plus and minus, which means that they can be used in conjunction with
parentheses to form complex expressions.
These two operators are most useful when used with the substring notation.

7. Expressions (a_expr)

An expression is one of the following:

PS2:10-34

constant
attribute

INGRES Reference Manual

functional eXp'ression
aggregate or aUreaate function
a combination of numeric expressions and arithmetic operators

QUEL(QUEL)

For the purposes of this document, an arbitrary expression will be refered to by the name
Q_expr.

8. Formats

Every Q_expr has a fonnat denoted by a letter(e, i, or r, for character, integer, or Ooating data
types respectively) and a number indicating the number of bytes of storage occupied. For­
mats currently supported are listed below.· The ranges of numeric types are indicated in.
parentheses.

cl - c2SS
it

character data of length 1-255 characters
I-byte integer (-128 to + 127)

i2
i4
f4
f8

2-byte integer (-32768 to +32767)
4-byte integer (-2,147,483,648 to +2,147,483,647)
4-byte Ooating (_103• to + 1038, 7 decimal digit precision)
8.byte tloating (_103• to +1038, 17 decimal digit precision)

One numeric fonnat can be converted to or substituted for any other numeric fonnat.

9. Type Conversion.

When operating on two numeric domains of diJferent types, INORES converts as necessary to
make the types identical.

. When operating on an integ~ and a floating point number, the integer is converted.to a:Ooat~
ing point number before the operation. Wben operating on two integers of different sizes, the
smaller is converted to the size of the larger. When operating on two floating point number
of different size, the larger is converted to the smaller.

The following table summarizes the possible combinations:

it i2 i4 f4 f8
it - it i2 i4 f4 f8
i2 - i2 i2 i4 f4 f8
i4 - i4 i4 i4 f4 f8
f4 - f4 f4 f4 f4 f4
f8 - f8 f8 f8 f4 f8

INORES provides five type conversion operators specifically for overriding the default actions.
The operators are:

int1(a_expr)
int2(a_expr)
int4(a_expr)
Ooat4(a_expr)
Ooat8(a_expr)

result type i 1
result type i2
result type i4
result type f4
result type f8

The type conversion operators convert their argument a_expr to the requested type. A_expr
can be anything including character. If a character value cannot be converted, an error oc­
cures and processing is halted. This can happen only if the syntax of the character value is
incorrect.

Overflow is not checked on conversion.

10. TaqeLlist

A target list is a parenthesized, comma separated list of one or more elements , each of which
must be of one of the following fonns:

QUEL(QUEL) INGRES Reference Manual PS2:I0-35

a) resulcattname is a_expr
Resuicattname is the name of the attribute to be created (or an already existing attribute
name in the case of update statements.) The equal sign ("=") may be used interchangeably
with is. In the case where a_expr is anything other than a single attribute, this form must be
used to assign a result name to the expression.

b) attribute
In the case of a retrieve, the resultant domain will acquire the same name as that of the attri­
bute being retrieved. In the case of update statements (append, replace), the relation being
updated must have a domain with exactly that name.

Inside the target list the keyword all can be used to represent all domains. For example:

range of e is employee
retrieve (e. all) where e.sa1ary > 10000

will retrieve all domains of employee for those tuples which satisfy the qualification. All can
be used in the target list of a retrieve or an append. The domains will be inserted in their
"create" order, that is, the same order they were listed· in the create statement.

11. Comparison operators

Comparison operators take arbitrary expressions as operands.

< (less than)
<= (less than or equal)
> (greater than)
>= (greater than or equal)
= (equal to)
!= (not equal to)

They are all of equal precedence. When comparisons are made on character attributes, all
blanks are ignored.

·12. Logical operators

Logical operators take clauses as operands and group left-to-right:

not (logical not; negation)
and (logical and; conjunction)
or (logical or; disjunction)

Not has the highest precedence of the three. And and or have equal precedence. Parentheses
may be used for arbitrary grouping.

13. Qualification (qual)

A qualification consists of any number of clauses connected by logical operators. A clause is
a pair of expressions connected by a comparison operator:

a_expr comparison_operator a_expr

Parentheses may be used for arbitrary grouping. A qualification may thus be:

clause
not qual
qual or qual
qual and qual
(qual)

14. Functional expressions

A functional expression consists of a function name followed by a parenthesized (list 00
operand(s). Functional expressions can be nested to any level. In the following list of func­
tions supported (n) represents an arbitrary numeric type expression. The format of the result
is indicated on the right.

PS2:10-36

abs(n) -
ascii(n) -
atan(n) -
concat(a,b) -
cos(n) -
exp(n) -
gamma(n) -
log(n) -
mod(n,b) -
sin(n) -
sqrt(n) -

INGRES Reference Manual

same as n (absolute value)
character string (converts numeric to character)
f8 (arctangent)
character (character concatenation. See 16.i)
f8 (cosine)
f8 (exponential of n)
f8 (log gamma)
f8 (natural logarithm)
same as b (n modulo b. nand b must be ii, i2, or i4)
f8 (sine)
f8 (square root)

15. Aggregate expressions

QUEL(QUEL)

Aggregate expressions provide a way to aggregate a computed expression over a set of tuples.

15.1. Aggregation operators

The definitions of the aggregates are listed below.

count -
count.. -
sum­
sumu­
aVI­
avp­
max-

(i4) count of occurrences
(i4) count of unique occurrences
summation
summation of unique v.alues .
(f8) average (sum/count)
(f8) unique average (sumulcountu)
maximum

min - minimum
any - (i2) value is 1 if any tuples satisfy the qualification, else it is 0

15.2. Simple aggregate .

aggregation_operator (a_expr [where qual])
A simple aggregate evaluates to a single scalar value. A_expr is aggregated over the set of tu­
ples satisfying the qualification (or all tuples in the range of the expression if no qualification
is present). Operators sum and avg require numeric type a_expr; count. any. max and min
permit a character type attribute as well as numeric type Q_expr.
Simple aggregates are completely local. That is, they are logically removed from the query,
processed separately, and replaced by their scalar value.

15.3. "any" aggregate

It is sometimes useful to know if any tuples satisfy a particular qualification. One way of do­
ing this is by using the aggregate count and checking whether the return is zero or non-zero.
Using any instead of count is more efficient since processing is stopped, if possible, the first
time a tuple satisfies a qualification.

Any returns 1 if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregation_operator (a_expr by by_domain
{. by_domain} [where qual])

Aggregate functions are extensions of simple aggregates. The by operator groups (i.e. parti­
tions) the set of qualifying tuples by by_domain values. For more than one by_domain. the
values which are grouped by are the concatenation of individual by_domain values. A_expr is
as in simple aggregates. The aggregate function evaluates to a set of aggregate results, one for
each partition into which the set of qualifying tuples has been grouped. The aggregate value
used during evaluation of the query is the value associated with the partition into which the
tuple currently being processed would fall.

QUEL(QUEL) INGRES Reference Manual PS2:10-37

Unlike simple aggregates, aggregate functions are not completely local. The by _list, which
differentiates aggregate functions from simple aggregates, is global to the query. Domains in
the by _list are automatically linked to the other domains in the query which are in the same
relation.

Example:
/. retrieve the average salary for the employees
working for each manager ./
range of e is employee
retrieve (e.manager, avesal=avg(e.salary by e.maoager»

15.5 Aggregates on Unique Values.

It is occasionally necessary to aggregate on unique values of an expression. The avgu, sumu,
and countu aggregates all remove duplicate values before performing the aggregation. For ex­
ample:

count(e.manager)

would tell you how many occurrences of e.manager exist. But

countu(e.manager)

would tell you how many unique values of e.manager exist.

16. Special character operators

There are four special features which .are particular to character domains.

16.1 Pattern matching characters

There are eleven characters which take on sp~iai meaning when· used in character constants.
(strings): .

• _ matches any string of zero or more characters.
? matches any single character.
[..] matches any of characters in the brackets.
'1## 1 matches any string of zero or more characters.
##2 matches any string of zero or more characters.
-1##3 matches any string of zero or more characters.
##4 matches any string of zero or more characters.
##5 matches any string of zero or more characters.
##6 matches any string of zero or more characters.
##7 matches any string of zero or more characters.
##8 matches any string of zero or more characters.
##9 matches any string of zero or more characters.
##0 matches all instances of strings between two occurances of ##0.

These -characters can be used in any combination to form a variety of tests. For example:

where e.name .. "-I##lKalash-l##2Ioe##4" - matches any occurance of "Kalash", followed
by"Joe".

where e.name .. "HOlngres##O" - matches all occurances of "Ingres" within a line.
where e.name - "." - matches any name. .
where e.name - "E." - matches any name starting with "E·.
where e.name .. ".ein" - matches all names ending with "ein"
where e.name .. ·.[aeiou].· - matches any name with at least one vowel.
where e.name .. "Allman?" - matches any seven character name starting with "Allman·.
where e.name - "[A-I]." - matches any name starting with A,B, .. ,J.

The special meaning of the pattern matching characters can be disabled by preceding them
with a '\'. Thus "\." refers to the character ".". When the special characters appear in the
target list they must be escaped. For example:

title = "\.\.\. ingres \.\.\."

PS2: 1 ();'38 INGRES Reference Manual

is the correct way to assign the string ••••• ingres to the domain .. title".

16.1.1 Numbered Wildcards

QUEL(QUEL)

. The numbered wildcards are unique in that they may also appear in a target list, as well as in
a qualification. Each unique numbered wildcard used retains the same value in both the tar­
get list and the qualification list. Thus a query such as

replace t(text • W##ltheH2")
where t.text- "##lTHE##2"

will replace an occurence of wTHEw in t.text with wthe".

The special global wildcard ##0 when used in the query

replace t(text • w##Othe##OW)
where t.text • w##OTHE##O"

will replace all occurrences of "THE" with "thew.

16.2 Concatenation

There is a concatenation operator which can form one character string from two. Its syntax is
"concat(fieldl, field2)". The size of the new character string is the sum of the sizes of the ori­
ginal two. Trailing blanks are trimmed from the first field, the second field is concatenated
and the remainder is blank padded. The result is never trimmed to 0 length, however. Concat
can be arbitrarily nested inside other concats. For example:

name - concat(concat(x.lastname, ","), x.firstname)

will concatenate x.lastname with a comma and then concatenate x.firstname to that.

16.3·Ascii (numeric to character translation)

The ascii function can be used to convert a numeric field to its· character representation. This
can be useful when it is desired to compare a numeric value with a character value. For ex­
ample:

retrieve (...)
where x.chardomain '" ascii(x.uumdomain)

Ascii can be applied to a character value. The result is simply the character value unchanged.
The numeric conversion formats are determined by the printing formats (see ingres(unix».

16.4 Substring notation

Any string attribute can be broken up into into a smaller substring using the following sub­
string operators.

variable.domain(X. Y)
variable.domain(X,y%
variable.domain%X,Y)
variable.domain%X. Y%

Each of the above represents a certain substring of domain, denoted by the endpoints X and
Y. Whether the endpoints are to be included or not is determined by the parentheses (exclu­
sion) and percent signs (inclusion).

X and Y (optional) consist of a required part with optional qualifiers. The required part can
be any of the following:

a string
w (a word)
e (a character)
A user defined delimiter (see delim(quel»

The optional qualifiers are a preceding digit, i, which specifies to look for the ith occurence,
and a trailing $, which specifies to search backwards from the end of the string.

The rules for searching are very simple. Without the $, the value of X chosen is the ithoccur-

QUEL(QUEL) INGRES Reference Manual PS2:10-39

rance (the default value of i is one) from the left end of the string. The search for Y, if it is
requested, starts after the end of X. A dollar sign, however, always specifies that the search
start from the end of the string regardless of the value of X. For illustrative purposes, assume
a text field to contain the following:

I saw the dog, the cat, and the duck take a walk.
Then the following constructs would have the attached values:

r.text(3w,2"the"% dog, the cat, and the
r.text%2"the"S,S% the cat, and the duck take a walk.

When combined with the arithemtic string operators this facility can the quite powerful. For
example, to remove the dog from the sentence requires only the simple following query:

replace r(text - r.text - r.text%"the" , "the"»
Or perhaps only the baby duck was taking a walk:

replace r(text = r.text%T;the"% + "baby" + r.text%"duck",S})

SEE ALSO

BUGS

append(quel), delete(quel), delim(quel), range(quel), replace(quel), retrieve(quel), ingres(unix)

The maximum number of variables which can appear in one query is 10.

Numeric overflow, underflow, "and divide by zero are not detected.

When converting between numeric types, overflow is not checked.

PS2:10-40 INGRES Reference Manual RANGE (QUEL)

NAME
range - de~lare a variable to range over a relation

SYNOPSIS
range of variable is relname

DESCRIPTION
Range is used to declare variables which will be used in subsequent QUEL statements. The
variable is associated with the relation specified by relname. When the variable is used in
subsequent statements it will refer to a tuple in the named relation. A range declaration
remains in effect for an entire INORES session (until exit from INORES), until the variable is
redeclared by a subsequent range statement, or until the relation is removed with the destroy
command.

EXAMPLE
/ .. Declare tuple variable e to range over relation emp ./

range of e is emp

SEE ALSO

BUGS

quel(quel), destroy(quel)

Only 10 variable declarations may be in effect at any time. After the 10th range statement,
the least recently referenced variable is re-used for the next range statement.

REPLACE (QUEL) INGRES Reference Manual PS2:10-41

NAME
replace - replace values of domains in a relation

SYNOPSIS
replace tuple_variable (targeClist) [where qual]

DESCRIPTION
Replace changes the values of the domains specified in the targeelist for all tuples which
satisfy the qualification qual. The tuple_variable must have been declared to range over the
relation which is to be modified. Note that a tuple variable is required and not the relation
name. Only domains which are to be modified need appear in the targeelist. These domains
must be specified as resulCattnames in the tar gee list either explicitly or by default (see,
quel(quel).

Numeric domains may be replaced by values of any numeric type (with the exception noted
below). Replacement values will be converted to the type of the result domain.

Only the owner of a relation, or a user with replace pemission on the relation can do replace.

If the tuple update would violate an integrity constraint (see integrity(quel), it is not done.

EXAMPLE
I. Give all employees who .work for Smith a 10% raise .1

range of e is emp
replace e(sal = 1.1 • e.sal) where e.mgr = "Smith"

SEE ALSO
integrity(quel), permit(quel), quel(quel). range(quel)

DIAGNOSTICS

BUGS

Use of a numeric type expression to replace a character type domain or vice versa will pro­
duce diagnostics.

PS2:1042 INORES lteferenceManual RETRIEVE (QUEL)

NAME
retrieve - retrieve tuples from a relation

SYNOPSIS·
retrieve [[ioto) reInamel (target_list) {wbere qual]
retrieve unique (target_list) [where quai]

DESClUPI'ION
Retrieve will get all tuples which satisfy the qualification and either display them on the termi~
nal (standard output) or store them in a new relation.

If a relname is specified, the result of the query will be stored in a new relation with the indi­
cated name. A relation with this name owned by the user must not already exist. The
current user will be the owner of the new relation. The relation will have domain names as
specified in the taTgeClist resuicattnames. The new relation will be saved on the system for
seven days unless explicidy saved by the user until a later date.

If the keyword unique is present, tuples will be sorted on the first domain, and duplicates will
be removed, before being displayed.

The keyword all can be used when it is desired to retrieve all domains.

If no result relname is specified then the result of the query will be displayed on the terminal
and will not be saved. Duplicate tuples are not removed when the result is displayed on the
terminal. .

the format in which domains are printed can be defined at the time ingres is invoked (see
ingres(unix».

If a resUlt relation is sPecified then the default procedure is to modify the result relation to an
cheapsort storage structure removing duplicate tuples in the process.

If the default cheapsort structure is not desired, the user can override this at the time INGRES
is invoked by using the -r switch (see ingres(unix».

Only the relation's owner and users with retrieve permission may retrieve from it.

EXAMPLE
/. Find all employees who make more than their manager./

range of e is emp
range of m is emp
retrieve (e. name) where e.mgr .. m.name

and e.sal > m.sal
/. Retrieve all domains for those who make more

than the average salary .1
retrieve into temp (e.all) where e.sal > avg(e.sal)

/. retrieve employees's names sorted .1
retrieve unique (e.name)

SEE ALSO
modify(quel), permit(quel), quel(quel), range(quel), save(quel), ingres(unix)

DIAGNOSTICS

BUGS

SAVE (QUEL) INGRES Reference Manual PS2:10-43

NAME
save - save a relation until a date.

SYNOPSIS
save relname until month day year

DESCRIPTION
Save is used to keep relations beyond the default 7 day life span.

Month can be an integer from 1 through 12, or the name of the month, either abbreviated or
spelled out.

Only the owner of a relation can save that relation. There is an INGRES process which typical­
ly removes a relation immediately after its expiration date has passed.

The actual program which destroys relations is called purge. It is not automatically run. It is
a local decision when expired relations are removed.

System relations have no expiration date.

EXAMPLE '* Save the emp relation until the end of February 1987 *'
save emp until feb 28 1987

SEE AlSO
create(quel), retrieve(quel), purge(unix)

PS2:10-44 INGRES Reference Manual

NAME
use - specify a group of delimitors to be used
unuse - specify a group of delimitors to no longer be used

SYNOPSIS
use groupname
unuse groupname

DESCRIPTION

USE (QUEL)

The use statement specifies a group of delimitors which are to be checked when a delimitor
name is used in a query. The unuse statement specifies that the group of delimitors should no
longer be checked. When a delimitor is specified in a query, the pattern to be associated with
the name will be searched for among the list of delimitor groups which have been used.

EXAMPLE

SEE ALSO

define delim paper (word, "IA-Z]{a-z}")
use paper
unuse paper

delim(quell, destroy(quell

VIEW(QUEL) INGRES Reference Manual PS2:10-4S

NAME
view - define a virtual relation

SYNOPSIS
define view name (target-list) [where qual]

DESCRIPI10N
The syntax of the view statement is almost identical to the retrieve into statment; however, the
data is-not retrieved. Instead, the definition is stored. When the relation name is later used,
the query is converted to operate on the relations specified in the target-list.

All forms of retrieval on the view are fully supported, but only a limited set of updates are
supported because of anomolies which can appear. Almost no updates are supported on
views which span more than one relation. No updates are supported that affect a domain in
the qualification of the view or that affect a domain which does not translate into a simple at­
tribute.
In general, updates are supported if and only if it can be guaranteed (without looking at the
actual data) that the result of updating the view is identical to that of updating the
corresponding real relation. .

The person who defines a view must own all relations upon which the view is based.

EXAMPLE
range of e is employee
range of d is dept
define view empdpt (ename = e.name, e.sal, dname ,.. d.name)

where.e.mgr == d.mgr

SEE ALSO
retrieve(quel), destroy(quel)

PS2:10-46 INGRES Reference Manual COPYDB(UNIX)

NAME
copydb - create batch files to copy out a data base and restore it.

SYNOPSIS
copyd)) [-uname] database full-path-name-of-directory [relation ...]

DESCRIPTION
Copydb creates two INORES commaad files in the directory: Copy.out, which contains Quel in ..
stuctions which will copy all relations owned by the user into files in the named directory, and
copy.iII, which contains instructions to copy the files into relations, create indexes and do
modifies. The files will have the same names as the relations with the users INORES id tacked
on the end. (The directory MUST NOT be the same as the data base directory as the files
have the same names as the relation files.) The -0 flag may be used to run copydb with a
different user id. (The fact that copydb creates the copy files does not imply that the user can
necessarily access the specified relation). If relation names are specified only those relations
will be included in the copy files. .

Copydb is written in Equel and will access the database in the usual manner. It does not have
to run as the INORES user.

EXAMPLE
chdir Imntlmydir
copydb db Imntlmydirlbackup
inares db <backup/copy. out
tp rl backup
rm -rbackup

tp xl .
inares db <b~kup/copy.in

DIAGNOSTICS

BUGS

Copydb will give self-explanatory diagnostics. If "too many indexes" is reported it means that
more than ten indexes have been specitied on one relation. The constant can be increased
and the program recompiled. Other limits are set to the system limits.

C()pydb assumes that indexes which are ISAM do not need to be remodified. Copydb cannot
tell if the relation was modified with a fillfactor or minpages specification. The copy.in file
may be edited to retlect this.

CREATDB (UNIX) INGRES Reference Manual PS2:10-47

NAME
creatdb - create a data base

SYNOPSIS
creatdb [-uname] [~] [-m] [±c] [±q] dbname

DESCllIPTION
Creatdb creates a new INGRES database, or modifies the status of an existing database. The
person who executes this command becomes the Database Administrator (DBA) for the data­
base. The DBA has special powers not granted to ordinary users.

Dbname is the name of the database to be created. The name must be unique among all
INGRES users.

The 8ags ±c: and ±q specify options on the database. The form. +x turns an option on, while
-x turns an option off. The -c 8ag turns off the concurrency control scheme (default on).
The +q 8ag turns on query modification (default on).

Concurrency control should not be turned off except on databases which are never accessed
by more than one user. This applies even if users do not share data relations, since system re­
lations are still shared. If the concurrency control scheme is not installed in UNIX, or if the
special file /dev/lock does not exist or is not accessible for read-write by INGRES, concurrency
control acts as though it is off (although it will suddenly come on when the lock driver is in­
stalled in UNIX).·

Query modification must be turned on for the protection, integrity, and view subsystems to
work, however, the system will run slightly slower in some cases if it is turned on. It is ·possi­
ble to turn query modification on if it is already off in an existing database, but it is not possi­
ble to turn it off if it is already on.

Databases with query modification turned off create new relations with all access permitted
for all users, instead of no access except to the owner, the default for databases with. query
modification enabled.

Database options for an existing database may be modified by stating the ~ 8ag. The data­
base is adjusted to conform to the option 8ags. For example:

creatdb -e +q mydb

turns query modification on for database "mydb" (but leaves concurrency control alone).
Only the database administrator (DBA) may use the ~ 8ag.

When query modification is turned on, new relations will be created with no access, but previ­
ously created relations will still have all access to everyone. The destroy command may be
used to remove this global permission, after which more selective permissions may be
specified with the permit command.

The INGRES uSer may use the -u 8ag to specify a different DBA: the nag should be immediate­
ly followed by the login name of the user who should be the DBA.

The -m 8ag specifies that the UNIX directory in which the database is to reside already exists.
This should only be needed if the directory if a mounted file system, as might occur for a very
large database. The directory must exist (as •• Jdatalbase/dbname), must be mode 777, and
must be empty of all files.

The user who executes this command must have the U_CREATDB bit set in the status field
of her entry in the users file.

The INGRES superuser can create a file in ••• /datalbase containing a single line which is the run
pathname of the location of the database. The file must be owned by INGRES and be mode
600. When the database is created, it will be created in the file named, rather than in the
directo~ .. Jdatalbase. For example, if the file •• Jdatalbase/ericdb contained the line

PS2:10-48 INGRES Reference Mantial CREA TDB(UNIX)

Imnt/ericldatabase

then the database called "ericdb" would be physically stored in the directory
Imnt/ericldatabase rather than in the directory .. .Idatalbase/ericdb.

EXAMPLE

FILES

creatdb demo
creatdb -ueric -q erics_db
creatdb -e +q -c -u:av erics_db

.. .Ifilesl dbtmplt7

.. .Itilesldatalbasel*

.. .Ifilesldatadir/* (for compatibility with previous versions)

SEE ALSO
demodb(unix), destroydb(unix), users(files),·chmod(I), destroydb(quel), permit(quel)

DIAGNosnCS
No database name specified.

You have not specified the name of the database to create (or modify) with the com­
mand..

You may not access this database
Your entry in the users file says you are not authorized to access this database.

You are not a valid !NORES user
You do not have a users file entry, and can not do anything with !NORESat all.

You are not allowed this command
The U_CREATDB bit is not set in you users file entry.

You may not use the -u flag
Only the !NORES superuser may become someone else.

<name> does not exist . .
With -e or -lilt the directory does not eXist.

<name> already exists
Without either -e or -m, the database (actually, the directory) already exists.

<name> is not empty
With the -m flag, the directory you named must be empty.

You are not the DBA for this database
With the -e tlag, you must be the database administrator.

DESTROYDB (UNIX) INGRES Reference Manual PS2:10-49

NAME
destroydb - destroy an existing database

SYNOPSIS
destroydb [-s] [-m] dbname

DESCRIPTION
Destroydb will remove all reference to an existing database. The directory of the database and
all files in that directory will be removed. -

To execute this command the current user must be the database administrator for the data­
base in question, or must be the INGRES superuser and have the -s flag stated.

The -m flag causes destroydb not to remove the UNIX directory. This is useful when the direc­
tory is a separate mounted UNIX file system.

EXAMPLE

FILES

destroydb demo
destroydb -s eries_db

.. .1 datalbase/$

.. .ldatadir/$ (for compatibility with previous versions)

SEE ALSO
creatdb(unix)

DIAGNOSTICS
invalid d~name - the database name specified is not a valid name .

. you may not reference this database - the database may exist, but you do not have permission
to do anything with it.

you may not use the -s flag - you have tried to use the -s flag, but you are not the INGRES
superuser.

you are not the dba - someone else created this database.
datab~se does not exist - this database does not exist.

PS2:10-S0 INGRES Reference Manual EQUEL(UNIX)

NAME
equel - Embedded QUEL interface to C

SYNOPSIS
equel [-d] [-f] [-r] file.q ...

DESCRIPTION
Equel provides the user with a method of interfacing the general purpose programming
language "C' with INGRES. It consists of the EQUEL pre-compiler and the EQUEL runtime li­
brary.

Compilation
The precompiler is invoked with the statement:

equel [<flags>] file 1.q [<flags>] file2.q ...

where filen.q are the source input file names, whieh must end with .q. The output is written
to the file "filen.c". As many files as wished may be specified.
The flags that may be used are:
-d Generate code to print source listing file name and line number when a run-time error

occurs. This can be useful for debugging, but takes up process space. Defaults to off.

-f Forces code to be on the same line in the output file as it is in the input file to ease in­
terpreting C diagnostic messages. EQUEL will usually try to get aU C code lines in the
output file on the. same lines as they were in the input file. Sometimes· it must break up
queries into several lines to avoid C-preprocessor line overflows, ,.possibly moving some
C code ahead some lines. With the -f flag specified this will never happen and, though
the line buffer may overflow,.C lines will be on the right line. This is useful for finding
the, line in the source file that C error diagnostics on the output file refer to.

-r Resets flags to default values. Used to supress other flags for some of the files in the ar­
gument list.

The output files may than be compiled using the C compiler:

cc file I.c file2.c ... -Iq

The -Iq requests the use of the EQUEL object library.

All EQUEL routines and globals begin with the characters "II", and so aU globals variables and
procedure names of the form IIxxx are reserved for use by EQUEL and should be avoided by
EQUEL users.

Basic Syntax

EQUEL commands are indicated by lines which begin with a double pound sign e'##"). Other
lines are simply copied as is. All normallNGRES commands may be used in EQUEL and have
the same effect as if invoked through the interactive terminal monitor. Only retrieve com­
mands with no result relation specified have a different syntax and meaning.

The format of retrieve without a result relation is modified to:

retrieve (C-variable .. a3cn { , C-variable ... a_fen})

optionally followed (immediately) by:

#ill [where qual]
##{

/. C-code./
##}

This statement causes· the "C-code" to be executed once for each tuple retrieved. with the
"C-variable"s set appropriately. Numeric values of any type are converted as necessary. No
conversion is done between numeric and character values. (The normal INORES ascii function
may be used for this purpose.) .

EQUEL(UNIX) INGRES Reference Manual PS2:10-S1

Also, the following EQUEL commands are permitted.

ingres [ingres flags] data_base_name

exit

This command starts INGRES running, and directs all dynamically following queries
to the database data_base_name. It is a run-time error to execute this command
twice without an intervening "## exit", as well as to issue queries while an "##
ingres" statement is not in effect. Each flag should be enclosed in quotes to avoid
confusion in the EQUEL parser:

ingres "-f4flO.2" "-i212" demo

Exit simply exits from INGRES. It is equivalent to the \q command to the teletype
monitor.

Parametrized Quel Statements

Quel statements with target lists may be "parametrized". This is indicated by preceding the
statement with the keyword "param". The target list of a parametrized statement has the
form:

(IL var, argv)
where ILvar is taken to be a string pointer at execution time (it may be a string constant) and
interpreted as follows. For any parametrized EQUEL statement except a retrieve without a
result relation (no "into reI") (i.e. append, copy, create, replace, retrieve into) the string tLvar
is taken to be a regular target lis~ except that wh~rever a '%' appears a valid INGRES type (f4,
f8, i2, i4, c) is expected to follow. Each of these is replaced by the value of the corresponding
entry into argv (starting at 0) which is interpreted to be a pointer to a variable of the type in­
dicated by the 'qQ' sequence. Neither·argv nor the variables which it points to need be de­
clared to EQuEL.For example:

char .argv[10];

argv[O] = &double_ var;
argv[1] = &inC var;

param append to rei
("doml = %f8, dom2 = %i2", argv)
I. to escape the "%<ingres_type> "mechanism use "%%" .1
I. This places a single '%' in the string . • 1

On a retrieve to C-variables, within ILvar, instead of the C-variable to retrieve into, the same
'qQ' escape sequences are used" to denote the type of the corresponding argv entry into which
the value will be retrieved.

The qualification of any query may be replaced by a string valued variable, whose contents is
interpreted at run time as the text of the qualification.

The copy statement may also be parametrized. The form of the parametrized copy is analo­
gous to the other parametrized statements: the target list may be parametrized in the same
manner as the append statements, and furthermore, the from/into keyword may be replaced by
a string valued variable whose content at run time should be into or from. .

Declarations

Any valid C variable declaration on a line beginning with a "##" declares a C-variable that
may be used in an.EQuEL statement and as a normal variable. All variables must be declared
before being used. Anywhere a constant may appear in an INGRES command, a C-variable
may appear. The value of the C-variable is substituted at execution time.

Neither nested structures)lor variables of type char (as opposed to pointer to char or array of
char) are allowed. Furthermore, there are two restrictions in the way variables are referenced
within EQUEL statements. All variable usages must be dereferenced and/or subscripted (for ar­
rays and pointers), or selected (for structure variables) to yield lvalues (scalar values). Char
variables are used by EQUEL as a means to use strings. Therefore when using a char array or

PS2:10-S2 INGRES Reference Manual EQUEL(UNIX)

pointer it must be dereferenced only to a "char -". Also, variables may not have parentheses
in their references. For example:

stnlct xxx
##{

int i;
int -ip;
} --struce var;

/- not allowed -/
delete p where p.ifield - -(-struct_var)->ip

/_ allowed -/
delete p where p.ifield - -strucLvar[O]->ip

C variables declared to EQUEL have either global or local scope. Their scope is local if their
declaration is within a free (not bound to a retrieve) block declared to EQUEL. For example:

/_ globals scope variable -/
int Gint;

func(i)
mt i;
##{

/- local scope· variable -I
int -gintp;

##}

. If·a variable of one of the char.types is used alm~tanYWQere in an EQUEL statement the con­
tent of that variable is used at run time. For example:

char -dbname[MAXDAT ABASES + 1];
int currenedb;

dbname[currenLdb] = "demo·;
ingres dbname[current..,.db]

will cause INORES to be invoked with data base "demo". However, if a variable's name is to
be used as a constant, then the non-referencing operator 'j' should be used. For example:

char -demo;

demo - "my_database";

/- ingres -d my_database -/
ingres "-d" demo

/- ingres -d demo -/
ingres "-d" #demo

The C-preprocessor's jinclude feature may be used on files containing equel statements and
declarations if these files are named anything.q.h. An EQUEL processed version of the file,
which will be #included by the C-preprocessor, is left in anything.c.h.

Errors _lDterrupts

INORES and run-time EQUEL errors cause the routine· lIerror to be called, with the error
number and the parameters to the error in an array of string pointers as in a C language main
routine. The error message will be looked up and printed. before printing the error message,
the routine (.UprinLerr)() is called with the error number that ocurred as its single argument.
The error message corresponding to the error number returned by (-Uprint_err)() . will be
printed. Printing will be supressed if (-UprinLerr)() returns O. IIprineerr may be reassigned
to, and is useful for programs which map INORES errors into their own error messages. In ad-

EQUEL(UNIX) INGRES Reference Manual PS2:10-53

FILES

dition, if the "-d" flag was set the file name and line number of the error will be printed. The
user may write an lIerror routine to do other tasks as long as the setting of lIerrOag is not
modified as this is used to exit retrieves correctly.

Interrupts are caught by equel if they are not being ignored. This insures that the rest of
INGRES is in sync with the EQUEL process. There is a function pointer, IIinterrupt, which
points to a function to call after the interrupt is caught. The user may use this to service the
interrupt. It is initialized to "exitO" and is called with -1 as its argument. For example:

extern int (.IIinterrupt)O;
extern resetO;

setexitO;
IIinterrupt = reset;
mainloopO;

To ignore interrupts, signalO should be called before the ## ingres satatement is executed.

.. .Ifileslerror7 _.
Can be used by the user to decipher INGRES error numbers.

llib/libq.a
Run time library.

SEE ALSO

BUGS

.. .Idoc/other/equeltut.q, C reference manual, ingres(UNIX), quel(QUEL)

The C-code embedded in the tuple-by-tuple retrieve operation may not contain additional
QUEL statements or recursive invocations of INGRES.

There is no way to specify an it format C-variable.

Includes of an equel file within a parameterized target list, or within a C variable's array sub­
scription brackets, isn't done correctly.

PS2:1()"S4 INGRES Reference Manual GEO-QUEL(UNIX)

NAME
geoquel - GEO-QUEL data display system

SYNOPSIS
geoquel [-5 1 [-d] [-a] [-tT] [-tnT] dbname

DESClUPTION
GEO-QUEL is a geographical interface to INGRES.

Dbname is the name of an existing data base.

The format of the graphic output depends upon the type of terminal in use. GEO-QUEL will
look up the terminal type at login time and produce output appropriate for that terminal. If
the terminal in use is incapable of drawing graphic output then a display list is generated for a
Tektronix 4014 but will only be displayed if the results are saved with savemap and then re­
displayed.

The Bags are interpreted as follows:

-5 Don't print any of the monitor messages, including prompts. This is inclusive of the
dayfile.

-d Don't print the dayfile.
-a Disable the autoclear function in the terminal monitor.
-tT Set the terminal type to T. T can be gt4O, gt41, or 4014 for DEC's GT40-GT42, and

Tektronix's 4014 respectively.
-tnT Do not display output but prepare the display list for a terminal of type T, where T

is from the above list.

EXAMPLE

FILES

geoquel demo
geoquel -d demo
geoquel -5 demo < batchfile

.. .Ifiles/grafile7

.. .Ifileslttytype

SEE ALSO
GEO-QUEL reference manual

DIAGNOSTICS
The diagnostics produced by GEO-QUEL are intended to be self-explanatory. Occasional mes­
sages may be produced by INGRES; for an explanation of these messages see the INGRES sys­
tem documentation.

HELPR (UNIX) INGRES Reference Manual PS2:10-55

NAME
helpr - get information about a database.

SYNOPSIS
helpr [-uname] [±W] database relation ...

DESCRIPTION
Helpr gives information about the named relation(s) out of the database specified, exactly like
the help command.

flags accepted are -u and ±u. Their meanings are identical to the meanings of the same flags
in INGRES.

SEE ALSO
ingres(unix), help(quel)

DIAGNOSTICS
bad flag - you have specified a flag which is not legal or is in bad format.
you may not access database - this database is prohibited to you based on status information

in the users file.
cannot access database - the database does not exist.

PS2:10-S6 INORES Reference Manual INORES (UNIX)

NAME
ingres - INORES relational data base management system

SYNOPSIS
inpes [flags] dbname [process_table]

DESClUPl'ION
This is the UNIX command which is used to invoke INORES. Dbname is the name of an exist­
ing data base. The optional flags have the following meanings (a "::t" means the flag may be
stated "+x" to set option x or "-x" to clear option x. "-" alone means that "-x" must be
stated to get the x function):

::tU Enable/disable direct update of the system relations and secondary indicies. . You
must have the 000004 bit in the status field of the users tile set for this flag to be
accepted. This option is provided for system debugging and is strongly
discouraged for normal use.

-uname Pretend you are the user with login name name (found in the users tile). If name
is of the form :xx, xx is the two character user code of a user. This may only be
used by the DBA for the database or by the INORES superuser.

-eN Set the minimum field width for printing character domains to N. The default is
6.

-ilN Set integer output field width to N. I may be 1, 2, or 4 for it's, i2's, or i4's repec­
tively.

-fIxM.N Set floating point output· field width to M characters with N decimal places. I may
be 4 or 8 to apply to f4's or f8's respectively. x may be e, E, f, F, g, G, D, or N to
specify an output format. E is exponential form, F is floating point form, and G
and N are identical to F unless the number is too big to fit in that field, when it is
output in E format. G format guarantees decimal point alignment; N does not.
The default format for both is 010.3.

-vX· Set the column seperator for retrieves to the terminal and print commands to be X
The· default is vertical bar~

-rM Set modify mode on the retrieve· command to M. M may be isam, clsam, hash,
dlash, hea~ ehea~ heapsort, or cheapsort, for ISAM, compressed ISAM, hash
table, compressed hash table, heap, compressed heap, sorted heap, or compressed
sorted heap. The default is "cheapsort".

-aM Set . modify mode on the index command to M. M can take the same values as the
-r flag above. Default is "isam".

::ta Set/clear the autoclear option in the terminal monitor. It defaults to set.
::tb Set/reset batch update. Users must the 000002 bit set in the status field of the

users tile to clear this flag. This flag is liormally set. When clear, queries will run
slightly faster, but no recovery can take place. Queries which update a secondary
index automatically set this flag for that query only.

::td Print/don't print the day tile. Normally set.
::ts Print/don't print any of the monitor messages, including prompts. This flags is

normally set. If cleared, it also clears the -d flag.
.::tw Wait/don't wait for the database. If the +w flag is present, INORES will wait if cer­

tain processes are running (purge,restore, and/or sysmod) on the given data base.
Upon completion of those processes INORES will proceed. If the -w fIag is present,
a message is returned and execution stopped if the data base is "not available. If
the ::tw flag is omitted and the data base is unavailable, the error message is re­
turned if INORES is running in fo~ground (more precisly if the standard input is
from a terminal), otherwise the wait option is invoked.

Process.-table is the pathname of a UNIX tile which may be used to specify the run·time
configuration of !NORES. This feature is intended for use in system maintenance only, and its
unenlightened use by the user community is strongly discouraged.

Note: It is possible to run the monitor as a batch-processing interface using the '<', '>' and 'I'
operators of the UNIX sheD, provided the input ile is in proper monitor-format.

INGRES(UNIX) INGRES Reference Manual PS2:10-57

EXAMPLE

FILES

ingres demo
ingres -d demo
ingres -s demo < batchfile
ingres -f4g12.2 -il3 +b -rhash demo

.. '/files/users - valid INORES users

.. ./data/base/* - data bases

.. ./datadir'* - for compatability with previous versions

.. '/fileslproctab7 - runtime configuration file .

SEE AlSO
monitor(quel)

DIAGNosnCS
Too many options to INORES - you have stated too many flags as INORES options.
Bad flag format - you have stated a flag in a format which is not intelligible, or a bad flag en­

tirely.
Too many parameters - you have given a database name, a process table name, and "some-

thing else" which INORES doesn't know what to do with.
No database name specified
Improper database name - the database name is not legal.
You may not access database name - according to the users file, you do not have permission

to enter this database.
You are not authorized to use the flag flag - the flag specified requires some special authoriza­

tion, such as a bit in the users file, which you do not have.
Database name does not exist
You are not a valid flI!ORES user - you have not been entered into the users file, which means

that you may not use INORES at all.
You may not specify this process table - special authorization is needed to specify process·

tables.
Database temporarily unavailable - someone else is currently performing some operation on

the database which makes it impossible for you to even log in. This condition should
disappear shortly.

PS2:IO-S8

NAME
printr - print relations

SYNOPSIS

INGRES Reference Manual

priotl' [flags] database relation 00.

DESCRIP110N

PRINTR (UNIX)

Printr prints the named relation(s) out of the database specified. exactly like the print coma
mand. Retrieve permission must be granted to all people to execute this command.

Flags accepted are -u, ±tv, -c, -i, -f, and -v. "Their meanings are identical to the meanings of
th~ same flags in INORES.

SEE AlSO
ingres(unix). print(quel)

DIAGNOSTICS
bad flag - you have specified a flag which is not legal or is in bad format.
you may not access database - this database is prohibited to you based on status information

in the users file.
cannot access database - the database does not exist.

PURGE (UNIX) INGRES Reference Manual PS2:l0·59

NAME
purge - destroy all expired and temporary relations

SYNOPSIS
purge [-(] [-p] [-a] [-s] [:tw] [database ...]

DESCKIPTION
Purge searches the named databases deleting system temporary relations. When using the -p
flag, expired user relations are deleted. The -(Bag will cause unrecognizable files to be delet·
ed, normally purge will just report these files.

Only the database administrator (the DBA) for a database may run purge, except the INGRES
superuser may purge any database by using the -s Bag. .

If no databases are specified all databases for which you are the DBA will be purged. All da­
tabases will be purged if the INGRES superuser has specified the -5 Bag. The -a Bag will
cause purge to print a message about the pending operation and execute it only if the
response if a 'y'. Any other response is interpreted as "no".

Purge will lock the data base while it is being processed, since errors may occur if the data­
base is active while purge is working on the database. If a data base is busy purge will report
this and go on to the next data base, if any. If standard input is not a terminal purge will
wait for the data base to be free. If -w Bag is stated purge will not wait, regardless of stan­
dard input.' The +w Bag causes purge to always wait.

EXAMPLES
purge -p +w tempdata
purge -a-f

SEE AlSO .
save(quel), restore(unix)

DIAGNOSTICS

BUGS

who are you? - you are not entered into the users file.
not ingres superuser - you have tried to use the -s Bag but you are not the INGRES su-

peruser. C

you are not the dba - you have tried to purge a database for which you are not the DBA.
cannot access database - the database does not exist.

If no database names are given, only the databases located in the directory data/base are
purged, and not the old databases in datadir. Explicit database names still work for databases
in either directory.

PS2: 1 0-60 INGRES Reference Maaual RESTORE (UNIX)

NAME
restore - recover from an {NGRES or UNIX crash •.

SYNOPSIS
restore [-a] [-s] [:t:w] [database ...]

DESCRIPTION
Restore is used to restore a data base after an {NGRES or UNIX crash. It should always be run
after any abnormal termination to ensure the integrity of the data base.

In order to run restore,· you must be the DBA for the database you are restoring or the INGRES
superuser and specify the -s flag.

If no databases are specified then all databases for which you are the DBA are restored. All
databases will be restored if the {NGRES superuser has specified the -s flag.

If the -a flag is specified you will be asked before restore takes any serious actions. It is
advisable to use this flag if you suspect the database is in bad shape. Using /dev/null as input
with the -a flag will provide a report of problems in the data base. If there were no errors
while restoring a database, purge will be called, with the same flags that were given to restore,
to remove unwanted files and system temporaries. Restore may be called with the -f and/or
-p flags for purge. Unrecognized files and expired relations are not removed uDless·the proper
flags are given. In the case of an incomplete destroy, create or index restore will not delete
files for partially created or destroyed relations. Purge must be called with the -f flag to ac­
complish. this.

Restore locks the data base while it is being processed. If a data base is busy restore will re­
port this and go on to the next data base. If standard input is not a terminal restore will wait

. for the data base to be free. If the -w flag is set restore will not wait· regardless of standard in·
put. If +w is set it will always wait.

Restore can recOver a database from an update which had finished 'filling the batch file. Up­
dates which did not make it to this stage should be rerun. Similarly modifies which have
finished recreating the relation will be completed (the relation relation and attribute relations .
will be updated). If a destroy was in progress it will be carried to completion, while a create
will almost always be backed out. Destroying a relation with an index should destroy the in­
dex so restore may report that a secondary relation has been found with no primary.

If interrupt (signal 2) is received the current database is closed and the next, if any, is pro­
cessed. Quit (signal 3) will cause restore to terminate.

EXAMPLE
restore -f demo
restore -a grants < Idev/null

DIAGNOSTICS
All diagnostics are followed by a tuple from a system relations.

"No relation for attribute(s)" - the attributes listed have no corresponding entry in the rela­
tion relation

"No primary relation for index" - the tuple printed is the relation tuple for a secondary index
for which there is no primary relation. The primary probably was destroyed the
secondary will be.

"No indexes entry for primary relation" - the tuple is for a primary relation, the relindxd
domain will be set to zero. This is the product of an incomplete destroy.

"No indexes entry for index" - the tuple is for a secondary index, the index will be destroyed.
This is the product of an incomplete destroy.

"re/name is index for" - an index has been found fora primary which is not marked as in­
dexed. The primary will be so marked. This is probably the product of an incom­
plete index command. The index will have been created properly but not
modUied.

"No file for" - There is no data for this relation tuple, the tuple will be deleted. If, under the
-a option, the· tuple is not <1eleted purge will not be called. .

RESTORE (UNIX) INGRES Reference Manual PS2:10-61

"No secondary index for indexes entry" - An entry has been found in the indexes relation for
which the secondary index does not exist (no relation relation tuple). The entry
will be deleted.

SEE AlSO
purge(unix)

BUGS
If no database names are given, only the databases located in the directory data/base are re­
stored, and not the old databases in datadir. Explicit database names still work for databases
ill either directory.

PS2:1()"62 INORES Reference Manual SYSMOD (UNIX)

NAME
sysmod - modify system relations to predetermined storage structures.

SYNOPSIS
sysmod [-s] [-w] dbname [relatioo] (attribute] [iodexes] [tree] [protect] [iotegrities]

DESC1UP110N
Sysmod will modify the relation, attribute, indexes, tree, protect, and integrities relations to
hash unless at least one of the relatioo, attribute, iodexes, tree, protect, or iotegrities parame­
ters are given, in which case only those relations given as parameters are modified. The sys­
tem relations are modified to gain maximum access performance when running INORES. The
user must be the data base administrator for the specified database, or be the INORES su­
peruser and have the -s flag stated.

Sysmod should be run on a data base when it is first created and periodically thereafter to
maintain peak performance. If many relations and secondary indices are created andlor des­
troyed, sysmod should be run more often.

If the data base is being used while sysmod is running, errors will occur. Therefore, sysmod
will lock the data base while it is being processed. If the data base is busy, sysmod will report
this. If standard input is not a terminal sysmod will wait for the data base to be free. If-w
flag is stated sysmod will not wait, regardless of standard input. The +w flag causes sysmod to
always wait.

The system relations are modified to hash; the relation relation is keyed on the first domain,
the indexes, attribute, protect, and integrities relations are keyed on the first two domains,
and the tree relation is keyed on domains one, two, and five. The relation and attribute rela­
tions have the minpqes option set at 10, the indexes, protect, and integrities relations have
the minpages value set at s. . . .

SEE ALSO
modify(que!)

USERSETUP (UNIX) INGRES Reference Manual PS2:10-63

NAME
usersetup - setup users file

SYNOPSIS
• ..IbiDlusenetup [flags [pathname]]

DESClUPTlON

FILES

The letclpasswd file is read and reformatted to become the INGRES users file, stored into
.. .Iftles/users. If path name is specified, it replaces If pathname is "-", the result is writ-
ten to the standard output. .

The user name, user, and group id's are initialized to be identical to the corresponding entry
in the letclpasswd file. The status field is initialized to be 000001, except for user iogres,
which is initialized to all permission bits set. If the status parameter is provided, the field is
set to this instead. The "initialization file" parameter is set to the file .iogres in the user's lo­
gin directory. The user code field is initialized with sequential two-character codes. All other
fields are initialized to be null.
After running user setup, the users file must be edited. Any users who are to have any special
authorizations should have the status field changed, according to the specifications in
users(files). To disable a user from executing INGRES entirely, completely remove her line
from the users file.

As UNIX users are added or deleted from the letclpasswd file, the users file will need to be
editted to reflect the changes. For deleted users, it is only necessary to delete the line for that
user from the users file. To add a user, you must assign that user a code in the form "aa" and
enter a line in the users file in the form:

name:cc:uid:gid:status:flags:proctab:initfile::databases . .
where name IS the user Dame (taken from the first field of the letclpasswd file entry for this
user), cc is the user code assigned, which must be exactly two characters long and must not be
the same as any other existing user codes, uid and gid are the user and group ids (taken from
the third and fourth fields in the letclpasswd entry),.status is the status bits for this user, not­
maUy 000000, flags are the default flags for INGRES (on a per-user basis), proctab is the default
process table for this user (which defaults to ==proctab7), and databases is a list of the data­
bases this user may enter. If null, she may use all databases. If the first character is a dash
("-"), the field is a comma separated list of databases which she may not.enter. Otherwise, it
is a list of databases which she may enter.

The databases field includes the names of databases which maybe created.

Usersetup may be executed only once, to initially create the users file.

.. .Ifileslusers
letclpasswd

SEE ALSO
ingres(unix), passwd(V), users(files)

BUGS
It should be able to bring the users file up to date.

PS2:10-64 !NORES Reference Manual DAYFILE (FILES)

NAME
.. .I61esldayfile7 - INORES login message

DESCRIP'IlON
The contents of the dayfile reflect user information of general system interest, and is more or
less analogous to letdm.otd in UNIX. The file has no set format; it is simply copied at login
time to the standard output device by the monitor if the -s or -cl options have not been re­
quested. Moreover the dayfile is not mandatory, and its absence will not generate errors of
any sort; the same is true when the dayfile is present but not readable.

DBTMPL T (FILES) INGRES Reference Manual PS2:10·65

NAME
.. .Ifilesldbtmplt7 - database template

DESCRIPI10N
This file contains the template for a database used by creatdb. It has a set of entries for each
relation to be created in the database. The sets of entries are separated by a blank line. Two
blank lines or an end of file terminate the file.

The first line of the file is the database status and the default relation status, separated by a
colon. The rest of the file describes relations. The first line of each group gives the relation
name followed by an optional relation status, separated by a colon. The rest of the lines in
each group are the attribute name and the type, separated by a tab character.

All the status fields are given in octal, and have a syntax of a single number followed by a list
of pairs of the form

±x±N
which says that if the ± x flag is asserted on the creatdb command line then set (clear) the bits
specified by N.

The first set of entries must be for the relation catalog, and the second set must be for the at·
tribute catalog.

EXAMPLE .
3-c-1 +q+2:0 I 0023
relation:-c-20
relid cl2
relowner c2
relspec it

attribute:-c-20
attrelid c 12
attowner c2
attname cl2

(other relation descriptors)

SEE AlSO
creatdb(unix)

PS2:10-66 INGRES Reference Manual ERROR (FILES)

NAME
.. .tfiles/error7 _? - files with INGRES errors

D£SCRIPI'ION
These files contain the INGRES error messages. There is one file for each thousands digit; e.g.,
error number 2313 will be in file error7 _2.
Each file consists of a sequence of error messages with associated error numbers. When an er­
ror enters the front' end, the appropriate file is scanned for the correct error number. If
found, the message is printed; otherwise, the tirst message parameter is printed.
Each message has the format

ermum <TAB> message tilde.
Messages are terminated by the tilde character (....). The message is scanned before printing.
If the sequence 'Mtn is encountered (where n is a digit from 0 to 9), parametern is substituted,
where %0 is the first parameter.
The parameters can be in any order. For example, an error messqe can reference· %2 before
it references %0.

EXAMPLE
1003
1005
1006

line %0, bad database name % l-
In the purge of % 1, a bad %0 caused execution to halt­
No process, try again.-

GRAALE (ALES) INGRES Reference Manual PS2:10-67

NAME
.. .Ifileslgrafile7 - GEO-QUEL login message

DESCRlPllON
The contents of the grafile (GEO-QUEL dayfile) reflect user information of general system in­
terest, and is more or less analogous to letc/motel in UNIX. The file has no set format; it is
simply copied at login time to the standard output device by GEO-QUEL if the -8 or -d options
have not been requested. Moreover the grafile is not mandatory, and its absence will not gen­
erate errors of any sort; the same is true when the grafile is present but not readable.

PS2:1()'68 INGRES Reference Manual LIBQ (FILES)

NAME
libq - Eque1 run-time support library

DESCJUP110N
Lihq all the routines necessary for an· equel program to load. It typically resides in
luir/liblUbq.a, and must be specified when loading equel pre-processed object code. It may be
referenced on the command line of cc by the abbreviation -Iq.

Several useful routines which are used by equel processes are included in the library. These
may be employed by the equel programmer to avoid code duplication. They are:

int
char
int

char
char
int

char
char

char
int

int
char

int
char

llatoi(buf, i)
*buf;
i;

*Ilbmove(source, destination, len)
*source, *destination;
len;

*I1concatv(buf, argI, arg2 , 0)
*buf, *argl, ... ;

*lIitos(i)
i' .'
Ilsequal(sl, s2)
*51 •. *52;

Illength(string)
*string; .

IIsyserr(string, arg 1, arg2, ...);
char *string;

I1atoi

I1bmove

I1concatv

IIitos

llsequal

lIlength

IIsyserr

l!atoi is equivalent to atoi(UTIL).

Moves len bytes from source to destination, returning a pointer to the location
after the last byte moved. Does not append a null byte.

Concatenates into buf all of its arguments, returning a pointer to the null byte at
the end of the concatenation. Buf may not be equal to any of the arg-n but arg 1.

IIitos is equivalent to itoa(III).

Returns 1 itt' strings s 1 is identical to 52.
Returns max(length of string without null byte at end, 255)

I1syserr is diferrent from syserr(util) only in that it will print the name in
IIproc_name, and in that there is no 0 mode. Also, it will always call exit(-1)
after printing the error message.

There are also some global Equel variables which may be manipulated by the user:

int lIerrtlag;
char *lImainpr;
char (*IIprinLerr)();
int IIret_err();
int IIuo_err();

LIBQ (FILES) INGRES Reference Manual PS2:10-69

IIerrflag Set on an error from INORES to be the error number (see the error message sec­
tion of the "INORES Reference Manual") that ocurred. This remains valid from
the time the error occum to the time when the next equel statement is issued.
This may be used just after an equel statement to see if it succeded.

IImainpr This is a string which determines which ingres to call when a "#jf. ingres" is i~
sued. Initially it is "/usrlbinlingres".

IIprinLerr This function pointer is used to call a function which determines what (if any)
error message should be printed when an ingres error occurs. It is called from
IIerror() with the error number as an argument, and the error message
corresponding to the error number returned will be printed. If
(*lIprinLerr)(<emlO» returns 0, then no error message will be printed. Initially
IIprint_err is set to IIreLerr() to print the error that ocurred.

IIreLerr Returns its single integer argument. Used to have (*IIprinLerr)() cause printing
of the error that ocurred.

IIno_err Returns O. Used to have (*lIprinLerr)() suppress error message printing.
IIno_err is used when an error in a parametrized equel statemenr occurs to
suppress printing of the corresponding parser error.

SEE ALSO ..
atoi(util), bmove(util), cc(I), equel(unix), exit(II), itoa(III), length(util), sequal(util), sy~rr(util)

PS2:10-70 INGRES Reference Manual PROCT AB (FILES)

NAME
. ..lfileslproctab 7 - INORES runtime configuration information

DESClUPTION
The process table describes the runtime configuration of the INORES system. Each line of the
process table has a special meaning depending on the first character of the line. Blank lines
and lines beginning with an ast~risk are comments. All other lines have a sequence of fields
separated by commas. Pipe descriptor fields are lower case letters or digits; if they are digits
they are replaced by file descriptors from the EQUEL flag or the @ flag.

D defines a macro. The first field is a single character macro name. The second field is the
string to use as the value. Macros are expanded using "Sx" where x is the macro name. The
macro "P" is predefined to be the pathname of the INORES subtree.

P introduces a process description. All lines up to an end of file or another P line describe a
single process. The first field is the process number. The next field is the patbname of the
binary to execute for this prQCess. The third field is the name of the process to use for print­
ing messages. The fourth field must be a single character lower case letter representing the in­
put pipe that is normally read when nothing special is happening, or a vertical bar followed
by a single digit, meaning to read from that file descriptor. The next field is a set of flags in
octal regarding processing of this process; these are described below. The final field is a single
letter telling what trace flag this process uses.
L defines what modules are defined locally by this process. The first field is the module
number used internally. The second field is a set of flags describing processing of this
module: the only bit defined is the 000 I bit which allows this module to be executed directly
by the user. The third field is the function number in the process which defines this module.
The final field is the module number to be executed after this module completes; zero "is noth- .
ing (return).

R defines modules that are known to this process but which must be passed to another pro­
cess for execution. The first field is the process number the modules· will be found in. The
second field is the pipe to write to get to that process. The third field is the pipe to read to
get a response from that process. The fourth field is a set of flags: 0001 means to write the
output pipe if you get a broadcast message, 0002 means that the process is physically adjacent
on the read pipe, and 000";' means that the process is adjacent on the write pipe.. The fifth
and subsequent fields are the module numbers that are defined by this process.

The status bits for the P liq.e are as follows:

000010 close diagnostic output
000004 close standard input
000002 run in user's directory, not database
000001 run as the user, not as INORES

The lowest numbered process becomes the parent of all the other processes.

WARNING: Giving a user permission to specify his or her own process table will allow them
to bypass all protection provided by INORES. This facility should be provided for system de­
bugging only!

EXAMPLE
The following example will execute a three process system.

DB:SPlbin
DS:SP/source
•••• Process 0 - terminal monitor
PO:SB/monitor:MONITOR:h:0003:M
LO:O:O:O
R 1 :0:a:h:0007: 1
* Process 1 - parser
PI :SB/parser:PARSER:a:OO 14:P
L3:1:0:0

PROCT AB (FILES)

RO:O:h:a:0006:0
R2:0:b:g:0007:5:6:7

INGRES Reference Manual

... Process 2 - data base utilities
P2:$B/alldbu:DBU :b:OO 14:Z
L5:0:6:0
L6:0:0:0
L7:0:1:0
RO:O:g:b:OOOO
Rl:0:g:b:0006

PS2:10-71

PS2:10-72 INGRES Reference Manual STARTUP (FILES)

.. .lfiles/startup -INORES startup file

DISCKD'TION
This file is read by the monitor at login time. It is read before the user startup file specified
in the users file. The primary purpose is to define a new editor and/or shell to call with the \e
or \s commands.

SEE AlSO
monitor(quel), users(files)

TTYTYPE (FILES) INGRES Reference Manual PS2:10-73

NAME
.. .Ifileslttytype - GEO-QUEL terminal type database

DESCRIPI'ION

BUGS

The ttytype file describes each terminal on your system. GEO-QUEL will not attempt to display
graphical output on terminals that are not capable of displaying it. There is a sample of the
file in •• Jgeoquellttytype.sample. This is a copy of the file in use on the Berkeley system.

The ttytype file consists of a series of lines; the first character is the terminal id, and the rest
of the line tells the type of the terminal. The first of these characters is a terminal class, and
the rest signify the brand, or some other more descriptive indication. A completely blank line
terminates the useful part of the file, after which comments may appear unrestricted. In the
sample file the currently recognized (defined) terminal types are listed as comments.

The current version of GEO-QUEL only looks for terminals of graphic nature and therefore only
the graphic terminals need be in this database. If any other system or sub-system wishes to
use this file, all terminals must be kept up to date.

PS2:10-74 INGRES Reference Manual USERS (FILES)

NAME
.. .Ifileslusers - INORES user codes and parameters

DESClUPTION
This file contains the user information in fields seperated by colons. The fields are as follows:
• User name, taken directly from Ietclpasswd file.
• User code, assigned by the INORES super .. user. It must be a unique two character code.
* UNIX user id. This MUST match the entry in the /etdpasswd file.
• UNIX group id. same comment applies.
• Status word in octal. Bit values are:

0000001 creatdb permission
0000002 permits batch update override
0000004 permits update of system catalogs
0000020 can use trace flags
0000040 can turn off qrymod
0000 100 can use arbitrary proctabs
0000200 can use the -proctab form
0100000 ingres superuser

• A list of flags automatically set for this user.
• The process table to use for this user.
* An initialization file to read be read by the monitor at login time.
• Unassigned.
• Comma seperatcd list of databases. If this list is null. the· user may enter any database. If it

begins with a • -', the user may enter any database except the named databases. Oth­
ef\Vise, the user may . only enter the named datab~.

Giving permission to a user to use arbitrary process tables is tantamount to turning off the
protection system for that user.

EXAMPLE
ingres:aa:S:2: 177777:-d:=special:lmntlingresl.ingres::
guest:ah:3S: 1 :OOOOOO:::::demo,guest

SEE ALSO
initucode(util)

INTRODUCT.ION (ERROR) INGRES Reference Manual PS2:1O-75

NAME
Error messages introduction

DESCRIPTION
This document describes the error returns which are possible from the INGRES data base sys­
tem and gives an explanation of the probable reason for their occurrence. In all cases the er­
rors are numbered nxxx where·n indicates the source of the error, according to the following
table:

1 = EQUEL preprocessor
2 == parser
3 = query modification
4 == decomposition and one variable query processor
5 = data base utilities
30 ,. GEO-QUEL errors

For a description of these routines the reader is referred to The Design and Implementation of
!NGRES. The xxx in an error number is an arbitrary identifier.

The error messages are stored in the file .• .Ifiles/error7 _no where n is defined as above. The
format of these files is the error number, a tab character, the message to be printed, and the
tilde character (..... ') to delimit the message.

In addition many error messages have "%i" in their body where i is a digit interpreted as an
offset into a list of parameters returned by the source of the error. This indicates that a
parameter will be inserted by the error handler into the error return. In most cases this
parameter will be self explanatory in meaning.

Where the error message is thought to be completely self explanatory, no additional descrip-"
tion is provided. .

PS2:10-76 [NGRES Reference Manual PARSER (ERROR)

NAME
Parser error message summary

SYNOPSIS
Error numbers 2000 - 2999.

DESCRlPI10N

ERllORS

The foUowing errors can be generated by the parser. The parser reads your query and
translates it into the appropriate internal form; thus, almost all of these errors indicate syntax
or type contlict problems.

2000 %0 errors were found in quel program

2100 line %0, Attribute "% I' not in relation "%2'

This indicates that in a given line of the executed workspace the indicated attribute
name is not a domaiD in the indicated relation.

2103 line %0, Function type does not match type of attribute '% I'

This error will be returned if a function expecting numeric data is given a character
string or vice versa. For example, it is illegal to take the SIN of a character domain.

2106 line %0, Data base utility command buffer pverflow .

This error will result if a utility command is too long for the buffer space allocated to
it in the parser. You must shorten the command or recompile the parser.

2107 line %0, You are not allowed to update this relation: % I
. This error will be returned if 'you attempt to update any system ~lation or secondary
index directly in Qua (such as the RELATION relation). Such' operations ~hich
compromise the integrity of the data base are not .allowed.

2108 . line %0, Invalid resnlt relation for APPEND"%l'

This error message will occur if you execute an append command to a relation that
does not exist, or that you cannot access. For example~ append to junk(...) will fail
if junk does not exist.

2109 line %0, Variable"%r not declared in RANGE statement

Here; a symbol Was used in a QUEL expression in a place where a tuple variable was
expected and this symbol was not defined via a RANGE. statement.

2111 line %0, Too many attributes in key for INDEX

A secondary index may have no more than 6 keys.

2117 line %0, Invalid relation name "%r in RANGE statement

You are declaring a tuple variable which ranges over a relation which does not exist.

2118 line %0, Out of space in query tree· Query too long

You have the misfortune of creating a query which is too long for the parser to dig.
est. The only options are to shorten the query or recompile the parser to have more
buffer space for the query tree.

2119 line %0, MOD operator not defined for tloating point or character attributes

The mod operator is only defined for.integers.

2120 line %0, no pattern match operators allowed in the target list

Pattern match operators (such as ... ") can only be used in a qualification.

2121 line %0, Only character type domains are allowed in CONCA T operator

PARSER(ERROR) INGRES Reference Manual PS2:10-77

2123 line %0, "% 1.alr not defined for replace

2125 line %0, Cannot use aggregates ("avg" or "avgu") on character values
2126 line %0, Cannot use aggregates ("sum" or "sumu") on character values
2127 line %0, Cannot use numerical functions (ATAN, COS, GAMMA, LOG, SIN, SQRT,

EXP, ADS) on character values
2128 line %0, Cannot use unary operators (" +" or "-") on character values
2129 line %0, Numeric operations (+ - • /) not allowed on character values

Many functions and operators are meaningless when applied to character values.

2130 line %0, Too many result domains in target list

Maximum number of result domains is MAXDOM (currently 49).

2132 line %0, Too many aggregates in this query

Maximum number of aggregates allowed in a query is MAXAGG (currently 49).

2133 line %0, Type conflict on relational operator

It is not legal to compare a character type to a numeric type.

2134 line %0, "%1' is not a constant operator.
Only' dba' or 'usercode' are allowed.

2135 line %0, You cannot duplicate the name of an existing relation(%l)

2136
2137

. 2138

• You have tried to create a relation which would redefine an existing relation. Choose
another name.

line %0, There is no such hour as % 1, use a 24 hour clock system
line %0, There is no such minute as % 1, use a 24 hour clock system
line %0, There is no such time as 24:%1, use a 24 hour clock system

Errors 2136-38 indicate that you have used a bad tiine in a permit statement.. Legal
times are from 0:00 to 24:00 inclusive.

2139 line %0, Your database does not support query modification

You have tried to issue a query modification statement (define), but the database was
cr~3ted with the -q Oag. To use the facilities made available by query modification,
you must say:

creatdb -e +q dbname

to the shell.

2500 line %0, The word '% 1', cannot follow this command

A 2500 error is reported by the parser if it cannot otherwise classify the error. One
common way to obtain this error is to omit the required parentheses around the tar­
get list. The parser reports the last symbol which was obtained from the scanner.
Sometimes, the last symbol is far ahead of the actual place where the error occurred.
The string "EOF" is used for the last symbol when the parser has read past the query.

2501 line %0, The word '%1', cannot follow a RETRIEVE command
2502 line %0, The word '%1', cannot follow an APPEND command
2503 line %0, The word ,%1', cannot follow a REPLACE command
2504 line %0, The word '%1', cannot follow a DELETE command
2507 line %0, The word '%1', cannot follow a DESTROY command
2508 line %0, The word '%1', cannot follow a HELP command
2510 line %0, The word '%1', cannot follow a MODIFY command
2511 line %0, The word '%1', cannot follow a PRINT command
2515 line %0, The word '%1', cannot follow a RETRIEVE UNIQUE command
2516 line %0, The word '%r, cannot follow a DEFINE VIEW command
2519 line %0, The word '%r, cannot follow a HELP VIEW, HELP INTEGRITY, or HELP

PERMIT command
2522 line %0, The word '%1', cannot follow a DEFINE PERMIT command

PS2:10-78 INGRES Reference Manual PARSER (ERROR)

2523 line %0, The word "%1', cannot follow a DEFINE INTEGRITY command
2526 line %0, The word "% I', cannot follow a DESTROY INTEGRITY or DESTROY

PERMIT command
Errors 2502 through 2526 indicate that after an otherwise valid query, there was
something which could not begin another command. The query was therefore abort­
ed, since this could have been caused by misspelling wllere or something equally as
dangerous.

2600 syntax error on line %0
last symbol read was: "%1'

2601 line %0, Syntax error on "%1', the correct syntax is:
RETRIEVE [[INT01relname] (target_list) [WHERE qual]
RETRIEVE UNIQUE (targeClist) (WHERE qual]

2602 line %0, Syntax error on "%1', the correct syntax is:
APPEND [TO] relnam.e (target~t) (WHERE qual]

2603 line %0, Syntax error*a%r, the correct syntax is:
REPLACE tuple_variable (target_list) [WHERE qual]

2604 line %0, Syntax error on "%1', the correct syntax is:
DELETE tuple_variable (WHERE qual]

2605 line %0, Syntax error on '%l', the correct syntax is:
COpy relname (domname .. format (. domname .. format}) direction

2606 line %0, Syntax error on "%1', the correct syntax is:
- CREATE relname (domnamel .. formate, domname2 .. format})

2607 line %0, Syntax error on "%r, the correct syntax is:
DESTROY relname{, relname}
DESTROY [PERMIT I INTEGRITY] relname [integer integer} I ALL]

2609 line %0, Syntax error on '%1', the correct syntax is:
INDEX ON relname IS. indexname (domainl{,domain2})

2610 line %0, Syntax error on '% 1', the correct syntax is:
MODIFY relname TO storage-structure [ON keyl [: sortord]
[{, key2 [:sortorder]}]] (WHERE [FILLFACTOR .. nl {, MINPAGES .. n] [, MAX·
PAGES .. n11

2611 line %0, Syntax error on "%1', the correct syntax is:
PRINT relname{, relname}

2612 line %0, Syntax error on '%1', the correct syntax is:
RANGE OF variable IS relname

2613 line %0, Syntax error on "%1', the correct syntax is:
SAVE relname UNTIL month day year

2614 line %0, Syntax error on "%1', the correct syntax is:
DEFINE VIEW name (target list) [WHERE qual]
DEFINE PERMIT oplist {ONIOFITO} Vat [(attlist)] TO name [AT term] [FROM
time TO time] [ON day TO day] [WHERE qual]
DEFINE INTEGRITY ON vat IS qual

2615 line %0, Syntax error on '%1', the correct syntax is:
RETRIEVE UNIQUE (targeLlist) [WHERE qual]

2616 line %0, Syntax error on "% 1', the correct syntax is:
DEFINE VIEW name (target_list) [WHERE qual]

2619 line %0, Syntax error on '%1', the correct syntax is:
HELP VIEW relname[, relname]
HELP PERMIT relname(, relname]
HELP INTEGRITY relname(. relname]

2622 line %0, Syntax error on '%1', the correct syntax is:
DEFINE PERMIT oplist {ONIOFITO} var [(attlist») TO name [AT term] [FROM
time TO time] [ON day TO day] (WHERE qual]

2623 line %0, Syntax error on '%1', the correct syntax is:
DEFINE INTEGRITY ON var IS qual

PARSER (ERROR) INGRES Reference Manual PS2:10-79

Errors 2600 through 2623 are generated when a command's syntax has been violated.
The correct syntax is given. If the command cannot be determined, error 2600 is
given.

2700 line %0, non-terminated string

You have omitted the required string terminator (").

2701 line %0, string too long

Somehow, you have had the persistence or misfortune to enter a character string con­
stant longer than 255 characters.

2702 line %0, invalid operator

You have entered a character which is not alphanumeric, but which is not a defined
operator, for example, "?".

2703 line %0, Name too long '%1'

In INGRES relation name.s and domain names are limited to 12 characters.

2704 line %0, Out of space in symbol table - Query too long

Your query is too big to process. Try breaking it up with more \go commands.

2705 line %0, non-terminated comment

. You have left off the comment terminator_symbol ("*/").

2707 line %0, bad floating constant: %1

Either your floating constant was incorrectly specified or it was too large or too small.
Currently, overflow and underflow are not checked.

2708 line %0, control character passed in pre-converted string

In EQUEL a control character became embedded in a string and was not caught until
the scanner was processing it.

2709 line %0, buffer overflow in converting a number

Numbers cannot exceed 256 characters in length. This shouldn't become a problem
until number formats in INGRES are increased greatly.

2800 line %0, yacc stack overflow in parsing query

PS2:10-80 INORES Reference Manual QRYMOD(ERROR)

NAME
Query Modification error message summary

SYNOPSIS
Error numbers 3000 - 3999.

DESCRIPfION
These error messages are generated by the Query Modification module. These errors include
syntactic and semantic problems from view, integrity, and protection definition, as well as run
time errors - such as inability to update a view, or a protection violation .

.
3490 INTEGRITY on %1: cannot handle aggregates yet

You cannot define integrity constraints which include aggregates.

3491 INTEGRITY on %1: cannot handle multivariable constraints

You cannot define integrity constraints on more than a single variable.

3492 INTEGRITY on % 1: constraint does not initially hold

When you defined the constraint, there were already tuples in the relation which did
not satisfy the constraint. You must fix the relation so that the constraint holds be­
fore you can declare the constraint.

3493 INTEGRITY on %1: is a.view

You can not de1iDe integrity constraints on views.

3494 INTEGRITY on ~,l: You must own '%"
You must own the relation when you declare integrity constraints.

3500 %0 on relation %1: protection violation

You have tried to perform an operation which is not permitted to you.

3590 PERMIT: bad terminal identifier "%2"

In a permit statement, the terminal identifier field was improper.

3591 PERMIT: bad user name "%2"

QRYMOD(ERROR) INGRES Reference Manual

You have used a user name which is not defined on the system.

3592 PERMIT: Relation '%1' not owned by you

You must own the relation before issuing protection constraints.

3593 PERMIT: Relation '%r must be a real relation (not a view)

You can not define permissions on views.·

3594 PERMIT on %1: bad day-of-week '%2'

The day-of-week code was unrecognized.

3595 PERMIT on %1: only the DBA can use the PERMIT statement

PS2:10-81

Since only the DBA can have shared relations, only the DBA can issue permit state­
ments.

3700 tree buffer overflow in query modification
3701 Tree build stack overflow in query modification

Bad news. An internal buffer has overflowed. Some expression is too large. Try
making your expressions smaller.

c

PS2:10-82 INDRES Reference Manual OVQP(ERROR)

NAME
One Variable Query Processor error message summary

SYNOPSIS
Error numbers 4000 - 4499.

DESCIUPrION

ERRORS

These error messages can be generated at run time. The One Variable Query Processor actu­
ally references the· data, processing the tree produced by the parser. Thus, these error mes­
sages are associated with type conflicts detected at run time.

4100 ovqp query list overflowed

This error is produced in the unlikely event that the internal form of your interaction
requires more space in the one variable query processor than has been allocated for a
query buffer. There is not much you can do except shorten your interaction or
recompile OVQP with a larger query buffer.

4106 the interpreters stack overflowed - query too long
4107 the buffer for ASCII and CONCAT commands overflowed

More buffer overflows.

4108 cannot use arithmetic operators on two character fields
4109 cannot use numeric values with CONCAT operator

You have tried to perform a numeric operation on character fields.

4110 floating ,point exception occurred.

If you, have floating point bardware instead of the floating point software interpreter,
you wiU get this error upon a floating point exception (underflow or overflow), Since
the software' interpreter ignores such exceptions. this error is only possible with flpat.
ing point hardware.

4111 character value cannot be converted to numeric due to incorrect syntax.

When using intI, int2, int4, float4, or floatS to convert a character to value to a
numeric value, the character value must have the proper syntax. This error will oc­
cur if the character value contained non-numeric characters.

4112 ovqpquery vector overflowed

Similar to error 4100.

4113 compiler text space ran out
4114 compiler ran out of registers

These errors refer to an experimental version of the system that is not currently
released.

4199 you must convert your 6.0 secondary index before running this query!

The intemal format of secondary indices was cha:nged between versions 6.0 and 6.1
of INORES. Before deciding to use a secondary index OVQP checks that it'is not a
6.0 index. The solution is to destroy the secondary index and recreate it.

DECaMP (ERROR) INGRES Reference Manual PS2:10-83

NAME
Decomposition error message summary

SYNOPSIS
Error numbers 4500 - 4999.

DESCRIPTION

ERRORS

These error messages are associated with the process of decomposing a multi-variable query
into a sequence of one variable queries which can be executed by OVQP.

4602 query involves too many relations to create aggregate function intermediate result.

4610
4611
4612

In the processing of aggregate functions it is usually necessary to create an intermedi­
ate relation for each agg{Cg3.te function. However, no query may have more than ten
variables. Since aggregate functions implicitly increase the number of variables in
the query, you can exceed this limit. You must either break the interaction apart
and process the aggregate functions separately or you must recompile INGRES to sup­
port more variables per query.

- 4613

Query too long for available buffer space (qbufsize).
Query too long for available buffer space (varbufsiz)
Query too long for available buffer space (sqsiz)
Query tOQ long for available buffer space (stacksiz)
Query too long for available buffer space (agbufsiz). 4614

These will happen if the internal form of the interaction processed by decomp is too
long for the available buffer space. You must either shorten your interaction or
recoInpile decomp. The name in parenthesis gjves the internal name of which buffer
was too small. . .

4615 Aggregate function is too wide or has too many domains.

The internal form of an aggregate function must not contain more than 49 domains
or be more than 1010 bytes wide. Try breaking the aggregate function into two or
more parts.

-

4620 Target list for "retrieve unique" has more than 49 domains or is wider than 1010
bytes.

PS2;10-84 INORES Reference Manual DBU(ERROR)

NAME
Data Base Utility error message summary

SYNOPSIS
Error numbers 5000 - 5999

DESCRIPTION

EJUlORS

The Data Base Utility functions perform almost all tasks which are not directly associated
with processing queries. The error messages which they can generate result from some syntax
checking and a considerable amount of semantic checking.

5001 PRINT: bad. relation name %0

You are trying to print a relation which doesn't exist.

5002 P~: %0 is a view and can't be printed

The only way to print a view is by retrieving it.

5003 PRINT: Relation %0 is protected.

You are not authorized to access this relation.

5102 CREATE: duplicate relation name %0
You are trying to create a relation which already exists.

51 03 CREATE: %0 is a system relation

Yau cannot create a relation with. the same name as a system relation. The system
depends on the fact that the system relations are unique.

5104 CREATE %0: invalid attribute name %1

This will happen if you try to create a relation with an.attribute lo~r than ·12 char­
acters.

5105 CREATE %0: duplicate attribute name % 1

Attribute names in a relation must be unique. You are trying to create one with a
duplicated name.

5106 CREATE %0: invalid attribute format 8%2" on attribute %1

The allowed formats for a domain are c1-c255, it, i2, i4, f4 and fB. Any other for­
mat will generate this error.

5107 CREATE %0: excessive domain count on attribute % 1

A relation cannot have more than 49 domains. The origin of this magic number is
obscure. This is very difficult to change.

5108 CREATE %0: excessive relation width on attribute % 1

The maximum number of bytes allowed in a tuple is 1010. This results from the de­
cision that a tuple must fit on one UNIX "page". Assorted pointers require the 14
bytes which separates 1010 from 1024. This "magic riumber" is very hard to ·change.

5201 DESTROY: %0 is a system relation

The system would immediately stop working if you were allowed to do this.

5202 DESTROY: %0 does not exist or is not owned by you

To destroy a relation, it must exist, and you must own it.

5203 DESTROY: %0 is an invalid integrity constraint identifier

Integers given do not identify integrity constraints on the specified relation. For ex­
ample: If you were to type • destroy permit parts 1, 2. 3·, and 1, 2, or 3 were not the
numbers "help permit parts" prints out for permissions on parts, you would get this

DBU(ERROR) INGRES Reference Manual PS2:10-85

error.

5204 DESTROY: %0 is an invalid protection constraint identifier

Integers given do not identify protection constraints on the specified relation. Exam­
ple as for error 5203.

5300 INDEX: cannot find primary relation

The relation does not exist - check your spelling.

5301 INDEX: more than maximum number of domains

A secondary index can be created on at most six domains.

5302 INDEX: invalid domain %0
You have tried to create an index on a domain which does not exist.

5303 INDEX: relation %0 not owned by you

You must own relations to put indicies on them.

5304 INDEX: relation %0 is already an index

INGRES does not permit tertiary indicies.

5305 INDEX: relation %0 is a system relation

Secondary indices cannot be created on system relations.

5306 INDEX: %0 is a view and an index can't be built on it

Since views are not physically stored in the database, you cannot build indicies on
them.

·5401 HELP: relation %0 does not exist

5402 HELP: cannot find manual section "%0·

Either the desired manual section does not exist, or your system does not have any
on-line documentation.

5403 HELP: relation %0 is not a view

Did a "help view" (which prints view definition) on a nonview. For example: "help
view overpaidv" prints out overpaidv's view definition.

5404 HELP: relation %0 has no permissions on it granted
5405 HELP: relation %0 has no integrity constraints on it

You have tried to print the permissions or integrity constraints on a relation which
has none specified. .

5410 HELP: tree buffer overflowed
5411 HELP: tree stack overflowed

Still more buffer overflows.

5500 MODIFY: relation %0 does not exist

5501 MODIFY: you do not own relation %0

You cannot modify the storage structure of a relation you do not own.

5502 MODIFY %0: you may not provide keys on a heap

By definition, heaps do not have keys.

5503 MODIFY %0: too many keys provided

You can only have 49 keys on any relation.

5504 MODIFY %0: cannot modify system relation

PS2:10·86 INGRES Reference Manual DBU(ERROR)

System relations can o~ly be modified by using the sysmod command to the shell; for
example

sysmod dbname
5507 MODIFY %0: duplicate key "%1"

You may only specify a domain as a key once.

5508 MODIFY %0: key width (%1) too large for isam

When modifying a relation to isam, the sum of the width of the key fields cannot
exceed 245 bytes ..

5510 MODIFY %0: bad storage structure "% I"

The valid storage structure names are heap, cheap, isam, cisam, hash, and chash.

5511 MODIFY %0: bad attribute name "%1"

You have specified an attribute that does not exist in the relation.

5512 MODIFY %0: "%1" not allowed or specified more than once

You have specified a parameter which conflicts with another parameter, is inconsis·
tant with the storage mode, or which has already been specified.

5513 MODIFY %0: fillfactor value %1 out of bounds

Fillfactor must be between 1 and 100 percent.

5514 MODIFY %0: minpages value %1 out of bounds

Minpages must be greater than zero.

5515 MODIFY %0: "%1" should be "fillfactor", "maxpages", or "minpages"

You.have specified an unknown parameter to modify.

5516 MODIFY %0: maxpages value %1 out of bounds

5517 MODIFY %0: minpages value exceeds maxpages value

5518 MODIFY %0: invalid sequence specifier "%1" for domain %2.

Sequence specifier may be "ascending" (or "a") or "descending" (or "d") in a modi­
fy. For example:

modify parts to heapsort on
pnum:ascending,
pname:descending

5519 MODIFY: %0 is a view and can't be modified

Only physical relations can be modified.

5520 MODIFY: %0: sequence specifier' "%1" on domain %2 is not allowed with the
specified storage structure.

Sortorder may be supplied only when modifying to heapsort or cheapsort.

5600 . SAVE: cannot save system relation "%0"

System relations have no save date and are guaranteed to stay for the lifetime of the
data base.

5601 SA VB: bad month "%0"
5602 SA VB: bad day "%0"
5603 SA VB: bad year "%0"

This was a bad month, bad day, or maybe even a bad year for INGRES.

5604 SA VB: relation %0 does not exist or is not owned by you

DBU(ERROR) INGRES Reference Manual PS2:10-87

5800 COPY: relation %0 doesn't exist

5801 COPY: attribute %0 in relation %1 doesn't exist or it has been listed twice

5803 COPY: too many attributes

Each dummy domain and real domain listed in the copy statement count as one at­
tribute. The limit is 150 attributes.

5804 COPY: bad length for attribute %0. Length."%l"

5805 COPY: can't open file %0
On a copy "from", the file is not readable by the user.

5806 COPY: can't create file %0

On a copy "into", the file is not creatable by the user. This is usually caused by the
user not having write permission in the specified directory.

5807 COPY: unrecognizable dummy domain "%0"
On a copy "into", a dummy domain name is used to insert certain characters into the
unix file .. The domain name given is not valid.

5808 COPY: domain %0 size too small for conversion.
There were %2 tuples successfully copied from %3 into %4
When doing any copy except character to character, copy checks that the field is large'
enough to hold the value being copied.

5809 COPY: bad input string for domain %0. Input was "%1". There were %2 tuples suc­
cessfully copied from %3 into %4
This occurs when converting' character strings to integers or floating point numberS.
The character string contains something other than, numeric characters (0-
9,+,-,blank,etc.).

5810 COPY: unexpected end of file while filling domain %0.
There were % 1 tuples successfully copied from %2 into %3

5811 COPY: bad type for attribute %0. Type="%l"

The only accepted types are i, f, c, and d.

5812 COPY: The relation "%0" has a secondary index. The index(es) must be destroyed
before doing a copy "from"

Copy cannot update secondary indices. Therefore, a copy • from" cannot be done on
an indexed relation.

5813 COPY: You are not allowed to update the relation %0

You cannot copy into a system relation or secondary index.
5814 COPY: You do not own the relation %0.

You cannot use copy to update a relation which you do not owo. A copy "into" is al­
lowed but a copy "from" is not.

5815 COPY: An unterminated "cO" field occurred while filling domain %0. There were %1
tuples successfully copied from %2 into %3

A string read on a copy "from" using the "cO" option cannot be longer than 1024
characters.

5816 COPY: The full pathname must be specified for the file %0

The file name for copy must start with a "r.
5817 COPY: The maximum width of the output file cannot exceed 1024 bytes per tuple

PS2:10-88 INGRES Reference Manual DBU(ERROR)

.
The amount of data to be output to the file for each tuple exceeds 1024. This usually
happens only . if a format was mistyped or a lot of large dummy domains were
specified.

5818 COPY: %0 is a view and can't be copied

Only physical relations can be copied.

5819 COPY: Warning: %0 duplicate tupleswere ignored.
On a copy ~from", duplicate tuples were present in the relation.

5820 COPY: Warning: %0 domains had control characters which were converted to
blanks.

5821 COPY: Warning: %0 cO character domains were truncated.

Character domains in cO format are of the same length as the domain length. You
had a domain value greater than this length, and it was truncated.

5822 COPY: Relation %0 is protected.

You are not authorized to access this relation.

