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1. INTRODUCTION: WHY DO WE NEED THE SERIAL BUS ?

No matter how fast and capable computers and microprocessors become, there
always seem to be applications which are just beyond the ability of a
particular processor. A processor may not be fast enough to process inputs in
"real time", or may not provide fast enough response time to satisfy users,
etc. It simply takes too long to "get the job done".

In the past such applications often had to be delayed until a new and faster
processor was developed, which was also cost-effective for the application.
But recent microprocessors have added hardware features which allow more than
one of them to be hooked together in a system. Such multiprocessor systems
provide an altermative to waiting for a faster processor to be developed. Two
or more processors can share the processing load of the system and provide the
necessary "real time" processing, faster response time, and so on.

A well-known and respected lady computer scientist uses an analogy from the
early days of oxcarts. When the first oxcart users and engineers encountered a
load which was too heavy for their ox to pull, they did not put off moving the
load until a larger ox was developed. They simply hooked up two oxen to the
cart and did the job. Her message is that multiprocessor systems should be
more widely used.

To some extent, multiprocessing is a field in which hardware development has
outrun software development. Much of current software thinking and techniques
are tied to the single-processor systems for which existent software was
developed. Multiple processor systems pose new problems for system software
designers, and solutions to these problems are still evolving.

A number of possible ways to design software for multiprocessing have been
developed. Single-~-processor multitasking techniques can be extended for
multiple processors. Multitasking can be thought of as the sharing of a
processor among several tasks (programs or parts of a program). The processor
is first assigned to one task which it executes for a while, then to another
task for a while, then to another, etc.

The most straightforward way to extend single-processor multitasking into the
multiprocessor environment is to give each processor a more or less fixed set
of tasks which it executes. More complex multiprocessor software techniques
include "anonymous processor" systems, wherein any available processor can
execute any task in the system.

Other computer scientists argue that classic multitasking techniques are
unreliable in the multiprocessor environment because the number of ways the
processors can interact is very large, and it is too easy for some interactions
to be overlooked by system designers. These people say that the only way to
assure reliable, fully debugged multiprocessor software is to program all the
processors in one program, which specifies and controls all the ways in which
the processors can interact.
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Alternative approaches will probably continue to be developed and debated for
some time. However, in all of the approaches there are certain common needs.
If we can design system hardware which helps satisfy these needs, it makes the
implementation of multiprocessor systems more straightforward for everyone.

The serial bus is intended to meet the needs of multiprocessor systems. The
following sections describe some of these needs and how the serial bus provides
for them.

1.1 THE SERIAL BUS ALLOWS THE COMMUNICATION OF EVENTS

An event could be defined as any significant occurrence which is not a direct,
immediate, and normal result of what the processor is currently doing. For
example, if a program commands a disk controller to start a transfer, we would
not consider the fact that the disk controller starts to be an event. The
completion of the disk transfer is an event.

We will discuss events as they impact multitasking systems. In such systems
there is normally a task for each event that the system recognizes. When an
event occurs, the processor may be reassigned from executing one task to
executing another.

A task can also cause the reassignment of the processor. For example, the task
which is currently being executed by the processor may need to wait for an
event to cccur before it can prcceed. In this case it requests system software
to reassign the processor to other tasks until the event occurs. As another
example, a task may request that another task be executed. Communication
between tasks is often done through such requests.

Each task in a multitasking system has an associated "priority". (All of the
tasks can be "rank ordered" from the highest priority to the lowest.) 1If an
event occurs, for which the task priority is higher than that of the task which
the processor is currently executing, a reassignment takes place. The
processor stops executing the instructions of the old task and starts executing
those of the new event's task.

There are two kinds of events: those which occur outside the processor
(external events), and those which occur inside the processor (internal
events). External events are commonly communicated to the processor by means
of interrupts. Internal events don't need to be communicated to the
processor, but they may still cause it to be reassigned to a new task. (An
example of an internal event is an attempt to divide by zero.)

Microprocessors have a small number of "interrupt request" lines that can be
used to communicate events to them. Since there are usually many possible
events, they must all share these interrupt request lines. When the processor
detects an interrupt, it must gather more information in order to figure out
which event has occurred and which task is to be executed. There are several
methods for doing this: polling of I/0 status registers, reading a "vector"
from the interrupting device, etc. 1In each case the processor does one or
more "read cycles" to collect this information.
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In some systems, an interrupt requires the processor to read from the status
registers of all possible interrupting devices until it finds one that is
generating an interrupt. Since a lot of reads may be required, this method is
rather inefficient. More recent processors use vectored interrupt techniques.

Vectored interrupts work as follows. Each device capable of generating
interrupts is assigned one or more "vectors". Each vector leads to an address
where that event's task begins in the processor's memory. When the event
occurs and the processor is interrupted, it reads this vector from the
interrupting device. This tells the processor the starting address of the new
task to execute.

Earlier we said that tasks can communicate with each other to accomplish a
common purpose. When there are several processors, it may tum out that a task
being executed on ocne processor may need to communicate with a task which is
being (or will be) executed on another. Thus it is important that the
processors have a quick way to communicate events BETWEEN EACH OTHER. (It's
no longer sufficient to simply communicate all events to a single
microprocessor.)

When multiprocessing systems are built using existing backplane buses this may
not be possible. For example, backplanes which were designed for single
processor systems may have only one interrupt line. When building
multiprocessing systems, such an interrupt structure simply won't do the job.

The newer backplane buses have a provision for directing interrupts to several
different processors. For example, VMEbus has seven interrupt request lines
which can each be monitored by a different processor. If a device in the
system needs to communicate an event to a processor, it can request an
interrupt on a line that is monitored by that processor.

But even this approach has its limitations. When a processor acknowledges
(answers) an interrupt request, the processor typically must read a vector
before assigning itself to the new task. If this is done as a transfer on the
system bus, the processor may have to request the bus and wait until it becomes
available. If other bus masters are using the bus, this delay may be too long
or too unpredictable to satisfy the needs of time-critical, high performance
applications. Sometimes the problem can be solved by rearranging the
priorities of the various bus masters, but the other masters' needs for the bus
may be equally or more important to the performance of the system.

We conclude from all this that what is needed is a path specifically designed
for communicating events. To be useful in a multiprocessing system, this path
must allow any processor to communicate events to any other, as well as
permitting other devices in the system to communicate events to any of the
processors. Such communication is ne of the primary purposes of the serial
bus.
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1.2 THE SERIAL BUS AIDS IN "FAULT TOLERANT" SYSTEM DESIGN

Another trend in microprocessor systems is toward applications which demand
"fault tolerance". This simply means that a system must be able to continue
operation despite cne or more hardware failures. One way to satisfy this need
is by using several processors in a system, and providing ways for each
processor to cbserve the cperation of all the other boards, to detect when one
is malfunctioning. Such systems can also include hardware registers on each
board which control the board's backplane bus drivers. If one of the
processors detects a malfunctioning board, it can write into a control register
oan that board and tum off the board's bus drivers, effectively "disconnecting”
it from the backplane.

Since even a failure in a processor could be detected by another prccessor, at
first glance this seems like a good answer to the question of fault tolerance.
The scheme tums out to be inadequate, however, where there is only one pathway
between boards. If the failure on a board is such that it prevents proper
operation of the system bus, a processor may be able to detect the failure, but
it cannot use the system bus to disable the failed board.

The serial bus provides another pathway between boards, which can be used to
prevent a failed module from interfering with the operation of the system bus.
The serial bus can be used to disable the drivers of such a board, or direct a
board-specific Reset to it. Conversely, if a failed board prevents the proper
operation of the serial bus, the system bus can be used to disable the board's
access to the serial bus.

1.3 THE SERIAL BUS PROVIDES FOR "INTELLIGENT SEMAPHORES"

The third primary use of the serial bus is again related to multiprocessor
systems. When a system includes multiple processors which can simultaneously
try to access and use a variety of shared resources (parts of the system), some
means must be found to control this access and use. A simple example of suwch a
problem is when two processors simultaneously set out to use a shared hardware
device such as a printer or disk. Other cases where interprocessor control is
needed include access to: a data file, a data or control table in memory, or a
section of program code which must be used by only cne processor at a time.

The most widely used solution to these problems is the "semaphore". A
semaphore is simply a location in memory which multiple system processors can
access, but not simultaneously. A processor first reads the memory location to
test whether another processor already has control of the shared resource, and
then (if not) it writes to the location to show that it now has control. The
system hardware must ensure that these two steps happen without allowing any
other processor to access the semaphore location. The newer backplane buses
include provisions for semaphore operatims.
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A semaphore in common memory solves some of the problem but is less than
perfect. As the number of processors in a system increases, it becomes more
likely that several of them need to use a resource at the same time. Many
shared parts of a system such as data and control tables are designed to be in
use by a processor for a relatively short time. For such cases, if the
associated semaphore is found to be already set by another processor, a common
software tactic is simply to rerun the "Read-Modify-Write" (RMW) or "Test and
Set" operation until it succeeds. Studies of heavily loaded multiprocessor
systems indicate that a significant percentage of processor cycles and cycles
on the system bus are wasted on repetitive accesses to semaphore locations.
This in tum can reduce the availability of the bus for other uses.

One way to solve this problem is to provide a duplicate copy of each semaphore
on each processor board. The copies of the semaphore should, of course, always
be kept synchronized. If a processor needs to set a particular semaphore, the
corresponding on-board copy is first checked.

If and only if the onboard copy of the semaphore is reset, a RMW operation is
run on the system bus, which affects all the copies of the semaphore in the
system (including the on-board one). If this RMW "succeeds", all copies of the
semaphore are simultaneously set, and the requesting processor is entitled to
use the associated resource. (If two processors issue the RMW at the same
time, system bus arbitration ensures that only one succeeds.) A scheme like
this largely eliminates wasting system bus cycles on polling semaphore
locations in memory.

If the local semaphore is set or the RMW operation on the system bus fails,
system software has two choices. If the nature of the resource controlled by
the semaphore is such that the semaphore will be cleared in a short time, it is
more efficient to "loop" testing the local copy of the semaphore until it is
cleared. An example of such a "short term" semaphore would be cne controlling
access to a data or control table in memory.

But if the semaphore will typically stay set for a relatively long time, system
software and the processor should go on to other tasks. In this case, anboard
hardware must generate an interrupt when the semaphore is cleared so that the
processor can retry the RMW on the system bus. Better still, the onboard
hardware can itself retry setting the semaphore and interrupt the processor
only when it has gained control. An example of such a "long term" semaphore
would be cne controlling access to a physical device like a printer or a disk.

For "long term" semaphores, the serial bus offers a great improvement. A
processor can turn the entire operation of setting the semaphore over to
onboard serial bus hardware, and be interrupted only when the semaphore has
been set and the associated resource is actually available.
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1.4 THE SERIAL BUS ALLOWS TOKEN PASSING SCHEMES

Sometimes a system has a group of several interchangeable resources. If
semaphores are used to allocate these resources, then whenever a resource is
needed, the semaphores must be polled until cne is found to be available. In
some cases it may make more sense to have a "token" in the system for each of
these interchangeable resources, which is passed around among its "users" while
the resource is available, but is retained by a user while it uses the
resource. (Such "token passing” operation can be likened to a "daisy chain" in
a backplane bus, which has been looped back on itself to make a ring.)

The serial bus allows a rlarge number of such tokens (up to 1024) to be created
and passed from board to board with very little software overhead.

1.5 THE SERIAL BUS PROVIDES A LOW COST ALTERNATIVE BUS

The serial bus is a unique new concept in microprocessor system interfacing.
Its capabilities make it very attractive for use in complex multiprocessing
systems. But in addition to its power, a serial bus interface can be
implemented at lower cost than a system bus interface. With the LSI support
which will soon be available, serial bus hardware can be implemented in a
fraction of the board space required for a parallel backplane bus.

Thus the serial bus offers a very attractive alternative to use of a parallel

system bus for boards which do not require a high data rate. It can even be
used as the primary system bus in some applications.
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2.  SERIAL BUS OPERATION

The serial bus interface system consists of two signal lines named SERCIK and
SERDAT* and six module types called HEADER SENDERS, HEADER RECEIVERS, DATA
SENDERS, DATA RECEIVERS, FRAME MONITORS and a SERIAL CLOCK. The SERCIK line is
driven by a totem pole driver in the SERIAL CLOCK module. The SERDAT* line can
be driven Low by all six module types using open collector drivers. When no
module drives SERDAT* Low, the bus terminating resistors pull it to a High
level. The SERDAT* line is a Low-True signal (i.e. a "one" is represented by a
Low level). This fact, plus the open collector characteristics of the drivers,
results in "logical OR'ing" when data is placed on SERDAT* by more than one
module. '

In some cases on-board signals connect modules on the same board, but most
communication between modules is done by sending "frames" on the SERDAT* line.
These frames are composed of "subframes" which are sent by various modules. A
frame is initiated when a HEADER SENDER module sends a "Header subframe". The
other modules then respond by sending subframes according to a prescribed
protocol until the end of the frame is reached.

During the Header subframe transmission, HEADER SENDERS are required to sample
each bit on the SERDAT* line while they are sending. If a HEADER SENDER
detects SERDAT* Low when it is sending a "zero" (i.e. when it isn't driving
SERDAT* Low), it stops sending. This allows other HEADER SENDER(S) to finish
sending the Header subframe without interference. This method of arbitration
allows several HEADER SENDERS to start sending frames simultaneously, without
affecting each others' transmissions. (One of the transmissions will be
successful while the others are tried again later.)

Serial bus modules are found on boards in groups. The following are the most
common groups:

TYPE 1) A HEADER SENDER and a FRAME MONITCR
TYPE 2) A HEADER RECEIVER and a flip-flop
TYPE 3) A HEADER RECEIVER and a DATA SENDER
TYPE 4) A HEADER RECEIVER and a DATA RECEIVER

TYPE 5) A HEADER RECEIVER, a DATA SENDER, and a DATA RECEIVER

A TYPE 1 group is used to initiate frames by sending a "Header subframe". The
Header subframe specifies what other modules will participate in the frame
transmission by providing two ten bit "selection codes". Each HEADER RECEIVER
on the serial bus has a ten bit code which it compares with the two codes in
the subframe. If its code matches either of them, depending on the type of
group the HEADER RECEIVER is in, it responds by changing the state of its flip-
flop, by telling its DATA SENDER to send, or by telling its DATA RECEIVER to
receive.
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2.1 USING THE SERIAL BUS TO TRANSFER DATA

The HEADER SENDER can determine whether there is a frame in progress from the
FRAME IN PROGRESS signal generated by its FRAME MONITOR. If there is no frame
in progress it can initiate one by sending a Header subframe. This subframe
"has a ten bit "S field" and a ten bit "R field". To transfer data, the HEADER
SENDER puts a selection code in the S field that corresponds to some TYPE 3 or
TYPE 5 group on the bus, and a selection code in the R field that corresponds
to some TYPE 4 or TYPE 5 group. (The actual codes used to select these groups
depend on how the system software or firmware has configured the system. There
are no selection codes used exclusively to select TYPE 4 groups, etc.)

Each HEADER RECEIVER on the serial bus compares these codes against its code.
One or more of the TYPE 3 or TYPE 5 HEADER RECEIVERS finds a match with the S
field. It tells its DATA SENDER to send data. In a similar way, one or more
of the TYPE 4 or TYPE 5 HEADER RECEIVERS finds a match with the R field and
tell its DATA RECEIVER to receive data.

The actual number of bytes transferred is left up to the DATA SENDER. After
the HEADER SENDER has sent the Header subframe, the DATA SENDER sends a three
bit subframe indicating the number of bytes it intends to send to the DATA
RECEIVER, followed by the data bytes. The DATA RECEIVER then responds with an
indication that it has received the data bytes.

2.2 USING THE SERIAL BUS TO SET AND RESET FLIP-FLOPS

When a HEADER SENDER is used to set or reset a flip-flop, it sends a Header
subframe as in the case described above. Instead of sending codes for TYPE 3,
4 or 5 groups in the S and R fields, however, it sends the code for a TYPE 2
group in one of the fields, and a "dummy" code (all ones) in the other field.
If the frame is intended to set a flip-flop, it sends the TYPE 2 code in the 'S
field, and the dummy code in the R field. If the frame is intended to reset a
flip-flop, it sends the dummy code in the S field and the code for the TYPE 2
group in the R field.

When the Header subframe is sent, each HEADER RECEIVER on the serial bus
compares the codes in the S and R fields to its own code. One or more HEADER
RECEIVER(S) in a TYPE 2 group matches the S (or R) field and sets (or resets)
its on-board flip-flop. '

2.3 OTHER USES FOR THE SERIAL BUS

As we will see later, groups of serial bus modules like those described above
can be used as building blocks for very powerful system configurations. For
example, the combination of a TYPE 1 and a TYPE 5 group, on each of two boards,
can be used by one board to pass an address and read the contents of a memory
location on the other. TYPE 2 groups can be used to reinitialize one or more
of the boards in a system, or to selectively disconnect a failed board from the
system bus. TYPE 2 groups can be also be used to provide "semaphores" which
are functionally superior to semaphores in a common memory, or to provide
"token passing".
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3. SERIAL BUS FRAMES

As we said in Section 2, a frame is actually composed of subframes which are
sent by several modules in sequence whenever a HEADER SENDER sends a Header
subframe. Depending on the types of module groupings that a frame selects,
different modules drive and receive the various subframes, as follows:

Frames that select TYPE 2 module groups...

Subframe Sent By
Header HEADER SENDER
Frame Type Nobody (000)

Frame Status HEADER RECEIVER

Received By

HEADER RECEIVER
HEADER RECEIVER, FRAME MONITOR
FRAME MONITCR

Frames that select TYPE 3, 4, and 5 mcdule groups...

Subframe Sent By

Header ' HEADER SENDER

Frame Type DATA SENDER

Data DATA SENDER

Frame Status DATA SENDER,
DATA RECEIVER

Frames that get cancelled...

Subf rame Sent By
Beader HEADER SENDER
Frame Type HEADER RECEIVER

Received By

HEADER RECEIVER

DATA RECEIVER, FRAME MONITCR

DATA RECEIVER

FRAME MONITOR, DATA SENDER,
DATA RECEIVER

Received By

HEADER RECEIVER
FRAME MONITOR, DATA SENDER,
DATA RECEIVER

When a Header subframe is sent, modules on the serial bus are selected to
interact during the remainder of the frame. This interaction can be seen on
the serial bus as a sequence of subframe transmissions. Depending on what
mcdule groups are selected, we may see eleven possible kinds of frames.

1) A Flip~flop Set frame
2) A Flip-flop Reset frame
3) A Semaphore Set frame
4) A Token Passing frame

5) A 1 byte Data Transfer frame

6)
7)

9)

A 2 byte Data Transfer frame
A 4 byte Data Transfer frame
8) An 8 byte Data Transfer frame
A 16 byte Data Transfer frame

10) A 32 byte Data Transfer frame

11) A Cancelled frame
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3.1 A FLIP-FLOP SET FRAME
A Flip-flop Set frame contains 4 subframes:

Frame Frame
Header Type Status Jam Bit

S field=TYPE 2 000 010 0
R field=all ones

The Header subframe is sent by a HEADER SENDER. This subframe has two
selection code fields in it: the S field and the R field. The Flip-flop Set
frame has the selection code of a TYPE 2 group in its S field and all ones in
the R field. One (or more) HEADER RECEIVER(S) on the serial bus finds a match
between the S field code and its own code, sets its fllp—flop, and responds
with 010 in the Frame Status subframe.

The Flip-flop Set frame selects TYPE 2 mcdule groups. The HEADER RECEIVER in a
simple TYPE 2 module group never drives SERDAT* during the Frame Type subframe.
Since a TYPE 2 module doesn't include a DATA SENDER, no module drives SERDAT*
in the Frame Type subframe. This results in a three bit Frame Type value of
000 (all High). This value tells all of the FRAME MONITORS on the serial bus
that there will be no data bytes (i.e. that the Frame Status subframe follows
directly, and that the serial bus will be free thereafter). The FRAME MONITORS
use this information to signal their HEADER SENDERS when the next frame can

begin.

After the Frame Type subframe is complete, the HEADER RECEIVER sends 010 in the
Frame Status subframe to indicate that at least one HEADER RECEIVER matched the
S field. This acknowledgment is captured by the FRAME MONITOR that is pa:.red
with the HEADER SENDER, and reported to its on-board logic.

Since the R field in the header contained a "dummy" code of all cnes, no HEADER
RECEIVER matches the R field. (The "all ones" code is never used to select
modules.) Because of this, the Frame Status subframe is only driven by the
HEADER RECEIVER(S) which matched the S field, and remains 010. Since the
header was intentionally arranged not to select an "R-mcdule®, the 010 value is
the expected response.
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3.2 A FLIP-FLOP RESET FRAME
A Flip-flop Reset frame contains four subframes:

Frame Frame

Header Type Status Jam Bit
S field=all cnes | 000 001 0
R field=TYPE 2

The Header subframe is sent by a HEADER SENDER. As in the Flip~-flop Set frame,
this subframe has two selection codes in its S field and R field. The Flip-
flop Reset frame, however, has the selection code of a TYPE 2 group in its R
field and all ones in the S field. One (or more) HEADER RECEIVER(S) on the
serial bus finds a match between the R field ccde and its own code, resets its
flip—flop, and responds with 00l in the Frame Status subframe.

The Flip-flop Reset frame selects TYPE 2 module groups. The HEADER RECEIVER in
a simple TYPE 2 module group never drives SERDAT* during the Frame Type
subframe. Since a TYPE 2 module doesn't include a DATA SENDER, no module
drives SERDAT* in the Frame Type subframe. This results in a three bit Frame
Type value of 000 (all High). This value tells all of the FRAME MONITORS on
the serial bus that there will be no data bytes (i.e. that the Frame Status
subframe follows directly, and that the serial bus will be free thereafter).
The FRAME MONITORS use this information to signal their HEADER SENDERS when the
next frame can begin.

After the Frame Type subframe is complete, the HEADER RECEIVER sends 001 in the
Frame Status subframe to indicate that at least one HEADER RECEIVER matched the
R field. This acknowledgment is captured by the FRAME MONITOR that is paired
with the HEADER SENDER, and is reported to on-board logic.

Since the S field in the header contained a "dummy" ccde of all cnes, no HEADER
RECEIVER matches the S field. Because of this, the Frame Status subframe is
anly driven by the HEADER RECEIVER(S) which matched the R field, and its value
remains 00l. Since the header was intenticnally arranged not to select an "S-
mcdule”, the 001 value is the expected respmse.
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3.3 A SEMAPHORE SET FRAME
A Semaphore Set frame which is "successful" contains four subframes:

Frame Frame
Header Type Status Jam Bit

S field=TYPE 2 000 010 0
R field=Reqg. Ccde

The Header subframe is sent by a HEADER SENDER. As in all frames, this
subframe has two selection codes in its S field and R field. The Semaphore Set
frame has the selecticn ccde of a TYPE 2 group in its S field.

The R field of a Semaphore Set frame contains a ten bit code which represents
the unique identity of the Requester that caused the frame to be sent. System
software should ensure that two HEADER SENDERS are never allowed to send
Semaphore Set frames with the same R field code. (In a multitasking system,
this could be assured by assigning a unique Requester number to each task in
the system.) The unigueness of these Requester numbers guarantees that if two
or more HEADER SENDERS try to set the same semaphore at the same time, only one
of them will survive the serial bus arbitration and finish the frame.

A TYPE 2 group used for semaphore operations differs from a simple Type 2 group
in having the state of its flip~flop fed back into its HEADER RECEIVER. The
HEADER RECEIVER in a TYPE 2 group used for semaphore operations will not accept
a Set frame if its flip-flop is already set. Whenever such a frame is sent,
the HEADER RECEIVER drives the value 11l in the Frame Type field, which
"cancels" the frame. (A Cancelled frame is shown below.)

If the HEADER RECEIVER matches the S ‘field, and its flip-flop is reset,
operation preceeds as described for a Flip-Flop Set frame.

NOTE 1l: Any "Requester code" that is used in the R field of a
Semaphore Set frame should be an ctherwise unused selection ccde, so
that it doesn't select some HEADER RECEIVER on the bus.

NOTE 2: Semaphores are reset using Flip-flop Reset frames, except

that the S field may contain either all ones or the same Requester
ccde used in the Semaphore Set frame.

3-4



3.4 A TOKEN PASSING FRAME
A Token Passing frame which is "successful" contains four subframes:

Frame Frame
Header Type Status Jam Bit

S field=TYPE 2 000 011 0
R field=TYPE 2

The Header subframe is sent by a HEADER SENDER. The Token Passing frame has
the selection code of one TYPE 2 group in its S field and the code of another
TYPE 2 group in its R field. )

As with a TYPE 2 group used for semaphore operations, the HEADER RECEIVER in a
TYPE 2 group used for token passing operations will not accept a Set frame if
its flip-flop is already set. In addition, it will not accept a Reset frame
while its flip-flop is reset. Whenever such a frame is sent, the HEADER -
RECEIVER "cancels" the frame.

A Token Passing frame is sent to simultaneously clear one flip-flop and set
another. (In effect, it is passing a "token bit" from the flip flop it resets
to the one it sets.) If the flip-flop it is trying to reset is already reset
(i.e. it doesn't have a token to pass) the frame will be cancelled. Likewise,
if the flip-flop it is trying to set is already set (i.e. it is already holding
a token) the frame will also be cancelled.

These frame cancellation features ensure that a token bit is never lost or
created in the process of moving it from one board to another.

In a Token Passing frame, the S field of the header identifies the Type 2 group
to which these token is being passed, and the R field identifies the Type 2
group from which it is being passed. Assuming that the HEADER RECEIVER which
matches the S-field has its flip-flop reset, it sends 010 in the Frame Status
subframe. Assuming that the HEADER RECEIVER which matches the R field has its
flip-flop set, it sends 001 in the Frame Status. These two values are
logically OR'ed on the serial bus, resulting in the value 0ll as the "correct"
value reported by the FRAME MONITOR paired with the HEADER SENDER which
initiated the frame.
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3.5 A DATA TRANSFER FRAME

A Data Transfer frame which is "successful" contains five subframes:

Frame Frame
Header Type Data Status Jam Bit
S field=TYPE 3 or 5 | 001-110 (Varies) 011 0
R field=TYPE 4 or 5 -

The Header subframe is sent by a HEADER SENDER. As in all frames, this
subframe has two selection codes in its S field and R field. The S field has
the selection code of a TYPE 3 or Type 5 group, which includes a DATA SENDER.
Similarly, the R-field has the selection code of a TYPE 4 or 5 group, which
includes a DATA RECEIVER. At the conclusion of the Header subframe, the
selected DATA SENDER(S) drive a code on SERDAT* during the Frame Type subframe,
to indicate how many bytes will be sent. While it is sending this ccde, a DATA
SENDER also samples SERDAT*. If it samples the value 111 in the Frame Type,
the frame is "cancelled", and the DATA SENDER terminates its transmission.

Except in a Cancelled frame, the DATA SENDER sends a Data subframe after the
Frame Type subframe. The Data subframe may be 1, 2, 4, 8, 16, or 32 bytes
long. h

If two or more DATA SENDERS are selected by the header subframe, the serial bus
protocol requires that they agree on the amount of data to be sent. If a DATA
SENDER samples a different value in the Frame Type subframe than the one it
sent (other than 111), it sends 110 in the Frame Status subframe which follows
the Data subframe, indicating that the two DATA SENDERS tried to send different
size Data subframes. If it sampled its own Frame Type value on SERDAT*, and if
no other module sends a "one" in the high-order bit of the Frame Status, a DATA
- SENDER sends 10 in the the next 2 bits.

Similarly, the serial but protocol requires that DATA RECEIVERS must be able to
handle the amount of data sent by DATA SENDERS in a frame. If the frame is not
cancelled, and after the Data subframe has been sent, the DATA RECEIVER sends
101 in the Frame Status if the data was too long for it. If the frame was not
cancelled, and if no other module sends a "one" in the high-order bit of the
Frame Status, a DATA RECEIVER sends Ol in the next 2 bits.

In a successful frame, the Frame Status values from the DATA SENDER and DATA
RECEIVER are logically OR'ed by the serial bus to produce 011l. This value is
reported by the FRAME MONITOR paired with the HEADER SENDER which initiated the
fmeo .
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3.6 A CANCELLED FRAME

A Cancelled frame contains only three subframes:

Frame
Header Type Jam Bit
S field=TYPFE 2, 3 or 5 111 0

R field=TYPE 4 or 5

The Header subframe is sent by a HEADER SENDER. It may be intended to set a
semaphore or transfer data. In the former case, the cancelling of the frame
indicates that the semaphore is already set. 1In the latter case, the
cancelling of the frame indicates that the data transfer cannot be performed
because one or more of the DATA SENDERS or DATA RECEIVERS selected by the S and
R codes is not ready for the transfer. A selected DATA RECEIVER may not yet
have "disposed of" data it received in a previous transmission. Or, a DATA
SENDER may not have been loaded with data to send.

In any of these cases, the HEADER RECEIVER with the flip-flop, DATA SENDER or
DATA RECEIVER recognizes the problem and "cancels" the frame by driving all
three bits of the Frame Type subframe to "one" (Low). In the case of a Data
Transfer frame, the selected DATA SENDER(S) samples all three Frame Type bits
as ones and doesn't send the data bytes. The 11l in the size field tells all
selected DATA RECEIVERS and all of the FRAME MONITORS on the serial bus that
there will be no data bytes nor any status. All FRAME MONITORS use this fact
to signal their HEADER SENDERS that the serial bus is available for another
frame. The FRAME MONITOR with the HEADER SENDER which initiated the frame also
signals the problem to its onboard logic.

3.7 A "JAMMED" FRAME

A ™jammed" frame may look like any of the frames described above. It differs
from them in that (at least) the final single-bit "Jam Bit subframe" is one
rather than zero as shown in the above frames. A Jammed frame occurs when one
or more FRAME MONITORS in the system detects that the serial bus is "out of
frame synchronization" due to an error induced by system noise, and sends a
long series of ones on SERDAT*. A Jammed frame is ignored by all modules on
the serial bus: no HEADER RECEIVER sets or clears an associated flip-flop, no
DATA SENDER considers itself to have sent data, nor does any DATA RECEIVER
consider itself to have received data. The frame which was jammed will be re-
sent after the serial bus is "resynchronized".
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4. SERIAL BUS SUBFRAMES

The activity on the serial bus, like a carefully rehearsed drama, can be
described in two ways: :

1) We can use a script which presents all of the words spoken, with marginal
comments indicating who speaks at each time. (This is the approach used
in this section.)

2) We can make a list of cues for each "actor" in the drama that says "WHEN
someone says this... THEN you say this..." (This is the approach used in
section 6.)

Both approaches are useful to understand how the serial bus works.

4.1 SUBFRAMES COMMON TO ALL FRAMES

All frames start with a Header subframe and a Frame Type subframe, and end with
a Jam Bit subframe. The Header subframe determines which modules will
participate in the rest of the frame, which in turn determines the type of
frame that is sent. The Frame Type subframe makes the type of frame known to
all serial bus modules, and specifies the length of the frame. The Jam Bit
subframe "validates" the complete frame 'and ensures "frame synchronization"
ameng all serial bus modules.

4.1.1 The Header Subframe
A Header subframe is composed of 26 bits arranged in 6 fields:

DATA
Start | Message S | R | SENDER | HSVAL
Bit Priority Arb
enable
1 3 10 10 1 1

The Header subframe consists of the following fields:

1) A single "start bit". When the start bit is transmitted, it signals
serial bus mcdules that a frame is beginning.

2) A three-bit "Message Pricrity* field. If two or more HEADER SENDERS
attempt to send a frame at the same time, this field is used to arbitrate
centrol of the serial bus so that the frame with higher priority is sent
first.
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3)

4)

5)

A ten-bit S field which contains a selection code for serial bus modules.
The code in this field and the type of serial bus frame are interrelated
as shown below.

FRAME TYPE CONTENTS OF S FIELD
Data Transfer frame Sender selection code
Semaphore Set frame Semaphore selection ccde
Flip~-flop Set frame Flip-flop selection code
Flip-flop Reset frame (All cnes)

Token Passing frame Flip-flop selection code

In a Data Transfer frame this field specifies which DATA SENDER(S) should
send data in the Data subframe which follows. In the Semaphore Set frame,
Flip-flop Set frame, and Token Passing frame, this code selects the
semaphore(s) or flip-flop(s) that are to be set. (The S code may select
several groups of modules if their HEADER RECEIVERS have all been set up
to recognize it.)

A ten-bit R field which contains a selection code for serial bus modules.

The code in this field and the type of serial bus frame are interrelated
as follows:

FRAME TYPE CONTENTS OF R FIELD
Data Transfer frame Receiver selection code
Semaphore Set frame Requester code
Flip-flop Set frame (All ones)

Flip~-flop Reset frame Flip~flop selection ccde
Token Passing frame Flip-flop selection code

In a Data Transfer frame this field specifies which DATA RECEIVER(S)
should capture the data in the Data subframe which follows. In a Flip-
flop Reset or Token Passing frame, this code selects the flip-flop(s)
which are to be reset. In a Semaphore Set frame this code does not select
a module, but rather guarantees that only one HEADER SENDER wins the
serial bus arbitration and sets the semaphore. (The R code may select
several groups of modules if their HEADER RECEIVERS have all been set up
to recognize it.)

. A DATA SENDER arbitration enable bit. When two or more DATA SENDERS share

a common selection code, they are both selected to send at the same time.
In this case, the resulting Data subframe can contain either the logical
OR of their values, or the largest value among the DATA SENDERS. To
specify that a logical OR is required, the HEADER SENDER sends a "zero"
in this bit position. To specify that the largest value is required, it
sends a "one". (A "one" tells each DATA SENDER to stop sending data if it
samples a "one" on SERDAT* in a bit in which it is sending a "zero". A
"zero" tells the DATA SENDERS to keep sending regardless.)
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6) A HEADER SENDER validation bit. This bit is always sent as a "one" (Low)
by the HEADER SENDER at the conclusion of the Header subframe. This bit
is specified as part of the Header subframe to insure that some error on
the serial bus won't cause all the HEADER SENDERS to think they have lost
the arbitration and retire from the bus. If this occurs, it leaves a
string of "zeroes" on SERDAT* for the rest of the Header subframe. This
could be misinterpreted by other modules as a valid Header subframe.

The validation bit solves this problem because if all of the HEADER
SENDERS retire it will be a "zero", causing all serial bus modules to
ignore the frame.

4.1.2 The Frame Type Subframe

The second subframe present in all frames is the Frame Type subframe. It is
composed of a single 3-bit field:

bit 2 bit 1 bit 0

Although this 3 bit subframe is present in all frames, it is not always driven
by a module. For example, when a simple TYPE 2 module group is selected by a
Flip-flop Set frame these bits are 000 because a simple TYPE 2 group doesn't
send the Frame Type bits.

When cne (or more) DATA SENDER(S) is selected by the S code, it sends a three
bit Frame Type code in this subframe. This cocde indicates how many bytes of
data the DATA SENDER is planning to send. The figure below shows the meaning
of the various Frame Type ccdes.

CODE MEANING

000 No DATA SENDER selected

001 1 byte data transmission to follow
010 2 byte data transmission to follow
011 4 byte data transmission to follow
100 8 byte data transmission to follow
101 16 byte data tranamission to follow
110 32 byte data transmission to follow
111 Frame cancelled
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Suppose that a DATA RECEIVER has received data in a previous frame and has not
"disposed of" that data yet. In order to keep from "losing" the data from the
previous frame, it has signalled its own HEADER RECEIVER that it is not ready’
for another frame. If a HEADER SENDER sends another frame with the DATA
RECEIVER'S code in the R field, before the DATA RECEIVER has "disposed of" the
previous data, its HEADER RECEIVER "cancels" the new frame by sending "ones"
during all three of the size bits. The DATA SENDER samples the Frame Type
subframe as it sends it, and stops sending if it samples a 1lll. (This
"Cancelled" frame ends after the Frame Type bits.)

Suppose a DATA SENDER has not been provided with data by its onboard logic.
Like a DATA RECEIVER which has not "disposed of" earlier data, it has signalled
its own HEADER RECEIVER of this fact via an cnboard signal. If a HEADER SENDER
sends a frame with the DATA SENDER'S cocde in the S field while the DATA SENDER
"has no data", its HEADER RECEIVER cancels the frame by sending 11l in the
Frame Type subframe. The DATA RECEIVER(S) which is selected by the R field
sees this code and ignores the frame.

A system can be set up so that more than one DATA SENDER is selected by the
same S field code. This allows their data to be logically OR'ed or the largest
among their data values to be determined. 1If multiple DATA SENDERS are
selected by the S field and one or more of them is not ready to send, those
which are ready see the 111 code and don't send any data.

The HEADER RECEIVER in a Type 2 group intended for semaphore or token passing
operation may also send 111 in the Frame Type subframe to cancel a frame. If
it sees its code in the S field and its flip-flop is already set, or (in token
passing) if it sees its code in the R field and its flip-flop is already reset,
it cancels the frame.

In summary, a HEADER RECEIVER module sends 111 to cancel a frame if that frame
contains a matching code in either the S or R field, and its DATA SENDER, DATA
RECEIVER, or other onboard logic has signalled that it should cancel such a
frame.

When a frame is cancelled, this fact is captured by the FRAME MONITOR which is
paired with the HEADER SENDER that initiated the frame, and is reported to its
onboard logic.

4.1.3 The Jam Bit Subframe

This "subframe" consists of a single bit. It can be regarded as a subframe or
as "the bit after a frame". None of the modules which send other subframes
ever drive this bit to one (Low), but HEADER RECEIVERS, DATA SENDERS, DATA
RECEIVERS, and FRAME MONITORS all sample it to be sure it is a zero. If the
Jam Bit is ever sampled by these modules as a one, they ignore the preceding
frame transmission.
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The only way a Jam Bit can ever be one is if one or more FRAME MONITOR(S)
detect a start bit in the middle of a frame. This can only occur if some other
FRAME MONITOR has become desynchronized due to system noise. In this case, the
FRAME MONITOR(S) which detect the condition drive a string of 512 one bits on
SERDAT*. Since all serial bus frames are shorter than 512 bits, this is bound
to affect the Jam Bit seen by all serial bus modules.

4.2 THE FRAME STATUS SUBFRAME

while the cancellation of a frame can be determined from the Frame Type field,
other problems can arise when a frame is sent. Such problems are also reported
to anboard logic by the FRAME MONITOR which is paired with the HEADER SENDER
that initiated the frame. The Frame Status subframe is included at the end of
every frame except a Cancelled frame, and is used to diagnose problems
(exceptional conditions) that might have arisen during the frame's
transmission.

The Frame Status subframe is camposed of cne 3—bit field:

bit 2 bit 1 bit 0

Whenever a HEADER RECEIVER receives a Header subframe with an S (or R)
selection code that matches its own, it makes its S SELECT (or R SELECT) output

‘True. Depending on whether the HEADER RECEIVER is part of a TYFE 2, 3, 4, or 5

module group, these outputs may or may not enable an on-board DATA SENDER (or
DATA RECEIVER).

Since the HEADER RECEIVER has no way of knowing which type of module group it
is used in, it samples the Frame Type subframe. If a DATA SENDER is selected
it will send one of the values 001 through 110 in the Frame Type. If the
HEADER RECEIVER samples 001-110, it passes over the Data subframe and samples
these three Frame Status bits and the following Jam Detect bit. (In this case
the HEADER RECEIVER is simply acting as a "tracker" to reflect how DATA
SENDER(S) and DATA RECEIVER(S) on other boards responded to the frame.) If the
Frame Status is 011 and the Jam Detect bit is zero, the HEADER RECEIVER pulses
its S STROBE or R STROBE output to set or clear an on-board "tracking" flip-
flop.

If the HEADER RECEIVER samples 000 in the Frame Type, it knows that no DATA
SENDER was selected by the frame. It samples the MSB of the (immediately
following) Frame Status field and then sends a either a 10 or Ol in the next 2
bits to indicate that it was selected by the S or R field, respectively. It
then samples the Jam Detect bit. If the MSB of the Frame Type and the Jam
Detect bits are both zero, all is well, and the HEADER RECEIVER pulses its S
STROBE or R STROBE output (respectively) to an cnbcard flip-flop.
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If two or more DATA SENDERS are selected by the S field code of the Header
subframe, the serial bus protocol requires that they agree about how much data
is to be sent. As each DATA SENDER sends its code in the Frame Type field to
signal how much data it has to send, it also samples SERDAT* to detect a
conflict with other DATA SENDERS. If it samples a "one" in any of the 3 bits
while it is sending a "zero", it stops sending any further bits in the Frame
Type subframe or Data subframe. However, in this case it dces sample all the
bits in the Frame Type. If the sampled value is not 111 (i.e. not a
cancellaticn), it uses the value it samples to determine the length of the Data
subframe, passes over the data, and thereafter sends 110 during the Frame
Status subframe to signify a conflict among selected DATA SENDERS as to size of
the Data subframe.

If the DATA SENDER samples the same value in the Frame Type that it is sending,
it sends its data. It then samples the MSB of the Frame Status, which
indicates a size problem on the part of other DATA SENDERS or RECEIVERS. If
the MSB is zero it sends 10 in the next two bits of the Frame Status to
indicate that it survived any arbitration in the Data subframe.

Suppose that a DATA SENDER is selected by the S field code of the Header
subframe and a DATA RECEIVER is selected by its R code. lLet's further suppose
that the DATA RECEIVER is only capable of receiving Data subframes up to a
certain length (less than 32 bytes).

The DATA RECEIVER samples the Frame Type subframe. If the Frame Type code
indicates the DATA SENDER is trying to send more data than it can handle, the
DATA RECEIVER counts bits across the size of data indicated by the Frame Type,
and then sends 101 in the Frame Status subframe to signal the problem.

If a selected DATA RECEIVER samples 000 in the Frame Type field, there is no
DATA SENDER to send data to it. It handles this situation by sending 100 in
the Frame Status subframe.

Otherwise (for Frame Types 001-110) the DATA RECEIVER samples the number of
bytes of data indicated by the Frame Type. It then samples the MSB of the
Frame Status subframe. If the MSB is "zero", it sends Ol in the next 2 bits of
the Frame Status to show that it was selected. It then samples the Jam Detect
bit. If the MSB of the Frame Status and the Jam Detect bit were both zero, it
presents the data it sampled to its onbocard logic. The R STROBE output of the
paired HEADER RECEIVER indicates the arrival of data to cnbcard logic.

In summary, the Frame Status value must be interpreted differently for a Data

Transfer frame vs. other types of frames. In each case there are 8 possible
status values.
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STATUS
Value Interpretation

FRAME TYPE 000 (Not a Data Transfer frame)

000 No HEADER RECEIVER selected by either S or R

001 HEADER RECEIVER selected by R only

010 HEADER RECEIVER selected by S anly

011 HEADER RECEIVERS selected by S and R

100 RESERVED: should not occur

101 DATA RECEIVER selected by R, nothing selected by S

110 RESERVED: should not occur

111 DATA RECEIVER selected by R, HEADER RECEIVER (cnly)
selected by S

FRAME TYPE 001-110 (Data Transfer frame)

000 No DATA RECEIVER selected by R, all DATA SENDERS
selected by S lost Data field arbitration

.001 DATA RECEIVER selected by R, all DATA SENDERS
selected by S lost Data field arbitration

010 No DATA RECEIVER selected by R, DATA SENDERS selected
by S campleted the Data subframe nomally

01l Data Transfer campleted correctly

'100 RESERVED: should not occur

101 DATA RECEIVER(S) unable to handle data size

110 Data size conflict among DATA SENDERS

111 (Both 101 and 110 conditions)

4.3 THE DATA SUBFRAME

The length of a Data subframe is specified by the selected DATA SENDER(S) in
the Frame Type subframe. There may be 1, 2, 4, 8, 16, or 32 bytes in a Data
subframe. As described earlier, there may be one or more DATA SENDER(S)
sending in this subframe, depending on how many HEADER RECEIVERS are
configured to respond to the S-field code. 1If several DATA SENDERS are
selected, the Data subframe will either contain the logical OR of their data,
or the largest value among them. (This is determined by whether the DATA
SENDERS' arbitration was disabled or enabled by the Sender Arbitration Enable
bit sent during the Header subframe.)
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5. SERIAL BUS LINES

The serial bus includes three lines: Serial Clock (SERCLK), Serial Data
(SERDAT*) , and System Reset (SYSRESET*).

SYSRESET* is used to initialize all modules on the serial bus.

SERCIK is driven by a high-current totem-pole driver from the SERIAL CLOCK
module, of which there is one per system.

SERDAT* is a wired-OR line which can be driven with an open-collector driver by
any module. A "one" on SERDAT* results when cne or more modules drive it Low.
A "zero" results when no module is driving SERDAT*, so that the backplane
terminating resistors pull the signal High. :

5.1 SIGNAL TIMING

When the serial bus is used with a system bus, there are no prescribed timing
constraints between its signals and any of the other signals on the backplane.
The various modules on the serial bus change and sample the SERDAT* signal
level when transitions occur on SERCLK. The AC timing characteristics of
SERCIK and SERDAT* are shown in Table 5-1 and Figure 5-1.

5.2 BIT TRANSMISSION CODING

Each "bit cycle" of SERCIK is used to send one bit on SERDAT*, and includes
four transitions designated Cl, S1, C2, and S2. There are three types of bits
that can be sent during each bit cycle: a "one bit", a "zero bit", and a "start
bit". These bits can be distinguished by serial bus modules by sampling the
level of SERDAT* on both the Sl and S2 transitimms.

TYPE OF LEVEL SAMPLED = LEVEL SAMPLED

BIT AT Sl AT S2
one Low Low
zero High High
start High Low

If sufficient noise.is induced onto the serial bus, the modules may be
desynchronized (i.e. they may lose track of where frames begin and end). This
condition must be detected and the modules resynchronized before frames are
"garbled" and misinterpreted. When desynchronization occurs, one or more of
the HEADER SENDERS send a start bit in the middle of a frame.

FRAME MONITORS check for a start bit in every bit cycle of SERCLK. When a
FRAME MONITOR detects a start bit when no frame is in progress, it tracks the
transmission to the end of the frame. If it samples another "High/Low" bit
before it has finished counting out the frame, then it "jams" the frame
transmission by holding SERDAT* Low for at least 512 bit cycles. This ensures
that the frame which was in progress won't be accepted as a valid frame.
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PARAMETER DESCRIPTION

(SEE NOTES A, B»

MIN NOM MAX NOTES

1 Cl to SI 175 187.5 C

2 S1 to C2 25 31.25 C
3 C2 to S2 50 B62.5 C
4 S2 to Cl 25 31.25 C
5 Cl to Cl <(SERCLK Cycle> 312.5 C
B Cl to SERDATx Low e TBS D
7 Cl to SERDATx Released @ TBS D
B8 C2 to SERDAT* Low % TBS D
9 VSERDQT* Low to SI TBS E
12 SERDATX High to Si TBS E
11 SERDAT* Low to S2 TBS E

NOTES:
A All times given are 1n nanoseconds.

B NOM and MAX columns apply to 3.2 Mbit/sec rate

C The SERIAL CLOCK module must guarantee this timing

between two of 1ts ocutgoing SERCLK transitions.

D Each serial

bus module must guarantee this timing
between 1ts

1ncoming and outgoing transitions.

E Each serial bus module 1s guaranteed'th1s t1me

between the specified

incoming transitions.

TABLE 5-1.

PRELIMINARY SERIAL BUS TIMING




A desynchronized HEADER SENDER will not consider itself to have sent a start
bit at the same time that a "one bit" is being sent by some other module.
While it may drive SERDAT* Low at the C2 edge of SERCIK during a "one", such a
start bit will not be visible on SERDAT*. The HEADER SENDER is required to
sample the level of SERDAT* on the S1 transition of SERCLK in the bit cycle
that it sends the start bit. If SERDAT* is High at Sl then it assumes the
start bit was sent successfully and sends the rest of the Header subframe. If
it was Low the HEADER SENDER tries again on the next bit cycle.

EDGE DESIGQWATION USE
cl All serial bus mcdules change SERDAT* on this transition
when sending "one" bits or "zero" bits.
Sl All serial bus modules sample SERDAT* on this transitieon.
c2 HEADER SENDER modules change SERDAT on this transition

from a High to a Low when sending a "start bit". Other
modules maintain the SERDAT* levels established at Cl.

S2 HEADER RECEIVER mcdules sample SERDAT* on this transition
when they are waiting for a new frame to begin (i.e. when
they are looking for a "start bit"). FRAME MONITOR
modules sample SERDAT* on every S2 transition, first to
detect the beginning of a frame and then to detect a
.start bit that is sent while a frame is in progress.

The Cl, S1l, C2, and S2 transitions are shown in Figure 5-1.

NOTE: If a board or IC is designed for the serial bus which does not include a
FRAME MONITOR module, it is recommended, but not required, that it detect start
bits within a frame and "jam" SERDAT* as described for a FRAME MONITOR. This
provides greater security and protection against the effects of signal noise
that might be sensed at one point on the serial bus, but not at another.

Onboard outputs from serial bus modules should be changed on the Cl transition
of SERCIK, and onboard inputs to serial bus modules should be sampled an the Sl
transition. Designers of serial bus hardware must guarantee that there will be
no metastability problems when sampling inputs from onboard logic. This can be
done by specifying setup and hold times that onboard logic must meet with
respect to the S1 transition of SERCLK or, preferably, by providing
synchronization logic for each input. In the latter case, it is helpful to
specify a setup time to (some edge of) SERCLK, which will guarantee that the
new state of an input will be recognized and acted upm.
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6. SERIAL BUS MODULES

A serial bus subsystem may include the following functional mcdules:

One SERIAL CLOCK module
HEADER SENDERS
HEADER RECEIVERS

DATA SENDERS

DATA RECEIVERS

FRAME MONITORS

NOTE: These "functimmal mcdules" are used as vehicles for discussion
of the serial bus protocol, and need not be considered a constraint
to logic design. For example, a single IC could provide several of
these functions.

The following sectiocns describe the behavior of these mcdules, including their
interaction with on-board signals. It is likely that IC's for the serial hbus
will be designed with variocus internal architectures and anboard signals. This
specification often describes the details of an anbcard interface in general
terms. For instance, we may say that "onboard logic reads from a DATA
RECEIVER" without specifying exactly how this is accomplished. This is done to
avoid placing unnecessary constraints on the logic designs of serial bus
interface hardware. In scme cases actual signal lines are shown, to improve
the explanation of the serial bus. Where this is done, the intent is to make
clear what information crosses the boundary between the module and other on
board logic. Other methods for conveying this same information across the
boundary are also permissible. .

It is expected that IC's designed for the serial bus will include scme of what
is described in this specification as "onboard logic". For example, the
functional modules described below have several cutputs which praduce a pulse
which is 1 SERCIK cycle in duration. Real IC's might use these "conceptual
pulses" to produce cutputs of longer duraticm.

6.1 SERIAL CLOCK Mcdule
The SERIAL CLOCK mcdule must be located on either the Slot 1 board or the board

in the highest-numbered sloct. It drives the SERCIK signal with a high-current
“totem-pole driver. Whenever its SYSRESET* input is True, the SERIAL CLOCK

- module drives SERDAT* to "one" (Low). After its SYSRESET* input goes False,

the SERIAL CLOCK mcdule releases SERDAT* to "zero" (High) on a subsequent Cl
edge of SERCIXK, in keeping with the timing given in Figure 5-1l.
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6.2 HEADER SENDER Module

Onboard logic uses a HEADER SENDER module to initiate the transmission of a
frame on the serial bus. The HEADER SENDER sends only the "Header subframe"
portion of a frame: the remainder of the frame is sent by other modules
including HEADER RECEIVERS, DATA SENDERS, and DATA RECEIVERS. Basically, the
Header subframe sent by this module serves to "select" one or more HEADER
RECEIVERS on the serial bus.

A HEADER SENDER must always be paired with a FRAME MONITOR module. Even though
a HEADER SENDER often occupies the same board with a HEADER RECEIVER (etc.),
these modules anly communicate with each other over the serial bus. Because of
this, the HEADER SENDER initiates frames involving its on-board HEADER RECEIVER
in exactly the same way that it does with off-board HEADER RECEIVERS.

6.2.1 HEADER SENDER signals

As shown in Figure 6-1, a HEADER SENDER takes the SYSRESET* and SERCIK signals
from the serial bus as inputs, the SERDAT* signal as a bidirecticnal I/O, and
the FRAME IN PROGRESS signal from its onboard FRAME MONITOR as an input. It
also has the following additional onboard signals: '

Priority Port A set of input lines and associated control signals, through
which the 3 bit Message Priority value for subsequent frame
transmission(s) is loaded into the HEADER SENDER. This port
may consist of dedicated input lines, or a bus interface to an
internal Priority register.

Code 1,2 Ports Two similar sets of signals, through which two 10 bit
selection cades for subsequent frame transmissions are lcaded.

Sender Arb Port A similar set of signals, through which the DATA SENDER
Arbitration Enable bit for subsequent frame transmissions is
loaded into the HEADER SENDER.

NOTE: The Priority, Code 1, Code 2, and Sender Arb Ports will
often be implemented as registers that can be loaded from the
same "bus interface", which may be connected to an onboard
processor or cnboard system bus interface.

SEND12, SEND21 Control inputs which cause the HEADER SENDER to send a "Header
subframe". SEND12 makes the HEADER SENDER send the value from
Code 1 Port in the "S field" of the Header subframe, and the
value from Code 2 Port in the "R field". SEND21 makes the
HEADER SENDER send the value from Code 2 Port in the "S field"
and the value from Code 1 Port in the "R field".
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LOST ARB

initiated the current frame.
report the result of frame transmission to cnboard logic.

NOTE: Implementors of serial bus hardware may be
tempted to make this SEND function a bit in an
intemal register, or "implied" by loading a Header
subframe to be transmitted. However, by including
one or more actual SEND inputs, an implementation
can be made applicable to "dumb" boards as well as
"intelligent" ones. The Header subframe to be
transmitted can be loaded from a prccessor via the
system bus, and its actual transmission can be
"triggered" later by an cnboard signal event.

An output to a paired FRAME MONITOR module, indicating that
this HEADER SENDER has won the serial bus arbitration and
This causes the FRAME MONITCR to

An alternative ocutput to SELECT, indicating that the HEADER
SENDER has tried to send a Header subframe, but has lost the
arbitration for use of the serial bus to another HEADER
SENDER.

NOTE .1: When a HEADER SENDER loses the serial bus
arbitration, onboard logic can increase the Priority
value for the subsequent retry (e.g. by ane, perhaps
up to a defined upper limit). This strategy, plus
reduction of the Priority value when a frame is
Cancelled (see 6.6.1), can ensure that each HEADER
SENDER cn the serial bus gets a fair share of access-
to the bus.

NOTE 2: Information other than LOST ARB, about the
results of sending a frame, is available from the
outputs of the paired FRAME MONITCR.

6.2.2 HEADER SENDER Initialization

Whenever SYSRESET* is Low, a HEADER SENDER initializes itself as follows:

1) It makes its LOST ARB cutput False.

2) It releases SERDAT*.

3) It discards any Header subframe which was awaiting transmission when

SYSRESET* went Low.

4) If any of the Priority, Code 1, Code 2, or Sender Arb Ports are

implemented as loadable registers, it clears those registers to zero.

When SYSRESET* gces High, a HEADER SENDER enters "idle state™
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6.2.3 HEADER SENDER Operation

The state diagram of a HEADER SENDER is shown in Figure 6-2. 1In idle state,
the HEADER SENDER samples SEND12, SEND21, and SERDAT* on each Sl edge of
SERCIK, and samples FRAME IN PROGRESS and SERDAT* on each S2 edge of SERCIK.

la)

1b)

2)

3)

IF it samples SENDl12 or SEND21 True and SERDAT* “"zero" (High) on an Sl
edge, and samples FRAME IN PROGRESS False and SERDAT* "zero" (High) on the
following S2 edge (i.e. if it samples a "zero" on SERDAT?),

THEN it drives SERDAT* to "one" (Low) at the C2 edge of the next bit
cycle, generating a start bit. The HEADER SENDER then proceeds to step 2)
below.

IF it samples SEND12 or SEND21 True, and SERDAT* "zero" (High) on an S1
edge, and samples FRAME IN PROGRESS False, SERDAT* "one" (Low) on the
following S2 edge,

(i.e., if another HEADER SENDER is sending a Start bit, one bit in advance
of when this module would have sent one in case la). This can occur anly
if on-board logic made SEND12 or SEND21 True during the previous SERCLK
cycle.)

THEN
IF the logic of this HEADER SENDER is fast enough to send the most
significant bit of its Header subframe on the following bit cycle,
(i.e. if it can drive SERDAT* within the time specified from Cl),

THEN it proceeds to step 2, just as if the other HEADER SENDER'S
start bit was its own. (The bus arbitration will then decide which
HEADER SENDER must retire from the bus and try again.)

ELSE (the HEADER SENDER isn't fast enough to send the first bit of
its Header subframe on the next bit cycle) it simply delays one cycle
of SERCIK and retums to idle state sampling as described above. At
the end of the current frame it will encounter the less demanding
case la) above.

On the next Cl edge of SERCLK following the start bit, the HEADER SENDER
places the most significant bit of its Message Priority value on SERDAT*.
Note that other HEADER SENDERS in the system may be doing the same thing.

On the following S1 edge of SERCIK, the HEADER SENDER samples SERDAT* as
an input.

IF it placed a "zero" on SERDAT_* at Cl, and it samples a "one" (Low) on
SERDAT* on the Sl edge,

THEN this HEADER SENDER has lost the arbitration for use of the serial

bus. In this case, it makes its LOST ARB output True for one SERCIK cycle
and retums to idle state.

6-5



S1:
Sample

SENDL2 False

SYSRESETx* Low

Make
LOST ARB
False

Si:

Samp le
SEND21

Clear
Port

Regs
SYSRESETx{ High
.
(Initiated/by
SEND21 > F.I.P. False, Si:Sample
SENDL2 or SEND2L Trudy) Senped .
SERDATx (Sl “‘—§§EQBIE“
zero <
(Initirated| by one<s2y ’ S?Z??gfje
SEND12)> (Fast madule oniy» ERDATX
F.I.P.|False,
SENDL2 or| SEND21 True,
SERDATk zero|«<S1 and S2»
ca:
Cl: Make Ci: Make Dr1ve
SELECT LOST ARB SERDAT
False False to one
Ci:
Place 3
on SERDATx Cl: Make Priority
(HSUAL b1ty Bits on
—_— LOST ARB SERDATX
True Sl:Sample
SERDATX
Send 9, .
Sample ~1 1-1@:] Send or |Sample @
Sample} i
Ci: Cl: .
Ci: Place Place 10 Pilace 10
Sender Arb bits of R bits of S
b1t an 18: Send L field code 10: Send L field code
SERDATx [~ or Sample @ on SERDATx or Sample on SERDATX ample O
Sl: Sample Sl: Sample
SERDAT* SERDAT%

Figure B—-2.

HEADER SENDER State Diagram



4) The process described in 2-3) is repeated for each of the remaining bits
in the Header subframe. This includes the remaining 2 bits of the Message
Priority field, the S and R fields which are 10 bits each, the "sender
arbitration enable bit", and the HSVAL bit. The HEADER SENDER always
sends the HSVAL bit "one".

5) On the same Cl edge on which it sends the HSVAL bit, the HEADER SENDER
makes its SELECT output True. This output indicates that this HEADER
SENDER has won the serial bus arbitration and sent its Header subframe
successfully. SELECT True makes the paired FRAME MONITOR report the
results of the overall frame transmission to ecnboard logic.

NOTE: The HSVAL bit guards against the possibility that all
HEADER SENDERS dropped out of the arbitration due to noise on
the bus. If the HSVAL bit of any message frame is "zero", the
frame is ignored by all HEADER RECEIVERS.

6) After sending HSVAL and making SELECT True, on the next SERCIK Cl edge it
makes SELECT False. On subsequent Sl edges it samples SEND12 and SEND21,
until the signal which initiated the operation (step 1) is made False by
anbocard logic. It then retums to idle state.

Note that this arbitration method guarantees that the Header subframe from at
least one HEADER SENDER is always sent correctly (barring an "all drop out"
error due to some externally induced noise glitch). If one considers the
contending Header subframes as binary numbers, the subframe which is
successfully sent is the one with the highest binary value.

But, if two or more HEADER SENDERS set out to send exactly the same Header
subframe, they will not know of each other's presence, and each will prcceed as
if it had sent the subframe alone. This is fine for some frames. It is not
appropriate for other frames (e.g. those which set a "semaphore"). When
anboard logic causes a HEADER SENDER to initiate a Semaphore Set frame, it must
ensure that the R field contains a code that is not used by by any other HEADER
SENDER on the serial bus. If this requirement is met, the normal bus
arbitration ensures that all but one HEADER SENDER (the one with the highest
"Requester number") will retire from the bus before the Header subframe
campletes.
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6.3 HEADER RECEIVER Module

A HEADER RECEIVER module may stand alone or may be paired with a DATA SENDER
and/or a DATA RECEIVER. Its primary function is to compare the S and R fields
in each Header subframe on the serial bus against its selection code value, and
signal its paired modules and/or cnboard logic if it finds a match.

6.3.1 HEADER RECEIVER Signals

As shown in Figure 6-3, a HEADER RECEIVER takes the SYSRESET* and SERCLK
signals from the serial bus as inputs and the SERDAT* signal as a bidirectional

input/output.

It also has a number of additimal inputs from, and outputs to

onboard logic, as follows:

Code Port

ENABLE S,R

S,R SELECT

S,R STROBE

MAX/OR

A set of parallel input lines and associated control signals,
through which a 10-bit selection code value can be loaded into
the HEADER RECEIVER. This may consist of dedicated inputs, or
a "bus" interface to an internal selection code register.

Two inputs from cnboard logic which indicate whether to accept a
frame with this module's selection code in the S or R field,
respectively. If the HEADER RECEIVER matches its code in the S
(or R) field, and the ENABLE S (ENABLE R) input is False, it
"cancels" the frame.

Two outputs to a paired DATA SENDER and DATA RECEIVER,
respectively, which indicate that the HEADER RECEIVER has
detected a Header subframe on the serial bus which includes the
selection code from Code Port in the S or R field, respectively.’
These outputs are made True for 1 SERCIK pericd.

Two outputs to onboard logic, which indicate the same
information as S SELECT and R SELECT, but are made True at the
end of the frame, and only if the frame is completely
successful .

An output to a paired DATA SENDER, which reflects the state of
the "Sender Arbitration" bit in a Header subframe.

6.3.2 HEADER RECEIVER Initialization

Whenever SYSRESET* is Low, a HEADER RBECEIVER initializes itself as follows:

1) It makes its S SELECT, R SELECT, S STROBE, and R STROBE outputs False.

2) It releases SERDAT*, and ignores it as an input.

3) If the Code Port is implemented as a loadable register, it clears the
register to zero.

When SYSRESET* is released, the HEADER RECEIVER enters "idle state".
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6.3.3 Programming the Selection Code

If the selection code is implemented as a loadable register, the HEADER
RECEIVER must be programmed with the desired value after initialization. For
the purposes of this specification, this is considered part of system setup
before any frames are sent on the serial bus. Reprogramming a HEADER RECEIVER
with a new selection code, while the serial bus is in operation, is allowed but
not covered by this specification.

6.3.4 HEADER RECEIVER Operatim

The state diagram of a HEADER RECEIVER is shown in Figure 6-4. Starting from
idle state, this module proceeds as follows:

1)

2)

3)

4)

5)

6)

It samples SERDAT* repeatedly on the S1 and S2 edges of SERCLK, until it
samples a High on S1 and a Low on S2. This combination indicates a start
bit on the serial bus.

NOTE: On the first Cl edge after returning from step 15 or 22
below, a HEADER RECEIVER makes its S STROBE and R STROBE outputs
Falm- :

It then counts off three bit times on SERCLK, thus ignoring the Message
Priority field of the frame.

The HEADER RECEIVER then samples the next 10 bits on SERDAT*, on Sl edges
of SERCLK. As it samples these bits, it compares each to the
corresponding bit of its selection code from Code Port. If all 10 bits
are equal it makes an internal signal called "S Match" True, if not it
makes S Match False. ‘

The HEADER RECEIVER then samples the next 10 bits on SERDAT* as it did in
step 3), except that it makes an intemal signal called "R Match" True or
False.

It then samples the next bit on SERDAT* on the Sl edge of SERCIK. This is
the "Sender Arb Enable" bit. If the bit is "one" it makes it MAX/OR
output True, otherwise it makes MAX/OR False.

On the next Cl edge of SERCILK, if S Match is True, the HEADER RECEIVER

makes its S SELECT output True. On the same edge, if R Match is True it
makes its R SELECT output True.
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7

On the next Sl edge of SERCLK, the HEADER RECEIVER samples its ENABLE S
and ENABLE R inputs, and the (HSVAL) bit on SERDAT*.

Depending on what it samples in this and previous steps, the HEADER
RECEIVER proceeds as follows:

HSVAL S Match R Match ENAB S ENAB R Action

X False False b4 X Return to step 1
: (idle state)
zero <-not both False-> x X Step 8
e True b < False X Step 9 ¢
one X True X False Step 9
one  <—— any other cambination > Step 10

NOTE: An "X" in the table above indicates that this item does not matter to

8)

9)

10)

11)

12)

the HEADER RECEIVER in this case.

(The HSVAL bit was zero.) The HEADER RECEIVER simply makes S SELECT and R
SELECT False on the next Cl edge and returns to idle state.

(In this case the HEADER RECEIVER has matched the S field in the Header
and sampled the ENABLE S input False, or it has matched the R field and
sampled the ENABLE R input False.) In either case, an the next Cl edge it
makes S SELECT and R SELECT False and drives a one (Low) on SERDAT*. It
maintains SERDAT* one for the following 2 Cl edges. This "cancels" the
frame on the serial bus. On the Cl edge after that, it releases SERDAT¥*
and retums to idle state.

(In this case the HEADER RECEIVER has matched the S or the R field, set
its S SELECT and/or its R SELECT output True, and sampled the
corresponding ENABLE input True.) It now makes S SELECT and R SELECT
False on the next Cl edge, and then samples SERDAT* cn the following 3 Sl
edges of SERCIK. This is the Frame Type code.

If the Frame Type is 111, the frame has been cancelled by another HEADER
RECEIVER, and this module retums to idle state. )

If the Frame Type code is 000, the HEADER RECEIVER proceeds to step 17).
Otherwise (the Frame Type ccde is 001-110) this is a Data Transfer frame.
The HEADER RECEIVER in this case acts as a "tracker" module wherein its S
STROBE (or R STROBE) output signals a successful data transfer from (or
to) its code.
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13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

The HEADER RECEIVER counts off the necessary number of SERCLK cycles to
ignore the Data subframe on SERDAT*. It determines the number of cycles
to delay from the Frame Type as follows:

Frame Type SERCLK Count

001 8
010 16
011 32
100 64
101 128
110 256

After the above number of SERCLK cycles, the HEADER RECEIVER samples
SERDAT* on each of the next 4 S1 edges of SERCLK. These 4 bits are the
Frame Status field and the Jam Detect bit.

If the 4 sampled bits are exactly 0110, then the serial bus data transfer
is successful. On the following Cl edge the HEADER RECEIVER makes the S
STROBE output True if S Match is True, makes the R STROBE output True if R
Match is True, and retums to idle state.

If the 4 sampled bits are anything other than 0110, the serial bus data
transfer was not successful. The HEADER RECEIVER does not signal on S or
R STROBE, but simply returns to idle state.

(The Frame Type was 000, and the frame contains no data.) The HEADER
RECEIVER samples the MSB of the Frame Status field on the next S1 edge,
and retains what it sampled for later.

On the next Cl edge, if S Match is True, the HEADER RECEIVER drives a
"ane" on SERDAT* to show that it is present. (If S Match is False it does
not drive SERDAT*.)

On the next Cl edge, if R Match is True, the HEADER RECEIVER drives a
"one" on SERDAT* to show that it is present. (If R Match is False it
releases SERDATY*.)

On the next Cl edge, the HEADER RECEIVER releases SERDAT* and then samples
it on the next Sl edge. This is the Jam Detect bit.

If the Jam Detect bit is "me" or the previously sampled MSB of the Frame
Status field was "one", the HEADER RECEIVER does not drive its S or R
STROBE outputs, but simply retums to idle state.

(The Jam Detect bit and the previously sampled MSB of the Frame Status are
both "zero".) If S Match is True, the HEADER RECEIVER drives its S STROBE
output True on the following Cl edge. On the same edge, if R Match is
True, it drives its R STROBE output True. In either case it returns to
idle state.
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6.4 DATA SENDER Mcdule

A DATA SENDER mcdule must be paired with a HEADER RECEIVER. Its function is to
take data from on-board logic, and send it on the serial bus when it is
signalled by its HEADER RECEIVER.

6.4.1 DATA SENDER Signals

.As shown in Figure 6-5, a DATA SENDER takes the SYSRESET* and SERCLK signals
from the serial bus as inputs, and the SERDAT* signal as a bidirectional I/0.
It also has a number of inputs and cutputs with cnbcard logic, as follows:

Data Port

S SELECT

MAX/OR

A set of parallel input lines and associated control signals,
through which onboard logic provides data to be sent on the
serial bus. This may consist of dedicated inputs or a bus
interface to an intemal Data register.

NOTE: Frames on the serial bus can include 1, 2, 4, 8,
16, or 32 bytes of data. Real DATA SENDER
implementations may be limited to sending less than 32
bytes. This mcdule signals how many bytes are being
sent before it sends data. This specification does
not cover the details of how data is locaded via Data
Port, nor how the number of bytes locaded is determined
by the DATA SENDER.

An input from the paired HEADER RECEIVER, which signals when

data is to be sent.

An input from the paired HEADER RECEIVER, which signals how data
is o be sent. If this signal is True, the DATA SENDER enables
it serial bus arbitration logic while sending data.

'An output to onboard logic, which signals that the DATA SENDER

has successfully sent data on the serial bus.

NOTE: For frames which select a single DATA SENDER,
and frames without Data field arbitration (MAX/OR
False), DSENT signals identically to the S STRCBE
output of the paired HEADER RECEIVER. However, when a
frame selects multiple DATA SENDERS for their largest
value, all of their paired HEADER RECEIVERS will
signal on S STRCEBE, but only the "winning™ DATA SENDER
will signal cn DSENT.
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6.4.2 DATA SENDER Initialization

Whenever SYSRESET* is Low, a DATA SENDER initializes itself as follows:
1) It makes its DSENT ocutput False.

2) It releases SERDAT*, and ignores it as an input.

3) If Data Port is implemented as a loadable register, it clears that
register to zerc..

When SYSRESET* is released, the DATA SENDER enters idle state, described belaow.

6.4.3 Prcgramming the Data Port

DATA SENDERS can be used in two ways. In one approach, the DATA SENDER is
always ready to send data, and sends "whatever data is available” whenever a
frame which selects it appears cn the serial bus. Onboard logic with such a
DATA SENDER presents new data at Data Port "whenever the data to be sent
changes”™ In this case the DATA SENDER design shculd "double buffer® Data Port
to assure that when it sends data in a £rame, it does not send a mixture of
"01d"™ and "new" data.

In cther arplicaticns, each time cnbcard logic presents new data at [ata Port,
the DATA SENDER sends it once and only once. Onboard leogic with such a DATA
SENDER presents new data whenever it is available and previocusly lcaded data
has been sent. If a frame which selects such a DATA SENDER appears on the
serial bus, and onbcard logic "has not provided new data®, it "cancels” the
frame.

This difference is determined by the way in which the cnbcard signals are
cennected and driven. The following descripticn of a DATA SENMDER allows for
either mode. In the first case, the ENABLE S input of the paired HEADER
RECETVER is permmanently set to True, and the DSENT ocutput of the DATA SENDER is
not used by onboard logic. In the second case, onboard logic makes ENABLE S
True after it has loaded data, and False again when the DATA SENDER pulses the
DSENT cutput.

6.4.4 DATA SENDER Cperaticn S s

The state diagram of a DATA SENDER is shown in Figure 6-6. Starting from idle
state, the DATA SENDER prcceeds as follows:

1) In idle state the DATA SENDER samples its S SELECT input and the SERDAT*

line cn every Sl transition of SERCIR. When it samples S SELECT True and
SERDAT* "cne" (Low), it proceeds to step
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2)

3)

4)

3)

6)

-

8)

This description assumes that the DATA SENDER "knows" the number of bytes

provided by onboard logic, the last time new data was presented at Data
Port. It further assumes that the DATA SENDER has converted this to a 3-
bit Frame Type code as follows:

Number of Bytes 3-bit Frame Type

1l - 001

2 010
3-4 01l
5-8 100
9-16 101
17-32 110

At the next Cl edge of SERCIK, the DATA SENDER sends the most significant

bit of its 3-bit Frame Type on SERDAT*.

At the next Sl edge on SERCIR, it samples the state of SERDAT*. If it .has
sent a "one" or if it samples a "zero", the DATA SENDER proceeds to send
the secand and third bits of its ccde on subsequent Cl edges.

If on any of these three bits it samples a "one" (Low) on SERDAT* and it
sent a "zero", the DATA SENDER stops sending any remaining bits of its 3-
bit code on subsequent Cl edges, but it does continue to sample any
remaining bits o S1 edges.

After the third Sl edge, if the 3 bits sampled are 111, the frame has been
cancelled by a HEADER RECEIVER. In this case the DATA SENDER simply
retums to idle state. . ‘

If the 3 bits sampled are not 111, but are not the same as the code the
DATA SENDER set out to send, we have a "Sender/Sender Size Conflict®. In
this case the DATA SENDER uses the sampled ccde to determine the number of
data bytes in the frame, counts off the corresponding number of bits on
SERCLK, and then sends 110 cn SERDAT* at the next three Cl edges (i.e. in
the Frame Status field). (It does not sample nor arbitrate in the Status
field.) It then retums to idle state.

If the 3 bits sampled bits match the DATA SENDER's Frame Type, it begins
_to send data on SERDAT*. If the number of bytes from onboard logic is

less than the maximum number in the "Number of Bytes" column shown in Step
2, the DATA SENDER first sends the number of all-zero bytes necessary to
£ill out the maximum number of bytes (i.e. the bytes are sent "right
justified").

After the all-zero bytes, or immediately if onboard logic provided the
"right" number of bytes, it sends bytes from Data Port, starting with the
most significant bit of the most significant (leftmost) byte, and ending
with the least significant bit of the least significant (rightmost) byte.
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9)

10)

1)

12)

13)

As the DATA SENDER sends each bit of data on each Cl edge of SERCIK, it
samples SERDAT* cn the following Sl edge. 1If it samples a "cne" after it
sent a "zero", and if its MAX/OR input is True, then it immediately
returns to idle state. If it samples a "zero", if it sent a "one", or if
the MAX/CR input is False, it continues sending data bits.

After the DATA SENDER has sent and sampled the last data bit, it releases
SERDAT* cn the Cl edge of SERCIXK and samples it at the next Sl edge. This
is bit 2 of the Frame Status field. If it samples a one it returns to
idle state.

(Bit 2 of the Frame Status is zerc.) The DATA SENDER then drives a "one"
on SERDAT* at the next Cl edge, to show that it survived any Data field
arbitration. At the next Cl edge it releases SERDAT*, and then samples it
at the next two Sl edges of SERCLK. These are bit 0 of the Frame Status
field and the Jam Detect bit.

If bit 0 of the Frame Status is zero, or the Jam Detect bit is cne, the
DATA SENDER simply returns to idle state.

If these 2 bits are 10, the DATA SENDER makes its DSENT output True, to
signal to its onboard lcgic that it has sent data successfully. On the
following Cl edge it makes DSENT False again, and retums to idle state.

6.5 DATA RECEIVER Mcdule

A DATA RECEIVER mcdule must be paired with a HEADER RECEIVER. Its function is
to take data sent by DATA SENCERS on the serial bus when it is signalled by its
HEADER RECEIVER, and present the data to anboard logic.

6.5.1 DATA RECEIVER Signals

As shown in Figure 6-7, a DATA RECEIVER takes the SYSRESET* and SERCIK signals
from the serial bus as inputs and the SERDAT* signal as a bidirectional I/0.
It also has a number of inputs and cutputs with cnboard logic, as follows:

Data Port A set of parallel output lines and associated control signals,

through which data from the serial bus is presented to cnboard
logic.

NOTE: Frames on the serial bus can include 1, 2, 4, 8,
16, or 32 bytes of data. Real DATA RECEIVER
implementations may be limited to receiving less than
32 bytes. If a frame selects a DATA RECEIVER, and it
cantains more data than the DATA RECEIVER can accept,
the module signals the problem on the serial bus, in
the Frame Status field. This specification dees not
cover the details of how cnboard logic reads received
data from Data Port.
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Data Size Port Three parallel outputs and asscciated control signals, through
which the number of received bytes is presented to onboard
logic. These outputs are encoded as described elsewhere in
this specification for the Frame Type subframe.

NOTE: Data Port and Data Size Port may be implemented
by dedicated signals, or by a commen "bus interface".

R SELECT An input from the paired HEADER RECEIVER, which selects the
DATA RECEIVER to capture data from the serial bus.

NOTE: The R STROBE output of the paired HEADER
RECEIVER signals onboard logic when data from the
serial bus is available on Data Port.

6.5.2 DATA RECEIVER Initialization

Whenever SYSRESET* is Low, a DATA RECEIVER initializes itself as follows:

1) It releases SERDAT*, and ignores it as an input.

2) If Data Port and/or Data Size Port is implemented as a loadable register,
it clears the register(s) to zero.

When SYSRESET* is released, the DATA RECEIVER enters idle state, described

" below.

6.5.3 Reading Data from the Data Port

In a system DATA RECEIVERS can be used in two ways. In one approach the DATA
RECEIVER is always ready to receive data, and changes the data available on
Data Port whenever it is selected by a frame n the serial bus. Onbocard logic
with such a DATA RECEIVER can use the data on Data Port "whenever it's needed".
In this case, if onboard logic uses multiple "read cycles" to read out the
data, and new data arrives on the serial bus while it is doing so, onbocard
logic may read out a mixture of old and new data. Real DATA RECEIVER designs
must deal with this problem. One way to handle it is to signal anboard logic
if the problem arises. :

In other applications, each time new data arrives on the serial bus, onbcard
logic reads it from Data Port once and only once. In this scheme, when data
arrives from the serial bus, cnbcard logic reads it out of the DATA RECEIVER as
soon as possible. If another Data Transfer frame selects the DATA RECEIVER
before the previous data has been read, the module "cancels" the frame.

This distinction is made by onboard logic and does not affect the DATA RECEIVER
mcdule described here. The following description of a DATA RECEIVER allows for
either mode. In the first case, the ENABLE R input of the paired HEADER
RECEIVER is permanently set to True, and its R STROBE output is not used by
onboard logic. In the second case, anboard lcgic makes ENABLE R False when the
HEADER RECEIVER pulses R STROBE, and makes ENABLE R True again after it has
read out the data.
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6.5.4 DATA RECEIVER Operaticn

The state diagram of a DATA RECEIVER is shown in Figure 6-8. Starting from
idle state, the DATA RECEIVER proceeds as follows:

1)

3)

4)

3)

6)

In idle state the DATA RECEIVER samples its R SELECT input and the SERDAT*
line on every Sl transition of SERCIK, until it samples R SELECT True and
SERDAT* "cne" (Low).

On the next 3 Sl edges of SERCIK, the DATA RECEIVER samples SERDAT*. The
sampled 3-bit code is the "Frame Type". The DATA RECEIVER interprets the
Frame Type ccde as follows:

Frame TYpe Interpretation

000 No DATA SENDER selected

001 1 byte of data in the frame
010 2bytes®™ " W "
oll 4 ” n " n n - n
100 8 ”n n ” " ;] "
lOl 16 ] " n " " 1]
llo 32 " ] " [ ] " L]
111 Cancelled frame

If the Frame Type is 111, this is a Cancelled frame, and the DATA RECEIVER
simply retums to idle state in this case.

If the Frame Type code is 000, no DATA SENDER in the system is selected to
send data. In this case, the DATA RECEIVER sends 101 on SERDAT* on the
next 3 Cl edges of SERCLK. On the next Cl edge it releases SERDAT* and
retums to idle state.

If the Frame Type indicates more data than the DATA RECEIVER is designed
to handle, it waits cut the indicated number of bytes, and then sends 101
on SERDAT* on the next 3 Cl edges of SERCLK. On the next Cl edge it
releases SERDAT* and retumns to idle state.

If the sampled Frame Type code indicates a length the DATA RECEIVER can
handle, it samples the indicated number of bytes f£rom SERDAT*, on

- following S1 edges of SERCLK. It samples the data into a Data Holding

register, starting with the most significant bit of the most significant
(leftmost) byte, and ending with the least significant bit of the least
significant (rightmost) byte.

NOTE: If a DATA RECEIVER implementation is designed to provide
data to onboard logic "once and only once" as described in
6.5.3, it can omit the Data Holding register and sample data
directly into the Data register which is available via Data
Port. If there are subsequent problems in the Status subframe,
the R STROBE output of the paired HEADER RECEIVER is simply not
pulsed to signal cnbcard logic of new data.

6-22




P

Cl:
Place 1

on SERDATx

Sli:
Samp le

and Save
Status bitl
on SERDATx

Sample| 2

Si:
Samp i e
SERDAT*

(Status
MSB)

Last |Byt

Si:
Sample
and Sawve,
the number
of bytes
specified
by F.T.

SYSRESETx Low

Cl:
Re (aase
SERDAT*

S1l: Sample
Jam Bit on/1am Bit=1
SERDATx or saved

Status bitl

Data Size
Part regs.

1 f
prasent)

SYSRESET*

saved data High

bytea, F.T.
to Part
registars

S1i:
Samp | e
R SELECT,
SERDAT*

Samp le SELECT True,
SERDAT* 1
Si:
Sample 3
Frame Type
Sampled\ p,ts on
SERDATX
3:281-110
Samp | ed, 3:010-110
Data ength Samp | ed,
OK 3: /200 more data
Samp 1 ed than thts
module can
handle
Cl: .
Place 101 L tsl. Na\;
Re!lease as ry numoe
on next 3 of bytes
SERDAT* bi1ts on Bt \ specified
SERDAT by F.T.

Figure 6-8. DATA RECEIVER State Diagram



7)  After the DATA RECEIVER has sampled the last data bit, it samples SERDAT* '
on the next Sl edge of SERCLK. This is bit 2 of the Frame Status field.
If it samples a cne on SERDAT* it retums to idle state.

8) (Bit 2 of the Frame Status is zero.) On the next S1 edge of SERCLK the
DATA RECEIVER again samples SERDAT* (bit 1 of the Frame Status field), and
saves the sampled value.

9) On the next Cl edge of SERDAT*, the DATA RECEIVER drives a cne on SERDAT*
to show that it is present. 'n'xis is bit 0 of the Frame Status field.

10) On the next Cl edge of SERCIX the DATA RECEIVER releases SERDAT*, and then
samples it on the followmg Sl edge of SERCLK. This is the Jam Detect
bit.

11) 1If bit 1 of the Frame Status is zero and/or the Jam Detect bit is one,
there is a problem with the frame. In this case the DATA RECEIVER simply
retums to idle state.

12) (Bit 1 of the Frame Status is one and the Jam Detect bit is zero.) The
serial bus data transfer is successful. On the following Cl clock the
DATA RECEIVER transfers the received data from the Data Holding register
to the Data register which is available wvia Data Port, transfers the
sampled Frame Type code to the register which is available via Data Size
Port, and returns to idle state. The R STRCBE output of the paired HEADER
RECEIVER signals the arrival of new data to anboard logic.

6.6 FRAME MONITOR Module

The FRAME MONITOR "closes the loop" of serial bus modules we have been
describing, by reporting the result of a frame transmission back to the onboard
logic with the HEADER SENDER which initiated the frame. A FRAME MONITOR is
normally paired with a HEADER SENDER, but could stand alone to monitor all
serial bus traffic. (Since the SELECT output of a HEADER SENDER and the S and
R SELECT outputs of a HEADER RECEIVER have the same timing, a FRAME MONITOR
could be paired with a HEADER RECEIVER as well, but this combination has no
cbvicus use.)

The FRAME MONITOR provides two other important functions. First, it "tracks"
the transmission of every frame on the serial bus, and informs its paired
HEADER SENDER when the bus is free for a new frame.

Second, it watches for Start bits at all times: if it sees a Start bit on
SERDAT* while it is tracking a frame, an error caused by noise on the serial
bus has caused cne or more of the other FRAME MONITORS in the system to be "out
of synchronization™ with this one. In this case, it "jams" the serial bus by
sending a string of 512 "cnes" (Low) on SERDAT*. This invalidates the current
frame: it is ignored by all serial bus modules. It also brings all FRAME
MONITORS and HEADER SENDERS on the serial bus back into synchronization.
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6.6.1 FRAME MONITOR Signals

As shown in Figure 6-1, a FRAME MONITOR takes the SYSRESET* and SERCIK signals
from the serial bus as inputs and the SERDAT* signal as a bidirectional I/O.
It also has a number of inputs and outputs with cnboard logic, as follows:

Priority Port

S/R Cde Ports

Data Frame Port

Status Port

CANCELLED

Three parallel outputs and associated control signals, whereby
the Priority field of serial bus frames is reported to onbcard
logic.

Two sets of 10 parallel outputs and associated control
signals, whereby the S and R Selection Codes of serial bus
frames are reported to cnbcard logic.

An output indicating whether the frame being reported to
anboard logic was a Data Transfer frame. This information is
needed to interpret the information from the Status port.

Three parallel outputs and associated control signals, whereby
the Frame Status field of serial bus frames is reported to
onboard logic.

NOTE: The above ports may be dedicated ocutputs, or
a common bus interface.

An output which indicates that a frame initiated by the paired
HEADER SENDER has been completed, and that the results of the
frame transmission are available on the above five ports.
This output is made True only if the paired HEADER SENDER has
signalled that it initiated the frame, by means of the SELECT
signal. It is not made True for a Cancelled frame, nor for a
"jammed" frame.

An alternative output to SENT. It indicates that a frame
initiated by the paired HEADER SENDER has been cancelled by a
HEADER RECEIVER which is "not ready”. Only the Priority and S
and R Code ports are valid for a Cancelled frame. This output
is not made True if the paired HEADER SENDER has not signalled
on SELECT, nor for a "jammed" frame.

NOTE: When a frame is cancelled, onbcard logic can
reduce the Priority value for subsequent retries
(e.g. to 000), to allow other HEADER SENDERS to send
frames on the serial bus. This strategy, plus
increasing the Priority value when a HEADER SENDER
loses serial bus arbitration (see 6.2.1), can ensure
that each HEADER SENDER dets a fair share of access
to the bus.

An input from thHe paired HEADER SENDER, used to signal that
the HEADER SENDER has won the arbitration for the serial bus
and initiated the frame. This input enables the SENT and
CANCELLED outputs for the frame. For a FRAME MONITOR which is
not paired with a HEADER SENDER, this input should be
permanently True.
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FRAME IN An output to a paired HEADER SENDER. When this output is

PROGRESS False, the serial bus is free and the HEADER SENDER can
initiate a frame.

6.6.2 FRAME MONITOR Initialization

Whenever SYSRESET* is Low, a FRAME MONITOR initializes itself as follows:

1) It makes its SENT and CANCELLED outputs False.

2) It makes its FRAME IN PROGRESS cutput True.

3) It releases SERDAT*, and ignores it as an input.

When SYSRESET* is released, the FRAME MONITOR makes FRAME IN PROGRESS False and

enters idle state, described below.

6.6.3 FRAME MONITOR Operaticn

The state diagram of a FRAME MONITOR is shown in Figure 6-9. Starting £rom
idle state, this module proceeds as follows:

1) It samples SERDAT* on both the Sl and S2 transitions in every SERCLK
cycle, until it samples a "zero" on Sl and a "one" on S2. This indicates
a start bit.

NOTE: On the first Cl edge after returning from step 6 or 10
below, the FRAME MONITOR makes its SENT and CANCELLED outputs
False.

2) After the Cl edge after sampling a start bit, it makes its FRAME IN
PROGRESS output True. The timing requirement on this is "relaxed" in the
sense that the signal need only meet setup to the next S2 edge at the
paired HEADER SENDER. ‘

3) Starting on the Sl edge after the S2 edge on which it found a start bit,
it samples successive bits on SERDAT* on both the S1 and S2 edges, and
disposes of them as follows: ’

3 bits after start: sampled into Priority Port

Next 10 bits: sampled into S Ccde Port
Next 10 bits: sampled into R Ccde Port
Next bit: discarded/ignored

4) For each of the bits sampled in step 3 and in subsequent steps until it
retums to idle state, if the FRAME MONITOR samples SERDAT* High cn Sl and
Low on S2, it drives SERDAT* to "cne" (Low) on 512 consecutive Cl edges of
SERCIR. On the next Cl edge thereafter, it releases SERDAT* and retums
to idle state.
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3)

6)

7)

8)

9)

10)

1)

The FRAME MONITOR then samples its SELECT input on the next Sl edge and
retains the result for later. At the same time it samples the next bit on
SERDAT* after those in step 3, the HSVAL bit. If it samples SERDAT*
"zero" at Sl it makes FRAME IN PROGRESS False at the following Cl edge,

and (unless it samples a "one" at S2) it returns to idle state.

(HSVAL was "one".) The FRAME MONITOR then samples the next 3 bits on
SERDAT*, which are the Frame Type.

If the Frame Type is 111, it makes FRAME IN PROGRESS False on the
following Cl edge. On the following Sl and S2 edges it samples SERDAT*
(this is the Jam Bit). If the Jam Bit is "zero" and SELECT was sampled
True in step 5), it makes CANCELLED True cn the following Cl edge. Unless
it sampled a start bit it then returmns to idle state to sample the bit
following the Jam Bit. (In idle state it will make CANCELLED False cn the
next Cl edge.) ’

If the Frame Type is 001-110, the FRAME MONITOR translates this code into
the number of Data bits in the frame, as described elsewhere in this
specification. On the next Cl edge it makes the register bit for Data
Frame Port True, and then samples SERDAT* for that number of Data bits.
In the Data bits the FRAME MONITCR samples for Start bits as described in
4), but otherwise discards the data. It then prcceeds to step 10).

If the Frame Type is 000, on the next Cl edge the FRAME MONITCR makes the
register bit for the Data Frame Port False.

On the next 3 S1 and S2 edges after the Data bits (if present, else after
the Frame ‘Type bits), the FRAME MCNITOR samples these three bits into the
Status port.

On the Cl edge after the last Status bit, the FRAME MONITOR makes FRAME IN
PROGRESS False. On the following Sl and S2 edges it samples SERDAT* (this
is the Jam Bit). If the Jam Bit is "zero" and SELECT was sampled True in
step 5), it makes SENT True on the following Cl edge. Unless it sampled a
start bit it then returns to idle state to sample the bit following the
Jam Bit. (In idle state it will make SENT False on the next Cl edge.)
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7. SERIAL BUS EXAMPLES

The basic serial bus modules defined in this specification provide a set of
hardware building blocks that can be configured in many different ways for
different purposes. This section shows some examples of serial bus module
configurations, and how they can be applied to typical system needs.

7.1 EXAMPLE l: A VIRTUAL SIGNAL LINE

The simplest path for communication within any system is a single conductor
with a driver at one end and a receiver at the other. When an entire system is
designed on a single printed circuit board, the designer is free to
interconnect the logic with as many signal lines as are required.

Standardized backplane buses, however, provide much more limited options. It
may not always be possible to fit all of the logic for a given function on a
single board. When a design spans more than cne board it usually requires
signal lines between the boards. Sometimes this is accomplished by using scme
"reserved" lines on the backplane. Sometimes cables between the two boards
provide the conductors. Both of these solutions create their own set of
problems.

In this situation the hardware engineer is faced with a simply stated problem:
how can he design hardware to do a specific job within the constraints of a
particular bocard size and backplane bus? An analogy can be drawn between this
problem and one which software designers face. Sometimes the amount of
physical memory in a computer system is insufficient to accommcdate all the
required programs and data. To solve this memory limitation problem, "virtual
memory”" concepts were invented. Virtual memory puts the programmer into an
"idealized" machine which has a very large amount of main storage. Such
systems allow software designers to structure a program in a reliable and
understandable way, without being forced to accommodate arbitrary memory sizing
canstraints. Althouwgh a virtual memory system may run slower than cne fully
populated with memory, the benefits are often viewed as being well worth the
costs.

To bring this analogy back to the hardware world, the logic designer would like
to be able to create a number of "virtual" signal lines between boards, without
being constrained by arbitrary things like the number of reserved lines on a
backplane, the number of wires in a cable, etc. Ideally this should be done
without using any special dedicated lines on the backplane, since this can
create incompatibilities with other board designs that use these lines for
different purposes.

The serial bus allows the creation of such "virtual signal lines" between
boards. Figure 7-1 shows how a TYPE 1 module group and a TYPE 2 module group
do this. The SEND12 and SEND2l inputs to the HEADER SENDER at the top of the
figure are driven by a single signal line named BINARY INPUT. Whenever this -
line goes True the SEND12 line goes True, causing the HEADER SENDER to send a
"Flip-flop Set frame" with a selection code of 37 in the S field. This frame
causes the HEADER RECEIVER in the lower part of the figure to pulse its S
STRCBE line True, setting the flip-flop.
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When the BINARY INPUT signal at the top of the figure is returned to False,
SEND21 goes True and the HEADER SENDER sends a "Flip-flop Reset frame". This
frame causes the HEADER RECEIVER to pulse its R STROBE line True, resetting the
flip-flop.

Thus, this arrangement of mcdules provides a "virtual signal line". Given that
there are 1023 available selection codes on the serial bus ("all ones" is not
used), we could theoretically create that many virtual signal lines. (Keep in
mind that these "modules" are not individual integrated circuits. They are
just the atomic units from which serial bus IC's are built. A single IC will
usually provide a number of these mcdules.)

The "propagation delay" of serial bus virtual signals is greater than that of
real lines, and is subject to variations with serial bus traffic. However, as
in the case of virtual memory systems, the flexibility they offer will often
outweigh these speed disadvantages.

6.2 EXAMPLE 2: A SEMAPHORE

As we discussed earlier, multiprocessing systems require the use of control
structures such as "semaphores", to govern access to shared system resources.
Figure 7-2 shows how serial bus modules can be configured to provide
"intelligent semaphores”.

The modules at the top of the diagram are cn cne bcard and those at the bottom
are on another. The TYPE 2 mcdule groups on the right side of the figure are
the semaphores. Because these module groups are configured to respond to the
same selection ccdes, they always stay synchronized. (If a Set frame sets one
of them it also sets the other, etc.)

‘Notice that the cutput from each flip-flop is fed back to the S ENABLE input of

its HEADER RECEIVER. If these flip-flops are set, their outputs make the S
ENABLE inputs to the HEADER RECEIVERS False. In this state the HEADER
RECEIVERS cancel any Set frames directed to them, accepting cnly Reset frames.

The TYPE 1 mcdule groups at the left side of the diagram set and reset the
semaphores. In each group, its SEND12 and SEND2l inputs are driven from a
common signal named "RESOURCE REQUEST". 1In order to understand how these
mcdules work together, let's go through two typical sequences.

When the on-bcard logic drives RESCURCE REQUEST True the flip-flops might be
either set or reset. lLet's take the case where they are set first.

If the two flip-flops are set, and the on-board logic of the top board drives
RESOURCE REQUEST True, then the False signal from the "Q bar" output of the
flip-flop prevents the HEADER RECEIVER'S SEND2l input from going True. This
prevents the HEADER SENDER from sending an unnecessary Set frame over the
serial bus. (It would just be rejected by the HEADER RECEIVERS anyway.)
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Suppose that while the top bocard is waiting to send a Set frame, the on-board
logic of the bottom bocard drives its RESOURCE REQUEST line True also.

When the HEADER SENDER that originally set the flip~-flops (not shown) finally
sends a Reset frame, the "Q bar" outputs of both flip-flops enable the SEND21
inputs of the upper and lower HEADER SENDERS simultaneously. As a result, they
both begin to send Semaphore Set frames. Since their semaphore select codes
are the same in the S field, both are still sending at the end of that field.
However, since the HEADER SENDER at the bottom of the figure has the smaller
requester code in its R field, it retires from the bus. This leaves the top
HEADER SENDER to finish its frame, setting the flip-flops cn both boards.

Since the flip-flops on BOTH boards are set, this fact doesn't tell the on-
bocard logic which bcard has been granted the resource. The FRAME MONITOR on
the left side of each bcard samples all frames on the bus, and asserts SENT if
its HEADER SENDER wins the arbitration and signals this fact on the SELECT
line. 1In the current case the top FRAME MONITCR pulses its SENT autput True.

The diagram shows how the SENT pulse is used to control a flip-flop which
generates a RESQURCE GRANTED signal to the on-board logic. (The setting of
this flip~flop may be used to generate an interrupt to an cnboard processor.)
If there are several semaphores in the system, decoding on the S and R code
outputs of the FRAME MONITOR can be used to route the SENT pulse to one of a
number of such flip-flops.

When the cnboard processor an the upper board finishes using the corresponding
resource, it makes the RESOURCE REQUEST signal False. This makes the SEND12
input of the upper HEADER SENDER True, and it sends a Reset frame. This clears -
both of the semaphores plus the upper RESCURCE GRANTED flip-flop. The HEADER
SENDER on the lower board is then enabled to send a Semaphore Set frame. When
this occurs, the lower RESOURCE GRANTED signal signals its onboard prccessor
that it now controls the resource.

7.3 EXAMPLE 3: A VIRTUAL BUS

Most multiprccessing architectures today are the result of trade-offs based on
the high cost and physical size of backplane interface logic. Thus most
multiprocessing systems today are based on a single backplane bus instead of
several.

But, if we look at the logical structure of these systems we find that each
processor may need to communicate with every other processor. One could
envision a system that provides for this kind of communication with a complex
structure of point-to-point communication paths, but given the cost of the
hardware, it is usually impractical to build such a structure of buses.

Clearly, the hardware structure of a typical single-backplane system is very
different from the type of message traffic needed in a multiprocessor
configuration. This difference in structure can sometimes be hidden by the
software which handles the message traffic, but it can result in awkward
constraints which the user must live with, perhaps without ever really
understanding why.
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In section 7.1 we talked about how the serial bus could be used to provide a
very large number of virtual signal lines. These lines could be configured to
camnect any bocard to any cother. This logical structure is much more like the
cne we've just discussed. While limited, these virtual signal lines prov:.de
the kind of point-to-point paths needed in multiprocessing systems.

But the serial bus can do more than just provide virtual signal lines between
becards. It can also provide "virtual buses". Figure 7-3 shows a module
configuration that permits this. The TYPE 3 and TYPE 1 module groups at the
top of the figure are an acne board and the TYPE 4 module group at the bottom is
on ancther board.

The TYPE 1 module group contains a HEADER SENDER which directs a Data Transfer
frame from the top board to the bottom whenever its SEND12 input is driven
True. It does this by sending a Header subframe that sélects the DATA SENDER
on the top board and the DATA RECEIVER on the bottam board. If we look at the
signals from the on-board logic on the top board and the the output signals
that go to the on-board logic of the bottom board, in each case we see a
parallel bus plus a "strobe" line. This "virtual bus" has a much slower
"propagation time" than a real bus and its delay varies with the level of bus
traffic, but the fact that the serial bus can provide up to 1023 "virtual
buses™ makes it very useful.

Of course, once we can-simulate a simple bus and a strobe we can create more
elaborate structures. For example, we could have one such virtual bus going
from board A to bcard B, and a second virtual bus in the cther direction. This
module configuration can be used for "stimulus-and-response® operations. The
simplest example of such an operation is board A reading a memory lccation on
board B.
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