
(Signetics

VMS bus
Specif ica ti on
Manual
REV A4

Nov. 1983

(

····>t

VMSbus

(VME SERIAL BUS)

SPECIFICATION MANUAL

PRELIMINARY

PUBLISHED BY

TEE

VME:bus MANUFACI'IJRERS' GRJUP

Revisioo A4

November, 1983

'

,.

(

No matter how fast and capable computers and microprocessors become, there
always seem to be applications which are just beyond the ability of a
particular processor. A prcx::essor may not be fast enough to prcx::ess inputs in
nreal time", or may not provide fast enough response time to satisfy users,
etc. It simply takes too loog to ''get the job dooe".

In the past such applications often had to be delayed until a new and faster
processor was developed, which was also cost-effective for the application.
But recent microprcx::essors have added hardware features which allow more than
one of them to be hooked together in a system. Such multiprocessor systems
provide an alternative to waiting for a faster prcx::essor to be developed. Two
or more prcx::essors can share the prcx::essing load of the $ystem and provide the
necessary nreal timen processing, faster response time, and so on.

A well-known and respected lady computer scientist uses an analogy from the
early days of oxcarts. When the first oxcart users and engineers encountered a
lead which was too heavy for their ox to pull, they did not put off moving the
load until a larger ox was developed. They simply hooked up two oxen to the
cart and did the job. Her message is that multiprocessor systems should be
more widely used.

To some extent, multiprocessing is a field in which hardware development has
outrun software development. Much of current software thinking and techniques
are tied to the single-processor systems for which existent software was
developed. Multiple processor systems pose new problems· for system software
designers, and soluticns to these problems are still evolving.

A number of possible ways to design software for multiprocessing have been
developed. Single-processor multitasking techniques can be extended for
multiple processors. Multitasking can be thought of as the sharing of a
prcx::essor amcng several tasks (pi:ograms or parts of a pi:ogram). '!be prcx::essor
is first assigned to one task which it executes for a while, then to another
task for a while, then to another, etc.

'!he most straightforward way to extend single-prcx::essor multitasking into the
multiprcx::essor envirooment is to give each processor a more or less fixed set
of tasks which it executes. More complex multiprocessor·· software techniques
include nanonymous processor" systems, wherein any available processor can
execute any task in the system.

Other computer scientists argue that classic multitasking techniques are
unreliable in the multiprocessor environment because the number of ways the
prcx::essors can interact is very large, and it is too easy for some interactioos
to be overlooked by system designers. These people say that the only way to
assure reliable, fully debugged multiprcx::essor software is to pi:ogram all the
processors in cne program, which specifies and controls all the ways in which
the prcx::essors can interact.

1-1

Alternative ai;:proaches will probably cootinue to be developed and debated for
some time. However, in all of the approaches there are certain cornrnoo needs.
If we can design system hatdware which helps satisfy these needs, it makes the
irnplementatioo of multiprocessor systems more straightforwatd for everyooe.

The serial bus is intended to meet the needs of multiprocessor systems. The
following sectioos describe some of these needs and how the serial bus provides
for them.

1.1 '!BE SERIAL BUS ~ '!BE CXM1UNICATION OF EVEN1'S

An event could be defined as any significant cccurrence which is not a direct,
immediate, and normal result of what the processor is currently doing. For
example, if a prcqrarn commands a disk cootroller to start a transfer, we would
not consider the fact that the disk controller starts to be an event. The
completicn of the disk transfer is an event.

we will discuss events as they impact multitasking systems. In slcil systems
there is normally a task for each event that the system recognizes. When an
event occurs, the processor may be reassigned from executing one task to
executing another.

A task can ala:> cause the reassignment of the processor. For example, the task
which is currently being executed by the processor may need to wait for an
event to cccur before it can proceed. In this case it requests system software
to reassign the processor to other tasks until the event occurs. As another
example, a task may request that another task be executed. Communication
between tasks is often done through such requests.

Fach task in a multitasking system has an asscx::iated "priority". (All of the
tasks can be "rank ordered" from the highest priority to the lowest.} If an
event cccurs, for which the task priority is higher than that of the task which
the processor is currently executing, a reassignment takes place. The
processor stops executing the instn:cticns of the old task and starts executing
those of the new event's task.

There are two kinds of events: those which occur outside the processor
(external events), and those which occur inside the processor {internal
events). External events are cornrnaily cornrntmicated to the processor by means
of interrupts. Internal events don't need to be communicated to the
processor, but they may still cause it to be reassigned to a new task. (An
example of an internal event is an attempt to divide by zero.)

Microprocessors have a small number of "interrupt request" lines that can be
used to communicate events to them. Since there are usually many possible
events, they must all share these interrupt request lines. When the processor
detects an interrupt, it must gather more infoD11atioo in otder to figure out
which event has cccurred and which task is to be executed. '!here are several
methods for doing. this: polling of I/O status registers, reading a "vector"
from the interrupting device, etc. In each case the processor does one or
more "read cycles" to collect this infoD11atioo.

1-2

..

(In oome systems, an interrupt requires the processor to read from the status
registers of all possible interrupting devices until it finds one that is
generating an interrupt. Since a lot of reads may be required, this methoo is
rather inefficient. More recent prccessors use vectored interrupt techniques.

Vectored interrupts work as follows. Each device capable of generating
interrupts is assigned cne or more "vectors". Each vector leads to an address
where that event's task begins in the processor's memory. When the event
occurs and the processor is interrupted, it reads this vector from the
interrupting device. 'lllis tells the processor the starting address of the new
task to execute.

Earlier we said that tasks can communicate with each other to accomplish a
commcn purpose. When there are several processors, it may tum out that a task
being executed en cne prccessor may need to communicate with a task which is
being (or will be) executed on another. Thus it is important that the
processors have a quick way to communicate events BEI'WEEN EAai Oll1ER. (It's
no longer sufficient to simply communicate all events to a single
microprocessor.)

When multiprocessing systems are built using existing backplane buses this may
not be possible. For example, backplanes which were designed for single
processor systems may have only one interrupt line. When building
multiprccessing systems, such an interrupt structure simply won't do the job.

'!he newer backplane buses have a provisicn for directing interrupts to several
different prccessors. For example, VMF.bus has seven interrupt request lines
which can each be monitored by a different processor. If a device in the
system needs to communicate an event to a processor, it can request an
interrupt en a line that is mcnitored by that processor.

But even this approach has its limitations. When a processor acknowledges
(answers) an interrupt request, the processor typically must read a vector
before assigning itself to the new task. If this is dcne as a transfer on the
system bus, the prccessor may have to request the bus and wait until it becomes
available. If other bus masters are using the bus, this delay may be too lcng
or too unpredictable to satisfy the needs of tim~ritical, high performance
applications. Sometimes the problem can be solved by rearranging the
priorities of the various bus masters, but the other masters' needs for the bus
may be equally or more important to the performance of the system.

We ccncltrle from all this that what is needed is a path specifically designed
for communicating events. To be useful in a multiprocessing system, this path
must allow any processor to communicate events to any other, as well as
permitting other devices in the system to communicate events to any of the
processors. Su:h communicaticn is cne of the primary purposes of the serial
bus.

1-3

Another trend in microprocessor systems is towa.td applicatials which demand
"fault tolerance". This simply means that a system must be able to continue
operatial despite ale or more ha.tdware failures. cne way to satisfy this need
is by using several processors in a system, and providing ways for each
ptoeessor to observe the operatial of all the other baa.tds, to detect when me
is malfunctiming. Such systems can also include hatdware registers m each
boa.rd which control the board's backplane bus drivers. If ooe of the
ptoeessors detects a malfunctialing board, it can write into a cootrol register
al that boa.Id and tum off the boa.td's bus drivers, effectively "discamecting"
it from the backplane.

Si.Ix:e even a failure in a ptoeessor could be detected by another ptoeessor, at
first glance this seems like a gcx::d answer to the questioo of fault tolerance.
'!be scheme tums rut to be inadequate, however, where there is ally cne pathway
between boards. If the failure on a board is such that it prevents proper
operatial of the system bus, a ptoeessor may be able to detect the failure, but
it cannot use the system bus to disable the failed boaz:Q.

'!he serial bus provides another pathway between baa.tds, which can be used to
prevent a failed module from interfering with the operatim of the system bus.
'!he serial bus can be used to disable the drivers of s\X:h a baa.td, or direct a
board-specific Reset to it. caiversely, if a failed boa.Id prevents the proper
operatial of the serial bus, the system bus can be used to disable the boa.Id's
access to the serial bus.

1.3 'lBE SERIAL BUS ProVIDES FOR "IN'l'ELLIGEN!' SEMAPEDRES"

The third primary use of the serial bus is again related to multiprocessor
systems. When a system in::lldes multiple ptoeessors which can simultaneously
try to access and use a variety of shared resouroes (parts of the system), sane
means must be found to cootrol this access and use. A simple example of such a
problem is when two ptoeessors simultaneously set out to use a shared hardware
device such as a printer or disk. Other cases where interptoeessor cootrol is
needed include access to: a data file, a data or cootrol table in memory, or a
sectial of program cc:xle which must be used by ally cne ptoeessor at a time.

The most widely used solution to these problems is the "semaphore". A
semaphore is simply a locatioo in memory which multiple system ptoeessors can
access, but not simultaneously. A ptoeessor first reads the memory locatioo to
test whether another ptoeessor already has cootrol of the shared resouz:ce, and
then (if not) it writes to the location to show that it now has control. The
system ha.tdware must ensure that these two steps happen without allowing any
other ptoeessor to access the semaphore locaticn. 'lbe newer backplane buses
in::llde provisials for semaphore operatials.

1-4

(

("

A semaphore in common memory solves some of the problem but is less than
perfect. As the number of processors in a system increases, it becomes more
likely that several of them need to use a resource at the same time. Many
shared parts of a system such as data and control tables are designed to be in
use by a processor for a relatively short time. For such cases, if the
associated semaphore is fO\.ll'ld to be already set by another prcx::essor, a canmoo
software tactic is simply to rer1.m the "Read-Mcdify-Write" (RMW) or "Test and
Set" operation until it succeeds. Studies of heavily loaded multiprocessor
systems irXlicate that a significant percentage of prcx::essor cycles and cycles
on the system bus are wasted on repetitive accesses to semaphore locations.
'!his in tum can reduce the availability of the bus for other uses.

Che way to solve this problem is to provide a duplicate copy of each semaphore
al each prcx::essor baa.Id. '!he copies of the semaphore should, of course, always
be kept synchrooized. If a prcx::essor needs to set a particular semaphore, the
correspai.ding al-baa.rd copy is first checked.

If and only if the onboard copy of the semaphore is reset, a RMW operation is
run on the system bus, which affects all the copies of the semaphore in the
system (including the on-board ooe) • If this RMW "succeeds", all copies of the
semaphore are simultaneously set, and the requesting prcx::essor is entitled to
use the associated resource. (If two processors issue the RMW at the same
time, system bus arbitration ensures that only one succeeds.) A scheme like
this largely eliminates wasting system bus cycles on polling semaphore
locatioos in memory.

If the local semaphore is set or the RMW operation on the system bus fails,
system software has two choices. If the nature of the resource cootrolled by
the semaphore is su:::h that the semaphore will be cleared in a short time, it is
more efficient to "loop" testing the local copy of the semaphore until it is
cleared. An example of su:::h a "short term" semaphore would be ale cai.trolling
access to a data or control table in memory.

But if the semaphore will typically stay set for a relatively loog time, system
software and the prcx::essor should go oo to other tasks. In this case, cnboa.rd
ha.rdware must generate an interrupt when the semaphore is cleared so that the
processor can retry the RMW on the system bus. Better still, the onboard
hardware can itself retry setting the semaphore and interrupt the processor
only when it has gained control. An example of such a "long term" semaphore
would be ale cai.trolling acx.:ess to a physical device like a printer or a disk.

For "long term" semaphores, the serial bus offers a great improvement. A
processor can turn the entire operation of setting the semaphore over to
onboard serial bus hardware, and be interrupted only when the semaphore has
been set and the associated resource is actually available.

1-5

1.4 THE SERIAL BUS ALIDWS TOKEN PA$ING SCHEMES

Sometimes a system has a group 'of several interchangeable resources. If
semaphores are used to allocate these resources, then whenever a resource is
needed, the semaphores must be polled t.mtil cne is found to be available. In
some cases it may make more sense to have a "token" in the system for each of
these interchangeable resources, which is passed around amcng its "users" while
the resource is available, but is retained by a user while it uses the
resoui:ce. (Sooh "token passing" operaticn can be likened to a "daisy chain" in
a backplane bus, which has been looped back oo itself to make a ring.)

'lhe serial bus allows a large number of sooh tokens (up to 1024) to be created
and passed fran boam to boam with very little software overhead.

1. 5 THE SERIAL BUS PH:>VIDES A WW CX>ST ALTEmATIVE BUS

'!he serial bus is a unique new coocept in microprooessor system interfacing.
Its capabilities make it very attractive for use in complex multiprocessing
systems. But in addition to its power, a serial bus interface can be
implemented at lower cost than a system bus interface. With the ISI support
which will soon be available, serial bus hardware can be implemented in a
fracticn of the bca.td space required for a parallel backplane bus.

'!bus the serial bus offers a very attractive alternative to use·of a parallel
system bus for boards which do not require a high data rate. It can even be
used as the primary system bus in sane applicatioos.

1-6

'

/

(2. SERIAL BUS OPERATION

'!he serial bus interface system coosists of two signal lines named SEOCLK and
SERDAT* and six module types called HEADER SENDERS, HEADER RECEIVERS, DATA
SENDERS, DATA REX::EIVERS, FRAME MONITORS and a SERIAL CLOCK. '!he SERCLK line is
driven by a totem pole driver in the SERIAL CLOCK mcdule. '!he SERDAT* line can
be driven Low by all six module types using open collector drivers. When no
module drives SERDAT* Low, the bus terminating resistors pull it to a High
level. '!he SEIDAT* line is a Low-True signal (i.e. a "cne" is represented by a
Low level). '!his fact, plus the open collector characteristics of the drivers,
results in "logical OR'ing" when data is placed on SERDAT* by more than one
module. ·

In some cases on-board signals connect modules on the same board, but most
canmunication between mcdules is dcne by sending "frames" on the SERDAT* line.
'Ihese frames are composed of "subframes" which are sent by various mcdules. A
frame is initiated when a EFADER SENDER module sends a ''Header subframe". The
other modules then respond by sending subframes according to a prescribed
protc:x:::ol until the end of the frame is reached.

During the Header subframe transmissicn, HFADER SENDERS are required to sample
each bit on the SERDAT* line while they are sending. If a HEADER SENDER
detects SERDAT* Low when it is sending a "zero" (i.e. when it isn't driving
SERDAT* I.DW), it stops sending. '!his allows other EFADER SENDER(S) to finish
sending the Header subframe without interference. 'lllis methcd of arbitraticn
allows several HFADER SENDERS to start sending frames simultaneously, without
affecting each others' transmissions. (One of the transmissions will be
successful while the others ate tried again later.)

Serial bus modules are found en boards in groups. The following are the most
canmcn groups:

TYPE 1) A HF.ADER SENDER and a FRAME MJNITOR

TYPE 2) A HF.ADER RECEIVER and a flip-flop

TYPE 3) A HFADER REX:EIVER and a DATA SENDER

TYPE 4) A HF.ADER RECEIVER and a DATA RECEIVER

TYPE 5) A HFADER REX:EIVER, a DATA SENDER, and a DATA REX::EIVER

A TYPE 1 group is used to initiate frames by sending a "Header subframe". The
Header subframe specifies what other modules will participate in the frame
transmissicn by providing two ten bit "selection cedes". Fach HEADER RECEIVER
on the serial bus has a ten bit code which it compares with the two codes in
the subframe. If its code matches either of them, depending on the type of
group the HEADER RECEIVER is in, it respcnds by changing the state of its flip­
flop, by telling its DATA SENDER to send, or by telling its DATA RECEIVER to
receive.

2-1

2.1 USING '1BE SERIAL BUS TO TRANSFER DATA

'1he BFADER SENDER can determine whether there is a frame in progress from the
FRAME IN PR)GRESS signal generated by its FRAME MQUTOR. If there is no frame
in progress it can initiate one by sending a Header subframe. This subframe

·has a ten bit •s field" and a ten bit "R field". To transfer data, the HEADER
SENDER puts a selectiai ccrle in the S field that correspcnds to some 'nPE 3 or
TYPE 5 group on the bus, and a selection code in the R field that corresponds
to some TYPE 4 or TYPE 5 group. ('lhe actual ccrles used to select these groups
depend en how the system software or firmware has ccnfigured the system. '!here
are no selectiai ccrles used exclusively to select TYPE 4 groups, etc.)

Each BFADER REX:EIVER en the serial bus compares these cedes against its cede.
One or more of the TYPE 3 or TYPE 5 HEADER RECEIVERS finds a match with the S
field. It tells its DATA SENDER to send data. In a similar way, one or more
of the TYPE 4 or TYPE 5 HEADER RECEIVERS finds a match with the R field and
tell its DATA REXEIVER to receive data.

The actual number of bytes transferred is left up to the DATA SENDER. After
the BF.ADER SENDER has sent the Header subframe, the DATA SENDER sends a three
bit subframe indicating the number of bytes it intends to send to the DATA
REX.'.EIVER, followed by the data bytes. 'lhe DATA REX:EIVER then respaids with an
iniicatiai that it has received the data bytes.

2.2 WING '1BE SERIAL BUS 'IO SET AND RESET FLIP-F!DPS

When a HEADER SENDER is used to set or reset a flip-flop, it sends a Header
subframe as in the case described above. Instead of sending ccrles for 'nPE 3,
4 or 5 groups in the Sand R fields, however, it sends the code for a TYPE 2
group in one of the fields, and a "dummy" code (all ones) in the other field.
If the frame is intended to~ a flip-flop, it sends the TYPE 2 code in the·S
field, and the dummy cede in the R field. If the frame is intended to reset a
flip-flop, it sends the dummy code in the S field and the code for the TYPE 2
group in the R field.

When the Header subframe is sent, each HEADER RECEIVER on the serial bus
compares the codes in the Sand R fields to its own code. One or more HEADER
RECEIVER(S) in a TYPE 2 group matches the S (or R) field and sets (or resets)
its cn-boar:d flip-flop.

2. 3 C1.IBER USES roR '!BE SERIAL BUS

As we will see later, groups of serial bus modules like those described above
can be used as building blocks for very powerful system caifiguraticns. For
example, the combinatiai of a TYPE 1 and a 'nPE 5 group, ai each of two boar:ds,
can be used by one board to pass an address and read the contents of a memory
locatioo on the other. TYPE 2 groups can be used to reinitialize one or more
of the boar:ds in a system, or to selectively discamect a failed board from the
system bus. TYPE 2 groups can be also be used to provide "semaphores" which
are functionally superior to semaphores in a common memory, ·or to provide
•token passing".

2-2

..

'·,(' .. ·. ' l 3. SERIAL BUS FRAMES

As we said in Section 2, a frame is actually composed of subframes which are
sent by several modules in sequence whenever a HEADER SENDER sends a Header
subframe. Depending on the types of module groupings that a frame selects,
different modules drive and receive the various subframes, as follows:

Frames that select TYPE 2 mcdule groups •••

Subframe Received~

Header HE'ADER SENDER HEADER RECEIVER
Frame Type
Frame Status

Nobcx:iy (000) HEADER R&:EIVER, FRAME M:NITOR
HEADER RECEIVER FRAME MJNITOR

Frames that select TYPE 3, 4, and 5 mcdule groups •••

Subframe

Header
Frame Type
Data
Frame Status

Sent~

HEADER smoER
DATA SENDER
DATA SENDER
DATA SENDER,

DATA RECEIVER

Frames that get cancelled •••

Subframe

Received~

HEADER RECEIVER
DATA RECEIVER, FRAME l-ONITOR
DATA RECEIVER
FRAME l-ONITOR, DATA SENDER,

DATA RECEIVER

Received ~

Header
Frame Type

HEADER SENDER BEMER RECEIVER
HEADER REX:EIVER FRA\1E MJNITOR, DATA SENDER,

DATA RECEIVER

When a Header subframe is sent, modules on the serial bus are selected to
interact during the remainder of the frame. This interaction can be seen on
the serial bus as a sequence of subframe transmissions. Depending on what
mcdule groups are selected, we may see eleven possible kirrls of frames.

1) A Flip-flop Set frame
2) A Flip-flop Reset frame
3) A Semaphore Set frame
4) A Token Passing frame
5) A l byte Data Transfer frame
6) A 2 byte Data Transfer frame
7) A 4 byte Data Transfer frame
8) An 8 byte Data Transfer frame
9) A 16 byte Data Transfer frame

10) A 32 byte Data Transfer frame
11) A cancelled frame

3-1

3.1 A FLIP-FLOP SEr FRAME

A Flip-flop Set frame cmtains 4 subframes:

Header

S field=TYPE 2
R field=all ooes

Frame
Type

000

Frame
Status

010

Jam Bit

0

The Header subframe is sent by a HEADER SENDER. This subframe has two
selecticn code fields in it: the S field and the R field. The Flip-flop Set
frame has the selection code of a TYPE 2 group in its s field and all ones in
the R field. cne (or more) HF.ADER REX:EIVER(S) en the serial bus finis a match
between the S field code and its own code, sets its flip-flop, and responds
with 010 in the Frame Status subframe.

'lhe Flip-flop Set frame selects TYPE 2 mc:xlule groups. '1'he HEADER REX:EIVER in a
simple TY.PE 2 mcrlule group never drives SERDAT* during the Frame Type subframe.
Sirx:e a TYPE 2 mcrlule doesn't inclooe a DATA SENDER, no mcrl.ule drives SERDAT*
in the Frame Type subframe. This results in a three bit Frame Type value of
000 (all High). This value tells all of the FRAME MONITORS en the serial bus
that there will be no data bytes (i.e. that the Frame Status subframe follCMs
directly, and that the serial bus will be free thereafter). The FRAME MONITORS
use this information to signal their HEADER SENDERS when the next frame can
begin.

After the Frame Type subframe is complete, the HE'ADER REX:EIVER sends 010 in the
Frame Status subframe to indicate that at least cne HEADER REX:EIVER matched the
S field. This acknowledgment is captured by the FRAME MONI'IDR that is paired
with the HF.ADER SENDER, and reported to its on-board logic.

Sirx::e the R field in the header cmtained a "dummy'' cc:xle of all ooes, no HFADER
RECEIVER matches the R field· (The "all ones" code is never used to select
modules.) Because of this, the Frame Status subframe is only driven by the
HEADER RECEIVER(S) which matched the S field, and remains 010. Since the
header was intenticnally arranged not to select an "R-mcdule", the 010 value is
the expected respcnse.

3-2

(3. 2 A FLIP-FLOP RESET FRAME

(

A Flip-flop Reset frame ccntains four subframes:

Header

S field=all O"les
R field=TYPE 2

Frame
Type

000

Frame
Status

001

Jam Bit

0

'Ihe Header subframe is sent b'.z' a HEADER SENDER. As in the Flip-flop Set frame,
this subframe has two selection codes in its S field and R field. The Flip­
flop Reset frame, however, has the selection code of a TYPE 2 group in its R
field and all ones in the S field. One (or more) HEADER RECEIVER(S) on the
serial bus finds a match between the R field ca:ie and its own ca:ie, resets its
flip-flop, and responds with 001 in the Frame Status subframe.

'lbe Flip-flop Reset frame selects TYPE 2 mcrlule groups. The HEADER REX:EIVER in
a simple TYPE 2 module group never drives SERDAT* during the Frame Type
subframe. Since a TYPE 2 module doesn't include a DATA SENDER, no module
drives SERDAT* in the Frame Type subframe. 'Ihis results in a three bit Frame
Type value of 000 (all High). This value tells all of the FRAME MONITORS on
the serial bus that there will be no data bytes (i.e. that the Frame Status
subframe follows directly, and that the serial bus will be free t.11ereafter).
'Ihe FRAME MCNITORS use this informatioo to signal their HEADER SENDERS when the
next frame ca-r'l begin.

After the Frame Type subframe is complete, the HEADER RECEIVER sends 001 in the
Frame Status subframe to indicate that at least ooe HEADER REX:EIVER matched t.11e
R field. 'Ibis acknowledgment is captured by the FRAME MONITOR that is :paired
with the HEADER ~ and is reported to on-board lcgic.

Sin::e the S field in the header ccntained a "dummy" ca:ie of all O"les, no HEADER
RECEIVER matches the S field. Because of this, the Frame Status subframe is
mly driven b'.z' the HFADER RECEIVER(S) which matched the R field, and its value
remains 001. Since the header was intenticnally arranged not to select an "S­
mcrlule11, the 001 value is the expected respcnse.

3-3

3.3 A SEMAPHORE SEr FRFIME

A Semaphore Set frame which is "soccessful" caitains four subframes:

Header

S f ield=T"i'PE 2
R field=Req. Cede

Frame
Type

000

Frame
Status

010

Jam Bit

0

The Header subframe is sent by a HEADER SENDER. As in all frames, this
subframe has two selection cedes in its S field and R field. '!he Semaphore Set
frame has the selectiai cede of a TYPE 2 group in its S field.

'lbe R field of a Semaphore Set frame ccntains a ten bit cede which represents
the unique identity of the Requester that caused the frame to be sent. System
software should ensure that two HEADER SENDERS are never allowed to send
Semaphore Set frames with. the same R field cede. (In a multitasking system,
this could be assured by assigning a unique Requester number to each task in
the system.) 'lbe uniqueness of these Requester numbers guarantees that if two
or more EF.ADER SENDERS try to set the same semaphore at the same time, c:nly one
of them will survive the serial bus arbitraticn and finish the frame.

A TYPE 2 group used for semaphore operations differs from a simple Typ: 2 group
in having the state of its flip-flop fed back into its HEADER RECEIVER. The
HEADER RECEIVER in a TYPE 2 group used for semaphore operations will not accept
a Set frame if its flip-flop is already set. Whenever such a frame is sentf
the HEADER RECEIVER drives the value 111 in the Frame Type field, which
"cari.cels" the ftame. (A cancelled frame is shown below.)

If the EE.ADER RECEIVER matches the S field, and its flip-flop is reset,
operaticn prcx:eeds as described for a Flip-Flop Set frame.

NOTE 1: 'Any "Requester code" that is used in the R field of a
Semaphore Set frame should be an otherwise unused selecticn cede, so
that it dcesn't select some HEADER RECEIVER on the bus.

NOTE 2: Semaphores are reset using Flip-flop Reset frames, except
that the S field may contain either all ones or the same Requester
cede used in the Semaphore Set frame.

3-4

•

(

3. 4 A 'roKEN PASSING FRAME

A Token Passing frame which is "s~essful" ccntains four subframes:

Header

S field=TYPE 2
R field=TYPE 2

Frame
Type

000

Frame
Status

011

Jam Bit

0

The Header subframe is sent by a HEADER SENDER. The Token Passing frame has
the selection code of one TYPE 2 group in its S field and the code of another
TYPE 2 group in its R field. ·

As with a TYPE 2 group used for semaphore operatims, the HEADER ROCEIVER in a
TYPE 2 group used for token passing operations will not accept a Set frame if
its flip-flop is already set. In addition, it will not accept a Reset frame
while its flip-flop is reset. Whenever such a frame is sent, the HEADER
ROCEIVER "cancels" the frame.

A Token Passing frame is sent to simultaneously clear one flip-flop and set
another. (In effect, it is passing a "token bit" from the flip flop it resets
to the one. it sets.) If the flip-flop it is trying to reset is already reset
(i.e. it doesn't have a token to pass) the frame will be cancelled. Likewise,
if the flip-flop it is trying to set is already set (i.e. it is already holding
a token) the frame will also be cancelled.

These frame cancellation features ensure that a token bit is never lost or
created in the pro:::ess of moving it from cne board to another.

In a Token Passing frame, the S field of the header identifies the Type 2 group
to which these token is being passed, and the R field identifies the Type 2
group from which it is being passed. Assuming that the HEADER ROCEIVER which
matches the S-field has its flip-flop reset, it sends 010 in the Frame Status
subframe. Assuming that the HEADER ROCEIVER which matches the R field has its
flip-flop set, it sends 001 in the Frame Status. These two values are
logically OR'ed 01 the serial bus, resulting in the value 011 as the 11.:orrect"
value reported by the FRAME MONITOR paired with the HEADER SENDER which
initiated the frame.

3-5

•

3. 5 A DATA TRANSFER FRAME

A Data Transfer fmme which is "soocessful0 cmtains five subfmmes:

Header

S f ield=TYPE 3 or 5
R field='r.iPE 4 or 5

Frame
Type

001-110

Data

(Varies)

Frame
Status

011

Jam Bit

0

The Header subframe is sent by a HEADER SENDER. As in all frames, this
subframe has two selection codes in its S field and R field. The S field has
the selection code of a TYPE 3 or Type 5 group, which includes a DATA SENDER.
Similarly, the R-field has the selection code of a TYPE 4 or 5 group, which
includes a DATA RF.CEIVER. At the conclusim of the Header subframe, the
selected DATA SENDER(S) drive a code en SERDAT* during the Frame Type subframe,
to in:Ucate how' many bytes will be sent. While it is sending this cede, a DATA
SENDER also samples SERDAT*. If it samples the value 111 in the Frame Type,
the frame is "cancelled", and the DATA SENDER terminates its transmissim.

Except in a Cancelled frame, the DATA SENDER sends a Data subframe after the
Frame Type subframe. The Data subframe may be 1, 2, 4, · 8, 16, or 32 bytes
lmg.

If two or more DATA SENDERS are selected by the header subfmme, the serial bus
protocol requires that they agree ai the ametmt of data to be sent. If a DATA
SENDER samples a different value in the Frame Type subframe than the one it
sent (other than lll), it sends 110 in the Frame Status subframe which follows
the Data subfmme, imicating that the two DATA SENDERS tried to send diffex:ent
size Data subframes. If it sampled its own Frame Type value ai SERDAT*, and if
no other mcdule sends a "me0 in the high-order bit of the Fmme Status, a DATA

·SENDER sends 10 in the the next 2 bits.

Similarly, the serial but protocol i:equires that DATA REX:EIVERS must be able to
handle the ametmt of data sent by DATA SENDERS in a frame. If the frame is not
cancelled, and after the Data subf mme has been sent, the DATA REX:EIVER sends
101 in the Frame Status if the data was too 1019 for it. If the frame was not
cancelled, and if no other module sends a "one" in the high-order bit of the
Frame Status, a DATA RE:EIVER sends 01 in the next 2 bi ts.

In a successful frame, the Frame Status values from the DATA SENDER and DATA
RECEIVER are logically OR'ed by the serial bus to produce 011. This value is
reported by the FRAME MONITOR paired with the BFADER SENDER which initiated the
frame. ·

3-6

' /

•

(

3.6 A CANCETJ.En FRAME

A Cancelled frame cootains cnly three subframes:

Frame
Header Type Jam Bit

S f ield=TYPE 2, 3 or 5 111 0
R f ield=TYPE 4 or 5

The Header subframe is sent by a HEADER SENDER. It may be intended to set a
semaphore or transfer data. In the former case, the cancelling of the frame
indicates that the semaphore is already set. In the latter case, the
cancelling of the frame irrlicates that the data transfer cannot be performed
because cne or more of the DATA SENDERS or DATA rux::EIVERS selected by the S and
R codes is not ready for the transfer. A selected DATA RECEIVER may not yet
have "disposed of" data it received in a previous transmission. Or, a DATA
SENDER may not have been loaded with data to send.

In any of these cases, the HE'ADER REX:EIVER with the flip-flop, DATA SENDER or
DATA RECEIVER recognizes the problem and "cancels" the frame by driving all
three bits of the Frame Type subframe to "one" (Low). In the case of a Data
Transfer frame, the selected DATA SENDER(S) samples all three Frame Type bits
as ones and doesn't send the data bytes. The 111 in the size field tells all
selected DATA RECEIVERS and all of the FRAME MONITORS on the serial bus that
there will be no data bytes nor any status. Ali FRAME MCNITORS use this fact
to signal their HEADER SENDERS that the serial bus is available for another
frame. 'llle FRAME MONITOR with the HFADER SENDER which initiated the frame also
signals the problem to its cnboa.Id logic.

3. 7 A "JAMMED" FRAME

A "jammed" frame may look like any of the frames described aboli'e. It differs
from them in that (at least) the final single-bit "Jam Bit subframe" is one
rather than zero as shown in the aboli'e frames. A Jammed frame occurs when cne
or more FRAME MONITORS in the system detects that the serial bus is "out of
frame synchronization" due to an error induced by system noise, and sends a
long series of ones on SERDAT*. A Jammed frame is ignored by all modules on
the serial bus: no HFADER rux::EIVER sets or clears an associated flip-flop, no
DATA SENDER considers itself to have sent data, nor does any DATA RECEIVER
ccnsider itself to have received data. 'Ibe frame which was jammed will be re­
sent after the serial bus is "resynchrcnized".

3-7

******* 'IBIS PAGE INTENTIC!'IALLY LEFT BLANK *******

•

3-8

(4. SERIAL BUS SUBFMMES

The activity on the serial bus, like a carefully rehearsed drama, can be
described in two ways:

1) we can use a script which presents all of the wotds spoken, with marginal
canments indicating who speaks at each time. ('!his is the approach used
in this sectim.)

2) We can make a list of cues for each "actor" in the drama that says "WHEN
someone says this •• :-THEN you say this ••• " (This is the approach used in
secticn 6.)

Both approaches are useful to understand how the serial bus works.

All frames start with a Header subframe and a Frame Type subframe, and end with
a Jam Bit subframe. The Header subframe determines which modules will
participate in the rest of the frame, which in turn determines the type of
frame that is sent. 'Ihe Frame Type subframe makes the type of frame known to
all serial bus modules, and specifies the length of the frame. The Jam Bit
subframe "validates" the complete frame ·and ensures "frame synchronization"
amcng all serial bus mOO.ules. ·

(4.1.l 'Ihe Header Subframe

•

(

A Header subframe is composed of 26 bits arranged in 6 fields: ·

DATA
Start Message s R Si1mER HSVAL
Bit Priority Arb

enable
1 3 10 10 1 l

'Ihe Header subframe consists of the following fields:

1) A single "start bit". When the start bit is transmitted, it signals
Serial bus mcdules that a frame is beginning.

2) A three-bit "Message Priority" field. If two or more HEADER SENDERS
attempt to send a frame at the same timef this field is used to arbitrate
ccntrol of the serial bus so that the frame with higher priority is sent
first.

4-1

3) A ten-bit S field which caitains a selectim code for serial bus mcxiules.
'!he ccxie in this field and the type of serial bus frame are interrelated
as shCMn below. ·

Data Transfer frame
Semaphore Set frame
Flip-flop Set frame
Flip-flop Reset frame
'lbken Passing frame

CXNrENrS OF S FIELD

Sender selectioo code
Semaphore selectim code
Flip-flop selectioo code
(All mes)
Flip-flop selectial code

In a Data Transfer frame this field specifies which DATA SENDER(S) should
send data in the Data subframe which follows. In the Semaphore Set frame, •
Flip-flop Set frame, and Token Passing frame, this code selects the
semaphore(s) or flip-flop(s) that are to be set. (The S code may select
several groups of mcxiules if their BFADER mx:EIVERS have all been set up
to recognize it.)

4) A ten-bit R field which cootains a selectim cooe for serial bus mooules.
'!he code in this field and the type of serial bus frame are interrelated
as follows:

Data Transfer frame
Semaphore Set frame
Flip-flop Set frame
Flip-flop Reset frame
'lbken Passing frame

cmTEN'l'S OF R FIELD

Receiver selectial code
Requester code
(All ales)
Flip-flop selectim ccrle
Flip-flop selectial code

In a Data Transfer frame this field specifies which DATA RECEIVER(S)
should capture the data in the Data subframe which follows. In a Flip­
flop Reset or Token Passing frame, this code selects the flip-flop(s)
which are to be reset. In a Semaphore Set frame this ccx3e does not select
a module, but rather guarantees that ooly one HEADER SENDER wins the
serial bus arbitration and sets the semaphore. (The R code may select
several groups of mooules if their BFADER mx:EIVERS have all been set up
to recognize it.)

5) . A DATA SENDER arbitratim enable bit. When two or more DATA SENDERS share~
a canmal selectial cooe, they are both selected to send at the same time.
In this case, the resulting Data subframe can CO'ltain either the logical
OR of their values, or the largest value among the DATA SENDERS. To
specify that a logical OR is required, the HEADER SENDER sends a "zero"
in this bit position. To specify that the largest value is required, it
sends a "aie". (A "aie" tells each DATA SENDER to stop sending data if it
samples a "one" on SERDAT* in a bit in which it is sending a "zero". A
"zero" tells the DATA SENDERS to keep sending regaroless.)

4-2

•

..

•

•

' (

6) A HFADER SENDER validaticn bit. '!his bit is always sent as a "me" (:WW)
by the HEADER snmER at the cmclusion of the Header subframe. '!his bit
is specified as part of the Header subframe to insure that same error en
the serial bus wcn't cause all the HEADER SENDERS to think, they have lost
the arbitratiai and retire from the bus. If this occurs, it leaves a
string of "zeroes" on SERDAT* for the rest of the Header subframe. This
could be misinterpreted by other mcdules as a valid Header subframe.

The validation bit solves this problem because if all of the HEADER
SENDERS retire it will be a "zero", causing all serial bus modules to
ignore the frame.

4.1.2 'Ihe Frame Type Subframe

The second subframe present in all frames is the Frame Type subframe. It is
composed of a single 3-bit field:

bit 2
MSB

bit 1 bit 0
I.SB

Although this 3 bit subframe is present in all frames, it is not always driven ·
by a module. For example, when a simple TYPE 2 module group is selected by a
Flip-flop Set frame these bits are 000 because a simple TYPE 2 group doesn't
send the Frame Type bi ts.

When one (or more) DATA SENDER(S) is selected by the S code, it sends a three
bit Frame Type code in this subframe. This code indicates how many bytes of
data the DATA SENDER is planning to send. 'lhe figure below shows the meaning
of the various Frame Type codes.

aDE

000
001
010
Oil
100
101
110
lll

MFANING

No DATA SENDER selected
1 byte data transmissicn to follow
2 byte data transnission to follcw
4 byte data transnissicn to follcw
8 byte data transnissicn to follcw

16 byte data transnissicn to follcw
32 byte data transnissiai to f ollcw
Frame cancelled

4-3

Suppose that a DAT}\ REX:EIVER has received data in a previous frame and has not
"disposed of" that data yet. In order to keep from "losing" the data from the
previous frame, it has signalled its <:Mn HFADER REX:EIVER that it is not ready ·
for another frame. If a HEADER SENDER sends another frame with the DATA
REX:EIVER'S code in the R field, before the DATA REX:EIVER has "disposed of" the
previous data, its HEADER RECEIVER "cancels" the new frame by sending "ones"
during all three of the size bits. The DATA SENDER samples the Frame Type
subframe as it sends it, and stops sending if it samples a 111. (This
"Cancelled" frame ends after the Frame Type bits.)

Suppose a DATA SENDER has not been provided with data by its onboard logic.
Like a DATA REX:EIVER which has not "disposed of" earlier data, it has signalled
its <:Mn HF.ADER REX:EIVER of this fact via an cnboard signal. If a HFADER SENDER
sends a frame with the DATA SENDER'S cede in the S field while the DATA SENDER ..
"has no data", its HEADER RECEIVER cancels the frame l:?Y sending 111 in the
Frame Type subframe. The DATA RECEIVER(S) which is selected by the R field
sees this code and ignores the frame.

A system can be set up so. that more than one DATA SENDER is selected by the
same S field code. 'lhis allows their data to be logically OR'ed or the largest
among their data values to be determined. If multiple DATA SENDERS are
selected by the S field and one or more of them is not ready to send, those
which are ready see the lll code and dcn't send any data.

'!he HEADER REX:EIVER in a Type 2 group intended for semaphore or token passing
operaticn may also send ill in the Frame Type subframe to cancel a frame. If
it sees its code in the S field and its flip-flop is already set, or (in token
passing) if it sees its code in the R field and its flip-flop is already reset,
it cancels the frame. ·

In summary, a HFADER REX:EIVER mcrlule sends ill to cancel a frame if that frame
contains a matching cooe in either the S or R field, and its DATA SENDER, DATA
RECEIVER, or other onboard logic has signalled that it should cancel such a
frame.

When a frame is cancelled, this fact is captured by the FRAME MONITOR which is
paired with the HEADER SENDER that initiated the frame, and is reported to its
onboard logic.

4.1.3 '!he Jam Bit Subframe

'Ibis "subframe" ccnsists of a single bit. It can be regarded as a subframe or
as "the bit after a frame". None of the modules which send other subframes
ever drive this bit to one (Low), but HEADER RECEIVERS, DATA SENDERS, DATA
RECEIVERS, and FRAME MONITORS all sample it to be sure it is a zero. If the
Jam Bit is ever sampled by these modules as a one, they ignore the preceding
frame transmissicn.

4-4

•

•

•

•

(

The only way a Jam Bit can ever be one is if one or more FRAME MONITOR(S)
detect a start bit in the middle of a frame. 'lhis can ooly occur if some other
FRAME MONITOR has become desynchronized due to system noise. In this case, the
FRAME MOOITOR(S) which detect the cooditicn drive a string of 512 cne bits en
SEIDAT*. Since all serial bus frames are shorter than 512 bits, this is bound
to affect the Jam Bit seen by all serial bus modules.

4.2 'mE FRAME SI'ATtJS SUBFRAME

While the cancellatien of a frame can be determined from the Frame Type field,
other problems can arise when a frame is sent. Such problems are also reported
to enbcard logic by the FRAME MONI'IDR which is paired with the HFADER SENDER
that initiated the frame. 'lhe Frame Status subframe is included at the end of
every frame except a Cancelled frame, and is used to diagnose problems
(exceptional conditions) that might have arisen during the frame's
transnissien.

'lhe Frame Status subframe is canposed of ene 3-bit field:

bit 2
MSB

bit 1 bit 0
LSB

Whenever a HEADER RECEIVER receives a Header subframe with an S (or R)
selection cc:xle that matches its own, it makes its S SELEX:'T (or R SELEx:::T) output

·True. Depending en whether the HE'ADER RECEIVER is part of a TYPE 2, 3, 4, or 5
mc:xlule group, these outputs may or may not enable an on-J:x:ard DATA SENDER (or
DATA RECEIVER) •

Since the HEADER RECEIVER has no way of knowing which type of mc:xlule group it
is used in, it samples the Frame Type subframe. If a DATA SENDER is selected
it will send one of the values 001 through 110 in the Frame Type. If the
HE'ADER RECEIVER samples 001-110, it passes over the Data subframe and samples
these three Frame Status bits and the following Jam Detect bit. (In this case
the HEADER RECEIVER is simply acting as a "tracker" to reflect how DATA
SENDER(S) and DATA RECEIVER(S) en other beards respcnded to the frame.) If the
Frame Status is 011 and the Jam Detect bit is zero, the HFADER RECEIVER pulses
its S STROBE or R STROBE output to set or clear an on-board "tracking" flip­
flop.

If the HEADER RECEIVER samples 000 in the Frame Type, it knows that no DATA
SENDER was selected by the frame. It samples the MSB of the (immediately
following) Frame Status field and then sends a either a 10 or 01 in the next 2
bits to indicate that it was selected by the Sor R field, respectively. It
then samples the Jam Detect bit. If the MSB of the Frame Type and the Jam
Detect bits are both zero, all is well, and the HEADER RECEIVER pulses its S
SI'IDBE or R SI'IDBE output (respectively) to an cnbcard flip-flop.

4-5

If two or more DATA SENDERS are selected by the S field code of the Header
subframe, the serial bus protocol requires that they agree about how much data
is to be sent. As each DATA SENDER sends its code in the Frame Type field to
signal how much data it has to send, it also samples SERDAT* to detect a
conflict with other DATA SENDERS. If it samples a "one" in any of the 3 bits
while it is sending a "zero", it stops sending any further bits in the Frame
Type subframe or Data subframe. However, in this case it dces sample all the
bits in the Frame Type. If the sampled value is not 111 (i.e. not a
cancellaticn), it uses the value it samples to determine the length of the Data
subframe, passes over the data, and thereafter sends 110 during the Frame
Status subframe to signify a ccnflict amcng selected DATA SENDERS as to size of
the Data subframe.

If the DATA SENDER samples the same value in the Frame Type that it is sending,
it sends its data. It then samples the MSB of the Frame Status, which
indicates a size problem on the part of other DATA SENDERS or RECEIVERS. If
the MSB is zero it sends 10 in the next two bits of the Frame Status to
imicate that it survived any arbitratiai. in the Data subframe.

Suppose that a DATA SENDER is selected by the S field code of the Header
subframe and a DATA REX:EIVER is selected by its R cede. let's further suppose
that the DATA RECEIVER is only capable of receiving Data subframes up to a
certain length (less than 32 bytes}.

The DATA RECEIVER samples the Frame Type subframe. If the Frame Type code
indicates the DATA SENDER is trying to send more data than it can handle, the
DM'A REX:EIVER counts bits across the size of data indicated by the Frame Type,
and then sends 101 in the Frame Status subframe to signal the problem.

If a selected DATA RECEIVER samples 000 in the Frame Type field, there is no
DATA SENDER to send data to it. It handles this situation by sending 100 in
the Frame Status subframe.

Otherwise (for Frame Types 001-110) the DATA RECEIVER samples the number of
bytes of data indicated by the Frame Type. It then samples the MSB of the
Frame Status subframe. If the MSB is "zero", it sends Ol in the next 2 bits of
the Frame Status to show that it was selected. It then samples the Jam Detect
bit. If the MSB of the Frame Status and the Jam Detect bit were both zero, it
presents the data it sampled to its O'lboard lcgic.. 'Ihe R STroBE output of the
paired HEADER REx::EIVER Wicates the arrival of data to cnboa.rd lcgic.

In si.nnmaey, the Frame Status value must be interpreted differently for a Data
Transfer frame vs. other types of frames. In each case there are 8 possible
status values.

4-6

'

•

,.

•

(

STATUS
Value Inte rpretaticn

FRAME TYPE 000 (Not a Data Transfer frame)

000 No HEADER REX:EIVER selected by either S or R

001 HEADER REX:EIVER selected by R only

010 HEADER RECEIVER selected by s mly

011 HFADER REX:EIVERS selected by s and R

100 RF.SERVED: should not cx::cur

101 DATA REX:!EIVER selected by R, nothing selected by S

110 RF.SEIWED: should not cx::cur

111 DATA REX:EIVER selected by R, HEADER RECEIVER (roly)
selected by S

FRAME TYPE 001-110 (Data Transfer frame)

000 No DATA RFCEIVER selected by R, all DATA SENDERS
selected by S lost Data field arbitration

. 001 DATA REX:EIVER selected by R, all DATA SENDERS
selected by S lost Data field arbitration

010 No DATA RFCEIVER selected by R, DATA SENDERS selected
by S canpleted the Data subframe normally

011 Data Transfer canpleted correctly

100 RESERVED: should not cccur

101 DATA RECEIVER(S) unable to handle data size

110 Data size ccnflict among DATA SENDERS

111 (Both 101 and 110 ccnditims)

4.3 THE DATA SUBFRAME

The length of a Data subframe is specified by the selected DATA SENDER(S) in
the Frame Type subframe. There may be 1, 2, 4, 8, 16, or 32 bytes in a Data
subframe. As described earlier, there may be one or more DATA SENDER(S)
sending in this subframe, depending on how many HEADER RECEIVERS are
configured to respond to the S-field code. If several DATA SENDERS are
selected, the Data subframe will either ccntain the lO:Jical OR of their data,
or the largest value among them. (This is determined by whether the DATA
SllIDERS' arbitraticn was disabled or enabled by the Sender Arbitration Enable
bit sent during the Header subframe.)

4-7

******* THIS PAGE INTENTIONALLY LEE"I' BLANK *******

•

4-8

(

(

5. SERIAL BUS LINES

The serial bus includes three lines: Serial Clock (SERCLK), Serial Data
(SERDAT*) , and System Reset (SY5RFSET*) •

SY5RFSET* is used to initialize all mcdules m the serial bus.

SERCLK is driven by a high-current totem-pole driver from the SERIAL CLOCK
mcdule, of which there is me per system.

SERDAT* is a wired-OR line which can be driven with an open-collector driver by
any mcdule. A "me" m SERlAT* results when me or more mcdules drive it I.al.
A "zero" results when no module is driving SERDAT*, so that the backplane
terminating resistors pull the signal High.

5.1 SI~ TIMING

When the serial bus is used with a system bus, there are no prescribed timing
constraints between its signals and any of the other signals on the backplane.
The various modules on the serial bus change and sample the SERDAT* signal
level when transitions occur on SERCLK. The AC timing characteristics of
SERCLK and SEIDAT* are shown in Table 5-1 and Figure 5-1.

5.2 BIT TRAN9-llSSION CDDING

Each "bit cycle" of SERCLK is used to send one bit on SERDAT*, and includes
four transitioos designated Cl, Sl, C2, and S2. '!here are three types of bits
that can be sent during each bit cycle: a "one bit", a "zero bit", and a "start
bit". These bits can be distinguished by serial bus modules by sampling the
level of SEIDAT* en both the Sl and S2 transi ti ms.

TYPE OF
BIT

ooe
zero
start

LEVEL SAMPLED
AT Sl

I.al
High
High

LEVEL SAMPLED
AT S2

I.al
High
u:w

If sufficient noise.is induced onto the serial bus, the modules may be
desynchraiized (i.e. they may lose track of where frames begin and end). '!his
conditioo must be detected and the modules resynchronized before frames are
"garbled" and misinterpreted. When desynchronization occurs, one or more of
the HEN>ER SENDERS send a start bit in the middle of a frame.

FRAME MONITORS check for a start bit in every bit cycle of SERCLK. When a
FRAME MONITOR detects a start bit when no frame is in progress, it tracks the
transmission to the end of the frame. If it samples another "High/Low" bit
before it has finished counting out the frame, then it "jams" the frame
transmissiO'l by holding SERDAT* IDw for at least 512 bit cycles. '!his ensures
that the fz:ame which was in progress woo't be accepted as a valid frame.

5-1

Cl Sl C2 52 Cl

·oNE BIT

START BIT.

ZERO BIT

FIGURE 5-1. PRELIMINARY SERIAL BUS TIMING

./

..

<SEE NOTES A, 8)
PARAMETER DESCRIPTION MIN NOM MAX

1 Cl to Sl 175 187.5

2 Sl to C2 25 31.25

3 C2 to 52 50 62.S

4 S2 to Cl 25 31.25

5 Cl to Cl <SERCU< Cyc I e) 312.5

6 Cl to SERDAT* Low 0 TBS

7 Cl to SERDAT* Released TBS

8 C2 to SERDAT* Low 0 TBS

g SERDAT* Low to Sl TBS

10 SERDAT* High to Sl TBS

11 SERDAT* Low to S2 TBS

NOTES:

A A I I t 1 mes g, ven are in nanoseconds.

B NOM and MAX columns apply to 3.2 Mbit/sec rate

C The SERIAL CLOCK module must guarantee this tim1ng
between two of 1ts outgoing SERCLK trans1ti6ns.

D Each ser1al bus module must guarantee th1s timing
between 1ts 1ncom1ng and outgoing transitions.

E Each ser1al bus module 1s guaranteed this time
between the specified 1ncom1ng transitions.

TABLE 5-1. PRELIMINARY SERIAL BUS TIMING

NOTES

c

c

c

c

c

D

D

D

E

E

E

A desynchronized HEADER SENDER will not consider itself to have sent a start
bit at the same time that a "one bit" is being sent by some other module.
While it may drive SEIDAT* IDW at the C2 edge of SEICLK during a "ooe", such a
start bit will not be visible on SERDAT*. The HEADER SENDER is required to
sample the level of SERDAT* on the Sl transition of SERCLK in the bit cycle
that it sends the start bit. If SERDAT* is High at Sl then it assumes the
start bit was sent su:::cessfully and sends the rest of the Header subframe. If
it was IDW the HEADER SENDER tries again on the next bit cycle.

~ DESIGNATION

Cl

Sl

C2

52

All serial bus mooules change SEIDAT* oo this transitioo
when sending "cne" bits or "zero" bits.

All serial bus mooules sample SERDAT* oo this transiti<n.

HEADER SENDER modules change SERDAT on this transition
from a High to a Low when sending a "start bit". Other
mooules maintain the .SERDAT* levels established at Cl.

HEADER REX::EIVER mooules sample SEIDAT* en this transitioo
when they are waiting for a new frame to begin (i.e. when
they are looking for a "start bit"). FRAME MONITOR
mcrlules sample 5ERDAT* en every 52 transition, first to
detect the beginning of a frame and then to detect a

. start bit that is sent while a frame is in progress.

'lbe Cl, 51, C2, and 52 transitiens are sham in Figure 5-1.

NJTE: If a board or IC is designed for the serial bus which does not include a
FRAME MONITOR mooule, it is recommended, but not required, that it detect start
bits within a frame and "jam" SERDAT* as described for a FRAME MCNITOR. '!his
provides greater security and protectien against the effects of signal noise
that might be sensed at cne point oo the serial bus, but not at another.

Qiboard outputs from serial bus mooules should be changed en the Cl transitioo
of SERCIR, and cnboard inputs to serial bus mcrlules should be sampled en the Sl
transitien. Designers of serial bus hardware must guarantee that there will be
no metastability problems when sampling inputs from enboar:d logic. 'lbis can be
done by specifying setup and hold times that on.board logic must meet with
respect to the Sl transition of SERCLK or, preferably, by providing
synchronization logic for each input. In the latter case, it is helpful to
specify a setup time to (some edge of) SERCLK, which will guarantee that the
new state of an input will be recognized and acted upai.

5-4

(6. SERIAL BOS KDtJIFS

- -..

A serial bus subsystem may inclooe the follOW'ing functiaial ma:iules:

cne SERIAL CIL'CK mcdule
8FADER SENDERS
8FADER REX:EIVERS
MTA SENDERS
DATA RB:EIVERS
~ .M:NITORS

roTE: 'lhese "functiaial mooules" are used as vehicles for discussiai
of the serial bus protocol, and need not be considered a constraint
to logic design. For example, a single IC could provide several of
these functions.

'lhe follOW'ing secticns describe the behavior of these mooules, including their
interacticn with oo-board signals. It is likely that IC's for the serial bus
will be designed with various internal architectures and aiboard signals. 'Ibis
specificaticn often describes the details of an aiboa.rd interface in general
terms. For instance, we may say that "onboard logic reads from a DATA
REX:EIVER" without specifying exactly how this is accomplished. '!his is dcne to
avoid placing unnecessary constraints on the logic designs of serial bus
interface hardware. In some cases actual signal lines are shown, to improve
the explanation of the serial bus. Where this is done, the intent is to make
clear what information crosses the boundary between the module and other on
board logic. Other methods for conveying this same information across the
boundary are also peonissible.

It is expected that IC's designed for the serial bus will include some of what
is described in this specification as "onboard logic". For example, . the
functiaial ma:iules described belOW' have several outputs which pra:iuce a pulse
which is 1 SERCLK cycle in duration. Real IC's might use these "conceptual
pulses" to prc:duce outputs of laiger duratiai.

'lhe SERIAL cu::x::K mooule must be lccated en either the Slot 1 board or the board
in the highest-numbered slot. It drives the SERCLK signal with a high-current

: totem-pole driver. Whenever its SYSRESET* input is True, the SERIAL CLOCK
module drives SERDAT* to "one" (Low). After its SY5RESET* input goes False,
the SERIAL CLOCK module releases SERDAT* to "zero" (High) on a subsequent Cl
edge of SERCIK, in keeping with the timing given in Figure 5-1.

• 6-1

6. 2 HEADER SENDER f.t:Xlule

Onboard logic uses a HEADER SENDER module to initiate the transmission of a
frame on the serial bus. The HEADER SENDER ~ends only the "Header subframe"
portion of a frame: the remainder of the frame is sent by other modules
including HEADER REX:EIVERS, DATA SENDERS, and DATA RECEIVER$. Basically, the
Header subframe sent by this module serves to "select" one or more HEADER
REX:EIVERS on the serial bus.

A HEADER SENDER must always be paired with a F.RAME MONITOR mo:lule. Even though
a HEADER SENDER often occupies the same board with a HEADER RECEIVER (etc.),
these mo:lules aily communicate with each other over the serial bus. Because of
this, the HEADER SENDER initiates frames involving its on-board HEADER REX::EIVER
in exactly the same way that it does with off-beard HFADER REX:EIVERS.

6.2.l HEADER SENDER signals

As shown in Figui:e 6-1, a HEADER SENDER takes the sYSRESEI'* and SElCIK signals
from the serial bus as inputs, the SERDAT* signal as a bidirectiooal I/O, and
the FRAME IN PROGRESS signal from its onboard _FRAME MONITOR as an input. It
also has the following additiaial aiboard signals:

Priority Port A set of input lines and associated caitrol signals, through
which the 3 bit Message Priority value for subsequent frame
transmissiai (s) is loaded into the HEADER SENDER. 'Ibis port
may calsist of dedicated input lines, or a bus interface to an
intemal Priority i:egister.

Code 1, 2 Ports Two similar sets of signals, through which two 10 bit
selectiai co:les for subsequent fmme transmissicns ai:e loaded.

Sender Arb :Ebrt A similar set of signals, through which the DATA SENDER
Arbitraticn Enable bit for subsequent f mme transmissiais is
loaded into the HFADER SENDER.

N)TE: '!be Priority, OXle l, OXle 2, and Sender Arb :Ebrts will
often be implemented as registers that can be loaded from the
same "bus interface", which may be connected to an onboard
processor or aiboard system bus interface.

SENDU, SEND2l caitrol inputs which cause the HEADER SENDER to send a "Header
subfmme". SENDl.2 makes the HEADER SENDER send the value from
Code l Port in the "S field" of the Header subframe, and the
value from Code 2 Port in the "R field". SEND21 makes the
HEADER SENDER send the value from QXle 2 Port in the "S field"
and the value fran Code 1 :Ebrt in the "R field".

•
6-2

(

II\ If\ /' H /"\H~ fl\ /\
S C P D 5
EA r SRA t
N N 1 T a
TC o C CA t

E r o o u
L 1 d d F s
L t e e R
E y A
D M

E

FRAME
MONITOR

~
s
y
s
R
E
s
E
T

*

7j\

s
E
R
c
L
K

If\
s
E
R
D
A
T

*

L... SELECT
.......

FRAME IN_..,,
PROGRESS~

SERIAL BUS

p 5 c c
r E o o
1 N d d
o D e e
r E

S 5 L'1\
E E 0
N N S
D D T

1R 1 212A
t 2 1 R
y A B

R
B

~ v 'it_ \ v v 'it_-'11

HEADER
SENDER

II'
s
y
s
R
E
s
E
T

*

II\
5
E
R
C­
L
I<

~
s
E
R
D
A
T

*

FIGURE 6-1. HEADER SENDER w1th FRAME MONITOR

NOTE: Implementors of serial bus hardware may be
tempted to make this S~D function a bit in an
intemal register, or "implied" by loading a Header
subframe to be transmitted. However, by including
one or more actual SEND ,inputs, an implementation
can be made applicable to "dumb" boards as well as
"intelligent" ones. The Header subframe to be
transmitted can be loaded from a prcx:essor via the
system bus, and its actual transmission can be
"triggered" later by an cnboatd signal event.

An output to a paired FRAME MONITOR module, indicating that
this HEADER SENDER has won the serial bus arbitration and
initiated the current frame. '!his causes the FRAME MONI'roR to
report the result of fz:ame transnission to cnboatd lc:gic.

An alternative output to SELECT, indicating that the HEADER
SENDER has tried to send a Header subframe, but has lost the
arbitration for use of the serial bus to another HEADER
SENDER.

NOTE .l: When a HEADER SENDER loses the serial bus
arbitration, cnboatd lc:gic can increase the Priority
value for the subsequent retry (e.g .. by one, pethaps
up to a defined upper limit). This strategy, plus
reduction of the Priority value when a frame is
cancelled (see 6.6.1}, can ensure that each HEADER
SENDER on the serial bus gets a fair share of access·
to the bus.

N:Ym 2: Informatiai other than u::sr ARB, aboot the
results of sending a frame, is available from the
cutputs Of the paired FRAME MONI'.IOR.

6.2.2 HEADER S.ENDER Initialization

Whenever SY$RFSE'r* is !.J:M, a HEADER SENDER initializes itself as follows:

1) It makes its LOST ARB output False.

2) It releases SEFDAT*.

3) It discards any Header subframe which was awaiting transmission when
SYSRFSF:r* went I.cw.

4) If any of the Priority, Code 1, Code 2, or Sender Arb Ports are
implemented as loadable registers, it'clears those registers to zero.

~en sYSRESET* gees High, a HfADER SENDER enters "idle state".

6-4

(6.2.3 HEADER SENDER Q?eratim

(

The state diagram of a HEADER SENDER is shown in Figure 6-2. In idle state,
the HEADER SENDER samples SEND12, SEND21, and SERDAT* on each Sl edge of r
SERCU<, and samples FRAME :W ProGRESS and SERDAT* m each S2 edge of SERCIB.

la) IF it samples SEND12 or SEND21 True and SERDAT* "zero" (High) on an Sl I
edge, and samples FRAME IN ProGRESS False and SERDAT* "zero" (High) m the
following S2 edge (i.e. if it samples a "zero" en SERDAT*),

THEN it drives SERDAT* to "one" (Low) at the C2 edge of the next bit
cycle, generating a start bit. 'Ibe HEADER SENDER then proceeds to step 2)
belOtl.

lb) IF it samples SEND12 or SEND21 True, and SERDAT* "zero" (~igh) on an Sl
edge, and samples FRAME IN PROGRESS False, SERDAT* "one" (Low) on the
following S2 edge,

(i.e., if another HEADER SENDER is sending a Start bit, ene bit in advance
of when this module would have sent me in case la). 'Ibis can occur roly
if on-board logic made SEND12 or SEND21 True during the previous SERCLK
cycle.)

THEN
IF the logic of this HEADER SENDER is fast enough to send the most
significant bit of its Header subframe on the following bit cycle,
(i.e. if it can drive SERDAT* within the time specified from Cl),

THEN it proceeds to step 2, just as if the other HEADER SENDER'S
start bit was its own. ('Ibe bus arbitratim will then decide which
HEADER SENDER must retire from the bus and try again.)

ELSE (the HEADER SENDER isn't fast enough to send the first bit of
its Header subframe en the next bit cycle) it simply delays ene cycle
of SERCLK and returns to idle state sampling as described abolre. At
the end of the current frame it will encounter the less demanding
case la) above.

2) On the next Cl edge of SERCLK following the start bit, the HEADER SENDER
places the most significant bit of its Message Priority value en SERDAT*.
Note that other HEADER SENDERS in the system may be doing the same thing.

3) en the following Sl edge of SERCLK, the HEADER SENDER samples SERDAT* as
an input.

IF it placed a "zero" on SERDAT* at Cl, and it samples a "one" (Low) on
SERDAT* en the Sl edge,

THEN this HEADER SENDER has lost the arbitration for use of the serial
bus. In this case, it .makes its LOST ARB output True for one SERCIB cycle
and returns to idle state.

6-5

<In1t1ated by

SEND!2>

10: Slind !
or Samp IQ 0

SYSRESET* Low

SYSRE:SET* High

SE:ND!2 or
SERDAT*

1-3: Send 0,

Samplli 1

10: Slind !

or Samplli 0

TruQ,
and 52>

0

F 1 gure 6-2. HEADER SENDER State Diagram

•

I

(

4)

5)

6)

'Ihe prcx::ess described in 2-3) is repeated for each of the rema1m.ng bits
in the Header subframe. 'Ihis includes the remaining 2 bits of the Message
Priority field, the S and R fields which are 10 bits each, the "sender
arbitration enable bit", and the HSVAL bit. The HEADER SENDER always
sends the HSVAL bit "cne".

On the same Cl edge on which it sends the HSVAL bit, the HEADER SENDER
makes its SELECT output True. This output indicates that this HEADER
SENDER has won the serial bus arbitration and sent its Header subframe
successfully. SELECT True makes the paired FRAME MONITOR report the
results of the overall frame transmissicn to cnl:::oard logic.

NOTE: The HSVAL bit guards against the possibility that all
HEADER SENDERS dropped out of the arbitration due to noise on
the bus. If the HSVAL bit of any message frame is "zero", the
frame is ignored by all HFADER REX::EIVERS.

After sending HSVAL and making SELEx::T True, en the next SERCLK Cl edge it
makes SELFCI' False. On subsequent Sl edges it samples SEND12 and SEND21,
IJJ'ltil the signal which initiated the operation (step 1) is made False by
cnl:::oard logic. It then returns to idle state.

Note that this arbitration method guarantees that the Header subframe from at
least one HEADER SENDER is always sent correctly (barring an "all drop out"
error due to some externally induced noise glitch). If one considers the
contending Header subframes as binary numbers, the subframe which. is
successfully sent is the one with the highest binary value.

But, if two or.more HEADER SENDERS set out to send exactly the same Header
subframe, they will not know of each other's presence, and each will proceed as
if it had sent the subframe alone. This is fine for some frames. It is not
appropriate for other frames (e.g. those which set a "semaphore"). When
cnl:::oard logic causes a HE'ADER SENDER to initiate a Semaphore Set frame, it must
ensure that the R field contains a code that is not used by by any other HEADER
SENDER on the serial bus. If this requirement is met, the normal bus
arbitration ensures that all but one HEADER SENDER (the one with the highest
"Requester number") will retire from the bus before the Header subframe
canpletes.

6-7

6. 3 HEADER R:ex::EIVER M:Jdule

A HEADER RECEIVER module may stand alone or may be paired with a DATA SENDER
and/or a DATA REaIVER. Its primary function is to canpare the s and R fields
in each Header subfmme al the serial bus against its selecticn cede value, and
signal its paired modules and/or alboai:d logic if it finds a match.

6.3 .1 BFADER REX:EIVER Signals

As shown in Figure 6-3, a HEADER RECEIVER takes the SY5RESET* and SERCLK
signals fran the serial bus as inputs and the SERDAT* signal as a bidirectiaial
input/ootput. It also has a number of additiaial inputs from, and outputs to
alboai:d logic, as follows:

Code Port

l!EABIE S,R

S,R SELF.Cl'

S,R STROBE

A set of parallel input lines and associated control signals,
through which a 10-bit selection code value can be loaded into
the HFADER REX:EIVER. '!his may caisist of dedicated inputs, or
a "bus" interface to an intemal selectioo code register.

'!Wo inputs from atl::>oai:d logic which irxiicate whether to accept a
frame with this module's selection code in the S or R field,
respectively. If the HFADER REX:EIVER matches its code in the S
(or R) field, and the ENABLE S (ENABLE R) input is False, it
"cancels" the f z:ame.

Two outputs to a paired DATA SENDER and DATA RECEIVER,
respectively, which indicate that the BEA.DER RECEIVER has
detected a Header subfmme al the serial bus which includes the
selecticn code fran Code Port in the S or R field, respectively.·
'lhese outputs are made True for 1 SER:U< period.

Two outputs to onboard logic, which indicate the same
informatioo as S SELECT and R SELECT, but are made True at the
end of the frame, and only if the frame is completely
successful.

An output to a paired DATA SENDER, which reflects the state of
the "Sender Arbitraticn" bit in a Header subframe.

6.3.2 HFADER REX:EIVER Initializatial

Wh,enever Sl!SRFSET* is f.J::M, a BF.ADER REX:EIVER initializes itself as follows:

1) It makes its S SELEX:T, R SELE>:'!', S STROBE, and R STROBE outputs False.

2) It releases SERDAT*, and ignores it as an input.

3) If the Code Port is implemented as a loadable register, it clears the
register to zero. ·

When sYSRESEt.L'* is released, the BFADER REX:!EIVER enters "idle state".

6-8

/
/

•

(

II

• c E E 5 R
0 N N
d A A 5 5 e E E T T L L R R E E 0 0

5 R B B
E E

HEADER S SELECT

RECEilJER
MAX/OR

R SELECT

s s s
'(E E
s ·R R
R c D
E L A
s I< T
E * T

*

SERIAL BUS

FIGURE 6-3. 51gnals used by a HEADER RECEiVER

(

6.3.3 Programning the Selection c.ode

If the selection code is implemented as a loadable register, the HEADER
RECEIVER must be programmed with the desired value after initialization. For
the purposes of this specification, this is considered part of system setup
before any frames are sent on the serial bus. Reprogramming a HEADER RECEIVER
with a new selectien cc:rle, while the serial bus is in operatien, is allowed but
not CO'ITered by this specification.

6.3.4 HFADER REX:EIVER ~ratien

'lhe state diagram of a HEADER REX:EIVER is shown in Figure 6-4. Starting from
idle state, this mcxfale proceeds as follows:

1) It samples SERDAT* repeatedly on the Sl and S2 edges of SERCLK, until it
samples a High on Sl and a IDW on S2. '!his combination indicates a start
bit en the serial bus.

NOTE: On the first Cl edge after returning from step 15 or 22
below, a HF.ADER REX::EIVER makes its S STROBE and R STROBE outputs
False.

2} It then counts off three bit times on SERCLK, thus ignoring the Message
Priority field of the frame.

3) '!he HFADER REX:EIVER then samples the next 10 bits 01 SERDAT*, on Sl edges
of SERCLK. As it samples these bits, it compares each to the
corresponding bit of its selection code from Code Port. If all 10 bits
are equal it makes an internal signal called "S Match" True, if not it
makes S Match False.

4) '!he HEADER RECEIVER then samples the next 10 bits en SER:>AT* as it did in
step 3), except that it makes an internal signal called "R Match" True or
False.

5) It then samples the next bit ai. SERDAT* 01 the Sl edge of SER:LK. '!his is
the "Sender Arb Enable" bit. If the bit is "one" it makes it MAX/OR
output True, otherwise it makes MAX/OR False.

6) On the next Cl edge of SERCLK, if s Match is True, the HEADER RECEIVER
makes its S SELECT output True. On the same edge, if R Match is True it
makes its R SELEX:T output True.

6-10

•

(

and
MATCH>
MATCH>

Fi gurg 6-4.

5Y5RE5ET:i< Low

no ENF1B
no ENAE

HEADER RECEIVER 5tatg Diagram

l<Sl>
or 0c52>

7) On the next Sledge of SERCLK, the HEADER RECEIVER samples its ENABLE s
and ENABLE R inputs, and the (HSVAL) bit m SEID.AT*.

Depending on what it samples in this and previous steps, the HEADER
REX:EIVER proceeds as follows:

HSVAL S Match R Match ENAB S ENAB R ktioo

x False False x x Return to step 1
(idle state)

zero <-not both False-> x x Step 8

ooe True .x False x Step 9 •

ooe x True x False Step 9

ooe <-any other canbinaticn -> Step 10

OOTE: An "x" in the table above indicates that this item does not matter to
the BFADER REX:EIVER in this case.

8) ('!he HSVAL bit was zero.) '!he HEADER REx:EIVER simply makes S SELEX::T and R
SELEX:T False en the next Cl edge and returns to idle state.

9) (In this case the HEADER RECEIVER has matched the S field in the Header
and sampled the ENABLES input False, or it has matched the R field and
sampled the ENABLE R input False.) In either case, m the next Cl edge it
makes S SELECT and R SELECT False and drives a one (Low) on SERDAT*. It
maintains SERDAT* one for the following 2 Cl edges.. This "cancels" the
frame on the serial bus. On the Cl edge after that, it releases SERDAT*
and .returns to idle state.

10) (In this case the HEADER RECEIVER has matched the S or the R field, set
its S SELECT and/or its R SELECT output True, and sampled the
corresponding ENABLE input True.) It now makes S SELECT and R SELECT
False oo the next Cl edge, and then samples SERDAT* oo the following 3 Sl
edges of SEK:LK. '!his is the Frame Type cc:xle.

11) If the Frame Type is lll, the frame has been cancelled by another HFADER
REx:EIVER,, and this mcxiule returns to idle state.

12) If the Frame Type code is 000, the HEADER RECEIVER proceeds to step 17).
Otherwise (the Frame Type cc:xle is 001-llO) this is a Data Transfer frame.
'!he HEADER REX::EIVER in this case acts as a "tracker'' mcxiule whe.rein its S
STROBE (or R STOOBE) output signals a successful data transfer from (or
to) its code.

6-12 '

(

13) The HEADER RECEIVER counts off the necessary number of SERCLK cycles to
ignore the Data subframe 01. SEIDAT*. It determines the number of cycles
to delay from the Frame Type as follows:

Frame ~

001
010
011
100
101
llO

SERCLK Colll1t

8
16
32
64

128
256

14) After the above number of SERCLK cycles, the HEADER RECEIVER samples
SERDAT* on each of the next 4 Sledges of SERCLK. These 4 bits are the
Frame Status field and the Jam Detect bit.

15} If the 4 sampled bits are exactly 0110, then the serial bus data transfer
is su::cessful. On the following Cl edge the HEADER REX:EIVER makes the S
STROBE output True if S Match is True, makes the R STROBE output True if R
Match is True, and retums to idle state.

16) If the 4 sampled bits are anything other than 0110, the serial bus data
transfer was not su::cessful. '!he HEADER REX:EIVER does not signal 01. S or
R STROBE, but simply returns to idle state.

17) {The Frame Type was 000, and the frame contains no data.) The HEADER
RECEIVER samples the MSB of the Frame Status field on the next Sl edge,
and retains what it sampled for later.

18) On the next Cl edge, if S Match is True, the HEADER RECEIVER drives a
1101.e" 01. SEIDAT* to show that it is present. {If S Match is False it dces
not drive SERDAT*.)

19) On the next Cl edge, if R Match is True, the HEADER RECEIVER drives a
"one" on SERDAT* to show that it is present. (If R Match is False it
releases SEIDM'*.)

20) On the next Cl edge, the HFADER REX:EIVER releases SEIDAT* and then samples
it ai the next Sl edge. 'Ibis is the Jam Detect bit.

21) If the Jam Detect bit is 1101.e" or the previously sampled MSB of the Frame
Status field was "one", the HEADER RECEIVER does not drive its S or R
sr:roBE outputs, but simply retums to idle state.

22) ('Ihe Jam Detect bit and the previously sampled MSB of the Frame Status are
both "zero".) If S Match is True, the HEADER REX:EIVER drives its S sr:RJBE
output True on the following Cl edge. On the same edge, if R Match is
True, it drives its R STROBE output True. In either case it returns to
idle state.

6-13

6.4 DATA SENDER ?-k:dule

A DATA SENDER mcdule must be paired with a HFADER REX:EIVER. Its functiai is to
take data from on-board logic, and send it on the serial bus when it is
signalled by its HFADER REX:EIVER.

6.4 .. l DATA SENDER Signals

. As shown in Figure 6-5, a DATA SENDER takes the SYSRESET* and SERCLK signals
from the serial bus as inputs, and the SERDAT* signal as a bidirectional I/O.
It als:> has a number of inputs and cutputs with cnboard lo;ic, as follows:

Data Port

S SELECT

MAX/OR

A set of parallel input lines and associated control signals,
through which onboard logic provides data to be sent on the
serial bus. This may consist of dedicated inputs or a bus
interface to an internal Data i:egister.

N:J'IE: Frames en the serial bus can include ~ 2, 4, 8,
16, or 32 bytes of data. Real DATA SENDER
implementatiO'ls may be limited to sending less than 32
bytes. '!his mcdule signals how many bytes ai:e being
sent before it sends data. This specification does
not cover the details of how data is loaded via Data
Port, nor hCM the number of bytes loaded is determined
by the DATA SENDER.

An input from the paired HEADER RECEIVER, which signals when
data is to be sent.

An input from the paired HEADER mx:::EIVER, which signals how data
is to be sent. If this signal is True, the DATA SENDERenables
its serial bus arbitraticn lo;ic while sending data. .

An output to O'lboaro lo;ic, which signals that the DATA SENDER
has su::::cessfully sent data en the serial bus.

NOTE: For frames which select a single DATA SENDER,
and frames without Data field arbitration (MAX/OR
False), DSENT signals identically to the S STROBE
output of the paired HEADER REX:EIVER. However, when a
frame selects multiple DATA SENDERS for their largest
value, all of their paired HEADER RECEIVERS will
signal 0'1 S STroBE, but aily the "winning" DATA SENDER
will signal ai DSENT.

6-14

(

(

c
0
d
e

E
N
A
13
L
E

S R

s s
T T
R R
0 0
B B
E E

HEADER s SELECT
MAX/OR

RECEivER~R~sE-LE_c_T-7-----i

s s s
y E E s R R
R c D E L A
s K T E * T

*

SERIAL BUS

s
y
s
R E
s E
T

*

D
a
t
a

D
s
E
N
T

DATA
SENDER

s s E E
R R c D L A
K T

*

FIGURE 6-5. DATA SENDER w 1th HEADER RECEIVER

6.4.2 DATA SENDER Initia.lizatiai

Whenever SYSRESE!l'* is IDll, a DATA SENDER initializes itself as foll0i1s:

l} It makes its OSEN!' cutput False.

2) It releases SEmAT'*, and ignores it as an inp.it.

3) If Data Port is implemented as a loadable register, it clears that
teqiste r to zero. .

When ~ is released, the DATA SENDER enters idle state, described te10i1.

6.4.3 Pro;ranmi.ng the Data Port

DATA SENDERS can be used in two ways. In one approach, the DATA SENDER is
always ready to send data, and sends "whatever dat~ is available" whenever a
frame which selects it appears on the serial bus. Onboard lcgic with such a
DATA SENDER presents new data at Data Port "whenever the data to be sent
changes". In this case the DATA SENDER design should "double buffer" Data Port
to assure that when it sends data in a frame, it does not send a mixture of
"old" and "new" data.

In other aa;>licatiais, each time aiboa.rd lo:;ic presents new data at Data Port,
the DATA SENDER sends it once and only once. Onboa.rd logic with such a DATA
SENDER presents new data whenever it isavailable ~ previcusly loaded data
has been sent. If a frame which selects such a DATA SENDER appears on the
serial bus, and onboard logic "has not provided new data", it "cancels" t..."le
frame.

This difference is determined by the way in which the onboard signals are
cam.ected and driven. !he following descriptial of a DATA SENDER allows for
either mc:de. In the first case, the ENABLE s input of the paired HEADER
RECEIVER is pemanently set to True, and the DSENr cutput of the DATA SENDER is
not used by onboard logic.. In the second case, onboard logic makes ENABLE S
True after it has leaded data, and False again when the DATA SENDER pulses the
OSENT cut;;:ut.

6.4.4 DA.TA SENDER C'peratioo

!he state diaq:i::am of a DATA SENDER is shewn in Figure 6-6. Starting from idle
state, the DATA SENDER prcceeds as foll0i1s:

1) In idle state the DATA SENDER samples its S SELECT inPJ,t and the SEIDAT*
line al every Sl transitiai of SE:R::Il{. When it samples s SEUX:T True and
SEroAT* "aie" (I.cw), it prcceeds to step 2.

6-16

(

(

Last 81 t,
Send 1 er

SamplEi! 0 or
MAX/OR f"alse

2

Not Last 81 t,
SEi!nd l er
Sample eJ er
MAX/OR F'alsQ

F1gurg 6-6.

SYSRESET* Low

3:
Sampled

F. T. =0lel -110

2: Send l
or Samp I e 0

Samp I ed

Sample ei,
raqd. Send l er

number cf Sample ei,
bytes less bytes

1 oaded I oaded than
number reqd.

Last 81 t, Sample 1,

Sample ei or MAX/OR f"atse MAX/OR True

Not Last 81 t,
Samp I e eJ or
MAX/OR F'alse

DATA SENDER State D1agram

2) '!his descripticn assumes that the DATA SENDER "knows" the number of bytes
provided by onboard logic, the last time new data was presented at Data
Port. It further assumes that the DATA SENDER has caiverted this to a 3-
bit Ftame Type co:ie as follQls:

Number of :§Ytes

1
2

3-4
5-8
9-16

17-32

3-bit Frame ~

001
010
OU
100
101
llO

3) -At the next Cl edge of SER::J:K, the DATA SENDER sends the most significant
bit of its 3-bit Frame Type m SERDAT* ..

4) At the next Sl edge at SEIO.K, it samples the state of SEIDAT*. If it .has
sent a "one" or if it samples a "zero", the DATA SENDER proceeds to send
the seccnd and third bits of its ca:le m subsequent Cl edges.

5) If on any of these three bits it samples a "one" (Low) on SER.DAT* and it
sent a "zero", the DATA SENDER stops sending any mmaining bits of its 3-
bit code on subsequent Cl edges, but it does continue to sample any
temaining bits at Sl edges.

6) After the third Sl edge, if the 3 bits sampled are ill, the frame has been
cancelled by a HEADER RECEIVER. In this case the DATA SENDER simply
retums to idle state.

7) If the 3 bits sampled are not 111, but are not the same as the code the
DATA SENDER set out to send, we have a "Sender/Sender Size Ccnflict". In
this case the OAXA SENDER uses the sampled co:ie to determine the number of
data bytes in the frame, counts off the corresponding number of bits on
SERCLK, and then sends 110 on SERDAT* at the next three Cl edges (i.e. in
the Frame Status field). (It does not sample nor arbitrate in the Status
field.) It then mtums to idle state.

8) If the 3 bits sampled bits match the DATA SENDER's Frame Type, it begins
to send data on SEROAT*. If the number of bytes from onboard logic is
less than the maximum number in the "Number of Bytes" column shown in Step
2, the DATA SENDER first sends the number of all-zero bytes necessary to
fill out the maximum number of bytes (i.e. the bytes are sent "right
justified").

After the all-zero bytes, or immediately if onboard logic provided the
"right" number of bytes, it sends bytes from Data Port, starting with the
most significant bit of the most significant (leftmost) byte, and ending
with the least significant bit of the least significant (rightmost) byte.

6-18

(

9) As the DATA SENDER sends each bit of data on each Cl edge of SERCLK, it
samples SERDAT* en the follc:Ming Sl edge. If it samples a "cne" after it
sent a "zero", and if its MAX/OR input is True, then it immediately
returns to idle state. If it samples a "zero", if it sent a "one", or if
the MAX/OR input is False, it ccntinues sending data bits.

10) After the DATA SENDER has sent and sampled the last data bit, it releases
SERDAT* ai the Cl edge of SERCLK and samples it at the next Sl edge. 'lhis
is bit 2 of the Frame Status field. If it samples a one it returns to
idle state.

11) (Bit 2 of the Frame Status is zero.) The DATA SENDER then drives a "one"
on SERDAT* at the next Cl edge, to show that it survived any Data field
arbitraticn. At the next Cl edge it releases SEIDAT*, and then samples it
at the next two Sledges of SERCLK. These are bit O of the Frame Status
field and the Jam Detect bit.

12) If bit O of the Frame Status is zero, or the Jam Detect bit is one, the
DATA SmDER simply returns to idle state.

13) If these 2 bits are 10, the DATA SENDER makes its DSENT output True, to
signal to its onboard logic that it has sent data successfully. On the
follc:Ming Cl edge it makes DSENT False again, and retu.ms to idle state.

6. 5 DATA REX:EIVER M:rlule

A DATA REX:EIVER mcdule must be paired with a HEADER REX:EIVER. Its functicn is
to take data sent by DATA 5mDERS en the serial bus when it is signalled by it;:s
HE'ADER REX:EIVER, and present the data to mboard lcgic.

6.5.l DATA REx:EIVER Signals

As shc:Mn in Figure 6-7, a DATA REX:EIVER takes the S'YSRESEI'* and SER:LK signals
from the serial bus as inputs and the SERDAT* signal as a bidirectional I/O.
It als::> has a nu.'Tlber of inputs and outputs with mboard lcgic, as follc:Ms:

Data Port A set of parallel output lines and asscx:iated ccntrol signals,
through which data from the serial bus is presented to mboard
logic.

roTE: Frames en the serial bus can include 1, 2, 4, 8,
16, or 32 bytes of data. Real DATA RECEIVER
implementaticns may be limited to receiving less than
32 bytes. If a frame selects a DATA RECEIVER, and it
cmtains more data than the DATA REX:EIVER can accept,
the rncdule signals the problem en the serial bus, in
the Frame Status field. 'Ibis specificaticn dces not
cover the details of how mboard lcgic reads received
data from Data Port.

6-19

'

c E E: S R 0 N N
d A A D s
e B B s s a ,

~ L T T t z
E: R R a e

0 0
S R B B

E: E:

HEADER S SELECT DATA
RECEIVER

MAX/OR
RECEIVER R SELECT

s s s s s s
y E E y E E s R R s R R
R c D R c D e: L A E L A
s K T s K T
E * E * T T

* *

SERIAL BUS

fIGURE 6-7. DATA RECEIVER w1th HEADER RECEIVER

(

(

Data Size Port 'lhree parallel outputs and assc:x::iated ccntrol signals, through
which the number of received bytes is presented to onboard
logic. These outputs are encoded as described elsewhere in
this specificaticn for the Frame Type subframe.

R SEt.F.C1'

roTE: Data Port and Data Size Port may be implemented
by dedicated signals, or by a canmcn "bus interface".

An input from the paired HEADER RECEIVER, which selects the
DATA RECEIVER to capture data from the serial bus.

NOTE: The R STROBE OU tpu t of the paired HEADER
RECEIVER signals onboard logic when data from the
serial bus is available al Data Port.

6.5.2 DATA REX:EIVER Initializaticn

Whenever S'YSRESET* is !DN, a DATA REX::EIVER initializes itself as follows:

l) It releases SERDAT*, and ignores it as an input.

2) If Data Port and/or Data Size Port is implemented as a loadable register,
it clears the register (s) to zero.

When SYSRESET* is released, the DATA RECEIVER enters idle state, described
below.

6.5.3 Reading Data fran the Data Port

In a system DATA RECEIVERS can be used in two ways. In one approach the DATA
RECEIVER is always ready to receive data, and changes the data available on
Data Port whenever it is selected by a frame al the serial bus. Qi.board logic
with such a DATA RECEIVER can use the data en Data Port "whenever it's needed".
In this case, if onboard logic uses multiple "read cycles" to read out the
data, and new data arrives on the serial bus while it is doing so, onboard
logic may read out a mixture of old and new data. Real DATA REX::EIVER designs
must deal with this problem. cne way to handle it is to signal cnboard logic
if the problem arises.

In other applicaticns, each time new data arrives on the serial bus, onboard
logic reads it from Data Port~ and only~· In this scheme, when data
arrives from the serial bus, cnboard logic reads it out of the DATA REr:EIVER as
soon as possible. If another Data Transfer frame selects the DATA RECEIVER
before the previous data has been read, the rncdule "cancels" the frame.

'!his distincticn is made by cnboard logic and does not affect the DATA REX::EIVER
mcdule described here. 'Ihe following descriptial of a DATA RECEIVER allows for
either mode. In the first case, the ENABLE R input of the paired HEADER
RECEIVER is permanently set to True, and its R STROBE output is not used by
cnboard logic. In the second case, roboard logic makes ENABLE R False when the
HEADER RECEIVER pulses R STROBE, and makes ENABLE R True again after it has
read out the data.

6-21

6. 5. 4 DATA REX:EIVER cperati01

The state diagram of a DATA RECEIVER is shown in Figure 6-8. Starting from
idle state, the DATA REX:EIVER proceeds as follows:

1) In idle state the DATA REX:EIVER samples its R SELECT input and the SERDAT*
line m eveey Sl transitim of SEBCLK, until it samples R SELECT True and
SERDAT* "one" (:u:::M}.

·2) en the next 3 Sl edges of SEBCLK, the DATA :REX:EIVER samples SERDAT*. 'Ihe
sampled 3-bit code is the "Frame Type". 'Ihe DATA REX:EIVER interprets the
Frame Type c00e as follais:

Frame~ Interpretati01

000 No DATA SENDER selected
001 l byte of data in the frame
010 2 bytes " " n n n

Oll 4 n n . n n n . n

100 8 n n " " n n

101 16 n n n II n "
llO 32 II II n n " "
lll cancelled frame

3) If the Fi:ame Type is ill, this is a Cancelled f.rame, and the DATA REX:EIVER
simply retums to idle state in this case.

4) If the Fi:ame Type code is 000, no DATA SENDER in the system is selected to
send data. In this case, the DATA RECEIVER sends 101 on SERDAT* on the
next 3 Cl edges of SERCLK. on the next Cl edge it releases SERDAT* and
retums to idle state.

5) If the F.rame Type irrlicates more data than the DATA REX:EIVER is designed
to handle, it waits out the indicated number of bytes, and then sends 101
on SERDAT* on the next 3 Cl edges of SERCLK. On the next Cl edge it
releases SERDAT* and retums to idle state.

6) If the sampled Frame Type code indicates a length the DATA RECEIVER can
handle, it samples the indicated number of bytes from SERDAT*, on
following Sledges of SERCLK. It samples the data into a Data Holding
register, starting with the most significant bit of the most significant
(leftmost) byte, and ending with the least significant bit of the least
significant (rightmost) byte.

N:1.I.'E: If a DATA REX:EIVER implementati01 is designed to ptOVide
data to onboard logic "once and only once" as described in
6.5.3, it can omit the Data Holding register and sample data
directly into the Data register which is avaiiable via Data
Port. If there are subsequent problems in the Status subfi:arne,
the R STroBE output of the paired HEADER REX:EIVER is simply not
pulsed to signal 01J::x:ard logic of new data.

6-22

(

Figure 6-8.

(

SYSRESE:T* Low

Jam B1t=l
or saved

Status b, tl
= €l

Samp I ed,

Dat ength
OK 3: 0€!0

Sampled

Samp I ed,
more data
than th 1 s

DATA RECEIVER State D;agram

7) After the DATA REX:EIVER has sampled the last data bit, it samples SEROAT* ·
on the next Sl edse of SERCLK. This is bit 2 of the Frame Status field.
If it samples a ale al SERDAT* it retums to idle state.

8) (Bit 2 of the Frame Status is zero.) on the next Sl edge of SERCLK the
DATA REX:EIVER again samples SERDAT* {bit l of the Frame Status field), and
saves the sampled value.

9) en the next Cl edge of SEmAT*, the DATA REX:EIVER drives a ale al SEmAT*
to show that it is present. '!his is bit O of the Frame Status field.

10) en the next Cl edge of SERCLK the DATA REX:EIVER releases SEROAT*, and then
samples it on the following Sl edge of SERCLK. This is the Jam Detect
bit.

11) If bit 1 of the Frame Status is zero and/or the Jam Detect bit is one,
there is a problem with the frame. In this case the DATA REX:EIVER simply
retums to idle state.

12) (Bit 1 of the Frame Status is one and the Jam Detect bit is zero.) The
serial bus data transfer is successful. On the following Cl clock the
DATA REX:EIVER transfers the received data from the Data Holding register
to the Data register which is available via Data Port, transfers the
sampled Frame 'J:Ype c00e to the register which is available via Data Size
Port, and retums to idle state. 'Ihe R STROBE output of the paired HE'ADER
REX:EIVER signals the arrival of new data to alboard lo;ic ..

6.6 FRAME M:NI'roR M:xiule

The FRAME MONITOR "closes the loop" of serial bus modules we have been
describing, by reporting the result of a frame transmissial back to the aiboard
logic with the HEADER SENDER which initiated the frame. A FRAME MONITOR is
normally paired with a HEADER SENDER, but could stand alone to monitor all
serial bus traffic.. (Since the SELECT outp.tt of a HE'ADER SENDER and the s and
R SELECT outputs of a HEADER RECEIVER have the same timing, a FRAME MONITOR
could be paired with a HEADER RECEIVER as well, but this combination has no
obvious use.)

'Ihe FRAME MCNI':OCIR provides two other important functials. First, it "tracks"
the transmission of every frame on the serial bus, and informs its paired
HEADER SENDER when the bus is free for a new frame.

Second, it watches for Start bits at all times: if it sees a Start bit on
SERDAT* while it is tracking ~frame, an error caused by noise on the serial
bus has caused cne or more of the other FRAME MCNI'IORS in the system to be "out
of synchronization" with this one. In this case, it "jams" the serial bus by
sending a string of 512 "ales" (I.ow) ai SEROAT*. '!his invalidates the current
frame: it is ignored by all serial bus modules. It also brings all FRAME
MCNI'roRS and HEADER SENDERS al the serial bus back into synchrcnization.

6-24

(6. 6 .1 FRAME MJNITOR Signals

;:

As shown in Figure 6-1, a FRAME MONITOR takes the SYSRESEI'* and SER:I.I< signals
from the serial bus as inputs and the SERDAT* signal as a bidirectional I/O.
It also has a number of inputs and outputs with 01board logic, as follows:

Priority Port 'lhree parallel outputs and associated control signals, whereby
the Priority field of serial bus frames is reported to cnboard
logic.

S,R Cede Ports Two sets of 10 parallel outputs and associated control
signals, whereby the s and R Selection Codes of serial bus
frames are reported to cnboard logic.

Data Frame Port An output indicating whether the frame being reported to
cnboard logic was a Data Transfer frame. 'Ihis informati01 is
needed to interpret the information from the Status port.

Status Port

SEN!'

CANCETJ,ED

'Ihree parallel outputs and associated c01trol signals, whereby
the Frame Status field of serial bus frames is reported to
onboard logic.

NJTE: 'lhe abo<.Te ports may be dedicated outputs, or
a canmoo bus interface.

An output which iooicates that a frame initiated by the paired
HFADER SENDER has been completed, and that the results of the
frame transmission are available on the above five ports.
'Ihis output is made True cnly if the paired HEADER SENDER has
signalled that it initiated the frame, by means of the SELFCl'
signal. It is not made True for a Cancelled frame, nor for a
"jammed" frame.

An alternative output to SENT. It indicates that a frame
initiated by the paired HFADER SENDER has been cancelled by a
HFADER REX:EIVER which is ''not ready". Qlly the Priority and s
and R Co:le ports are valid for a Cancelled frame. 'Ihis output
is not made True if the paired HEADER SENDER has not signalled
on SELEX:T, nor for a "jammed" frame.

NOTE: When a frame is cancelled, onboard lo;ic can
reduce the Priority value for subsequent retries
(e.g. to 000), to allow other HEADER SENDERS to send
frames on the serial bus. This strategy, plus
increasing the Priority value when a HFADER SENDER
loses serial bus arbitration (see 6.2.1), can ensure
that each HE'MlER SENDER gets a fair share of access
to the bus.

An input f rorn the paired HEADER SENDER, used to signal that
the HEADER SENDER has won the arbitraticn for the serial bus
and initiated the frame. This input enables the SENT and
C'AN('ET.TED outputs for the f rarne. For a FRAME MCNITOR which is
not paired with a HEADER SENDER, this input should be
permanently True.

6-25

FRAME IN
ProGRESS

An output to a paired HEADER SENDER. When this output is
False, the serial bus is free and the HEADER SENDER can
initiate a frame.

6.6.2 FRAME M:NITOR Initialization

Whenever SYSRESET* is IDtv, a FRAME MCNITOR initializes itself as follows:

1) It makes its SENT and CANCET·T:ED outputs False.

2) It makes its FRAME IN ~s outp.it True.

3) It releases SERDAT*, and ignores it as an input.

When SYSRESET* is released, the FRAME MCNITOR makes FRAME IN ProGRESS False and
enters idle state, described below.

6. 6.3 FRAME M:NiroR Operatim

The state diagram of a FRAME MONITOR is shown in Figure 6-9. Starting from
idle state, this module proceeds as follows:

1) It samples SERDAT* on both the Sl and S2 transitions in every SERCLK
cycle, until it samples a "zero" on Sl and a "one" on 52. This indicates
a start bit.

NOTE: On the first Cl edge after returning from step 6 or 10
below, the FRAME MONITOR makes its SENT and CANCELLED outputs
False.

2) After the Cl edge after sampling a start bit, it makes its FRAME IN
PPDGRESS output True. '!be timing requirement on this is "relaxed" in the
sense that the signal need only meet setup to the next S2 edge at the
paired HEADER SENDER. .

3) Starting on the Sledge after the S2 edge on which it found a start bit,
it samples successive bits on SERDAT* on both the Sl and 52 edges, and
disposes of them as follows:

3 bits after start:
Next 10 bits:
Next 10 bits:
Next bit:

sampled into Priority Port
sarrpled into S Code Port
sampled into R Code Port
disca.tded/ignored

4} For each of the bits sampled in step 3 and in subsequent steps until it
retums to idle state, if the FRAME MCNITOR samples SERDAT* High en Sl and
Low en S2, it drives SERDAT* to "me" (Low) en 512 consecutive Cl edges of
SE:EO.K. en the next Cl edge thereafter, it releases SERDAT* and returns
to idle state.

6-26

(

(Figure 6-9.

1-10:
lll<Sl >,

FRAME MONITOR State O;agram

5) The FRAME MONITOR then samples its SELECT input on the next Sl edge and
retains the result for later. At the same time it samples the next bit en
SERDAT* after those in step 3, the HSVAL bit. If it samples SERDAT*
"zero" at Sl it makes FRAME IN PROGRESS False at the following Cl edge,
.and (unless it samples a "ale" at S2) it returns to idle state.

6) (HSVAL was "one".} The FRAME MONITOR then samples the next 3 bi ts on
SERDAT*, which are the Frame Type.

7) If the Frame Type is 111, it makes FRAME IN PROGRESS False on the
following Cl edge. On the following Sl and S2 edges it samples SERDAT*
(this is the Jam Bit). If the Jam Bit is "zero" and SELECT was sampled
True in step 5}, it makes CANCEI.IED True en the following Cl edge. Unless
it sampled a start bit it then returns to idle state to sample the bit
following the Jam Bit. (In idle state it will make ~CEIJ.m False al the
next Cl edge.) ·

8} If the F.rame Type is 001-110, the FRAME MONITOR translates this cede into
the number of Data bits in the frame, as described elsewhere in this
specification. On the next Cl edge it makes the register bit for Data
Frame Port True, and then samples SERDAT* for that number of Data bits.
In the Data bits the FRAME MCNITOR samples for Start bits as described in
4), but otherwise discards the data. It then prcceeds to step 10).

9) If the F.rame Type is 000, al the next Cl edge the FRAME MONITOR makes the
register bit for the Data F.rame Port False.

10) On the next 3 Sl and S2 edges after the Data bits (if present, else after
the Frame ·'!Yl?e bits), the FRAME MCNITOR samples these t.'friree bi ts into the
Status port. ·

ll) en the Cl edge after the last Status bit, the FRAME MONITOR makes FRAME IN
~ False. en the following Sl and S2 edges it samples SERDAT* (this
is the Jam Bit). If the Jam Bit is "zero" and SELECT was sampled True in
step 5), it makes SENT True cn the following Cl edge. Unless it sampled a
start bit it then returns to idle state to sample the bit following the
Jam Bit. (In idle state it will make SENT False on the next Cl edge.)

6-28

(

,

(

(

The basic serial bus modules defined in this specification provide a set of
hardware building blocks that can be configured in many different ways for
different purposes. This section shows some examples of serial bus module
cmf igurations, and how they can be applied to typical system needs.

7.1 ~ 1: A VIRTUAL SIGIAL LINE

The simplest path for communicatim within any system is a single conductor
with a driver at me end and a receiver at the other. When an entire system is
designed on a single printed circuit board, the designer is free to
interccnnect the logic with as many signal lines as are required.

Standa.cdized backplane buses, however, provide much more limited optims. It
may not always be possible to fit all of the logic for a given function on a
~ingle board. When a design spans more than one board it usually requires
signal lines between the boards. sanetimes this is accomplished by using sane
"reserved" lines on the backplane. Sometimes cables between the two boards
provide the conductors. Both of these solutions create their own set of
problems.

In this situatiai the hardware engineer is faced with a simply stated problem:
how can he design hardware to do a specific job within the constraints of a
particular board size and backplane bus? An analcgy can be drawn between this
problem and one which software.designers face. Sometimes the amount of
physical memory in a computer system is insufficient to accornrncrlate all the
required programs and data. To solve this memory limitatim problem, "virtual
memory" caicepts were invented. Virtual memory puts the programmer into an
"idealized" machine which has a very large amount of main storage. Such
systems allow software designers to structure a program in a reliable and
understandable way, without being forced to accanmo:late arbitrary memory sizing
0a1straints. Although a virtual memory system may run slower than cne fully
populated with memory, the benefits are often viewed as being well worth the
costs.

To bring this analogy back to the hatdware world, the logic designer would like
to be able to create a number of "virtual" signal lines between boards, without
being constrained by arbitrary things like the number of reserved lines on a
backplane., the number of wires in a cable, etc. Ideally this should be done
without using any special dedicated lines on the backplane, since this can
create incompatibilities with other board designs that use these lines for
different purposes.

The serial bus allows the creation of such "virtual signal lines•• between
boards. Figure 7-1 shows how a TYPE 1 module group and a TYPE 2 module group
do this. The SEND12 and SEND21 inputs to the HEADER SENDER at the top of the
figure are driven by a single signal line named BINARY INPUT. Whenever this
line goes True the SEND12 line goes True, causing the HEADER SENDER to send a
"Flip-flop Set frame" with a selection code of 37 in the S field. This frame
causes the HEADER RECEIVER in the lower part of the figure to pulse its s
STEOBE line True, setting the flip-flop.

7-1

II\ '1' ~"\ /\ /\ 11\ ~I\
S C P D S
E: A r S R A t
N N , r a
T C o C C A t e: r o o u

L 1 d d F s
L t e e R
E y A
D M

e:

IL.. SELECT
I"'

4 T
r-
p s
r e:
I N

0 0
r e:

Al I
ones

l'""'"1 r­
e c
0 0
d d
Q ti

.--~==cx:<J ____ BI rY

S S L!f\
e: e: 0
N N S
0 D T

I R l 2 l 2 A
R
a

t 2 l
y ~

a
~ V ,lt _/ \ V .\JI. '11_

HEADER FRAME
MONITOR FRFIME IN_.,,,

PROGRESS 71

SENDER

If\
s
'(
s
R
E s
~
*

s
'(
s
R
E s
E
T

*

If\
s
e:
R c
L
K

s
E
R
c
L
K

If\
s
e:
R
0
A
r
*

\IL. _\l(\JL.

HEADER
RECEIVER

S R
'--

R S

s s
T T
R R
0 0

~~

I~

s
'(
s
R
E s e:
T

*

SERIAL BUS

S SELECT~

MAX/OR =
R SELECT::: ,,.

If\
s
E
R
c
L
K

If\
s
e:
R
0
A
r
*

:37 T r '---! s BINARY OUTPUT -~
01---------,,.~

....___ R Q

FIGURE 7-1. EXAMPLE l: VIRTUAL SIGNAL LINE

INl=lUT·

..

/

..

(

(~-

When the BINARY INPUT signal at the top of the figure is returned to False,
snID21 goes True and the HEADER SENDER sends a "Flip-flop Reset frame". 'lllis
fmme causes the HEADER REX:EIVER to pulse its R STroBE line True, resetting the
flip-flop.

'lbus, this arrangement of mcxiules provides a "virtual signal line". Given that
there are 1023 available selectioo codes oo the serial bus ("all ooes" is not
used), we could theoretically create that many virtual signal lines. (Keep in
mind that these "modules" are not individual integrated circuits. They are
just the atomic units from which serial bus IC's are built. A single IC will
usually provide a number of these mcxiules.)

'lbe "Propagatiai delay" of serial bus virtual signals is greater than that of
real lines, and is subject to variatioos with serial bus traffic. However, as
in the case of virtual memory systems, the flexibility they offer will often
outweigh these speed disadvantages.

6. 2 EXAMPI.E 2: A SEMAPfbRE

As we discussed earlier, multiprocessing systems require the use of control
structures such as "sema?iores", to govem access to shared system resources.
Figure 7-2 shows how serial bus modules can be configured to provide
"intelligent semaphores".

'!he mcxiules at the top of the diag mm are ai me boa.td and those at the bottom
are on another. The TYPE 2 module groups on the right side of the figure are
the semaphores. Because these mcxiule groups are cmfig\lred to respaid to the
same .selectioo codes, they always stay synchrooized. (If a Set frame sets one
of them it also sets the other, etc.)

·Notice that the outp.it f .rom each flip-flop is fed back to the S ENABLE input of
its HEADER RECEIVER. If these flip-flops are set, their outputs make the S
ENABLE inputs to the HEADER RECEIVERS False. In this state the HEADER
REX:EIVERS cancel any Set frames directed to them, accepting aily Reset frames.

The TYPE l module groups at the left side of the diagram set and reset the
semaphores. In each group, its SEND12 and SEND2l inputs are driven from a
common signal named "RESOURCE REQUEST". In order to understand how these
modules work together, let's go through two typical sequences..

When the ai-boa.ro logic drives RF.SCXm:E ~UEST True the flip-flops might be
either set or reset. I.et's take the case where they are set first.

If the two flip-flops are set, and the on-board logic of the top board drives
RESOURCE REQUEST True, then the False signal from the "Q bar" output of the
flip-flop prevents the HEADER RECEIVER'S SEND21 input from going True. This
prevents the HEADER SENDER from sending an unnecessary Set frame over the
serial bus. (It would just be rejected by the HFADER REX:EIVERS anyway.)

7-3

sKC
R~ ,__ __ _, -

FRAME
MONITOR

-If\-

§
c
L.
I<

s
~ c
L.
I(

~1'
e:
§
A
r
*

FRAME
MONITOR

!.<:. SEl...e:CT ,..

3 T
r-
p s
,. e:
I N

~ ~

47 25
....., r-
e c s s L.-1-
a a e:e:o
d d N N 5
" " o o r

I R l. 2 l. 2 I'!
t. 2 J. R
Y ~ a

~ v~' V' lt JJL'il.

HEADER
SENDER

~
s

~

f
~

f y
s
R e: s
~
*

R
c
L.
t<

R
0
A
T

*

SER Il=IL. :SUS

§
c
L.
t<

51'
e:
R
0
Fl
r
*

HEADER
SENDER

~

2S T

'C' e: e: 51' Fl.1'
a N N
d I'! A S S
Q B 8 T T

L. L. Fl. Fl. e:e: 00

~ It Stl ~ ~
HEADER

RECEIVER

~ ~ 1'
s 5 5
'(e: e: s R R
R c 0 e: L. "' 5 I< T
e: * T

* 'JI

5 5 sf\
'(E e: s R R
R c 0 e: L. "' 5 I(T e: * T

*
_w \]/ JJL

HEADER
RECEIVER

~ !' Elf: Elf' R S
C N N
a Fl A S S
d B B T T
"L.L. RR

E E O 0

._ SR~~
26 T

-\,....._ __ r------,

.. r-'

FIGURE 7-2. EXAMPLE 2: A SEMAPHORE

S SC::L.e:C T _,,,

l"V'\X/OR =
R SC::L.E:CT _: -,.

S SE'-E:CT-"""
-,,.

MAX/OR

R SE:L.E:CT _,,,

"'

s

(

l.11· "

Suppose that while the top board is waiting to send a Set frame, the en-board
logic of the bottcm board drives its RESOlJRCE REl;;lUFSI' line True also.

When the HEADER SENDER that originally set the flip-flops (not sho.vn) finally
sends a Reset frame, the "Q bar" outputs of both flip-flops enable the SEND21
inputs of the upper and lo.ver HEADER SENDERS simultaneously. As a result, they
both begin to send Semaphore Set frames. Since their semaphore select cedes
are the same in the S field, both are still sending at the end of that field.
However, since the HEADER SENDER at the bottom of the figure has the smaller
requester code in its R field, it retires from the bus. This leaves the top
HE'ADER SmDER to finish its frame, setting the flip-flops en both boards.

Since the flip-flops on BOTH boards are set, this fact doesn't tell the on­
board logic which board has been granted the resource. 'lbe FRAME MCNITOR en
the left side of each board samples all frames rn the bus, and asserts SENT if
its HEADER SENDER wins the arbitration and signals this fact on the SELECT
line. In the current case the top FRAME MONI'IOR pulses its SENT cutput True.

The diagram shows how the SENT pulse is used to control a flip-flop which
generates a RESOURCE GRANTED signal to the on-board logic. (The setting of
this flip-flop may be used to generate an interrupt to an cnboard prccessor.)
If there are several semaphores in the system, decoding on the S and R code
outputs of the FRAME MONITOR can be used to route the SENT pulse to one of a
number of su:h flip-flops.

When the enboard prccessor en the upper board finishes using the correspcnding
resource, it makes the RESOURCE REQUEST signal False. This makes the SEND12
input of the upper HFADER SENDER True, and it sends a Reset frame. 'Ibis clears
both of the semaphores plus the upper RESOlJRCE GRANTED flip-flop. 'lbe HFADER
SENDER en the lo.ver board is then enabled to send a Semaphore Set frame. When
this cccurs, the lo.ver RESOlJRCE GRANTED signal signals its cnboard prccessor
that it no.v centrols the resource.

7.3 ~ 3: A VIR1'0AL BUS

Most multiprccessing architectures ta:iay are the result of trade-offs based en
the high cost and physical size of backplane interface logic. Thus most
multiprccessing systems ta:iay are based en a single backplane bus instead of
several.

But, if we lcx:>k at the logical structure of these systems we find that each
processor may need to communicate with every other processor. One could
envisicn a system that provides for this kind of communicatirn with a complex
structure of point-to-point communication paths, but given the cost of the
hai:dware, it is usually impractical to build su::::h a stru::ture of buses.

Clearly, the hardware structure of a typical single-backplane system is very
different from the type of message traffic needed in a multiprocessor
configuration. This difference in structure can sometimes be hidden by the
software which handles the message traffic, but it can result in awkward
constraints which the user must live with, perhaps without ever really
understanding why.

7-5

In secticn 7.1 we talked about how the serial.bus could be used to provide a
very large number of virtual signal lines. 'Ihese lines could be coo.figured to
camect any boam to any other. '!his logical stru:ture is mt.di more like the
cne we've just discussed. While limited, these virtual signal lines provide
the kin:! of point-to-point paths needed in multiprcx::essing systems.

But the serial bus can do more than just provide virtual signal lines between
boards. It can also provide "virtual buses". Figure 7-3 shows a module
configuration that permits this. The TYPE 3 and TYPE l module groups at the
top of the figure are m me boam and the TYPE 4. mcdule group at the bottom is
en another boa.Id.

'Ihe TYPE 1 mcdule group cootains a HEADER SENDER which directs a Data Transfer
frame from the top board to the bottom whenever its SEND12 input is driven
Ttue. It does this by sending a Header subframe that selects the DATA SENDER
en the top boa.Id and the DATA RECEIVER en the bottan boa.Id. If we look at the
signals from the on-board logic on the top board and the the output signals
that go to the on-board logic of the bottom board, in each case we see a
parallel bus plus a "strobe" line. This "virtual bus" has a much slower
''propagatim time" than a real bus and its delay varies wit.'"1 the level of bus
traffic, but the fact that the serial bus can provide up to 1023 "virtual
buses" makes it very useful.

Of course, once we can.simulate a simple bus and a strobe we can create more
elaborate structures. For example, we could have one such virtual bus going
from board A to beard B, and a seccnd virtual bus in the other directim. 'Ihis
mcdule coofiguratic::n can be used for "stimulus-and-response" operations. 'Ihe
simplest example of su:::h an operaticn is board A reading a memory lo=atim ai
board Bs. •

7-6

~ I\\/'\/\/'~ ~ t~
S C P D S E:ArSRA t.
N N I r a
rcoccA t. E: r o o u

L.tddF" :I
L. t. a Iii R
6 y ~ E:

FRAME
MONITOR

11\ /]\
s 5
y E:
S R
R C e: L.
S K

~
'I<

If\

5 e:
R
D
A
r
:k

STROBE:
L.INE:

F"

p s c c s s rE: o o e:e:
I N d d N N
o D Iii Iii D D
r e:

L.i\'
0
s
r

1R ! 2!2A
t 2 ! R
y ~ B

, 11~ \ V' lt ':lL '1l..

~ r '
C e: e: S~Rfr:. o N N
d A A s s
oa e e r r

~ ~ R R
~i g

' lt sU e:.L e:

HEADER s SE:L.E:CT....:::.

PARAL.LE:L.
BUS

.--
D
a
t.
a

Dit\
s e:
N
T

F"RAMe:: IN_,,,,
PROGRE:SS

HEADER
SENDER

MAX/OR __;:
RECEIVER~R~SE:-L.-EC-T~-----1

DATA
SENDER

\\ tj\ '1\
s e: s s

y e:
S R
R C E: L.
S K
e:
T
:IC

R
D
A
T
:k

SERIAL BUS

~ '1'
s s
y e:
S R
R C e: L.
S K
e:
T
:k

s
.'!"
s
R e:
s
f
:k

s e:
R
c L.
K

1'
s e:
R
D
A
T
:IC

~ _\][_.'JL

HEADER
RECEIVER

~ ~ e:l\' e:tj\ R S
C N N
o A A S 5
Cl 8 8 T r
Q L L R R

e:e: 00

~SR ~~
16 F" T

s-mose:
LINE:

~

S SELECT
MAX/OR =
R SE:L.Ecr_;:,

FIGURE 7-3. EXAMPLE 3: A VIRTUAL BUS

1' !fl !fl
s s s
y e: e:
S R R
R C D
E: I.. A
S K T
e: * T

*

s
y
s
R
e: s e:
T

*

s e:
R
c
L
I<

~ e:
R
D
A
T

*

... IJL ':lL \/

DATA
RECEIVER

D S
a I
t z
a Iii

~ II ~ 11 v
PARALLEL.

BUS

..

